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Scattering of a plane electromagnetic wave from circular con- 

ducting and dielectric cylinders is analyzed. Both polarizations of 

the incident electric field, parallel and normal to the axis of the 

cylinder, are considered. The study of the rigorous solutions gives 

an insightful understanding of the scattered field and its dependence 

on the material of the cylinder, the polarizations of the incident 

field, and the three dimensionality of the object which usually are 

not considered in Fourier optics. It is shown that a combination of 

Fourier optics and ray theory can give good approximations for the 

scattered field from both conducting and dielectric cylinders. It is 

shown that the scattered pattern from a conducting cylinder consists 

of a main lobe and a number of side lobes. The spacing between the 

side lobes decreases as ka increases, where k is the wave number of 

the incident field and a the radius of the cylinder. It is found 

that for a certain conducting cylinder the side lobes terminate in a 

smaller scattering angle when the incident field is polarized paral- 

lel to the axis than when the incident field is polarized normal to 

the axis of the cylinder. The surface current density in the shadow 

region is found to be larger for the normal polarization case than 

for the parallel polarization case. The pattern of the scattered 

field from a dielectric cylinder has fringes all around the cylin- 

der. The contrast of the fringes for the dielectric cylinder is much 



larger when the polarization of the incident field is parallel to the 

axis than that when the polarization is normal to the axis. The 

backscattered field of the dielectric cylinder has a peak which 

depends in its position on the refractive-index of the cylinder for 

the parallel polarization case. The fine structure of the scattering 

by a dielectric cylinder is studied. It is shown that the dielectric 

cylinder has resonant frequencies which depend on the radius and 

refractive-index of the cylinder. It is found that there are signi- 

ficant differences in the shape of the scattered pattern depending on 

whether the cylinder is at-resonance or at off-resonance. Exper- 

imental investigations are carried out to verify the theory derived 

in this study and it is found that both theory and experiments are in 

good agreement. 
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CHAPTER I 

INTRODUCTION 

The scattering of electromagnetic waves by circular cylinders is 

a fundamental problem in scattering theory. This problem is one of 

the few scattering problems for which a rigorous solution can be 

derived. Many authors have treated this problem (1-4). The solution 

of Maxwell's equations for a dielectric cylinder goes back to Lord 

Rayleigh, (5 '6)  who derived the solutions for arbitrary radius, arbi- 

trary refractive index, and perpendicular incidence. The solutions 

for metallic wires in the microwave region were reported by Igna- 

towsky ( 7 ' 8 )  and ~eitz"). The method for finding the asymptotic 

behavior for large sizes was reported by ~eb~e'l'). A detailed study 

of the scattering of electromagnetic waves by conducting cylinders is 

reported by King and Wu ( 11 )  for ka 5 12. The asymptotic solutions 

for the scattering cross section using perturbation theory were 

reported by Papas (12), and Borgnis and Papas (13). Keller reported a 

ray-theory approach to construct the leading term in the asymptotic 

expansion of the field scattered from large convex cylinders. ( 1 4 )  

Interest in the study of the scattering of light by dielectric 

cylinders has increased greatly since optical fibers started to be 

used in the field of optical communications. Recently there are many 

writers working on problems relating to scattering from dielectric 

cylinders. The scattering of light from cylinders with arbitrary 



r e f r a c t i v e - i n d e x  d i s t r i b u t i o n s  i s  repor ted  by few authors  (15-17) 

Determina t ion  of t h e  diameter of t h e  cy l inde r s  and p r o f i l i n g  the  

r e f r a c t i v e - i n d e x  of t h e  cy l inde r s  a r e  repor ted  by many 

a u t h o r s  (18-21). I t  i s  q u i t e  important  t o  r e f e r  t o  t h e  work done by 

Fock i n  t h e  t rea tment  of t h e  problem of s c a t t e r i n g  from l a r g e  bodies;  

h e  derived approximate s o l u t i o n s  f o r  t h e  s u r f a c e  c u r r e n t s  a t  t he  

shadow boundary (22,231 

I n  t h i s  work, we a r e  i n t e r e s t e d  i n  s tudying  t h e  problem of 

s c a t t e r i n g  of l i g h t  from l a r g e  c i r c u l a r  c y l i n d e r s ,  bo th  conducting 

and  d i e l e c t r i c .  So lu t ions  a r e  der ived  f o r  a  l i n e a r l y  po la r i zed  plane 

wave i n c i d e n t  normal t o  t h e  a x i s  of symmetry of t h e  cy l inde r .  The 

major  emphasis i n  t h i s  work has been t o  s tudy  t h e  f i e l d s  s c a t t e r e d  by 

l a r g e  conducting and d i e l e c t r i c  cy l inde r s  (ka >> 1)  when they  a r e  

i l l umina ted  wi th  a  p lane  e lec t romagnet ic  wave. The s c a t t e r e d  f i e l d  

has  been s t u d i e d  f o r  d i f f e r e n t  cy l inde r  parameters ,  and f o r  d i f f e r e n t  

p o l a r i z a t i o n s  of t h e  i n c i d e n t  p lane  wave. 

I n  Chapter 11, t h e  s c a t t e r i n g  of l i g h t  from conducting cy l inde r s  

is  repor ted .  Rigorous s o l u t i o n s  of t h e  s c a t t e r e d  f i e l d  a r e  der ived 

from Maxwell's equa t ions ,  us ing  appropr i a t e  boundary cond i t i ons ,  f o r  

bo th  p o l a r i z a t i o n s  of t h e  i n c i d e n t  f i e l d .  The su r f ace  cu r r en t  

d e n s i t y  induced by t h e  f i e l d s  on t h e  su r f ace  of t h e  cy l inde r  i s  

der ived  and p l o t t e d  f o r  t h e  two d i f f e r e n t  p o l a r i z a t i o n s ,  and it i s  

shown t h a t  t h e  c u r r e n t s  f o r  t h e  normal p o l a r i z a t i o n  case  a r e  very  

l a r g e  i n  t h e  shadow region  i n  comparison t o  those  f o r  t he  case of 

p a r a l l e l  p o l a r i z a t i o n .  The amplitude of t h e  s c a t t e r e d  f i e l d  i s  

p l o t t e d  a s  a  func t ion  of t h e  s c a t t e r i n g  angle  ($) and t h e  f a c t o r  ka. 



T h e  f r i n g e  s p a c i n g s  o f  t h e  s c a t t e r e d  f i e l d  a r e  deduced and p l o t t e d  

f o r  v a r i o u s  v a l u e s  o f  ka .  The main d i f f e r e n c e s  between t h e  s c a t t e r e d  

f i e l d s  r e s u l t i n g  from t h e  p a r a l l e l  and normal i n c i d e n t  f i e l d  p o l a r -  

i z a t i o n s  a r e  p o i n t e d  o u t .  

The s c a t t e r i n g  of l i g h t  from l a r g e  d i e l e c t r i c  c y l i n d e r s  i s  

r e p o r t e d  i n  Chapter  111. Rigorous  s o l u t i o n s  of t h e  s c a t t e r e d  f i e l d  

a r e  d e r i v e d  from Maxwell 's  e q u a t i o n s  f o r  t h e  two d i f f e r e n t  p o l a r i z a -  

t i o n s  of t h e  i n c i d e n t  f i e l d .  The s c a t t e r e d  f i e l d  p a t t e r n s  o u t s i d e  of 

the c y l i n d e r  a r e  p l o t t e d  a s  a  f u n c t i o n  of $ f o r  a s e t  o f  v a l u e s  of 

k a .  The f r i n g e  s p a c i n g s  o f  t h e  f i e l d  a r e  p l o t t e d  a s  a  f u n c t i o n  of $ 

a n d  ka ,  and t h e i r  dependences on $ and ka a r e  s t u d i e d .  A v e r y  i n t e r -  

e s t i n g  r e s u l t  i s  o b t a i n e d  concern ing  t h e  e f f e c t  of t h e  index  o f  

r e f r a c t i o n  on t h e  s c a t t e r e d  f i e l d .  I t  i s  found t h a t  t h e  backsca t -  

t e r e d  f i e l d  (90' < $ < 180°) h a s  a  peak w i t h  a  p o s i t i o n  i n c r e a s i n g  i n  

@ by t h e  i n c r e a s e  o f  t h e  i n d e x  o f  r e f r a c t i o n ,  and a l s o  it i s  found 

t h a t  t h i s  p o s i t i o n  i s  n o t  s e n s i t i v e  t o  t h e  change o f  ka .  

I n  Chapter  I V ,  approximate  s o l u t i o n s  f o r  t h e  s c a t t e r i n g  of l i g h t  

from c i r c u l a r  conduc t ing  and d i e l e c t r i c  c y l i n d e r s  a r e  r e p o r t e d .  I t  

i s  shown t h a t  t h e  s c a t t e r e d  f i e l d  from a  conduc t ing  c y l i n d e r  can b e  

approximated v e r y  c l o s e l y  by t h e  s u p e r p o s i t i o n  of t h e  d i f f r a c t e d  

f i e l d  from a  v a r i a b l e  w i d t h  s t r i p  and t h e  b a c k s c a t t e r e d  f i e l d  gener-  

a t e d  by t h e  s u r f a c e  c u r r e n t  d e n s i t y .  The f i e l d s  s c a t t e r e d  by t h e  

d i e l e c t r i c  c y l i n d e r  can be  approximated by t h e  s u p e r p o s i t i o n  of t h e  

d i f f r a c t e d ,  r e f l e c t e d  and r e f r a c t e d  f i e l d s .  The approximate  s o l u -  

t i o n s  a r e  compared t o  t h e  r i g o r o u s  s o l u t i o n  and t h e y  a r e  shown t o  



give very good agreements. A closed form is derived for the fringe 

spacings of the scattered fields. 

In Chapter V, the fine structure of the scattering from dielec- 

tric cylinders is presented. The effect of the change in the wave- 

length of the incident field is studied. It is found that the 

cylinder behaves like a cavity resonator. The effect of the reson- 

ances on the scattered field is studied, and it is found that 

at-resonance the fields tend to concentrate around the main-lobe, 

while at off-resonance the fields spreads more in all around the 

cylinder. It is shown also that the resonanance effect the shape of 

the modulating function of the scattered pattern. 

In Chapter VI, an experimental study of the scattering of light 

from cylinders is reported. The scattered intensity has been 

detected by two different methods. In the first method a photo- 

detector is rotated around the cylinder in precise steps, and a 

record of the intensity is collected using a data acquisition system. 

In the second method the radiation patterns are recorded photograph- 

ically with precise alignment controlled by registery pins. Then, a 

microdensitometer is used to obtain a density vs. angle plot which is 

later digitized and converted to read optical intensity. The exper- 

imental results are compared with the theoretical results and they 

are in good agreement. 

A recaptulation of the major results of the research is con- 

tained in Chapter VII. 
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CHAPTER I1 

SCATTERING OF LIGHT FROM 

LARGE CONDUCTING CYLINDERS 

2.1 Introduction 

The problem we are considering in this chapter is the scattering 

of a plane electromagnetic wave by a perfectly conducting circular 

cylinder. The problem will be studied for the two different polar- 

izations of the incident electric field, parallel to the axis of 

symmetry of the cylinder (TM), and normal to the axis (TE). Fig. 2.1 

shows the coordinate system used in this study. 

At the beginning we will introduce some general formulations 

concerning the field theory, as a necessary starting point, which 

will lead to the solution of Maxwell's equations. We are concerned 

with finding the solution of Maxwell's equations which describe the 

field arising from a plane electromagnetic wave incident upon a 

cylindrical surface, across which the properties of the medium change 

abruptly. An appropriate system of curvilinear coordinates (cylin- 

drical coordinates) is introduced. In the cylindrical coordinates 

Maxwell's equations will separate into a set of ordinary differential 

equations, which are then solved for the scattered fields. This 

method is the standard method for solving this class of scattering 

problems ( 1 - 4 ) .  In Section 2.3 rigorous solutions of Maxwell's equa- 

tion are derived for both parallel and normal polarizations of the 



i n c i d e n t  f i e l d .  The s o l u t i o n s  a r e  expressed i n  i n f i n i t e  s e r i e s ,  and 

t h e  number of terms needed t o  g e t  accu ra t e  va lues  f o r  t h e  f i e l d s  a r e  

shown. The s c a t t e r e d  f i e l d  ampli tude i s  p l o t t e d  a s  a  func t ion  of t h e  

s c a t t e r i n g  ang le ,  I$, f o r  a  s e t  of va lues  of ka. The su r f ace  cu r r en t  

d e n s i t y  i s  der ived  and p l o t t e d  i n  Sec t ion  2 . 4 ,  and a  comparison 

between c u r r e n t s  induced on t h e  s u r f a c e  of t h e  c y l i n d e r  i s  made f o r  

t h e  two p o l a r i z a t i o n s  of t h e  i n c i d e n t  f i e l d .  I n  Sec t ion  2.5 t h e  

f r i n g e  spacings of t h e  s c a t t e r e d  f i e l d  p a t t e r n  a r e  p l o t t e d  a s  a  

f u n c t i o n  of $I f o r  a  s e t  of va lues  of ka. The c u t o f f  angle  of t h e  

f r i n g e s  i s  s t u d i e d  f o r  both p o l a r i z a t i o n s  a s  a  func t ion  of t h e  f a c t o r  

ka . 



2 . 2  General Formulations 

The s o l u t i o n  of t h i s  s c a t t e r i n g  problem w i l l  be der ived  from the  

Helmholtz wave equat ion  us ing  t h e  proper  boundary cond i t i ons .  We 

w i l l  s t a r t  by in t roducing  Maxwell's equat ions  from which we w i l l  

d e r i v e  t h e  Helmholtz wave equat ion .  Maxwell's equat ions  f o r  a source 

f r e e  media a r e  given by (5 

I f  we assume time harmonic f i e l d s ,  i . e .  

- i w t  E(u, t )  = Re E ( r )  - - e , 

- i w t  B ( r , t )  = Re B(r )  e , - - - - 

- i w t  D ( r , t ) = R e D ( r ) e  , - - - - 

- i w t  H ( r , t )  - - = Re H(r )  - - e . 

Maxwell's equat ions  f o r  t h e  time harmonic f i e l d s  w i l l  reduce t o  



Fig. 2.1 The incident field as it illuminates the cylinder. 



For an isotropic medium, where the physical properties of two 

neighboring points are the same in all directions, the relations 

between D,E,H - - -  and - B are given by 

From Eqs. (2.9), (2.10), (2.13), (2.14) and some vector identi- 

ties we get 

Which is the Helmholtz wave equation for a source free medium, where 



2.3 Rigorous Solution of the Scattering Problem 

To solve the Helmholtz wave equation for the scattered field 

from a circular cylinder, we need to write the wave equation in 

cylindrical coordinates (p,@,z). The wave equation (2.15) in cylin- 

drical coordinates is given by 

where U is the field component parallel to the axis of symmetry of 
z 

the cylinder. Eq. (2.17) is a second order partial differential 

equation and can be solved using separation of variables. Let UZ 

expressed as: 

By substituting Eq. (2.18) into Eq. (2.17) and following the standard 

procedure of separation of variables, Eq. (2.17) will reduce to the 

following three differential equations: 

and 



w h e r e  h  i s  a  c o n s t a n t ,  and m i s  a n  i n t e g e r  because  t h e  f i e l d  i s  

p e r i o d i c  i n  @. Eqs.  (2.19) and (2 .20)  a r e  o r d i n a r y  second o r d e r  

d i f f e r e n t i a l  e q u a t i o n s ,  and t h e y  have t h e  f o l l o w i n g  s o l u t i o n s :  

a n d  

Eq. ( 2 . 2 1 )  i s  i n  t h e  form of B e s s e l ' s  d i f f e r e n t i a l  e q u a t i o n  and i n  

s o l v i n g  it we have t o  keep i n  mind t h a t  t h e  s o l u t i o n  f o r  t h e  s c a t -  

t e r e d  wave shou ld  s a t i s f y  t h e  r a d i a t i o n  c o n d i t i o n .  The r a d i a t i o n  

c o n d i t i o n  f o r  such  problem i s  t h a t  t h e  s c a t t e r e d  f i e l d  shou ld  be  an  

o u t g o i n g  wave a t  l a r g e  p .  So t h e  s o l u t i o n  of E q .  ( 2 . 2 1 )  w i l l  be 

g i v e n  by t h e  Hankel f u n c t i o n  o f  t h e  f i r s t  k ind (6 )  

From Eqs.  ( 2 . 2 2 ) ,  (2 .23)  and (2 .24)  t h e  s c a t t e r e d  f i e l d  from a  c y l i n -  

d e r  i s  g i v e n  by 

I n  t h e  c a s e  when t h e  i n c i d e n t  wave i s  p r o p a g a t i n g  p e r p e n d i c u l a r  t o  

t h e  symmetry a x i s  o f  t h e  c y l i n d e r ,  t h e  s c a t t e r e d  f i e l d  w i l l  be  inde-  

penden t  o f  z,  i . e . ,  h  = 0 ,  t h e n  t h e  s c a t t e r e d  f i e l d  w i l l  be g i v e n  by 



The coefficient b will be determined using the boundary conditions. 
m 

If we illuminate the cylinder with a plane wave, uSnC(x) of unit 

amplitude traveling in the x direction, then 

Uinc ikx - ikpcos@ (x) = e - e 
z 9 

which can be expressed in terms of Bessel functions as ( 7 )  

then the total field will be the superposition of the incident and 

scattered fields. 

Utot scat 
z (~94)) , 

from Eqns. (2.26), (2.28) and (2.29) the total field can be expressed 

as 

cn 
Utot 
z ((I,@) = m=-cn I [(i)m~ m (kp) + b m ~(~)(kp)]e~~'. m 

2.3.1 Parallel Polarization Case 

When the incident electric field is linearly polarized along the 

z-axis, the total electric field from Eq. (2.30) is written as 



To evaluate the arbitrary constant b we need to apply the boundary 
m 

condition for the electric field. This condition for the perfect 

conducting cylinder is that the tangential component of the electric 

field vanishes on the surface (1 ,5) , i.e., 

From Eqn. (2.34) with p = a, we obtain relations for b : 
m 

03 

E;O~(~,@) = 2 [(i)m~m(ka) + b H(') (ka) ]eim@ = 0. 
m=-03 m m 

im@ From the orthogonality of functions e , we can set the individual 

terms in Eq. (2.32) to zero. The result is 

(ilm~ (ka) 
b = -  m 
m ~("(ka) 

m 

By substituting Eq. (2.33) into Eq. (2.26) we get 

03 
s J m ( W  

EZ(p,9) = - 2 (i)m ~~(k~)e'~@ . 
m=-03 H(') (ka) 

m 

This expression for the scattered field agrees with that given 

( 9 )  by and then by King and Wu . 

The scattered electric field given by Eq. (2.34) is represented 

by an infinite series. Its coefficients are function of the wave- 

length (A), the radius of the cylinder (a), the scattering angle ($) 

and the distance p .  



Now we consider the p dependence of this solution, the only 

parameter which is a function of p is the Hankel function ~("(kp), 
m 

and its asymptotic expansion can be given by (10) 

so the field will have the component eikp/4p which is a cylindrical 

wave propagating in the postive p-direction. The factor e im@ will 

give the dependence on (I of the field which will have a period of 2n. 

From these parameters of the series, we can describe the behavior of 

the field. The scattered field will be propagated as an outgoing 

cylindrical wave, with amplitude and phase depending on the factor 

ka, the scattering angle @ and the distance p from the cylinder, and 

the field will be periodic in @ with a period of 2x. 

In the following subsection we will study the effect of these 

parameters on the scattered field. 

Graphical Representation of the Scattered Field 

The scattered field given by Eq. (2.34) depends on three para- 

meters: the scattering angle @, the radius of the cylinder a, and 

the wavelength of the illuminating field A. To study the effect of 

these parameters on the scattered field, we need to plot the ampli- 

tude of the scattered field as a function of each of them. 

The scattered field can be written as 



Hence, 

Jm (ka)  
where Cm(ka,kp) = ( i ) m  ~ ( l ) ( k p )  . 

H(') (ka)  
m 

m 

S 
To p l o t  EZ(p ,@) ,  which i s  represented  by an i n f i n i t e  s e r i e s ,  we need 

t o  use t h e  d i g i t a l  computer t o  compute t h e  amplitude of t h e  s c a t t e r e d  

f i e l d .  Using t h e  d i g i t a l  computer w i l l  enable  us t o  eva lua t e  a  

f i n i t e  number of terms of t h e  s e r i e s ,  and so it i s  important  t o  know 

how many terms of t h e  s e r i e s  a r e  requi red  t o  g ive  us an  accu ra t e  

va lue  of t h e  s o l u t i o n .  I t  has been s t a t e d  by King and WU(') t h a t  t he  

number of terms needed t o  make t h e  s e r i e s  converge i s  approximately 

t h e  va lue  of ka. I n  Appendix A we der ived  a n a l y t i c a l l y ,  i n  an 

approximate form, t h e  number of terms of t h e  s e r i e s  needed t o  make 

t h e  sum of t h e  s e r i e s  accu ra t e  enough; and they  a r e  indeed around the  

va lue  of ka. 

The c a l c u l a t i o n s  we made i n  Appendix A shows t h a t  we need t o  sum 

m > ka. To s e e  how many terms we need t o  sum more than  ka t o  g e t  an 

accu ra t e  sum of t h e  s e r i e s  we need t o  s tudy  t h e  dependence of t he  

c o e f f i c i e n t  Cm(ka,kp) of t h e  s e r i e s  on t h e  d i f f e r e n t  va lues  of ka. 

