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ABSTRACT

Scattering of a plane electromagnetic wave from circular con-
ducting and dielectric cylinders is analyzed. Both polarizations of
the incident electric field, parallel and normal to the axis of the
cylinder, are considered. The study of the rigorous solutions gives
an insightful understanding of the scattered field and its dgpendence
on the material of the cylinder, the polarizations of the incident
field, and the three dimensionality of the object which usually are
not considered in Fourier optics. It is shown that a combination of
Fourier optics and ray theory can give good approximations for the
scattered field from both conducting and dielectric cylinders. It is
shown that the scattered pattern from a conducting cylinder consists
of a main lobe and a number of side lobes. The spacing between the
side lobes decreases as ka increases, where k is the wave number of
the incident field and a the radius of the cylinder. It is found
that for a certain conducting cylinder the side lobes terminate in a
smaller scattering angle when the incident field is polarized paral-
lel to the axis than when the incident field is polarized normal to
the axis of the cylinder. The surface current density in the shadow
region is found to be larger for the normal polarization case than
for the parallel polarization case. The pattern of the scattered
field from a dielectric cylinder has fringes all around the cylin-

der. The contrast of the fringes for the dielectric cylinder is much
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larger when the polarization of the incident field is parallel to the
axis than that when the polarization is normal to the axis. The
backscattered field of the dielectric cylinder has a peak which
depends in its position on the refractive-index of the cylinder for
the parallel polarization case. The fine structure of the scattering
by a dielectric cylinder is studied. It is shown that the dielectric
cylinder has resonant frequencies which depend on the radius and
refractive-index of the cylinder. It is found that there are signi-
ficant differences in the shape of the scattered pattern depending on
whether the cylinder is at-resonance or at off-resonance. Exper-
imental investigations are carried out to verify the theory derived

in this study and it is found that both theory and experiments are in

good agreement.



IT

III

IV

TABLE OF CONTENTS

Introduction

Scattering of Light from Large Conducting Cylinders

2.1

2.2

2.3

2.4

2.5

Introduction

General Formulation

Rigorous Solution of the Scattering Problem
2.3.1° Parallel Polarization Case

2.3.2 Normal Polarization Case

Surface Current Density

Fringe Spacings of the Scattered Field

Scattering of Light from Large Dielectric Cylinders

3.1

3.2

3.3

3.4

3.5

Introduction

Rigorous Solution for the Scattered Field
3.2.1 Parallel Polarization Case

3.2.2. Normal Polarization Case

The Fringe Spacings of the Scattered Field

The Effect of the Index of Refraction on
the Scattered Field

Comparison Between the Scattering from
Conducting and Dieletric Cylinders

Approximate Solutions for the Scattering of
Light from Large Cylinders

4.1

Introduction

Page

10
13
15
20
29
35
40
40
41
41
49

55

58

64

68

68



vi

4.2 Scattering from a Conducting Cylinder

4.2.1 Diffraction by a Strip

4.2.2 Back Scattered Field of the Cylinder

4.3 Scattering from a Dielectric Cylinder
4.3.1 The Scattered Field
4.3.2 The Fringe Spacings of the Scattered Field
\ Fine Structure of the Scattering from Dielectric
Cylinders
5.1 Introduction
5.2 The Resonances of a Dielectric Cylinder
5.3 The Effect of the Resonances on the

Scattered Intensity Pattern

VI Experiments

6.

6.

1

2

Introduction

Photographs of the Scattered Intensity Pattern
System Description

Plots of the Scattered Intensity Pattern

The Effect of the Different Polarizations
on the Intensity Pattern

VII. Summary and Conclusions

Appendices

A.

Number of Terms Needed for the Summation
of the Series

Measurement of Optical Fiber Diameter
Using the Fast Fourier Transform

Conversion from Density to Intensity Data

Plots of the Intensity Pattern from
Experimental Data

70

70

77

84

84

92

100
100

102

106

119

119

120

124

132

142

151

154

160

163

169



CHAPTER 1

INTRODUCTION

The scattering of electromagnetic waves by circular cylinders is
a fundamental problem in scattering theory. This problem is one of

the few scattering problems for which a rigorous solution can be

derived. Many authors have treated this problem(l-é). The solution

of Maxwell's equations for a dielectric cylinder goes back to Lord

(5,6)

Rayleigh, who derived the solutions for arbitrary radius, arbi-

trary refractive index, and perpendicular incidence. The solutions

for metallic wires in the microwave region were reported by Igna-

(7,8) )

towsky and Seitz

The method for finding the asymptotic
(10)

behavior for large sizes was reported by Debye A detailed study

of the scattering of electromagnetic waves by conducting cylinders is

(1)

reported by King and Wu for ka £ 12. The asymptotic solutions

for the scattering cross section using perturbation theory were

(12) (13).

reported by Papas , and Borgnis and Papas Keller reported a

ray-theory approach to construct the leading term in the asymptotic
expansion of the field scattered from large convex cylinders.(14)
Interest in the study of the scattering of light by dielectric
cylinders has increased greatly since optical fibers started to be
used in the field of optical communications. Recently there are many

writers working on problems relating to scattering from dielectric

cylinders. The scattering of light from cylinders with arbitrary



refractive-index distributions 1is reported by few authors(15-17).

Determination of the diameter of the cylinders and profiling the
refractive-index of the cylinders are reported by  many
authors(18—21). It is quite important to refer to the work done by
Fock in the treatment of the problem of scattering from large bodies;
he derived approximate solutions for the surface currents at the
shadow boundary(22’23).

In this work, we are interested in studying the problem of
scattering of light from large circular cylinders, both conducting
and dielectric. Solutions are derived for a linearly polarized plane
wave incident normal to the axis of symmetry of the cylinder. The
major emphasis in this work has been to study the fields scattered by
large conducting and dielectric c¢ylinders (ka >> 1) when they are
illuminated with a plane electromagnetic wave. The scattered field
has been studied for different cylinder parameters, and for different
polarizations of the incident plane wave.

In Chapter II, the scattering of light from conducting cylinders
is reported. Rigorous solutions of the scattered field are derived
from Maxwell's equations, using appropriate boundary conditions, for
both polarizations of the incident field. The surface current
density induced by the fields on the surface of the cylinder is
derived and plotted for the two different polarizations, and it is
shown that the currents for the normal polarization case are very
large in the shadow region in comparison to those for the case of

parallel polarization. The amplitude of the scattered field is

plotted as a function of the scattering angle (¢) and the factor ka.



The fringe spacings of the scattered field are deduced and plotted
for various values of ka. The main differences between the scattered
fields resulting from the parallel and normal incident field polar-
izations are pointed out.

The scattering of light from large dielectric cylinders is
reported in Chapter III. Rigorous solutions of the scattered field
are derived from Maxwell's equations for the two different polariza-
tions of the incident field. The scattered field patterns outside of
the cylinder are plotted as a function of ¢ for a set of values of
ka. The fringe spacings of the field are plotted as a function of ¢
and ka, and their dependences on ¢ and ka are studied. A very inter-
esting result is obtained concerning the effect of the index of
refraction on the scattered field. It is found that the backscat-
tered field (90° < ¢ < 180°) has a peak with a position increasing in
¢ by the increase of the index of refraction, and also it is found
that this position is not sensitive to the change of ka.

In Chapter 1V, approximate solutions for the scattering of light
from circular conducting and dielectric cylinders are reported. It
is shown that the scattered field from a conducting cylinder can be
approximated very closely by the superposition of the diffracted
field from a variable width strip and the backscattered field gener-
ated by the surface current density. The fields scattered by the
dielectric cylinder can be approximated by the superposition of the
.diffracted, reflected and refracted fields. The approximate solu-

tions are compared to the rigorous solution and they are shown to



give very good agreements. A closed form is derived for the fringe
spacings of the scattered fields.

In Chapter V, the fine structure of the scattering from dielec-
tric cylinders is presented. The effect of the change in the wave-
length of the incident field is studied. It is found that the
cylinder behaves like a cavity resonator. The effect of the reson-
ances on the scattered field is studied, and it is found that
at-resonance the fields tend to concentrate around the main-lobe,
while at off-resonance the fields spreads more in all around the
cylinder. It is shown also that the resonanance effect the shape of
the modulating function of the scattered pattern.

In Chapter VI, an experimental study of the scattering of light
from cylinders 1is reported. The scattered intensity has been
detected by two different methods. In the first method a photo-
detector is rotated around the cylinder in precise steps, and a
record of the intensity is collected using a data acquisition system.
In the second method the radiation patterns are recorded photograph-
ically with precise alignment controlled by registery pins. Then, a
microdensitometer is used to obtain a density vs. angle plot which is
later digitized and converted to read optical intensity. The exper-
imental results are compared with the theoretical results and they
are in good agreement.

A recaptulation of the major results of the research is con-

tained in Chapter VII.
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CHAPTER II
SCATTERING OF LIGHT FROM

LARGE CONDUCTING CYLINDERS

2.1 Introduction

The problem we are considering in this chapter is the scattering
of a plane electromagnetic wave by a perfectly conducting circular
cylinder. The problem will be studied for the two different polar-
izations of the incident electric field, parallel to the axis of
symmetry of the cylinder (TM), and normal to the axis (TE). Fig. 2.1
shows the coordinate system used in this study.

At the beginning we will introduce some general formulations
concerning the field theory, as a necessary starting point, which
will lead to the solution of Maxwell's equations. We are concerned
with finding the solution of Maxwell's equations which describe the
field arising from a plane electromagnetic wave incident upon a
cylindrical surface, across which the properties of the medium change
abruptly. An appropriate system of curvilinear coordinates (cylin-
drical coordinates) 1is introduced. 1In the cylindrical coordinates
Maxwell's equations will separate into a set of ordinary differential
equations, which are then solved for the scattered fields. This
method is the standard method for solving this class of scattering

(1-4)

problems In Section 2.3 rigorous solutions of Maxwell's equa-

tion are derived for both parallel and normal polarizations of the



incident field. The solutions are expressed in infinite series, and
the number of terms needed to get accurate values for the fields are
shown. The scattered field amplitude is plotted as a function of the
scattering angle, ¢, for a set of values of ka. The surface current
density is derived and plotted in Section 2.4, and a comparison
between currents induced on the surface of the cylinder is made for
the two polarizations of the incident field. In Section 2.5 the
fringe spacings of the scattered field pattern are plotted as a
function of ¢ for a set of values of ka. The cutoff angle of the

fringes is studied for both polarizations as a function of the factor

ka.
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2.2 General Formulations

The solution of this scattering problem will be derived from the

Helmholtz wave equation using the proper boundary conditions.

We

will start by introducing Maxwell's equations from which we will

derive the Helmholtz wave equation. Maxwell's equations for a source

(5)

free media are given by

VXE(r,t) = -3B(x,t)/dt, (2
VxH(r,t) = 3D(r,t)/dt, (2
V-D(r,t) =0, (2.
V-B(r,t) = 0. (2.

If we assume time harmonic fields, i.e.

.1)

.2)

3)

&)

E(r,t) = Re E(x) e WE, (2.5)
B(r,t) = Re B(r) e Wt (2.6)
D(r,t) = Re D(x) e ¢, (2.7)
H(r,t) = Re H(r) e VT (2.7)
Maxwell's equations for the time harmonic fields will reduce to
VE(r) = iuB(r), (2.9)
UXH(x) = -iuD(x), (2.10)
V-D(x) = 0, (2.11)
V-B(x) = 0 (2.12)
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Fig. 2.1 The incident field as it illuminates the cylinder.
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For an isotropic medium, where the physical properties of two
neighboring points are the same in all directions, the relations

between D,E,H and B are given by

D(x) (2.13)

1]
(4]
| =
—~
o
~—r

B(r) = p H(x). (2.14)

From Egs. (2.9), (2.10), (2.13), (2.14) and some vector identi-

ties we get
2 2 -
V°E(x)+k“E(x) = 0. (2.15)

Which is the Helmholtz wave equation for a source free medium, where

K = wlpe, k = 2m/A. (2.16)
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2.3 Rigorous Solution of the Scattering Problem

To solve the Helmholtz wave equation for the scattered field
from a circular cylinder, we need to write the wave equation in

cylindrical coordinates (p,0¢,z). The wave equation (2.15) in cylin-

drical coordinates is given by

5U o2y 92U

1 z z 2
(p ——E) + — + + kKU =0, (2.17)
ap p2 8¢2 822 z

19
p 9p

where UZ is the field component parallel to the axis of symmetry of
the cylinder. ©Eq. (2.17) 1is a second order partial differential
equation and can be solved using separation of variables. Let Uz

expressed as:

U_(p,0,2) = R(p)®(9)Z(2). (2.18)

By substituting Eq. (2.18) into Eq. (2.17) and following the standard
procedure of separation of variables, Eq. (2.17) will reduce to the

following three differential equations:

2
97Z(z2) + hZZ(z) =0, (2.19)
2
oz
2
a3 ¢(Q) 2 -
502 + m” ¢{¢) = 0, (2.20)
and
2

ap
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where h is a constant, and m is an integer because the field is
periodic in ¢. Egs. (2.19) and (2.20) are ordinary second order

differential equations, and they have the following solutions:

72(z) = e 1hZ (2.22)

and

s
e’1m¢.

$(9) (2.23)

Eq. (2.21) is in the form of Bessel's differential equation and in
solving it we have to keep in mind that the solution for the scat-
tered wave should satisfy the radiation condition. The radiation
condition for such problem is that the scattered field should be an
outgoing wave at large p. So the solution of Eq. (2.21) will be

given by the Hankel function of the first kind(6)

R(p) = BV (pJi?707 ).

~
N
o
i~
s

From Egqs. (2.22), (2.23) and (2.24) the scattered field from a cylin-

der is given by

o]
+i :
U (p,0,2) = o025 p gD (p/pzRz)el™, (2.25)
z - MM
In the case when the incident wave is propagating perpendicular to
the symmetry axis of the cylinder, the scattered field will be inde-

pendent of z, i.e., h = 0, then the scattered field will be given by
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=}

U (p,0) = I bmeim¢ Hél)(kp). (2.26)

m==0

The coefficient bm will be determined using the boundary conditions.
If we illuminate the cylinder with a plane wave, U;nc(x) of unit

amplitude traveling in the x direction, then

Ulnc(x) _ e1kx _ e1kpcos¢,

z - (2.27)
which can be expressed in terms of Bessel functions as(7)
3 > k m 0
U p,0) = et peosd 5 (i)me(kp)elm¢, (2.28)

m=-o

then the total field will be the superposition of the incident and

scattered fields.

inc scat

U ,0) = U"p,0) + U (o, 00, (2.29)

from Eqns. (2.26), (2.28) and (2.29) the total field can be expressed

as

=]

U, = 2 1" (ko) + b B (ep)1et™. (2.30)

m=-c

2.3.1 Parallel Polarization Case

When the incident electric field is linearly polarized along the
z-axis, the total electric field from Eq. (2.30) is written as

o]

B (0,00 = T (0" (kp) + b B D (ke p)]e™™. (2.31)

m==-00
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To evaluate the arbitrary constant bm we need to apply the boundary
condition for the electric field. This condition for the perfect

conducting cylinder is that the tangential component of the electric

(1,5)

field vanishes on the surface , 1.e.,

Et°t(p,¢) =0, at p = a.

From Egn. (2.34) with p = a, we obtain relations for bm:

=2}

BN (a,0) = 2 (D™ (ka) + b HC D (ka)]el™ = 0. (2.32)

m==-c

From the orthogonality of functions elm¢, we can set the individual

terms in Eq. (2.32) to zero. The result is

(i)me(ka)

bm = - W . {(2.33)

By substituting Eq. (2.33) into Eq. (2.26) we get

o J (ka)
ES(p,0) = - 3 ()" D

imé¢ .
m=-00 H;l)(ka)

H_(kp)e (2.34)

This expression for the scattered field agrees with that given
by Papas(B), and then by King and Wu(g).

The scattefed electric field given by Eq. (2.34) is represented
by an infinite series. Its coefficients are function of the wave-

length (A), the radius of the cylinder (a), the scattering angle (¢)

and the distance p.
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Now we consider the p dependence of this solution, the only
parameter which is a function of p is the Hankel function Hél)(kp),

and its asymptotic expansion can be given by(lo)

Hél)(kp) ~ J2n/kp ei{kp-(mn/Z)-(n/&)} for large p,

so the field will have the component eikp/Jp which is a cylindrical
wave propagating in the postive p-direction. The factor eim¢ will
give the dependence on ¢ of the field which will have a period of 2m.
From these parameters of the series, we can describe the behavior of
the field. The scattered field will be propagated as an outgoing
cylindrical wave, with amplitude and phase depending on the factor
ka, the scattering angle ¢ and the distance p from the cylinder, and
the field will be periodic in ¢ with a period of 2m.

