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ABSTRACT

In Part I, the integral method of Lees and Reeves is applied to
study a supersonic laminar boundary layer along a two-dimensional
adiabatic curved ramp. The present method of solution requires no
prior knowledge of the separation point and can be used to treat rel a-
tively weak interaction, including a fully attached flow. It starts
with small perturbations of the self-induced interaction on a flat plate;
consequently, it can be applied to flows with the hypersonic interac-
tion parameter X, based on the distance of the beginning station of
interaction to the leading edge, of the order 1. The effect of the
radius of curvature on the separation phenomena is then investigated
using this method. The effect of finite ramp length on the interaction
is examined by making use sf the characteristics of the singularities
associated with the set of moment equations. Satisfactory agreement
with the theory is obtained for the corresponding experiments con-
ducted in the Mach 6 wind tunnel at the Graduate Aeronautical Lab-
oratories of the California Institute of Technology.

In Part II, a non-linear theory for the stability of the laminar
wake behind a flat plate in an incompressible flow is presented. An
integral method is used to investigate the effects of a finite amplitude
disturbance on the flow. The flow is decomposed into a mean part,
which is independent of time and a fluctuating part, which has a zero
time average. The mean flow is assumed to be characterized by two
parameters: the centerline velocity defect W, and the wake half-
width b. By using a two-length expansion procedure, the assumption

of local, parallel mean flow is justified for the solution of the



fluctuating component to the order considered in the present study.
The fluctuation is assumed to be represented by an ascending power
series o the amplitude A. The coefficientsof the power series, as
functions of the radial distance y, are then obtained in terms of the
two mean flow parameters W and b. The three unknowns b, W and
A are then obtained by solving the integral conservation equations of
mean momentum, mean energy and fluctuation energy. Inthis inte-
gral method, the higher-order effects are introduced systematically
by truncating the expansion for the fluctuation at various orders.
The coupling between the mean flow and the fluctuation is found to
be the most important mechanism in limiting the fluctuation ampli-
tude and determining the mean flow. Satisfactory agreements with
the experiment of Sato-Kuriki in the mean flow quantities and the
relative development of the fluctuations ar e obtained, including the

observed effect of free-stream Reynolds number.
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Preprint #68-109).



NUMBER

~N O o0 N ow NP

(o]

10

11

Bl

B2

B3

B4

B5

—X—

LI ST OF FIGURES - PART |
TITLE

Model Configuration and Dimensions

Effect & Angle d Attack

Comparison of Static Pressure Result

Comparison o H

Comparison of &%

Curvature Effect (Theoretical)

Curvature Effect (Experimental)

Effect o Ramp Length (Experimental and
Theoretical)

Effect d Expansion Angle at Trailing Edge

Reynolds Number Effect (Theoretical)

Effect of Finite Mach Number on Weak
Interaction Induced Pressure

Static Pressure Distributions for Models A-1
and A-2 at Rem/inu = 91, 000

Static Pressure Distributions for Models A-1
and A-2 at Reoo/in. = 136, 000

Static Pressure Distributions for Models A-1
and A-2 at Rem/in. =210, 000

Static Pressure Distribution for Moddl. B-1 at
Re /in. = 91, 000

Static Pressure Distribution for Model B-1 at

Re /in. =136, 000
[0}

PAGE
32

33
34
35
36
37

38

39

40

41

42

43

44

45

46

47



-%i-

LIST OF FIGURES - PART | (Cont'd)

NUMBER TITLE PAGE

B6 Static Pressure Distribution for Model B-1
at Re_/in. =210, 000 48

B7 Static Pressure Distribution for Model B-2
at Re /in. = 91, 000 49

B8 Static Pressure Distribution for Model B-2
at Reoo/in. = 136, 000 . 50

B9 Static Pressure Distribution for Model B-2
at Reoo/in. = 136, 000 51
B10 Effect of Model Length at Rem/in. = 91, 000 52
Bll Effect of Model Length at Reoo/in. = 136, 000 53
Bl2 Effect of Model Length at Rem/in. = 210, 000 54
B13 Reynolds Number Correlation at ReX = 3, 4x105 55

¢ 5

Bl4 Reynolds Number Correlation at Re = 2.6x10 56

Cc



5
>
g

)

i’

B g A

" o2 2 Z
W N

gel

1

i

]

-xii -

LIST OF SYMBOLS - PART |
speed o sound
H o+ (L+m_)/m_
(p/poo)/(T/Too); Chapman-Rubesin parameter
(T-HIe H-1)3+ [ @H+1)5-37]B
2/+(3y-1)/(y-1) + [(v+1) /(y-1)]m A /1t me)
+(Mi-1)/[me(l+me)]
91/6:‘ :
(Re/C)s; (1 +m_)tan® / [me(l+m_ )]
ef/ﬁf
iterating parameter defined in Egn. (4)
Mach number
0. 5(y-1)M? |
(7-H3)h + (HR-PJ) + (PT'-R)B
JH-1)h + (PI-HR)E+ [ (2H+1)R-3TP]B
[@H+1)3'-33]h + (R-PJ")f + [3TP- 2H+1)R]
(6;k/UeX8U/8Y)Y=O’ wall shear stress function
static pressure

Prandtl number

25. o. oU 2
. fl 22 ) ay, dissipation function
UZ 0 oY

e

radius of curvature

» Reynolds number
ool

velocity components parallel and normal to surface



XY

-xiii-
Stewartson transformed velocity = (aoo/ae)u
coordinates parallel and normal to surface

Stewartson transformed coordinate;

dY = (ae/aoo) (p/poo)dy
)

i £
fo (U/U_)dY /5,

inclination of the local tangent to surface
total compression angle

expansion angle at end of ramp
0.5(3y-1)/(y-1)
a_p/lap,)=[A+m_)/(1+m )] p,:e/ptoo

specific heat ratio
boundary-layer thickness

5
f 1 - -—E-‘-l—] dy, boundary-layer displacement thickness

u
0 pee

b.
fl[l - -(—ljj—-] dY, transformed displacement thickners
n e

fﬁi g [1- %—I—-] dY, transformed momentum thick-
e e e

ness

5.
f1 'tIIJ‘ - _[_J_...,'ldY, transformed mechanical
0 e

o=

[ 3]

[¢]

energy thickness

local flow angle at y = 6, tan’l(ve/ue)
viscosity
Prandtl-Meyer angle; also kinematic viscosity, u/p

gas density



Subscripts
B

C

3V ] - o 8

Superscript

forou

I

i

~Xiv~

0.25(y-1° X

L
Mi (C/Rex)z, hypersonic interaction parameter

Blasius

sharp expansion corner at the model trailing edge
edge o boundary layer

transformed

weak-interaction

freestream, upstream

zeroth order

first order

second order

derivative with respect to H



-1-

1 Introduction

Considerable progress has been made on the problems involv-
ing the interaction of a boundary layer and the external super sonic

(1-5)

flow through the efforts o many investigators in the past several

years. Recently the analytical method of integral moments has been

applied by Lees and Reeves(é) and by Klineberg(7)

for laminar flow.
Satisfactory agreement with the experiments for shock-impingement
problems and for sharp corners has been obtained. Therefore, this
method with a slight modification is employed to investigate the sepa-
ration phenomena of a two-dimensional flow in a gradually turning
concave surface.

In the previous experimental and analytical works, an infinite
reattaching length has been assumed. For many cases o practical
importance, however, the length available is finite, and it is desir -
able to predict its effects on the interaction. This problem is also
examined by making use of the singularities o the moment equa-
tions. The analytical results are supplemented by the corresponding
experiments conducted in the GALCIT Mach 6 wind tunnel with only

adiabatic flow considered.

2 Analytical Approach

2A, Differential Equations

The coordinate system used is shown in Fig. 1, x being the
distance from the leading edge along the surface and y the distance
away from the surface along its normal. Itiswell known that the

boundary-layer equations are the same as those for a flat plate,
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provided the radius of curvatureis large in comparison with the
boundary-layer thickness. *

For an adiabatic laminar flow with Pr = 1, the governing

integral moment equations reduce to the following forms: (6,7)
Continuity ¢ %
dé, aH 5, dM l+m
B—— +6 <L+ - =p—F tan®
e [0 0]
Momentum
% %k
dé. Y 6., dM
i * A7 i e _ PBCP
A2 vs, &+ @A = = 2= ()
e Re ﬁi
Moment of Momentum
a5 5, aM
Y J'gi/*f‘.?tJl e . BCR
dx M dx ~ %
Re 6i

The boundary-layer velocity profileis assumed to be of the
*
form u/ue = f(yi/é‘:i; #), and all integral properties are assumed to

be functions of only in the present formulation. Their relations

(7)

are given by Klineberg through solutions o the similar-flow equa-

tions. Equations (1), together with a relation between the flow angle
® at the edge o the boundary layer and the local external Mach
number Me, form a set of first-order, non-linear, ordina’rcy differ-
ential equations for the three unknowns Me(x), f,‘/(x), and 6.1 (x). For

simplicity, the Prandtl-Meyer relation is used for the external

supersonic flow, i.e.,

*As the radius of curvature becomes comparable to the boundary-
layer thickness, the coordinate system chosen may cause crossing
of the normals inside the boundary layer. This possibility, in fact,
places a limitation on the total ramp angle allowed in the present
analysis.



®(x) = V(Mm) - V(Me) - a{x) (2)

where v is the Prandtl-Meyer angle and a(x) is the inclination of the
local tangent to the surface, measured positive counterclockwise
from the direction parallel to the velocity at upstream infinity. In
order to facilitatea parametric study of the present problem, the
curved surface connecting two flat plates is simply formed by an arc

of constant radius. Therefore, a(x) is given as (Fig. 1)
O: X € Xl
alx) = (x—x1 )/RC, X, < x< X

(xz-x1 )/RCE a . X >x,

Solving Eqn. (1) for the derivative yields

£ L3
i dMe . _BC Nl(Me’H’ éi)
- BC
M, dx Re s DM ,H)
1 e
N_ (M ,H, 6
x* i BC 2 \Mer 7150y
S & T F (3)
Res. DM _H)
1 [
* *
a8 __gC N M, 6,)
ax

~ %
Re 6, DM ,H)
1 e

(D, Nl’ NZ’ and N3 are given in the List o Symbols.) In the following
analysis, the Chapman-Rubesin parameter will be taken as a constant

equal to 1, without losing generality.



2B, Starting Solutions

In the previous application o the integral method to similar
interaction problems, (6) the boundary layer entering the interactiog
zone was assumed to be a Blasius flow, and the values of Me and 61
at the beginning of the interaction were determined by requiring the
derivatives dMe/dx and d7L//dx to vanish for H = HB' However, when
X based on the distance of the beginning of interaction from the lead-
ing edge is not small, the starting scheme prescribed previously is
inadequate to obtain a solution. T A more precise method has to be
devised to provide the starting solutions for the present problem in
which the disturbance on the flat-plate boundary layer becomes
smaller as the radius of curvatureis increased. The same tech-
nique to be discussed here is equally applicable for the other types
of interaction problems.

When a laminar boundary layer in a supersonic flow ap-
proaches a disturbance, small but relatively rapid changes occur
in the boundary-layer characteristics. In such cases, perturbation
in the external flow has to be considered simultaneously with the
boundary-layer perturbation, even in a region where the interaction
is weak otherwise. The extent of this region is of the order of Me6,
and the deviation from the ordinary flat-plate weak interaction grows
exponentially downstream. In this region of local strong interaction,

the perturbations of Me, H, and 6;' are not independent. The relation

T In the previous flat-plate problems, (6) the starting point of the in-
tegration was taken well into the interaction zone. In this case, a
solution was possible even with relatively large errors in the initial
conditions.
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between them, derived in Appendix A of ref. 9 for thelimiting case

of hypersonic flow, is given by

5, - b,y = -k[W+2H)1-37] &,
HAH, = xa-fs, (4)

- 1
M_-M_, = xH75 -IM_

where the subscript 0 denotes the undisturbed quantities, and k i s an
undetermined constant.

The weak-interaction solution for a flat-plate flow consistent
with the present formulation is obtai ned*by expanding each of the
three dependent variables Me, H, and 6i interms of an asymptotic
series in X, the hypersonic interaction parameter. For the range
of X involved in the present study (order 1), it was found necessary
to include terms of second order in'x or higher. The details are

described in Appendix A. Theresultis

i

2 3
M, /M L+my x+m, X “+m,x fn X

H

Hy + 1 ox + 7, X2 (5)

oy
*
i

% 2
61 [1+61 X + (62—2€2£nx)x ]

i B

*

where HB and 61 are the Blasius values given by
B

A ; :
g = 0.3842, éiB =1.724 X/(Rex)

Expressions for the coefficients can be found in Appendix A.
With these preliminary considerations of the nature of the

solution near the beginning of the interaction zone, the method of
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solution for flow past a curved ramp with given geometry is described
as follows.

For a given freestream condition, an initial point Xqgon the
flat approaching section is chosen. The flow conditions are deter-
mined from the second-order weak-interaction expansion plus a
perturbation from the local strong-interaction solution. The value
of k is chosen to be only a fraction of the maximum value discussed
in Appendix A of ref. 9 in order to assure the validity of linearization
used in obtaining them. Using these initial conditions, the integration
of the set of equations is performed on an IBM 7090 computer. Since
there is no way of knowing a priori the correct X0 for a given ramp
geometry and freestream conditions, this point is obtained by fixing
the value of k and varying Xq until a qualitatively correct solution is
obtained; i. e., the integral curve goes smoothly through the separa-
tion and reattachment points, if it separates, but does not necessarily
satisfy the downstream boundary condition. Then, fixing Xg the
magnitude of k is used as the iteration parameter to find the correct
integral curve that satisfies the downstream conditions. Checks have
been made on the sensitivity of the solution curve to the choice of X e
The fact that two different values of X0 (not too far apart) result in
identical solution curves with different values of k supports the

validity of the approach used in the present study.

2. C. Downstream Condition for an Infinite Ramp

When unlimited ramp length is available, the appropriate

downstream condition isH»HB and Me —»Moo+, the inviscid down-

stream Mach number. Interms of Eqns. (3), this condition requires
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that N1 and N2 vanish simultaneously but D, NS#: 0 as shown in

detail in Appendix B of ref. 9. As pointed out by Lees and Reeves, 6)
there must be a Mach number undershoot and, therefore, a static
pressure overshoot, before the final equilibrium flow is achieved. *
Because of the singular nature of this downstream condition,
it is not possible to achieve this condition numerically. In the corn-
putations, the integration is considered to be completed when N, = 0
at some x sufficiently far away from the reattachment that it has no

effect on the location of the separation and reattachment points.

2D. Downstream Condition for a Finite Length Ramp

In any practical case the ramp length is finite, and the effect
of the sharp expansion corner at the trailing edge of the ramp on the
interaction has to be examined. From Eqns. (3), the curve defined
by D(Me,/{) = 0isalocus o singularities inthe Me -H plane. When
the boundary-layer flow approaches an expansion corner, it feels
the downstream disturbance through the subsonic part of the layer.
The flow accelerates and the velocity profile becomes fuller (7L/ in-
creases). When the angle o turning islarge enough, the integral
curve intersects the D = 0 curve. The point of intersectionis called
the critical point. When the corner is rounded, N's must vanish at
the critical point. When the expansion corner is sharp, we expect
some singular behavior. (Thisis analogous to the location of the
sonic point in the inviscid supersonic blunt-body flow. ) It is there-

fore assumed that the slopes will approach infinity with the dependent
b S

From the nature of sol]?/tions near the Blasius point, there must
also be an overshoot in 77, which was not pointed out by them.
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*
variables, Me, 64 and H, being physical quantities, remaining finite

at the corner. To show that the assumption is consistent with the
solution of Egns. (3) near the corner, we linearize the equation by
letting

B P3

- _ﬁ -
dM_/dx ~ (x_-x) |, dH/dx~ (x_-x) 2 daz‘/dr(xc-x) (6)

for x < X, with X defining the corner location. Because o the re-
quirement mentioned, 0< [31, [32 and p3< 1. Furthermore, by lin-
earizing around the critical point in the phase space, it can be shown
that dMe/d)l/ and déf/d// are finite as x ~x_, which requires that

ﬁl =B, = 53, Note that the assumption requires D - 0 in Egns. (3)
but Ni #0(i=1,2,3)asx X Usigg Egn. (6), the expansions in
(xc-x) for the quantities Me, H and 61. can be obtained near X - Sub-
stituting them into Egns. (3), and collecting terms of the same order

in (xc-x), it can be easily shown that B = L. Therefore, we have,

up to the first termin (xc—x)

S

by & % 1
= - - 2 - - - — -~ 2
Me Mc kl(xc x)%, H Hc kZ(xc ) 6i 6ic+k3(xc %) (7)

where the subscript c refers to the conditions at X and k k2 and

1
k3 are positive constants that can be obtained in terms o the condi-
tions at X Because of the singular behavior when x is used ast he
independent variable for integration near the corner, the independent
variable is changed from x to /4 when some arbitrary given reference
slope d/L//dx is exceeded. (Thereference value is chosen to guar-

antee that the integral curve belongs tothe family described by

Egn. (7).) No difficulties are encountered in this plane because the
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N's do not vanish at the corner. A complete solution curveis ob-
tained when the initial itexatian parameter places the branch paint
at the physical trailing edge o the ramp. The adequacy of the
preceding approximation has to be examined by comparisons with
the experimental results, which will be discussed in the next section.
Studies on the supersonic flow near a smooth expansion corner
have indicated that, at a given fxeestream condition, the flow will
remain subcritical for a small enough turning angle. In such cases,
the integral curve will not intersect the D = 0 curve; hence, it may
proceed smoothly past the corner, approaching its downstream
conditions. This angle for the present freestream conditions has
been estimated to be only a few degrees, even with a quite large
radius of curvature, and it decreases with decreasing radius of
curvature, Therefore, an estimate on the minimum expansion

angle required to apply the present approximation may be obtained. *

3 Experimental Study

The experimental study was conducted in the GALCIT hyper-
sonic wind tunnel with a nominal Mach number of 6. The reservoir
temperature was always kept at 275°F to prevent flow condensation
for the present experiments. The variation in the freestream Reyn-
olds number was achieved by changing the stagnation pressure,
which ranged from 0 psig to 100 psig corresponding to a range of

freestream Reynolds number between 30,000 per inch and 230,000

*A detailed study on the supersonic flow around an expansion corner
is being carried out by K. Victoria at the California Institute of Tech-
nology.
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per inch.

A total number of six models have been designed for the
present test program. They are made of nondeforming tool steel
(Ketos) with a width of 5 inches spanning the tunnel. All models
start with a flat plate section having a sharp (< . 003"") leading edge
followed by the curved ramp. The total ramp angle, being limited
by the tunnel blockage problem, was chosen to be 10 degrees. The
dimensions of each model are tabulated in the table of Fig. 1.
Models A-1 and A-2 are designed to study the effect of curvature.

(1) these

Together with the limiting sharp corner case of Lewis,
provide a fairly wide range of the curvature parameter Xl/Rc'
Models B-1 and B-2, supplemented by model A-1, are used to
study the effect of a finite reattaching length on the flow. Model
B-2-1 has been designed to provide a test on the effect of the ex-
pansion angle at the model trailing edge. Model A-3is a scale-up
version of model A-2, to be used for Reynolds number correlation.

All models are instrumented with static pressure orifices,
0. 012 inches in diameter distributed along the model centerline.
The static pressures were recorded on a multiple-tube silicone
manometer-board. The system was checked for leaks both before
and after each test.

Pitot probes with a flattened (0.002'' x 0. 005'") tip were
used for the flow field surveys. Two probes with different angle
of attack were used for surveying the boundary layer in order to

minimize the effect o angle of attack on the probe readings. The

pitot pressures were measured with a Statharn 5-psia pressure
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transducer. The pressure transducer was calibrated before and after
the test with its reference side kept below 0.5 u Hg. and showed no
noticeable changes. The measurements were recorded on the Y -scale
of a Moseley autograph. The X-scaleindicating the probe position
was transmitted by a helipot. The axial position of the probe relative
to the model leading edge was determined before each run. The dis-
tance away from the model surface was obtained by having the probe
tip in contact with the surface.

In order to compare with the analytical predictions, extreme
care has been taken in achieving a two-dimensional, laminar flow.
Side plates properly designed were mounted on the models to assure

(1)

two-dimensionality. As shown by Lewis, a limiting flow, closely
simulating a two-dimensional flow, may be approached for a mocler -
ately large aspect ratio (defined as the ratio of the spacing between
the side plates to the model length). Therefore, the side plates were
first installed at various spacings to find out the proper spacing for
each model. After setting the correct spacing, the velocity profiles
at various stations along the model were obtained from the Pitot sur -
veys, with the assumption of constant stagnation temperature across
the boundary layer. These profiles were then compared withthe asymp-
totic laminar profile corresponding to the downstream Mach number.
Laminar flow over the complete model was confirmed when none

of the profiles measured became fuller than the asymptotic one.

The details of the assurance of two-dimensionality and the confirma-

tion of a laminar flow are well described by Lewis. Only those

results corresponding to a laminar flow are presented here to
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compare with the theory. The rest of the experimental results,
which are transitional in the sense of the previous criterion, are
summarized in Appendix B.

In practice, the model cannot be aligned perfectly with the
freestream flow direction. In order to estimate the uncertainty in
the measurements, a preliminary test on the effect of a small angle
of attack on the overall interaction phenomena was performed.

Model A-1 was rotated about 0. 5° with respect to the tunnel axis
and the static pressures along the model surface were recorded to
compare with those taken with model aligned to the axis. The com-
parison is shown in Fig. 2. Within the accuracy in the pressure
readings, theratio remains practically constant at all stations.
Therefore, we may conclude that the effect o the angle of attack

is to change the static pressure measurements by a constant f act or
over the whole interaction region, at least for the small angle range
investigated. In other words, the measured pressure distributions
are scaled by the static pressure encountered around the leading
edge section. This result may also explain the high pressure ratios
reported by Lewis over the whole model when the average test
section freestream static pressure was used to normalize the meas-
urements. Because of this finding, the static pressure ahead of

the model has been used as P for normalizing all the data pre-
sented. However, it must be kept in mind that a constant propor-
tional shift of the static pressure data is possible due to the

uncertainty in the flow alignment.
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4 Results and Discussion

4A. Comparison between Theory and Experiment

Only the test results o model A-1 are compared with the
theory. The same degree of agreement exists for all other cases.
Fig. 3 shows the comparison of p/p_oo distribution. The general
agreement including the pressure in the weak-interaction region of
the flat plate and the falling pressure in the region near the sharp
trailing edge is fairly good. The differencein the pressure level
from the prediction near the trailing edge is caused partly by the
transverse pressure gradient existing near a sharp expansion
corner. The theoretically determined separation point shown in
Fig. 3 agrees satisfactorily with an oil film observation. The
velocity profiles, &%, and 8 at each station are calculated from
the pitot pressure survey using Crocco's temperature-velocity
relation for zero pressure gradient and the Prandtl number
0. 725. (10) The transformed form parameter is then obtained
from

(1+m_) 0/6"
1-m 6 /6%

ZLII::

The results are compared with the theoretical predictions in Fig. 4.
The agreement is quite good. The comparison of the displacement
thickness 6>§< isshownin Fig. 5. The general trend is again in
accordance with the theory, but a difference of 30% exists. This
is partially a consequence of the inaccuracy in the measurements
very close to the wall. Moreover, theratio pte/ptoo’ which has

been taken to be unity in the theoretical calculation, is actually a
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function of x due to the different degrees of entropy jump at the bow
shock experienced by the streamlines entering the boundary-layer
edge. Near the beginning of the interaction, pte/ptm has been found
to be only 0.5 for the present experiment. This discrepancy sug-
gests the inclusion of the non-isentropic relation for a more accu-
rate calculation using the moment method.

4B. Curvature Effect

Fig. 6 shows the effect of the radius of curvature from the
theoretical calculation. Because the extent o the separated region
decreases with increasing radius, the effect is not very apparent.
The largest radius of curvature has kept the flow from separation
anywhere in the region of adverse pressure gradient in this 10°
compression turn. However, calculation assuming local similarity
and inviscid pressure distribution will show that this is not possible.
The interaction of the boundary layer with the external flow has
appreciably reduced the adverse pressure gradient and therefore
prevents boundary-layer separation in this case.

The experimental results o the curvature effect are shown
in Fig. 7. In order to include the limiting case of zero radius of

(1)

curvature investigated by Lewis, the results for a high Reynolds
number are presented. The flow, for the two models tested, be-
came transitional around station x = 4. 0 in. (judged from the
velocity profiles measured). However, from the upstream influ-

ence predicted by the method of Section 2D, this effect is expected

to be small on the separated region. The comparison between
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models A-1 and A-2 shows that the effect of the radius is well-
predicted by the theory. Shown on the same figure is the limiting
case of the sharp corner of Lewis, which is nearly identical to the
result of model A-1. Itis also of interest to note that the pressures
measured near the end of models do not show the falling trend pre-
dicted by the laminar theory proposed because of the greatly de-
creased upstream propagation in a turbulent boundary layer.

4C. Ramp Length Effect

The effect of finite ramp length is shownin Fig. 8. The
agreement of experiment with theory isvery good. As expected,
model A-1, having a length of 3.825 in. after the effective corner,
corresponds essentially to the case of an infinite reattaching length
at this Reynolds number. Theoretical calculation for a longer
reattaching length did not alter the points of separation and reattach-
ment, which showed the effectively infinite reattaching length for
models A-P and A-2. The ramp on model B-1 ended about 7 bound-
ary-layer thicknesses after the theoretically predicted reattachment
point. Accordingly, it caused a very little change in the points of
separation and reattachmentfromthe ones corresponding to an infinite
length. Therefore, the pressure distributions are nearly identical
with model A-I except that the peak pressure obtained is lower
because o the insufficient length for pressure rise after the reat-
tachment. Model B-2 was purposely designed to have the model
end slightly before the reattachment point predicted for model A-1.
With the short ramp, thelength of the separated region is reduced,

and the pressure distribution shows no recognizable inflection as
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compared With the other cases. Also the maximum pressure on the
ramp is only about a half of the inviscid pressure rise. Notice that
the total turning angle for all cases is still 10. 15°. Finally, an
experiment was conducted to test the effect of the expansion angle
at the trailing-edge corner. Model B-2-1 is identical to model B-2
except for a 10° expansion turn instead of 100° at the trailing edge o
the model. The pressures measured on model B-2-1 are compared
with the results of model B-2in Fig. 9, together with the theoretical
predictions. The two measurements agree almost exactly except
for the last two data points, so that we may consider the assumption
used in Section 2D to be avalid one.

4D. Reynolds Number Effect

Because o the limitations of the test facilities, pure laminar
flow over the models can only be achieved for a very limited Reynolds
number range. Thus, the effects of Reynolds number on model A-1
based on the numerical calculations are shown in Fig. 10, where the

nondimensionalized pressures PN = (p—p_w‘ ;. )/(P+w. L P i ) are

plotted against x for four different Reynolds numbers. P_w. i and

Piw. i are the weak-interaction pressure distributions corresponding
to the upstream and downstream conditions, respectively, for the
same distance x measured from the leading edge. As the Reynolds
number increases, the separated region becomes larger, and conse-
quently the pressure " plateau™ becomes more evident, as shown by

(1) (5)

Liewis and by Needham '™’ for a sharp corner.



-17-

5 Conclusions

1) An analysis for the perturbations at the beginning of the inter-
action is incorporated in the integral method for solving the boundary-
value problem of the boundary-layer interaction as an iterative
initial-value problem. This approach requires no a priori knowledge
of the separation point and is applicable for flows without separation.
2) Increasing the radius of curvature decreases the length of the
separated region and may result in a completely attached flow (for
the 10° turn investigated) when the radius of curvatureislarge
enough. For a small radius of curvature, the result differs only
slightly from that of a sharp corner.

3) The measured static pressures agree satisfactorily with the
val uis predicted by the moment method. The form parameter H =
ei/a; calculated from the data is in good agreement with the theo-
retical precjj ction, and the experimentally determined displacement
thickness 6 is also in fairly good agreement with the theory.

4) The effect of ramp length can be predicted by the present
method by making use of the singular solution of the moment equa-
tions. When the ramp ends around the reattachment point estimated
for an infinite length, the separated region becomes smaller, and

not only the final pressure level but also the pressure over the

entire interaction region decreases. Experimental results show

good agreement with the predictions of the effect of finite ramp

length.
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Appendix A

A Second-Order Weak |Interaction Expansion

for Moderately Hypersonic Flow Past a Flat Plate*

In the case of M_ >> 1, the self-induced weak pressure inter-
action expansions were well-developed (e.g., Ref. 11) and found to
agree satisfactorily with experimental results. (12,13) However, in
some applications, the solutions for large but finite Mach numbers
are desirable. Furthermore, the terms of higher order in")z are
sometimes required in the expansions. An alternate method is there-
fore proposed here to obtain a set of expansions up to order ')_(2. It
is applied to flow past an adiabatic flat plate in the present analysis.
Extension to a wall with heat transfer is self-evident.

