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ABSTRACT 

In P a r t  I, the integral method of Lees  and Reeves i s  applied to 

study a supersonic laminar boundary layer  along a two- dimensional 

adiabatic curved ramp. The present  method of solution requires no 

pr ior  knowledge of the separation point and can be used to t rea t  r e la-  

tively weak interaction, including a fully attached flow. It s t a r t s  

with smal l  perturbations of the self-induced interaction on a flat plate; 

consequently, i t  can be applied to flows with the hypersonic interac-  

tion parameter  X, based on the distance of the beginning station of 

interaction to the leading edge, of the o rder  1. The effect of the 

radius of curvature on the separation phenopena i s  then investigated 

using this method. The effect of finite ramp length on the interaction 

i s  examined by making use  s f  the characteris t ics  of the singularities 

associated with the se t  of moment equations. Satisfactory agreement 

with the theory i s  obtained for the corresponding experiments con- 

ducted in the Mach 6 wind tunnel a t  the Graduate Aeronautical Lab- 

oratories  of the California Institute of Technology. 

In P a r t  11, a non-linear theory for the stability of the laminar  

wake behind a flat plate in an incompressible flow i s  presented. An 

integral method i s  used to investigate the effects of a finite amplitude 

disturbance on the flow. The flow i s  decomposed into a mean par t ,  

which i s  independent of t ime and a fluctuating part ,  which has a ze ro  

time average. The mean flow i s  assumed to be characterized by two 

parameters :  the centerline velocity defect w and the wake half- 
C 

width b. By using a two-length expansion procedure, the assumption 

of local, paral lel  mean flow i s  justified for the solution of the 



fluctuating component to the order considered in the present study. 

The fluctuation i s  assumed to be represented by an ascending power 

ser ies  of the amplitude A. The coefficients of the power ser ies ,  a s  

functions of the radial distance y, a r e  then obtained in terms of the 

two mean flow parameters w and b. The three unknowns b, wc and 
C 

A a r e  then obtained by solving the integral conservation equations of 

mean momentum, mean energy and fluctuation energy. In this inte- 

gral  method, the higher-order effects a r e  introduced systematically 

by truncating the expansion for the fluctuation a t  various orders. 

The coupling between the mean flow and the fluctuation i s  found to 

be the most important mechanism in limiting the fluctuation ampli- 

tude and determining the mean flow. Satisfactory agreements with 

the experiment of Sato-Kuriki in the mean flow quantities and the 

relative development of the fluctuations a r e  obtained, including the 

observed effect of free- s t ream Reynolds number. 
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1 Introduction 

Considerable progress has been made on the problems involv- 

ing the interaction of a boundary layer and the external super sonic 

flow through the efforts of many investigators in the past several 

years. Recently the analytical method of integral moments has been 

applied by Lees and ~ e e v e s ' ~ )  and by ~ l i n e b e r ~ ' ~ )  for laminar flow. 

Satisfactory agreement with the experiments for shock-impingement 

problems and for sharp corners has been obtained. Therefore, this 

method with a slight modification is  employed to investigate the sepa- 

ration phenomena of a two-dimensional flow in a gradually turning 

concave surface. 

In the previous experimental and analytical works, an infinite 

reattaching length has been assumed. For many cases of practical 

importance, however, the length available is finite, and it is desir - 

able to predict its effects on the interaction. This problem is  also 

examined by making use of the singularities of the moment equa- 

tions. The analytical results a r e  supplemented by the corresponding 

experiments conducted in the GALCIT Mach 6 wind tunnel with only 

adiabatic flow considered. 

2 Analytical Approach 

2A. Differential Equations 

The coordinate system used i s  shown in Fig. I ,  x being the 

distance from the leading edge along the surface and y the distance 

away from the surface along its normal. It i s  well known that the 

boundary-layer equations a r e  the same a s  those for a flat plate, 



provided the radius of curvature i s  large in comparison with the 

boundary-layer thickness. * 
For an adiabatic laminar flow with Pr = 1,  the governing 

integral moment equations reduce to the following forms: ( 6 9 7 )  

Continuity * 
* &  6. d~ 1 + m  

1 e e B- 
dx + - dx 

t f - -  = p  
M dx  

tan @ 
e me( l+mm) 

Moment of Momentum 

The boundary-layer velocity profile i s  assumed to be of the 

* 
form u/ue = f(y./6. ; f / ) ,  and all integral properties a r e  assumed to  

1 1  

be functions of fJ  only in the present formulation. Their relations 

a r e  given by ~ l i n e b e r ~ ' ~ '  through solutions of the similar-flow equa- 

tions. Equations (1 ), together with a relation between the flow angle 

O at  the edge of the boundary layer and the local external Mach 

number Me, form a set  of f irst-order,  non-linear, ordinary differ- 

* 
ential equations for the three unknowns Me(x), f/(x), and 6. (x). For  

1 

simplicity, the Prandtl- Meyer relation i s  used for the external 

supersonic flow, i. e. , 

>gAs the radius of curvature becomes comparable to the boundary- 
layer thickness, the coordinate system chosen may cause crossing 
of the normals inside the boundary layer. This possibility, in fact, 
places a limitation on the total ramp angle allowed in the present 
analysis. 



where v is the Prandtl-Meyer angle and a(x) is  the inclination of the 

local tangent to the surface, measured positive counterclockwise 

from the direction parallel to the velocity a t  upstream infinity. In 

order to facilitate a parametric study of the present problem, the 

curved surface connecting two flat plates i s  simply formed by an a r c  

of constant radius. Therefore, a(x) i s  given a s  (Fig. 1 ) 

Solving Eqm. ( 1 )  for the derivative yields 

(D, N1, N2, and N j  a r e  given in the List of Symbols.) In the following 

analysis, the Chapman-Rubesin parameter will be taken a s  a constant 

equal to 1 , without losing generality. 



2B. Starting Solutions 

In the previous application of the integral method to similar 

interaction problems, ( 6 )  the boundary layer entering the interaction 
* 

zone was assumed to be a Blasius flow, and the values of Me and 6i 

a t  the beginning of the interaction were determined by requiring the 

derivatives d ~ ~ / d r  and dff/dx to vanish for f l  = ffB. However, when 

- x based on the distance of the beginning of interaction from the lead- 

ing edge i s  not small, the starting scheme prescribed previously i s  

inadequate to obtain a solution. ' A more precise method has to be 

devised to provide the starting solutions for the present problem in  

which the disturbance on the flat-plate boundary layer becomes 

smaller a s  the radius of curvature i s  increased. The same tech- 

nique to be discussed here  i s  equally applicable for the other types 

of interaction problems. 

When a laminar boundary layer in a supersonic flow ap- 

proaches a disturbance, small but relatively rapid changes occur 

in the boundary-layer characteristics. In such cases,  perturbation 

in the external flow has to be considered simultaneously with the 

boundary-layer perturbation, even in a region where the interaction 

i s  weak otherwise. The extent of this region i s  of the order of Me6, 

and the deviation from the ordinary flat-plate weak interaction grows 

exponentially downstream. In this region of local strong interaction, 

hk 
the perturbations of Me, ff, and 6. a r e  not independent. The relation 

1 

t in the previous flat-plate problems, ( 6 )  the starting point of the in- 
tegration was taken well into the interaction zone. h this case, a 
solution was possible even with relatively large e r ro r s  in the initial 
conditions. 



between them, derived in Appendix A of ref. 9 for the limiting case  

of hyper sonic flow, i s  given by 

where the subscript 0 denotes the undisturbed quantities, and k i s  an 

undetermined constant. 

The weak-interaction solution for a flat-plate flow consis tent 

with the present formulation i s  obtained by expanding each of the 

* 
three dependent variables Me, f / ,  and €ji in t e rms  of an asymptotic 

- 
ser ies  in X ,  the hypersonic interaction parameter. For  the range 

of involved in the present study (order 1 ), i t  was found necessary 

to include te rms  of second order in or  higher. The details a r e  

described in Appendix A. The result  i s  

* 
where ffB and di a r e  the Blasius values given by 

B 

Expressions for the coefficients can be found in Appendix A. 

With these preliminary considerations of the nature of the 

solution near the beginning of the interaction zone, the method of 



solution for flow past a curved ramp with given geometry i s  described 

a s  follows. 

For a given freestream condition, an initial point x on the 0 

flat approaching section i s  chosen. The flow conditions a r e  deter- 

mined from the second-order weak-interaction expansion plus a 

perturbation from the local strong-interaction solution. The value 

of k i s  chosen to be only a fraction of the maximum value discussed 

in Appendix A of ref.  9 in order to assure  the validity of linearization 

used in obtaining them. Using these initial conditions, the integration 

of the se t  of equations i s  performed on an IBM 7090 computer. Since 

there i s  no way of knowing a priori  the correct  xo for a given ramp 

geometry and fr eestream conditions, this point i s  obtained by fixing 

the value of k and varying xo until a qualitatively correct  solution i s  

obtained; i. e. , the integral curve goes smoothly through the separa-  

tion and reattachment points, i f  i t  separates, but does not necessarily 

satisfy the downstr earn boundary condition. Then, fixing x the 
0' 

magnitude of k i s  used a s  the iteration parameter to find the correct  

integral curve that satisfies the downstream conditions. Checks have 

been made on the sensitivity of the solution curve to the choice of xo. 

The fact that two different values of x o  (not too far apart)  result in 

identical solution curves with different values of k supports the 

validity of the approach used in the present study. 

2. C. Downstream Condition for an Infinite Ramp 

When unlimited ramp length i s  available, the appropriate 

downstream condition i s  f l - f l  and Me -+Ma+, the inviscid down- B 

s t ream Mach number. In te rms  of Eqns. (3), this condition requires 



that N1 and N2 vanish simultaneously but D, N # 0 a s  shown in 3 

detail in Appendix B of ref. 9. As pointed out by Lees and Reeves, (6 

there must  be a Mach number undershoot and, therefore, a static 

p ressure  overshoot, before the final equilibrium flow i s  achieved. Jf 

Because of the singular nature of this downstream condition, 

it i s  not possible to achieve this condition numerically. In the corn- 

putations, the integration i s  considered to be completed when N2 = 0 

a t  some x sufficiently far away f rom the reattachment that it has no 

effect on the location of the separation and reattachment points. 

2D. Downstream Condition for a Finite Length Ramp 

In any practical case  the ramp length i s  finite, and the effect 

of the sharp expansion corner a t  the trailing edge of the ramp on the 

interaction has to be examined. F rom Eqns. (3), the curve defined 

by D ( M ~ , # )  = 0 i s  a locus of singularities in the M - ff plane. When 
e 

the boundary-layer flow approaches an expansion corner ,  i t  feels 

the downstream disturbance through the subsonic pa r t  of the layer.  

The flow accelerates  and the velocity profile becomes fuller (H in- 

creases) .  When the angle of turning i s  l a rge  enough, the integral 

curve intersects  the D = 0 curve. The point of intersection i s  called 

the cr i t ical  point. When the corner  i s  rounded, N's  must  vanish a t  

the cr i t ical  point. When the expansion corner  is  sharp,  we expect 

some singular behavior. (This i s  analogous to the location of the 

sonic point in the inviscid supersonic blunt-body flow. ) It is  there-  

fore  assumed that the slopes will approach infinity with the dependent 

* 
From the nature of sol  tions near the Blasius point, there  must  

also be an overshoot in 8 , which was not pointed out by them. 



* 
variables, Me, 6 and ff, being physical quantities, remaining finite 

1 

at  the corner. To show that the assumption i s  consistent with the 

solution of Eqns. (3) near the corner, we linearize the equation by 

letting 

for x s x with x defining the corner location. Because of the r e -  
c ) C 

quir ement mentioned, 0< pl , p2 and p3 < 1. Furthermore, by lin- 

earizing around the critical point in the phase space, it  can be shown 

that dM /& and d6f/d a r e  finite as  x --x which requires that e 1 c' 

= P2 = p3. Note that the assumption requires D -. 0 in Eqns. (3) 

but Ni # 0 (i = 1 , 2 ,  3 )  a s  x -' x c  Using Eqn. ( 6 ) ,  the expansions in 

* 
(xC-X) for the quantities M f l  and 6 .  can be obtained near xc. Sub- e' 1 

stituting them into Eqns. (3) ,  and collecting t e rms  of the same order  

in (x -x), it can be easily shown that p1 = f. Therefore, we have, 
C 

up to the f i rs t  t e rm in (xC-X) 

where the subscript c refers to the conditions a t  xc, and kl, k2 and 

k a r e  positive constants that can be obtained in t e rms  of the condi- 3 

tions at x Because of the singular behavior when x is used a s  the 
c' 

independent variable for integration near the corner, the independent 

variable i s  changed from x to ff when some arbi t rary  given reference 

slope &/dx i s  exceeded. (The reference value i s  chosen to guar- 

antee that the integral curve belongs to the family described by 

Eqn. (7). ) No difficulties a r e  encountered in this plane because the 



~ ' s  do not vanish at the corner. A complete solution curve i s  ob- 

tained when the initial itexatian parameter places the branch paint 

a t  the physical trailing edge of the ramp. The adequacy of the 

preceding approximation has to be examined by comparisons with 

the experimental results,  which will be discussed in the next section. 

Studies on the supersonic flow near a smooth expansion corner 

have indicated that, a t  a given fxeestream condition, the flow will 

remain subcritical for a small enough turning angle. In such cases,  

the integral curve will not intersect the D = 0 curve; hence, it may 

proceed smoothly past the corner, approaching i ts  downstream 

conditions. This angle for the present f r  eestr  eam conditions has 

been estimated to be only a few degrees, even with a quite large 

radius of curvature, and it decreases with decreasing radius of 

curvature, Therefore, an estimate on the minimum expansion 

angle required to apply the present approximation may be obtained. * 

3 Experimental Study 

The experimental study was conducted in the GALCIT hyper- 

sonic wind tunnel with a nominal Mach number of 6. The reservoir  

temperature was always kept a t  2 7 5 O ~  to prevent flow condensation 

for the present experiments. The variation in the freestream Reyn- 

olds number was achieved by changing the stagnation pressure,  

which ranged from 0 psig to 100 psig corresponding to a range of 

freestream Reynolds number between 30,000 per inch and 230,000 

*A detailed study on the supersonic flow around an expansion corner , 

i s  being carried out by K. Victoria a t  the California Institute of Tech- 
nology. 



per inch. 

A total number of six models have been designed for the 

present tes t  program. They a r e  made of nondeforming tool steel 

(Ketos) with a width of 5 inches spanning the tunnel. All models 

s tar t  with a flat plate section having a sharp (G . 003") leading edge 

followed by the curved ramp. The total ramp angle, being limited 

by the tunnel blockage problem, was chosen to be 1 0  degrees. The 

dimensions of each model a r e  tabulated in the table of Fig. 1. 

Models A-1 and A-2 a r e  designed to study the effect of curvature. 

Together with the limiting sharp corner case  of Lewis, these 

provide a fairly wide range of the curvature parameter x /R 1 c' 

Models B-1 and B-2, supplemented by model A-1 , a r e  used to 

study the effect of a finite reattaching length on the flow. Model 

B-2-1 has been designed to provide a test  on the effect of the ex- 

pansion angle a t  the model trailing edge. Model A- 3 i s  a scale-up 

version of model A-2, to be used for Reynolds number correlation. 

All models a r e  instrumented with static pressure  orifices, 

0. 012 inches in diameter distributed along the model centerline. 

The static pressures  were recorded on a multiple-tube silicone 

manometer-board. The system was checked for leaks both before 

and after each test. 

Pitot probes with a flattened (0. 002" x 0. 005") tip were 

used for the flow field surveys. Two probes with different angle 

of attack were  used for surveying the boundary layer in order to 

minimize the effect of angle of attack on the probe readings. The 

pitot pressures  were measured with a Statharn 5-psia pressure  
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t ransducer .  The p ressure  transducer was calibrated before and af ter  

the tes t  with i t s  reference  side kept below 0. 5 )1 Hg. and showed no 

noticeable changes. The measurements  were  recorded on the Y-scale 

of a Moseley autograph. The X-scale indicating the probe position 

was t ransmit ted by a helipot. The axial position of the probe relative 

to the model leading edge was determined before each run. The d i s -  

tance away f rom the model surface was obtained by having the probe 

tip in contact with the surface. 

In o rde r  to compare with the analytical predictions, ext reme 

c a r e  has been taken in achieving a two-dimensional, laminar flow. 

Side plates  properly designed were  mounted on the models to a s s u r e  

two -dimensionality. As shown by Lewis, a limiting flow, closely 

simulating a two -dimensional flow, may be approached for a mocler - 

ately la rge  aspect ratio (defined a s  the ratio of the spacing between 

the  side plates t o  the model length). Therefore,  the side plates  were  

f i r s t  installed a t  various spacings to find out the proper  spacing for  

each model. After setting the correc t  spacing, the velocity profiles 

a t  various stations along the model were  obtained f rom the Pitot su r  - 

veys, with the assumption of constant stagnation temperature a c r o s s  

the boundary layer .  These profiles were then compared with the as  ymp- 

totic laminar  profile corresponding to the downstream Mach number. 

Laminar flow over the complete model was confirmed when none 

of the profiles measured became fuller than the asymptotic one. 

The details of the assurance  of two-dimensionality and the confirma- 

tion of a laminar  flow a r e  well described by Lewis. Only those 

resul ts  corresponding to a laminar flow a r e  presented he re  to 



compare with the theory. The res t  of the experimental results,  

which a r e  transitional in the sense of the previous criterion, a r e  

summarized in Appendix B. 

In practice, the model cannot be aligned perfectly with the 

fr eestream flow direction. In. order to estimate the uncertainty in 

the measurements, a preliminary test on the effect of a small angle 

of attack on the overall interaction phenomena was performed. 

Model A-1 was rotated about 0.5O with respect to the tunnel axis 

and the static pressures  along the model surface were recorded t o  

compare with those taken with model aligned to the axis. The com- 

parison i s  shown in Fig. 2. Within the accuracy in the pressure  

readings, the ratio remains practically constant a t  all stations. 

Therefore, we may conclude that the effect of the angle of attack 

is to change the static pressure  measur ements by a constant factor 

over the whole interaction region, a t  least  for the small  angle range 

investigated. In other words, the measured pressure  distributions 

a r e  scaled by the static pressure  encountered around the leading 

edge section. This result may also explain the high pressure  rat ios 

reported by Lewis over the whole model when the average test  

section freestream static pressure  was used to normalize the meas-  

urements. Because of this finding, the static pressure  ahead of 

the model has been used as  p for normalizing all the data pre-  
-00 

sented. However, it must be kept in mind that a constant propor- 

tional shift of the static pressure  data i s  possible due to the 

uncertainty in the flow alignment. 



4 Results and Discussion 

4A. Comparison between Theory and Experiment 

Only the tes t  results of model A-1 a r e  compared with the 

theory. The same degree of agreement exists for a l l  other cases. 

Fig. 3 shows the comparison of p/p distribution. The general 
-00 

agreement including the pressure  in the weak- interaction region of 

the flat plate and the falling pressure  in the region near the sharp 

trailing edge is  fairly good. The difference in the pressure  level 

from the prediction near the trailing edge i s  caused partly by the 

transverse pressure  gradient existing near a sharp expansion 

corner. The theoretically determined separation point shown in 

Fig. 3 agrees satisfactorily with an oil film observation. The 

velocity profiles, 64,  and ti3 at  each station a r e  calculated from 

the pitot pressure  survey using Crocco' s temperature-velocity 

relation for zero pressure  gradient and the Prandtl number 

0. 725. The transformed form parameter i s  then obtained 

from 

The results a r e  compared with the theoretical predictions in Fig. 4. 

The agreement i s  quite good. The comparison of the displacement 

* 
thickness 6 i s  shown in Fig. 5. The general trend i s  again in 

accordance with the theory, but a difference of 30% exists. This 

i s  partially a consequence of the inaccuracy in the measurements 

very close to the wall. Moreover, the ratio Pte/Pt,, which has 

been taken to be unity in the theoretical calculation, is  actually a 



function of x due to the different degrees of entropy jump a t  the bow 

shock experienced by the streamlines entering the boundary-layer 

edge. Near the beginning of the interaction, Pte/Pt, has been found 

to be only 0. 5 for the present experiment. This discrepancy sug- 

gests  the inclusion of the non-isentropic relation for a more accu- 

ra te  calculation using the moment method. 

4B. Curvature Effect 

Fig. 6 shows the effect of the radius of curvature from the 

theoretical calculation. Because the extent of the separated region 

decreases with increasing radius, the effect is  not very apparent. 

The largest  radius of curvature has kept the flow from separation 

0 anywhere in the region of adverse pressure  gradient in this 10 

compr es sion turn. However, calculation assuming local similarity 

and inviscid pressure  distribution will show that this i s  not possible. 

The interaction of the boundary layer with the external flow has 

appreciably reduced the adverse pressure  gradient and therefore 

prevents boundary-layer separation in this case. 

The experimental results of the curvature effect a r e  shown 

in Fig. 7. In order to include the Pimiting case of zero radius of 

curvature investigated by Lewis, (' ) the results for a high Reynolds 

number a r e  presented. The flow, for the two models tested, be- 

came transitional around station x = 4. 0 in. (judged from the 

velocity profiles measured). However, from the upstream influ- 

ence predicted by the method of Section 2D, this effect is expected 

to be small on the separated region. The comparison between 



models A-1 and A-2 shows that the effect of the radius i s  well- 

predicted by the theory. Shown on the same figure is  the limiting 

case of the sharp corner of Lewis, which i s  nearly identical to the 

result of model A-1. It i s  also of interest to note that the pressures  

measured near the end of models do not show the falling trend pre-  

dicted by the laminar theory proposed because of the greatly de- 

creased upstream propagation in a turbulent boundary layer. 

4C. Ramp Length Effect 

The effect of finite ramp length i s  shown in Fig. 8. The 

agreement of experiment with theory is very good. As expected, 

model A-1 , having a length of 3.825 in. after the effective corner,  

corresponds essentially to the case of an infinite reattaching length 

a t  this Reynolds number. Theoretical calculation for a longer 

reattaching length did not alter the points of separation and reattach- 

ment, which showed the effectively infinite reattaching length for 

models A-P and A-2. The ramp on model B- 1 ended about 7 bound- 

ary-layer thicknesses after the theoretically predicted reattachment 

point. Accordingly, it caused a very little change in the points of 

separation and reattachment from the ones corresponding to an infinite 

length. Therefore, the pressure distributions a r e  nearly identical 

with model A-l except that the peak pressure  obtained is  lower 

because of the insufficient length for pressure  r i s e  after the reat-  

tachment. Model B- 2 was purposely designed to have the model 

end slightly before the reattachment point predicted for model A- 1. 

With the short ramp, the length of the separated region i s  reduced, 

and the pressure  distribution shows no recognizable inflection a s  



with the other cases. Also the maximum pressure  on the 

ramp i s  only about a half of the inviscid p ressure  r ise.  Notice that 

the total turning angle for al l  cases i s  s t i l l  10. 15O. Finally, an 

experiment was conducted to tes t  the effect of the expansion angle 

at  the trailing-edge corner. Model B- 2-  1 i s  identical to model B- 2 

0 except for a 1 o0 expansion turn instead of 100 a t  the trailing edge of 

the model. The pressures  measured on model B- 2-1 a r e  compared 

with the results  of model B- 2 in Fig. 9, together with the theoretical 

predictions. The two measurements agree  almost exactly except 

for  the l as t  two data points, so that we may consider the assumption 

used in Section 2D to be a valid one. 

4D. Reynolds Number Effect 

Because of the limitations of the t es t  facilities, pure laminar 

flow over the models can only be achieved for a very limited Reynolds 

number range. Thus, the effects of Reynolds number on model A-1 

based on the numerical calculations a r e  shown in Fig. 10,  where the 

nondimensionalized p ressures  PN = ( P - P - ~ .  )/(P+w. i, -p-,. i, ) a r e  

plotted against x for four different Reynolds numbers. and P-w. i. 

Ptw- i. a r e  the weak-interaction p ressure  distributions corresponding 

to the upstr earn and downstream conditions, respectively, for the 

same distance x measured from the leading edge. As the Reynolds 

number increases,  the separated region becomes l a rger ,  and conse- 

quently the p ressure  "plateau" becomes more  evident, a s  shown by 

~ e w i s ' '  ) and by ~ e e d h a m ' ~ )  for a sharp corner. 



5 Conclusions 

1) An analysis for the perturbations a t  the beginning of the inter-  

action i s  incorporated in the integral method for solving the boundary- 

value problem of the boundar y-layer interaction a s  an iterative 

initial-value problem. This approach requires no a priori  knowledge 

of the separation point and i s  applicable for flows without separation. 

2) Increasing the radius of curvature decreases the length of the 

separated region and may result in a completely attached flow (for 

the 10' turn investigated) when the radius of curvature i s  large 

enough. For a small radius of curvature, the result differs only 

slightly from that of a sharp corner. 

3 1 The measured static pressures agree satisfactorily with the 

values predicted by the moment method. The form parameter f /  = 
* 

ei /bi  calculated from the data i s  in good agreement with the theo- 

retical prediction, and the experimentally determined displacement 

* 
thickness 6 i s  also in fairly good agreement with the theory. 

4 1 The effect of ramp length can be predicted by the present 

method by making use of the singular solution of the moment equa- 

tions. When the ramp ends around the reattachment point estimated 

for an infinite length, the separated region becomes smaller,  and 

not only the final pressure  level but also the pressure  over the 

entire interaction region decreases. Ekperimental results show 

good agreement with the predictions of the effect of finite ramp 

length. 



Appendix A 

A Second-Order Weak Interaction Ekpansion 

for Moderately Hypersonic Flow Pas t  a Flat  Plate* 

In the case of Mm >> 1, the self-induced weak p ressure  inter-  

action expansions were  well-developed (e. g . ,  Ref. 11) and found t o  

agree satisfactorily with experimental resul ts .  (12, 13) However, in 

some applications, the solutions for la rge  but finite Mach numbers 

a r e  desirable. Furthermore,  the t e rms  of higher order  in a r e  

sometimes required in the expansions. An alternate method i s  there-  

fore proposed here  to obtain a s e t  of expansions up to o rder  x2. It 

i s  applied to flow past  an adiabatic flat plate in the present  analysis. 

Extension to  a wall with heat t ransfer  i s  self- evident. 

The integrated moment equations for a two-dimensional, 

laminar,  compr essible flow with adiabatic wall a r e  ( P r  = 1. 0) . (6 

Continuity 

* 
d6: * df/  6. dM l t m  

1 e B- - e 
dx t 6 i z t f K  - -  dx tan@ (Al )  

e 

Momentum 

* 
d6i * d f f  6: dM e PCP f l - t  hi ;i;t (LYfl)w = 
dx 

e Ke 6: 

Moment of momentum 

*Published in ALAA Journal, vol. 5, No. 10 ,  Oct. 1967, together with 
Prof. T. Kubota. 



where 

All integral properties a r e  assumed to be functions of a single param- 
4 

eter f /  = 0 ./6 in the present formulation. The flow angle at the edge 
1 i 

i s  assumed to be connected with Me through the Prandtl-Meyer re la-  

tion, i. e. ,  Q = v -ve(Me)  To put the equations in a suitable form 
03 

for the analysis, introduce the following non-dimensional length: 

such that 

i 

Then, the following forms of ser ies  expansion in X [i. e. , in (2)-'] 

a r e  assumed: 

a. 

