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ABSTRACT

The flow of granular materials has been investigated theoretically
using the Direct Simulation Monte Carlo (DSMC) method for rarefied gas
fiows implemented on the Caltech concurrent 64-node Cosmic Cube com-
puter. A fundamental understanding of the behavior of a heavily loaded
gas under conditions for which collisions among the solid particles
suspended in the gas are frequent is very important for a variety of
problems, e.g., grain explosions and the performance of metallized
solid-propellant rockets. At one extreme of particulate flow (granular
material flow), the effect of the interstitial fluid is negligible. 1In
particular, the numerical method has been applied to the problem of

sedimentation and channel flow.

Bird's method has been applied to granular material flows by using
a hard, rough-sphere particle model and introducing restitution and
slip coéfficients for particle-particie and particle-boundary colli-
sions, respectively. In the DSMC method, physical space is divided
into many cells, each containing several simulated particles. The dis-
tance between particles is much greater than the particle diameter.
Using the concurrent computer, cells are assigned singly or in groups
to individual processors (nodes). Calculations of particle-particle
collisions are carried out locally by each node and information is com-
municated between adjacent nodes. Using the concurrent computer has
enabled powerful computational ability to be brought to bear on the

DSMC calculation.

For a gas sedimentation calculation simulating the gravitational
collapse of a uniform atmosphere, significant thermal and wave effects
are observed. For flow in a channel at Mach number 2.76 and Reynolds
number 32.6, differences are observed between the behavior of granular

material flow and gas flow. For both cases significant "slip" at the
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wall is observed. For the filow of granular material, the boundary layer

is thin and the velocity reduction near the wall is small.
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Chapter 1
INTRODUCTION

A fundamental understanding of the behavior of a heavily loaded
gas, under conditions for which collisions among the solid particles
suspended in the gas are frequent, is very important for a variety of
problems, e.g., dust and grain explosions and the performance of metal-
lized solid-propellant rockets. 1In such flows, both interstitial fluid
effects, e.g., viscous drag and particle-wake interactions, and
particle-particle collisions, must be treated. However, at one extreme
of particulate flow, the effect of the interstitial fluid is negligible
and momentum transfer occurs mainly through particle-particle colli-
sions. A great deal of research has been carried out in the study of
granular flows (e.g., Campbell and Brennen, 1985 and Savage and Sayed,
1984). For a complete and current review of the topic, the reader is
referred to the paper by Savage. In the following, a granular material
flow will be defined as one in which the particle-fluid interaction is
negligible. Under this approximation, the model for a granular material
is analogous to the molecular model of a gas in which a gas is treated
as an assembly of solid particles. Although these are two completely
different problems, one from molecu}ar gasdynamics and the other from
granular material flows, in some cases, e.g., rarefied flows, the same
computational method may be used. Furthermore, even in the case of a
two-phase flow such as a plume of a metalized solid-propellant rocket
expanding into a vacuum, where both particle-particle collisions and
the effect of the interstitial gas on the particles must be taken into
account, the entire flow can be regarded as an assembly of different
types of particles: small particles representing gas molecules and very
large particles corresponding to particles of oxidized metals. Inter-
stitial fluid effects may be modeled in terms of the forces exerted by
the small particles on the larger particles. These flows are governed
by the Boltzmann equation, derived in the context of molecular gas

dynamics for a dilute gas. The mathematical difficulties associated



with the full Boltzmann equation generally preclude a direct approach

that would lead to an exact analytical solution.

A conventional numerical approach to solving the Boltzmann equa-
tion would be to construct a finite-difference formulation. The distri-
bution function, which is the only dependent variable, becomes six-
dimensional in two-dimensional flows when particle spin is incliuded,
thus requiring an eight-dimensional array of points in phase space. In
this case the number of operations required to calculate the term
representing collisions is very large. Therefore, a direct finite-
difference approach would require a prohibitive amount of computer time
and storage capacity. In an alternative deterministic approach, the
exact trajectory of each of the particles is calculated, taking into
account some collision probability. For the same reasons, this method
can be applied practically only to flows that contain a small number of
particles. On the other hand, the computing requirement, especially
the computing task for collisions, becomes manageable if probabilistic
rather than deterministic procedures are adopted for the computation of
collisions. This 1leads to the Direct Simulation Monte Carlo (DSMC)
method, which was originally formulated by Graeme Bird in the 1960's to

investigate low-density, high-speed fluid flows.

In the present work, the DSMC method has beeﬁ applied to granular
material flows where particle-particle collisions are assumed to be
inelastic. Each of the hard, rough spherical particles has three com-
ponents of translational velocity and three components of spin velo-
city. The method includes the introduction of restitution and non-slip
coefficients for both particle-particle and particle-wall collisions.
As a preliminary investigation, the DSMC method was applied to the
one-dimensional, nonsteady gravitational collapse of an atmosphere and
the result was compared to the analytical solution. Also, energy dissi-
pation and transfer between translation and spin during a collision was

investigated.



In order to extend the method to the solution of, e.g., two-phase
or three-dimensional low-Reynolds-number, high-speed continuum flows,
considerable ingenuity is required to bring greater computer power to
bear efficiently. Even for the relatively simple problem of sedimenta-
tion, high-speed computers are required to obtain good statistical
solutions. The DSMC method was implemented on the concurrent Cosmic
Cube computer developed at Caltech by C. L. Seitz. The Cosmic Cube at
Caltech runs in connection with a conventional host computer, e.g., a
VAX, which has I/0 capability in contrast with the individual nodes of
the concurrent machine. Benchmark tests consistently show that a sin-
gle processor (node) of the Cosmic Cube running at a clock rate of 5§
MHz runs at 1/6th the speed of the same program compiled and run on a
VAX11/780. Thus the 64-node Cosmic Cube should be expected to run at
best about 10 times faster than the VAX11/780.

In the DSMC method, physical space is divided into many cells,
each containing several particles. In a conventional (i.e., sequential)
computer architecture, the collision calculations proceed from cell to
cell, even though the calculations for each cell could, in principle,
be done separately and concurrently. The subsequent motion of each of
the particles is also treated separately. In the concurrent formulation
of the method, cells are assigned singly or in groups to individual
processors (nodes) of the Cosmic Cube. Particles that move physically
from one cell to another are accounted, for using the message-sending
facility of the computer. For an efficient formulation for the Cosmic
Cube, it is important to minimize the time that nodes are idle or
engaged in work that they would not do in conventional computations. In
other words, it is important that the time used to send and receive
messages between nodes is small compared with the computation time. It
is also important for the work load to be evenly distributed between

nodes.



In the following report, the framework of the DSMC method is dis-
cussed including the formulation of the method for the Cosmic Cube. As
a typical problem of the flow of granular materials, a two-dimensional
channel flow problem has been investigated using the Cosmic Cube. The
flow of a granular material in a channel is compared to the channel
flow of a gas (also calculated by the Cosmic Cube). Also, the two-
dimensional sedimentation of gas in a channel has been investigated as
the extension of the one-dimensional problem which was done in the
preliminary investigation during the first half of the present work.
Chapter 2 describes the principal idea behind the DSMC method and the
mathematical framework used to calculate the granular material flows,
i.e., the motion of particles following collisions. Also, this chapter
describes the structure of the program implemented on a sequential cal-
culation. Chapter 3 describes the results of the preliminary investiga-
tions including the transfer of spin/translational energy due to the
particle-particle collisions and the one-dimensional sedimentation cal-
culationm. In the sedimentation calculation, time-evolved profiles of
density and temperature are presented for a variety of material proper-
ties, e;g., particle diameter and mass. Chapter 4 describes a formula-
tion of the DSMC method for the Cosmic Cube and presents a computa-
tional flowchart of a typical problem. Results and discussions of a
two-dimensional channel flow calculation obtained using the Cosmic Cube
are then given in Chapter 5. A summary of the main results of the
present work and the conclusion are given in Chapter 6. Listings of
the computer programs of the DSMC method for both the Cosmic Cube and

the host processor are given in an appendix.