The integrated moment equations for a two-dimensional,

laminar, compressible flow with adiabatic wall are (Pr = 1. 0). (6)

Continuity
as H 6" daM It m
i * d i e e
Bax 8% & TIM Ox CPmmm ) @ (Al)
e e o0
Momentum
ds
i % aH ; dMe PCP
H&—+ai—d§+(z/v’+1)M = T —— (A2)
e Red
Moment of momentum
as 6 dM
L df | 5yt “le BCR (A3)
' wq dx IVIe dx ﬁeéi

*Published in AIAA Journal, vol. 5, No. 10, Oct. 1967, together with
Prof. T. Kubota



-19-

where
tan® = v _/u_ = (d&%/dx)-(5-8%)(d/dx) [fn(p u )] (A4)

All integral properties are assumed to be functions of a single param-
eter H = 61/6;L in the present formulation. The flow angle at the edge
is assumed to be connected with Me through the Prandtl-Meyer rela-
tion, i.e., ® = Yo -ve(Me). To put the equations in a suitable form

for the analysis, introduce the following non-dimensional length:

lbumx - 411006’:
£ = 5 = (A5)
4. 6 2 3
(y-1)'M_v _C (v-1)"M_Jv_C
such that

1
-3 2 _

®) = [(v-1)"/4] X (A6)

(Vi

Then, the following forms o series expansion iny [i.e, in (&)

]

are assumed:
M =M /M =1+ (m /22 (m,/2) + (m,/23%) me+ ... (A7)
e’ T 1 2 3 e

H

1
2
HB t 0 /2)+ (/%) + .. (A8)

s

1
8 RZ [ 1+ (6;/2%) + (e,/R)In% + (8,/%) + ...] (A9)

o)
1
v

The term of ([l/ﬁ]lnﬂ) in the 6 expansion was found necessary to
obtain second-order correction terms, as will be shown later. Sub-
stituting these expressions into the three equations and equating
terms of the same power in (x'%?), the following relations for the

coefficients in the series are obtained:
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1 1
2 2
= @Pg /M) = @Ry/1y)
(1+m_ )| 1+z‘/B+(1/m )]
my = -9, 2 1
(y-1IM_ (M © -1)z
1 =
s B, __,[“’%3 N N .
1- P A v-T Ttm_| ™1
R/ m
_ B 3y-1 [o0)
by - 2m, = Ry b - 3T Trmo ™
i{i—m@—m o
m. = 1 - —
2 e 2 - 1)
™2 - 1)Z }
(L+m )[l+m_ (1+/75)]

P! m _
zez“(“‘B‘““ “L‘) h2+(§l;ll - ~
B H Y- Mo

B
2) 1
3.2 )m, =
2 =
Hy y
!
C3y-1 PR Mg )
1 Py Itrnoo/

2
m -[ (4y-2)/(y-1)]m }
- z

(1+rn00)

(h 6+2n16 H3n161+

(Al10)

(All)

(Al2)

(Al13)

(Al4)

(A15)
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{me-[#v-2)/ (-1 m 2 }

2
+5 +
(Lo P my + 5my 6
Jo m R/
B 3y-1 © OB
(3 Ty~ y-1T Tim_ RB)mlhl (a16)

In these expressions, primes indicate differentiation with respect to
H. Egn. (A10) determines the Blasius val ueiL/B and 6,. If only
first-order (upto order ¥) approximation is needed, Eqns. (Al1-13)
yield enough relations to determine 6,, m,. and hl‘ In Egns.
(A10-16), 5, does not enter, and Eqgns. (Al5) and (Alb)would over-
specify hz if €, were absent.

Examination of equations in the Me-ﬁ-% space shows that the

weak interaction solution must have the form

M_=M_ + (B, /3) + (&2/52)+
(A17)
aa s ap
H:HB+(h1/5)+ (h,/ 8) + ...

Hence
% = (C4/2)6° [1+(2C,/Cy)(1/8) + (2C,/C o)1 /ounb+ ... ] (Al8)

From Eqgns. (A9) and (A18), we obtain
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2
6, = —;—(al + 4 e, b ) (A19)

Wsing (A17), m, can be easily determined as
m, = -€;m,; (A20)

To summarize, the second-order weak interaction expansions are

given as follows with x = [(y-l)2/4]3{:
M /M =1+ + m 2 + m 3 in
e X 2X 3X X

H= Hy+n x+h,x° (A21)

[

. 2
8% =8(v_xC/u )2 [1+ &x +{8, - 2¢, fnx}x”]

For y = 1. 40, substituting in the values corresponding to Blasius

flow, we obtain the expressions for the coefficients

b, = 1.7239
m, = -4.3097 [1.3842 + (1/r1’2100)]1(1+m00)
M_[(M_-1)2 ]
m "mzt moo !
2 1 1+rno0 2 (M 2_1)
<O
2
1. 8727(M ©-1)
QO
(1.3842Zm__+1)(I+m_))
(e 9] (e 0]
h, = -0.2268m

1

(=g}
]

2-6rn00
1 -0, 5002}11 + -1—-;-1_11—;?_ ml (A22)
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o
i

2
> 0.1517(-3. 2053rn2 + 23, 828h1—0. 4746h161 -

3.2053m, 6, + {4.0264 + 56. 531 [moo/(1+moo]}m1h1)

m
il

4moo
2 4, 5844112 + (4. 1026 - m;) mz +

1. 013h161 + 4, 1026m161 +

m
(o0

2
(2m -18m 7)
3.4217h% - — X @~ 2
1 2 1
(I+m )
f0o)

The expressions for static pressure, displacement thickness,

and skin friction are easily derived from Eq. (A22) as follows:

2 3
p/Poy =1+ DX * PyX” + pyx” Lnx

8" /x = by (1+6] X - 2e2x2 2ny %+ 6;':)(2) (A23)
Cy(Re, /C)H/? 2 2
0664 =1+ Cflx + 262)( Iny + szx
where
Py = - TKgmy
2
p, = 3.5K,{ [(8m -1)/K, Jm] - 2m,}
Py = [l4m00/(1+m00)]m3
5
5F = K 0

1 (Re_/C)2
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e

6, = [6K3 +2 - (2/K1)]m1+51+(m00/1<1)h1
* Zmoo moo
62': 6K3+ ——K—l——m2+62+-—2—{-—1~—h2+
3+151nOo 1+17'611moo 2
K3 Kz + e m] + (A24)
1
K3 My 2
2 -R-I- (1 + 4moo)m1h1 + —R-i- h161+ 6K3+2 - -Ki- m161
cfl = 6.5661h,- &, +[(1-8m_)/K, |m,
2 2 1-8mm
sz = 6, 5661}12—6. 84351‘11 + 61 - 62 + -—'-K‘z—-— I'n2 +
45K3(8m00—3) mz . 8m -1 e
‘KZ 1 ‘Kz 171
(Smm-—l)
wher e
K, =1+ 1. 3842m K, = 1+m
1 o 2 lo0)
K3 = mm/KZ
Forlargevaluesofmw, Egn. (AZ23) becomes
— —2
p/pOo =1+ 0.334% + 0. 0478Y
) 2
6* Moo .
& = 0.4772 T [1-0.093x . . .] (A25)
(Re_/C)2

4 —_—
Ci(Re /C)? = 0.664+0.114x +. . .
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Compare with the results quoted in ref. 11 for Pr = 1

p/p = 1+ 0 3355+ 0 0481%°
M 2
6% = 0,4788 —2— (A26)

[ (Re,/C)7]

1
i —
Cf(ReX/C) = 0.664 + 0.115%

The perfect agreement between two approaches is expected
because o the identity of the Prandtl-Meyer flow and tangent wedge
approximations to the second order in small angles. However, the
finite Mach number effect can be seen from the previous expansions
to be quite large. For example, at M_ = 5 8 the expansion for

static pressureis
p/p, =1+ 0.3756% + 0. 0771 ° + 0. 0061 > £n(0. 04%) (A27)

This explains, at |least partially, why the pressure measured by

3. Kendall'®) at M_ = 5 8is higher than the values given by (A26);
but much better agreement was obtained for Bertram's experiments,
which were carried out at a nominal Mach number of 9.6. (13) The
static pressure curve given by Egn. {(A27)is shownin Fig. 11
together with Kendall's data. (12) Also shown on the same plot is
the limiting case of infinite Mach number indicating the finite Mach

number effect.
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Appendix B: Transitional Data

Because o the difficulty in obtaining a laminar flow over the
complete model in the present testing facility, a large portion of the
experimental results have to be categorized as transitional or turbu-
lent. It has been shown by various workers (e.g., Lewis, Needham,
Chapman, €t al.) that atransitional or turbulent separated flow is
markedly different from alaminar one. The comparison o the tran-
sitional data with the results of a laminar theory is therefore
excluded from the main text. This appendix serves the purpose of
collecting the transitional data and hoping to provide some clue to a
possible reformed transitional or turbulent theory.

The measured static pressure distributions at three different
freestream Reynolds numbers for models A-1 and A-2 are plotted
in Figs. B-1 to B-3. The flows on the model for these cases have
been classified as transitional judging from the measured Mach
number profiles. Nevertheless, the calculated distributions of the
present laminar theory are also shown in the corresponding plots
for comparison.

At a freestream Reynolds number per inch o 91, 000, the
agreement is fairly good. The difference appears in the relatively
abrupt change in the slope of the static pressure distribution about
1'' after the theoretically predicted reattachment point. This change
in slope may be explained by the additional cushioning effect to the
flow provided by the relatively thicker boundary layer when it be-
comes transitional. The region where such deviation in slope occurs

coincides with the station having a fuller Mach number profile than
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the asymptotic laminar one. As the freestream Reynolds number
jncreases, transition occurs further upstream. Based on the pre-
vious theoretical considerations, we have learned that the extent

of upstream influence of a sharp corner islimited to a few boundary-
layer thicknesses. Therefore, we may assume that as long as
transition occurs several boundary-layer thicknesses downstream

of the theoretically predicted reattachrnent point, the separation
phenomena is practically laminar. The flow at Rem/in. = 91, 000
islikely to be this case as indicated in Fig. B-1. However, as the
transition region moves closer to the reattachment point, or even

(2) classified

ahead of it, the overall flow becomes what Chapman
as a transitional separation. The two larger Reynolds number cases
shown in Figs. B-2 and B-3 correspond to this situation. The effects
of transition, as indicated by these results, are delaying the separa-
tion and lowering the pressure level at the corresponding station
from the laminar case.

It is also interesting to note that the trend o falling pressure
near the end of the model, which is predicted theoretically and ob-
served experimentally when laminar flow prevails over the complete
model, is no longer observed in these transitional cases. Thisis
expected for atransitional flow and incidentally provides a means
to detect the existence of a laminar flow over the complete model.

The measured pressure distribution for models B-1 and B-2
at higher Reynolds numbers are shown in Figs. B-4 to B-9 together

with the corresponding predictions of the laminar theory. The

insufficient reattaching length bas also resulted in a laminar
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flow over the complete model at higher Reynolds numbers. For
model B-1, the measured Mach number profiles and the good agree-
ment with the laminar theory (including the falling pressure at the
end of the model) suggest the existence of alaminar separated flow
up to Re, =136, 000. For the shortest model tested (B-2), itis
believed that a laminar flow existed over the complete model even
for Re = 210,000.

Figs. B-10to B-12 show the effect of model length on the
pressure distributions at higher Reynolds numbers. The effect of
transition on the slope of the pressure distribution discussed pre-
viously is further confirmed by comparing the results o models
B-1 and A-1. Fig. B-10 shows that the effect of transition on model
A-1 does not affect the separated region as suggested for that Reyn-
olds number. Some effect appears in Fig. B-11 for the case of
Rem = 136, 000. For Re00 = 210, 000, even model B-1 possesses a
transitional flow. It may be noted that the pressure at corresponding
station after the plateau becomes consistently higher for the shorter
model, which is again a consequence of the decreasing level of
fluctuation for the shorter model.

A Reynolds number correlation is intended by using model
A-3. By varying the freestream conditions, the results of model
A-3 may be compared with that of model A-2. Fig. B-13 shows the
correlation of the surface pressure distributions. Because of the
noise level existing in the present wind tunnel, both cases correspond
to a transitional flow. The correlation is very good indeed. Fig.

B-14 shows the correlation at a different Rex . Inorder to achi eve
C
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the same ReX for the two models, it turns out that model A-3 has
been tested atca freestream condition corresponding to a laminar
boundary layer on the present wind-tunnel wall, which has kept the
flow laminar over the complete model. On the other hand, the higher
turbulence level at the freestream condition for model A-2 has defi-
nitely caused a transitional flow on that model. Therefore, the
correlation fails in Fig. B-14. However, it provides a further
evidence on the effect of transition as indicated by the lower pressure

at corresponding stations and the non-falling pressure at the end of

t he model.
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Model Dimensions

Model |[Rc XifRe| Xe¢ | XL | @m |arL
A-1 [2.0"1.0 |2.175"16.0"]10.15° |[I00°
A—- 216" 0.1 |2.175"|6.0"|10.12°|I00°
B-1 |2.0"10 |2.175"4.0"10.15°|l00°
B—-2 |2.0" 1.0 |2.175"3.0"10.15°|100°
B-2-112.0" 1.0 |2.175"3.0"/10.15°| |0°
A-3 200" 0.1 |3.75"(9.4"]10.15°|100°

Moo Re

e
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, {2
—C \\\
—— X

HG1 MODEL CONFIGURATION AND
DIMENSIONS
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PART II. NON-LINEAR STABILITY THEORY

FOR A LAMINAR, INCOMPRESSIBLE WAKE
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1 Introduction

The use of the infinitesimal disturbance theory of hydrody-
namic stability for flow in a wake has been studied by various investi-
gators (McKoen(l), Sato—Kuriki(Z), Betchov—Criminale(B), etal.)
Gold(4) presented a fairly complete formulation of the general prob-
lems in the linear stability theory for both the incompressible and
compressible wakes. The experiment in the incompressible wake of
a thin flat plate reported by Sato and Kuriki(z) has confirmed that the
initial stage of the laminar-turbulent transition can be described by
the linear stability theory. However, the agreements are usually
limited to a relatively small flow region near the beginning of transi-
tion. This limited range o applicability of the linear stability theory
is expected because the exponentially growing disturbances, no mat-
ter how small their initial magnitude may be, will soon invalidate
the assumptions made in the linear stability theory. Being encour-
aged by the relatively orderly behavior of the fluctuations measured
by Sato and Kuriki in the ""non-linear'' region, itis felt that we should
be able to extend the theoretical treatment somewhat beyond the linear
region before classifying them into the mysterious region of turbu-
lence.

The present study is intended to develop a general theory for
considering the effects of the finite amplitude disturbances on a lami-
nar wake, hoping that it may lead to a better understanding on the
mechanisms of transitionin wakes. But it is by no means intended
to offer a possible bridging solution from laminar to turbulent, al-

though non-linearity must be highly responsible for the breakdown of
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the laminar flow.

Based al the previous theoretical treatments and experimental
findings, it is expected that compressibility will not affect the overall
mechanism in an appreciable manner. Thus, only incompressible

flow will be studied here.
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2 Preliminary Considerations

First of all, in order to devise a non-linear treatment as an
improved theory over thelinear stability theory, the assumptions
usually made in the linear theory will be examined. Secondly, antici-
pating certain necessary assumptions to be made in the non-linear
version, the experimental findings of Sato and Kuriki will be briefly
summarized to provide some physical background for better judge-
ments. In Section 2. 3, a brief review o the methods used for other
types of non-linear stability problems will be made in order to
explore certain ideas for the present problem. Finally, the method
o solution is discussed and a qualitative discussion of the physical
mechanism is made.

2.1 Linear Stability Theory

The most crucial assumption made in the linear stability
theory for awake is the smallness of the amplitude of the disturb-
ances. This assumption of infinitesimal disturbances, whichis
common to all the linear stability problems, allows the decoupling
o the mean flow from the development of the disturbances. There-
fore, the mean flow field may be determined independently from the
steady laminar equations. For a two-dimensional, incompressible
wake behind a flat plate, an exact solution was obtained by Gold-

(5)

stein in 1933 with the additional assumption of a high Reynolds
number flow. A general implication of this boundary-layer approxi-
mation i s that the interaction between the growth of the wake with

the external inviscid flow is a higher order effect and may be ignored.
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The linear treatment for the disturbance in a wake further
assumes a quasi-parallel mean flow; i. e. , locally, the mean flow
may be taken as constant. With this parallel flow assumption, the

linearized equations for disturbance permit a solution of the form

= f(y)exp[iafx-ct)] (2.1)
where ¢ = perturbation stream function

a = wave number

ac = angular frequency.

This solution represents a wave train travelling at a phase velocity c.
Upon substitution of the above form, the governing equation for the
amplitude distribution function f(y) becomes a fourth-order homoge-
neous ordinary differential equation--the Orr-Sommerfeld equation--
which together with the homogeneous boundary conditions constitutes
an eigenvalue problem for c when ais given. Two types of disturb-
ances are normally considered.
i) Temporal-mode: ais taken to be real and c complex.
When the imaginary part of c is positive, the corresponding
disturbance is unstable and grows exponentially with time.
ii) Spatial-mode: ac is taken to be real (whichis generally
denoted as w) and a complex. The corresponding disturb-
ance is unstable and grows exponentially with X when the
imaginary part of ais negative.
For a complete discussion of the problem, readers may refer to

Gold(4) and the references cited there.
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2.2 Experimental Evidence

The linear stability theory for the infinitesimal disturbances
has been confirmed experimentally in various problems, with or with-
out solid boundaries, to the extent that, by using the local measured
mean flow quantities, the most unstable frequency and its exponential
growth rate agree satisfactorily with the theoretical predictions.
However, the agreements are usually limited to a relatively small
region. Both the mean flow and the fluctuations soon cease to follow
the undisturbed laminar calculation and the linear stability theory
predictions. Frequently, this is defined as the onset o the transition
from laminar to turbulent flow.

An excellent experiment for the wake behind a flat plate in an

incompressible flow was reported by Sato and Kuriki(z)

in 1961, aiming
at clarifying the transition mechanism in a wake. Both the free-
stream natural fluctuations and the artificial disturbance introduced
through a loud speaker were used as the sources of disturbance for
the wake. Based on the measured mean flows and fluctuations, they
divided the wake into several regions. The main features in those
regions which will be o interest to the present investigation are
briefly summarized as follows: (Refer to Fig. 1 taken from Sato-
Kuriki)

a) Linear region: x/bo < 35, where x denotes the distance

from the plate trailing edge and b, is the half-width of

0
the wake at x = 0, In this region, the following phenomena

were observed.
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i) A single-frequency sinusoidal velocity fluctuation was
observed which was two-dimensional and antisymmetric
with respect to the wake axis.

ii) The measured frequency varied with the free-stream
velocity as U3/2 in accordance with the dimensional
reasoning, and was near the frequency of maximum
amplification rate according to the linear stability
theory.

iii) The measured radial distributions of the amplitude
and the phase were found to agree closely with the
eigenfunctions calculated by the linear stability theory
using the local measured mean flow.

iv) The measured mean flow quantities agreed with the
undisturbed laminar wake calculations of Goldstein.

As a whole, this region demonstrated the validity of the
linear stability theory.
b) Non-linear region: 35< x/bos 125

The term " non-linear'' was used because o the following

facts, which were believed to be the consequences of the

finite amplitude of the disturbances.

i} Two-dimensional sinusoidal fluctuations o the
same frequency as observed in the linear region
were still prominent. However, the growth rate
deviated from being a simple exponential, and
the amplitude of the disturbance actually decreased

in the later stage of this region.
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ii) A harmonic at twice the fundamental frequency
appeared with measurable amplitude which was
symmetric with respect to the wake axis.

iii) The mean flow velocity and the wake width deviated
substantially from the undisturbed laminar wake
solution.

c) Three-dimensional region: 125 < x/bO < 250
The fluctuations became three dimensional and |l ess
orderly.
d) Turbulent region: x b0> 250
The flow proceeded smoothly to a full turbulent flow.
No sudden burst as observed in the wall boundary layers
occurred.
As regards the above division, the present study is intended to
understand the non-linear region where the fluctuations are still two-
dimensional and seem to be dominated by a single frequency and its

harmonics.

2. 3 Brief Review of the Existing Methods for the Non-linear Stability

Theory

An early attempt to include the effects of a finite amplitude
disturbance on the stability of flows between two parallel planes was
reported by Meksyn and Stuart(é) in 1951. The effect of the finite
amplitude disturbance was introduced by including the Reynolds
stress term, pu'v', in the mean equation of motion. Only a single

frequency disturbance was considered, and the generation o the



-79-

higher harmonics through the non-linear interactions between modes
was ignored. The method of solution used was essentially an integral
approach. The Reynolds stress was evaluated in terms o a mean
flow parameter U'O'/U'O under the assumption that the distribution

of the disturbance was given by the solution of the linearized, Orr-
Sommerfeld equation, where Uo(y) i s the mean flow velocity and the
prime denotes differentiation with respect toy. Using such an ap-
proach, the effect of the finite amplitude disturbance on the critical
Reynolds number for plane Poiseuille flow was estimated. As to be
expected, the results showed that the critical Reynolds number de-
creased as the amplitude of the disturbances increased. Stuart (1956)
(7,8) gave a more rigorous formulation later. The method was ap-
plied recently to the non-linear instability of plane Couette flow by
Kuwabara!”) (1967) with the aid of the Galerkin's method to determine
the mean flow and the disturbance.

An enlarged and more general formulation with calculations
along this line of approach was given by Stuart(lo) (1958). In this
paper, he gave a good discussion of the role of the Reynolds stress
in determining the stability of parallel flows. He also described the
physical processes associated with the non-linearity as the amplitude
of the disturbances grows from an infinitesimal to a finite one. A
Fourier series expansion was assumed for the disturbance and an
assumption of constant wave velocity c. for all the Fourier compo-
nentswas implied. It in turn gave the expression for the Reynolds

stress, which appeared in the mean equation of motion linking the
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mean flow and the disturbance. An approximate energy method was
used in which the dominant non-linear interaction was assumed to be
that between the mean flow and the fundamental component of the
disturbance. The distribution of the disturbance was again taken
from the solution of the linearized equation. The governing equation
for the evolution o the amplitude as a function o time was then ob-
tained from the integrated disturbance energy equation. This ampli-
tude equation turned out to be of the same form as given without

derivation by Landau in 1944(“).

One most important result of
Stuart's analysis is the existence of an equilibrium state when the
non-linear effect is introduced. The same method was applied to
the flow in a small gap between rotating cylinders. Good agreement
o the torque required to maintain the cylinders in motion with G. 1.

(49)

Taylor's measurements was indicated.

A more rigorous formulation for the flows between rotating

cylinders given by Davey“‘z)

served as an extension and justification
of Stuart's result. The second harmonic at twice the fundamental
frequency was included and the mechanics o the higher modes were
discussed. Davey's analysis was in fact an application to the specific

(13) (1960 and

problem of the general theory developed by Stuart
Watson(M) (1960). In these two papers, a formal expansion in powers
of amplitude was employed for the disturbances. Although the inte-

gral method was no longer used, the theory was definitely an outgrowth

of the previous developments. The physical mechanisms were de-

scribed by Stuart and the relation to the previous developments was
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mentioned. The formal mathematical justification and systematic
solution to the higher harmonics were given by Watson. The gener-
alization to a full solution paid the price of having a limitation on
the magnitude of the amplitude that restricted the considerations to
the disturbances near the neutral case where ac, = 0. Even though,

as it was remarked by Watson:(14)

""thereis no guarantee that the series will converge, or
even represent a solution asymptotically as ¢;—~ 0, as't

becomes large. However, one would expect the theory
to be an improvement over linearized theory for a
range in time-----""'
This theory, as it was further generalized by Eckhaus(15)
(1965), is usually termed the ** normal mode cascade approach™.
Applications to inviscid shear layers were reported by Schade(16)

(17) (1967). Stuart's analysis was slightly different

(1964) and Stuart
from the previous ones in showing the explicit dependence of the wave
number a and the wave velocity ¢ on the amplitude. The numerical
version of Stuart's theory was reported by Reynolds and Potter(18)
(1967). The treatment was extended to three-dimensional disturb-
ances and the method was applied to plane Poiseuille flow and a com-
bination of plane Poiseuille and plane Couette flow. The numerical
values of each term contributing to the so-called *" second Landau
constant™ in the amplitude equation were obtained in settling the ques-
tion of stability in the non-linear theory. In all the papers mentioned
above, the so-called temporal mode of disturbances were considered;

i.e., the disturbance would grow or decay with time. In 1962,

Watson(lg) formulated in a similar manner a theory for the spatially
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growing finite disturbances in plane Poiseuille flow.

It should be mentioned here that some important contributions
to the non-linear stability theory were made in a parallel manner by
Gorkov, (20) Malkus and Veronis, (21) Joseph, (23) Segel and Stuart,(24)

Joseph and Shir, (25) etc

., on the thermal-convective instability of a
horizontal layer o fluid heated from below (the Bénard problem).
in fact, most of the ideas are interchangeable. A good account of all
these works and some general discussions on the various methods
used were given by Segel. (26)
The methods reported so far have dealt with flows of constant
Reynolds number. In all cases, the mean flow remains parallel and
its deviation from the laminar flow appears as a power series in the
square of the amplitude. In fact, in the case of shear layers (Schade
and Stuart) the mean flows were left unperturbed to the order they
considered. One exceptional case is the spatially-growing disturbance
considered by Watson, where the mean flow is not parallel except as
the flow approaches equilibrium amplitude. But the deviation from
parallel flow comes in only as a higher order correction. In any
case, the interaction with the mean flow may be considered to be a
weak one such that the first few terms in the series expansion for
fluctuation may be determined with an undisturbed laminar mean flow.
The ideas used to develop the following theory have been ex-
tracted from those previous works. The integral method is used to

avoid the unrealistic limitation to disturbances of small linear am-

plification rate imposed by a formal series expansion theory. This
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approach is required because the wake is dynamically unstable and
disturbances of much larger amplitude than those permitted by the
formal expansion solution of Stuart and Watson will appear and domi-
nate the physical process. The approach is analogous to the earlier
works of Stuart (e.g., 1958) applying to a non-parallel mean flow.

2. 4 Method of Approach and Qualitative Discussions

In this section, the formulation of the method of solutionis
outlined, and then, a qualitative consideration on the flow field based
on the proposed method will be given that may help in understanding
the experimental results of Sato and Kuriki. The fundamental differ-
ence of the present theory to the formal expansion theory of Stuart
and Watson will also be briefly discussed. This section will serve
as a prelude as well as an abstract o the detailed formulation of
Section 3, and the quantitative discussions of Section 4.

According to the linear stability theory, an unstable disturb-
ance grows exponentially as it proceeds downstream. When the
amplification rate is large enough, even if the disturbance is infini-
tesimally small originally, the amplitude of the disturbance soon
reaches a magnitude where the assumptions pertinent to the linear
theory become invalid. The finite amplitude disturbance will induce
the following non-linear effects: a) Interaction of the disturbances
with the mean flow through the Reynolds stresses that are ignored
in the linear stability theory, b) Generation of the higher harmonics
and their interactions through the non-linear terms. The present

study formulates a theoretical approach in general and devises a
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method in which these non-linear effects are introduced systemati-
cally in order to have some better understanding of the physical
mechanisms involved in the transition.

The flow is decomposed into a mean part, which is independent
of time, and a fluctuating part, which has a zero mean. Through the
mean equations of motion obtained by time-averaging, the effects of
finite amplitude disturbances become evident. Because of the Reyn-
olds stresses, the decay of the mean velocity and, therefore, the
growth of the wake are expected to be different from a steady laminar
wake. Experimentally, a fairly rapid growth of the wake as compared
to the steady laminar case is observed in the non-linear region.
Hence, the interaction between the fluctuation and the mean flow
will be expected to be a strong one. The weak interaction model of
Stuart and Watson, where the mean flow to the first order is given
by the undisturbed laminar solution, is therefore not applicable. The
variation of the mean flow with distance in the flow direction will
have to be determined simultaneously with the development o the
amplitude of the fluctuation.

In principle, the complete set o the governing partial differ-
ential equations may be solved for any given flow conditions. How-
ever, itwill be an immensely difficult numerical task that will
provide little understanding of the non-linear mechanism in the wake.
Therefore, in an attempt to bring out the essential effects in the
non-linear region, the approximate integral method is adopted for

the present investigation. Instead of solving the complete system
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of the governing partial differential equations, the flow is required
to satisfy the conservation equations of mean momentum, mean
energy and fluctuation energy in integral form. The main simpli-
fication of the integral method lies in the fact that the unknowns may
be approximated by profiles with a few parameters which are then
determined by the ordinary differential equations. In the present
study, the mean flow profile is assumed to be a Gaussian distribution
characterized by two parameters: the mean velocity defect on the
wake axis, W, and the half-wake width, b. For an integral approach,
the details of this distribution generally are not important if it
possesses the qualitative characters o the expected solution.

In the case of an unsteady wake with finite amplitude disturbances,
the Reynolds stresses couple the mean flow to the fluctuations. Thus,
the fluctuations must also be represented in terms of a few governing
parameters, A method in obtaining a reasonable representation of
the distribution of the amplitude and phase of the fluctuation across
the wake i s to solve the Orr-Sommerfeld equation of the linear
stability theory, based on the local mean flow. This choice has the
advantage of representing the proper limit of infinitesimal disturb-
ance. Then, the fluctuation and, therefore, the integrals involving
fluctuating components become functions of b, WC and A, the ampli -
tude of the fluctuation when a single frequency fluctuation is assumed.
The integral conservation equations of mean momentum, mean
energy and fluctuation energy then provide three ordinary differential

equations for the three unknowns b, W and A.
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The use of the linearized Orr-Sommerfeld equation locally to
obtain the functionals required in the integral method can he shown
to be the first order term of alocal power series representation of
the fluctuation. The justification will be given through a careful
ordering process in the next section. However, it must be empha-
sized that the method clevised for obtaining the integrals involving
fluctuating components as functions of the mean flow parameters and
the amplitude is a sufficient but not a necessary one. The integral
method does not restrict the means in obtaining the distributions as
long as they are good representations of the true distributions. This
important idea behind the integral method will have to be stressed in
order to understand the method of truncation used in representing the
fluctuation. The local power series expansion in the amplitude A
for the fluctuation is merely a tool to introduce systematically the
higher harmonics. Therefore, the method does not restrict to the
cases o small linear amplification rate as considered by the analysis
of Stuart and Watson.