In the following subsection we will study the effect of these

parameters on the scattered field.

Graphical Representation of the Scattered Field

The scattered field given by Eq. (2.34) depends on three para-
meters: the scattering angle ¢, the radius of the cylinder a, and
the wavelength of the illuminating field A. To study the effect of
these parameters on the scattered field, we need to plot the ampli-
tude of the scattered field as a function of each of them.

The scattered field can be written as

o]

Ez(p,¢) =- 2 C_(ka,kp)e

m=-

imp (2.35)
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Hence,
E>(p,9) = - Cy(ka,kp) - 2 X C_(ka,kp)cosmo, (2.36)
m=1 m
J (ka)
where C (ka,kp) = (i)™ H(l)(kp) ) (2.37)
m H(l)(ka) m
m

To plot Ez(p,¢), which is represented by an infinite series, we need
to use the digital computer to compute the amplitude of the scattered
field. Using the digital computer will enable us to evaluate a
finite number of terms of the series, and so it is important to know
how many terms of the series are required to give us an accurate
value of the solution. It has been stated by King and Wu(g) that the
number of terms needed to make the series converge is approximately
the wvalue of ka. In Appendix A we derived analytically, in an
approximate form, the number of terms of the series needed to make
the sum of the series accurate enough; and they are indeed around the
value of ka.

The calculations we made in Appendix A shows that we need to sum
m > ka. To see how many terms we need to sum more than ka to get an
accurate sum of the series we need to study the dependence of the
coefficient Cm(ka,kp) of the series on the different wvalues of ka.
In Fig. 2.2 we plotted the amplitude of Log{ICm(ka,kp)I} vs. the
number of terms m. From the curves in Fig. 2.2 we can see that ICmI
fluctuates around certain values, then when m 2 ka(l+a) the

coefficient decreases very rapidly. The value of o decreases by the
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Fig. 2.2 Logarithm of the normalized coefficient ICm(ka,kp)I given
by Eq. (2.37) plotted vs. the order m, for ka = 10, 50 and
100. Note that the coefficient tends to a negligible value
at m = ka + 10.
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increase of ka, e.g., a = 1.4, and 0.16 for ka = 5, and 100, respec-
tively. So to plot the scattered field EZ(p,¢), we need to take the
number of terms of the series which will make the coefficient ICmI
drop by at least 60 dB.

In Figs. 2.3(a) and (b) the scattered field is plotted as a
function of the scattering angle for a set of ka values in polar
coordinates. The amplitude of the field is plotted at p = 10 cm.
From Fig. 2.3 it is clear that the amplitude of the field has a main
lobe and a number of side lobes. The width of the main lobe is
decreasing by the increase of ka, and the number of side 1lobes
increases by the increase of ka. In Figs. 2.3(c) and (d) a set of
curves for the amplitude of the scattered field for ka = 10 and
ka = 50 in linear coordinates are plotted. This will give us a more
sense of the dependence of the amplitude of the field on ka and ¢.
The ratio of the amplitude of the field at ¢ = 0° to that at ¢ = 180°
is decreasing by the increase of ka. The spacing between the nulls
is decreasing as ka increases, and the amplitude of the Ez(p,0°) is

increasing as ka increases.

2.3.2 Normal Polarization Case

When the incident electric field is linearly polarized in the
y~-axis, i.e. perpendicular to the axis of the cylinder then the
incident magnetic field will be parallel to the axis of symmetry of
the cylinder. From Eq. (2.30) the total magnetic field will be given

by
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(a)

(b)

§T~» b = 180°

H

Fig. 2.3 The normalized scattered field IEs(p,¢)/ES(p,0°)| given by
Eq. (2.34) plotted vs. the scattering angle ¢. (a) and (b)
are plotted in polar coordinates for ka = 5 and ka = 10,

respectively; (continued on next page).
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o]

HC0,0) = 3 (0" (kp) + d 1D (kpy1e™™ (2.38)

m=-o
To evaluate the arbitrary constant dm we need to apply the boundary
condition for the magnetic field. The boundary condition applicable

to this case is(l’s)

oton8
op =0, at p = a , (2.39)
i.e., the derivative of the tangential component of the magnetic

field w.r.t p vanishes on the surface of the cylinder. By applying

this condition to Eq. (2.38) we get

o0 . o® , .
k X (D)™ (kp) e™ x5 auw Wik ™ = 0. (2.40)
m=-w m p:a m=-o m m p:a

From the orthogonality of functions elm¢, we can set the individual

terms in Eq. (2.40) to zero. The result is

L (ka)
d = -(i) W———, (2.41)
Hm (ka)

where the primes denote differentiation with respect to the variable

p. Then the scattered field can be written as

o J'(ka)
H (p,0) = - = (D" =7

im¢
m=-o% H;(l)(ka)

H;l)(kp)e (2.42)
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The scattered magnetic field has the same form as of the scattered
electric field in the parallel polarization case except that the
coefficient dm = Bbm/ap. So the main characteristic of the field are
the same, i.e., the scattered field will be propagating as a cylindr-
ical wave with amplitude and phase depending on the radius of the
cylinder, the wavelength, and the distance of the observation point
from the axis of the cylinder. The effect of these parameters on the

scattered field will be shown in the following subsection.

Graphical Representations of the Scattered Field

The scattered field given by Eq. (2.42) can be rewritten as

o]
s _ im¢
H (p,¢) = - 3 F e,
m=-0o
[}
H(p,0) = -F_ - 2 3 F_cosmd, (2.43)
z 0
m=1
J’(ka)
where F = ()" —s 71 (kp) . (2.44)
m H 7 (ka) m

To plot HZ(p,¢) we need to sum.up enough terms of the series to
get an accurate value for the field, i.e., until the remainder of the
terms of the series can be neglected without affecting the value of
the field significantly. As shown in Appendix A, the number of terms
which will give such a sum is slightly larger than ka.

In Fig. 2.4 a plot for Log{lle} as a function of the number of

terms m is shown for p = 10 cm. From these curves, it is clear that
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LOG [|Fm (ka, kp)|] [arb. units]
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Fig. 2.4 Logarithm of the normalized coefficient lFmI in Eq. (2.44)

is plotted vs. the order m.
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when m = ka(l1+8), the value of the coefficient |le will become
negligible. The value of B is decreasing by the increase of Kka,
e.g., B =1.4 for ka = 5, and B = 0.16 for ka = 100.

In Figs. 2.5(a) and (b) a plot for the amplitude of the scat-
tered field IHi(p,¢)|/|Hz(p,0)l in polar coordinates is shown for
ka = 5 and ka = 10. The amplitude of the field has a maximum at
¢ = 0°. The width of the main lobe decreases by the increase of ka,
and the number of nulls increase by the increase of ka. Figs. 2.5(c)
and (d) shows a plot for the normalized amplitude of the scattered
field for ka = 10 and 50. The main characteristic of the field that
we can recognize from these plots is that the nulls extend on a wider
range of ¢ more than that for the parallel polarization case. The
angle at which the nulls begin to disappear decreases by the increase
of ka. The reason for the difference in the pattern structure of the
scattered field for the two different polarizations of the incident
field is because of the value of the surface current density gener-
ated in each case. When Hinc is parallel to the axis of the cylin-
der, it will induce a current flowing in the ¢-direction which will
enable it to go more deeply in the shadow region. While when Einc is
parallel to the axis of the cylinder it will induce a current in the
z-direction which will die very close to the shadow boundary. iThis
will become clear when we study the surface current density for the

two different polarizations in the next section.



Fig. 2.5
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The normalized scattered field IHs(p,¢)/HS(p,O°)| for the
normal incidence case, in Eq. (2.42), is plotted vs. the
scattering angle ¢. (a) and (b) are plotted in polar

coordinates for ka = 5, and 10; (continued on next page)
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2.4 Surface Current Density

According to Maxwell's equations the electric and magnetic
fields illuminating a perfectly conducting cylinder will induce a
surface current in a very tiny shell on the surface of the cylinder.
The surface current density for the case when the incident electric
field is parallel to the axis of the cylinder will also be in the
z-direction. The surface current density generated by the parallel

polarized incident field will be denoted as Kz(¢), and it is given

by (9

K () = H (a,0).

¢

Hence, from Eq. (2.9)

. 3E_(p,9)
K (9) = = —2— ,
z Wi op p=a

(2.45)

where Ez(p,¢) is the total electric field.

From Egs. (2.45), (2.31) and (2.33) we can get

. ® . . J (ka)
K (0) = 25 5 (0" (ka) -

H(1)
o % H (ka)].

Hél)(ka)

By using Bessel differentation formulas and using the orthogonality

(10)

relation

2i

Jm+1(ka)Ym(ka) - Jm(ka)Ym+1(ka) = ka?



30

then,
_ 2 > N eim¢

Kz(q)) - wpna m=_°°(1) H[fll)(ka), (246)

or
1 o m
2 (i)
K (¢) = [ + 2 3 —<T——— cosmf]. (2.47)
z whirta Hél)(ka) n=1 H;l)(ka)

When the electric field of the incident wave is linearly polar-
ized in the direction normal to the axis of the cylinder, then the
magnetic field will be parallel to the axis of the cylinder. At the

boundary this magnetic field will induce a surface current density

flowing in the ¢ direction, and the surface current, K¢(¢), will be
given by(g)
K. (¢) =H (p,9)] 2.48
o =100 (2.48)
p=a
From Egs. (2.48), (2.38) and (2.41) we get
. ® im¢
21 m e
K () =>2— 2 ({) —F5—. (2.49)
¢ rtka =00 H (1)(ka)
m
Therefore,
% .M
2i 1 (i)
K, (¢) = {— + 2 X ——35— cosmb}. (2.50)
0 mka Ho(l)(ka) m=1 Hm(l)(ka)
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The surface current densities for both polarizations of the
incident field which are given by Eqs. (2.47) and (2.50) have the
‘same format, except for the coefficients of the series, i.e., one of
them has the Hankel function and the other has its derivative, and
both of them have a period of 2r in ¢. The surface current Kz(¢) is
plotted in Fig. 2.6(a) for ka = 5, 50 and 500. The surface current
is maximum at ¢ = 180° which is the center of the illuminating
region, then it decreases as we move away towards the shadow region.
The surface current will be flowing as travelling waves(g) starting
at the shadow boundaries, ¢ = m/2 and ¢ = -n/2. They will travel
around the cylinder in the shadow region in opposite directions.
Those travelling waves will interfere with each other producing a
standing wave at ¢ = 0°. As ka increases, the current decreases
faster as we move towards the shadow region, e.g., for ka = 5, the
current drops to 26 dB at ¢ = 40°, while for ka = 50 and 500 the
current drops to 26 dB respectively at ¢ = 75° and 90°. The surface
current drops to a negligible value in the shadow region for respec-

tively large values of ka. The surface current density K (¢), when

¢

the incident electric field is polarized normal to the axis of the
cylinder, is plotted in Fig. 2.6(b) for ka =5, 50 and 500. The
surface current flows in the ¢ direction enables it to travel more in
the shadow region. As it was for Kz(¢), K¢(¢) also exists as travel-
ling waves starting from the shadow boundaries and making a standing
wave with a maximum at ¢ = 0°. The surface current density for this
case does not drop in its value as rapidly as that for the previous

case. We can see that for all values of ka considered the current
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drops only by 3 dB at the shadow boundaries (¢ = m/2 and -n/2). 1In
Fig. 2.7 the surface currents for both polarization are plotted
together for comparison at ka = 5 and ka = 500. The current for the
parallel polarization is dropping much faster than that for the
normal polarization. If we look at the curves for ka = 500, K

¢
begins having negligible values around ¢ = 40°; but Kz starts having
negligible values around ¢ = 80°. This is the reason there are more

nulls in the case of normal polarization than in the parallel polar-

ization case.



Fig. 2.7
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The normalized current densities for both polarizations are
plotted for (a) ka =5, (b) ka = 500. Note that the sur-
face current for the normal polarization is much larger

than that for the parallel polarization.
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2.5 The Fringe Spacings of the Scattered Field

A main feature of the scattered field amplitude is the fringe
pattern and spacings it has. In section 2.3 where we studied the
scattered field pattern, and we found that the fringe spacings
decrease by the increase of the radius of the cylinder. In this
section we would like to study the dependence of these fringe spac-
ings on the scattering angle ¢ and the factor ka for both polariza-
tions.

The fringe spacings A¢ are plotted in Figs. 2.8(a) and (b) for
parallel and normal polarizations, respectively, as a function of ¢
for ka = 25, 50 and 100. For the parallel polarization, the fringe
spacings have almost the same value over most of the range and they
start increasing slightly at the end of the range. The fringes have
a cutoff angle of about 40°, and this cutoff is changing with the
change of ka. The physical significance of the cutoff angle 1is
explained on the next page. The fringe spacings have a value 2
(175/ka)®. TFor the normal polarization, the fringes exist for a much
larger range of ¢; i.e., they have a much larger cutoff angle than
that for the parallel polarization case. The fringe spacing for
ka = 25 decreases to a minimum around ¢ = 40°, then increases in the
rest of the range. For larger ka, fringe spacing also decreases at
the beginning of the range and increasing at the end of it. But they
have almost the same value for most of the range, and their minimum
value equals that for the parallel polarization case. So the fringe
spacings carry the information about the radius of the cylinder and

the wavelength of the illuminating wave. The dependence of the cutoff
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Fig. 2.9 The cutoff angle of the fringes plotted vs. the factor ka

for both polarizations of the incident field.
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angle of the fringes is plotted in Fig. 2.9 as a function of the
factor ka, from ka = 30 to ka = 350 for both polarizations. The
cutoff angle decreases by the increase of ka, and it is much less for
the parallel polarizations than that for the normal polarization.
And also it decreases much more rapidly for the normal polarization
case, from 160° to 80°; however, it decreases only from 50° to 30°
for the parallel polarization case.

The fringes of the scattered field are generated by interference
between the fields that are reflected, diffracted by the edges of the
cylinder and fields generated by the surface current travelling
waves. When the incident electric field is parallel to the cylinder,
the fringes are mainly generated by the diffracted waves because the
surface current is very small in the shadow region, which will not
allow the current to go around the c¢ylinder. That is the reason
there are fringes only in a very small range of the scattering angle
and are cutoff beyond this range. When the incident magnetic field
is parallel to the axis, the surface current is large in the shadow
region which will alléw it to go around the cylinder, before it
becomes negligible. That will make the field generated by the
surface current large and the fringes will extend their region of
existence. As the factor ka gets larger, the surface current gets
smaller, and in turn the cutoff angle of the fringes also gets

smaller.



10.

39

CHAPTER 1I

REFERENCES

H.C. Van de Hulst, Light Scattering by a Small Particles (Wiley,

New York, 1957).

M. Kerker, The Scattering of Light and Other Electromagnetic

Radiation (Academic, New York, 1969).

M. Born, and E. Wolf, Principles of Optics (Pergamon, Oxford,

1975).

D.S. Jones, The Theory of Electromagnetism (Macmillan, New York,

1964).

J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York

1941).

G.N. Watson, A Treatise on the Theory of Bessel Functions (Cam-

bridge University Press, 1922).

I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series,

and Products (Academic Press, New York 1965).

C.H. Papas, "Diffraction by a Cylindrical Obstacle," J. Appl.
Phys. 21, p. 318 (1950).

R.W.P. King and T.T. Wu, The Scattering and Diffraction of Waves

(Harvard University Press, Cambridge, 1959).

M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Func-

tions (National Bureau of Standards, Washington D.C., 1972).



40

CHAPTER III
SCATTERING OF LIGHT FROM

LARGE DIELECTRIC CIRCULAR CYLINDERS

3.1 Introduction

In this chapter a theory for the scattering of a monochromatic
plane wave by a dielectric cylinder is presented. The problem is
formulated for dielectric cylinders of circular cross‘section, con-
stant index of refraction and radius which is larger than the wave-
length of the illuminating wave; however, all the formulations are
good for the case where the radius is smaller than the wavelength.
It is of particular interest to examine how the radius and the
refractive index wvariations map into the scattered field pattern.

Section 3.2 contains a rigorous solution for the Helmholtz wave
equation for the scattered field in the two different polarizations
of the incident field, parallel and normal to the axis of symmetry of
the cylinder.