Chapter 2
DIRECT SIMULATION MONTE CARLO METHOD FOR GRANULAR MATERIAL FLOWS

2.1. Brief Description of the DSMC method.

This method is a computational technique for modeling a real gas
at a molecular level with a sample of several thousand simulated
molecules. The simulated flow field is divided into a network of such
small cells that the state in each cell can be regarded as spatially
almost uniform. The extent of each cell is usually taken to be of
order A, the mean-free path. When the gas is initially in thermo-
dynamic equilibrium, the simulated molecules' thermal velocity com-
ponents are assigned by sampling randomly from a Maxwellian distribu-
tion corresponding to the initial temperature. Two position and six
velocity coordinates for each simulated molecule are stored. The boun-
daries are instantaneously inserted into the stream and the subsequent
motion of the molecules is computed in the flow field within the
imposed boundaries. The molecular paths between collisions are com-
puted exactly but collisions are treated statistically. The calculation
procedure consists of holding all simulated molecules motionless for a
time interval Atm, small compared to the mean collision time per
molecule, while collisions are computed everywhere in the flow field.
Next the simulated molecules are allowed to move with their new veloci-
ties for the time interval At and are then held motionless in their
new positions while another collision cycle takes place. This principle
of uncoupling collisions from translational motion is the main charac-
teristic of this method. Collisions are computed by statistical sam-

pling as follows:

1) Pairs of simulated molecules are selected at random from a
particular cell and retained for a collision with proba-

bility proportional to their relative velocity.



2) For pairs of simulated molecules which have been accepted
for collision, a line of impact and an azimuthal angle in
the center-of-mass reference frame are defined by select-
ing the magnitude and direction of an impact vector from

appropriate distributions.

3) At each collision, a time counter for the cell, which was
set as a random fraction of Atm in the initial state is

advanced by the amount

fuers

1121
—
| my

(2.1)
where nd2 = collision cross section, n = local number den-
sity, Cr = relative speed of the pair, and Nm = number of

molecules in the cell.

4) When the time counters for all cells have advanced through

Atm, the representative set of collisions for the time

interval is complete.

This sampling scheme produces a collision frequency for pairs of
molecules proportional to the product of the local number density and
the relative velocity of the pair. Molecules move an average distance
between collisions equal to the local mean-free path. It has been argued
(Bird, 1963)»that this collision process produces the correct collision
frequency and mean-free path. Along any particle path, collisions can
occur only at intervals that are integral multiples of Atc. Since Atc is
small compared with the mean collision time, the resulting distortion of
the path is small. More recently (Deshpande, 1977), refinements of the
method have been proposed, but, for simplicity, the original formulation

is retained here.



All macroscopic quantities of interest, e.g., number density, tem-
perature associated with randomly fluctuating molecular velocities, flow
velocity, and pressure, are obtained as averages of the randomly fluc-
tuating molecular states within each cell. The statistics for all the
calculated quantities can be improved by repeating the calculation many

times and taking ensemble averages.

The direct simulation procedure is equivalent to a numerical solu-
tion of the Boltzmann equation. The Boltzmann equation for hard-sphere

molecules may be written as the following:

) -3 -3 IR DL
sf(nf) +C ar(nf) + F ac(nf) = nd” fn(f f1 ffl)crdcl

00

T (2.2)

where nf, c, Cr’ F, and d, are the number density distribution function,
local average velocity, magnitude of the relative velocity, body force,
and effective molecular diameter, respectively, and primes refer to
post-collision values. Implicit in the derivation of the Boltzmann
equation (and therefore in the corresponding direct simulation method)

is the assumption that the gas is dilute (Bird, 1976).

This equation can also be applied to dilute granular media. The
left-hand side of the equation repréesents the process of following the
paths of the individual particles. The collision integral on the right-
hand side represents both the sampling of collision partners using the
collision probability appropriate to the particular particle model, and
the calculation of collisions at a rate consistent with the local colli-

sion frequency.

To extend the application of this method to granular material
flows, inelastic collisions must be taken into account in the simula-
tion. This was done by introducing restitution coefficients and slip
coefficients in the collisions of rough-sphere particles, each of which

has three components of translational velocity and three components of



angular velocity. The procedure for calculating the result of a

particle-particle collision will now be discussed in more detail.

2.2. Calculation of a Particle-Particle Collision.

Pairs of simulated particles are successively selected at random
from a cell and for each pair the probability of collision is evaluated
such that the probability is proportional to the relative speed of the
two particles. If a collision takes place, the relative location of the
two particles is determined and the post-collision velocity of each par-

ticle is calculated.

Consider the collision between two simulated particles of the same
type, denoted by L and M, in the center-of-mass coordinate system. The
vector k connecting their centers at the moment of impact is determined
by a miss distance impact parameter vector b, which has a magnitude b
and azimuthal angle impact parameter € (see Figure 2.1). The vector 1
is in the direction of the relative velocity vector C. and joins the
center of M to the plane through the center of L normal to the direction

of Cr and 1.

The parameters b and € are selected in such a manner that b is dis-
tributed between 0 and d, the simulated particle's diameter, with proba-
bility proportional to b itself, while € is uniformly distributed

between 0 and 2n. Thus b and € can be calculated as follows by using

successive random fractions R, that are uniformly distributed between 0

and 1.
b = drl/2 (2.3)
€ = 2an (2.4)

The simulated particles approach each other with a relative velo-

city with components U, along the vector k and V0 and WO tangential to

0
k. The particles L and M have three components of angular velocity,



w , W , W , and R , W , respectively. The collision
Leo! Lyo' Lzo Meo' Myo' My
results in an impulse J inclined at an angle 6 with respect to k and an

angle ¢ with respect to m normal to k (see Figure 2.1).

The equations governing the collision are:

U = U, - Jcos , (2.5)
V = V0 - Jsinfcos¢ , (2.6)
W =W, - Jsinfsing , (2.7)
Ire = Irw
L '
x on (2.8)
rw = Irw ,
M L (2.9)
er _ er _ J51niflng , (2.10)
y yo B )
ro. = ro _ dsinfsing
M M 2 (2.11)
v yo B

. Jsinf
re - re + Jsinficos¢

z LZo B2 (2.12)

_ Jsinfcose
Ty = rwy 2 ’ (2.13)

z z0 B
where B is the ratio of the radius of gyration of the particle to the
particle radius (B2 = 0.4, the value for a uniform sphere, is used

throughout the simulation). U, V, W are the post-collision relative

velocity components and wLx' W sz, and QMX, Wy wMz are the post-

collision angular velocity components for the particles L and M, respec-

tively.
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The effect of the elasticity and the roughness of the particles
enter into the collision process through the introduction of two addi-
tional coefficients: the coefficient of restitution ep, and the coeffi-
cient of "non-slip” €_, respectively. The effect of €, may be written

as:

U= —epuo . (2.14)

The effect of es in the y and z directions may be written as:

er *roy - 2V = es(er + Ty

- 2V0) , and
A z z0 z0

{(2.15)

er Ty o+ 2W = es(er + Twy

+ ZWO)
y v yo y0

(2.16)