The t e rm of ([l/2]lnk) in the 6 expansion was found necessary to 

obtain second-order correction terms,  a s  will be shown later.  Sub- 

stituting these expressions into the three equations and equating 
1 - 

t e rms  of the same power in (A-2), the following relations for the 

coefficients in the ser ies  a r e  obtained: 



m 
m 

y-1 l t m  1 

m 
m2 = mz 1 {. ltm, - 1 2 - 

Wa,- 1) 

y-1 PB l t m  



In these expressions, primes indicate differentiation with respect to 

f / .  Eqn. (A1 0 )  determines the Blasius value ffB and bO. If only 

first-order (up to order x) approximation is needed, Eqns. (A1 1-1 3) 

yield enough relations to determine 6 m and hl. In Eqns. 1 '  1' 

(AlO-16), 62 does not enter, and Eqns. (AlS) and (Alb) would over- 

specify h2 i f  c2 were absent. 

Examination of equations in the ~ , - f l - b .  space shows that the 

weak interaction solution must have the form 

Hence 

From Eqns. (A9) and (A18), we obtain 



Using (A17), m3  can be easily determined a s  

To summarize, the second-order weak interaction expansions a r e  

given a s  follows with x = [ (y - 1 ) 2 / 4 ] ~ :  

For y = 1. 40, substituting in the values corresponding to Blasius 

flow, we obtain the expressions for the coefficients 



The expressions for static pressure,  displacement thickness, ' 

and skin friction a r e  easily derived from Eq. (A22) as follows: 

where 



where 

K1 = 1  t 1. 3842mm KZ = 1+ma 

K3 = mm/K2 

F o r l a r g e v a l u e s o f m  Eqn. (A23)becomes 
00' 
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Cornpare with the results quoted in ref. 11 for Pr = 1 

P/P, = 1 t 0. 335y + 0. 0 4 8 1 ~ ~  

The perfect agreement between two approaches i s  expected 

because of the identity of the Prandtl-Meyer flow and tangent wedge 

approximations to the second order in small angles. However, the  

finite Mach number effect can be  seen from the previous expansions 

to be quite large. For example, a t  Ma = 5. 8 the expansion for 

static pressure  i s  

This explains, a t  least  partially, why the pressure  measured by 

J. Kendall (12) at  Ma = 5. 8 i s  higher than the values given by (A26); 

but much better agreement was obtained for Ber t ram's  experiments, 

which were carried out at a nominal Mach number of 9.6. 3, The 

static pressure  curve given by Eqn. (A27) i s  shown in Fig. 11 

together with Kendall' s data. (12) Also shown on the same plot i s  

the limiting case of infinite Mach number indicating the finite Mach 

number effect. 



Appendix B : Transitional Data 

Because of the difficulty in obtaining a laminar flow over the 

complete model in the present testing facility, a large portion of the 

experimental results have to be categorized a s  transitional or turbu- 

lent. It has been shown by various workers (e. g. , Lewis, Needham, 

Chapman, et al. ) that a transitional or turbulent separated flow is 

markedly different from a laminar one. The comparison of the tran- 

sitional data with the results oi a laminar theory is  therefore 

excluded from the main text. This appendix serves the purpose of 

collecting the transitional data and hoping to provide some clue to a 

possible reformed transitional or turbulent theory. 

The measured static pressure distributions at three different 

freestream Reynolds numbers for models A- 1 and A-2 a r e  plotted 

in Figs. B-1 to B-3. The flows on the model for these cases have 

been classified a s  transitional judging from the measured Mach 

number profiles. Nevertheless, the calculated distributions of the 

present laminar theory a r e  also shown in the corresponding plots 

for comparison. 

At a freestream Reynolds number per inch of 91, 000, the 

agreement is  fairly good. The difference appears in the relatively 

abrupt change in the slope of the static pressure distribution about 

1" after the theoretically predicted reattachment point. This change 

in slope may be explained by the additional cushioning effect to the 

£LOW provided by the relatively thicker boundary layer when it be - 
comes transitional. The region where such deviation in slope occurs 

coincides with the station having a fuller Mach nurnber profile than 



the asymptotic laminar one. As the freestream Reynolds number 

increases, transition occurs further upstream. Based on the pre-  

vious theoretical considerations, we have learned that the extent 

of upstream influence of a sharp corner i s  limited to a few boundary- 

layer thicknesses. Therefore, we may assume that as  long a s  

transition occurs several boundary-layer thicknesses downstream 

of the theoretically predicted r eattachrnent point, the separation 

phenomena i s  practically laminar. The flow at  ~ e ~ / i n .  = 91, 000 

i s  likely to be this case a s  indicated in Fig. B-1. However, a s  the 

transition region moves closer to the reattachment point, or even 

ahead of i t ,  the overall flow becomes what ~ h a ~ m a n ' ~ )  classified 

as a transitional separation. The two larger  Reynolds number cases  

shown in Figs. B-2 and B - 3  correspond to this situation. The effects 

of transition, as indicated by these results,  a r e  delaying the separa-  

tion and lowering the pressure  level a t  the corresponding station 

from the laminar case. 

It i s  also interesting to note that the trend of falling pressure  

near the end of the model, which i s  predicted theoretically and ob- 

served experimentally when laminar flow prevails over the complete 

model, i s  no longer observed in these transitional cases. This i s  

expected for a transitional flow and incidentally provides a means 

to detect the existence of a laminar flow over the complete model. 

The measured pressure  distribution for models B- 1 and B-2 

a t  higher Reynolds numbers a r e  shown in Figs. B-4 to B-9 together 

with the corresponding predictions of the laminar theory. The 

insufficient reattaching length bas also resulted in a laminar 



flow over the complete model a t  higher Reynolds numbers. For  

model B-1, the measured Mach number profiles and the good agree- 

ment with the laminar theory (including the falling pressure  a t  the 

end of the model) suggest the existence of a laminar separated flow 

up to Re,, = 136, 000. For the shortest model tested (B-2), it i s  

believed that a laminar flow existed over the complete model even 

for Rem = 21 0,000. 

Figs. B-10 to B-12 show the effect of model length on the 

pressure  distributions a t  higher Reynolds numbers. The effect of 

transition on the slope of the pressure distribution discussed pre-  

viously is further confirmed by comparing the results  of models 

B-1 and A- 1. Fig.  B- 10 shows that the effect of transition on model 

A-1 does not affect the separated region as  suggested for that Reyn- 

olds number. Some effect appears in Fig. B-11 for the case of 

Re* = 136, 000. For Reca = 210, 000, even model B-1 possesses a 

transitional flow. It may be noted that the pressure  at corresponding 

station after the plateau becomes consistently higher for the shorter  

model, which is  again a consequence of the decreasing level of 

fluctuation for the shorter model. 

A Reynolds number correlation i s  intended by using model 

A- 3. By varying the freestream conditions, the results of model 

A-3 may be compared with that of model A-2. Fig. B- 13 shows the 

correlation of the surface pressure distributions. Because of the 

noise level existing in the prese& wind tunnel, both cases correspond 

to a transitional flow. The correlation i s  very good indeed. Fig. 

B- 14 shows the correlation a t  a different Rex . In order to  achieve 
C 



the same Rex for the two models, i t  turns out that model A-3 has 
C 

been tested a t  a freestream condition corresponding to a laminar 

boundary layer on the present wind-tunnel wall, which has kept the 

flow laminar over the complete model. On the other hand, the higher 

turbulence level at the freestream condition for model A-2 has defi- 

nitely caused a transitional flow on that model. Therefore, the 

correlation fails in Fig. B-14. However, i t  provides a further 

evidence on the effect of transition as  indicated by the lower pressure  

a t  corresponding stations and the non-falling pressure  a t  the end of 

the model. 
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1 Introduction 

The use  of the infinitesimal disturbance theory of hydrody- 

namic stability for flow in a wake has been studied by various inves ti- 

gators  ( ~ c ~ o e n ' ' ) ,  ~ a t o - ~ u r i k i ' ~ ) ,  ~etchov-  rim in ale'^), et al. ) 

 old'^) presented a fairly complete formulation of the general prob- 

l e m s  in the linear stability theory for both the incompressible and 

compressible wakes. The experiment in the incompressible wake of 

a thin flat plate reported by Sato and ~ u r i k i " )  has confirmed that the 

initial stage of the laminar - turbulent transition can be  described by 

the linear stability theory. However, the agreements a r e  usually 

limited to a relatively small  flow region near the beginning of t rans i-  

tion. This limited range of applicability of the linear stability theory 

is expected because the exponentially growing disturbances, no mat-  

t e r  how small  their initial magnitude may be, will soon invalidate 

the assumptions made in the linear stability theory. Being encour- 

aged by the relatively orderly behavior of the fluctuations measured 

by Sato and Kuriki in the "non-linear' ' region, i t  i s  felt that we should 

be  able to extend the theoretical treatment somewhat beyond the linear 

region before classifying them into the mysterious region of turbu- 

lence. 

The present study i s  intended to develop a general theory for 

considering the effects of the finite amplitude disturbances on a lami-  

n a r  wake, hoping that i t  may lead to a better understanding on the 

mechanisms of transition in wakes. But i t  i s  by no means intended 

to offer a possible bridging solution from laminar to turbulent, a l-  

though non-linearity must  be highly responsible for the breakdown of 



the laminar flow. 

Based or1 the previous theoretical treatments and experimental 

findings, i t  i s  expected that compressibility will not affect the overal l  

mechanism in an appreciable manner. Thus, only incompressible 

flow will be studied here. 



2 Prel iminary Considerations 

F i r s t  of al l ,  in order to devise a non-linear treatment a s  an 

improved theory over the l inear  stability theory, the assumptions 

usually made in the linear theory will be examined. Secondly, antici- 

pating certain necessary  assumptions to  be made in the non-linear 

version, the experimental findings of Sato and Kuriki will be briefly 

summarized to provide some physical background for bet ter  judge- 

ments. In Section 2. 3 ,  a brief review of the methods used for other 

types of non-linear stability problems will be made in o rder  to 

explore certain ideas for the present  problem. Finally, the method 

of solution i s  discussed and a qualitative discussion of the physical 

mechanism i s  made. 

2 . 1  Linear Stability Theory 

The most  crucial  assumption made in the linear stability 

theory for a wake i s  the smallness of the amplitude of the disturb-  

ances. This assumption of infinitesimal disturbances, which i s  

common to al l  the linear stability problems, allows the decoupling 

of the mean flow f rom the development of the disturbances. There-  

fore,  the mean flow field may be determined independently f rom the 

steady laminar equations. For a two-dimensional, incompressible 

wake behind a flat plate, an exact solution was obtained by Gold- 

stein(5' in 1933 with the additional assumption of a high Reynolds 

number flow. A general implication of this boundary-layer approxi- 

mation i s  that the interaction between the growth of the wake with 

the external inviscid flow is  a higher o rder  effect and may be ignored. 



The linear treatment for the disturbance in a wake further 

assuxnes a quasi-parallel mean flow; i, e. , locally, the mean flow 

may be taken as  constant. With this parallel flow assumption, the 

linearized equations for disturbance permit  a solution of the form 

where + = perturbation s t ream function 

a = wave number 

ac = angular frequency. 

This solution represents a wave train travelling at a phase velocity c. 

Upon substitution of the above form, the governing equation for the 

amplitude distribution function f(y) becomes a fourth-order homoge- 

neous ordinary differential equation- -the Orr-Sommerfeld equation- - 
which together with the homogeneous boundary conditions constitutes 

an eigenvalue problem for c when a is  given. Two types of disturb- 

ances a r e  normally considered. 

i) Temporal-mode: a i s  taken to be rea l  and c complex. 

When the imaginary part  of c i s  positive, the corresponding 

disturbance i s  unstable and grows exponentially with time. 

ii) Spatial-mode: ac  i s  taken to be real  (which is  generally 

denoted as  w) and a complex. The corresponding disturb- 

ance is  unstable and grows exponentially with x when the 

imaginary part of a is negative. 

For a complete discussion of the problem, readers may refer  to 

~ o l d ' l )  and the references cited there. 



2.2 Experimental Evidence 

The linear stability theory for the infinitesimal disturbances 

has been confirmed experimentally in various problems, with o r  with- 

out solid boundaries, to the extent that, by using the local measured 

mean flow quantities, the most unstable frequency and i t s  exponential 

growth ra te  agree satisfactorily with the theoretical predictions. 

However, the agreements a r e  usually limited to a relatively smal l  

region. Both the mean flow and the fluctuations soon cease to follow 

the undisturbed laminar calculation and the linear stability theory 

predictions. Frequently, this i s  defined a s  the onset of the transition 

from laminar to turbulent flow. 

An excellent experiment for the wake behind a flat plate in an 

incompressible flow was reported by Sato and ~ u r i k i " )  in 1961, aiming 

a t  clarifying the transition mechanism in a wake. Both the free- 

s t ream natural fluctuations and the artificial disturbance introduced 

through a loud speaker were used a s  the sources of disturbance for 

the wake. Based on the measured mean flows and fluctuations, they 

divided the wake into several  regions. The main features in those 

regions which will be of interest to the present investigation a r e  

briefly summarized as  follows: (Refer to Fig. P taken from Sato- 

Kuriki) 

a )  Linear region: x/b d 35, where x denotes the distance 0 

from the plate trailing edge and b is the half-width of 0 

the wake a t  x = 0. In this region, the following phenomena 

were  observed. 



i)  A single-frequency sinusoidal velocity fluctuation was 

observed which was two-dimensional and antisymmetric  

with respect  to the wake axis. 

ii) The measured frequency varied with the f ree- s t ream 

velocity a s  TJ3I2 in accordance with the dimensional 

reasoning, and was near the frequency of maximum 

amplification ra te  according to the linear stability 

theory. 

iii) The measured radial  distributions of the amplitude 

and the phase were  found to agree  closely with the 

eigenfunctions calculated by the linear stability theory 

using the local measured mean flow. 

iv) The measured mean flow quantities agreed with the 

undisturbed laminar wake calculations of Golds tein. 

As a whole, this region demonstrated the validity of the 

linear stability theory. 

b) Non-linear region: 35 < x/bo S 125 

The t e r m  "non-linear' ' was used because of the following 

facts,  which were  believed to be the consequences of the 

finite amplitude of the disturbances. 

i) Two-dimensional sinusoidal fluctuations of the 

same frequency a s  observed in the linear region 

were st i l l  prominent. However, the growth ra te  

deviated f rom being a simple exponential, and 

the amplitude of the disturbance actually decreased 

in the la ter  stage of this region. 



ii) A harmonic a t  twice the fundamental frequency 

appeared with measurable amplitude which was 

symmetric  with respect  to the wake axis. 

iii) The mean flow velocity and the wake width deviated 

subs tantially from the undisturbed laminar wake 

solution. 

c )  Three-dimensional region: 125 G x/bo -( 250 

The fluctuations became three  dimensional and l e s s  

orderly. 

d )  Turbulent region: x/bo > 250 

The flow proceeded smoothly to a full turbulent flow. 

No sudden burs t  a s  observed in the wall boundary layers  

occurred. 

As regards the above division, the present  study i s  intended to 

understand the non-linear region where the fluctuations a r e  s t i l l  two- 

dimensional and s eem to be dominated by a single frequency and i t s  

harmonics . 
2. 3 Brief Review of the Existing Methods for the Non-linear Stability 

Theorv 

An early attempt to include the effects of a finite amplitude 

disturbance on the stability of flows between bvo paral lel  planes was 

reported by Meksyn and ~ t u a r t " )  in 1951. The effect of the finite 

amplitude disturbance was introduced by including the Reynolds 

- 
s t r e s s  te rm,  pu 'v ' ,  in the mean equation of motion. Only a single 

frequency disturbance was considered, and the generation of the 



higher harmonics through the non-linear interactions between modes 

was ignored. Thc method of solution used was essentially an integral 

approach. The Reynolds s t r e s s  was evaluated in t e rms  of a mean  

flow parameter  U"/U' under the assumption that the distribution 0 0 

of the disturbance was given by the solution of the linearized, O r r -  

Sommerfeld equation, where U ( y  ) i s  the mean flow velocity and the 0 

prime denotes differentiation with respect  to y. Using such an ap- 

proach, the effect of the finite amplitude disturbance on the cr i t ical  

Reynolds number for plane Poiseuille flow was estimated. As to be 

expected, the resul ts  showed that the cr i t ical  Reynolds number de- 

creased a s  the amplitude of the disturbances increased. Stuart  (1 956) 

( 7 y  ') gave a more  rigorous formulation later .  The method was ap-  

plied recently to the non-linear instability of plane Couette flow by 

~ u w a b a r a ' ~ '  (1967) with the aid of the Galerkin's method to determine 

the mean flow and the disturbance. 

An enlarged and more  general formulation with calculations 

along this line of approach was given by Stuart  ( lo)  (1958). In this 

paper, he gave a good discussion of the ro le  of the Reynolds s t r e s s  

in determining the stability of parallel flows. He also described the 

physical processes associated with the non-linearity a s  the amplitude 

of the disturbances grows f rom an infinitesimal to a finite one. A 

Fourier se r i es  expansion was assumed for the disturbance and an 

assumption of constant wave velocity c r  for all  the Fourier compo- 

nents was implied. It in turn gave the expression for the Reynolds 

s t r e s s ,  which appeared in the mean equation of motion linking the 



mean flow and the disturbance. An approximate energy method was 

used in which the dominant non-linear interaction was as sumed to be 

that between the mean flow and the fundamental component of the 

disturbance. The distribution of the disturbance was again taken 

f rom the solution of the linearized equation. The governing equation 

for the evolution of the amplitude as a function of time was then ob- 

tained from the integrated disturbance energy equation. This ampli- 

tude equation turned out to be of the same form as  given without 

derivation by Landau in 1944(11). One most important result  of 

Stuart 's  analysis i s  the existence of an equilibrium state when the 

non-linear effect i s  introduced. The same method was applied to 

the flow in a small  gap between rotating cylinders. Good agreement 

of the torque required to maintain the cylinders in motion with G. I. 

Taylor1 s measurements (49) was indicated. 

A more rigorous formulation for the flows between rotating 

cylinders given by ~ a v e ~ " ~ )  served as  an extension and justification 

of Stuart 's  result. The second harmonic a t  twice the fundamental 

frequency was included and the mechanics of the higher modes were  

discussed. Davey's analysis was in fact an application to the specific 

problem of the general theory developed by Stuart ( I 3 )  (1960) and 

Watson ( I4 )  (1960). In these two papers,  a formal expansion in powers 

of amplitude was employed for the disturbances. Although the inte- 

gra l  method was no longer used, the theory was definitely an outgrowth 

of the previous developments. The physical mechanisms were  de- 

scribed by Stuart and the relation to the previous developments was 



mentioned. The formal mathematical justification and sys tematic 

solution to the higher harmonics were given by Watson. The gcner- 

alization to a full solution paid the price of having a limitation on 

the magnitude of the amplitude that restr icted the considerations to 

the disturbances near the neutral case where ac = 0. Even though, 
i 

as i t  was remarked by Watson: (1 4) 

" there i s  no guarantee that the ser ies  will converge, or  
even represent  a solution asymptotically a s  ci- 0 ,  as  t 
becomes large. However, one would expect the theory 
to be an improvement over linearized theory for a 
range in time---- - I I 

This theory, a s  i t  was further generalized by Eckhaus (1 5)  

(1965), i s  usually termed the "normal mode cascade approach". 

Applications to inviscid shear layers  were reported by Schade (1 6 )  

(1 964) and ~ t u a r t "  7,  (1 967). Stuart 's  analysis was slightly different 

from the previous ones in showing the explicit dependence of the wave 

number a and the wavtl velocity c on the amplitude. The numerical 

version of Stuart 's theory was reported by Reynolds and Potter  (18) 

(1 967). The treatment was extended to three-dimensional disturb- 

ances and the method was applied to plane Poiseuille flow and a com- 

bination of plane Poiseuille and plane Couette flow. The numerical 

values of each t e rm contributing to the so-called "second Landau 

constant" in the amplitude equation were obtained in settling the ques- 

tion of stability in the non-linear theory. In al l  the papers mentioned 

above, the so-called temporal mode of disturbances were  considered; 

i. e, , the disturbance would grow o r  decay with time. In 1962, 

watson(19) formulated in a s imilar  manner a theory for the spatially 



growing finite disturbances in plane Poiseuille flow. 

It should be mentioned here  that some important contributions 

to the non-linear stability theory were made in a parallel manner by 

Gorkov, ' 2 0 )  Malkus and Veronis, (21 ) Joseph, (23) Segel and Stuart ,  124) 

Joseph and Shir,  (25) etc. , on the thermal-convective instability of a 

horizontal layer of fluid heated f rom below (the BBnard problem). 

fn fact, most  of the ideas a r e  interchangeable. A good account of a l l  

these works and some general discussions on the various methods 

used were  given by Segel. ( 2 6 )  

The methods reported so far have dealt with flows of constant 

Reynolds number. In a l l  cases ,  the mean flow remains parallel and 

its deviation from the laminar flow appears as  a power se r ies  in the 

square of the amplitude. In fact, in the case of shear layers (Schade 

and Stuart) the mean flows were  left unperturbed to the order they 

considered. One exceptional case i s  the spatially-growing disturbance 

considered by Watson, where the mean flow i s  not parallel except a s  

the flow approaches equilibrium amplitude. But the deviation f rom 

parallel flow comes in only as  a higher order  correction. In any 

case, the interaction with the mean flow may be considered to be  a 

weak one such that the f i rs t  few terms in the ser ies  expansion for 

fluctuation may be determined with an undisturbed laminar mean flow. 

The ideas used to develop the following theory have been es- 

tracted from those previous works. The integral method i s  used to 

avoid the unrealistic limitation to disturbances of small  l inear arn- 

pwcation rate imposed by a formal ser ies  expansion theory. This 



approach i s  required because the wake i s  dynamically unstable and 

disturbances of much l a rger  amplitude than those permitted by the 

formal  expansion solution of Stuart and Watson will appear and domi- 

nate the physical process.  The approach is analogous to the ea r l i e r  

works of Stuart (e. g. , 1958) applying to a non-parallel mean flow. 

2. 4 Method of Approach and Qualitative Discussions 

In this section, the formulation of the method of solution i s  

outlined, and then, a qualitative consideration on the flow field based 

on the proposed method will be given that may help in understanding 

the experimental resul ts  of Sato and Kuriki. The fundamental differ- 

ence of the present  theory to the formal expansion theory of Stuart  

and Watson will a lso be briefly discussed. This section will se rve  

a s  a prelude a s  well a s  an abstract  of the detailed formulation of 

Section 3,  and the quantitative discussions of Section 4. 

According to the linear stability theory, an unstable disturb-  

ance grows exponentially a s  i t  proceeds downstream. When the 

amplification ra te  i s  la rge  enough, even i f  the disturbance i s  infini- 

tesimally smal l  originally, the amplitude of the disturbance soon 

reaches a magnitude where the assumptions pertinent to the l inear  

theory become invalid. The finite amplitude disturbance will induce 

the following non-linear effects: a )  Interaction of the disturbances 

with the mean flow through the Reynolds s t r e s s e s  that a r e  ignored 

in the linear stability theory, b)  Generation of the higher harmonics 

and their interactions through the non-linear terms.  The present  

study formulates a theoretical approach in general and devises a 



in which these non-linear effects a r e  introduced systemati-  

cally in order  to have some bet ter  understanding of the physical 

mechanisms involved in the transition. 

The flow i s  decomposed into a mean par t ,  which i s  independent 

of t ime, and a fluctuating part ,  which has a zero  mean. Through the 

mean equations of motion obtained by time-averaging, the effects of 

finite amplitude disturbances become evident. Because of the Keyn- 

olds s t r e s s e s ,  the decay of the mean velocity and, therefore, the 

growth of the wake a r e  expected to be different f rom a steady laminar  

wake. Experimentally, a fairly rapid growth of the wake a s  compared 

to the steady laminar case  i s  observed in the non-linear region. 

Hence, the interaction between the fluctuation and the mean flow 

will be expected to be a strong one. The weak interaction model of 

Stuart and Watson, where the mean flow to the f i r s t  order  i s  given 

by the undisturbed laminar solution, i s  therefore not applicable. The 

variation of the mean flow with distance in the flow direction will 

have to be determined simultaneously with the development of the 

amplitude of the fluctuation. 

h principle, the complete se t  of the governing partial  differ- 

ential equations may be solved for any given flow conditions. How- 

ever,  i t  will be an immensely difficult numerical task that will 

provide li t t le understanding of the non-linear mechanism in the wake. 

Therefore, in an attempt to bring out the essential effects in the 

non-linear region, the approximate integral method i s  adopted for 

the present  investigation. Instead of solving the complete sys t em 



of the governing partial differential equations, the flow is  required 

to satisfy the conservation equations of mean momentum, mean 

energy and fluctuation energy in integral form. The main simpli- 

fication of the integral method lies in the fact that the unknowns may 

be approximated by profiles with a few parameters  which a r e  then 

determined by the ordinary differential equations. In the present 

study, the mean flow profile i s  assumed to be a Gaussian distribution 

characterized by two parameters:  the mean velocity defect on the 

wake axis,  w and the half-wake width, b. For an integral approach, 
C'  

the details of this distribution generally a r e  not important i f  i t  

possesses the qualitative characters  of the expected solution. 

In the case of an unsteady wake with finite amplitude disturbances, 

the Reynolds s t resses  couple the mean flow to the fluctuations. Thus, 

the fluctuations must also be represented in terms of a few governing 

parameters ,  A method in obtaining a reasonable representation of 

the distribution of the amplitude and phase of the fluctuation ac ross  

the wake i s  to solve the Orr-Sommerfeld equation of the linear 

stability theory, based on the local mean flow. This choice has the 

advantage of representing the proper limit of infinitesimal disturb- 

ance. Then, the fluctuation and, therefore, the integrals involving 

fluctuating components become functions of b, w and A, the ampl i -  
C 

tude of the fluctuation when a single frequency fluctuation i s  assumed. 

The integral conservation equations of mean momentum, mean 

energy and fluctuation energy then provide three ordinary differential 

equations for the three unknowns b,  wc and A. 



