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ABSTRACT

The infrared properties of scattering matrix elements in
Quantum Chromodynamics are studied from the point of view of
finding a systematization of perturbation theory that goes beyond
the actual order-by-order results. An integro-differential
equation for the matrix elements of Quantum Chromodynamics is
derived. It is shown (using the ghost-free gauges and an assumption that
seems reasonable in those gauges) that all the infrared singularitie;
arising in on mass-shell scattering amplitudes may be collected by a
reorganization of the perturbation theory into the iteration of the sum
of all insertions of a single gluon between the external states,
where the coupling constant at the point of insertidn 1s replaced by the
effective coupling constant g(kz) where k is the momentum of the inserted
gluon. It is also shown that colour-averaged cross-sections are finite in

the infrared limit to all orders of perturbation theory in a fashion that

resembles the low order results that have appeared in the literature.
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CHAPTER I

Quantum Chromodynamics is the most promising field théory of the
strong interactions known at present. It describes the interaction
between quarks mediated by non-Abelian gauge fields called gluons.
Just as Quantum Electrodynamics (QED) has provided a complete
description of the interaction of photons and elecfrons to the
precision obtained by experimentalists so far, it is the hope
of many that Quantum Chromodynamics (QCD) will provide a complete
description of the strong interactions. However, the large bulk
of experimental strong interaction data deals solely with bound
states of quarks and gluons and only indirectly, as a result of
theoretical demands, has the inner structure of these bound states
been probed. Thus QCD confronts theorists with two embarrassing
problems: firstly, the inability to calculate properties of the
bound states using the quarks and gluons as building blocks, and
secondly, to explain why these fundamental fields are not physically

(1)

observable. The quark model of Gell-Mann and Zweig led to problems

(2)

with the Pauli exclusion principle. Greenberg introduced the notion

of quark parastatistics to give the hadrons their correct symmetry

properties, but did not point out that the para particles should be
(3)

suppressed. Han and Nambu suggested that three types or colours of

quark should exist. However, their quarks possessed integral electric

charge and the colour gauge symmetry was broken. Within the Han-Nambu
(3)

scheme, Nambu' actually formulated Quantum Chromodynamics. In 1971,

(4)

the proposal that quarks should be confined was made clear” | and the

theory of QCD with confinement was established and refined over the

)

next two years QCD possesses an exact SU(3) colour symmetry which



has a corollary effect of requiring there to be three vaience quarks
in colour neutral baryons (those observed in nature), Thus, this
feature of the phenomenologically successful quark model is a natural
consequence of QCD. The «0 -+ 2y decay rate supports the existence
of three colours of each flavour of quark, The only dynamical
feature of the model which has been tested to any extent is the

asymptotic freedom property«’)

which enables some predictions to
be made regarding e+e- annihilation, ep and vp interactions.

The consistency between theory and experiment and the beauty and
gimplicity of the theory, suggesting a unification of the strong,
weak and electromagnetic interactions and possibly gravity
are compelling reasons to look more closely at QCD.

The term confinement used in conjunction with QCD means that
all physical states of the theory are colour SU(3) singlet states;
that is, quarks and gluons do not exist as free entities and
furthermore, there are no thresholds for the excitation of coloured
bound states of quarks and gluons. Thus if confinement is the correct
behaviour of the strong interaction theory, the historical process
of investigating nature at shorter and shorter distances (or alter-—
nately at higher and higher energies) prompting the discovery of
molecules, atoms, nuclei and nucleons (that is, protons and neutrons)
has reached a logical endpoint as that process required the separation

of the new entities into the experimental detector. This is not

to say, of course, that further experiments at higher energies would



-3-

be useless, merely that strong interaction experiments.will continue to
be indirect, relying on probes such as electrons, neutrinos and
protons to investigate such topics as the nature of the strong force
and the behaviour of the flavour interaction at high energies.

The term "infrared slavery' should be contrasted with confinement.
Infrared slavery is a statement about the effective colour charge
g( kz) in the infrared region specified by k2 + 0. The renormalization
group enables such a definition of effective charge to be made. 1In
the deep Euclidean region k2 5 —o , the QCD effective charge g(kz)-+ 0
demonstrating the well-known "asymptotic freedom property of QCD. As
one moves away from the deep Euclidean region, the effective charge
certainly increases in magnitude, but its behaviour in the infrared
region is unknown as perturbation theory is inapplicable due to the
large value of the coupling constant. The property of infrared slavery
requires that g(kz) is singular in the limit k2 + 0. The exact
connection between infrared slavery and confinement is unknown, but
the consequences of these two hypotheses will be discussed in much more
detail below.

There are well-known examples of field theories which actually do
possess the confinement property. Electrodynamics in one space and
one time dimension and also in two space and one time dimension are
examples; However the confinement mechanism in lower dimensional
systems may be completely distinct from that which is supposed to

operate in QCD in three space and one time dimension.
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Several approaches to the study of the infrared problem in QCD
have been attempted. These include the approach of Wilsoé7), who
establishes the field theory on a discrete lattice and employs methods
invented for use in statistical mechanics to search for phase transitions
in the theory at some cri;ical value of the coupling constant. Such
phases might encompass the - confined phase with colour singlet bound
states as the only physical entities, a free QED-like phase with
coloured gluons radiating in a fashion similar to the radiation of
photons, or perhaps a dielectric phase with massive gluons which comes
from some sort of dynamical Higgs mechanism. Of course, the hope is
to show that the theory is confining for strong coupling values and
does not possess a phase transition as the coupling constant tends to
zero, that is, the renormalization group function g(g)1l does mnot
possess a fixed point for non-zero values of the coupling constant.
Using these methods, Wilson has demonstrated that for sufficiently
large values of the coupling, both the lattice theories of QED and
QCD have confining phases,

Another approach deals with classical solutions of QCD such as
instantons and meronés) and investigates the quantum corrections
around the classical solutions associated with the relativistic field
theory. The vacuum state is then described as a dilute gas of
soliton—antisoliton pairs; such vacua have been shown to be unstable,
Instantons alone have been shown not to give confinement, at least in the

(10)

dilute gas approximation , however it is quite likely that considerations

based upon perturbation theory may miss some important features of QCD.

Y related to the function w(gz) of Gell-Mann and Low(g)

(in the original
renormalization group paper) by B(g) = ¢(82)/g-



The last approach, and the most conventional, is based upon
perturbation theory, although the results of such investigations
may transcend the limitation of small coupling constant required‘
for the convergence of the perturbation sexies. Quantum Electrodynamics,
although not a confining theory (at least for small coupling), does
provide a good analogy from which to work; it possesses charged
fermions with the electric force mediated by massless vector particles,
but as the gauge group U(l) is Abelian, the photons do not carry
electric charge. The gluons in QCD do carry colour charge precisely
because the gauge group of which they are manifestations is
non-Abelian. Furthermore, low order perturbation theory calculations
have shown a striking similarit}ll) in the infrared behaviour of QED
~and QCD. Inspite of the greater topological complexity of the Feynman
graphs in QCD, there are many almost miraculous cancellations leading
to a situation similar to QED: the infrared singularities associatedv
with an on mass-shell amplitude factor out from the amplitude leaving
a piece completely free from infrared singularities. The form of the
infrared singular factor is o the order calculated) equal to the
exponential of the infrared singular piece of the one-loop correction
to the Born term.

This dissertation comprises a study of the differences in infrared
behaviour between QCD and QED, and the ramifications of such differences.
So far, two important differences have emerged. The first is that in QCD

with massive quarks and massless gluons, the vertex and self-energy



contributions modify the one~loop correction mentioned abdve,
replacing gg the perturbation expansion parameter, by gz(kz), the square
of the effective chargewhich receives :contributions only from those
fields which are massless. This does not occur in QED since photons
couple to each other only via electrons which are massive. The
other difference between QED and QCD in the infrared region is that
because gluons carry charge, virtual radiative corrections to
processes involving external on-shell gluons include a separate
infrared singular factor for each emitted gluon. This is distinct
from QED where the exponential factor containing the infrared
singularities is independent of the number of emitted photons.

Although a definition of confinement has been established, the
manner in which one considers the theory in order to prove the
confinement property is not straightforward. A knowledge of B(g)
or equivalently of the effective coupling constant in the infréred
region (i.e. the infrared slavery question) although a significant
step forward is not a proof or disproof.

From a phenomenological point of view, confining potentials

12

have been invented, such as bag models of hadrons * string modelély,
and the quark-antiquark Schr8dinger potentials of the form

V(r) = ar + br_1 which have been successfully applied to modelling
the spectra of the charmonium family of mesongl4x Ail of these
phenomenological attempts are in some sense approximations to QCD;

for example, if QCD confines, then the gluons exchanged between
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quarks and antiquarks probably form flux tubes, which, if the quark
and antiquark are separated resemble elastic strings, the energy in
the étring being proportional to separation. Thus, once confinement
is assumed QCD becomes a very plausible theory.

A stringent requirement for confinement has been invented by

K.WilsoélS{ If one considers the vacuum expectation value

C = (exp[ ig éAudx“ ])0 = f[dA ..]exp(-S(A))exp(ingudxu)
L L

where S(A) is the action, and L is a loop of spatial extent R and
temporal extent T, and for the non-Abelian gauge field A there

is an ordering operation on the line integral. If #n(C) varies

as the area of the loop (i.e. RT ) then the theory confines since
the energy of two gquarks separated by distance R, Eq(R) is linear
in R — the well~known confining potential. However such a
calculation in three space and one time dimension has proved
inordinately difficult except when the theory is defined on a
lattice of points. It is hoped that the limit in which the lattice
spacing tends to zero restores the full theory.

If one follows the approach to the infrared problem suggested by
QED, one also needs a signal or discriminant for the confinement
property. To follow the QED approach it is easiest to assume an
S-matrix to exist for processes involving external quarks and gluons.
Then, as indicated by perturbation theory calculations and in analogy

with QED, all QCD matrix elements (exclusive) vanish. The signal for
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confinement will be to show that the inclusive cross-séctions,
allowing for the emission of soft gluons accompanying the basic
process under consideration are also zero. This is not the case in
QED where infrared singularities arising from.the phase space
integrations exactly cancel the virtual infrared singulérities.
Actually, a proof of confinement should also disprove the existence
of a coloured threshold for the production of bound states of quarks
and gluons not in the colour singlet representation of SUg. However,
for the purposes here, confinement shall refer only to the
non-emergence of the elementary fields.

The assumption of the existence of an S-matrix in QCD allows for
a conventional definition of the quark mass — that is, the location
of the branch point of the quark two-point function. In terms of
the program set out (that is to test whether inclusive cross-sections
vanish) such a definition of quark mass is quite consistent. However,
if the theory does confine, then the quark "masses" are no more than
parameters of the theory describing the breaking of the flavour
symmetry. In this case, a definition of mass based on a sliding

scale renormalization scheme would seem more appropriate. Thus the

inverse quark propagator S;l(ﬁ) may be written

-1 2 2
Sp (8) = A(PT)P + B(P))
where at some point pz = MZ,

AP =1 , B =m.