The term on the right-hand side of Equation (2.15) corresponds to the
y-component of relative velocity at the point of contact on impact, and
the left-hand side corresponds to the y-component of relative velocity
upon departure. Similarly Equation (2.16) corresponds to the z-
components of relative velocity at impact and upon departure. Equations
(2.5) - (2.16) are twelve equations for the twelve unknowns: U, V, W,

w (&)

14

. L@ 9 @y 0 Oy Oy oo J, 8, and ¢. After some algebra the solu-
y z X v z

tion for the velocity components may be written as follows:

U= ey (2.17)
V=yV B - Gs)f ]
= - ————loy - r(w + ) , .
0 201 + 8% { 0 Lo “MZQ } (2.18)
21 - ), :
W=W 2W,. + r{w + oW ) ,
0" (1 + g2 { 0 Lyo Mo } (2.19)



W = W s
Ly Lo (2.20)
W, = W ’
M Moo (2.21)
(1 - €_)
S r ]
w = W 2W,. + r(w + W, )i ,
L L i .
v yo  2r(1 + /32)1L 0 Lyo Myo j‘ (2.22)
(1 - €g) [ \
) = w - 2W. + r{w + W )i ,
M M 0 L M .
v yo  2r(1 + 182)|l yo yo Jl (2.23)
(1 - €g) r .
w = + T2V, - r{w + ) ,
Lz LzO 2r(1 + Bz){ 0 Lzo wMzO } (2.24)
(1 - €g) I ]
Wy = w g mm— Y . - r{w oWy )
My My o2r(1 s 32){ 0 Lo Mo J‘ (2.25)

2.3. Structure and Summary of the Program.

This section describes the structure of the sequential program code
of the DSMC method for two-dimensional granular material fiows. The
modification of the program for implementation on the concurrent Cosmic

Cube will be discussed in Chapter 4.

The program consists of a main program and many subprograms. Fig-
ure 2.2 shows the flow chart. The MAIN program coordinates the various
subprograms that calculate the motion and collisions of particles. A

brief description of the subprograms is given as follows:

1) GETDAT reads the data file containing the input data,

e.g., the calculation time interval AT, the width and
height of the simulated flow field, the number of cells
in each direction, the initial number of simulated parti-
cles in each cell, and the initial temperature. The sub-
program calculates several parameters which are needed,

e.g., the cell height and width and the collision cross
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section. The subprogram then divides the simulated flow
field into the specified number of cells and calculates

the xy-coordinates for each cell.

2) INITIA sets the initial states of all the simulated par-

ticles. Six components of thermal velocity are assigned
to each particle by sampling randomly from the Maxwell-
Boltzmann distribution corresponding to the initial tem-
perature. Position coordinates are associated with each
particle as well as an index label that is used by the
collision routine. This subprogram also sets the initial

cell time as a random fraction of AT.

3) MOVE moves all particles through a distance appropriate
to AT and computes the results of collisions between par-

ticles and boundaries.

4) RESET resets all particles' indices after the MOVE rou-

tine.

5) COLL selects representative pairs of particles and evalu-
ates the possibility of a collision for each pair. 1If a
collision occurs, the post;collision particle velocities
are calculated and the cell time is advanced by an
appropriate amount. This procedure continues until the

cell time exceeds AT.

6) After a specified number of repetitions of the routines
MOVE-RESET-COLL, the macroscopic flow properties are cal-

culated by SAMPLE and the results are printed out by
PRINT.
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7}  After the program runs for a specified number of tinme
steps, the calculation is restarted from INITIA with a
different initial random number. After the specified
number of runs, macroscopic properties are averaged for
all runs by ACUM and the results are printed out by PR-
ACUM.

The detailed use of the particle index and cell time is described more

fully by Bird (1976).

2.4. Normalization of parameters used in the following sections.
The normalization method for a flow consisting of a single type of
particle is given by Bird (1976). Distances are normalized by the mean-

free path length of the undisturbed initial state, AO, whose value is

regarded as effectively unity within the program. The vertical extent

of the sedimentation field or the height of the channel flow, "ym", and

cell size X." and "y." are, therefore, stated in terms of the ratio of
these quantities to AO. Similarly, the most probable thermal speed in

the undisturbed initial state, is regarded as having unit value and

c
mo’
is used to normalize the stream velocity 'u' and 'v' in the channel flow

in the x and y directions, respectively. The temperature in the undis-

turbed state, TO’ and particle mass are also regarded as having unit

value. The time Atm is normaiized by Ao/cmo.
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Chapter 3
PRELIMINARY INVESTIGATION

In order to do a quick verification of the DSMC mehod, the col-
lapse of an initially uniform gas atmosphere under the influence of
gravity was simulated in a one-dimensional formulation and compared
with the analytical solution. The sedimentation of a mixture of two
types of particles (with different masses and diameters) was also con-
sidered. By restricting the problem to one dimension it is possible to
obtain an equilibrium analytical (continuum) solution. The continuum
solution, appropriate to the case in which molecule-molecule collisions
are perfectly elastic and rough and molecule-boundary collisions are
perfectly elastic with slip, is given in Appendix B. The exact
equilibrium solution is compared with the results from the DSMC calcu-
lation for a variety of initial conditions. The results of the numeri-
cal simulation approached the steady-state solution after a time on the

order of 100 collision times.

Another preliminary investigation concerns the energy dissipation

and energy transfer between translation and spin during collisions.

3.1. One-dimensional sedimentation.

The behavior of a cloud of particles with no interstitial fluid
{({or of molecules with no ether) is simulated. Initially, the particles
have a specified number density and temperature and are in equilibrium
(with zero gravity). The typical distance between particles is much

greater than their diameter.

At time equal to zero, the particles are released in the 10 mean-
free path tall vertical column and the normalized gravity is set to
0.1. Collisions between particies are assumed to be perfectly elastic
and perfectly rough whereas particle-boundary collisions are perfectly

elastic with perfect slip. Figures 3.1(a) and 3.1(b) show the temporai
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and spatial evolution of the number density and temperature fields,
respectively, for a flow with a single type of particle. The solid
heavy line represents the exact equilibrium solution (see Appendix B).
At early times the number density profile (Figure 3.1(a)) approaches,
then actually overshoots, the equilibrium solution (after about 10 col-
lision times). The density profile recovers and after 100 cellision
times the profile is indistinguishable from the equilibrium solution
except for small statistical fluctuations. The overshoot behavior, or
"bounce"” exhibited by the number density profile as it equilibrates
toward a steady-state solution suggests the propagation of rarefaction

and condensation density waves within the flow field. Figure 3.1(b)

shows that the excursion of the temperature field (which is propor-
tional to the thermal energy) from the initially uniform profile is
quite pronounced after 10 collision times. As the particles fall under
the influence of gravity their potential energy is partially converted
to kinetic, or thermal energy which in turn is transferred to other
particles through collisions. After 10 collision times, the tempera-
ture profile is skewed with the more energetic particles accumulating
near the bottom of the flow field. The thermal gradients then begin to
decrease and after 50 collision times the temperature profile is close
to the uniform equilibrium solution. Note that the final equilibrium
thermal energy level is higher than the initial level due to the addi-
tion of the gravitational potential energy (when gravity is "turned

on") which is partially converted to thermal energy.