In Section 3.3 the fringe spacings of the scattered field are
studied for a set of cylinders with different radii.

In Section 3.4 the effect of the index of refraction variations
on the scattered field pattern are studied, and it is shown that the
position of the peak in the backscattered field depends on the index

of refraction of the cylinder.
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3.2 Rigorous Solution for the Scattered Field

From Maxwell's equations for time harmonic fields Egs. (2.9)

through (2.12), we can derive the following Helmholtz wave equation
VZE(r) + n%k%E(x) = 0 (3.1)

where n is the index of refraction of the material of the cylinder

n = Jpra (3.2)

and where M, and e are the permeability and permitivity of the
medium, respectively.
In the following subsection we will derive the solutions for the

Helmholtz wave equation (3.1) for the two different polarizations of

the incident wave.

3.2.1 Parallel Polarization Case

When the illuminating wave is a plane wave linearly polarized in
the z-direction and parallel to the axis of symmetry of the cylinder

then the incident electric field will be given by

Elnc(p’¢) - e, e1kpcos¢
which can be expressed in terms of Bessel functions as(l)
0 - k m .
EC(p,0) = PO = 5 ()™ 5 (kp)el™ (3.3)

m=-o

To solve the Helmholtz wave equation we will first rewrite it

in cylindrical coordinates. Then using the separation of variables
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technique following the same procedure outlined in Chapter II we
obtain the following solutions for the electric field outside and

‘inside the cylinder

m .
E°(p,0) = 5 a H(l)(kp) elm‘p; p>a, (3.4)
= =00 m m
and
0 .d m -
B0 00,00 = 1 by (akpde™; o<, (3.5)
m=-w

where a and Dm are arbitrary constants, which will be determined
using the boundary conditions. The boundary conditions for such case

are given‘by(2’3)

nEt and nBEt/Bp are continuous at p = a. (3.6)
The total electric field is the superposition of the incident field

and the scattered field, i.e.,

E%p,0) = E*(p,0) + ES(p,0) . (3.7)

The tangential component of the field outside the cylinder from
Eqs. (3.3) and (3.4) is given by

o]

E°p,0) = 5 (D™, (k0) + a B (kp)1e™ (3.8)

m=-=o

A t . .
By applying the first boundary condition, nE~ is continuous across

the boundary p = a, and using Egs. (3.5) and (3.8) we get
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(o] oo

n 3 DJ (mka)el™ = 5 (D™ (ka) + a B (ka)1e™ . (3.9)
- m m _ m mm
m=-o m=-

From the orthogonality of functions elm¢, we can set the individual

terms in Eq. (3.9) to zero, then we obtain

i (i)me(ka) +a H (ka)

Dm - nJm(nka)

(3.10)

And by applying the second boundary condition, nBEt/ap is continuous

across the boundary p = a, and using Egs. (3.5) and (3.8) we find

o] ' . [e .} ' .
2’k 3 DJ (nka)e™ =k 3 [(1)™ (ka) + a HL (ka)]e™™P
m m m mm
m—=- m=-~o
Then,
2 ! !
nD J (nka) - (i) J (ka)
a = —= n (3.11)

H;(ka)

By substituting Eq. (3.10) into (3.11) and by straightforward algebra

we find
nJ (ka)J (nka) - J (ka)J (nka)

a = '(i)m T L (T) T T(l) (3.12)

m nJ_(nka)H "’ (ka) - J_(nka)H "’ (ka)
and

(1)
J (ka)[H'"/(ka) - H (ka)]
D_ = ()" 5 n L mn (3.13)

n J;(nka)Hél)(ka) - nJm(nka)ﬁél)(ka) ‘
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From Egqs. (3.4) and (3.12) the scattered field will be given by

o nJ (ka)J (nka) - J (ka)J (nka)
Ez(p’¢) = - 2 (i)m 1 L (?) T T(])
m=- nJm(nka)Hm (ka) - Jm(nka)Hm (ka)

H(l)(kp)eim¢.
(3.14)

And from Eqs. (3.5) and (3.13) the field inside the cylinder will be

given by
N (1)
(inside) _ ..m Jn(ka)[Hm (ka) - Hm(ka)]
EZ (p’¢) = - Z (1) K (1) ) '(1)
m=-~00 n Jm(nka)Hm (ka) - nJm(nka)Hm (ka)
x Jn(nkp)eim(p (3.15)

These solutions are the same as those given by van de Hulst.(S)

From Eq. (3.14) we see that the scattered field is expressed in
an infinite series of the same form as that for the conducting
cylinder case, except for the arbitrary constant a_ which takes a
more complex form than that of bm. So the scattered field will be
propagating outside the «cylinder din a c¢ylindrical wave, with
amplitude and phase depending on the radius, index of refraction,
scattering angle, and the distance of observation point from the axis
of the cylinder.

To study the scattered field, we need to sum up enough terms of
the series until it converges. Then the rest of the terms will have
no significant contribution to scattered field. In Appendix A it

is shown that the number of terms, which will make the series

converge 1is slightly larger than ka. In Fig. 3.1 the coefficient
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by Eq. (3.12) plotted vs. the order m, for ka = 10, 25, 50

and 100. Note that the coefficient reduces to a negligible
value at m = ka + 10.
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Log{lamHél)(kp)l}, as a function of the number of terms m at p =
10 em, is plotted. From these curves, the coefficient becomes
negligible when m = ka(l+y). The value of y decreases by the increase
of ka, e.g., Y= 0.8 at ka = 10, and y = 0.17 at ka = 100.

The normalized scattered electric field |EZ(p,¢)l/IEZ(p,O)| is
plotted in Figs. 3.2(a) and (b) in polar coordinates for ka = 5 and
10 respectively. The pattern of the scattered field has a main lobe
at ¢ = 0°, and a number of side lobes with amplitude decreases with
the increase of ¢. In the backscattered field these lobes will
increase their amplitude significantly. These backscattered lobes
are main features of the dielectric cylinder scattered field and are
not present in the case of the conducting cylinder. 1In Figs. 3.2(c)
and (d) the normalized scattered electric field is plotted for ka =
10 and 50, respectively. The width of the main lobe decreases by the
increase of ka; the number of lobes increase by the increase of ka;
and, hence, the fringe spacings decrease. The backscattered field
lobes have a larger amplitude than those before them, so they can be
recognized very easily. The other thing we notice about the back-

scattered lobes, is that they have a peak around ¢

1R

155°, and its
position does not change significantly by the change of the factor
ka.

The fringes of the scattered field pattern are a result of the
interference between the refracted rays, which propagate through the
cylinder, the reflected rays, which reflects from the surface of the
cylinder, and the rays diffracted by the edges of the cylinder.

Those are the main sources of the fringes in the forward scattered
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Fig. 3.2 The normalized scattered field |Es(p,¢)|/|Es(p,O )| given
by Eq. (3.14) plotted vs. the scattering angle ¢. (a) and
(b) are plotted in polar coordinates for ka = 5 and ka =

10, respectively; (continued on next page).
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field. The rays which will make multiple refractions and reflections
inside the cylinder will make contributions to the scattered field
especially in the range of 80° < ¢ < 150°. The backscattered field
fringes are a result of the interference between the reflected rays
from the surface of the cylinder, and those which will be refracted
through the cylinder once and then are reflected by the inner surface
of the cylinder. The range they cover will depend mainly on the

index of refraction of the cylinder.

3.2.2 Normal Polarization Case

When the illuminating plane wave is linearly polarized along the
direction normal to the axis of symmetry of the cylinder, then the
incident magnetic field will be polarized parallel to the axis of the

cylinder, i.e.

1nc(p;¢) -

H gzelkpcos¢ :

which can be expressed in terms of Bessel functions as

ikpcoso - s (i)me(kp)eim¢ )

m=-

H(p,0) = e

Then we need to solve the Helmholtz wave equation for the scattered
magnetic field. Following the same procedure outlined in Chapter II
we obtain the following solutions outside and inside the cylinder
m >
im¢

B0 = 3 paVape™,  p>a, (3.16)

m=-&



50

and the magnetic field inside the cylinder is given by

oo
inside _ iméd
5% (p,0) = £ QI (akp)e™™,

m=-00

p<a, (3.17)

where Pm and (%1 are arbitrary constants, which will be evaluated
using the proper boundary conditions. The boundary conditions for

this case are:(l’z)

nth and 8Ht/8p are continuous at p = a , (3.18)

where Ht is the tangential component of the total magnetic field.
The tangential . component of the total magnetic field outside the
cylinder is given by

o]

t . 1 i
B(p,0) = = [ (kp) + B B(D (kpy]e™™ . (3.19)
m=-
By applying the first boundary condition, n(‘Ht is continuous across

the boundary p = a, and using Egqs. (3.17) and (3.19) we get

n? 3 Qme(nka)eim¢ = 3 [(DO" (ka) + PmHél)(ka)]eim¢. (3.20)

m=- m=-0
From the orthogonality of functions elm¢, we can set the individual
terms in Eq. (3.20) to zero, then we obtain
(1) .M
_ PmHm (ka) + (i) Jm(ka)

Q = . (3.21)
m nzjm(nka)
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And by applying the second boundary condition, aHt/ap is continous
across the boundary p = a, and using Egqs. (3.17) and (3.19) we get
¢ <]

nk 3 QmJ;(nka)eim¢ =k 3 [PmHm’(1)(ka)+(i)mJ;(ka)]eim¢ .

mn=-~% m=-=e
Then,

00 J (nka) - (1)™F (ka)
p = 020 16 m . (3.22)
m H 7 (ka)

From Egqs. (3.21) and (3.22) it is evident that we get the following

expressions for the arbitrary constants Pm and Qm;

e Jm(ka)J;(nka) - nJ;(ka)Jm(nka)
-1

av]
1l

. , , (3.23)
H;l)(ka)Jm(nka) - nHm(l)(ka)Jm(nka)

and

m B (ka)d (ka) - T (ka)E 1) (ka)
m m m m

7 : (3.24)
Hél)(ka)Jm(nka) - nJm(nka)Hm(l)(ka)

From Egqs. (3.16) and (3.23) the scattered field will be given by

. o _J_(ka)J (nka) - nJ_(ka)J _(nka)
Hz(p,¢) ==~ 2 (1) 1) 1 (1)
m=-% Hm (ka)Jm(nka) - nHm (ka)Jm(nka)

H(l)(np)eim¢.
(3.25)

And from Egs. (3.17) and (3.24) the field inside the cylinder will be

given by
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® gy Hn(ll)(ka)J;’(ka) . Jm(ka)f{:‘n(ka)

inside _
. (py0) = - 2 =

H 7 T
m=-~ Hél)(ka)Jm(nka) - nJm(nka)Hél)(ka)

(3.26)

The scattered magnetic field is expressed as an infinite series of
the same form as that for the parallel polarization case, with minor
differences in the coefficient Pm. The scattered field will be
propagating as before as a cylindrical wave traveling in the positive
p-direction, with amplitude and phase dependent on the radius, index
of refraction, scattering angle, and p.

For plotting the scattered field amplitude we found, as for the
previous cases, that we need to take at least ka(l + y) terms of the
series to insure its convergence. The normalized scattered field
|H2(p,¢)|/ IHZ(p,O°)| is plotted in Figs. 3.3(a) and (b) in polar
coordinates and in Figs. 3.3(c) and (d) in linear coordinates. The
main characteristics of the scattered field pattern are the same as
those for the parallel polarization case. The pattern has a main
lobe, with width decreases by the increase of ka, and a number of
side lobes, which increase by the increase of ka.

From the curves of the scattered field of both the parallel and
normal incident field polarizations, one sees that the fields have
very similar features. The fields of the parallel polarization case
have fringes with a large contrast in the range 0° £ ¢ £ 90°, but for

the normal polarization case the fringes have very low contrasts.
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(a)

(b) Kka = 10.0

[s]
The normalized scattered field IHs(p,¢)I/IH2(p,0 ) for the
normal incidence case, in Eq. (3.25), is plotted vs. the
scattering angle ¢. (a) and (b) are plotted in polar -

coordinates for ka = 5, and 10; (continued on next page)
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3.3 The Fringe Spacings of the Scattered Field

The fringe spacings are one of the main features of the scat-
tered field. In section 3.2 we found that the fringe spacings are
functions of the radius of the cylinder and the wavelength. 1In this
section we will study the dependence of the fringe spacings of the
scattered field on the scattering angle ¢ and the factor ka for both
polarizations of the incident field.

The fringe spacings, A¢, are plotted in Figs. 3.4(a) and (b) for
parallel and normal polarizations of the incident field, respec~
tively. In Fig. 3.4(a) the fringe spacings are plotted for ka = 50,
100, and 350 as a function of ¢. The fringe spacings decrease with
the increase of ka, and for large values of ka they have an almost
fixed value between ¢ % 15° and ¢ % 90°. In the range 0° £ ¢ £ 15°
the fringe spacings start with a larger value than that in the fol-
lowing range of ¢, and then their values decrease as ¢ increases. In
the range from ¢ = 90° to 180°, the fringe spacings fluctuate in
their value around that of the previous range. So the fringe spac-
ings, especially in the range of ¢ = 15° to 90°, carry the informa-
tion about the value ka. For the normal incident case shown in
Fig. 3.4(b) the fringe spacings have similar properties as those for
the parallel incident case.

The fringes of the scattered field for the dielectric cylinder
is generated by the rays of light transmitted through the cylinder,
those reflected from the surface of the cylinder, and by those
diffracted by the edges of the cylinder. In the range 0° £ ¢ £ 90°

the fringes are mainly generated by the interference between the
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reflected, refracted, and diffracted rays. When the rays reflect
internally, the more times they reflect before they get transmitted
‘outside the less power they will have, and their contribution to the
scattered field will be small. 1In the range 90° < ¢ < 150° the rays
which are transmitted directly through the cylinder will not exist so
the field will be produced by the direct reflected rays and the rays
which will make multiple reflections inside the cylinder before they
emerge outside. That is why the field amplitude and the fringe
contrast is generally smaller than those for the previous range of ¢.
In the range 150° < ¢ < 180° the field is the superposition of the
direct reflected rays and the rays get refracted through the cylinder
and reflected once by the internal surface, the fields and the fringe
contrast are larger in general than those in the previous range of ¢.
The width of this range is mainly controlled by the value of the
index of refraction of the cylinder as we will see in the following

section.
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3.4 The Effect of the Index of Refraction on the Scattered Field

We also study the effect of index of refraction on the scattered
field. The index of refraction of the material of the cylinder
appears in the coefficient of the series which represents the scat-
tered field as shown in Egs. (3.11) and (3.22). Since it is present
in the numerator and denominator of a_ and Pm in a very similar way,
it seems that it has a very small effect on the scattered field. The
normalized amplitude of the scattered field is plotted in Figs.
3.5(a)-(d), for ka =50, and for n = 1.5, 1.457, 1.4 and 1.35,
respectively. The patterns of the field look similar in their char-
acteristics especially in the range 0° < ¢ < 90°. The main differ-
ences in this range are in the positions of the side lobes which are
not the same for the different refractive-indices. Also if we look
at the first side-lobe as we go from n = 1.5 to 1.35 it decreases in
its amplitude until it emerges in the main lobe at n = 1.35. Signi-
ficant changes are seen in the range 90° < ¢ < 180° where we can see
that the pattern is modulated by a function varying with the index of
refraction. In this range the peak of the scattered field moves with
the change of the index of refraction, and its position approaches
¢ = 180° as n increases. In Fig. 3.6 the portion of the scattered
field from ¢ = 90° to 180° is plotted for four different values of
the index of refraction to demonstrate the movement of the peak of
the scattered field with the change of n. It can be seen that the
modulation function, which modulates the amplitude of the field,
spreads out some of the fringes towards ¢ = 90°. So the position of

this peak is very sensitive to the index of refraction, but is it
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Fig. 3.5 The normalized scattered field |ES(p,¢)|/IE%(p,0°){ for
ka = 50 plotted in, (a) to (d) for n = 1.5, 1.457, 1.4 and

1.35, respectively. Note the similarities of the field
pattern in the range 0° < ¢ < 90°.
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Fig. 3.6 The normalized scattered field plotted for ka = 50 in (a)
to (d) for n=1.5, 1.457, 1.4 and 1.35, respectively.
Note the position of the peak as it sweeps towards ¢ = 180°

by the increase of n.
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sensitive to the index of refraction only? Or is it also sensitive
to ka? In Fig. 3.7(a) the position of this peak is plotted as a
function of the factor ka for n = 1.45. The position of the peak
varies with ka for the wvalues of ka £ 100 but after that it varies
very little. This leads to the fact that the peak of the back-
scattered field is independent of ka for ka very large, but it is
very sensitive to the index of refraction. In Fig. 3.7(b) the posi-
tion of this peak is plotted as a function of the index of refraction
from n = 1.3 to 2.0 in 0.025 increments, for ka = 350 and 500. The
position of the peak ¢peak increases with the increase of n in a form
very close to a sine function, and also the curves for ka = 350 and
ka = 500 coincide with each other having the same values. The
position of the peak nears a fixed value at n = 1.85. So the peak
position is independent of the radius of the cylinder, and it is very
sensitive to the index of refraction, which will make it a good way
for measuring the index of refraction for cylinders whose index of
refraction is less than the 1.85 limit.

