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Abstract 

Multiscale problems occur in many scientific and engineering disciplines, in petroleum engi- 

neering, material science, etc. These problems are characterized by the great deal of spatial 

and time scales which make it difficult to analyze theoretically or solve numerically. On the 

other hand, the large scale features of the solutions are often of main interest. Thus, it is 

desirable to have a numerical method that can capture the effect of small scales on large 

scales without resolving the small scale details. 

In the first part of this work we analyze the multiscale finite element method (MsFEM) 

introduced in [28] for elliptic problems with oscillatory coefficients. The idea behind MsFEM 

is to capture the small scale information through the base functions constructed in elements 

that are larger than the small scale of the problem. This is achieved by solving for the finite 

element base functions from the leading order of homogeneous elliptic equation. We analyze 

MsFEM for different situations both analytically and numerically. We also investigate the 

origin of the resonance errors associated with the method and discuss the ways to improve 

them. 

In the second part we discuss flow based upscaling of absolute permeability which is an 

important step in the practical simulations of flow through heterogeneous formations. The 

central idea is to compute the upscaled, grid-block permeability from fine scale solutions 

of the flow equation. It is well known that the grid block permeability may be strongly 

influenced by the boundary conditions imposed on the flow equations and the size of grid 

blocks. We analyze the effects of the boundary conditions and grid block sizes on the 

computed grid block absolute permeabilities. Moreover, we employ the ideas developed in 

the analysis of MsFEM to improve the computed values of absolute permeability. 

The last part of the work is the application of MsFEM as well as upscaling of absolute 

permeability on upscaling of two-phase flow. In this part we consider coarse models using 

MsFEM. We demonstrate the efficiency of these models for practical problems. Moreover, 

we show that these models improve the existing approaches. 
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Chapter 1 Overview 

Many problems of fundamental and practical importance have multiple scale solutions. 

A complete analysis of these problems is difficult. For example the difficulty in analyzing 

groundwater transport is mainly caused by the heterogeneity of subsurface formations span- 

ning over many scales. The heterogeneity is often represented by the multiscale fluctuations 

in the permeability of the media. A direct numerical solution of the multiple scale problems 

is difficult even with modern supercomputers. The major difficulty of direct solutions is 

the scale of computation. For groundwater simulations, it is common to have millions of 

grid blocks involved, with each block having a dimension of tens of meters, whereas the 

permeability measured from cores is in order of several centimeters. This gives more than 

lo5 degrees of freedom per spatial dimension in computation. Therefore, a tremendous 

amount of computer memory and CPU time are required, and they can easily exceed the 

limits of today's computing resources. The situation can be relieved to some degree by 

parallel computing; however, the size of a discrete problem is not reduced. The load is 

shared by more processors with some memory. Whenever one can afford to resolve all the 

small scale features of a physical problem, direct solutions provide quantitative information 

of the physical processes at all scales. On the other hand, it is often sufficient to predict the 

macroscopic properties of the multiple-scale systems, such as effective permeability. There- 

fore, it is desirable to develop methods which can capture the effect of small scales on the 

large scales without resolving all the small scale features. 

In this work we discuss the methods which can capture the small scale information 

on the large scales without resolving all details. The thesis consists of three parts: 1) 

The multiscale finite element method (MsFEM) and its analysis, 2) Upscaling of absolute 

permeability and 3) The applications of MsFEM. Each part is provided with introduction 

where we discuss the previous works and describe the results of the part. Here we briefly 

describe the problems considered in the work. 

In the first part of this work we analyze the multiscale finite element method (MsFEM) 

introduced in [28] for elliptic problems with oscillatory coefficients. The idea of MsFEM 

is to capture the small scale information through the base functions constructed in the 
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elements whose sizes are larger than the sizes of the small scales of the problem. This is 

achieved by solving the finite element base functions from the leading order of homogeneous 

elliptic equation. The construction of the base functions is fully decoupled from element 

to element; thus, the method is perfectly parallel and is naturally adapted to massively 

parallel computers. For the same reason, the method has the ability to handle extremely 

large degrees of freedom due to highly heterogeneous media, which are intractable by the 

conventional finite element (difference) methods. In this part of the work we analyze Ms- 

FEM for different possible situations both analytically and numerically. MsFEM have been 

analyzed with emphasis on the resonance sampling effect. We investigate the origin of the 

resonance errors that occurs in MsFEM and the ways to improve them. 

In the second part of the work, we discuss flow based upscaling of absolute permeability 

which becomes an important step in practical simulations of flow through heterogeneous 

formations. The central idea is to compute upscaled, grid-block permeability from fine 

scale solutions of the flow equation. It is well known that the grid block permeability may 

be strongly influenced by the boundary conditions imposed on the flow equations and the 

size of grid blocks. In this part of the work we employ the techniques developed in the 

analysis of MsFEM to improve the computed values of absolute permeability. We estimate 

the difference between the computed value and exact value of absolute permeability for 

periodic structures. The numerical examples for random permeability fields demonstrate 

that the new upscaling methods improve the accuracy of the existing upscaling methods in 

general. In this part of the work we also consider the effects of the boundary conditions 

and grid block sizes on the computed grid block absolute permeabilities. 

The last part of the work is the application of MsFEM on upscaling of two-phase flow. 

In this part we consider coarse models using MsFEM. The main idea of these methods 

is to incorporate the higher order statistics of the problem into the coarse model. The 

calculations of higher moments require some approximation of the detailed behavior of 

the problem. This approximation can be effectively constructed using the multiscale base 

functions of MsFEM. We demonstrate the efficiency of these models for practical problems. 

Moreover, we show that these models improve the predictions' of the existing approaches. 



MULTISCALE FINITE ELEMENT METHODS AND 
THEIR ANALYSIS 



Chapter 2 Introduction 

In this part of the work we analyze MsFEM for different cases. Recently, a multiscale 

finite element method (MsFEM) has been developed 128, 261 for capturing the large scale 

solutions of multiscale problems on a coarse mesh (with mesh size larger than a certain 

cut-off scale of the problem). The main idea of the method is to build the local small scale 

information of the leading order differential operator into the finite element base functions. 

It is through these multiscale bases and the finite element formulation that the effect of 

small scales on the large scales are correctly captured. A key feature of MsFEM is that 

the construction of the base functions is a local operation within the elements. Thus; the 

construction in one element is decoupled from that in another element. In other words, a 

large scale computation is broken into many small and independent pieces. This results 

in many computational advantages 1261, such as a saving in computer memory and good 

parallel efficiency. We remark that special base functions in finite element methods have 

been used by several authors in capturing multiscale solutions of PDE's. In particular, the 

works presented in [42, 5, 11, 291 are most relevant to our previous conforming multiscale 

finite element method [28]. 

The basic convergence property of the method has been established for a two-scale 

elliptic problem with periodic coefficients [28]. It is shown that the numerical solution 

converges to the homogenized solution in the limit of E -+ 0 (e is the small scale in the 

solution). The homogenization theory is used in the proof; however, it is neither required 

by the MsFEM formulation nor used in the computations. Our numerical experiments 

demonstrate that MsFEM, together with an over-sampling method, is well applicable to 

general elliptic problems with many or continuous scales [27].  It is shown that numerical 

solutions computed using MsFEM on a coarse grid give accuracy comparable to that of well- 

resolved solutions computed using conventional methods on a fine grid. The application of 

MsFEM to practical problems such as two-phase flows in porous media and other types 

of equations is currently under study. It is worth mentioning that MsFEM also gives 

convergent solutions when h << E, just like the conventional methods. 

Previous analysis also reveals the resonance error between the grid scale and the scales 



5 

of the continuous problem [28]. This is a common difficulty in numerical upscaling methods. 

For the two-scale problem, the error due to the resonance manifests as a ratio between the 

wavelength of the small scale oscillation and the grid size; the error becomes large when the 

two scales are close. The resonance represents a fundamental difficulty due to the mismatch 

between the local construction of the multiscale base functions and the global nature of 

the elliptic problems. This mismatch between the local solution and the global solution 

produces a boundary layer in the first order corrector of the local solution which causes the 

resonance. 

In this part of the work, we present the analytical and numerical analysis of the resonance 

error and the possible improvements. Following the formulations and overview of MsFEM 

in chapter 4, we analyze MsFEM for multiple scale problems. The convergence rate of 

the method for different choices of mesh sizes has been derived. Particularly, assuming 

~k be a sequence of decreasing separated scales we find that if the mesh h is between the 

scales ~k and ~ k + l ,  i.e., >> h >> E ~ + I ,  then the convergence rate of MsFEM in El1 

norm is C((h/Ek) + d a ) .  We see that the method has resonance effect towards both 

neighboring scales. The error towards a larger scale (larger than h) (h/ek) is the error of 

resolving larger scales and it is consistent with traditional FEM. The error towards a smaller 

scale (smaller than h) Ja is the error of capturing the smaller scales. The capturing 

error is specific for MsFEM and depends on the construction of base functions. Furthermore, 

we show how the error of resolving larger scales can be improved by introducing higher 

elements. We conclude the chapter with numerical justifications of our analytical results 

and some comments. 

In chapter 5 we analyze MsFEM for problems with discontinuous coefficients. It is known 

that in general the convergence of finite element and finite difference methods deteriorate 

in the case of discontinuous parameters. The previous results (and later) on the analysis of 

MsFEM are derived under the assumption of smooth parameters. In chapter 5 we derive 

the convergence rate for MsFEM in the case of discontinuous parameters. The analysis 

requires a special treatment for discontinuous terms which is done in chapter 5. We show 

that MsFEM retains its convergence rate in the case of a two scale problem. We justify our 

analytical results with numerical experiments on checker-board structures. 

The previous analysis of MsFEM has been performed for periodic structures. In these 

analyses we use homogenization theory which is developed and well studied for periodic 
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setting. The multiple scale expansion for general random problems has been worked out 

[32, 431. It has been shown that the multiple scale expansion for general random cases 

and periodic cases has some similarities. But in general random cases, certain important 

functions of multiple scale expansion lose their periodicity and boundedness and gain some 

growth rate as x -+ cm . This growth rate influences the resonance error of MsFEM. In 

chapter 6, we derive the resonance error for MsFEM when the parameters of the problem 

have weak dependence. 

As above analyses of MsFEM show that the resonance is due to the mismatch of the 

artificial boundary conditions of the base function and the oscillatory nature of the solution. 

Motivated by the analysis, the authors propose an over-sampling technique to overcome the 

difficulty due to the scale resonance in [27]. The idea is quite simple and easy to implement. 

Since the boundary layer in the first order corrector is thin, O ( E ) ,  we can sample in a domain 

with size larger than h + E and use only the interior information to construct the bases (h 

is the mesh size). By doing this, the boundary layer in the larger domain has no influence 

on the base functions. Now the corresponding first order correctors are free of boundary 

layers. As a result, we obtain an improved rate of convergence. 

In chapter 7, we analyze analytically and numerically the over-sampling version of Ms- 

FEM for the case of one-scale problem. Unfortunately, the over-sampling technique results 

in a nonconforming MsFEM method. The previous analyses need to be modified to take 

into account the nonconforming error. In chapter 7, we perform a careful estimate of the 

nonconforming errors in both H' norm and L~ norm. The analysis shows that the noncon- 

forming error is indeed small, consistent with the numerical results [26, 271. Our analysis 

also reveals another type of resonance, which is the mismatch between the mesh size and 

the "perfect" sample size. In the case of a periodic structure, the "perfect" sample size is 

the length of an integer multiple of the period. We call the new resonance the "cell reso- 

nance." In the error expansion, this resonance effect appears as a higher order correction. 

Although the over-sampling helps eliminate the leading order resonance error, we find that 

over-sampling alone does not remove the cell resonance error, which dominates the non- 

conforming error. However, from our computational experience, the cell resonance errors 

seem to be generically small and are rarely observed in computations. This may be due to 

some subtle error cancellation in the convolution with the discrete Green's function (i.e., 

the inverse of the stiffness matrix). The discrete Green's function can be highly oscillatory 
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depending on the ratio h / ~ ,  where h is the mesh size and E is the small scale of the problem. 

In fact, in our tests with the worst resonance case, h / ~  = 1.5, the solution appears to con- 

verge. Only when h = 1/1024 does the effect of cell resonance become strong enough to stop 

the convergence. For more general problems, such as problems with random coefficients, 

we did not find resonance errors through numerical tests (see 1271). These results strongly 

indicate that the chance of having significant cell resonance in practical computations is 

small. 

Finally we would like to note that for the practical problems MsFEM is a robust method. 

In practice the small scales are fixed and the constants in front of the resonance errors play 

an important role. As we observed numerically these constants are usually small and an 

overall error of the method is negligible for practical purposes. 



Chapter 3 Formulation and overview 

In this section we introduce the model problem and the multiscale finite element method. 

First we state some notations and conventions. In the following, the Einstein summation 

convention is used: summation is taken over repeated indices. Throughout the paper, we 

use the L2(Q) based Sobolev spaces Hk(Q) equipped with norms and seminorms: 

%(Q) consists of those functions in H1(Q) that vanish on dQ. H-'(a) is dual space of 

H;(Q), i.e., the set of all continuous linear functionals on H ~ ( Q ) .  We define ~ ' / ~ ( d C 2 )  

as the trace on dQ of all functions in H1(Q) with the norm IIvl1112,BR = inf I ~ U \ / ~ , ~  where 

the infimum is taken over all u E H1 (Q) with the trace v. In the paper the space Ck (a), 
continuous functions along with their kth derivatives is equipped with the norm 

Throughout, C (with or without subscripts) denotes a generic constant, which is indepen- 

dent of E and h (mesh size), unless otherwise stated and C -I- C = C, C C = C .  

3.1 Model  problem a n d  t h e  multiscale finite element me thod  

In this section we are going to investigate MsFEM on the following model problem 



where 

. . 
is the linear elliptic operator, E is a small parameter, and a:' is symmetric and satisfies 

for all J E .R2 and with 0 < a < ,8 where a and p are independent of E .  We assume 

that f E L2(S1) and coefficients are smooth functions unless otherwise stated. As for the 

boundary dfl we assume it is piecewise smooth. Under these conditions (3.1) is a well posed 

problem. 

Variational problem of (3.1) is to seek u E H ~ ( R )  such that 

where 

av au 
dx and f ( v ) =  

It is easy to see that the linear form a(., .) is elliptic and continuous, i.e., 

and 

A finite element method is obtained by restricting the weak formulation (3.3) to a finite 

dimensional subspace of H,'(Q). For 0 < h < 1, let Kh be a partition of S1 of elements 

K (rectangles, triangles, etc) with diameter h. For simplicity, we can assume that the 

partition consists of rectangular elements which are defined by an axi-parallel rectangular 

mesh. In each element K E Kh, we define a set of nodal basis {&,i = 1,. . . , d) with 

d(= 4) being the number of nodes in the element. We will neglect the subscript K when 
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working in one element. In our multiscale method, @ satisfies 

Let zj E (j = 1,. . . , d) be the nodal points of K. As usual, we require @(xj) = &ij. 

One needs to specify the boundary condition of 8 for well-poseness of (3.6). The boundary 

conditions play an important role in the convergence of MsFEM. In later sections we are 

going to specify and deal with different boundary conditions. For now, we assume that the 

base functions are linear along the boundaries of the elements, i.e. along the boundaries 

MsFEM base functions and traditional finite element base functions coincide. MsFEM with 

these base functions is conforming, i.e., 

and the apprexirnate so!ution ~f (3.3) in vhj i,e,, uh E vh is 

a(uh, v) = f (v), Vv E vh. (3.7) 

As we see the only difference of MsFEM from traditional finite element method is the 

construction of the base functions. 

Remark 3.1.1. The above formulation of the multiscale method is not restricted to the 

rectangular elements. It can be applied to triangular elements, which are more flexible in 

modeling more complicated geometries. In fact, in most of the analysis below, the shape 

of element is irrelevant. In some cases we find that the triangular elements have some 

advantages in discrete error cancellations. 

Remark 3.1.2. As mentioned in the introduction, the purpose of the multiscale method 

is to capture the large scale solution. This general idea can be made more precise in the 

context of the above model problem when a i j (x /~ )  is a periodic function. In this case, 

there are two distinct scales in the solution, characterized by 1 and I/€. The large scale 

solution is the homogenized solution uo, which is the limit of u as c + 0. In fact, u equals 

uo up to O(E)  perturbations. It  can be shown that uo is the solution of a homogenized, 

elliptic problem with constant coefficient. Thus uo is smooth. The oscillations at  the €-scale 

are contained in the perturbations. Because the base functions 8 are defined by the same 
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operator L,, they are expected to have local structure similar to that of u. 

The multiscale base functions are smooth if h <( E and can be well approximated by 

the standard continuous linear (bilinear) base functions. Thus, we expect the multiscale 

method to behave similarly as the linear finite element methods. 

On the other hand, when h >> E, @ contains a smooth part and an oscillatory part, 

which cannot be approximated by the linear (bilinear) functions. In this case, the multi- 

scale method is very different from conventional finite element methods. In fact, we will 

show that the multiscale method gives solutions converging to u0 in the limit of E -+ 0 

while the standard finite element method with piecewise polynomial base functions does 

not. An intuitive explanation is as follows. The effective coefficient a*, which determines 

the homogenized operator, includes both the average of a and the averaged result of the 

interaction of small scale oscillations (see (3.10)). The polynomial base functions can only 

capture the first part because they do not characterize any oscillations. In contrast, the 

multiscale base functions contain the small scale information in  the same fashion as u does. 

Therefore, they are able to accurately capture a* through the variational formulation. 

3.2 Homogenization for one periodic case and related estimates 

In this section, we review the homogenization theory of (3.1) in the case when aij(x/e) is 

a one periodic function. We provide some estimates which are important for understanding 

of MsFEM. These results reveal the structure of the solution and the multiscale functions. 

It is known [8, 321 that the solution of (4.1) can be expanded as 

In the expansion, uo is the solution of the homogenized equation 

satisfying uo = 0 on do. The constant homogenized coefficients a? are given by 

where VY is the gradient with respect to the "fast" variable y = X / E ,  and X k  is the periodic 



solution in the unit cell Y of 

It can be shown [8, 321 that (3.11) has a unique solution in H;,, which is defined up to a 

constant. For 6'" we have 

The heuristic derivation of the average equation can be obtained by expanding u, 

I~ t rnd f i c l~g  V = V ,  + 1/cVg7 and substituting the expansion into the above system of 

equations, and collecting terms with the same power of E ,  we get 

From (3.12) we obtain that uo(x ,  y )  = u o ( x ) .  Assuming ul ( x ,  y )  = ~ P ( y ) V ~ u ~ ( x )  in 

the second equation (3.13), we get (3.11) for xP(y). Eventually, taking an average over the 

period Y in (3.14) we obtain (3.9). 

The convergence of uo or uo 4- ExPV~U~ to the exact solution u ,  under different regularity 

conditions and in different norms have been thoroughly investigated. 
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3.3 Expansion of base functions 

We have the similar expansion for the base functions when the mesh size is much bigger 

than the period E :  

where (bo, xZ, and Be are defined in the same way as above. The equation for BE can be 

further simplified by taking into account the fact that r # ~ ~  is linear along the boundaries of 

the triangular elements K. It follows that $0 is linear in K. Thus by (3.6) and the equations 

for 8' and we have 

and 19" - X P V ~ $ ~  on the boundary of K. Be can be written as Be = qPVp$o, where q p  is 

defined as the solution of 

3.4 Some estimates in finite element methods 

Cea's lemma 

Assume that we are approximating the solution u of the variational equations 

where the space V, the bilinear form a(u, v) and the linear form f satisfy the assumptions 

of the Lax-Milgram lemma. Consider a family Vh of subspaces of space V. With each finite 
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element space Vh is associated the discrete solution uh which satisfies 

Then Cea's lemma states: 

Lemma 3.4.1 There exists a constant C independent of the subspace Vh such that 

( ( u  - uUII 5 C inf I I u  - vhll. 
~ h € V h  

Consequently, a suficient condition for convergence is that there exists a family Vh of sub- 

spaces of space V such that, for each u E V ,  

lim inf I I u  - vhll = 0. 
h+0 uh EVh 

-... we note that the norm in the formiilatioii of Cea's lemma is the norm associated with 

bilinear form a(u ,  v )  (Lax-Milgram lemma). 

Strang's lemma 

The continuity of the finite element approximation of the solution of a boundary value 

problem and possibly of its derivatives have been used in conforming finite element bases. 

However, conforming elements, particularly for higher order problems, are usually more 

complex [12]. Hence, it is natural to enquire if one can relax these interelement continuity 

requirements and still obtain a convergent finite element solution. These kinds of finite 

element methods are called nonconforming finite element methods. To show Strang's lemma 

we introduce a nonconforming discrete space H h  with the norm 1 1  . l l h  

The discrete solution uh f ah is defined by solving 

h h  a(u  , v ) = f ( vh ) ,  vvh E fib 



where 

We would like to note that it is required 1 1  \ I h  be a norm in fih. Then Strang's lemma 

asserts [12] that 

where fib is the finite dimensional space generated by the nonconforming basis functions 

(in general f ih $ H I ) .  

3.5 Overview of MsFEM convergence 

MsFEM has been introduced and analyzed in the case of one periodic smooth coefficients 

a:i in [28]. The analysis has been carried out for the different choices of the mesh size h: 

the case when the mesh size h  is larger than the characteristic length scale t., h >> E and 

the case h  << E. In the case h  << t., MsFEM approximates the solution as traditional 

finite element methods with the second order accuracy O ( ( h 1 ~ ) ~ ) .  The case h  >> E is of 

the main interest since this case shows how effectively MsFEM is capturing the small scale 

information of the global problem. The L2 convergence rate obtained in [28] is 

This error estimate shows that small scale information in the base functions leads to the 

correct large scale information and numerical solution approaches exact solution as E + 0. 

This convergence rate has been confirmed with numerical results. The term t./h in the 

convergence rate indicates the resonance between the physical scale and the mesh size. We 

would like to note that the resonance phenomenon is common in upscaling methods. The 

analysis of MsFEM presented in [28] is omitted since more general cases will be investigated 

in this work. We would like to point out that the cause of the resonance is in (3.20). 

It was found [28] that 0' in the expansion of the base functions (see (3.15)) causes the 

resonance. We note that this term corrects the oscillations on the boundary given with 
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4 0  + E ~ ~ ( x / c ) V ~ ~ ~  to the linear boundary conditions. Thus, 8"as large gradients in the 

neighborhood of the boundary. Numerically it was found that these large gradients are in 

E neighborhood of the boundary. As the values of the mesh size and the small scale of the 

problem get closer the boundary layers of 6"ccupy the larger portions of the elements 

causing the deterioration of the convergence rate of MsFEM. 

Based on the analysis of this method the authors also proposed [53] an improved version 

of MsFEM, MsFEM-os (MsFEM with over-sampling) which practically removes the reso- 

nance. The main idea of this method is to use interior information of the base functions 

sampled in larger domains (larger than our elements). The authors have tested this method 

on different examples and demonstrated its numerical robustness. In a later section we are 

going to analyze this method. 

For the practical purposes, the constants CI and Cz in (3.20) play an important role. 

Numerous numerical examples for random cases and the cases with continuous spectrum 

of scales demonstrate that MsFEM is a robust method and the error of MsFEM does not 

exceed 2 percent in these problems. In Fig. 3.1 and Fig. 3.2 the discrete Lz error estimates 

are plotted for random coefficients. In particular, these coefficients have the continuous 

spectrum of scales between 1/32 and 11256. The domain is [O, 112, the ratio of maximum 

and minimum of the coefficients is 400 and f = -1. In these figures the horizontal lines 

represent the resolved solution. In Fig. 3.1 and Fig. 3.2 LFEM stands for FEM where the 

mesh size changes from 1/32 to 11512, MFEM-L denotes MsFEM with linear boundary 

conditions on the mesh between 1/32 and 1/512, and the lines with L L ~ "  correspond to 

MsFEM with over-sampling. These examples demonstrate that MsFEM is a robust method. 



Figure 3.1: The discrete L2 norm error of the solutions using various schemes for a fractally 
distributed permeability field. The horizontal dash line indicates the error of traditional 
FEM solution with N = 2048. Along the N axis we plot the resolution (number of elements 
in each direction) 



Figure 3.2: The discrete L2 norm error of the solutions using various schemes for a log- 
normally distributed permeability field. The horizontal dash line indicates the error of 
traditional FEM solution with N = 2048. Along the N axis we plot the resolution (number 
of elements in each direction). 
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Chapter 4 MsFEM for problems with many separated 

scales 

4.1 Summary 

In this section we analyze the convergence of MsFEM for problems with many separated 

scales. In particular, we are interested in the convergence rate of the method for different 

mesh sizes. We establish that if the mesh size is between the scales ek and ~ k + l ,  i.e., 

ek >> h >> ek+l, then the H1 norm of the error is 

rnL r- L L-- lrle u r a b  bcriT1 in the estimzte is dae to the wziy of capturing ef the scales smaller than 

ek+l through the multiscale base functions. The second term is the error of resolving scales 

larger than ~k with the homogenized part of the multiscale base functions. 

We introduce an improved version of MsFEM. This method improves the resonance 

error corresponding to h/ek, i.e., the error of resolving the larger scales (larger than the 

mesh size). This is done by changing the boundary conditions of MsFEM to higher order 

polynomials. The corresponding error is h + ( h / ~ ~ ) ~  + Ja with integer rn > 1. We 

note that this version of MsFEM is still conforming. We discuss in later sections how to 

improve the resonance error d a ,  the error corresponding to capturing the small scale 

information. 