Figures 3.2 - 3.4 show the evoiution of the number density pro-
files during the gravitational collapse of an atmosphere consisting of
two different types of particles. Three different initial conditions
were used to study the effect of varying the mass and diameter ratios.
Figure 3.2 shows that for particles of equal mass and different diame-
ter the number density profiles rapidly approach the exact equilibrium
solution. The profiles again overshoot the steady-state solution at
early times a small amount, as observed earlier (Figure 3.1(a)) during

the collapse of an atmosphere consisting of identical particles.
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Figures 3.3 and 3.4 show results for which the masses of the two types
of particles differ by a factor of ten. The density profile for the
heavier particles rapidly approaches the equilibrium solution. In con-
trast, the profile for the smaller and lighter (or interstitial) parti-
cles diverges from the exact solution at early times. At first the
lighter particles preferentially settle to the bottom of the flow
field; then after some relaxation time (on the order of 50 collision
times), the particles "recondense" in the upper part of the flow field
and the profile approximates the equilibrium solution. Figure 3.4
shows the effect of changing the ratio of the particle diameters. The
profiles in Figures 3.3 and 3.4 show a similar behavior indicating that
the mass ratio of the particles is the dominant parameter in determin-
ing the relaxation time for the number density profile to approach the

equilibrium solution.

3.2. Energy Dissipation and Transfer During a Collision.

As shown in the previous section, the collision model includes the
specification of two coefficients, ep and €g
properties. Gp ranges between 0 and 1; O for perfectly inelastic and 1

which are material

for perfectly elastic. €, may range between -1 and 1; -1 for perfectly
rough (rotationally elastic), 0 for fully rough, and 1 for perfect slip
{rotationally inelastic). While at low temperatures molecules can be
modeled as perfectly elastic and perfectly rough, granular materials
are usually both inelastic and rough to some degree. In the simulations
of granular material flows, values of ep = 0.6 and €y = ¢ {correspond-
ing to the values for polystyrene beads, see C. S. Campbell, 1982) were
chosen as typical material values. Actually, ep is not a constant but
varies with impact velocity as well as other parameters and es may also

vary somewhat.

The statement that the granular material is inelastic and fully
rough implies that during a collision the surface friction is large
enough to bring the relative tangential velocity between the particles

to zero. The statement that the molecules are perfectly elastic and
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perfectly rough is to be interpreted as follows. When two molecules

collide, the points which come into contact will not, in general, pos-
sess the same velocity. The two spheres are assumed to grip each other
without slipping. Initially, each sphere is strained by the other;
then the strain energy is reconverted into translational and rotational
kinetic energy with no dissipation. The net effect is that the rela-
tive velocity of the spheres at their point of contact is reversed by

the elastic impact.

Figures 3.5 and 3.6(a) - 3.6(d) show results using the DSMC method
that illustrate the variation of energy dissipation and
translational/rotational energy transfer due to collisions as a func-
tion of Gp and €g- In each case the fluid was initially at rest and in
an equilibrium state. The total energy is initially equipartitioned
between the translational and rotational energy components. The
velocity fluctuations are prescribed according to the Maxwell-Boltzmann
velocity distribution. As shown in Figure 3.5, for the special case
where a collision is perfectly elastic (ep = 1) with perfect slip (es =
1), or perfectly elastic and perfectly rough (es = -1}, the total
energy is conserved. Both inelastic collisions and collisions involv-
ing fully rough particles result in energy dissipation. Figures 3.6(a)
- 3.6(d) show the details of the conversion of energy between the
translational and rotational components. For collisions with perfect
slip, the rotational energy, of course, remains unchanged {(see Figure
3.6(a)). For inelastic collisions with inelastic restitution and elas-
tic spin coefficients (see Figure 3.6(b)), the translational energy
component initially decays most rapidly. After about one collision the
rotational energy also decays, as it is converted into translational
energy, and an equipartitioned energy state is approached. For the
reverse case of elastic restitution and inelastic spin coefficients
{(see Figure 3.6(c)), the translational energy and the spin energy both

begin to decay immediately.
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Chapter 4
CONCURRENT FORMULATION FOR THE COSMIC CUBE

This chapter contains a brief description of the structure and
operation of the Caltech Cosmic Cube computer including a summary of
some of the important terms and conventions used for sending/receiving
messages. The formulation of the DSMC method for the Cosmic Cube will
be discussed in some detail. Results generated using the concurrent
computer will be discussed in Chapter 5 and compared with the

corresponding results obtained with a sequential computer.

4.1. Description of the Caltech Cosmic Cube.
At present, software applications written for the Cosmic Cube must

be in the programming language C. The C Programmer's Guide to the

COSMIC CUBE (Su et al., 1985) describes the details of C-programming
for the Cosmic Cube as well as the structure of the hardware. The
Cosmic Cube is a collection of N=2" (n = cube dimension) relatively
small computers that operate concurrently and communicate by sending
messages between adjacent computers. There is no shared memory; each
computer accesses its own dedicated memory. The computers, called
nodes, are numbered 0, 1, . . ., N-1. Cosmic Cube nodes are connected
by bidirectional communication channels that are structured as a binary
n~cube. The two machines currently operated by the Caltech Computer
Science Department are a 3-cube (8 nodes) and a 6-cube (64 nodes). The
6-cube machine was used in the present work. Another computer (in par-
ticular, a DEC VAX) called the Cube Host communicates with the Cosmic
Cube through a communication channel connected with node 0. Each node
has 128 kbytes of primary storage, and uses an Intel 8086 microproces-
sor, 8087 floating-point arithmetic coprocessor, and 6 bidirectional
channels to communicate with adjacent nodes. Each node also includes
some read-only memory used for storing initialization routines. Pro-
gramming the host computer and the Cosmic Cube is facilitated with the

use of several pre-programmed functions. Two fundamental functions,
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send, and recv are used for sending and receiving messages, respec-
tively (see the programming manual, Su et al., 1985, for a more com-

plete description}.

Although benchmark tests indicate that the 64-node Cosmic Cube
should be expected to run at best about 10 times faster than a
VAX11/780 computer, the actual speed advantage of the concurrent com-

puter is limited by

idle time due to imperfect load balancing,

frs

2) waiting time needed for communication between nodes, and

3) processor time dedicated to processing and forwarding messages

between the host computer and the Cosmic Cube.

4.2. Implementation of the DSMC Method.

In the conventional sequential architecture described in Chapter
3, the collision calculations proceed cell by cell, although in princi-
ple the collisions and subsequent motion of the particles can be calcu-
lated in each cell separately and concurrently. Therefore, to effi-
ciently calculate collisions it is advantageous to use a number of
individual computers operating simultaneously. Hence the DSMC method
is an ideal candidate for implementation on the Cosmic Cube. In the
concurrent formulation of the method, cells are assigned singiy or in
groups to individual processors (nodes) of the Cosmic Cube. Particles
that move from the domain of one node to another are accounted for by
communicating the relevant information between the nodes. To implement
the DSMC method on the Cosmic Cube much of the sequential computer code
may be used, with the addition of several routines that involve com-
munication between nodes and between node 0 and the host computer. The
following sections describe the structure of the program that imple-
ments the DSMC method on the Cosmic Cube as well as the details of the

modification of each subprogram. Compiete program listings are given
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in Appendix €. Each node of the Cosmic Cube is loaded with the identi-
cal program and runs separately and concurrently. Though the program
is designed so that rather loose synchronization of the nodes can be
employed, in the present implementation lock-step synchronization is

enforced by waiting for acknowledgement of every send and receive call.

4.2.1. Assignment of Nodes. The physical space of the simulated

flow field is divided into a network of rectangular subregions. Each
of the subregions is further subdivided into a number of rectangular
cells, each of which contains several particles. If the simulated flow
field is assumed to be two-dimensional, each subregion is surrounded by
eight adjacent subregions in general. Each node of the Cosmic Cube

calculates the motion of particles within one subregion.

During each time step, AT, the routine MQOVE-GLOB calculates the
distance that each particle moves. The subregions are large enough
that the majority of particles remain within the same subregion (even
within the same cell) in one time step. However, a small number of
particles move from one subregion (or node) to another, and the major-
ity of these particles move to an adjacent subregion. The particle
velocities are distributed according to the Maxwell-Boltzmann distribu-
tion and a particle rarely has a velocity high enough to travel past an

adjacent subregion in one time step.