For the norﬁal polarization case, the index of refraction does
not vary the peak position as linear as it is in the parallel polar-
ization case. In Fig. 3.8 the peak position is at ¢ Z 155° for
n=1.35, at ¢ = 180° for n = 1.4, at ¢ ¥ 165° for n = 1.457 and at

¢

I

180° for n = 1.5. So the peak position is varying with the

change of the index of refraction but not in a linear way.
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Fig. 3.7 The position of the peak of the back-scattered field is
plotted in (a) as a function of ka while n = 1.457 and
(b) as a function of n for ka = 350 and ka = 500.
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Fig. 3.8 The normalized scattered field for the normal polarization

case is plotted in (a) to (d) for n = 1.5, 1.457, 1.4 and
1.35, respectively.
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3.5 Comparison between the Scattering from Conducting and Dielectric

Cylinders

In the previous sections, and in the previous chapter the scat-
tering field from dielectric and conducting circular cylinders are
presented. In this section we make a comparison between the results
demonstrated for both kinds of cylinders, and for the two different
polarizations of the incident field.

The scattered field from the conducting and the dielectric
cylinders represented by infinite series of thg same form. The
coefficients of the series expressed into two different expressions,
the coefficients a in Eq. (3.12) and Pm in Eq. (3.23) for the
dielectric cylinder will reduce to the coefficients bm’ Eq. (2.33),
and dm, Eq. (2.41), for the conducting cylinder as n the index of
refraction tends to infinity. So if the index of refraction of the
dielectric cylinder is taken as infinity then its solution for the
scattered field outside the cylinder will be the same as that for the
conducting cylinder, and the coefficients Dm in Eq. (3.13) and Qm in
Eq. (3.24) for the fields inside the dielectric cylinder will vanish.

The pattern of the scattered field for the two cylinders has a
similar form, each has a main lobe that decreases in its width by the
increase of ka, and each has a number of side lobes, that increase in
number as ka increases. The side lobes of the conducting cylinder
scattered field pattern exist in a certain range of the scattering
angle and they disappear for the rest of the pattern. This cutoff

angle is larger for the normal polarization than that for the paral-
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lel polarization case. On the other hand, the side lobes for the
dielectric cylinder exist in the full range of the scattered field
pattern. The contrast of the fringes of the scattered field as shown
in Table 3.1 is much larger in the whole range ¢ for the dielectric
cylinder than that of the conducting cylinder, which makes them more
visible and detectable especially for ¢ > 30°. Also the contrast of
the fringes of the dielectric cylinder is larger for the parallel
polarization case than for the normal polarization case. The pattern
of the dielectric cylinder has a peak in the backscattered field, its
position is moving with the change of the index refraction, but for
the conducting cylinder the backscattered field pattern will smoothly
increase, reaching a maximum at ¢ = 180°.

The way the fields are scattered by the two kinds of cylinders
is quite different because of the different materials from which the
cylinders are made. The conducting cylinder scatters the waves mainly
by direct reflection from the surface, by the diffraction from the
edges of the cylinder, and by the currents generated on the surface
of the cylinder which will generate the fields outside. The scattered
field will be the superposition of these different components. The
dielectric cylinder scatters the waves by direct reflection from the
surface, by diffraction, and by the rays which will refract through
it directly or after making one or more internal reflections by the
inside surface of the cylinder. The way the fields are generated
made all those similarities and differences between the scattered

fields from the conducting and the dielectric circular cylinders.
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TABLE 3.1

Fringe Contrast for Conducting
and Dielectric Cylinders, ka = 50

Contrast of the Fringes

Scattering Angle Conducting Dielectric
" 4 gt B/ o
5 0.62 0.64 0.42 0.33
30 0.03 0.34 0.34 0.15
60 0.0 0.05 0.61 0.17
90 0.0 0.01 0.19 0.21
120 0.0 0.0006 0.27 0.59

150 0.0 0.0 0.35 0.80
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CHAPTER IV
APPROXIMATE SOLUTIONS FOR THE SCATTERING

OF LIGHT FROM LARGE CYLINDERS

4.1 Introduction

Approximate solutions for the scattered field from large con-
ducting and dielectric circular cylinders are presented in this
chapter. In the previous two chapters we studied rigorous solutions
for the scattering of a plane electromagnetic wave by a circular
cylinder. The solutions are expressed in terms of an infinite series
that converges very slowly. The infinite series solutions are not
very practical in plotting the scattered field, especially when the
radius of the cylinder is much larger than the wavelength. In this
chapter we present approximate solutions using Fourier and geome-
trical optics approximations. These solutions are simple to calcu-
late, and it is easier to plot the fields from them. The fringe
spacings of the scattered field are derived in a closed form. Since
the solutions are derived in simple formulas they do not require long
computing times as long as those for the rigorous solutions.

In Section 4.2 scattering from a conducting cylinder is con-
sidered. The scattered field is represented as the superposition of
a diffracted field from a modified strip and a backscattered field

which is generated by the surface current density. The scattered
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field and fringe spacings are plotted and compared with those intro-
duced in Chapter II.

In Section 4.3 the scattering of light by a dielectric cylinder
is presented. The scattered field is derived by geometrical and
Fourier optics techniques. A formula is derived for the fringe
spacings of the scattered field and this is compared with the rigor-
ous solution. The limit of wvalidity for the fringe spacing formula

with the change of ka is tested.
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4.2 Scattering from a Conducting Cylinder

In Chapter II we have studied the scattering of a plane electro-
magnetic wave by a circular conducting cylinder. When the diameter
of the cylinder is large compared with the wavelength, we expect that
the physical optics solutions for the scattered field will be ade-
quate. In Chapter II we discussed the sources which produced the
scattered field, and we found that they are the superposition of the
diffracted and the directly reflected fields from the surface. As
the radius of the cylinder becomes larger with respect to the wave-
length, the diffracted field becomes narrower and more intense(l).
The other fields will be small with respect to it and spread over the
whole range of the scattering angle. The diffracted field mainly
depends on the size and form of the object rather than its composi-
tion or the nature of the surface. So the scattered field in the
forward region (near ¢ = 0°) depends on the diffracted field. And
since the diffracted field does not depend on the nature of the
surface, the diffracted field of the cylinder will be similar to that
of a conducting strip, with a width equal to the diameter of the

cylinder.

4.2.1 Diffraction by a Strip

The diffraction by a strip has been studied by many authors.(z)

For simplicity we will approach the solution of this problem by
means of Fourier optics, which gives a good result for the case we
(3)

are studying. According to Babinet's principle the intensity

distribution possessed by the strip will be equal to that possessed
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by a slit because they are complementary screens. So the diffracted
field of the slit will have the same amplitude as that for the strip

with a phase difference of m.

The diffracted field of a slit can be derived using the Fraun-
hofer diffraction formula.(a) As shown in Fig. 4.1(a), if we place a
slit in the x-z plane then the field at the (u,v) plane will be given
by

o]

E(u,v) = i §23¢ M [ B (y,2) e (HK/P) (yutav) gpq, (4.1)

where Eo(y,z) is the field distribution at the incident plane. For

the case of the slit
Eo(y,z) = rect(y/2a).

Since we are interested in the field in the u-v plane and the slit
extends infinitely in the z-direction, then Eq. (4.1) will reduce to

a one dimensional integral given by

b

. m -
E(u) = i E%EQ elkp f rect (%;) eul(k/p)yudy
-0

and since u = p sin¢ then

) a . .
E(p,0) i E%%Q e1kp I e-lky51n¢dy. (4.2)

-a

This integral will reduce to
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Fig. 4.1 A plane wave illuminates (a) a slit and (b) a conducting

cylinder. The diffracted field is observed at point
P(p,9).
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E(p,0) = i2 g%%g eikp sinﬁkziz$n¢)'
Hence,

E(p,0) = i2 a—%‘;ﬂ? o TP sinc(%i sing). (4.3)
where sinc(x) = sin(nx)/nx{ According to the Babinet's principle,
the field diffracted by the strip will be

Estrip(p’¢) = -1 k§%§2§g eikpsinc(g3 sing). (4.4)

In Fig. 4.2(a) the diffracted field of the strip given by Eq. (4.4)
is plotted to be compared with that of the cylinder given by Eq.
(2.34) for ka = 50. The diffracted field of the strip has same main
lobe width and same amplitude and position of the first three side
lobes of the scattered field from the cylinder. For the rest of the
pattern the amplitude of the diffracted field decreases with the
increase of ¢, reaching very small values around ¢ Z 60°. But the
scattered field of the cylinder increases slightly in its amplitude
by the increase of ¢. Also the position of the side lobes of the
diffracted field of the strip become further apart with the increase
of the angle ¢, while for the scattered field of the cylinder the
position of any two adjacent lobes is almost the same until they
terminate at ¢ = 30° as can be seen in Fig. 4.2(c¢). The reason for
the lobes of the slit pattern to become further apart is that as ¢

increases the width of the strip will become apparently smaller.
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So the strip is not a good approximation of the cylinder for
scattering angles away from ¢ = 0°. From Fig. 4.1(b), the width of
the wire seems to increase as we increase the angle ¢. This is
because the wire has a depth in the x-axis, so the apparent width
will increase. So the cylinder can be modeled as a strip with a
varying width. When P is in the far zone, the width of the equiva-
lent strip will be ata/cos¢. Therefore, if we rederive the

diffracted field for this varying slit, the field will be given by

. a . . '
Evs(p’¢) — c;;¢ e1kp I e-lky Sln¢dy.
-a/cosd
Hence,
_ _ ka ikp (cos(ka tan¢) - cos(ka sing)

Evs(p’¢) - 2np € ¢ ka tano

S ka . ka |

+ 1[51nc(ﬁ— tan¢) + cos¢ 51nc(5— sin¢)]}. {(4.5)

The fields diffracted by the modified strip, given by Eq. (4.5), is
plotted in Fig. 4.2(b). In Fig. 4.2(b) we plotted the diffracted
field of the modified strip and for the exact solution of the
cylinder. The main lobe of the diffracted field has the same width
as that for the exact field, and also the amplitude of the first
three lobes. The positions of the sidelobes are the same as those
for the exact solution till ¢ = 30°, where the exact solution side-
lobes terminate. The sidel@bes of the diffracted field become
closer, and start having small amplitudes for ¢ > 30°. In Fig. 4.2(c)

the fringe spacings of the field amplitude of the strip, the modified
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Fig. 4.2 Contined. (c) The fringe spacings of the cylinder (0), the

slit (+), and the modified slit (X) are plotted for ka =
50.
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strip, and the conducting cylinder (exact solution) are plotted. The
fringe spacings of the modified strip have the same value as those
for the cylinder but they do not vanish at ¢cut' The fringes of the
strip have comparable values at small angles, and then they depart
from the values of the fringes of the cylinder. Thus the modified
strip diffracted field is a good approximation for the cylinder in
the range of the existence of the fringes. The fields scattered by
the cylinder are a superposition of the diffracted fields, reflected
fields, and fields generated by the surface current; so we do not
expect that the diffracted fields will represent the scattered field
of the cylinder in the whole range. In the following subsection the

fields generated by the surface current will be derived.

4.2.2 Back-Scattered Field of the Cylinder

The fields generated by the surface current can be derived
exactly wusing Maxwell's equations, and by integrating over the
surface of the cylinder. 1In this section we are interested in an
approximate solution for the radiation fields resulting from the
scattering of an electromagnetic wave by the surface S of the cylin-
der, so we will make the usual estimate based on the incident elec-
tromagnetic wave.(s) Let the electric field of the incident plane
wave be given by

E1nc( e1kp cos¢

p,0') = Ege, , (4.6)
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where e, is the z-directed unit vector, and we assumed a unit ampli-

tude. The corresponding magnetic field of the incident plane wave is

given by

inc 'y o~ o & ikp cos¢’
BH7(p,0') = - Egey «/“ e : (4.7)

Assuming that the cylinder is perfectly conducting, then the surface

current density K will be given by
K=2nnH 7, (4.8)

where n is the outward unit normal to the surface. From Egs. (4.7)

and (4.8) we obtain

. ¥
K = - 222 JE e1ka coso cosd', (4.9)

and the vector potential produced by K is(6)

ikp

ds, (4.10)

me=u£g@wwzm

where the integration is over the illuminated region of the surface
of the cylinder, and R is the distance between the observation point
{p,$) and the integration point (a,¢'), as shown in Fig. 4.3. From
Egs. (4.9) and (4.10) we get

3n/2 ikR

A(p,0) = ~2JpE e, | cosp' e SO & qpr, (4.11)
n/2
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The z-component of the back-scattered electric field is obtained

through the relations

and
VxB = ~iwpek.
Then,
s . )
Ez(p,¢) = iwe, A. (4.12)
Therefore
3n/2 . , _ikR
E5(p,0) = -i 2K T [ cosg' efk® 050" & 4o (4.13)
z 4t /2

From Fig. 4.3 we get an expression for R at the far zone to be

R = Jp%+a?-2ap cos(9-0¢') = p-a cos(P-¢'). (4.14)

If we substitute for R from Eq. (4.14) into the exponential of (4.13)

and R 2 p in the denominator, we obtain

. . 3nk ) ' o
BS(0,0) = - s e P [ cos ¢ Jika[coso'~cos(9=0") 144,
n/2

Using some trigonometric identities to rewrite the exponent, we get

. , 3n/2 . ) . .
Ez(p’¢) _ _ i elkp [ cosor e-12ka sin(4/2)sin(¢ -¢/2)d¢'. (4.15)

Ap n/2
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Using the stationary phase technique to evaluate the integral in
Eq. (4.15), since k is very large (for the optical frequencies), then
the main contribution of the integral will be from the neighborhood
of the stationary points and the end points of the range of integra-
(7,8)

tion. The stationary points in the range of integration will be

at ¢' = ¢/2 + m/2, so the asymptotic expansion of the scattered field

will be given by

ES(p,0) ~ 55 e Ji/ka {sTnd/Z e

-i2ka sin¢/2-in/4. (4.16)

The backscattered field propagates in the positive p-direction, i.e.
an outgoing wave. The amplitude of the backscattered field, as it is
given by Eq. (4.16), will be modulated by the square root of sin¢/2,
reaches a maximum at ¢ = m, and that is the way this field is behav-
ing as we can see it in the rigorous theory plots given in Chapter
II. The total scattered field, resulted from the superposition of
the diffracted field Eq. (4.5) and the backscattered field Egq.
(4.16), is plotted in Fig. 4.4 for ka = 10 and ka = 50. In Fig.
4.4(a) and (b) the curve obtained from the rigorous solution of
Eq. (2.34) is plotted to be compared with the approximate scattered
field. The approximate scattered field and the exact one both have
similar patterns, and the same main lobe width. For ka = 10, the
position of the sidelobes are not the same, but the field amplitudes
in the range 80° < ¢ < 180° are very comparable. For ka = 50, the
main lobe and first sidelobe have the same width and position, and

the position of the sidelobes is also the same till they vanish in
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the exact scattered field. But the amplitude of the scattered field
and the exact one are exactly the same from ¢ = 70° to 180°. The
main difference is that the fringes vanish at a smaller angle for the
exact solution but last longer in the approximate solution case. The
information carried about the cylinder by the scattered field is
contained in the fringe spacings, and this can be detected at small
angles where the two fields have the same fringe spacings. The
approximate solution has the advantage of being expressed in simple
formulas, while the exact theory solution is expressed in an infinite
series. The coefficients of the series are functions of the Bessel
functions, which are also represented by infinite series. That makes
it hard to see directly the effect of the different parameters on the
scattered field for the exact theory solution. The exact theory
solution takes a lot of computer time to plot it, especially for
large ka where the series converges very slowly. But the approximate
solution takes very short computing times to plot the scattered
field, that makes it more convenient to be used in studying the
scattered field even from a very large ka. The advantage of the
rigorous solution is that it gives exactly where the fringes

terminate.
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4.3 Scattering from a Dielectric Cylinder

The rigorous solution for the scattering of a plane electromag-
netic wave from a dielectric cylinder was discussed in Chapter III.
As has been presented there, the scattered field is the superposition
of the diffracted, reflected and refracted fields. The field in the
forward region results mainly from the diffraction and refraction of
the rays through the cylinder. The refracted and reflected field can
be determined by deriving formulas for the phase shift between the
observation point and the reference plane. The phase of these two
rays and their relative amplitude leads to an expression for the
field at the observation point. The superposition of these two
fields and the diffracted field gives the total field in the forward
scattered pattern. From the phase difference between the refracted
and the reflected rays we will derive a formula for the fringe

spacings.