Based on the first-order terms d the fluctuation, a qualita-
tive understanding of the non-linear region may be achieved. Various
crude approximations, which will not affect the qualitative discussion,
will be made in arriving at the following model equations. The full
detail justifications are given in the next section.

With the assumption that the mean flow may be described by
two shape parameters b(x) and W, (x), the leading terms of the mo-

mentum integral equation give
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ot

bwcazle'z (2.2)

where Y1 is a constant and R denotes the free-stream Reynolds num-
ber based on the plate length. The energy integral equations of the

mean flow and the fluctuation, to the first order, may be written as

2
dEm N . W3 ﬁ4wc 2. 3)
d« ~ T 6"¢” Rb :
and
2
dE I w
F o 3 8 ¢
o> Y. " RD (2. 4)

correspondingly. Here Em denotes the integral energy of the mean
flow. For small W, since bwc is nearly constant according to Eqgn.
(2. 2), Em is linearly proportional to w, to the first order. EF in
Egn. (2. 4) represents the energy associated with the fluctuations

and is defined by

© = 37
EFz& e+ v dy . (2.5)
The first terms on the RHS of Eqns. (2. 3) and (2. 4) are the
same but with an opposite sign. These terms represent an energy
transfer between the mean flow and the fluctuations due to the Reyn-
olds stresses. For alocally amplified disturbance, the sign of 16
is always positive. Therefore, the energy is transferred from the
mean to the fluctuation through the Reynolds stress, The remaining
terms on the RHS of both equations represent the effect of viscous

dissipation. For a given shape function of the mean flow, B, is a

constant. However, 16 and 18 are generally functions of all three
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unknowns, b, W and the amplitude of the fluctuation. Upon neglect-
ing all the higher harmonics and using Eqn. (2.2), I, and Ig are pro-

portional to the square of the amplitude. We may let

2
= kg (w_) |A]

o
!

(2. 6)

I

2
g = kgtw.) |4

1i

where k() and k8 ar e functions of W only. The amplitude [A]Z is

defined in the present formulation as
2 2
|A]® = EL/@bw)) (2.7)

Now, Eqgns. (2.3) and (2.4) may be rewritten as

1 dw B w>
-5 c _ 2.3 4" ¢
VoRT2 = = kg (w ) [A|"w - T (2. 3a)
v, R2
d 2 2y _ 2 3 KgW) 2 3
2 |A]"w ] =k w ) A w T |A]"w? (2. 4a)
1

A qualitative behavior of the flow field in the non-linear
region may be obtained from these two equations. When the am-
plituded the fluctuation is small, the first term on the RHS of
Egn. (2. 3a) is negligible as compared to the laminar viscous dis-
sipation term. Hence, the mean flow will be closely approximated
by the steady laminar solution, and w, decreases as x—é. Since W
changes slowly in this region, Egn. (2. 4a) may be approximately
considered as an equation for the amplitude wi |A]2 with constant

coefficients. Then, the exponential growth rate o the linear stability

theory immediately follows. This region corresponds to the linear
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region observed by Sato and Kuriki.

As the amplitude grows, the Reynolds stress term becomes
comparable with the viscous term in Egn. (2.3a), and the mean
velocity defect starts deviating from the steady |laminar solution.

As the fluctuation is further amplified, the Reynolds stress term
becomes dominating. The experimentally observed rapid change

of the mean velocity and the wake width in the non-linear region

may be understood from this consideration. As will be shown through
numerical results later, thelocal amplification rate decreases as W
decreases if a single frequency fluctuation is followed. In other
words, when the fluctuation corresponding to the most unstable fre-
quency in thelinear region is taken to represent the fluctuating
component, it will approach neutral as W decreases. The value

of k6 is positive for alocally amplified disturbance and tends to

zero for a neutral one. Thus, when WC decreases to the value where
k6 becomes small, the laminar viscous term and also all the higher
order terms neglected in arriving at Egn. (2. 3a) become important.
The mean flow is expected to have a relatively slow variation as ob-
served experimentally.

The behavior o the fluctuation in the non-linear region may
be studied qualitatively using Eqn. (2. 4a). The total energy of the

fluctuation, E as defined by Egn. (2.5), is expected to increase

F’
continuously by extracting energy from the mean flow through the

Reynolds stress. This process will be dominated by the first term

=

of Egn. (2. 4a) until k, becomes of order R"2. Then, the viscous
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dissipation term and the ignored higher order terms come into effect,
Because of the growth of the wake, it is more interesting to look at
the averaged total energy of the fluctuation. Let ET be the energy

"density'’ o the fluctuation defined by

E =—‘5£ =2,A{ W (2. 8)

dE 1
T 1 2 2 2 41
& =Gy, Al AW R
k., 2p
A (82 ]A]2w4 (2. 4b)

[N

For ké >> R™2, the first term dominates. The appearance of the {A {4

term with an opposite sign to the ]A]Z term is the most interesting
feature caused by the growth of the wake, It permits not only a state
where dET/dx = 0, but also a decreasing ET with x even when the
fluctuation under consideration is still amplifying according to the
local linear theory (k6 > 0). Experimentally, the maximum amplitude
of the fundamental mode grows initially but decreases after reaching
apeak value. This fact may now be explained since the energy
density ET is expected to be indicative of the magnitude of fluctuation.
The crucial differences of the present problem from the
parallel flow analysis of Stuart and Watson. become evident from the
above discussions. The main result of the non-linear analysis of
Stuart and Watson is the governing equation for the amplitude of the

disturbances and is of the form
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t o (2.9)

where Zn‘s are constants. The coefficient EO is given by the linear

theory with the undisturbed laminar mean flow and a, is a result o

1
three effects; the generation of the second harmonic, the correction
of the fundamental and the correction to the laminar mean flow. The
amplitude ]A] in the Stuart-Watson theory corresponds to the average
energy density ET defined by Egn. (2.8). Then, an analogous equa-
tion of the form of Eqn. (2. 9) results with ]A[Z being replaced by

ET' However, the coefficients ZO and El are no longer constants

but functions of the mean flow and, therefore, functions of x, since
the mean flow is not expanded as the undisturbed laminar flow plus a
correction in the present problem, but is lumped together to be
determined by the integral equations. The so-called ''second Landau
constant’ does have an appreciable magnitude even when the second
harmonic is ignored. The sign of 51 is opposite to that of 50' In the
case of a parallel flow, a supercritical equilibrium state may exist.
However, the continued variation of the mean flow provides the possi-
bility of a decreasing magnitude of the fluctuation before reaching the
final equilibrium state as demonstrated previously. Therefore, the
present approach is much more general than the theory of Stuart and
Watson. In fact, the parallel flow analysis may be considered as a

special case o the present theory.

The above qualitative discussions seem to suggest the model



-92-
proposed here to be a plausible one. The formal derivation and

numerical solutions are then given in the following sections.
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3. Formulation of the Problem

The problem will now be formulated in detail in this section.
The difficulties in developing a non-linear theory will be pointed out
and the proposed method of solution will be justified in a self-
consistent manner.

3.1 Governing Differential Equations

For the two-dimensional flat-plate wake, let X be the non-
dimensional distance along the wake axis measured from the trailing
edge, and y the non-dimensional distance from the wake axis. Cor-
respondingly, u and v represent the non-dimensional velocity com-
ponents. Here the reference quantities for the non-dimensionalization

are chosen to be

Velocities U (freestream velocity)
Length L (plate length)

Time L/U

Pressure pUz

Then the Navier-Stokes equations in two dimensions can be written as

p R (a * u ) (3.1)

=
+
e
N
+
E
i

i

-P

v, + uv + vv
x

1
t * _ﬁ-(vxx ¥ Vyy)

Yy

where R is the Reynolds number based on the reference quantities,

i.e., R=UL/v. Now, divide the flow into a mean part independent

of time and a fluctuating part with zero mean, i.e.,
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ulx, vy, t) = E(x,y) + u'(x,vy,t)
vix, vy, t) =_\—;(x,y) + vi{x, vy, t) (3.2)

pix,y,t) =px,y) + p'(x,vy,t)

where the "bar! indicates a time average according to
T/2
J—— 1 ~
Q == Qdt
T “J-T/Z

The fluctuations are assumed to be periodic in time with T being the

period such that
U = :5' =0

For simplicity, the time dependence of the fluctuating quantities will

 with w = 2—", a real quantity,

be assumed to be of the form ~elmJ T

being the frequency and n, an integer.
Substituting (3.2) into (3.1) and integrating over t to separate

out the mean and the fluctuating parts, we obtain for the mean flow

WU 4vE + @) +@v)
X Y x Y

]

1
kel

4

+u ) (3. 3)

T
UVXt Vth (uv)x+(v )Y

— 1 - —
By subtracting Eqn. (3.3) from Egn. (3.1), one obtains
u + v =0
X Yy
1 P , — . — N ¥ 1 1
u} tu Uy t u'ux tv u‘Y t v'uy_t X] = pXt _R(uxx*nugly) (3. 4)

- - - i R |
' ' 1 ! = - | 1
Vtt U.Vx tu VX t VVY tv VY + X2 Pyt 'R(V :+ VYY)
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where

= 2
’ — LTE) Yot o Yoyt - 1
Xy suwu +v'u (u'v') (u'"),

= ql<! W' o (T - 1
X 2 uvxtvvY (uv)X (v )Y

In principle, these six non-linear partial differential equations may
be solved for the six unknowns B G ; p', u', v' with the proper
initial and boundary conditions. However, with the intention of gain-
ing a better understanding of the physical mechanism in the non-linear
region o the wake rather than obtaining some numerical values, we
will first make the following physically realizable approximations to
the mean flow quantities to simplify the analysis.

For the wake flow behind a flat plate, except in the immediate
vicinity of the trailing edge, the boundary-layer type approximation
is quite satisfactory for arelatively large Reynolds number. In Sato-
Kuriki's experiment, the Reynolds numbers are o the order of 104
and higher. We will therefore consider flows of large Reynolds

number and apply the boundary-layer approximation to the mean flow,

which implies
- _L
i) v/u=0O(R ?)<< 1
ii) "b", the nondimensional half wake-width much less than 1
G 2/ _om-t
iii) ax/ay-_O(R )<< 1

With these approximations, if the magnitude o the fluctuation

is further assumed to be infinitesimal, Eqgns. (3.3) reduce to the
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steady laminar wake equations

u +v. =0
X Yy

uu tv uY = —-pX+ R Uyy (3.5)
= -0
pY

where }'SX may be set equal to zero with the boundary condition that

EX =0asy—w. Eqgns. (3.5)were first solved by Goldstein by joining
a far-wake solution to a series expansion near-wake solution. This
solution of Egn. (3.5) will be referred to as the ** pure laminar wake™*
solution in this thesis.

The role of the finite amplitude disturbances can be clearly
seen from Egns. (3.3). As the amplitude grows, the Reynolds-stress
terms become comparable to the re;xlaining terms in the equation.

The experimental results obtained in the non-linear region seem to
indicate that the Reynolds-stress terms dominate. If A denotes a
measure of the amplitude of the fluctuation, we will expect AZ\/_R_

to be of the order one or higher in the non-linear region. In other
words, when A2 becomes O(#), the effect of the disturbance on the
mean flow can no longer be igﬁored. Hence, for the non-linear theory,
we will tentatively keep the terms involving the fluctuating quantities
without exact specification of their relative magnitudes as compared

with the remaining terms in the mean flow equations. Then Eqns.

(3. 3) become
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}X:-—p +}I—{E (3.6)

Upon the assumption that EY is an induced quantity which vanishes as

the amplitude of the fluctuation becomes infinitesimal, only the leading

terms (v'2)Y is kept in the third equation to balance the pressure term.
Eqgns. (3.6) can be contracted further by integrating out the third

equation and substituting into the second one. The equations become

(3.7)

4 (TIVN + (u'z-v'z)x :%wa

wu_+Vvu
X Y

+

Egns. (3.7) further demonstrate that the (u'v')X term neglected in
arriving at the third equation of (3.6) isindeed a higher order term
compared to the terms remaining.

3. 2 Integral Equations

The integral equations of the mean flow are obtained by inte-
grating over the lateral coordinatey. The equations are then reduced
to ordinary differential equationsin x. They are

Mean Momentum Equation

if @@ -T+uw? -v¥ay=0 (3. 8)
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Mean Mechanical Energy Equation

d & 3 - =2 2
=/ [BE-D+Ew -y
(0 0]

An additional equation for the fluctuation is provided by the
energy equation of the fluctuation which i s obtained by multiplying the
second equation of (3.4) by u' and the third one by v' and add. This

equation is then integrated over y and averaged over a period T. It

yields
0o
1L [t v s utevd2 T dy
eo)
00 —5 —5 — 00 o —
2, du —— Ju oV
- - [T — - Tert e —
j;o " -v') - dy !;D u'v (Sy + ax) dy
(3.10)
2 W —s —
1 d
+ 4= = {u' ) dy
L

Theterm % may be neglected as compared to with the boundary-

.ay
layer approximation for the mean flow. Furthermore, the term
involving the second derivative in x represents the conduction of the
fluctuating energy which is quite small in general and may be ignored.

The great advantage o the integral equations is the apparent

display of the energy exchange mechanism because of the conservation



-99-

forms. In Egn. (3.9), theleft-hand side terms represent essentially
the variation of the mechanical energy associated with the mean flow
in the flow direction, while the left-hand side terms in Eqgn. (3. 10)
give the variation o energy associated with the fluctuations. The
transfer of energy between the mean flow and the fluctuations is
clearly indicated by the two Reynolds-stress terms appearing on the
RHS of both equations but with opposite sign. The remaining terms
on the RHS of both equations represent the viscous dissipation effect.

3. 3 Shape Assumption for the Mean Flow

It is the main implication of using an integral method approach
that the unknowns may be approximated by a few shape parameters
which will in turn be determined by the integral equations. To simpli-
fy the analysis, we will assume the mean velocity profiles to be

similar when they are expressed as

l-u(x,y) _ _1-u
1-u(x, 0) W {x)

C

= Usk(y*) (3.11)

where y* = y/b(x), and b gives a measure of the wake width.

U¥(y*) will be assumed as known from the experiments or some other
means. This complete similarity of the mean flow is not quite valid
inview o the experimental results of Sato and Kuriki where overshoot
of the mean velocity at some stations have been indicated. However,
the profiles measured are generally close to a Gaussian distribution,
and, therefore, (3.11) may be a fairly good approximation when
U*(y*) is taken from the averaged experimental data points. The

exact form of U*(y*) should not be too crucial if the integral method
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is a good approximation to the problem. A better approximation to
the mean velocity may be obtained by introducing more shape parame-
ters such that

2B Y) <y, H ), Hy (), ---) (3.12)

3
x
ol

The additional unknowns introduced require additional governing equa-
tions which may easily be obtained by using the higher moment equa-
tions. Theloss of the physical explanation for the higher moment
equations is the price we have to pay for more generality of the profile
shape, Only (3. 11) will be used in most of the following analysis and
the effect of using (3. 12) will be considered later when one additional
shape parameter is allowed in Appendix C.

We transform the equations (3.8), (3.9) and (3.10) from (x, y)

to (x,y*) according to the following rules.

X =X
[T
(3.13)
2 .98 y*tdb o
o ~ ox b dx oy¥
9 1.2
oy = b oy*

Now, with u¥* = u'/wc, v = v /Wc’ and p* = p'/wi, together with Eqgn.

(3.11), Eqgns. (3.8) and (3.9) become

d% {bwc[ (ﬁl—ﬂzwc)—zwc(ll—lz)]} =0 (3. 14a)



-101-

and
d 2
o (oWl BB yw ~4w (1;-1)] }
2 (3.15)
dw 2w
_3db, _ 2 MW N 3 c
= 4w gy g 7 4wl (1 3-1) - 2W ] - == By
where
OO
B, :f Uk dy*
0
(0.9
2
B, = Ux“dy*
2=
0
By =f U dy*
0
(v0] 2
_ dU .
54"{ (’5"};‘;;) d
and
1 (0]
Il 2—2— o ux dy"‘
1 o0 —=
1 QO
= = £ b
13 2];) Uk u*~ dy*
Q0
14 =——f0 Uk v¥~ dy*

(w2 g2 )dy*]

o0 9
There will be an additional term of theform[—bw3f ouH
<Y ox

on the RHS of Egn. (3.15) when the expression (3.12) is used instead

of (3.11). Without losing the main features of the present approach,
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we will use (3.11) for the moment. In this case, the Bi‘s are con-
stants. Moreover, it may be noted that the leading terms of Eqn.
(3.15) yield Egn. (2. 3).

For Egn. (3.10), an additional assumption is made on evalua-
ting the dissipation terms. Looking ahead to obtaining this dissipation
integral through solving the fluctuation equation locally, the x-deriva-
tive appearing inside this integral will be approximated by its local

values. That is

) %0
e for x* = )

-
b

%IQ}

This approximation introduces the same order of error as neglecting
the conduction term in Egn. (3.10). Since both of them are multiplied
by (1/R), the error introduced is expected to be very small for the
high Reynolds number flow considered here. Equation (3.10) then be-

comes

-a‘—i;{— [bwi{(Il+12)—wc(I3+I4)+WC(I7+19/Z)}]

dw WZ (3.16)
_ .3 3db 2 C C
= WCI6—2W I_+ waC - (I3~I4)- 5 I

cdx 5 8

where

m D r———
_"[7 = fo uX*p dy*

(0 0]
_ oux. 2  ou* 2 ov*.2 = ov¥.2 .
I8 “f {(&X*) + \ay*) + (8X*) ' \ay*) ]dY"‘
m st

I, = fo (Wi + wier? )dyx

The correspondence o this equation to Eqn. (2.4) may be immediately
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established by taking the leading terms.

With U*(y*) given, the integrals Ii will be obtained from the
solutions o the local disturbance equations to be discussed in the next
section. Therefore, in general, the values of L depend not only on
the amplitude of the disturbances, but also on the local mean flow
shape parameters.

Egn. (3.14a) can be immediately integrated to give

C

bwc[(ﬁl-ﬁzwc) - ZWC(Il_IZ)] :___212 _ 0.664

VR

where the integration constant has been obtained by assuming-a lami-

(3.14)

nar flow over the flat plate. Eqgns. (3.14), (3.15) and (3.16) provide
the governing equations for the interaction between the mean flow and
the fluctuations. When the expression (3.12) is used for describing
the mean flow, additional equations may be obtained by taking higher
moment integral equations.

3.4 Perturbation Solution of the Local Fluctuation Equations

The integrals Ii appearing in the three integral equations
involve the fluctuation components. As far as the integral method
is concerned, the integrals Ié may be represented as functions of a
few parameters. The proper choice of these parameters depends
on the underlying physics of the problem. In order to form a closure
o the system without using more integral equations, the integrals I.l
are assumed to be functions of the mean flow parameters, b and W
as well as the amplitude o the disturbance. The following method

is then devised to obtain these functional relations.
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The basic idea is to apply a twolength-scale expansion procedure
to the fluctuation equation (3. 4) in order to obtain a good representa-
tion of the fluctuating components in terms o the parameters. Locally,
the fluctuation is assumed to be expanded in an ascending power of
amplitude to account for the non-linear interaction between modes and
the generation of the higher harmonics. The series representation
will be truncated at various terms to bring in the higher order effects
systematically. However, the expression for the fluctuation is not
intended to be a series expansion o the exact solution but merely as
a technique for introducing the high order effects. Hence, the limita-
tion of being close to the neutral disturbance imposed in the Stuart's
theory for parallel flows may be ignored.

Before formulating the method of solution, it should be noted
that the experiment of Sato-Kuriki had indicated the domination of one
fundamental mode in the earlier stage of the wake instability. Thisis
believed to be the result of the highly selective amplification of the
small disturbances in the boundary layer preceding the wake and the
linear region of the wake. Therefore, we assume that u', v'~ einwt,
n=t1, £2.. wherew = real angular frequency corresponding to the
fundamental mode. The higher harmonics are the results of non-
linear interaction.

First of all, the existence of two length scales for the longitudi-
nal distance x in this problem should be noted. They are

i) x ~ O(1) over which the mean flow quantities will vary by

an appreciable amount, and
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X-X
i) x* = b(xO) , alocal length scale associated with the fluc-

tuations. Where X0 is the coordinate of some reference
station which depends on the local mean flow variation
near x such that the mean flow may be considered as

parallel to the first approximation in x* coordinates, e.d.,
o-xg) a, . .
- ﬁ)xo << 1. Therefore, Xy Is generally a function
of x. It differsfrom x by a small amount of the order b.
The existence of these two different scales may be realized by assum-
ing that the disturbance locally displays the wave characteristics
having a local wave length of the order b, which is much smaller than
1 in the high Reynolds number case. Therefore, the mean flow may

be considered as slowly varying as compared to the variation of the

fluctuating quantities.

[y

Since the wake thickness is of the order of R™2 as indicated
by Egn. (3.14), we introduce the following new variables to bring out

the above-mentioned order of magnitude more clearly. Let

1
t* = tR2
L
x%k = (X-XO)R2 (3.17)
1
y—>}: - YRZ

We further assume the fluctuating quantities to be functions of x, t*,
x* and y* by letting

= WC (X)u*(t*’ X*a Y*: X)

=W, (X) v (t*, x%, y¥, X) (3.18)

B = w2 (X) pH (5%, X, Y, X)
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where W (x) = 1-u(x, 0) i s the mean velocity defect along the wake
axis that serves as a proper measure o the local mean velocity.

Then one gets, e. g.,

The other derivatives are calculated in the same manner. Upon sub-

stitution of these results into Eqn. (3.4), one obtains

Eju’t . BVT - —R-% gu* + u* dwc)
ox oy ox W dx
oux — gu¥* - op B
97 — * 9P
pTE? + u p +uy*v + Wc S + WC Xl
1 2 ¥ 2 . _ dw — 1 N
=R"2 (8 u2+8u;)_ u%‘jj+ Cuu*+R2v auf
o By * dx W oy *
— dw (3.19)
du
t 5 u¥ + W %E—(-+Z—-—-p*:} + O(R™ )
ov¥ — gv o ~ - ERTE " v
oF T Uk L Ve ayR P WX TR [‘8X*z 2

ax ay* dx w J
where
< oux | duk 8 .2  — Y
Xy = u* ax><+ VE ayE T e W yw WVEF A OR %)
(3.19a)
* - oV ov¥ d —— 0 -T__Z— ...-,1--
Xog =W gm + Vi m - ar WVF - gm vFT P ORTE)

These equations then describe the local behavior of the fluctuating

1
quantities for x near X The terms of the same order in R™ 2 have
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been grouped together in the above equations. For R>>1, it may
i
seem to be plausible in neglecting terms of O(R™2) to obtain

ouw ovF 0

e v oy¥ -

g?» tu g}&u: ¥ E}r* vET W, g«; W X;< =0 3-20)
gvxk | — Jvx Op o

ac T Yok EWegys ¥ WeXo =0

where XT and X: are given by (3.19a) with the terms of O(R""Z} ne-
glected. However, a careful examination of the terms will reveal

the inadequacy of such an approximation in a complete non-linear
analysis. In fact, two independent small parameters appear in this
problem: the amplitude of the fluctuation and R—% for large Reynolds
number. Even for an arbitrary large Reynolds number, the terms

on the RHS of Eqgns. (3.19) are not negligible when the amplitude of
the fluctuation becomes finite. This fact may be readily revealed

by examining the leading terms on the RHS of Eqgns. (3.19). Two
types of terms appear; the Laplacian terms which indicate the viscous
dissipation effect existed in all viscous fluid, and the terms originated
from non-parallel mean flow. For awake which is dynamically un-
stable, the viscous dissipation terms may be ignored in general for
large R except for a few occasions in which the viscous terms are
needed to smooth out singularity. But the terms resulting from the
variation of the mean flow are in fact of a different nature. The

1 aw

leading terms are proportional to (R™? £ u*) which can be immedi-

dx
ately shown by using Eqgn. (2. 3a) to be o the order (A IA[Zj for large
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R. Now, we note that the leading terms of Xi and X; are of the
order (A2). Since the solution of Egns. (3.19) will be sought in an
ascending power series of A, the effect of the non-parallel mean
flow will have to be included when terms of order higher than A2 are
intended. Appendix B gives further discussions on this point and
indicates the approach to include these effects for the higher order
terms.

For the present investigation, the higher order terms will
not be intended numerically. Therefore, Eqns. (3.20)are used in
place of the full equations without inconsistency. To this order, the
local mean flow is considered to be parallel, and the transformation

(3.17) may be replaced by

t% = t/b(x)
X% = (x-xo)/b(x) (3.17a)
y* = y/b(x)

which provides a consistent definition for the ''*'" variables with the
expression (3.13). Equations (3.20) remain the same under this
change. The differences between (3.17) and (3.17a) are of the same
order of the termsignored in arriving at Egns. (3. 20).

The first equation in (3.20) is satisfied by introducing a local

stream function y*(x%*, y*, t*, x) such that

. OuX . O
u’r‘._.-é-’—yﬁ-;’ v%_..-é-‘%;—%- (3.21)

Now, let
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-inwkgk o~

0 inwk ¥
pr = Z [y, ek, yoix) e g Otuyisx) e 0] (3.22)
where ''~'' denotes the complex conjugate and w* = bw, alocal angular

frequency. The implicit dependence on x for both the amplitude and
the distribution through the local mean flow quantities is also indi-

cated. With Egns. (3.21) and (3.22), after eliminating p* in the last

two equations in (3.20), one obtains

By* oxx Bx¥ By% © Ymen (3-23)

m
0, n=1
+
- nz.l Mm o - “m o v2y n=2
Cyn=] \ Oy* Ox* ox* oy* n-m’
2 2
where V2= g t d

ax*z 8y*2

This is a system of infinite numbers of coupled non-linear partial
differential equations whose solutions are difficult to obtain in general.
However, since the fundamental and the second harmonic are ob-
served to be prominent in the " non-linear" region of Sato-Kuriki's
experiment, the higher harmonics are not expected to play any

essential rolein thisregion. In order to simplify the analysis, we



-110-

truncate the series at n = 2, and obtain four coupled non-linear equa-

tions:

0
O

oy
vzyl - iw*Vz\J,Jl -3 1

yRyR 95 e

Cw [ o % e ) 2
T 7T c J\oy*x Ox* T oxk Oyx )

O o
2 0 2 0 2~
t <ay>:< Ok T o9x X 3y>;<>v 4‘]] (3.24)

- U
2 7 Uysyx axok

o (M e M )2
= W\ ByF Bxx T Oxk Oy ¥ Y1

and the complex conjugate of the above equations |lor :’1’1 and L~p2.‘ For

u

—_— ' . 2
U'a;'*“ﬁ\l-'z_z:l.w \Y Q

an antisymmetrical fundamental mode,’ the second harmonic will be
symmetric from Eqn. (3.24). Thus, the boundary conditions at y*=10

are:

8411

'5-};;;: 0 and 4)2 =0 (3- 253.)

At large distances from the wake axis, the fluctuations should vanish.

Therefore as y*— o

Gps by =0 (3. 25b)

TThe fundamental mode is chosen to be antisymmetric because the
result of linear stability theory indicates that an antisymmetric fluc-
tuation is more unstable than a symmetric one in the wake.
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Then the solution to the above system becomes a non-linear eigenvalue
problem. Since, however, we are not interested in the exact solution
of these equations but in generating reasonable profiles for the use in
the integral method, we adopt a small perturbation method for the
solution of this problem. Even though in actual application, the am-
plitude of the fluctuations are not necessarily small.

Following Stuart and Watson, the following form is assumed

for the solution of Egn. (3. 24)

] %2
Yy o= A¥EE O [ (vsx) AT r¥ix) + - -]
(3.26)
% 2
by = A*orx)[ g lyix) + [A]% g, (y¥ix) + ---]
and
dA¥ X %2 .
S5 s A*) a_|a m (3, = ia*) (3.27)
m=0
then
dlA*,Z 2 e 2m
T =2]ax[” ) a [Ax [T (o =2 ria ) (3.27a)
m=0

As shown by Stuart and Watson, this form of solution leads to no
inconsistency with Eqn. (3. 24)T Upon substitution of Eqgns. (3.26)
and (3.27) into Eqn. (3.24), a set of ordinary differential equations

can be obtained after equating terms of like powers in A*. For the

tIt should be noted that for the terms of order higher than A2 in the

above expressions, Eqns. (3.24) will have to be modified according
to Appendix B.
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leading term of the fundamental mode, fo(y*), one obtains the Ray-
leigh equation

2
* 2
@-2) s - afy s

dy*z

fg = 0 (3.28)

0- EY*Y*
and its conjugate.

Here we have considered the so-called ''spatial mode' of
amplification as against the more commonly used ''temporal mode!'.
That is, with w* real, we take a* = ab = a’; + iaf‘, a complex wave
number whose imaginary part gives the local spatial rate of amplifi-
cation or decay depending on its sign, It has certainly a closer
resemblance to the experimental situations than the temporal mode,
and their interrelation, to the first order, is provided by the group
velocity as shown by Gaster (27, 28)

Eqgn. (3.28) may be solved together with the appropriate homo-
geneous boundary conditions. This constitutes an eigenvalue problem
and a* will be determined which in turn fixes the value of ag in Egn.
(3.27). However, it should be noted here that, being a solution to
the homogeneous problem, f0 may bemultiplied by anarbitrary complex
constant. Although this constant may be included in the amplitude
A*, which is not exactly defined yet, it may still have a dependence
on the large length scale. This fact is indicated by the dependence of
A* onx in Egn. (3.26).