I n  F i g .  2 .2 we p l o t t e d  t h e  amplitude of ~ o g ( l ~ ~ ( k a , k p ) l ]  v s .  t h e  

number of terms m.  From t h e  curves i n  F ig .  2 . 2  we can s e e  t h a t  I C  I m 

f l u c t u a t e s  around c e r t a i n  v a l u e s ,  then  when m l ka( l+a)  t h e  

c o e f f i c i e n t  decreases  very  r a p i d l y .  The va lue  of a  decreases  by t h e  



Fig .  2 . 2  Logarithm of  the  normalized c o e f f i c i e n t  I C  (ka,kp)l g iven 
m 

by Eq.  ( 2 .37 )  p lo t t ed  v s .  the  order m ,  f or  ka = 10,  50 and 

100. Note that  the c o e f f i c i e n t  tends t o  a  n e g l i g i b l e  value  
' 

a t  m E ka + 10. 



increase of ka, e.g., a = 1.4, and 0.16 for ka = 5, and 100, respec- 

tively. So to plot the scattered field E~(~,$), we need to take the 
z 

number of terms of the series which will make the coefficient I C  I 
m 

drop by at least 60 dB. 

In Figs. 2.3(a) and (b) the scattered field is plotted as a 

function of the scattering angle for a set of ka values in polar 

coordinates. The amplitude of the field is plotted at p = 10 cm. 

From Fig. 2.3 it is clear that the amplitude of the field has a main 

lobe and a number of side lobes. The width of the main lobe is 

decreasing by the increase of ka, and the number of side lobes 

increases by the increase of ka. In Figs. 2.3(c) and (d) a set of 

curves for the amplitude of the scattered field for ka = 10 and 

ka = 50 in linear coordinates are plotted. This will give us a more 

sense of the dependence of the amplitude of the field on ka and $. 

The ratio of the amplitude of the field at @ = O0 to that at @ = 180° 

is decreasing by the increase of ka. The spacing between the nulls 

S 
is decreasing as ka increases, and the amplitude of the EZ(p,OO) is 

increasing as ka increases. 

2.3.2 Normal Polarization Case 

When the incident electric field is linearly polarized in the 

y-axis, i.e. perpendicular to the axis of the cylinder then the 

incident magnetic field will be parallel to the axis of symmetry of 

the cylinder. From Eq. (2.30) the total magnetic field will be given 

by 



F i g .  2 . 3  The normalized scattered f i e l d  IE' ( p , + ) / ~ S ( p , O O )  1 given by 

E q .  (2 .34)  p lo t ted  v s .  the  sca t ter ing  angle +. (a)  and (b) 

are plot ted i n  polar coordinates f o r  ka = 5 and ka = 10, 

respect ive ly;  (continued on next page) .  



Fig .  2 . 3  Continued ( c )  and (d) show the sca t t ered  f i e l d  p lo t t ed  i n  

l i n e a r  coordinates f o r  ka = 10 and 50 re spec t ive ly .  Note 

tha t  the width of  the  main lobe decreases  a s  ka increases ,  

and the number  ID^ s i d e  lobes  for  ka = 50 are more than 

those for  ka = 10. 



03 
Htot 

z (p,$) = 2 [ (i)m~ (kp) + d H(') (kp)]eimg . 
m=-03 m m m 

To evaluate the arbitrary constant d we need to apply the boundary 
m 

condition for the magnetic field. The boundary condition applicable 

to this case is (1,5) 

i.e., the derivative of the tangential component of the magnetic 

field w. r. t p vanishes on the surface of the cylinder. By applying 

this condition to E q .  (2.38) we get 

im@ From the orthogonality of functions e , we can set the individual 

terms in E q .  (2.40) to zero. The result is 

I 

Jm(ka) 
d = -(ilm 
m ;I(') (ka) ' 

m 

where the primes denote differentiation with respect to the variable 

p. Then the scattered field can be written as 

m 
s Jm(ka) 

HZ(p,B) = - 2 (iIm H(') (kp)eimg . 
m=-03 H' (l) (ka) m 

m 



The scattered magnetic field has the same form as of the scattered 

electric field in the parallel polarization case except that the 

coefficient d = abm/ap. So the main characteristic of the field are 
m 

the same, i.e., the scattered field will be propagating as a cylindr- 

ical wave with amplitude and phase depending on the radius of the 

cylinder, the wavelength, and the distance of the observation point 

from the axis of the cylinder. The effect of these parameters on the 

scattered field will be shown in the following subsection. 

Graphical Representations of the Scattered Field 

The scattered field given by Eq. (2.42) can be rewritten as 

Jm(ka) 
where F = (i)m 

m 
~ ( l )  (kp) . 

H '  (ka) m 
m 

To plot ~:(p,$) we need to sum up enough terms of the series to 

get an accurate value for the field, i.e., until the remainder of the 

terms of the series can be neglected without affecting the value of 

the field significantly. As shown in Appendix A, the number of terms 

which will give such a sum is slightly larger than ka. 

In Fig. 2.4 a plot for Log(lFmI) as a function of the number of 

terms m is shown for p = 10 cm. From these curves, it is clear that 



F i g .  2.4 Logarithm of the normalized coefficient lF,l in Eq. (2.44) 

is plotted vs. the order m. 



when m E ka(l+$), the value of the coefficient lF,l will become 

negligible. The value of $ is decreasing by the increase of ka, 

e-g., $ = 1.4 for ka = 5, and $ = 0.16 for ka = 100. 

In Figs. 2.5(a) and (b) a plot for the amplitude of the scat- 

tered field H(,$) / H , O  1 in polar coordinates is shown for 

ka = 5 and ka = 10. The amplitude of the field has a maximum at 

$ = OO. The width of the main lobe decreases by the increase of ka, 

and the number of nulls increase by the increase of ka. Figs. 2.5(c) 

and (d) shows a plot for the normalized amplitude of the scattered 

field for ka = 10 and 50. The main characteristic of the field that 

we can recognize from these plots is that the nulls extend on a wider 

range of I$ more than that for the parallel polarization case. The 

angle at which the nulls begin to disappear decreases by the increase 

of ka. The reason for the difference in the pattern structure of the 

scattered field for the two different polarizations of the incident 

field is because of the value of the surface current density gener- 

ated in each case. When HinC is parallel to the axis of the cylin- 

der, it will induce a current flowing in the $-direction which will 

inc 
enable it to go more deeply in the shadow region. While when E is 

z 

parallel to the axis of the cylinder it will induce a current in the 

z-direction which will die very close to the shadow boundary. This 

will become clear when we study the surface current density for the 

two different polarizations in the next section. 



Fig. 2.5 The normalized scattered field lHS (p,~)/~S(p,OO) 1 for the 

normal incidence case, in Eq. (2.42), is plotted vs. the 

scattering angle . (a )  and (b) are plotted ' in polar' 

coordinates for ka = 5, and 10; (continued on next page) 





2.4 Surface Current Density 

According to Maxwell's equations the electric and magnetic 

fields illuminating a perfectly conducting cylinder will induce a 

surface current in a very tiny shell on the surface of the cylinder. 

The surface current density for the case when the incident electric 

field is parallel to the axis of the cylinder will also be in the 

z-direction. The surface current density generated by the parallel 

polarized incident field will be denoted as K (@), and it is given 
z 

by(') 

Hence, from Eq. (2.9) 

where EZ(p,@) is the total electric field. 

From Eqs. (2.45), (2.31) and (2.33) we can get 

LX 
ik m im@ ' Jm(ka) 

Kz(@) = - 2 (i) e [J,(ka) - H '  ("(ka)] . 
m-ca ~ ( l )  (ka) m 

m 

By using Bessel differentation formulas and using the orthogonality 

relation (10) 



then, 

03 im$ 
I (ilm Kz($) = 
m=-03 H(') (ka) ' 

m 

2 
1 CO 

Kz(@) = [ + 2  t (i)m cosmg], 
H:') (ka) m=l ~("(ka) m 

When the electric field of the incident wave is linearly polar- 

ized in the direction normal to the axis of the cylinder, then the 

magnetic field will be parallel to the axis of the cylinder. At the 

boundary this magnetic field will induce a surface current density 

flowing in the @ direction, and the surface current, Kg(@), will be 

given by (9 )  

From Eqs. (2.48), (2.38) and (2.41) we get 

03 
2 i e img 

KO($) = - (ilm 
?.&a m=-W H' (I) (ka) ' 

m 

Therefore, 

03 
2i 1 

KQ(@) = - { + 2  2 t (i)m COS~@). 
nka H:") (ka) m=1 H m ("(ka) 



The s u r f a c e  c u r r e n t  d e n s i t i e s  f o r  b o t h  p o l a r i z a t i o n s  o f  t h e  

i n c i d e n t  f i e l d  which a r e  g i v e n  by Eqs.  ( 2 . 4 7 )  and (2 .50)  have t h e  

same f o r m a t ,  e x c e p t  f o r  t h e  c o e f f i c i e n t s  of t h e  s e r i e s ,  i . e . ,  one of 

them has  t h e  Hankel f u n c t i o n  and t h e  o t h e r  has  i t s  d e r i v a t i v e ,  and 

b o t h  of them have a  p e r i o d  o f  2 ~ t  i n  @. The s u r f a c e  c u r r e n t  K (@) i s  
z 

p l o t t e d  i n  F i g .  2 . 6 ( a )  f o r  ka = 5 ,  50 and 500. The s u r f a c e  c u r r e n t  

i s  maximum a t  @ = 180' which i s  t h e  c e n t e r  of t h e  i l l u m i n a t i n g  

r e g i o n ,  t h e n  it d e c r e a s e s  a s  we move away towards t h e  shadow r e g i o n .  

The s u r f a c e  c u r r e n t  w i l l  be  f lowing  a s  t r a v e l l i n g  waves(9) s t a r t i n g  

a t  t h e  shadow b o u n d a r i e s ,  @ = n/2  and @ = -n/2 .  They w i l l  t r a v e l  

around t h e  c y l i n d e r  i n  t h e  shadow r e g i o n  i n  o p p o s i t e  d i r e c t i o n s .  

Those t r a v e l l i n g  waves w i l l  i n t e r f e r e  w i t h  each  o t h e r  producing a  

s t a n d i n g  wave a t  @ = O O .  A s  ka i n c r e a s e s ,  t h e  c u r r e n t  d e c r e a s e s  

f a s t e r  a s  we move towards t h e  shadow r e g i o n ,  e . g . ,  f o r  ka = 5 ,  t h e  

c u r r e n t  d r o p s  t o  26 dB a t  @ 2 40°,  w h i l e  f o r  ka = 50  and 500 t h e  

c u r r e n t  d rops  t o  26 dB r e s p e c t i v e l y  a t  @ Z 75' and 90°.  The s u r f a c e  

c u r r e n t  d r o p s  t o  a  n e g l i g i b l e  v a l u e  i n  t h e  shadow r e g i o n  f o r  respec-  

t i v e l y  l a r g e  v a l u e s  of ka .  The s u r f a c e  c u r r e n t  d e n s i t y  K (@),  when 
@ 

t h e  i n c i d e n t  e l e c t r i c  f i e l d  i s  p o l a r i z e d  normal t o  t h e  a x i s  of t h e  

c y l i n d e r ,  i s  p l o t t e d  i n  F i g .  2 . 6 ( b )  f o r  ka = 5 ,  50 and 500. The 

s u r f a c e  c u r r e n t  f lows i n  t h e  @ d i r e c t i o n  e n a b l e s  it t o  t r a v e l  more i n  

t h e  shadow r e g i o n .  A s  it was f o r  KZ(@) ,  K (@) a l s o  e x i s t s  a s  t r a v e l -  
@ 

l i n g  waves s t a r t i n g  from t h e  shadow boundar ies  and making a  s t a n d i n g  

wave w i t h  a  maximum a t  @ = O O .  The s u r f a c e  c u r r e n t  d e n s i t y  f o r  t h i s  

c a s e  does n o t  drop i n  i t s  v a l u e  a s  r a p i d l y  a s  t h a t  f o r  t h e  p r e v i o u s  

c a s e .  We can s e e  t h a t  f o r  a l l  v a l u e s  of ka c o n s i d e r e d  t h e  c u r r e n t  
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drops on ly  by 3 dB a t  t h e  shadow boundaries  (@ = n / 2  and - n / 2 ) .  I n  

F i g .  2.7 t h e  s u r f a c e  c u r r e n t s  f o r  bo th  p o l a r i z a t i o n  a r e  p l o t t e d  

t o g e t h e r  f o r  comparison a t  ka = 5 and ka = 500 .  The c u r r e n t  f o r  t h e  

p a r a l l e l  p o l a r i z a t i o n  i s  dropping much f a s t e r  t han  t h a t  f o r  t h e  

normal p o l a r i z a t i o n .  I f  we look a t  t h e  curves  f o r  ka = 5 0 0 ,  K 
@ 

begins  having n e g l i g i b l e  va lues  around 9 Z 40° ;  b u t  K s t a r t s  having 
Z 

n e g l i g i b l e  va lues  around 9 Z 80°.  This  i s  t h e  reason t h e r e  a r e  more 

n u l l s  i n  t h e  ca se  of normal p o l a r i z a t i o n  than  i n  t h e  p a r a l l e l  po l a r -  

i z a t i o n  ca se .  



Fig .  2 .7  The normalized c u r r e n t  d e n s i t i e s  f o r  both p o l a r i z a t i o n s  a r e  

p l o t t e d  f o r  ( a )  ka = 5 ,  (b)  ka = 500. Note t h a t  t h e  s u r -  

f a c e  c u r r e n t  f o r  t h e  normal p o l a r i z a t i o n  i s  much l a r g e r  

t h a n  t h a t  f o r  t h e  p a r a l l e l  p o l a r i z a t i o n .  



2 . 5  The F r i n g e  Spac ings  o f  t h e  S c a t t e r e d  F i e l d  

A main f e a t u r e  of t h e  s c a t t e r e d  f i e l d  ampl i tude  i s  t h e  f r i n g e  

p a t t e r n  and s p a c i n g s  it h a s .  I n  s e c t i o n  2 . 3  where we s t u d i e d  t h e  

s c a t t e r e d  f i e l d  p a t t e r n ,  and w e  found t h a t  t h e  f r i n g e  spac ings  

d e c r e a s e  by t h e  i n c r e a s e  o f  t h e  r a d i u s  o f  t h e  c y l i n d e r .  I n  t h i s  

s e c t i o n  we would l i k e  t o  s t u d y  t h e  dependence of t h e s e  f r i n g e  spac-  

i n g s  on t h e  s c a t t e r i n g  a n g l e  @ and t h e  f a c t o r  ka f o r  b o t h  p o l a r i z a -  

t i o n s .  

The f r i n g e  s p a c i n g s  A@ a r e  p l o t t e d  i n  F i g s .  2 . 8 ( a )  and ( b )  f o r  

p a r a l l e l  and normal p o l a r i z a t i o n s ,  r e s p e c t i v e l y ,  a s  a  f u n c t i o n  of @ 

f o r  ka = 2 5 ,  50 and 100. For  t h e  p a r a l l e l  p o l a r i z a t i o n ,  t h e  f r i n g e  

s p a c i n g s  have a lmos t  t h e  same v a l u e  o v e r  most of t h e  range and t h e y  

s t a r t  i n c r e a s i n g  s l i g h t l y  a t  t h e  end o f  t h e  r a n g e .  The f r i n g e s  have 

a  c u t o f f  a n g l e  of abou t  40°,  and t h i s  c u t o f f  i s  changing w i t h  t h e  

change o f  k a .  The p h y s i c a l  s i g n i f i c a n c e  o f  t h e  c u t o f f  a n g l e  i s  

e x p l a i n e d  on t h e  n e x t  page.  The f r i n g e  s p a c i n g s  have a  v a l u e  Z 

(175/ka)O. For  t h e  normal p o l a r i z a t i o n ,  t h e  f r i n g e s  e x i s t  f o r  a  much 

l a r g e r  range o f  @; i . e . ,  t h e y  have a  much l a r g e r  c u t o f f  a n g l e  t h a n  

t h a t  f o r  t h e  p a r a l l e l  p o l a r i z a t i o n  c a s e .  The f r i n g e  s p a c i n g  f o r  

ka = 25 d e c r e a s e s  t o  a  minimum around @ = 40°,  t h e n  i n c r e a s e s  i n  t h e  

r e s t  o f  t h e  range .  For  l a r g e r  ka ,  f r i n g e  s p a c i n g  a l s o  d e c r e a s e s  a t  

t h e  b e g i n n i n g  of t h e  range and i n c r e a s i n g  a t  t h e  end o f  it. But t h e y  

have a lmos t  t h e  same v a l u e  f o r  most o f  t h e  range ,  and t h e i r  minimum 

v a l u e  e q u a l s  t h a t  f o r  t h e  p a r a l l e l  p o l a r i z a t i o n  c a s e .  So t h e  f r i n g e  

s p a c i n g s  c a r r y  t h e  i n f o r m a t i o n  abou t  t h e  r a d i u s  of t h e  c y l i n d e r  and 

t h e  wavelength  of t h e  i l l u m i n a t i n g  wave. The dependence of t h e  c u t o f f  



Fig .  2 .8  The f r i n g e  spac ings  of t h e  s c a t t e r e d  f i e l d  a r e  p l o t t e d  f o r  

( a )  p a r a l l e l  p o l a r i z a t i o n  and (b) normal p o l a r i z a t i o n  f o r  

ka = 25, 50, 100. Note t h a t  t h e  spacings dec reases  w i th  

t h e  i n c r e a s e  of ka and t h a t  t hey  appear f o r  a  s h o r t e r  range 

of  s c a t t e r i n g  ang le s  f o r  t h e  p a r a l l e l  p o l a r i z a t i o n  than  f o r  

t h a t  of t h e  normal i n c i d e n t  case .  



Fig .  2.9 The c u t o f f  ang le  o f  t h e  f r i n g e s  p l o t t e d  vs. t h e  f a c t o r  ka 

f o r  both p o l a r i z a t i o n s  of the i n c i d e n t  f i e l d .  



a n g l e  of t h e  f r i n g e s  i s  p l o t t e d  i n  F ig .  2 .9  a s  a  func t ion  of the  

f a c t o r  ka ,  from ka = 30 t o  ka = 350 f o r  bo th  p o l a r i z a t i o n s .  The 

c u t o f f  angle  decreases  by t h e  inc rease  of ka, and it i s  much l e s s  f o r  

t h e  p a r a l l e l  p o l a r i z a t i o n s  than  t h a t  f o r  t h e  normal p o l a r i z a t i o n .  

And a l s o  it decreases  much more r a p i d l y  f o r  t h e  normal p o l a r i z a t i o n  

c a s e ,  from 160° t o  80°; however, it decreases  only from 50' t o  30° 

f o r  t h e  p a r a l l e l  p o l a r i z a t i o n  case .  

The f r i n g e s  of t h e  s c a t t e r e d  f i e l d  a r e  generated by i n t e r f e r e n c e  

between t h e  f i e l d s  t h a t  a r e  r e f l e c t e d ,  d i f f r a c t e d  by t h e  edges of t he  

c y l i n d e r  and f i e l d s  generated by t h e  su r f ace  c u r r e n t  t r a v e l l i n g  

waves. When t h e  i n c i d e n t  e l e c t r i c  f i e l d  i s  p a r a l l e l  t o  t h e  c y l i n d e r ,  

t h e  f r i n g e s  a r e  mainly generated by t h e  d i f f r a c t e d  waves because t h e  

s u r f a c e  c u r r e n t  i s  very small  i n  t h e  shadow region ,  which w i l l  no t  

a l l ow t h e  c u r r e n t  t o  go around t h e  c y l i n d e r .  That i s  t he  reason 

t h e r e  a r e  f r i n g e s  only i n  a  very  small  range of t h e  s c a t t e r i n g  angle 

and a r e  cu to f f  beyond t h i s  range. When t h e  i n c i d e n t  magnetic f i e l d  

i s  p a r a l l e l  t o  t h e  a x i s ,  t h e  su r f ace  c u r r e n t  i s  l a r g e  i n  t h e  shadow 

reg ion  which w i l l  a l low it t o  go around t h e  c y l i n d e r ,  before  it 

becomes n e g l i g i b l e .  That w i l l  make t h e  f i e l d  generated by t h e  

s u r f a c e  c u r r e n t  l a r g e  and t h e  f r i n g e s  w i l l  extend t h e i r  region of 

e x i s t e n c e .  As t h e  f a c t o r  ka g e t s  l a r g e r ,  t h e  s u r f a c e  c u r r e n t  g e t s  

s m a l l e r ,  and i n  t u r n  t h e  cu to f f  angle  of t h e  f r i n g e s  a l s o  g e t s  

sma l l e r .  
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CHAPTER I11 

SCATTERING OF LIGHT FROM 

LARGE DIELECTRIC CIRCULAR CYLINDERS 

3 .1  I n t r o d u c t i o n  

I n  t h i s  c h a p t e r  a  t h e o r y  f o r  t h e  s c a t t e r i n g  o f  a  monochromatic 

p l a n e  wave by a  d i e l e c t r i c  c y l i n d e r  i s  p r e s e n t e d .  The problem i s  

f o r m u l a t e d  f o r  d i e l e c t r i c  c y l i n d e r s  o f  c i r c u l a r  c r o s s  s e c t i o n ,  con- 

s t a n t  index  o f  r e f r a c t i o n  and r a d i u s  which i s  l a r g e r  t h a n  t h e  wave- 

l e n g t h  of t h e  i l l u m i n a t i n g  wave; however, a l l  t h e  f o r m u l a t i o n s  a r e  

good f o r  t h e  c a s e  where t h e  r a d i u s  i s  s m a l l e r  t h a n  t h e  wavelength .  

I t  i s  o f  p a r t i c u l a r  i n t e r e s t  t o  examine how t h e  r a d i u s  and t h e  

r e f r a c t i v e  i n d e x  v a r i a t i o n s  map i n t o  t h e  s c a t t e r e d  f i e l d  p a t t e r n .  