We also present the L2 estimates for MsFEM. The structure of the estimates are similar 

to that of the H1 norm estimates. Because of some small terms in the Ill estimate, which 

cannot be expressed through the L2 norm of the source term of the problem, the L2 norm 

estimate we derived in the Aubin-Nitsche fashion contains some overestimated terms. These 

terms, however, contain no resonance effect. Therefore, our Lg estimate of the resonance 

error is tight. Moreover, the overestimated terms can indeed be eliminated by using the 

method introduced in [28], which compares the solution and its numerical counterpart at 

discrete nodal points. 
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Our error estimates are confirmed by the numerical experiments. The computations are 

extremely large and are done on parallel computers, e.g., the Intel Paragon computer. Even 

so, we can only test two scale problems. We confirm the L2 estimate when the mesh size 

is between the physical scales €1 and €2, i.e., €1 >> h >> €2. The computations encounter 

difficulties because memory limitation prevents us from choosing well separated small scales 

in the tests. Consequently, it is difficult to separately verify each resonance error in the 

L2 estimates. But different numerical examples demonstrate that in some cases either one 

of them can be dominating, whereas in other cases both may be important. Results for 

h << €2 << €1 are also presented. 

The rest of the chapter is organized as follows. The brief formulations of the 2-D 

problem introduced in the next section. In Section 3 we estimate the first order correctors 

for partially homogenized solutions. In sections 4 and 5 we derive H' and L2 error estimates 

for MsFEM. The numerical results are presented in Section 6. The higher order MsFEM 

and other possible generalizations are discussed in the concluding remarks. 

4.2 Formulation 

In this section we investigate MsFEM for 

where 

where €1 >> €2 )> - .  >) en is a set of n ordered length scales, which all depend on a 

single parameter 6. For example, ci, i = 1,. . . , n are some powers of e, with pl  < p2 < 
- .  < pn. Moreover, for simplicity we assume aij(yl, y2,. . . , y,) to be sufficiently smooth 

periodic functions in yi (i = 1,. . . , n) in a unit cube Y. Here, the smoothness assumption 

is convenient but not crucial for our analysis. It is sufficient to assume that aij E C1. 

The convergence of MsFEM for problems with discontinuous coefficients will be analyzed 

in following sections. 

MsFEM is implemented as in the previous section. In each element K E K ~ ,  we define 
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a set of nodal basis {&}, i = 1,. . . , d, with d(= 4) being the number of nodes of the 

element. We will neglect the subscript K when working in one element. The base functions 

8 satisfies 

We assume that the base functions are linear on each side of the boundary and (6'(xj) = 

Sij where x j  E K ( j  = 1,. . . ,d)  are the nodal points of K . So we have: 

In the following we study the approximate solution of (3.3) in Vh, i.e., uh E v h  such that 

4.3 Estimates for first order correctors 

In this section we review the homogenization theory of Eq. (4.1) [8, 21 and estimate the first 

order correctors, namely the difference between the solution and its H1 approximation. We 

found the convergence results for the problerns with many scales but we could not find the 

estimates for the convergence rate. We will derive these estimates in this section. The main 

difficulty in this estimate is to express the H1 norm of the first order corrector through 

right-hand side of (4.1), i.e., 11 f This is essential for the use of Aubin-Nitsche trick 

in the L2 analysis of MsFEM. In Lemma 3.1 we prove such a result for smooth domains. 

However, for convex polygons we could not obtain the similar estimate. As shown later, 

this leads to a slightly overestimated L2 norm error. 

First, let us consider the case with two scales: 

where f E L2(Q) and €1 >> €2. For convenience we take y = 2 and z = g. Fixing = X 

as a parameter, we consider uij($, Z) to be a family of functions aG(X, z )  where X is a 

parameter. By the assumption made in the previous section, a(X, z) is z periodic for any X 

and alc12 5 Eiaij(X,z)Sj < PIE12 for all < E R' with 0 < a! < P < co. Then the family of 



operators, 

can be homogenized by the standard homogenization rule, X being a parameter. Next we 

homogenize A;\ with respect to €1. Thus 

is homogenized in two steps by the reiterated homogenization. More specifically, we define 

x i ( z )  on Z = (0 , l )  x (0 , l )  as the periodic solution of 

such that 

Then the homogenized operator for A i  is given by 

d i j  a 
Ax = -ax - 

axi a x j  

where 

- IZI 
dz. 

Now taking into account that X = y = $, Ax can be homogenized as 

a . .  a A,-, = -aLJ- 
axi dxj  

where 

.. 1 
azJ = - S, akl(y) a(xi  + yi) a ( ~ '  + ~ j )  dy 

IYI dyk a ~ l  

and Xj is the periodic solution of AA(Xj - yj) = 0, such that & Xj = 0. 
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Remark 4.3.1. The reiterated homogenization procedure can be used for the n scale 

case. Denoting H as the partial homogenization operator we have 

Following the homogenization steps represented above we can approximate the solution 

of (4.5) in H I  norm as 

where ui is the solution of 

Lemma 4.3.1 Let 8, be the solution of (4.iL?), then under the assumption that dS;2 is suf- 

ficiently smooth we have 

where q > 0 is an arbitrary positive number. 

. . 
Prooj Denoting u: = ufi + r 2 X ~ ( $ ) ~ m u $  we can write a:'Vju: as: 

where = a:j + a r ~ ; &  - a? with V ;  denoting a/8zk .  Using (4.8) and the fact that 

v i a ? v j  is a partially homogenized operator for (4.7) we have 

a .  
d d z = O  and --$ = 0 .  

ozi 
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Thus, g! is a periodic solenoidal vector with average zero. It can be expressed as [32] 

where a: = -a$ and a$ E (L2(Y), ~ ' ( 2 ) ) .  Using this representation we can write (4.15) 

as 

Denoting the last two terms on the r.h.s. as r:, by (4.5), (4.12), and (4.13) we have 

Equation (4.18) along with the regularity properties for the solution of the elliptic PDE 

gives 

Using the fact that Ildivpll 5 C l l p l l ~ ~  for any p E L2(fl)), we have 

Following [36] it can be shown that 

Combining (4.20) and (4.21) we have 
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For the estimate of the second term on the r.h.s. of (4.19) we use 

where the inf is over all Q satisfying 4 = c 2 X $ ( ~ ) ~ m u i  on the boundary 852 [32]. For 

the construction of the continuation of rzXff (~) ' i7 ,u~  onto a, we introduce a family of 

functions rE satisfying the following conditions. 

1. rE E C r ( Q ) ,  0 < rE < 1, rE = 1 outside the €2 neighborhood of 852. 

2. c21VrCI < C in 52, where the constant C does not depend on ei (i=1,2). Such functions 

can be constructed for any domain with Lipschitz boundary. Then we have 

where 77 > 0. Furthermore using the inequalities 

we conclude (4.14). Note that the last inequality follows from Theorem 4(i) of [3]. U 

Remark 4.3.2. For convex polygon domains we assume that u, (or any partially homog- 

enized part of it) is in C2(52) for the fixed e and 

where en is the smallest scale in (4.2) (or in the partially homogenized problem). This 
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assumption is true for fixed ei (i = 1,. . . , n) under the compatibility conditions stated in 

[4]. Under the assumptions in (4.26), for convex polygonal domains we have 

This can be derived by letting 77 = 0 in (4.24). 

Remark 4.3.3. For further convenience the quantities which depend on E ~ / E ~ - ~  with 

2 5 i 5 n and ~ i ,  i > 1, we denote O(E). It indicates that O(E) is a small quantity 

independent of the mesh size. 

The above procedure can be applied for homogenization of many scale problems. Instead 

of (4.12), using the reiterated homogenization we find 

Eere ? ~ g  is the partially homogenized part, of u, over the scales Em+:; . . . , E,; U: is given by 

0 is the remaining part. Furthermore, similar to a two-scale case it can be shown shown 

that for smooth domains I;2 

with 

Moreover, we use the regularity estimate 

I I u ~ I I z , ~  < Cllf llo,nl~n, 

which can be obtained, for example, by following the derivation in [36]. For convex polygonal 
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domains, the estimate is similar to (4.27): 

4.4 H1 estimates 

For simplicity, we first present the estimates for problems with two scales in detail. The 

estimate for the multiscale case can be obtained following the same approach. The only 

difference is that the expansion of the oscillatory solution in the multiscale case contain 

more terms which complicates the proof. 

4.4.1 H1 estimates for two scale case 

In this section we analyze the MsFEM for three different cases : (1) €1 >> h >> €2, (2) 

h >> €1 >> €2, and (3) €1 >> €2 >> h. AS in the standard FEM we have Cea's lemma [28]: 

Lemma 4.4.1 Let u and uh be the solutions of (4.2) and (4.4) respectively. then 

Below we need the following lemma: 

Lemma 4.4.2 For a rectangular domain with the sides of order h we have 

This lemma can be derived from the standard trace inequality [I] using the scaling argument. 

We omit the proof of the lemma. 

Case 1: €1 >> h >> €2. 

Theorem 4.4.3 Let u ,  and u t  be the solution and MsFEM solution of (4.1) respectively. 

Then 



Proof. Define v,h E vh such that in each K E K~ 

with olj = uO(x j )  where uo is the partially homogenized part of u,  over the scale €2 and xj 

are the nodal points of K.  Then in any element K E K ~ ,  we have 

where v$ on dK is a piecewise linear function whose values at the nodal points are uo(x j ) .  

We divide the solution of (4.36) into two parts: (u, - v,h) = (u, - ~ , h ) ~  + (u,  - ~ , h ) ~ ,  
where (u,  - ~ , h ) ~  and (u, - v $ ) ~  satisfy 

respectively. (u,  - ~ , h ) ~  can be estimated from (4.37) and the Poincare inequality: 

As for (u,  - v : ) ~ ,  using the expansion over the scale € 2 ,  u, = uo 4- E ~ x ~ V ~ ~ ~  + Be,  and 

(4.38) we have 



combination of (4.39) and (4.40) gives 

The third term on the r.h.s. of this inequality can be estimated using the interpolation 

inequality as 

In the last step we have used Lemma 4.4.2 for the first term and the assumption that 

Ijuo ljca(n)  2 C / e l  (see (4.26)) for the second term. 

For the second term on the r.h.s. of (4.41) we can write 

Since vt is the linear function on dK we can extend it as a bilinear function G,h onto K. 

Noticing the fact that because of (4.35) u o  and G,h coincide at the nodal points. Then we 

have 

h Iluo - ve llff1/2(aK) 5 //u0 - G:IIXl(K) 5 ChIuoI2.K.  

Combining (4.42) and (4.44) we have 
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Summing (4.45) over all K c K and using Cea's lemma we get 

In the last step we have used (4.30) and the estimate for IIOEIIHl(n) (see (4.27)). Note that in 

(4.46) &&/el,  c 2 / m r  and fi are much smaller than @, and e2/e1 < h / t l .  Thus, 

dropping the lower order terms and using Cea's lemma we get (4.34). U 

Case 2: h >> €1 >> €2 

Theorem 4.4.4 Let u, and u t  be the solution and MsFEM solution of (4.1) respectively. 

Then 

Proof. We define v,h as in (4.35) with uo denoting the fully homogenized solution over 

the scales €1 and €2. Using the partition u, - v,h = (u, - v,h)l i- (u, - ~ , h ) ~  as in case 1, and 

taking into account the inequality (4.39) for (u, - v,h)l and the expansion of u, over the 

scales €1 and €2 (see (4.29)) 

we have 
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Treating the third, fourth, and fifth terms on the r.h.s of (4.48) similarly as in (4.42) (i.e., 

applying the interpolation inequality and Lemma 4.4.2), we get 

For the second term on the r.h.s. of (4.49) since v,h is a linear function on dK we continue 

it as a bilinear function $,h onto K. Noticing that the values of uo and $,h coincide at the 

nodal points we have 

Finally, summing (4.49) over K E K~ and using (4.26), (4.50), and the fact l ~ ~ l ~ , ~  5 

cllf llo,n we get 

Here we have used the estimate for I I S ' ~ / ~ , ~  (4.31). In (4.51) we may neglect JETfL, ~~/\/il, 
and f i  as they are lower order comparing with @. Thus, (4.47) follows from (4.51) 

and Cea's lemma . U 

Case 3: h << €2 << €1 

Theorem 4.4.5 Let u, and at be the solution and MsFEM solution of (4.1) respectively. 

Then 
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Proof. Define v,h as in (4.35) and take aj to be the nodal value of u, at xj. Again using 

the partition of u, - v,h, we obtain 

Continuing v,h from d K  onto K as a bilinear interpolant of u, in K ,  ~ , h ,  yields 

Summing (4.53) over all K ,  using (4.54), (4.30), and Cea's lemma we get (4.52). U 

4.4.2 H1 error estimates for many scale case 

Without loss of generality we assume the order of h is between the scales and em for 

m E [l,n], i.e., 

We have 

Theorem 4.4.6 Let a, and u,h be the solution and MsFEM solution of (4.1) respectively. 

Then 

h €m+1 112 f i  
IIu, - u:lll,n < CI- + C Z ( ~ )  + c3 max -. 

Em i>m+l fi-1 

Proof. The proof follows the same steps as in Section 4.1. First, we define v,h as in (4.35) 

and aj = uo(xj), ua being the partially homogenized part of u, over the scales em+1,. . . , en. 

In this case, the expansion of u, is given by (4.28): 
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where u: is given by (4.29). It is easy to show that 

In the last step we extended v,h as @, the bilinear interpolant of uo onto K. Then we have 

Now we only need to estimate the third term on the r.h.s. of (4.56). For this we need the 

following estimate: 

In fact, by (4.29) u: can be written in the form of C,(x).Vuo, where C,(x) contains the linear 

combinations of products of xk($) (k = m + 1,. . . , n) and their gradients. Furthermore, 

it can be verified that 

max IVC,(x) ( < C + max (ei/ei-1) < C and max lC,(x) 1 < Cern+~, i>_rn+l x 

and hence Vui is bounded. Therefore, 
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From (4.58), the interpolation inequality, the trace inequality (4.33), and (4.26) it follows 

that 

Substituting (4.59) into (4.56) and then summing (4.56) over all K E K ~ ,  we have 

em+1 
)llf llo,n + cm + cllQclll,n 

Em Em 

h1/2 
(4.60) 

h 'm+l 
< C ( h + / F + _ +  I I ~  I I O , ~  + (7- Em+1 + C  max -. E i  

Em i l m S 1  ~ i - 1  

The estimate (4.55) follows from (4.601, (4.31) [estimate of IlQt-lIl,~), and Cea's lemma. The 

lower order terms with h (<( h/em) and with J = / E ~ ,  e m + l / a ,  and (much 

smaller than Ja) are neglected. CI 

Remark 4.4.1. The estimate (4.55) shows that the error of the MsFEM solution becomes 

larger as h approaches either em or E m i r .  This is the resonance phenomenon mentioned in 

the introduction. Furthermore, we see from (4.60) that both resonance errors come from 

the first term on the r.h.s of the last inequality when h E, or h N em+1, in which cases 

the other two terms are of lower order. 

4.5 L2 estimates 

In this section we derive the L2 estimates using the H1 estimates. Because some terms in 

the H' estimate (4.60) cannot be expressed through 11 f the estimates we obtain from 

the duality argument is not optimum when h is not comparable with the physical scales. 

The estimates do capture the correct order of the resonance error, which are the leading 

order error when h is comparable to the physical scales. Employing the method introduced 

in [28], which compares the discrete values of the solution and the numerical solution, we can 

show that the order of the method is not much affected by those small terms not expressed 

through 11 f llo,n.  The present approach, however, is more concise to present. We use the 
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following abstract lemma. 

Lemma 4.5.1 Let u and uh be the solutions of (3.3) and (4.4) respectively with Vh con- 

sisting of conjorming base functions. If 

where y and 6 are small positive quantities, Cl 2 0, C2 2 0, then 

Proof. We use the Aubin-Nitshe trick as follows. Let w be the solution of (3.3) with 

f = u - uh, i.e., w E H i  (Q) satisfies 

Let wh E vh be the interpolant of w. Then (4.61) implies 

Choosing v = u - uh in (4.62) we have 

Therefore, 



In our estimates, y contains the resonance errors which may become O(1) depending 

on h. But 6 is a small quantity independent of the mesh size. In particular, y = C(h + 
1/2 1 2 rz:l/h1/2 + hiem + rm+lh /em) and 6 = ~ ~ ~ + l e ~ ~ ~ ~ h - ~ l ~  + O(r) (see (4.60)). Note that 

when h becomes comparable to any physical scale, y becomes of order one due to either 

h/em or d a  while 6 remains small. Consequently, the term fl is a small quantity 

which does not resonate at any scale of the problem, i.e., fl = O(e), since it depends only 

on E ~ / E ; - ~ ,  2 < i < n, and ~ i ,  i > 1. Thus y2 is the dominating resonance error for the case 

when h becomes comparable with the physical scales. We note that some terms of y and 

6 (see(4.60) do not change when we decrease the mesh size and the physical scales at  the 

same time, but remain negligible with respect to hiem or JD when h is comparable 

with any physical scale. These terms may be called lower order resonance terms. 

Applying Lemma 4.5.1 to the cases analyzed in section 4.4 we have the following reso- 

nance errors: 

Theorem 4.5.2 Let u, and u t  be the solution and M-sFEM solution of' ('4.1) respectively. 

Then 

I .  Case €1 >> h >> €2. 

2. Case h >> €1 >> €2. 

€2 2 
Ilur - ~:llo,n < C(71) 

4.  Case ~1 >> >> em )> h >> Em+l - * )> E, .  
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4.6 Numerical experiments 

In this section we study the convergence and the accuracy of the multiscale method through 

numerical experiments. The model problem is solved using the multiscale method with the 

base functions defined by (4.3) and the linear boundary conditions. Since it is very difficult 

to construct a test problem with both exact solution and sufficient generality, we use resolved 

numerical solutions in place of exact solutions. The numerical results are compared with 

the theoretical analysis. 

The implementation of the multiscale method has been given in [26]. Here we outline 

the implementation and define some notations to be used below. All computations are 

performed on a unit square domain Q = (0, l )  x (0,l). Let N be the number of elements in 

x and y directions. The mesh size is thus h = 1/N. To compute the base functions, each 

element is discretized into M x 211 subcell elements with size of h, = h/M. Rectangular 

elements are used in all numerical tests. 

To solve the subcell problem, we use the standard iinear finite element method. After 

solving the base functions, the local stiffness matrix and the right hand side are computed 

using numerical quadrature rules. We compute the gradients of a base function at the 

center of a subcell element and use two-dimensional centered trapezoidal rule for the volume 

integration. This procedure ensures that the entries of the stiffness matrix are computed 

with second order accuracy. In our computations, we only solve three base functions, @ 

(i = 1,2,3). The fourth one is obtained from (p4 = 1 - - (p2 - (p3. 

In all examples below, the resolved solutions are obtained using linear FEM. Given the 

wave length of small scales €1 and €2, we solve the model problem twice on two meshes 

with one mesh size being twice of other. Then the Richardson extrapolation is used to 

approximate the exact solutions from numerical solutions on two meshes. Throughout our 

numerical experiments, both of the mesh sizes used to compute the well resolved solution 

are Iess than €18, SO that the error of the extrapolated solutions is less that 

The main difficulty in our tests is that the choices of well separated physical small scales 

for test problems are severely limited by the available computer memory. Our parallel 

implementation of the multiscale method on an Intel Paragon computer with 512 processors 

enables us to test the two scale problem. Even so, we are limited to testing the cases with 

€1 >> h >> €2 and €1 >> €2 >> h. The case with h )> €1 >> €2 gives very large subcell 
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problems for constructing the base functions, which cannot be fitted into a single processor. 

Therefore, it cannot be handled by our current implementation of MsFEM. 

The case with h in between the two physical scales is generic and important for practical 

purposes. As indicated by Theorem 6.2, the L2 norm error is given by 

which consists of two resonance errors. One would expect that when h is close to €1  the 

first term dominates and when h is close to €2  the second term dominates. This asymptotic 

observation, however, is not always reflected by the numerical results shown below. There 

are two reasons. First, the constants C1 and C2 may differ by a large factor which is 

problem dependent. Second, it is difficult to choose well separated €1 and €2 in the numerical 

computations. Therefore, the two error may interact with each other. Instead of verifying 

each of them, in the following, we show that the numerical error does follow the estimate 

as a whole. Furthermore, we use the least square fitting to obtain the constants. These 

constants indicate the relative magnitude of the two terms. 

Again, due to limitation of computing resources, in all tests below, €1 and € 2  are fixed 

during the tests and we only allow h to vary. 

Example 1. In this example, we solve (4.1) with f = -1, ulan = 0, and 

where bij are the Kroneker 's symbols. 

Fixing €1  = 0.5 and €2 = 0.005 and varying h between €1 and €2, we calculate the discrete 

12 norms of the errors between the MsFEM solution and the refined solution (Table 4.1). 

In this table, the presence of both h2/e: and e2/h of (4.70) are noticeable. In Fig. 4.1 we 

fit the l2 errors using the least square method. We find C1 = 5e - 4 and C2 = 1.5e - 3, 

indicating that the second term in (4.70) is relatively large. 

The result for the case h << €2 << €1  is shown in Table 4.2. For this test, € 1  = 0.2 and 

€ 2  = 0.08 are chosen. We see that MsFEM is second order with respect to h as analyzed. 

Example 2. In this example, we solve (4.1) with f = 0 and linear boundary conditions, 



Table 4.1: lluF - u!llr, for €1 >> h 
I 1  h I I  12 I rate I 1  

h 
Figure 4.1: The least square fit in l2  norm of error 

Table 4.2: Iju, - u! Ill:, and ~ I u ,  - utllj, for h << ez <( €1. 

h 12 I rate II 1, I rate 11 



Table 4.3: 1luE - u:[ll2 for €1 >> h 
h 11 12 I rate 11 

Table 4.4: llu, - ~3111, for €1 >> h 

u18i2 = x, arid 

. . 2 + sin(2nx/e1) 2 + cos 2a(y/el) 2 + s i n ( 2 ~ ~ / ~ 2 )  2 + cos(2n~le2) )6ij (4.72) 
azj  = 1 ( 

(2  + cos(2ry/c1) + 2 + s in(2~x/€ l )  2 + C O S ( ~ ~ Y / ~ ~ )  + 2 + sin(2ns/rz) 

where are Kronoker7s symbols. 

Fixing €1 = 0.125 and €2 = 0.0078125, we vary h between €1 and €2. As we see from 

the calculated l2 error of MsFEM (see Table 4.3), the method does not reveal the -1 order 

convergence for h = O(e2). Calculating Cl and C2 from the l2 errors by using the least 

squares method, we find that Cl = 2.1 x which is much larger than Cz = 0.02 x 

Consequently, the h2/e? term in (4.70) has a larger weight than the e2/h term. Therefore, 

the O(e2/h) error is not noticeable in our test. The fitted curve as well as the data points 

for the numerical error are plotted in Fig. 4.2. It shows that the error varies consistently 

with the estimate (4.70). 

Example 3. We consider another example with aij defined by (4.72), f = -1, and 

ujan = 0. The calculated L2 errors for the fixed €1 = 0.125 and €2 = 0.0078125 also 

demonstrate the presence of both h2/e? and e2/h terms in the l2 error of the method (see 

Table 4.4) as h becomes close to €1 and €2, respectively. This example shows that Cl and 

C2 are indeed problem dependent. The l2 error for h << €2 << €1 is shown in Table 4.5, 

where second order convergence of MsFEM is demonstrated. 



h 
Figure 4.2: The least square fit in 12 norm of error 
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4.7 Concluding remarks and generalizations 

The purpose of the multiscale method is to provide a systematic approach to capture the 

small scale effect on large scales when we cannot afford to resolve all the small scale features 

in the physical solution. Our study shows that MsFEM is a robust method for practical 

muItipIe scale problems. In particular, the method works for multiple scale problems and 

when we choose the mesh size to be between the two physical scales. We note that there are 

two types of resonance error, one from the way of resolving the large scales, the other from 

capturing the small scales. The second type of error is caused by the artificial boundary 

layers in our base functions. This important issue and its numerical resolution, e.g., the over- 

sampling method, has been analyzed for problems with one small scale (see nonconforming 

MsFEM) . 
The first type of resonance error is common among traditional finite difference and finite 

element methods. The traditional approaches, however, cannot capture the small scales. 

To reduce this error, a natural idea is to generalize MsFEM to higher order in the sense 

that the large scales are more accurately resolved. The idea is to construct base functions 

such that their homogenized parts consist of higher order polynomials than linear (bilinear) 

functions. This can be achieved by changing the linear boundary condition of the base 

functions to higher order polynomials. 

Denoting Sh as a finite dimensional subspace of N;($2) such that for any 

with bij(yl, . . . , yk) are sufficiently smooth periodic functions in yi (i = 1, .  . . , k) in a unit 

cube, 5 bi'ti(j 5 ,B1[l2, and €1 >> €2 >> . . . >> ck >> h we have 

where u E H; ($2) is the solution of b(u, v) = (f , v) for any v E H i  ($2) and uh E Sh is the 

solution of b(uh, vh) = (f, vh) for any uh E sh. For example Sh can be the space spanned 

by high order polynomials of degree n [13]. In each element K E ICh we denote P& E sh 
(i = 1,. . . , d) a set of nodal basis of Sh. Then the higher order multiscale base functions 
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are given by & (i = 1,. . . , d), which satisfy (4.3) and the boundary conditions 

With these high order multiscale base functions we have 

l l ~ e  - u$lll,n < Ch + €2 + C max - 
Em i>m+l ~ i - 1  

instead of (4.55). To show this we continue v,h on to K as ~ , h  E Sh in (4.57). The nodal 

values of the interpolant ai in (4.35) can be defined as those of uh satisfying (4.73). Finally 

taking into account the estimates for u i  and 8 of section 4.2 we conclude (4.75). We note 

that sh needs not to be a subspace of H1. Such Sh may give nonconforming multiscale 

base functions. 

For smooth domains S2 we enjoy the smoothness of u, (and any partially homogenized 

part of it) for fixed E. We also have (4.26) and the estimate for IIOelll,n through I l f  llo,n, 

i.e., l/Oelll,a < O(E) 11 f But the difficulty in deriving H' norm estimate for MsFEM is 

to define multiscale functions near the boundary. There are various ways to treat curve 

boundaries in the finite element methods. In fact, following the triangulation of R in [47] 

and using the nodal base functions constructed in that paper to provide the boundary 

conditions for the multiscale base functions, we can show that (4.75) holds on the smooth 

domain. 