The equation for gq May be written as
£ 3

= _0 d y >y ¥
8o = UyayxB0 =T Ve gyF © 4

2

@ -2 s - 4a¥®
‘ -
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It should be mentioned that, in general, the solution to g consists
o two parts:
i) the homogeneous solution which satisfies the Rayleigh
equation corresponding to an angular frequency 2w*, and
ii) the particular solution which depends on the forcing
terms on the RHS of Egn. (3.29) as a result of the non-
linear interaction of the fundamental modes.
The homogeneous solution will introduce a new measure for its mag-
nitude, say B*, which is independent from A*. Therefore, an equa-
tion of an analogous form to Egn. (3.27) will have to be introduced.
The theory of Stuart and Watson has completely ignored this contri-
bution to the solution. Although this situation may be handled by the
present method, as will be seen later, the algebra will become
increasingly tedious and will tend to cover up the real physics. To
simplify the calculations, we note that, as shown by Sato and Kuriki,
the fundamental mode observed experimentally in the linear regionis
very close to the peak amplification rate predicted by thelinear
stability theory. Then, also from thelinear stability theory (refer
to Gold(4)),we will expect the disturbance at twice the fundamental
frequency to be much less amplified or even damped, Therefore, it
seems to be plausible to ignore the contribution to 99 from the homo-
geneous part and use the particular solution of Egn. (3. 29) as the
sole representation for the leading term of the second harmonic.
In order to obtain the equation for f1 (y*), the correction term
to the fundamental mode, the terms ignored in arriving at Egns.

(3.20) must be included. Appendix F gives an approximate numerical
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investigation of the effects of fl(y*) on the complete flow based on
Egns. (3.20). The approach for an exact treatment of £ (y*) is also
discussed in Appendix F.

The solutions of fo and gg may be obtained numerically without
much difficulty in general. However, an additional difficulty is en-
countered when a={1< = 0. In this case, the wave speed c* = w¥/a* is
areal number, and there exists in the flow a critical point y* - Ve

where (u-c*) vanishes. For awake, u also vanishes at this

yFEYy*

point. Therefore, the equation for f is regular. However, unless

0
the RHS of Eqn. (3.29) for g also vanishes as in the case of a shear

layer considered by Stuart, (17)

a singularity exists in Egn. (3. 29).
For a wake, the singularity exists, hence the viscous terms will have
to be retained in the neighborhood of the critical point in order to
obtain a solution for 9o t

To summarize, up to the order retained including the approx-

imate solution of fl in Appendix F, the local stream-function is given

by
‘ 2 i6 2 i26 .
= { Al + |A] f)e t A%gpe } + conj. (3.30)
where 0 = a;?f XK - wkEk,
~ai*x* niaﬁx*
and Ax) = ex)e = A% e (3. 31)

with ¢ (x) denoting the slowly varying complex ''constant'' mentioned

in discussing Egn. (3.28). Thus, A(x) represents the complex

T An alternate method to avoid the numerical difficulty is by taking a
distorted contour around the critical point in the artificial complex
y*-plane.
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amplitude of the fluctuation, still undefined so far. The expressions
for u*, v* and p* can be easily obtained from (3.30).

if desired, the higher order solutions may be obtained simi-
larly through this cascade process where the higher harmonics are
generated as a result of the interaction of the lower harmonics and
in return the lower harmonics are modified by the higher harmonics.
The inclusion of fO’ g0 and the discussion of fl in Appendix ¥ in the
present study demonstrate the essentials of these processes.

When the local mean flow conditions are known, Eqgn. (3. 30)
will determine the distribution of the fluctuations when A is found.
Because of the effects of the Reynolds stress and the non-parallel
mean flow, a strong non-linear coupling exists between the growth
of the wake (variation of the mean flow) and the variation of the fluc-
tuation amplitude. The relations among the unknowns ar e obtained
from the integral equations (3.14), (3.15) and (3.16). The expression
(3.30) is used only to systematically introduce the higher harmonics
into consideration. It provides a method to obtain the local distribu-
tion of the fluctuations and, therefore, the evaluation of the integrals,
Ii’ appearing in the governing equations (3.14), (3.15) and (3.16).

The complete interaction mechanism may be briefly illus-
trated in the schematic below.

The mean flow, being characterized by the centerline velocity
defect W (x) and the wake half-width b(x) under the shape assumption
(3.11), interacts with the fluctuating components through the Reynolds

stress. The cascade process for generating the higher harmonics
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Schematic A of the Non-linear Interaction

and the corrections back to the lower harmonics seems, at |east
superficially, to limit the interaction of the mean flow with the higher
~harmonics to unidirectional. For example, the second harmonic
(2w), being generated by the interaction of the fundamental compo-
nents, Will have an effect on the mean flow through modifying the
Reynolds stress. However, it seems to extract energy from the
fundamental instead of directly from the mean flow because of the
close link sf the second harmonic to the fundamental. This is the
usual criticism on the cascade model (ref. to Yih(zg)). But, because
of the dependence of the integrals, Ii’ on the local mean flow quan-
tities, the mean flow in fact has a direct influence on the development
of the second harmonic. So, basically, the present model does

include ad| the essentials of the interacting mechanism. In the next
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section, we will discuss the numerical treatment and will try to
understand the various mechanisms by using the truncational approach

discussed in this section to bring in the different effects in sequence.
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4. First Order Results and Discussions; Case A

The present study is intended to bring out the main effects of
the following two mechanisms in the transition region when the am-
plitude of the fluctuation can no longer be considered as infinitesimal;

a) the interaction between the growth o the wake and the
growth of the amplitude of the fluctuation,

b) the generation of the higher harmonics and the inter-
action between modes.

It is therefore desirable to separate out the effects of these two
mechanisms when we try to understand the processes numerically.
This is done by truncating the expression (3. 30) for the perturbation
stream function at various orders such that their effects may be
isolated. Three cases are considered numerically in this investiga-
tion.

i) Case A: Egn. (3.30)is truncated after the first term by
assuming that the fluctuation may be represented by the
fundamental mode alone. This study is intended to under-
stand the role of the Reynolds-stress in the energy
exchange between the mean flow and the fluctuation.

Since the higher harmonics are ignored, this case will
bring out the effect of the first mechanism discussed
above, This caseis considered as the first order effect
and will be discussed in this section.

ii) Case B: Both f0 and 9 remain in Eqgn. (3. 30) to repre-

sent the fluctuation. This case al | ows a study of the
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generation of the second harmonic through the non-linear
terms and its interaction with the mean flow. By compar-
ing with the results of case A in the next section, the
effect of tne second harmonic may be separated out.

iii) Case C: All three termsin Egn. (3.30) arc retained.
The f, term, representing the feed-back to the funda-
mental mode, is generally considered as one basic feature
o the non-linear interaction between modes. The study
of this case is expected to bring out such an effect on the
complete interaction. An approximate treatment is made
in Appendix F.

These three cases, basically, include the essentials of the
non-linear interaction mechanisms in the wake. Similar processes
at much higher complexity are expected to be present in the wake
where all the higher harmonics and other disturbances of different
frequency exist. However, no deeper understanding of the transition
of the wake is expected from the additional complexity, even though
the evolution into a fully developed turbulent wake may be vi sual i zed
as a result of such interaction.

4 1 Formulation

By truncating the expression (3. 30) after the first term, this
case considers only the processes TMI and TlM indicated in the
schematic A representing the interaction between the mean flow and

the fundamental mode.

From (3.30), the local fluctuating velocity components ar e
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simply given by

Al (y* )el® + conj

U*

ve = -i[ A)aks, (y¥)e'® - conj] (4.1)
_ i6 .
p* = A(x)plo(y*)e + conj
Here " '" indicates differentiation with respect to y*. The solutions

to the linear equation (3.28) have been studied by many investigators

and show no conceptual difficulties. For awake, u vanishes at

Y¥y*

the critical point for the neutrally stable case. Therefore, no true
singularity exists in Egn. (3.28) even in the case of a*i‘ = 0. However,
numerically, the error is enlarged when u’; becomes small. One
method to overcome this difficulty is to include the viscous term
partially such that Eqn. (3.28) is replaced by the Orr-Sommerfeld
equation. But, even with the accuracy o the modern computing
machines, special schemes (e.g. , Kaplan's methodBO)) have to be
devised for obtaining a solution because of the presence of the rapidly
growing exponential solutions (refer to Betchov and Crirninal e)(31).
One possible way to avoid such an elaborated numerical scheme is
discussed in Appendix D. The other method, which is used in the
present investigation, is based on the findings of Lin(32-34) ;.
showed that, by taking an appropriate artificial complex contour near
the critical point, the inviscid solution gave a good approximation to

the full solution for the near neutral and slightly damped cases.
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Using Egn. (3.11) for the mean velocity, we can rewrite

Eqn. (3.28)in the form

2 2.
(U:.':_C) ( d > - 0‘*2) ‘EO - d U£ fo =0 (4. 2)
dy dy*
whereT = - (a - £_) (4. 3)
WC ax

The appropriate boundary conditions lor the antisymmetric mode of

disturbance are

f‘O(O) =0

(4. 2a)
f'o(oo) + a¥* fO(oo} =0

Eqgn. (4.2), together with the homogeneous boundary conditions (4. 2a),

constitute an eigenvalue problem. When the mean flow is given,
Eqn. (4.2) can be solvecl numerically to obtain the eigenvalue and
the corresponding eigenfunction fo(y*). The details of the method
of solution are given in Appendix A. It will only be noted here that,

in general, for a given Ux*(y*), we have

a¥ = % (WC , w¥)

and (4. 4)
£ = Loly¥s w_, w¥)

which indicates the iunctional dependence of the eigenvalue and the
eigenfunction. Now, using (4.1), all integrals appearing in Eqns.
(3.14 ), (3.15) and (3.16) can be expressed in terms of fO(y*) and

evaluated. The pressureis related to fo(y*) by
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_ —va AU

It should be noted that the formulation so far has reduced the
integrals |, to a two-parameter representation aside from the direct
square dependence on the amplitude A. Further approximation will
now be made to simplify the analysis. We observe that, in general,
the fluctuating components are much smaller than the mean, and
since both I1 and 12 are positive and of the same order, the contri -
butions from the fluctuations in Eqn. (3.14) may be ignored as a
first approximation. This approximation allows the decoupling of the
amplitude of the fluctuation from the relation between b and W_s thus,

cD/z

b= W(:(ﬁl—p.'awc)

(4. 6)

Using (4. 6), the integrals are then simplified to be functions of a
single parameter w_ when the physical angular frequency and the
free stream Reynolds number are given. Of course, the validity of
this assumption will have to be examined a posteriori. It may be
noted that for W, small, Eqn. (4.6)reduces to Eqgn. (2. 2).

Using (4.1}, the integrals can be written as
L =k (w_)|A] (4. 7)
i itTe '

fori=1,2,...9. The ki's are integrals of functions of fo(y*) and,
therefore, they are functions of one parameter WC(x)onIy. They

are given by
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© 2
k?_(wc)=f0 % | |5, ]? ay

k3(w }:f Usx {f‘ol dy*

0
00
k4(WC) :f U;::Ja* ‘|2 15022 dy*
P LU .12 2
k5<wc):f0 >‘<< (lf [ - |ax| !fof )dy*
(4. 7a)
= -1f Lo 55Ty =04, £)) Sor ay»
(D ~
kqlwe) = [ [fpprg * £y py g dy*
00 2 R
kg (w ) = fo [2]ax|? (af"‘Q*i”folz“f(‘l*zfof’d+°~"‘2 7o)
Slog 1% - fex|® 1% ay
kgtw ) =0

Then by using (4.6), Egns. (3.15) and (3.16) can be written as t wo
first order ordinary differential equations for wc(x)and ]A]Z(x). The
exact definition of A will now be given by setting

k. + k, = ('OO[

V12 w12 e (20
1727 o1+ Jax | £ {7] dyx =1 (4.8)

0
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This definition seems to be an appropriate one since both the govern-
ing equations are for the energy and (4.8) identifies one of the
unknowns, IA[Z(X), as the averaged energy of the fluctuating com-
ponents nondimensionalized by the local mean velocity defect.
Because of the quantities lA[Z and wi always appearing together, it
is more convenient to use Z = 2]A]2 wi as one dependent variable
instead of [A]Z. The physical significanceof Z to this order can be

easily seen to be the total energy density of the fluctuation, because
1.2 2
Z:Sf (UZ’?VZ)dy (4. 9)
0

The set of equations can now be written in the form

dw

C dZ _
K11<Wc’z) = + KlZ(Wc’Z)_‘dx -Kl3(wc,Z) (3. 15a)
dwc dZ
KZI(WC,Z)———-——Clx + KZZ(WC,Z)———dX =K23(WC,Z) (3. 16a)

or, solving for the derivatives algebraically, one obtains

dw N.(w ,7Z)
c _ 1 ¢
dx ~ D(WC,Z)
(4.10)
az N,(w_,Z)
dx = DWw _,Z)
C
with
Ny =K Kyo-K oK,
N, = K, K, | -K, K, (4.10a)
D =K1 Kyn-Ky Ky
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and

dk3 dk

. 4
K= b[2ﬁ2‘3‘33“’c“2‘(a‘v7;‘ " T )

db 2
+ ———dwc [ﬁzwc-ﬁ3wc-22(k3+k5-k4)]

K12 = -2(k3—k4)b
2 ,w
- 4 ¢
K13 - 'k()Z " Rb
(4. 10b)
d
K21 =Z b(k7~3k3+k4)+bwc a—-“-’-(—: (k7-k3-k4)
db
+ —d_\;&’: [ 1+Wc(k?—k3—k4+2k5)}
KZZ =b[1+ (k7-k3-k4)wc]
kg
Kps = Zlkgw * 7]

Eqgns. (4.10) are then solved as an initial value problem. However,
since the initial magnitude o the fluctuation will be different for dif-
ferent testing conditions, it should be left as a parameter to be spec-
ified for each problem. Itis, therefore, first proposed to solve
this initial valued problem in the following manner.

In the limiting case of zero amplitude of the fluctuation, the
set reduces to the integral equations of a steady laminar wake. Eqn.

(3.16) is identically satisfied and Egn. (3.15) becomes
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dw “Bgw. /(Rb)

. 2
= (4.11)
dx Wey o db

‘{’(‘32‘1'5‘33""%)+ 73 —J;v—;(ﬁZ-ﬁ3wc1)

with b given by (4.6) exactly. The solution of (4.11) can he obtained
once and for all by starting the numerical integration from a far wake
solution at some large distance x. The additional subscript ''£'' is
used to designate this solution which corresponds to no disturbance
case.

In general, to solve Eqns. (4.10), a set o initial conditions,
w_.gand Z,, has to be given at some initial station . Then, it
seems to require two free parameters for the problem. However,
if ¢g i s taken to be somewhere near the beginning of the wake (but
not right at the vicinity of the plate trailing edge where the boundary
layer approximations are invalidated), the magnitude of Z0 is ex-
pected to be very small if alaminar boundary layer exists on the
plate. Then Z_. and w.,are not independent but connected by the

0
governing equations. If we let

then apply linearization, aw and ZO satisfy a set of homogeneous
ordinary differential equations. The condition on the existence of a

solution yields a relation of the form

E‘M = function (w_ ) (4. 12)
0 N

Egn. (4.12) reduces the problem to one initial parameter.
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Integration of Egns. (4.10) can then be started by picking an initial
station o and specifying an initial magnitude ZO‘

Since aw is generally very small when Z . is small, it has

0
been found numerically that the solutions are quite insensitive to the

value o Av aslong as Z, is small. For a qualitative understanding

0
of the problem, this small difference in the solutions may be ignored.
Thus, most of the results to be presented in the next section have '
been obtained by using W o= WC}Z at the initial station. Its effect on
the solutions will be discussed |ater.

4.2 Results and Discussions

For the purpose of comparison with the experimental results
of Sato and Kuriki, (2) the numerical calculations have been per-
formed corresponding closely to the experimental conditions. The
mean velocity function, U¥*(y*), used for the calculation is taken to

be the one used by Sato and Kuriki in the linear region, i.e.,
Uk (y*) = exp (-0. 69315 y#°) (4.13)

Egn. (4.13) also gives the exact definition of the half-wake width b
as the distance from the wake axis to the half velocity defect point
where U* = 0. 5. The physical angular frequency of the fundamental
mode used in the calculation is also taken from the experiment o
Sato and Kuriki tobe 730 cpsat R = 2 x 105.
The preliminary numerical work for case A, where the non-
linear terms in the local disturbance equations are neglected,

amounts to solving the Rayleigh equation and obtaining the integrals.

Using the method discussed in Appendix A, we find that the frequency
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observed experimentally does correspond to the one receiving nearly
maximum amplification rate in the linear region as indicated by the
temporal mode calculation o Sato and Kuriki. Following this fre-
quency, the variation of the local amplification rate as a function of
the mean velocity defect along the wake axis, WC’ is shown in Fig. 2.
As the value o W, decreases, the disturbance becomes |l ess ampli-
fied. At W R 147, aﬂ{ = O; the given frequency corresponds to a
neutrally stable solution according to the linear theory. Further
decrease o the mean flow parameter W, will make this frequency a
damped disturbance(aT > 0) according to the linear theory.

A few typical distributions of the magnitude and phase of the
eigenfunction fo(y*) and its derivative f'o(y*), corresponding to a
range of eigenvalues between the most amplified and the nearly neu-
tral ones, are shownin Figs. 3a-j. It may be interesting to note the
fairly drastic variation of the phase of fo with the mean flow parame-
ter as it approaches the neutral case.

The eigenvalues and the corresponding integrals, ki. as func-
tions of the parameter, w,, are given in Tables I and II. Calculations
have been performed only for those listed cases. A complete curve
for each integral as a function of W is generated by curve-fitting
through those points. The derivatives (dki/dwc)’ when required, are
obtained by differentiating the curve-fit. In general, the integral
curves are sufficiently smooth to permit such an operation, and
check well with the slopes obtained graphically.

With all the functions appearing in Eqns. (4.10) determined,

the equations may be integrated for each given set of initial conditions.
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4.2.1 Comparison with Experiment

Most of the experimental results presented by Sato and Kuriki
were measured with a free stream velocity U = 10m/sec. and a plate
length L = 30 cm. These conditions co respond to a free stream
Reynolds number of 2 X 105. From the experimental evidences,
laminar Blasius velocity profile was established on the wall near the
end of the plate, and a nearly laminar region of small amplitude dis-
turbances existed at the beginning of the wake, The calculations are
therefore started at an initial station ¢, =. 05 using the appropriate
initial conditions. Two initial parameters are at our disposal. The
centerline velocity defect Weo at §’O can.be taken from either the exact
solution of Goldstein or the integral solution of an undisturbed laminar
wake in the present formulation which is not very accurate there in
view of the decreasing validity of the boundary-layer approximation
as ¥, decreases. For the present comparison purposes, it is decided
to use Weo = 0.7 at §0 = .05 because of the closer agreement with
the experiment at that point.

Another initial parameter is chosen to be the initial inte-

grated energy content in the u'-component; i. e. ,

1 °7 2
Eyo = (-5 fo u' dy) Co: ki (w_o)Zg (4. 14)

where the subscript " 0" refers to value at §o The use o this free
parameter seems to be justifiable because of the different flow con-
ditions encountered in each experiment, e.g., the free stream

turbulence intensity level, the physical dimension of the plate trail-

ing edge, etc.
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As we have mentioned previously, these two initial parame-

ters are not independent for small Eu and only one free parameter

o
exists. But, for the purpose of a qualitative understanding of the
transition mechanisms in the wake, they are chosen somewhat arbi-
trarily in performing the following calculations. The effects of each
of the initial parameters on the complete solutions will of course be
investigated | ater,

Fig. 4 shows a comparison of the measured centerline velocity
defect W, with the present calculation. The value of E110 has been

taken as 1 x 10'5

for obtaining the curve. The result is quite satis-
factory and seems to provide the explanation for the rapid breakaway
from the pure laminar wake solution of Goldstein which is also shown
in the same figure for comparison.

Only those data and calculated curve for x £ 0. 5 are presented
because the three-dimensional effects observed experimentally at
larger x are not included in the present formulation. Theoretical
calculation for x > 0. 5 stays practically unchanged near the value of
W= 148. 1Itis also interesting to note that this asymptotic value of
W corresponds closely to the value where a* = 0. This value seems
to indicate a balance between the various mechanisms which are
responsible for changing the mean flow. A detailed discussion of
the physical mechanisms involved will be given later. We will just
note that, although it may be somewhat fortuitous, the measured W
has never become smaller than this value before the turbulent region

for all the tests.
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Fig. 5 shows the comparison o the measured wake half-width
with the one calculated by using Egn. (4.6). The general trend is
still satisfactory but not as good as W This disagreement tends
to suggest the approximation used in leading to (4.6) may not be
appropriate if a better calculation is required. In such cases, the
exact relation (3.14) will have to be used which couples the growth
of the wake directly to the amplitude of the disturbance. An attempt
to include this effect will be discussed in Section 4. 2.6. Also shown
on the same plot is the growth o the purely laminar wake. The
strong interaction effect induced by the Reynolds stresses is evident
from this comparison where the wake width has increased by more
than a factor of two.

Fig. 6 gives the theoretically calculated variation of the inte-
grated fluctuation energy, Eu = %}- fw;Z dy. Since no quantitative
measurement of the magnitude of tge fluctuating components has been
reported by Sato and Kuriki, adirect comparison with the experiment
is not possible. However, the variation of the maximum of (—L—in)%

" given by Sato-Kuriki on an arbitrary scale (Fig. 1) does yield the
similar relative development o the fluctuation. Experimentally, the
magnitude o the fundamental mode grows initially according to the
exponential law d the linear stability theory but it soon reaches a
maximum and then decreases. This fact, which cannot be explained
by the linear stability theory alone, may be understood now from the
present calculation. However, it should be pointed out that the rapid

decrease of Eu does not imply the same variation of the total fluctua-

tion energy. Thisis seenin Fig. 7 where
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F f + v! )dy,

are plotted. The variation of EF is related to the local amplification
rate a*l given by the linear theory with some correction due to the
variation o the mean flow as demonstrated in Section 2. 4. The rate
of change of the amplitude will therefore start out in the linear region
with a nearly maximum exponential growth and decreases as it moves
downstream. The fluctuation reaches an equilibrium amplitude some-
where near a”i = 0 when the mean flow ceases to vary, and then slowly
decays because of the viscous dissipating effect. Because of the
growth of the wake, a more appropriate measure of the magnitude of
the disturbance is the total energy density ET defined by Egn. (2. 8).
The variation of ET is shown in Fig. 7a. The reason for the sharp
decrease of Euin contrasttoarelatively slower variationof thetotal fluc-

tuation energy density as shown in Fig, 7ais given by Fig. 8 where

the ratio of the integrated energy content in u' to that in v',
GO QO ~—=zy
_ 2 2
k, /k, _j;) u! dy*/j;) v' < dy*,

is plotted against W The ratio varies by more than a factor of six
for the range of W encountered here. Therefore, we may conclude
that the redistribution of the fluctuation energy between the two com-
ponents u' and v', together with the change of mean flow are responsi-
ble for the experimentally observed abnormal phenomena.

The non-dimensional wave propagation velocity, taken as the
real part of c¢* = w¥/a*, measured by Sato-Kuriki, can also be ob-

tained from the present calculation and the comparison is shown in
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Fig. 9. The scatter of the experimental data suggests that the agree-
ment is acceptable. The variation of the wave speed is again a
consequence o the changing mean flow.

In view of the expansion series in |A|2 used in the present
formulation, the variation of IA[Z with x is shown in Fig. 10. This
variation should follow closely the local amplification rate except for
a small correction caused by the changing mean flow indicated by
e(x) in Egn. (3.33) and the viscous damping effect which has been
ignored in the local calculation. The maximum value reached, 0.8,
is certainly too large for justifying the truncation of the higher order
terms. However, it should be emphasized again that the error in-
duced by the truncation would be minimized by the use of the integral
method.

Another indication of the need for the inclusion of the higher
order termsis seen in Fig. 11 where the variation of the integrated
fluctuation energy in u'-component divided by the square of the local
mean velocity defect, Au = jjo;? dy*, is shown. This quantity,
which is usually used by the experimentalists as a measure of the
intensity of the fluctuation, seems to be too high from the calcul a-
tion. This discrepancy may be a result of the truncation. However,
it should be noted that, in the present formulation we have assumed
that only a single frequency dominates and the higher harmonics, as
a consequence of the non-linear interactions, only appear at integer

multiples o this frequency. In the real situation, a spectrum of all

frequency exists. Individually the fluctuation with frequency other
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than «» may have negligible amplitude as compared to the one at w,

but their integrated effect may not be ignored. The present formula-
tion has included practically all the energy in a single frequency;
hence we shall expect a higher level than that being observed inthe
experiments. A further discussion on this point will have to be made
after the completion of the calculations including the higher harmonics.
We will first accept this first order truncational approach and pro-
ceed to study the physical interaction mechanisms in the wake

through the numerical results.

4.2.2 Physical Mechanisms of Energy Balance

This section will recapitulate and justify quantitatively the
qualitative discussions given in Section 2. 4. Aswe have discussed
previously, the energy equations for the mean flow and for the fluc-
tuation written in the form of (3.15) and (3.16) indicate clearly the
governing energy transfer mechanisms. Theleft hand side of both
equations represent essentially the rate of change of the energy which
are balanced by the terms representing the Reynolds stresses and
the viscous dissipation on the right. We may rewrite Egns. (3.15)

and (3.16) symbolically as

dEm

- =~ Tanm - Tvm (4. 15a)
dEf

—a}-;— :TRf- va (4. 15b)

where
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T =T, =1, wo-2wo[l.w._ 32 + I)bdwc}
RM - "Rf ‘6 Ve Wells Wedx 4™ *3 dx
and
2
WC
Tym = Pswp
2
WC
Tve =3 7o

Em and Ef, to the leading order, represent the energy content o the

mean flow and the fluctuation correspondingly. Both TV and TV

M f
are always positive and represent the loss of energy by viscous dis-
sipation. We will expect the sign of TRM or TRf to be positive in
general such that the energy is taken from the mean flow and fed into
the fluctuation through the Reynolds stresses.

It is appropriate to note here that Eqn. (4. 15b) may be written
in the form of a governing equation for the amplitude of the fluctua-
tion, which gives

éla;}iz. = Al [Fgx) + Ozo'a"(x) | A[%") (4. 16)

0 2 n
This is analogous to the amplitude equation obtained in the non-linear

(19)). The main

stability theory for parallel flows (e.g., Watson
difference is in the dependence o the coefficients _a;(x), on the mean
flow quantities instead of being constantsasin thecase of parallel flows.
In fact this is the feature which brings out a much larger deviation

from the linear stability theory. The coefficient Za(x) in Egn. (4.16)

is proportional to the local amplification rate whi ch is equal to (-a‘"';)
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in the present spatial mode approach. The coefficient ;I(X) whichis

generally referred to as the second Landau ''constant®™ in the parallel
flow theory, is no longer a constant here. And because of the chang-
ing mean flow, ET is non-zero even when the higher harmonics apart

from the fundamental mode are ignored.

With the numerical results obtained, a detailed numerical
breakdown of the variations of the terms which appear in Eqns. (4.15)
should be helpful in understanding the physical processes in the
transition region. Theresult is shown in Fig. 12. The following
physical picture is evident if we refer simultaneously to Figs. 4 and
7, where W gives a measure of the energy of the mean flow while
EF is certainly the correct representation of the fluctuation energy.

When the amplitude of the fluctuation is small in the initial
stage of the wake, the magnitude of Tam is quite small as compared

to the viscous term T Egn. (4.15a)is not much different from

VM’
the integral energy equations for a steady laminar wake and the solu-
tion for W follows closely the solution of Goldstein. As to Eqgn.
(4.15b), it can be shown that for Z small, where the variation of
mean flow may be ignored, the equation gives a nearly constant

rate of exponential growth predicted by the linear stability theory
for the infinitesimal disturbances as it should. Moreover, the vis-
cous dissipation term va is of an order of magnitude smaller than
TRf which supports the fact that the instability of a wake is basically
an inviscid phenomenon. In this region, the energy transfer terms,

whose leading order is proportional to the square of the amplitude of

the fluctuation, are so small that the transfer of energy may be
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ignored as assumed in the linear stability theory. However, as the
amplitude grows, the energy transfer by the Reynolds stresses, TRM'
becomes of comparable magnitude to the laminar viscous dissipating
term Ty and may no longer be ignored. The effect appears on the
noticeable branching away of the mean velocity from the steady lami-
nar wake solution. The continuing near exponential increase of the
magnitude of this energy transfer term causes the complete wake to
be quickly dominated by the energy transfer between the mean and

the fluctuation. The energy is continuously extracted from the mean
flow and fed into the fluctuating components. In the meantime, be-
cause of the rapid growth of the wake, the disturbance is driven away
from the maximum amplification rate and becomes | ess amplified.
This fact is clearly shown in Fig. 12a where the variation of the local
spatial amplification rate, —a%{, is plotted. As aresult, the rate of
energy transfer from the mean flow soon becomes saturated and de-
creases. This point o saturation corresponds approximately to the
location of maximum slope (dwc/dx). From this point on, the fluc-
tuating component continues to take energy out from the mean flow

but at a decreasing rate until it reaches the value W for the mean
flow, where the local linear solution gives a very small negative value
of a%‘i. At this point, the Reynolds stresses term becomes vanishingly
small and because o the higher order terms, which appeared as a
result of interpreting part of Em as the energy of the mean flow, the
energy is feeding, though slowly, back to the mean flow. When this

energy transfer is just right to balance the laminar viscous dissipation
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term, TVM, the mean flow reaches an equilibrium, i.e., the asymp-
totic value of W, obtained numerically. Meanwhile, the magnitude of

Ty¢ becomes comparable to T and dominates the fluctuation devel-

v
opment. The energy is then dissipated from the fluctuation which
causes the amplitude of the fluctuation to decrease at a small rate.