The use of the linearized O r r  -Sommerfeld equation locally to 

obtain the functionals required in the integral method can he shown 

to be the f i rs t  order  t e r m  of a local power s e r i e s  representation of 

the fluctuation. The justification will be given through a careful 

ordering process  in the next section. However, i t  must  be empha- 

sized that the method clevised for obtaining the integrals involving 

fluctuating components a s  functions of the mean flow parameters  and 

the amplitude is  a sufficient but not a necessary  one. The integral  

method does not r es t r i c t  the means in obtaining the distributions a s  

long a s  they a r e  good representations of the t rue distributions. This 

important idea behind the integral method will have to be s t ressed  in 

order  to understand the method of truncation used in representing the 

fluctuation. The local power se r i es  expansion in the amplitude A 

for the fluctuation i s  merely  a tool to introduce systematically the 

higher harmonics. Therefore,  the method does not res t r ic t  to the 

cases of small  linear amplification ra te  a s  considered by the analysis 

of Stuart and Watson. 

Based on the f i rs t-order  t e rms  of the fluctuation, a qualita- 

tive understanding of the non-linear region may be achieved. Various 

crude approximations, which will not affect the qualitative discussion, 

will be made in arriving a t  the following model equations. The full 

detail justifications a r e  given in the next section. 

With the assumption that the mean flow may be described by 

two shape parameters  b(x) and w (x), the leading terms of the mo- 
C 

mentum integral equation give 



where y i s  a constant and R denotes the f ree- s t ream Reynolds num- 1 

ber  based on the plate length. The energy integral equations of the 

mean flow and the fluctuation, to the f i rs t  order ,  may be written a s  
3 

and 

correspondingly. Here Em denotes the integral energy of the mean 

flow. For smal l  w since bw i s  nearly constant according to Eqn. c' C 

(2.2), Em i s  linearly proportional to w to the f i rs t  order.  E in c F 

Eqn. (2. 4) represents  the energy associated with the fluctuations 

and is  defined by 

The f i rs t  t e rms  on the RHS of Eqns. (2. 3) and (2. 4) a r e  the 

same but with an opposite sign. These t e rms  represent  an energy 

t ransfer  between the mean flow and the fluctuations due to the Reyn- 

olds s t resses .  For a locally amplified disturbance, the sign of I6 

i s  always positive. Therefore, the energy i s  t ransferred f rom the 

mean to the fluctuation through the Reynolds s t ress ,  The remaining 

terms on the RHS of both equations represent  the effect of viscous 

dissipation. For  a given shape function of the mean flow, P4 i s  a 

constant. However, I6 and Is a r e  generally functions of a l l  three  



unknowns, b, wc and the amplitude of the fluctuation. Upon neglect- 

ing all the higher harmonics and using Eqn. (2. 2) ,  I6 and I a r e  pro- 8 

portional to the square of the amplitude. We may let  

2 
where kb and k a r e  functions of w only. The amplitude / A  1 i s  8 c 

defined in the present formulation a s  

Now, Eqns. (2. 3) and (2.4) may be rewritten as 

A qualitative behavior of the flow field in the non-linear 

region may be obtained from these two equations. When the am- 

plitude of the fluctuation is  small,  the f i rs t  t e rm  on the RHS of 

Eqn. (2. 3a) i s  negligible a s  compared to the laminar viscous dis- 

sipation term. Hence, the mean flow will be closely approximated 
1 -- 

by the steady laminar solution, and w
e 

decreases as  x - ~ .  Since w 
L C 

changes slowly in this region, Eqn. (2. 4a) may be approximately 

2 2 considered as  an equation for the amplitude wc I A 1 with constant 

coefficients. Then, the exponential growth rate of the linear stability 

theory immediately follows. This region corresponds to the linear 



region observed by Sato and Kuriki. 

As the amplitude grows, the Reynolds s t r e s s  t e r m  becomes 

comparable with the viscous t e r m  in Eqn. (2. 3a), and the mean 

velocity defect s t a r t s  deviating from the steady laminar solution. 

As the fluctuation i s  further amplified, the Reynolds s t r e s s  t e r m  

becomes dominating. The experimentally observed rapid change 

of the mean velocity and the wake width in the non-linear region 

may be understood f rom this consideration. As will be shown through 

numerical resul ts  la ter ,  the local amplification ra te  decreases  a s  w 
C 

decreases i f  a single frequency fluctuation i s  followed. In other 

words, when the fluctuation corresponding to the most  unstable f re-  

quency in the linear region i s  taken to represent  the fluctuating 

component, i t  will approach neutral a s  wc decreases.  The value 

of k i s  positive for a locally amplified disturbance and tends to 6 

zero for a neutral one. Thus, when w decreases  to the value where 
C 

k becomes small ,  the laminar viscous t e r m  and also al l  the higher 6 

order  t e rms  neglected in arriving a t  Eqn. (2. 3a) become important. 

The mean flow i s  expected to have a relatively slow variation a s  ob- 

served experimentally. 

The behavior of the fluctuation in the non-linear region m a y  

be studied qualitatively using Eqn. (2. 4a). The total energy of the 

fluctuation, EF, a s  defined by Eqn. (2. 5 ) ,  i s  expected to increase  

continuously by extracting energy from the mean flow through the 

Reynolds s t ress .  This process will be dominated by the f i rs t  t e r m  
1 - 

of Eqn. (2.4a) until kg becomes of order  R-L. Then, the viscous 



dissipation te rm and the ignored higher order terms come into effect,  

Because of the growth of the wake, i t  is more  interesting to look a t  

the averaged total energy of the fluctuation. Let ET be the energy 

"density' ' of the fluctuation defined by 

Then, using (2. 3a), Eqn. (2. 4a) can be written a s  

1 

For kb >> R - ~ ,  the f i rs t  t e rm  dominates. The appearance of the / A  I 4 

2 
t e rm with an opposite sign to the ]A 1 t e rm  i s  the most interesting 

feature caused by the growth of the wake, It permits not only a state 

where dET/dx = 0,  but also a decreasing ET with r even when the 

fluctuation under consideration i s  still amplifying according to the 

local linear theory (k6 > 0). Ekperimentally, the maximum amplitude 

of the fundamental mode grows initially but decreases after reaching 

a peak value. This fact may now be explained since the energy 

density ET i s  expected to be indicative of the magnitude of fluctuation. 

The crucial differences of the present problem from the 

parallel flow analysis of Stuart and Watson. become evident from the 

above discussions. The main result of the non-linear analysis of 

Stuart and Watson is the governing equation for the amplitude of the 

disturbances and i s  of the form 



where 2 ' s  a r e  constants. The coefficient a i s  given by the linear 
n 0 

theory with the undisturbed laminar mean flow and a i s  a result of 
1 

three effects; the generation of the second harmonic, the correction 

of the fundamental and the correction to the laminar mean flow. The 

amplitude I A / in the Stuart-Watson theory corresponds to the average 

energy density E defined by Eqn. (2.8). Then, an analogous equa- T 
2 tion of the form of Eqn. (2. 9 )  results with / A /  being replaced by 

ET. However, the coefficients a and a r e  no longer constants 0 1 

but functions of the mean flow and, therefore, functions of x ,  since 

the mean flow is  not expanded a s  the undisturbed laminar flow plus a 

correction in the present problem, but i s  lumped together to be 

determined by the integral equations. The so-called " second Landau 

constant" does have an appreciable magnitude even when the second 

harmonic is  ignored. The sign of a i s  opposite to that of 2 In the 1 0' 

case of a parallel flow, a supercritical equilibrium state may exist. 

However, the continued variation of the mean flow provides the possi-  

bility of a decreasing magnitude of the fluctuation before reaching the 

final equilibrium state a s  demonstrated previously. Therefore, the 

present approach i s  much more  general than the theory of Stuart and 

Watson. In fact, the parallel flow analysis may be considered as a 

special case of the present theory. 

The above qualitative discussions seem to suggest the model 
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proposed here  to be a plausible one. The formal derivation and  

nunlcriual solutions a r e  then given in the following sections. 



3. Formulation of the Problem 

The problem will now be formulated in detail in this section. 

The difficulties in developing a non-linear theory will be pointed out 

and the proposed method of solution will be justified in a self- 

consis tent manner. 

3. 1 Governing Differential Equations 

For the two-dimensional flat-plate wake, le t  x be the non- 

dimensional distance along the wake axis measured from the trailing 

edge, and y the non-dimensional distance f rom the wake axis. Cor-  

respondingly, u and v represent  the non-dimensional velocity com- 

ponents. Her e the reference quantities for  the non-dimensionalization 

a r e  chosen to be 

Velocities U (free s t ream velocity) 

Length 

Time 

P re s su re  

L (plate length) 

Then the Navier-Stokes equations in two dimensions can be written as  

where R is  the Reynolds number based on the reference quantities, 

i. e. , R = UL/V. Now, divide the flow into a mean par t  independent 

of time and a fluctuating part with zero mean, i. e. , 



where the "bar" indicates a time average according to 

The fluctuations a r e  assumed to be periodic in time with T being the 

period such that 

For simplicity, the time dependence of the fluctuating quantities will 

be assumed to be of the form -e 
inwt with w = - 2 n  a rea l  quantity, 

T '  

being the frequency and n, an integer. 

Substituting (3.2) into (3. 1 )  and integrating over t to separate 

out the mean and the fluctuating parts ,  we obtain for the mean flow 

- -- -- - 2 - 1 - u v t v v t ( u ' v ' ) ~ ~  (v' ) = -py + - (V t; ) 
X Y Y R = YY 

By subtracting Eqn. (3. 3) from Eqn. (3. l ) ,  one obtains 

1 u1 t U u' t u'U + V U' t v'U t x = - ' t - (u' t u '  ) 
t x x Y y 1 Px R xx yy ( 3 . 4 )  

- 1 v'  t Gv' t u'; t G' t v'v t x 2  = - ' t  -(v' t v '  ) 
t X X Y Y P~ R = YY 



where 

- 2 
)i = u'v '  t v'v' - (u'v' )x - (v' )y 

X Y 

In principle, these six non-linear partial differential equations may 
- - -  

be solved for the six unknowns p, u, v, p' , u' , vf with the proper 

initial and boundary conditions. However, with the intention of gain- 

ing a better understanding of the physical mechanism in the non-linear 

region of the wake rather than obtaining some numerical values, we 

will f i rs t  make the following physically realizable approximations to 

the mean flow quantities to simplify the analysis. 

For the wake flow behind a flat plate, except in the immediate 

vicinity of the trailing edge, the boundary-layer type approximation 

i s  quite satisfactory for a relatively large Reynolds number. In Sato- 

Kuriki's experiment, the Reynolds numbers a r e  of the order of 1 0  
4 

and higher. We will therefore consider flows ol: la rge  Reynolds 

number and apply the boundary-layer approximation to the mean flow, 

which implies 

i i )  "b",  the nondimensional half wake-width much less  than 1 

With these approximations, i f  the magnitude of the fluctuation 

i s  further assumed to be  infinitesimal, Eqns. (3.  3 )  reduce to the 



steady laminar  wake equations 

-- - - - 1 - 
u u  t v u  = - p x t - u  

X Y R YY 

where  < m a y  be  s e t  equal to zero  with the boundary condition that 

- 
Px = 0 a s  y-oo. Eqns. (3. 5 )  were  f i r s t  solved by Goldstein by joining 

a far-wake solution to a s e r i e s  expansion near-wake solution. This 

solution of Eqn. ( 3 .  5) will b e  r e fe r red  to a s  the " pure laminar  wake" 

solution in this thesis.  

The role  of the finite amplitude dis turbances can be c lear ly  

seen f r o m  Eqns. (3. 3). As the amplitude grows, the Reynolds- s t ress  

t e r m s  become comparable to the remaining t e r m s  in the equation. 

The experimental resu l t s  obtained in the non- linear region s e e m  to 

indicate that the Reynolds-stress  t e r m s  dominate. If A denotes a 

measure  of the amplitude of the fluctuation, we will  expect ~ ' m  
to b e  of the o rde r  one o r  higher in the non-linear region. In other  

2 1 words ,  when A becomes 0(-), the effect of the disturbance on the 
d-E 

mean flow can no longer be  ignored. Hence, for the non-linear theory, 

we will tentatively keep the t e r m s  involving the fluctuating quantities 

without exact specific ation of their  re lat ive magnitudes a s  compared 

with the remaining t e r m s  in the mean flow equations. Then Eqns. 

(3. 3 )  become 



Upon the assumption that 5 i s  an induced quantity which vanishes as  
Y 

the amplitude of the fluctuation becomes infinitesimal, only the leading 
- 

2 
terms (v' ) i s  kept in the third equation to balance the p ressure  term. 

Y 
Eqns. ( 3 .  6 )  can be contracted further by integrating out the third 

equation and substituting into the second one. The equations become 

- - - - - L L 1 - 
u u  + v u  4 (u'v')  + (u' -v' =--  

x Y Y )X R yy 

- 
Eqns. ( 3 .  7 )  further demonstrate that the (u'v')  t e rm  neglected in 

X 

arriving a t  the third equation of (3.  6 )  is  indeed a higher order t e rm  

compared to the terms remaining. 

3. 2 Integral Equations 

The integral equations of the mean flow a r e  obtained by inte- 

grating over the lateral  coordinate y. The equations a r e  then reduced 

to ordinary differential equations in x. They a r e  

Mean Momentcum Equation 



Mean Mechanical Energy Equation 

An additional equation for the fluctuation is  provided by the 

energy equation of the fluctuation which i s  obtained by multiplying the 

second equation of (3.4) by u' and the third one by v' and add. This  

equation i s  then integrated over y and averaged over a period T. It 

yields 

a; 8; 
The t e r m  7 may be ne.glected a s  compared to - with the boundary- 

dx ay 

layer approximation for the mean flow. Fur thermore ,  the t e r m  

involving the second derivative in x represents  the conduction of the 

fluctuating energy which i s  quite small  in general and may be ignored. 

The great  advantage of the integral equations i s  the apparent 

display of the energy exchange mechanism because of the conservation 



forms.  In Eqn. (3 .  9 ) ,  the left-hand side terms represent  essentially 

the variation of the mechanical energy associated with the mean flow 

in the flow direction, while the left-hand side t e rms  in Eqn. (3. 10) 

give the variation of energy associated with the fluctuations. The 

transfer  of energy between the mean flow and the fluctuations i s  

clearly indicated by the two Reynolds-stress t e rms  appearing on the 

RHS of both equations but with opposite sign. The remaining t e r m s  

on the RHS of both equations represent  the viscous dissipation effect. 

3. 3 Shape Assumption for the Mean Flow 

It i s  the main implication of using an integral method approach 

that the unknowns may be approximated by a few shape pa ramete r s  

which will in turn be determined by the integral equations. To simpli- 

fy the analysis,  we will assume the mean velocity profiles to be 

similar when they are  expressed as 

- - 
l -u(x ,  y)  = l -u  = U*(y*) 
1 -U(x, 0) wc(x) 

where y* = y/b(x), and b gives a measure  of the wake width. 

U*(y*) will be  assumed a s  known f rom the experiments o r  some other 

means. This complete similarity of the mean flow i s  not quite valid 

in view of the experimental resul ts  of Sato and Kuriki where overshoot 

of the mean velocity a t  some stations have been indicated. However, 

the profiles measured a r e  generally close to a Gaussian distribution, 

and, therefore, (3 .  11) may be a fairly good approximation when 

U*(y'g) i s  taken from the averaged experimental data points. The 

exact form of U':c(y*) should not be too crucial  i f  the integral method 



i s  a good approximation to the problem. A bet ter  approximation to 

the mean velocity may be obtained by introducing more  shape par  ame-  

t e r s  such that 

The additional unknowns introduced require additional governing equa- 

tions which may easily be  obtained by using the higher moment equa- 

tions. The loss  of the physical explanation for the higher moment 

equations is  the pr ice  we have to pay for more  generality of the profile 

shape, Only (3. 11) will be used in most  of the following analysis and 

the effect of using (3. 12) will be considered la ter  when one additional 

shape parameter  i s  allowed in Appendix C ,  

We transform the equations (3.  8), (3.  9 )  and (3.  10) f rom (x,y) 

to  (x, y*) according to the following rules. 

Now, with ur : ul/w v* = vl/wc, and p* = p'/w2, together with Eqn. 
c' 

(3. 11 ), Eqns. (3. 8) and (3. 9)  become 



and 

2w 2 
3 db 2 dWc 3 (I -I )-Zw I C = 4~ - I - 4bw - 
c dx 5 c d x  3 4  c 6 -  R b P 4  

where 

and 

00 -- 
3 auxc 2 There will be an additional t e r m  of the fo rm [ -bw S ( u* -vrZ)dy*] 

0 
on the RHS of Eqn. (3.  15) when the expression (3.  12) i s  used instead 

of (3.  11). Without losing the main features of the present  approach, 



we will use  ( 3 .  11) for the moment. In this case ,  the P. 's  a r e  con- 
1 

stants. Moreover,  it may be noted that the leading t e rms  of Eqn. 

(3. 15) yield Eqn. (2. 3 ) .  

For  Eqn. ( 3 .  lo ) ,  an additional assumption is made on evalua- 

ting the dissipation terms.  Looking ahead to obtaining this dissipation 

integral through solving the fluctuation equation locally, the x-deriva- 

tive appearing inside this integral will be approximated by i t s  local  

values. That i s  

This approximation introduces the same order  of e r r o r  a s  neglecting 

the conduction t e rm in Eqn. ( 3 .  10). Since both of them a r e  multiplied 

by ( 1 / ~ ) ,  the e r r o r  introduced i s  expected to be very smal l  for the 

high Reynolds number flow considered here. Equation ( 3 .  10) then be-  

comes 

where 

The correspondence of this equation to Eqn. ( 2 .  4) may be immediately 



established by taking the leading terms.  

With U':'(y>:<) given, the integrals I. will be obtained f rom the 
1 

solutions of the local disturbance equations to be discussed in the next 

section. Therefore, in general, the values of Ii depend not only on 

the amplitude of the disturbances, but also on the local mean flow 

shape parameters .  

Eqn. ( 3 .  14a) can be immediately integrated to give 

where the integration constant has been obtained by assuming.a lami-  

nar  flow over the f lat  plate. Eqns. ( 3 .  14), ( 3 .  1 5 )  and ( 3 .  16) provide 

the governing equations for the interaction between the mean flow and 

the fluctuations. When the expression ( 3 .  12) i s  used for describing 

the mean flow, additional equations may be  obtained by taking higher 

moment integral equations. 

3. 4 Perturbation Solution of the Local Fluctuation Equations 

The integrals I. appearing in the three integral equations 
1 

involve the fluctuation components. As f a r  a s  the integral method 

i s  concerned, the integrals I. may be represented as functions of a 
a 

few parameters .  The proper choice of these parameters  depends 

on the underlying physics of the problem. In brder  to form a closure 

of the system without using more  integral equations, the integrals Ii 

a r e  assumed to be functions of the mean flow paramete r s ,  b and wc, 

a s  well a s  the amplitude of the disturbance. The following method 

is then devised to obtain these functional relations. 



The basic idea i s  to apply a two length-soake expansion procedure 

to the fluctuation equation (3.  4) in order to obtain a good representa- 

tion of the fluctuating components in terms of the parameters.  Locally, 

the fluctuation i s  assumed to be expanded in an ascending power of 

amplitude to account for the non-linear interaction between modes and 

the generation of the higher harmonics. The ser ies  representation 

will be truncated at various terms to bring in the higher order effects 

systematically. However, the expression for the fluctuation is not 

intended to be a ser ies  expansion of the exact solution but merely a s  

a technique for introducing the high order effects. Hence, the limita- 

tion of being close to the neutral disturbance imposed in the Stuart 's  

theory for parallel flows may be ignored. 

Before formulating the method of solution, i t  should be noted 

that the experiment of Sato-Kuriki had indicated the domination of one 

fundamental mode in the earl ier  stage of the wake instability. This i s  

believed to be the result of the highly selective amplification of the 

small disturbances in the boundary layer preceding the wake and the 

in wt 
linear region of the wake. Therefore, we assume that u ' ,  v'- e , 

n = - t 1, - t 2.. . where w = real  angular frequency corresponding to the 

fundamental mode. The higher harmonics a r e  the results of non- 

linear inter action. 

F i r s t  of all, the existence of two length scales for the longitudi- 

nal distance x in this problem should be noted. They a r e  

i) x - O(1) over which the mean flow quantities will vary  by 

an appreciable amount, and 



x-xo 
ii) x* = - a local length scale associated with the fluc- 

b(xo) ' 

tuations. Where x is the coordinate of some reference  
0 

station which depends on the local mean flow variation 

near  x such that the mean flow may be considered as  

paral lel  to the f i r s t  approximation in x* coordinates, e. g . ,  
(x-x0) db 

b (&)x << 1. Therefore, xo i s  generally a function 
0 

of x. It differs f rom x by a small  amount of the order  b. 

The existence of these two different scales may be realized by assum-  

ing that the disturbance locally displays the wave characteris t ics  

having a local wave length of the order  b ,  which i s  much smaller  than 

1 in the high Reynolds number case. Therefore, the mean flow may  

be considered as  slowly varying a s  compared to the variation of the 

fluctuating quantities. 
1 - 

Since the wake thickness i s  of the order  of R - ~  a s  indicated 

by Eqn. (3. 14),  we introduce the following new variables to bring out 

the above-mentioned order  of magnitude more  clearly. Let  

We further assume the fluctuating quantities to be functions of x, t-", 

x* and y:k by letting 

V' = WC (x) v$:(t*, x*, y*, X )  

2 
p' = w (x) p"(t*, x*, y*, x )  

C 



where w . (x) = 1 -u(x, 0 )  i s  the mean velocity defect along the wake 
C. 

axis that serves  as a proper measure  of the local mean velocity. 

Then one gets,  e. g. , 

aul 1 -- - au'k . au* 
h = R 2 w C ~ t w  C K  t ul:: - dwc 

dx 

The other derivatives a r e  calculated in the same manner. Upon sub- 

stitution of these resul ts  into Eqn. (3.  4), one obtains 

- av* dw - - a ~ *  c UV*< - (u - 
ax 

t R r v -  t-- 
ay* dx wc 

where 

These equations then describe the local behavior of the f luctuatk~g 
I - 

quantities for x near x The terms of the same  order  in R - ~  have 0' 



been grouped together in the above equations. For  R>>1,  i t  may 
1 

seem to b e  plausible in neglecting terms of o ( R - ~ )  to obtain 

av >l: - av* - 
at* t u -  

ax* 
@ :k 

t w t w y  = o  c ay* C'  2 

>k 8~ I 
where x1 and x2 a r e  given by (3 .  19a) with the t e rms  of O(R-') ne- 

glected. However, a careful examination of the terms will reveal  

the inadequacy of such an approximation in a complete non-linear 

analysis. In fact, two independent small  parameters  appear in this 
1 - 

problem: the amplitude of the fluctuation and Rm2  for large Reynolds 

number. Even for an a rb i t r a ry  large Reynolds number, the t e r m s  

on the RHS of Eqns. (3. 19) a re  not negligible when the amplitude of 

the fluctuation becomes finite. This fact may be  readily revealed 

by examining the leading t e rms  on the RHS of Eqns. (3. 19). Two 

types of t e rms  appear; the Laplacian t e rms  which indicate the viscous 

dissipation effect existed in all  viscous fluid, and the t e rms  originated 

from non-parallel mean flow. For  a wake which i s  dynamically un- 

stable, the viscous dissipation t e rms  may be ignored in general for 

large R except for a few occasions in which the viscous terms a r e  

needed to smooth out singularity. But the t e rms  resulting f rom the 

variation of the mean flow a r e  in fact of a different nature. The 
1 ciw -.. C leading t e rms  a r e  proportional to ( R - ~  - u*) which can be immedi- dx 

2 ately shown by using Eqn. (2 .  3a) to be of the order  (A / A /  j for l a rge  



.,r -'. >$ 
R. Now, we note that the leading terms of x and x a r e  of the 1 2 

2 
order  (A ). Since the solution of Eqns. (3 .  1 9 )  will be sought in an 

ascending power se r i es  of A, the effect of the non-parallel mean 

2 
flow will have to be included when t e rms  of order  higher than A a r e  

intended. Appendix B gives further discussions on this point and 

indicates the approach to include these effects for the higher o rder  

terms.  

Fo r  the present  investigation, the higher order  t e rms  will 

not be intended numerically. Therefore, Eqns. (3. 20) a r e  used in 

place of the full equations without inconsistency. To this o rder ,  the 

local mean flow i s  considered to be parallel,  and the transformation 

(3. 17) may be replaced by 

which provides a consistent definition for the "?J" variables with the 

expression (3. 13). Equations (3. 20) remain the same under this 

change. The differences between (3. 1 7 )  and (3. 17a) a r e  of the s ame  

order  of the terms ignored in arriving a t  Eqns. (3. 20).  

The f i rs t  equation in (3. 20) is satisfied,by introducing a local  

s t r  eam function +*(x*, y*, t':', x )  such that 

Now, l e t  



0;) -inw*tX: - 
+i. = [ + n ( ~ " ' y  YU;X) e 

inmy' t*: 
t + (x*, y*;x) e 

n 1 (3.22) 
n =l 

where " - I '  denotes the complex conjugate and w'k = boy a local angular 

frequency. The implicit dependence on x for both the amplitude and 

the distribution through the local mean flow quantities i s  also indi- 

cated. With Eqns. (3. 21) and (3 .  22), after eliminating p* in the l a s t  

two equations in (3. 20), one obtains 

a - - n ) 2 -  J 
ay* &* 

+ (a+mtn ax* ay* +m 

2 a2 where V =- a2 

2 t-  
ax 1b ay'h 

2 ' 

This i s  a system of infinite numbers of coupled non-linear part ial  

differential equations whose solutions a r e  difficult to obtain in general. 

However, since the fundamental and the second harmonic a r e  ob- 

served to be prominent in the "non-linear" region of Sato-Kuriki' s 

experiment, the higher harmonics a r e  not expected to play any 

essential ro le  in this region. In order  to simplify the analysis,  we 



truncate the ser ies  at  n = 2, and obtain four coupled non-linear equa- 

tions : 

- a  2 2 - a+, 
u ---7 v 4 z iw* v - 

axq 2- y2 - uy*y" &* 

- w 

and the complex conjugate of the above equations lor and +2. For 

an antisymmetrical fundamental mode,' the second harmonic will be 

symmetric from Eqn. (3.24). Thus, the boundary conditions a t  y* = 0 

are: 

At large distances from the wake axis, the fluctuations should vanish. 

Therefore a s  yx:-+ co 

f The fundamental mode i s  chosen to be a n t i s y m e t r i c  because the 
result of linear stability theory indicates that an antisymmetric fluc- 
bation is more  unstable than a symmetric one in the wake. 



Then the solution to the above system becomes a non-linear eigenvalue 

problem. Since, however, we a r e  not interested in the exact solution 

of these equations but in generating reasonable profiles for the use in 

the integral method, we adopt a small perturbation method for the 

solution of this problem. Even though in actual application, the a m-  

plitude of the fluctuations a r e  not necessarily small. 