Finally we would like to note that the assumption (4.26) which requires some compat- 

ibility conditions for the problem is not necessary for deriving the H1 estimates. Without 

this assumption we have 

where p > 2 is an arbitrary constant. Because of the insufficient smoothness of the homog- 

enized parts of the solution near the corner points of the domain R, the rate of convergence 

of l/Oall l,n to zero as E -+ 0 deteriorates depending on the parameters of the problem. 

In order to show the estimate, (4.76) we only need to reestimate / ~ : I l ~ l / l ( ~ ~ )  in (4.56). 

We derive it only for the two scale case €1 >> h )> €2. The derivation for the general n scale 

case is similar. 
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Introducing the family of function 7; in K as in section 3 with the properties 1 and 2 

we have 

Denoting the support of 1 - T, by S, we have meas(S) 5 Ce2h. Furthermore taking into 

account that Ie2Vxl 5 C and 1c2V7-1 5 C ,  we can estimate the r.h.s of (4.77) as 

For the estimate of /lVuO 11 L2(S), we use the following facts [54]: 

and 

Then 

Then using the estimates (4.78) and (4.79) for llu: 11 H ~ / ~ ( 8 K )  in the summation of (4.41) over 

a11 K we get (4.96). As we see the estimate (4.76) is slightly weaker than (4.60) but it does 

not contain the cm+1/- term of (4.60). 



Chapter 5 MsFEM for discontinuous case 

5.1 Summary 

In this section we analyze MsFEM for elliptic equations with discontinuous coefficients. 

It is known that the convergence of traditional finite element methods deteriorates for 

the case of discontinuous parameters. The more singular the behavior of the solution at 

discontinuity points slower is the convergence rate of finite element method. There are 

different versions of finite element methods to handle the discontinuous coefficients case. 

Some of them include the singular functions (assuming that we know them) to the finite 

dimensional space of base functions [49]. These methods destroy the band structure of the 

stiffness matrix, and consequently require special fast linear matrix equation solvers. Some 

other finite element methods find the similarity solution around the discontinuity point by 

partitioning the domain in the neighborhood of this point. This method is known as Infinite 

Element Method which can effectively capture the singular behavior of the solution [55] .  

In this section we analyze the convergence of MsFEM in the case of discontinuous 

coefficients. The analysis has been performed for one periodic case, ati(z) = aij(z/&), 

where aij(y), y = X/E is a discontinuous function. We note that the analysis for smooth 

coefficients case cannot be carried out in the cases of discontinuous coefficients. 

We show that despite discontinuity of the parameters MsFEM retains its convergence 

rate 

The Lz convergence rate has been also derived: 

This estimates demonstrate that MsFEM can also be used to capture the singular multiscale 

nature of the solution. We would like to note that as the number of singular points increase 

the complexity of Infinite Element methods increase substantially. The reason for it is that 
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the method needs to find similarity solution in the neighborhood of each singular point. 

We confirm our estimates with numerical experiments. We present the numerical results 

for the cases when the boundaries of the elements are aligned with the discontinuity surfaces 

and when they are not. We choose checker-board models for the numerical examples. 

5.2 Formulations 

In this section we assume that the coefficients of the elliptic operator (3.1) a:i has the form: 

where y = X / E ,  is a periodic function in y in the unit cube Y . For the H1 analysis 

we assume that aij(y) E Lw (Y). The assumption on aij(y) in Lz analysis is also sufficiently 

general (for example, it is sufficient for checker-board structures) and can be found in 

subsection 4 of this section. 

The difficulty in analyzing this case is that the gradient of Xi (3.11) is no longer con- 

tinuous. this does not allow us to use the techniques we employed in the previous sections. 

For this reason, we treat the terms with Xi in a separate way. As a consequence we cannot 

use the Aubin-Nitsche $rick. We note that it was possible to use Aubin-Nitsche trick in the 

one periodic case. 

The implementation of MsFEM is the same as described in the previous sections. 

5.3 fll estimates 

In this section we consider H1 error estimate for MsFEM for 

where aij(y) is a periodic function in Y. For analysis we assume that aij(y) E L" (Y). 

For Lz analysis the assumption on aij(y) is sufficiently general ( for example it is sufficient 

for checkerboard structures) and can be found in section 4. 

The analysis differs from the analysis of the smooth coefficients case due to the fact that 

the generalized VX is not continuous anymore. As usual, we enjoy Cea's lemma. 
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As for ( u ,  - ~ , h ) ~ ,  using the expansion of u,, u, = uo + c 2 ~ ~ V m u o  + Oul and (5.7) we have 

Combination of (5.8) and (5.9) gives 

For the second term on the r.h.s. of (5.10) we can write 

Since vf is the linear function on dK we can extend it as a linear function 5: onto K. 

Noticing the fact that because of (5.4) uo  and $,h coincide at  the nodal points we have 

For the third term on the r.h.s of (5.10) we have 

where T, is a family of functions satisfying the following conditions: 

1. T, E C p ( K ) ,  0 < T, < 1, T, = 1 outside the c neighborhood of K.  

2. c [ V r E /  < C in K,  where the constant C does not depend on c. Such functions can be 
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constructed for any domain with Lipschitz boundary. Then 

To estimate the r.h.s. of (5.14) we denote by S the support of 1 - 7;. Note that 

meas(S) I Ceh and Vre = 0 in K \ S (outside S) .  Then for the last two terms on the r.h.s. 

of this inequality using the fact that 1x1 < C,  and IEVT~I < C we have 

For the second term on the r.h.s of (5.14) we have 

Here we used the fact that lVuol L. C. To estimate [ I ~ V X ( / ~ , ~  we cover S with the €-periods 

IT: of x such that 

where N < Chle. Then 

To estimate I I c V ~ ~ ~ ~ , ~ ;  we make the change of variables yi = zi/e7 (i = 1,2), where yi are 
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the new variables. Then 

where II: is the period of size 1. In the last step we have used the fact that IIVY~Io,ni < C.  

Furthermore, from (5.17) using (5.18) we have 

(5.14) along with (5.15), (5.16), and (5.20) gives 

Furthermore, taking into account (5.12) and (5.20) in (5.10), we have 

Summing (5.22) over all K E K~ and noticing that jjOulll,s2 depends only on E, and 

I l ~ ~ l l ~ , ~  5 Cll f along with Cea's lemma we get the desired result. 

n 

5.4 L2 estimates 

In this section, we derive the L2 norm estimates for MsFEM. As we can see from the previous 

section, the use of Aubin-Ntsche trick becomes complicated because of the estimate (5.21). 

Following [28], we use a discrete error analysis to overcome the difficulty. First, we show 

that the L2-norm error can be determined from the discrete l2  norm error. For the latter, 

we compare the discrete solution of (4.1) and that of the homogenized equation at the nodal 

points. 

Specifically, let us denote by uk the numerical solution of the homogenized equation 
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which is calculated using FEM. Then we have [28] 

Here we used estimates for the convergence of homogenized solution to the exact and the tra- 

ditional finite element estimate for regular elliptic equations. The estimate Ilu, -uollLz(Q) < 
CE can be easily derived, while lluo - ~ ; j l ~ , ( ~ )  < c h 2  is a traditional finite element estimate. 

5.4.1 Asymptotic expansion of the discrete solution 

Denote by Uf. and U: the nodal values of u2 and u!, respectively. The linear system of 

equations for U! is 

where A: and f,k are obtained from a(uh, v) and f (v) by using v = 56: for i = 1,. . . , N. 

Similarly, for U t  one has 

where A$ and fob are obtained by applying v = 4; (i = 1 , .  . . , N) to a*(u$, v) = f (v) with 

Note that the "comma7' notation is used here and below for partial derivatives. We write 

then formal calculation shows that Uf. can be expanded as 



where Up (i 2 1) are given by 

We note that the expansion enables us to avoid dealing with the inverse of A! whose entries 

are oscilIatory. In contrast, A$ and its inverse are well understood. 

5.4.2 Derivations and estimates for A: and f p  

The basis of (5.26) is the expansion of the multiscale base functions. We rewrite it here for 

convenience: 

Note that 4; are linear functions and I V ~ { (  < C/h.  Moreover, 0; = 7 7 ~ ~ q 5 { ,  where 7jp is 

the solution of (3.16). 

Now (5.26) can be derived. We note that the global stiffness matrix A: is assembled 

from the local stiffness matrices defined on K E K~ 

over several neighboring elements, and f;h is assembled from 

Similarly, At and f: are assembled from 

respectively. Below, we consider the expansions of Ail and fg  which lead to (5.26). 

First, we review some relevant results proved in [28]. Letting gij be 
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. . . . 

we have (aij) = a;J and a:& = 0. Using integration by parts, we further obtain 
. . . . 

( o ~ j ~ : ~ ~ )  = 0. Define 29 = crJ - ai3 - then < >= 0. 

Now following [28], from the definition of Ail and fg, we can derive (5.26) with A! given 

by 

After some algebra we have 

and for fp 

Note that A% (i = 1,2 ,3)  are the i th  integrals in (5.32) and Ff and F; are the first and 

second integrals in (5.33). 

To estimate entries in A: and ft, it is sufficient to estimate A;,, and fl. Let A: be the 

matrix whose entries are assembled from A% (i = 1,2), such that 

Similarly we define vectors FP and ~ f .  We will use the estimates of llh: ( 1  and IF) 1, where 

11 . 11 is the standard max norm of matrices in R~'" and 1 . I denotes the max norm of 

vectors in R*. Note that N - l /h2  is the number of nodal points. 

We estimate the elements of A!. For A?, using the integration by parts we have 

Here we have used the fact that I B ' (  2 C on dK and it is continuous. The first term on 
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the r.h.s of (5.34) is not necessarily defined if aij(y) E LCO(Y). For that reason, we assume 

that the intersection of dK and the interfaces of the discontinuity of the coefficients are 

countable number of points. In general this occurs when aK does not have a common part 

with the discontinuity interfaces. In this case, aij(y) becomes piecewise smooth function on 

aK. Then (5.34) can be estimated as 

Moreover, we assume that the integral on the r.h.s. of (5.35) exists. This is for example 

the case for the checker-board models where dK does not coincide with the discontinuity 

interfaces. 

To estimate JdK ~IVxlds, we proceed as we did (5.21). Covering 8K with the €-periods 

of X, IT:, we have 

where = aK n II:. We note that M 5 Ch/e, Then 

Making change of variables y = s / e ,  where y is the new variables, for each Jan: eIVxlds, 

we have 

an: 

where II~ is the period of size 1. Since the singularity of x is of type r" (a  > 0), we get 

/ IV,xlds, 5 C. 
an; 

Then (5.36) becomes 



Consequently, 

To estimate IA;,, 1 ,  we need to estimate lVB1llo,~. From the equation for B we have 

where re is a family of functions introduced in the previous section. The estimate for 

IIx(1 - can be obtained similar to (5.13). Then 

Here we used the assumption about the smoothness of uo, luolcz(n) < C. Having the 

estimate (5.38) we can estimate /A;,, 1 as following: 

As for A;,, 

where <@ v are constants, <gz = h 2 ~ i & ~ j $ b ,  which are independent of h and r, and /($l/ 5 C. 

Since d i j< t  is a periodic function with the average zero, we can discard the periods of 5ij[g 

from K without changing the value of the integral (5.40). Denoting the e-periods of bij[$ 

by IT:, such that ufZ1 II$ C K C uf.' II$ we have 

where S = K\ nfZ1 II4 Here we have used the fact that z ~ G  = aij + aikvkXj - a p q p X i  - 
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~ P ~ v ~ ~ ~ V ~ ~ ~  - ai3. The r.h.s of (5.41) has been estimated in (5.19) as 

Consequently, 

It is straightforward to check that 

IF;/ < Ch, IF; I < Ch. (5.43) 

5.4.3 The error estimate 

We consider U; in some detail; the rest of U )  can be studied similarly. In [28], it was found 

that the conservative structure of the linear system (5.24) is the key to obtain discrete error 

cancellation using "summation by parts." In the following, we present a simpler derivation. 

First, it is easy to see 

for all K E Kh. It follows that [28] 

. . 
because via:'Vj& = 0, V i a $ V j &  = 0 for all k and xiEl 4; = 1, xi=, 4; = 1 on aK. 

Now, according to (5.28), we have 



k - m - 1  k - m  

Figure 5.1: An example of neighboring nodes in a triangulation of a rectangular mesh with 
mxnnodalpoin ts .  0 ~ = { k - m - 1 , k - m , k - 1 , 5 + 1 , k + m , i E + m + 1 ) .  

where Gk = (A;)-'. For GkAtUk  we note that 

j k  ~k - u j  Furthermore by the symmetry of A? we can combine A ~ ( u ;  - u:) and Al ( , o )  in 

the sum G ~ ~ A ~ U :  and get 

We note that A: is sparse, which is important in obtaining the error estimates below. 

The following definitions are helpful to describe the sparsity. We say two nodal points are 

neighbors if they are the vertices of the same element. For a nodal point with index k ,  we 

denote the set of the indices of its neighbors by Oh (see Fig. 5.1). We have A> 0 if j 6 Oi. 
Thus, the r.h.s. of (5.45) can be written as 

Since the summation of j depends only on the geometry of the mesh and independent of 

N (or h), we can safely ignore it when estimating the above expression. This would greatly 
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simplify the presentation. Introduce a difference operator D such that for any V E R ~ ,  

(DV)k = vk - v V ~  for some j E Ok. Note that j is not specified in the definition. For 

a matrix, D applies to its row vectors unless otherwise stated. With this definition, from 

(5.28) and (5.45) we get 

Here, the important features to notice are the differences on Gk and u:; the details of these 

differences, however, are not important and are hidden in D. 

Since a:j are constants, the discrete Green's function G! and the solution U$ are well 

understood (cf. [28, 23, 481). We have 

I D U , ~ ~  F. Ch, lD2U,h1 5 ch2 ;  

I I G ~ I I  5 c /h2 ,  l l ~ ~ t l l  I Clh, llD2~;1l 5 Cln  jhl. 

Then 

From this we can deduce that the first order correction in (5.27) is of order e/h. Similarly 

we can estimate lU:/, (i > 2). For the estimate of Uk we estimate I DU? 1. 

Then 

Consequently, the second order correction in (5.27) is of order e21 log(h) l/h2. Let's show 

by induction that 
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Assuming (5.48) holds for i = k - 1 , we can show that it holds for i = k .  

and 

Using these estimates for U; in (5 .27) ,  we have 

5.5 Numerical experiments 

In this section we study the convergence and the accuracy of the multiscale method through 

numerical experiments. The model problem is solved by using the multiscale method with 

the base functions defined by (4.3) and the linear boundary conditions. 

The calculation of the multiscale base functions involves solving PDE with discontinuous 

coefficients. The traditional FEM does not provide a robust approximation to the base 

functions. For that reason, there have been developed different numerical methods which 

robustly approximate the solutions of elliptic PDE with discontinuous coefficients. But 

because of the change of the mesh size, the elements may include several discontinuities of 

the coefficients. This causes difficulties in numerical codes and decreases their efficiency. 

For the calculation of the base functions, we use finite element discretization aligned 

with the discontinuity interfaces of the coefficients with Black-Box multigrid. It is known 

that this method is robust for not large inhomogenities, i.e., for not large p/a (see (3.2)). 

We test problems with not large inhomogenities also. The numerical results confirm our 

theoretical rate. 

For the numerical tests, we choose the checker-board model where the coefficients ~ ~ j ( ~ ) ,  



Table 5.1: lluE - ut1/12 for E = 1/32, 6 = 0.1, aligned 
I I  h II 19 I rate /I 

Table 5.2: lluE - utlll, for E = 1/64, 6 = 0.1, aligned 

y E [- 1/2, 1/212 defined as 

As examples, we consider the homogeneous equation with the r.h.s zero, f = 0, and 

inhomogeneous equation with the r.h.s -1, f = -1. Also we test separately the cases when 

multiscale elements are aligned with the discontinuity interfaces of the coefficients and when 

they are not. The numerical tests show that tb2 error estimste (5.49) hslds fer the case 

when multiscale elements are aligned with the discontinuity interfaces of the coefficients. 

Example 1. In this example, we consider the case when aij is defined by (5.50), with 

8 = 0.1, and f = -1, aboundary = 0. 

In the tabels 5.1 and 5.2 the numerical tests are done when the multiscale elements are 

aligned with the discontinuity interfaces of the coefficients. In particular, aij(x/e) is defined 

As we see from these tables, the error estimate is ~ / h  as predicted. Indeed the error 

increases with -1 order as we decrease h, and it resonates as the ratio ~ / h  is fixed. 

In tables 5.3 and 5.4, we repeat the tests shown in the tables 5.1 and 5.2, for S = 0.49. 

In the tables 5.5 and 5.6 we tested the case when the multiscale elements are not aligned 



Table 5.3: Ilu, - u11Il2 for E: = 1/32, 6 = 0.49, aligned 
n 

h / I  42 / rate 
118 11 0.31e-3 / 

Table 5.4: Ilu, - ~ 1 1 1 ~ ~  for E == 1/64, 6 = 0.49, aligned 
I[ h 11 12 1 rate /) 

with the discontinuity interfaces of the coefficients. In this case aij(x/E:) is defined as 

These tables confirm MsFEM convergence rate derived in the previous section. 



Table 5.5: Ilu, .l, not aligned 



Chapter 6 MsFEM for problems with weakly dependent 

random coefficients 

6.1 Discussion 

The main difference in the analysis of MsFEM for elliptic problems with random and peri- 

odic coefficients is the behavior of the solution of cell problem (3.11). Unlike the periodic 

case in general (almost periodic or stationary ergodic cases) the "cell problem" [8, 321 

does not have almost periodic or stationary solutions even when the r.h.s. has mean zero. 

It is nevertheless possible to construct a certain solution of this problem which possesses 

special properties [32]. It turns out that this special solution is not bounded [32]. The 

boundedness of the solution of cell problem plays an important role in the convergence 

estimate. In general random cases, it is known that a solution of the "cell problem" has a 

sublinear growth. This growth rate affects the resonance error and the resulting resonance 

error is (e/h)lea, 0 < a < 1, where a depends on the growth rate of the solution of cell 

problem. If the solution of the cell problem is bounded as in the periodic case then it can 

be shown that the convergence rate is ~ / h .  Let's note that for almost periodic coefficients 

azj satisfying Kozlov's diophantine condition ( [34]), the solution of the cell problem is 

bounded. For example, the finite trigonometric polynomials satisfy Kozlov's diophantine 

condition. For general random cases the behavior of the solution of cell problem has not been 

extensively studied. In this work we use some estimates derived for the almost solutions of 

the cell problem [56] to study the resonance error of MsFEM. We note that the analysis of 

MsFEM has been limited to periodic structures so far. 

6.2 Summary 

Until1 now the mathematical analysis of MsFEM has been limited by the case of periodic 

structures. We analyze MsFEM for problems with random coefficients whose correlation 



decays at  least by power law. 

In other words, denoting @(A) to be the o-algebra generated by the parameters of the 

problem in the physical domain A, we assume that 

where J is @(A) measurable, q is @(B) measurable and q is the distance between the domains 

A and B, i.e, q = inf(]lx - yll; x E A, y E B). For the analysis of this paper we assume 

that 

The exponential decay of ~ ( q )  is often used in geostatistical models. Basic variogram 

models, exponential, Gaussian, Nugget [31] are the examples. But there are still basic 

variogram models (e.g., spherical model) which have power decay of ~ ( q ) .  This indicates 

the importance of including the power decay case in our analysis. 

We derive the following estimate for MsFEM error: 

where d is the dimensionality of the physical space, A is the power in (6.1) and a is a 

positive constant. We see that this estimate in the case of d = 2 becomes of order 1. In R ~ ,  

MsFEM convergence rate becomes 

Moreover, this estimate indicates that as A gets smaller the convergence rate of MsFEM 

deteriorates. In the case very large A the convergence rate of MsFEM approaches 

The presence of the ratio in the error estimates of MsFEM has been observed eariler 

and it is called the resonance. This error is typical in upscaling problems. 

The rest of the section is organized as follows. The formulation of the model problem 
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and MsFEM are presented in Section 2. In Section 3 the multiscale expansion of the solution 

is discussed. The main inequalities used in the article are in Section 4. Section 5 contains 

the derivation of H1 estimates of MsFEM. 

6.3 Formulations 

Let (Q, F, P )  be a probability space and aij(y, w), y E R3, w E S2 be a homogeneous ergodic 

random field. 

We recall the concept of a homogeneous field. We assume that a dynamical system with 

d-dimensional time is given on fl which satisfies: 1) the group property: T(0) = I ( I  is the 

identity mapping), and T(x + y) = T(x)T(y), b'x, y E R ~ ;  2) the mapping T(x) : i2 -+ fl 

preserve the measure p on $2, i.e., for every x E Rd, and every p-measurable set F E S2,  

we have T(x)F is measurable, p(T(x)F) = ,u(F); 3) for any measurable function f (w)  on 

$2, the function f (T(x)w) defined on SZ x Rd is also measurable. All functions on SZ are 

assumed to be F measurable; equality between random functions means equality almost 

everywhere (a.e.) with respect to P, and, as a rule, the notation a.e. is omitted. 

A function f (w) is called invariant if f (T(x)w) = f (w) for any fixed x E Rd. The 

dynamical system is called ergodic if the set of invariant functions is exhausted by functions 

which are identically constant. A homogeneous random field is a function f : R~ x Q --+ Rd 

for which 

According to Birkhoff's theorem, the spatial average defined as 

< f(x,w) >= lim - 

exists for a homogeneous field, and < f > is an invariant function. We observe that in 

the ergodic case there is the equality < f >= Ef; where E denotes the operator of the 

averaging with respect to the measure P (mathematical expectation). 
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Consider the following elliptic problem 

where aij(x/e, w )  is a homogeneous ergodic random field, f E L2(D) is a non-random 

function and E is a small parameter. Furthermore assume that aij = aji (i, j = 1,2,3) have 

smooth realizations, uniformly bounded in the entire space along with their derivatives and 

for any 5. E R3, with probablity 1. Here cx and P are positive non-random numbers. 

Variational problem of (6.4) is to seek u E: H,'(D) s.t. 

where 

It is easy to see that the bilinear form a(., .) is elliptic and continuous for almost each w  E Q. 

As in previous sections, for 0 < h 5 1, let Kh be a partition of D of regular triangles 

K with diameter less h. In each element K E K ~ ,  we define a set of nodal basis (&), 

i = 1,. . . , d, with d(= 3) being the number of nodes of the element, satisfying 

We will neglect the subscript K when working in one element. Let x j  E K ( j  = 1,. . . , d )  

be the nodal points of K. As usual we require @(xj) = Sij and that the base functions are 

linear on each side of on the boundary. So we have: 



67 

In the following we study the approximate solution of (6.5) in vh, i.e., uh E vh such that 

a(uh, v) = f (v), 'dv E vh. 

6.4 Homogenization results 

In this section we review the homogenization theory for equation(6.4) and give the estimate 

for the first order correctors. The behavior of the random field u,(x) as E -+ 0 has been 

investigated under various assumptions on aij(y, w). When aij  (y, w )  is strictly stationary 

and ergodic it was found that there exists aij (if j = 1,2,3) such that if uo(s) is the solution 

of the deterministic Dirichlet problem 

then 

where E denotes the expectation. The matrix aij is called the effective coefficient and can 

be calculated for some special cases. 

Remark 6.4.1. For our analysis we assume that u0 E C 2 ( D ) .  This holds for smooth 

domains, as well as for convex polygons under some compatibility conditions [4]. 

When aij(y) is a periodic function the solution of (6.3) can be approximated [32] as 

where y = X / E  and Xi(y) is the periodic solution of 

in a unit cell. The periodic solution of (6.12) exists and is unique up to a constant. 

However, extension of the result on periodic structures to random homogeneous struc- 

tures encounters a difficulty related to the insolvability of (6.12) in terms of homogeneous 
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functions. Indeed, the problem (6.12) is not Fredholm and has no solution in general. It is 

nevertheless possible to construct and analyze the solutions of approximate equations which 

is basic for our analysis. In this chapter following [56] we introduce almost solutions (in the 

sense of [58]) of (6.12) (for large T > 0) 

where gi = aki. This equation has also played a central role in the homogenization of second 

order random elliptic equations in [35, 431. It is known that the solution of this equation 

exists and it is a homogeneous random field (see [35]). 

For the calculations of the convergence rate of MsFEM we require an assumption about 

the weak dependence of values of the field of coefficients of (6.13), k = (aij, gi) at remote 

points. Let @(A) be the a-algebra generated by random vectors k(x), x E A. Then we 

assume that the family of a-algebras (@(A), A E R3) satisfy the condition of uniformly 

mixing 

where the random quantity < is @(A) measurable and q is G(B) measurable, and q = 

inf{l lz - yll, x E A, y E B}. For our analysis we assume that 

. . 
We note that (6.14) and (6.15) imply strong mixing for the coefficients a''. 

Under the assumption of power decay of ~ ( q ) ,  it can be shown [56] that u, can be 

expanded as 

where (#JT is the solution of (6.13), uo is the solution of Dirichlet problem with constant 

coefficients, and 6' is bounded 
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for some positive a. This estimate is obtained using nontrivial estimates for the correlations 

of the field h and choosing the large T, T = E-P (P > 0). In [56] the author refine the claim 

of [35] about the existence of the limit $ik of the field of derivatives of Ojq5& as T -+ w. 

In particular, he shows 

for some positive q. The effective coefficients ati in (6.9) are defined as 

6.5 Estimates for the covariance of CbT 

Here we formulate the main theorem and the inequalities used in the derivation of the 

convergence rate of MsFEM. For further convinience, in the estimates for 4$ we omit the 

index k. 

Theorem 6.5.1 If (6.15) i s  satisfied then 

where [f; m] = 1 / ( 2 m ) ~  J;xl<m - f ( x ) d x ,  and m and q are arbitrary large numbers , m > q+7 ,  

q 2 5 ,  T 2 1, and d is  the dimensionality of the physical space. 