Calculations have been carried out to a much larger x that
shows' practically no change from the picture described above. Be-
cause of the viscous dissipation terms, eventually the amplitude goes
back down to a very small value where the laminar viscous term in
the mean flow equation takes over again. Thisis a slow process and
we have known from the experiments that both the higher harmonics
and the three-dimensional effect, even turbulence, will set in long
before then. Therefore, no emphasis will be placed on the results
at large x.

It may be noted here that the terms which have been generally
termed as the " Reynolds stresses'' effect in Eqns. (4.15) are actuaily

composed of two parts: one is the usual Reynolds stress (u'v')
. 2 2
‘and the other originates from the normal stresses, (u'” - v'")

?‘{‘?Q’Ié’x

The latter will not appear in a strictly parallel flow. A further break-
down of the contributions to TRM or TRf is shown in Fig. 13, where

TRl denotes the contribution from (u'v') oy and TRZ gives the direct
effect of the non-zero mean flow gradient on the energy exchange.

It is clear that the contribution of TRZ is small in general except

near equilibrium. Thisisin agreement with the large Reynolds num-

ber boundary layer approximation used in the present analysis.
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However, it should be noted that, if there were an axial mean pressure
gradient, its effects would appear mainly through TRZ as seenfrom
the derivation leading to the equation. This point will be discussed
further through additional numerical calculations in Appendix E, to
investigate the effect of dp/dx.

4. 2. 3 Effects of the Initial Values

Although no special attempt has been made in obtaining the
theoretical curves discussed in this section to match the experimental
data, the arbitrariness in getting the set of initial values warrants an
investigation of their effects. We will study the effects of the two
initial values, w o and EuO’ separately in the following.

C

(A) Effects of Weo

We first notice that the integral solution of Eqn. (4.11) does
not agree exactly with the solution of Goldstein. Curve 1in Fig. 14
corresponds to the solution of Goldstein. Curve 2 is obtained by
starting the integration of Eqn. (4.11) at a large value of x, using
the far wake solution of Goldstein at that point, integrating backward
toward the origin. The curve deviates from the solution of Goldstein
in the near wake region as a result of the integral approximation.
Curve 3 is obtained by using the exact value of Goldstein at o and
integrating downstream. This gives a closer agreement with the solu-
tion of Goldstein in the region where the main interest of our present
investigation rests, but it gives a consistently higher W than curve 1.
Curve 3 can in fact be obtained by shifting the origin of curve 2. Phys-

ically, curve 3 corresponds to a thinner wake than the other two at
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corresponding stations. For consistency of the integral approach
the value from curve 2 should be used for the calculation. However,
since all integrals are taken as functions of W alone, itis also
desirable to use the result closest to the exact solution. This fatter
choice has been used in obtaining the previous calculations because
of the closer agreement of curve 3 to the exact solution in the region
of interest ( O5sx<.30). Itistherefore necessary to investigate
the effect of varying W.g in the solutions.

Three cases of variation of W, corresponding to the initial
valueswCo being 0.7, 0.675, and0.6386 are shown in Fig. 15.
The value W= 0. 6386 corresponds to the steady laminar wake
solution of curve 2 in Fig. 14 at §0 =, 05. The same value o Euo
has been used for all three curves which seem to give qualitatively
the same variation of W and asymptote to the same value of w_- The
effect of w_o appears mainly in the maximum value of dWC/dX reached
such that a smoother variation is obtained for a lower value of W o
A few experimental data points are also shown there for comparison.
Using the location of maximum dwc/dx as a point of demarcation,
it seems to indicate that the experimental data agree better with the
result of smallerwCO in therearportionofx, butacloser agreement
is seen with the larger w_ gy case for the front portion. Thisis ex-
pected because of the implications of different initial wake thicknesses
for the different values of W o
Figs. 16 and 17 give the variations of the integrated fluctua-

tion energy for the three cases. The general variation is again

qualitatively unchanged except for the different locations and levels
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of the maximum value reached. This difference can also be under-
stood from the fact that a higher Weo implies a thinner wake and
therefore a higher amplification rate locally. This finding explains
in a small part the high peak energy obtained by the calculations
using W_.q = 0.7 as compared to the experiments.

An additional test has been made by varying the values of ¥ 0
by a small amount according to Eqn. (4.12) when Weo islinked to the
initial disturbance energy level EuO' The results show practically
the same solutions. Therefore, no attempt has been made to use
Egn. (4.12) for all the calculations.

In conclusion, the effect of Weo is not very important when
the purpose of the study is a qualitative understanding of the transi-
tion mechanism in a wake. However, the indicated effects should be
borne in mind when any quantitative comparison is intended,

(B) Effects of Eu0

To investigate the effect of Eu on the solutions, a few cases

0

were calculated for R = 2x 105 with the same value of Weo but differ-
ent EuO' Fig. 18 shows the variations of W for threeinitial values
Euo =01, 1.0, 3.0 x10 5. The shape of the curves remains prac-
tically unchanged. Changing the initial value of EuO amounts only to
a shift of the curve. It is expected from the previous discussions of
the physical mechanisms that the magnitude of the disturbance re-
quired to cause a sensible deviation o the solution from the undis-
turbed case is approximately the same over a range of W where the

laminar viscous termis of the same order. Therefore a smaller
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initial magnitude o the disturbance will cause the mean flow to be
well approximated by the laminar solution for a longer distance, while
the disturbance grows exponentially without much influence on the
mean flow, till it reaches the magnitude where the interaction becomes
important. This is further illustrated by the variations of the inte-
grated fluctuation energy, Eu, shown on Fig. 19. The shapes are
again similar with merely a shift in abscissa. It should be noted that,
with the variation of a factor 30in EuO' the maximum values of Eu
reached are nearly the same and the difference in the ''equilibrium**
magnitude is negligible, The slight difference in the peak values of
Eu is caused by the slight change in the magnitude of the laminar
viscous term when the interaction becomes important. In principle,
if the initial magnitude of the fluctuationis small enough, the solution
will approach the steady laminar wake solution corresponding to EuOE 0
which is also shown in Fig. 18 for comparison.

The magnitude o the disturbances existing at the initial stage
o the wake depends on many factors which vary from experiment to
experiment. These factors include both controllable, e. g., an arti-
ficial source o disturbance, and partially controllable, e.g., rough-
ness of the plate, wind tunnel noise level, etc. If any quantitative
calculations are needed, it will be necessary to have some measure

of the magnitude of E, This fact is further demonstrated by the

o
two sets of experimental data points also shown on Fig. 18 taken from
the paper of Sato-Kuriki. The data points correspond to two different
plate models tested under the same free stream conditions. Model |

has a sharp trailing edge but Model II has a blunt one. As to be
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expected, alarger E will be associated with Model II which shows
the right trend as indicated by the calculations.

As a whole, we may conclude that the initial values will affect
the solutions quantitatively but with the qualitative mechanisms in the
non-linear region remaining practically unchanged. This insensitivity
is to be expected when the non-linear effects are important; the
memory of the initial values should be mostly erased.

4. 2. 4 Reynolds Number Effect

A wake i s dynamically unstable because of the inflected mean
velocity profile. Thelinear stability theory indicates that the effect
of Reynolds number on the stability of the free shear flow is negli-
gibly small for sufficiently large Reynolds number. It has been
shown that the effect of (1/R) terms in the equation is small every-
where except in a small region near the critical layer for the ampli-
fied and neutral disturbances. In general, the viscous effect does
not affect the eigenvalues which may be determined from the inviscid
equation, The amplification rate given by the linear stability theory
is therefore unaffected by the Reynolds number. For the non-linear
approach here, it is certainly desirable to find out the effects of
Reynolds number on the transition of the wake, which is defined here
as the deviation from a pure laminar wake.

Since the inviscid Rayleigh equation has been used to obtain
the local solutions for the fluctuation, the integrals, ki’ are universal
functions of W for all Reynolds numbers. This may be seen from
Egn. (4.4) where the eigenvalue and the corresponding eigenfunction

ar e indicated to be functions of w(': and w*. The non-dimensional
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frequency w* is related to the physical angular frequency by

w¥ = wb = % x (physical frequency) (4.17)

It was found experimentally by Sato and Kuriki that the physical fre-
quency of the most unstable sinusoidal fluctuation observed in the
linear region o the wake follows a 3/2 power law as the Reynolds
number varies. Furthermore, the half-width, b, is clearly seen
from Egn. (3.14) to be varying with the drag coefficient which is
proportional to R'%. Therefore, if we chose to follow the most un-
stable frequency at various free stream Reynolds numbers, the
value of w* is a constant which is independent of R. Thus, the same
functional relations ki(WC) may be used for different Reynolds num-
bers that greatly simplify the investigation of the effects of Reynolds
number.

Fig. 20 shows the variations of W for four values of Reyn-
olds numbers. The same set of initial values, WCO = 0.7 and
Eu() =1 X 10—5 has been used in obtaining the curves, in order to
isolate the effects of Reynolds number. The effect on the solution
is somewhat similar to the effect of changing the initial magnitude
of the fluctuation EuO' In fact, it may be seen from Eqn. (4.15a)
that the ratio of the Reynolds stresses term to the laminar viscous
term is of the order ]A]Z\fﬁ. Hence, the effect of R on the begin-
ning of transitionis similar to the effect of EuO‘ However, the

effect of R differs through its persistent influence over the whole

non-linear region other than a mere shift o the abscissa. When the
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Reynolds number decreases, the viscous damping term becomes
more important in the non-linear region, therefore the overall
transition becomes smoother. The purelaminar wake solution also
shown on the same plot, in principle, gives the limiting case of
very small Reynolds number. But this interpretation o the pure
laminar wake solution is merely an ideal one and the one corres-
ponding to zero amplitude disturbance is preferred in the present
high Reynolds number approach.

Also shown in Fig. 20 are two sets of experimental data of
Sato and Kuriki at R = 2 x 105, 1x 105 correspondingly. The agree-
ment in the trend and even the quantitative effect are fairly good

considering the fact that if Eu0 =1x 1072 were correct for the case

5

o R=2 x10", the same value o Eu would have been too large

0
for the smaller Reynolds number case.

Because of the persistent influence o the Reynolds number
on the interaction, its effect on the fluctuation energy is more pro-

nounced than the effect of Eu The result is shown on Fig. 21

0"
. where it may also be noted that the final equilibrium amplitudes
reached are different because o the effect of Reynolds number
appearing through the term va in Egn. (4.15b). Thisresultis

also different from the effect of Eu which leaves the final equi-

0
librium amplitude o the fluctuation practically unchanged.

4.2. 5 Effect of the Viscous Dissipation Term Ty

The effect of the viscous dissipating term T,,. in the devel-

Vi
opment Of the disturbances can be studied by simply setting 185 0.
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Comparison is made on Figs. 22 and 23 for the caseof R = 2 x 10°.

With identical initial conditions, Fig. 22 shows that the effect of va
on the mean flow is quite small as one would expect. Figs. 23 and
23a show that if the viscous dissipation term were absent, a final
equilibrium amplitude would have been achieved, and therefore
another laminar oscillatory flow. However, because o the effect

o the viscous dissipation, this equilibrium condition cannot maintain
itself and the amplitude decays slowly as it proceeds further down-
stream to account for the energy loss.

4.2. 6 Effect of Coupling b to w

The assumption of neglecting the contribution from the fluc-
tuating components in the integrated momentum equation, which
leads to a simple relation (4. 6) between b and W will now be exam-
ined. From the calculated results, it is found that the terms, which
have been neglected to arrive at the expression (4. 6), are indeed
small compared to the remaining terms in the initial stage but in-
crease to about 20 percent of the sum of the remaining terms when
the amplitude of the fluctuation reaches a maximum, It is therefore
desirable to investigate the effect of using the full integral momen-

t umequation.

An exact formulation will require the generation of the inte-
grals, ki’ as functions of two parameters, b and w_. To simplify
the analysis, we assume that the integrals may still be taken as
functions of W, only, but the integral. momentum, Egn. (3.14), is
used instead of the approximated Eqn. (4.6). Then, the wake half-

width b is a function of W, as well as the amplitude of the fluctuation.
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The results of such an integration are shown in Figs. 24 to
26 forthecased R = 2 x 105. It is clear that the effect on the mean
flow velocity variation is quite small. Since a relatively thinner wake
is obtained when b is decoupled from W it does make a difference
on the variation of the fluctuation energy and the final level approached.
The variation of wake half-width b for the two cases are shown in
Fig. 26 together with the measured results of Sato and Kuriki. The
decoupled result does seem to agree better with the measurements,
especially in the '""equilibrium'' wake width.

In any case, a conclusive discussion on this effect can only be
made after an exact formulation with k.1 = k.l(wc, b). Depending on the
sensitivity of these integrals to the variation o b, the actual effect
may be significant, since a careful examination of the Rayleigh equa-
tion will immediately reveal that the change of b for a given W is
equivalent to a change of the physical frequency. (Refer to Egn.
(4.4).) Based on the result of thelinear stability theory, this change
of the physical frequency amounts to a shift on the eigenvalues which
will then cause the disturbance to become more or less amplified

locally according to the direction o the change.

4. 2. 7 Effect of the Shape Assumption for the Mean Flow Velocity

It is learned from the experimental results of Sato and Kuriki
that the mean velocity profiles at various x-stations are not com-
pletely similar in non-dimensional form. Even an overshoot in the
mean velocity profile has been observed at a station which makes the

distribution quite different from the Gaussian assumed in the present
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calculation. Although this abnormal mean velocity clistribution may
be caused by some other effectswhich are not accounted for in the
present analysis, itis still desirable to study the effect on the solu-
tion when the mean flow velocity distribution is modified. For this
purpose, we assume the simplest possible form for the mean flow

other than Egn. (3.11) as follows,

l-;lv(:(,x}{)) = Uk(y*) + Hx) UT (y*) (4. 18)

where U*(y*) is taken to be the same Gaussian distribution as given
by (4.13) and Ui(y*), a correction function for the distribution, is
assumed to be the second Hermite polynomial multiplying the Gauss-
ian such that U* and U?'I‘_ are orthogonal. The use of Egn. (4.18)
implies that the mean flow is described by three parameters: b, W
and H. Because of the appearance o this additional unknown H(x},
one more governing equation is needed. The second moment equa-
tion, obtained by multiplying the mean momentum equation by_u2 and
integrating over y, is used,

For simplicity, the integrals appearing in the Ii‘s, are as-
sumed to be functions of the centerline velocity defect alone which
is (wC-S), if we define S(x) = w_ (X)H(x). This assumption is a good
oneonly if His very much smaller than one and, in general, the
solutions to the local Rayleigh equation will depend on both parame-
ters and so do theintegrals. The details are given in Appendix C
and only the results of the calculation will be presented here.

In this case, one additional initial condition SO’ or HO, at
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x ={, must be given. The initial values have been obtained at
g‘O = 0.1, where the mcasurcd distribution is very close to the cal-
culation of Goldstein, by finding the set of W, and H which gives the
minimum mean square error fit for the profiles o Goldstein. The
values found are Weg = 0. 63047 and S0 = =.00103. The initial value
of Eu was taken to be . 001 at §’O =0.1. Fig. 27 shows the result of
the centerline velocity variation o this calculation together with the
result of the previous two-parameter calculation for comparison.
Fig. 28 gives the comparison of the variation of E. The differences
in both figures are quite small and seem to yield the same qualitative
picture. The lower maximum fluctuation energy level reached in
this calculation is favorable in view o the experimentally encoun-
tered magnitudes.

Fig. 29 gives the variation of Swith x which terminates at
X = 0. 33where S is approaching zero, since for S equal to zero,
one of the governing equations is redundant and numerical difficulty
results. The fact that S shows a rather peculiar variation and de-
creases rapidly to zero may be caused by the inaccuracy in the inte-
gral quantities in that region where the given frequency corresponds
closely to the neutral solution of the local linear stability equation.
Of course, it may also be an indication that a three-parameter mean
velocity profile is no longer needed as to be expected when the addi-
tional interaction effect i s diminishing.

The extraordinary mean velocity distributions observed may

be somewhat understood if we rewrite Egn. (4.18) as
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- 2
1-—\1()&, z) - e"ky* [1 + S 4 ky*z] (4. 183.)

WC—S wC-S
where k = 0. 69315. Fig. 30 shows a plot of S/(WC—S) vs. X. The
region of large, negative S/(WC~S) may be realized as towhere the
overshoot in velocity may be observed. However, the magnitude ob-
tained in the calculation seems to be too small to have a noticeable
over shoot as observed experimentally.

Again, the comparisons presented here give only a qualitative
indication of the effect which seems to be small. The calculation
using a two-parameter representation of the integrals is needed

before any definite statement about the effects of non-Gaussian mean

fl ow can be made.
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5. Effects of the Second Harmonic; Case B

Because of the nonlinear terms X1 and X, in Eqn. (3. 4), the
higher harmonics are generated and become of appreciable magni-
tude. Within the framework of the integral method, these higher
order effects amount to an improved representation of the integrals

I.l' s. In other words, theintegrals are assumed to be given by
2 X - Z2n
Lw_, |A]%) :nZ::l k. (w.) [A] (5.1)

The local -quasi-parallel flow treatment of Section 3.4 is only a
method devised to evaluate the coefficients Ein as functions of W

Case A, considered in Section 4, has included E:Il only. This section

will study the effects of the second harmonic by including the coeffi-
cient Ki?_ partially. Physically, when the second harmonic is included,

referring to the schematic A, the additional processes T T

127 “2M’

are introduced which modify the processes T and T as

T 1M Ml

M2
well.
From Eqgn. (3.30), including the second harmonic, the fluc-

* tuating quantities are represented by

i26

u* = [Ax) f’o(y*) ele + Azgo(y*)e 1 + conj

v = -i{[Awx)a fo(y*)ele + 2a% Angeize] - conj} (5. 2)
i 2 i2 .

p* = [A{x) ploe16 t A%p, e ®1 t conj

go(y*) satisfies Eqn. (3.29) which, after using Egn. (3,11), can be

Written as



2 2 £
- . d 2 d"U* 0 d Ug*'!
(U*-c) ¢( - 4a¥*7) g, - g =% Fox ) (5. 3)
dY*Z 0 dy*z 0 2 dy* Uk.T
where ¢ is again given by (4.3). The boundary conditions are
go(o) =0
(5. 3a)

g'o(oo) + Za*go(oo) =0

The method of solution is also given in Appendix A. In general, no
particular difficulty is involved in getting the solution for 9 when
fo(y*) is known from solving (4.2). However, as Ei (or a*l) approaches
zero, singularity exists in the flow as discussed in Section 4. There-
fore, the viscous terms, which have been neglected in obtaining (5. 3),
must be included when a’f is small in order to avoid excessive errors
in the solutions." However, as discussed briefly in Appendix A, the
inclusion of the viscous terms will make the numerical calculations
much more difficult. Thus, aiming at a primitive and qualitative
investigation of the non-linear mechanisms in a wake, the numerical
calculations will be carried out using the inviscid equation only.
Inevitably, this approximation limits the calculations to values of

a¥ away from the neutrally stable case, and some unknown errors
are introduced in the evaluation of the integrals when 0.].’_*‘ becomes
small. This fact should be kept in mind when the numerical results

of this section ar e discussed.

T or alternatively, a close approximation to the true solution may be
obtained by taking an appropriate contour in the artificial complex
plane for small Cy
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Using the present cascade model for the local generation of
the higher harmonics, the effects are reflected through the repre-

sentations of the integral quantities I.l. They are now modified to

=k |al®+ k. |al?
1

|A
ig

(5. 1a)

where the ki's ar e the contributions from the fundamental as given
by (4. 7a) and k.lg's are the corrections to the integrals because of

the presence of the second harmonic. They are given by
i 2
kjgwe) = fo E
. 2 2
kzg(wc) = 4 |a*] fO |g0[ dy*

o 2
gt = 0x gy 2 ay»

0 2 2
kygwo) = [o 4fax|“U% [go|© dy*

K5g e )-f v+ Gyw epl” - 4lax]? lgg|*ay»
00 - (5. 4)
kg (W ) = -2i fo I (0%8 8- ¥ gp)dy*
(D ~ ~
kgWe) :J;) (BgP2o * 8g Ppq! W™
® 2 - 2
kege) = - fo [a(ax +a* 1 [gh[2+4 [a*|? g, |)

+2]gy %+ 8lax[*]gy 4 ay*

kgg(wc) = 3f (fo gO + f’ gl )dy* + 4 ox| f (fofhgytt 0 Ogo)dy*

Q0
22~ |~ 272
—fo (a* fcz)gb+a* £ gh)dy*
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When the magnitude o lAIZ increases, the effect o the second har-
monic is expected to appear. The relative magnitude o kig/ki’ to
be determined from the numerical calculations, will decide the mag-
nitude of ]A]Z at which the effect of the second harmonic may not be
ignored. Since this ratio is a function of W, (x), the development of
the second harmonic and its effects on the mean flow are not com-
pletely linked to the first harmonic as being usually criticized.

The definition for A remains unchanged by imposing (4.8),
which is now interpreted as the total non-dimensional energy of the
fundamental fluctuation. The governing equations can be reduced to
the same form as Eqgns. (4.10) with the functions Kij modified by
the additional terms in the integrals. The solutions can be obtained
without much difficulty with given initial conditions at o similar
to case A.

The inclusion of the second harmonic in the representation
for the fluctuation requires the solution of go(y*) for evaluating the
additional integrals kig' With the solution of fO obtained, the forcing

. function on the right hand side of Egn. (5. 3) may be readily calcu-
lated. Figs. 3la-e show a few examples of the variation o the
forcing function F with y* using w_ as the parameter, where F rep-
resents the RHS of Egn. (5.3). It is apparent that the forcing function
becomes more concentrated and highly oscillating when the values of
W, approach the one which gives the neutral solution locally. As
discussed previously, the use of the local inviscid equation, which

is singular at the critical point for the neutral case, may induce a
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large error in the solution near this region. Nevertheless, the solu-
tions have been attempted as close to the neutral solution as possible.

Figs. 32a-h give a few typical results of the solution g and
its derivative. The integrals kig are then evaluated and tabulated
on Table III. The comparatively rapid increase in the relative mag-
nitude of all the integrals near w, = 16, where a’; isvery small, is
believed to be a result of the inaccuracy in obtaining g9 and its deriv-
atives.

Fig. 33 gives a comparison of the calculated W, o the
present case to case A at R = 2 X 105. The agreement between
cases A and B is very good in the initial stage of the wake. This
agreement i s expected because of the domination of the fundamental
mode in this part of the wake. The solution curves start deviating
from each other when the magnitude of the second harmonic becomes
noticeable in the latter portion. The smoother variation in W, is
somewhat surprising since we intuitively expect the inclusion of the
second harmonic will tend to extract more energy from the mean
flow and, therefore, a faster decay of w. The possible explanation
can be seen on Fig. 34 where the variations of the magnitude of the
terms in Egns. (4.15) are plotted for both cases A and B for com-
parison. The introduction o the second harmonic has apparently
modified the relative magnitude of the various terms in Eqns. (4.15).
This modification results in alower peak value o the main energy
transfer term TRM and, hence, a smoother variation of the mean

flow. However, the qualitative nature seems to remain unchanged.
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The large difference in the magnitude of TVT is believed to be an
error in calculating the viscous dissipating integral, kgg’ which will
be further discussed later.

Fig. 35 gives the variations o the averaged energy in the
fundamental component, E, ¢ and the second harmonic, E ¢ Again,
we ar e unable to compare this result with the experimental data.
However, the calculation shows that the magnitude of the fundamental
mode first reaches a peak and then decreases while the magnitude of
the second harmonic is still increasing. The magnitude of the second
harmonic will reach its maximum at a distance further downstream.
Referring to the results of Sato-Kuriki shown in Fig. 1, this behavior
seems to agree perfectly with the experiment, and if the two arbi-
trary scales used on that figure were comparable, even the ratio of
the two maximum magnitudes would have been nearly correct. This
result will help to explain the intuitive expectation of concurrent
development if the second harmonic is solely generated by the non-
linear interaction o the fundamental mode with itself. Itis clear
now that the variation of the mean flow serves as a mechanism for
redistributing the energy contents not only between the two compon-
ents of velocity, but also between the various fluctuating modes.

This result is evidence that, in the present formulation, the higher
harmonics are not strictly linked to the lower ones. In other words,
the present theory does take into account the direct interaction be-
tween the higher harmonics and the mean flow, e g., the process

TMZ indicated in the schematic A.
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Fig. 36 shows the comparison of the variations of the total
energy density ET for cases A and B. Fig. 36a gives the corres-
ponding variations of the integrated energy in the fundamental mode.
The variations of ET are practically identical in the front portion.
The higher peak of ET reached when the second harmonic is included
justifies the intuition that more energy is taken from the mean flow
and fed into the fluctuations. This fact may seem to be a contradic-
tion to the result of Fig. 34. The explanation is again given by the
higher order differences between Ef and ET’ and al so between Em
and w, - The fairly rapid decrease in ET and Euf at larger x for
case B, as compared to the result of case A where a nearly constant
value is maintained, is a consequence of the large magnitude of the
viscous dissipation term TVf shown in Fig. 34. This differenceis
more prominent when the non-dimensional energy of the fundamental

mode, Au is plotted in Fig. 36b for the two cases.

Iz
The variation of [A'Z is shown on Fig. 37. The maximum
has decreased from case A by more than half. The inclusion of the
- higher harmonics is expected to cause a further decrease of the max-
imum of ]A]Z, although it is not of much concern to the truncational
approach adopted here.
The general behavior of the disturbance when the second
harmonic is included shows a fairly rapid decrease in magnitude to
a much smaller value than the result of case A. This behavior is

believed to be caused by the fact that the viscous dissipating integral,

k8g’ which requires the evaluation of the second derivative of go is
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subjected to maximum possible numerical error when the viscous
terms are ignored in the local disturbance equation. The evidence
of this statement may be seen from the rapidly growing magnitude of

k, in Table III for small W and also from Fig. 34. Another clue to

Rg
support this conjecture is furnished by the result of Section 4. 2. 5.

It was found there that the viscous dissipation term TVf had a rela-
tively small effect on the solutions. Two numerical computations
are now performed to study this effect. One result i s obtained by
setting 18:% 0 which ignores the viscous dissipation terms in the fluc-
tuation energy equation completely; the other keeps the contribution
from the fundamental mode to the va
The results are presented in Figs. 38 and 39a-c. Fig. 38 shows

term by setting k8g = 0 only.

the effect on the W variation that seems to be quite small especially

when k8 is left in the equation to account partially for the viscous

damping effect. However, the effect on the integrated fluctuation
energy is quite large, as shown on Figs. 39a-c, particularly at

larger x.
By comparing the results, it may be seen that the effect of

the viscous dissipation term due to the harmonic component, k8g’

is negligible for x< 0. 2. But for large x, because of the inaccuracy

in evaluating the integral k, at the corresponding values of w , the

8¢g C
effect of k8g is hard to assess correctly. A crude approximation is

to assume the effect of k8g is always small and may be neglected.

Then the result obtained should be more representative except in the

final stage where the corrections due to k, will undoubtedly modify

8g
the solutions. The exact effect of this approximation can only be
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estimated after the integrals are correctly evaluated by solving the
local viscous equations.
It is also interesting to note that, assuming the actual solution

is closely represented by the approximate result when k, is set to

8g
be identically zero, the relative variation of Euf and Equ’ shown in
Figs. 39a and c, is quite similar to the measured results of Sato-
Kuriki. The relative maximum magnitude of the second harmonic to
the fundamental component may seem to be slightly too high but is

expected to be modified when the correction to the fundamental mode

isincluded as considered in Appendix F.
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6. Summary and Concluding Remarks

Based on the comparison of the numerical calculations with
the experimental data discussed in Sections 4 and 5, the following
concluding remarks may be drawn:

(1) In spite o the assumptions made in the present theory and the
approximate methods of solution, the present approach does
seem to bring out the essentials of the non-linear interacting
mechanisms in alaminar wake.

(2) The theory shows that the relatively fast break-away of the
mean flow velocity along the wake axis from the steady lami-
nar case and, therefore, the rapid growth of the wake width
observed experimentally in the transition region are the
consequences of the non-linear effects induced by the finite
amplitude disturbances.

(3) The effects of the free stream Reynolds number on the
transition (defined as deviation from a steady laminar solu-
tion) can be predicted and agree quite well with the experi-
ments.

(4) Two main non-linear mechanisms are responsible for the
transition of the wake from one laminar State to another.
They are,

(a) the interaction between the mean flow and the fluctuation

through the mean Reynolds stresses, and

(b) the generation o the higher harmonics and the modi-

fication of thelower ones caused by the non-linear

interaction between modes.
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Based on the numerical results by introducing the above-
mentioned effects successively, the first mechanism
seems to play the dominant role in explaining the exper-
imentally observed mean flow and fluctuation variations.
The inclusion of the second harmonic and the modification
of the fundamental mode do not alter the qualitative
behaviors except to provide the relative development

of the fundamental and the second harmonic. The rela-
tively small influence of the higher harmonics in the
early stage of transition, where the amplitude of fluc-
tuation is small, is understandable in view of the power
series expansion in the amplitude A assumed for the
solution of the local stream function. However, itis
somewhat surprising that their effects do not show up

in the calculated results as the fundamental mode ap-
proaches the local neutral solution, because, near the
equilibrium region, the calculation indicates that the
mean flow remains practically unchanged and the local
eigenvalues are very close to the neutral solution. The
strictly parallel flow analysis of Stuart and Watson
should be a good approximation to this situation. In their
terminology, it corresponds to a supercritical case
where the fluctuation, being amplified according to the
linear theory, will approach a new equilibrium amplitude

when the higher order terms are included. In view of
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the definite role of the second mechanism played in their
analysis, we intuitively expect to observe a larger effect
on the solutions than we have obtained. The reason

that the effect is not prominent even after the first mech-
anism weakens may be a result of the present approxi-
mate numerical approach. However, this speculation
will have to be justified after a more accurate calculation
being carried out.