Following Stuart and Watson, the following form i s  assumed 

for the solution of Eqn. (3. 24) 

91 = A4(x*; X )  [ fO (y* ;x) + I A*/ 2fl (p; x )  + - - -1 

and 

then 

As shown by Stuart and Watson, this form of solution leads to no 

inconsistency with Eqn. (3. 24) ' Upon substitution of Eqns. (3.26) 

and (3. 27) into Eqn. (3. 24), a set  of ordinary differential equations 

* 
can be obtained after equating terms of like powers in A . For  the 

t 2 It should be noted that for the terms of order higher than A in the 
above expressions, Eqns. (3.24) will have to be Lodified according 
to Appendix B. 



leading term of the fundamental mode, fo(y*), one obtains the Ray- 

leigh equation 

and its conjugate. 

Here we have considered the so-called " spatial mode" of 

amplification as  against the more commonly used ' ' temporal mode1 
I .  

That i s ,  with a* real,  we. take a* = ab = a* t ia:, a complex wave r 

number whose imaginary part  gives the local spatial rate of amplifi- 

cation or decay depending on its sign, It has certainly a closer 

resemblance to the experimental situations than the temporal mode, 

and their interrelation, to the f irst  order,  is  provided by the group 

velocity a s  shown by Gaster (27,28) 

Eqn. (3. 28) may be solved together with the appropriate homo- 

geneous boundary conditions. This constitutes an eigenvalue problem 

and a* will be determined which in turn fixes the value of a. in Eqn. 

(3. 27). However, it  should be noted here  that, being a solution to 

the homogeneous problem, f may be rnultipliecl by an arbitrary complex 
0 

constant. Although this constant may be included in the amplitude 

A*, which i s  not exactly defined yet, i t  may still  have a dependence 

on the large length scale. This fact i s  indicated by the dependence of 

A* on x in Eqn. ( 3 . 2 6 ) .  

The equation for go may be written a s  



It should be nlcntionccl that, in general, the solution to go consists 

of two parts:  

i )  the homogeneous solution which satisfies the Rayleigh 

equation corresponding to an angular frequency 2&, and 

ii) the particular solution which depends on the forcing 

terms on the RHS of Eqn. (3.29) a s  a result of the non- 

linear interaction of the fundamental modes. 

The homogeneous solution will introduce a new measure for i ts  mag- 

nitude, say Bak, which is  independent from A*. Therefore, an equa- 

tion of an analogous form to Eqn. (3. 27) will have to be introduced. 

The theory of Stuart and Watson has completely ignored this contri- 

bution to the solution. Although this situation may be handled by the 

present method, a s  will be seen la ter ,  the algebra will become 

increasingly tedious and will tend to cover up the real  physics. To 

simplify the calculations, we note that, a s  shown by Sato and Kuriki, 

the fundamental mode observed experimentally in the linear region i s  

very close to the peak amplification rate predicted by the l inear 

stability theory. Then, also from the linear stability theory ( refer  

to ~ o l d ( ~ ' ) , w e  will expect the disturbance a t  twice the fundamental 

frequency to be much less  amplified o r  even damped, Therefore, it 

seems to be plausible to ignore the contribution to g from the homo- 
0 

geneous par t  and use the particular solution of Eqn. (3 .  29) a s  the 

sole representation for  the leading term of the second harmonic. 

In order to obtain the equation for fl(y*), the correction t e rm  

to the fundamental mode, the terms ignored in arriving a t  Eqns. 

(3. 20) must be included. Appendix F gives an approximate numerical 



investigation of the effects of f (y*) on the complete flow based on 1 

Eqns. (3 .  20). The approach for an exact treatment of f l  ( y * )  i s  also 

discussed in Appendix F. 

The solutions of f and g may be obtained numerically without 0 0 

much difficulty in general. However, an additional difficulty i s  en- 

countered when a'? = 0. In this case, the wave speed c* = &/a* i s  
1 

a rea l  number, and there exists in the flow a cri t ical  point y* - - Yc 

where (;- c*) vanishes. For a wake, cy,$y" also vanishes a t  this 

point. Therefore, the equation for f i s  regular.  However, unless 
0 

the RHS of Eqn. (3.29) for go also vanishes a s  in the case of a shear  

layer considered by Stuart,  ( I 7 )  a singularity exists in Eqn. (3. 29). 

For  a wake, the singularity exists,  hence the viscous t e rms  will have 

to be retained in the neighborhood of the cr i t ical  point in o rder  to 

obtain a solution for g t 
0' 

To summarize,  up to the order  retained including the approx- 

imate solution of f l  in Appendix F, the local stream-function is given 

by 

2 i9 
+ * = { ~ ( f ~ +  / A I  f l )  e + ~ ~ ~ ~ e ~ ~ ~ )  i conj. 

with E (x) denoting the slowly varying complex ' ' constant' ' mentioned 

in discussing Eqn. (3. 28). Thus, A(x) represents  the complex 

An alternate method to avoid the numerical difficulty i s  by taking a 
distorted contour around the cr i t ical  point in the artificial complex 
y*-plane. 



amplitude of the fluctuation, sti l l  undefined s o  far.  The expressions 

for  u'g, v'k and p* can be easily obtained f rom ( 3 .  30).  

If desired,  the higher order  solutions may be obtained s imi-  

lar ly  through this cascade pr0c:c.s s where thc higllcr harmonics a r e  

generated a s  a resul t  of the interaction of the lower harmonics and 

in return the lower harmonics a r e  modified by the higher harmonics. 

The inclusion of f o ,  g and the discussion of f in Appendix I; in the 0 1 

present  study demonstrate the essentials of these processes.  

When the local mean flow conditions a r e  known, Eqn. (3. 30)  

will determine the distribution of the fluctuations when A i s  found. 

Because of the effects of the Reynolds s t r e s s  and the non-parallel 

mean flow, a strong non-linear coupling exists between the growth 

of the wake (variation of the mean flow) and the variation of the f luc-  

tuation amplitude. The relations among the unknowns a r e  obtained 

from the integral equations (3. 14), ( 3 .  15) and (3. 16). The expression 

(3.  3 0 )  i s  used only to systematically introduce the higher harmonics 

into consideration. It provides a method to obtain the local distribu- 

tion of the fluctuations anci, therefor e, the evaluation of the integrals ,  

I appearing in the governing equations (3. 14), ( 3 .  15) and (3. 16). 
i' 

The complete interaction mechanism may be  briefly il lus-  

trated in the schematic below. 

The mean flow, being characterized by the centerline velocity 

defect w (x) and the wake half-width b(x)  under the shape assumption 
C 

(3. 1 1 ), interacts with the fluctuating components through the Reynolds 

s t ress .  The cascade process for generating the higher harmonics 



- ignored in 

the present 

investigation 

Higher 
hormonics 

Schematic A of the Non-linear interaction , 

and the corrections back to the lower harmonics seems,  at  leas t  

superficially, to limit the interaction of the mean flow with the higher 

harmonics to unidirectional. For example, the second harmonic 

(Zw),  being generated by the interaction of the fundamental compo- 

n a t s ,  will have an effect on the mean flow through modifying the 

Reynolds s t ress .  However, i t  seems to extract energy from the 

fundamental instead of directly from the mean flow because of the 

close link s f  the second harmonic to the fundamental. This is the 

( 2 9 )  usual criticism on the cascade model (ref. to Yih ) But, because 

of the dependence of the integrals, L on the local mean flow quan- is 

tities, the mean flow in fact has a direct influence on the development 

of the second harmonic. So, basically, the present model does 

include all the essentials of the interacting mechanism. In the next 
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section, we will discuss the numerical treatment and will t ry to 

understand the various mechanisms by using the truncational approach 

discussed in this section to bring in the different effects in sequence. 



4. F i r s t  Order Results and Discussions; Case A 

The present study i s  intended to bring out the main effects of 

the following two mechanisms in the transition region when the a m -  

plitude of the fluctuation can no longer be considered as  infinitesimal; 

a )  the interaction between the growth of the wake and the 

growth of the amplitude of the fluctuation, 

b) the generation of the higher harmonics and the inter-  

action between modes. 

It i s  therefore desirable to separate out the effects of these two 

mechanisms when we t ry  to understand the processes numerically. 

This i s  done by truncating the expression (3. 30) for the perturbation 

s t ream function at  various orders such that their effects may be 

isolated. Three cases a r e  considered numerically in this investiga- 

tion. 

i) Case A: Eqn. (3. 30)  is truncated after the f irst  t e r m  by 

assuming that the fluctuation may be represented by the 

fundamental mode alone. This study i s  intended to under- 

stand the role of the Reynolds-stress in the energy 

exchange between the mean flow and the fluctuation. 

Since the higher harmonics a r e  ignored, this case will 

bring out the effect of the f irst  mechanism discussed 

above, This case is  considered a s  the f i rs t  order effect  

and will be discussed in this section. 

ii) Case B: Both f and g remain in Eqn. (3. 30) to repre-  
0 0 

sent the fluctuation. This case allows a study of the 



generation of the second harmonic through the non-linear 

te rms and i ts  interaction with the mean flow. By compar- 

ing with the resul ts  of case A in the next section, the 

effect of tne seconci harmonic may be separated out. 

iii) Case C:  All three t e rms  in Eqn. (3. 30) a r c  retained. 

The il term,  representing the ieed-back to the funda- 

mental mode, is generally considered a s  one basic feature 

of the non-linear interaction between modes. The study 

of this case is  expected to bring out such an effect on the 

complete interaction. An approximate treatment is  made 

in Appendix F. 

These three cases ,  basically, include the essentials of the 

non-linear interaction mechanisms in the wake. Similar processes  

a t  much higher complexity a r e  expected to be present  in the wake 

where all  the higher harmonics and other disturbances of different 

frequency exist. However, no deeper understanding of the transition 

of the wake i s  expected f rom the additional complexity, even though 

the evolution into a fully developed turbulent wake may be visualized 

a s  a resul t  of such interaction. 

4. 1 Formulation 

By truncating the expression (3 .  30) after the f i r s t  t e rm,  this 

case considers only the processes T and T I M  indicated in the 

schematic A representing the interaction between the mean flow and 

the fundamental mode. 

F r o m  (3 .  30) ,  the local fluctuating velocity components are 



simply given by 

U* = ~ ( x ) f b ( y * ) e ' ~  + conj 

v* = - i [ ~ ( x ) a * f ~ ( ~ * ) e ~ '  - conj] 

p* = ~ ( x ) ~ ~ ~ ( y * ) e ~ ~  + conj 

Here I' ' I' indicates differentiation with respect to y*. The solutions 

to the linear equation (3. 28) have been studied by many investigators 

and show no conceptual difficulties. For a wake, < * * vanishes a t  
Y Y 

the critical point for the neutrally stable case. Therefore, no true 

singularity exists in Eqn. (3. 28) even in the case of a? = 0. However, 
1 

numerically, the e r r o r  i s  enlarged when a? becomes small. One 
1 

method to overcome this difficulty i s  to include the viscous t e rm 

partially such that Eqn. (3. 28) i s  replaced by the Orr-Sommerfeld 

equation. But, even with the accuracy of the modern computing 

machines, special schemes (e. g. , Kaplan's method(30)) have to be  

devised for obtaining a solution because of the presence of the rapidly 

(31 growing exponential solutions (refer to Betchov and Crirninale) . 
One possible way to avoid such an elaborated numerical scheme is 

discussed in Appendix D. The other method, which is  used in the 

present investigation, i s  based on the findings of Lin (32-34). Lin 

showed that, by taking an appropriate artificial complex contour near 

the critical point, the inviscid solution gave a good approximation to 

the full solution for the near neutral and slightly damped cases. 



Using Eqn. (3. 11) for the mean velocity, we  can r ewr i t e  

Eqn. (3 .  2 8 )  i n  the form 

- 1 /& 

where  c = - 
W (3 -3) 

C 

The appropriate  boundary conditions lor  the an t i symmetr ic  mode of 

disturbance a r e  

Eqn. (4. 2) ,  together with the homogeneous boundary conditions (4. Za), 

constitute an eigenvalue problem. When the mean flow i s  given, 

Eqn. (4. 2)  can be solvecl numerical ly  to obtain the eigenvalue and 

the corresponding eigenfunction f (y*). The detai ls  of the method 0 

of solution a r e  given in Appendix A. It will only b e  noted h e r e  that, 

in general ,  for a given U*(y*), we have 

and 

which indicates the iunctional dependence oi  the eigcnvalue and the 

eigenfunction. Now, using (4. l ) ,  a l l  integrals  appearing in Eqns. 

(3.14 ), (3.15) and (3.16) can be  expressed  in t e rms  of fo(y*) and 

evaluated. The p r e s s u r e  i s  re lated to fo(y*) by 



It should be noted that the formulation so far  has reduced the 

integrals I, to a two-parameter representation aside from the d i rec t  
I 

square dependence on the amplitude A. Further  approximation will 

now be made to simplify the analysis. We observe that, in general ,  

the fluctuating components a r e  much smaller  than the mean,  and 

since both 1 and I a r e  positive and of the same order ,  the contri  - 1 2 

butions f rom the fluctuations in Eqn. (3.  14) may be ignored a s  a 

f i r s t  approximation. This approximation allows the decoupling of the 

amplitude of the fluctuation from the relation between b and w thus, 
C' 

Using (4. 61, the integrals a r e  then simplified to be functions of a 

single parameter  w when the physical angular frequency and the 
C 

f ree s t r e am Reynolds number a r e  given. Of course, the validity of 

this assumption will have to be examined a posteriori .  It may b e  

noted that for w small ,  Eqn. (4. 6 )  reduces to Eqn. (2. 2). 
C 

Using (4. l ) ,  the integrals can be written a s  

for i = 1, 2 , .  . . 9. The ki ts  a r e  integrals of functions of fo(y*) and, 

therefore, they a r e  functions of one parameter  w (x) only. They 
C 

a r e  given by 



Then by using (4. 6 ) ,  Eqns. ( 3 .  15j and ( 3 .  16)  can be written a s  two 

2 
f i r s t  o rde r  ordinary differential equations for w (x) and I A /  (x). The 

C 

exact definition of A will  now be given by setting 



This dcfinicion s e e m s  to be an appropriate one since both the govern- 

ing equations a r e  for the energy and (4.8) identifies one of the 

unknowns, 1AlL(x),  a s  the averaged energy of the fluctuating com- 

p n e n t s  nondirnensionalized by the local  mean velocity defect. 

2 Because of the quantities 1~ l 2  and w always appearing together ,  i t  
C 

is m o r e  convenient to u s e  Z = 2 lA12 w Z  a s  one dependent var iable  
C 

2 
instead of I A I  . The physical significance of Z to this o r d e r  can be  

easily seen to be the total energy density of the fluctuation, because 

1 a- - 2 2 z = - J (u' - V' )dy 
0 

The s e t  of equations can now be written in the fo rm 

or ,  solving for the derivatives algebraically,  one obtains 

with 

(4. 1 Oa) 



(4. 1 Ob) 

Eqns. (4. 10)  a r e  then solved a s  an initial value problem. However, 

since the initial magnitude of the fluctuation will be different for dif- 

ferent testing conditions, i t  should be left as a parameter  to be spec- 

ified for each problem. It i s ,  therefore, f i r s t  proposed to solve 

this initial valued problem in the following manner. 

In the limiting case of zero amplitude of the fluctuation, the 

set reduces to the integral equations of a steady laminar wake. Eqn. 

(3. 16) i s  identically satisfied and Eqn. (3 .  15) becomes 



with b given by (4. 6 )  exactly. The solution of (4. 11) can he obtained 

once and for al l  by starting the numerical integration f rom a far  wake 

solution a t  some la rge  distance x. The additional subscript "1 ' '  i s  

used to designate this solution which corresponds to no disturbance 

case. 

In general,  to solve Eqns. (4. 1 O), a se t  of initial conditions, 

w and ZO, has to be given a t  some initial station cO. Then, i t  
c 0 

seems to require two free parameters  for the problem. However, 

i f  f i s  taken to be somewhere near  the beginning of the wake (but 
0 

not right a t  the vicinity of the plate trailing edge where the boundary 

layer approximations a r e  invalidated), the magnitude of Zo  i s  ex- 

pected to be very smal l  i f  a laminar boundary layer  exists on the 

plate. Then ZO and w a r e  not independent but connected by the 
co 

governing equations. If we let  

w = w  + A W ,  
co Cl 

then apply linearization, AW and Z satisfy a se t  of homogeneous 0 

ordinary differential equations. The condition on the existence of a 

solution yields a relation of the form 

Aw - = function (w } 
Z o  C1 

Eqn. (4. 12) reduces the problem to one initial parameter .  



Integration of Eqns. (4. 10) can then be started by picking an initial 

station cO and specifying an initial magnitude Z 0' 

Since Aw i s  generally very small  when Z i s  small, i t  has 
0 

been found numerically that the solutions a r e  quite insensitive to the 

value of Aw as  long a s  Z i s  small. For a qualitative understanding 0 

of the problem, this small  difference in the solutions may be ignored. 

Thus, most of the results to be presented in the next section have 
' 

been obtained by using wC03 w at  the initial station. Its effect on 
C~ 

the solutions will be discussed later.  

4.2 Results and Discussions 

For the purpose of comparison with the experimental results  

of Sato and Kuriki, (2)  the numerical calculations have been per - 
formed corresponding closely to the experimental conditions. The 

mean velocity function, U*(y*), used 

be the one used by Sato and Kuriki in 

for 

the 

the calculation i s  taken to 

linear region, i. e . ,  

U*(y*) = exp (-  0.6931 5 y*') 

Eqn. (4. 13) also gives the exact definition of the half-wake width b 

a s  the distance from the wake axis to the half velocity defect point 

where U* = 0. 5. The physical angular frequency of the fundamental 

mode used in the calculation i s  also taken from the experiment of 

5 Sato and Kuriki to be 730 cps at  R = 2 X 10 . 
The preliminary numerical work for  case A, where the non- 

linear terms in the local disturbance equations a r e  neglected, 

amounts to solving the Rayleigh equation and obtaining the integrals. 

Using the method discussed in Appendix A, we find that the frequency 



observed experimentally does correspond to the one receiving nearly 

maximum amplification rate in the linear region a s  indicated by the 

temporal mode calculation of Sato and Kuriki. Following this fre-  

quency, the variation of the local amplification ra te  a s  a function of 

the mean velocity defect along the wake axis, w i s  shown in Fig. 2. 
c , 

As the value of w decreases,  the disturbance becomes less  ampli- 
C 

fied. At wc= . 147, ax: = 0; the given frequency corresponds to a 
1 

neutrally stable solution according to the linear theory. Further 

decrease of the mean flow parameter w will make this frequency a 
c 

darnped disturbance (a* > 0) according to the linear theory. 
I 

A few typical distributions of the magnitude and phase of the 

eigenfunction f (y*) and i ts  derivative fb(y+), corresponding to a 0 

range of eigenvalues between the most amplified and the nearly neu- 

tral ones, are shown in Figs. 3a- j. It may be interesting to note the 

fairly drast ic  variation of the phase of f with the mean flow parame- 0 

ter as  i t  approaches the neutral case. 

The eigenvalues and the corresponding integrals,  k a s  func- 
i' 

tions of the parameter ,  w a r e  given in Tables 1 and II. Calculations 
c ) 

have been performed only for those listed cases. A complete curve 

for each integral a s  a function of w is generated by curve-fitting 
C 

through those points. The derivatives (dki/dw ), when required, a r e  
C 

obtained by differentiating the curve-fit. In general, the integral 

curves a r e  sufficiently smooth to permit such an operation, and 

check well with the slopes obtained graphically. 

With all  the functions appearing in Eqns. (4.10) determined, 

the equations may be integrated for each given se t  of initial conditions. 



4.2.1 Comparison with Experiment 

Most of the experimental results  presented by  Sato and Kuriki 

were  measured with a free s t ream velocity U = 1 Om/sec. and a plate 

length L = 30 cm. These conditions co

r

respond to a f ree  s t r eam 

5 
Reynolds number of 2 x 10 . From the experimental evidences, 

laminar Blasius velocity profile was established on the wall near the 

end of the plate, and a nearly laminar region of small amplitude dis- 

turbances existed a t  the beginning of the wake, The calculations a r e  

therefore started at  an initial station go  = . 05 using the appropriate 

initial conditions. Two initial parameters a r e  at our disposal. The 

centerline velocity defect w a t  to can be taken from either the exact 
c 0 

solution of Goldstein or  the integral solution of an undisturbed larninar 

wake in the present  formulation which is  not .very accurate there in 

view of the decreasing validity of the boundary-layer approximation 

as  Po decreases. For the present comparison purposes, i t  i s  decided 

to use w = 0.7 a t  to = . 05 because of the closer agreement with 
co 

the experiment at  that point. 

Another initial parameter is chosen to be the initial inte- 

grated energy content in the u' -component; i. e. , 

where the subscript "0" refers  to value a t  cO. The use of this f r ee  

parameter seems to be justifiable because of the different flow con- 

ditions encountered in each experiment, e. g. , the f ree  s t ream 

turbulence intensity level, the physical dimension of the plate trai l-  

ing edge, etc. 



As we have mentioned previously, these two initial parame- 

ters  a r e  not independent for small E and only one free parameter uo 

exists. But, for the purpose of a qualitative understanding of the 

transition mechanisms in the wake, they a r e  chosen somewhat arbi-  

trarily in performing the following calculations. The effects of each 

of the initial parameters on the complete solutions will of course be 

investigated later ,  

Fig. 4 shows a comparison of the measured centerline velocity 

defect w with the present calculation. The value of EuO has been 
C 

taken a s  1 x for obtaining the curve. The result i s  quite sat is-  

factory and seems to provide the explanation for the rapid breakaway 

from the pure laminar wake solution of Goldstein which i s  also shown 

in the same figure for comparison. 

Only those data and calculated curve for x -< 0. 5 a r e  presented 

because the three-dimensional effects observed experimentally a t  

larger x a r e  not included in the present formulation. Theoretical 

calculation for x > 0. 5 stays practically unchanged near the value of 

w = . 148. It i s  also interesting to note that this asymptotic value of 
C 

w corresponds closely to the value where ax: = 0. This value seems 
C 1 

to indicate a balance between the various mechanisms which a r e  

responsible for changing the mean flow. A detailed discussion of 

the physical mechanisms involved will be given later.  We will just 

note that, although it  may be somewhat fortuitous, the measured w 
C 

has never become smaller than this value before the turbulent region 

for all the tests. 



Fig. 5 shows the comparison of the measured wake half-width 

with the one calculated by using Eqn. (4.6). The general trend i s  

still satisfactory but not as  good as w . This disagreement tends 
C 

to suggest the approximation used in leading to (4 .6 )  may not be 

appropriate i f  a better calculation i s  required. In such cases ,  the 

-act relation (3. 14) will have to be used which couples the growth 

of the wake directly to the amplitude of the disturbance. An attempt 

to include this effect will be discussed in Section 4. 2.6.  Also shown 

on the same plot i s  the growth of the purely laminar wake. The 

strong interaction effect induced by the Reynolds s t resses  i s  evident 

from this comparison where the wake width has increased by m o r e  

than a factor of two. 

Fig. 6 gives the theoretically calculated variation of the inte- 

1 7  
grated fluctuation energy, Eu = i; 5 u' dy. Since no quantitative 

0 
measurement of the magnitude of the fluctuating components has been 

reported by Sato and Kuriki, a d i rec t  comparison with the experiment - 
2 $ 

i s  not possible. However, the variation of the maximum of (u ) f 

' given by Sato-Kuriki on an arbi t rary  scale (Fig. 1)  does yield the 

similar  relative development of the fluctuation. Experimentally, the 

magnitude of the fundamental mode grows initially according to the 

exponential law of the linear stability theory but i t  soon reaches a 

maximum and then decreases.  This fact, which cannot be explained 

b y  the linear stability theory alone, may be understood now from the 

present calculation. However, i t  should be pointed out that the rapid 

decrease of E does not imply the same variation of the total fluctua- 
U 

tion energy. This i s  seen in Fig. 7 where 



a r e  plotted. The variation of E i s  related to the local amplification F 

ra te  a* given by the linear theory with some correction due to the 
1 

variation of the mean flow as  demonstrated in Section 2. 4. The ra te  

of change of the amplitude will therefore s t a r t  out in the linear region 

with a nearly maximum exponential growth and decreases a s  it  moves 

downstream. The fluctuation reaches an equilibrium amplitude some- 

where near a* = 0 when the mean flow ceases to vary, and then slowly 
1 

decays because of the viscous dissipating effect. Because of the 

growth of the wake, a more appropriate measure of the magnitude of 

the disturbance i s  the total energy density ET defined by Eqn. (2. 8). 

The variation of ET is  shown in Fig. 7a. The reason for the sharp 

decrease of E in contrast to a relatively slower variation of the total fluc- u 

tuation energy density as  shown in Fig, 7a i s  given by Fig. 8 where 

the ratio of the integrated energy content in u' to that in vs ,  

CO- 2 dy*/J v' dy*, 
0 

i s  plotted against w . The ratio varies by more than a factor of six 
C 

for the range of w _  encountered here. Therefore, we may conclude 
L 

that the redistribution of the fluctuation energy between the two com- 

ponents u' and v', together with the change of mean flow a re  responsi- 

ble for the experimentally observed abnormal phenomena. 

The non-dimensional wave propagation velocity, taken a s  the 

real  par t  of c* = w*/a*, measured by Sato-Kuriki, can also be ob- 

tained from the present calculation and the comparison i s  shown in 



Fig. 9. The scatter of the experimental 

ment i s  acceptable. The variation of the 

consequence of the changing mean flow. 

In view of the expansion ser ies  in 

formulation, the variation of /AI2  with x 

data suggests that the agree- 

wave speed i s  again a 

1 ~ 1 ~ u s e d i n  the present 

i s  shown in F ig .  10. This 

variation should follow closely the local amplification rate except for 

a small  correction caused by the changing mean flow indicated by 

~ ( x )  in Eqn. (3. 33 )  and the viscous damping effect which has been 

ignored in the local calculation. The maximum value reached, 0 .8 ,  

i s  certainly too large for justifying the truncation of the higher order 

terms.  However, i t  should be emphasized again that the e r r o r  in- 

duced by the truncation would be minimized by the use of the integral 

method. 

Another indication of the need for the inclusion of the higher 

order t e rms  i s  seen in Fig. 11 where the variation of the integrated 

fluctuation energy in u'-component divided by the square of the local 

2 mean velocity defect, Au = dy*, i s  shown. This quantity, 
0 

which i s  usually used by the experimentalists as  a measure of the 

intensity of the fluctuation, seems to be too high from the calcula- 

tion. This discrepancy may be a result of the truncation. However, 

i t  should be noted that, in the present formulation we have assumed 

that only a single frequency dominates and the higher harmonics, as  

a consequence of the non-linear interactions, only 

multiples of this frequency. In the real  situation, 

frequency exists. Individually the fluctuation with 

appear a t  integer 

a spectrum of al l  

frequency other 



than w may have negligible amplitude a s  compared to the one a t  w, 

but thcir integrated effect may not be ignored. The present  formula- 

tion has included practically a l l  the energy in a single frequency; 

hence we shall  expect a higher level than that being observed in the 

experiments. A further discussion on this point will have to be  made 

after the completion of the calculations including the higher harmonics. 