Thus we have defined a mass which is dependent on M, m(M); It should
be noted that the M used here is related to the renormalization group
invariant mass ¥ :

2
2 e—l/bg - 112

M

However, such a definition of mass does not lend itself to a
discussion of the infrared singularities which might arise in the
Green's functions.

As stated above, in terms of their perturbative infrared behaviour
QED provides an excellent comparison with QCD. 1In order to make this
comparison a detailed knowledge of the infrared behaviour in QED is
necessary. For an example consider the scattering of an electron
with momentum p from an external potential producing an outgoing
electron with momentum p'. Infrared divergences arise when one
considers virtual corrections to the basic process (see below)

because boththe photon and the two electron propagators can approach

their mass shells simultaneously.
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The Feynman integral which contains this infrared divergence in the

one loop graph is of the form

4 ]
B = fd k4 L 5 (1-1)
(27) (k"=2p.k) (k"-2p'.k)k

Because of anintrinsic fear of infinities, various devices have been

employed to regulate the infrared divergence. This may be done by

10

introducing a small mass A for the photon” ~ in which case

2
1 2p.p" p.p' 2p.p’
B=._2_;T[(%(_LZR)_l)gn(l;S)+%—(m(2mé ))2—%%(2' )] (1-2)

m mz

or by changing the number of dimensions d of space-timc in a method

known as dimensional regularizatioél7)in which case

, w2
B = -5i- {(911(322:2) D m S ) +
m H

2m
+% (m(gf:;_ﬂ' »2 _ %%({PH_ZP_')] (1-3)

where u is an arbitrary mass scale introduced in order to maintain the

>

dimensionlessness of g in other than four dimensions. The correspondence

2 .
between logarithmic singularities of the form in Ez in the photon
A
mass regulation method and poles of the form 2 in the
d-4
dimensional regularization scheme occurs in all infrared calculations

(18)
(at least at the leading singularity level) 18 .

(16

As shown by Yennie, Frautschi and Suura if the elastic scattering

amplitude for electron scattering M(p,p') is represented by a sum

over diagrams containing n virtual photons,
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©

M) = D M (") o aw

n=0

the amplitudes Mh have the infrared structure

Mo = m0
Ml my (aB) + my
- (aB)
M.2 m, ST + m, (aB) + m,
no
M. = 2 m (_g_B_)r
n = T or!

2
where o =2" | and the m ~are infrared finite and of order o

with respect to Wy Summing the series (eq. I-4) produces the

result

M(p,p') = exp (@B) D m (1-5)

n=0
This form has several features: firstly, it exhibits factorization
of infrared singular and non-singular parts. Secondly, the elastic
scattering cross-section vanishes because B = as either A = 0 or
d-4 -+ 0 (depending on the type of regulation). This is not, however
a proof of confinement of massive QED in four dimensions! The vanishing
elastic cross-section is a consequence of a problem that always arises
in the definition of an S-matrix for a theory involving massless
particles. Basically, it does not cost very much energy to emit a

long wavelength photon along with the outgoing electron, An
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experimenter who is trying to measure the differential cross-section
possesses a detector whiéh hés but a finite energy resolution. He thus
cannot distinguish between an electron and an electron with a little
less energy, but in concert with any number of soft photons. Now,
the amplitude for the scattering of an electron with the emission of

n soft photons again factorizes, however the infrared singularity is
precisely the same as the factor written in eq.(I-3) for the process
with no accompanying soft photons. When  the differential cross-
section %% for the scattering of the electron with the emission

of any number of undetected photons with energy e (that is, the energy
lost by the electron) is computed, infrared divergences arise from

the integration over the photon phase space. Yennie,

Frautschi and Suura found that these infrared divergences from soft

photon emission also factorize and exponentiate:

c
= exp [ 2a(B+B)] .-%%

do
de
do® | - . .
where 3e 18 infrared convergent and B 1is given by (using the
photon mass regulation):

o (efa) e 4oz

¢ (s-n(e) (%)

in the region of high energy and small e, that is,

€ << m << E, E'.
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In the dimensional regularization scheme,

e [(mfmR) <) (< e(2)

m M
v\ 2 ' '
+ 1 on _2P_'P. + 1-4¢n EE _ on EE_ (I-7)
2 2 2 2
m € €
Thus there is no infrared divergence in the differential cross-

section. However, some important non-perturbative information is

still contained in the now infrared convergent exponential

exp [ 20 (B+B) ]
such as radiation damping information and large momentum transfer
behaviour for the region where p.p' >> e .

The absence of infrared singularities in physically cbservable
processes suggests a different description of the asymptotic states
in Quantum Electrodynamics. Thus if coherent states describing
charged particles along with an indefinite number of soft photons
are used, the resulting S-matrix is free of any infrared difficultieélg).
It follows that even in QEﬁ the concept of a charged particte
has to be modified. In QCD, the conceptual difficulties associated
with charged particles are even greater. One must confront the
property of "twinkling" which would occur if quarks and gluons were
free entities. A quark accompanied by a cloud of gluons could
continually change its colour charge by emitting and absorbing

gluons which themselves carry colour charge.
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Perturbation Theory and Quantum Chromodynamics

Cornwall and Tiktopouloézo) studied the leading infrared

singularities arising in QCD in three kinematic regimes, The infra-

red regime refers to the limit in which the infrared regulator

a4

(whether it be the gluon mass A or the dimensional regulator € = 5

tends to zero while all external momenta are held fixed and the
external particles are on their mass-shells; also, no momentum
transfer is allowed to vanish.

The second regime is the fixed angle situation where all
invariants, that is, squared energies and momentum transfers (s,t,u,...)
are much larger than any of the masses in the theory. The third regime
is the Sudakov region where external particles are off mass-shell
and invariant momenta squared of the form (pi—pj)2 where the p; are
the external momenta, are much greater than the degree to which the

2 2

particles are off mass-shell, that is, (pi—pj)2 >> p, - m, for

i i?

all i,j. 1In this region artificial regulation is unnecessary as the

singularities appear in the limit as piz+ miz.

In all three regimes the leading infrared singularities for, as an

example, the colour singlet form factor F of a quark (up to 0(g6))

take on a very similar appearance.

2
F = exp —{g—gF H(t)}. Fy
8w

where F_ is the Born approximation to F, C

B is the quadratic Casimir

F
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eigenvalue for the fermion representation of SU(3)® and Htt) is the
one~-loop Feynman integral associated with the lowest order correction
to the Born approximation.

For the fixed-angle regime, the amplitude T for a process with

any number of quark and gluon legs can be written as

. 1/2

T = F (t) . T
Ii' i B

where Fi(t) is the asymptotic form factor for the ith particle
(which carries colour charge Ci)' The simplification in this region
is due to the fact that all the invariants have fixed ratios with
respect to one another and thus logarithms of different invariants
can be collected into a logarithm of a common scale plus terms
which contribute to the non-leading singularities.

There are éeveral very attractive indications that might be drawn
from this picture of the leading singularities of QCD. Since each
external gluon has associated with it a form factor, that is, the
exponential of something large and negative, the calculation of
cross—sections involving the.emission of Bremsstrahlung radiation
will not follow the pattern of QED. In fact, instead of the usual
infrared divergent phase space integral associated with a photon

of momentum k, which takes the general form

P . erd lk p.p' 3 1
QED 2k0 p.kp'.k d-4

there is now an exponential damping factor involved provided all the
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virtual radiative corrections associatéd with the emission of the

gluon of momentum k are summed before the phase space integral is

carried out, and

d-1 d-4

.4k p.p' (k_) - 0

P : exp- (d-4)
Qcp f %, .0 @ .5 (o

Thus the situation in QCD with massive quarks is as follows: the
Bremsstrahlung corrections to the cross-section for the scattering

of a quark by a colour singlet potential do not contain infrared
divergences arising from phase space integrations due to the

factor which is the result of summing the virtual infrared divergences
to arbitrarily high order in the coupling constant. It appears, then;
that the inclusive cross-section still contains the virtual infrared
divergences due to the radiative corrections to the basic process
(quark + photon -+ quark) and thus that the cross-section in the

limit as the infrared regulator'fends to zero, is itself zero.

This "indication of confinement" is however based on a certain
order of summing divergences and this double summation over the
virtual and Bremsstrahlung divergences is manifestly non-uniform in
its convergence. This fact has been confirmed by several authors
who have reported that order-~by-order in QCD the same inclusive
cross-section (as would be measured by a real colour-blind detector
LD

with finite energy resolution) is infrared finit . Indeed, there

are proofs that such a statement is true to all orders in perturbation

@

theory 2) The result is perhaps not surprising in the light of the
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23

theorems of Kinoshita

@Q4)

and Lee and Nauenberg . Kinoshita's
theorem states that whenever infrared divergences arise in a process
to any order of perturbation theory, they can be eliminated at the
transition rate level by summing over the set of all initial and
final states which are degenerate in energy, where by degenerate, it
is meant that, for.example, a massless electron with three momentum 3
is dégenerate with a state containing a massless electron with
momentum §-K and a photon with momentum k when the angle between
3¥E and i is zero. It should be noted that this theorem is stated
in terms of the '"bare" parameters of the theory because renormalization
may introduce mass singularities not covered by the theorem.

At present no-one has created coherent states of quarks and
gluons in a fashion similar to that employed by several authors(lg)
in QED, so that the question of which is tne "right" way to sum the
double series is quite unresolved.

Chapters IT and III and all but the last two pages of Chapter IV
are devoted to the development of the differential equation for QCD
matrix elements, the problem of the separation of overlapping
infrared divergences, and ultimately, the solution of the equation. The
end of Chapter IV comprises some comments on different renormalization
procedures and their effects on the infrared singularities. Chapter V
contains an application of the contents of the previous chapters to the
study of the infrared singularities associated with semi-inclusive

cross—-sections in QCD.
The considerations of Chapter IV are rather formal, and as such,

need to be supplemented by low order perturbation theory calculations

in the axial gauge before the situation can be resolved.
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CHAPTER II

A Differential Equation for Matrix Elements in QCD‘

The need for information about QCD in a region where the
éffective coupling becomes large, such as the infrared region,
requires methods more powerful than perturbation theory. Such
methods do exist, coming from general consideration of field

23)

theory; for example, the Dyson equations v which Green's

functions can be implicitly related by an integral equation.
Also to be included in this category is the Bethe-SalpeteéZG)
equation which is useful in the solution of bound state and scat-
tering problems. A difficulty which arises with such

powerful equations is that the kernel is usually as hard to
calculate as the amplitude in question; thus, a solution entails
firstly an approximation to the kernel at which point the integral
equation becomes tractable. However, in terms of Feynman diagrams,
although diagrams of infinite order are summed by this method,
there are an infinite number of diagrams which are not taken into
account.

Since infrared divergent corrections to a scattering process
have a length scale much greater than that associated with hard
scattering events (thatis, the scale is that associated with the
transferred momentum ) it is plausible that such divergences
should ignore the intricacies of the actual scattering process
and depend only on the external charged objects participating.