4.3.1 The Scattered Field

The scattered field from the dielectric circular cylinder will
be considered at the forward zone first. The field in this region
results from the interference between the refracting, reflecting and
diffracting rays. The way to get a very good approximation of the
scattered field is to determine the phase of the refracted and
reflected rays at the observation point, P(p,¢), with respect to a
plane before the incident wave reaches the cylinder. A cross section
of the cylinder is shown in Fig. 4.5. Plane y'-z is the plane of

reference for calculating the phase of the fields. Let U and Q be



— <
<

P (o, ¢)

Fig. 4.5 The reflected and refracted rays as they trace through a

dielectric cylinder.
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the pathlengths of the refracted and reflected waves, respectively,
from the plane y'-z to the point P(p,$). From the geometry of the

cylinder, when P is in the far-zone, we obtain 61 = 62 % ¢, and

U = AB + BC + CP,
U= a~-a cosl{ + (p-a cosa);
therefore,
U=p + a - 2a(cosa-n cosB). (4.17)

And similarly
QZp+a- 2asing/2, (4.18)

where a is the radius of the cylinder, and n is the index of refrac-

tion. The relation between angles « and B are defined by Snell's

(3)

Law
sind = n sinf. (4.19)
From Fig. 4.6 we can see that

g =a - B. (4.20)

From Eqs. (4.19) and (4.20) we can derive

n cosd/2 - 1
Jn%-2n cos¢/2+1

cos O =

) (4.21)
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and

cos B = n - cos/2 . (4.22)
Jn¢-2n cos¢/2+1

From Eqs. (4.17), (4.18), (4.21) and (4.22) we derived formulas for
the pathlength and the phase as a function of p and ¢ and the para-

meters of the cylinder. The field scattered by the cylinder due to

the reflection and refraction can be given as

E(p,9) = 23 oiklatp-2a(n-1)(cos¢/2-1)1/T

>

1 eik(a+p-2a sin/2)
b

+ 5 (4.23)

1
where T = (n2-2n cosh/2+1)* (4.24)

and A1 and A2 are the amplitudes of the refracted and reflected
waves. The field amplitudes are proportional to the reflection and
refraction coefficients, and the reflected ray amplitude will be
proportional to the reflection coefficient given by Fresnel formu-
1as.(3) The refracted ray will be transmitted through two boundar-
ies, and its amplitude will be proportional to the product of the
refraction coefficients of the two boundaries. Therefore A1 and A

2
can be represented by

_E' _ sin ¢/2 - Jn%-cos?9/2

E' sin ¢/2 + an-cosz¢/2 ’

(4.25)

and
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A2 _ E{ - 4n coso cos B ’ (4.26)
E (cosa + n2-1+cos?a)(n cosP+yl-n2+ncos?P)

where Ei, E' and Et are the amplitudes of the incident, the reflected
and the refracted fields, respectively. The scattered field in the
forward region (0 < ¢ < 90°) 1is obtained by adding the diffracted
field to the reflected and the refracted fields. The diffracted
field from the cylinder will be the same as that for the conducting
cylinder, taking into account the phase of the incident field from

the y'-z plane to the y-z plane. From Eq. (4.4) we can rewrite the

diffracted field as

Ed(p,¢) = - i %% cos ¢ elk(p+a) sinc (gi sing). (4.27)
From Egs. (4.25) to (4.27) we can write the scattered field from the

dielectric cylinder in the following form

ES(p q)) - eik(P+a) {s]_nq)/z - (ﬂz'COqu)/Z)llz e-i2ka Sln¢/2
, g sing/2 + (rlz-cosch/z)gé
+ 4n cosocosP e-i (2ka/T) (n-1) (cosdp/2-1)

) 1
[cosa+(n2-1+cos2a) 2] [ncosB+(1-n2+n2cos?p) 2]

-i %3 cosd sinc(%ﬂ sing)}, ' (4.28)

The scattered field depends on the factor ka, the index of refrac-
tion, and the scattering angle. The diffracted field, which appears
as a sinc function in Eq. (4.28) is the dominating term in the for-

ward region especially for small range of the scattering angle, and
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this range gets smaller with the increase of ka. The approximate
scattered field given by the first two terms of Eq. (4.28) is plotted
in Figs. 4.6(a) and (b), and may be compared with the diffracted
field alone. The diffracted field has larger components in the range
0° < ¢ < 30°, for ka = 10, with respect to that of the reflected and
refracted fields, which contribute more in the rest of the range.
For ka = 50, the diffracted field components dominate in a much
narrower range of ¢ than in the previous case. From the study of
these curves we conclude that the diffracted field mainly contributes
to a narrow range of ¢ for large values of ka, the refracted and
reflected fields contribute over the whole range of the scattering
angle. The scattered field given by Eq. (4.28), and the field given
by the rigorous solution in Eq. (3.14), are plotted in Figs. 4.7(a)
and (b), for ka = 10 and 50. For ka = 10 the pattern of the approxi-
mate and the exact scattered fields are mainly the same. Both have
the same number of sidelobes, but their positions are not exactly the
same. For ka = 50, the two curves, the approximate and the exact,
have very similar patterns, widths of the main lobe, number of
sidelobes, and position of the sidelobes. There are small differ-
ences between the amplitudes of the sidelobes because the amplitudes
of the approximate fields are not calculated very accurately to
simplify the approximate solution. So the approximate solution of
the scattered field from a dielectric cylinder derived in this
section has the same structure and features of that given by the
rigorous solution. It has very similar features to it, and so it is

a good approximate solution for large ka. Meanwhile, the approximate
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solution of Eq. (4.28) is expressed in a simple form, from which we
can see the effect of the different parameters on the scattered field
pattern. Also it does not take as long computing times as that
needed by the exact solution which is expressed in an infinite series
with coefficients containing Bessel functions. So the approximate
solution has the advantage of being expressed in a simple closed
form, while it does give a comparable scattering pattern to that of
the rigorous solution.

The backscattered field in the range of 150° < ¢ < 180° is

studied by several authors.(g’lO)

The scattered field in this region
results from the interference of the reflected rays and those which
make one internal reflection inside the <c¢ylinder. It has been
reported that this range is governed by the index of reduction of the
cylinder.

The scattered field in the range of 90° < ¢ < 150° is a result
of the interference between the reflected rays and the refracted rays
which make multiple reflections inside the cylinder; and since the
field in this range will have very small amplitudes and does not
carry any more information about the cylinder, it has not been

reported here.

4.3.2 The Fringe Spacings of the Scattered Field

The fringe spacings of the scattered field pattern are studied
for the dielectric cylinder in chapter III from the rigorous solu-
tions of the scattered field. There we have not been able to deduce

a closed form solution for the fringe spacings. We have seen in the
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previous subsection that the field pattern is a result of the inter-
ference between the reflected and refracted waves in most of the
forward scattered region. So we will derive a formula for the fringe
spacings in this subsection.

Let the phase of the refracted ray be Pt’ and the phase of the
reflected ray be Pr as it propagates from the reference plane y'-z to

point P(p,9). Then from Eqs. (4-17) and (4.18) we obtain

g
1

k(pta=-2a sin¢/2) + m,
and

k(pta=-2a cosa+2an cosB) - m/2,

vl
1}

where the n phase in Pr is the phase added when the field is
reflected, and n/2 is the phase subtracted when the ray goes through

(11)

a focus inside the cylinder. The phase difference between the

two rays is

Pd =P, - Pr = 2ka{n cosB-cosatsing/2) - %E, (4.29)

where cosa and cosP are given by Eqs. (4.21) and (4.22). Therefore

P,(0) = 2ka(T+sing/2) - %E. (4.30)
The spacing between any two adjacent fringes is the change A¢ in the

scattering angle, which will change the phase difference Pd(¢) by 2m.

Let ¢ and ¢1 be the positions of two adjacent fringes. Then

2n = P (¢,) - Py(9) = 2ka(T *sin,/2) - 2ka(T+sing;/2),  (4.31)
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where T is given by Eq. (4.24), and rl can be deduced from Eq. (4.24)
by changing ¢ to ¢1. Adp/2 is a small quantity for the values of

ka 2 10, that allows us to make the following approximations

sin %9 x %9, and cos %9 % 1.0 . (4.32)

From Eqs. (4.31) and (4.32) we derive the following expression

1
%; = (n%+1-2n cos®/2+nA¢ sing/2)>

- (n2+1—2n cos¢1)% + é% cos®/2. (4.33) . (4.33)

Now we can express the first term in the right hand side of

Eq. (4.33) as the following

(n2+1—2n cos¢/2-nAd sinq)/z)ll2 = (n2+1-2n cos¢/2)lé

1

nA¢ sing/2 . °

x (1 + ). (4.34)

n2+1—2n cos®/2

(12)

Using the binomial expansion for the quantity

nA¢ sind/2 )%

1+ :
n“+1-2n cos¢/2°

since (nAd sin¢/2)/(n2+1—2n cos®) < 1, then Eg. (4.34) will reduce to

(n2+1—2n cos¢/2+nAd sin¢/2)lé = (n2+1-2n (:03(1)/2)}2

nA¢ sind/2 _ (nA$ sin ¢/2)2

* 1+ — 2 2
2(n"+1-2n cos¢/2) 8(n"+1-2n cos¢/2)

+ o+ - o], (4.35)
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From Eqs. (4.33) and (4.34) we obtain

. 2 .2 2
cos §/2 + nAd ;Fn¢/2 _n_ sin 2/2(A¢) PRI (4.36)
8T

l:l
s

From Eq. (4.36) we derive a set of approximate values for the fringe

spacings A as

I. Zero Order Approximation
_ 2n
(A¢)O " ka cos¢/2’ (4.37)

IT. First Order Approximation

- 2n r
" ka [ cos0/2 + n sinb/2 ’ (4.38)

(80)
which is similar to the expression derived in Appendix B.

ITII. Second Order Approximation

(A¢)2 = [2nl‘2 sing/2 + 2T3 cosd/2 - 2r(n2 sin2¢/2

+ F4 cos2 o/2 + ZnF3 sin¢/2 cos ¢/2
2 1
- EEZEE sin®0/2) %]/n> sin’®/2. (4.39)

The fringe spacings (A¢)O, (A¢)1, and (A¢)2 are plotted in Fig.
4.8(a) and (b) for ka = 10 and 50. The zero order fringe spacings

continuously increase by the increase of ¢, and it have a reasonable



96

pue (I = ey (e) 103 poaijord oaie

[o3al ¢
06 09 o€

S(pv) —
HPV) -
OAQQV .....

.......
.t
.
.
. *
.

LB |

A

0l

"0S = 1 (qQ)

01 (Lg'y) "sba
£q uaard se Nﬁedv pue .;es .cﬁe<v s8utoeds a3utay aYrp g% 31y

[o3a] ¢

0 08 0,

S(Ppv) X
HPv) + o1

0.9v) @ |
N & s 1 02
w1 OF

o
© 1 ov

0 (e)

1 09



97

value only at ¢ 2 0. The first and the second order approximations
(A¢)1 and (A¢)2 have very similar values, especially for ka = 50, and
they have a minimum value around ¢ = 60°. In Fig. 4.9 the first and
second order fringe spacings and the fringe spacings of the exact
field are plotted for the range 5 < ka < 500 for ¢ = 60°. The first
and second order fringe spacings have the same values as that of the
exact field for ka = 50 or larger. So the fringe spacings derived
using ray theory are very accurate for the values of ka > 50 which
will give us the limit of the validity of this solution. This is
what we expected from the beginning, because the ray theory is good
for large values of ka, i.e., for the high frequency. So the
approximate solutions derived using the ray theory for the scattered
field and fringe spacings are a very good approximation for ka > 50,
and they have the advantage over the exact solutions because of their

simplicity.
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CHAPTER V
FINE STRUCTURE OF THE

SCATTERING FROM DIELECTRIC CYLINDERS

5.1 Introduction

If a linearly polarized plane electromagnetic wave illuminates a
dielectric cylinder, the fields will be scattered all around the
cylinder. The fields scattered by a dielectric cylinder are func-
tions of the wavelength (A) of the illuminating wave. This
dependence on the wavelength appears in the formulas derived in
Chapter III, implicitly in the factor ka, where k = 2n/A. Consider-
ing the case where the fields reflect internally between the surfaces
of the cylinder, when the distance between the two surfaces becomes a
multiple of A/2 a resonance of the field will occur, and this
frequency is called the resonant frequency. The spacings between
these resonant frequencies are mainly controlled by the diameter and
index of refraction of the cylinder. The study of the resonances of
dielectric cylinder is an outgrowth of the study of the resonances of
dielectric spheres. The resonant frequencies of the scattering from
dielectric spheres are observed by changing the wavelength of the
illuminating wave,(l—a) and it was shown that the resonances occur by
waves reflecting internally in the sphere and also by surface

(5)

waves The resonances of the dielectric cylinders were studied in

the microwave region, because of the interest in high-Q microwave
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resonators(6’7). Van Bladel studied the effect of the dielectric

. . 8
constant on the resonances of the scattering cross-sectlon( ). Some

of the studies reported were concerned on using the resonant frequen-

(9,10)

cies to determine the diameter of dielectric cylinders Owen

et al. reported a study of the internal field at resonant frequen-
cies(ll).

In this chapter we study the resonances of dielectric cylinders
and their effects on the scattered field. In Section 5.2 a study of
the field at ¢ = 0° as a function of the variation of the wavelength
is reported to show the resonances of the scattered field. In Sec-
tion 5.3 the scattered field around the cylinder at-resonance and
off-resonance 1is shown to study the effects of resonances on the
scattered field pattern. The incident field polarization considered

here is the case when the incident field is polarized parallel to the

axis of the cylinder.
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5.2 The Resonances of a Dielectric Cylinder

If a linearly polarized plane electromagnetic wave is propagat-
ing along the x-axis normal to the axis of symmetry of a dielectric
cylinder, then the fields will be scattered all around the cylinder.
If we use a cylindrical coordinate system, where the cylinder is
lined up such that its axis is parallel to the z-axis, and p being
the distance away from the center of the cylinder and ¢ being the
angle from the x-axis, then the field scattered by the cylinder, as
has been derived in Chapter III, is given by

o]

E°(p,0) = I amHél)(kp)eim¢, (5.1

m=-w
where

o nJm(ka)Jé(nka) - Jé(ka)Jm(nka)

= "(l) ) ]

nJ (nka)HY (ka) - 7 (nka)E'D) (ka)
m m m m

a s (5.2)
m

and where Jm and H(l) are the Bessel function and Hankel function of
the first kind, respectively.

From Eq. (5.1) the scattered intensity is given by

1(p,0) = E5(p,0)ES (p,0)

=5 3 amaiHél)(kp)Hiz)(kp)e

m==00 r==-=o0n

i(m-r)¢ (5.3)

To get the intensity in the far-zone we substitute in Eq. (5.3) the

asymptotic expansions for the Hankel functions for large kp. The

1
asymptotic expansions of the Hankel functions are given by( 2)
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HD (kp) ~ (27kp o1 (P 7 W2 = ) (5.4)

and

12 (kp) ~ y27mp o KR T T2 - /2) (5.5)

From Eqs. (5.3) to (5.5) we obtain the following expression for the

intensity at the far-zone:

o0
2 2 , *
I(p,0) ~ KD [Iaol +2 2 (1)raoarcos ro
r=1
[vo] “
.\m ¥
+ 2 E (-1) aja  cos md
m=1
m ot
+ 4 b3 (i)r mamarcos md cos ro
m#r=1
> 2 2
+ 4 z [aml cos mo. (5.6)
m=1

The coefficients a are functions of ka, i.e., they are functions of
the wavelength, A, where k = 2n/A. When the denominator of the
coefficient of the series a_ gets to a minimum the field will be at a
resonance(lo). Inside the cylinder the fields bounce back and forth
between the internal surfaces of the cylinder. When the diameter of
the cylinder becomes an integer multiple of halfwavelengths, the
field transmission becomes a maximum and there will be a resonance,

(13,14)

and the frequency is a resonant frequency If the field at

¢ = 0° is plotted from equation (5.6) as a function of the wavelength,
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A, the scattered field will have maxima at the resonant frequencies.