The proof of this theorem is based on the analysis of the paths of the diffusion processes 

corresponding to (6.13) and it can be found in [56]. In the proof the author uses the following 

representation for h 

where M, is the distribution of the diffusion process q with generating operator 1 / 2 v i  (aij ( y ,  w)O i).  

The parameter q can be choosen such that r.h.s of (6.19) achieves its minimum. With this 

choice of q, q = ( m d / ~ ) 1 / d S 2 A  (6.19) becomes 
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In [56] the author uses the parameter q to define neighborhoods of the trajectories of a 

diffusion process corresponding to 1/2Vi (aij (y, w)Vj). 

It has been also shown [35, 431 that the solution of (6.13) satisfies the inequality 

From where 

and 

6.6 fir1 estimates for MsFEM 

In this section we obtain the convergence rate of MsFEM. Our main goal is to derive the 

resonance error in (6.2). For obtaining estimate, we need the following Cea's lemma: 

Lemma 6.6.1. Let u and uh he the solutions of (6.3) and (6.8) respectively. Then 

for any v E vh. 

Theorem 6.6.2 Let u and uh be the solutions of (6.3) and (6.8) respectively. If ~ ( q )  

satisfies (6.15), and d = 3 then 

where cr 2 0, and A is defined in (6.15). 

Proof. Define v,h E V h  such that in each K E K~ 
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with olj = uo(xj) where uo is the homogenized solution, and xj are the nodal points of K. 

Then 

where k h  is a linear function with the nodal values uo (xj). The solution of (6.26) can be 

expanded similar to u, as 

Here vk is a linear function because homogenized coefficients are constants. We note that 

the parameter t in (6.27) is not the same as the parameter T in (6.13). As we will see later 

t is scaled as (~/t)-?,  while T is scaled as e-7 (7 > 0), i.e., they approach to infinity at 

different rates. These rates represent the ratio of the small scale and the macroscopic scale 

of the problem. Having the expansion for v!, we can get the following H1 estimate of the 

interpolant of MsFEM in K: 

Here we have used the facts that lluo - V O ~ ~ I , K  < C ~ ~ U O I ~ , K ,  I U O / C ~ ( D )  < C ,  and IVvol L 



Then summing (6.28) over all K E K ~ ,  we have 

Here we have used 

To estimate the r.h.s. of (6.29), we need to choose appropriate T and t .  The choice of T is 

made in [56] and it was shown that for 

we have (6.17) for some small y. Consequently we need to estimate only the last three 

terms in (6.29), which we do in the following three lemma. 

Remark 6.6.1. As we will see from the estimates the main resonance error is caused by 

the first order corrector, I18vI)1,K as in periodic case. We would like to note that the term 

~ I l r ( ~ q 5 b  - ~ q 5 r ) l l f , ~  is not present in periodic case. 

Lemma 6.6.3 

Proof. 8" satisfies 

In the last step, we have used the equation for 4t.  On the boundary of K, we have 



To estimate Bv we divide it into two parts for the convenience 

and 

Then BV = 0; + 0;. For 0; we have 

for any g E C r ( K ) .  

Let K = uE1 Ki where Ki are non-intersecting open cubes with the sides 2me. Then 

denoting < f; i >= 1 / ( 2 ~ m ) ~  JKi f (x)dx we have 

Using the Cauchy inequality, Poincare inequality and the estimates (6.19) and (6.23) we 

get from (6.35) 
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Consequently from (6.33) using regularity estimates for PDE, and (6.36) we have 

Equating the last two terms we can find the optimum value for q; q N (md/t)11(d+2A). 

Then (6.37) becomes 

t m2 
E z I I ~ ; I I : , ~  < ( i ) - 2 t - 1 ( ( G ) h  log(t) + e x p ( - ~ ( l o ~ ( t ) ) ~ )  + - t '  (6.38) 

KED 

Moreover, equating the first and the last terms we can find the optimum value for m 

and the corresponding estimate 

E - 2 d+2A) 2A 
B 0 ,  ( )  ~ d i 4 ~ + * d t 2 d + 4 * + * d - l  + (i)-2t-1 e x p ( - ~ ( l o ~ ( t ) ) ~ ) .  (6.39) 

KED 

Now we show that 

From (6.34) we have 

where T E C r  (K)  is the cutoff function for domain K: ~ ( x )  = 1 if inf (lx - yl, y 4 K) > 6 
and T = 0 on LIK. Consequently, 



75 

Furthermore using the estimates (6.22) and (6.23) for d t ,  we have 

Choosing an optimum value for 6 we have 6 N ~ ~ / ~ t ~ / ~ h ~ / ~  and 

Summing (6.42) over all K E Kh, we get (6.40). 

Combining the estimates for 0y and 8; we have 

For the optimum t in (6.43) 

the estimate (6.43) becomes 

As we can see if d = 2 the upper bound for E C I C E K h  llPI/:,K is of order 1. So the method 

does not converge in general if d = 2. But in the case d = 3 this estimate becomes 

Lemma 6.6.4 

Proof. 
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Using the estimate (6.23) we have 

As we noted eariler for the convergence of u,, T has been chosen to be T = E - ~ / ( ' + Y ) ,  Then 

17 

Lemma 6.6.5 

Proof. For further convinience we omit the index k in the proof. To prove the lemma, 

we introduce $,, the limit of V ~ T  as T -+ CQ. We will show that this limit exists. Then 

writing 1.h.s. of (6.45) as 

we just need to derive the convergence rate of tVgT - $, as T -r m. Following to 

[56] we show that 

for some positive s. Then using similar estimate for dt we get the desired result. 

Comparing the equation (6.13) for different values of T ,  T = TI and T  = T2 (T2 > T I ) ,  

we have 

Furthermore, because of homogenity of the field +T 
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where [f 1 = 1/(2m)d J;sl<m - f (x)dx. The first term on the r.h.s of (6.47) can be estimated 

as 

Choosing an optimal value for q, q - ( m d / ~ l )  1/(dS2A) we have 

The second term on the r.h.s of (6.47) can be estimated by a version of Poincare - 
Riedrichs inequality for functions with the average zero as 

(6.47), (6.49) and (6.50) lead to the ineqality 

Taking T2 = and choosing the optimum value for m, 

we have 

where 77 = 2 A S ~ ~ $ ~ ~ 2 - 7 d  and it is a positive number for small 7 .  

Now choosing T(k) = exp((l+ y)k) ( T(k+ 1) = T(~) '+Y as it is assumed) and choosing 

TI = T (n) we have 
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Consequently, using (6.53) we can estimate the first term on the r.h.s. of (6.46) as 

Similarly, the estimate for the second term on the r.h.s of (6.46) becomes 

Taking into accound the values for T and t , T = E - ~ / ( ? + T ) ,  and 

we have 

and 

It  can be easily checked that 

El 

Eventually, from (6.29) using (6.31), (6.44), and (6.45) we get the desired result (6.25) 

ford = 3. 

El 

Remark 6.6.2. We can observe numerically that the resonance error is no longer c / h  

if the coefficients are random. Indeed, in Fig. 3.2 the line denoted with square represent 

the La error of MsFEM for different values of the mesh size h in the case of log-normal 

field. The realizations of these random fields are used as coefficients a? and the small scales 

range is between 1/64 and 1/512. We can see from this figure that the resonance error for 
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fixed small scales behaves approximately as hmO.'. This indicates that the resonance error 

is (e/h)'.'. 



Chapter 7 Nonconforming MsFEM and its analysis 

7.1 Summary 

In this section we analyze the nonconforming method introduced in [53]. As we have 

seen from the analysis of conforming MsFEM presented in previous sections these methods 

suffer from the resonance error. This resonance is due to the mismatch between the local 

construction of multiscale base functions and the global nature of the elliptic problems. 

Motivated by the error analysis, an over-sampling technique was proposed to overcome the 

difficulty due to scale resonance in 1261. The idea is quite simple and easy to implement. 

Since the boundary layer in the first order corrector is O(E)  thin, we can sample in a domain 

with size larger than h 4- E and use only the interior sampled information to construct the 

bases (h is the mesh size and E is physical scale). By doing this, the boundary layer in 

the larger domain has no influence on the base functions. Now the corresponding first 

order correctors are free of boundary layers. As a result, we obtain an improved rate of 

convergence. 

Unfortunately, the over-sampling technique results in a nonconforming MsFEM method. 

The previous analysis needs to be modified to take into account the nonconforming error. In 

[2l] , we perform a careful estimate of the nonconforming errors in both H1 norm and the L2 

norm. The analysis shows that the nonconforming error is small. Our analysis also reveals 

another source of resonance, which is the mismatch between the mesh size and the "perfect" 

sample size. In the case of a periodic structure, the "perfect" sample size is the length of an 

integer multiple of the period. We call the new resonance the "cell resonance." In the error 

expansion, this resonance effect appears as a higher order correction. Although the over- 

sampling helps eliminate the leading order resonance error, we find that over-sampling alone 

does not remove the cell resonance error, which dominates the nonconforming error. From 

our computational experience, the cell resonance errors seem to be generically small and 

are rarely observed in computations. Nonetheless, we propose an averaged over-sampling 

technique to eliminate this celI resonance error. This reduces the nonconforming error by 

eliminating the resonance error. 
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7.2 Description of nonconforming MsFEM 

The analysis of nonconforming MsFEM is performed on one periodic problem (3.1), i.e., 
. . 

when a:' = aij(x/c) is a smooth periodic function with a period E satisfying the ellipticity 

conditions. 

The base functions for nonconforming MsFEM are constructed in the following way. We 

first construct base functions '$: in a sampling domain S > K(see Fig. 8.4) by solving 

where '$: is piecewise linear along d S  and 11: = at the nodal points of S.  For simplicity, 

we assume S to be triangular and hence having the same number of nodal points as K .  

Moreover we choose S sufficiently large so that diam(S) = hl > h and d S  is away from d K  

at a distance of order E. Next, the base functions 4, on K is constructed from the linear 

superposition of '$,: 

where i is the index of the nodal point and constants cij are determined by the condition 

q50,i(zi) = 6,, zj being the nodal points of K. Note that $0 ,  = c:=~ qi'$; and '$;, 

(i = 1,2,3) are linear functions. 

By this procedure, the boundary layer structure near d S  is avoided. To make this more 

precise, we expand '$, as 

where '$0 is the homogenized part of '$,, which is linear. For the corrector O r ,  we have 

8' = qPVptj0 with qp being the solution of 

~ ~ a ~ j ' G 7 ~ q p  = 0 in S and qP = XP on dS. (7.2) 

The analysis of the behavior of qp is a complicated problem, which is yet to be rigorously 

carried out. In [9] the problem (7.2) in the half space S = R$ whose boundary aligned 
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with the period was analyzed . Beside the fact that VqP exponentially decays away from 

dS, the authors found out that there exists a constant X!+ such that qP, the solution of 

(7.2) with boundary condition qP = XP - $ on dS, decays exponentially too. Moskow and 

Vogelius [40] investigated some special features of the behavior of 77p for polygon domains 

with specially oriented sides. It  was shown that qP has exponential boundary layers away 

from the corners. We note that these boundary layers are the cause of large norm of qP 

and the resonance in MsFEM [28]. Using the over-sampling technique we eliminate these 

boundary layers from the base functions. The behavior of qp in the interior of S has not 

been rigorously carried out yet. But it was numerically demonstrated [26] that VqP has 

bounded oscillations in the interior of S. Therefore we assume: 

Assumption A: Vqp E LL,(K) when K C S is away from d S  at least at a distance E. 

Indeed, as we will see later from numerical results the computational error is not caused 

by the terms containing 9. We note that this assumption is based on numerical result. 

Using the over-sampling technique we get rid of a large part of the error produced by 0. 

An important consequence of the above construction is that the base functions q5 are no 

longer continuous across the internal boundaries of the elements, nor are they zero on the 

external boundaries. Setting the base functions to be zero outside the external boundaries 

of the elements introduces first order discontinuities of 4 along all sides of the elements. 

Thus, these base functions are nonconforming and Vh spanned by q5 is no longer in H I .  

This complicates the analysis of MsFEM. In the next section, we will provide the estimates 

of the nonconforming error. We remark that despite the complications, the nonconforming 

finite element methods have been widely used in practice when conforming elements that 

satisfy certain physical and numerical properties are too tedious or impossible to construct 

[13, 491. 

In our computations, we usually choose a large sample domain, S ,  to contain many 

elements to improve the efficiency of computation [26]. Two implementations of the over- 

sampling method have been tested. In 1261, we choose S to be non-overlapped, which is 

easy to implement. This removes the boundary layers in the interior elements, but the 

elements adjacent to 8S are still under the influence of the boundary layers. The accuracy 

of solutions can be further improved by a fully implemented over-sampling method [27], in 

which the sample domains have some overlaps (with width of O(E)). For convenience and 
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clarity in the derivations below, let us introduce some notations here. Let 

be the set of all elements contained in the sample domain S and 

be union of these sets. 

7.3 H' estimates 

Because of non-conformity of the base functions, we no longer enjoy Cea's lemma. But we 

have the following estimate between the exact solution and the numerical solution in the 

energy norm 1121 (see section 3.4): 

where Bh is the finite dimensional space generated by the nonconforming basis functions 

(in genera]. fih j f  27'1, 

and 

7.3.1 Case of h >> E 

Theorem 7.3.1 Let u, be the solution of (4.1) and u," be the numerical solution computed 

using MsFEM with over-sampling. Assuming that Assumption A is valid and the homoge- 

nixed part of u,, i.e., uo, is in W1l" (Q), we have 



Remark 7.3.1. The assumption uo E W1900(R) holds for two dimensional convex polygon 

domains [36].  

In the following, we first consider the "conforming error" on the r.h.s. of (7.4). Then, 

we analyze the nonconforming error given by the second term. For the analysis of noncon- 

forming error we will need the following lemma. 

Lemma 7.3.2 Let D be a unit box in R~ and N(y) E Lm(D) be a I-periodic function and 

( N )  = 0. Then for Qf E I I1 (K)  n Lm(K) ,  K C R2, and diam(K) = h,  we have 

Proof. Define 

where Y, is a periodic cell of N ( x / E ) ,  E K. Then 

Ilf - f i l l ~ z ( y i )  5 ~l lVf  llLz(Yi). 

Denote K' = UKCKE. We have 

In the last two steps we have used the Cauchy-Schwarz inequality. U 
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Proof of Theorem 3.1. For the conforming part, we notice that in each element K E K ~ ,  

v,h E hh can be expanded as 

where uk = vkeh$j 3 0 with vk = uo(xk) and oh = vkc:0;, 11: are the base functions, 8; 

are corresponding correctors in the sample domain S 3 K and c: are chosen in order to 

give c:$: the desirable values at the nodal points. So 4; = cf$i are linear functions and 

4!(xj )  = 6 jk .  Then by (3.8) 

where I I u  1 1  h,K = ( J K  ( v u ) ~ ~ x ) ~ / ~ .  Taking into account that 

and X P  E W 1 ' m ( ~ )  (the latter follows from aij(y) E W1,p, p > 2,  cf. Theorem 15.1 in [36]), 

we have 

where oh satisfies the following equation: 

~ i a Y V j 0 ~  = 0 in S and oh = Y V ~ V ~  on dS. 

Since v i  is linear in K, we have oh = q ~ ~ p v t ,  where 9 is defined by (7.2) and \J$ is 

assumed to be in L,(K) (Assumption A). Then using j l ~ ~ ; l l ~ ~ ( ~ )  5 C I ] V U ~ I I ~ ~ ( ~ )  (see 

Appendix B ) ,  we get 

Summing (7.11) over all K E K~ we have 



Here we have used the fact that I ~ 0 ~ l ~ , ~  _< C f i  [32]. 

The nonconforming error in (7.4) can be written in the following way: 

N.C. - sup I f  (4) - a(ue,wEh)I - - 
SUP If(w,h> - a(ue, w,h>l 

w,heHh Ilw,hllh w,h€Hh, jlw?ljh=l 
(7.12) 

5 SUP { I f  (wr - l h )  - a(ue,w! - lh)l + I f  ( l h )  - a(ut,  lh)l) ,  
w , ~ E H ~ ,  ~ l w , h l l ~ = l  

where lh  is the homogenized part of wt .  Note that lh  is a linear function. Because of the 

conformity of the linear base functions, the second term on the r.h.s of (7.12) is zero. Then 

(7.12) becomes 

N.C. < C sup { ~ f  (w,h - l h )  - ~ ( u E ,  w,h - l h ) b  
w 3 € H h ,  IIw,hllh=l 

(7.13) 
< C SUP \ f ( w , h - l h ) l + c  sup la(ut, w,h - lh ) l .  

W ~ E H ~ ,  (Iw,hllh=l w,h€ffh, Ilw,hllh=l 

First let us estimate the second term of the r.h.s. of (7.13). The first term can be 

estimated analogously. Since w t  is a linear combination of the base functions w,h satisfies 

Via$jVjw,h = 0 in S. Using the expansion for w t  = lh + E ~ P V ~ ~ ~  + €6 we have 

Observe that ue = uo + exPVPuo + ~0~ and 

. . . . 
where gij  = a? + a$'Vp$ - a",". Then (7.14) becomes: 
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Using Lemma 7.3.2 along with the facts that uo E Hi (Q)  n W1@(il) and XP E W1>*(Y) 

( the latter follows from aij E WIJ'(Y), p > 2, cf. Theorem 15.1 in [36]), we conclude that 

the first two terms on the r.h.s of (7.15) are less than CehlVZ I because ( S i j ~ i X ~ )  = 0 

(IT711 = maxp,l,a IVplhl). It can be easily shown that the third term on the r.h.s. of (7.14) 

is bounded by ~ ~ h l V l ~ l l u o l 2 , ~ .  Then 

Noting that hlVlh 1 < CIIVlh 11 L2(K)  and taking into account (see Appendix B) 

we have 

By the same argument for €0, one has 

Summing (7.16) over all K E K~ and using Cauchy-Schwarz inequality, we obtain 

where we have used I(Vw,h l l h  = 1 and leeu 1 l , ~  < 4. Analogously, 
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The second term on the r.h.s of (7.17) can be treated as in the previous case and the first 

term is bounded by CE. Combining the estimates for conforming and nonconforming errors 

we have (7.7).0 

Remark 7.3.2. The estimate (7.7) is better than our previous estimate for MsFEM 
1 

without over-sampling [28]. The leading order error without over-sampling is (€1 h) 3 due 

to the boundary layers in 8. Here we notice that the resonance still exists. Inspecting the 

proof, we see that the e/h term in (7.7) comes from the integrals containing x (see (7.14)). 

These are the cell terms mentioned in $1. We see below (Section 4) that a similar term 

gives rise to the resonance error in the Lz estimates. 

7.3.2 Case of h << E .  

Theorem 7.3.3 Let u, be the solution of (4.1) and ut be the numerical solution computed 

using MsFEM with over-sampling. Assuming one element per sample, i.e., each sample 

contains only one element and aij(y) E W13*(Y), we have 

Remark 7.3.3. The theorem holds in the case of arbitrary number of elements per sample 

under the assumpiiiiii u, E W 1 s o O .  This assumption is trtle for smooth doma.ins $2. 

As in the previous section, we will estimate the conforming and nonconforming error. 

For the proof of this case we assume that +,,i(xj) = bij, zj being the nodal points of K. The 

main difficulty is that because the boundary of the sample element has corners, the base 

functions are not smooth in any subdomain of S. We overcome this difficulty by introducing 

auxiliary functions v = (vl, vz ) ,  the solutions of (7.21) and (7.22). These functions are the 

same for the base functions of each sample. 

Using (7.4) and (7.13) we obtain 
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Before deriving the estimates, we introduce the following notations: 

where S is the sample domain and = UKEKh(S) K C-- S with diam(S) = hl and diam($ = 

h1 and hl and L1 are the same order. In our case 3 = K and diarn(3) = h. Consequently, 

h and hl are the same order. 

Remark 7.3.4. In the proof of the theorem, we keep the notation of ,!? despite the fact 

that the union of the elements in the sample element is K ,  i.e., 3 = K .  We note that the 

proof of the theorem for the case of arbitrary number of elements per sample can be carried 

out following our proof with the notation 3. 
Proof. To estimate the second term on the r.h.s. of (7.19), we first estimate it in 3, 

then summation over all S brings us the desired estimates. Consider a sample domain S. 

For the second term in K E Kh(S), we have 

Here we have used the estimates for the linear interpolants lh. To estimate notice 

that wh is determined on K as a restriction of the solution of 
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where lh is linear function whose values at the nodal points of K are the same as w:. 

Expanding w,h = lh + w t ,  for w t  we have 

and ( w l l z , ~  = Iwt t z ,~ .  

Because of the conic points on dS, we cannot estimate I w t l z , ~  for any subset K c S. 

To overcome this difficulty , we introduce vector v = (v l ,  v2) such that for k = 1 ,2 ,  

We can treat w: of the same samples as linear combinations of vl and vz which are defined 

to be the same for each sample. We note that 

--. we get w: = (vkih),ilk. Uslrig (7.2!), (?.23), the C a u c h -  ineqi~ality, and the fact 

that 

(Appendix B) , we have 

(w;lz,K = 1wtl2,K < l v k l h l  /vk/2,K < I I V W ~ I I O , K  /v\2,Klh- (7.24) 
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Now, from (7.20), using (7.23), (7.24), the fact that ,!? = K, the triangle inequality, and the 

Cauchy-Schwarz inequality, we get 

where we have used the fact that IIV. all, < C / E  and diam(S) = hl in the last step. 

Summing (7.25) over all ,!? C R and using the fact that hl and h are the same order and 

Cauchy-Schwarz inequality, we have 

For the first term on the r.h.s of (7.19), we note that lh coincides with u, at the nodal 

points and IIVEhIlL2(K) 5 I I V U , I I ~ ~ ( ~ )  2 Ch. This, along with the regularity estimate for 

(4.1), i.e., lu,lz,n < Cllf llo,n/~, gives 

where 

Note that vt can be handled in the same way as we did for wt. Thus, following the above 

procedure, it is straightforward to show that 
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Combining (7.26) and (7.27), we obtain the desired error the estimate for error: 

0 

Remark 7.3.5. For the case of arbitrary number of elements per sample the estimate 

(7.27) also contains the term ChjjVy ~ j l ~ , ~ / ~  which is less than Ch/e. 

7.4 L2 estimates 

In this section, we will derive the L2 norm estimates for MsFEM-os (over-sampling). Al- 

though the cell resonance has been shown in the H1 analysis, the L2 analysis reveals more 

clearly the source of this cell resonance. This enables us to design effective methods to 

remove it (see $7.5). 

Following [28], we use a discrete error analysis to overcome the difficulty. First, we show 

that the Lz-norm error can be determined from the discrete l2 norm error. For the latter, 

we compare the discrete solution of (4.1) with that of the homogenized equation (3.9) at 

the nodal points. 

More specifically, let us denote by ut the numerical solution of (3.9) which is calculated 
. . 

using the MsFEM-os method. Since the homogenized coefficients a? are constants, IvisFEM- 

os reduces to the conventional finite element method with linear base functions. Then we 

have [28] 

Let N N l /h2 be the number of nodal points. Denote I ( .  I /  the standard maximum norm 

of matrices in R~~~ and I . I the maximum norm of vectors in R ~ .  

The linear system of equations for UP is 

where A: and f,h are obtained from a(uh, u) and f (u) by using u = (6: for i = 1, . . . , N. 



Similarly, for ~k one has 

where A! and fk are obtained by applying v = &, (i = 1,. . . , N) to a*(ut ,  v) = f (v) with 

The "~ornrna'~ notation is used here and below for partial derivatives. Note that U,h is not 

exactly the nodal values of u t  since the base functions (bt have different values at  the same 

node corresponding to triangular elements with the common vertex at this nodal point. On 

the other hand the values of the base functions in different triangles at a common node 

point differ from each other by order e. So we sometimes still refer to U,h as nodal values 

of the numerical solution. 

The main result of the section is summarized as follows: 

L2 Error Estimate: Under Assumption A, we have 

2 2 I u , ~  - U ~ I  < CTe /h + C~eIlnhl (h >> e). 

It follows from the above estimate and (7.28) that for h >> e, 

The above L2 estimate can be proved rigorously. To illustrate the main ideas more 

clearly, we will present the error analysis through the following steps. 

Step One: Asymptotic expansion of the discrete operator 

Using the asymptotic expansion of the base functions, 

we can expand the stiffness matrix of the problem around the stiffness matrix of the ho- 
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mogenized problem as follows: 

A ; = A ~ + E A ~ ,  f , h = f t + e f ? ;  

where A: and f? are assembled from 

A. licl =-S, cij(+b,jsii + d, j sT , )dx  + (7.34) 

and 

respectively, where K E Kh; aij is the integrand in (3.10), i.e., 

. . . . . . . . 
and e2J = azJ - a:' - a ~ j ~ : ~ ~ .  Note that from (3.10) and (3.11) we have < 0'3 >= a y  and 

o:ii = 0, respectively. Using integration by parts we further obtain < af'jxfyp >= 0,  and 

hence < eij >= 0. Later, we will use this property to extract a conservative structure in 

-A: operator. 

Step Two: Asymptotic expansion of the discrete solution 

Next we will obtain an asymptotic expansion of U,h in powers of E. This asymptotic 

expansion can be shown to be convergent later in this section. 

where UP (i 2 1) are given by 

We note that the expansion enables us to avoid dealing with the inverse of A$ whose entries 
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are oscillatory. In contrast, A; and its inverse are well understood. Furthermore, we note 

that because the homogenized base functions are linear, the expansions of A! and f,h have 

only two terms. This simplifies the equations for UP (i > 1) (i.e., (7.38)) and their analysis. 

Step Three: Recognizing the conservative structure in A: 

Let Gk = (A!)-'. Then we have 

In [28], it was found that the linear system (7.39) has a conservative structure which leads to 

cancellation of the resonance error by using "summation by parts." Here we give a simpler 

proof. 