Following along this line of reasoning would lead one to suspect
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that the only infrared divergences arising from the insértion of an
extra gluon (as when calculating higher order virtual radiative
corrections) should come from insertions on the external lines.
Indeed, in QED, such is the case. Yennie, Frautschi and Suurg16)
showed that the overlapping infrared divergences arising from the
insertion of a photon could be resolved leaving only those divergences
arising from insertions on external charged lines.

From a study of the combinatorics of QED, Caianiello and Okubézz}
derived a differential equation with respect to coupling constant of
any S-matrix element. The effect of differentiating with respect to
the coupling is to insert a photon propagator in all possible ways
into the diagrams which make up the matrix element. They proceeded

to separate the insertions into infrared divergent and infrared

finite contributions. However, it was not made clear that the problem

(28)

of overlapping infrared divergences had been dealt with More

(29)

recently, Korthals-Altes and de Rafael used a differential
equation with respect to photon mass (inserted by hand into each
photon propagator) to study the QED infrared problem. The overlapping
divergences were treated by using a modification of the technique

of Grammer and Yennie(30). This involves separating the photon
propagator into two pieces (so-called "geptle" and "hard" ) whose
separate contributions can be analysed systematically.

The complications that arise from similar studies in QCD are

due basically to the non-commutation of the colour charge and the



~20~-

increased combinatorical complexity brought on by gluon Self—couplings
and the existence of the (massless) ghost fields. Since the Grammer
and Yennie approach to the overlapping divergences was based on an
expansion in the number of photons involved in correcting the basic
process, this method cannot be applied to QCD since the number of
gluons in diagrams of one order of perturbation theory is not uniform.

In the following, all calculations are performed in ghost-free
gauges (e.g., the axial gauge, the timelike gauge, the light~-cone
gauge (if it exists)) because the combinatorics are simpler (there
being no ghost fields) and more importantly, because the overlapping
divergences can be simply treated due to the simplicity of the Ward
identities in these gauges.

Thus, the QCD Lagrangian is written

= 1gagw _
L= - 4 G wCa TFIYHD”‘PJ mlb ( A)

where Au is the gluon field, wj is the quark field and the field
strength Giv is given by

2 = 5 A% - 5 A% + gf%P%P A
uv uv v p v

and the covariant derivative ng (in the fermion representation) is
i, = a¥%,, - igal1®, |

ij ij a "ij

Notice that because the colour force is being investigated, all

reference to quark flavour and flavour dynamics is suppressed.

The term -%%(nuAi)z fixes the gauge.
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The Feynman rules corresponding to this choice of gauge are

as follows:

€ : -i 6

Quark propagator

MNMAVN pW= THp [M nf- nMit kMY

ab

Gluon propagator k2 (n.k)z 0.k
g Y 1j
Quark-gluon vertex
abc abc
Vo = 8 £ [le-a) gy + (a-r)yg o+
Three gluon vertex + (r_p)pgvk]
A )
abed _ -1 2 fabe cde ( )
4Auvo & ng uc gloguv
v , 2 ace bde
-ig £ (gku vo ghcguv)
, 2 ade cbe
Four gluon vertex -ig- £ (ng no~ gkugov)
H

The gauge-fixing vector n~ is an arbitrary (fixed) Lorentz four-

vector and the form of the gluon propagator tabulated above

corresponds to the selection k=0. For « # O there is an additional
. ikd 2wV . . .
term in the gluon propagator ab k k'k" ., With the inclusion

k2 (n.k)2
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of this term, however, power-counting arguments relating to the
degree of divergence are difficult to formulate.

We wish to discuss manipulations carried out on the full
perturbation series for S~matrix elements in QCD (assuming such matrix
elements to exist). The S-matrix element for a process involving
N quarks and antiquarks and M gluons as the external particles is
conventionally written as the quotient of two perturbative expansions,
the numerator yielding the set of all graphs (with correct incoming
and outgoing states) including the disconnected graphs, while the
denominator is the vacuum~to-vacuum amplitude. The quotient yields,
as is well known, the set of all one particle irreducible (1PI)
graphs. This decomposition is adequately explained in many texts
(e.g., Bjorken and Drell (31)).

For simplicity, all colour, Dirac and Lorentz indices are omitted
unless required for clarification. Also, the only label required
to keep track of the vertices which occur in the expansion of the
exponential of the integrallof the interaction Lagrangian over all
space and time sandwiched between the initial and final states (i.e.,

the numerator referred to above) is their position four-vector.

Thus, a quark-gluon vertex at position xi is written as AYlTl,

a three gluon vertex at position xi“ is written as A'flal and
2 .
a four gluon vertex at xfll is written as A" f1 . Different

symbols A, A' and A" are used for the couplings of the quark-



-~gluon, three gluon and four gluon vertices respectively to aid
in the identification of terms in the expansion. Actually,

A= i’ = -ig, © A" = -ig’.

The expanded form of the matrix element can be summarized as

p'\ . < 1 n 4 b 4o, 4_,
M I'].! z (k”@)fd cho-. d Xkd Xl.... d Xﬂ
n=0 k,L
L by k v'a " (n—k-ﬂ)
« d Xy e d X k-l ATATTX lel.... yka
£ 5 2 2

POqeee gy £ eees £ py

P Xy... ' ' " "
. Xl"'zt [xpeeox 3xf...3x) 4xloobx o]

(11-1)

where ( n ) is the trinomial coefficient n!

k, k! 2V (n=k-L) !
The expression under the integral sign is the nth term in the
expansion of the exponential of the action sandwiched between the
initial and final states. The square bracket is a shorthand notation
(referred to sometimes as a "hafnian' (27)) for the vacuum
expected value of a time-ordered product of gluon fields. The
expansion of such a square bracket is carried out using Wick's
theorem in terms of ordered pairs [xlxz] which are precisely the
gluon propagators:

= ipHiH2¢ _
[XIXZ] - iDalaz(xl XZ)
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The square bracket of eq.(II-1) (written explicitly in terms of

the gluon fields it represents)is

1 ] "t
. xk3xl... 3x 4xl cee n-k—K]

vl v2 v3

H
- 1 M
=. (0| T(Aal( A (xk)AH1(x )Abz(x )Ab3(x ).

vl v2 3 01 02 03 04

Abl(x )A.bz(X')Aba (x' )A I(X")A 2(X")A 3(X")A U,(X")
l l

3 gt
k /{ ﬁe( .°n-k_e( n—k-
x )A 2 X YA 3 X )A L X )HO)
K —K n"k—z Cn_k— "k ﬂ k £ 'e.

]

The curved bracket g zl'°"xk) is similarly the vacuum expected
1o

value of the time~ordered products of k quark fields and k antiquark
fields and also the external quark wave functions specified here by
their momenta p and p'. The curved bracket is nothing more than the
determinant of the matrix of ordered pairs formed from the top and
bottom rows of the bracket,and these ordered pairs are, of course,
the Dirac propagators

142
- so &0
(xlxz) = 1SFiliz(xl—x2).

An ordered pair that involves one of the external momenta and one of
the internal position vectors is simply the quark spinor wave function

at that position; for example,

() = uxp)
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the incoming quark spinor carrying momentum and colour index i,.

Finally, the pair (p p') 1is zero corresponding to the selection
of the non-forward scattering problem for consideration, that is, the
incoming quark must suffer interactions before emerging. Such a term
remains, however in forward scattering giving a contribution from the
disconnected graphs.

Differentiating eq.(II-1) with respect to A and expanding the
square bracket about its first entry (using the relabelling invariance

of the integration variables to recompose the matrix elements) yields
- X%IM = fd4x1 fd4x2 [X]_XZ] [(ngTl) (gYZTZ) M(g'zlll;;)

x?_xz)

*2%2 2) ] (11-2)

o
ECARIERE L
1

+ (gvT)(g £ ) M(g xi

Diagrammatically, then

Similar integro-differential equations may be written with respect
to A' and A" . The final form of the sought-after equation is found
by combining the three equations using the relation

2

_ - 1 i ' no
g = 2[ 33 + A 53 + 22 N']
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It is:

23 4 4 1, . ,
g 8*2 M(p,p') = - fd xd7x, [x%, [5(-1ngTl) (=1v,T,)
g
P'X1x) i - P'X]
.M (p Xlxz) + ( 1ngTl)( igfzaz)M(p %, XX,
+-£(—igf 9,)(-igf, 9, )M P’ X, X, XX
2 1°1 292" {p | *1%1%2%2
, 2.2 p'xg
+ ( ingTl)(-lg fz)M (p %, x2x2x2)

1

. , 2.2 )
+ ( 1gf131)( ig fz)Ml(p

X1X1x2x2x2)

1,22 22 (p'
+ S(-1g7£]) (-1g £ )M (p

Xlxlxlx2x2x2) ]

' x]) + (—ingi)M (g' xlxl)]

(II-3)

4 P
+fd Xy [xlxl [(—igflal)M (p

This equation is represented diagrammatically in ¥Fig.l where each
term is shown explicitly. The last two terms on the right hand side

of eq. (II-3) could be dispensed with: the tadpole fV\ﬂJ{::}

disappears because of the antisymmetric nature of the coupling,

that is,

abc _uv _
f Dbc(k) = 0,

while the gluon propagator self-energy term can be made to vanish
in the dimensional regularization scheme. If the gluon were given

a mass X then the integral involved in the gluon self-energy
4—2ek 2 2-2¢
- (A7)

correction would have the form f'

k222
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1

Fig.
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which vanishes in the limit of zero mass. However, from the point
of view of comstructing the equation order-by-order in perturbation
theory, it is a convenient reminder that non-zero terms may be
formed by gluon insertions into tadpole diagrams.

In momentum space, eq.(II-3) can be written very concisely:

-g° —%M(p,p') = ka D"V (k) M (p,p'sk,-k) (1I-4)
ag HY
where Muv(p,p';k,—k) is the matrix element for quark scattering
accompanied by the emission of a gluon with momentum k and a gluon
with momentum -k (without the gluon wave functions).

It seems surprising that such a concise result as eq. (II-4)
requires as complicated a derivation. Iﬁ fact, in QED, the equation
analogous to eq. (II-4) can be derived rather elegantly using
functional techniques, as demonstrated in appendix A. Attempts at

a similar derivation for the equation in QCD are in progress.
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Ghost~Free Gauges and the Ward Identities

The class of ghost-free gauges to be considered are those which
are formed by the addition of the term -5& (nuAu)2 to the
symmetric Lagrangian (or alternately, by the employment of the
subsidiary condition nuAu = 0). The introduction of a ghost field
is not necessary mainly because the gauge-fixing term does not involve
derivatives of Aﬁ , the gluon field. An elegant discussion of this
gauge using functional methods is given in the 1973 Erice summer

school lectures by S.Coleman(32).