S e c t i o n  3 . 2  c o n t a i n s  a  r i g o r o u s  s o l u t i o n  f o r  t h e  Helmholtz wave 

e q u a t i o n  f o r  t h e  s c a t t e r e d  f i e l d  i n  t h e  two d i f f e r e n t  p o l a r i z a t i o n s  

o f  t h e  i n c i d e n t  f i e l d ,  p a r a l l e l  and normal t o  t h e  a x i s  o f  symmetry of 

t h e  c y l i n d e r .  

I n  S e c t i o n  3.3 t h e  f r i n g e  s p a c i n g s  of t h e  s c a t t e r e d  f i e l d  a r e  

s t u d i e d  f o r  a  s e t  o f  c y l i n d e r s  w i t h  d i f f e r e n t  r a d i i .  

I n  S e c t i o n  3 .4  t h e  e f f e c t  of t h e  index  of r e f r a c t i o n  v a r i a t i o n s  

on t h e  s c a t t e r e d  f i e l d  p a t t e r n  a r e  s t u d i e d ,  and it i s  shown t h a t  t h e  

p o s i t i o n  of t h e  peak  i n  t h e  b a c k s c a t t e r e d  f i e l d  depends on t h e  index  

o f  r e f r a c t i o n  o f  t h e  c y l i n d e r .  



3.2 Rigorous Solution for the Scattered Field 

From Maxwell's equations for time harmonic fields Eqs. (2.9) 

through (2.12)) we can derive the following Helmholtz wave equation 

where n is the index of refraction of the material of the cylinder 

and where y and E are the permeability and permitivity of the 
r r 

medium, respectively. 

In the following subsection we will derive the solutions for the 

Helmholtz wave equation (3.1) for the two different polarizations of 

the incident wave. 

3.2.1 Parallel Polarization Case 

When the illuminating wave is a plane wave linearly polarized in 

the z-direction and parallel to the axis of symmetry of the cylinder 

then the incident electric field will be given by 

which can be expressed in terms of Bessel functions as (1 

To solve the Helmholtz wave equation we will first rewrite it 

in cylindrical coordinates. Then using the separation of variables 



technique following the same procedure outlined in Chapter I1 we 

obtain the following solutions for the electric field outside and 

inside the cylinder 

and 

where a and Dm are arbitrary constants, which will be determined 
m 

using the boundary conditions. The boundary conditions for such case 

are given by (2,3) 

t t 
nE and naE /ap are continuous at p = a. (3.6) 

The total electric field is the superposition of the incident field 

and the scattered field, i.e., 

The tangential component of the field outside the cylinder from 

Eqs. (3.3) and (3.4) is given by 

03 
t 

E (p,$) = 1 [(i)'~ (kp) + a Ii(')(kp)]eim' . 
m=-03 m m m 

By applying the first boundary condition, nEC is continuous across 

the boundary p = a, and using Eqs. (3.5) and (3.8) we get 



03 03 

n 2 D J (nka)eime = 2 [(i)m~ (ka) + a H(~) (ka)]eime . 
m=-03 m m m=-C3 m m m (3.9) 

From the orthogonality of functions eim', we can set the individual 

terms in Eq. (3.9) to zero, then we obtain 

(i)m~ (ka) + amHm(ka) m D = m nJm(nka) 

t And by applying the second boundary condition, naE /ap is continuous 

across the boundary p = a, and using Eqs. (3.5) and (3.8) we find 

Then, 

BY substituting E q .  (3.10) into (3.11) and by straightforward algebra 

we find 

nJm(ka)f(nka) - ~m(ka)~~(nka) 
a = -(ilm 
m 

n ~ '  (nka)HL1) (ha) - J (nka)kL1) (ka) ' m m 

and 

J (ha) [ill) (ka) - Hm(ka)] 
Dm = -(i)m n 

2 '  n J m (nka)HL1)(ka) - nJ m (nka)kL1)(ka) 



From Eqs. (3.4) and (3.12) the scattered field will be given by 

03 nJm(ka)Jm(nka) - Jm(ka)Jm(nka) 
E;(P,Q) = - 2 (i)"' , H(') (kp)eimm. 

m=-m nJ (nka )HA1) (ka) - J (nka)iil) (ka ) m m m 

And from Eqs. (3.5) and (3.13) the field inside the cylinder will be 

given by 

03 
E(inside) J (ka) [kL1)(ka) - Hm(ka)] 

(P,$)=- (i)m 2 ,  
n 

z m=-m n J (nka)HL1) (ka) - n~~(nka)i;l) (ka) m 

These solutions are the same as those given by van de Hulst. (3) 

From Eq. (3.14) we see that the scattered field is expressed in 

an infinite series of the same form as that for the conducting 

cylinder ease, except for the a r b i t r a r y  coaataat a which t a k e s  a 
m 

more complex form than that of bm. So the scattered field will be 

propagating outside the cylinder in a cylindrical wave, with 

amplitude and phase depending on the radius, index of refraction, 

scattering angle, and the distance of observation point from the axis 

of the cylinder. 

To study the scattered field, we need to sum up enough terms of 

the series until it converges. Then the rest of the terms will have 

no significant contribution to scattered field. In Appendix A it 

is shown that the number of terms, which will make the series 

converge is slightly larger than ka. In Fig. 3.1 the coefficient 



Fig. 3.1 Logarithm of the normalized coefficient 1  am^:') (kp) given 

by Eq. (3.12) plotted vs. the order m, for ka = 10, 25, 50 
and 100. Note that the coefficient reduces to a negligible 

' 

value at m E ka + 10. 



log(lam~L1)(kp) 11, as a function of the number of terms m at p = 

10 cm, is plotted. From these curves, the coefficient becomes 

negligible when m Z ka(l+y). The value of y decreases by the increase 

of ka, e.g., y = 0.8 at ka = 10, and y = 0.17 at ka = 100. 

The normalized scattered electric field lE:(p,@) I / IE;(~,O) 1 is 

plotted in Figs. 3.2(a) and (b) in polar coordinates for ka = 5 and 

10 respectively. The pattern of the scattered field has a main lobe 

at @ = 0°, and a number of side lobes with amplitude decreases with 

the increase of @. In the backscattered field these lobes will 

increase their amplitude significantly. These backscattered lobes 

are main features of the dielectric cylinder scattered field and are 

not present in the case of the conducting cylinder. In Figs. 3.2(c) 

and (d) the normalized scattered electric field is plotted for ka = 

10 and 50, respectively. The width of the main lobe decreases by the 

increase of ka; the number of lobes increase by the increase of ka; 

and, hence, the fringe spacings decrease. The backscattered field 

lobes have a larger amplitude than those before them, so they can be 

recognized very easily. The other thing we notice about the back- 

scattered lobes, is that they have a peak around @ : 155O, and its 

position does not change significantly by the change of the factor 

ka . 

The fringes of the scattered field pattern are a result of the 

interference between the refracted rays, which propagate through the 

cylinder, the reflected rays, which reflects from the surface of the 

cylinder, and the rays diffracted by the edges of the cylinder. 

Those are the main sources of the fringes in the forward scattered 



0 

Fig. 3.2 The normalized scattered field 1ES (p,+) 1 / ~ E ~ ( ~ , o  ) I given 

by Eq. (3.14) plotted vs. the scattering angle $. (a) and 

(b) are plotted in polar coordinates for ka = 5 and ka = 
10, respectively; (continued on next page). 



Fig. 3.2 Continued. (c) and (d) the scattered field plotted in 

linear coordinates for ka = 10 and ka = 50, respectively. 
Note the width of the main lobe decreases by the increase 

of ka, and the number of side lobes are more for ka = 50 
than those for ka = 10. 



field. The rays which will make multiple refractions and reflections 

inside the cylinder will make contributions to the scattered field 

especially in the range of 80° 5 $I 5 150°. The backscattered field 

fringes are a result of the interference between the reflected rays 

from the surface of the cylinder, and those which will be refracted 

through the cylinder once and then are reflected by the inner surface 

of the cylinder. The range they cover will depend mainly on the 

index of refraction of the cylinder. 

3 . 2 . 2  Normal Polarization Case 

When the illuminating plane wave is linearly polarized along the 

direction normal to the axis of symmetry of the cylinder, then the 

incident magnetic field will be polarized parallel to the axis of the 

cylinder, i.e. 

which can be expressed in terms of Bessel functions as 

Then we need to solve the Helmholtz wave equation for the scattered 

magnetic field. Following the same procedure outlined in Chapter I1 

we obtain the following solutions outside and inside the cylinder 



and the magnetic field inside the cylinder is given by 

where P and Qm are arbitrary constants, which will be evaluated 
m 

using the proper boundary conditions. The boundary conditions for 

this case are: 

t n2Ht and aH /ap are continuous at p = a , (3.18) 

where Ht is the tangential component of the total magnetic field. 

The tangential component of the total magnetic field outside the 

cylinder is given by 

03 

Ht(p,m) = 2 [(i)m~ (kp) + P H(')(kp)]eimm . 
m=-03 m m m 

2 t By applying the first boundary condition, n H is continuous across 

the boundary p = a, and using Eqs. (3.17) and (3.19) we get 

03 Co 

n2 1 Q m J rn (nka)eimm = 2 [(i)m~ m (ka) + P m H(')(ka)]eimm. m (3.20) 
m=-m m=-Co 

From the orthogonality of functions eimO, we can set the individual 

terms in Eq. (3.20) to zero, then we obtain 



And by a p p l y i n g  t h e  second boundary c o n d i t i o n ,  a ~ ~ / a ~  i s  con t inous  

a c r o s s  t h e  boundary p = a ,  and u s i n g  Eqs. ( 3 . 1 7 )  and (3 .19)  we g e t  

Then, 

nQ,J,(nka) - ( i ) m ~ i ( k a )  
P = m H '  ( l )  (ka)  

m 

From Eqs.  (3 .21)  and (3 .22)  it i s  e v i d e n t  t h a t  we g e t  t h e  f o l l o w i n g  

e x p r e s s i o n s  f o r  t h e  a r b i t r a r y  c o n s t a n t s  P and Qm; m 

and 

( i  jm H( ' )  m (ka).J1 m'-  (ka )  - J m ( k a ) ~ '  m (I)  ( k a )  
Qm = 7 

HA') (ka )  J;(nka) - nJm(nka)H;(') ( k a )  . 

From Eqs. ( 3 . 1 6 )  and ( 3 . 2 3 )  t h e  s c a t t e r e d  f i e l d  w i l l  be g iven  by 

And from Eqs.  (3 .17)  and (3 .24)  t h e  f i e l d  i n s i d e  t h e  c y l i n d e r  w i l l  be  

g i v e n  by 



01 
Hinside (iIm Hm (ka) ~:(ka) - J m (ka)i;l) (ka) 

z (P,$> = -  2 - ( 3 . 2 6 )  
m=-m H(') (ka)~' (nka) - nJ (nka)iL1) (ka) 

m m m 

The scattered magnetic field is expressed as an infinite series of 

the same form as that for the parallel polarization case, with minor 

differences in the coefficient P . The scattered field will be 
m 

propagating as before as a cylindrical wave traveling in the positive 

p-direction, with amplitude and phase dependent on the radius, index 

of refraction, scattering angle, and p. 

For plotting the scattered field amplitude we found, as for the 

previous cases, that we need to take at least ka(1 + y) terms of the 

series to insure its convergence. The normalized scattered field 

IH;(~,$)~/ I H ~ ( ~ , O ~ ) I  is plotted in Figs. 3.3(a) and (b) in polar 

coordinates and in Figs. 3.3(c) and (d) in linear coordinates. The 

main characteristics of the scattered field pattern are the same as 

those for the parallel polarization case. The pattern has a main 

lobe, with width decreases by the increase of ka, and a number of 

side lobes, which increase by the increase of ka. 

From the curves of the scattered field of both the parallel and 

normal incident field polarizations, one sees that the fields have 

very similar features. The fields of the parallel polarization case 

have fringes with a large contrast in the range O0 5 @ 5 90°, but for 

the normal polarization case the fringes have very low contrasts. 



2 O Fig.  3 . 3  The normalized scattered f i e l d  l ~ ~ ( p , @ ) l / l H  (p,O ) for  the 

normal incidence case ,  i n  Eq. (3 .25) ,  i s  p lo t ted  v s .  the  

sca t ter ing  angle $. (a)  and (b)  are p lo t ted  i n  polar . 

coordinates f o r  ka = 5 ,  and 10; (continued on next page) 





3 . 3  The Fr inge  Spacings of t h e  S c a t t e r e d  F i e l d  

The f r i n g e  spacings a r e  one of t h e  main f e a t u r e s  of t h e  s c a t -  

t e r e d  f i e l d .  I n  s e c t i o n  3.2 we found t h a t  t h e  f r i n g e  spacings a r e  

func t ions  of t h e  r ad ius  of t h e  cy l inde r  and t h e  wavelength. I n  t h i s  

s e c t i o n  we w i l l  s tudy  t h e  dependence of t h e  f r i n g e  spacings of t h e  

s c a t t e r e d  f i e l d  on t h e  s c a t t e r i n g  angle  @ and t h e  f a c t o r  ka f o r  both 

p o l a r i z a t i o n s  of t h e  i n c i d e n t  f i e l d .  

The f r i n g e  spac ings ,  A @ ,  a r e  p l o t t e d  i n  F igs .  3 .4 (a )  and (b)  f o r  

p a r a l l e l  and normal p o l a r i z a t i o n s  of t h e  i n c i d e n t  f i e l d ,  respec- 

t i v e l y .  I n  F ig .  3 .4 (a )  t h e  f r i n g e  spacings a r e  p l o t t e d  f o r  ka = 50,  

100, and 350 a s  a  func t ion  of @. The f r i n g e  spacings decrease  wi th  

t h e  inc rease  of ka ,  and f o r  l a r g e  va lues  of ka they  have an almost 

f i x e d  va lue  between @ Z 15O and $ Z 90'. I n  t h e  range O 0  5 @ 5 15O 

t h e  f r i n g e  spacings s t a r t  wi th  a  l a r g e r  va lue  than  t h a t  i n  t h e  f o l -  

lowing range of @, and then  t h e i r  va lues  decrease  a s  @ i n c r e a s e s .  I n  

t h e  range from $ = 90' t o  180°, t h e  f r i n g e  spacings f l u c t u a t e  i n  

t h e i r  va lue  around t h a t  of t h e  previous range.  So t h e  f r i n g e  spac- 

i n g s ,  e s p e c i a l l y  i n  t h e  range of @ = 15O t o  90°, c a r r y  t h e  informa- 

t i o n  about t h e  va lue  ka. For t h e  normal i n c i d e n t  case  shown i n  

F ig .  3 .4(b)  t h e  f r i n g e  spacings have s i m i l a r  p r o p e r t i e s  a s  those  f o r  

t h e  p a r a l l e l  i n c i d e n t  case.  

The f r i n g e s  of t h e  s c a t t e r e d  f i e l d  f o r  t he  d i e l e c t r i c  cy l inde r  

i s  generated by t h e  rays of l i g h t  t r ansmi t t ed  through t h e  c y l i n d e r ,  

those  r e f l e c t e d  from t h e  su r f ace  of t h e  c y l i n d e r ,  and by those  

d i f f r a c t e d  by t h e  edges of t h e  c y l i n d e r .  I n  t h e  range O 0  5 @ 5 90° 

t h e  f r i n g e s  a r e  mainly generated by t h e  i n t e r f e r e n c e  between t h e  





r e f l e c t e d ,  r e f r a c t e d ,  and d i f f r a c t e d  rays .  When t h e  rays r e f l e c t  

i n t e r n a l l y ,  t h e  more times they  r e f l e c t  before  they  g e t  t r ansmi t t ed  

o u t s i d e  t h e  l e s s  power they  w i l l  have, and t h e i r  con t r ibu t ion  t o  t he  

s c a t t e r e d  f i e l d  w i l l  be smal l .  I n  t h e  range 90° 5 I$ 5 150° t h e  rays 

which a r e  t r a n s m i t t e d  d i r e c t l y  through t h e  cy l inde r  w i l l  n o t  e x i s t  so 

t h e  f i e l d  w i l l  be produced by t h e  d i r e c t  r e f l e c t e d  rays and t h e  rays 

which w i l l  make mul t ip l e  r e f l e c t i o n s  i n s i d e  t h e  cy l inde r  be fo re  they  

emerge o u t s i d e .  That i s  why t h e  f i e l d  amplitude and t h e  f r i n g e  

c o n t r a s t  i s  g e n e r a l l y  smal le r  than  those  f o r  t h e  previous range of $. 

I n  t h e  range 150° - < I$ 5 180° t h e  f i e l d  i s  t h e  supe rpos i t i on  of t h e  

d i r e c t  r e f l e c t e d  rays and t h e  rays g e t  r e f r a c t e d  through t h e  cy l inde r  

and r e f l e c t e d  once by t h e  i n t e r n a l  s u r f a c e ,  t h e  f i e l d s  and t h e  f r i n g e  

c o n t r a s t  a r e  l a r g e r  i n  genera l  than  those  i n  t h e  previous range of $. 

The width of t h i s  range i s  mainly c o n t r o l l e d  by t h e  va lue  of t h e  

index of r e f r a c t i o n  of t he  cy l inde r  a s  we w i l l  s ee  i n  t h e  fol lowing 

s e c t i o n .  



3.4 The Effect of the Index of Refraction on the Scattered Field 

We also study the effect of index of refraction on the scattered 

field. The index of refraction of the material of the cylinder 

appears in the coefficient of the series which represents the scat- 

tered field as shown in Eqs. (3.11) and (3.22). Since it is present 

in the numerator and denominator of a and P in a very similar way, 
m m 

it seems that it has a very small effect on the scattered field. The 

normalized amplitude of the scattered field is plotted in Figs. 

3.5(a)-(d), for ka = 50, and for n = 1.5, 1.457, 1.4 and 1.35, 

respectively. The patterns of the field look similar in their char- 

acteristics especially in the range O0 < @ < 90°. The main differ- - 

ences in this range are in the positions of the side lobes which are 

not the same for the different refractive-indices. Also if we look 

at the first side-lobe as we go from n = 1.5 to 1.35 it decreases in 

its amplitude until it emerges in the main lobe at n = 1.35. Signi- 

ficant changes are seen in the range 90° < @ < 180' where we can see - - 

that the pattern is modulated by a function varying with the index of 

refraction. In this range the peak of the scattered field moves with 

the change of the index of refraction, and its position approaches 

@ = 180° as n increases. In Fig. 3.6 the portion of the scattered 

field from @ = 90' to 180° is plotted for four different values of 

the index of refraction to demonstrate the movement of the peak of 

the scattered field with the change of n. It can be seen that the 

modulation function, which modulates the amplitude of the field, 

spreads out some of the fringes towards @ = 90°. So the position of 

this peak is very sensitive to the index of refraction, but is it 



Fig .  3.5 The normalized s c a t t e r e d  f i e l d  ( E ~ ( ~ , ( I )  ( /  ~ E ~ ( ~ , O O )  I f o r  

ka = 50 p l o t t e d  i n ,  ( a )  t o  (d)  f o r  n = 1.5, 1.457, 1.4 and 

1.35, r e s p e c t i v e l y .  Note t h e  s i m i l a r i t i e s  of t h e  f i e l d  

p a t t e r n  i n  t h e  range 0' 5 (I < 90'. - 



Fig. 3.6 The normalized scattered field plotted for ka = 50 in (a) 
to (d) for n = 1.5, 1.457, 1.4 and 1.35, respectively. 

Note the position of the peak as it sweeps towards + = 180' 

by the increase of n. 



s e n s i t i v e  t o  t h e  index  o f  r e f r a c t i o n  on ly?  O r  i s  it a l s o  s e n s i t i v e  

t o  ka? I n  F i g .  3 . 7 ( a )  t h e  p o s i t i o n  of t h i s  peak i s  p l o t t e d  a s  a  

f u n c t i o n  o f  t h e  f a c t o r  ka f o r  n  = 1 .45 .  The p o s i t i o n  o f  t h e  peak 

v a r i e s  w i t h  ka f o r  t h e  v a l u e s  o f  ka <= 100 b u t  a f t e r  t h a t  it v a r i e s  

v e r y  l i t t l e .  T h i s  l e a d s  t o  t h e  f a c t  t h a t  t h e  peak o f  t h e  back- 

s c a t t e r e d  f i e l d  i s  independent  o f  ka f o r  ka v e r y  l a r g e ,  b u t  it i s  

v e r y  s e n s i t i v e  t o  t h e  index  o f  r e f r a c t i o n .  I n  F i g .  3 . 7 ( b )  t h e  p o s i -  

t i o n  o f  t h i s  peak i s  p l o t t e d  a s  a  f u n c t i o n  of t h e  index  o f  r e f r a c t i o n  

from n  = 1 . 3  t o  2 .0  i n  0.025 i n c r e m e n t s ,  f o r  ka = 350 and 500. The 

p o s i t i o n  o f  t h e  peak @ i n c r e a s e s  w i t h  t h e  i n c r e a s e  o f  n  i n  a  form peak 

v e r y  c l o s e  t o  a  s i n e  f u n c t i o n ,  and a l s o  t h e  c u r v e s  f o r  ka = 350 and 

ka = 500 c o i n c i d e  w i t h  each  o t h e r  having t h e  same v a l u e s .  The 

p o s i t i o n  of t h e  peak n e a r s  a  f i x e d  v a l u e  a t  n  = 1 . 8 5 .  So t h e  peak 

p o s i t i o n  i s  independen t  o f  t h e  r a d i u s  o f  t h e  c y l i n d e r ,  and it i s  v e r y  

s e n s i t i v e  t o  t h e  index  o f  r e f r a c t i o n ,  which w i l l  make it a  good way 

f o r  measur ing t h e  index  of r e f r a c t i o n  f o r  c y l i n d e r s  whose index  o f  

r e f r a c t i o n  i s  l e s s  t h a n  t h e  1 . 8 5  l i m i t .  