Lemma 7.4.1 Let Gk = (A!)-'. Then for any V E R~ 

Proof. First, we note that 

for all K E K ~ .  Then it follows from (7.34) ([28]) that 

Thus, 

By the symmetry of A;' (cf. (7.34)), we can combine A ? ( v ~  - v') and Aik(vk - vj) in 
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the sum of GkkAYVj and get 

Thus, (7.41) follows immediately. U 

We note that A? is sparse. The following definitions are helpful to describe the sparsity. 

We say two nodal points are neighbors if they are the vertices of the same element. For 

a nodal point with index k ,  we denote the set of the indices of its neighbors by Ok (see 

Fig. 5.1). We have A? = 0 if j $2 Oi. Thus, the r.h.s. of (7.41) can be written as 

Since the summation of j depends only on the geometry of the mesh and is independent 

of N (or h), we can safely ignore it when estimating the above expression. This will greatly 

simplifies the presentation. Introduce a difference operator D such that for any V E R ~ ,  

(DV)k E Vk - ~j for some j E Ok. Note that j is not specified in the definition. For 

a matrix, D applies to its row vectors unless otherwise stated. With this definition, from 

(7.41) and Lemma 7.4.1 we get 

Here, the important features to notice are the differences on Gk and U t ;  the details of these 

differences, however, are not important and are hidden in D. For example, for an interior 

nodal point k (Fig. 5.1) D G ~ A ~ D u ~  becomes 

Gik = ~ i k - m - 1  where D ~ + ,  o - Gik, D Y O  ~ i k  = ~ i k - m  o - Gik 0 ,  D x ~ ~ i k  o = ~ i k - 1  o - Gik o , and 

similarly for Ut. We would like to note that in DGo the difference operator is applied to 

the second index of Go. 

S t e p  Four: Additional conservative s t ructure in At  a n d  error  cancellations 
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To further exploit the conservative structure in A:, we break At into two parts, A; and 

A;, where A: are those integrals in (7.34) containing 0, and A; are the integral without O,, 

i.e., 

Similarly, let Ff and Fl  be the first and second integrals in (7.35). Moreover, let A: be the 

matrix whose entries are assembled from A? (i = 1,2), such that 

F? and F; are defined similarly. 

A key observation made in [28,26] is that the MsFEM can be improved if flh and At can 

be written in difference forms. Such difference structures enable further error cancellation 

and hence reduce the error. I t  was found [28] that A! can be written in difference forms. 

However, the boundary layer structures in 0: prevent At from having a difference structure. 

Therefore, the idea of over-sampling is introduced to remove the boundary layers [26]. In 

Appendix A, we will show A$ sad f: hzve a difference structure, i.e., 

A; = D X ~  and flh= Dfh,  (7.46) 

where X~ is a matrix and D applies to its column vectors. Consequently, for the first term 

on the r.h.s. of (7.42), we have 

It  should be noted that in obtaining the second equality, we have used the summation by 

parts. The details in this step are not shown. We ignored the sums of the boundary terms 

generated by the summation by parts (analogous to the boundary integrals produced by the 

integration by parts). These sums are at a lower dimension and do not exceed the interior 

sums. Below, we use the summation by parts in the above symbolic fashion. We remark 

that it can be justified rigorously (cf. [28, 261). 
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Using (7.49), (7.51), and (7.52) we obtain 

Step Five: Estimate for UP 

By the over-sampling, the error due to 0: is reduced to lower order. Using llV0: ]IL,  (Kl 5 

C/h  (which follows from Assumption A) and the sparsity of A!, we can show that 

Moreover, it can be shown that 

Combining (7.48), (7.45), (7.47) and our estimates for A t  , we obtain the estimate for 

u:h 

Step Six: Estimate for higher order terms, U )  (i > I), and the cell resonance 

To complete our Lz estimate for U,h, we need to estimate U )  (i > 1). It turns out that 

the higher order terms behave differently from the leading order term, u;. To illustrate 

this point, let us consider U t .  From (7.38) we have 

From the definition of A;, it is clear that the leading order error comes from A t .  Moreover, 

the difference structure of hi and summation by parts do not help reduce the error. The 

reason is that U t ,  unlike ~ 2 ,  is oscillatory and its change over a distance of h is no longer 

small. In fact, DUF and the higher order differences DpUt ( p  > 1) are all O(1). Thus 
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lU!j _< 1/h2. Similarly, it can be shown that U) (i > 1) are of order l /hi  or l /hi ln(jhj). 

Consequently, the formal series (7.36) converges for small ~ / h .  Using estimates for A;1 it 

can be shown that the formal series (7.36) converges to the solution. 

It  is evident from the derivation that the resonance error, C,e2/h2, in (7.31) is due to 

A?, which is not improved by the over-sampling. Below, we will see that the error is due to 

the cell resonance. Here, we would like to point out that (7.31) seems to be an overestimate 

for the actual computations. In our numerical experiments, we found that el In hl is the 

dominant error in most cases, even when h and E are of the same order (see [26, 271 and 

also below). From our computational experiments it is difficult to observe the e2/h2 error, 

although it does seem to have an important effect on the solutions for certain choices of 

h/e. This subtle behavior of cell resonance is discussed further in the next section. 

7.5 Cell resonance and averaged over-sampling 

In this section, we study the effect of A!, which gives the error of order ( ~ / h ) ~  in (7.31). To 

further understand A!, we consider 

Because < eij >= 0, applying Lemma A.O.l to our triangulation (Fig. 5.11, we deduce that 

A: = 0 if a z h/c is an integer. It follows immediately that /UP - = 0 ( c )  and there is 

no resonance. In general, I I A ! ~ I I  depends on the value of a: the norm is smaller if a is closer 

to an integer. Indeed, a is a measure of how good the element size matches the perfect 

sample sizes, and the resonance due to A$ is nothing but the cell resonance. 

In the following, we first show the subtle behavior of the resonance error through numer- 

ical tests. Then we provide a partial analysis of the error followed by a numerical approach 

designed to remove the cell resonance. 



7.5.1 Some observations 

Table 7.1: lIU,h - u;lll,. Note: a = h / ~  is irrational in the middle column. 

We first present a comparison between U,h and u:, using the same periodic test problem as 

in [26, 271: 

(P = 1.8) and f = -1. 

Table 7.1 shows the discrete 12 norm of U,h - Ugh for three fixed a's. We see degrading 

convergence as h decreases when a = 1.5. Moreover, the error stagnates at the bottom of 

the column. This resuit shows that the constant CT in front of the resonance error (see 

(7.31)) is quite small. In this case, it is less than 6 x (or 0.3% of the maximum value 

of u;). For the other two a's, however, the convergence appears to be first order and CT 

in both cases must be extremely small if not zero. Note that the differences in the values 

of a are small. Thus, CT is sensitive to a and depends on cr in a subtle way. 

The fact that CT is generically small has been demonstrated before [27, 261 by various 

examples including some random cases. In this section our goal is to understand the nature 

of CT. 

There could be several factors contributing to the subtle dependence of CT on a. Among 

them we notice that the expansion of U,h is strictly valid for E << h, while the cancellations 

among terms of different orders can be important when h and E are close. Therefore, we 

study below the difference between U,h and U$ directly. 

h 

1/16 
1/32 
1/64 
11128 
1/256 
11512 
1/1024 

a = 1.5625 
12 

1.58e-4 
8.53e-5 
4.44e-5 
2.26e-5 
1.14e-5 
5.75e-6 
2.91e-6 

a % 1.5396 
rate 

0.89 
0.94 
0.97 
0.99 
0.99 
0.98 

i2 
1.75e-4 
9.70e-5 
4.57e-5 
2.45e-5 
1.30e-5 
6.74e-6 
3.31e-6 

a = 1.5 
rate 

0.85 
1.09 
0.90 
0.91 
0.95 
1.02 

12 

1.85e-4 
1.01e-4 
5.60e-5 
3.51e-5 
2.76e-5 
2.57e-5 
2.54e-5 

rate 

0.87 
0.85 
0.68 
0.34 
0.10 
0.02 



Following the derivations in the previous section, we have 

where Ga = (At)-'. Note that we have used (7.46). Having obtained (7.49) and (7.50), 

our remaining problem is to estimate DG! and D2G?. Using the asymptotic expansion of 

G? with respect to e we can show that jJDG,hll = O(l/h) for e << h. Our numerical tests 

indicate that this estimate is indeed valid even for a = h / ~  N 1, e.g., those values in the 

Table 7.1. If this is the case, then we have 

The resonance error is contained in the first term on the right hand side. As usual, we can 

estimate 11 D2Gt 1 1 ,  which gives the upper bound of the error. Indeed, noting that 1 1  Ah 11 has 

the same order as ~lhklj, i.e., l l h ,  and that I D U ; ~  N h, we have 

It should be stressed that in this upper bound, we have ignored the subtle cancellation in 

D ~ G ~ X ~ D U ~ .  Therefore (7.56) tends to be an overestimate. 

According to (7.56), the ] lnhl behavior of ~ I D ~ G ~ I J  implies first order convergence of 

the solution but not vice versa. In fact, for a = 1.5625 our numerical tests indicate that 

~ ~ D ~ G ~ J J  behaves almost the same as in the case of a = 1.5 (not shown here), however the 

solutions converge with first order (see Table 7.1). We attribute this delicate situation to 

the complicated error cancellation in D2G!XhDU;, which depends on the coefficients a, 

and a. In the next subsection we investigate the behavior of llD2G!ll with respect to a. 

This behavior determines the regions of a for which llD2G!I( is of order I ln hj. Moreover, 

the dependence of ( 1  D2G: / I  on a might be helpful in understanding of the subtle dependence 

of C, on a. The further error cancellation in D ~ G ~ X ~ D U ;  has not been fully understood 

yet. This error cancellation is difficult to analyze using the above approach of asymptotic 

expansion. Instead of exploring such special error cancellation, we study a much more 

general method for eliminating the resonance error in the section 6. 



Table 7.2: Influence of magnitude of a = h / ~  on 11 D2Gh Ill,. 

7.5.2 The discrete Green's function and cell resonance 

Now consider the behavior of the second difference of Gh. It is difficult to analyze the 

behavior of Gh analytically. We study it numerically and compute it for very small E. We 

will combine analytical arguments with the numerical experiments. We use the asymptotic 

expansion as a guidance. After some algebra, we arrive at the following estimate 

The series is convergent when a >> 1. 

From (7.57), we see that for fhed a if C, / a  is small, I In hl may domintate the estimate 

for relatively large h. But, as h -+ 0, the l lh  term will eventually dominate. This non- 

uniform behavior of D ~ G ~  explains the non-uniform convergence of solutions in Table 7.1 

for a = 1.5, where we see that the convergence rate gradually decreases. 

Since Gt  is a dense matrix with large dimensions, it is difficult to compute. Thus, we 

test only one row of Gt ,  denoted by Gh. Note that llD2Gtll is the maximum of jlD2Ghlll, 

over all rows. In our test, we choose gh to be the one whose peak is at (0.5,0.5), the center 

of $2. We use this row to show the qualitative behavior of D2G;. For fixed a,  the transition 

from I ln hl to l lh  in the behavior of 11 D2Ghljl, as h decreases has indeed been observed 

numerically. This observation is consistent with (7.57). Moreover, since the fractional parts 

of a are the same in this test, one can deduce that C, does not increase with a. Therefore, 

the I In hl regime extends over a longer range of h for larger a. 

The fractional parts of a has a strong effect on C,. As mentioned above, C, = 0 

for integer a. One can imagine that C, should be small when a is close to an integer. 



Table 7.3: Influence of the fractional oarts of a = h l ~  on l l ~ ~ G ' ~ I l ~ , .  

Figure 7.1: A cross-section of D ~ B ~  for a = 1.5 (solid line), a = 1.25 (dash line), and 
a = 1.125 (dotted line). Note: only one part is shown here to avoid the singular point. 

From (7.57), the l /h term is less significant for smaller C,. This has been confirmed with 

numerical results. 

The influence of the fractional part of a on ( I D ~ G : ~ ~  can be viewed from another point 

of view. We observe that in general when a = 1.5, the sign of A? (with fixed j )  alternates 

for every other i. As a result, G! has small oscillations at about the same frequency. 

The oscillations in G! can be magnified after taking differences on G!. The frequency of 

oscillation is determined by the fractional part of a; the oscillation is less frequent when 

a is closer to an integer. As shown in Fig. 7.1, the period of oscillation, in terms of the 

number of nodal points, is 2 for o = 1.5, 4 for cr = 1.25, and 8 for a = 1.125. Moreover, 

[ [ D ~ G : ~ I  is smaller if G; oscillates less frequently. Thus, when h = 6 ,  both the magnitude of 
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C, and the frequency of oscillation are important in determining the behavior of I ( D 2 ~ t J I ,  

which in turn influences the convergence of solutions. We conclude that the cell resonance 

is weaker for a closer to an integer. 

7.6 Averaged over-sampling method 

To demonstrate the main idea of averaged over-sampling method we assume that the ho- 

mogenized coefficients are constants and the mesh is uniform (Fig. 7.2). As we showed 

above the stiffness matrix of over-sampling method can be written as 

where A?'' and A! consist of the cell term and of terms containing 8 of A1 respectively. 

For further convenience let's introduce the following notation. 

Definition. Denote OkL the union of two triangular elements with the common side 

whose vertices are k and 1. 

For example, Okl (Fig. 7.2) is the union of elements & and Sz. 

We assume that the nodal points are numerated lexicographically from 1 to N. Then 

the entries of A: (i, j = 1,. . . , N) are the same on the 2 - D mesh along each diagonal 

with i being the iildex of interior nodal point. Indeed, it can be easily checked that tkl = 

&'vi&vj$b is the same for k and I for which Okl can be translated to each other (see 

example below). 

For the same reason, the elements of the cell matrix A?'' have the same integrands for 

those k and 1 for which Okl can be translated to each other, particularly the elements on the 

same diagonals corresponding to interior nodal points ( but notice that they are integrated 

over different domains). For example, Okl and Om, (Fig. 7.2 ) can be translated to each 

other and 

Consequently, taking the arithmetical average over the diagonal entries of Aij (i being 

the index of interior nodal point) and replacing them with the average, we obtain a new 

stiffness matrix with the same Ao. But by doing so we reduce cAyL1 and get rid of resonance. 



Figure 7.2: The neighboring elements in a triangulation 

Indeed, the arithmetical average of the above mentioned elements of the cell matrix with 

the same integrand h-2 JK [ (x /e )dx  will be averaged to SQ [(x/e)dx where diam(f2) is of 

order 1. The value of this integral is of order c. It can be shown that the integrations' 

domains will sum up to a single connected domain with size of order 1. We remark that 
. . 

using these averages, we can find a? which is important in some applications. The impact 

of the averaging on A$ is of order O(h + E). Thus we can conclude that MsFEM with 

averaged over-sampling is first order for problems with periodic coefficients. 

Remark: 7.6.1. The error made in the homogenized coefficients of the operator contributes 

at the same rate as the H1 norm of the difference between the exact homogenized solution 

and numerical solution using the homogenized coefficients obtained numerically. 

Remark 7.6.2. It can be shown that the averaged over-sampling method converges is we 

can neglect the effect of 9 for problems with stationary ergodic random coefficients [32, 81 

independent of the ratio between h and E .  Indeed, averaging gives us the numerical solution 

which converges to the homogenized solution for a.e. realization in L2 norm independent 

of the ratio between h and E. Consequently, we obtain 

independent of the ratio between h and E. 





Chapter 8 Upscaling of absolute permeability 

8.1 Introduction 

The direct numerical simulation of flows through porous formations is difficult due to the 

fine scale heterogeneity in the media. A common approach is to "scale up" a heteroge- 

neous medium. For a single phase flow problem, the medium is solely described by the 

permeability field which can be very oscillatory. The goal of upscaling is to find an effective 

representation of the permeability on a coarse mesh so that the large scale flow can be cor- 

rectly computed on this mesh. The computational cost is thus greatly reduced. The main 

result of upscaling is often the block permeability, a constant tensor computed in each grid 

block. Both analytical and numerical methods have been used in upscaling; see [51] and [44] 

for recent extensive reviews. While various formulations are proposed based on different 

physical and numerical considerations, we only consider flow based upscaling in this paper. 

The central theme is to compute the block permeability from certain averages of fine scale 

flow solutions. These fine scale flows can be obtained from either the global solutions of 

the flow equation in the whole reservoir 1521 or the local solutions in each grid block. The 

latter approach, though, demands much less computing power. For convenience, we refer 

to the two approaches as global and local Laplacian, respectively. 

Recently, the local Laplacian method has been extensively studied and successfully used 

in practical computations (see, e.g., the above review articles). However, some important 

issues associated with the method have not been addressed satisfactorily. For example, 

ideally the block permeability should only depend on the structure and the partition of 

the medium [30]. But in practice it has been observed that the block permeability can 

be strongly aflected by the boundary conditions imposed for the local flow equation (cf. 

[15]). Furthermore, it is well-known that when the size of grid blocks is close to the scale 

of heterogeneity, the pressure and flow solutions computed on such a grid can have a large 

error. The understanding of these questions is indeed crucial for a quantification of the 

upscaling error. 

Here we provide a rigorous analysis of the upscaling error. We assume that the under- 



lying medium is periodic at small scales; however, the upscaling formulations we analyze 

are fully general. The periodic assumption enables us to explore the detailed structures of 

the local fine scale solutions using the homogenization theory [8, 321; therefore accurate a 

priori estimates can be obtained. We show that the upscaling error appears as a resonance 

between the small physical scales of the medium and the artificial mesh scale (size). Indeed 

the error is given by the ratio between the two scales: it increases as the size of grid blocks 

gets close to the small physical scales. We also show that the effect of different boundary 

conditions lies in a narrow region near the boundaries of grid blocks and it contributes to 

the resonance error. Therefore, by using an over-sampling technique [26], we can remove 

the boundary layer effect and obtain the upscaled grid-block permeability. In this case, the 

scale-up accuracy is also improved. We provide numerical experiments to demonstrate these 

analytical findings. The upscaling of general heterogeneous media is much more difficult to 

analyze. However, the insights obtained through analyzing the model problem are useful 

in understanding the upscaling error in problems with more general random media. This is 

demonstrated through numerical tests. 

The analysis here is motivated by the recent development of the multiscale finite element 

method for solving porous media flows [28, 26, 271. In this method, the permeability is not 

explicitly upscaled. The focus is on the final solutions: the pressure and velocity on the 
. . 

coarse grids. Szmilar reson~nce errcr was found [28]. The problem has been further studied 

in more detail in the first part of the work. Although the mechanisms of resonance are 

the same, the effect of resonance is stronger for the upscaling methods analyzed here (see 

Section 8.4). 

The rest of this chapter is organized as follows. In Section 8.2, we present a coherent 

account of upscaling formulations. Different formulations are shown to be equivalent under 

proper conditions. Section 8.4 starts with a brief review of the homogenization theory for 

media with periodic small scales. The analysis of resonance error is given subsequently. 

In Section 8.5 we discuss the use of over-sampling technique in upscaling. The following 

section is devoted to the discussion on the averaged over-sampling technique. Numerical 

results are given in the last two sections. 
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8.2 Formulations. Effective and grid block permeability 

The central goal of upscaling of absolute permeability is to approximate a highly hetero- 

geneous media with fine scale oscillations by an effective or equivalent medium with only 

large scale variations. Consider single phase Darcy's flows in a medium R: 

where u' is the velocity, K Y s  the permeability tensor which is symmetric and positive 

definite (assuming unit viscosity), pE is the pressure, and f is the source. Note that E is 

a small parameter indicating the length of the small scales. To solve (8.1) numerically, 

one need to cover R with a mesh consisting of finite number of grid blocks. An accurate 

solution is obtained if h << E (h being the size of grid blocks). This requirement is often too 

restrictive for practical simulations. 

The ultimate goal of upscaling is to compute solutions on a mesh with mesh size h > E .  

The approach considered in this paper is to replace KE(x) with the grid-block permeabilities, 

K, a constant tensor defined in each grid block. By definition, K is a discrete quantity 

relying on the discretization of the medium. In particular, K depends on the location and 

geometry of the grid block in which it is computed. The essential requirements for K is 

that it leads to pressiire axid velocity sohitions with desired accuracy. M~reover, one hopes 

that K depends only on the heterogeneous permeability field and the discretization of the 

medium, so that it can be used in different flow scenarios once it is computed. 

Different definitions of K have been proposed (cf. [51]). Following [45], we define K in 

a given grid block V such that 

where p' and uE are solutions of (8.1) in V (with appropriate boundary conditions, see 

Section 8.3.1), and 

is the volume average over V. In 3-D, three pressure solutions are sufficient in order to 
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determine K from (8.2), provided that the volume averages of the pressure gradients are 

linearly independent. It is evident that different sets of pressure solutions in general lead to 

different KS. This makes it difficult to analyze the use of K in more general flow simulations. 

It seems that an analysis of upscaling error is feasible only if K can be related to an intrinsic 

property of the medium. Such an intrinsic property is the effective permeability of the 

medium, K * . 
Fhysically, K*  exists when there exists an elementary representative volume (REV) 

such that the averages of the pressure gradient and velocity over this volume have a unique 

well-defined relation. An REV should be large enough to contain small scale information 

for a meaningful average and yet sufficiently small to reflect the large scale heterogeneity of 

the medium 161. These ideas are expressed more rigorously in the homogenization theory. 

Mathematically, K*  is defined through the following criteria [8]: for any measurable V c S1, 

where p and u are the solutions of the effective (or homogenized) equation 

in Q. i n  (8.3j, we have replaced the weak convergence of V p b n d  us by their equivalent 

definitions (cf. [22]). It can further be shown that the sufficient condition for the existence 

of K*, p, and u is that for any V the limits on the left-hand sides of (8.3) exist (see [32] for 

more rigorous details). This condition is very general; it does not assume any structure of 

the small scales of K*. 

The nice properties of K*  are [32]: (1) it is unique; (2) it is independent of the source 

term f and of the boundary condition on dfl; and (3) it can be determined locally, i.e., to 

determine K*  at a point x E Q, one needs only to consider (8.1) in the neighborhoods of x. 

This last property of K*  is the foundation of all local Laplacian methods. 

It  is easy to see that K is an approximation of K*. More specifically, consider a point 



Figure 8.1: A 3D grid block. 

x E Q and grid block V E IR containing z. Fr~rorn (8.21, (8.3) and (8.4), we have 

Thus, K M K*(x). In later sections we analyze the accuracy of this approximation in 

details. Then we analyze the difference between the upscaled solution and the homogenized 

solution of (8.4) and hence, indirectly, the difference between the upscaled solution and the 

fine scale solution of (8.1). 

8.3 Overview 

8.3.1 Local Laplacian formulations 

In these methods, K is determined from the local flow solutions in the grid blocks. The 

main differences among various formulations are the boundary conditions imposed on the 

flow equation and the averaging processes for computing K. Here we provide a unified view 

of the local Laplacian approach and clarify some misconceptions. 

Consider a cubic grid block V of size h in a d-dimensional space (see Fig. 8.1). To 
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determine K from (8.2), we need d sets of fine scale flow solutions in V, ug and p: (i = 

1, . . . , d), such that ( V p g )  are linearly independent. These fine scale solutions are solved 

from 

in the grid block V. Note that the source term is set to zero because of the second property 

of K* mentioned above. Equation (8.5) is well posed with suitable boundary conditions 

on dV. Define wt = p: - xi. Then 

ei being the unit vector in the ith direction. Thus, the linear pressure drop condition [24], 

the periodic boundary condition [46, 33, 151, and the widely used pressure-drop no-flow 

condition can then be formulated respectively as 

w: = 0 on dV; 

w: being periodic on V; 

w, '=Oonr i ,  n . u $ = O o n r j  ( j # i ) ,  

where Ti are the faces of dV normal to ei. We note that (8.7) can be conveniently imposed 

on dV if V is not a rectangular box. (8.8) and (8.9) are not as flexible, but one can embed 

V in a larger rectangular box V' and solve (8.5) in V'. This strategy indeed has some 

advantages; see Section 8.5. 

Conditions (8.7) and (8.8) guarantee the linear independence of the averages of pressure 

gradients. In fact, if either (8.7) or (8.8) holds, the Green's Theorem gives 

Thus, (8.2) can be simplified as 
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Another nice property of (8.7) and (8.8) is that they lead to symmetric and positive definite 

I?. Indeed, (8.10) and (8.11) yield 

By (8.5), (8.7) (or (8.8)), and integration by parts, 

Therefore, 

and hence K is symmetric and positive definite. Eq. (8.13) gives us another way to compute 

k. In fact, it gives symmetry up to the round-off error in numerical computations. 

In contrast to (8.7) and (8.8), the condition (8.9) does not enjoy the above properties. 

Because of (8.9), in general (8.10) is invalid. Indeed, we have 

Cj being some constants. Thus, (VP:)~ is not aligned with ei. Consequently, (8.11) and 

(8.13) are invalid under the boundary condition (8.9). In this case, the original equation 

(8.2) should be used. Without (8.10), it is more difficult to show the linear independence 

of (VP;)~.  In Section 4 using numerical examples we show that (8.9) works as well as (8.7) 

and (8.8). 

There are many other choices of boundary conditions. Here we only consider the ones 

listed above because they are simple and easy to use in practice. Some other simple bound- 

ary conditions may generate singularities in the local fine scale solutions which are difficult 

to analyze and compute; thus they should be avoided. An example is to let pe = 1 on one 

face of 8V and pe = 0 on the other faces. 

We remark that several popular upscaling formulations can be included in the above 

formulation based on (8.2) and (8.5). For example, with the periodic boundary condition 

(8.8), the formulations in [46, 151 are included. The block permeability Kitanidis [33] 



derived using the method of moments under the periodic boundary condition is identical 

to the symmetric part of K, which equals K itself. Moreover, the formulation based on the 

conservation of dissipation 1301 is equivalent to the above formulations under the conditions 

(8.7) and (8.8) (see Appendix C). 

8.3.2 Volume vs. surface averages 

In many practical upscaling computations, instead of using the volume averaged flux on 

the right hand side of (8.2), one often averages the velocity over the outflow surface. This 

approach seems appealing physically, but it may give incorrect results. 