The entire simulated flow field is divided into 64 identical
subregions typically consisting of 8 rows and 8 columns. Each subre-
gion is further divided into a number (typically 25) of equally sized
cells. Each node is assigned a binary identification (ID) number which
is used to label the nodes for communication purposes. The physical
computer architecture dictates that the shortest communication channels
are between nodes whose ID numbers differ by only a single bit (e.g.,
node 6 = 0110 and node 14 = 1110). Since the majority of messages are
passed between a node and its immediate neighbors, the nodes are laid

out as shown in Figure 4.1. For each node or subregion, the 4 closest
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subregions correspond to nodes whose ID numbers differ by 2 n = 1, 2,
(i.e., 1 bit). The other 4 adjacent nodes have ID numbers that
differ by 2 bits. This layout minimizes the communication time between

nodes.

4.2.2. Assignment of Particles. In the sequential program, the

subprogram INITIA creates all the simulated particles in all the cells
for the given initial conditions, i.e., initial temperature and number
density. The same subprogram is used with the concurrent Cosmic Cube
to assign simulated particles to all the cells in each node. 1Initially
the macroscopic number density is uniform throughout the flow field so
that each node has the same number of particles. The particles' velo-
cities follow the Maxwell-Boltzmann velocity distribution correspond-
ing to the initial temperature. Initial data are read in by the cube
host computer and subsequently transmitted to each of the nodes. In a
channel flow problem subprogram FLOW is used to enter new particles
from the left side with a specified number, temperature and stream

velocity.

4.2.3. Communication between Nodes. The most important messages

that are sent between nodes are those regarding particles that move
from one node to another. The subprogram MOVE-GLOB that calculates the
motion of particles must be modified to allow for internode particle
movement. MOVE-GLOB also discards particles which go out of the simu-
lated field from the right side. Figure 4.2 shows the typical motion
of several simulated particles that occurs after collisions have been
calculated. When a particle moves from one node to another, all the
information about the particle which will be required in the next cal-
culation in the receiving node must be relayed as a message. This is
equivalent to physically sending the particle from one subregion to
another. The messages consist of the new xy-coordinates and 6 velocity
components of the particle. Also, some miscellaneous information that
is used in subsequent calculations is sent and will be described in a

program listing in the Appendix.
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4.2.4. Restricted Particle Movement. After the movement of parti-

cles in one time step, the majority of particles either remain in the
same node or move to an adjacent node. However, there is a small but
finite probability that a particle will have a sufficient velocity to
move further away than an adjacent node. This leads to a much more
complicated message-sending procedure and a slower computation speed.
if the node subregion is sufficiently large and the time step Atm is
sufficiently small, the number of such particles can be negligible. 1In
the present program, the subprogram MOVE-GLOB restricts the maximum
distance a particle can move in one time step to the width of one node
subregion. Artificially restricting the movement of a smail number of
particles introduces a source of error to the simulation. The number
of particles that are affected by this procedure depends on the width
of the node subregion. The time step Atm is chosen to be 1/5 of colli-
sion time. It was found that the error that is introduced is negligi-
ble if the node width is taken to be larger than about one mean-free
path. For a typical case with 16000 particles, in which T = 1.0 and
the fluid is at rest, no particle is affected by this procedure when
the node width is taken to be one mean-free path or longer. Therefore,
in the present investigation of the flow in channel, the node width is
chosen to be two mean-free paths long for x-direction and one for y-
direction. The number of cells per node is chosen to be 25 (limited to
be less thanv25 because of memory capacity). Then the cell width is
smaller than one mean-free path to ensure the validity of the DSMC

method.

4.2.5. Collisions. 1In the sequential program, the subprogram COLL
calculates collisions from one cell to the next. With the Cosmic Cube,
the routine is the same as for a sequential processor. Although the
collision routine runs concurrently on each node, within each node the

routine, of course, proceeds from cell to cell sequentially.
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4.2.6. Host-Node Communication. Nodes have no 1I/0 capability to

peripheral display devices; therefore, to output data (e.g., flow field
properties), it is necessary to send messages from individual nodes to
the cube host. The host computer then writes the data to an output
file or displays the data on a terminal. Since the cube host is con-
nected to the Cosmic Cube only through a communication channel to node
0, it 1is necessary to route all node-host messages through node O.
This causes node 0 to be quite busy. The messages that are sent from
each node to the host computer are about 600 bytes and consist of the
following six floating point values: accumulated number of particles,
average X and y components of velocity, average translational and angu-
lar velocities and collision rate. To avoid a communication "grid-

lock" (called a fatal deadlock in the programming manual, Su et al.,

1985), the message-advance system shown in Figure 4.3 is used. All
messages are advanced from one node to the next along the path shown to
avoid overloading the memory of any one node (each node has only 10 -
20 kbytes of temporary buffer memory for queuing messages). If mes-
sages are sent without specifying the path, the message will be sent
automatically by using the shortest available communication channels.
However, this method carries the risk of overloading the buffers of
node 0 and the adjacent nodes which lead to a deadlock and an interr-

uption in the message-transfer procedure.

4.2.7. Data Accumulation. All the output data sent from every

node are stored by the cube host computer and accumulated for a speci-
fied number of runs. The data are then averaged and written to an out-
put file. The subprograms ACUM and PR-ACUM from the sequential program

version are used directly for this purpose.

4.3. Program Structure.

In applying the DSMC method to the Cosmic Cube some of the pro-
grams written for the sequential computer are modified and some are
used directly without any change. The subprograms that deal with 1I/0,
and data accumulation and averaging reside in the cube host computer,

whereas the routines that calculate the translation and collision of
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particles are run by individual nodes. Routines proceed sequentially
within each node but concurrently globally. Figure 4.4 shows the pro-
gram structure for both the cube host and the nodes. The detailed
operation of the subprograms is given in terms of comment statements

contained within the program listings (see Appendix C).

4.4. Load Balancing.

Idle time due to imperfect load balancing decreases the efficiency
of concurrent processing. Particles are initially equally distributed
among the nodes, but after some time some nodes might contain a much
larger number of particles than other nodes. Thfs problem is particu-
larly severe for problems involving shock waves or sedimentation.
Nodes containing many particles require a longer time to calculate col-
lisions and translational motion and therefore the global CPU time is
dominated by the most heavily loaded nodes. The key to load balancing

lies in assigning a weighting factor to each particle within a node.

The weighting factor is defined as the number of real particles or
molecules that a simulated particle represents. Each node has its own
weighting factor. If the number of particles in a certain node exceeds
some specified critical value, some particles are "killed" and the
weighting factor of the remaining particles within the node increases
correspondingly. Similarly, if the number of particles falls below
another specified critical value, new particles are "created" and the

weighting factor is adjusted accordingly.

The introduction of the weighting factor dynamically reduces the
load unbalance between different nodes. Results with improved statis-
tics are obtained without sacrificing CPU time. Without a weighting
factor, average properties from nodes with very few particles have
large errors associated with them. The subprogram BALANCE calculates
the weighting factors and performs the elimination/duplication of par-
ticles. Weighting factors must be taken into account when particles
move from one node to another. When a node receives a particle from a

node with a different weighting factor, particles must be removed or



duplicated so that the weighting factor of the new particie conforms
with the present node. These changes are performed by the subprogram

WEIGHT.