For  t h e  normal p o l a r i z a t i o n  c a s e ,  t h e  index  o f  r e f r a c t i o n  does  

n o t  v a r y  t h e  peak p o s i t i o n  a s  l i n e a r  a s  it i s  i n  t h e  p a r a l l e l  p o l a r -  

i z a t i o n  c a s e .  I n  F i g .  3 . 8  t h e  peak  p o s i t i o n  i s  a t  @ "= 155' f o r  

n  = 1 . 3 5 ,  a t  @ = 180° f o r  n  = 1 . 4 ,  a t  @ Z 165O f o r  n  = 1.457 and a t  

@ = 180° f o r  n  = 1 . 5 .  So t h e  peak p o s i t i o n  i s  v a r y i n g  w i t h  t h e  

change of t h e  i n d e x  of r e f r a c t i o n  b u t  n o t  i n  a  l i n e a r  way. 



Fig. 3.7 The position of the peak of the back-scattered field is 

plotted in (a) as a function of ka while n = 1.457 and 

(b) as a function of n for ka = 350 and ka = 500. 



Fig. 3 . 8  The normalized scattered field for the normal polarization 

case is plotted in (a) to (d) for n = 1 . 5 ,  1 . 4 5 7 ,  1 . 4  and 

1 . 3 5 ,  respectively. 



3.5 Comparison between the Scattering from Conducting and Dielectric 

Cylinders 

In the previous sections, and in the previous chapter the scat- 

tering field from dielectric and conducting circular cylinders are 

presented. In this section we make a comparison between the results 

demonstrated for both kinds of cylinders, and for the two different 

polarizations of the incident field. 

The scattered field from the conducting and the dielectric 

cylinders represented by infinite series of the same form. The 

coefficients of the series expressed into two different expressions, 

the coefficients a in E q .  (3.12) and Pm in Eq. (3.23) for the 
m 

dielectric cylinder will reduce to the coefficients b E q .  (2.33), 
m ' 

and d Eq. (2.41), for the conducting cylinder as n the index of 
m ' 

refraction tends to infinity. So if the index of refraction of the 

dielectric cylinder is taken as infinity then its solution for the 

scattered field outside the cylinder will be the same as that for the 

conducting cylinder, and the coefficients D in E q .  (3.13) and Q in 
m m 

Eq. (3.24) for the fields inside the dielectric cylinder will vanish. 

The pattern of the scattered field for the two cylinders has a 

similar form, each has a main lobe that decreases in its width by the 

increase of ka, and each has a number of side lobes, that increase in 

number as ka increases. The side lobes of the conducting cylinder 

scattered field pattern exist in a certain range of the scattering 

angle and they disappear for the rest of the pattern. This cutoff 

angle is larger for the normal polarization than that for the paral- 



l e l  p o l a r i z a t i o n  case .  On t h e  o t h e r  hand, t h e  s i d e  lobes  f o r  t h e  

d i e l e c t r i c  cy l inde r  e x i s t  i n  t h e  f u l l  range of t h e  s c a t t e r e d  f i e l d  

p a t t e r n .  The c o n t r a s t  of t h e  f r i n g e s  of t h e  s c a t t e r e d  f i e l d  a s  shown 

i n  Table 3 .1  i s  much l a r g e r  i n  t h e  whole range @ f o r  t h e  d i e l e c t r i c  

cy l inde r  t han  t h a t  of t h e  conducting c y l i n d e r ,  which makes them more 

v i s i b l e  and d e t e c t a b l e  e s p e c i a l l y  f o r  @ - > 30°. Also t h e  c o n t r a s t  of 

t h e  f r i n g e s  of t h e  d i e l e c t r i c  cy l inde r  i s  l a r g e r  f o r  t h e  p a r a l l e l  

p o l a r i z a t i o n  case  than  f o r  t h e  normal p o l a r i z a t i o n  case .  The p a t t e r n  

of t h e  d i e l e c t r i c  cy l inde r  has a  peak i n  t h e  backsca t t e r ed  f i e l d ,  i t s  

p o s i t i o n  i s  moving wi th  t h e  change of t h e  index r e f r a c t i o n ,  b u t  f o r  

t h e  conducting cy l inde r  t h e  backsca t t e r ed  f i e l d  p a t t e r n  w i l l  smoothly 

i n c r e a s e ,  reaching a  maximum a t  @ = 180°. 

The way t h e  f i e l d s  a r e  s c a t t e r e d  by t h e  two kinds of cy l inde r s  

i s  q u i t e  d i f f e r e n t  because of t h e  d i f f e r e n t  m a t e r i a l s  from which t h e  

cy l inde r s  a r e  made. The conducting cy l inde r  s c a t t e r s  t h e  waves mainly 

by d i r e c t  r e f l e c t i o n  from t h e  s u r f a c e ,  by t h e  d i f f r a c t i o n  from t h e  

edges of t h e  c y l i n d e r ,  and by t h e  c u r r e n t s  generated on t h e  su r f ace  

of t h e  cy l inde r  which w i l l  genera te  t h e  f i e l d s  o u t s i d e .  The s c a t t e r e d  

f i e l d  w i l l  be t h e  supe rpos i t i on  of t h e s e  d i f f e r e n t  components. The 

d i e l e c t r i c  c y l i n d e r  s c a t t e r s  t h e  waves by d i r e c t  r e f l e c t i o n  from t h e  

s u r f a c e ,  by d i f f r a c t i o n ,  and by t h e  rays  which w i l l  r e f r a c t  through 

it d i r e c t l y  o r  a f t e r  making one o r  more i n t e r n a l  r e f l e c t i o n s  by t h e  

i n s i d e  su r f ace  of t h e  c y l i n d e r .  The way t h e  f i e l d s  a r e  generated 

made a l l  t hose  s i m i l a r i t i e s  and d i f f e r e n c e s  between t h e  s c a t t e r e d  

f i e l d s  from t h e  conducting and t h e  d i e l e c t r i c  c i r c u l a r  cy l inde r s .  



TABLE 3 .1  

Fringe Contrast for Conducting 
and Dielectric Cylinders, ka = 50 

Contrast of the Fringes 

Scattering Angle Conducting Dielectric 
@ O 

E// E L  E &  E'- 
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CHAPTER IV 

APPROXIMATE SOLUTIONS FOR THE SCATTERING 

OF LIGHT FROM LARGE CYLINDERS 

4.1 Introduction 

Approximate solutions for the scattered field from large con- 

ducting and dielectric circular cylinders are presented in this 

chapter. In the previous two chapters we studied rigorous solutions 

for the scattering of a plane electromagnetic wave by a circular 

cylinder. The solutions are expressed in terms of an infinite series 

that converges very slowly. The infinite series solutions are not 

very practical in plotting the scattered field, especially when the 

radius of the cylinder is much larger than the wavelength. In this 

chapter we present approximate solutions using Fourier and geome- 

trical optics approximations. These solutions are simple to calcu- 

late, and it is easier to plot the fields from them. The fringe 

spacings of the scattered field are derived in a closed form. Since 

the solutions are derived in simple formulas they do not require long 

computing times as long as those for the rigorous solutions. 

In Section 4.2 scattering from a conducting cylinder is con- 

sidered. The scattered field is represented as the superposition of 

a diffracted field from a modified strip and a backscattered field 

which is generated by the surface current density. The scattered 



field and fringe spacings are plotted and compared with those intro- 

duced in Chapter 11. 

In Section 4.3 the scattering of light by a dielectric cylinder 

is presented. The scattered field is derived by geometrical and 

Fourier optics techniques. A formula is derived for the fringe 

spacings of the scattered field and this is compared with the rigor- 

ous solution. The limit of validity for the fringe spacing formula 

with the change of ka is tested. 



4.2 Scattering from a Conducting Cylinder 

In Chapter I1 we have studied the scattering of a plane electro- 

magnetic wave by a circular conducting cylinder. When the diameter 

of the cylinder is large compared with the wavelength, we expect that 

the physical optics solutions for the scattered field will be ade- 

quate. In Chapter I1 we discussed the sources which produced the 

scattered field, and we found that they are the superposition of the 

diffracted and the directly reflected fields from the surface. As 

the radius of the cylinder becomes larger with respect to the wave- 

(1) length, the diffracted field becomes narrower and more intense . 

The other fields will be small with respect to it and spread over the 

whole range of the scattering angle. The diffracted field mainly 

depends on the size and form of the object rather than its composi- 

tion or the nature of the surface. So the scattered field in the 

forward region (near $I = 0° )  depends on the diffracted field. And 

since the diffracted field does not depend on the nature of the 

surface, the diffracted field of the cylinder will be similar to that 

of a conducting strip, with a width equal to the diameter of the 

cylinder. 

4.2.1 Diffraction by a Strip 

The diffraction by a strip has been studied by many authors. ( 2 )  

For simplicity we will approach the solution of this problem by 

means of Fourier optics, which gives a good result for the case we 

are studying. According to Babinet's principle(3) the intensity 

distribution possessed by the strip will be equal to that possessed 



by a slit because they are complementary screens. So the diffracted 

field of the slit will have the same amplitude as that for the strip 

with a phase difference of n. 

The diffracted field of a slit can be derived using the Fraun- 

hofer diffraction formula. (4) As shown in Fig. 4. l (a), if we place a 

slit in the x-z plane then the field at the (u,v) plane will be given 

by 

where E (y,z) is the field distribution at the incident plane. For 
0 

the case of the slit 

Since we are interested in the field in the u-v plane and the slit 

extends infinitely in the z-direction, then Eq. (4.1) will reduce to 

a one dimensional integral given by 

m 

E(u) = i cos@ ,ikp J rect ( 4 L )  e -i (k/p)yudy 
AP 2 a 

9 

- m 

and since u = p sin@ then 

This integral will reduce to 



Fig .  4 . 1  A plane wave i l luminates ( a )  a  s l i t  and (b) a  conducting 

cyl inder .  The d i f f rac ted  f i e l d  i s  observed a t  point  

P(P,@).  



Hence, 

a  cos 2a 
E(P,$) = i 2  hP eikP ~ i n c ( ~  s i n e ) .  

where s i n c ( x )  = s in (nx ) /nx .  According t o  t h e  Bab ine t ' s  p r i n c i p l e ,  

t h e  f i e l d  d i f f r a c t e d  by t h e  s t r i p  w i l l  be  

a  cos ka 
E s t r i p  ( ~ ~ $ 1  = -i 3 I-r P eikpsinc(- n s in$ )  

I n  F ig .  4 . 2 ( a )  t h e  d i f f r a c t e d  f i e l d  of t h e  s t r i p  given by E q .  (4 .4)  

i s  p l o t t e d  t o  be compared wi th  t h a t  of t h e  cy l inde r  given by Eq. 

(2.34)  f o r  ka = 50. The d i f f r a c t e d  f i e l d  of t h e  s t r i p  has same main 

lobe width and same amplitude and p o s i t i o n  of t h e  f i r s t  t h r e e  s i d e  

lobes of t h e  s c a t t e r e d  f i e l d  from t h e  c y l i n d e r .  For t h e  r e s t  of t h e  

p a t t e r n  t h e  amplitude of t h e  d i f f r a c t e d  f i e l d  decreases  wi th  t h e  

inc rease  of $, reaching very  small  va lues  around 41 2 60°. But t h e  

s c a t t e r e d  f i e l d  of t h e  cy l inde r  i nc reases  s l i g h t l y  i n  i t s  amplitude 

by the  inc rease  of 9. Also t h e  p o s i t i o n  of t h e  s i d e  lobes of t h e  

d i f f r a c t e d  f i e l d  of t h e  s t r i p  become f u r t h e r  a p a r t  wi th  t he  inc rease  

of t h e  angle  $, while  f o r  t h e  s c a t t e r e d  f i e l d  of t h e  cy l inde r  t h e  

p o s i t i o n  of any two ad jacen t  lobes i s  almost t h e  same u n t i l  t hey  

te rmina te  a t  $ 2 30° a s  can be seen i n  F ig .  4 . 2 ( c ) .  The reason f o r  

t he  lobes  of t h e  s l i t  p a t t e r n  t o  become f u r t h e r  a p a r t  i s  t h a t  a s  $ 

i nc reases  t h e  width of t h e  s t r i p  w i l l  become apparent ly  s m a l l e r .  



So t h e  s t r i p  i s  n o t  a  good approx imat ion  of t h e  c y l i n d e r  f o r  

s c a t t e r i n g  a n g l e s  away from $ = OO. From F i g .  4 . l ( b ) ,  t h e  wid th  o f  

t h e  w i r e  seems t o  i n c r e a s e  a s  we i n c r e a s e  t h e  a n g l e  @. T h i s  i s  

because  t h e  w i r e  h a s  a  d e p t h  i n  t h e  x - a x i s ,  s o  t h e  a p p a r e n t  wid th  

w i l l  i n c r e a s e .  So t h e  c y l i n d e r  can b e  modeled a s  a  s t r i p  w i t h  a  

v a r y i n g  w i d t h .  When P i s  i n  t h e  f a r  zone ,  t h e  w i d t h  o f  t h e  equiva-  

l e n t  s t r i p  w i l l  b e  a+a /cos@.  T h e r e f o r e ,  i f  we r e d e r i v e  t h e  

d i f f r a c t e d  f i e l d  f o r  t h i s  v a r y i n g  s l i t ,  t h e  f i e l d  w i l l  be  g iven  by 

Hence, 

ka i k p  {cos (ka  t a n $ )  - cos (ka  s i n $ )  
EVS(P,$) = - - 

2nP 
e  

ka t a n @  

The f i e l d s  d i f f r a c t e d  by t h e  modi f i ed  s t r i p ,  g iven  by E q .  ( 4 . 5 ) ,  i s  

p l o t t e d  i n  F i g .  4 . 2 ( b ) .  I n  F i g .  4 . 2 ( b )  we p l o t t e d  t h e  d i f f r a c t e d  

f i e l d  o f  t h e  modi f i ed  s t r i p  and f o r  t h e  e x a c t  s o l u t i o n  of t h e  

c y l i n d e r .  The main l o b e  o f  t h e  d i f f r a c t e d  f i e l d  has  t h e  same wid th  

a s  t h a t  f o r  t h e  e x a c t  f i e l d ,  and a l s o  t h e  ampl i tude  o f  t h e  f i r s t  

t h r e e  l o b e s .  The p o s i t i o n s  of t h e  s i d e l o b e s  a r e  t h e  same a s  t h o s e  

f o r  t h e  e x a c t  s o l u t i o n  till $ Z 30°, where t h e  e x a c t  s o l u t i o n  s i d e -  

l o b e s  t e r m i n a t e .  The s i d e l o b e s  o f  t h e  d i f f r a c t e d  f i e l d  become 

c l o s e r ,  and s t a r t  having s m a l l  ampl i tudes  f o r  @ > 3 0 ° .  I n  F i g .  4 . 2 ( c )  

t h e  f r i n g e  s p a c i n g s  of t h e  f i e l d  ampl i tude  of t h e  s t r i p ,  t h e  modi f i ed  





F i g .  4 . 2  Contined. ( c )  The fringe spacings o f  the cyl inder (O), the 

s l i t  (+), and the modified s l i t  (X) are p lo t ted  for  ka = 

50.  



strip, and the conducting cylinder (exact solution) are plotted. The 

fringe spacings of the modified strip have the same value as those 

for the cylinder but they do not vanish at $ 
cut ' The fringes of the 

strip have comparable values at small angles, and then they depart 

from the values of the fringes of the cylinder. Thus the modified 

strip diffracted field is a good approximation for the cylinder in 

the range of the existence of the fringes. The fields scattered by 

the cylinder are a superposition of the diffracted fields, reflected 

fields, and fields generated by the surface current; so we do not 

expect that the diffracted fields will represent the scattered field 

of the cylinder in the whole range. In the following subsection the 

fields generated by the surface current will be derived. 

4 . 2 . 2  Back-Scattered Field of the Cylinder 

The fields generated by the surface current can be derived 

exactly using Maxwell's equations, and by integrating over the 

surface of the cylinder. In this section we are interested in an 

approximate solution for the radiation fields resulting from the 

scattering of an electromagnetic wave by the surface S of the cylin- 

der, so we will make the usual estimate based on the incident elec- 

tromagnetic wave. (5) Let the electric field of the incident plane 

wave be given by 

Einc ikp cos@' 
> - (P,$') = EOeze ( 4 . 6 )  



where e is the z-directed unit vector, and we assumed a unit ampli- -z 

tude. The corresponding magnetic field of the incident plane wave is 

given by 

Hint 
(p,~') = - E e JE e ikp cosQt - 0-Y P 

Assuming that the cylinder is perfectly conducting, then the surface 

current density K  - will be given by 

where - n is the outward unit normal to the surface. From Eqs. (4.7) 

and (4.8) we obtain 

K = -  - e 2 J g e  ika cosQt cos$' , 
-2 IJ 

and the vector potential produced by K - is ( 6  

ikp 
e 

A(p.0) = u I E(a,Qf) 4np ds , 
S 

where the integration is over the illuminated region of the surface 

of the cylinder, and R is the distance between the observation point 

(p,$) and the integration point (a ,$ '  ) , as shown in Fig. 4.3. From 

Eqs. (4.9) and (4.10) we get 

3x1 2 ika cosQf e 
ikR 

A(p,$) = -24z e I cos$' e 4nR dof. 
-2 

n/ 2 





The z-component of the back-scattered electric field is obtained 

through the relations 

and 

VxB - = -iw~&E. - 

Then, 

~;(p,$) = iwg z * A .  - 

Therefore 

2k 3Zr/ 2 ika cos$' e ikR S 
E,(P,$) = -i J- COS~' e R ds . 

n/ 2 

From Fig. 4.3 we get an expression for R at the far zone to be 

R = Jp2+a2-2ap cos($-$') E p-a cos($-$'I. 

If we substitute for R from Eq. (4.14) into the exponential of (4.13) 

and R 2 p in the denominator, we obtain 

S 
3nk 

ik eikP J- cos $ I  . ika[cos$'-~os(@-@')]~~~ EZ(p,$) = - - 
2XP n/ 2 

Using some trigonometric identities to rewrite the exponent, we get 



Using t h e  s t a t i o n a r y  phase  t e c h n i q u e  t o  e v a l u a t e  t h e  i n t e g r a l  i n  

Eq. ( 4 . 1 5 ) ,  s i n c e  k  i s  v e r y  l a r g e  ( f o r  t h e  o p t i c a l  f r e q u e n c i e s ) ,  t h e n  

t h e  main c o n t r i b u t i o n  o f  t h e  i n t e g r a l  w i l l  be  from t h e  neighborhood 

of  t h e  s t a t i o n a r y  p o i n t s  and t h e  end p o i n t s  o f  t h e  range o f  i n t e g r a -  

t i o n .  ( 7 ' 8 )  The s t a t i o n a r y  p o i n t s  i n  t h e  range o f  i n t e g r a t i o n  w i l l  be 

a t  $'  = @/2 + n / 2 ,  s o  t h e  a s y m p t o t i c  expans ion  of t h e  s c a t t e r e d  f i e l d  

w i l l  be g i v e n  by 

The b a c k s c a t t e r e d  f i e l d  p r o p a g a t e s  i n  t h e  p o s i t i v e  p - d i r e c t i o n ,  i . e .  

a n  ou tgo ing  wave. The ampl i tude  o f  t h e  b a c k s c a t t e r e d  f i e l d ,  a s  it i s  

g i v e n  by Eq. ( 4 . 1 6 ) ,  w i l l  be  modulated by t h e  s q u a r e  r o o t  of s i n $ / 2 ,  

r e a c h e s  a  maximum a t  I$ = n ,  and t h a t  i s  t h e  way t h i s  f i e l d  i s  behav- 

i n g  a s  we can  s e e  it i n  t h e  r i g o r o u s  t h e o r y  p l o t s  g i v e n  i n  Chapter  

11. The t o t a l  s c a t t e r e d  f i e l d ,  r e s u l t e d  from t h e  s u p e r p o s i t i o n  o f  

t h e  d i f f r a c t e d  f i e l d  Eq. ( 4 . 5 )  and t h e  b a c k s c a t t e r e d  f i e l d  Eq. 

( 4 . 1 6 ) ,  i s  p l o t t e d  i n  F i g .  4 . 4  f o r  ka = 10 and ka = 50.  I n  F i g .  