The Lorentz four-vector nu

is arbitrary for the purposes of this
discussion, however conventionally, gauges for which n2 < 0 are
called axial gauges, gauges for which n2 > 0 are known as timelike.
The light-cone gauge, specified by n2 = 0 has come under some

(33)

criticism recently as being not well-defined. This is

unfortunate, as it is the only ghost~free gauge in which calculations

4
of Feynman graphs are as easy as in a covariant gauge (see Cor:nwall(3 )

for theorems).

The only difference (in terms of Feynman rules) between these
non-covariant gauges and the covariant gauges lies in the gluon
propagator. In a gauge with arbitrary n2-and k the free gluon

propagator of the theory is

ab 2 2 nk +kn
Da}\::(k) = - 162 [ g . _(uk__% k k- MY WV (IT1-1)
M k H (n.k)< Y (n.k)
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In order to study the Ward identities in these gauges, consider the

generating functional Z[J,n,n] for the Green's functions:
213l = 2 [[(ea® 5P v exp if fa* - £ (n a¥?
>0 o =FQCD 2k Yy
+ 33+ o+ En) (111-2)
ua
1 .a _uv

where ibCD =-73 Gqua + ¥ (iP - mY

and Dzb is the gauge covariant derivative:

Uo_ .M u s oint .
Dab = 3 Gab + gfabcAc for the adjoint representation
bo_ .M . nd LM . .
and D,, = 368,, -igT,. A  for the spinor representation.
ij ij ij "a

Ja ,nand n are the source functions for the gluon, quark and

antiquark fields respectively. Under an infinitesimal gauge

transformation, the QCD fields transform according to the variations

a, _ a _ a ., abc § ¢
(8A7) = (Duw) = 31100 igf 6J§w
s = igTypow?
Y = —ig$ 62

a , . . . . .
where ®~ is an arbitrary gauge function. Since the integration
measure is invariant under such a gauge transformation as is

a kv

Gqua , and becausewa is arbitrary and redefinition of internal

integration variables cannot affect the value of Z[J,7,nl,

§ z[J,mw,n] = 0.

That is,
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i : $ 8 é — ¢ -
{-% nuahnv T igfachz — * ot + ignTa J%:- igTan Ji}Z[Ja,n,n]=0.
83 8J ¥ &n &n
v u :
(IT11-3)

Relations between Green's functions (which are the derivatives of
Z with respect to the source functions) may be found by carrying
out functional differentiation on eq.(III-3) with respect to source
terms the requisite number of times and evaluating with the sources

set to zero. Thus, taking one functional derivative with respect

to Ji of eq. (ITI-3) yields (after transforming to momentum space)

Kkv

n.k

n, MV (k) = - (IT1-4)

where «k 1is the gauge parameter, and Auv(k) is the fully dressed
unrenormalized gluon propagator.
In a similar fashion, taking two functional derivatives of
eq. (III-3) with respect to 0 gives
[%-n o*n e 1 ] 2[3%, 7,01 = 0 (ITI-5)
6Jv én dn §n én
after evaluating at J =n=n=0. This leads, upon Fourier transform-

img and amputating the external legs, to
K"A2, (p,p-k,k) = ig (195 (p-k) - ST (p)T® ) (I1I-6)
ij p PP F F ij

where A'?j is the vertex part associated with the quark-gluon

vertex and S;l (p) 1is the inverse quark propagator with momentum p.

This is just the naive Ward identity of the type one finds in QED(BS).

Note that the Ward identity for a quark scattering from a colour
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singlet potential takes on a form very similar to eq. (III-6):

au, ooy ayi' ni. oy i aj}
kuAij (p,p-k,k) = ig [(T )i Fi.(p k,p'-k) -T i (p,p" ) (T )jv
(III-7)

Diagrammatically,

where A.ij (p,p' -k,k) is the ;:sociated vertex part and T i (p,p')
is the amputated Green's function for an incoming quark with
momentum p and an outgoing quark with momentum p'.

The last Ward identity that is of use in the discussion of
infrared phenomena is that found by operating with ( )( ) on

eq. (III-3). Here again, there is little complication, resulting

in the coordinate space expression

—i-n“au n, 0| T(A;(X)AS(y)Az(z)exp 1fd‘*w 2 () ) |0)
fabd 4(x ~-v) (OI T(A (y)A (z)exp 1fd w ;ﬁ)IO)
+ 252 4y (o] T(a} () A} (z)exp 1fd w2 )0

(I11-8)

or, in momentum space, in terms of amputated Green's functions

WY a aw
p,p-k,k) = gfabd AT (p-k) +  gf€ Abd(p)

abce
( de

kir (1T1-9)
AUV



-33~

There is one relation of great use in analysis of infrared
singularities which follows from eq. (III-4). In the gauges

specified by k = 0,

Wy _
n, Dab(k) =0 (I11I-10)

a result that holds for both the bare and the fully dressed
propagators.
Another simplifying feature of the ghost-free gauges is that

the gluon field renormalization coefficient Z, and the coupling

A

constant renormalization coefficient Zg are related by

=172 -
Zg = ZA (IT1I-11)
where Aa(unrenormalized) = 21/2 A(renormalized)
and g(unrenormalized) = Zg g(renormalized), provided a gauge

invariant regularization and renormalization procedure is employed.
This implies in particular that the renormalization group
coefficients B(g) and YA(g) are related (YA is the anomalous

dimension of the vector gluon field) by

B(g) = —gYA(g) = w(gz)/g (I11-12)

The Lorentz structure of the gluon self-energy is also considered
here. TIf all the radiative corrections to the inverse propagator

-1 .
Auv(k) are denoted by nuv’ that is,

S 2 1
Auv(k) = (kukv -k guv) - nunv + Huv
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then Huv has the explicit Lorentz structure

2 2 2 2
= _ 12 (n.k) o Kk _ . k7 (n.k)
Ly = Gk, - kg ) H1(nzkz ) + (ke mo i) (kmn i) I ( 2.2

(111-13)

As Curtright points out(33)

2
preceding Hz ((nék; ) in eq. (I1I-13) does not appear in the

k™n

, because the Lorentz tensor expression

Lagrangian, then H2 must be ultra-violet finite in four space-
time dimensions or else the theory would not be renormalizable.

For technical details regarding such topics as renormalizability
and unitarity in the axial gauge, the reader is referred to the

various papers of Konetschny and Kummer(36).
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CHAPTER IV

Non-Leading Infrared Divergences in Quark Scattering

As presented in Chapter I, the leading infrared singularities
in QCD combine to give a simple picture, not unlike QED in form.
Although this picture is appealing, it would not be wise to regard
the leading singularities as providing the dominant large-distance
behaviour of QCD because this large-distance region is precisely
that in which the effective coupling const;nt of the theory becomes
large. Thus, in this chapter, the complete infrared singularity
structure for the scattering of a quark by a colour-singlet
potential is investigated using the differential equation derived
in chapter II. It is found that the self-coupling of the massless
gluons contributes infrared divergences not found in QED and it is
argued that these extra singularities have the effect of changing the
insertion of a bare propagator into the insertion of a fully-dressed
propagator, or alternately, the replacement of the perturbation
expansion parameter g by the effective coupling constant g(k)
at the ends of the inserted gluon.

A comparison of the literature on leading infrared singularities
demonstrates some differences in the form of the singular factor
which may be traced back to differences in the renormalization
procedure. If one renormalizes the charge at a point far off-shell
(as is the case with the usual asymptotic freedom calculations and

37

also with the calculations of McCoy and Wu }, then the leading
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infrared singularities are independent of the renormalization

point. If, however, one renormalizes the charge at a mass equal

to that given to the glﬁon to regulate the infrared singularities(BS)
or if one regulates both the ultraviolet and infrared singularities
using dimensional regularization and on-shell renormalization(39),
the renormalization group function B appears explicitly in the
expression for the leading singularities. Thus, Korthals-Altes

and de Rafae1(40)and Cvitanovié(Al) have shown that the anomalous
magnetic moment of a coloured quark (infrared finite in unrenorma-
lized perturbation theory and infrared finite for the analogous

QED process - the anomalous magnetic moment of the electron)

develops infrared singularities due to charge renormalization when
that renormalization is carried out near or at the mass-shell of

the quark. In Ref.(41) it is conjectured that the infrared behaviour
of the renormalized anomalous magnetic moment aq(T,a) is governed

by the equation:

[—3%- + 8, (e —a%—] a () = 0

where T = log-ﬁ (m is the mass of the quark), and Sx(a) = A-%% s
A being the gluon mass inserted to regulate infrared divergences
: 2

and is also the renormalization point for the charge o = %;-.

. ' 4
From the results of perturbation theory calculations to order g

the leading infrared singular corrections to the cross-section for
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the scattering of a quark by an external colour-singlet potential

(

have the form 42)(when calculated in d = 4 + 2¢ dimensions, using

dimensional regularization):

2
o = F(t,q7) - GBorn

where t = ~ E%— for, the exclusive cross-section, and t = log A for
the inclusive processes, A being the upper bound on the energy of

the emitted gluon Bremsstrahlung. The function F(t,qz) to their

order of approximation was found to be consistent with

t
F(t,q%) = exp f 22 (th) Cp M(q%) dt’
0

2
2, 1 | 14r 1+r
where M(q") = 5 [-—5; log (I:; -11,
27
2 -1/2
r=(l+£%l-) and
q .
-2 2 11 2
g()=¢g11- 5 8 Cyt+ ceee]

247

where CFand CV are the quark and gluon Casimir operator eigenvalues.

The situation with regard to the non-leading infrared divergences
associated with the scattering of a quark by a colour-singlet
potential 1is not nearly as clear. Apart from the complexity of
actually calculating non-leading effects in two-loop virtual -
corrections to the basic scattering process there are more subtleties
that arise in definition of the charge and the use of an infrared

regulation that depends on the renormalization point. It is
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due to difficulties such as these that render comparison of
results somewhat awkward. Frenkel and Taylor(43) have questioned
the simplicity of the infrared behaviour of QCD as indicated by the
leading singularities. They claim (from investigations of quark
scattering to 0(g4) )} that the infrared singular part of a matrix
element should satisfy a differential equation with respect to

1

L = i-% which includes a momentum dependent infrared anomalous

dimension:

2 2
2 R IC 9_,8,8%) =
[ 7 8@ 3g+e G(mz,l,g ) 1 A(mz,ﬁ,g ) Q

(44)

These results have been confirmed by Tyburski Their

renormalization scheme involved renormalization at a point (—uz)
2.2 . (45)
far off-shell (u™>>m"). Poggio has found that simplifications
arise in the form of the infrared singular factor by éhoosing a
subtraction procedure that carefully plays off infrared and ultra-

violet effects for the near mass-shell behaviour of the theory.

Thus, he found that if subtractions are carried out for the massless

gluons at q2 = - Az and for massive quarks at p2 - m2 = -mA where
2
A << m2, the colour-singlet form factor Fi is consistent with the

form (up to 0(g4))

P, = exp [B,([g&D)1; ¢ = -]

where Bl([g(kz)]; G = -1)] is the one loop contribution calculated

in the Landau gauge (G = -1) with the effective coupling g(kz)
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substituted for the perturbation expansion coupling 8, and

2 2
g(k™) = gy for k= = —12 . There are renormalization group arguments

which suggest that this is an exact result(46).