4.5. Limitations of the Caltech Cosmic Cube.

The primary storage of each node (128 kbytes) limits the maximum
number of simulated particles and cells per node. From the primary
storage, 64 kbytes are availabie for operating system Kkernel and
instruction code of the appiication program, and the other 64 kbytes
are available for data and stack. In addition, buffer space for
inter-node messages, i.e., to store particles that are received from
other nodes, must be available to the kernel. The present application
requires about 40 kbytes for instruction. About 20 kbytes are consumed
by the kernel and operating system. Then, considering the queuing
space to store particle information, maximum data size available in the
present calculation may be about 30 kbytes, i.e., about 25 cells per
node and 10 particles per cell. Therefore, totally about 160C0 parti-

cles can be used in a typical calculation.

4.6. Optimal Formulation for the Cosmic Cube.

To improve the efficiency and accuracy of the concurrent formulia-
tion of the DSMC method it is important to optimize the iocad balancing
routine. In the present program, the number of particles is controlled
so that each node contains approximately the same number of particles.
However, the CPU time consumed by this routine is not negligible. When
the number of particles within a node increases or decreases by a fac-
tor of 2, particles are destroyed or created by the load-balancing rou-
tine. The optimum value of this factor may depend on the type of flow
that is being simulated. In some problems (particularly ones involving
sedimentation or shock waves) very large particle concentration gra-
dients may develop. In such cases, improved statistical results may be
obtained by dynamically changing the cell size or number of cells as
well as the weighting factor to accommodate number density inhomo-

geneities in the flow.
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Chapter 5
CHANNEL FLOWS OF GRANULAR MATERIALS

Essentially what differentiates a granular material from a gas is
that in a granular material the collisions are inelastic. The system
is continually losing energy. In the previous chapters, in order to
apply the DSMC method to granular material in an infinite space (unin-
fluenced by the presence of containing walls), the coefficient of res-
titution Ep and the non-slip coefficient ¢  were introduced. Now in
addition to these coefficients, similar coefficients for collisions
between a particle and the wall, the coefficient of restitution € and
non-slip coefficient €.’ are needed to simulate channel flow. Table
5.1 shows several typical permutations of these four coefficients and

compares the cases for granular material and gas.

Coefficient ep € € €ow
general inelastic , <1 0 <1 0
inelastic spin(no slip) 1 0 1 0
inelastic spin(with diffuse wall) 1 0 diffuse
elastic spin 1 -1 1 -1
elastic particle(with specular wall) 1 -1 1 1
elastic,no spin 1 1 1 1
gas, elastic with rotation 1 -1 diffuse

Table 5.1 Comparison of coefficients for several types of materials

"Diffuse"” designates a special treatment of wall collisions in which a
particle is re-emitted with zero mean velocity but with the wall tem-

perature, independently of the incident energy.
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The present work investigates the effects of these coefficients on
the flow and tries to understand granular material flows. Channel flows
with wvarious conditions of <collision for ©particle-particle and
particle-wall without gravity are discussed. Additionally, as an exten-
sion of the study of the gravitational collapse of a gas which was done
as a one-dimensional problem in the preliminary investigation, the

channel flow with gravity will be discussed.

5.1. Description of the Model for Channel Flow without Gravity.

For the channel flow without gravity, in order to understand the
differences between granular material flow and gas flow, three combina-
tions of the four coefficients of Table 5.1 were investigated: general
inelastic, inelastic spin (with diffusely reflecting wall) and elastic
gas. The general inelastic model represents a general granular
material flow while the inelastic spin model {(with diffusely reflecting
wall) artificially represents an intermediate substance with properties
somewhere between a granular material and a gas, such that collisions
between particles have no slip (as in granular materials) while parti-
cles reflect diffusely from the wall (as for the boundary of a gas}).
For the general inelastic case, values of ep = 0.6, €, = 0, €y = 0.8
and €ow = 0 (corresponding to the values for polystyrene beads, see C.
S. Campbell, 1982) were chosen as typical material values. In the dif-
fusely reflecting wall, the wall temperature, Tw, is set to one where

Tw is normalized by the temperature of the flow in the undisturbed

state.

5.1.1. Geometry and Input Data. Figure 5.1 shows the simulated
flow field schematically. For all cases, the same type of geometry of
the simulated flow field is used; for the channel flow without gravity
the simulated flow field is surrounded by two parallel walls 16 mean-
free path lengths long (xm = 16) and two side boundaries 8 mean-free
path lengths high (ym = 8) through which particles can penetrate. Par-
ticles enter through the left-side boundary and are ejected into a
vacuum through the right-side boundary of the simulated fiow field. For

the channel flow xm is set to 32 and ym is set to 4 so that the
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equilibrium state could be observed far downstreanm.

At time equal to zero and after every time step the particles are
reieased uniformly in the flow field, the normalized temperature is set
to 1 and the normalized stream velocity is set to 2.2567, corresponding
to a Mach number M = 2.76 and Kn = 0.125, for the x-component and 0 for
the y-component. The normalized time interval for the calculation step
is set to 0.17725, 1/5 of the mean collision time in the undisturbed
initial state. The motions of all particles, inciuding particle-
particle and particle-wall collisions (conditions specified by ep, €
are begun and continue until a steady state is reached. In

s '

€
w and esw)'

the calculations, it was found that after about 20 mean collision times
the flow becomes steady such that the number of the particles leaving
through the right-side boundary is approximately the same as that
entering from the left. The resulting steady-state solutions were
printed out after 30 collision time steps. Each plotted wvalue
represents the average of the two calculated values (after being aver-
aged over 50 runs) which were geometrically symmetric about the center
line. Computing time on the Cosmic Cube for a typical problem is about

13 hours.

The simulated flow field is divided into 64 subregions (8 in the
x-direction and 8 in the y-direction) (see Figure 5.1). One subregion
is assigned to each node of the 6-D cube so that each node calculates a
region 2 mean-free paths long and 1 mean-free path high. Also, each
subregion is divided into 25 cells (5 by 5) so that each cell is 0.4
mean-free paths long (xC = 0.4) and 0.2 mean-free paths high (y, =
0.2). In the undisturbed initial state, 10 simulated particles are
piaced in each cell for a total of 16,000 particles in the initial
state. After every time step, 10 new particles enter from the left

with the stream velocity 2.2567. Derivation of this value follows from:
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n . ——-m init
enter X, ’ (5.1)
Atm, Nt and X, are the normalized time-interval calculation step,

the number of simulated particles per cell initially and the normalized
cell size in the x direction, and are set to 0.17725, 10 and 0.4,
respectively. To simplify the upstream and downstream boundary condi-
tions the stream velocity u must be higher than about 2, so that the
number of particles which move upstream through the side boundaries due
to thermal motion can be negligible. Thus, u is set to 2.2567 so that

nenter is an integer : 10.

5.1.2. Reynolds Number and Mach Number. The "first approximation”

to the coefficient of viscosity g in a hard-sphere gas is (Bird, 1976)

I =M s (52)

32
where p is the density, ¢ is the average thermal speed and A is the
mean-free path. The relation between ¢ and the most probable thermal

speed C_ is:
p m i8¢

Also, Cm can be related to the temperature as the following:
Cm = (gRT)l/z . (5.4)

Thus, the Reynolds number based on the height, h (h = ym), of the chan-
nel is the following:

pluc ) (hr) _ 16uh
Re, = =

h u 5r172 {5.5)

and the Mach number is:
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and Yy can be calculated in terms of the degrees of freedom of the par-

ticle, «, as:
- 2
Yy =1+ p” . (5.7)

For the present model h is 8 and « is 6. Therefore, the Reynolds
number based on the height of channel and the Mach number in the simu-

lated flow are 32.6 and 2.76, respectively.