We will f i r s t  accept this f i r s t  order  truncational approach and pro-  

ceed to study the physical interaction mechanisms in the wake 

through the numerical results.  

4 .2 .2  Physical Mechanisms of Energy Balance 

This section will recapitulate and justify quantitatively the 

qualitative discussions given in Section 2. 4. As we have discussed 

previously, the energy equations for the mean flow and for the fluc- 

tuation written in the form of (3. 15) and (3 .  1 6) indicate clearly the 

governing energy transfer  mechanisms. The left hand side of both 

equations represent  essentially the ra te  of change of the energy which 

a r e  balanced by the t e rms  representing the Reynolds s t r e s s e s  and 

the viscous dissipation on the right. We may rewri te  Eqns. (3. 15) 

and (3. 16) symbolically a s  

where 



2 db dw 

T~~ = T ~ f  = I6 W: - 2wc [I  w - +  (I -I ) b L ]  5 c d x  4 3 dx 

and 

Em and Ef,  to the leading order ,  represent the energy content of the 

mean flow and the fluctuation correspondingly. Both TVM and TVf 

a r e  always positive and represent the loss  of energy by viscous dis- 

sipation. We will expect the sign of T or  T to be positive in 
RM Rf 

general such that the energy i s  taken from the mean flow and fed into 

the fluctuation through the Reynolds s t resses .  

It i s  appropriate to note here that Eqn. (4. 15b) may be written 

in the fo rm of a governing equation for the amplitude of the fluctua- 

tion, which gives 

This i s  analogous to the amplitude equation obtained in the non-linear 

stability theory for parallel flows ( e. g. , watson'l 9 ) ) .  The main 

difference i s  in the dependence of the coefficients a ( x ) ,  on the mean n 

flow quantities instead of being constants a s  in the case of par allel flows. 

In fact this i s  the feature which brings out a much larger  deviation 

f rom the linear stability theory. The coefficient s ( x )  in Eqn. (4. 16) 

is proportional to the local amplification ra te  which is equal to (-a?) 
1 



in the present  spatial mode approach. The coefficient q ( x )  which i s  

generally refer red  to a s  the second Landau ' '  constant" in the paral lel  

flow theory, is  no longer a constant here. And because of the chang- 

- 
ing mean flow, a l  i s  non-zero even when the higher harmonics apar t  

f rom the fundamental mode a r e  ignored. 

With the numerical resul ts  obtained, a detailed numerical  

breakdown of the variations of the t e rms  which appear in Eqns. (4.15) 

should be helpful in understanding the ~ h y s i c a l  processes  in the 

transition region. The resul t  i s  shown in Fig. 12. The following 

physical picture i s  evident i f  we refer  simultaneously to Figs. 4 and 

7, where w gives a measure  of the energy of the mean flow while 
C 

E is certainly the correc t  representation of the fluctuation energy. F 

When the amplitude of the fluctuation i s  smal l  in the initial 

stage of the wake, the magnitude of TRM is quite small as compa~ed  

to the viscous t e rm  T 
VM ' Eqn. (4. 15a) i s  not much different f rom 

the integral energy equations for a steady laminar wake and the solu- 

tion for w follows closely the solution of Goldstein. As to Eqn. 
C 

(4. 15b), i t  can be shown that for Z small ,  where the variation of 

mean flow may be ignored, the equation gives a nearly constant 

r a te  of exponential growth predicted by the linear stability theory 

for the infinitesimal disturbances a s  it should. Moreover, the vis-  

cous dissipation t e r m  T i s  of an order  of magnitude smaller  than 
V f 

TRf  which supports the fact that the instability of a wake is basically 

an inviscid phenomenon. In this region, the energy transfer t e rms ,  

whose leading order  i s  proportional to the square of the amplitude of 

the fluctuation, a r e  so smal l  that the t ransfer  of energy may be 



ignored a s  assumed in the linear stability theory. However, a s  the 

amplitude grows, the energy transfer by the Reynolds atreeseu, TRM, 

becomes of comparable magnitude to the laminar viscous dissipating 

t e rm TVM, and may no longer be ignored. The effect appears on the 

noticeable branching away of the mean velocity from the steady lami-  

nar wake solution. The continuing near exponential increase of the 

magnitude of this energy transfer  t e rm causes the complete wake to 

be quickly dominated by the energy transfer  between the mean and 

the fluctuation. The energy i s  continuously extracted from the mean 

flow and fed into the fluctuating components. In the meantime, be- 

cause of the rapid growth of the wake, the disturbance i s  driven away 

from the maximum amplification ra te  and becomes l ess  amplified. 

This fact is  clearly shown in Fig. 12a where the variation of the local  

spatial amplification rate,  -a?, i s  plotted. As a result ,  the ra te  of 
1 

energy transfer from the mean flow soon becomes saturated and de- 

creases.  This point of saturation corresponds approximately to the 

location of maximum slope (dwc/dx). F rom this point on, the fluc- 

Luating component continues to take energy out from the mean flow 

but a t  a decreasing ra te  until i t  reaches the value w for the mean 
C 

flow, where the local l inear solution gives a very small  negative value 

of a?. At this point, the Reynolds s t resses  t e rm  becomes vanishingly 
1 

small and because of the higher order t e rms ,  which appeared a s  a 

result  of interpreting par t  of Em a s  the energy of the mean flow, the 

energy i s  feeding, though slowly, back to the mean flow. When this 

energy transfer i s  just right to balance the laminar viscous dissipation 



term, TVM, the mean flow reaches an equilibrium, i. e . ,  the asymp- 

totic value of w obtained numerically. Meanwhile, the magnitude of 
C 

TVf becomes comparable to T and dominates the fluctuation devel- 
Rf 

opment. The energy i s  then dissipated from the fluctuation which 

causes the amplitude of the fluctuation to decrease  at  a smal l  rate.  

Calculations have been carr ied out to a much larger  x that 

shows' practically no change from the picture described above. Be-  

cause of the viscous dissipation terms,  eventually the amplitude goes 

back down to a very small value where the laminar viscous t e r m  in 

the mean flow equation takes over again. This i s  a slow process and 

we have known from the experiments that both the higher harmonics 

and the three-dimensional effect, even turbulence, will set in long 

before then. Therefore, no emphasis will be placed on the resul ts  

a t  large x. 

It may be noted here  that the t e rms  which have been generally 

termed as  the "Reynolds s t resses ' '  effect in Eqns. (4. 15) a r e  actuctdiy 
- & composed of two parts:  one i s  the usual Reynolds s t r e s s  (u'v')  - , 

- - ? Y  
2 2 &I 

'and the other originates f rom the normal s t resses ,  (u' - v' ) z .  
The lat ter  will not appear in a strictly parallel flow. A further break- 

down of the contributions to TRM or T i s  shown in Fig. 13, where R f 
- a; 

TR1 denotes the contribution from (u'v' ) - and TR2 gives the d i rec t  
ay 

effect of the non-zero mean flow gradient on the energy exchange. 

It i s  clear that the contribution of TRZ i s  small  in general except 

near equilibrium. This i s  in agreement with the large  Reynolds num- 

ber boundary layer approximation used in the present  analysis. 



However, i t  should be noted that, i f  there were an axial mean p r e s su re  

gradient, i t se f fec t swouldappearmain ly th roughT a s  s e e n f r o m  R2 

the derivation leading to the equation. This point will be discussed 

further through additional numerical calculations in Appendix E,  to 

investigate the effect of dp/dx. 

4. 2. 3 Effects of the Initial Values 

Although no special attempt has been made in obtaining the 
' 

theoretical curves discussed in this section to match the experimental 

data, the arbi t rar iness  in getting the s e t  of initial values warrants  an 

investigation of their effects. We will study the effects of the two 

initial values, w and EUO, separately in the following. 
co 

(A) Effects of w co 

We f i r s t  notice that the integral solution of Eqn. (4. 11) does 

not agree  exactly with the solution of Goldstein. Curve 1 in F ig .  14 

corresponds to the solution of Goldstein. Curve 2 i s  obtained by 

starting the integration of Eqn. (4. 11) a t  a la rge  value of x, using 

the far  wake solution of Goldstein a t  that point, integrating backward 

toward the origin. The curve deviates f rom the solution of Goldstein 

in the near wake region a s  a resul t  of the integral approximation. 

Curve 3 is obtained by using the exact value of Goldsteln a t  Po and 

integrating downstream. This gives a closer agreement with the solu- 

tion of Goldstein in the region where the main interest  of our present  

investigation res t s ,  but i t  gives a consistently higher w than curve 1. 
C 

Curve 3 can in fact be obtained by shifting the origin of curve 2. Phys- 

ically, curve 3 corresponds to a thinner wake than the other two a t  



corresponding stations. For consistency of the integral approach 

the valuc from curve 2 should be used for the calculation. I-Iowevr~r, 

all  integrals a r e  taken a s  functions of w alone, it i s  also 
C 

desirable to use  the result  closest to the exact solution. This fatter 

choice has been used in obtaining the previous calculations because 

of the closer agreement of curve 3 to the exact solution in the region 

of interest (. 05 d x S  . 30). It i s  therefore necessary  to investigate 

the effect of varying w in the solutions. co 

Three cases of variation of w corresponding to the initial 
c 

valuesw being 0.7, 0.675, and0.6386 a r e  showninFig .  15. co 

The value wcO = 0. 6386 corresponds to the steady laminar wake 

solution of curve 2 in Fig. 14 a t  to  = . 05. The same value of EUO 

has been used for al l  three curves which seem to give qualitatively 

the same variation of w and asymptote to the same value of w . The 
C C 

effect of wC0 appears mainly in the maximum value of dw / d x  reached 
C 

such that a smoother variation i s  obtained for a lower value of w 
c0' 

A few experimental data points a r e  also shown there for comparison. 

Using the location of maximum dw / d x  as  a point of demarcation, 
C 

i t  seems to indicate that the experimental data agree  better with the 

r e su l t o f  s m a l l e r w  in t h e r e a r p o r t i o n o f x ,  b u t a c l o s e r  agreement co 

i s  seen with the larger  w case for the front portion. This i s  ex- 
c o  

pected because of the implications of different initial wake thicknesses 

for the different values of wcO. 

Figs. 1 6 and 17 give the variations of the integrated fluctua- 

tion energy for the three cases.  The general variation i s  again 

qualitatively unchanged except for the different locations and levels 



of the maximum value reached. This difference can also be under- 

stood f rom the fact that a higher w implies a thinner wake and co 

therefore a higher amplification ra te  locally. This finding explains 

in a smal l  pa r t  the high peak energy obtained by the calculations 

using w = 0.7 a s  compared to the experiments. co 

An additional test  has been made by varying the values of wcO 

by a small  amount according to Eqn. (4. 12) when w i s  linked to the 
co 

initial disturbance energy level E 
u0' The resu l t s  show practically 

the same solutions. Therefore, no attempt has  been made to use  

Eqn. (4. 12) for a l l  the calculations. 

Zn conclusion, the effect of w i s  not ve ry  important when 
co 

the purpose of the study i s  a qualitative understanding of the t ransi-  

tion mechanism in a wake. However, the indicated effects should be 

borne in mind when any quantitative comparison i s  intended, 

(B) Effects of EUO 

To investigate the effect of EuO on the solutions, a few cases  

5 were  calculated for R = 2 x 10 with the same  value of w but differ- 
co 

ent EUO. Fig. 18 shows the variations of w for three  initial values 
C 

- 5  EUO = 0. 1, 1 .0 ,  3. 0 x 10 . The shape of the curves remains prac-  

tically unchanged. Changing the initial value of EUO amounts only to 

a shift of the curve. It i s  expected f rom the previous discussions of 

the physical mechanisms that the magnitude of the disturbance r e -  

quired to cause a sensible deviation of the solution f rom the undis - 
turbed case  i s  approximately the same over a range of wc where the 

laminar viscous t e r m  i s  of the same order .  Therefore a smal ler  



initial magnitude of the disturbance will cause the mean flow to be 

well approximated by the laminar solution for a longer distance, while 

the disturbance g r  ow s exponentially without much influence on the 

mean flow, till it reaches the magnitude where the interaction becomes 

important. This i s  further illustrated by the variations of the inte- 

grated fluctuation energy, EU, shown on Fig. 19. The shapes a r e  

again s imi lar  with merely  a shift in abscissa. It should be noted that, 

with the variation of a factor 30 in E the maximum values of E u0' u 

reached a r e  nearly the same and the difference in the " equilibrium" 

magnitude i s  negligible, The slight difference in the peak values of 

E i s  caused by the slight change in the magnitude of the laminar u 

viscous t e rm  when the interaction becomes important. In principle,  

ii the initial magnitude of the fluctuation is smal l  enough, the solution 

will approach the steady laminar wake solution corresponding to EUO- 0 

which i s  also shown in Fig. 18 for comparison. 

The magnitude of the disturbances existing a t  the initial stage 

of the wake depends on many factors which vary from experiment to 

experiment. These factors include both controllable, e. g. , an a r t i -  

ficial source of disturbance, and partially controllable, e. g. , rough- 

ness of the plate, wind tunnel noise level, etc. If any quantitative 

calculations a r e  needed, i t  will be necessary  to have some measure  

of the magnitude of EUO This fact i s  further demonstrated by the 

two se ts  of experimental data points also shown on F i g .  18 taken from 

the paper of Sato-Kuriki. The data points correspond to two different  

plate models tested under the same free s t r e am conditions. Model I 

has a sharp trailing edge but Model II has a blunt one. As to be 



expected, a la rger  E will be associated with Model I1 which shows 
uo 

the right trend a s  indicated by the calculations. 

As a whole, we may conclude that the initial values will affect 

the solutions quantitatively but with the qualitative mechanisms in the 

non-linear region remaining practically unchanged. This insensitivity 

i s  to be expected when the non-linear effects a r e  important; the 

memory of the initial values should be mostly erased. 

4. 2. 4 Reynolds Number Effect 

A wake i s  dynamically unstable because of the inflected mean 

velocity profile. The l inear  stability theory indicates that the effect 

of Reynolds number on the stability of the f ree  shear  flow i s  negli- 

gibly smal l  for sufficiently large Reynolds number. It has been 

shown that the effect of ( 1 / ~ )  te rms in the equation is  small  every- 

where except in a small  region near  the critical layer  for the ampli- 

fied and neutral disturbances. In general,  the viscous effect does 

not affect the eigenvalues which may be determined f rom the inviscid 

equation, The amplification ra te  given by the linear stability theory 

is therefore unaffected by the Reynolds number. For  the non-linear 

approach here ,  i t  i s  certainly desirable to find out the effects of 

Reynolds number on the transition of the wake, which is  defined h e r e  

a s  the deviation f rom a pure laminar wake. 

Since the inviscid Rayleigh equation has been used to obtain 

the local solutions for the fluctuation, the integrals,  ki, a r e  universal 

functions of w for al l  Reynolds numbers. This may b e  seen f rom 
C 

Eqn. (4. 4) where the eigenvalue and the corresponding eigenfunction 

a r e  indicated to be functions of w i  and w*. The non-dimensional 
C 



frequency wx: is  related to the physical angular frequency by 

b L  
w* = wb = - x (physical frequency) u (4. 17) 

It was found experimentally by Sato and Kuriki that the physical f re-  

quency of the most unstable sinusoidal fluctuation observed in the 

linear region of the wake follows a 3/2 power law a s  the Reynolds 

number varies.  Furthermore,  the half-width, b ,  i s  clearly seen . 

from Eqn. (3.14) to be varying with the drag coefficient which i s  
1 

proportional to R-Z. Therefore, if we chose to follow the most  un- 

stable frequency a t  various f ree  stre- Reynolds numbers, the 

value of w* i s  a constant which i s  independent of R. Thus, the same 

functional relations k. (w ) may be used for different Reynolds nurn- 
1 C 

be rs  that greatly simplify the investigation of the effects of Reynolds 

number . 
Fig. 20 shows the variations of w for four values of Reyn- 

C 

olds numbers. The same se t  of initial values, w = 0. 7 and co 

EUO 
= 1 x has been used in obtaining the curves, in order  to 

- isolate the effects of Reynolds number. The effect on the solution 

i s  somewhat s imilar  to the effect of changing the initial magnitude 

of the fluctuation EU,. In fact, i t  may be seen from Eqn. (4. 15a) 

that the ratio of the Reynolds s t resses  t e r m  to the laminar viscous 

t e rm i s  of the order  1 ~ 1 ~ 0 .  Hence, the effect of R on the begin- 

ning of transition i s  s imilar  to the effect of E uo- However, the 

effect of R differs through i ts  persistent influence over the whole 

non-linear region other than a m e r e  shift of the abscissa. When the 



Reynolds number decreases,  the viscous damping t e rm becomes 

more  important in the non-linear region, therefore the overall 

transition becomes smoother. The pure laminar wake solution also 

shown on the same plot, in principle, gives the limiting case of 

very small  Reynolds number. But this interpretation of the pure 

laminar wake solution is  merely an ideal one and the one cor res-  

ponding to zero amplitude disturbance i s  preferred in the present  

high Reynolds number approach. 

Also shown in Fig. 20 a r e  two se ts  of experimental data of 

5 5 
Sato and Kuriki a t  R = 2 x 10 , 1 x 10 correspondingly. The agree-  

ment in the trend and even the quantitative effect a r e  fairly good 

considering the fact that i f  EuO = 1 x 1 0 ' ~  were correct  for the case 

5 
of R = 2 x 10  , the same value of EUO would have been too large 

for the smaller  Reynolds number case. 

Because of the persistent influence of the Reynolds number 

on the interaction, its effect on the fluctuation energy i s  more pro-  

nounced than the effect of EUO. The result i s  shown on Fig. 21 

. where it may also be noted that the final equilibrium amplitudes 

reached a r e  different because of the effect of Reynolds number 

appearing through the t e rm  TVf in Eqn. (4. 15b). This result  is 

also different from the effect of EUO which leaves the final equi- 

librium amplitude of the fluctuation practically unchanged. 

4. 2. 5 Effect of the Viscous Dissipation T e r m  Tvf 

The effect of the viscous dissipating t e rm  T in the devel- V f 

opment of the disturbances can be studied by simply setting Is= 0. 



5 Comparison i s  made on Figs. 22 and 23  for the case of R = 2 x 1 0  . 
With identical initial conditions, Fig. 22 shows that the effect of TVf 

on the mean flow i s  quite small as  one would expect. Figs. 23 and 

23a show that i f  the viscous dissipation te rm were  absent, a final 

equilibrium amplitude would have been achieved, and therefore 

another laminar oscillatory flow. However, because of the effect 

of the viscous dissipation, this equilibrium condition cannot maintain 

itself and the amplitude decays slowly a s  it proceeds further down- 

s t ream to account for the energy loss. 

4.2. 6 Effect of Coupling b to wc 

The assumption of neglecting the contribution from the fluc- 

tuating components in the integrated momentum equation, which 

leads to a simple relation (4. 6)  between b and wc, will now be exam- 

ined. From the calculated results,  it i s  found that the terms,  which 

have been neglected to arr ive  at the expression (4. 6 ) ,  a r e  indeed 

small compared to the remaining terms in the initial stage but in- 

crease to about 20  percent of the sum of the remaining te rms  when 

' the amplitude of the fluctuation reaches a maximum, It i s  therefore 

desirable to investigate the effect of using the full integral momen- 

tum equation. 

An exact formulation will require the generation of the inte- 

grals ,  k a s  functions of two parameters,  b and w To simplify 
i' c' 

the analysis, we assume that the integrals may still  be taken as  

functions of w only, but the integral. momentum, Eqn. (3 .  141, i s  
C 

used instead of the approximated Eqn. (4. 6). Then, the wake half- 

width b i s  a function of wc a s  well a s  the amplitude of the fluctuation. 



The resul ts  of such an integration a r e  shown in Figs. 24 to 

5 2 6  for  the case of R = 2 x 10 . It i s  clear that the effect on the mean 

flow velocity variation i s  quite small. Since a relatively thinner wake 

i s  obtained when b i s  decoupled f rom w i t  does make a difference 
C' 

on the variation of the fluctuation energy and the final level approached. 

The variation of wake half-width b for the two cases  a r e  shown in 

Fig. 2 6  together with the measured resul ts  of Sato and Kuriki. The 

decoupled resul t  does s e e m  to agree  better with the measurements,  

especially in the " equilibrium' ' wake width. 

In any case,  a conclusive discussion on this effect can only be 

rnade after an exact formulation with k .  = k. (w b). Depending on the 
1 1 C *  

sensitivity of these integrals to the variation of b, the actual effect 

may be significant, since a careful examination of the Rayleigh equa- 

tion will immediately reveal that the change of b for a given w i s  
C 

equivalent to a change of the physical frequency. (Refer to Eqn. 

(4. 4). ) Based on the resul t  of the linear stability theory, this change 

of the physical frequency amounts to a shift on the eigenvalues which 

will then cause the disturbance to become more  or  l e s s  amplified 

locally according to the direction of the change. 

4. 2. 7 Effect of the Shape Assumption for the Mean Flow Velocity 

It is  learned from the experimental resul ts  of Sato and Kuriki 

that the mean velocity profiles a t  various x-stations a r e  not com- 

pletely s imi lar  in non-dimensional form. Even an overshoot in the 

mean velocity profile has been observed at a station which makes the 

distribution quite different f rom the Gaussian assumed in the present  



calculation. Although this abnormal mean velocity clis tribution may 

be caused by some other effects which a r e  not accounted for in the 

present analysis, i t  i s  still desirable to study the effect on the solu- 

tion when the mean flow velocity distribution is  modified. For  this 

purpose, we a s s u n e  the simplest possible form for the mean flow 

other than Eqn. (3. 11 ) a s  follows, 

where U*(y*) i s  taken to be the same Gaussian distribution a s  given 

by (4. 13) and U*(y9'), a correction function for the distribution, i s  
1 

assumed to be the second Hermite polynomial multiplying the Gauss- 

ian such that U*: and UXc a r e  orthogonal. The use of Eqn. (4. 18) 
1 

implies that the mean flow i s  described by three parameters:  b,  wc 

and H. Because of the appearance of this additional unknown H(x), 

one more  governing equation i s  needed. The second moment equa- 

- 2 
tion, obtained by multiplying the mean momentum equation by u and 

integrating over y, is used, 

For  simplicity, the integrals appearing in the I i t s ,  a r e  as-  

sumed to be functions of the centerline velocity defect alone which 

i s  (wc-S), i f  we define S(x)  = wc (x) H(x) .  This assumption is a good 

one only i f  H i s  very much smaller than one and, in general, the 

solutions to ,the local Rayleigh equation will depend on both parame- 

t e r s  and so d o  the integrals. The details a r e  given in Appendix G 

and only the results of the calculation will be presented here. 

In this case, one additional initial condition SO, or  Ho, at  



x = P O  must be given. The initial values have bcen obtained at 

0 = 0. 1,  whcre thc mcasurcd distribution i s  very close to the cal- 

culation of Goldstein, by finding the se t  of w and H which gives the 
C 

minimum mean square e r r o r  fit for the profiles of Coldstein. The 

values found a r e  w = 0. 63047 and So  = -. 001 03. The initial value 
co 

of EU was taken to be . 001 at Y o  = 0. 1. Fig. 27 shows the result of 

the c enterline velocity variation of this calculation together with the 

result of the previous two-parameter calculation for comparison. 

Fig. 28 gives the comparison of the variation of EU. The differences 

in both figures a r e  quite small  and seem to yield the same qualitative 

picture. The lower maximum fluctuation energy level reached in 

this calculation i s  favorable in view of the experimentally encoun- 

tered magnitudes. 

Fig. 29 gives the variation of S with x which terminates a t  

x = 0. 3 3  where S is approaching zero, since for S equal to zero, 

one of the governing equations is  redundant and numerical difficulty 

results. The fact that S shows a rather peculiar variation and de- 

creases  rapidly to zero may be caused by the inaccuracy in the inte- 

gral  quantities in that region where the given frequency corresponds 

closely to the neutral solution of the local linear stability equation. 

Of course, i t  may also be an indication that a three-parameter mean 

velocity profile i s  no longer needed as  to be expected when the addi- 

tional interaction effect i s  diminishing. 

The extraordinary mean velocity distributions observed may 

be somewhat understood i f  we rewrite Eqn. (4. 18) a s  



where k = 0. 69315 .  Fig. 30 shows a plot of S/(wc-S) vs. x. The 

region of la rge ,  negative S/(W - S )  m a y  be realized as to where the 
C 

overshoot in velocity may be observed. However, the magnitude ob- 

tained in the calculation seems to be too smal l  to have a noticeable 

over shoot as observed experimentally. 

Again, the comparisons presented he re  give only a qualitative 

indication of the effect which seems to be small. The calculation 

using a two-parameter representation of the integrals i s  needed 

before any definite statement about the effects of non-Gaussian m e a n  

flow can be made. 



5. Effects of the Second Harmonic; Case B 

Because of the nonlinear t e rms  x and x2 in Eqn. ( 3 . 4 ) ,  the 1 

higher harmonics a r e  generated and become of appreciable magni- 

tude. Within the framework of the integral method, these higher 

order  effects amount to an improved representation of the integrals  

L's. In other words, the integrals a r e  assumed to be given by 
1 

The local-quasi-parallel flow treatment of Section 3 .  4 i s  only a 

method devised to evaluate the coefficients a s  functions of w . 
in c 

Case A, considered in Section 4, has included 'l;. only. This section 11 

will study the effects of the second harmonic by including the coeffi- 

cient partially. Physically, when the second harmonic i s  included, 
i2 

referr ing to the schematic A, the additional processes  T12, TZM, 

TM2 a r e  introduced which modify the processes  T I M  and TMl a s  

well. 

F r o m  Eqn. (3. 301, including the second harmonic, the fluc- 

' tuating quantities a r e  represented by 

i0 
U* = [ ~ ( x )  fb(y*) e + ~ ~ ~ ~ ( ~ * ) e ~ ~ ~ ]  i- conj 

i0 2 
P* = [ A ~ x )  plOe t A pZOe i20] t conj 

go(y*) satisfies Eqn. (3. 2 9 )  which, after using Eqn. (3, l l ) ,  can be  

Written a s  



where c i s  again given by (4. 3). The boundary conditions a r e  

The method of solution i s  also given in Appendix A. h general, no 

particular difficulty i s  involved in getting the solution for g when 0 

fo(y*) i s  known from solving (4.2). However, a s  c. (or a*) approaches 
1 1 

zero, singularity exists in the flow a s  discussed in Section 4. There- 

fore, the viscous terms,  which have been neglected in obtaining (5. 3) ,  

must be included when a* i s  small in order to avoid excessive e r r o r s  
1 

in the solutions.' However, as  discussed briefly in Appendix A, the 

inclusion of the viscous terms will make the numerical calculations 

much more difficult. Thus, aiming at a primitive and qualitative 

investigation of the n o n - h e a r  mechanisms in a wake, the numerical 

calculations will be carried out using the inviscid equation only. 