4 . 4 ( a )  and ( b )  t h e  curve  o b t a i n e d  from t h e  r i g o r o u s  s o l u t i o n  of 

Eq. ( 2 . 3 4 )  i s  p l o t t e d  t o  be  compared w i t h  t h e  approximate  s c a t t e r e d  

f i e l d .  The approximate  s c a t t e r e d  f i e l d  and t h e  e x a c t  one b o t h  have 

s i m i l a r  p a t t e r n s ,  and t h e  same main l o b e  wid th .  For  ka = 10 ,  t h e  

p o s i t i o n  o f  t h e  s i d e l o b e s  a r e  n o t  t h e  same, b u t  t h e  f i e l d  ampl i tudes  

i n  t h e  range 80° - < @ - < 180' a r e  v e r y  comparable.  For  ka = 5 0 ,  t h e  

main l o b e  and f i r s t  s i d e l o b e  have t h e  same wid th  and p o s i t i o n ,  and 

t h e  p o s i t i o n  of t h e  s i d e l o b e s  i s  a l s o  t h e  same till t h e y  v a n i s h  i n  
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t h e  exac t  s c a t t e r e d  f i e l d .  But t h e  amplitude of t h e  s c a t t e r e d  f i e l d  

and t h e  exac t  one a r e  e x a c t l y  t h e  same from @ "= 70' t o  180'. The 

main d i f f e r e n c e  i s  t h a t  t h e  f r i n g e s  vanish  a t  a  sma l l e r  angle  f o r  t h e  

e x a c t  s o l u t i o n  b u t  l a s t  longer  i n  t h e  approximate s o l u t i o n  case .  The 

informat ion  c a r r i e d  about t h e  cy l inde r  by t h e  s c a t t e r e d  f i e l d  i s  

contained i n  t h e  f r i n g e  spac ings ,  and t h i s  can be de t ec t ed  a t  small  

angles  where t h e  two f i e l d s  have t h e  same f r i n g e  spac ings .  The 

approximate s o l u t i o n  has t h e  advantage of being expressed i n  simple 

formulas ,  while  t h e  exac t  theory  s o l u t i o n  i s  expressed i n  an i n f i n i t e  

s e r i e s .  The c o e f f i c i e n t s  of t h e  s e r i e s  a r e  func t ions  of t h e  Bessel  

f u n c t i o n s ,  which a r e  a l s o  represented  by i n f i n i t e  s e r i e s .  That makes 

it hard t o  s ee  d i r e c t l y  t h e  e f f e c t  of t h e  d i f f e r e n t  parameters  on t h e  

s c a t t e r e d  f i e l d  f o r  t h e  exac t  theory  s o l u t i o n .  The exac t  theory  

s o l u t i o n  t akes  a  l o t  of computer time t o  p l o t  i t ,  e s p e c i a l l y  f o r  

l a r g e  ka where t h e  s e r i e s  converges very  s lowly.  But t h e  approximate 

s o l u t i o n  t akes  very  s h o r t  computing t imes t o  p l o t  t h e  s c a t t e r e d  

f i e l d ,  t h a t  makes it more convenient t o  be used i n  s tudying t h e  

s c a t t e r e d  f i e l d  even from a  very  l a r g e  ka. The advantage of t h e  

r igorous  s o l u t i o n  i s  t h a t  it g ives  e x a c t l y  where t h e  f r i n g e s  

te rmina te .  



4.3  S c a t t e r i n g  from a  D i e l e c t r i c  C y l i n d e r  

The r i g o r o u s  s o l u t i o n  f o r  t h e  s c a t t e r i n g  o f  a  p l a n e  e lect romag-  

n e t i c  wave from a  d i e l e c t r i c  c y l i n d e r  was d i s c u s s e d  i n  Chapter  111. 

A s  has  been p r e s e n t e d  t h e r e ,  t h e  s c a t t e r e d  f i e l d  i s  t h e  s u p e r p o s i t i o n  

of t h e  d i f f r a c t e d ,  r e f l e c t e d  and r e f r a c t e d  f i e l d s .  The f i e l d  i n  t h e  

forward r e g i o n  r e s u l t s  mainly  from t h e  d i f f r a c t i o n  and r e f r a c t i o n  o f  

t h e  r a y s  th rough  t h e  c y l i n d e r .  The r e f r a c t e d  and r e f l e c t e d  f i e l d  can 

be  determined by d e r i v i n g  fo rmulas  f o r  t h e  phase  s h i f t  between t h e  

o b s e r v a t i o n  p o i n t  and t h e  r e f e r e n c e  p l a n e .  The phase  o f  t h e s e  two 

r a y s  and t h e i r  r e l a t i v e  ampl i tude  l e a d s  t o  a n  e x p r e s s i o n  f o r  t h e  

f i e l d  a t  t h e  o b s e r v a t i o n  p o i n t .  The s u p e r p o s i t i o n  o f  t h e s e  two 

f i e l d s  and t h e  d i f f r a c t e d  f i e l d  g i v e s  t h e  t o t a l  f i e l d  i n  t h e  forward 

s c a t t e r e d  p a t t e r n .  From t h e  phase  d i f f e r e n c e  between t h e  r e f r a c t e d  

and t h e  r e f l e c t e d  r a y s  we w i l l  d e r i v e  a  formula f o r  t h e  f r i n g e  

s p a c i n g s .  

4 . 3 . 1  The S c a t t e r e d  F i e l d  

The s c a t t e r e d  f i e l d  from t h e  d i e l e c t r i c  c i r c u l a r  c y l i n d e r  w i l l  

be  c o n s i d e r e d  a t  t h e  forward zone f i r s t .  The f i e l d  i n  t h i s  r e g i o n  

r e s u l t s  from t h e  i n t e r f e r e n c e  between t h e  r e f r a c t i n g ,  r e f l e c t i n g  and 

d i f f r a c t i n g  r a y s .  The way t o  g e t  a  v e r y  good approx imat ion  of t h e  

s c a t t e r e d  f i e l d  i s  t o  de te rmine  t h e  phase  of t h e  r e f r a c t e d  and 

r e f l e c t e d  r a y s  a t  t h e  o b s e r v a t i o n  p o i n t ,  P ( p , @ ) ,  w i t h  r e s p e c t  t o  a  

p l a n e  b e f o r e  t h e  i n c i d e n t  wave reaches  t h e  c y l i n d e r .  A c r o s s  s e c t i o n  

o f  t h e  c y l i n d e r  i s  shown i n  F i g .  4 . 5 .  P l a n e  y ' - z  i s  t h e  p l a n e  of 

r e f e r e n c e  f o r  c a l c u l a t i n g  t h e  phase  of t h e  f i e l d s .  L e t  U and Q be  



Fig. 4.5 The ref lected and refracted rays as they trace through a 

d i e l e c t r i c  cylinder.  



the pathlengths of the refracted and reflected waves, respectively, 

from the plane y' -2 to the point P(p,@) . From the geometry of the 

cylinder, when P is in the far-zone, we obtain el Z €I2 E @, and 

U = AB + BC + CP, 

U Z a - a cost + (p-a cosa); 

therefore, 

And similarly 

where a is the radius of the cylinder, and n is the index of refrac- 

tion. The relation between angles a and @ are defined by Snell's 

Law ( 3 )  

sina = n sin@. (4.19) 

From Fig. 4.6 we can see that 

From Eqs. (4.19) and (4.20) we can derive 

cos a = n cos@/2 - 1 
9 

Jn2-2n cos@/2+1 



and 

n  - cos$/2 
C O S  f3 = 

,/n2-2n cos@/2+1 

From Eqs. (4 .17) ,  (4 .18) ,  (4 .21)  and (4.22) we der ived  formulas f o r  

t h e  pa th l eng th  and t h e  phase a s  a  f u n c t i o n  of p and @ and t h e  para-  

meters  of t h e  c y l i n d e r .  The f i e l d  s c a t t e r e d  by t h e  cy l inde r  due t o  

t h e  r e f l e c t i o n  and r e f r a c t i o n  can be given a s  

2  where r = ( n  -2n cos0/2 t l ) '  

and A1 and A2 a r e  .the amplitudes of t h e  r e f r a c t e d  and r e f l e c t e d  

waves. The f i e l d  amplitudes a r e  p ropor t iona l  t o  t h e  r e f l e c t i o n  and 

r e f r a c t i o n  c o e f f i c i e n t s ,  and t h e  re f . lec ted  ray  amplitude w i l l  be 

p ropor t iona l  t o  t h e  r e f l e c t i o n  c o e f f i c i e n t  given by F resne l  formu- 

l a s .  ( 3 )  The r e f r a c t e d  ray  w i l l  be  t r ansmi t t ed  through two boundar- 

i e s ,  and i t s  amplitude w i l l  be p ropor t iona l  t o  t h e  product  of t h e  

r e f r a c t i o n  c o e f f i c i e n t s  of t h e  two boundaries .  Therefore A1 and A2 

can be represented  by 

E A = - =  s i n  $/2 - Jn2-cos2$/2 

EI s i n  $/2 + Jnz-cos2@/2 ' 

and 



E~ A = y =  
4n cosa  cos  $ 

(4 .26)  
E' ( cosa  + i n 2 - l + c o s 2 a )  ( n  c o s $ + ~ l - n 2 + n 2 c o s 2 $ )  ' 

t 
where Ei, E' and E  a r e  t h e  ampl i tudes  o f  t h e  i n c i d e n t ,  t h e  r e f l e c t e d  

and t h e  r e f r a c t e d  f i e l d s ,  r e s p e c t i v e l y .  The s c a t t e r e d  f i e l d  i n  t h e  

forward r e g i o n  ( 0  < @ < 90') i s  o b t a i n e d  by add ing  t h e  d i f f r a c t e d  

f i e l d  t o  t h e  r e f l e c t e d  and t h e  r e f r a c t e d  f i e l d s .  The d i f f r a c t e d  

f i e l d  from t h e  c y l i n d e r  w i l l  be  t h e  same a s  t h a t  f o r  t h e  conduc t ing  

c y l i n d e r ,  t a k i n g  i n t o  account  t h e  phase  o f  t h e  i n c i d e n t  f i e l d  from 

t h e  y ' - z  p l a n e  t o  t h e  y-z p l a n e .  From E q .  ( 4 . 4 )  we can  r e w r i t e  t h e  

d i f f r a c t e d  f i e l d  a s  

d  ka i k ( p + a )  ka 
E  ( p , @ )  = - i - cos  @ e  

XP 
s i n c  (- TI s i n @ ) .  

From Eqs.  ( 4 . 2 5 )  t o  ( 4 . 2 7 )  we can w r i t e  t h e  s c a t t e r e d  f i e l d  from t h e  

d i e l e c t r i c  c y l i n d e r  i n  t h e  f o l l o w i n g  form 

The s c a t t e r e d  f i e l d  depends on t h e  f a c t o r  k a ,  t h e  i n d e x  of r e f r a c -  

t i o n ,  and t h e  s c a t t e r i n g  a n g l e .  The d i f f r a c t e d  f i e l d ,  which a p p e a r s  

a s  a  s i n c  f u n c t i o n  i n  E q .  ( 4 . 2 8 )  i s  t h e  dominat ing t e rm i n  t h e  f o r -  

ward r e g i o n  e s p e c i a l l y  f o r  s m a l l  range o f  t h e  s c a t t e r i n g  a n g l e ,  and 



t h i s  range g e t s  s m a l l e r  w i t h  t h e  i n c r e a s e  o f  ka .  The approximate  

s c a t t e r e d  f i e l d  g i v e n  by t h e  f i r s t  two te rms  o f  E q .  (4 .28)  i s  p l o t t e d  

i n  F i g s .  4 . 6 ( a )  and ( b ) ,  and may be compared w i t h  t h e  d i f f r a c t e d  

f i e l d  a l o n e .  The d i f f r a c t e d  f i e l d  h a s  l a r g e r  components i n  t h e  range 

O0 5 Q, 5 30°,  f o r  ka = 1 0 ,  w i t h  r e s p e c t  t o  t h a t  o f  t h e  r e f l e c t e d  and 

r e f r a c t e d  f i e l d s ,  which c o n t r i b u t e  more i n  t h e  r e s t  o f  t h e  range .  

F o r  ka = 5 0 ,  t h e  d i f f r a c t e d  f i e l d  components dominate i n  a  much 

nar rower  range  o f  Q, t h a n  i n  t h e  p r e v i o u s  c a s e .  From t h e  s t u d y  of 

t h e s e  curves  we conclude t h a t  t h e  d i f f r a c t e d  f i e l d  mainly  c o n t r i b u t e s  

t o  a  narrow range of Q, f o r  l a r g e  v a l u e s  o f  ka ,  t h e  r e f r a c t e d  and 

r e f l e c t e d  f i e l d s  c o n t r i b u t e  o v e r  t h e  whole range o f  t h e  s c a t t e r i n g  

a n g l e .  The s c a t t e r e d  f i e l d  g i v e n  by E q .  ( 4 . 2 8 ) ,  and t h e  f i e l d  g i v e n  

by t h e  r i g o r o u s  s o l u t i o n  i n  E q .  ( 3 . 1 4 ) ,  a r e  p l o t t e d  i n  F i g s .  4 . 7 ( a )  

and ( b ) ,  f o r  ka = 10 and 50.  For  ka = 10 t h e  p a t t e r n  of t h e  approx i -  

mate and t h e  e x a c t  s c a t t e r e d  f i e l d s  a r e  mainly  t h e  same. Both have 

t h e  same number o f  s i d e l o b e s ,  b u t  t h e i r  p o s i t i o n s  a r e  n o t  e x a c t l y  t h e  

same. F o r  ka = 5 0 ,  t h e  two c u r v e s ,  t h e  approximate  and t h e  e x a c t ,  

have v e r y  s i m i l a r  p a t t e r n s ,  wid ths  of t h e  main l o b e ,  number o f  

s i d e l o b e s ,  and p o s i t i o n  o f  t h e  s i d e l o b e s .  There  a r e  s m a l l  d i f f e r -  

ences  between t h e  ampl i tudes  of t h e  s i d e l o b e s  because  t h e  ampl i tudes  

of t h e  approximate  f i e l d s  a r e  n o t  c a l c u l a t e d  v e r y  a c c u r a t e l y  t o  

s i m p l i f y  t h e  approximate  s o l u t i o n .  So t h e  approximate  s o l u t i o n  o f  

t h e  s c a t t e r e d  f i e l d  from a  d i e l e c t r i c  c y l i n d e r  d e r i v e d  i n  t h i s  

s e c t i o n  has  t h e  same s t r u c t u r e  and f e a t u r e s  o f  t h a t  g i v e n  by t h e  

r i g o r o u s  s o l u t i o n .  I t  has  v e r y  s i m i l a r  f e a t u r e s  t o  i t ,  and s o  it i s  

a  good approximate  s o l u t i o n  f o r  l a r g e  ka .  Meanwhile, t h e  approximate  







s o l u t i o n  o f  Eq .  ( 4 . 2 8 )  i s  e x p r e s s e d  i n  a  s imple  form, from which we 

c a n  s e e  t h e  e f f e c t  o f  t h e  d i f f e r e n t  pa ramete rs  on t h e  s c a t t e r e d  f i e l d  

p a t t e r n .  Also it does  n o t  t a k e  a s  l o n g  computing t i m e s  a s  t h a t  

needed by t h e  e x a c t  s o l u t i o n  which i s  expressed  i n  a n  i n f i n i t e  s e r i e s  

w i t h  c o e f f i c i e n t s  c o n t a i n i n g  B e s s e l  f u n c t i o n s .  So t h e  approximate  

s o l u t i o n  has  t h e  advan tage  o f  b e i n g  e x p r e s s e d  i n  a  s imple  c l o s e d  

form, w h i l e  it does  g i v e  a  comparable s c a t t e r i n g  p a t t e r n  t o  t h a t  o f  

t h e  r i g o r o u s  s o l u t i o n .  

The b a c k s c a t t e r e d  f i e l d  i n  t h e  range of 150° < 4 < 180° i s  
M - 

s t u d i e d  by s e v e r a l  a u t h o r s .  ( 9 9 1 0 )  The s c a t t e r e d  f i e l d  i n  t h i s  r e g i o n  

r e s u l t s  from t h e  i n t e r f e r e n c e  o f  t h e  r e f l e c t e d  r a y s  and t h o s e  which 

make one i n t e r n a l  r e f l e c t i o n  i n s i d e  t h e  c y l i n d e r .  I t  has  been 

r e p o r t e d  t h a t  t h i s  range i s  governed by t h e  index  o f  r e d u c t i o n  of t h e  

c y l i n d e r  . 
The s c a t t e r e d  f i e l d  i n  t h e  range o f  90° 5 4 5 150° i s  a  r e s u l t  

of t h e  i n t e r f e r e n c e  between t h e  r e f l e c t e d  r a y s  and t h e  r e f r a c t e d  r a y s  

which make m u l t i p l e  r e f l e c t i o n s  i n s i d e  t h e  c y l i n d e r ;  and s i n c e  t h e  

f i e l d  i n  t h i s  range w i l l  have v e r y  s m a l l  ampl i tudes  and does n o t  

c a r r y  any more i n f o r m a t i o n  abou t  t h e  c y l i n d e r ,  it has  n o t  been 

r e p o r t e d  h e r e .  

4 . 3 . 2  The F r i n g e  Spacings  o f  t h e  S c a t t e r e d  F i e l d  

The f r i n g e  s p a c i n g s  o f  t h e  s c a t t e r e d  f i e l d  p a t t e r n  a r e  s t u d i e d  

f o r  t h e  d i e l e c t r i c  c y l i n d e r  i n  c h a p t e r  I11 from t h e  r i g o r o u s  s o l u -  

t i o n s  of t h e  s c a t t e r e d  f i e l d .  There  we have n o t  been a b l e  t o  deduce 

a  c l o s e d  form s o l u t i o n  f o r  t h e  f r i n g e  s p a c i n g s .  We have s e e n  i n  t h e  



p r e v i o u s  s u b s e c t i o n  t h a t  t h e  f i e l d  p a t t e r n  i s  a  r e s u l t  of t h e  i n t e r -  

f e r e n c e  between t h e  r e f l e c t e d  and r e f r a c t e d  waves i n  most of t h e  

fo rward  s c a t t e r e d  r e g i o n .  So we w i l l  d e r i v e  a  formula  f o r  t h e  f r i n g e  

s p a c i n g s  i n  t h i s  s u b s e c t i o n  

L e t  t h e  phase  of t h e  r e f r a c t e d  r a y  be  P  and t h e  phase  o f  t h e  
t '  

r e f l e c t e d  r a y  be  P  a s  it p r o p a g a t e s  from t h e  r e f e r e n c e  p l a n e  y t - z  t o  
r 

p o i n t  P ( p , @ ) .  Then from Eqs.  (4-17) and ( 4 . 1 8 )  we o b t a i n  

and 

where t h e  A phase  i n  P i s  t h e  phase  added when t h e  f i e l d  i s  
r 

r e f l e c t e d ,  and n/2  i s  t h e  phase  s u b t r a c t e d  when t h e  r a y  goes th rough  

a  f o c u s  i n s i d e  t h e  c y l i n d e r .  (11) The phase  d i f f e r e n c e  between t h e  

two r a y s  i s  

where cosa  and cos$ a r e  g i v e n  by Eqs.  (4 .21)  and ( 4 . 2 2 ) .  T h e r e f o r e  

The s p a c i n g  between any two a d j a c e n t  f r i n g e s  i s  t h e  change AQ i n  t h e  

s c a t t e r i n g  a n g l e ,  which w i l l  change t h e  phase  d i f f e r e n c e  P (@) by 2n.  d  

L e t  @ and @ be  t h e  p o s i t i o n s  o f  two a d j a c e n t  f r i n g e s .  Then 
1 



where l- is given by Eq. (4.24), and r1 can be deduced from Eq. (4.24) 

by changing @ to @ A@/2 is a small quantity for the values of 
1 - 

ka 1 10, that allows us to make the following approximations 

sin &k - 4, and cos 
2 - 2  

9 2 1.0 . 
2 

From Eqs. (4.31) and (4.32) we derive the following expression 

T t  2 1 
- 
ka 

= (n +1-2n cos@/2+nA@ sin@/2)' 

Now we can express the first term in the right hand side of 

Eq. (4.33) as the following 

Using the binomial expansion(12) for the quantity 

2 
since (nA@ sin@/2)/(n +1-2n case) < 1, then Eq. (4.34) will reduce to 



From Eqs. (4.33) and (4.34) we obtain 

n 2 2 
- = 4 cos $12 + "a@ ~in0/2 - n sin $/2(51$)~ + . . . 
ka 2 2r 

8r3 

From Eq. (4.36) we derive a set of approximate values for the fringe 

spacings 54 as 

I. Zero Order Approximation 

11. First Order Approximation 

which is similar to the expression derived in Appendix B. 

111. Second Order Approximation 

4 2 3 .  + I- cos 4/2 + 2nr s1n4/2 cos 4/2 

2n2rn. 2 - -  2 . 2  
ka sin 4/2)b]/n sln 4/2. 

The fringe spacings (A4)l, and are plotted in Fig. 

4.8(a) and (b) for ka = 10 and 50. The zero order fringe spacings 

continuously increase by the increase of 4, and it have a reasonable 





value only at @ 2 0. The first and the second order approximations 

(A@),  and (A@)2 have very similar values, especially for ka = 50, and 

they have a minimum value around @ = 60'. In Fig. 4.9 the first and 

second order fringe spacings and the fringe spacings of the exact 

field are plotted for the range 5 - < ka - < 500 for @ Z 60°. The first 

and second order fringe spacings have the same values as that of the 

exact field for ka = 50 or larger. So the fringe spacings derived 

using ray theory are very accurate for the values of ka - > 50 which 

will give us the limit of the validity of this solution. This is 

what we expected from the beginning, because the ray theory is good 

for large values of ka, i.e., for the high frequency. So the 

approximate solutions derived using the ray theory for the scattered 

field and fringe spacings are a very good approximation for ka - > 50, 

and they have the advantage over the exact solutions because of their 

simplicity. 
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CHAPTER V 

FINE STRUCTURE OF THE 

SCATTERING FROM DIELECTRIC CYLINDERS 

5.1 Introduction 

If a linearly polarized plane electromagnetic wave illuminates a 

dielectric cylinder, the fields will be scattered all around the 

cylinder. The fields scattered by a dielectric cylinder are func- 

tions of the wavelength (A) of the illuminating wave. This 

dependence on the wavelength appears in the formulas derived in 

Chapter 111, implicitly in the factor ka, where k = 2n/A. Consider- 

ing the case where the fields reflect internally between the surfaces 

of the cylinder, when the distance between the two surfaces becomes a 

multiple of A / 2  a resonance of the field will occur, and this 

frequency is called the resonant frequency. The spacings between 

these resonant frequencies are mainly controlled by the diameter and 

index of refraction of the cylinder. The study of the resonances of 

dielectric cylinder is an outgrowth of the study of the resonances of 

dielectric spheres. The resonant frequencies of the scattering from 

dielectric spheres are observed by changing the wavelength of the 

illuminating wave, ( I m 4 )  and it was shown that the resonances occur by 

waves reflecting internally in the sphere and also by surface 

waves(5). The resonances of the dielectric cylinders were studied in 

the microwave region, because of the interest in high-Q microwave 



resonators (697). Van Blade1 studied the effect of the dielectric 

constant on the resonances of the scattering cross-section(8). Some 

of the studies reported were concerned on using the resonant frequen- 

cies to determine the diameter of dielectric cylinders (9'10). 0wen 

et al. reported a study of the internal field at resonant frequen- 

cies (11) 

In this chapter we study the resonances of dielectric cylinders 

and their effects on the scattered field. In Section 5.2 a study of 

the field at @ = O0 as a function of the variation of the wavelength 

is reported to show the resonances of the scattered field. In Sec- 

tion 5.3 the scattered field around the cylinder at-resonance and 

off-resonance is shown to study the effects of resonances on the 

scattered field pattern. The incident field polarization considered 

here is the case when the incident field is polarized parallel to the 

axis of the cylinder. 