The approach to the infrared problem presented in this chapter
involves the differentiation with respect to coupling constant
of the matrix element under consideration (quark scattering by a
colour—singlet potential) which is equivalent (from the discussion
in Chapter II) to the insertion of a gluon propagator in all possible
ways into the complete set of Feynman diagrams which represent
the matri# element. An analysis similar to that employed by Yennie,

- Frautschi and Suura(l6)

in their study of QED is used to separate
the overlapping infrared divergences.

In Chapter II it was shown that the matrix element for quark

scattering M(p,p') satisfies the differential equation

d
9 d 'k 2
@ - M(p,p') = ,fl___d " (k%) Muv(p,p',k,—k) (Iv-1)
(2m)

where M(p,p') is the matrix element for the scattering of a quark

of momentum p by an electromagnetic potential (acting once) supplying
momentum ¢q = p'- p, while Muv(p,p',k,—k) is the matrix element

with the emission of two additional gluons (of momenta ku and —kv)
with the gluon legs amputated. The conversion from disconnected

to connected Green's functions in general involves division by the
vacuum-to-vacuum amplitude which cannot affect the infrared behaviour

of the matrix element since the infrared singularities are a functiomn
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only of the external momenta. The integrations over gluon
momentum k in eq.(IV-1l) can be separated into two classes - the
first yields an infrared divergent factor which multiplies the
original matrix element M(p,p'), while the second part is a sum
of integrations each of which is infrared finite in a manner to
be described below. Infrared singularities arise in d dimensions
as powers of E%Z in the limit d + 4; for example, the one~loop
correction to the basic scattering process yields an integral of

the form

d .
- : 0
tpop’ By - [ L L L o))
(2mr) " k™ k"-2p'.k k"-2p.k

and in the limit k - 0, the integral has a singular part given by

fg‘lls~_1__
k4 d-4

The extraction of infrared singular contributions is carried
out in a fashion similar to that employed by Yennie et al.(l6) in
their study of QED; one separates that part which is supposed to be
the total infrared singular contribution due to the insertion of
one end of the gluon and shows that a modified perturbation theory
constructed from the remainder contains no infrared singularities.
In order to follow the treatment of QED as closely as possible, and
to avoid the combinatorical problems associated with zero mass
ghost fields, a ghost-free gauge (GFG) is used, specified by the

gauge-fixing term %%-(nuAu)z in the Lagrangian, where AY is the
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gluon field and nu is some fixed Lorentz vector. The gluon propagator

(as discussed in Chapter III) thus defined is

. M, v TRV v
Duv(kZ) _ QL_[_guv _n2 k'k + B k" + k'n 1,

k (n.k)2 n.k
corresponding to the choice k = 0.°
The matrix element is further specified by factoring out the

spinor dependence
M(p,p') = u(') I} (p,p") ul(p) - (Iv-2)

corresponding to the scattering of a quark of momentum p and colour
index i, leaving an outgoing quark of momentum p' and colour index j.

In the case under consideration of scattering by a photon,
h| "N = vy
ry (esp') = T(p,p") &y

All referénce to the photon is suppressed -~ indeed, scattering from
a colour singlet scalar field may be treated entirely analogously.
Consider the contribution from inserting one end of the
additional gluon on to the incoming quark line before the virtual
gluon exchange interaction region. Suppose the gluon removes
momentum kk and possesses the colour index a, then the factor
in the matrix element is (keeping q fixed)
1

1 a. i

u(p'-k) T%(P'k,P'-k) e (T} qu(p)

. A '
=30 Th (pk,p'-k) u(p) 2K o)}
k™ -2p.k

. A .1
S Bk 13, (pk,p-k) M2 Ty (qv-)
i k2 -2p.k T
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The latter term on the right-hand side of eq. (IV-3) has the form

of a magnetic moment interaction and as both numerator and denominator
are proportional to k (for small k) this term is infrared finite

with respect to k in the sense that no k-dependent singularity arises

as k +0. Approximating the former term in eq.(IV-3) by

2p-k)* L ait - j
5 (TH] u'-k) T, (@,p") up)
k™ - 2p.k

leaves a remainder:

A | 3
—P———(g —k) (Ta)i u(p'-k) {I‘Ji, (p-k,p'-k) - P:j.L. (p,p") } ulp)
k™ -2p.k

(1Iv-4)
One of the reasons for using the ghost-free gauges now becomes
apparent, as the Ward identity involving Fg(p,p') is the naive one
(see eq.(III-7)) and so.the above expression (eq.(IV-4)) is

identically equal to:

@p-? - 0 (4]
S -k KT () (,p" kK ulp)
k- 2p.k Pt

where (Aa)i is the vertex part associated with the insertion of

a gluon (colour index a) into Fi(p,p'). Thus the total contribution
from this remainder plus the insertions of the gluon in all possible
ways into the interaction region can be represented as

(2p-k) .
—— K A%1] ulp) (Iv-5)

- a
u(p'-k) [ AA + 0
k" -2p.k

The perturbation expansion of the formula (IV-5) results in the
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replacement of the normal Feynman rules for vertices in QCD by those

for modified vertices; for example, the quark-gluon vertex suffers
the replacement
2p-k
15 Yo —igad] Y 2Ry

K2-2p.k

and the three gluon vertex is modified according to

Vg @) = [(2e-0) g, + (201048, + (-0-K) g, 1gt™™

V@0 = [ gy (20,8 + (0K g
(2p-k) , 2 abc
+ -k—z—_;;—.‘l—(' {(k-Q) \)ku + (29.k-k )gu\) + (~Q-k) ukv}]gf

A similar modification is made for the four gluon vertex. It should
be noted that all of the modified vertices are gauge invariant in
the sense that a longitudinal polarization vector will give zero

contribution to the matrix element; thus, for example

abc

o (k) =

It is clear that when a gluon line of momentum kA is inserted
into a quark line or gluon line somewhere inside the interaction
region, the number of denominators which can become small will, in
general increase, raising the possibility of a higher degree of
infrared divergence. However, and this is the crux of the matter,
it is possible to show that the effect of using a modified vertex
at the point of a gluon insertion is to cause no increase in the

degree of infrared divergence, except when the other end of the
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gluon is inserted in such a way as to contribute a gluon self-energy
correction. Were it not for this self-energy term, all possible
insertions of a gluon of momentum kA into the O(an) approximation
to the matrix element would result in a factor Gnfrared singular)

times the original matrix element (in its O(an) approximation),

that is,

A ¢ A
jg [ 2p0)" _ @p'-i)

5 5 1 (%] ulp'-k) I'(p,p") ulp),
k™-2p.k k"-2p'.k

(IvV-6)
plus a part which.is not singular in k and which is no more
singular in any of the other loop momenta than beforehand - a result
completely analogous to QED. However, as will be explained below,
this is not the whole story with QCD.

Following Yennie et al.(l6)

, the insertion of a gluon of momentum
A
k' into a quark line with momentum p + Q (using a modified quark-

gluon vertex) where Q is the momentum transferred to the quark since

its entry into the interaction region, is effected by the replacement

A
1 1 A (2p-k) a 1
Fiw T FEE [Y +;§f‘;;—k “] g D

An increased degree of infrared singularity is possible due to the
two denominators which may vanish simultaneously. The right hand
side of eq.(IV-7) may be rewritten by anti-commuting the first

propagator through the vertex term, yielding
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~

a A
; - [ G ] e
(Q-1)%+2p. (Q-k) K2 2p.k
WA
A (2p~-k) 1 A 1
+2[Q +—L—Q.k]-—ne,v] -
K2-2p.k 2 pHm
(IV-8)

The first term in curly brackets in eq.(IV-8) contains an inverse
quark propagator which cancels the second propagator, rendering this
part of the expression no more singular than before the gluon was
inserted. The second term vanishes as Q - 0, thus preventing an

A
extra singularity from arising since for QA small, —EQ———— is not

singular in general. For the third term, if Q is szt—igﬁgl to zero
in the first propagator then the k integration is regular in the
region around k = 0. Thus the use of a ﬁodified quark—-gluon
vertex at the point of insertion of a gluon onto a ﬁuark line
prevents an increase in the degree of infrared divergence. This is
to be expected as the situation is completely analogous to the
insertion of a photon into an electron line in QED.

The insertion of a gluon of momentum kx into another gluon
line with momentum Q (using the modified three gluon vertex) is
rather more complicated. The insertion can be represented by the
replacement |
1 [_guv _ _~EE_2 Q”QV + Qunv+ nugv‘]

(n.Q) n.Q

L1 [_gup _ 020"k’ , n"@-°+ (@-1)"° ] .
[n. (Q-k) 1 a. (Q-K)
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. ((k—Q)“g“’ + (<P + P,k +

+f 00 [ (g i &&+kﬁ”%mm1)-
-2p.k
0 v g_v

Q2 (n. Q) n.Q

79,1 = VP9, k) + (0-1)%® + ®g"® and

[ @2k-Q)%" + (20-102e°7 + (-q-k)°g"* 1. The

where V
A
v*°%(q,k)

terms containing V have a form reminiscent of the insertions

into the quark line:

"% (0, k) +—(§P—‘—‘l—- k 7% (Q,k)
k -2p.k

= kK%M 1P g7 (20-100 —(—%R—‘—‘l—tzq k-k%) g°°
k -2p.k

The remainder, upon expanding out the product of (propagator)

(vertex) * (propagator) and carrying out a plethora of cancellations,
may be written as (leaving out the propagator poles Q%- and -1 2)
Q (Q-k)

v AV H Av 1 v Al v Ay v
kg -kg + ;~5{n g Q'(Q-k)-Q g n.kin Q kHQ n

A
+ L2200V (-1 Yo (1) 1
k™~2p.k

L [n¥e™g- (@-k)+(-k) "M n . k-n"(@-k) k- (Q-k) ¥ n’
n. (Q-k)

-+
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: A
+'i522522'{'““(Q—k>2k“+n“q“q-(Q—k)}]
— P.