Inevitably, this approximation limits the calculations to values of 

a? away from the neutrally stable case, and some unknown e r r o r s  

a r e  introduced in the evaluation of the integrals when a? becomes 
1 

small. This fact should be kept in mind when the numerical results 

of this section a r e  discussed. 

Or alternatively, a close approximation to the true solution may be 
obtained by takins an appropriate contour in the artificial complex 
plane for small c..  

1 



Using the present cascade model for the local generation of 

the higher harmonics, the effects a r e  reflected through the repre-  

sentations of the integral quantities 1.. They a r e  now modified to 
1 

I. 1 = ki / A I '  t k 
i g  

(5. la) 

where the k. 's a r e  the contributions f rom the fundamental as  given 
1 

by (4. ?a)  and k. 's a r e  the corrections to the integrals because of 
1g 

the presence of the second harmonic. They a r e  given by 

m 
klg(we) =I lgb12 dy* 

0 
00 

kZgfwc) = 4 la* l 2  lgO 1' dy* 
0 

03 2 
k 3 g ( ~ c )  = U* lgb 1 dy* 

0 
00 

k (wC) = J  41a*12u* l g 0 l 2  dy* 
4g 0 

00 elu* 2 
k 5 g ( ~ c )  = Jo Y* (Igb 1 - 41a* 1' lgO 12)dy* 

*du* N - -  
k 6 g ( ~ c )  = -2i (a*gogb- a * g ~ g b ) ~ y *  

0 
O a -  ,.+ 

k (W = I (g+20 + gb pZO) dy* 
7g c 0 

0 2 - 2  2 2 2 
k8g(Wc) = -J 0 [4(at  f a" ) (  lgb I t 4 1  laal [ g o (  

+ 2 l g t ( ) l 2  t 8 /a*121gb 12] dy* 



2 
When the magnitude of / A I  increases,  the effect of the second ha r -  

monic i s  expected to appear. The relative magnitude of k .  /ki, to 
1 g 

be determined f rom the numerical calculations, will decide the mag- 

nitude of 1 ~ 1 ~  a t  which the effect of the second harmonic may not be 

ignored. Since this ratio i s  a function of w (x), the development of 
C 

the second harmonic and i ts  effects on the mean flow a r e  not com- 

pletely linked to the f i r s t  harmonic as  being usually criticized. 

The definition for A remains unchanged by imposing (4. 8), 

which i s  now interpreted a s  the total non-dimensional energy of the 

fundamental fluctuation. The governing equations can be reduced to 

the same form as  Eqns. (4. 10) with the functions Kij modified by 

the additional t e rms  in the integrals. The solutions can be obtained 

without much difficulty with given initial conditions a t  cO similar 

to case A. 

The inclusion of the second harmonic in the representation 

for the fluctuation requires the solution of g (y*) for evaluating the 0 

additional integrals k .  . With the solution of f o  obtained, the forcing 
18 

. function on the right hand side of Eqn. (5. 3) may be readily calcu- 

lated. Figs. 31a-e show a few examples of the variation of the 

forcing function 3F with y* using w as  the parameter ,  where F rep- 
C 

resents the RHS of Eqn. (5. 3). It i s  apparent that the forcing function 

becomes more  concentrated and highly oscillating when the values of 

w approach the one which gives the neutral solution locally. As 
C 

discussed previously, the use of the local inviscid equation, which 

i s  singular a t  the critical point for the neutral case,  may induce a 



large e r ro r  in the solution near this region. Nevertheless, the solu- 

tions have been attempted as  close to the neutral solution a s  possible. 

Figs. 32a-h give a few typical results of the solution go and 

i ts  derivative. The integrals k a r e  then evaluated and tabulated 
i g 

on Table LU. The comparatively rapid increase in the relative mag- 

nitude of all  the integrals near w = . 16, where a:! i s  very small,  i s  
C 1 

believed to be a result of the inaccuracy in obtaining go and i ts  deriv- 

atives. 

Fig. 33 gives a comparison of the calculated w of the 
C 

5 
present case to case A a t  R = 2 x 10 . The agreement between 

cases A and I3 i s  very good in the initial stage of the wake. This 

agreement i s  expected because of the domination of the fundamental 

mode in this part of the wake. The solution curves s ta r t  deviating 

from each other when the magnitude of the second harmonic becomes 

noticeable in the lat ter  portion. The smoother variation in w is  
C 

somewhat surprising since we intuitively expect the inclusion of the 

second harmonic will tend to extract more  energy from the mean 

'flow and, therefore, a faster decay of w The possible explanation c' 

can be seen on Fig. 34 where the variations of the magnitude of the 

terms in Eqns. (4. 15) a r e  plotted for both cases A and B for com- 

par i $:on. The introduction of the second harmonic has apparently 

modified the relative magnitude of the various terms in Eqns. (4. 15). 

This modification results in a lower peak value of the main energy 

transfer t e r m  TRM and, hence, a smoother variation of the mean 

flow. However, the qualitative nature seems to remain unchanged. 



The large difference in the magnitude of T i s  believed to be an Vf 

e r ro r  in calculating the viscous dissipating integral, k which will 
8g' 

be further discussed later.  

Fig. 35 gives the variations of the averaged energy in the 

fundamental component, EUf, and the second harmonic, EUZf. Again, 

we a r e  unable to compare this result with the experimental data. 

However, the calculation shows that the magnitude of the fundamental 

mode f i rs t  reaches a peak and then decreases while the magnitude of 

the second harmonic is still  increasing. The magnitude of the second 

harmonic will reach its maximum at a distance further downstream. 

Referring to the results of Sato-Kuriki shown in Fig. 1, this behavior 

seems to agree perfectly with the experiment, and i f  the two arbi-  

t r a ry  scales used on that figure were comparable, even the ratio of 

the two maximum magnitudes would have been nearly correct.  This 

result will help to explain the intuitive expectation of concurrent 

development i f  the second harmonic i s  solely generated by the non- 

linear interaction of the fundamental mode with itself. It i s  clear 

now that the variation of the mean flow serves as  a mechanism for 

redistributing the energy contents not only between the two compon- 

ents of velocity, but also between the various fluctuating modes. 

This result i s  evidence that, in the present formulation, the higher 

harmonics a r e  not strictly linked to the lower ones. In other words, 

the present theory does take into account the direct interaction be- 

tween the higher harmonics and the mean flow, e. g. , the process 

TM2 indicated in the schematic A. 



Fig. 36 shows the comparison of the variations of the total 

energy density E for cases A and B. Fig. 36a gives the co r r e s -  T 

pending variations of the integrated energy in the lundarnental mode. 

The variations of E a r e  practically identical in the front portion. T 

The higher peak of ET reached when the second harmonic i s  included 

justifies the intuition that more  energy i s  taken f rom the mean flow 

and fed into the fluctuations. This fact may s eem to be a contradic-: 

tion to the resul t  of Fig. 34. The explanation i s  again given by the 

higher o rder  differences between E and ET, and also between Em 
f 

and w . The fairly rapid decrease  in E and Euf a t  l a rge r  x for 
c T 

case B,  a s  compared to the resul t  of case A where a nearly constant 

value i s  maintained, i s  a consequence of the large  magnitude of the 

viscous dissipation t e r m  T shown in Fig. 34. This difference i s  
Vf 

more  prominent when the non-dimensional energy of the fundamental 

mode, AUf, i s  plotted in Fig. 36b for the two cases. 

L 
The variation of I A ~  i s  shown on Fig. 37. The maximum 

has decreased f rom case  A by more  than half. The inclusion of the 

higher harmonics i s  expected to cause a further decrease  of the max- 

2 
imum of I A /  , although it i s  not of much concern to the truncational 

approach adopted here.  

The general behavior of the disturbance when the second 

harmonic i s  included shows a fairly rapid decrease  in magnitude to 

a much smaller  value than the resul t  of case  A. This behavior i s  

believed to be caused by the fact that the viscous dissipating integral,  

k which requires the evaluation of the second derivative of go,  i s  
8g7 



subjected to maximum possible numerical e r r o r  when the viscous 

terms a r e  ignored in the local disturbance equation. The evidence 

of this statement may be seen from the rapidly growing magnitude of 

kg g 
in Table I11 for small  wc and also from Fig. 34. Another clue to 

support this conjecture i s  furnished by the result  of Section 4. 2. 5. 

It was found there that the viscous dissipation t e r m  TVf had a re la-  

tively smal l  effect on the solutions. Two numerical computations . 

a r e  now performed to study this effect. One result  i s  obtained by 

setting I8 - 0 which ignores the viscous dissipation terms in the fluc- 

tuation energy equation completely; the other keeps the contribution 

from the fundamental mode to the TVf t e rm  by setting k r 0 only. 
. 8g 

The results  a r e  presented in Figs. 38 and 39a-c. Fig. 38 shows 

the effect on the wc variation that seems to be quite smal l  especially 

when k i s  left in the equation to account partially for the viscous 
8 

damping effect. However, the effect on the integrated fluctuation 

energy i s  quite large,  a s  shown on Figs. 39a-c, particularly a t  

la rger  x. 

By comparing the results ,  i t  may be seen that the effect of 

the viscous dissipation t e rm due to the harmonic component, k 
8g' 

i s  negligible for x <  0 ,  2. But for large x,  because of the inaccuracy 

in evaluating the integral k at  the corresponding values of w , the 
8g C 

effect of k is  hard to assess  correctly. A crude approximation i s  
8g 

to assume the effect of k i s  always small  and may be neglected. 
8g 

Then the result  obtained should be more  representative except in the 

final stage where the corrections due to k will undoubtedly modify 
8g 

the solutions. The exact effect of this approximation can only be 



estimated af ter  the integrals a r e  correct ly evaluated by solving the 

local viscous equations. 

It is  also interesting to note that, assuming the actual solution 

i s  closely represented by the approximate resul t  when k is se t  to 
8g  

be identically zero ,  the relative variation of E and EUZf, u f shown in 

Figs. 39a and c ,  i s  quite s imi lar  to the measured resul ts  of Sato- 

Kuriki. The relative maximum magnitude of the second harmonic to 

the fundamental component may s eem to be slightly too high but is 

expected to be modified when the correction to the fundamental mode 

is included a s  considered in Appendix F. 



6. Summary and Concluding Remarks 

Based on the comparison of the numerical calculations with 

the experimental data discussed in Sections 4 and 5, the following 

concluding remarks  may be drawn: 

(1 1 Ln spite of the assumptions made in the present  theory and the 

approximate methods of solution, the present  approach does 

s eem to bring out the essentials of the non-linear interacting 

mechanisms in a laminar wake. 

(2 1 The theory shows that the relatively fast break-away of the 

mean flow velocity along the wake axis f rom the steady lami-  

na r  case and, therefore, the rapid growth of the wake width 

observed experimentally in the transition region a r e  the 

consequences of the non-linear effects induced by the finite 

amplitude disturbances. 

(3) The effects of the f ree  s t ream Reynolds number on the 

transition (defined as  deviation f rom a steady laminar solu- 

tion) can be predicted and agree quite well with the experi-  

ments. 

(4 Two main non-linear mechanisms a r e  responsible for the 

transition of the wake f rom one larninar state to another. 

They a r e ,  

(a)  the interaction between the mean flow and the fluctuation 

through the mean Reynolds s t r e s s e s ,  and 

(b) the generation of the higher harmonics and the modi- 

fication of the lower ones caused by the non-linear 

interaction between modes. 



Based 011 the numerical results  by introducing the above- 

mentioned effects successively, the f i rs t  mechanism 

seems to play the dominant role in explaining the exper- 

imentally observed mean flow and fluctuation variations. 

The inclusion of the second harmonic and the modification 

of the fundamental mode do not alter the qualitative 

behaviors except to provide the relative development 

of the fundamental and the second harmonic. The re la-  

tively small  influence of the higher harmonics in the 

early stage of transition, where the amplitude of fluc- 

tuation i s  small ,  i s  understandable in view of the power 

se r ies  expansion in the amplitude A assumed for the 

solution of the local s t ream function. However, i t  i s  

somewhat surprising that their effects do not show up 

in the calculated results as  the fundamental mode ap- 

proaches the local neutral solution, because, near  the 

equilibrium region, the calculation indicates that the 

mean flow remains practically unchanged and the local 

eigenvalues a r e  very close to the neutral solution. The 

strictly parallel flow analysis of Stuart and Watson 

should be a good approximation to this situation. In their 

terminology, i t  corresponds to a supercritical case 

where the fluctuation, being amplified according to the 

linear theory, will approach a new equilibrium amplitude 

when the higher order  t e rms  a r e  included. In view of 



the definite role of the second mechanism played in their 

analysis, we intuitively expect to observe a l a rger  effect 

on the solutions than we have obtained. The reason 

that the effect i s  not prominent even after the f i r s t  mech- 

anism weakens may be a resul t  of the present  approxi- 

mate numerical approach. However, this speculation 

will have to be justified after a more  accurate calculatidn 

being carr ied  out. 

( 5 )  The experimentally observed neck-down of the wake, 

accompanying reacceleration of the mean flow, i s  not 

predicted by the present model (refer  to Fig. I around 

x = 70 rnm. ). These phenomena may be a result  of the 

static p ressure  distribution induced by the rapid growth 

of the wake in the non-linear region. To answer this 

question, a model including the interaction between the 

growth of the wake with its external flow will have to be 

taken into consideration. Methods for including this 

effect for the mean flow in a steady incompressible wake 

have been outlined by Alber. (35) The basic idea there 

i s ,  again, the use of the integral molllent method which 

i s  in line with the present formulation. Therefore, i t  

should be feasible to incorporate this effect into the 

present  analysis. 

( 6 )  The calculations show that the general behavior of the 

variations of the magnitude of the fluctuations, including 



both the fundamental and the harmonic modes, i s  in 

accord with the relative variations observed experimen- 

tally and has been considered as  "abnormal" in view of 

the linear stability theory. However, no quantitative 

experimental data i s  available for comparison, although 

the maximum magnitude calculated seems to be higher 

than the expected value in this type of flow. It i s  felt  

that the static pressure  gradient induced o r  caused by 

the experimental environment may be responsible for 

this discrepancy. A n u m e r i c d  study of this effect i s  

presented in Appendix E. The results  obtained there 

give the indication that the effect of the static p ressure  

gradient does reflect strongly on the magnitude of the 

fluctuations. 

In conclusion, the approach proposed here ,  despite i ts  s im-  

plicity, does seem to provide the correct  model for the wake flow 

in the transition region where three-dimensional effects may st i l l  be 

neglected. The method of solution provides a mean for extending and 

applying the classical hydrodynamic stability theory to a rea l  prob- 

lem. The strong interaction model of the present theory is  preferable 

to the weak interaction model of Stuart and Watson because of the 

following reasons: 

i) It i s  capable of treating problems having large deviations 

in mean flow from the steady laminar case. 

ii) It accounts for the divergence of the mean flow and gives 



the results of Stuart and Watson in the limit of parallel 

flows. 

iii) Since the integral method is used, the details of the dis-  

tribution of the fluctuation a r e  not vital in the analysis. 

Therefore, truncation of the local ser ies  representation 

of the fluctuation does not require a s t r ic t  convergence of 

the solution. Hence, disturbances of much larger ampli-' 

tude than those allowed in the theory of Stuart and Watson 

may exist in the present theory. This absence of limita- 

tion in the magnitude of the fluctuation i s  certainly 

desirable for practical applications. 



7. Future Work 

In view of the success of this approach, further work i s  sug- 

gested for the following three reasons: (i) to clear  up the remaining 

uncertainties caused by the approximations made in the present  nu- 

mer ica l  treatments; (ii) to study some additional effects on the 

transition mechanisms of the wake; (iii) to extend the present  approach 

to problems of s imilar  nature. 

(i) F r o m  the discussions of the l a s t  section, there remain a 

few immediate tasks, mostly numerical,  to provide the 

required answers to those uncertainties. 

(a) The use  of the full viscous Orr-Sommerfeld operator 

instead of the inviscid Rayleigh operator for the calcu- 

lations of fO, go and f l .  This calculation will provide 

the correc t  integrals up to case  B considered he re  a s  

we have discussed previously. The numerical difficul- 

ties involved a r e  mentioned in Appendix A and the 

method of a viscous bridging solution discussed in 

Appendix D may be used. Completion of this work 

should settle the effect of the second harmonic com- 

pletely using the truncational approach. 

(b) The calculation of f near  a? = 0 using the reformulation 1 1 

of Appendix F to provide the complete correc t  integral  

functions appearing in the I . ' s  a s  functions of w over 
1 C 

the whole range of interest. This resul t  will provide 

the correc t  estimate of the effects of f l  we se t  out to 

study in case  C discussed in Appendix F. 



(c)  Using a formal three or more  mean flow parameter  

approach by calculating the integrals as functions of 

those parameters. This effect may be significant a s  

we mentioned previously. No essential difficulties a r e  

encountered in this work, but time and labor a r e  ce r -  

tainly needed because of the lengthy algebra involved. 

(d) The effect of the local-quasi-parallel flow approxima- 

tion. The leading effect can be  obtained following the 

discussion of Appendix B. It may be noted that the 

effect only appears on the determination of f and the 
1 

higher order terms.  

(e)  The inclusion of the non-linear interaction of the growth 

of the wake with the external flow. 

(ii ) (a) Using the present  method of approach, an interesting 

study on the interaction between modes with non- 

commensurable frequencies may be made. Sato and 

Kuriki have shown experimentally that when an a r t i -  

ficial disturbance at different frequency from the natural 

one i s  introduced, it shows a "suppressing effect" on the 

natural disturbance (Fig .  24  in Sato-Kuriki's paper).  ( 2 )  

This type of interaction is  interesting in the sense that 

i t  may provide the explanation a s  to why only a nearly 

single frequency fluctuation exists in the initial stage of 

the wake. This study requires an additional governing 

equation for the amplitude of the additional fluctuation. 

In the f i rs t  approximation, they a r e  independent and each 



may be required to satisfy the integrated fluctuation 

energy equation. The interaction between them i s  pro-  

vided through the mean flow. Since the main energy 

transfer mechanism i s  proportional to the square of the 

amplitude of the disturbances, i f  one disturbance has 

more  energy initially (therefore a l a rger  amplitude), i t  

will absorb a larger  portion of the energy taken from 

the mean flow which consequently makes i t  grow faster 

than the other. This self-propelling process  will soon 

make this frequency completely dominate the other one. 

(b) The discussion given above does not apply when two o r  

more  frequencies at integer multiples of each other 

exist initially in the wake. Then resonance will occur 

which will undoubtedly have a much la rger  effect than 

the cascade  generated higher harmonics discussed here. 

Again additional equations a r e  needed for the additional 

unknown amplitudes. In this case,  we will have to use  

the higher moment equations of the fluctuation or some 

other physically meaningful equations. 

It will be interesting to consider the case where a 

frequency corresponding to the maximum local ampli- 

fication ra te  exists simultaneously with another one a t  

half of this frequency a t  the beginning of the wake. Both 

have a comparable magnitude initially. F rom the nurner 

ical results  obtained for the present single-frequency 



case we have learned that a s  the flow proceeds down- 

s t ream the fundamental mode is driving toward the 

neutral solution. Therefore, when another dis turhance 

a t  half the frequency exists, i t  will be near the maxi- 

mum amplification ra te  according to the linear stability 

theory when the fundamental mode i s  approaching zero  

amplification rate.  The complete non-linear inter action 

will be very interesting not only because of this feature 

but also because of the beating effect. This type of study 

of interaction between various frequencies may se rve  a s  a 

guide to the occurrence of turbulence. 

(iii) Using the same idea, several  practically important problems 

of transition involving the interaction of the disturbances with 

a laminar mean flow may be considered. The following gives 

a few possible applications. 

(a) Study of the non-linear stability of an oblique wave to 

find out i f  there i s  an equivalent to the Squire theorem 

in the linear stability theory. Also i t  would be  of interest  

to study the role of the oblique waves when they appear 

simultaneously with the plane wave in the wake. Because 

of the varying wake widths experienced by the front of the 

oblique wave, their interaction with each other and with 

the mean flow should show some very interesting phe- 

nomena. 



(b) Consideration of a three- dimensional disturbance. 

Although the present  approach is dealing with the lami- 

nar  wake, i t  i s  hoped that certain clues a s  to the origin 

of t ~ r b u l e n c e  may be found. In that respect ,  a study of 

the stability of three-dimensional disturbances is  e s  s en 

t ial  since turbulence i s  basically three-dimensional.. 

Besides, the consideration of the three-dimensional 

disturbance should extend the region of validity of the 

present  approach in regard to the simulation of exper-  

imental o r  practical situations. 

(c)  Applying to the a x i s y m e t r i c  wakes. Here the funda- 

mental frequency seems to play a dominant role and 

also has greater  practical significance. 

(d) =tension to the compressible wakes. Experimentally, 

s imilar  s tructures in the transition region f rom laminar 

to turbulent have been observed in a compressible 

wake. (41 ' 42) The effects of the additional fluctuation 

of temperature o r  density on the stability of the wake 

and the interaction with the compressible mean flow 

should be investigated. 

(e)  Considering cases with the initial fluctuation having a 

continuous energy spectrum. In the case of the com- 

pressible wakes, experimentally, a spectrum of fre-  

quencies dominates instead of a single frequency a s  being 

closely approximated in the incompr essible case. A 



new approach should be formulated to handle this type 

of fluctuation. It is not clear at the present  t ime a s  to 

how to proceed with this project. The generalized group 

velocity concept used successfully in the water-wave 

theory (e. g . ,  Whitham (36 -39) )  may find some applica- 

tion here. In the present  approach, i t  has basically 

assumed a slowly varying wave train,  with fixed f re-  

quency but varying wave number, travelling in a slowly 

varying mean flow. The generalization to a slowly 

varying frequency will be able to include this effe'ct. 

However, the present  sys tem i s  not conservative, which 

may form some additional difficulties in applying the 

method. This line of thinking i s  sti l l  primitive and 

requires a more  sophisticated consideration. 

(f)  Unsymmetric wakes. Experimentally, (40) i t  has been 

observed that the wake becomes exceedingly unstable 

when the symmetry i s  destroyed. A study of the stability 

of a disturbance in the wake with an a s y m e t r i c  mean 

flow i s  needed. 

(g )  Application to other types of flows without boundaries 

such a s  jets and mixing layers .  



Appendix A 

Numerical Method of Solution of the Differential Equations 

Since only the inviscid equations a r e  used in performing the 

numerical integration in the present  study, the discussion given he r e  

will be restr icted to the inviscid second order  operator.  Difficulty 

in numerical  integration of the viscous equations because of l a rge  R 

has been discussed by various investigators (e. g. , refer  to ~e tc 'hov .  

and C r iminale). (31 ) Special techniques a r e  needed to obtain numeri-  

cal solution even with the modern computer capacity. Only a brief 

discussion on the possible techniques i s  given a t  the end of this 

appendix. We will f i r s t  desc

r

ibe the method used for solving the 

homogeneous Rayleigh equation; the determination of the eig envalues 

a s  well a s  the eigenfunctions. The method for solving the differential 

equation for g and f with known forcing terms on the right i s  then 0 1 

given in Section (A-2). 

. A- 1 ) Rayleigh Equation 

The methods of solution of the inviscid Rayleigh equation (4. 2) 

with the homogeneous antisymmetric boundary conditions 

have been reported elsewhere. As to the present  specific problem 

for an incompressible wake behind a flat plate, the numerical method 

of solution developed by L. Mac (e. g . ,  re fer  to (43)) for a compress-  

ible boundary layer ,  modified by T. ~ u b o t a ' ~ ~ )  for a compressible 



wake, i s  further simplified for the present incompressible case. 

Certain modifications have been made in order to perform the re-  

quired spatial mode calculations. The method of solution i s  briefly 

described a s  follows: 

It is  f irst  desirable to indicate the dependence of the eigen- 

values and the eigenfunctions of Eqn. (A. 1)  on the local mean flow 

quantities when the shape of the mean velocity, U*(y*), i s  given. 

* 
With a* = ar + ia? a simple manipulation shows 

1 ' 

where w i s  the given nondimensional frequency of the fundamental 

disturbance. Therefore, with the approximation that b = b(wc), the 

remaining task is  to obtain the eigenvalue a* and the corresponding 

eigenfunction f (y*) for each given value of wc. 0 

Eqn. (A. 1)  can also be written as a pair of f i rs t  order ordi- 

nary differential equations of the form 

(A. 4) 

The boundary condition a t  the axis i s  

(A. 5 )  



and the corresponding condition a s  y*- oo can be immediately deduced 

f rom the equation to be 

and then 

The numerical integration i s  then star ted a t  some la rge  value of yg:, 
7 
L 

say y,*, where (A. 6) i s  a good approximation (i. e. , where and 
v dy>~"  

- a r e  vanishingly small) .  Because of the homogeneity of the sys- dy 4: 

tern, we se t  

to make the solution definite. 
>: 

For  a given se t  of a": and a there will be no difficulty in r i ' 

integrating the equation to y* = 0 when the corresponding c. i s  not 
1 

small. In general, a non-zero p will be obtained at y96 = 0 Oor an 1 0  

a rb i t r a ry  se t  of a: and a?. In order  to satisfy the boundary condi- 
1 

tion p1 0 ( 0 )  = 0, a se t  of eigenvalues must  be found. For  this purpose, 

the linear search  method discussed by Mac i s  used. The method 

requires a simultaneous integration of the differential equations which 

yield the variations of the dependent variables a s  the eigenvalue 

varies.  They may be easily obtained by differentiating Eqn. (A. 4) 

with respect  to a*, which gives, 



dU>> 
d - 1 dU* (dy':fOt~lO) ) =- - 

dy* ( f ~ ,  a+ Uu-T by+ O, a*t PI 0, a* ) + 
'- 2 

wca* (U*- C )  

where the subscript a* indicates part ial  differentiation with respect  

to a*. 

The "initial' ' condition a t  y* = y* for Eqn. (A. 8) a r e  
6 

Eqns. (A. 4) and (A. 8) a r e  then integrated simultaneously on the IBM 

7094 computer toward y* = 0 with the initial values a t  some la rge  
J, 

station yg given by (A. 6)  and (A. 9). The boundary condition ( A  5) 

8 
i s  not satisfied in general for an initial guess of the eigenvalues ar 

8 
and a,. A new se t  of a" and a? i s  then obtained by solving 

1 r 1 

for the correction ha*. The values of p1 0(0) and p1 0 y  a r e  taken 

from the resul ts  of the l a s t  integration. This i s  a complex algebraic 

equation, which may also be written a s  

(A. 10a) 



With this estimated correction to the eigenvalues, the integration can 

be restarted a t  yt This procedure i s  repeated until both a: and a: 6' 

converge. With a fairly good initial guess of the eigenvalues, this 

search procedure for the eigenvalues converges in a few iterations. 