5.2 The Resonances of a Dielectric Cylinder 

If a linearly polarized plane electromagnetic wave is propagat- 

ing along the x-axis normal to the axis of symmetry of a dielectric 

cylinder, then the fields will be scattered all around the cylinder. 

If we use a cylindrical coordinate system, where the cylinder is 

lined up such that its axis is parallel to the z-axis, and p being 

the distance away from the center of the cylinder and $ being the 

angle from the x-axis, then the field scattered by the cylinder, as 

has been derived in Chapter 111, is given by 

where 

nJ (ka)Jk(nka) - JA(ka)J (nka) 
a = -(ilm m m 
m n~m(nka)H;') (ka) - J (nka)iil) (ka) ' (5.2) 

m ' 

and where J and H are the Bessel function and Hankel function of 
m 

the first kind, respectively. 

From Eq. (5.1) the scattered intensity is given by 

a, 03 
-L 

= 2 a (kp)H(2) (kp)ei(m-r)$ 
m=-03 r=-03 m r m  r 

To get the intensity in the far-zone we substitute in Eq. (5.3) the 

asymptotic expansions for the Hankel functions for large kp. The 

asymptotic expansions of the Hankel functions are given by (12) 



and 

~ ( ~ ) ( k ~ )  - J2/nkp e -i(kp - rn/2 - n/2) 
r 

From Eqs. (5.3) to (5.5) we obtain the following expression for the 

intensity at the far-zone: 

m 
2 r ;? 

I(p,$) - -  [la012 + 2 2 (i) a a cos r$ 
Z ~ P  r= 1 0 r 

The coefficients a are functions of ka, i.e., they are functions of 
m 

the wavelength, A, where k = 2n/A. When the denominator of the 

coefficient of the series a gets to a minimum the field will be at a 
m 

resonance (lo). Inside the cylinder the fields bounce back and forth 

between the internal surfaces of the cylinder. When the diameter of 

the cylinder becomes an integer multiple of halfwavelengths, the 

field transmission becomes a maximum and there will be a resonance, 

and the frequency is a resonant frequency (13'14). If the field at 

$ = 0' is plotted from equation (5.6) as a function of the wavelength, 



A, the scattered field will have maxima at the resonant frequencies. 

In Fig. 5.1 the scattered intensity from a cylinder with a diameter = 
0 

66 pm and refractive-index n = 1.45, is plotted for 6327 A - < A - < 
0 

6552A. The scattered intensity has a series of maxima and minima. 

The maxima occur at the resonant frequencies of the cylinder. The 

0 

spacings between the resonant frequencies are M Z 13.75 A, and 

depend on the diameter of the cylinder and its refractive-index. The 

other thing which can be seen in the pattern of the scattered 

intensity is that it is modulated with a low frequency function which 

0 

has a period of about 137 A. This function also depends on the 

parameters of the cylinder in its period, and its period decreases 

with an increase in the diameter of the cylinder. 

In the following section the effect of these resonances on the 

scattered intensity pattern is shown. 





5 . 3  The Effect of the Resonancies on the Scattered Intensity Pattern 

In Chapter I11 we studied the scattered field pattern as a 

function of the angle @ for a different set of diameters and 

refractive-indices . In the previous section, we found that the 

fields will have resonances at certain wavelengths, so it is quite 

important to know what will happen to the pattern of the scattered 

field as it goes from a resonance to an off-resonance frequency. In 

Figs. 5 . 2  to 5 .5  the scattered intensity plotted as a function of the 

angle @ at the points a, b, c, d, and e is shown in Fig. 5 . 1 .  The 

points a and c are at-resonance at the peak and d is at-resonance at 

the trough of the resonance curve, while the point b is at off- 

resonance at the peak and point e is at off-resonance at the trough 

of the resonance curve. In Fig. 5 . 2  the scattered intensity is 

plotted for O 0  - < $ - < 45*, and the curves (a), (b), (c), (d) and (e) 

refer to the intensity at wavelengths a, b, c, d and e shown in 

Fig. 5 . 1  The patterns at the peak look similar to each other while 

at-resonance or off-resonance, and the patterns at the trough are 

also similar. The fields at-resonance have larger amplitude for the 

main lobe than those off-resonance as shown in Fig. 5 .1 .  The first 

side lobe located at @ Z 0.8O is larger for the fields at-resonance 

than that off-resonance, e.g., it has the value of 14.68 at a, 11.25 

at b and 15.65 at c. The first side-lobe is larger at the trough 

than that at the peak, it has the value of 14.68 at a, and 59.26 at 

d. The second side-lobe has also a larger amplitude at-resonance 

than at off-resonance, and it is very small at the trough while it is 

very large at the peak. So the main-lobe and the second side-lobe 
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Fig. 5.2 The scattered intensity pattern from a dielectric cylinder plotted for 

different wavelengths at the peak of the resonance curve; (continued on 
next page). 



F i g .  5 . 2  Continued. (d) and ( e )  the  scat tered i n t e n s i t y  pattern p l o t t e d  f o r  two 
d i f f erent  wavelenghts a t  the  trough of the resonance curve. 



are large at the peak and they decrease as we go towards the trough, 

while on the contrary the first side-lobe is small at the peak and 

very large at the trough. The main lobe and the first and second- 

side lobes decrease in amplitude as we go from at-resonance to off- 

resonance at the peak. Also the position of these side-lobes does 

change as we change the wavelength. The rest of this range 2O - < @ 5 

45O is about the same in all five curves. Also in the range O 0  < t$ - 

45O the number of fringes is the same (60 fringes) at all the wave- 

lengths considered. In Fig. 5 . 3  shows the scattered intensity 

plotted in the range 45' - < @ 5 90°, at the five different wavelengths 

shown in Fig. 5 .1 .  The main difference noticed between the five 

intensity patterns is in the envelope modulating the patterns. 

At-resonance the envelope has larger variations in its amplitude than 

that for the case off-resonance, and it has that behavior at the peak 

as well as at the trough. The number of fringes in this range are 

found to be larger for the at-resonance case (72 fringes) than at the 

off-resonance case (71 fringes). In Fig. 5 . 4  the scattered intensity 

patterns are plotted at the five wavelengths considered in Fig. 5 . 1  

in the range 90° < @ < 135O. This region can be divided into two - - 

portions: 90° 5 t$ 5 110° and 110° < @ < 135O, in the second portion - ?.d 

there is a very distinguished difference between the cases at- 

resonance and off-resonance, in the patterns at-resonance the inten- 

sity has a large variation in its amplitude, while at off-resonance 

the intensity varies very little around its average. The average of 

the intensity at-resonance and off-resonance is quite the same in 

this range. In the region 90° 2 @ < 110° the main difference noticed - 



Fig.  5 . 3  The scattered i n t e n s i t y  pattern from a d i e l e c t r i c  cylinder p lo t ted  f o r  
di f ferent  wavelengths a t  the peak of  the resonance curve; (continued on 
next page). 





Fig .  5 . 4  The scattered i n t e n s i t y  pattern from a d i e l e c t r i c  cyl inder p lo t ted  f o r  
di f ferent  wavelengths a t  the peak of the resonance curve; (continued on 
next page). 





is in the peak at Q, Z 103O at off-resonance this peak is quite 

different from the others in the pattern it has a very little struc- 

ture in it. In Fig. 5.5 the intensity patterns are plotted as a 

function of the angle Q, at the five wavelengths considered. In the 

range 135O - < Q, 2 150° the pattern has the same characteristics as in 

the range 110 5 Q, 5 135'. In the range 150° - < Q, - < 180°, the maximum 

of the peak is positioned about the same place in all the curves at 

Q, r 153.5O, but its value is larger at-resonance than at off- 

resonance. 

The value of the intensity contained in each of these patterns 

is the same because we illuminate the cylinder with the same unit 

amplitude incident field. So when the field is at-resonance, the 

intensity will concentrate around Q, = 0°, which will decrease the 

intensity in the range 45O 5 Q, 5 180° to balance for the whole value 

of the intensity. And the main difference between the intensity 

pattern at the peak and the trough is in the amplitude of the main 

and the first few side-lobes as shown earlier. 

So the resonances of the fields are affecting the pattern of the 

scattered intensity in the way it shapes up in the different regions 

of the angle Q,. 



Fig. 5.5 The scattered intensity pattern from a dielectric cylinder plotted for 
different wavelengths at the peak of the resonance curve; (continued on 
next page). 
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CHAPTER VI 

EXPERIMENTS 

6.1 Introduction 

An experimental investigation of the scattering of light from 

large circular conducting and dielectric cylinders was performed to 

illustrate the theory reported in Chapters I1 and 111. 

In Section 6.2 the experimental scattered intensity pattern from 

conducting and dielectric cylinders are photographed for the range 

0' < @ < 180°. These photographs show the overall characteristics of - w 

the scattered pattern. The sources responsible for each part of the 

scattered pattern are discussed. In Section 6.3 the experimental 

system is described. In Section 6.4 plots of the scattered intensity 

pattern measured experimentally are compared with the theoretical 

plots from the formulas of Chapters I1 and 111, for both conducting 

and dielectric cylinders. Comparisons between the scattering pat- 

terns resulting from the different polarizations of the incident 

field are shown in Section 6.5. 



6 . 2  Photographs  o f  t h e  S c a t t e r e d  I n t e n s i t y  P a t t e r n  

I n  t h i s  s e c t i o n  photographs  o f  t h e  i n t e n s i t y  p a t t e r n  a r e  shown. 

Then t h e  f i e l d s  g e n e r a t i n g  d i f f e r e n t  p o r t i o n s  o f  t h e  i n t e n s i t y  p a t -  

t e r n  a r e  d i s c u s s e d .  Unclad o p t i c a l  f i b e r s  a r e  used f o r  t h e  d i e l e c -  

t r i c  c y l i n d e r  exper iments .  An o p t i c a l  f i b e r  c o a t e d  w i t h  aluminum i s  

used f o r  t h e  conduc t ing  c y l i n d e r  exper iments .  

I n  F i g s .  6 . l ( a )  and 6 . l ( b )  photographs  o f  t h e  whole s c a t t e r i n g  

i n t e n s i t y  p a t t e r n  i n  t h e  range O 0  - < 0 ,-, < 180° a r e  shown f o r  conduc t ing  

and d i e l e c t r i c  c y l i n d e r s ,  r e s p e c t i v e l y .  For  t h e  conduc t ing  c y l i n d e r ,  

a s  s e e n  i n  F i g .  6 . l ( a ) ,  t h e  p a t t e r n  h a s  a  main peak a t  9 = 0° ,  a  

f r i n g e  p a t t e r n  i n  t h e  range of O 0  5 @ 5 30°,  and a  con t inuous  i n t e n -  

s i t y  p a t t e r n  i n  t h e  r e s t  o f  t h e  range o f  4. The f i e l d  s c a t t e r e d  by 

t h e  conduc t ing  c y l i n d e r  can be  d i v i d e d  i n t o  t h r e e  d i f f e r e n t  r e g i o n s :  

( a )  For  O 0  5 @ 5 5O. The f i e l d s  a r e  mainly  g e n e r a t e d  by t h e  d i f -  

f r a c t e d  f i e l d s  from t h e  s i d e s  o f  t h e  c y l i n d e r .  

( b )  For  5O 5 @ 5 90'. The f i e l d s  a r e  g e n e r a t e d  by t h e  i n t e r f e r e n c e  

between t h e  d i f f r a c t e d  f i e l d s  and t h o s e  r e f l e c t e d  from t h e  s i d e s  

of t h e  c y l i n d e r .  

( c )  For  90° 5 (I 5 180°. The f i e l d s  a r e  g e n e r a t e d  by t h e  s u r f a c e  

c u r r e n t .  

For  t h e  d i e l e c t r i c  c y l i n d e r ,  a s  s e e n  i n  F i g .  6 . l ( b ) ,  t h e  p a t t e r n  

h a s  f r i n g e s  i n  t h e  whole range o f  @. The p a t t e r n  h a s  wide v a r i a t i o n s  

i n  i n t e n s i t y  f o r  t h e  d i f f e r e n t  r anges  o f  @. The s c a t t e r e d  f i e l d  o f  

t h e  d i e l e c t r i c  c y l i n d e r  can be  d i v i d e d  i n t o  f o u r  d i f f e r e n t  r e g i o n s :  

( a )  For  O 0  < 0 5 5O. The f i e l d s  a r e  mainly  g e n e r a t e d  by d i f f r a c t i o n  

from t h e  edges  of t h e  c y l i n d e r .  



Fig. 6.1 The scattered intensity pattern is photographed for the whole range of $, 
(a) for a conducting cylinder of ka = 327; (continued on next page). 





(b)  For O0 ,., < $ 5 90'. The f i e l d s  a r e  generated by i n t e r f e r e n c e  

between t h e  r e f r a c t e d  and r e f l e c t e d  r ays .  

( c )  For 90° N < 4, - < 150'. The f i e l d s  a r e  generated by i n t e r f e r e n c e  

between t h e  r e f l e c t e d  rays  and those  r e f r a c t e d  rays which have 

gone through more than  one i n t e r n a l  r e f l e c t i o n .  

(d)  For 150° 5 4, 5 180°. The f i e l d s  a r e  generated by i n t e r f e r e n c e  

between t h e  r e f l e c t e d  rays  and t h e  r e f r a c t e d  rays  which have 

gone through one i n t e r n a l  r e f l e c t i o n .  

These reg ions  a r e  no t  sha rp ly  def ined  because they  over lap  each 

o t h e r ,  b u t  t hose  a r e  t h e  reg ions  where they  dominate most. These 

regions a l s o  change when t h e  diameter  of t h e  cy l inde r  changes, e . g . ,  

t h e  reg ion  where t h e  f i e l d s  a r e  genera ted  by d i f f r a c t i o n  w i l l  

i nc rease  by t h e  decrease of t h e  d iameter ,  



6 . 3  System D e s c r i p t i o n  

Diagrams o f  t h e  o p t i c a l - h y b r i d  sys tems used i n  t h e  exper iment  

a r e  shown i n  F i g s .  6 . 2  and 6 . 3 .  The e x p e r i m e n t a l  s e t u p  shown i n  

F i g .  6 . 2  c o n s i s t s  o f  a  S p e c t r a  P h y s i c s  Model 146P He-Ne l a s e r ,  oper -  

a t i n g  a t  A = 63288; a  S p e c t r a  P h y s i c s  p o l a r i z e r ;  a  beam expander ;  and 

a n  i r i s .  The c y l i n d e r  under  t e s t  i s  mounted i n  t h e  c e n t e r  o f  a  

c y l i n d r i c a l  chamber, which has  a n  open s l o t  o f  l e n g t h  l a r g e r  t h a n  

h a l f  t h e  c i rcumference  o f  t h e  chamber. On t h e  t o p  o f  t h e  chamber a  

Daedal I n c .  Model 20601 r o t a r y  s t a g e  i s  mounted. An arm w i t h  a n  

ava lanche  pho tod iode  (RCA C30902E) a t  i t s  end i s  mounted on t h e  

r o t a r y  s t a g e  i n  such  a  way a s  t o  a l l o w  t h e  photodiode t o  r o t a t e  i n  a  

c i r c l e  c e n t e r e d  on t h e  c y l i n d e r  under  t e s t .  The l i g h t  e m i t t e d  by t h e  

l a s e r  i s  a  l i n e a r l y  p o l a r i z e d  p l a n e  wave, and i t s  p l a n e  of p o l a r i z a -  

t i o n  can b e  changed u s i n g  t h e  p o l a r i z e r .  The beam expander  e n l a r g e d  

t h e  p l a n e  wave e m i t t e d  by t h e  l a s e r  t o  a  d i a m e t e r  of abou t  5 mm. The 

expanded p l a n e  wave i l l u m i n a t e s  t h e  c y l i n d e r  under t e s t ,  and t h e  

r e s u l t i n g  s c a t t e r e d  wave p r o p a g a t e s  i n  a l l  d i r e c t i o n s  around t h e  

c y l i n d e r .  A p o r t i o n  of t h i s  s c a t t e r e d  wave w i l l  p r o p a g a t e  th rough  

t h e  s l o t  o f  t h e  chamber f o r  -10' - < 0 5 190°. The ava lanche  photo-  

d e t e c t o r  was r o t a t e d  i n  s t e p s  i n  t h e  range - l o 0  - < @ 5 178O, t o  l o c a t e  

e x a c t l y  t h e  p o s i t i o n  o f  t h e  main peak  a t  0 = O 0  u s i n g  t h e  symmetry o f  

t h e  p a t t e r n  around 0 = 0'. The e l e c t r i c  s i g n a l  g e n e r a t e d  by t h e  

p h o t o d i o d e ,  cor responding  t o  t h e  i n t e n s i t y  o f  t h e  l i g h t  i l l u m i n a t i n g  

it, was a m p l i f i e d  and d i g i t i z e d  by t h e  A / D  c o n v e r t o r .  The Cromemco 

2-2 microcomputer t r i g g e r s  t h e  s t e p p i n g  motor c o n t r o l ,  which i n  t u r n  

d r i v e s  t h e  s t e p p i n g  motor of t h e  r o t a r y  s t a g e .  A t  each  s t e p ,  t h e  
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Fig .  6.2 The photodiode optical-hybrid system used in the experimental investiga- 
tions. 



r o t a r y  s t a g e  d rove  t h e  pho tod iode  a  s p e c i f i e d  d i s t a n c e  around t h e  

sample.  A f t e r  a  s p e c i f i c  t ime  i n t e r v a l ,  c o n t r o l l e d  by t h e  u s e r ,  t h e  

microcomputer t r i g g e r s  t h e  A/D c o n v e r t o r  t o  sample t h e  e x i s t i n g  

s i g n a l  from t h e  pho tod iode .  T h i s  t ime  i n t e r v a l  between t h e  movement 

o f  t h e  pho tod iode  and t h e  s t a r t  o f  s i g n a l  convers ion  i s  t o  i n s u r e  

t h a t  t h e  pho tod iode  v i b r a t i o n s  caused by i t s  movement from one 

p o s i t i o n  t o  t h e  n e x t  were comple te ly  damped. The i n t e n s i t y  d a t a  

conver ted  by t h e  A/D c o n v e r t o r  a r e  t h e n  s t o r e d  on a  f l o p p y  d i s k .  

When a l l  t h e  d a t a  p o i n t s  a r e  c o l l e c t e d ,  t h e  i n f o r m a t i o n  i s  t r a n s -  

f e r r e d  t o  t h e  PDP 11/34 minimcomputer, which has  more c a p a b i l i t i e s .  

The minicomputer w i l l  perform t h e  n e c e s s a r y  d a t a  p r o c e s s i n g  and w i l l  

p l o t  t h e  i n t e n s i t y  p a t t e r n s .  

The r e s o l u t i o n  of t h e  r o t a r y  s t a g e  i s  A@ = O.OlO/s tep  w h i l e  t h e  

d i a m e t e r  o f  t h e  a c t i v e  a r e a  o f  t h e  photodiode i s  - 0 . 5  mm. S i n c e  t h e  

p h o t o d e t e c t o r  i s  mounted 50 cm from t h e  c e n t e r  o f  t h e  chamber, it 

l i m i t s  t h e  r e s o l u t i o n  t o  -0.06'. The r e s o l u t i o n  of t h e  sys tem can be  

i n c r e a s e d  by p u t t i n g  a  p i n h o l e  i n  f r o n t  o f  t h e  d e t e c t o r ,  b u t  t h a t  i n  

t u r n  w i l l  reduce t h e  s i g n a l - t o - n o i s e  r a t i o .  

I n  F i g .  6 . 3  a n  a l t e r n a t i v e  s e t u p  of t h e  exper iment  i s  shown. I n  

t h i s  sys tem t h e  s c a t t e r e d  l i g h t  i s  r ecorded  on a  p h o t o g r a p h i c  f i l m  

mounted on t h e  s l o t t e d  chamber, and i t s  p o s i t i o n  i s  r e g i s t e r e d  by 6  

p i n s  which a r e  mounted on t h e  c y l i n d r i c a l  chamber. A f t e r  p r o c e s s i n g ,  

t h e  f i l m  was scanned by a  Joyce-Loebl Model 111-CS double  beam 

r e c o r d i n g  microdens i tomete r  t o  o b t a i n  a  p l o t  of t h e  d e n s i t y  o f  t h e  

f i l m .  The d e n s i t y  curves  a r e  t h e n  d i g i t i z e d  by a n  HP-7221B d i g i t z e r  

c o n t r o l l e d  by a  mini-computer PDP 11 /34 ,  and t h e  d a t a  a r e  s t o r e d  on 



a z  
w a 
ma. 

X 
W 



a disk. The density data is then converted to intensity data using 

the method shown in Appendix C. The H-D curve of the film is fitted 

using a polynomial, which is used in converting density to intensity 

data. The intensity data are stored in the minicomputer for further 

processing and plotting. 

In Table 6.1 a comparison between the two experimental systems 

is shown. The photodetector system has the advantage of collecting 

intensity data directly, and of giving an almost real time record. 