The experimentally observed neck-down o the wake,
accompanying reacceleration of the mean flow, is not
predicted by the present model (refer to Fig. 1 around

X = 70 mm. ). These phenomena may be a result of the
static pressure distribution induced by the rapid growth
of the wake in the non-linear region. To answer this
question, a model including the interaction between the
growth of the wake with its external flow will have to be
taken into consideration. Methods for including this
effect for the mean flow in a steady incompressible wake

(35) The basic idea there

have been outlined by Alber.
is, again, the use of the integral moinent method which
isinlinewith the present formulation. Therefore, it
should be feasible to incorporate this effect into the
present analysis.

The calculations show that the general behavior of the

variations of the magnitude of the fluctuations, including
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both the fundamental and the harmonic modes, isin
accord with the relative variations observed experimen-
tally and has been considered as "* abnormal* in view of
the linear stability theory. However, no quantitative
experimental data is available for comparison, although
the maximum magnitude calculated seems to be higher
than the expected value in this type of flow. Itis felt
that the static pressure gradient induced or caused by
the experimental environment may be responsible for
this discrepancy. A numerical study of this effect is
presented in Appendix E. The results obtained there
give the indication that the effect of the static pressure
gradient does reflect strongly on the magnitude o the
fluctuations.
In conclusion, the approach proposed here, despite its sim-
plicity, does seem to provide the correct model for the wake flow
in the transition region where three-dimensional effects may still be
neglected. The method of solution provides a mean for extending and
applying the classical hydrodynamic stability theory to a real prob-
lem. The strong interaction model o the present theory is preferable
to the weak interaction model of Stuart and Watson because of the
following reasons:
i) It is capable of treating problems having large deviations

in mean flow from the steady laminar case.

ii) It accounts for the divergence of the mean flow and gives
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the results of Stuart and Watson in the limit of parallel
flows.

iii) Since the integral method is used, the details of the dis-
tribution of the fluctuation are not vital in the analysis.
Therefore, truncation of thelocal series representation
of the fluctuation does not require a strict convergence of
the solution. Hence, disturbances of much larger ampli-’
tude than those allowed in the theory of Stuart and Watson
may exist in the present theory. This absence of limita-
tion in the magnitude of the fluctuation is certainly

desirable for practical applications.
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7. Future Work

In view of the success of this approach, further work is sug-
gested for the following three reasons: (i)to clear up the remaining
uncertainties caused by the approximations made in the present nu-
merical treatments; (ii)to study some additional effects on the
transition mechanisms of the wake; (iii)to extend the present approach
to problems of similar nature.

i) From the discussions of the last section, there remain a
few immediate tasks, mostly numerical, to provide the
required answers to those uncertainties.

(a) Theuse of the full viscous Orr-Sommerfeld operator
instead of the inviscid Rayleigh operator for the calcu-
lations of fo, g0 and f 1 This calculation will provide

the correct integrals up to case B considered here as
we have discussed previously. The numerical difficul-
ties involved are mentioned in Appendix A and the
method of a viscous bridging solution discussed in
Appendix D may be used. Completion of this work
should settle the effect of the second harmonic com-
pletely using the truncational approach.

(b) The calculation of f1 near a*i = 0 using the reformulation
of Appendix F to provide the complete correct integral
functions appearing in the Ii‘s as functions of w_ over
the whole range of interest. This result will provide
the correct estimate of the effects of £, we set out to

1
study in case C discussed in Appendix F.
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Using a formal three or more mean flow parameter
approach by calculating the integrals as functions of
those parameters. This effect may be significant as

we mentioned previously. No essential difficulties are
encountered in this work, but time and |labor are cer-
tainly needed because o the lengthy algebra involved.
The effect of the local-quasi-parallel flow approxima-
tion. The leading effect can be obtained following the
discussion of Appendix B. It may be noted that the

effect only appears on the determination of fl and the
higher order terms.

The inclusion of the non-linear interaction of the growth
of the wake with the external flow.

Using the present method of approach, an interesting
study on the interaction between modes with non-
commensurable frequencies may be made. Sato and
Kuriki have shown experimentally that when an arti-
ficial disturbance at different frequency from the natural
one is introduced, it shows a " suppressing effect'' on the
natural disturbance (Fig. 24 in Sato-Kuriki's paper).<2)
This type o interaction is interesting in the sense that
it may provide the explanation as to why only a nearly
single frequency fluctuation exists in the initial stage of
the wake. This study requires an additional governing

equation for the amplitude of the additional fluctuation.

In the first approximation, they are independent and each
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may be required to satisfy the integrated fluctuation
energy equation. The interaction between themis pro-
vided through the mean flow. Since the main energy
transfer mechanism is proportional to the square of the
amplitude of the disturbances, if one disturbance has
more energy initially (thereforea larger amplitude),it
will absorb alarger portion of the energy taken from
the mean flow which consequently makes it grow faster
than the other. This self-propelling process will soon
make this frequency completely dominate the other one.
The discussion given above does not apply when two or
more frequencies at integer multiples of each other
exist initially in the wake. Then resonance will occur
which will undoubtedly have a much larger effect than
the cascade-generated higher harmonics discussed here.
Again additional equations are needed for the additional
unknown amplitudes. In this case, we will have to use
the higher moment equations of the fluctuation or some
other physically meaningful equations.

It will be interesting to consider the case where a
frequency corresponding to the maximum local ampli-
fication rate exists simultaneously with another one at
half o this frequency at the beginning of the wake. Both
have a comparable magnitude initially. From the nurner

ical results obtained for the present single-frequency
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case we have learned that as the flow proceeds down-
stream the fundamental mode is driving toward the
neutral solution. Therefore, when another disturhance
at half the frequency exists, it will be near the maxi-
mum amplification rate according to the linear stability
theory when the fundamental mode is approaching zero
amplification rate. The complete non-linear interaction
will be very interesting not only because of this feature
but also because of the beating effect. This type of study
of interaction between various frequencies may serve as a
guide to the occurrence of turbulence.

Using the same idea, several practically important problems

of transition involving the interaction of the disturbances with

a laminar mean flow may be considered. The following gives

a few possible applications.

(a) Study of the non-linear stability of an oblique wave to
find out if there is an equivalent to the Squire theorem
in the linear stability theory. Also it would be of interest
to study the role of the oblique waves when they appear
simultaneously with the plane wave in the wake. Because
of the varying wake widths experienced by the front of the
oblique wave, their interaction with each other and with
the mean flow should show some very interesting phe-

nomena.
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Consideration of a three-dimensional disturbance.
Although the present approach is dealing with t he lami-
nar wake, it is hoped that certain clues as to the origin
of turbulence may be found. In that respect, a study of
the stability of three-dimensional disturbances is essen-
tial since turbulence is basically three-dimensional..
Besides, the consideration of the three-dimensional
disturbance should extend the region of validity of the
present approach in regard to the simulation of exper-
imental or practical situations.

Applying to the axisymmetric wakes. Here the funda-
mental frequency seems to play a dominant role and
also has greater practical significance.

=tension to the compressible wakes. Experimentally,
similar structures in the transition region from laminar
to turbulent have been observed in a compressible

ake. (41, 42) The effects of the additional fluctuation

w
o temperature or density on the stability of the wake
and the interaction with the compressible mean flow
should be investigated.

Considering cases with the initial fluctuation having a
continuous energy spectrum. In the case of the com-
pressible wakes, experimentally, a spectrum of fre-

quencies dominates instead of a single frequency as being

closely approximated in the incompressible case. A



(f)

(9)

-170-

new approach should be formulated to handle this type

of fluctuation. Itis not clear at the present time as to
how to proceed with this project. The generalized group
velocity concept used successfully in the water-wave

theory (e.g., Whitham(36'39)

) may find some applica-
tion here. In the present approach, it has basically
assumed a slowly varying wave train, with fixed fre-
quency but varying wave number, travelling in a slowly
varying mean flow. The generalization to a slowly
varying frequency will be able to include this effe'ct.
However, the present system is not conservative, which
may form some additional difficulties in applying the
method. Thisline of thinking is still primitive and
requires a more sophisticated consideration.

(40) it has been

Unsymmetric wakes. Experimentally,
observed that the wake becomes exceedingly unstable
when the symmetry is destroyed. A study of the stability
of a disturbance in the wake with an asymmetric mean
flow is needed.

Application to other types of flows without boundaries

such as jets and mixing layers.
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Appendix A

Numerical Method of Solution of the Differential Equations

Since only the inviscid equations are used in performing the
numerical integration in the present study, the discussion given here
will be restricted to the inviscid second order operator. Difficulty
in numerical integration o the viscous equations because o large R
has been discussed by various investigators {e. g., refer to Betchov,
and Criminale). (31) Special techniques ar e needed to obtain numeri-
cal solution even with the modern computer capacity. Only a brief
discussion on the possible techniques is given at the end of this
appendix. We will first desc ibe the method used for solving the
homogeneous Rayleigh equation; the determination of the eigenvalues
as well as the eigenfunctions. The method for solving the differential
equation for 99 and fl with known forcing terms on the right is then
given in Section (A-2).

.A-1) Rayleigh Equation

The methods of solution of the inviscid Rayleigh equation (4. 2)

2 2
— . d 2 d U
(U*-c) ¢( 5 0 5 fO =0 (A. 1)

- a*") f. -
dy* dy*

with the homogeneous antisymmetric boundary conditions
f‘O(O) = 0; f'o(oo) + a¥ fO(oo) =0 (A.2)

have been reported elsewhere. As to the present specific problem
for an incompressible wake brehind aflat plate, the numerical method
of solution developed by L. Mac (e.g., refer to (43))for a compress-

ible boundary layer, modified by T. Kubota(44) for a compressible
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wake, is further simplified for the present incompressible case.
Certain modifications have been made in order to perform the re-
quired spatial mode calculations. The method of solution is briefly
described as follows:

It is first desirable to indicate the dependence of the eigen-
values and the eigenfunctions of Egn. (A.1) on thelocal mean flow
quantities when the shape of the mean velocity, U*({y*), is given.

*
With a* = a_ + ia;‘, a simple manipulation shows

P wb ¥
Cr -wc( h |, ¥12 1’
*' ' (A. 3)
- s %
‘1w %2
c |a7

where w i s the given nondimensional frequency of the fundamental
disturbance. Therefore, with the approximation that b = b(wc), the
remaining task is to obtain the eigenvalue a* and the corresponding
eigenfunction fo(y*) for each given value of W

Egn. (A.1l) can also be written as a pair of first order ordi-

nary differential equations of the form

dp
10 2 -
FyxE o (Ur-el
(A.4)
o _ 1 dux, )
- )
Iy* " Gez ay® 0 P10

The boundary condition at the axisis

Plo(o) =0 (A.5)
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and the corresponding condition as y* -+ oo can be immediately deduced

from the equation to be

f —const . e ¥V
G
and then (A. 6)
T _ gk
fO a fO
Pig —¢ ¥ iy

The numerical integration is then started at some large value of y*,
2
say y.*, where (A.6)is a good approximation (i.e., Wherej [,J‘_ and
g y’:‘

g,;j are vanishingly small). Because of the homogeneity of the sys-

tem, we set

* —
folyg) =1.0 (A.T)

to make the solution definite.

For a given set of ar and aT. there will be no difficulty in
integrating the equation to y* = 0 when the corresponding Ei is not
small. In general, a non-zero P10 will be obtained at y* = 0 for an

!
e

arbitrary set of «* and a’l?. In order to satisfy the boundary condi-

tion plO(O) = 0, a set of eigenvalues must be found. For this purpose,
the linear search method discussed by Mac is used. The method
requires a simultaneous integration of the differential equations which
yield the variations of the dependent variables as the eigenvalue

varies. They may be easily obtained by differentiating Eqn. (A. 4)

with respect to a*, which gives,
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W

d - '<2 T sk e L
dy* (Plo’ o.*) = ¥ (U k_c)fo’ . + [Za (Uk-¢) - - ]fO
qur
d 1 4ux wt__(qyE fotP1o
% fo o) = Gox fg ost )+ — dyF .
dy> 70, a¥* Us-o dy* "0, a¥* pl 0, a* wca*z (U- __c_)

(A. 8)
where the subscript a* indicates partial differentiation with respect
to a*.

The "initial'' condition at y* = y§ for Egn. (A.8) are

By _ = wk
P1o,axVg) = ¢ w_a¥

(A.9)

* a—"
f9, axl7g) = 0

Eqns. (A.4) and (A.8) are then integrated simultaneously on the IBM
7094 computer toward y* = 0 with the initial values at some large
station yg given by (A. 6) and (A. 9). The boundary condition ( A5)
is not satisfied in general for an initial guess of the eigenvalues ai

and a:. A new set of a'lj and a;‘ i s then obtained by solving
pl O(O) = plo Q*(O) Aa* (A. 10)

1 *
for the correction ha*. The values of plO(O) and P10, a* are taken
from the results of the last integration. Thisis a complex algebraic

equation, which may also be written as

s *
P1or(0) = Py, quly A0p = Py, qud; A
(A.10a)

%
1

_ %
P10i(0) = 1o, qu)i Bap T Prg gy BY
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With this estimated correction to the eigenvalues, the integration can
be restarted at Vg This procedure is repeated until both aff and a?‘
converge. With afairly good initial guess of the eigenvalues, this
search procedure for the eigenvalues converges in a few iterations.
The eigenfunctions fgr» as well as its derivatives and the required inte-
grals for the present investigation are then calculated. The complete
calculation, including iterations, takes about thirty seconds or |less
for a step size of 0. 05with y; = 5. 5.

In the case of a small Ei’ the existence of a simple pole at the
point Ye where U* = ¢ (critical point) prevents a straightforward
numerical integration along the real axis. However, as shown by

(45) and Mac(43), we can get around this

Lin(32) and used by Zaat
difficulty by changing the integration contour to an indented one on

the artificial complex y*-plane (Fig. A-1). This is done by analyti-

cally continuing the mean Yi*
velocity U* and its deriva- % ¥
Yy Y y
tives into the complex - 3 ' — %8__’__*
0 Ye Yr
y*-plane by using a trun- x
cated Taylor series ex- i i
y (Y3 +'Y2) (Y| + 'Ya)

pansion (upto the third

order) around the point

— . Fig. Al. i
Yo where U* = c. Details Contour

of the method may be re-
ferred to Mac.
For the cases of highly amplified solutions, the point U* = ¢
*

located far above the real y*-axis, the integration starts at Yg and
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proceeds directly to y* = 0 (i.e., set ¥, = 0). But, for the near
neutral and all the darnped disturbances, an indented contour as
shown in Fig. A-1 will be taken. The size of the indention has been
somewhat arbitrarily taken to keep the integration path a few integra-
tion step sizes away from the location o the critical point. The
contributions of this indented contour to the integrals have been
evaluated by calculating the integrals for several different values

of (Yl'ys) and extrapolating to zero. Therefore, the values of those
integrals for the damped disturbances are of |less accuracy than the
others. Luckily, it turns out that they are not essential to the present
investigation as indicated in the numerical results. If higher accuracy
is needed, the integration of the full viscous Orr-Sommerfeld equation
will have to be performed.

A-2) The Inhomogeneous Differential Equations

The governing differential equations for 9y f1 and the higher
order terms in the expansion for the disturbance are of the form

(when the viscous terms are included)
(LI+~R-LV)cp=F (A.11)

where LI is the second order linear inviscid operator and Ly is the
fourth order linear viscous operator. F is a known forcing function
and ¢ is the unknown. The solutions of (A. 11) are subjected to the
corresponding homogeneous boundary conditions (symmetric Or anti-
symmetric).

In the present numerical calculations, the viscous terms have

been neglected by assuming large Reynolds number flow which makes
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(A. 11) a second order equation. Thus, the method of solutionis to
obtain two linearly independent solutions to (A 11), say ¢, and Do
which satisfy the boundary condition at . The complete solution

to (A.11) is then obtained from a | i near combination of these two, i.e.,
¢ =Ko, + (1-Kjg, (A.12)

where K is a complex constant to be determined by satisfying the
boundary condition for ¢ at y* = 0. Numerically, the two solutions,
o and @, are obtained by two different sets of arbitrary given initial
conditions at V&

This procedure, in general, provides the solution of the invis-
cid equation which is a close approximation to the solution of (A. 11),
However, when Ei is small, difficulties arise. Specifically, for the
integration of Jg’ the operator, L, is approaching zero but Fis not.
This causes alarge error in obtaining the solution for g because o
the difficulties in finding the two linearly independent solutions numer-
ically. Itis clear that this difficulty can be removed by including the
viscous operator, LV’ at least near the critical layer, or taking an
indented contour as shown in Fig. A-1. A different kind of trouble
occurs for the integration of f1 near the neutral case. AS —Ei becomes
smaller, the complete operator on the left hand side of (A.11)
approaches the homogeneous eigen-operator. Thus, the numerical
solution will contain a large unknown contribution of the homoge-
neoussolution which means resonance. As we have remarked in
Appendix F, thisis a consequence o the formulation. The alternate

formulation discussed in section F. 4 of Appendix F will have to be
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used to iron out this difficulty.

A-3) Viscous Operator

From the previous discussions we learn that the inclusion of
the fourth order viscous operator in Eqns, (A.l1) and (A.11)is neces-
sary if improved calculations are to be performed. Although we will
not include this numerical calculation in the present work, it isdesir-
able to point out briefly here some of the difficulties involved and the
possible methods of solution.

The problem introduced by the viscous operator is not just a
higher order system but rather the highly singular behavior due to the
largeness of R. The existenceof arapidly growing homogeneous solu-
tion makes the numerical integration of the system a challenge to an
applied mathematician in numerical analysis even with the help of the
modern large capacity computers, Various attempts have been made
to cope with these difficulties. The most successful one and commonly

(30) Either this scheme or

used is the suppression scheme o Kaplan.
a straightforward integration with double precision may be used.
Further details may be referred to the original paper of Kaplan or
the book by Betchov and Criminale. (31) The treatment o Egn. (A.11)
in the case of Poiseuille flow has been reported recently by Reynolds

and Potter(1 8)

using the scheme of Kaplan. An alternative analytical
approach to include the viscous effect near the critical layer is sug-

gested in Appendix D.
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Appendix B

Examination of the Approximation Made

in the Local Parallel Flow Assumption

The use of the two-length scale concept in Section 3 that 1eard=
to alocal parallel flow treatment for the disturbances, has rrosen
simplified the analysis. But, from the calculated results, we learn
+aees a0 wake in fact grows quite rapidly in the non-linear region.
Therefore, itis necessary to examine in some detail the implications
of the assumptions which lead to Eqns. (3.20). This may be achieved
by examining the terms neglected in Egns. (3.19).

The terms multiplied by R'% in Eqns. (3.19) may be grouped
into two types: the Laplacian terms which arise from viscous effect,
and the remaining terms ensuing as a result of the non-parallel mean
flow. When the non-linear interaction between the mean flow and the
fluctuation is not important, they are of the same order and appear
together as the viscous correction terms to the inviscid Rayleigh
equation in the linear case. This fact has been pointed out by S. I.

Cheng (46)

in 1953 and may be easily seen in Eqns.(3.19), e.Q.,

(R% v)~ O(1l). However, this type of correction is not of much concern
to the investigation here, This is because we have shown in the
previous analysis that these terms can in fact be completely ignored
for most cases except near the neutral solution of the linear stability
theory. When the non-linear interaction is included, a different

nature of approximation is involved in neglecting terms o the second

types. It may be found immediately that the leading terms on the
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1dW

RHS o Eqns.(3.19) are of the order of (R™2 —<

I To estimate the
X

order of magnitude of the error made in neglecting these terms, we

choose to use a simpler, though less accurate, equation; the mean

momentum equation along the centerline o the wake,T which is given
by
dw W 2 ‘ W2
A7 U c , 0 =
(L-w ) o = — b == L wEvE)
¢’ dx 2 2 b oy y*=0
Rb™ dy* y3=0

(B. 1)

The first term on the right represents the laminar viscous dissipating
effect which is O(1), and the remaining terms represent the Reynolds

stresses which are important in the non-linear region and are o the

i
order ( [Alz R?%). Itistherefore clear that the termsignored in the

local parallel mean flow assumption are of the order

1 dw
R,— P C

dx

~ O(R'%) + O(]A[Z) (B. 2)

The first term will modify the viscous correction term in Eqgns. (3.19)
and may be ignored in the present high Reynolds number considera-
tion. However, the correction appearing as Of ]A[z) will have certain
effects on the present investigation in view of the expansion in ampli-
tude assumed for thelocal stream function. But, this correction

will not affect the determination of fo and go because «{ the appearance

as Of {A{Z)_ The first term in the expansion being affected by this

TSimilar estimates may be obtained by using Egn. (2. 3) of Section
2A, which gives the leading order terms without using Eqn. (B. 1).
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correctionis { the correction term to the fundamental. To include

1’
this effect in the local calculation of the disturbance, a possible
method of solution is briefly proposed in the following.

Guided by the discussions leading to Eq. (B.2), welet

1dW

REC iy R Y 6) |l (B. 3)
dx -—WOX J;WJX .

The coefficient WO( X) may be taken as zero because of its small effect
on the local calculation discussed previously. And wj's may be ob-
tained either from Eqn. (B.1) or asimilar equation to (4.10). In
general, wj's are functions of WC only when b is linked to WC by Eqgn.
(4.6). Incorporating the expression (B. 3) with the expansion (3. 26),
we find that the governing equations for fo and g9 remain unchanged
and their solutions may be obtained as discussed previously. The
equation for fl (y*) will now include the coefficient Wl(x)of Eqn. (B.3).
However, it may be shown from the equation for W that Wl(X) isa
function of WC and the integrals of fn(y*) only. Therefore, with £

0

known, w, is completely determined in terms of WC. Thus, the

1
* solution of fl(y*) may be determined with Wy modifying the forcing
terms. Similarly, W2(X)Wi|| only need the determination of 9 and
fl which can then be used for higher order calculations. The com-
plete expansion solution can, in principle, be determined in this
step-by-step manner. The actual effect on the calculation of the
mean flow and the growth o the disturbance through the modification

of the integrals involving fl will have to be determined numerically.

It should be pointed out here that although this effect is of the
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same order as the one discussed in Appendix F for the near neutral
solutions, they are of a completely different character. In Eqgn.
(3.27), the coefficient a is not completely determined when they
appear in the equation. For example, a;s which appears in the
equation for fI cannot be determined from the integral equations,
since the terms contributing to El(x)in Egn. (4.16) involve certain
integrals o fl and, moreover, 51 is not identical to 3. Therefore,
the am's may either be set as zero when u;"' islarge or be determined
from the method of Appendix F for the local disturbance calculation.
On the other hand, the wj‘s are completely known functions o WC
when they appear, and their appearance does not prevent the reso-

nance from occurring. If desired, both effects can be included
simultaneously, using the methods outlined.

It should also be pointed out that the relation of fl to the
velocity components would be modified in this formal approach,

because of the terms on the RHS of the first equation of Eqn. (3.19).
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Appendix C

Approach for Using a M ulti-Parameter

Mean Velocity Profile

For certain purposes, the shape assumption (3.11) for the
mean velocity may have to be relaxed to allow for a closer approxi-
mation to the actual mean velocity distributions. The use of a more
general formula (3.12) can in principle be treated with the integral
approach suggested here without any conceptual difficulties. The
additional governing equations required may be obtained from the
higher moment equations, It is to be expected that a higher degree
of flexibility in the representation of the mean velocity profile will
improve the accuracy of the present approach. However, the in-
creasing numerical work prevents further study along this line.
Instead, we will indicate briefly in the following the approximate
method o solution when the mean velocity profiles deviate only
slightly from the expression (3.11).

The mean velocity distribution is assumed to be represented

by the form

Wk = lf(}(i);)y) = Uk (y*) + H(X)UT(Y*) (C. 1)
<

where H(x) is the additional shape parameter which will be assumed
to be small as compared to 1. Following previous formulation, three
o the four governing equations needed are obtained from the inte-
grated mean momentum equation, the first integral rnoment equation

(the mean energy equation) and the fluctuation energy equation. They
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are agai n given in the form of Eqgns. (3.14a), (3.15) and (3.16) with

the expressions for some of the integrals being modified by replacing

U* by W* given by (C.1). The fourth equation may be taken to be the

second integral moment equation which is obtained by multiplying the

mean momentum equation (3.7) by u 2 and integrating over y*.

equation may be written in the form

2 d 3
3 ax [bwc(pli‘ ﬁSWC- 3wc110)]

dw
4. ab 3 c 4 dH
=w oIl ax P hoa Yo liz &
3
4 W

C
- We I13 " Rb Bf)
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i 2
f yEW *—-—); (u R )dy*
0

8

= [ U] W oved jay
0
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:I Wk BW: ¥y ¥ dy*
0 oy *

This

(C. 2)
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Thus, we have four equations for four unknowns, wc(x), H(x), b(x)
and IAIZ(x). The integrals, Ii’ are in general functions of all these
four unknowns. For the case A discussed in Section 4 where only the
fundamental mode is used for representingthe fluctuation, one can

againwrite
_ 2
I = [A] K (C. 3)

Now ki's depend on the solution of the local Rayleigh equation which
is, in general, afunction of the three quantities WC, H, and b pre-
scribing the local mean flow, To simplify the analysis, we again
assume b to be approximately related to W by Egn. (4. 6) which
reduces the dependence down to two quantities. I we further assume
H to be so small that the local eigenfunctions will not be greatly
altered by the value of Hin (C. 1), then we can bring out the depen-
dence on H explicitly in the ki's with the remaining integrals being
a function of W only. The integrals are then evaluated and the
solutions to this set of equations are obtained for a few cases dis-
cussed in Section (4. 2. 7).

If more shape functions are required to represent the mean
velocity profiles, similar approach may be used with the additional
equations being obtained by taking the higher moments of the mo-

mentum equation.
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Appendix D

Viscous Correction to the Local Disturbance

Equation

As we have discussed in the main text, the viscous terms
will have to be included when a? is small for any finite Reynolds
number. It was suggested that the full fourth order Orr-Sommer-
feld operator be used instead of the second order Rayleigh operator
to overcome this difficulty. However, that approach will generally
require a special elaborated numerical scheme (e.g., Kaplan's
method) to suppress the undesired exponentially growing solution.

An alternative approach is, therefore, proposed here in an attempt
to reduce the problem to a numerically simpler one.

The method of solution follows quite closely the scheme of
Graebel(47) by use o the inner-outer expansion theory. Only the
homogeneous equation for f0 will be considered here. Similar treat-
ment may be used for the inhomogeneous equation with known forcing
terms on the right. For convenience, the notation used here will be
self-explanatory and independent of those in the main text.

Consider the Orr-Sommerfeld equation.

2
£x) (D%-a?) v= iW (D%-o°) v-ivD?W (D. 1)

where W = U(y)-C, C and a are the corresponding complex wave
speed and wave number, R is the Reynolds number and D denotes
differentiation with respect toy. v represents the vertical component

of the disturbance velocity and is proportional to the disturbance
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stream function f0 in the main text. The boundary conditions for an

antisymmetric disturbance in the wake are given by

Dv=D"v=0 ony =0
(D. 2)

v, Dv—=0 as y —™ oo

The critical point is defined as the location Y. where W(y.c)zo.
Ve is generally complex for non-zero imaginary part of C. For
sufficiently large Ci' the inviscid Rayleigh equation, obtained by set-
ting the RHS of Egn. (D.1) to zero, does not have a singularity on the
real y-axis. Integration along the real y-axis can proceed smoothly
and the viscous correction, if any, will be quite small. However, as
Ci approaches zero, the error in the solution introduced by such an
approximation increases. The following approach is intended to cope
with the solutions having an eigenvalue in this region.

The classical treatment of Heisenberg(48), being corrected
and clarified by Lin(34), has shown that a Stokes' region with radius
of the order (aR)'l/3 exists near the critical point. Outside this
region, for large aR, the flow is essentially inviscid and the Rayleigh
equation is appropriate. Using the WKBJ method, Lin was able to
obtain an analytically continuous solution through the critical point.

However, the method proposed by Graebel(47)

seems to simplify the
analysis and will be used here by treating it as a singular perturbation
problem.

For the outer region, the independent variable y remains un-

changed and the dependent variable v has the form
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Vi~ ) W) ©.3)
n=0

where p = (aR)'1/3, a small parameter.

The inner variableis suitably taken to be

= c o
n=0 Of(1) (D. 4)

and t he corresponding inner expansion for vis
[o.0]
VM, ) = ), € %) v *m) (D. 5)
n=0

The forms of ?n and €.* will be determined by matching.