In Fig. 5.1 the scattered intensity from a cylinder with a diameter

Q
66 pm and refractive-index n = 1.45, 1is plotted for 6327 A < A

A

65522. The scattered intensity has a series of maxima and minima.
The maxima occur at the resonant frequencies of the cylinder. The
spacings between the resonant frequencies are AA % 13.75 Z, and
depend on the diameter of the cylinder and its refractive-index. The
other thing which can be seen in the pattern of the scattered
intensity is that it is modulated with a low frequency function which
has a period of about 137 X. This function also depends on the
parameters of the cylinder in its period, and its period decreases
with an increase in the diameter of the cylinder.

In the following section the effect of these resonances on the

scattered intensity pattern is shown.
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5.3 The Effect of the Resonancies on the Scattered Intensity Pattern

In Chapter III we studied the scattered field pattern as a
functien of the angle ¢ for a different set of diameters and
refractive-indices. In the previous section, we found that the
fields will have resonances at certain wavelengths, so it is quite
important to know what will happen to the pattern of the scattered
field as it goes from a resonance to an off-resonance frequency. In
Figs. 5.2 to 5.5 the scattered intensity plotted as a function of the
angle ¢ at the points a, b, c, d, and e is shown in Fig. 5.1. The
points a and c are at-resonance at the peak and d is at-resonance at
the trough of the resonance curve, while the point b is at off-
resonance at the peak and point e is at off-resonance at the trough
of the resonance curve. In Fig. 5.2 the scattered intensity is
plotted for 0° < ¢ < 45°, and the curves (a), (b), (c), (d) and (e)
refer to the intensity at wavelengths a, b, ¢, d and e shown in
Fig. 5.1 The patterns at the peak look similar to each other while
at-resonance or off-resonance, and the patterns at the trough are
also similar. The fields at-resonance have larger amplitude for the
main lobe than those off-resonance as shown in Fig. 5.1. The first
side lobe located at ¢ = 0.8° is larger for the fields at-resonance
than that off-resonance, e.g., it has the value of 14.68 at a, 11.25
at b and 15.65 at c¢. The first side-lobe is larger at the trough
than that at the peak, it has the value of 14.68 at a, and 59.26 at
d. The second side-lobe has also a larger amplitude at-resonance
than at off-resonance, and it is very small at the trough while it is

very large at the peak. So the main-lobe and the second side-lobe
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Fig. 5.2 Tk'le scattered intensity pattern from a dielectric cylinder plotted for
different wavelengths at the peak of the resonance curve; (continued on
next page).
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are large at the peak and they decrease as we go towards the trough,
while on the contrary the first side-lobe is small at the peak and
very large at the trough. The main lobe and the first and second-
side lobes decfease in amplitude as we go from at-resonance to off-
resonance at the peak. Also the position of these side-lobes does
change as we change the wavelength. The rest of this range 2° < ¢ <
45° is about the same in all five curves. Also in the range 0° < ¢ <
45° the number of fringes is the same (60 fringes) at all the wave-
lengths considered. In Fig. 5.3 shows the scattered intensity
plotted in the range 45° < ¢ < 90°, at the five different wavelengths
shown in Fig. 5.1. The main difference noticed between the five
intensity patterns is in the envelope modulating the patterns.
At-resonance the envelope has larger variations in its amplitude than
that for the case off-resonance, and it has that behavior at the peak
as well as at the trough. The number of fringes in this range are
found to be larger for the at-resonance case (72 fringes) than at the
off-resonance case (71 fringes). In Fig. 5.4 the scattered intensity
patterns are plotted at the five wavelengths considered in Fig. 5.1
in the range 90° < ¢ < 135°. This region can be divided into two
portions: 90° < ¢ < 110° and 110° < ¢ < 135°, in the second portion
there is a very distinguished difference between the cases at-
resonance and off-resonance, in the patterns at-resonance the inten-
sity has a large variation in its amplitude, while at off-resonance
the intensity varies very little around its average. The average of
the intensity at-resonance and off-resonance is quite the same in

this range. In the region 90° < ¢ < 110° the main difference noticed
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Fig. 5.3 The scattered intensity pattern from a dielectric cylinder plotted for
different wavelengths at the peak of the resonance curve; (continued on
next page).
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Fig. 5.4 The scattered intensity pattern from a dielectric cylinder plotted for
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is in the peak at ¢ = 103° at off-resonance this peak is quite
different from the others in the pattern it has a very little struc-
ture in it. In Fig. 5.5 the intensity patterns are plotted as a
function of the angle ¢ at the five wavelengths considered. In the
range 135° < ¢ < 150° the pattern has the same characteristics as in
the range 110 < ¢ < 135°. 1In the range 150° < ¢ < 180°, the maximum
of the peak is positioned about the same place in all the curves at
¢ = 153.5°, but its wvalue 1is larger at-resonance than at off-
resonance.

The value of the intensity contained in each of these patterns
is the same because we illuminate the cylinder with the same unit
amplitude incident field. So when the field is at-resonance, the
intensity will concentrate around ¢ = 0°, which will decrease the
intensity in the range 45° < ¢ < 180° to balance for the whole value
of the intensity. And the main difference between the intensity
pattern at the peak and the trough is in the amplitude of the main
and the first few side~lobes as shown earlier.

So the resonances of the fields are affecting the pattern of the
scattered intensity in the way it shapes up in the different regions

of the angle 0.
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Fig. 5.5 The scattered intensity pattern from a dielectric cylinder plotted for
different wavelengths at the peak of the resonance curve; (continued on
next page).
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CHAPTER VI

EXPERIMENTS

6.1 Introduction

An experimental investigation of the scattering of light from
large circular conducting and dielectric cylinders was performed to
illustrate the theory reported in Chapters II and III.

In Section 6.2 the experimental scattered intensity pattern from
conducting and dielectric cylinders are photographed for the range
0° < ¢ < 180°. These photographs show the overall characteristics of
the scattered pattern. The sources responsible for each part of the
scattered pattern are discussed. In Section 6.3 the experimental
system is described. In Section 6.4 plots of the scattered intensity
pattern measured experimentally are compared with the theoretical
plots from the formulas of Chapters II and III, for both conducting
and dielectric cylinders. Comparisons between the scattering pat-
terns resulting from the different polarizations of the incident

field are shown in Section 6.5.
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6.2 Photographs of the Scattered Intensity Pattern

In this section photographs of the intensity pattern are shown.
Then the fields generating different portions of the intensity pat-
tern are discussed. Unclad optical fibers are used for the dielec-
tric cylinder experiments. An optical fiber coated with aluminum is
used for the conducting cylinder experiments.

In Figs. 6.1(a) and 6.1(b) photographs of the whole scattering
intensity pattern in the range 0° < ¢ < 180° are shown for conducting
and dielectric cylinders, respectively. For the conducting cylinder,
as seen in Fig. 6.1(a), the pattern has a main peak at ¢ = 0°, a
fringe pattern in the range of 0° < ¢ < 30°, and a continuous inten-
sity pattern in the rest of the range of ¢. The field scattered by
the conducting cylinder can be divided into three different regions:
(a) For 0° < ¢ < 5°. The fields are mainly generated by the dif-

fracted fields from the sides of the cylinder.

(b) For 5° < ¢ < 90°. The fields are generated by the interference
between the diffracted fields and those reflected from the sides
of the cylinder.

(c) For 90° < ¢ < 180°. The fields are generated by the surface
current.

For the dielectric cylinder, as seen in Fig. 6.1(b), the pattern
has fringes in the whole range of ¢. The pattern has wide variations
in intensity for the different ranges of ¢. The scattered field of
the dielectric cylinder can be divided into four different regions:
(a) For 0° < ¢ < 5°. The fields are mainly generated by diffraction

from the edges of the cylinder.



(a)

l
90 135 178

¢ | pEG

Fig. 6.1 The scattered intemsity pattern is photographed for the whole range of ¢,
(a) for a conducting cylinder of ka = 327; (continued on next page).
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(b) For 0° < ¢ < 90°. The fields are generated by interference
between the refracted and reflected rays.

(c) For 90° < ¢ < 150°. The fields are generated by interference
between the reflected rays and those refracted rays which have
gone through more than one internal reflection.

(d) For 150° < ¢ < 180°. The fields are generated by interference
between the reflected rays and the refracted rays which have
gone through one internal reflection.

These regions are not sharply defined because they overlap each
other, but those are the regions where they dominate most. These
regions also change when the diameter of the cylinder changes, e.g.,
the region where the fields are generated by diffraction will

increase by the decrease of the diameter.
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6.3 System Description

Diagrams of the optical-hybrid systems used in the experiment
are shown in Figs. 6.2 and 6.3. The experimental setup shown in
Fig. 6.2 consists of a Spectra Physics Model 146P He-Ne laser, oper-
ating at A = 6328&; a Spectra Physics polarizer; a beam expander; and
an iris. The cylinder wunder test is mounted in the center of a
cylindrical chamber, which has an open slot of length larger than
half the circumference of the chamber. On the top of the chamber a
Daedal Inc. Model 20601 rotary stage is mounted. An arm with an
avalanche photodiode (RCA C30902E) at its end is mounted on the
rotary stage in such a way as to allow the photodiode to rotate in a
circle centered on the cylinder under test. The light emitted by the
laser is a linearly polarized plane wave, and its plane of polariza-
tion can be changed using the polarizer. The beam expander enlarged
the plane wave emitted by the laser to a diameter of about 5 mm. The
expanded plane wave illuminates the cylinder under test, and the
resulting scattered wave propagates in all directions around the
cylinder. A portion of this scattered wave will propagate through
the slot of the chamber for -10° < ¢ < 190°. The avalanche photo-
detector was rotated in steps in the range -10° < ¢ < 178°, to locate
exactly the position of the main peak at ¢ = 0° using the symmetry of
the pattern around ¢ = 0°. The electric signal generated by the
photodiode, corresponding to the intensity of the light illuminating
it, was amplified and digitized by the A/D convertor. The Cromemco
Z-2 microcomputer triggers the stepping motor control, which in turn

drives the stepping motor of the rotary stage. At each step, the
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Fig. 6.2 The photodiode optical-hybrid system used in the experimental investiga-
tions.
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rotary stage drove the photodiode a specified distance around the
sample. After a specific time interval, controlled by the user, the
microcomputer triggers the A/D convertor to sample the existing
signal from the photodiode. This time interval between the movement
of the photodiode and the start of signal conversion is to insure
that the photodiode vibrations caused by its movement from one
position to the next were completely damped. The intensity data
converted by the A/D convertor are then stored on a floppy disk.
When all the data points are collected, the information is trans-
ferred to the PDP 11/34 minimcomputer, which has more capabilities.
The minicomputer will perform the necessary data processing and will
plot the intensity patterns.

The resolution of the rotary stage is Ad = 0.01°/step while the
diameter of the active aréa of the photodiode is ~ 0.5 mm. Since the
photodetector is mounted 50 cm from the center of the chamber, it
limits the resolution to ~0.06°. The resolution of the system can be
increased by putting a pinhole in front of the detector, but that in
turn will reduce the signal-to-noise ratio.

In Fig. 6.3 an alternative setup of the experiment is shown. In
this system the scattered light is recorded on a photegraphic film
mounted on the slotted chamber, and its position is registered by 6
pins which are mounted on the cylindrical chamber. After processing,
the film was scanned by a Joyce-Loebl Model III-CS double beam
recording microdensitometer to obtain a plot of the density of the
film. The density curves are then digitized by an HP-7221B digitzer

controlled by a mini-computer PDP 11/34, and the data are stored on



127

- sjuswtiadxa 9y} Ul pasn wI31sAS II]13WOITSUIPOIITW/WITY 3YL €°9 ‘8t

--===->|"1ISN3a " || 43ZIL19la | ¥E/}} dad | "H3LO1d
[ W |
I
!
|
| waaioH Wi
1
HIAANVdX3
llllllllll —-=| H3ZIYV1Od |- -] H3SV1 eN-8H

H3ANITAD




128

a disk. The density data is then converted to intensity data using
the method shown in Appendix C. The H-D curve of the film is fitted
using a polynomial, which is used in converting density to intensity
data. The intensity data are stored in the minicomputer for further
processing and plotting.

In Table 6.1 a comparison between the two experimental systems
is shown. The photodetector system has the advantage of collecting
intensity data directly, and of giving an almost real time record.
While the film/microdensitometer combination system has the advantage
of providing a continuous record of the density and of having a high
angular resolution, which is higher than that of the photodiode. But
we preferred to use the photodiode system for the overall advantages
such as its reliability and ability to obtain a direct record of the
intensity. To show the value of using the film/microdensitometer
system, and to illustrate that it gives a very comparable result to
that obtained using the photodetector system, some of these results
are shown in Figs. 6.4(a), (b) and (c¢). 1In Fig. 6.4(a) the density
curve of the film recorded for the intensity pattern of a dielectric
cylinder in the range 45° £ ¢ £ 90° is plotted. In 6.4(b) the corre-
sponding intensity pattern converted from the density data, using the
method demonstrated in Appendix C, is shown, and it is very compar-
able with the intensity plot using the photodiode system which is
plotted in Fig. 6.4(c). The intensity pattern measured using both
systems is the same for all characteristics of the pattern. This
shows us that this method of measurement is very valuable, and also

proves that it is a very compatible alternative system of measure-
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Table 6.1

Comparison Between the Photodiode and the
Film/Microdensitometer Systems

Photodiode-System

Film/Microdensitometer System

1. Collect intensity data
directly.

2. Almost a real time system.

3. Produces a discrete record
for the data.

4. The accuracy of the angular
position of the photodiode
depends on the accuracy of
the rotary stage and the
centering of the cylinder
undertest.

5. The angular resolution is
limited by the area of the
photodiode and the
resolution of the rotary
stage.

6. The accuracy of the intensity
data is limited by the
nonlinearity of the
photodiode.

1. Collect the intensity data as
a density of the film.

2. To obtain intensity data, the
film will be developed and then
the density plot is provided by
the micro-densitometer, the
density curves are digitized and
finally converted to intensity.

3. A continuous record is stored
on the film.

4. The accuracy of the angular
data depends only on the
centering of the cylinder with
respect to the chamber.

5. The angular resolution is
limited by the resolution of
the film.

6. The accuracy of the intensity
data is limited by: a) the
nonlinearity of the film
(exposure times, development
time, ...), b) the reading of
the microdensitometer, (c) the
digitization and conversion
process.
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ment. The results using this system for the experiments discussed in

this chapter are presented in Appendix D.
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6.4 Plots of the Scattered Intensity Pattern

In this section we present the experimental results collected
using the photo-detector system for the conducting and the dielectric
cylinders, and to compare them with the exact theoretical results.
Parallel polarization is considered in this section. A comparison of
polarizations is described in Section 6.5 below.

The main characteristic of the intensity pattern of the light
scattered from a conducting cylinder, as shown in the photographs of
Fig. 6.1, is its fringe pattern which extends only to ¢ = 30° after
which the pattern will be just a continuous intensity pattern with no
structure. In Fig. 6.5(a) the scattered intensity pattern is plotted
for 0° < ¢ < 45° using the data collected with the photodiode system.
The pattern has a main lobe centered at ¢ = 0° and a number of side-
lobes, which extend to ¢ = 30°. For angles greater than ¢ = 15° the
contrast of the fringes becomes very small, which makes them hard to
see in the scale used. In Fig. 6.5(b) the theoretical plot is pre-
sented for the scattered intensity from a conducting cylinder using
the formulas obtained in Chapter II. The diameter of the conducting
wire used in the experiment is measured using a micrometer (ka Z
327), then this value is used for ka in the calculations. From
Figs. 6.5(a) and (b) the agreement between the theory and experiment
is evident. A comparison between the theoretical and experimental
results for the range 45° < ¢ < 180° will be shown in Appendix D.