While the film/microdensitometer combination system has the advantage 

of providing a continuous record of the density and of having a high 

angular resolution, which is higher than that of the photodiode. But 

we preferred to use the photodiode system for the overall advantages 

such as its reliability and ability to obtain a direct record of the 

intensity. To show the value of using the film/microdensitometer 

system, and to illustrate that it gives a very comparable result to 

that obtained using the photodetector system, some of these results 

are shown in Figs. 6.4(a), (b) and (c). In Fig. 6.4(a) the density 

curve of the film recorded for the intensity pattern of a dielectric 

cylinder in the range 45O 5 I$ 5 90° is plotted. In 6.4(b)the corre- 

sponding intensity pattern converted from the density data, using the 

method demonstrated in Appendix C, is shown, and it is very compar- 

able with the intensity plot using the photodiode system which is 

plotted in Fig. 6.4(c). The intensity pattern measured using both 

systems is the same for all characteristics of the pattern. This 

shows us that this method of measurement is very valuable, and also 

proves that it is a very compatible alternative system of measure- 





Table 6.1 

Comparison Between the Photodiode and the 
Film/Microdensitometer Systems 

Photodiode-System Film/Microdensitometer System 

1. Collect intensity data 1. Collect the intensity data as 
directly. a density of the film. 

2. Almost a real time system. 2. To obtain intensity data, the 
film will be developed and then 
the density plot is provided by 
the micro-densitometer, the 
density curves are digitized and 
finally converted to intensity. 

3. Produces a discrete record 3. A continuous record is stored 
for the data. on the film. 

4. The accuracy of the angular 4. The accuracy of the angular 
position of the photodiode data depends only on the 
depends on the accuracy of centering of the cylinder with 
the rotary stage and the respect to the chamber. 
centering of the cylinder 
undertest. 

5. The angular resolution is 5. The angular resolution is 
limited by the area of the limited by the resolution of 
photodiode and the the film. 
resolution of the rotary 
stage. 

6. The accuracy of the intensity 6. The accuracy of the intensity 
data is limited by the data is limited by: a) the 
nonlinearity of the nonlinearity of the film 
photodiode. (exposure times, development 

time, . . . ) ,  b) the reading of 
the microdensitometer, (c) the 
digitization and conversion 
process. 



ment. The r e s u l t s  us ing  t h i s  system f o r  t h e  experiments d iscussed  i n  

t h i s  chapter  a r e  presented  i n  Appendix D .  



6.4 Plots of the Scattered Intensity Pattern 

In this section we present the experimental results collected 

using the photo-detector system for the conducting and the dielectric 

cylinders, and to compare them with the exact theoretical results. 

Parallel polarization is considered in this section. A comparison of 

polarizations is described in Section 6.5 below. 

The main characteristic of the intensity pattern of the light 

scattered from a conducting cylinder, as shown in the photographs of 

Fig. 6.1, is its fringe pattern which extends only to $ E 30° after 

which the pattern will be just a continuous intensity pattern with no 

structure. In Fig. 6.5(a) the scattered intensity pattern is plotted 

for O0 - < @ - < 45O using the data collected with the photodiode system. 

The pattern has a main lobe centered at $ = O0 and a number of side- 

lobes, which extend to @ Z 30°. For angles greater than $ E 15O the 

contrast of the fringes becomes very small, which makes them hard to 

see in the scale used. In Fig. 6.5(b) the theoretical plot is pre- 

sented for the scattered intensity from a conducting cylinder using 

the formulas obtained in Chapter 11. The diameter of the conducting 

wire used in the experiment is measured using a micrometer (ka E 

327), then this value is used for ka in the calculations. From 

Figs. 6.5(a) and (b) the agreement between the theory and experiment 

is evident. A comparison between the theoretical and experimental 

results for the range 45O 5 @ - < 180° will be shown in Appendix D. 

In Figs. 6.6(a) and (b) the intensity pattern scattered by a 

dielectric cylinder is plotted. The experimental and theoretical 



Fig. 6.5 The scattered intensity pattern is plotted using the exact solution given 
by Eq. (2.34) for a parallel polarized field for a conducting cylinder 
with ka = 327; (continued on next page). 









plots have similar patterns and the number of fringes for O0 5 @ < 
45O is 61 for both plots. The positions of the fringes are slightly 

different between the theoretical and experimental plots and that is 

because there might be a slight difference in either or both the 

wavelength and refractive index as explained in Chapters I11 and V. 

The number of fringes for 0' - < @ < 90° is 134 for the theoretical 

plot and only 133 for the experimental plot. The difference in the 

number of fringes might be caused by three factors: 

(1) an error in measuring the diameter of the cylinder using the 

micrometer where the accuracy of ka will be E + 6. 
(2) an error in positioning the cylinder in the center of the 

cylindrical chamber where a 1 mm deviation in the position of 

cylinder along the x-axis will result in a deviation of 0.32% of 

the value of the angle @. 

(3) An error in the wavelength used in the calculations because as 

shown in Chapter V the number fringes is different at-resonance 

and at off-resonance wavelengths. 

So these factors will contribute to the inaccuracy of the experimen- 

tal results which produces the main differences between the theoreti- 

cal and experimental results. 

In Figs. 6.7(a) and (b) the scattered intensity by a dielectric 

cylinder of ka Z 950 is plotted from experimental and theoretical 

results, respectively, for O0 <= I$ 5 30°. The two patterns are very 

similar in their character, amplitude, and the position of the 

fringes. The number of fringes of the experimental plot is 110, 

while the theoretical plot has 108 fringes. These differences might 
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be explained by the same factors introduced in the previous para- 

graph. In Fig. 6.7(c) the intensity is plotted for 150' 5 @ 5 180°, 

which is the backscattered field. The two curves are quite similar, 

and they peak at the same position, which indicates that both the 

theoretical and experimental plots have the same index of refraction, 

n = 1.45. 

These plots of the experimental and theoretical data illustrate 

the agreement between the two results, except for minor differences 

which are expected because of the inaccuracy of the experimental 

measurements. A comparison between the theoretical and experimental 

results for the rest of the range of the scattering angle I$ are 

reported in Appendix D. 



6.5 The E f f e c t  of t h e  D i f f e r e n t  P o l a r i z a t i o n s  on t h e  Sca t t e r ed  In ten-  

s i t y  P a t t e r n  

The s c a t t e r e d  i n t e n s i t y  p a t t e r n  from a  cy l inde r  depends on t h e  

p o l a r i z a t i o n  of t h e  i n c i d e n t  f i e l d .  For t h e  conducting cy l inde r  case  

t h e  amplitude of t h e  s u r f a c e  c u r r e n t  d e n s i t y  depends on t h e  po la r i za -  

t i o n  of t h e  i n c i d e n t  f i e l d ,  a s  shown i n  Chapter 11. When t h e  i n c i -  

dent  f i e l d  i s  l i n e a r l y  p o l a r i z e d  p a r a l l e l  t o  t h e  a x i s  of symmetry of 

t h e  c y l i n d e r ,  t h e  su r f ace  c u r r e n t  d e n s i t y  generated w i l l  flow a l s o  i n  

a  d i r e c t i o n  p a r a l l e l  t o  t h e  a x i s  of t h e  c y l i n d e r ,  and it w i l l  

decrease  t o  a  n e g l i g i b l e  amplitude near  t h e  boundary of t h e  shadow 

region .  When t h e  i n c i d e n t  f i e l d  i s  l i n e a r l y  po la r i zed  normal t o  t h e  

a x i s  of t h e  c y l i n d e r ,  t h e  su r f ace  c u r r e n t  d e n s i t y  generated flows 

around t h e  a x i s  of t h e  c y l i n d e r ;  and it has a  l a r g e  amplitude beyond 

t h e  boundary of t h e  shadow region ,  which al lows it t o  c i r c u l a t e  

around t h e  cy l inde r  before  it becomes n e g l i g i b l e .  The su r f ace  

c u r r e n t  d e n s i t y  i s  t h e  main source which genera tes  t h e  s c a t t e r e d  

f i e l d ;  and s i n c e  it has d i f f e r e n t  va lues  f o r  t h e  d i f f e r e n t  po la r -  

i z a t i o n s ,  t h e  s c a t t e r e d  f i e l d  f o r  t h e  two d i f f e r e n t  p o l a r i z a t i o n s  

w i l l  be d i f f e r e n t .  I n  F i g s .  6 . 8 ( a )  and (b)  t h e  s c a t t e r e d  i n t e n s i t y  

i s  p l o t t e d  from t h e  exac t  s o l u t i o n  f o r  t h e  normal and p a r a l l e l  

p o l a r i z a t i o n s ,  r e s p e c t i v e l y ,  f o r  a p e r f e c t l y  conducting cy l inde r  wi th  

ka = 327 i n  t h e  range 5O S @ 5 60'. The amplitude of t h e  i n t e n s i t y ,  

f o r  t h e  p a r a l l e l  i n c i d e n t  c a s e ,  i s  l a r g e r  than  t h a t  f o r  t h e  normal 

inc idence  case i n  t h e  range O 0  5 @ 5 20°; f o r  l a r g e r  angles  they  both  

tend t o  have t h e  same peak va lues .  The two p a t t e r n s  have t h e  same 

number of f r i n g e s  i n  t h e  range 0  <= @ 5 20°. The main d i f f e r e n c e s  







between the two patterns are that the contrast of the fringes is 

larger for the normal incidence case beyond @ = 20°; and that the 

sidelobes, for the parallel incidence case, vanish around @ % 30°, 

while they still exist even beyond 60° in the other case of polar- 

ization. In Figs. 6.8(c) and (d) the corresponding experimental 

plots to those in Figs. 6.8(a) and (b) are plotted. The main differ- 

ence between the two patterns is that the fringes vanish around 30° 

for the parallel incidence case while they exist in the whole range 

shown for the normal incident case. The experimental and theoretical 

plots are in good agreement for E4, while the fringe contrast is much 

smaller for the experimental plot than for that of the theoretical 

I one, for E case. The main reason for this difference in patterns is 

5 that aluminum has a finite conductivity (o Z 4.88 x 10 at A Z 

0.65 vm), while the theoretical plots are for a perfectly conducting 

cylinder. 

For the dielectric cylinder, the intensity pattern is plotted in 

Figs. 6.9(a) and (b) for E and E ~ ,  respectively, using exact theory, 

and in Figs. 6.9(c) and (d) using experimental data. The theoretical 

and experimental data are in good agreement for both cases of polar- 

ization. The number of sidelobes is the same for both polarization 

in the range 0 <= @ 5 60° (86 sidelobes); but for the range 60° 5 

@ 2 90° the intensity pattern for E4 has 48 sidelobes, while the 

intensity pattern for EL has 52 sidelobes. Another significant 

// 
difference between the two patterns is that the fringe contrast for E 

I // is much larger than that for E . For E the intensity amplitude has 

1 an envelope function, which starts at @ 2 65O. For E the intensity 
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Fig.  6 . 9  The scattered intensi ty  pattern for a d i e l ec t r i c  cylinder with ka = 327 
plotted from the exact solut ion formulas; (continued on next page). 
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amplitude is modulated with a quite low frequency function, the 

notches of the modulating signal can be seen, e.g., at @ = 61°, 67O, 

70°, . . . So there are a few notable differences between the two 

different polarizations. 

The experimental intensity pattern for a very large dielectric 

circular cylinder (ka = 945) is plotted for the two different polar- 

izations in Figs. 6.10(a) and (b). There are 247 sidelobes in the 

range O0 6 @ 5 60° for both polarizations. In the range shown 

(60° 6 @ 6 90°), the intensity pattern for E' has 139 sidelobes, 

while the intensity pattern for E' has 157 sidelobes. Also the 

I 
fringe contrast for E* is much larger than those for E , e.g. con- 

// trast at @ = 60' is almost three times larger for the E pattern than 

I 
that for E . 

The discussions in the previous sections show that the scattered 

intensity pattern depend on the material of the cylinder, the polar- 

ization of the incident field, and the factor ka. The scattered 

intensity pattern in all circumstances has a main lobe and a number 

of sidelobes, and the width of the main lobe and the spacing between 

the sidelobes both are inversely proportional to the factor ka. The 

dielectric cylinder has sidelobes over all @, while the conducting 

cylinder has sidelobes only in limited range of @ which decreases 

with increasing of ka. The sidelobes of the intensity pattern have 

spacings which decrease with increasing Q to a minimum around 

@ E 60°, while the spacings of the sidelobes of the conducting 

cylinder have constant values as function of @. The intensity pat- 

tern of the dielectric cylinder has the same number of sidelobes in 





t h e  range 0 5 @ 5 60° f o r  bo th  p o l a r i z a t i o n s  of t h e  s c a t t e r e d  f i e l d ,  

whi le  f o r  t h e  normal p o l a r i z a t i o n  case  t h e  number of s ide lobes  a r e  

l a r g e r  i n  t h e  range 60 5 @ 5 90° than  those  f o r  t h e  p a r a l l e l  po la r -  

i z a t i o n  case .  On t h e  o t h e r  hand t h e  f r i n g e  c o n t r a s t  i s  much l a r g e r  

f o r  t h e  p a r a l l e l  p o l a r i z a t i o n  case  than  t h a t  f o r  t h e  normal po la r -  

i z a t i o n  case .  For t h e  conducting cy l inde r  t h e  s ide lobes  extend over 

a  l a r g e r  range of @ f o r  t h e  normal p o l a r i z a t i o n  case  than  t h a t  f o r  

t h e  p a r a l l e l  p o l a r i z a t i o n  case .  



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

In summary we have studied the rigorous solutions of the scat- 

tered field from cylinders in order to develop a better understanding 

of the detailed characteristics of this scattering and the effects of 

the different parameters of the cylinder, the polarization of the 

incident field and the change in the wavelength of the illuminating 

wave. 

In this thesis we also consider approximate methods of solution. 

Workers in modern optics use the simpler methods of ray optics and 

Fourier optics; these techniques lead to direct results, although of 

course they are approximate. In our research, we developed an 

adequate approximate solution for dielectric and conducting cylin- 

ders, after first showing that the zero-order Fourier optics solution 

is not very good. Our approximate solution is shown to be in good 

accord with the exact calculations with regard to forward scattering 

amplitudes and fringe spacings. 

The scattered field from a conducting cylinder when the incident 

field is linearly polarized parallel to the axis of the cylinder is 

given by Eq. ( 2 . 3 4 ) .  The scattered field patterns are plotted in 

Fig. 2 . 3  for the parallel polarization case. When the incident field 

is polarized normal to the axis of the cylinder the scattered field 

is given by Eq. ( 2 . 4 2 )  and it is plotted in Fig. 2.5. The surface 



c u r r e n t  d e n s i t y  i s  given by Eqs. ( 2 . 4 6 )  and ( 2 . 4 8 )  f o r  t h e  p a r a l l e l  

and normal p o l a r i z a t i o n s ,  r e s p e c t i v e l y .  The s u r f a c e  c u r r e n t  d e n s i t y  

i s  p l o t t e d  i n  F i g s .  2 .6  and 2 . 7 .  The f r i n g e  spacings of t he  s c a t -  

t e r e d  f i e l d  a r e  p l o t t e d  i n  F ig .  2 . 8 ,  and it i s  found t h a t  t h e i r  

va lue  decreases  wi th  t h e  inc rease  of ka. The s c a t t e r i n g  angle  a t  

which t h e  f r i n g e s  te rmina te  i s  smal le r  f o r  t h e  p a r a l l e l  p o l a r i z a t i o n  

case than  f o r  t h e  normal p o l a r i z a t i o n  case ,  and it a l s o  decreases  by 

t h e  inc rease  of ka a s  it can be seen i n  F ig .  2 . 9 .  

I n  Chapter I11 t h e  f i e l d  s c a t t e r e d  by a  d i e l e c t r i c  cy l inde r  wi th  

t h e  i n c i d e n t  f i e l d  po la r i zed  p a r a l l e l  and normal t o  t h e  a x i s  of t h e  

cy l inde r  i s  given by Eqs. ( 3 . 1 4 )  and ( 3 . 2 5 ) ,  r e s p e c t i v e l y .  I n  F ig .  

3.2  t h e  s c a t t e r e d  f i e l d  p a t t e r n  i s  p l o t t e d  f o r  t h e  case  when t h e  

i n c i d e n t  f i e l d  i s  l i n e a r l y  po la r i zed  p a r a l l e l  t o  t h e  a x i s  of t h e  

c y l i n d e r ,  while  it i s  p l o t t e d  i n  F ig .  3 .3  f o r  t h e  normal p o l a r i z a t i o n  

case .  The dependence of t h e  s c a t t e r e d  p a t t e r n  on t h e  r e f r a c t i v e -  

index of t h e  cy l inde r  i s  demonstrated on F ig .  3 . 5 .  I t  i s  shown i n  

F igs .  3 . 6  and 3.7 t h a t  t h e  p o s i t i o n  of t h e  peak of t h e  backsca t t e r ed  

f i e l d  depends mainly on t h e  r e f r ac t ive - index  of t h e  cy l inde r .  A 

comparison between t h e  s c a t t e r e d  f i e l d  p a t t e r n s  of t h e  conducting and 

d i e l e c t r i c  cy l inde r s  i s  given i n  Sec t ion  3.5 and Table 3 . 1 .  

I n  Chapter I V  approximate s o l u t i o n s  f o r  t h e  conducting cy l inde r  

a r e  given by Eqs. ( 4 . 5 )  and ( 4 . 1 6 ) .  The s c a t t e r e d  f i e l d  p a t t e r n  i s  

p l o t t e d  i n  F i g .  4 . 4 .  The approximate s o l u t i o n  f o r  t h e  f i e l d  s c a t -  

t e r e d  by a  d i e l e c t r i c  cy l inde r  i s  given by Eq. ( 4 . 2 8 )  and it i s  

p l o t t e d  i n  F i g .  4 . 7 .  An approximate s o l u t i o n  f o r  t h e  f r i n g e  spacings 



of the dielectric cylinder is given by Eqs. (4.37) to (4.39) and is 

plotted in Figs. 4.9 and 4.10. 

In Chapter V the fine structure of the scattering from dielec- 

tric cylinders is studied and a plot for the intensity at I$ = 0' as a 

function of the wavelength is given in Fig. 5.1. The intensity 

patterns for a 5 different wavelengths at-resonance and off-resonance 

at the peak and the trough of the resonance curve are plotted in 

Figs. 5.2 to 5.5. The effects of the resonances on the shape of the 

patterns are discussed. 

In Chapter VI photographs of the scattered intensity patterns 

for conducting and dielectric cylinders are shown in Figs. 6.l(a) and 

(b), respectively. The two different systems used in the experiments 

are shown in Figs. 6.2 and 6.3 and a comparison between them is given 

in Table 6.1. The intensity patterns for conducting and dielectric 

cylinders measured experimentally are plotted in Figs. 6.5 to 6.7. A 

comparison between the scattered patterns for the different polariza- 

tions of the incident field is shown in Figs. 6.8 to 6.10. In all 

the plots in Chapter VI the theoretical curves are plotted with the 

experimental ones to show their agreement. 



APPENDIX A 

NUMBER OF TERMS OF THE SERIES 

NEEDED FOR THE SUMMATION 

I n  t h e  p r e c e d i n g  c h a p t e r s  we have found t h a t  t h e  s o l u t i o n s  f o r  

t h e  s c a t t e r e d  f i e l d  from a  c i r c u l a r  c y l i n d e r  a r e  r e p r e s e n t e d  by a n  

i n f i n i t e  s e r i e s .  To p l o t  t h e s e  f i e l d s  we can sum o n l y  a  f i n i t e  

number o f  t e r m s ,  s o  it i s  i m p o r t a n t  t o  know how many terms (approx i -  

mate ly )  of t h e  s e r i e s  a r e  needed t o  g e t  a n  a c c u r a t e  v a l u e  f o r  t h e  

s e r i e s .  I t  has  been mentioned by King and WU(') t h a t  t h e  number o f  

t e rms  needed a r e  around t h e  v a l u e  of ka .  I n  t h i s  appendix an  

a n a l y t i c a l  d e r i v a t i o n  of t h e  approximate  number of terms o f  t h e  

s e r i e s  needed t o  g e t  an  a c c u r a t e  r e s u l t  f o r  b o t h  conduct ing and 

d i e l e c t r i c  c y l i n d e r s  a r e  p r e s e n t e d .  

A . l  Conducting c y l i n d e r s  

To g e t  a n  a c c u r a t e  v a l u e  f o r  t h e  summation o f  t h e  s e r i e s ,  we 

need t o  sum enough terms u n t i l  t h e  c o e f f i c i e n t  of t h e  s e r i e s  becomes 

n e g l i g i b l e .  The c o e f f i c i e n t  of t h e  s e r i e s  i n  E q .  (2 .36)  i s  

The a s y m p t o t i c  expans ions  f o r  t h e  B e s s e l  and Hankel f u n c t i o n s  f o r  

l a r g e  v a l u e s  of m a r e  g i v e n  by ( 2 )  



and 

The Hankel function with argument kp, which is very large, will be 

given by the following asymptotic expansion (2) 

By substituting Eqs. (A2) to (A4) into Eq. (Al) we get the following 

- - 1 /2 .i(kp - mn/2 - n/4) 
'm e ka -2m J nkp , 

1 - 2i (- -) 
2 m 

therefore IC I will have a negligible value when 
m 

which will lead to 

e 
m > - ka. 

2 



From (A7) we can see  t h a t  t h e  number of terms necessary t o  g ive  an 

accura t e  r e s u l t  of t h e  sum of t h e  s e r i e s  i s  s l i g h t l y  l a r g e r  than  t h e  

va lue  of ka, which has been shown from t h e  p l o t s  of t h e  Log of t h e  

c o e f f i c i e n t  i n  Chapter 11. And it w i l l  t ake  t h e  same va lue  a l s o  f o r  

t h e  normal p o l a r i z a t i o n  case .  