Durlofsky [15] noticed that under the periodic boundary condition (8.8), the volume 

average of velocity can by replaced by the averaged outflow. This is also true for the 

Dirichlet condition (8.7). Indeed, using (8.5), (8.13), and integration by parts we have 

p,fn u; ds. 

By using (8.7) or (8.8), it can be further reduced to 

the plus sign indicates that the flux is taken at the outflow boundary. We see that the 

volume averaged flow is equivalent to the averaged outflow under the condition (8.7) or 

(8.8) for rectangular grid blocks. Furthermore, since ug is divergence free, under (8.8) one 

can show that the averaged flux is identical over any cross-section of V parallel to Fi. This 

property, however, is not shared by (8.7). 

The boundary condition (8.7) (or (8.8)) is crucial in the derivation of (8.15) from (8.2). 

The derivation breaks down under the pressure-drop no-flow condition (8.9). As pointed 

out in the literature, only when K is diagonal can one obtain the correct result using (8.9) 

together with (8.15). This can also be seen from the above derivation. 

A common misunderstanding is that one cannot compute the off-diagonal entries of K 

if (8.9) is used. This conclusion is often deduced mistakenly by confusing the volume with 

the surface averaged flows. Instead, under (8.9) the right-hand side of (8.15) vanishes for 

i # j ,  but the right-hand side of (8.2) may be nonzero. A simple example is demonstrated 



No flow 

No flow 

Figure 8.2: Flow through a channel. There is no flow through the top and bottom surfaces, 
but the volume averaged flow has a vertical component. 

in Fig. 8.3.2 (see also Section 8.7.1). 

8.4 Accuracy of upscaling 

We now study the accuracy of the upscaling method given in the last section. We assume 

the medium is periodic at the small scale, i.e., KE  has the form K(x ,  s!~), where K (x, 9) 

is periodic in the y variable in a unit cube Y. For this type of media, the homogenization 

theory [8] makes it possible to understand the upscaling precisely. For simplicity, we assume 

that K is smooth in both x and y below. 

In the following, unless otherwise stated, Eistein's summation convention is used, i.e., 

summation is taken over repeated indices; V is a cubic block of size h; C denotes a generic 

constant independent of h and e. 

8.4.1 Some estimates 

With K E  given above, the homogenized effective permeability is given by [8, 321 
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where (.) = Jy (-)dy/Y, V, is the gradient with respect to y, and Xj is the periodic solution 

of 

in Y and satisfies Sy xjdy = 0. Note that x is just a parameter in the above equations. 

Since K(x, y) is smooth, it is easy to see that K*(x) is also smooth. 

Assuming Dirichlet boundary condition, pE = g(x) (g is independent of e) on 80, the 

solution of (8.1) has the following expansion 181: 

Here p(x) is the solution of the homogenized equation (8.4) with K* given by (8.16) and 

boundary condition p = g on ail; p' is given by 

and 6' satisfies 

We note that the main role of 6' is to correct the discrepancy in the boundary conditions 

between p' and its first order expansion p + ep'. The discrepancy is caused by the fact that 

p' is periodic in y and hence generally nonzero along 130. 

For convex polygonal domains, it can be shown that [40] 

where C is a constant independent of E and the size of 0. (8.20) is equivalent to 

IIVuzll~~(n) < c € l l ~ I I ~ z ~ n ,  < Ce. 

In the last step we have used the fact that is bounded (this is true under the 

regularity assumptions on Kc and g). 
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Remark 8.4.1. We note that in the case of g ( x )  = xi (i = 1 , .  . . , d )  212 = 0. 

The following estimates can be readily derived by elliptic regularity 

The following lemma can be proved from Lemma 7.3.2 with minor modifications 

Lemma 8.4.1 Given domain V with diam(V) = h ,  let g (x ,  y )  be a Y-periodic function 

i n  y, where Y is the unit cube. Assume g ( x , y )  E C 1 ( V )  n C O ( y ) .  Then for any f ( x )  E 

H 1 ( V )  0 C O ( p ) ,  we have 

where 

is the average o f g .  

8.4.2 Estimates for upscaled permeability and solutions 

Now consider the formulation for K given by (8.2) and (8.5) with boundary condition 

(8.7). Note that in this case (8.2) is equivalent to (8.13). Below, we use (8.13) instead of 

(8.2) in the analysis. With minor modifications, the following derivation also holds if the 

periodic boundary condition (8.8) is used. All estimates derived below are for h > e, which 

is often the case in scale-up. Our main result is the following estimate for the grid-block 

permeability: 

Since K* (I) is smooth, \KG ( x )  - = O ( h ) ,  and (8.22) still holds if we replace (K$)V 

by Ki*j(x) with x E V .  

To simplify the presentation, it is convenient to introduce a vector x = (Xi) (i = 
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1,. . . , d).  Define tensor E(x, y) = I + V,X(X, y). Eqs. (8.16) and (8.17) can be written as 

respectively (T indicates transpose). Moreover, by (8.18) 

where pi is the homogenized solution given by 

and 0; satisfies 

From (8.13), (8.25) and (8.20) we have 

Expanding the integrand of (8.28) and using the symmetry of Kc,  we get 

We estimate the two terms with 0: first. Due to the fact that IIV8:llv 5 ~ h 9 e - t  

(8.21) and that the volume of V is O(hd), the last term is of order ~ / h .  For the second 

term, integration by parts gives 
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Since Vpi and E are bounded on aV, the surface integral is bounded by Cehd-I. For the 

volume integral on the right-hand side, noting that V = V, + (l/e)V, and using (8.24), we 

have 

with ':' indicating double contraction between tensors. By the estimates of llOzllv, I]Vpil[v, 

and Jlpi]j2,v , and the fact that K and E are smooth functions in x, the volume integral is 

0(ehd). It follows that 

Now, consider the first term in (8.29). Because 

from (8.23) and Lemma 8.4.1 we get 

Using (8.26) and integration by parts, we further have shown that 

((Vpi) . K*(Vpj)), = (KG), (wiv . (KGej))v, 

where wi = pi - xi. Thus, it follows from the Cauchy-Schwartz inequality and (8.21) that 

< Ch. - 

Therefore, (8.22) follows immediately from (8.30), (8.31), and (8.32). It should be noted 

that in the above derivation, we only require V to be a convex block with reasonable aspect 

ratios. Thus (3.10) applies to general unstructured meshes. 

Using (8.22) we can derive the estimates for upscaled pressure and velocity solutions. 

Suppose K is computed on all grid blocks. Then we have a piecewise constant upscaled 
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permeability field, which we still denote by K. Let @, G be the solutions of the upscaled 

Bow equation 

in R. For simplicity, we assume p and @ equal zero on dZn. From (8.33) and (8.4) we have 

Since K is positive definite, multiplying both sides by V p  - V@ and integrating by parts 

yield 

For the last inequality, we have used (8.22) and the fact that IIVpll, is bounded. As a 

result, we have 

Moreover, from (8.34) and the Poinear4 ineq~alitjr we get 

Note that )Ip - pyl, < C E  (cf. [40]). Thus by the triangle inequality 

Unlike the pressure solutions, the homogenized velocity, u, does not approximate uc in 

the L2 norm. Their L2 norm difference is in fact O(1). Similarly, G does not approximate 

u' in the L2 norm. In fact, we roughly have (u' - u)v = O(e/h)  for V C a, which is 

consistent with (8.3). This estimate holds also for (u' - G)v. Thus, the velocity solution 

of the upscaled equation approximates the volume average of the fine scale velocity in the 

grid-blocks as E + 0. In comparison, the velocity computed from MsFEM approximates 
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~"281. We note that the small scale fluctuations of uE are often important in simulating 

transport phenomena in multiphase flows (see e.g., [27]). Moreover, it has been observed 

the magnitude of the error using MsFEM is smaller than the magnitude of the error using 

upscaling methods described above. 

8.4.3 Remarks 

Several observations can be made from (8.22). First, (8.22) implies that we can obtain 

K* at a given point by computing the limit of K as e --+ 0 in a series of shrinking blocks 

containing the point. This is consistent with the general argument in Section 2.1. Moreover, 

if K* is constant, the derivation of (8.32) indicates that the O(h) error in (8.22) vanishes. 

An example is the case of pure periodic media described by KE(x) = K(x/E). In general, 

however, K* contains large scale heterogeneity; (8.22) shows that the size of grid-blocks 

should be small in comparison. This explains the observation that local upscaling is usually 

preferred against global upscaling (cf. [16]). 

As noted above, (822) is valid for h > E. If h < e, a different derivation using Taylor 

expansion of the pressure field would show that - (Kt j )V/  is O(h/e). Thus, for fixed r, 

K -+ K c  as h + 0. Thus, the "upscaled" solution approximates the fine scale solution for 

h << €. 

The h - t- case deserves further examination. It  is seen that the error increases as 

h approaches E .  This scale "resonance" phenomenon is fundamental in upscaling. The 

derivation of (8.22) reveals two sources of the resonance effect. One is due to the first order 

corrector 8; , whose main role is to enforce the boundary conditions of p$ on 6'V; the other 

comes from the volume average of functions with €-periodic small scales (see (8.31)). 

The scale resonance is a direct consequence of the objective of upscaling, namely dividing 

a globally coupled fine scale problem into many decoupted local problems in the coarse grid 

blocks. The decoupling is achieved by artificial local boundary conditions imposed on 

aV, such as (8.7). As pointed out in [28], the optimum boundary condition would be the 

ones consistent with the fine scale oscillations of the differential operator, which are solely 

determined by ~ ( x ,  X/E) for the model problem. However, boundary conditions (8.7) and 

(8.9) are inconsistent with x since they enforce non-oscillatory Dirichlet conditions on dV 

or part of it. The periodic condition (8.8), on the other hand, allows oscillations on dV; 

however, the oscillations match those of x only when h coincides with multiples of E. Any 



Figure 8.3: The cross-section of 9 

mismatch at aV is to be corrected by 0;. It can be shown that the correction occurs in 

a thin layer with a thickness about O(E) new 8V 271. This boundary layer yields large 

gradient of 13: near aV, which is the main cause of the O(&/h)  error in (8.30) (in Fig. 8.3 

we plot the cross-section of 9 for a periodic oscillatory boundary condition). In the interior 

of V, however, V81 is much smaller. 

The accuracy of upscaling is aiso strongly infiuenced by the size of the sample based 

on which the average is taken. The sample size is given by the size of the grid blocks. 

Intuitively, for media with E-periodic small scale, the perfect sample sizes are multiples of 

the period e. Otherwise, error occurs due to the mismatch between the block size and the 

perfect sample size. Mathematically, the mismatch gives rise to O(ehd-') bound in Lemma 

8.4.1. This type of resonance is referred to as the "cell resonance". Eq. (8.32) shows that 

the cell resonance error is O(c/h) for the present upscaling formulation. 

8.5 Over-sampling method 

It is possible to employ the over-sampling idea in upscaling of absolute permeability. The 

over-sampling technique has been developed in previous section to remove the resonance 

due to the boundary layer of 9;. It is shown to be very effective when used together with 

the multiscale finite element method. This technique can be borrowed here to improve the 



Figure 8.4: Over-sampling for one (left) and multiple (right) grid blocks. The boundary 
layer is outside the white dash line. V' denotes the union of the set of grid blocks in gray 
region. 

upscaling of permeability. The idea is to use a larger sampling block S > V, such that the 

distance between d S  and V is at least O(6). Then we solve (8.5) in S and compute K using 

(8.2) in V. Since V is away from d S  and is not "polluted" by the boundary layer of 67, the 

resulting K is free from the resonance error due to 135 The method is shown schematically 

in Fig. 8.4 (left). We further notice that the boundary conditions given in Section 2.2 may 

give different 6;. However, the main difference among these 8;s lie in the boundary layer 

region. Thus, by removing the boundary layers, different boundary conditions give rise to 

almost identical K. In other words, K depends mainly on K-nd the partition of the 

domain. 

We note that S can be as large as Q. In fact, choosing large S that contains many 

grid blocks has the advantage of greatly reducing redundant calculations in the overlapping 

region near d S  [26] (see the right figure in Fig. 8.4). In practice, however, it is difficult to 

use S2 as the sampling domain since the computation would be too expensive. Therefore, 

one may choose S as large as possible according to the computing resource. In a parallel 

implementation, S may be chosen so that the computation on S fits into the memory of 

each processor. In this way, the inter-processor communication is minimum. 

Interestingly, in an attempt to reduce the effect of local boundary conditions, White 

and Horne [52] used the entire domain to sample fine scale solutions with different bound- 

ary conditions. The over-determined system of equation for K was solved by using the 
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least square method. Inspired by their work, G6mez-HernAndez [24] proposed a method of 

Laplacian with skin, where the width of the skin is arbitrarily set to half of the grid block 

size. These methods can now be unified and understood in the over-sampling framework. 

It  should be noted that the analysis in the previous section needs to be modified for 

the over-sampling method. Due to over-sampling, the equivalence between (8.2) and (8.13) 

no longer holds. Thus, one needs to return to (8.2) for the computation of K and for the 

analysis of upscaling error. The basic ingredients of the analysis are the same as those 

given above. The main difference lies in O,', whose gradient is bounded independent of E , 
in contrast to the estimate of llVB,'// in (8.21). On the other hand, the over-sampling is not 

helpful for reducing the cell resonance, which is governed by the grid block size. Therefore, 

the estimate (8.22) remains true even with the over-sampling. Nevertheless, we demonstrate 

below that numerically the error due to the cell resonance is small compared to that due to 

0;. Thus, the over-sampling is still very effective in reducing the resonance error. 

In comparison, the cell resonance error in the multiscale finite element method with 

over-sampling is Q ( E ~ / ~ ~ )  because of some additional error cancellation. 

To derive the error estimate for upscaling method with over-sampling we make an as- 

sumption in order to neglect the effect of 8,'. As we have seen from the previous chapter 

the effect of theta is small when we use the over-sampling technique. This assumption has 

beeo made in the chapter c;f Noocooforming PSlaFEM, Cq?' i" EL,(K) %hen K c S is aw&y 

from dS at least at  a distance E, where q P  is defined in (3.16). Then in (8.29) 

In (8.38) we can neglect the terms containing BE. Consequently, taking into account the 

Lemma 8.4.1 from (8.38) we have 

As we see the cause of the resonance error is the mismatch between volume V and the 

period of the problem. When volume V is an integer union of periods of the problem, then 
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the resonance error is absent in above formulation. We call this resonance error "the cell 

resonance." 

Remark 8.5.1. In general random cases if we neglect the effects from OE terms, the cell 

resonance is the dominating error. We can show that in this case this error is o(r/h) (i.e., 

it goes to zero as r /h  -+ 0. This shows the existence of the resonance between two intrinsic 

scales r and h. 

8.6 Averaged over-sampling in upscaling of absolute permeability 

Averaged over-sampling idea introduced in section 7.6 can be applied in upscaling of absolute 

permeability in order to reduce the effect of the cell resonance. It can get rid of the cell 

resonance when KG are constants throughout the entire domain R. 

To demonstrate the main idea of the method we denote by K:, (i, j = 1,. . . ,d) ,  the 

local upscaled permeability in V calculated using over-sampling method. Averaged over- 

sampling method consists of the arithmetic averaging K: over all V c R. Assuming K$ 

are constants in R from (8.38) we have 

c h d  x K$ - K:j = c h d  x ( ( E V p i )  . ( K L  K G ) ( E V p j ) ) V  + Cr + C1h (8.40) 
V C R  V C R  

where Chd in front of C indicates the number of V's in R. Furthermore we assume that 

V p i  are the same for all V c 0. This is true, for example, if the elements V's are the 

same. In the typical situation when V's are square elements and xi boundary conditions 

have been used for pz, all of V p i  are equal constants. Consequently, denoting ~q absolute 

permeability obtained using averaged over-sampling, we have 

We note that we also assume that the size of St is of order 1. 

In the case when KG are not constants throughout the domain we can apply the averaged 

over-sampling method for absolute permeability in each local domain V. If the size of V is 

of order h, the error estimate of averaged over-sampling method is Crlh + Clh. Clh error 
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comes from approximation of KG(x) by constants in domain V. As we see this error rate 

can be obtained just using over-sampling in domains V's without further partitioning V for 

averaged over-sampling. So the question is whether we need to partition local domains V 

further for averaged over-sampling or just use the over-sampling method without further 

partitioning. The answer of this question depends on available computer resources and on 

E and h. If the available computer resources is limited then the further partitioning of the 

local domains is advantageous if E is too small and S l  (the whole domain) is of size 1. 

8.7 Numerical results 

8.7.1 Numerical results for 2-D 

In this section, we provide some numerical results demonstrating the estimate (8.22) and 

the effect of over-sampling. For this purpose, we use a periodic K E  without large scale 

heterogeneity. Thus, the O(h) error in (8.22) vanishes, and we can focus on the resonance 

error. Tests with more general random permeability field are given in 58.7.1. 

Periodic case 

In the following, we compute the upscaled permeability K on one grid block V = (0, 1)2 

from 

We fix P = 1.8. The exact effective permeability can be calculated anaIytically 

We solve (8.5) with boundary conditions (8.7), (8.8), and (8.9) on uniform square grids 

using a Galerkin finite element method with bilinear base functions. K is computed from 

(8.2). For convenience, we denote $? (i = 1,2,3) to be the numerical results obtained by 

using (8.7), (8.8), and (8.9), respectively. 

First, we compute K with E = 1. In this case, the periodic condition (8.8) gives K E K*. 

The only error in this case is the discretization error. However, according to (8.22), using 

(8.7) and (8.9) gives rise to the resonance error. The error of K1 and K3 compared to K* 



Table 8.1: Convergence of the numerical solution of K 1  to  K* ( ~ / h  = 1). 

N I ~ : l - K : l l  lKk?-K?21 lK;l-K;ll l~;2-K;2l 
16 1.021e-1 1.229e-1 1.664e-1 2.095e-2 
32 9.307e-2 1.130e-1 1.229e-1 1.564e-2 
64 9.103e-2 1.107e-1 1.132e-1 1.439e-2 

128 9.055e-2 1.101e-1 1.107e-I 1.408e-2 

Table 8.2: Convergence of the numerical solution of K3 to K* (clh = 1). 

N 1 ~ 1 3 1  - KT1 l 1 ~ 1 3 2  - K1*2 1 l K231 - K;l l I G 2  - Kg2 I 
16 1.612e-2 2.001e-1 2.528e-1 5.278e-2 
32 2.001e-2 1.961e-1 2.338e-1 5.615e-2 
64 2.080e-2 1.951e-I 2.283e-1 5.690e-2 

128 2.097e-2 1.949e-1 2.269e-1 5.708e-2 

are presented in the next two tables (table 8.1 and 8.2) , where N is the number of elements 

in the x and y directions. From the tables we see that the error in both cases does not 

converge to zero as grid refines. Evidently, the resonance error is dominating in these cases 

(note that c/h = 1); the error in the off-diagonal terms is especially large. 

As shown by (8.22): one way of reducing the resonance error is to reduce to ratio c/h. 

This is demonstrated in Table 8.3 for K1. The result for K 3  is similar. The errors in 

Ktl and K:2 decrease almost in the order of ~ / h ,  but the errors in kil and .I%-:, decrease 

more s!ow!y. Note that the discretization error is fixed in the test because N E  is kept 

constant; hence, the error reduction is mainly due to the decrease of the resonance error (cf. 

(8.22)). Thus, faster error reduction can be seen for a component of K with more dominant 

resonance error. Numerically, we find that the resonance error is indeed much larger than 

the discretization error for K : ~  and K : ~  but not so for Kil and Ki2. 
The next table shows the improvement of resonance error due to  over-sampling. The 

over-sampling method depicted in Fig. 8.4 is implemented. For convenience, we denote the 

distance between 8s and V or V' by d,. We take E = 0.8 in the tests. In this case, the 

Table 8.3: Variation of lK1 - K*l versus ~ / h  ( h  = 1). 



Table 8.4: Resonance error reduction by over-sampling (N is the total number of elements 
in the x and y directions in 5'). 

IK12 - K,*,l IK22 - K;2 1 
N BC (8.7) BC (8.8) BC (8.9) BC (8.7) BC (8.8) BC (8.9) 
64 4.751e-2 4.748e-2 4.744e-2 9.953e-3 9.950e-3 1.018e-2 

128 1.445e-2 1.443e-2 1.424e-2 1.952e-3 1.949e-3 2.203e-3 
256 3.745e-3 3.725e-3 3.523e-3 4.771e-4 4.745e-4 T.351e-4 

over-sampling removes much but not all of the resonance error, because there is the cell 

resonance. We choose S = (0,4)2 and V = (1, 3)2 at the center of S. Thus, d, = 1 > E .  

The errors in Kzl and K~~ are reported as they are larger than the error of the other two 

components. The results of using different upscaling boundary conditions appear to be 

quite similar, indicating that the influence of boundary conditions are small due to over- 

sampling. We note that in this particular test, the cell resonance is small as indicated by 

the decrease of error. Moreover, we note that (8.9) does give the correct off-diagonal terms 

of K if it is used correctly; otherwise, even the diagonal entries of K may be wrong. 

Random cases 

Here, we present two tests of upscaling randomly generated permeability fields. The random 

field generator is based on the superposition of random modes in Fourier domain and the 

fast Fourier transform to give K E  in the physical domain. The details of the generator 

has been described in [26]. The purpose of these tests is to show that the difference in 

the upscaled permeability due to different upscaling boundary conditions can be effectively 

reduced by using the over-sampling. Thus, K depends solely on the geometry of the grid 

block and the underlying fine scale permeability. 

In these numerical tests, we compute the relative differences of KS. More specifically, 

we compute D ; ~  = ~IK& - (i = 1,3), where the norm is the discrete mau 

or l2 norm over R. The relative error of the solution of 6 is also checked against pe. For 

computing the pressure, we assume uniform injection f = 1 and p = 0 on dQ. The reference 

solution of p' is calculated from two fine-grid solutions using the Richardson extrapolation. 

The pressure error is denoted by E; (i = 1,2,3), where i means the same as in K". For 

all tests below, uniform square mesh is used. Moreover, R = [0, 112, the permeability fields 

are generated on the 1024 x 1024 mesh, and the solutions of K and 6 are computed on the 



Table 8.5: Test of over-sampling using log-normal permeability Difference and error are 
shown in percentage. 

No Over-sampling Over-sampling (d, = h) 

Max norm l2 norm Max norm 12 norm 
D!, 22.8125 17.2754 1.2233 0.5775 
D!, 6.0135 2.8384 2.0317 0.5072 
D;, 50.5283 18.3060 1.6727 0.6139 
D$, 9.7429 2.9306 1.4441 0.4937 

32 x 32 coarse mesh. A 16 x 16 subcell mesh is used for upscaling of permeability. 

In Case 1, a realization of a log-normal permeability field is generated. The highest wave 

number of the random modes used in generating the field is 32. The permeability field is in 

fact smooth and can be resolved by the 512 x 512 finite element mesh. It is scaled so that 

its contrast (i.e., K&,,/Khi,) is 400. In this case, the size of the grid blocks, h = 1/32, 

is about the correlation length of the permeability field (which often happens in practical 

simulations). Note that the correlation length is analogous to E in the periodic case and 

we choose d, = h for the over-sampling. As shown by Table 8.5, our choice of d, appears 

to he si~Eciently wide for eliminating most of the effect of boundary conditions'. Using 

smaller d,, e.g., h/2, gives more error in P' and larger difference between K1 and k2. In 

Table 8.5, only the diagonal entries of K are compared, because the off-diagonal entries are 

two orders of magnitude smaller than the diagonal ones and have much less effect on the 

pressure solution. Nevertheless, our numerical tests show that over-sampling has similar 

effect on the off-diagonal entries. 

In some sense, the above problem is similar to the periodic problem because there is a 

distinctive small scale in permeability which is characterized by the correlation length. In 

practice, permeability distributions often exhibit multiple scales or no intrinsic small scale. 

In the next test, we use a permeability field whose logarithm has a fractal dimension of 2.8. 

The image of the field is shown in Fig. 8.5. In this case, how to choose d, is not obvious; 

we determine it through the numerical experiment. The results for Di and E; are shown in 

Table 8.6. Two sets of over-sampling results are presented. We see that by using d, = 2h, 

the difference between K, and K 2  and the error in the pressure solutions are reduced to 



Figure 8.5: ln Kc with fractal dimension 2.8 (contrast of K E  is l o 4 ) .  

Table 8.6: Test of over-sampling using permeability field shown in Fig. 8.5. Difference and 
error are shown in percentage. 

No Over-sampling Over-sampling (d, = h )  Over-sampling (d, = 2h) 

Max norm 12 norm Max norm l 2  norm Max norm 12 norm 
D:, 10.8141 7.3283 1.5048 1.2033 1.1942 0.7092 
D:, 1.3060 1.0102 0.6799 0.4553 0.4875 0.2932 
D;, 8.2273 7.4026 2.3588 1.6885 1.2986 0.7532 
Dl, 1.5108 1.01?8 0,4657 0.4300 0.5565 0.4068 

the same level as in Table 8.5. 

As mentioned in 58.5, over-sampling may lead to significant overhead in computations. 

In practice, such overhead can be greatly reduced by scaling up many grid blocks together 

(Fig. 8.4). For the present computations, the sample domains are square regions containing 

4 x 4 and 8 x 8 grid blocks for over-sampling with d, = h and 2h, respectively. Note that 

due to the use of larger sample domain, the improved accuracy in the last column of Table 

8.6 comes at no additional cost compared to the computation for the second column. 

Interestingly, both Tables 8.5 and 8.6 show that the upscaling with the periodic and 

the pressure-drop no-flow boundary conditions (i.e., (8.9)) give very similar results. The 
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pressure error using these boundary conditions are also quite small even without over- 

sampling. However, as indicated by the tests for the periodic problem, this is not always 

the case and should not be generalized. On the other hand, the use of the Dirichlet boundary 

condition (8.7) should always be accompanied by over-sampling. The advantage of (8.7) 

is that it is easy to apply on grid blocks with general geometry, i.e., those arisen from 

unstructured grids. 