In Figs. 6.6(a) and (b) the intensity pattern scattered by a

dielectric cylinder is plotted. The experimental and theoretical
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Fig. 6.5 The scattered intensity pattern is plotted using the exact solution given
by Eq. (2.34) for a parallel polarized field for a conducting cylinder
with ka = 327; (continued on next page).
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plots have similar patterns and the number of fringes for 0° < ¢ <

45° is 61 for both plots. The positions of the fringes are slightly

different between the theoretical and experimental plots and that is
because there might be a slight difference in either or both the

wavelength and refractive index as explained in Chapters III and V.

The number of fringes for 0° < ¢ < 90° is 134 for the theoretical

plot and only 133 for the experimental plot. The difference in the

number of fringes might be caused by three factors:

(1) an error in measuring the diameter of the cylinder using the
micrometer where the accuracy of ka will be = % 6.

(2) an error in positioning the cylinder in the center of the
cylindrical chamber where a 1 mm deviation in the position of
cylinder along the x-axis will result in a deviation of 0.32% of
the value of the angle ¢.

(3) An error in the wavelength used in the calculations because as
shown in Chapter V the number fringes is different at-resonance
and at off-resonance wavelengths.

So these factors will contribute to the inaccuracy of the experimen-

tal results which produces the main differences between the theoreti-

cal and experimental results.

In Figs. 6.7(a) and (b) the scattered intensity by a dielectric
cylinder of ka = 950 is plotted from experimental and theoretical
results, respectively, for 0° £ ¢ £ 30°. The two patterns are very
similar in their character, amplitude, and the position of the
fringes. The number of fringes of the experimental plot is 110,

while the theoretical plot has 108 fringes. These differences might
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be explained by the same factors introduced in the previous para-
graph. 1In Fig. 6.7(c) the intensity is plotted for 150° < ¢ £ 1809,
which is the backscattered field. The two curves are quite similar,
and they peak at the same position, which indicates that both the
theoretical and experimental plots have the same index of refraction,
n = 1.45.

These plots of the experimental and theoretical data illustrate
the agreement between the two results, except for minor differences
which are expected because of the inaccuracy of the experimental
measurements. A comparison between the theoretical and experimental

results for the rest of the range of the scattering angle ¢ are

reported in -Appendix D.
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6.5 The Effect of the Different Polarizations on the Scattered Inten-

sity Pattern

The scattered intensity pattern from a cylinder depends on the
polarization of the incident field. For the conducting cylinder case
the amplitude of the surface current density depends on the polariza-
tion of the incident field, as shown in Chapter II. When the inci-
dent field is linearly polarized parallel to the axis of symmetry of
the cylinder, the surface current density generated will flow also in
a direction parallel to the axis of the cylinder, and it will
decrease to a negligible amplitude near the boundary of the shadow
region. When the incident field is linearly polarized normal to the
axis of the cylinder, the surface current density generated flows
around the axis of the cylinder; and it has a large amplitude beyond
the boundary of the shadow region, which allows it to circulate
around the cylinder before it becomes negligible. The surface
current density is the main source which generates the scattered
field; and since it has different values for the different polar-
izations, the scattered field for the two different polarizations
will be different. In Figs. 6.8(a) and (b) the scattered intensity
is plotted from the exact solution for the normal and parallel
polarizations, respectively, for a perfectly conducting cylinder with
ka = 327 in the range 53° £ ¢ £ 60°. The amplitude of the intensity,
for the parallel incident case, is larger than that for the normal
incidence case in the range 0° £ ¢ £ 20°; for larger angles they both
tend to have the same peak values. The two patterns have the same

number of fringes in the range 0 £ ¢ £ 20°. The main differences
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between the two patterns are that the contrast of the fringes is
larger for the normal incidence case beyond ¢ = 20°; and that the
'sidelobes, for the parallel incidence case, vanish around ¢ = 30°,
while they still exist even beyond 60° in the other case of polar-
ization. In Figs. 6.8(c) and (d) the corresponding experimental
plots to those in Figs. 6.8(a) and (b) are plotted. The main differ-
ence between the two patterns is that the fringes vanish around 30°
for the parallel incidence case while they exist in the whole range
shown for the normal incident case. The experimental and theoretical
plots are in good agreement for E4; while the fringe contrast is much
smaller for the experimental plot than for that of the theoretical
one, for Elcase. The main reason for this difference in patterns is
that aluminum has a finite conductivity (o 2 4.88 X 105 at A Z
0.65 m), while the theoretical plots are for a perfectly conducting
cylinder.

For the dielectric cylinder, the intensity pattern is plotted in
Figs. 6.9(a) and (b) for E* and EA: respectively, using exact theory,
and in Figs. 6.9(c) and (d) using experimental data. The theoretical
and experimental data are in good agreement for both cases of polar-
ization. The number of sidelobes is the same for both polarization
in the range 0 £ ¢ £ 60° (86 sidelobes); but for the range 60° <
¢ £ 90° the intensity pattern for Ef¢ has 48 sidelobes, while the
intensity pattern for Ei' has 52 sidelobes. Another significant
difference between the two patterns is that the fringe contrast for E”

is much larger than that for ET. For E” the intensity amplitude has

an envelope function, which starts at ¢ > 65°. For El the intensity



I (p, )

TIUr"Illrrﬁi_r'l‘rwﬁllT"I’l‘Tl‘lIT"rller”[IrlT

(@) el ]
ka = 327
Theory
[ ]
- :
?.. AL A NA WD ) AW PRV Y,
- (b) *

. | E!I

| ‘11“1‘1““““““lA‘l‘“““‘lA\ALA‘&‘A\““A;

45 S0 55 60 75 80 85 90

cb [DEG]
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amplitude is modulated with a quite low frequency function, the
notches of the modulating signal can be seen, e.g., at ¢ = 61°, 67°,
70°, . . . So there are a few notable differences between the two
different polarizations.

The experimental intensity pattern for a very large dielectric
circular cylinder (ka = 945) is plotted for the two different polar-
izations in Figs. 6.10(a) and (b). There are 247 sidelobes in the
range 0° £ ¢ £ 60° for both polarizations. In the range shown
(60° £ ¢ £ 90°), the intensity pattern for E'7 has 139 sidelobes,
while the intensity pattern for E'L has 157 sidelobes. Also the
fringe contrast for Eépis much larger than those for EL, e.g. con-
trast at ¢ = 60° is almost three times larger for the E4'pattern than
that for E 'L.

The discussions in the previous sections show that the scattered
intensity pattern depend on the material of the cylinder, the polar-
ization of the incident field, and the factor ka. The scattered
intensity pattern in all circumstances has a main lobe and a number
of sidelobes, and the width of the main lobe and the spacing between
the sidelobes both are inversely proportional to the factor ka. The
dielectric cylinder has sidelobes over all ¢, while the conducting
cylinder has sidelobes only in limited range of ¢ which decreases
with increasing of ka. The sidelobes of the intensity pattern have
spacings which decrease with increasing ¢ to a wminimum around
¢ £ 60°, while the spacings of the sidelobes of the conducting
cylinder have constant values as function of ¢. The intensity pat-

tern of the dielectric cylinder has the same number of sidelobes in
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the range 0 £ ¢ < 60° for both polarizations of the scattered field,
while for the normal polarization case the number of sidelobes are
larger in the range 60 < ¢ < 90° than those for the parallel polar-
ization case. On the other hand the fringe contrast is much larger
for the parallel polarization case than that for the normal polar-
ization case. For the conducting cylinder the sidelobes extend over

a larger range of ¢ for the normal polarization case than that for

the parallel polarization case.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

In summary we have studied the rigorous solutions of the scat-
tered field from cylinders in order to develop a better understanding
of the detailed characteristics of this scattering and the effects of
the different parameters of the cylinder, the polarization of the
incident field and the change in the wavelength of the illuminating
wave.

In this thesis we also consider approximate methods of solution.
Workers in modern optics use the simpler methods of ray optics and
Fourier optics; these techniques lead to direct results, although of
course they are approximate. In our research, we developed an
adequate approximate solution for dielectric and conducting cylin-
ders, after first showing that the zero-order Fourier optics solution
is not very good. Our approximate solution is shown to be in good
accord with the exact calculations with regard to forward scattering
amplitudes and fringe spacings.

The scattered field from a conducting cylinder when the incident
field is linearly polarized parallel to the axis of the cylinder is
given by Eq. (2.34). The scattered field patterns are plotted in
Fig. 2.3 for the parallel polarization case. When the incident field
is polarized normal to the axis of the cylinder the scattered field

is given by Eq. (2.42) and it is plotted in Fig. 2.5. The surface
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current density is given by Eqs. (2.46) and (2.48) for the parallel
and normal polarizatioms, respectively. The surface current density
is plotted in Figs. 2.6 and 2.7. The fringe spacings of the scat-
tered field are plotted in Fig. 2.8, and it is found that their
value decreases with the increase of ka. The scattering angle at
which the fringes terminate is smaller for the parallel polarization
case than for the normal polarization case, and it also decreases by
the increase of ka as it can be seen in Fig. 2.9.

In Chapter III the field scattered by a dielectric cylinder with
the incident field polarized parallel and normal to the axis of the
cylinder is given by Egs. (3.14) and (3.25), respectively. In Fig.
3.2 the scattered field pattern is plotted for the case when the
incident field is 1linearly polarized parallel to the axis of the
cylinder, while it is plotted in Fig. 3.3 for the normal polarization
case. The dependence of the scattered pattern on the refractive-
index of the cylinder is demonstrated on Fig. 3.5. It is shown in
Figs. 3.6 and 3.7 that the position of the peak of the backscattered
field depends mainly on the refractive-index of the c¢ylinder. A
comparison between the scattered field patterns of the conducting and
dielectric cylinders is given in Section 3.5 and Table 3.1.

In Chapter IV approximate solutions for the conducting cylinder
are given by Eqs. (4.5) and (4.16). The scattered field pattern is
plotted in Fig. 4.4. The approximate solution for the field scat-
tered by a dielectric cylinder is given by Eq. (4.28) and it 1is

plotted in Fig. 4.7. An approximate solution for the fringe spacings
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of the dielectric cylinder is given by Eqs. (4.37) to (4.39) and is
plotted in Figs. 4.9 and 4.10.

In Chapter V the fine structure of the scattering from dielec-
tric cylinders is studied and a plot for the intensity at ¢ = 0° as a
function of the wavelength is given in Fig. 5.1. The intensity
patterns for a 5 different wavelengths at-resonance and off-resonance
at the peak and the trough of the resonance curve are plotted in
Figs. 5.2 to 5.5. The effects of the resonances on the shape of the
patterns are discussed.

In Chapter VI photographs of the scattered intensity patterns
for conducting and dielectric cylinders are shown in Figs. 6.1(a) and
(b), respectively. The two different systems used in the experiments
are shown in Figs. 6.2 and 6.3 and a comparison between them is given
in Table 6.1. The intensity patterns for conducting and dielectric
cylinders measured experimentally are plotted im Figs. 6.5 to 6.7. A
comparison between the scattered patterns for the different polariza-
tions of the incident field is shown in Figs. 6.8 to 6.10. In all
the plots in Chapter VI the theoretical curves are plotted with the

experimental ones to show their agreement.
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APPENDIX A
NUMBER OF TERMS OF THE SERIES

NEEDED FOR THE SUMMATION

In the preceding chapters we have found that the solutions for
the scattered field from a circular cylinder are represented by an
infinite series. To plot these fields we can sum only a finite
number of terms, so it is important to know how many terms (approxi-
mately) of the series are needed to get an accurate value for the

(1)

series. It has been mentioned by King and Wu that the number of
terms needed are around the value of Kka. In this appendix an
analytical derivation of the approximate number of terms of the

series needed to get an accurate result for both conducting and

dielectric cylinders are presented.

A.1 Conducting cylinders

To get an accurate value for the summation of the series, we
need to sum enough terms until the coefficient of the series becomes

negligible. The coefficient of the series in Eq. (2.36) is

J (ka)
C Hm(kp) . (A1)

— m
m H{le)(ka)

The asymptotic expansions for the Bessel and Hankel functions for

(2)

large values of m are given by
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1 e kam
J (ka) ~ — (5 =), (a2)
" JIm 2"
and
(1) 1 e ka.m . ,e ka,=-2m
H oW~ —— (5 E—) [1 - 21 (5 5—) 1. (A3)

J2mm

The Hankel function with argument kp, which is very large, will be

(2)

given by the following asymptotic expansion

Hél)(kp) ~ 2 i(kp - mp/2 - p/b)

oo (4

By substituting Egs. (A2) to (A4) into Eq. (Al) we get the following

c o~ 1 /2 _i(kp - mn/2 - m/4)
mo o (& Eg)-Zm J nkp ’
2 m
1 / 2
C | ~ A5
jc_| /o (45)
e ka,-4m
V1 -4 (5 =)
vy 1
v kmp ’
2 m \4m
1= (E ka)
therefore lCm] will have a negligible value when
which will lead to
m > g ka. (A7)
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From (A7) we can see that the number of terms necessary to give an
accurate result of the sum of the series is slightly larger than the
value of ka, which has been shown from the plots of the Log of the

coefficient in Chapter II. And it will take the same value also for

the normal polarization case.

A.2 Dielectric Cylinders

From Chapter III we can write the coefficient of the series as

it is given by Eq. (3.10)

a = -W" 3 (a8)
where

N =03 (0T (¥) - I GOT (), (49)

D=0 i -1 mE Ve, (410)

and

x = ka, v = nka.

Substituting in Egs. (A9) and (A10) from Egs. (A2) and (A3) for the
asymptotic expansions of the Bessel and Hankel functions for a large

order m, we get

1 ex.m m 1 ey.m 1 ey .mtl
N~n—G) [ — G2 - ]
Vm ™Y o 2 e
m ex.m 1 ex .mt+l 1 ey.m
L sxym- ™ L (&
[X J;(_T[; (Zm) Jm 2m+2 ] \/E_Tt—;n- 2m
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ex\m .ey.m m /m . ey .mtl 2
= o= (5" &) Dy - S G G
SR Jam ex il 2m
X J mtl “2m¥2 :

Hence;
ex\m ey.m m_ey ,m.m+ 3/2;, m _ m \m+3/2
an ( (Zm) {n[y 2m (m+1) ] [x 2m (m+1) 1}.
(A11)
D ~ (ex m [g ey m 1 ey m+1]7
27m Y [2rm Zm «/2T[(m+1) 2met2
x [1-d2 G970 - 2= EH" 2L (&"
Jan Jznm
. ceX\-2m 1 ex mtl . ex \~2m-2
X [1 - 2i (.2_1'11) ] - \/2n(m+1) (2m+2) [1 - 2i (2m+2) ]})
1 (eXy cgyym o om ey . m m+3/2
D2 g G GO falf - X ™R
_m _ex ., m m3/2 _ a: (2mi2m
e S N I S OB (13)
From Eqs. (A11) and (Al3) we can get
% < : Im.om
1 - 2i (Eg)
then ]aml < 1 (A14)

J1 - 4 (Zm/ex)am
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From Eq. (A14) the amplitude of the coefficient laml will have a

negligible value when

o,
ex
i.e., when m > % ka. (A15)

So if m is slightly larger than ka, the summation of the series will
give an accurate value for the field. From Eqs. (A7) and (Al5), the

same number of terms needs to be summed for both kinds of cylinders.
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APPENDIX B

MEASUREMENT OF OPTICAL FIBER DIAMETER USING

THE FAST FOURIER TRANSFORM

Measurement of optical fiber diameter using the

fast Fourier transform

Mustafa A. G. Abushagur and Nicholas George

The variation of the fringe spacing of the far zone scattered intensity of an illuminated optical fiber has been

plotted vs the scattering angle, theoretically and experimentally. A method for

ing fiber di s

by taking the Fourier transform of the scattering intensity is described. Theoretical and experimental re-
sults have been compared at various angies for different fiber diameters.

L. Iintroduction

The scattering of electromagnetic waves by dielectric
and conducting cylinders has been treated by several
authors!* and summarized by Kerker® and Bowman
et al.® Interest in fiber optics has led to the study of
methods for making remote measurements of fiber
parameters. Presby presented a method for measuring
fiber diameter from the backscattered intensity.”
Watkins described diameter measurements that con-
sisted of counting the number of fringes in a certain
range of the scattering angle in the forward scattering
field.®

In this paper we report some careful measurements
of the variation in fringe spacing as a function of the
cylindrical angle. An optimum angle for the remotely
sensing fiber diameter is established, and we describe
a fast Fourier transform (FFT) processing method that
efficiently senses fiber diameter and minimizes the ef-
fect of diode-to-diode random noise.