A
S S N Lo 1y (2pok)
n.Q 0. Q_k)[ n'n Q (Q-k) { (20-k)"+ =5

k“-2p.k

(2Q.k—k2)}
LRTIRY A V. U TPV A v u
+nnQQ(Q-k) ~nnQQ(Q-k) + n°Q (Q-k) 'n.k-n"Q (Q-k) "n.k

A
+ £2p-k) {anvn.k(Q_k)Z - 0’ (Q-K)n.k Q2}1

k2—2p.k
2 ; A
+ =2 [-Q"ser (@-l)-KMQ gt LZRR g7 3
[n.Q]" k"-2p.k
n2 Av .v A (2 —k)k 2
+ =y [-(Q-k) g™ Q" (@K +K” (@-K) [ (Q-k) "+ 5= (oK) ]
[n.(Q-k) ] k“-2p.k
2 A
+ 2 [Q” (@) "n. k(@ + {22 g%
[n.Q} ™n. (Q-k) k“-2p.k
2 A
P (@ Q nk (k) - BT (1?3
[n.(Q-k)1"n.Q k" -2p.k
n2 n2 u.v A2 -k)x 2
+ 5 5 (Q-K)'Q Q* (Q-k) [-(20-K) "~ P=5(2q.k-k") ]
[n.Q]" [n.(Q-k) ] k™ -2p.k
(1Iv-10)

This horrifying collection of terms can, however, be classified

into three genera. The first kind of term is one proportional to

Q2 or (Q-k)z, the second type consists of terms proportional to k

and the third type consists of a grouping of the form proportional

A
to [Q'+ Zp=k)" ..
K?-2p.k
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The first type is characterized by a cancellation of one of

the propagator poles, that is, either of 1 or
2 2

7.Q or n ) That such an

and

leaves in its place a term such as

action reduces the degree of infrared divergence can be seen by
comparing Feynman integrals, for instance

d 1
1 fdkzz

K2 (k%-2p. k) (k®-2p" k)

1 =i 1 (p.p'):— m2 +v (p;p')z—m2
€

[
]

= ) on + 0(e®)
/ 2 2 / 2 2
16m (p.p') -m (.p") - n’ -/ (p.p") -m
d
and 12 = f 3 c21 k 5
(n.k)"(k"-2p.k) (k"-2p'.k)
= 4n? ('iz) -1+ 0
léw _
1 _ ' N o - _
vhere T = f dy [_[1§ (b+2c(l ) m(b+2c(l v)=V <A bt/ =A )_ b(:1 v) )]
vV <A b+2c(1-y)+Y =& b=V -A
where A = 4{m4y2+m2n2[(1 -y) +y 1- 2m n.p y(l—y)+2m2n.py2}
a= m2y2 + n2(l—-y)2 - 2n.p' y(1-y)
b= 2n2(l—y) ~ 2n.p(1~y) + 2n.p'y + 2p.p'y

c = m2 + n2 + 2n.p

0
and the parametric integral I is certainly of order €.
The second group of terms, those proportional to k can be

further sub-classified. One subclass concerns integrals such as

n. kf’ 5

(Q 2P Q)n.Q n.(Q-k)
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which, due to the identity

n.k 1 1

n.Q 1.1.(Q—k) " n.(Q-k) = n.qQ

can be shown to be finite in the limit k - 0. The other subclaés
exhibits a basic antisymmetry of the form (kvgku - kugkv) or

variations thereupon. The nature of the rest of the matrix element
Muv is symmetric in terms of its Lorentz structure and thus these

terms do not contribute infrared singularities.

The last type of remainder term

A
(Q)‘ v pk) Q.k) g°° (1v-11)

k™ - 2p.k
has the property of making any integral over Q involving such a term
deficient in one power of p. Now, if one considers a general
graph representative of colour-singlet quark scattering (see Fig.2),
in most cases, the gluon of momentum Q into which the new gluon
is inserted can be traced back the p-line, forming a loop that does
not intersect the p'-line (i.e., the outgoing quark line). In this
case, the effect of the integral over Q will be to replace Q by a
linear combination of the other momenta in the diagram:

u u u U u
Q > aqP + a,n +a3k +Zﬁiki

2

where {ki} is the set of internal momenta intersected by the

Q loop. The replacement of Qu by alpu renders the expression
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(Iv-11) of order (k)1 rather than O(ko) and removes any problems

of divergence associated with this vertex., Similarly, the replacement
of Q7 by a3 gives a finite contribution in the limit + 0.
Replacement of Qu by any of the internal momenta {ki} also reduces
the degree of infrared divergence. In the case of small momentum
transfer that is being considered at present, one may choose nt  to

u

be parallel to p“, that is, n= = gpu

(where £ is a fixed complex

number). The replacement Qu-+a n" then enables the utilization

2
of arguments for the replacement of Qu by ulpu. However, if omne
wishes to study a general matrix element with several external
momenta, the restriction of nyparallel ta pu is not adequate.

The terms for which ngpo > o nAng do not contribute to the

2

integral over the inserted gluon propagator because of the Ward

identity

)\ = -
n ng(k) = 0. (Iv-12)

Also the second term of eq.(IV-11) may be decomposed as a sum

of terms of the first type which were discussed above, since

A A
o (%E—k) Qk = - %_gpo (;E—k) [(Q—k)z— QZ_ k2]
k™ -2p.k k -2p.k

and hence do not contribute to the infrared divergences. Thus the
replacement of Q by p or n leads to the highest power of p or

n to be cancelled by virtue of the form of the modified vertex,
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the resulting expression containing one more power of k or one of
the internal momenta{ki }.

The radiative corrections associated purely with the p'-line
are independent of the radiative corrections associated purely
with the p-line as in QED, and so if a gluon of momentum k is
inserted into the p-line blob (see Fig.2 ) there will be no
infrared singularities introduced in the p'-line blob as the
hard momentum transfer q = p'-p can absorb the small momentum
k without singular adjustment.

The remaining class of diagrams are those in which the insertion
point inside the gluonic blob (see Fig.2 ) is not multiply connected
with the p-line, that is, there is no closed Q-loop that connects
the point of insertion with the p-line that does not also
intersect the p'-line. The only way in which this can happen is
when the gluonic blob is disconnected (see Fig.3 ). It now becomes
important where the other end of the gluon is inserted, Insertion
into either the p-line blob or the p'-line blob or imsertion into
a part of the gluonic blob already multiply conmnected with the
p-line will not yield an extra infrared.divergence as demonstrated
above. Also, insertion between disconnected parts of the gluonic
blob (as shown in Fig. 4 ) do mot introduce new infrared divergences
because one creates a k~loop that connects with the p-line solely
and arguments can be made showing that the use of the modified

vertices at the points of insertion prevent divergences arising
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in the k-loop. Then the only place where a divergence may arise
is from the insertion of both ends of the gluon into the same
disconnected part of the gluonic blob, in other words, the
modified vertices help to remove all infrared divergences except
for those which arise from gluon self-energy insertions. Even then,
an infrared divergence will only occur provided the underlying
dressed gluon onto which the insertion is made itself contributes
to the infrared divergences.

The last type of modified vertex; that is, the modified four
gluon vertex contributes no extra infrared divergences in terms
of the'pfqgram set out above. The insertion of one end of a gluon
into a three gluon vertex to form a four gluon vertex does not
increase the number of denominators which may become small
(compared with insertions into a quark or gluon propagator which
do increase the possible number of small denominators). This

(16)

is also the case in scalar quantum electrodynamics where

there is a scalar-scalar-vector-vector vertex. Also, a study of

the leading logarithmically divergent graphs in QCD demonstrates
nicely the absence of individual graphs containing four gluon
vertices. Thus a gfaph that is leading at one order of perturbation
theory will always be non-leading at the next highef order if the
higher order graph is constructed by an insertion of a gluon which

produces a four gluon vertex.

Were it not for the gluon self-energy corrections, the insertion
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of the other end of the gluon everywhere inside and outside the
interaction region would then yield a similar infrared divergent
factor multiplying the matrix element plﬁs an innocuous remainder.
Sewing the insertioms together with a gluon propagator and integrating
over k, at the same time symmetrizing over the two gluon insertion
points to allow for the consequences of double counting, gives

on the right hand side of eq.(IV-1) an infrared divergent integral

1(q%)

2
_ &% i SN [(zp-m“— 2 —k)“]

2 end W L2k kPo2pk

: [ 2p-l)” - (2p'-k)" ] (1V-13)

K-2p.k  k2-2p'.k

2

]

2. d
BCr ra% i [(2p—k)“ _ o eprt ]
2 en? & Lloaopx  KP-2pk

times the original matrix element G(p')I‘i(p,p') u(p)
plus integrals over k which are non-singular as d -+ 4. That I(qz)
is independent of n , the gauge fixing vector, and is in fact
gauge invariant may easily be checked.
However, the effect of infrared divergences arising from
gluon self-energy corrections is to change the insertion from
that of the bare propagator into the insertion of a fully dressed
propagator, or alternately, the replacement of gz, the perturbation

theory expansion parameter, by gz(kz), the effective coupling
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at the scale given by kz. An inspection of the differential
equation order by order in perturbation theory is useful for

clarification of this statement. For the analogous QED process

(16)

(electron scattering, Yennie et al. showed that if the pertur-

bation expansion is written as
e o]
M(p,p') = I M (p,p")
n
n=0
where n is the number of virtual photons involved in the radiative

correction to the basic process, then

n r
) (aB) o

1 —
Mn(p,p ) =1 r

=0

where the-mj are infrared finite functions of order ol relative
to my and oB is the one-loop virtual correction to the basic

scattering process. Summing the series yields

=]

M = exp (0B) ) m
=0
In contrast, for QCD, if the perturbation expansion for

quark scattering is written as

<]

Mp,p') = I M (p,p') (1v-14)
=0

where n now refers to the order (in a) of the correction to the

basic scattering of a quark by a colour-singlet current.
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The lowest order term is infrared finite, i.e., MO = My and in
the particular process chosen is independent of a. At the next
order, the differential equation reads

3 = 9
@ = (Mb + Ml) = (aBO) Mb + apo my (IV-15)

Inverting this equation gives

=
]

1= (aBO) m, + m, (IV-16)

where B0 is the one loop correction using the bare gluon
propagator. For O(az), the differential equation is
o2 (M +M +M)=(aB) M+M)+0-=m
sa 0 1 2 0 0 1 da 2
+ a ii—m + (oB )(xji-m + (aB,) m
da 1 0/ "8 1 170
(1v-17)
where aBl is the correction to the basic process where the gluon
propagator itself has a self-energy insertion (to order al). The
diagrammatic forms of eqs.(IV-15) and (IV-17) are shown in Fig.(5 ).
The hatched circle represents the matrix element to the order of
concern while the filled (black) circle indicates an infrared
finite function and the triangular objects with curly tops
represent the infrared divergent :integrals and the fact that they
factor out of the rest of the matrix element.
Eq. (IV-17) may now be used to extract the equation for M2

which is
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3w = (apy? k3 2
a = M2 = (aBO) m + (aBO)a e ™ + (aBO) my +(xaa m, + (aBl)mO

(1v-18)
which has the solution
(aBO)2
M2 = T + (aBO) m, + m, + [-fdaBl ] g (Iv-19)

The result of this separation of infrared divergences is that the

differential equation eq.(IV~l) can be rewritten as

“o o W(p,p") =[o 2= I(3,q)] *M(p,p") + F(p,p") (1V-20)

where F(p,p') may be reconstructed from perturbation theory, and

I(&,qz) is given by

2
ig C d
- 2 F dk

(kz)[@p—k)‘*—(zl:' - 1" ]
@en® W

K2-2p.k  k’-2p.k

[(ZP‘“\) e k)v] (1v-21)

2 k2—2p.k k2—2p'.k
where Auv(k ) is the fully dressed gluon propagator (in the

purely gluonic sector of the theory) which may be written in terms

of the Lorentz scalars Hl and H2 (33):
2 2
-1 [kukvn —(nukv+kunv)n.k][1+H1+H2]+nunvk H2
bv T T2 Bt 3 3.2
k [1+Hi] [(n.k) (l+HI+H2) -nk Hz]
n nvk2 Hz
The term L.