8.7.2 Averaged over-sampling. Numerical results. 

In this section we present the numerical results. The main difficulty here is the large 

amount of computation which is required to solve the state equation. This difficulty has 

been overcome by avoiding to allocate memory for the stiffness matrix. Instead, we define 

a routine which multiplies the stiffness matrix to the vector without explicitly defining 

stiffness matrix. For the calculation of the effective coefficients the cell problem with the 

fine resolution has been solved numerically. 

In the computations we vary the three parameters for the upscaling method with aver- 

aged over-sampling. They are, the mesh size (diam(K)), h; the sample size (diam(S)), H ;  

and the small parameter of the problem, E. For the upscaling with only over-sampling, h 

stays unchanged. Moreover we take h = 1 since the error estimate is derived for a single 

block. But we vzjr H a ~ d  E i~ erder tc! see the effect of the boundary layer term. As it 

is clear when we vary all three parameters at the same time, the boundary layer term (the 

term involving 0) does not change its value since the solution of the equation in the sample 

domain just gets translated. Consequently, the value of the boundary layer terms stays 

unchanged. This indicates that this term resonates when we vary all three parameters. On 

the other hand the error made by this term can be reduced by fixing the H, and decreasing 

h and c. The reason for this is that as we go further away from the boundaries the effect of 

the layers gets smaller. 

As we see from the numerical results of the upscaling method with averaged over- 

sampling, the value of the boundary layer term is small and the method converges even 

when we decrease all three parameters h, E, and H at the same time. This indicates that 

the value of boundary layers value is small and is comparable to CE. But as we see in 

some cases, the effect of the small resonance term shows up and it reduces the order of the 

convergence of the upscaling method with averaged over-sampling. 



Table 8.7: la*,h - a,\ for the upscaling with averaged over-sampling. m\ 
In our computations we use the values 1 and 0.5 for h. The values of other two param- 

eters are H = 1.6, H = 0.8 and for E, E = 0.3 and e = 0.15. In these cases d, = 0.6h. The 

error corresponding to h = 1 is the error of the over-sampling method. We present the val- 

ues of this error for different coarse blocks in the case of h = 0.5. As we will see, these values 

change and their average value is the better approximant for the effective permeability of 

the block. 

Example 1. 

In this example we consider L, with the following coefficients 

where dij are the Kronecker symbols. The effective coefficient for this problem is a, = 

3.4599. 

The numerical tests are performed for H = 1.6, h = 1, E = 0.3 and for H = 0.8, h = 0.5 

e = 0.15. This is a case when we decrease all three parameters at the same time. As we 

discussed above the over-sampling approach does not converge and the error resonates in 

this case, However we see from the numerical results presented in the table 8.7, the averaged 

over-sampling method converges. This indicates that the effect of the boundary layer term 

is negligible. 

In table 8.8 we demonstrate the values of a*,h,K, for the possible Kq c $2 in the case 

of h = 0.5, E = 0.15, H = 0.8. Here q changes from 1 to 8. The K, are numerated 

lexicographically in the table. The value of a*,h in the case of h = 1, E = 0.3, H = 1.6 is the 

same as the value of a* ,h ,~ ,  corresponding to (1,1,1) .  These values represent the effective 

block permeability using the over-sampling approach. As we see they change from block to 

block and their average value approximates the effective permeability more robustly. We 

also would like to note thah in this case the error made by averaged over-sampling method 

is less than 3 percent. 



Table 8.8: a , , h ,~ ,  for the upscaling with averaged over-sampling. 
number a*,h,K M 

Table 8.9: la*,h - a, 1 for the upscaling with averaged over-sampling. 
n rl 

h I/ a,,h - a, I rate 
1 11 0.011 1 

Example 2. 

in  this example we consider L, with the following coefficients 

where 6ij are the Kronecker symbols. The effective coefficient for this problem is a, = 

0.1667. 

As in the example 1 the numerical test are performed for N = 1.6, h = 1, E = 0.3 and 

for H = 0.8, h = 0.5 E = 0.15. We see from the numerical results presented in table 8.9 

that the averaged over-sampling method converges. We would like to note that the error of 

averaged over-sampling method is less than 4 percent in this case. 

In table 8.10 we demonstrate the values of a, ,h ,~ ,  for the possible K, c C2 in the case 

of h = 0.5, E = 0.15, H = 0.8. Here q changes from 1 to 8. The Kq are numerated 

lexicographically in the table. The value of a*,h in the case of h = 1, E = 0.3, H = 1.6 is 

the same as the value of a , , h ,~ ,  corresponding to (1,1, I). 

Example 3 

In this example we consider L, with the following coefficients 



Table 8.10: for the upscaling with averaged over-sampling. 
number 

( 1 1 )  
(112 )  
(1,21) 
(1,2,2) 
2 1  

Table 8.11: la,& - a* I for the upscaling with averaged over-sampling. 

a*,h,K, 
0.1553 
0.1569 
0.1569 
0.1584 
0.1581 

where Si j  are the Kronecker symbols. The effective coeEcient for this problem is a, = 

4.02213. The numerical tests as in the previous examples performed for H = 1.6, h = 1, 

E = 0.3 and for H = 0.8, h = 0.5 e = 0.15. The numerical results presented in the table 

8.11 which indicates that the averaged over-sampling method converges. We would like to 

note that the error of averaged over-sampling method is about 2 percent. 

In tabie 8.12 we demonstrate the values af a * , h , ~ = ~  fm the possible Kq c C RE the ca,se 

of h = 0.5, e = 0.15, H = 0.8 as we did in the previous examples. Here q changes from 1 to 

8. The Kq are numerated lexicographically in the table. 

Example 4 

Table 8.12: for the upscaling with averaged over-sampling. 



Table 8.13: [a*,h - a*/ for the upscaling with averaged over-sampling. 
n 

Table 8.14: for the upscaling with averaged over-sampling. 

In this example we consider L, with the following coefficients 

where 6i j  are the Kronecker symbols. The effective coefficient for this problem is a, = 

3.9358. As in the previous examples, numerical results have been obtained for H = 1.6, 

h = 1, E = 0.3 and for H = 0.8, h = 0.5 E = 0.15. As we see from the numerical results 

presented in table 8.13, the method converges. The absolute error in this case is about 1 

percent. 

In table 8.14 we demonstrate the values of a*,h,K, for the possible Kq C S2 in the case 

of h = 0.5, E = 0.15, H = 0.8. Here q changes from 1 to 8. The Kg. are numerated 

lexicographically in the table. The value of in the case of h = 1, E = 0.3, H = 1.6 is 

the same as the value of a*,h,ff, corresponding to ( I l l ,  1). 



APPLICATIONS OF MsFEM TO UPSCALING OF 
DISPLACEMENTS IN HETEROGENEOUS POROUS 

MEDIA 



Chapter 9 Applications of MsFEM to upscaling of 

displacements in heterogeneous porous media 

9.1 Introduction 

Enhanced oil recovery methods generally involve the injection of fluids that alter the flow 

properties of the natural rock-fluid system in reservoir. To study the motion of this combined 

mixture given the distribution of pores is a goal of a reservoir engineer. In this chapter we 

consider the coarse models for two-phase immiscible flow. A typical example considered 

here are one injection well and one production well. 

Through the use of sophisticated geological and geostatistical modeling tools, engineers 

and geologists can now generate highly detailed, three dimensional representations of reser- 

voir properties. Such models can be particularly important for reservoir management, as 

fine scale details in formation properties, such as thin, high permeability layers or thin shale 

barriers, can dominate reservoir behavior. The direct use of these highly resolved models 

for reservoir simulation is not generally feasible because their fine level of detail (several 

millions) places prohibitive demands on computational resources. Therefore, the ability to 

coarsen these highly resolved geologic models to levels of detail appropriate for reservoir 

simulation (tens of thousands grid blocks), while maintaining the integrity of the model for 

purposes of flow simulation (i.e., avoiding the loss of important details), is clearly needed. 

In this chapter we discuss the applications of MsFEM to the scale-up of displacement 

processes in heterogeneous cross-sectional models (2-D). Moreover, the disadvantages of 

these scale-up models and their improvements will be considered. We note that the coarse 

models described in this chapter are not the exact homogenized limits of detailed equations. 

The homogenization of transport phenomena is a complicated problem. Our goal in this 

chapter is to approximate the average characteristics of transport flow (e.g., production rate) 

on a coarser grid. For example, given the fine description of the reservoir in 2000 x 2000 

grid we would like to describe the reservoir displacements in a coarser grid, for example 

100 x 100 grid. 

The coarse models discussed in this chapter designed to generate a coarsened model that 
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is capable of providing simulation predictions in close agreement with results using the orig- 

inal, detailed reservoir description. More specifically, it requires an agreement in the global 

pressure-flow rate behavior of the reservoir, the breakthrough (the time when oil reaches the 

production well) characteristics of the displacing fluid and, the post-breakthrough fractional 

flows (the production rate of oil later times) of all reservoir fluids. 

The coarse model introduced in [19] achieves an efficient scale-up result by identifying 

high fluid velocities (via single phase flow calculation). These high flow areas lead to an 

early breakthrough of displacing fluids. The non-uniform coarsening idea developed in [19] 

coarsens non-uniformly the fine grid geological descriptions in such a way that the high flow 

regions are finely gridded and the low flow regions are more coarsely gridded. The resulting 

coarsened reservoir description is able to model both average reservoir behavior and some 

important effects due to extremes in reservoir properties (such as early breakthrough of 

injected fluids), without prior knowledge of the global flow field. But there is a rather 

definite limit to the scale up that can be achieved through. non-uniform coarsening alone. 

Indeed, given many high flow areas, this coarse model needs to resolve all these areas. 

This decreases the efficiency of the scale-up. Let's note that MsFEM can be used for the 

calculation of average velocity field in this coarse model. 

The coarse models we discuss in this chapter for two-phase flow speed up the scale up 

process and c ~ n  he efficiently combined with MsFEM to describe the flow properties of the 

reservoir. The main idea of this method is to incorporate higher order moments (corre- 

lations) into coarse models. These ideas have been used before in material sciences and 

turbulent flow problems. The calculation of higher moments require fine detailed informa- 

tion of the velocity field or some robust approximation of it. Using the base functions of 

MsEM which do contain a robust approximation of details, we can calculate these higher 

moments. Numerical experiments show that our coarse models improve the results of ex- 

isting non-uniform coarsening approach. In this chapter we also simplify rigorous upscaled 

models derived in [50, 201 for periodic (or layered) non-ergodic flow and apply the results 

for flow in a typical reservoir cross-section. 

This chapter is organized as follows. In the next section we present the governing 

equations for two-phase flow. In section 3 we discuss initial and boundary conditions for 

governing equations and a special case of two-phase flow, unit mobility case, used in this 

chapter. The flow features and their simulation have been discussed in section 4. In section 5 
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we present the existing non-uniform coarsening approach along with some numerical exam- 

ples. We discuss the coarse model in section 6. In section 7 we derive rigorous homogenized 

equations for layered and non-ergodic periodic flow using the results of [50, 201. Sections 

8, 9, 10, 11 are devoted to numerical implementations and results for the coarse model 

in the unit mobility case and their comparisons with the existing non-uniform coarsening 

approach. In sections 12 and 13 we extend the results of the unit mobility case to more 

general two-phase flow when the velocity weakly depend on time and present numerical 

results. We conclude the chapter with section 14 where my current research in upscaling of 

two-phase flow is discussed. 

9.2 Governing equations 

We consider a heterogeneous system which represent two-phase immiscible flow. Our inter- 

est is in the effect of permeability heterogeneity on two-phase flow. Therefore, we neglect 

the effect of gravity, compressibility, and capillary pressure, and consider porosity to be 

constant . 
This system can be described by writing Darcy's law for each phase (all quantities are 

dimensionless) : 

where vj are the Darcy's velocity for the phase j ( j  = o, w oil, water), p is pressure, S 

is water saturation, k is the permeability tensor, kPj is the relative permeabilities of each 

phase and P j  is the viscosity of the phase j. The Darcy's law for each phase coupled with 

mass conservation, can be manipulated to give the pressure and saturation equations: 

which can be solved subject to the boundary and initial conditions (see next sections). The 
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parameters in the equation (9.2) are given as: 

krj(S)  are referred as the relative permeabilities of the fine scale. A single set of relative 

permeability curves are assumed to describe the entire domain. Permeability is usually 

highly variable with the different value in each fine grid block. 

9.3 Unit mobility case 

The unit mobility case is a special case of two-phase flow. The relative permeabilities in 

this case are defined as 

This case is commonly used for the upscaling of flow in natural reservoirs. Using these 

relations for the relative permeabilities, we can calculate the flux f ( S ) ,  f ( S )  = S. The final 

system becones 

This system is well posed with some boundary and initial conditions. The velocity field 

in this model does not evolve in time unlike the general two-phase model 

For our analysis we consider the following boundary and initial conditions for (9.4) 

and (9.2). Assuming the cross-section of the reservoir is R = [O, 11 x [ O , l ] ,  we impose the 

following boundary conditions for pressure equation: 
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These boundary conditions represent the flow from x = 0  to x  = 1  with no flow boundary 

conditions on y = 0  and y = 1. For saturation equation, we only impose 

S ( x , y , t  = 0 )  = (1 i f x  < 0; Oif x  > 0). 

As we see S ( x ,  y, t = 0)  = H ( x )  where H ( x )  is a Heaviside function. We note that the 

velocity in the x  direction (vl) at x  = 0 and x  = 1 is positive and we do not need boundary 

conditions for S on x  = 0  and x  = 1. 

9.4 The flow features in reservoir and their modeling 

The reservoir cross-sections used in this section are identical, except for the statistically 

generated absolute permeability fields. The flow domain is a square, of equal length and 

thickness. The fine grid in all cases is a uniform 100 x 100 rectangular grid (unless otherwise 

stated). 

Geostatistical models often suggest [25, 411 that the logarithm of permeability field is 

weakly or second order stationary in space so that the mean log permeability is constant 

and its covariance only depends on the relative distance of two points rather than their 

actual locations. One commonly used covariance model is the exponential one 

where r is the separation vector between two points, a2 is the variance of log permeability, 

and 1, and ly are the correlations lengths. 

We generate log-normal absolute permeability fields using a simple " moving ellipse" 

averaging technique. We refer to the major and minor radii of the ellipse as the correlation 

lengths, though we note that other papers sometimes use the ellipse diameters. We choose 

to define the correlation lengths in terms of the radii because they provide the closest 

correspondence to the use of the term for other correlation functions, such as exponential. 

We assume that the axes of ellipse lie along the x  and y  directions. The permeability fields 

are then characterized by three parameters: I,, l y ,  and a ,  where I ,  and lY designate the 

correlation lengths in x  and y directions, and a2 is the variance of logarithm of permeability 

field. We will express I ,  and ly in dimensionless units, so that E x  ( ly )  is the ratio of the 
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correlation length to the length (thickness) of the cross section. 

The moving ellipse algorithm is as follows. One first overlays the grid of the reservoir 

cross-section with a larger grid. To each cell i of this larger grid one assigns an independent 

Gaussian random variable xi. For each cell i of the cross-section, a new random variable yi 

is generated from xi as follows: An ellipse with specified major and minor axes is centered 

on that cell, the cells of the larger grid that fall within the ellipse are marked, and yi is 

set equal to the average of the xi within marked cells. The yi then constitute a correlated 

Gaussian field. A log-normal permeability field is obtained by exponentiating yi; the mean 

and variance are set by the coefficients of the exponential. 

The realizations we generated are all strongly heterogeneous and highly layered. The 

heterogeneity is determined by a, which is equal to 1 or 2. The high degree of layering 

was ensured by taking 1, << ly. We note that the layered permeability fields are a good 

approximation for natural reservoirs. Under the gravitational forces natural reservoirs tend 

to develop thin layers in x direction. 

In Fig. 9.1 we depicted a realization of permeability field with I ,  = 0.3, 15, = 0.01 and 

a = 2. As we see high permeability areas are long thin layers. The corresponding streamline 

field is contoured in Fig. 9.2. 

Throughout the chapter we are interested in the fractional curves. Fractional curve at 

time t ,  F(t!+ is defined as a production rate at x = 1 by the following expression: 

The integral in numerator represents flux at x = 1 and the integral in denominator normal- 

izes this flux. We also use dimensionless time PVI throughout the chapter. For problems 

of this chapter 

where L, and Ly are the lengths of the cross-section of the reservoir in x and y directions 

(L,  = Ly = I), t is time and vaUerage is the total average velocity. As we see PVI is 

proportional to the flux rate of injecting fluid. 



Figure 9.1: Log normaIIy distributed permeability field with I ,  = 0.3, 15, = 0.01, and a = 2. 
The ratio of max to min is 2e -t- 4 

Figure 9.2: Streamlines for log normally distributed permeability field with I, = 0.3, ly = 
0.01, and a = 2. The ratio of max to min is 2e + 4 
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9.5 Non-uniform coarsening method 

Many different methods can be devised for coarsening a grid non-uniformly. In this chapter 

we use the term "non-uniform coarsening" to refer to the specific algorithm formulated in 

[19]. The characteristic feature of this algorithm is that simulations on the coarsened grid 

reproduce the fine grid results without any upscaling of the fine grid relative permeabilities. 

Only the absolute permeabilities are upscaled. The coarsenings identified by the non- 

uniform coarsening algorithm tend to be finely gridded in regions of high flux, and more 

coarsely gridded in the regions of low flux. For the unit mobility case, denoting k* upscaled 

absolute permeability (see previous chapters), we have the following formulation for our 

model 

with the same initial conditions as the fine saturation field. 

A straightforward implementation of this scale-up model fails to give a robust approx- 

imation. Indeed, if v* is a constant, then we miss the important features of the flow. The 

idea of non-uniform coarsening incorporated into this model does indeed make a difference. 

The typical velocity field as we discussed in the previous section has thin layers of high 

flow regions. Resolving these areas non-uniformly the coarse method increases the accuracy 

of the method. In other words the coarse blocks in high velocity regions are smaller than 

the coarse blocks away from them. The accuracy of this method depends on the degree of 

resolving high flow areas. Consequently, the method can be almost as expensive as solving 

the fine scale problem for problems with many high flow layers. For example in Fig. 9.3 

we plot fractional flow curves for permeability field ( see Fig. 9.1) with I ,  = 0.3, ly = 0.01, 

and a = 2. As we see coarse models on 10 x 10 and 15 x 15 coarse grids do not give a 

satisfactory agreement while the coarse model on 23 x 24 coarse grid has a good accuracy. 

This indicates that there is a definite limit to the scale up through non-uniform coarsening. 

In order to increase the efficiency of the method, we need to improve it. In the next section, 

we discuss a method which speeds up the upscaling process. 

The non-uniform coarsening method can be applied to general two-phase flow. In this 

case, as we noted in the beginning of the section, the fine relative permeability curves retain 



PVI : 

Figure 9.3: The comparison of three different scale-up results using non-uniform coarsening 
method. Solid line is the fractional flow curve for the fine model 100 x 100. Dotted line is 
for 10 x 10, Dashed-dotted line is for 15 x 15, '+" line is for 23 x 24 coarse model 



their form: 

as* 
- + v,*Vj f (S*) = 0, 
at 

where 

9.6 Derivation of the coarse model equations for unit mobility case 

The coarse model we are going to derive in this section is known in literature [14, 571. 

We would like to repeat this derivation in this section. In the following sections, we will 

describe how to use this model in a bounded reservoir and how this model can be effectively 

combined with MsFEM. In the next section, we will also present a rigorous homogenization 

model and compare it with this coarse model. 

For the derivation of the coarse model, we use an expansion of the velocity and the 

saturation field around their averages. We note that this derivation is not rigorous and 

assumes that the variations of the perturbed fields are small. The averages of perturbed 

fields could be their volume or ensemble averages. These approaches are commonly used in 

turbulence and other fields. 

Substituting them into the saturation equation of (9.4) we have 

as,, as' 
- at + - at + v;ojso + v;vjsl + v;ojs0 + u;y7js' = 0. 
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Next we average this equation and take into account that 7 = 0, and = 0: 

The fluctuating equations is obtained by subtracting the average equations from the 

(9.9): 

as' . at + V ~ V ~ S '  + u;vjs0 + V;vjS1 = u;v~S'. 

- 
Our goal is to derive an equation for S'v; from (9.11) in order to have a closed system 

with equation (9.10). If we multiply (9.11) by v; and average (neglecting third order terms), 

we find that the term U ~ V ~ S '  causes a difficulty in closing the above system. The contribu- 

tion of this term is not negligible which can be checked with a simple computation. To deal 

with this term further, we notice that it can be included in dSt/dt along the trajectories 

Indeed, if we project the first two terms on to this trajectory, we have 

As we see from here V ~ V ~ S '  causes the non-locality in the problem. The fact that the 

averaged equations have the nonlocal and memory dependent diffusion has been known 

from the mathematical theory of homogenization (see next section). Consequently, we have 

where x(t) is a trajectory of dx/dt = uo(x). Then for each (x, t), s.t. x(t) = x integrating 

the equation (9.12) over (0, t)  , we have 
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Multiplying this equation by v;(x) and averaging we get 

S' ( t ,  x)v; ( x )  = - {v; ( x ) v ~  ( X  ( T ) ) V ~ S O  (7, x ( r ) )  + It t (9.14) 

V ;  (x)v; ( x (T ) ) v~S '  (r ,  x ( T ) ) ) ~ T  + J V ;  ( I ) ; )  (x (T) )v~s '  (T ,  x(r))dr.  
0 

The last term is equal to zero because of 7 = 0. We neglect the term containing vlvlS1 

as a higher order term. Then we have 

s' ( t ,  X ) U ;  = - v;(x)v; ( x ( T ) v ~ S ~  (7, x(r))dr I t  
Consequently the homogenized equation derived in this heuristic way is 

As we see this averaged equation does have a diffusive behavior with non-local diffusion 

coefficients. In the next sections we discuss the boundary conditions for this equation. We 

note that this equation can be further approximated with 

To show this we need to show that 



Indeed, 

In the last step, we have used the fact that the change of So(t,  x ( t ) )  along the trajectory is 

a higher order term according to (9.16). For the further convenience we denote 

Ri3 ( x ,  x  (t ) ) = V: ( x )  V;  ( x  ( t))  

and 

t 
~ ( x ,  t )  = R"(X, x(T))~T. 

Then the final equation becomes 

9.7 Rigorous derivation of upscaled equations for layered system 

In this section we will derive a rigorous upscaled equation for layered media and compare 

the results with the results of the previous section. One reason for that is the heuristic 

derivation of the previous section assumes small variations for perturbed field while we are 

interested in the cases when the variances are not very small. 

We consider 

where H ( x )  is Heaviside function and v ( z ) ,  z  = y / ~  is a periodic function in [0, 11. We 
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assume that v > 0. The solution of this equation is 

As E -+ 0 we have 

The homogenized equation for (9.21) was studied in [50]. We will briefly describe it here. 

Applying Fourier transform in x and Laplace transform in t (9.21) gives 

which is valid for %p > 0. Denoting dvy Young measures associated with v ( y / ~ )  we find the 

weak limit So of the sequence SE 

It can be shown that there exists a nonnegative measure dp(X) suct that 

holds for z outside the real segment [-max(v), -min(v)]. Then taking inverse Fourier and 

Laplace transform of (9.22), it can be shown that the homogenized equation satisfy 

aso aso - a2 
a t  

+ vo- = l/ s~o(x - X(t - s), s)dp(X)ds. 
ax  

To understand this homogenized equation we assume that there are finite number of 

layers with given volume fractions, i.e. v(z) = {vl,. . . , v,), and fi = meas{z, v(x) = vi}. 

Let's note that the layered geostatistical models are built based on finite number of layers. 

In this case 1.h.s of (9.23) becomes 



Consequently, 

where vo = CF=l vi fi. In the case of n = 2 we can explicitly calculate the diffusion. Indeed, 

in this case we have 

where the layers with velocities vl and v2 have volume fractions fl and f2. This indicates 

that 

It can be easily checked that vl f f  + v 2 f j  - vi is equal to the variance of v .  Then the final 

homogenized equation is 

The diffusion in the averaged equation derived in the previous section (9.16) can be calcu- 

lated explicitly since the correlation of the velocity field is constant and equal to v a r ( v ) .  

Then (9.16) becomes 

As we see the only difference in equations (9.25) and (9.26) is in the "average" velocity field 

which counts for memory effect. We note that in the case fl  = f2 the equations are the 

same. 

Next we will try to describe the behavior of the homogenized equation in the general 

n layered case. In this case denoting P,(z) = Cgl amzm to be mth order polynomial we 
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The coefficients Bn, Bn-l, and BnW2 can be readily calculated 

Bn-2 = C v i v j  - C f k  C v i v j - ( C f i ~ j ) c f k  c V i  = 
i , j=l ,  i# j  k=l i , j=l ,  i f j ,  i f k ,  j f k  i=l k=l i=l, i#k 

n n n n n f: v i v j - ~ f k  v i v j  - C f k v i v k  + (C fiy) '  - C fiV? = 
i , j=l ,  i # j  k=1 i , j=l,  i f j ,  i f k ,  j f k  k=l i=l, i#k i=l i=l 

So we have 

Furthermore, it can be shown that R(z)  = xz=l f k  nyZl, +(z + vi) has exactly n - 1 

roots -ui, such that vi < ui < vi+l assuming that 0 < vl < . . . < vn. To show that we just 
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need to look at the change of the sign of R(x). We can easily see that 

Consequently, 

From above computations we conclude that 

where vi < ui < vi+l, and 2 ai = var(v). The last equality follows from the fact that 

Bn-2 = var (v). Consequently, 

and the homogenized equation is 

where ~1<: pi = 1. 

Remark 9.7.1. As we described in the previous section the cross-section of a reservoir is 

modeled with permeability field which is a log-normal random field with correlation lengths 

in x and y directions 1, and l y  such that 1, >> l y .  As a consequence, the velocity field 

has long and thin layers concentrated on these high permeability regions. Generally (it 

can be checked numerically) the corresponding velocity fields have a high fraction of low 

velocity areas and a low fraction of high velocity areas. In this case sum of Pi in (9.31) 

corresponding to high velocities is close to 1. For simplicity if we assume there are two 

ranges of the velocity v and V, where V >> v,  we have the following approximation of our 



coarse model 

Let's note that if the volume fraction of v is larger, u is close to V. In the next sections we 

will show numerically that this model can be used successfully for almost layered cases. 