When the optical fiber is illuminated with a mono-
chromatic plane wave, energy is scattered all around the
fiber. The scattering intensity displays the fringe
pattern shown in Fig. I. An approximate theory for the
forwardscatter case has been published.® The number
of fringes N between scattering angles ¢, and ¢- is

N= 3;1 (sin(6w/2) + [n2+ 1 = 2n coa(ey 2]

= l8in(91/2) 4 [n2 + 1 — 2n cos($1/2)]1/%), 1)

The authors are with University of Rochester, Institute of Optics,
Rochester, New York 14627,
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wherea = radius of the optical fiber,
= wavelength of the electromagnetic wave,
and
n = index of refraction of the fiber.

Fringe spacing A¢ between two adjacent fringes can
be found by substituting N = 1 into Eq. (1), letting ¢
= ¢, + A¢ and solving for A¢ using well-known trigo-
nometric approximations for small A¢. The resulting
equation for the fringe spacing of the scattered intensity
as a function of angle is given by

A 2n 12
a¢ = a—([l - l—:—n;coﬂ(¢/2}] /

2n 32 n
{coa(d’/?)[l - m co‘(‘t/z)] + m

To study the dependence of A¢ on ¢, Eq. (2) is plot-
ted in Fig. 2. Notice that the fringe spacing decreases
as scattering angle ¢ increases, reaching a minimum at
~60° (for n = 1.457).

The expression for A¢ is valid for scattering angle 0
< ¢ < ¢r, where ¢ is given by® ¢r = 2 cos~1(1/n), but
at larger angles, ¢ > ¢, there is no refracted ray.

Detailed comparison of the approximate theory with
the exact expression for A¢ is beyond the scope of this
paper. From Eq. (2) it is seen that A¢ is inversely
proportional to the radius of the fiber; thus the remote
method for measuring the diameter is feasible.

sin(o/Z)}) E )}

#. Experiment

In the experiment a He-Ne laser is used to illuminate
the optical fiber. The scattered intensity is detected
in the far zone using a photodiode array of 1024 ele-
ments manufactured by Reticon Corporation. The
far-zone intensity is coupled into a PDP 11/34 for pro-
cessing. Simply reading null-to-null spacing on the

15 June 1980 / Vot. 19, No. 12 / APPLED OPTICS 2031
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Optical Fiber

Fig. 1. Schematic diagram of experi tal setup: L, hro-

matic EM plane wave; P, far zone scattered pattern.
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Fig. 2. Fringe spacing variations. Continuous curve, Eq. (2).
X —experimental data for 66.7-um fiber diam.

250

8

INTENSITY, I
@
O
T

100+

504
L]

il !

| Il | |

59.0 594

600 604 61.0

SCATTERING ANGLE,¢ (Degrees)

Fig. 3. Far zone scattered intensity plotted vs scattering angie.

pattern (as shown in Fig. 3) is not an efficient process,
especially if diode noise is a limiting factor.

Since the detected intensity is in the far zone, the
scattered field is roughly the Fourier transform of the
field at the fiber. The angle factors and the nonplanar
nature of the scatterer prevent this from being a precise
relationship. Nevertheless, as in other remote sensing
problems, it does give a rationale for using a FFT.
Noting that the recorded intensity is approximately a
sinusoid in the presence of noise, it follows that an ef-
ficient filter is a bandpass adjustable to the anticipated
frequency. Reading the frequency of fringe spacing is
greatly simplified if one uses the FFT of the recorded
intensity as shown in Fig. 4.

2032 APPLED OPTICS / Vol. 19, No. 12 / 15 June 1880

Denote the intensity in the far zone by I(f) in which
f is given by

f=x/Az = tan(¢)/A. 3)
Let E(xn) be the FFT of the intensity, i.e.,

FFTl{tan(¢)/A]} = E(xn), (4)

where xn = N\/[tan(¢ + ¢o) — tang],
N = number of data points used in the FFT
process, and
¢o = angle subtended at the fiber by an array of
length d and distance R from the fiber. ¢y
is given by ¢o = 2 tan~1d/2R.
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In Fig. 4 |E(xn)/E(0)|? is plotted vs xn, and the curve
consists of three spikes: the middle is the dc compo-
nent, and the other two spikes give the fundamental
frequency of the scattering intensity. If we model the
intensity as

Ith = sin¥(Kf), (5)
where K is the local radian frequency of the intensity.
One can readily show that K = 7A cos (¢) cos (¢ +
A¢)/sin Ag, where A¢ is given by Eq. (2). Then by
taking the Fourier transform of I(f), we find the fol-
lowing expression for spacing D, between the outer two
spikes:
2K N 2\ cos?p

D, =
T ox Ag

6)
Hence, D. depends upon fringe spacing A¢ and im-
plicitly the diameter of the fiber (2e¢). Substituting Eq.
(6) for A¢ into Eq. (2) and solving for the diameter (2a)
yield the following result:

2a-D¢([1- n
1+

pric) (¢/2)ilm / {coszd:

2n 112
x [coe(d’/?) [1 - m cos(¢/2)l
+—L— gin( /2)} )
¥y ) m

So by measuring D, at a known angle ¢, we can
compute the diameter of the fiber. This method has
been used to determine the diameter of two different
fibers, namely, 66.7 and 400 um. Measurements have
been made over a wide range of angles from 15° to 75°.
Better results are obtained for ¢ in the range of 25° to
40°. A consistency of 0.6% is obtained in these mea-
surements using the FFT method.

In making the determination of fiber diameter from
the FFT of the diffracted intensity, one needs 2N logoN
operations on a digital computer for N data points.1®
For the 1024 array used, this is 20480 operations. Inour
research experiments, we used an IBM 3032 that re-
quired 1.1 usec/operation. Hence, the FFT is com-
puted in ~23 msec. However, one may be much more
interested in a stand-alone system. With special pur-
pose chips such as Reticon’s R5601, one can obtain an
FFT in times of the order of 5 msec without diffi-
culty.

Thus, it is possible to measure the fiber diameter in
line while pulling it out of the furnace. The method
requires only low light levels since the detection of the
almost periodic fringe pattern, first transforming, gives
in effect a very narrowband filter for measuring the
diameter.

This research was supported in part by the U. 8. Air
Force Office of Scientific Research.
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APPENDIX C

CONVERSION OF THE DENSITY TO INTENSITY DATA

In this appendix we show the H-D curve of the film as it is
measured experimentally, and how it was curve fitted to enable us to
convert the density data, collected on the film from the scattered
intensity pattern, back to intensity data. The film used in the
experiments is a Kodak Panatomic-X film. This £film was chosen
because it has '‘an extremely fine grain which gives a very high reso-
lution, and it has a moderate value of Yy which allows us to record
the very large diversity of the intensity which exists in the scat-
tered pattern.

The H-D curve of the film is measured experimentally using the
He-Ne laser light for exposing it, using the exposure time used in
collecting the intensity data, and developing it following the same
procedure followed in developing the film used to collect data, to
minimize the effect of the nonlinearities of the film. These depend
primarily on: exposure time, the wavelength of light, the kind of
developer, and the development time. In developing the film we

followed the following procedure:

1. Develop in Microdol X for 5 minutes at 70°F.
2. Stop the process by a Kodak Stop Bath for 30 seconds.
3. Fix using Kodak Rapid Fix for 2 minutes.

4. Clean in running water for about 10 minutes.
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To plot the characteristic curve of the film, the film 1is
exposed using a uniform plane wave of laser light; and by changing
the neutral density filters we can change the intensity of the field
exposing the film. Then the density recorded on the film is measured
by the microdensitometer. The characteristic curve of the film as it
was measured using the previous method is plotted in Fig. C.1.

To use this curve to convert density data recorded on this kind
of film to intensity data, we need to fit this H-D curve with a
polynomial which will allow us to substitute density data in it to
get intensity data corresponding to the given density values.

The density can be represented using the following expression

D=D,+ylog (=+1)-ylog (-+1) , (c.1)
S 81 82

where D density of the film

oM
1}

exposure corresponding to D

and € Yy and ¢

1’ are as defined in Fig. C.1, where we fitted the H-D

2

curve by a straight line as a first approximation.

From Eq. (C.1) we can write
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Fig. C.1 The characteristic curve of the Panatomic-X film used in

the experiments.
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Then
£ A O
1075 = (g%)y (5—;fg§)y
Now let
B =100"Ps |
and
A=(§g)“
1
Therefore,
- (e + 81) .
8+€2

where C is a correction factor, then

Byt h
A A
2
Let
a:(g-c)l/y
A )
then
8_082-81
T 1l-a
1025
where o = (—-——*—§ - C)Y,
(e,-2,)
€ = exposure = It,
I = intensity,
and t = exposure time.

(C.2)

(C.3)

(C.5)

(C.6)
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So from Eq. (C.5) we can determine the exposure by knowing the den-
sity and 81, 82 and o of the film. To demonstrate this, Eq. (C.5) is
plotted in Fig. C.2 as the solid line, and the experimental data
plotted in Fig. C.1 are replotted here again showing that Eq. (C.5)
gave a very good fit for most of the range of the characteristic

curve. So it will be used to convert density to intensity data in

the experiments done.
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Fig. C.2 The characteristic curve of the film plotted using the
curve fitting Eq. (C.5) and the experimental data.
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APPENDIX D
PLOTS OF THE INTENSITY PATTERNS

FROM EXPERIMENTAL DATA

In Chapter VI we presented the experimental results obtained for
the scattered intensity patterns from dielectric and conducting
cylinders. The results are obtained for the two different polariza-
tions of the incident field parallel and normal to the axis of the
cylinder. In Chapter VI we presented only portions of the scattered
intensity patterns to demonstrate the experimental results and to
compare them with the theory. In this appendix we present the rest
of the scattered intensity patterns in all the range of the angle o.
The results presented here are obtained using both experimental
methods discussed in Chapter VI. 1In each figure in this appendix
there are three different curves (except for dielectric cylinders
with ka = 945): (a) is a plot of the intensity pattern obtained
using film/microdensitometer combination system following the same
procedure outlined in Chapter VI, (b) is a plot of the intensity
pattern using the photodetector system, and (c) is a plot of the

comparable theoretical results derived in either Chapter II or III.
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Intensity Patterns of the Conducting Cylinder

In Figs. D.1 to D.6 show the scattered intensity patterns from
‘conducting cylinders with ka = 327 plotted as a function of the angle
¢. In Figs. D.1 to D.3 the polarization of the incident field is
parallel to the axis of symetry of the cylinder. 1In Figs. D.4 to D.6
the polarization of the incident field is normal to the axis of
symmetry of the cylinder. In Fig. D.1 the intensity pattern is
plotted for 0° < ¢ < 45°. The pattern has main lobe and a number of
side lobes. The three different patterns have the same features.
The number of fringes are the same and they terminate at ¢ = 30°. The
amplitude of the side-lobes are quite the same. The intensity pat-
tern plotted using the film/microdensitometer system has larger
amplitude in the range 15° < ¢ < 45° and that is due to the non-
linearity of the photographic film. In Figs. D.2 and D.3 the pattern
does not have any structure. The small ripples which might be seen
in the experimental data curve are mainly due to the noise in the
background. In Fig. D.4 the scattered intensity pattern is plotted
for the case when the incident wave is polarized normal to the axis
of the cylinder. The pattern plotted using the experimental data is
very comparable to the theoretical plot. The curves have comparable
amplitudes of the side lobes and the spacings of the fringes. In
Fig. D.5 the patterns still have fringes till ¢ = 80°. 1In Fig. D.6
the theoretical curve does not have any structure while the exper-
imental curves have ripples which are mainly generated because of the
noise, and the speckle pattern produced by the surface of the cylin-

der which might not be perfectly smooth. So in all the results shown
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Fig. D.1 The scattered intensity pattern plotted for a conducting cylinder with
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and (c) Eq. (2.34).
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in Figs. D.1 to D.6 the experimental and theoretical curves are in

good agreement, and the two experimental methods agree well.

Intensity Patterns of the Dielectric Cylinder (ka = 327)

In Figs. D.7 to D.12 show the scattered intensity patterns from
a dielectric cylinder with ka = 327 and n = 1.45 plotted as a func-
tion of the scattering angle ¢. In Figs. D.7 to D.9 the polarization
of the incident wave is parallel to the axis of the cylinder. 1In
Figs. D.10 to D.12 the polarization of the incident wave is normal to
the axis of the cylinder. In Fig. D.7 the dintensity pattern is
plotted for 45° < ¢ < 90°. The patterns plotted using the two exper-
imental methods are the same. The experimental plots agree well with
theoretical plot particularly in the range 45° < ¢ < 70°, in the
range 70° < ¢ < 90° the modulating function which modulates the
pattern is a little different, and that is mainly because there might
be a slight difference in the wavelength between the one we used in
the theoretical plot (A = 0.6328 um) and the wavelength of the laser
used, as we discussed that in Chapter V. By looking at the exper-
imental curves in the range 45° < ¢ < 100° we can tell that the
fields are close to a resonance. In Figs. D.8 and D.9 the exper-
imental curve plotted using the photodetector system has a lot of
background noise in the range 110° < ¢ < 150°, while the curve plot-
ted using the film/ microdensitometer does not have that much noise.
The peak of the field in the range of 90° < ¢ < 180° is located at
¢ = 154° in all the three curves. The number of fringes is the same

for the three curves in the range 45° < ¢ < 90°. 1In Figs. D.10 to
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Fig. D.8 The scattered intensity pattern plotted for a dielectric cylinder with
ka = 327 using (a) film/microdensitometer system, (b) photodetector system

and (c) Eq. (3.14).
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D.12 the scattered intensity pattern is plotted for the case when the
incident field is polarized normal to the axis of the cylinder. 1In
Fig. D.10 the patterns are comparable in all the three curves. The
fringes have a smaller contrast with respect to that in the parallel-
polarization case, and there are the same number of fringes in the
experimental and theoretical curves. In Figs. D.11 and D.12 the
patterns are very similar to each other. The photodiode system
results have more background noise in the range 105° < ¢ < 150° than

that obtained using the film/microdensitometer system.
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Fig. D.10 The scattered intensity pattern plotted for a dielectric cylinder with

ka = 327 using (a) film/microdensitometer system, (b) photodetector system
and (c) Eq. (3.25).
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Fig. D.12 The scattered intensity pattern plotted for a dielectric cylinder with
ka = 327 using (a) film/microdensitometer system, (b) photodetector system
and (c) Eq. (3.25).
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Intensity Patterns of the Dielectric Cylinder (ka = 945)

In Figs. D.13 to D.22 the scattered intensity patterns from a
‘dielectric cylinder with ka = 945 and n = 1.45 are plotted as a
function of the angle ¢. 1In Figs. D.13 to D.17 the polarization of
the incident field is parallel to the axis of the cylinder, while in
Figs. D.18 to D.22 the polarization of the incident field is normal
to the axis of symetry of the cylinder. In Fig. D.13 the pattern
obtained experimentally using the photodiode system is plotted in
(a), while the theoretical curve using formulas of Chapter III is
plotted in (b).  The two curves have the same characteristics and
same number of fringes. In Fig. D.14 the two curves have the same
number of fringes, and both have the same shape until ¢ = 70°, then
in 70° < ¢ < 90° the curve modulating the pattern has a large varia-
tion in the theoretical curve than that for the experimental curve.
This difference can be explained using the results of Chapter V,
which indicate that the possible reason is that there is a slight
difference in the wavelength used in the calculations and that of the
laser used in the experiment. The theoretical and experimental
curves in Figs. D.15 to D.17 are the same, in their shape and the
position of the fringes. In Figs. D.18 to D.22 the patterns are
plotted for the case when the incident field is polarized normal to
the axis of the cylinder. The experimental curves obtained using the
photodiode system plotted in (a) and the theoretical curves are
plotted in (b). The experimental and theoretical curves are the same

in all the different characteristics.
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Fig. D.19 The scattered intenmsity pattern plotted for a dielectric cylinder with
ka = 945 using (a) photodetector system and (b) Eq. (3.25).
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Fig. D.20 The scattered intensity pattern plotted for a dielectric cylinder with
ka = 945 using (a) photodetector system and (b) Eq. (3.25).
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Fig. D.21 The scattered intensity pattern plotted for a dielectric cylinder with
ka = 945 using (a) photodetector system and (b) Eq. (3.25).
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Fig. D.22 The scattered intensity pattern plotted for a dielectric cylinder with
ka = 945 using (a) photodetector system and (b) Eq. (3.25).
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