The only restriction on them is

€ € *
lim nE“ = lim L*I =0 (D. 6)
n 0 ‘n

Substituting (D. 3) into (D. 1), we get

wD? ¥ - (D*W + o®W)V_ =0 (D. 7)
for n such that —En> 0 (“BE_O)' This is exactly the inviscid Rayleigh
* equation used in the present numerical analysis and its solution may
be considered as known. But for matching purposes, an analytical
form near the critical point is desirable. A power series representa-
tion of the two independent solutions near Yer corresponding to

(

Tollmien's >0) (1935) solutions, is given by Graebel as

2 L 3
_ . 1,D%w
1) ==+ 2 DWE 2t T |y 2t... (D. 8)
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3 2

Dw DW D™w D™W

c 1 c 2 c 3 ct 2

(p(z):(p (z)in z + + 5 a > -5 z
2 1 DZWC 2 DZWC DZWC 2 DWC

+ ... (D. 9)

where z = Y-Yo and subscript c indicates avalue aty = Yoo These
representations are acceptable as long as D2WC # 0. Inthe case o
a wake with Gaussian mean velocity profile, it turns out that DZWC= 0
when Ci = 0. However, in such a case corresponding to a neutral
disturbance, the inviscid equation may again be used to give an ana-
lytic solution through Ve without using the viscous terms. We will
therefore exclude the case D2WC = 0 and assume the analyticity of
expression (D.9).

Without loss of generality, we set ?0 =1. To thefirst order,

the outer inviscid solution may be approximated by ?70 which is given

by
Voly) = 2,0, (2) + a,0,(2) (D. 10)

* The complex constants Ch and a, can be determined from the machine
calculated values of v and (Dv) at some location near the critical point
on the real y-axis.

For the purpose of matching, we rewrite (D. 10) in the inner

variablen = z/u
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_ DW _
v, =a, —5——+pnfa, + a, £nn) + (uinu) a, n
0 A DZWC 1 2 2

2 D4W DW D3w D%w

- 2 C(a +a,fnmn)ta Co,2+ c_}_ <
2z 1| DW p "2, 2\ 2 DW_ ~ 2 DW

c D Wc c c

2 2, 2 DZWC 3

Substitution of the inner expansion (D.5) into (D. 1) gives to

the leading order

d4 dzvo*
—3 vo* - in ch 5= =0 (D.12)
dn dn

Referring to (D. 1), theleading termis O(1). Hence,
eo* =1 (D. 13)

The solution to (D. 12) which matches with (D.11)is readily found to be

c
v, ¥ = a (D. 14)
0 ZDZWC

In order to match the O(p) termin (D.11), we take

€% = (D. 15)

The governing equation for va* is given by

2

4 2 . d"v *

(-i-z-inow 4 e x=12p2w )% iy sD?wW
c FASES | 2 < 2 0 c
dn dn dn
(D.16)
and using (D.15), this becomes

d4 dz

(—-———4 -in DWC ——-——Z) vl* = -1aZDWC (D.17)

dn dn
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To put this equation in a more tractable form, we introduce

anew variable
e=apw)/y (D. 18)

Then, Egn. (D.17) becomes

- — =-(iDWC)'1/3a2 (D.19)

The solution to (D.19) which will not grow exponentially as § —+oo

may be written, back in n variable, as

vl* =A tAn+ (iDWC)1/3 2, () art (D. 20)

with (vl*)pa.rt being the particular solution of (D.19) given by

1/3
V1 ¥t = 7rf f [iDW ) / n] dn dn

n
_n(tiC)'l/3+mf G[(iDWc)1/3n] dn
0

s oW )3 1G9 - G (D. 20a)
and
. o
G() =+ r exp [ -1 (Et + %—' t3)] dt
T 0
. 1/3
(iDW ) 00
aG . 1.3
T [ tewl-iEtr3e) a

then
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. 1/3

{iDW ) Q0

dG _ C 1.3
( )n —-———7-T-—--f0texp(—-§t)dt

iDW _ 1/3
= ( 3 C) I‘(i/:s)

The asymptotic behavior of the function G(£) and its integrals may

51)

be obtained from Luke( For ~7r<arg(§)<%— a, as ]g [ — @

£ £ 1
fo fOG(é)déd&%[ﬂné +3(n3+2y- 3+in)

-5/6
+ 2 a-iwWIrh Jro0 55D
Er (-3') £ 3
2 4 5 9
+ — P (111: Y ";2; '—”)} (D21)
NERER 33 £3

Therefore, for - 7 < arg(iDWc)1/3n< la as [n| =
o -1/3 . 1/3 1 .
(vl*)part (1DWC) n [In(lDWC) +in n + 3 En3+ 2y - 3+ im)

356 spw )71/3 1 |
+ < (1 -iN3) +O(—-—z)] (D. 22)
nI'(1/3) n

The correct branch of (iDWC)1/3 may be determined from the asymp-
totic behavior o the solutions.

Now, we are in a position to determine the constants Al and
A2 through matching by comparing (D.11) and {D. 20) for the terms

of O(u). Sinceno O(no) term appears in (D.11), it requires,

7r3'5/6(iDWC)‘1/3

A= (N3'1i-1) a, (D. 23a)
T(1/3)
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Comparing terms of O(ny), gives
A, =a -a,[fn (iDW )1/3+}—(£ 3t2y-3tin)] D. 23b
271772 c 7 (In Y (D. )

The term of O(n4n n) is completely matched. Therefore, the solution

* is completely determined with (D. 23).

Vi

To match the {(pfnp) term in the outer expansion (D.11), we
take

* _

€, =pinp (D. 24)
The governing equation for v2* isagain given in the form o (D.12),
i, e.,

44 a®y,*

""“z}"z*'iﬂDWC > =0 (D. 25)

dn dn

By matching with the outer expansion, we have the solution to (D. 25)

as

Vz* =a,m (D. 26)

Therefore, the full inner expansion up to O(pz) is
r3-5/6 (tiC)‘1/3

DW
vE~a, ——+ az[ N3 i-1)

D°W T1/3)

+ [al-az(ln (iDWC)1/3 + ~l§ (dn 3+ 2y t in)J n

n
+a2[7r(iDWC)l/3 . fOG[ (iDWc)1/3n] dn+7r(iDWC)2/3

dG dG 2
{(71;>n=0 - H‘n"}] + (uinp) an + O@?) (D. 27)
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Terms o higher order in both the inner and the outer expansions may
be analogously determined, if desired.

Two possible ways o applying these results to the actual cal-
culations are given as follows:
(1) Stop the numerical integration o the approximated inviscid
equation at some point on one side near the critical point Y The
constants a, and a, are then evaluated from the numerical solution.

Then, the composite expansion

=V 4+ vk - (D. 28)

Vcomposite ¥Ycommon

is used for calculating the solution in this region and providing the
initial conditions for starting integration on the other side of the
critical point. The common part of the inner and outer expansion
up to the order considered is given by

Dw

= —-———-—f'c a . n 2
Vcommon %2 "2 pagm t (pfnp) a,m + Ofp”) . (D. 29)
DW
C
(i) Obtain the solution of the inviscid equation throughout the

whole range by machine integration. The correction obtained from

Vv =v¥ - v (D. 30)
corr. common

i s then added to the numerically integrated solution to yield the full
solution.

The difficulty in the application of such a solution to the prob-
lem is the evaluation of the function G(£), its derivatives and integrals,

for the complex argument £ appearing in the present problem. Only
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part of these desired functions are tabulated for a certain range of §,
and they may be found or referred to in the book by Luke. Thus, a
preliminary task for applying this solution will be a collection and
numerical generation sf all the functions needed. Because of the
highly oscillatory behavior of those functions, the numerical gener-
ation of the tableis certainly a non-trivial matter. For such a -
purpose, the method of evaluating the Tietjens function (whichis

o a similar character to the functions here) as the ratio of t wo

52)

rapidly convergent power series given by Chen et al. ( and a

different approach by Huppert(53) may bereferred to.
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Appendix E

Effects of the Static Pressure Gradient

In the present model, the static pressure at free stream
infinity has been assumed to be uniform. EXxperimentally, the wind
tunnel walls were adjusted to provide a nearly constant static pressure
on the wall as reported by Sato and Kuriki. However, the static
pressure gradients in both the axial and the radial directions are
not zero inside the wake, Physically, this pressure gradient is
induced by two main effects. The first one is the effect of finite
amplitude disturbances which induce both 8p/8x and 8p/8y. This
effect is included in the integral sense in the present model. The
second effect i s due to the interaction of the wake with the external
flow which has been neglected in the calculations by setting the static
pressure at the edge of the wake, Ee’ equal to —1500. Hence,
age/ax = 0 is the approximation made to simplify the analysis.

This appendix is aimed at considering qualitatively this effect on
the numerical solutions.

First of all, the present formulation gives

2

P-Pp, ==V (E. 1)

And by assuming Ee = 500 = constant, this yields the static pressure

coefficient

2
. — 1
Cps =2(p - poo) =-2v (E. 2)

This is generally a function of both X and y. For the case A con-

sidered numerically where only the fundamental mode is included,
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the static pressure coefficient along the wake axis is given by

2 2
Cpe (7% = 0) = -2Z [ fa *|% |£,] ]V*=0 (E. 3)

The quantity (} a*)2 ]fn ]Z)Y*ze is a function of W under the assump-
tions made in carrying out the calculations of case A. This function
is plotted in Fig. E.1 The variation of CpS along the wake axis can
therefore be calculated and is compared with the measured result of:
Sato-Kuriki* in Fig. E. 2. The agreement is generally fair. The
discrepancy in the detail distribution is believed to be at |east par-
tially, the consequence of setting [_)e:—z ;m. This may be seen quali-
tatively as follows:

The velocity v at the edge of the wake is proportional to the
quantity [d(bwc)/dx] from the continuity equation. But, from the
integral momentum equation (3, 14), neglecting the fluctuation t er ms,
the quantity (bwc), being proportional to the displacement thickness,
i s decreasing for decreasing W The displacement effect of the
wake, therefore, appears to the external flow as a distributed sink.
The non-linear effect induced by the finite amplitude disturbances
investigated here has effectively concentrated the strength of this
sink distribution. The interaction with the external flow may there-
fore become important. Now, if the small perturbation theory is
used and the interaction is introduced by using the calculated sink
distribution, it is not hard to visualize a static pressure distribution

which may be added to the one shown in Fig. E. 2 to give a

*The author is grateful to Dr. Sato for making those test results
available for comparison.
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distribution similar to the experimental result.

Without carrying out the complete interaction with the external
flow in the present numerical investigations, it is decided to consider,
in the simplest possible way, the qualitative effects of the mean
static pressure gradient on the solutions.

The approach adopted is to ignore the y-momentum equation
completely. This is equivalent to assuming the existence of a static
pressure distribution in both x and y which will be just enough to
offset the induced static pressure by the finite amplitude effect given
by Egn. (E. 2). The governing equations stay nearly the same with
slight modification caused by the disappearance of the (8:'—2—/8):)
termin Egqns. (4.7) and (4.8). The numerical integration can be
immediately performed as before. Calculation has been carried out
corresponding to case A including only the fundamental mode of the
fluctuation at R = 2 x 105. The same initial conditions, WCO =07
and Euo =1 X 10'5, have been used in obtaining the following results
for comparison.

Fig. E. 3 shows the effect of the imposed fictitious positive
static pressure gradient on the variation of w. Some experimental
points are also shown there for comparison. Since we expect the
induced static pressure gradient, caused by the interaction, to be
opposite from this fictitious one, at least-at the front portion of the
wake, the trend o the solution seems to favor a better agreement

with the experimental results.

Figs. E. 4 to E. 6 show the effects on the variations of the
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total fluctuation energy density, ET’ the energy in the u'-component,
and the non-dimensional amplitude of the fluctuation ]Alz, The
general variations remain qualitatively unchanged but the maximum
and the final equilibrium magnitudes are greatly influenced. An in-
crease of factor two in the peak values results when the fictitious
positive pressure gradient is imposed. This fact is again very much
in favor of the explanation of the seemingly higher peak values of the
fluctuation magnitude calculated. Based on this result, the induced
negative external pressure gradient in the front portion of the wake,

when included, is expected to further cut down the peak values

obtained.
The explanation of these effects may be seen when we consider

the governing equations in the form of Egns. (4.15)

dE_

& -~ Trm -~ Tym (E.43)
dE,

dx TRf - va (E. 4b)

with TVM’ TVf’ TRf being the same as given in Eqns. (4.15). How-
ever, because of the existence of an external pressure field, either

imposed or induced, T is no longer identical to T Again, let

M
us split the energy transfer term TR

Rf'

M into two parts: TRI, the

contribution from the usual Reynolds stress, u'v', and TRZ’ the term

resulting from the mean flow variation. TRl being the main mecha-

nism of the energy transfer, remains unchanged and is given as

.3
Try = Ve (E. 5a)
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However, TRZ is now modified by the external pressure field and

becomes
dw
_ db c
Tpy = -290[Igw_ 2t (1,-1;) b ——]
- (External Pressure Term) (E. 5b)

Since TRf = TRM+(ExternaI pressure term), it is clear that part'of
the mean energy variation appears as the work done on or by the
fluid because of the external pressure field. The energy exchange
between the mean and the fluctuations is therefore modified. Depend-
ing on the sign of the external pressure gradient, the onset of transi-
tion (thelocation where TRM becomes the same order of TVM) will
move correspondingly.

In the simplified case considered here, the imposed static
pressure field is positive as given by the negative of the values
shown on Fig. E. 2. Eqgn. (E.5b), then, becomes

dw
- 2wl c db,

TRZ ~2wC[I3b——a-;(—-—— ISWCd;tD (E.6)

Numerical calculation shows that the values of TRZ are now generally

of opposite signto T as against the results shown in Fig. 13 where

RI
TRZ and TRI have the same sign. Since the interaction between the
mean and the fluctuation is relatively weak at the initial state of the
wake where the mean flow is varying slowly resembling the pure
laminar solution, the fluctuation grows near exponentially as given

by the linear theory. This weak-coupling development will cease to

exist when TRM’ which is proportional to IAI2 to the first order,
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becomes o appreciable magnitude as compared to TVM. Because of
the present imposed static pressure field, a much higher magnitude
disturbance is required. Thisimplies a delay of the onset of transi-
tion as compared to the case o no external pressure gradient. This
factis clearly indicated in Fig. E. 3. The much higher peak values
and a different equilibrium magnitude reached can also be understood
from Eqns. (E. 4).

Although the effects of the external mean static pressure field
on the calculation is qualitatively known, it remains to obtain an
estimate on the magnitude and distribution of the actual interaction
induced static pressure field. This estimate is especially needed
in view of the present arbitrary imposed pressure gradient.

First of all, we may note from Fig. E. 3 that the mean flow
is not greatly affected by the external static pressure gradient. If
we assume that the induced pressure field will have a smaller pres-
sure level than the one imposed here, we can use the calculated
mean flow to estimate the external induced pressure. This assump-
‘tion will have to be justified later and, for the time being, we will
ignore the interaction between the growth of the wake and the external
flow.

Integrating the mean continuity equation to the distance y*e
where U*(y*e) is nearly zero, we get

d{b wc)

"ffe ﬁl .___..__.__..dx (E- 7)

Furthermore, using the approximate integrated mean momentum

equation (4.6), Egn. (E.7) becomes
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‘31 sz We dwc E. 8)
VvV = .
e PByp-Byw. ax (

Since dwc/dx< 0, this appears to the external flow as a sink. The

distribution of '\Fe calculated for case A at R = 2 x 10°

is shown in
Fig. E. 7, together with the calculated result of a pure laminar wake
for the purpose of comparison. The non-linear effect induced by the
finite amplitude disturbances has effectively replaced the distributed
sinks of small slowly varying strength by a much more concentrated
distribution. Since the total strength is the same, the latter will
have a generally larger strength as indicated in Fig. E.7. Thus,
the induced external pressure field will be much more important

and interaction effects may not be ignored as is usually the case in
an undisturbed laminar wake.

With the calculated magnitude of the vertical velocity compo-
nent ;e' it seems justifiable to use thelinearized small perturbation
theory for calculating the induced pressure field. The induced static
pressure coefficient along the wake axis is then given by

Cps(x,y=0)=——27;f:;f_—(§)~d§ (E. 9)
When the interaction is neglected, we may use the calcul ated. ;e in
Egn. (E.9) to evaluate the induced pressure coefficient. However,
for the purpose of obtaining a rough estimate of the magnitude and
the variation of the induced pressure field, an approximate distribu-

tion of the form
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e - -0.154
otz - LU -Cororg ) (E. 10)
is used instead of the true calculated distribution. Eqgn. (E.10)is

plotted on Fig. E.7 for comparison with the true distribution. Using

Eqn. (E.10) for ;p, Egn. (E.9) may be readily integrated to obtain

C,o(X,0) = 2%% - 9.333% 7 £ 17.067X° - 15. 0476 X °
+6.127%+ (1 -%5)7an | 2E1 (E.11)
x -1

— _x—0.154
where x = 0079

This distribution of pressure coefficient is plotted in Fig. E. 8
against the normalized variablex. It is added to the expression (E. 3)
assuming that the two induced pressure fields do not interact with
each other. The result is shown in Fig. E. 2 to indicate the effect.

It is evident that the combined result does give a closer resemblance
to the experimentally observed distribution. The deviation at x
greater than 0. 25 may be attributed partially to the assumption that
the two effects are additive, because, for x > 0. 25, the mean flow
remains practically unchanged. From Eqgn. (E.3), we can see that
the static pressure level beyond this point is strictly proportional to
]AIZ' Therefore, because of the favorable pressure induced by the
interaction near the beginning of the wake, we will expect a lower
final equilibrium amplitude from the numerical results of this Appen-
dix. Hence, the static pressure coefficients at x > 0. 25 will be
expected to come closer than indicated to the experimental results

when the complete interaction i s included.
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However, it may be noticed that the station where Cps starts
deviating from the theoretical prediction is near the same location
where the re-acceleration of the mean flow and the rather sudden
decrease of the amplitude of fundamental mode take place experi-
mentally. All these phenomena cannot be predicted by the present
theory, but they are consistent in the light of the numerical investi-

gations obtained so far.
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Appendix F

Effects of f1; Case C

F. 1 General Formulation

As previously discussed in the main text, Eqns. (3.20) need
to be modified when the correction term to the fundamental mode,
£, (y*), isincluded. The method proposed in Appendix B to include
the effect of the mean flow variation in the x direction should be
incorporated to obtain a solution for f, (y*). Without involving such
a modification, this appendix will assume that the solution of fl may
be approximately obtained by using Egns. (3. 20) alone. This parallel
mean flow assumption will undoubtedly induce errors in the estima-
tion of the integrals Ii by ignoring the history effect on fl' However,
the numerical complexity is greatly reduced, and the approximation
will not affect a qualitative study of the effect and allows a discussion
of the problems associated with fl‘

Using Egns. (3. 20), the governing equation of fl (y*) may be

written in the form

*
2 2 2ia,
—_ Wk d — i
U - =) (e = %) - f. - (—=)G(f
[(v-Z) (M2 o¥) -U_y w] f) - ()G
(F. 1)
ial
= - 'E';'Z’ G(fo) + WCFl(fO’ go;a*)
where
— — 2 . 2
G({f) = -u ' + [ u(3a*" + 61a*a§< -4a.*")
(F. 2)

-2w*(a*+ia§‘) +u'"] f
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and
1 ~ ~ -~ ~ ~

- E 1Ty _ m 1 b 11 H - 11t

Fp = g l2a%ggfy'"-0g" Tg) + a*(fy"ey-foeg
(F. 3)

+(4a*z-§*2)(zu* Tlg +axT.gl)]
0 8o 080

with the superscript " ' " denoting differentiation with respect to y*.

When a¥* is not small, the solution of Eqgn. (F. 1) may be ob-
tained for any value of ay Since no particular choice o the value of
a is required, we can specify a, to be zero. The significance of
this choice may be seen from Egn. (3.27). Since a*r is generally of
order one, when a’.;’ is not small, theleading term of Egn. (3.27) or
(3.27a) is sufficient to describe the local spatial variation of the
phase and the amplitude. Therefore, the correction given by a, may
be ignored.

On the other hand, when a’*{ isidentically zero, i.e , the
fundamental mode is neutrally stable, a resonance occurs. The
operator on the left of Eqn. (F.1) becomes identical to the eigen-
operator. In order to assure the existence of a solution for fl’ a
must take a special value. The value of a, is determined so that the
RHS of Egn. (F. 1) is orthogonal to the eigensolution of the adjoint

of Egn. (3.28). Namely,
OO

Jo F19par*

a, = —iwca* (F. 4)

1 o)

J Gogdy*
0
where ?o i s the eigensolution of the adjoint equation of £y For the

near resonance cases, i.e., when “’i“ is small, the same procedure
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is applied to insure a bounded solution. The solution may be obtained
following the method of Watson by forming a series solution in a* for

¢ This will be discussed in section F. 4 of this appendix.
1
F.2 Numerical Treatments

This case differs from case B by including the process TZI
shown in the schematic A. The inclusion of this new non-linear .
feature will modify the other processes and, therefore, affects the
complete interaction.

Using all three termsin Egn. (3.30), the fluctuations are

given by
2 10 2 210 .
wk = {A[f’o+ A 1] et A gy e } + conj.
vr = -if AL axey + o |A]? 1] &€+ 2axaly &?1%) + conj. (F.5)
_ 19 2 2i0 .
p* =[ Alp) 4t lAl Pyple t ATpyge 1 t conj.

Using (3.11) and writing out Fl(fO’ 8o a*) explicitly, Eqn. (F.1) with

a1 = 0 becomes,
2 2.
(U*-c,) (—‘1—-—2— - afz) f, - 4‘3—-‘—12’-‘- £)
dy* dy*
= -(2a% + a¥*) (2a%* gof‘o + @k fog'o) (F. 6)
+20~ (g Hf fn|)+~ (f gvn 'fngu)
aif 0- a* 070 0
1
it - 1 W
where a’f = 2a% = @ and c, =W_C(1 - .a.i_z)

The boundary conditions are
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f,(0) = 0
(F. 6a)

£ (m)+ & f1(m)=0
The solutions to (F.6) can again be obtained by the method given in
Appendix A when the forcing terms on the right are known from the
solutions of f0 and 9o However, solutions near o.j>_=< = 0 are difficult
to obtain and possess a high degree of uncertainty. This difficulty
is different from the one mentioned in getting the solutions for 9
The inclusion of the viscous terms will not prevent its occurrence.
A method of obtaining a bounded solution near a?‘ = 0 with a non-zero
a; is given in section F. 4. Numerically, the solution to Egn. (F.6)
will be intended without making such a modification as close to the
neutral case as possible. The difficulty mentioned above will become
obvious when the numerical results are discussed in the next section.

The effects of fl on the flow development again appeared on
the representations of the integral quantities Ii as given by Eqgn. (5.1).
It essentially modifies the Reynolds stress and the relative energy
content in the fundamental and the second harmonics. For purposes

of comparison and for simplicity, the same definition for A, as given

.by (4.8), isused. In this case, theintegrals are given by

2 4 6
L =k |A]%+ (g + k) | A" + ke |A]

(F.7)

Ig = ko |A]% + kge [A]°+ kog [4]° (F.7a)
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where the kif‘s and kiff's are theresults of fl' They are given by

00
kyolw ) =j(; ) gy f‘ )dy*

m ~
Ky (w ) = fo (a% af £ + a% ¥ £f, )ay*

Q0
kg (W) =f0 UR(Ty £+ £ )dy*

0
m ~ ~ —~ (o d
= %
ke ggw ) fo Uk(as o 15} + o af Tof; )y
- |
- 1 t 1
kg o(w ) -fo [(f £ 0T )- (a*a’ffofl+u* a*fofl )] dy*
K (W)= -i dU [T} -2 Tty (@t Fl £, -a%£pF 1 d
6f " c qy*F )+ (@ F o £ -adfyf))1dy*
(F. 8)
\8 8]

ko oW _ )-f [®y 0y + Pyofy It (EgPyy +T] p v

Zf! fl )+2(fll?l¥+ f!lfll)

oo 2~
— 1 ]
kg W ) = - f {4(@x“s ' + a* o

0 071

~ .2 2
Sk %k o x * ¥ ¥ %
-f-[(o.1 + a*7)a ulf T +(aT +a%“)a*a fOfl] }dy

koW, )-f {61t gb )Ty g alaxgy(axiyfy +a¥f) £)

taxg, (et ?1'+E>1=c £, 1)) -2(a%ax 1T g

toka¥ foflg'o)} dy*

and
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o 2
ky (W )-—fo |f'1] dy*
kaf(Wc)=fO a3 ™ 15 |7 ay=
kayge(We

f :
) = U* if dy*
0 |1l Y

k, . )~f00Us'.<l>:<2 £ [Py
45tV A all_lll ¥

© AU 2 . 2

ksgetwe) = [ v* o LI 5 fax® 15 [*] ays
(F.9)
kogr(We) = ‘if ?13:( £ 71’1“ £ £4)ay*
7ff(w ) "f (fl pll + f!l pll)dy*
kg eelw ) = fm{(*+a* (lf ] | =:<|2’f }2)
CHAMCAEE Y 1
r2)ey |2+ Jox)® ey |20} ayx

Q0
) = 2%, :
koW, _j;) {3(6] g+t g0)+4(o,’r-u>vf1f1g0+c, Tfl flg,)

-(@x% £ gy + ax®e g}y

The governing equations for |A]z and w_ can again be written
in the form sf Egn. (4. 10) with different expressions for the functions

Kij' The solutions can be readily obtained similarly as for case A,
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F. 3 Results and Discussion

A few typical distributions o the forcing function, Fl(y*), are
shown in Figs. F.la-d. It may be noticed that the variation of the
magnitude becomes increasingly large as al tends to zero. The dif-
ficulties are enhanced by the inaccuracy in calculating the derivatives
of g0 when 0.;.* is small, because of the use of the inviscid Rayleigh
operator. Therefore, errors in the derivatives of g, are amplified
in this stage of calculation through Fl(y*). These numerical difficul -
ties will result in a much | ess accurate estimate on the integrals kif
and kiff for small a=i!=. This situation is further complicated by the
resonance behavior in the solution of fl near a’-‘i =0, since, in this
case, the operator on the left-hand side is nearly the eigen-operator
and causes the numerical solutions of fl obtained by the method of
Appendix A to be completely dominated by the undesirable homogene-
ous solution. As we have discussed previously, the reformulation

given in section F. 4 with non-zero a, is needed for this case.

1
Disregarding these difficulties, the solutions for fl have
been intended for fairly small values of an using the inviscid equa-
tion (F.6). Theintegrals, kif and kiff’ are then evaluated and listed
in Tables IV and V. The extremely large values of the integrals for
small values o w_are believed to be numerical errors induced by
the above-mentioned difficulties, However, it is not possible to
estimate exactly at what value of W, or a%, that these errors will
be large enough to affect the solution. A more accurate calculation,

using the full viscous operator and the reformulation of section F. 4,

is needed to justify this approximation.
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A few typical distributions o f1 and its derivative are shown
in Figs. F. 2a-h. The extremely large scale used for the cases of
small W (thus, small a*i) indicates that a large unknown contribution
from the homogeneous solution is dominating. According to the
present formulation, this distribution, multiplied by ’A]Z, is added
to fo(y*) to obtain the real distribution of the fundamental mode.
Therefore, the measured distributions of the amplitude and phase
of the fundamental mode shown by Sato and Kuriki in Figs. 18 and
19 of their paper at various x-stations may be realized through these
results. But, since no emphasis should be placed on the local dis-
tributions when the integral method is used, and, moreover, the
solutions of f1 are subject to a large source of error in the present
approximation, we will not attempt to make such a representation
here.

The calculated variation of W for the present case at

R=2x10°

is compared with the results of cases A and B in Fig.

F. 3. The general trend again remains unchanged, but the curve
levels out at a higher value o W i. e., alarger value of a.l*.
However, this near ''equilibrium'' result may be caused by the
inaccuracy in the integrals kif and kiff' This fact may be further
illustrated by the variations o the total energy density shown in Fig.
F. 4. The results of cases A and B are also shown on the same plot
for comparison. From Fig. F. 3, we may see that the mean flow

velocity is varying quite slowly for all three cases for x> 0. 2. Thus,

the rapid decrease in the fluctuation energy for case C is believed to
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be caused by the same reason discussed for case B: the overestimated
viscous damping effect due to the inaccuracy in evaluating the inte-
grals causes the rapid energy loss by dissipation.

Fig. F.5 shows the variations of the fluctuation energy in the
fundamental and the second harmonic. As expected, the result indi-

cates a lower ratio of (E

) than the result obtained
uZf’max

to (Euf)ma.x
in case B. However, the relatively small energy content of the sec-
ond harmonic, as well as the continuous decrease in magnitude at
large X are believed to be the consequences of the difficulties men-
tioned in obtaining the integrals.

Similar to the treatment of case B, we will try to remedy this

difficulty by setting both k8g’ k8f and k £ identically zero. This

8f
treatment will tend to eliminate the maximum possible source o
error by accepting some uncertainties in including the correct viscous
damping effect. (Only the contribution from fO isincluded. ) How-
ever, the improvement in the solution for this case will not be
expected to be as good as for case B. In fact, alarge unknown error
still remains in all the integrals for small a%; on account of the error
in the forcing function Fl and the resonance behavior of the solutions.
Some of the results of this calculation will indicate this difficulty.

Fig. F. 6 gives the effect of kSg’ k8f and k8ff on the W varia-

tion. Assuming that the result obtained when k8g’ k8f and k are

8ff
set to be identically zero is more representative of the actual solution,
comparison between the three cases may be made. Using the results

o Fig. F.6, it may be seen from Fig. F. 3 that the general behavior
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for the three cases remains the same. However, the asymptotic
values o w_ seem to be increasing when more terms in the local
series expansion d the fluctuation stream function are included. This
trend implies that the flow is equilibrated at a larger value o -a%
which is in contrast to the linear theory, where equilibrium is only
possible at a%’{ = 0.