Remark 9.7.2. The coarse model (9.31) can be derived for general non-ergodic periodic 

flow with no stagnation point using the continuous model [20] similar to the one for layered 

flow. Let's note that the velocity field corresponding to the flow described in section 3 does 

not have stagnation point. Denoting the periodic velocity field by (vl (x/E), vz (XI&)) we 

define 

where Y is the unit cube (period). The slope is often referred to as the asymptotic slope of 

streamline, or the rotation number. Furthermore, following [20] we define Gi such that 

Gi(y) = lim - vi(X(s, y))ds 
t+w, lo 

where d X / d t  = v ( X ) ,  X(0, y) = y. It has been shown that if 0 is the angle such that 

-Gl(y) sin(@) + G2(y) cos(0) = 0 (if (c,~) is not equal to zero then 6 is the directional 

angle of (E, E)) ,  then the homogenized equation is 

Here the measure +(A) is defined similar to the layered case, i.e., 

where b(y) = GI (y) cos(0) + G2 (y) sin(@). In the case of non-ergodic flow (Gl (y) , G2 (9))  is 

constant along the streamlines. Assuming there are n distinct streamlines with velocities 
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ilk and the corresponding volume fractions f,+: we can show (similar to the layered case) 

that the homogenized equation is 

where ~7:; pi = 1, and ui are between di and Gi+l as in the layered case. 

9.8 The formulations of the diffusion in coarse models 

In this section we present a formulation for the diffusion in the coarse models. Our goal 

with formulating the coarse models is to show that these coarse models improve the results 

of existing non-uniform coarsening models and can be efficiently combined with MsFEM. 

The coarse model we are going to implement and analyze in this chapter is (9.20) 

where D'~(X, t) = J: v: (xjv; (x(r))dr. The derivation of this model presented in previous 

sections is carried out under the assumption of small variations for perturbed fields. This 

assumption does not hold for the whole reservoir since reservoirs are very heterogeneous. 

But increasing the number of coarse blocks, we can still accept this assumption. Numerical 

experiments show that for the variation a = 2 of permeability field, the coarse model (9.35) 

gives satisfactory accuracy. As we will show in later sections, this coarse model improves 

the existing non-uniform coarsening approach. In our numerical calculations, we are going 

to compare a non-uniform coarsening model and our coarse model (9.35) on the same coarse 

grid. We will see that our coarse model makes a substantial improvement over the existing 

method. Note that this coarse model can be effectively combined with MsFEM since the 

calculations of two-point correlations Dij(x,t) require the approximation of fine velocity 

field. 
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Remark 9.8.1. In this remark we would like to show some approximations for the diffusion 

coefficients D ~ ~ ( x ,  t ) .  We note that the diffusion coefficients is approximately equal to the 

correlation between the length of the fine trajectory in (0,t) which starts at  point x and 

vl(x). Indeed, 

where Lj is displacement in the j direction of the coarse trajectory which is started at x 

at time 0 and traveled with the fine velocity -v until time t. Next we propose to use the 

following simplifications of the final result of (9.36) 

where d m  is the standard deviation of v' at the coarse block with the center x, L! 

is displacement in the j (j = 1,2) direction of the coarse trajectory which is started at x 

at time 0 and traveled with the coarse velocity -vo until time t. Note that the numerical 

experiments show that this approximation works as well as the previously suggested one 

for flows with large correlation length in x direction and small correlation length in y. The 

advantage or" this approximation is that we calciilate the variance of the ~s!ocity ir, each 

coarse block instead of two-point correlation. This reduces the computational cost of the 

problem. 

Remark 9.8.2. The numerical examples we present are for flow scenarios with 1, >> l,, 

where 1, and ly are correlation lengths in x and y directions. This flow filed is almost 

layered and we can try to use (9.31). To use this model in its general form is cumbersome. 

We can simplify this model, noticing that the velocity fields corresponding to log-normal 

permeability fields with large ratio 1,/Zy tend to have low velocity areas with high volume 

fraction and high velocity areas with low volume fraction. In this case we can assume that 

the velocity field has a two characteristics scale. As we noticed in the previous section, in 

this case the coarse model (9.31) can be approximated with 
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where u is close to v,,,. A few numerical results for this model show that this coarse 

model has a good accuracy for small ly and as we increase the value of ly the accuracy 

of the method decreases. The comparison with non-uniform coarsening approach shows 

that (9.38) can give comparable accuracy for fractional curves in a very much coarser grid. 

We would like to note that this coarse model can be effectively combined with MsFEM to 

calculate vo and var(v), where these quantities require an approximation of the detailed 

velocity field in general. 

9.9 The use of MsFEM in coarse models 

Our coarse models as we see from the previous section require average characteristics of the 

flow. These average characteristics (variation, two-point correlations) can be calculated with 

the knowledge of the detailed behavior of the flow. For some simple cases, we can recover 

these average characteristics without knowing the detailed behavior of the velocity field, but 

in general we need some approximation of fine velocity field. TVe use MsFEM to construct 

the approximation for the detailed flow field, which is further used for calculations of average 

characteristics of the flow. Indeed, as we see from the first part of the work, multiscale 

bases functions contain the small scale information. To construct the approximation of a 

fine pressure field in a given coarse block, we just need 

where 4: are the base functions in this coarse block, p: are the nodal values calculated from 

coarse matrix equation, and p$ is the approximation of the pressure field in the coarse block. 

The convergence for MsFEM presented in previous sections indicates the robustness of 

our construction. We would like to note that the calculation of the variance of velocity 

field in a coarse block uses multiscale finite element base functions of this coarse block 

once. Consequently this base function can be discarded from memory after we calculate the 

average information in this coarse block. 
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9.10 Boundary conditions for coarse models 

Adding the diffusion term into the coarse model requires additional boundary conditions 

since we increase the order of our partial differential equation. In this section, we describe 

what boundary conditions we use for our coarse models. We start describing boundary 

conditions for the coarse model 

where D" ( x ,  t )  = J~~ vi (x)v; ( x ( . r ) )d~ .  Because the y component of the velocity is equal to 

zero on y = 0 and y = 1, we conclude that vh = 0. Consequently, D22 = 0 on y = 0 and 

y = 1 for all t and we do not need to impose any boundary conditions on y = 0 and y = 1 

since there is no convective or diffusive flux. To impose boundary conditions on x = 0, we 

note that Dl1 = 0 on x = 0 for all t because X ( T )  = x-vot > 0, or t < x/vO. This means that 

the integration path shrinks to zero as we approach to x = 0, and therefore (0, y, t )  = 0. 

Consequently, there is no diffusive flux on x .= 0 and we do not need to impose any extra 

boundary conditions. On x = 1 we have positive outgoing flux. To formulate boundary 

conditions on x = 1, we note that in dimensionless time PVI the amount of fluid in the 

reservoir at a given time is fixed and equal to the amount of fluid of the detailed flow. Since 

-w-e do LA"L --I, I.-.,,. lla~c; a q  digusi.~," 9-u enteriag into the lreser~roir o~ x = Ot  we require that there 

is only convective flux on x = 1, or diffusive flux is equal to zero on x = 1. 

Remark 9.10.1. The same boundary conditions are imposed for 

aso aso - + vo- = var(v) -(x - u(t - s) ,  s)ds. at ax It rxf 
9.11 Numerical results for unit mobility case 

In this section we analyze numerically the coarse models we proposed in the previous section. 

The hyperbolic equations in these models used second order EN0 schemes in order to avoid 

numerical diffusions. We consider the coarse model (9.35) 
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where D"(x, t )  = J~~ vi (e)v; (x(.r))d.i. The numerical examples we present here compare the 

fractional flow curves of the coarse model (9.41) and the non-uniform coarsening method 

on the same coarse grid. Coarse grids for the examples are chosen to be non-uniform 

in order to have the best performance for the non-uniform coarsening approach. In the 

numerical examples, we use the layered permeability fields as discussed before. As our 

numerical experiments Fig. 9.4 - Fig. 9.10 demonstrate, on the non-uniform coarse grid our 

coarse model with diffusion improves the results of the non-uniform coarsening method. 

Moreover, our method is capable of accurately predicting the fractional flow curve on as 

coarse as 10 x 10 grid. 

In Fig. 9.4 we consider the layered case with very large correlation length in x direction. 

The post-breakthrough fractional flow curves for non-uniform coarsening method and the 

coarse model (9.41) are compared on 10 x 10 coarse grid and 100 x 100 fine grid. As 

this figure shows that our coarse model gives a good accuracy and improves the existing 

approach. In Fig. 9.5 we decrease I ,  to I ,  = 0.3. This flow deviates from layered flow 

since the correlation in a: direction is less than the length of the reservoir in the x direction. 

We see from this figure that our method improves the result of the non-uniform coarsening 

method. 

In numerical examples presented in Fig. 9.6 - Fig. 9.8, we increase the value of ly. As 

the value ef by increases, the flow field becomes less layered and the effect of cross flow 

becomes noticable. As a result the non-uniform coarsening approach, gives more accurate 

predictions in comparison to the layered case. The reason is that is the approximation of 

the flow in each coarse block with single average velocity becomes more robust since the 

flow loses its individual features in each coarse block. Despite that, we see from Fig. 9.6 

- Fig. 9.8 that our coarse model improves the predictions of the non-uniform coarsening 

approach. 

Numerical examples Fig. 9.9 - Fig. 9.10 are performed for flow with smaller correlation 

length in the x direction with 1, = 0.15. As we see from these numerical results, our coarse 

model (9.41) retains good accuracy and improvement in all cases. 

Remark 9.11.1. We would like to present a few numerical results for the coarse model 
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Figure 9.4: Case I, = 0.6, I9 = 0.01, a = 2. Dashed-dotted line is for fine fiactional flow 
curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform coarsening 
method on 10 x 10 coarse grid, dotted line is for the coarse model with diffusion on the 
same coarse grid 
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Figure 9.5: Case E ,  = 0.3, Iy = 0.005, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 12 x 12 non-uniform coarse grid, dotted lime is for the coarse model 
with diffusion on the same coarse grid 
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Figure 9.6: Case I ,  = 0.3, lg = 0.01, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform coarsening 
method on 10 x 10 non-uniform coarse grid, dotted line is for the coarse model with diffusion 
on the same coarse grid 
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Figure 9.7: Case I ,  = 0.3, ly = 0.05, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform coarsening 
method on 11 x 11 non-uniform coarse grid, dotted line is for the coarse model with diffusion 
on the same coarse grid 
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Figure 9.8: Case 1, = 0.3, l y  = 0.2, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform coarsening 
method on 9 x 9 non-uniform coarse grid, dotted line is for the coarse model with diffusion 
on the same coarse grid 

Figure 9.9: Case I ,  = 0.15, l y  = 0.005, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 10 x 10 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 
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Figure 9.10: Case I ,  = 0.15, l y  = 0.025, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 10 x 10 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 

As we discussed in the previous section, this model can be used to approximate the detailed 

flow. We are going to compare the results of this coarse model with the non-uniform 

coarsening model mentioned before. In the numerical example presented in Fig. 9.11, the 

velocity field is nearly layered. Such a high value for 1, is not commonly used in practical 

examples. As we see from fractional flow curves, the coarse model (9.42) has very good 

accuracy for this case. We also depict in this figure the fractional curve for 10 x 10 coarse 

model using the non-uniform coarsening approach. As we see from this figure our coarse 

model on 1 x 1 coarse grid gives better accuracy. In Fig. 9.12 we present a numerical result 

for the layered flow with moderate value of I,, 1, = 0.15. We see that for this case also, the 

coarse model (9.42) gives a better approximation to the fractional flow curve of the detailed 

flow than the non-uniform coarsening on 10 x 10 coarse grid. If we increase the correlation 

length in the y direction then the performance of the coarse model (9.42) deteriorates (see 

Fig. 9.13). 
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Figure 9.11: Case 1, = 0.7, l y  = 0.005, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, '+' is for coarse model using non-uniform coarsening method on 
10 x 10 coarse grid, dotted line is for the coarse model with diffusion on 1 x 1 coarse grid, 
solid line represents the coarse fractional flow curve on 1 x 1 coarse grid 
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Figure 9.12: Case 1, = 0.15, E y  = 0.005, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, '+' is for coarse model using non-uniform coarsening method on 
10 x 10 coarse grid, dotted line is for the coarse model with diffusion on 1 x 1 coarse grid, 
solid line represents the coarse fractional flow curve on 1 x 1 coarse grid 
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Figure 9.13: Case I ,  = 0.15, ly = 0.025, o = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, '+' is for coarse model using non-uniform coarsening method on 
10 x 10 coarse grid, dotted line is for the coarse model with diffusion on 1 x 1 coarse grid, 
solid line represents the coarse fractional flow curve on 1 x 1 coarse grid 

9.12 Upscaling of two-phase flow 

In this section we discuss a coarse model for two-phase flow. This model has been derived 

in [38, 371. I have also derived this model independently during my summer internship at 

Chevron. The derivation of the model assumes that the velocity field weakly depends on 

time. This kind of assumption has been made in a number of publications. Indeed, the 

saturation dependence in the velocity has been examined before [38, 371 and it has been 

shown that it does not have a large infiuence on heterogeneous fingering for modest mobility 

ratio X(S) (9.2). Under this assumption, our fine scale model is 

where vi = kijvjp, and vikijvjp = 0. The derivation of the coarse model is based on 

perturbation of saturation and the velocity fields around their averages. Using the expansion 

of these quantities as we did in the previous section 



in the saturation equation, we have 

aso as1 
- + - + (v,O +v;)Vj  SO) + A(SO)S1+ B(s~)s '~ )  = O. 
at at (9.44) 

Here 

To get (9.44) we have used 

f (S) = f (So + Sf)  = f (So) + A(So)S1 + B(SO)S'~. 

(9.44) is equivalent to 

Averaging (9.45) and neglecting the terms of third and higher orders, we get 

This equation for averaged saturation is equivalent to 

In [17, 181 the author numerically investigated the effect of velocity-saturation covariance 
- 

(v~s') and the variance of the saturation on the upscaled relative permeabilities. These 

upscaled relative permeabilities show the strongest dependence on the velocity-saturation 

covariance. For this reason we only concentrate on the effect of velocity-saturation co- 

variance onto the average saturation. In [38, 371 the authors use a different argument for 
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neglecting the effects of saturation variance on the averaged properties of the flow. Then 

the approximate equation for averaged saturation becomes 

To approximate the velocity-saturation covariance, the fluctuating equation (i.e., equa- 

tion for s') has been used. To derive this equation we subtract (9.46) from (9.45) and 

neglect the higher order terms: 

Denoting the r.h.s of (9.49) as @(x, t), since @(x, t) is non-oscillatory function, we can write 

(9.49) in a more compact form: 

In [38, 371 the authors using certain assumptions propose the following approximation for 

velocity-saturation covariance 

where Rjk(x, ~ ( 7 ) )  = u~(x)v;(x(T)), two point correlation of the velocity field as in the unit 

mobility case. With this approximation the equation for averaged saturation becomes 

This result is consistent with the unit mobility case where A(So) = 1. We use this model 

in our numerical examples. To calculate second order statistics, we use multiscale base 

functions. Even though to derive the coarse model (9.52) a number of assumptions have 

been used, the numerical experiments demonstrate that with this coarse model we can get 

substantial improvements over the existing non-uniform coarsening approach. Also as we 
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will s e e  from numerical results of the next section the coarse model (9.52) is capable of 

approximating accurately the averaged flow properties on the relatively coarse grid. 

9.13 Numerical results for two-phase flow 

In t h i s  section we analyze numerically the coarse model (9.52) for two-phase flow assuming 

that t h e  velocity field does not (weakly) depends on time. Second order E N 0  schemes have 

been used to approximate the nonlinear hyperbolic equations in order to avoid numerical 

diffusions. As for relative permeabilities, we use the commonly used flux for two-phase 

immiscible flow 

k,, (S) = (1 - s ) ~ ,  kTo(S) = s2 

where S is the oil saturation. We assume the viscosity ratio to be 5, i.e., p,/p, = 5. 

In Fig. 9.14 - Fig. 9.19, we compare the fractional flow curves for our coarse model 

with the non-uniform coarsening method on the same coarse grid for different realizations 

of permeability fields as we did in the unit mobility case. 

As in the unit mobility case, we start with flow field with large correlation length in the 

x direction, I, = 0.6. In Fig. 9.14 we present the numerical result for this case. As we see, 

~ u r  coarse model improves the predictions of not-anifornn coarsening approach and gives 

an accurate approximation on 10 x 10 coarse grid. 

In the next figures, we compare our method with non-uniform coarsening approach 

for various values of 1, and ly. These values of I, and E y  have been used in the numerical 

examples for the unit mobility case. For this reason we do not comment on the corresponding 

velocity fields. As we see from these figures, when the ratio of l,/Ey increases the non-uniform 

coarsening approach becomes more robust. The reason is that in this case the velocity field 

loses its individual features. We see from the previous numerical results that our coarse 

model is capable of predicting the flow rate on 10 x 10 coarse grid. Moreover, the coarse 

model with diffusion improves the predictions of the non-uniform coarsening method. 
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Figure 9.14: Case 1, = 0.6, E y  = 0.01, ~r = 2. Dashed-dotted Line is for fine fractional 
flow curve on 100 x 100 grid, Dashed-dashed line is for coarse model using non-uniform 
coarsening method on 10 x $0 coarse grid, dotted line is for the coarse model with diffusion 
on the same coarse grid 
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Figure 9.15: Case I ,  = 0.3, ly = 0.005, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 12 x 12 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 
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Figure 9.16: Case I, = 0.3, ly = 0.01, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 10 x 10 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 
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Figure 9.17: Case 1, = 0.3, ly = 0.05, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 11 x 11 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 
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Figure 9.18: Case I ,  = 0.15, Ey = 0.005, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 10 x 10 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 
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Figure 9.19: Case 1, = 0.15, l y  = 0.025, a = 2. Dashed-dotted line is for fine fractional 
flow curve on 100 x 100 grid, dashed-dashed line is for coarse model using non-uniform 
coarsening method on 10 x 10 non-uniform coarse grid, dotted line is for the coarse model 
with diffusion on the same coarse grid 
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9.14 Concluding remarks 

The implementation of the coarse model formulated in previous section to the general two- 

phase flow is currently under investigation. 

Developing new effective coarse models for two-phase flow problem is one of my ongoing 

researches, Our goal is to find coarse models which are process independent and capable 

of predicting the flow properties on a relatively coarse grid. The main idea of the coarse 

models I am currently working on is to assign three velocity fields (for practicd purposes) 

to each coarse block rather than one as in the non-uniform coarsening approach. In each 

coarse block, assigning three velocity values our goal is to represent the high, average and 

low flow areas. Let's note that for each velocity we also assign a weight, calculated from the 

MsFEM approximation of the velocity field. In the non-uniform coarsening approach, we 

just represent the average flow while missing the important features of the flow. Introducing 

the representatives for high and low velocities, we are capable to predict the average flow 

properties on a relatively coarse grid. In Fig. 9.20 - Fig. 9.22, we plot the fractional flow 

curves for the coarse model with three velocity representatives on 2 x 2 coarse grid. As we 

see from these figures, the predictions on a 2 x 2 coarse grid is better than a 5 x 5 coarse 

approximation of the fractional flow curves using non-uniform coarsening. 
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Figure 9.20: Case 1, = 0.3, ly = 0.01, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, solid line is for coarse model using three velocity values in each 
coarse block on 2 x 2 coarse grid, dotted lines is for the non-uniform coarsening approach 
on 2 x 2 and 5 x 5 coarse grid (2 x 2 is the worst one) 
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Figure 9.21: Case I ,  = 0.3, ly = 0.05, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, solid line is for coarse model using three velocity values in each 
coarse block on 2 x 2 coarse grid, dotted lines is for the non-uniform coarsening approach 
on 2 x 2 and 5 x 5 coarse grid (2 x 2 is the 'worst one) 
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Figure 9.22: Case 1, = 0.3, 1, = 0.2, a = 2. Dashed-dotted line is for fine fractional flow 
curve on 100 x 100 grid, solid line is for coarse model using three velocity values in each 
coarse block on 2 x 2 coarse grid, dotted lines is for the non-uniform coarsening approach 
on 2 x 2 and 5 x 5 coarse grid (2 x 2 is the worst one) 



Appendix A Difference form of the cell term 

To show that A; can be written in the difference form we need just to prove that 46,,Q,;,,, 
Q,$,24k,2 and #8,14b,2 + 48,24h,l are the same constants in each of two triangular elements 

with the common side kl.  In this way the integrand is the same in the union of these two 

elements. Since the average of the integrand of A t  is zero, it is the divergence of a periodic 

field. Consequently, A$ can be written as a difference of integrals over the boundaries. 

To show that these constants axe the same for our configuration we need the following 

lemma. 

Lemma A.O.l If Sl U Sz is a parallelogram then 45t,j46,p + &,j4(jp is the same in Sl and 

sz . 

Proof. In this case we have 

Note that the line segment kA is parallel to the line segment lB, which is also parallel to the 

line segment Ox, see Fig. A.1. Moreover, since IkAl = [I31 and &js, jk) = i, g5$js, (A) = 0 ,  

41s2(1) = 1, ~bkIs~(B) = 0, we have 

The same can be shown for j = 2. ti 

Remark A.0.1. It can be shown that this difference structure leads to the summation 

by parts in (7.48). 

Now let us show that JK f okd3: can be written in the difference form ( j K  fX~$g,pdz is 

similar). Consider the configuration illustrated in Fig. A.2. By reordering the terms, we 

obtain 
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Figure A.l: Segments in a triangulation 

(i- 1 j) 

(i-lj-1) 

Figure A.2: Element nodes in a triangulation 



+(I . f ~ + d x  - fsi-lj-l dx) . 
Kz 

Here we have used t Ik  = 0 on K E Kh . This difference structure leads to the 

summation by parts in G ~ P ! .  



Appendix B The estimate for linear functions 

In this section we show that on any triangular element K 

where 1 is a linear function and u satisfies the following equation on a triangular domain 

S > K  

Let us consider the difference of u and I :  4 = u-1. Clearly 45 satisfies the following equation: 

Introducing the auxiliary function vi (i = 1,2) defined by 

viai jv jvk  = -viai"n S, 

vr, = 0 on 8s. 

We can express the solution of (B.3) as a linear combination of vi. This gives 

where ai = Vil are constants. Then we obtain 



where A is the matrix with the following elements 

All = JK[(l + ~ 1 ~ 1 ) ~  + (V2~1)~]dx,  

A12 = JK[(l  + V1~1)V1~2 + ( 1  + T J ~ V ~ ) V ~ V I ] ~ X ,  

A21 = JK[(l + V1~1)01~2 + ( 1  + V ~ V ~ ) V ~ V I ] ~ X ,  

= JK[(l  + ~ 2 ~ 2 ) ~  + ( ~ 7 1 ~ 2 ) ~ ] d ~ .  

It  can be checked that 

and 

(Aa, a)  > 0 

are the sufficient conditions for (Aa, a)  2 da2, for some d > 0. For example under these 

conditions d can be chosen to be 2d = All + A22 - J(All - A22)2 + 4(A12)2. Note that if 

d > 0 then d > Ch2 from which it follows that da2 > C1/VZ11L2(K). Assuming the opposite, 

i.e.? any of the inequalities does not hold we have that vl + xl or v2 + x2 or u is constant 

in K. Let's note that vi f xi (i = 1,2)  satisfy 

Therefore vi + xi (i = 1,2)  cannot be constant in K [39]. Consequently, All and A22 are 

strictly positive. Also JK(O~)2dx  > 0 if lVll > 0 [39] which guarantees (Aa, a )  > 0. If 

JVlj = 0 then (B.l) satisfies. This completes the proof of (B.l). 



Appendix C Formulation based on dissipation energy 

Indelman and Dagan [30] suggested the use of averaged dissipation energy for determining 

the grid block permeability, i.e., 

(Op . KOp)v = (VP' . KEVp')v, (C.1) 

where p-s the solution of (8.5) and p is the solution of 

This formulation may be viewed as an approximation to the energy convergence in the 

homogenization theory (cf. [32]). Note that K cannot be uniquely determined from ((2.1) 

since adding any anti-symmetric tensor to K does not, change the equality. Thus, we enforce 

K to be symmetric. 

Equation (C.l) is useful for calculating K only when Vp is known in advance. This can 

be achieved by specifying special boundary conditions. Let p = w + e . x be the solution 

of (C.2), where e is a eonstmt vector. Then wder  the condition w = 0 on aV or w being 

periodic in V, we have Vp = e on V from (C.2) since K is a constant tensor in V. Thus 

(C.l) reduces to 

This explicit formula is in fact equivalent to (8.13). We briefly outline the proof here. 

First, because (C.3) holds for arbitrary e, choosing e = ei (i = 1,. . . , d) and denoting 

the corresponding p' by pz, we obtain (8.13) for i = j .  Now, choose e = ei + ej (i # 3 ) .  

By using the symmetry of K (as enforced) and Kc,  as well as the previous result for i = j ,  

it is easy to show that (8.13) holds for i # j. On the other hand, since any vector e can 

be written as a linear combination of ei, we obtain (C.3) from (8.13) by simple algebra. 

For this, we use the facts that (8.5) is linear and homogeneous, (8.7) (or (8.8)) is invariant 

under linear superposition, and that the two sides of (8.13) are bilinear forms. 
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With the boundary condition (8.9), Vp = e only when K is diagonal; otherwise, Vp 

and K are coupled together and (C.l) could be difficult to use in actual computations. 

We mention that reference [lo] showed the above equivalence under the periodic boundary 

condition with a different approach, but the conclusion for the linear pressure drop condition 

(corresponding to w = 0 on aV) was incorrect. 
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