The eigenfunctions f a s  well as  its derivatives and the required inte- 0' 

grals for the present investigation a r e  then calculated. The complete 

calculation, including iterations, takes about thirty seconds or l e s s  

* 
for a step size of 0. 05 with y6 = 5. 5. 

In the case of a small ci, the existence of a simple pole at the 
- 

point yc where U* = c (critical point) prevents a straightforward 

numerical integration along the rea l  axis. However, a s  shown by 

 in'^') and used by ~ a a t ( ~ ~ )  and ~ a c ' ~ ~ ) ,  we can get around this 

difficulty by changing the integration contour to an indented one on 

the artificial complex y*-plane (Fig. A- 1 ). This i s  done by analyti- 

cally continuing the mean 

velocity U* and its deriva- "t 

pansion (up to the third 1 

tives into the complex 

y*-plane by using a trun- 

cated Taylor ser ies  ex- 

order)  around the point 
- Fig. Al ,  Schematic of the Integration 

yo where U* = c. Details Contour 

of the method may be r e -  

ferred to Mac. 
- 

For the cases of highly amplified solutions, the point U* = c 

y3 Y I  {8 
d 
+ T r -  

0 7 

* 
located far above the real  y*-axis, the integration s tar ts  at y and 6' 



proceeds directly to y>k = 0 (i. e. , s e t  y2 0). But, fo r  the near  

neutral and all the darnped disturbances, an indented contour as 

shown in Fig. A- 1 will be taken. The size of the indention has been 

somewhat arbi trar i ly taken to keep the integration path a few integra- 

tion step sizes away f rom the location of the cr i t ical  point. The 

contributions of this indented contour to the integrals have been 

evaluated by calculating the integrals for severa l  different values 

of (yl - y  ) and extrapolating to zero. Therefore,  the values of those 3 

integrals for the darnped disturbances a r e  of l e s s  accuracy than the 

others.  Luckily, i t  turns out that they a r e  not essential  to the present  

investigation a s  indicated in the numerical resul ts .  If higher accuracy 

i s  needed, the integration of the full viscous Orr-Sommerfeld equation 

will have to be performed. 

A-2) The Inhomogeneous Differential Equations 

The governing differential equations for g f l  and the higher 0' 

order  t e rms  in the expansion for the disturbance a r e  of the fo rm 

(when the viscous t e rms  a r e  included) 

where L is  the second order  l inear inviscid operator and LV i s  the I 

fourth order  l inear viscous operator. F is  a known forcing function 

and cp is  the unknown. The solutions of (A. 11) a r e  subjected to the 

corresponding homogeneous boundary conditions (sy-rmnetric o r  anti- 

symmetric).  

In the present  numerical calculations, the viscous t e rms  have 

been neglected by assuming large  Reynolds number flow which makes 
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(A 1 I ) a second order equation. Thus, the method of solution i s  to 

&tain two linearly independent solutions to (A l l ) ,  say q1 and p2, 

which satisfy the boundary condition a t  co.  The complete solution 

to (A. 11) i s  then obtained from a linear combination of these two, i. e. , 

where K i s  a complex constant to be determined by satisfying the 

boundary condition for p at  y g c  = 0. Numerically, the two solutions, 

p1 and cp2, a r e  obtained by two different sets  of arbi t rary  given initial 

conditions at  y:' 
6 ' 

This procedure, in general, provides the solution of the invis- 

cid equation which i s  a close approximation to the solution of (A. 11 ), 

However, when c. i s  small,  difficulties arise.  Specifically, for the 
1 

integration of g the operator, L is  approaching zero but F i s  not. 0' I 

This causes a large e r ro r  in obtaining the solution for go because of 

the difficulties in finding the two linearly independent solutions numer- 

ically. It i s  clear that this difficulty can be removed 'by including the 

viscous operator,  LV, a t  leas t  near the critical layer,  o r  taking an 

indented contour as  shown in Fig .  A-1, A different kind of trouble 

occurs for the integration of il near the neutral case. As c. becomes 
1 

smaller ,  the complete operator on the left hand side oi (A. 11) 

approaches the homogeneous eigen-operator. Thus, the numerical 

solution will contain a large unknown contribution of the homoge- 

neous solution which means resonance. As we have remarked in 

Appendix F, this i s  a consequence of the formulation. The alternate 

formulation discussed in section F. 4 of Appendix F will have to be 



used to iron out this difficulty. 

A- 3) Viscous Operator 

From the previous discussions we learn that the inclusion of 

the fourth order viscous operator in Eqns, (A. 1) and (A. 11) is  neces- 

sary  i f  improved calculations a r e  to be performed. Although we will 

not include this numerical calculation in the present work, i t  is desi r-  

able to point out briefly here some of the difficulties involved and the 

possible methods of solution. 

The problem introduced by the viscous operator is  not just a 

higher order system but rather the highly singular behavior due to the 

largeness of R. The existence of a rapidly growing homogeneous solu- 

tion makes the numerical integration of the system a challenge to an 

applied mathematician in numerical analysis even with the help of the 

modern large capacity computers, Various attempts have been made 

to cope with these difficulties. The most successful one and c o m o n l y  

used i s  the suppression scheme of Kaplan. '30' Either this scheme or 

a straightforward integration with double precision may be used. 

Further details may be referred to the original paper of Kaplan or 

the book by Betchov and Criminale. (31 ) The treatment of Eqn. (A. 1 1 ) 

in the case of Poiseuille flow has been reported recently by Reynolds 

and potter" 8, using the scheme of Kaplan. An alternative analytical 

approach to include the viscous effect near the critical layer is sug- 

gested in Appendix D. 



Appendix B 

Examination of the Approximation Made 

in the Local Paral lel  Flow As sumption 

The use of the two-length scale concept in Section 3 that l c : a d * :  

to a local parallel flow treatment for the disturbances, h a s  rr.>,<,:. 

sim;?lified the analysis. But, from thc: calculatcd results ,  we learn  

47-  ,..,,,, -.. "7% ,... e u a k c  in  fact grows quite rapidly in the non-linear region. 

Therefore, i t  i s  necessary to examine in some detail the implicationb 

of the assumptions which lead to Eqns. (3.20). This may be achieved 

by examining the terms neglected in Eqns. (3. 19). 
1 - 

The terms multiplied by R-* in Eqns. (3. 19) may be grouped 

into two types: the Laplacian terms which a r i se  from viscous effect, 

and the remaining te rms  ensuing a s  a result  of the non-par allel mean 

flow. When the non-linear interaction between the mean flow and the 

fluctuation i s  not important, they a r e  of the same order and appear 

together as  the viscous correction terms to ;he inviscid Rayleigh 

equation in the linear case. This fact has been pointed out by S. I. 

Cheng (46) in 1953 and may be easily seen in Eqns.(3. 19), e. g. , 
1 

( R ~  7)- O(1). However, this type of correction is  not of much concern 

to the investigation here, This i s  because we have shown in the 

previous analysis that these terms can in fact be completely ignored 

for most cases except near the neutral solution of the linear stability 

theory. When the non-linear interaction i s  included, a different 

nature of approximation is  involved in neglecting terms of the second 

types. It may be found immediately that the leading terms on the 



I dw 
C RHS of Eqns. (3 .19)  a r e  of thc order of (R-' ;i;; . To estimate the 

order of magnitude of the e r r o r  made in neglecting these t e rms ,  we 

choose to use a simpler,  though less  accurate, equation; the mean 

momentum equation along the centerline of the wake,+ which i s  given 

The f irst  t e rm  on the right represents the laminar viscous dissipating 

effect which i s  0(1) ,  and the remaining terms represent  the Reynolds 

s t resses  which a r e  important in the non-linear region and a r e  of the 
1 

order ( / A / '  R'). It i s  therefore clear that the t e rms  ignored in the 

local parallel mean flow assumption a r e  of the order 

The f i rs t  t e rm will modify the viscous correction t e rm  in Eqns. (3. 19) 

and may be ignored in the present high Reynolds number considera- 

tion. However, the correction appearing as O(  I A / ~ )  will have certain 

effects on the present investigation in view of the expansion in ampli- 

tude assumed for the local s t ream function. But, this correction 

will not affect the determination of f and g because : ~ f  the appearance 0 0 
2 

a s  O( / A /  ). The first  t e rm in the expansion being affected by this 

'similar estimates may be obtained by using Eqn. (2. 3)  of Section 
ZA, which gives the leading order terms without using Eqn. (B. 1 ) .  



correction i s  f the correction t e rm to the fundamental. To include 1 ' 

this effect in the local calculation of the disturbance, a possible 

method of solution i s  bricfly proposed in the following. 

Guided by the discussions leading to Eq. (B. Z ) ,  we l e t  

The coefficient w (x) may be taken a s  zero  because of its smal l  effect 0 

on the local calculation discussed previously. And w.' s may be ob- 
3 

tained either f rom Eqn. (B. 1 )  o r  a s imi lar  equation to (4. 10). In 

general,  w . ' s  a r e  functions of w only when b i s  linked to w by Eqn. 
J c c 

(4.6). Incorporating the expression (B. 3)  with the expansion (3 .  261, 

we find that the governing equations for f and go remain unchanged 0 

and their solutions may be obtained as  discussed previously. The 

equation for fl(y*) will now include the coefficient w (x) of Eqn. (B. 3) .  1 

However, i t  may be shown f rom the equation for w that w (x) i s  a 
C 1 

function of w and the integrals of fO(y*) only. Therefore,  with f o  
C 

known, w i s  completely determined in t e rms  of w . Thus, the 
1 C 

solution of f (y*) may be  determined with w modifying the forcing 1 1 

terms.  Similarly, w (x) will only need the determination of g and 2 0 

f which can then be used for higher order  calculations. The com- 1 

plete expansion solution can, in principle, be determined in this 

step-by-step manner. The actual effect on the calculation of the 

mean flow and the growth of the disturbance through the modification 

of the integrals involving f will have to be determined numerically. 1 

It should be pointed out he re  that although this effect i s  of the 



same order as the one discussed in Appendix F for the near neutral 

solutions, they a r e  of a completely different character.  In Eqn. 

(3 .  27), the coefficient am is not completely determined when they 

appear in the equation. For example, a l ,  which appears in the 

equation for f cannot be determined f rom the integral equations, 1' 

since the terms contributing to a (x) in Eqn. (4. 16)  involve certain 
1 - 

integrals of f and, moreover, a i s  not identical to a l .  Therefore, 1 1 

the am's may either be se t  as zero when af i s  large or  be determined 
1 

f rom the method of Appendix F for the local disturbance calculation. 

On the other hand, the w. 's  a r e  completely known functions of w 
J c 

when they appear, ,and their appearance does not prevent the reso-  

nance from occurring. If desired, both effects can be included 

simultaneously, using the methods outlined. 

It should also be pointed out that the relation of f l  to the 

velocity components would be modified in this formal approach, 

because of the terms on the RHS of the f i rs t  equation of Eqn. (3. 19). 



Appendix C 

Approach for Using a Multi-Parameter 

Mean Velocity Profile 

For certain purposes, the shape assumption ( 3 .  11 ) for the 

mean velocity may have to be relaxed to allow for a closer approxi- 

mation to the actual mean velocity distributions. The use of a more  

general formula ( 3 .  1 2 )  can in principle be treated with the integral 

approach suggested here  without any conceptual difficulties. The 

additional governing equations required may be obtained from the 

higher moment equations, It is to be expected that a higher degree 

of flexibility in the representation of the mean velocity profile will 

improve the accuracy of the present approach. However, the in- 

creasing numerical work prevents further study along this line. 

Instead, we will indicate briefly in the following the approximate 

method of solution when the mean velocity profiles deviate only 

slightly from the expr essiori (3. 11 ). 

The mean velocity distribution i s  assumed to be represented 

' by the form 

where H(x) i s  the additional shape parameter which will be assumed 

to be small  a s  compared to 1. Following previous formulation, three  

of the four governing equations needed a r e  obtained from the inte- 

grated mean momentum equation, the f i rs t  integral rnoment equation 

(the mean energy equation) and the fluctuation energy equation. They 



a r e  again given in the form of Eqns. (3 .  14a), (3 .  15)  and (3 .  16) with 

the expressions for some of the integrals being modified by replacing 

U::: by W* given by (C. 1).  The fourth equation may be taken to be the 

second integral moment equation which is obtained by multiplying the 

- 2 mean momentum equation (3. 7 )  by u and integrating over y*. This 

equation may be written in the form 

where 

00 

P5W)  = w * ~  dy* 
0 

r' aw* - 
w* U*v* dy* 1 1 3 '  0 w* - 



Thus, we have four equations for four unknowns, wC(x), H(x),  b(x)  

and I A I L ( x ) .  The integrals,  I., a r e  in general functions of al l  these 
1 

four unknowns. For the case A discussed in Section 4 where only the 

fundamental mode i s  used for representing the fluctuation, one can 

again wri te  

2 x i =  I A /  ki 

Now k. ' s  depend on the solution of the local Rayleigh equation which 
1 

i s ,  in general,  a function of the three quantities w H, and b p re -  
c' 

scribing the local mean flow, To simplify the analysis, we again 

assume b to be  approximately related to wc by Eqn. (4. 6 )  which 

reduces the dependence down to two quantities. If we further assume 

H to be so small  that the local eigenfunctions will not be greatly 

al tered by the value of H in ((7. l ) ,  then we can bring out the depen- 

dence on H explicitly in the k . T s  with the remaining integrals being 
1 

a function of w only. The integrals a r e  then evaluated and the 
C 

solutions to this se t  of equations a r e  obtained for a few cases  d is-  

cussed in Section (4. 2. 7). 

If more  shape functions a r e  required to represent  the mean 

velocity profiles, s imilar  approach may be used with the additional 

equations being obtained by taking the higher moments of the mo- 

mentum equation. 



Appendix D 

Viscous Correction to the Local Disturbance 

As we have discussed 

will have to be included when 

Equation 

in the main text, the viscous t e rms  

* 
a i s  small for any finite Reynolds 
i 

number. It was suggested that the full fourth order  Orr-Sommer-  

feld operator be used instead of the second order  Rayleigh operator 

to overcome this difficulty. However, that approach will generally 

require a special elaborated numerical scheme (e. g. , Kaplan's 

method) to suppress the undesired exponentially growing solution. 

An alternative approach i s ,  therefore, proposed he re  in an attempt 

to reduce the problem to a numerically simpler one. 

The method of solution follows quite closely the scheme of 

~ r a e b e l ' ~ ~ )  by use of the inner-outer expansion theory. Only the 

homogeneous equation for f will be considered here. Similar t reat-  0 

ment may be used for the inhomogeneous equation with known forcing 

terms on the right. For convenience, the notation used here  will be 

self-explanatory and independent of those in the main text. 

Consider the O r r  Sommerfe ld  equation. 

where W U(y)-C, C and a a r e  the corresponding complex wave 

speed and wave number, R i s  the Reynolds number and D denotes 

differ entiation with respect  to y. v represents  the vertical component 

of the disturbance velocity and is proportional to the disturbance 



s t ream function f in the main text. The boundary conditions for an 0 

antisymmetric disturbance in the wake a r e  given by 

The critical point i s  defined as the location y where W ( y c ) = O .  
C 

y i s  generally complex for non-zero imaginary part  of C. For 
C 

sufficiently large C the inviscid Rayleigh equation, obtained by set- 
i' 

ting the RIlS of Eqn. (D. 1 )  to zero, does not have a singularity on the 

real  y-axis. Integration along the real  y-axis can proceed smoothly 

and the viscous correction, i f  any, will be quite small. However, a s  

C. approaches zero, the e r ro r  in the solution introduced by such an 
1 

approximation increases. The following approach is intended to cope 

with the solutions having an eigenvalue in this region. 

The classical treatment of ~ e i s e n b e r ~ ' ~ ~ ) ,  being corrected 

and clarified by  in'^^), has shown that a Stokes' region with radius 

of the order (aR)- exists near the critical point. Outside this 

region, for large  aR, the flow is essentially inviscid and the Rayleigh 

equation i s  appropriate. Using the WKBJ method, Lin was able to 

obtain an analytically continuous solution through the critical point. 

However, the method proposed by ~ r a e h e l ' ~ ~ )  seems to simplify the 

analysis and will be used here  by treating i t  as  a singular perturbation 

pr  oblem. 

For the outer region, the independent variable y remains un- 

changed and the dependent variable v has the form 



where p = ( Q R ) - ~ ' ~ ?  a small parameter.  

The inner variable i s  suitably taken to be 

Y-Y, 
q =-" 

P 
Oil) 

and the corresponding inner expansion for v i s  

The forms of 7 and en* will be determined by matching. 

The only restriction on them i s  
- 
' n t  1 E * 

n +  1 = 0  l im - = l im - 
E 
n p 'n* 

Substituting (D. 3) into (D. 11, we get 

3 - for n such that > 0 (p E ~ ) .  This i s  exactly the inviscid Rayleigh n 

equation used in the present numerical analysis and its solution may 

be considered a s  known. But for matching purposes, an analytical 

form near the critical point i s  desirable. A power se r ies  representa- 

tion of the two independent solutions near y corresponding to 
c ? 

~o l l rn i en '  s (1 935) solutions, i s  given by Graebel a s  

1 D'W D 3~ 
(Dl(")  = z t  -(- 

2 DW c 'I z2 t t [a' t ..;'I z
3 

t ... 



where z = y-y,, and subscript c indicates a value at y = yc. These 

2 representations a r e  acceptable as long as  D W .f 0. In the case  of 
C 

2 
a wake with Gaussian mean velocity profile, i t  turns out that D W c =  0 

when Ci = 0. However, in such a case corresponding to a neutral  

disturbance, the inviscid equation may again be used to give an ana- 

lytic solution through y without using the viscous terms.  We will 
C 

2 therefore exclude the case D Wc = 0 and assume the analyticity of 

expression (D. 9). 

Without loss of generality, we s e t  7 = 1. To the f i rs t  o rder ,  0 

the outer inviscid solution may be approximated by 7 which is given 0 

(D. 10) 

' The complex constants a and a2 can be determined f rom the machine 1 

calculated values of 7 and (D?) a t  some location near the critical point 

on the rea l  y-axis. 

For  the purpose of matching, we rewrite  (D. 10) in the inner 

variable q = z/y 



(D. 1 1 )  

Substitution of the inner expansion (D. 5)  into (D. 1 ) gives to 
' 

the leading order 

(D. 12) 

Referring to (D. 1 ), the leading te rm i s  O(1). Hence, 

cO* = 1 (D. 13)  

The solution to (D. 12)  which matches with (D. 11) i s  readily found to be 

(D. 14) 

In order to match the 0(p) t e rm in (D. l l ) ,  w e  take 

e l*  = p (D. 15) 

The governing equation for v * i s  given b y  a 

and using (D. 15), this becomes 

(D. 17) 



To put this equation in a more  tractable form, we introduce 

a new variable 

Then, Eqn. (D. 17) becomes 

(D. 18) 

The solution to (D. 19) which will not grow exponentially a s  6 - t o o  - 
may be written, back in q variable, a s  

v1 * = A1 + +q + (iDW )Ii3 a (v *) c 2 1 part 
(D. 20) 

with (vl * Ipar being the particular solution of (D. 19)  given by 

and 

i 1 3  c(c) = - J~ exp [ -i (gt i j t )I dt 
a 0 

(D. 20a) 

then 



The asymptotic behavior of the function G(6,) and i ts  integrals may 

1 be obtained f rom ~ u k e ( ~ l ) .  For -a<arg(6,)< a, a s  15 /-a 

f t  1 
G(ildidE,-$[InE, + T  ( ln  3 + 2 y  - 3 + i i )  

0 0 

(D. 21 ) 

1 Therefore, for - i<  arg(iDW ) a, a s  ( --m 
C 

The correct  branch of (iDWc)1/3 may be determined from the asymp- 

totic behavior of the solutions. 

Now, we a r e  in a position to determine the constants A and 
1 

AZ through matching by comparing (D. 11 ) and {D. 20) for the terms 

0 
of O(p). Since no 0 ( q  ) t e rm  appears in (D. l l ) ,  i t  requires, 

(D. 23a) 



Comparing terms of O(q ), gives 

A2 = a l - a Z [ l n  (iDW + ( ln  3 t 2y - 3 t in)] 
C 

(D. 23b) 

The term of q q l  n q ) is  completely matched. Therefore, the solution 

v * i s  completely determined with (D. 23). 1 

To match the (ptnp) t e rm in the outer expansion (D. 11 ), we 

take 

t c2 = p l n p  (D. 24) 

The governing equation for v * is again given in the form of (D. 12), 
2 

(D. 25) 

By matching with the outer expansion, we have the solution to (D. 25) 

as  

v2* = a2q 

2 Therefore, the full inner expansion up to O(p ) i s  

(D. 2 6 )  

+ [al-a2(ln (iDW c ) 1'3 t L  (In 3 + 2y t in)) q 
3 I 

I 2 
+ WntJ.) a2q f O(P ) (D. 27) 



Terms  of higher order in both the inner and the outer expansions may 

be analogously determined, i f  desired. 

Two possible ways of applying these results to the actual cal- 

culations a r e  given as follows: 

(i Stop the numerical integration of the approximated inviscid 

equation a t  some point on one side near the critical point y The c' 

constants a and a a r e  then evaluated from the numerical solution. L 2 

Then, the composite expansion 

- 
v  = v + v * - v  composite common (D. 28) 

i s  used for calculating the solution in this region and providing the 

initial conditions for starting integration on the other side of the 

cri t ical  point. The common par t  of the inner and outer expansion 

up to the order considered i s  given by 

(ii) Obtain the solution of the inviscid equation throughout the 

whole range by machine integration. The correction obtained f rom 

v cor r  

i s  then added 

solution. 

(D. 30) 

. to the numerically integrated solution to yield the full 

The difficulty in the application of such a solution to the prob- 

l em is  the evaluation of the function G ( { ) ,  i ts derivatives and integrals, 

for the complex argument 6 appearing in the present problem. Only 



par t  of these desired functions a r e  tabulated for a certain range of 5, 

and they may be found or refer red  to in the book by Luke. Thus, a 

preliminary task for applying this solution will be a collection and 

numerical generation s f  all the functions needed. Because of the 

highly oscillatory behavior of those functions, the numerical gener-  

ation of th.e table i s  certainly a non-trivial mat ter .  For  such a - 

purpose, the method of evaluating the Tietjens function (which i s  

of a s imi lar  character to the functions he re )  a s  the ra t io  of two 

rapidly convergent power se r i es  given by Chen et al. (52) and a 

different approach by may be r e f e r r e d  to. 



Appendix E 

Effects of the Static P re s su re  Gradient 

In the present model, the static pressure  at free s t ream 

infinity has been assumed to be uniform. Experimentally, the wind 

tunnel walls were adjusted to provide a nearly constant static p ressure  

on the wall a s  reported by Sato and Kuriki. However, the static 

p ressure  gradients in both the axial and the radial directions a r e  

not zero inside the wake, Physically, this pressure  gradient i s  

induced by two main effects. The f irst  one i s  the effect of finite 

amplitude disturbances which induce both $/& and aF/ay. This 

effect i s  included in the integral sense in the present model. The 

second effect i s  due to the interaction of the wake with the external 

flow which has been neglected in the calculations by setting the static 

pressure  a t  the edge of the wake, 6 equal to 5 Hence, e' co' 

aFe/ax - 0 i s  the approximation made to simplify the analysis. 

This appendix i s  aimed a t  considering qualitatively this effect on 

the numerical solutions. 

F i r s t  of all ,  the present formulation gives 

- 
And by assuming 5 = pm = constant, this yields the static p ressure  

e 

coefficient 

This i s  generally a function of both x and y. For the case A con- 

sidered numerically where only the fundamental mode is included, 



the static pressure  coefficient along the wake axis i s  given by 

2 2 
The quantity ( 1  a*) I fo  I )yr=O is a function of w under the assump- 

C 

tions made in carrying out the calculations of case A. This function 

is  plotted in Fig. E. 1. The variation of C along the wake axis can 
PS 

therefore be calculated and is  compared with the measured result  of: 

* 
Sato-Kuriki in Fig. E. 2 .  The agreement i s  generally fair. The 

discrepancy in the detail distribution i s  believed to be a t  least  pa r-  

- - 
tially, the consequence of setting p = e - Pm' This may be seen quali- 

tatively as  follows: 

The velocity 7 a t  the edge of the wake is  proportional to the 

quantity [d(bw )/dx] from the continuity equation. But, from the 
c 

integral momentum equation (3,  14), neglecting the fluctuation terms, 

the quantity (%w ), being proportional to the displacement thickness, 
C 

i s  decreasing for decreasing w . The displacement effect of the 
c 

wake, therefore, appears to the external flow a s  a distributed sink. 

* The non-linear effect induced by the finite amplitude disturbances 

investigated here  has effectively concentrated the strength of this 

sink distribution. The interaction with the external flow may there- 

fore become important. Now, if the small  perturbation theory i s  

used and the interaction is  introduced by using the calculated sink 

distribution, i t  i s  not hard to visualize a static pressure  distribution 

which may be added to the one shown in Fig. E. 2 to give a 

*The author i s  grateful to Dr. Sato for making those test results 
available for comparison. 



distribution similar to the experimental result. 

Without carrying out the complete interaction with the external 

flow in the present numerical investigations, it i s  decided to consider, 

in the simplest possible way, the qualitative effects of the mean 

static pressure  gradient on the solutions. 

The approach adopted is  to ignore the y-momentum equation 

completely. This i s  equivalent to assuming the existence of a static 

pressure  distribution in both x and y which will be just enough to 

offset the induced static pressure  by the finite amplitude effect given 

by Eqn. (E. 2) .  The governing equations stay nearly the same with 
- 

2 
slight modification caused by the disappearance of the (av' /ax) 

t e rm in Eqns. (4. 7 )  and (4. 8). The numerical integration can be 

immediately performed a s  before. Calculation has been carried out 

corresponding to case A including only the fundamental mode of the 

5 
fluctuation a t  R = 2 x 10 . The same initial conditions, w = 0. 7 co 

and EUO = 1 x 1 o - ~ ,  have been used in obtaining the following results  

for comparison. 

F ig .  E. 3 shows the effect of the imposed fictitious positive 

static pressure  gradient on the variation of w Some experimental 
c' 

points a r e  also shown there for comparison. Since we expect the 

induced static pressure  gradient, caused by the interaction, to be 

opposite from this fictitious one, a t  least .at  the front portion of the 

wake, the trend of the solution seems to favor a better agreement 

with the experimental results. 