5.2. Results and Discussion for the Channel Flow without Gravity.
Figures 5.2 - 5.5 show the profiles of several wvariables.

Although the contour plots are not smooth, the plots of the same vari-

ables vs. y-direction (with x fixed) are relatively smooth curves.

Figure 5.2(a), (b), (c) and (d) show the number density, temperature,

pressure and velocity fields of the granular material flow (ep = 0.6,
es = 0, Ew = 0.8 and esw = (), respectively. Figures 5.3 are for the
gas flow (ep = 1, €y = -1, diffusely reflecting wall) and Figures 5.4
for the intermediate flow (ep = 1.0, € = 0, diffusely reflecting

wall). In Figures 5.2 - 5.5, only half of the flow field is displayed;

in Figure 5.6 the entire field is exhibited.

In the granular material flow the temperature decreases due to
collisional energy loss, while in the gas flow (Figure 5.3(b)), it
rises due to viscous dissipation. In the granular material flow the
temperature decreases to about 0.33 at the exit of the channel (Figure
5.2(b)). This decrease is the same as that observed in Figure 3.5 for
the same medium at rest after 8 collision times. From Figure 5.2(d) it
follows that 8 collisions occur in the 16 mean free path length of the
channel. Figure 5.2(d) shows the growth of the velocity boundary
layer. It is noted that the temperature profile is.quite uniform in

the y-direction (Figure 5.2(b)); a thermal boundary layer is not
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apparent. As expected, pressure is also approximately uniformly distri-
buted (Figure 5.2(c)). Figure 5.2(a) shows that the density tends to
be slightly high near the wall (there is no gravity in this problem)
but that the particles behave as though the flow were nearly constant
density. The slight gathering of particles near the wall causes a
reduction of the effective cross-sectional area of the channel so that
the velocity u near the central axis increases about 10 % further down
stream. Since temperature decreases and velocity increases, the local
Mach number increases to about 5. It is remarkable that outside of the
boundary layer though the total energy of this system decreases, as

does the thermal energy, the kinetic energy increases slightly.

For the general inelastic collision (Figure 5.2) where €w = 0, a
particie-wall collision does not much affect the x-component of velo-
city of the particle. A diffusely reflecting wail, however, has a
great effect. With the diffusely reflecting wall at the same tempera-
ture as for the gas, Figures 5.3 and 5.4 show the difference in the
growth of the boundary layers due to the difference in the particle-
particle collision characteristics. Significant slip flow can be
observed in both cases. Note that €, = -1 for a gas (Figure 5.3) and 0

for granular materials (Figure 5.4).

The growth of the boundary layer for gas collisions seems to be
faster than that for granular collisions. In these figures, however,
this conclusion is not always clear since the boundary layer from the
wall has already grown to the centerline in the early portion of the
channel. Figure 5.5 shows the growth of the boundary layers near the
leading edge of the wall where the boundary layers from both walls have
not yet met. The boundary layers for both cases grow similarly very
close to the leading edge of the wall but gradually differences between
them appear in the the downstream regions. The growth rate in the
granular collision case tends to be slower further downstream. The
lower growth rate seems to be caused mainly by the decrease of the col-

lision frequency due to a decrease in the temperature with only a
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moderate increase in the density. The collision frequency directly
affects momentum transport by shear on the wall. The Reynolds number
based on x is of the order of 1 at the point where the boundary layers

from the two walls meet {(i.e., x < A).

Comparing the general inelastic case (Figure 5.2) and the inter-
mediate case (Figure 5.4), all properties (density and temperature
etc.), are somewhat different. Though the temperature of the fluid out-
side the boundary layer in the intermediate case does decrease as in
the general inelastic case, the density and temperature profiles are
not flat. The Mach number does not increase as much as in the inelas-
tic case. These differences may be due to the different values of ep
as well as to the different wall conditions. This implies that the
behavior of the granular material depends very much on the materials'

properties, e.g, Gp and €.

5.3. Result and Discussion for the Channel Flow with Gravity.

The geometry of the simulated flow field is the same as before
(Figure 5.1) with the gas moving between specular walls. This time, xm
and ym are set to 32 and 4, respectively, so that an equilibrium state
could be obtained further down stream in manageable CPU time. The

gravity g is set to 0.5. Re, is 16.3 and M is 2.76. Figure 5.6 shows

h
the results after 20 collision times. About 20 mean-free paths from the
left entrance equilibrium is reached; the temperature is uniform in the
X and y directions, the stream is parallel to the walls, and pressure
is constant in the x-direction. Before the flow reaches the equilibrium
state, overshoot and recovery are exhibited at 10 mean-free paths and

15 mean-free paths, respectively, in analogy to the behavior already

commented upon in the atmospheric collapse problem (Chapter 3).
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Chapter 6
SUMMARY AND CONCLUSIONS

The flow of granular materials has been investigated using the
DSMC method of Bird modified for granular materials. The DSMC method
was implemented on the concurrent processing Cosmic Cube computer at
Caltech in order to obtain good statistical solutions in manageable CPU
time. After preliminary investigations of energy dissipation and energy
transfer between transiation and spin with several different collision
conditions, and of one-dimensional sedimentation with molecular type
collisions, the present method is applied to the problem of channel

flows.

For the two special cases where a collision is perfectly elastic
with perfect slip, or perfectly rough, the total energy is conserved.
For 1inelastic collisions involving perfectly rough particles, the
translational energy component is found initially to decay most rapidly
while after about one coilision the rotational energy is converted onto

translational energy as an equipartitioned energy state is approached.

For the gas sedimentation problem at early times, the number den-
sity profile approaches and then actually overshoots the equilibrium
solution. The density profile then recovers and after a few collision
times the profile is indistinguishable from the equilibrium solution
except for small statistical fluctuations. The "overshoot" behavior
exhibited by the number density profile as it equilibrates toward a
steady-state solution suggests the propagation of rarefaction and con-
densation density waves within the flow field. As the particles fall
under the influence of gravity their potential energy is partially con-
verted to kinetic or thermal energy which is in turn transferred to
other particles through collisions. The final equilibrium thermal
energy level approaches a uniform level higher than the initial level

due to the addition of the gravitational potential energy. This
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behavior is also observed in the channel flow of gas with gravity. In
this case the number density overshoots the equilibrium state in the
lJower wupstream portion of the channel while further downstream it
approaches the equilibrium state where the flow direction is uniformly
parallel to the wall and the temperature profile is uniform and higher

than that upstrean.

For the channel flow with no gravity, there are differences
between the behavior of granular material flows and gas flows where
Mach number is 2.76 and Reynolds number is 32.6. For both cases, signi-
ficant 'slip' at the wall is observed. For the granular material flow,
the boundary layer is thin and the velocity reduction near the wall is
small. This especially thin boundary layer for granular materials is
mainly caused by the difference between the types of collisions between
particles and the wall, diffusely reflecting walls for the gas whereas
rough walls for the granular materials. 1In addition to the different
types of particle-wall interactions, the difference in the growth rates
of the boundary layers due to the different type of particle-particle
interactions is suggested by the comparison between the gas and the
intermediate flows, in which particle-particle interactions are of a
granular type while particle-wall interaction is of a gas type. The
boundary layers for both cases grow similarly very close to the leading
edge of the wall but gradually differences between them appear in the
downstream regions. The growth rate in the granular collision case
tends to be slower further downstream. The lower growth rate seems to
be caused mainly by the decrease of the collision frequency due to a
decrease in the temperature with only a moderate increase in the den-

sity.