2 55 appears not to contribute to
[(n.k) (1+H1+H2) -nk H2]
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the infrared divergences because it is proportional to k2 and

thus removes the pole of the propagator. In this case, I(a,qz)

may be rewritten as

iC d 2 9 " : e 2
1G,gh) = - o [ok &G )[(ZP—k) - (2 ) ]

end k2 Lopx k220 ok

(Iv-22)
where gz(kz) receives contributions only from the massless

fields (i.e., gluons). Equation (IV-20) may be SOlved(27) or
alternately, eq.(IV-14) may be summed to give the complete

form of the infrared singularities for this QCD scattering process:

-2
M(p,p') = exp ~I(a,q") 'Mf(p,p') (1v-23)

where Mf(p,p') contains no infrared singularities.

If renormalization of the colour charge is carried out in a
manner which is independent of the infrared regulation, eq.(IV-23)
expressed in terms of renormalized quantities will contain no
hidden infrared singularities. If, however, the renormalization
point as connected to the infrared cutoff, then there will be an
interference of infrared and ultraviolet singularities. A
comparison of the perturbation theory results of Frenkel et al.(az),

(41) (40)

Cvitanovié and Korthals-Altes and de Rafael on the one

hand and Cornwall and Tiktopoulos(zo), McCoy and wu 37 gng
Carazzone et al.(47) on the other will convince the reader of this

distinction.
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The effect of this interference of singularities is felt
only in the colour charge. This can be seen if the charge is
renormalized on-shell. In the ghost-free gauges, the coupling
constant renormalization coefficient Za is simply equal to
the gluon wave function renormalization coefficient and can
be expressed rather elegantly (using dimensional regularization
with dimension d = 4 + 2¢) in terms of the renormalization

group function B (a)

o
_ ax 8G) _ _
Zu = expj; x B(x)+Ze (IV=24)

The ghost-free gauge is necessary in order that the work of

Lautrup(48) in QED can be carried over without modification to

) -1
QCD. Using eq.(IV-24), with 4y = Za o
3 B(a) ]
o, — = [1+5— 1o, =
U aaU 2¢€ R BaR

where %y and ap are the unrenormalized and renormalized couplings

respectively. One can still write down the solution to the

differential equation in the form of eq.(IV-23), but the coupling

B8(a)
2c

indicated by eq.(IV-24),and the solution now has hidden singularities

constant must be modified to include the extra dependence on

characterized by a singular expansion parameter.
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The fact that the complete form of the infrared singularities
in QCD (though simple in comparison to the ugly combinatorics
involved in sorting out the order-by-order perturbation theory) is
more complicated than that of the other gauge theory with massless
gauge bosons in current use - QED - is perhaps not surprising
when one compares the behaviour of the renormalization group
functions for the two theories. 1In Quantum Electrodynamics on
the one hand, o = 0 is an infrared stable fixed point of the

theory (and the existence of other fixed points is unknown in

d = 4 4+ 2¢ dimensions) while on the other hand, for QCD, in

d

4 + 2¢ dimensions, low order perturbation theory.indicates
the existence of another fixed point in the theory (to O(az)),

at o = ji; where R (o) = 2ea - 2b0a2 + .... . Thus QCD in
greater than four dimensions has an infrared stable fixed point
at o = 0 indicating perhaps a 'free" phase; however, it is the
region a >€%- that is presumably of physical significance. The
claim to a knowledge of the complete structure of the infrared
singularities of the quark scattering matrix element is made
modulo a knowledge of the 8 function as the coupling constant
becomes large; this requires further non-perturbative calculation.
However, some progress has been made in that speculations based

only on leading log infrared results can now be justified - the

deeper structure of the theory produces no real surprises. It is
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gratifying to note that the result for the corresponding situation
in QED can be obtained simply by setting CF = 1 and CV =0 in
eq. (IV-23).

This approach to the analysis of the infrared singularities in
QCD is quite flexible as the separation of overlapping divergences
does not depend on the method of renormalization (provided the
regularization procedure preserves gauge invariance) nor does it
depend at first sight on the manner in which one regulates the
infrared divergences. For example, one could consider an
off-shell process and separate the contributions from the inserted
gluon in eq.(IV=1l) which are infrared singular and non-singular
in the limit as the external quarks tend to their mass-shells.

It is interesting that only the gluonic sector contributes
to gz(kz) in Eq.(IV-22) for the theory with massive fermions.
This is because, as with QED(30), insertions into a closed massive
fermion loop do not give rise to infrared singularities. Thus, it
is possible in QCD with the number of flavours ng > 17 (too large

for asymptotic freedom), to have an infrared behaviour that has been

suspected of having a relation to confinement.

The discussion of infrared singularities presented here is
completely formal - low order perturbation theory calculations (to
order g4) in the axial gauge need to be carried out before the result
can be fully believed. This is especially so in light of the

(43)

contradictory calculations carried out by Frenkel and Taylor s

albeit in a different gauge. The fact that Poggio(és)

explicitly
agrees with the result formulated here (to order ga) does not carry

much weight due to his unorthodox renormalization prescription.
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CHAPTER V

Infrared Divergences in Inclusive Cross—-Sections

It has been known for a long time that the infrared divergences
in QED arising from phase space integrations over radiated soft
photons contribute an exponential divergent factor which cancels
the divergences due to virtual corrections to the process under

consideration(49)’(50).

(21 have found that the Bloch-

In QCD, several authors
Nordsieck program order-by-order in perturbation theory produces
a cancellation between virtual corrections and soft gluon emission
and hence leads to finite transition rates provided that no colour
charge is detected - the so-called "colour-blind" experiments.

Appelquist et al.(Zl)

studied the production of a quark by a colour-
singlet current and its detection by a colour-blind quark

detector (triggering, for instance, on the fractional elctric charge
of the quark) with energy resolution AE. To the three-loop level

in perturbation theory, they showed that the inclusive transition
probability was infrared finite. Inclusive here means that the
transition probability includes contributions from processes

with soft gluons in the final state,as a quark and a long-

wavelength gluon are almost degenerate in energy and hence will

not be resolved by the detector.
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(22) (22)

Poggio and Quinn and Sterman have shown that the
totally unrestricted quark production rate is infrared finite to
all orders of perturbation theory. This statement is not really
surprising when one considers that the cross-section is found
from taking the imaginary part of the vacuum polarization of the
electromagnetic current and that for quark production this current
hgs a momentum squared that is different from zero (i.e., off
mass—shell for the photon) which provides an infrared cut-off.
Consider the quark scattering process studied in Chapter IV.
If the outgoing quark is detected by a colour-blind apparatus
with a finite energy resolution AE, then the inclusiﬁe cross-—
section (allowing for the emission of soft gluons up to a
combined energy of AE) can be found»By summing the various
unitarity cuts associated with the process of forward elastic
quark scattering by a colour-singlet current. Naturally, because
of the phase space restriction, it is only a part of the full
unitarity cut that contributes to the desired cross—section.
Now the effects of the operation (1%%- on the elastic scattering
amplitude of a photon with a quark are described in Chapter IV in
some detail. In summary, the analysis shows that the insertion
of an extra gluon into the collection of diagrams that make up

the amplitude yields infrared divergences when the insertion is

between external charged lines. Thus, if the cross-section under
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consideration was of the form

photon + quark -+ anything

the only insertion that could possibly yield an infrared divergence

in the corresponding elastic amplitude
photon + quark + photon + quark

comes from the external insertion between the incoming quark of
momentum p and the outgoing quark also with momentum p (see Fig.6 ).
However, the integrand corresponding to this insertion is identically

zero. Explicitly, the insertion gives a contribution (from Eq.IV-22)

d U uv2 2,2
aI(p.p) fdk [<2p-k) _ (2p—k)] g (k%)

(Zﬂ)d k2-2p.k k2—2p.k k2

= 0.

Since the imaginary part of this amplitude is @part from trivial
kinematic factors) the desired total cross-section, iteration of

Eq. (IV-1) shows immediafely, to all orders (leading and non-leading)
that the total production rate 1is infrared finite.

As for the process
quark <+ photon -+ quark + soft gluons,

with a restriction on the gluon phase space, one may no longer
ignore the fact that taking the unitarity cut places all particles

in the intermediate states on their mass-shells.
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Let the differential cross-section for semi~inclusive quark

scattering be written as

do  _ 2
i dekl....dkn M | (v-1)

n

where Mh is the amplitude for quark scattering with n soft gluons
in the final state (see Fig.(7)) as well as the final state quark.
Extra gluons in the final state are the only particles being
considered as AE can be adjusted to be below the production
threshold for qq. The gluon insertions which may produce infrared
divergences are of three types (shown in Fig.(8)). There is the
insertion between the initial colour-charged quark and its
counterpart (outgoing in the elastic forward amplitude) with the
same momentum. This insertion, as mentioned above gives zero
contribution. The second type of insertion consists of one
termination of the gluon on the incoming quark of momentum p and
the other termination of the gluon on one of the final state particles
(intermediate states in terms of the elastic forward amplitude).
Lastly, there are the insertions between final state particles.