A.2 D i e l e c t r i c  Cylinders  

From Chapter I11 we can w r i t e  t h e  c o e f f i c i e n t  of t h e  s e r i e s  a s  

it i s  given by Eq. (3.10) 

where 

and 

x = ka, y  = nka. 

S u b s t i t u t i n g  i n  Eqs. (A9) and (A10) from Eqs. (A2) and (A3) f o r  t h e  

asymptotic expansions of t h e  Bessel  and Hankel funct ions  f o r  a  l a r g e  

o rde r  m ,  we g e t  

1 e x m  m 1 q m ,  
N - n -  

1 
( 1  [- ( ~ ) n ' + l ]  

4% J ~ n m  (2m) J2n (m+ 1 ) 
2m+2 



Hence ; 

1 e x m  e y m  m e ~ ( m ) r n + 3 / 2  N - -  - in[-  - 2m m+l m ex n rn+3/2]] 
2nm 2m Y I - [; - (a) 

n D - -  e x m  m 1 
[ -  - (%lm - 1 ( x ) m + l ]  

@zl Y @ z l  ,/- 2m+2 

From Eqs. (A l l )  and (A13) we can ge t  

then  



From Eq. (A14) the amplitude of the coefficient la,l will have a 

negligible value when 

e i.e., when m > - ka. 2 (A151 

So if m is slightly larger than ka, the summation of the series will 

give an accurate value for the field. From Eqs. (A7) and (A15), the 

same number of terms needs to be summed for both kinds of cylinders. 
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APPENDIX B 

MEASUREMENT OF OPTICAL FIBER DIAMETER USING 

THE FAST FOURIER TRANSFORM 

Measurement of optical fiber diameter using the 
fast Fourier transform 

Mustafa A. G. Abushagw and Nichobs George 

The variation of the fringe spacing of the far arm scattered intensity of an illuminated optical fiber has been 
plotted vs the scattering angle, theoretieally and experimentally. A method for measuring fiber diametem 
by taking the Fourier transform of the scattering intensity is described. Theoretical and experimental re- 
sults have been compared et various angles for different fiber diameters. 

The scattering of electromagnetic waves by dielectric 
and conducting cylinders has been treated by several 
authors14 and summarized by Kerkers and Bowman 
et  aL6 Interest in fiber optics has led to the study of 
methods for making remote measurements of fiber 
parameters. Presby presented a method for measuring 
fiber diameter from the backscattered inten6ity.I 
Watkins described diameter measurements that con- 
sisted of counting the number of fringes in a certain 
range of the scattering angle in the forward scattering 
field.s 

In this paper we report some careful measurements 
of the variation in fringe spacing as a function of the 
cylindrical angle. An optimum angle for the remotely 
sensing fiber diameter is established, and we describe 
a fast Fourier transform (FFT) processing method that 
efficiently senses fiber diameter and minimizes the ef- 
fect of diode-to-diode random noise. 

When the optical fiber is illuminated with a mono- 
chromatic plane wave, energy is scattered all around the 
fiber. The scattering intensity displays the fringe 
pattern shown in Fig. I. An approximate theory for the 
forwardscatter case has been published.9 The number 
of fringes N between scattering angles dl and & is 

where a = radius of the optical fiber, 
A = wavelength of the electromagnetic wave, 

and 
n = index of refraction of the fiber. 

Fringe spacing A# between two adjacent fringes can 
be found by substituting N = 1 into Eq. (I), letting b2 
= 61 + A@ and solving for Ad using well-known trigo- 
nometric approximations for small Ad. The resulting 
equation for the fringe spacing of the scattered intensity 
as a function of angle is given by 

T o  study the dependence of Ad on 6 ,  Eq. (2) is plot- 
ted in Fig. 2. Notice that the fringe spacing decreases 
as scattering angle 4 increases, reaching a minimum a t  
-60' (for n = 1.457). 

The expression for A$ is valid for scattering angle 0 
< d 5 dfi where dp is given by8 $IF = 2 cos-'(l/n), but 
a t  larger angles, @ > @,P, there is no refracted ray. 

Detailed comparison of the approximate theory with 
the exact expression for A@ is beyond the scope of this 
paper. From Eq. (2) it is seen that A@ is inversely 
proportional to the radius of the fiber; thus the remote 
method for measuring the diameter is feasible. . 

In the experiment a He-Ne h e r  is used to illuminate 
the optical fiber. The scattered intensity is detected 
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Fig. 1. Schematic diagram of experimental setup: L, monochro- Fig. 2. Fringe spacing variations. Continuous curve. Eq. (2). 
matic EM plane wave; P, far zone scattered pattern. X-experimental data for 66.7-em fiber diam. 

SCATTERING ANGLE.+ I O O p n n l  

Fig. 3. Far zone scattered intensity plotted n scattering angle. 

pattern (as shown in Fig. 3) is not an efficient process, 
especially if diode noise is a limiting factor. 

Since the detected intensity is in the far zone, the 
scattered field is roughly the Fourier transform of the 
field a t  the fiber. The angle factors and the nonplanar 
nature of the scatterer prevent this from being a precise 
relationship. Nevertheless, as in other remote sensing 
problems, it does give a rationale for using a FFT. 
Noting that the recorded intensity is approximately a 
sinusoid in the presence of noise, it follows that an ef- 
ficient filter is a bandpass adjustable to the anticipated 
frequency. Reading the frequency of fringe spacing is 
greatly simplified if one uses the FFT of the recorded 
intensity as shown in Fig. 4. 

Denote the intensity in the far zone by IV)  in which 
f is given by 

f = r l k  - tan(9)lX. (3) 

Let E ( x N )  be the FFT of the intensity, i.e., 

where X N  = NX/[tan(@ + h) - %@I, 
N = number of data pants  used in the FFT 

process, and 
do = angle subtended at  the fiber by an array of 

length d and distance R from the fiber. d~ 
is given by & = 2 tan-'d/2R. 
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X I ,  ( p m l  

Fig. 4. NormalLed FFTIE(xN)/E(O)I' plotted n IN. 

Ln Fig. 4 IE(X,V)/E(O)~~ is plotted WXN, and the curve 
consists of three spikes: the middle is the dc compo- 
nent, and the other two spikes give the fundamental 
frequency of the scattering intensity. If we model the 
intensity as 

1 0  = sin2(Kn, (5) 
where K is the local radian frequency of the intensity. 
One can readily show that K = *A cos (+) cos (d, + 
A@)/sin A@, where AQ is given by Eq. (2). Then by 
taking the Fourier transform of I U ) ,  we find the fol- 
lowing expression for spacing D, between the outer two 
spikes: 

Hence, D, depends upon fringe spacing A#J and im- 
plicitly the diameter of the fiber (20). Substituting Eq. 
(6) for AQ into Eq. (2) and solving for the diameter (20) 
yield the following result: 

So by measuring D, at a known angle 4, we can 
compute the diameter of the fiber. This method has 
been used to determine the diameter of two different 
fibers, namely, 66.7 and 400 pm. Measurements have 
been made over a wide range of angles from 15O to 75O. 
Better results are obtained for @ in the range of 25O to 
40°. A consistency of 0.6% is obtained in these mea- 
surements using the FFT method. 

In making the determination of fiber diameter from 
the FF'F of the diffracted intensity, one needs 2N log2N 
operations on a digital computer for N data points.1° 
For the 1024 array used, this is 20480 operations. In o w  
research experiments, we used an IBM 3032 that re- 
quired 1.1 psec/operation. Hence, the FFT is com- 
puted in -23 msec. However, one may be much more 
interested in a stand-alone system. With special pur- 
pose chips such as Reticon's R5601, one can obtain an 
FFT in times of the order of 5 msec without diffi- 
culty. 

Thus, it is possible to measure the fiber diameter in 
line while pulling it out of the furnace. The method 
requires only low light levels since the detection of the 
almost periodic fringe pattern, f m t  transforming, gives 
in effect a very narrowband filter for measuring the 
diameter. 

This research was supported in part by the U. S. Air 
Force Office of Scientific Research. 
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APPENDIX C 

CONVERSION OF THE DENSITY TO INTENSITY DATA 

In this appendix we show the H-D curve of the film as it is 

measured experimentally, and how it was curve fitted to enable us to 

convert the density data, collected on the film from the scattered 

intensity pattern, back to intensity data. The film used in the 

experiments is a Kodak Panatomic-X film. This film was chosen 

because it has an extremely fine grain which gives a very high reso- 

lution, and it has a moderate value of y which allows us to record 

the very large diversity of the intensity which exists in the scat- 

tered pattern. 

The H-D curve of the film is measured experimentally using the 

He-Ne laser light for exposing it, using the exposure time used in 

collecting the intensity data, and developing it following the same 

procedure followed in developing the film used to collect data, to 

minimize the effect of the nonlinearities of the film. These depend 

primarily on: exposure time, the wavelength of light, the kind of 

developer, and the development time. In developing the film we 

followed the following procedure: 

1. Develop in Microdol X for 5 minutes at 70°F. 

2. Stop the process by a Kodak Stop Bath for 30 seconds. 

3. Fix using Kodak Rapid Fix for 2 minutes. 

4. Clean in running water for about 10 minutes. 



To plot the characteristic curve of the film, the film is 

exposed using a uniform plane wave of laser light; and by changing 

the neutral density filters we can change the intensity of the field 

exposing the film. Then the density recorded on the film is measured 

by the microdensitometer. The characteristic curve of the film as it 

was measured using the previous method is plotted in Fig. C.1. 

To use this curve to convert density data recorded on this kind 

of film to intensity data, we need to fit this H-D curve with a 

polynomial which will allow us to substitute density data in it to 

get intensity data corresponding to the given density values. 

The density can be represented using the following expression 

E E 
D = D  S + y log ( - +  E 1) - y log (c+ 1) , (C. 1) 

1 2 

where D = density of the film 

E = exposure corresponding to D 

and E y and E are as defined in Fig. C.1, where we fitted the H-D 
1 ' 2 

curve by a straight line as a first approximation. 

From Eq. (C.1) we can write 

D = D  + y log [ (  
1 L 

s E + E ,  ) 1 



LOG [EXPOSURE] 

Fig. C.l The characteristic curve of the Panatomic-X film used in 

the experiments. 



Then 

Now l e t  

and 

Therefore ,  

where C i s  a c o r r e c t i o n  f a c t o r ,  then  

Let 

then  

1 0 ~ - ~ s  
where a = ( 

Y 
- c ) ~ ,  

( E ~ - E ~ )  

E = exposure = I t ,  

I = i n t e n s i t y ,  

and t = exposure t ime 



So from E q .  ( C . 5 )  we can determine the exposure by knowing the den- 

sity and r E and a of the film. To demonstrate this, E q .  ( C . 5 )  is 
1' 2  

plotted in Fig. C . 2  as the solid line, and the experimental data 

plotted in Fig. (2.1 are replotted here again showing that E q .  ( C . 5 )  

gave a very good fit for most of the range of the characteristic 

curve. So it will be used to convert density to intensity data in 

the experiments done. 



LOG [EXPOSURE] 

Fig. C.2 The characteristic curve of the film plotted using the 

curve fitting Eq. (C.5) and the experimental data. 



APPENDIX D 

PLOTS OF THE INTENSITY PATTERNS 

FROM EXPERIMENTAL DATA 

In Chapter VI we presented the experimental results obtained for 

the scattered intensity patterns from dielectric and conducting 

cylinders. The results are obtained for the two different polariza- 

tions of the incident field parallel and normal to the axis of the 

cylinder. In Chapter VI we presented only portions of the scattered 

intensity patterns to demonstrate the experimental results and to 

compare them with the theory. In this appendix we present the rest 

of the scattered intensity patterns in all the range of the angle 9 .  

The results presented here are obtained using both experimental 

methods discussed in Chapter VI. In each figure in this appendix 

there are three different curves (except for dielectric cylinders 

with ka = 945): (a) is a plot of the intensity pattern obtained 

using film/microdensitometer combination system following the same 

procedure outlined in Chapter VI, (b) is a plot of the intensity 

pattern using the photodetector system, and (c) is a plot of the 

comparable theoretical results derived in either Chapter I1 or 111. 



Intensity Patterns of the Conducting Cylinder 

In Figs. D . l  to D.6 show the scattered intensity patterns from 

conducting cylinders with ka = 327 plotted as a function of the angle 

. In F i g s . D . 1  to D.3 the polarization of the incident field is 

parallel to the axis of syrnetry of the cylinder. In Figs. D.4 to D.6 

the polarization of the incident field is normal to the axis of 

symmetry of the cylinder. In Fig. D . l  the intensity pattern is 

plotted for O 0  - < @ - < 45'. The pattern has main lobe and a number of 

side lobes. The three different patterns have the same features. 

The number of fringes are the same and they terminate at @ Z 30°. The 

amplitude of the side-lobes are quite the same. The intensity pat- 

tern plotted using the film/microdensitometer system has larger 

amplitude in the range 15' 5 $ - < 4.5' and that is due to the non- 

linearity of the photographic film. In Figs. D.2 and D.3 the pattern 

does not have any structure. The small ripples which might be seen 

in the experimental data curve are mainly due to the noise in the 

background. In Fig. D.4 the scattered intensity pattern is plotted 

for the case when the incident wave is polarized normal to the axis 

of the cylinder. The pattern plotted using the experimental data is 

very comparable to the theoretical plot. The curves have comparable 

amplitudes of the side lobes and the spacings of the fringes. In 

Fig. D.5 the patterns still have fringes till @ 80°. In Fig. D.6 

the theoretical curve does not have any structure while the exper- 

imental curves have ripples which are mainly generated because of the 

noise, and the speckle pattern produced by the surface of the cylin- 

der which might not be perfectly smooth. So in all the results shown 



Fig. D.l The scattered intensity pattern plotted for a conducting cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and (c) Eq. (2.34). 



Fig. D.2 The scattered intensity pattern plotted for a conducting cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and (c) Eq. (2.34). 
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Fig. D.3 The scattered intensity pattern plotted for a conducting cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and (c) Eq. (2.34). 

L 

10: (a) WIRE 

'0: 

B 

- 
0)- 

(b) 

d 
w - 

of-!:!!!) 
-. 

- 

'0: 

0;. 

( c )  

. . . . . . . . I . .  . . . . . . . ,  . .  . . . . . . . , . . . . . . . . . I . .  . . . . . . . , . .  . . . . . . . I . .  . . . . . . . I . .  . . . . . . . I . .  . . . . . . .: 
90 1 00 110 120 130 140 150 160 170 180 



Fig. D.4 The scattered intensity pattern plotted for a conducting cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and (c )  Eq. (2.42). 
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Fig. D.5 The scattered intensity pattern plotted for a conducting cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and (c) Eq. (2.42). 
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i n  F i g s .  D . l  t o  D.6 t h e  e x p e r i m e n t a l  and t h e o r e t i c a l  curves  a r e  i n  

good agreement ,  and t h e  two e x p e r i m e n t a l  methods a g r e e  w e l l .  

I n t e n s i t y  P a t t e r n s  o f  t h e  D i e l e c t r i c  C y l i n d e r  (ka  = 327) 

I n  F i g s .  D.7 t o  D.12 show t h e  s c a t t e r e d  i n t e n s i t y  p a t t e r n s  from 

a  d i e l e c t r i c  c y l i n d e r  w i t h  ka = 327 and n  = 1 .45  p l o t t e d  a s  a  func-  

t i o n  of t h e  s c a t t e r i n g  a n g l e  $. I n  F i g s .  D.7 t o  D.9 t h e  p o l a r i z a t i o n  

o f  t h e  i n c i d e n t  wave i s  p a r a l l e l  t o  t h e  a x i s  of t h e  c y l i n d e r .  I n  

F i g s .  D.10 t o  D.12 t h e  p o l a r i z a t i o n  of t h e  i n c i d e n t  wave i s  normal t o  

t h e  a x i s  o f  t h e  c y l i n d e r .  I n  F i g .  D.7 t h e  i n t e n s i t y  p a t t e r n  i s  

p l o t t e d  f o r  45O - < $ 5 90°. The p a t t e r n s  p l o t t e d  u s i n g  t h e  two exper -  

i m e n t a l  methods a r e  t h e  same. The e x p e r i m e n t a l  p l o t s  a g r e e  w e l l  w i t h  

t h e o r e t i c a l  p l o t  p a r t i c u l a r l y  i n  t h e  range 45O 5 $ 5 70°, i n  t h e  

range 70° < 41 5 90' t h e  modulat ing f u n c t i o n  which modulates t h e  - 
p a t t e r n  i s  a  l i t t l e  d i f f e r e n t ,  and t h a t  i s  mainly  because  t h e r e  might  

be  a  s l i g h t  d i f f e r e n c e  i n  t h e  wavelength  between t h e  one we used i n  

t h e  t h e o r e t i c a l  p l o t  ( A  = 0.6328 pm) and t h e  wavelength  o f  t h e  l a s e r  

u s e d ,  a s  we d i s c u s s e d  t h a t  i n  Chapter  V .  By l o o k i n g  a t  t h e  exper -  

i m e n t a l  c u r v e s  i n  t h e  range 45O 5 I$ 5 100° we can t e l l  t h a t  t h e  

f i e l d s  a r e  c l o s e  t o  a  resonance .  I n  F i g s .  D . 8  and D.9 t h e  exper -  

i m e n t a l  c u r v e  p l o t t e d  u s i n g  t h e  p h o t o d e t e c t o r  sys tem h a s  a  l o t  o f  

background n o i s e  i n  t h e  range 110' 5 $ 5 150°,  w h i l e  t h e  curve  p l o t -  

t e d  u s i n g  t h e  f i l m /  mic rodens i tomete r  does n o t  have t h a t  much n o i s e .  

The peak o f  t h e  f i e l d  i n  t h e  range of 90° - < @ - < 180° i s  l o c a t e d  a t  

$ - 154O i n  a l l  t h e  t h r e e  c u r v e s .  The number of f r i n g e s  i s  t h e  same 

f o r  t h e  t h r e e  curves  i n  t h e  range 45' - < @ 5 90°.  I n  F i g s .  D .  10 t o  





Fig. D.8 The scattered intensity pattern plotted for a dielectric cylinder with 
ka = 327 using ( a )  film/microdensitometer system, (b) photodetector system 
and ( c )  Eq. ( 3 . 1 4 ) .  





D . 1 2  the scattered intensity pattern is plotted for the case when the 

incident field is polarized normal to the axis of the cylinder. In 

Fig. D . 1 0  the patterns are comparable in all the three curves. The 

fringes have a smaller contrast with respect to that in the parallel- 

polarization case, and there are the same number of fringes in the 

experimental and theoretical curves. In Figs. D . l l  and D.12 the 

patterns are very similar to each other. The photodiode system 

results have more background noise in the range 1 0 5 O  5 @ - < 150° than 

that obtained using the film/microdensitometer system. 
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Fig. D.10 The scattered intensity pattern plotted for a dielectric cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and (c) Eq. (3.25). 
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Fig. D . 1 1  The scattered intensity pattern plotted for a dielectric cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and ( c )  Eq. (3.25). 
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Fig. D.12 The scattered intensity pattern plotted for a dielectric cylinder with 
ka = 327 using (a) film/microdensitometer system, (b) photodetector system 
and ( c )  Eq. (3.25). 



Intensity Patterns of the Dielectric Cylinder (ka = 945) 

In Figs. D.13 to D.22 the scattered intensity patterns from a 

dielectric cylinder with ka = 945 and n = 1.45 are plotted as a 

function of the angle @. In Figs. D. 13 to D. 17 the polarization of 

the incident field is parallel to the axis of the cylinder, while in 

Figs. D.18 to D.22 the polarization of the incident field is normal 

to the axis of syrnetry of the cylinder. In Fig. D.13 the pattern 

obtained experimentally using the photodiode system is plotted in 

(a), while the theoretical curve using formulas of Chapter I11 is 

plotted in (b). The two curves have the same characteristics and 

same number of fringes. In Fig. D.14 the two curves have the same 

number of fringes, and both have the same shape until 9 E 70°, then 

in 70' < @ 5 90° the curve modulating the pattern has a large varia- - 
tion in the theoretical curve than that for the experimental curve. 

This difference can be explained using the results of Chapter V, 

which indicate that the possible reason is that there is a slight 

difference in the wavelength used in the calculations and that of the 

laser used in the experiment. The theoretical and experimental 

curves in Figs. D.15 to D.17 are the same, in their shape and the 

position of the fringes. In Figs. D.18 to D.22 the patterns are 

plotted for the case when the incident field is polarized normal to 

the axis of the cylinder. The experimental curves obtained using the 

photodiode system plotted in (a) and the theoretical curves are 

plotted in (b). The experimental and theoretical curves are the same 

in all the different characteristics. 
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Fig .  D .15  The scattered in tens i ty  pattern plot ted for a d i e l e c t r i c  cylinder with 
ka = 945 using (a) photodetector system and (b) Eq .  ( 3 . 1 4 ) .  
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Fig. D.19 The scattered intensity pattern plotted for a dielectric cylinder with 
ka = 945 using (a) photodetector system and (b) Eq. (3.25). 



F i g .  D.20 The sca t t ered  i n t e n s i t y  pa t t ern  p l o t t e d  f o r  a d i e l e c t r i c  cyl inder with 
ka = 945 using (a)  photodetector system and (b) Eq .  ( 3 .25 ) .  



i ' " ' l "  " l " " l ' " ' l " "  

(a) 
FIBER 
EL 

- - 

(b) 

- 

Fig .  D . 2 1  The scattered in tens i ty  pattern p lo t ted  for a d i e l e c t r i c  cylinder with 
ka = 945 using ( a )  photodetector system and (b)  Eq .  ( 3 . 2 5 ) .  
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Fig. D.22 The scattered intensity pattern plotted for a dielectric cylinder with 
ka = 945 using (a) photodetector system and (b) Eq. (3.25). 