Figs. E. 4 to E. 6 show the effects on the variations of the 



total fluctuation energy density, ET, the energy in the u' -component, 

2 and the non-dimensional amplitude of the fluctuation ] A  / , The 

general variations remain qualitatively unchanged but the maximum 

and the final equilibrium magnitudes a r e  greatly influenced. An in- 

c rease  of factor two in the peak values resul t s  when the fictitious 

positive p ressure  gradient i s  imposed. This  fact i s  again very  much 

in favor of the explanation of the seemingly higher peak values of the 

fluctuation magnitude calculated. Based on this resul t ,  the induced 

negative external p ressure  gradient in the front portion of the wake, 

when included, is expected to further cut down the peak values 

obtained. 

The explanation of these effects may be seen when we consider 

the governing equations in the form of Eqns. (4. 15) 

(E. 4a) 

(E. 4b) 

with TVM. Tvf' TRf being the same a s  given in Eqns. (4. 15). How- 

ever ,  because of the existence of an external p r e s s u r e  field, e i ther  

imposed o r  induced, T~~ i s  no longer identical to T 
Rf' Again, l e t  

us split the energy transfer  t e r m  TRM into two par ts :  the 

- T ~ l  ' 
contribution f rom the usual Reynolds s t r e s s ,  u 'v '  , and TR2, the t e r m  

resulting from the mean flow variation. 
T ~ l  

being the main mecha-  

n ism of the energy t ransfer ,  remains unchanged and is given a s  

3 TR1 = I6w; (E. 5a)  



However, TR2 i s  now modified by the external p ressure  field and 

becomes 

db Wc 
T ~ 2  

= - 2 u f [ 1  w --t (I4-13) b-] 
c 5 c d x  dx 

- (External P re s su re  Term)  (E. 5b) 

Since TRf = T~~ +(External pressure  t e rm) ,  i t  i s  clear  that part 'of 

the mean energy variation appears a s  the work done on or by the 

fluid because of the external p ressure  field. The energy exchange 

between the mean and the fluctuations i s  therefore modified. Depend- 

ing on the sign of the external pressure  gradient, the onset of t ransi-  

tion (the location where TRM becomes the same order of TVM) will 

move correspondingly. 

In the simplified case considered here ,  the imposed stat ic  

p ressure  field i s  positive as  given by the negative of the values 

shown on Fig. E. 2. Eqn. (E. 5b), then, becomes 

Numerical calculation shows that the values of T a r e  now generally 
R2 

of opposite sign to T a s  against the results  shown in Fig. 13 where 
Rl  

TRZ and T have the same sign. Since the interaction between the 
Rl  

mean and the fluctuation i s  relatively weak a t  the initial state of the 

wake where the mean flow i s  varying slowly resembling the pure  

laminar solution, the fluctuation grows near exponentially as  given 

by the linear theory. This weak-coupling development will cease to 

exist when TRMy which is proportional to 14112 to the f i rs t  o rder ,  



becomes of appreciable magnitude a s  compared to TVM. Because of 

the present  imposed static p ressure  field, a much higher magnitude 

disturbance i s  required. This implies a delay of the onset of t rans i-  

tion as compared to the case of no external p ressure  gradient. This 

fact i s  clearly indicated in Fig. E. 3. The much higher peak values 

and a different equilibrium magnitude reached can also be understood 

from Eqns. (E. 4). 

Although the effects of the external mean static p r e s su re  field 

on the calculation i s  qualitatively known, i t  remains to obtain an 

estimate on the magnitude and distribution of the actual interaction 

induced static p ressure  field. This estimate i s  especially needed 

in view of the present  a rb i t r a ry  imposed p ressure  gradient. 

F i r s t  of all, we may note from Fig. E. 3 that the mean flow 

i s  not greatly affected by the external static p ressure  gradient. If 

we assume that the induced p ressure  field will have a smaller  p r e s -  

su r e  level than the one imposed here ,  we can use  the calculated 

mean flow to estimate the external induced pressure .  This assurnp- 

'tion will have to b e  justified later  and, for the t ime being, we will  

ignore the interaction between the growth of the wake and the external 

flow. 

Integrating the mean continuity equation to the distance y*, 

where U*(y* ) i s  nearly zero, we get 
e 

Furthermore ,  using the approximate integrated mean momentum 

equation (4.6 ), Eqn. (E. 7 )  becomes 



- P1 P2b Wc d w  c 
v = 

e PI-P2wc dx 
(E. 8 )  

Since dw /dx< 0, this appears to the external flow as  a sink. The 
C 

5 
distribution of v calculated for case A at  R = 2 x 10 i s  shown in e 

Fig. E. 7 ,  together with the calculated result  of a pure laminar wake 

for the purpose of comparison. The non-linear effect indu~~ccl by the 

finite amplitude disturbances has effectively replaced the distributed 

sinks of small  slowly varying strength by a much more  concentrated 

distribution. Since the total strength i s  the same,  the latter will 

have a generally larger  strength as  indicated in Fig. E. 7. Thus, 

the induced external pressure  field will be much more  important 

and interaction effects may not be ignored as  is  usually the case in 

an undisturbed laminar wake. 

With the calculated magnitude of the vertical velocity compo- 

nent 7 i t  seems justifiable to use the linearized smal l  perturbation 
e ' 

theory for calculating the induced pressure  field. The induced static 

p ressure  coefficient along the wake axis i s  then given by 

When the interaction i s  neglected, we may use  the calculated. v in 
e 

Eqn. (E. 9 )  to evaluate the induced pressure  coefficient. However, 

for the purpose of obtaining a rough estimate of the magnitude and 

the variation of the induced pressure  field, an approximate distribu- 

tion of the form 



(E. 10) 

i s  used instead of the t rue  calculated distribution. Eqn, (E. 10) is 

plotted on F ig .  E. 7 for comparison with the t rue  distribution. Using 

Eqn. (E. 10) for Te, Eqn. (E. 9 )  may be readily integrated to obtain 

- 9  - 9 . 3 3 3 ~ ~  t 1 7 . 0 6 7 ~ ~  - 1 5 . 0 4 7 6 ~ ~  Cps (X,  0 )  = 2 x 

(E. 11) 

- X- 0 .  154 
where x = 0. 079 

This distribution of p ressure  coefficient i s  plotted in Fig. E. 8 

against the normalized variable x, It i s  added to the expression (E. 3) 

assuming that the two induced p ressure  fields do not interact  with 

each other. The resul t  i s  shown in Fig. E. 2 to indicate the effect. 

It i s  evident that the combined result  does give a closer  resemblance 

to the experimentally observed distribution. The deviation a t  x 

greater  than 0. 25 may be attributed partially to the assumption that 

the two effects a r e  additive, because, for x > 0. 25, the mean flow 

remains practically unchanged. F r o m  Eqn. (E. 3), we can see  that 

the static p ressure  level beyond this point i s  s tr ict ly proportional to 

/A/' .  Therefore, because of the favorable p ressure  induced by the 

interaction near  the beginning of the wake, we will expect a lower 

final equilibrium amplitude from the numerical resul ts  of this Appen- 

dix. Hence, the static p ressure  coefficients at x > 0. 25 will b e  

expected to come closer  than indicated to the experimental resul ts  

when the complete interaction i s  included. 



However, i t  may be noticed that the station where C s ta r t s  
P s 

deviating from the theoretical prediction i s  near the same location 

where the re-acceleration of the mean flow and the rather sudden 

decrease of the amplitude of fundamental mode take place experi- 

mentally. All these phenomena cannot be predicted by the present  

theory, but they a r e  consistent in the light of the numerical inves ti- 

gations obtained so far. 



Appendix F 

Effects of f l ;  Case C 

F. 1 General Formulation 

As previously discussed in the main text, Eqns. (3 .  20) need 

to be modified when the correction term to the fundamental mode, 

f l  (y*), i s  included. The method proposed in Appendix B to incluile 

the effect of the mean flow variation in the x direction should be 

incorporated to obtain a solution for f (y*). Without involving such 1 

a modification, this appendix will assume that the solution of f l  may 

be approximately obtained by using Eqns. (3. 20) alone. This parallel 

mean flow assumption will undoubtedly induce e r ro r s  in the es tima- 

tion of the integrals Ii by ignoring the history effect on f l .  However, 

the numerical complexity i s  greatly reduced, and the approximation 

will not affect a qualitative study of the effect and allows a discussion 

of the problems associated with f 
1' 

Using Eqns. (3. 20), the governing equation of fl (y*) may be 

written in the form 

where 



and 

1 U N - - IY 

= - [ 2a*(go f O I T  ' 
F1 a* 

- go
TT f ' )  t a*(fOT'g' - f  g"') 

0 0 0 0  

with the superscript " ' I' denoting differentiation with respect to y*. 

When a? i s  not small,  the solution of Eqn. (F .  1 )  may be ~ b -  

tained for any value of a Since no particular choice of the value of 1' 

a i s  required, we can specify a to be zero. The significance of 1 1 

this choice may be seen from Eqn. (3. 27). Since a* is  generally of 
r 

order one, when a+ i s  not small,  the leading t e rm of Eqn. (3.27) or 
1 

(3. 27a) i s  sufficient to describe the local spatial variation of the 

phase and the amplitude. Therefore, the correction given by a l  may 

be ignored. 

On the other hand, when a? i s  identically zero, i. e. , the 

fundamental mode is neutrally stable, a resonance occurs. The 

operator on the left of Eqn. (F. 1)  becomes identical to the eigen- 

operator. In order to assure  the existence of a solution for f l ,  al 

must take a special value. The value of al  i s  determined s o  that the 

RHS of Eqn. (3'. 1 ) i s  orthogonal to the eigensolution of the adjoint 

of Eqn. (3. 28). Namely, 

where rpo i s  the eigensolution of the adjoint equation of fo.  For the 

near resonance cases,  i. e. , when a? i s  small, the same procedure 



i s  applied to insure a bounded solution. The solution may be obtained 

following the method of Watson by forming a ser ies  solution in a* for 
1 

f l .  
This will be discussed in section F .  4 of this appendix. 

F. 2 Numerical Treatments  

This case  differs f rom case B by including the process  TZ1 

shown in the schematic A. The inclusion of this new non-linear . 

feature will modify the other processes and, therefore, affects the 

complete interaction. 

Using al l  three t e rms  in Eqn. (3. 30), the fluctuations a r e  

given by 

i6 2 
U* = { ~ [ f b t  1 ~ 1 ~ f i ]  e t A gbeZie} t conj. 

v* = - i { ~ [  a*fo t a; IA/ '  f l ]  eie + 2 a * ~ ~ ~ ~ e ~ ~ ~ }  + conj. (F. 5)  

2 
P* = [ A ( P ~ ~ ~  I A ~  P l l )eie  -+ A~~~~ eZie] t conj. 

Using (3. 11) and writing out Fl(fol go, a*) explicitly, Eqn. (F. 1 )  with 

a = 0 becomes, 
1 

- 1 w* where a t  = 2a* - a* and T1 = - 
W (1 - 3 ). 

C 1 
The boundary conditions a r e  



fb(0) = 0 

f '  (m) t a* f (m) = 0 
1 1 1  

(F. 6a) 

The solutions to (F. 6) can again be obtained by the method given in 

Appendix A when the forcing t e rms  on the right a r e  known f rom the 

solutions of f and g However, solutions near  a.* = 0 a r e  difficult 0 0' 1 

to obtain and possess a high degree of uncertainty. This difficulty 

i s  different from the one mentioned in getting the solutions for g 0' 

The inclusion of the viscous t e rms  will not prevent i t s  occurrence. 

A method of obtaining a bounded solution near  a+ = 0 with a non-zero 
1 

a i s  given in section F. 4. Numerically, the solution to Eqn. (F. 6)  
1 

will be intended without making such a modification a s  close to the 

neutral case  a s  possible. The difficulty mentioned above will become 

obvious when the numerical resul ts  a r e  discussed in the next section. 

The effects of f on the flow development again appeared on 1 

the representations of the integral quantities I. as given by Eqn. (5.1). 
1 

It essentially modifies the Reynolds s t r e s s  and the relative energy 

content in the fundamental and the second harmonics. For  purposes 

of comparison and for simplicity, the same  definition for A, a s  given 

. by (4.8), i s  used. In. this case,  the integrals a r e  given by 

for  i = 1 ,  - - - -  8 

For i = 9 

(F. 7a) 



where the k ' s  and k i f f l s  a r e  the results of f l .  T h e y  are given by 
if 

j* du* M N N  - k (w ) =  -i 6f c 
- [ (a*fof ; -a* f  )+ (a* f  b f l  -3 f fby l  )] dy* 

0 dy* 1 

a'- ly 

t?' p ) ]  dy* k7f(wc) = J  [ ( p l 0 f i  + ~ ~ ~ f ; ) + ( f $ ~ ~  0  11 0 

and 



L The governing equations for I A ~  and w can again be written 
C 

in the form s f  Eqn. (4. 10) with different expressions for the functions 

K. .. The solutions can be readily obtained similarly as  for case A, 
1J 



F. 3 Results and Discussion 

A few typical distributions of the forcing function, F1(y*), a r e  

shown in Figs. F. la-d. It may be noticed that the variation of the 

magnitude becomes increasingly large as a" tends to zero. The dif- 
i 

ficulties a r e  enhanced by the inaccuracy in calculating the derivatives 

of go when a; i s  small,  because of the use  of the inviscid Rayleigh 

operator.  Therefore, e r r o r s  in the derivatives of g a r e  amplified 0 

in this stage of calculation through Fl(y*). These numerical difficul- 

ties will result  in a much less  accurate estimate on the integrals k. 
1 f 

and kiff for small a?.  This situation i s  further complicated by the 
1 

resonance behavior in the solution of f near  ax: = 0, s ince,  in this 1 1 

case, the operator on the left-hand side i s  nearly the eigen-operator 

and causes the numerical solutions of f obtained by the method of 
1 

Appendix A to be completely dominated by the undesirable homogene- 

ous solution. As we have discussed previously, the reformulation 

given in section F. 4 with non-zero a i s  needed for this case. 1 

Disregarding these difficulties, the solutions for f have 
1 

been intended for fairly small  values of a$: using the inviscid equa- 
l 

tion (F. 6). The integrals,  k and kiff, a r e  then evaluated and listed 
i f  

in Tables IV and V. The extremely large values of the integrals for 

small values of wc a r e  believed to be numerical e r r o r s  induced by 

the above-mentioned difficulties, However, i t  i s  not pas sible to 

estimate exactly at what value of w or a?, that these e r r o r s  will c ' 1 

be large  enough to affect the solution. A more  accurate calculation, 

using the full viscous operator and the reformulation of section F. 4, 

is needed to justify this approximation. 



A few typical distributions of f and its derivative a r e  shown 1 

in Figs. F. 2a-h. The extremely large ecale used for the cases of 

small wc (thus, small  a*) indicates that a large unknown contribution 
i 

f rom the homogeneous solution i s  dominating. According to the 

2 - 
present formulation, this distribution, multiplied by / A  / , is  added 

to f (y*) to obtain the real  distribution of the fundamental mode. 0 

Therefore, the measured distributions of the amplitude and phase 

of the fundamental mode shown by Sato and Kuriki in Figs. 18 and 

19 of their paper at various x-stations may be realized through these 

results. But, since no emphasis should be placed on the local dis-  

tributions when the integral method i s  used, and, moreover, the 

solutions of f a r e  subject to a large source of e r r o r  in the present  3. 

approximation, we will not attempt to make such a representation 

here. 

The calculated variation of wc for the present case at 

R = 2 x l o 5  i s  compared with the results of cases A and B in Fig. 

F. 3. The general trend again remains unchanged, but the curve 

' levels out a t  a higher value of w i, e. , a larger value of a.%. c'  1 

However, this near "equilibrium" result may be caused by the 

inaccuracy in the integrals k and kiff. i f  This fact may be further 

illustrated by the variations of the total energy density shown in Fig. 

F. 4. The results of cases A and B a re  also shown on the same plot 

for comparison. From Fig. F. 3 ,  we may see  that the mean flow 

velocity i s  varying quite slowly for all  three cases for x >  0. 2. Thus, 

the rapid decrease in the fluctuation energy for case C i s  believed to 



be caused by the same reason discussed for case B: the overestimated 

viscous damping effect due to the inaccuracy in evaluating the inte- 

grals  causes the rapid energy 10s s by dissipation. 

Fig. F. 5 shows the variations of the fluctuation energy in the 

fundamental and the second harmonic. As expected, the resul t  indi- 

cates a lower ratio of (E ) (Euf)max 
than the resul t  obtained 

u2f max 

in case B. However, the relatively small  energy content of the sec-  

ond harmonic, a s  well a s  the continuous decrease  in magnitude a t  

large x a r e  believed to be the consequences of the difficulties men- 

tioned in obtaining the integrals. 

Similar to the treatment of case B, we will t ry  to remedy this 

difficulty by setting both k k and kgff identically zero. This 
8g' 8f 

treatment will tend to eliminate the maximum possible source of 

e r r o r  by accepting some uncertainties in including the correc t  viscous 

damping effect. (Only the contribution f rom f i s  included. ) How- 0 

ever,  the improvement in the solution for this case  will not be 

expected to be a s  good a s  for case B. In fact, a l a rge  unknown e r r o r  

sti l l  remains in all  the integrals for small  a? on account of the e r r o r  
1 

in the forcing function F and the resonance behavior of the solutions. 
1 

Sorne of the resul ts  of this calculation will indicate this difficulty. 

Fig. F. 6 gives the effect of k kgf and kgff on the wc var ia-  
8g' 

tion. Assuming that the resul t  obtained when k kgf and k a r e  
8g' 8ff 

set  to be identically zero  i s  more  representative of the actual solution, 

comparison between the three cases may be made. Using the resul ts  

of Fig. F. 6, i t  may be seen from Fig. F. 3 that the general behavior 



for the three cases remains the same. However, the asymptotic 

values of w seem to be increasing when more terms in the local 
C 

series expansion of the fluctuation stream function a r e  included. This 

trend implies that the flow is  equilibrated at a larger value of -a* i 

which is  in contrast to the linear theory, where equilibrium is only 

possible a t  a? = 0. 
1 

Fig. F. 7 shows the effect of the viscous dissipation terms on 

the total fluctuation energy density. The large effect at large x indi- 

cates the domination of the erroneous viscous dissipation terms on 

the solutions. Fig. F. 8 gives the corresponding development of EUf 

and EUZf 
The variation of Euf is  somewhat peculiar judging from 

the previous results of cases A and B. It is again believed to be 

caused by the e r rors  in the integrals. 

Fig. F. 9 gives the variation of I A J ~  for case C. Notice that 

the maximum value reached is  further decreased from case B. This 

result gives additional confidence in using the amplitude expansion 

proposed together with the truncational approach. 

Before leaving this section, it should be mentioned that the 

results of case C a r e  not conclusive because of the uncertainty in the 

numerical results. It is merely included here for a qualitative ref- 

erence. For a more accurate estimate on its effects, the reformula- 

tion of section F. 4 will be needed and the integrals may be evaluated 

for the range of small alp(. The results may then be patched with the 
1 

present integrals to provide the complete curves a s  functions of wc 

over the whole range of a?, even for slightly damped cases. 
1 



* F. 4 Solution of f l  near a i = 0 

When the eigenvalues a*, found by solving the local Rayleigh 

equation, possess a small imaginary part ,  a straightforward numer-  

ical integration of f will cause a large unknown e r ro r  in the solution. 1 

The method of Watson may be used to obtain the solution. 

Rewrite Eqn. (F. 1 )  in the form 

(F. 10) 

where 

and G, F a r e  given by Eqns. (F. 2) and (F. 3). It should be noted 1 

that, i f  the non-parallelness s f  the mean flow i s  taken into account 

a s  discussed in Appendix B,  the additional terms will appear in F 
1 ' 

The present analysis can be easily modified to incorporate this effect. 

In the following, the procedure of Watson for finding the solution to 

Eqn. (I?. 10) for a small a? will be recapitulated. 
1 

We f i rs t  write f l  in the form 

&en, satisfies 

with the boundary conditions 

(F. 11) 

(F. 12) 



* 
with a* = 2a* - a* 

1 

Since a? i s  small for the cases considered here ,  the operator on the 
1 

LHS of (F. 12) i s  almost the inviscid Rayleigh operator. Hence we 

may choose two independent parts  of the complementary function, one 

of which will almost be the eigenfunction fo. It follows from this that 

the highest order t e rm  in q i s  probably a multiple of f o  and moreover 

that the multiple will tend to infinity a s  a*-- 0. Following the argu- 
. 1  

ments of Watson, we assumed that the most probable case does 

occur, then may be expanded in the ser ies  

(F. 14) 

(r ) Substituting (F. 14) into Eqn. (F. 1 2) ,  we obtain the equations for q~ . 

They a r e  

2i L (w*, a*) P(O' = - 
w c a* ~ ( q ' " ) )  + F~ 

The corresponding boundary conditions a r e  

(F. 15) 

(F. 16) 

(F. 17) 

(F. 15a) 



The solution to (F. 15) i s  9 = Xf , where X is  an arbi t rary  con- 0 

stant. On substituting this solution into the right-hand side of (F. 16), 

X appears explicitly in the equation for q~('). The solvability condi- 

tion (ref. Ince, p. 214) will then determine A. Following Stuart and 

Watson, we define x3 to be the solution of the Rayleigh equation sat-  

isfying the even boundary conditions. 

xi = 0, x 3 = 1  a t y * = O  (F. 17) 

Then, let  9 be the solution of the adjoint equation of the Rayleigh 

equation, which satisfies 

with the same boundary conditions (2'. 15a). By multiplying (F. 16) 

with cpo and integrating with respect to y* between 0 and m, we get 
-00 

(F. 1 9) 

The solution to (F. 7 )  may then be written as  

p(") = BlfO t B2 x3 + (F. 20) 

where P i s  any even particular integral of (F. 16) with X known from 

(F. 19). Then the condition a t  coy (F. 16a), can be applied to deter-  

mine B2. The determination of the constant B1 will have to go to one 

higher order equation by the same procedure used in determining X. 

The solutions for any r can be found in a similar  manner. Since the 



value of a is arbitrary,  i f  we choose 
1 

Then 

( F .  21) 

(F. 22) 

(F. 21) makes the function f bounded even when a?- 0. If only the 1 1 

leading t e rm of (F. 22) i s  used to represent the solution, q ( o )  gives 

the required solution for f In this case, the determination of B is 1' 1 

not necessary and may be se t  to be zero. This only amounts to a 

redefinition of the amplitude function A*. 

The determination of the local solutions for +* near a8 = 0, 
1 

together with the results obtained for large a::', allows the evalua- 
i 

tion of the integrals required in the integral equations over the com- 

plete range of a'?. (The highly damped case will be ignored and is  
1 

expected to be of little interest in the practical case. ) It should be 

noted here  that the use of the integral method has provided the means 

to determine the governing equations for the amplitude and the mean 

flow shapsparameters.  The introduction of an in (3. 27)  gives a 

bounded solution for f l ,  etc. , but i s  only used locally to provide a 

good estimate of the integrals. Therefore, they do not play a central 

role in the present theory as  they do in the theory proposed by Stuart 

and Watson. Hence, the limitation on the magnitude of a? (or c. ) 
1 1 

placed on their theory does not apply to the present formulation. In 

fact, the estimate of Watson provides a means to determine the 



smallest value of a*, beyond which the procedure discussed in this 
1 

section is needed. 
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TABLE II. INTEGRALS k; vs. w for U* = e 
-0. 6 9 3 1 5 p 2  
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TABLE 111. INTEGRALS k 
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0 0 0 0  
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b m u ' c ~  
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0 0 0 0  
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Fig. 3a Distribution of Amplitude and Phase of f o  a t  W = 0.  692 
C 



Fig .  3b Distribution of Amplitude and Phase of fbat W, = 0. 692 



F i g .  3c Distribution of Amplitude and Phase of f o  a t  w = 0. 40 
C 



Fig. 3d Distribution of Amplitude and Phase of f t )  at w = 0.  40 
C 



Fig.  3e Distribution of Amplitude and P h a s e  of f0 a t  w 0. 30  
C 



Fig .  3f Distribution of Amplitude and Phase  of f b  at w = 0. 30 
C 



Fig .  3g Distribution of Amplitude and P h a s e  of f o  a t  w = 0. 20 
C 



Fig .  3h Dis t r ibut ion of Amplitude and Phase of f b  a t  w = 0. 20 
C 
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F i g .  3i Distribution of Amplitude and P h a s e  of f o  at w = 0. 15 
C 



0. 

If;, 

0. 

0 ,  

F i g .  3j D i s t r i b u t i o n  of A m p l i t u d e  and Phase of fd  at w = 0. 15 
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Fig. 31 a Distribution of F(y*) at wc = 0. 692 



Fig. 31b Distribution of F(y*)  at wc = 0. 40 



Fig. 31c Distribution of F(y*) at wc = 0. 30 



Fig.  31d Distribution of F(y*) at wc = 0. 20 



Fig. 32a Distribution of go(y*) at w = 0. 692 
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Fig.  32b Distribution of gb(y*) at wc = 0. 692 



Fig. 32c Distribution of go(y*) at wc = 0 . 4 0  



Fig.  32d Distribution of gb(y*) at w = 0 .  40 
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Fig. 32e Distribution of gO(y* )  at wc = 0. 30 
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Fig. 32f Distribution of gb(y*) at wc = 0. 30 



Fig. 32g Distribution of go(y*) at w = 0. 20 
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Fig. 32h Dietribution of gb(y*) at wc = 0. 20 
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Fig .  E3 Effect  of the E s t e r n a l  Sta t ic  P r e s s u r e  Gradient  on the Variat ion of w c 



- NO EXTERNAL PRESSURE 

/'\ GRADIENT 
- I \ --- FICTITIOUS PRESSURE GRADIENT 

I \ IMPOSED 
I 0  
I CASE A : FUNDAMENTAL ONLY 

I 
a 
\ 

m 

I \ -- 
----- , * ->-  

- - - - - - - --.- -  

I 
W - 0 
4 
I 

I 
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Fig. Fla Forcing Function F1 ( y f )  at wc = 0. 692 
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Fig. Flb Forcing Function F, (y*) at w_ = 0. 40 



Forcing Function Fl (y*) at wc = 0. 30 



Fld Forcing Function Fl (y*) at wc = 0. 20 



Fig.  F2a Distribution of  f l ( y * )  a t  W, = 0. 692 



Fig.  FZb Distribution of f i  (y*) at wc = 0. 692 



Fig .  FZc D i s t r i b u t i o n  of f l  (y*) at wc = 0. 40 



Fig .  F2d Distribution of f; (y*) a t  wc = 0. 40 



Fig. FZe Distribution of f l (y*)  at W, = 0. 3 



Fig .  FZf Distribution of f i  (y*) at wc = 0.  3 



Fig.  FZg Distribution of f l  (y*) at wc = 0. 2 



Fig. F2h Distribution of f l  (y*) at w = 0. 2 
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