The insertions of the second type can most easily be considered
in terms of the insertions into the elastic amplitude and the
subsequent cutting of the graphs to yield the square of the
inelastic amplitude. Figure ( 9) represents the insertion of a

gluon into the ch gluon of Mh (the other gluons are not drawn for
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simplicity sake) and the incoming quark line. It shows the

two possible unitarity cuts associated with such an insertion;

one cut (Fig.(9-a)) giving an infrared divergent virtual correction
to one of the Mh , while the other (see Fig.(9-b)) gives a
contribution to the partial cross-section with n+l gluons in the
final state. However, the contribution of this inserted resl gluon
in the final state may be simply integrated to give an infrared
singular contribution to the partial cross-section containing n
gluons in the final state. This is because the inserted gluon is
strictly external by construction, which means that the cross-
hatched circles in Fig. (9) are not dependent on the momentum k of
the inserted gluon. Specifying the colour group stfucture of the
inelastic amplitude by the colour indices of the initial and

final state particles, that is, representing the amplitude by

M i al..an’ the effect of the insertion shown in Fig. ( 9-a)

on the partial cross-section is given by

- * . et
jaj.. a jaj...ap..a abbag b 1

Mo M ' £ (T, I(p.qy)
i i

(V-2)
and the effect of the insertion shown in Fig. (9-b) on the

partial cross~section is given by

' a_ba

. % . .
jaj..an..a) j a i PLETY

M o M "n a®. £ I(p,q,)
n, n, i ! )

(V-3)
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The integrais I(p,ql) and 4f(p,q2) have the form

d IR 2.2
Ip,q) = [SE 2R 5P (g g M98 (q, k) BB
(2m) " k -2p.k k

- N . 2.2
(pq,) = f( %a(k%—l——‘z )" PP (q,-10v" (g, k) E-
- 2p.k

(V-4)

where Vuoxp(qz,k) is the Lorentz tensor part of the three gluon
vertéx. Similarly, for the third type of insertion, that is, insertion
of the giuon between two particles in the intermediate state, there’
are four possible unitarity cuts that may be made. Figure (10)

shows the possible cuts associated with the insertion between the

ith and jth gluons of M.n (the other gluons are not shown). The

contribution from Fig.(10-a) in terms of its group structure is

j a;..a,p.a,y..a_ a, a,b a,a,b * ja, ..a
(Mh 1 iy n o1 i £ )y M 1°""™n I(qi’qj)

. n.
1 1

The contribution from Fig. (10-b) is

» * [
ja..a Jal..a.,..a.,..an aiai,b aj,ajb

1 J

i i

The contribution from Fig.(10-c) is

i i n .3 j =z
(Mni f ) Mhi f .I(qi,qj)

jal..a.,..an ai,aib * jal..a.,..a a,, a,b

The contribution from Fig.(10-d) is

ja...a,,..a_ a,a,b * ja ..a,..a_ a.a,b _
173 n 3] 1 i n . 1i1i
- £ ) M £ I(q;,qy)
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For the virtual insertions,

d V.U, A
dk idi
I(Q-,Q.) = f \ (Q-,k)D (q-+k-) ¢
i’ (ZW)d i Mgy v, 7

V.U, A

i3 2 k2

'V (q.,k) D (q.-k) ELii—l

J Vjujv J k

and for the insertions yielding an extra gluon in the final state,

d V.U, A
~ d'k iti
1(q,,q,) = saHV Hq 0D, (g
i’7j (zﬂ)d i My v, oL
V.U, A 2 k2
vy Jd (q.,k) Dv (q.+k) E_Si_l
(V-5)

The generalization of the SU(2) relation

®13m%kim ~ %1851 7 1185k
to SU(3) is not so simple, due to the existence of the symmetric

coefficients in SU(N) for N > 2:

_ 2 »
fabefcde - 3'[6ac6bd - aadabc} + {dacedbde - dbce dade }

(V-6)
and there is no benefit to be derived from such a substitution. Thus

. . . . do .
the differential equation for the cross-section < may now be written

de
as
. Ja,.. a
3 ,do, _ 3 1 n 2
@ Ja (de) e da Z I Mhi l
- 1 j%.ﬁn* jay..a 4 dag..
= ' ' et _1
=2 {I(p,p") + I(p,p")} 5 Loy )M 51N '
i i i
*
~ aj, aj ja, aj.an je.agal
+ 2 Z{I(p,qj)+l(p,qj)}lT ,T -] (Mn. Mn.
3 i i
jal..a.,.aj,.an % jal_ai.aj a

2 ) { 1(p,p") + 1(p,p")} M * M
1<] i i

+



+ finite insertionms. (v-7)

It is quite evident that the sum of the virtual and Bremsstrahlung
contributions shown agbove in Eq.(V-7) does not possess an infrared
singular part in the limit as d + 4, that is,

o
I(qi,qj) + I(qi,qj) = 0] (E%Z—) ] in the limit 4 -+ 4.

Similar statements hold for the sum of I(p,qj) and E(p,qj) and
for the sum of I(p,p') and i(p,p').

Since the exchange of a gluon causes the various colour
channels to become mixed, it is necessary to write Eq.(V-7) in terms
of the colour triplet channel for the calculation of the differential
cross—-section if the quark colour is the experimental trigger, or
in terms of the colour singlet trlel for the case of a colour-
blind experiment. The treatment as presented above implicitly
assumes that the colours of the final state particles are averaged
over since the insertions are made into the intermediate states
of the elastic quark scattering amplitude. However, the mbdification
required to study the semi-inclusive cross~section for the detection
of a quark with energy resolution AE when the experimental trigger
is the quark colour, that is,when it is only the colours of the
quark and the gluons in the resticted phase space specified by the

detector which are fixed and all colours of the other particles
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in the final state are averaged over, is minor. Consider only those
gluons contributing to the coloured state. As the group structure
changes caused by the virtual insertion of an extra gluon are precisely
the same as those brought about by the emission of an extra gluon into
the final state, provided the colour index of the emitted gluon is
summed over, it is possible to show that the partial cross-section
involving a quark with colour index j plus n gluons with indices
Bysevccnrd plus any number of soft gluons whose colour indices
are averaged over is also finite. This follows from an equation
almost identical to Eq.(Vf7) but for one particular Mh, rather than
the sum. But the desired cross-section for colour detection is
just the sum of the integfal (phase space) over those particular
l Mnlz which have the required colour.

Thus, as a direct result of the analysis of Chapter IV it has
been shown by a simple and fairly elegant argument that:

(i) The totally unrestricted rate for the production
of quarks and gluons from the scattering of an incoming massive
quark on a photon is infrared finite. This result was already
known for a related process(Zl)’(zz).

(ii) The restricted rate for the scattering of a quark
and a photon giving a quark and many soft gluons in the final state
up to a total energy AE where the trigger for the quark detector
does not depend on the colour of the quark, is infrared finite.

(iii) The semi-inclusive rate for quark plus photon gives

quark plus anything where the quark detector has energy resolution
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AE and triggers on a particular colour of quark (massive)

also appears to be free from infrared singularities.

There has been a lengthy discussion in the literature about
whether the cross-sections mentioned above are, in fact, infrared

(20),(21), (22). The consensus of opinion was that the

finite
double series consisting of the summation over the virtual

corrections and the summation over the Bremsstrahlung contributions
does not possess uniform convergence. Thus, Cornwall and
Tiktopoulos(zo) showed that if all the virtual (leading) infrared
singular corrections to a scattering process were summed first, then
the exponential damping factor associated with the emission of a

real gluon prevented the emergence of an infrared singularity in the
phase space integral. This is contrasted with the expectations

of the Kinoshita theorem and the results of low order perturbation
theory calculations which show that order-by-order, the cross-sections
are free of singularities.

It is interesting that the order of summation of infrared
singularities used in this chapter is again different. The amplitudes
M.n contain all orders of perturbation theory, and yet the effect of
the insertion of a gluon is to donate singularities to the virtual
sum and to the Bremsstrahlung sum at equai rates. Thus the differential
equation aproach when applied directly to the crogs-section gives
a hybrid order of the double summation, although more closely

related to the order-by-order method.
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CONCLUSIONS

This thesis asserts that all the infrared singularities arising
in on mass—shell scattering amplitudes in Quantum Chromodynamics
can be collected by a reorganization of the perturbation theory
into the iteration of the sum of all insertions of a single gluon
between the external (asymptotic) states with the effective coupling
g(kz), where k is the momentum of insertion, replacing the pertur-
bation expansion coupling g (renormalized at some off mass-shell
point). This statement justifies previéus statements-made in the
context of the leading singularities at each order of perturbation
theory; an important step, since leading singularity results often
do not reflect the true nature of the theory in a strong coupling
region such as the infrared region. It should be noted that the
ghost-free gauges used here are essential to the simplicity of the
derivation of the result, and it 1s possible that the simple form.of the
solution in these gauges corresponds to the rather more complicated
results of Frenkel and Taylor in a covariant gauge. The resolution of
this situation requires the perturbation theory calculation (at the two

loop level) of the quark colour-singlet form factor in the axial gauge.

The work presented here has not added directly to the question
of whether the quarks and gluons of Quantum Chromodynamics are
permanently bound within hadrons; however it does indicate the
single most important question that must be answered before the
problem of confinement can be settled. This is the behaviour

- 2
of the effective coupling constant gz(kz) in the limit as k™ - O.
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The differential equation studied in Chapter II may be of some

use in determining this quantity. For example, this differential
equation may be written for the inverse gluon propagator in the
axial gauge and a separation at least of the soft infrared
singularities can be made. The resulting form is much simpler than

D which requires several strong

the Dyson equation approach
assumptions before the problem becomes tractable. However, since
the gluon is off mass-shell, it is not obvious that the hard
divergences which occur for massless particles with parallel

three momenta are actuaily controlled by the separation of
divergences.

The problem of hard divergences associated with a totally
massless theory also occurs with the gxtension of the material
presented in Chapter V to the consideration of massless quarks.
Such an extension would allow an explicit (and simple) verification
(23) ,(24)

of the Kinoshita-Lee-Nauenberg theorem and also a probable

solution to the question of factorization of the dependence on

small momenta squared in semi-inclusive quark scattering processes.
(52) . . ,

Mueller has shown that the required factorization does take

place to all orders in perturbation theory but only in the physically

less interesting theory of ot
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APPENDIX A

The derivation of the differential equation described in Chapter
II, although straightforward, is somewhat clumsy. Since the result
isvindependent of ferturbation theory, one might expect that
functional techniques may be applied to yield the same result
in a more elegant fashion. In QED this is certainly true .

The Lagrangian in QED:

L= - % FWF“" + P(if - my

may be rewritten as

\Y . M
lP'*'JAAu

u,—1 ! .
£ A Aw A e Au le

where Auv is the photon propagator (bare) and J" is the source
for the interaction Lagrangian (i.e., JY¥ = ﬁvuw ). The sources

jw and jA enable the formation of the external fields by functional

differation of the generating functional for the Green's functionms.

Consider, then, this generating functional Z[J’jw’jA]

if d4xan~tA + eJA 45 v +i A

z[J 1= [[HAILSY] e ¥

!jw’jA
(A-1)

9 This appendix arose from conversations with J. Schonfeld
whose comments the author wishes to acknowledge.
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Since J does not depend explicitly on the photon field AY and
and since the form of the exponent is quadratic, the Gaussian
integral over A may be carried through exactly. After completing
the square (and setting jA to zero since our interest is only in

Green's functions with external electrons, at present) the result is:

z[J3,i.1 = [ [B5y] exp ( ifd4x (-aJ“AWJV + 30 )

(A-2)

23y

Green's functions may be formed by functional differentiation
with respect to jW’ and J". Thus, for example, the electron-

electron scattering Green's funetion would be formed by evaluating

6 (x3yky0%,) = (migd) (D) (gD (gD 21031 |
W » ) J—J‘P—O

. 0 , .
Now the operation asg on such a Green's function brings down one

factor of u_[JAJ d4x . This is precisely the required result:

that is, differentiation of a Green's function with respect to
coupling constant yields an integral of the Green's function with

two extra Eyuw sources integrated over all points of insertion.

e e 4 uv

9 _ 4 _ e e .
@ 5= G (xl,xz,x3,x4) = fd zld z, A (zl z2)GUV?Xl..x4,zIz2)

(A-3)
This formulation cannot, however, be carried over trivially to

derive the differential equation for QCD.
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