Fig. F 7 shows the effect of the viscous dissipation terms on
the total fluctuation energy density. The large effect at large x indi-

cates the domination o the erroneous viscous dissipation terms on

the solutions. Fig. F. 8 gives the corresponding development o Euf

and Equ' The variation of Euf is somewhat pecu||ar Judg|ng from

the previous results of cases A and B. It is again believed to be
caused by the errors in the integrals.

Fig. F. 9 gives the variation of IAIZ for case C. Notice that
the maximum value reached is further decreased from case B. This
result gives additional confidence in using the amplitude expansion
proposed together with the truncational approach.

Before leaving this section, it should be mentioned that the
results o case C are not conclusive because o the uncertainty in the
numerical results. It is merely included here for a qualitative ref-
erence. For a more accurate estimate on its effects, the reformula-
tion of section F. 4 will be needed and the integrals may be evaluated
for the range of small af. The results may then be patched with the
present integrals to provide the complete curves as functions of W

over the whole range o af, even for slightly damped cases.
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F. 4 Solution of f; near a’i =0

When the eigenvalues a*, found by solving the local Rayleigh
equation, possess a small imaginary part, a straightforward numer-
ical integration of fq will cause alarge unknown error in the solution.
The method of Watson may be used to obtain the solution.

Rewrite Egn. (F.1) in the form

2ia.* ia

i _ 1
L (w¥, a%)f; - (—v;—c—a—*-) G(f)) = - v G(fy) + F, (F.10)
where
2 2—
1 [~ ok d 2, d
L (w*, a*) = '-\-”—-[ ('u - ?:-)—;) (———-—2' - 0,* ) - 12 ]
c dy* dy*

and G, F, aregiven by Egns. (F.2)and (F.3). It should be noted

1
that, if the non-parallelness sf the mean flow is taken into account
as discussed in Appendix B, the additional terms will appear in Fl.
The present analysis can be easily modified to incorporate this effect.
In the following, the procedure of Watson for finding the solution to
Egn. (F.10) for a small a*{ will be recapitulated.

We first write fl in the form

%1
f) = (ggi) fo + @ (F.11)
1

then, ¢ satisfies

2ia,*
i

w a¥*
c

L (w*,a%) @ - ¢ ) Glg) = F, (F.12)

with the boundary conditions
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@'(0) =0
qo'(oo)‘ra’fgo (o) =0 (F.13)
with  a* = 2% - a*

Since o.%; is small for the cases considered here, the operator on the
LHS of (F.12) is almost the inviscid Rayleigh operator. Hence we
may choose two independent parts of the complementary function, one
of which will almost be the eigenfunction fo. It follows from this that
the highest order termin ¢ is probably a multiple of fo and moreover
that the multiple will tend to infinity as a*{—-’ 0. Following the argu-

ments of Watson, we assumed that the most probable case does

occur, then ¢ may be expanded in the series

(-1)

1 0
=% ® + ¢( )

+ a¥ oWy . (F.14)

Substituting (F.14) into Egn. (F.12), we obtain the equations for (p(r)_

They are
L (¥, a%) o1 =0 (F.15)
(0) _ 21
Liwr,a%) o™ = g o010y P, (F.16)
L (w¥, a*) @F) =%;G<¢(r‘l)) (r=1) (F.17)
The corresponding boundary conditions are
(F.15a)

0 (o) + a* 0" V(0) = 0
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The solution to (F.15)is (p(’l) = Xfo, where X is an arbitrary con-

stant. On substituting this solution into the right-hand side of (F. 16),

A appears explicitly in the equation for (p(O).

The solvability condi-
tion (ref. Ince, p. 214) will then determine A. Following Stuart and
Watson, we define X3 to be the solution of the Rayleigh equation sat-

isfying the even boundary conditions.
x':‘ = 0, X3 = 1 at y¥ = 0 (F.17)

Then, let ?0 be the solution of the adjoint equation of the Rayleigh

equation, which satisfies

2 - d@
* 1] oo wky d 2 du 'O
L (w¥, a¥) ¢, ;”‘;[(u‘;‘#“)(dy*z’“*)¢o+2dy*dy*]

=0 (F.18)

with the same boundary conditions (F. 15a), By multiplying (F.16)

with ®o and integrating with respect to y* between 0 and co, we get

(0.0
%
w o PoF 9y

A= - (F.19)
P 2
2i fo Polf'g -a* fg)dy*
The solution to (F.7) may then be written as
9 =B 1 tB, x5+ P (F.20)

where Pis any even particular integral of (F.16)with X known from
(F.19). Then the condition at co, (F.l6a), can be applied to deter-
mine B,. The determination of the constant B1 will have to go to one
higher order equation by the same procedure used in determining X.

The solutions for any r can be found in a similar manner. Since the
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value of ay is arbitrary, if we choose

a, = -2 (F. 21)

Then

f =cp(0)+a?l“<[’(l)+ . (F.22)

(F.21) makes the function fl bounded even when ai—* 0. If only the

leading term o (F.22) is used to represent the solution, (p(O)

gives
the required solution for fl' In this case, the determination of Bl is
not necessary and may be set to be zero. This only amounts to a
redefinition of the amplitude function A*.

The determination of the local solutions for y* near af = 0,
together with the results obtained for large a==i<, allows the evalua-
tion of the integrals required in the integral equations over the com-
plete range of a"i?. (The highly damped case will be ignored and is
expected to be of little interest in the practical case. ) It should be
noted here that the use of the integral method has provided the means
to determine the governing equations for the amplitude and the mean
flow shape-parameters. The introduction of a in (3.27) gives a
bounded solution for fl, etc. , but is only used locally to provide a
good estimate of the integrals. Therefore, they do not play a central
role in the present theory as they do in the theory proposed by Stuart
and Watson. Hence, the limitation on the magnitude of ai* (or E_i)

placed on their theory does not apply to the present formulation. In

fact, the estimate of Watson provides a means to determine the
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smallest value of a;‘, beyond which the procedure discussed in this

section is needed.
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TABLE | 5
EIGENVALUES FOR Frequenc}; -:.- %géocps
e —
W, @ % o ¥ Er Ei
0. 800 0.8431305 -0.2988252 . 4775625 0.2578652
0. 750 0. 7852360 -0.2461871 . 5090417 0.2641013
0. 720 0. 7627364 -0.2215836 . 5229835 0.2649093
0.692 0.7474712 -0.201§754 .5334500 0.2644119
0. 650 0.7328011 -0.1771193 . 5453891 0.2619686
0. 600 0. 7259882 ;0.1527365 . 5547822 0.2569737
0.550 0. 7294632 -0.1323420 . 5597915 0.2499972
0.500 0. 7431208 -0.1147266 .5609112 0.2409811
0. 450 0. 7679713 -0.0990128 . 5583199 0.2295612
0. 400 0. 8063129 -0. 0844994 . 5519111 0.2150348
0.375 0.8317493 ~-0. 0774926 . 5471513 0. 2062574
0. 350 0. 8623357 -0.0705436 . 5412335 0.1961997
0. 325 0.8991122 -0. 0635626 . 5340145 0.1845799
0. 300 0.9434874 -0.0564478 . 5252864 0.1710281
0.275 0.9974048 -0. 0490771 .5147428 0.1550497
0. 260 1. 0354333 -0, 0444703 . 5073585 0.1440284
0. 250 1. 0636119 -0.0412986 .5019113 0.1359743
0. 240 1.0943756 ~-0.0380309 .4959810 0.1272814
0. 235 1.1108299 -0. 0363537 .4928108 0.1226637
0. 230 1. 1280579 -0, 034652 . 4894985 0. 1178765
0. 225 1. 1461145 -0. 0329160 . 4860241 0.1128816




-227-

TABLE | (Cont'd)

W @, & @, * "é'r 'El
0.220 1.1650544 -0.0311456 0.4823782 0.1076768
0.215 1.1849333 -0.0293387 0.4785683 0.1022513
0.210 1.2058391 -0.0274927 0.4745068 0.0965888
0.205 1.2278256 -0. 0256051 0.4702467 0. 0906793
0.200 1.2509819 -0.0236730 0.4657424 0.0845077f
0.195 1.2753993 -0.0216939 0.4609683 0.0780596
0.190 1.3011783 -0.0196650 0.4558958 0.0713199
0.185 1.3284309 -0.0175835 0.4504911 0. 0642742
0.180 1.357284 -0. 0154441 0.4447099 0. 0568963
0.175 1.3878723 -0.0132532 0.4385217 0. 0492057
0.170 1.4203575 -0.0110005 0.4318583 0.0411580
0.165 1.4549144 -0. 0086882 0.4246612 0. 0327560
0.160 1.4917420 -0.0063177 0.4168583 0. 0239998
0.150 1.5731355 -0.0014032 0.3991021 0. 0054105
0. 145 1.6181980 +0.0011050 0.3889018 -0.0042920
0. 140 1.6666878 +0. 0036450 0.3776987 -0.0142604
0.135 1.7189451 0. 0061911 0.3652805 -0, 0243933
0.130 1.7753981 0.0086994 0.351528 -0. 0345145
0.125 1. 8365481 0.0111242 0.3362865 -0. 0444368
0.120 1.9029672 0.0133860 0.3194294 -0. 0538316




>':2
e—O. 69315y

.

TABLEIl. INTEGRALSk, vs. w_for U =

Ve k) ) ks ky kg ke kq kg kg
0.800 | 0.465875|0.534125 |{0. 265706 | 0.368559(-0.058021{0.181380(-0.312384 | -4.60218| |}
0.750 | 0.499914 |0.500086 |0.283472|0.336153|-0. 0851310, 204147|-0.299369 | -4.55099
0.720 | 0.514533 | 0. 485467 |0.291352 | 0.322654|-0.097145|0.214471|-0.291304 | -4. 54622
0.692 | 0.525022 |0.474978 |0.297119|0.313024|-0.105889(0.222693|-0.284110 | -4.55098
0.650 | 0.535780 | 0. 464220 |0.303187{0.302977(-0.114924|0.233313(-0.274246 | -4.56898
0.600 |0.541570 | 0. 458430 |0. 306658 | 0. 296829(~0. 119700/0.244282|-0. 264215 | -4. 60189
0.550 | 0.540124 |0.459876 |0. 306152 .296339f-0,118121 .254194(-0. 256135 | -4. 64452 g =
0.500 | 0.531287 |0.468713 |0.301487 |0.301409|-0.109930{0.263402|-0.249990 | -4. 69685
0.450 | 0.514330 |0.485670 |0.292155 |0.312500(-0.094414{0.271818|-0. 245742 | -4, 76090
0.400 | 0.487847[0.512153 |0.277216 {0.330698|-0.070304{0. 278750/-0. 243378 | -4. 84084
0.375 0.470366 |0.529634 |0.267195 |0.343025}-0.054448]0.281170]-0.242913 | -4. 88889
0.350 0.449575 |0.550425 0.255140 |0.357941|-0.035756|0,282409 -0. 242940 | -4. 94402
0.325 0.425020 [0.574980 0.240727 |0.375892|-0.013568|0.281871 -0.243473 | -5, 00812
0.300 0.396174 |0.603826 0.223568 [0.397442{+0.012200{0.278640 -0.244527 | -5, 08378
0.275 0.362469 |0. 637531 0.203214 |0.423304| 0.041989]0.271294 -0.246109 |-5.17470| Y

-82¢-



TABLE 1I (Continued)

We ky ky k3 ky kg kg ks, kg kg
0.260 |0.339689 |0. 660311 |0. 189273 | 0. 441245 |0. 061875 |0. 264019|-0. 247300 |-5.23874 | |
0.250 | 0.323386 |0.676614 |0. 179203 | 0. 454344 |0. 075956 |0. 257569|-0. 248184 |-5. 28635
0.240 |0.306182|0.693818 |0. 168493 | 0.468430 |0. 090652 |0. 249535 [-0. 249124 |-5. 33858
0.235 |0.297240 |0. 702760 | 0. 162889 | 0. 475859 |0. 098218 |0. 244835 |-0. 249607 |-5. 36676
0.230 |0.288094 | 0. 711906 |0.157138 | 0. 483564 |0. 105888 |0.239588|-0. 250111 |-5.39619
0.225 . 278734 . 721266 10.151224 .491543 .113672 .2337751-0. 250592 |-5. 42724
0.220 |0.269180 |0. 730820 |0. 145161 | 0. 499802 |0. 121536 |0. 227327[-0. 251077 | -5. 46000
0.215 |0.259479 |0. 740521 |0. 138985 | 0. 508331 |0. 129423 0. 220197|-0. 251518 -5. 49441 kg =
0.210 |0.249551 | 0. 750449 |0. 132616 |0.517182 |0. 137391 [0. 212247|-0. 252001 |-5. 53118
0.205 |0.239527 |0. 760473 |0. 126165 | 0. 526303 |0. 145302 |0. 203462|-0. 252418 | -5. 56994
0. 200 . 229413 .77058710.119626 .535707 . 153132 .193731]-0.252783 -5,.61106
0.195 |0.219254 |0. 780746 |0. 113028 ' 0.545383 '0. 160814 |0.182949|-0. 253080 ' -5.65478
0.190 |0.209114 |0. 790886 |0.106413 0.555314 0.168264 |0.171007|-0. 253283 -5. 70133
0.185 |0.199073 |0. 800927 [0. 099836 0.565473 0.175381 |0.157780|-0. 253361 -5. 75599
0.180 |0.189221 0.810779 |0.093357 0.575818 0.182051 |0.143132 -0.253é79 -5.80410 |y
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TABLE II (Continued)

w_ k, ky Iy ky kg K, k. kg 9
0.175 |0.179721|0.820279 | 0. 087105 [0.586307 |0. 188069 0.126910 |-0.252967 |-5.86097 A
0.170 |0.170735|0.829265 | 0.081187 |0.596813 |0.193272| 0.108945 |-0.252391 |-5.92200
0.165 | 0.162469|0.837531 | 0. 075763 |0. 607258 [0.197417| 0. 089067 |-0.251439 |-5.99058
0.160 | 0.155238|0.844762 | 0.071070 |0.617453 {0.200175| 0.067111 |-0.250008 |~6.05751
0.150 |0.14575 |0.85425 | 0.06530 [0.63582 [0.19975 | 0.01634 |-0.24512 |[-6.2340
0.145 | 0.14450 |0.85550 | 0.06520 |0.64350 |0.19560 |-0.01134 |[-0.2411 [-6.4380 |k, =
0.140 | 0.14650 |0.85350 | 0.06665 0.6500 |0.18850 |-0.03898 |-0.2357 |-6.790
0.135 |0.1502 . 8498 .07035 0.6556 |0.1796 [-0.0702 |-0.2263 |-7.240
0.130 [0.1553 . 8447 .07630 0.6598 [0.1682 [-0.0979  -0.2134 |-7.800
0.125 10.1619 . 8381 . 08425 0.6630 |0.1560 [-0.1203  -0.1975 |-8.430
0.120 0.1700 . 8300 .09550  0.6647 |0.1430 1-0.1347  -0.1750 |-9.102 1

B, = 1.064465 B, = 0.752690
By = 0.614569 B, = 0.521727
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TABLE III. INTEGRALS &

g
Ve lg K2g K3g K4g Esg Fog g e Hog

800 | 0.375555 | 0. 265361 | 0. 284088 |0. 182140 |0. 002012 |0. 093371 |0. 153854 |12. 8349|0. 889406
750 | 0.411035 [ 0. 267177 | 0.305579 | 0. 178800 0. 011347 | 0. 088477 |0. 158850 |12.3849/0. 856113
. 720 |0.429341 | 0. 268156 | 0.316426 |0. 177532 |0.016910 | 0. 087768 |0.159992 |12. 3465 0. 839136
692 | 0.444293 0. 269130 | 0.325067 |0. 176767 |0. 021812 | 0. 088146 |0. 160231 |12.4027|0. 824707
650 | 0. 462958 | 0. 270825 | 0.335378 | 0. 176306 |0. 028534 | 0. 090304 |0.159517 |12.6193|0. 805333
600 | 0.479598 | 0.273516 | 0.343660 |0. 176822 |0. 035442 | 0. 095130 |0, 157479 |13. 0721 |0. 785026
.550 | 0.490596 | 0. 277024 | 0.347790 |0. 178415 |0. 041366 | 0. 102538 |0. 154465 [13. 7751 |0. 766949
500 | 0.496534 | 0. 281367 | 0. 348022 |0. 181015 |0. 046732 | 0. 112882 |0. 150548 |14. 8385 0. 750017
.450 1 0. 498205 10. 286189 | 0. 344684 |0. 184382 |0. 052427 |0, 126925 |0. 145547 [16.4936 |0. 732588
400 0.497175 0.290724 |0.338511 |0. 188036 |0.060104 |0. 145760 |0. 138991 |19. 2453 0. 711985
375 0.496630 0.292374 | 0.334863 |0.189661 |0.065673 |0. 157513 [0. 134871 |21.36470. 699219
350 0.497072 0.293181 |0.331385 |0.190873 |0.073297 0.171146 '0.129986 |24. 3463 0. 683810
325 0.499886 0.292567 | 0.328851 |0. 191309 [0.084172 0.187093 0.124092 |28. 7461 0. 664641
300 0.507459 0.289830 |0.328627 |0.190483 [0.100137 0.205705 0.116885 |35.6612 0. 640219
275 0.524190 0.283750 0.333265 |0.187575 |0. 124527 0.227618 0.107933 |47.5127 0. 608500

-1¢€2-



-232-

892PE 0| 128 8FOT|SSEEF0 0| LTEE9E 0| 015629 0| HL1¥21 0| 128069 0| $98¥81 0| 9SEILT T | 08T 0
89089 0| L0S0 "6TL |88L8F0 0| €8L1SE 0| 02HEES 0| 66LTET 0| PTLETY 0| 965610 | £888€0 "1 | §8T 0
0%E065 0| LSTL 025 |SPBES0 0| 6291¥E 0| 26¥P9% 0| ZLSBET 0| 159955 '0| 296502 "0 | $L66ES "0 | 06T 0
SZ9TTH 0| 1302 "S6€ |FF98G0 0| 968TEE 0| 10660% 0| €59PHT 0| $18215 0| S86%12 0| L6€€98 °0 | G610
98 1E% 0| 0£21 "20€ [821£90 '0| 998225 "0 | 80659€ '0| S966%1 0| S¥98L¥% 0 | L26222 0| 801508 0 [ 002 0
18T6%F 0| 0919 '9%2 [29€L90 0| L5€¥1¢€ 0| ¥8E62E 0| 638FST 0| €€€TSH 0 | 9€€0€2 0 | SHFPSL 0 | 502 0
€8L59% 0| ¥¥H9 202 |SPETLO 0| LOP90E "0 | 128862 0| 2€265T "0 | 98€62F 0| 550LE2 "0 | 048512 0 | 0TZ *0
LLT18% 0| 16%2 69T |T115L0 0| €06862 0| 998222 0| 28T€9T 0| 91ST1¥ 0| 581652 0| SP2289 "0 | G120
02096 "0 | €519 #¥1 1124820 0| 665162 0| 915052 0| L1L99T '0| 028965 "0 | 012852 '0| S56%59 '0 | 022 0
LL¥60S 0 | 236 B2T |£60280 0 | 159482 0 | 8901€Z°0 | 02669T 0| 285¥8€ *0 | 861652 0| 26619 0 | 522 0
6972250 | 8FOE 60T [62€580°0 | 668LLZ '0 | 680512 0| 6522L1 0| 0THFLE "0 | 62852 0| 8152190 | 0€Z 0
SLEVES 0| 0969 96 |L9E880 0| LISTLZ 0| 86T66T 0| 862GLT 0| PL6GIE 0| 284292 "0 | L1656G 0 | S€2 0
L12S¥6°0|8T1°98 [292160 0| 122592 0| 268581 0| 6¥5LLT 0| 50885€ 0 | 161992 0| 185185 0 |02 0
S6£996°0 | 9¥ES 0L |1€9960 0 | 8¥SESZ 0 | $ISEYT 0| 89ETBT "0 | 606L¥€ "0 | 1292L2 '0| 2488550 [ 052 0
889585 '0| 2852 '65 |S8VT0T°0|€59252 0 | 9655H1 0| 0£€H8T '0| 22€0¥E 0| €6LLL2 0] 2561550 | 092 0
%6y 785 By %9y 7Sy Py Pey 72y Py S
(penumiuo ) IIT TAVL




-233-

¢P2122 0 00°€90GT| 8¢H610 0] 91€92P '0| 209269 "1 | P12L€80 0
12€892 O|L19°0%19 | 292620 0| 909L6€°0| 998122 1| 6£9%60 0
200€62 0[02€ €967 | 8PLECO 0| 66116€ 0| €PZFE6°0| 2L0901 0
€0ELTE 0898 6%9T | 196LE0 0| 6H12GLE 0| P16GFL "0 | LBISTIT 0
8 8 3 8 3 3
oxa wxl hxl o&a mx' w&

96,989 "1
6%92¢7 "1
$2.896 °0

IL¥86L°0

3
1

888921 °0| £€299%8 "2{ 091 °0
1L9¢%T1°0| TL1260 2199170
89L8ST 0| T€EHPP9°T1|0LT 'O
LPG2LT 0 LETGGE "T{SLT O
8 o)
Nx ﬁx m

(penurjuo) T1II A IIV.L




-234-

£€2969 '8 oawm.hv,owom¢.o 9%0%¥% "0 Mmmmwpo 6€G80 "0~ | 09L0G°0-|0%S92 "0 | 9919L '0-{5L2°0
9¢€9L9 9 omww.mw 1,965 °0 | 960LG°0 | L¥69L°0 | S9L€0°0 | ST180% '0-|9€LEY "0 | 1S5L9G°0-|00€ "0
296¢¥ ¢ 80¥¢€ "9¢|82¢89 0 | 10CT19°0 | €LL69°0 | ¥9$90°0 | €2¥SE€0-|T11€9% 0| €109¥% '0-}52¢€ ‘0
8e6PS ¥ P66G"12|{265GL "0 | 9,629 °0 | LEZEF 0 | LPOLO 0 | 8SSTE 0| S06SH "0 | 086LE 0-]0G¢E "0
L8698 "¢ 906¢ "81|L9628 0 | 88LE9 "0 | BIELS 0 | 9T1L0°0 | SP28Z '0-|LE6FF 0| P160E 0-|SLE O
6ESTE "¢ PP66 "GT|ST16L8 "0 | 2FCF9 "0 | LLBT1G°0 | L20L0°0 | OP1S2 0-|8G6EH 0| 1€2%2 '0-{00F 0
0¢€59% °¢ 8818 "2T{€CHLE "0 | 999%9 "0 | 9€02% "0 | 09990 °0 | 28061 °0-|6€€2% "0 | 1€211°0-/05% 0
62¥18 "1 6€8L OT|T9T¥0 "1 | 618%9°0 | TOTEE 0 | 2219070 | 9LBZT 0-jLICTIH 0| 056100 [00G°0
10€L2 "1 ¥90L¢€°6 |6%F80 T { 116%9°0 | ¥S99%2°0 | L0G50°0 | 22290 °0-|8101% 0| 16510 |08 "0
86¢€8L 0 GIICE '8 |8F60T 1 | 0€199°0 | 81€91°0 | 926%0°0 | 1821070 |S9LI¥ 0 | 06S1€ 0 |009°0
1LL62°0 LETZS "L |€1821°1 | 98L997°0 | $89L0°0 | 92L%0°0 | 1L€0T 0 [2LE¥P 0 | 6F€05°0 |0S9°0
9T€ST "0~ | 160€6°9 {02%ST T | H$21L9°0 | 28100 '0-| 896500 | $0€0Z 0 |€EH6H 0 | 1250L°0 |269°0
88906 "0~ | 99€2G9°9 |1€681°'1 | 6288970 | €5650 0~ L6PLO 0 |8F062°0 |69LG5 0 | $26L8°0 |02L 0
0€8L6 "0~ | 12LL6°S |25092 "1 | 0002L 0 | 28,2170~ I¥P21°0 [O09LI¥ 0 |SPBLY "0 | 96621 1 |0SL "0
289%Z "Z- | 8¢B00O ‘% |08099 1] 056¢8°0 | €0992°0-| 0221% 0 | S9L6L 0 |T110Z 1 |LEE28 T |008°0
mmx wwx wnxu wox mmx mvx wmx wmx wﬁx S
¥

,f STTVYODH.LNI “AI d1dV.L




TABLE | V (Continued)

W kg kog kag kyg kgg Y kg kgt T

0.260 | -0.99224| -0.09744 [ -0. 62122 | -0.32768 | 0.83928| 0.23554| 0.27669] 61.5985(10.4333
0.250 | -1.24208| -0.62238 | -0. 73654 | -0.67203 | 0.78667| -0.01667| 0.04919] 76.2899|12.2198
0.240 | -1.60025| -1.57473 | -0. 88609 | -1.29101 | 0.63478| -0.41250| -0.34409| 97.8813|14. 7925
0.235 | -1.82011] -2.28411 | -0.96652 | -1.74917 | 0.49349] -0.67241] -0.63307] 112.411 |16.5312
0.230 | -2.05011] -3.17046 | -1. 03602 | -2.31807 | 0.29184| -0.96100| -0. 99480] 130,005 |18.6803
0.225 | -2.26176| -4.22653 |-1.07349 | -2.98929 | 0.01739| -1.25128| -1.43093| 151.278 |17.5149
0.220 | -2.38762] -5.35266|-1.03694 | -3.69035 |-0.32957| -1.47211| -1.91281| 176.366 |24.7799
0.215 | -2.30869] -6.29492{ -0. 85775 | -4.24161 |-0.72009| -1.49127| -2.36091| 204. 793 |29. 0698
0.210 | -1. 78155 -6.39507 | -0. 40554 | -4.18317 |-1.04529| -1.02902] -2.56585| 234. 178 |34.5020
0.205 | -0.40380| -4.32953| 0.52070 | -2.59324 |-1.04281| 0.38624( -2.09993| 258.828 [41.2886
0.200 | 2.56844] 2.71191| 2.27089| 2.48213|-0.10046| 3.63146| -0.06083| 265.461 |49.5903
0.195 | 8.43582] 20.3372 | 5.41901 | 14.9446 | 3.09209| 10.2297 | 5.33606] 225. 751 |59.3026
0.190 | 19.5998 | 59.9006 [10.9809 | 42.7220 |11.2879 | 22.9167 | 17.6500 | 76.6481]69.5039
0.185 | 41.6243 [148.362 |21.2915 |104.689 |[31.0677 | 47.8484 |45.1956 |-351.243 [75.9843
0.180 | 91.3916 [371.816 |42.9807 |260.514 |84.3043 |103.892 114x157 -1608. 21 |57. 2655
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TABLE V. (CONTINUED)

k -k -k

w k k k k -k k 7f 8f 9tf

c 1£f 21f 3ff 4ff 5ff 6ff

0.260| 30.3616 1.97495| 16.2611 1.14684 18.7988 | -2.75618| 3.42166[10976.6]| 42.6144
0.250| 39.1290 2.37166| 20.8927 1.47785 24.5713 | -3.60655| 3,80765|16560.2| 53.3410
0.240| 52.2727 3.05226] 27.8334 2. 05964 33.2314 | -4.24375| 4.24375(26534.9| 64. 6114
0.235| 61.4340 3.67993| 32.6687 2.56914 39.2054 | -5.67372| 4.43325|34536. 1| 68. 1859
0.230| 73.0964| 4.78639| 38.8226 3.40559]  46.6536 | -6.57596| 4.51352|45852. 9| 66.9308
0.225| 88.4657 6.99925| 46.9279| 4.95734 56. 0695 | -7.40169| 4.30506|62404. 1| 55. 0931
0.220| 109.426 11.7934 | 57.9723 8. 12849 67.9664 | -7.64491| 3.37605|87307.5| 20. 3563
0.215] 139.525 22.9032 | 73.7976| 15.2288 '82.8643 | -5.86745| 0.66116|126064. |-63.2909
0.210| 186.152 49.9467 | 98.2334| 32.2672 101. 007 1.77249|-5.55671[189070. |-256. 536

0.205| 265.585 119.310 139.574 75.9974 120.813 26.0560 |-25.6412{296221. {-692.002

0.200| 418.271 | 307.482 | 218.241 | 195.763 134.177 | 97.9584 |-77.8302]489192. |-1675. 85
0.195| 754.837 | 854.944 | 389.460 | 549.271 107.780 |[312.818 |-229.811[861055. |-3919. 72
0.190|1624.03 [2618. 46 825. 883 |1707.31 -96.9325 {1000.85 |-719.794(1638767.|-9213. 32
0.185(4420.33 9409.12 2209.44 [6243.20 -1161.79 |3589.32 [-2612.16(3441062.{-22644.5

0.180{17156.5 (45223.2 8426. 80 |30523. 4 -7697. 47 16754. 4 [|-12626. 918291290./-55798. 7
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Fig. 3a Distribution of Amplitude and Phase of fo atw_ =0. 692
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Fig. 3b Distribution of Amplitude and Phase of f'oat w_ = 0. 692
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Fig. 3c Distribution of Amplitude and Phase of f, atw_ = 0. 40
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Fig. 3d Distribution of Amplitude and Phase of f(') a w_ =0.40



-244-

100° -
6+, y*
O l 2 3 4 S
Oo / — l —
-lI00° -
0.8

£,
0.6

04

0.2

Fig. 3e Distribution of Amplitude and Phase of fo atw_ = 0. 30
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Fig. 3f Distribution of Amplitude and Phase of fb at w, = 0. 30
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Fig. 3g Distribution of Amplitude and Phase of fyatw_ = 0. 20
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Fig. 3h Distribution of Amplitude and Phase of f‘o at w_ = 0. 20
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