Using the concurrent computer on which the DSMC method can be
naturally implemented has enabled powerful computational ability to be
brought to bear on the DSMC calculation. Future work will be directed
at improving the efficiency and accuracy of the concurrent formulation,

(e.g., load balancing and dynamic change of cell size), so that it can
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be applied to shock-wave or condensation problems where the density
difference between different regions may be a couple of orders of mag-
nitude. For further development of the method for two-phase or three-
dimensional low-Reynolds-number, high-speed continuum flows, much
greater computer power (e.g., more nodes and more memory), wiil be

required.
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Appendix A
NORMALIZATION OF PARAMETERS

Distance and time are normalized by the mean-free path and mean-
collision time in the initial undisturbed state, respectively. For con-
venience, the mean-free path and mean-collision time are set to unity
within the program. For these values to be unity it is necessary to
normalize the diameters and masses of the particles with respect to

certain reduced values.

In the initial state, the mean-free path AO for the mixture of two

different particles is

_1
1/21 ~

i3
to

where ni’ di’ and m;, are the particle-number density, diameter, and

mass of the ith particle, respectively. Setting AO equal to unity

requires that the reduced diameter of species 1 be given by

{ ! \“1}1/2
. p2nt2  (d i 12 m_y /2 ,
d. = 5Bl gm-Bs Gy 1Ry b
1 | n 4 'd d q; m l
|p=1 lg=1" %1 1) ql | |
[ { y | (A.2)

The mean-collision time is the reciprocal of the mean-collision rate

VO‘ given by

(A.3)
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where

(A.4)

Therefore, setting the mean-collision time to unity is equivalent to
setting the mean coliision rate to unity. The reduced mean collision
rate VO may be expressed in terms of the reduced mass and diameter of a

particle of species 1 as follows:

1/2
2 2 d 2 {2k( ) ‘
. n d_., LV ge2k(m s om o )m, |
vo=1= £ Rzil/2Bg .93, —2 0 1
0 p=1n =12 ldl dl 1J d mom om !
- { pqgl (A.3)
3

The reduced mass and diameter of species 2 can then be calculated as

follows:

d
~ 2~
d, = d1d1 ’ (A.6)
=

2 mo1 (A.7)

Temperature is also normalized by T0 so that all the variables are nor-
malized in terms of reduced values. However, it is convenient to retain
the number density n as a dimensional quantity based directly on the

number of simulated particles within a cell.
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Appendix B

EXACT EQUILIBRIUM SOLUTION

Nomenclature

g gravity

k Boltzmann's constant

L length of the flow field in the y-direction

m mass of molecule

n number density

T temperature

o degrees of freedom

y coordinate in the direction of gravity
Subscripts

0 initial state

1 species 1

2 species 2

e final equilibrium state with gravity g

The governing equations for the steady one-dimensional sedimenta-
tion of a mixture of two different types of molecules are given as fol-

lows:

Mass Conservation:

L
Lngy = Indv (B.1)
0
i
Lngy = Sng,dy (B.2)
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Momentum Conservation:

KT 51(n

edy o

(m,n

e2) * 1te1 mz“ez)g =0 : (B.3)

el

Equation (B.3) represents the hydrostatic balance between the pressure
gradient (first term) and the gravitational body force (second term).
The conservation of potential plus kinetic energy is given in the next

equation.

Energy Conservation:

1.2 1
8L (myngy + myngy) + SekLTo(ng, + ng,)

2702 01
L 1 L
- g£ (mlnel - mz“ez)ydy * §ukTeé (nel * nez)dy ’ (B.4)
Solving equations (B.1) - (B.3) for the number densities gives the
following:
i g 1
' <-rpy> !
TR N
n _ mlg | e .
el = nOlkTe! { mlgL;; ’
{, Gl kTeJ} (B.5)
Rk
mygul L <Te )|
Be2 = Po2kr ! ——
e | - 2 ii
kT
21 _ el e J} (B.8)

Substituting equations {B.5) and (B.6) into (B.4) and integrating pro-

duces the following implicit equation for Te:
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1,2 1 _ L
8L (mng, + myngy) + 0KLTo(ng ng,) = kLT (ng, + ng, = 50KLT (ng, + 0
r [ (mgl ) (0 rmygly
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e = R =]
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Equations (B.5) - (B.7) for the number densities and temperature in the

final state represent the exact equilibrium solution referred to ear-

lier in the text.
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Appendix C

PROGRAM LISTING

PROGRAM

HOST PROGRAM

DAT

CUBE PROGRAM

PAGE

42

54

55
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Sep 30 16:33 1985 host_main.c Page 1

/

%*

*/

This is the main program for the HOST. It reads the data from the data file
*dat’ with the subprogram 'host_getdat’ and then send the data to the node
0" of the CUBE. It also prints the input data with the subprogram ’prinit’.
After receiving the results, all data are accumulated by the subprogram
'acum’ through ‘nrun’ and after all of the averages are calculated and they
are printed out with the subprogram ‘pr_acum’. The results are sent by the
cube through node 'O’ in every ’'nstep’ time steps just as the initial state
had been sent. In order to save the updated accumulated results in case of
emergency (computer system down), the subprogram ’pr_backup’ prints out the
accumulated results in every b runs.

#include <cube/cubedef.h>
#include "host_24.h"

char dat[] = {"dat"};

main()

{

char fname[80];

short nx, ny, nrun, outnp;

short 1, j, k, 1, m, n, kk, 11, rrr;

MSGDESC in_d;

MSGDESC out_ini_d;

MSGDESC out_step.d;

MSGDESC pls_sd;

sdesc (&in_d, O, O, O, &in, sizeof(in));

sdesc (&kout_ini_d, 0, O, 0, O, sizeof (struct output));
sdesc (&kout_step_d, 0, 0, 0, O, sizeof (struct output));
sdesc (&pls_sd, 0, O, 100, 0, O);

cosmic_init (HOST,O) ;
host_set () ;
host_getdat();
host_dat();

htocs(kin.d.nprint,sizeof (struct insht)/sizeof (short));
htocf (&in.f.Tv,sizeof (struct inflt)/sizeof(float));
sendb(&in_d4) ;

while(in_d.lock) flick();
ctohs(&in.d.nprint,sizeof (struct insht)/sizeof (short));
ctohf (kin.f.Tw,sizeof (struct inflt)/sizeof (float));

printf ( "input dat\n" );
prinit();

for ( nrun = O; nrun < in.d.runmax; ) {

sprintf ( fname,"backup.%d", (nrun/6)%3 );

freopen ( fname,"w", stdout );

for ( rrr = b; rrr-- && nrun < in.d.runmax; nrun++ ) {
printf( "\nRun number %hd\n", nrun);
time = O0.;
outnp = 0;
for (1 = 0; 1 < chsize; i++) {

for ( j = 0; j < cwsize; j++) {
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Sep 30 16:33 1986 host_main.c Page 2

sendb (kpls_sd);

m = vho(j,1);

out_ini_d.type = m + 20000;

out_ini_d.buf = (char *)&out[m];

recvb(kout_ini_d);
ctohs (kout [m] .d.np,sizeof (struct outsht)/sizeof (short));
ctohf (kout[m] .f.wt,sizeof (struct outflt)/sizeof (float));

}
}

acum(outnp) ;

/* 'nprint’ prints per run */
for ( outnp = 1; outnp < (in.d.nprint + 1); outnp++ ) {
time = outnp * in.d.nstep * in.f.dtm;
for (1 = 0; 1 < chsize; i++) {
for ( j = 0; j < cwsize; j++) {
sendb (kpls_sd) ;
m = who(j,1);
out_step_d.type = m + 20000;
out_step_d.buf = (char *)&outim];
recvb(kout_step_d) ;
ctohs (kout [m] .d.np,sizeof (struct outsht)/sizeof (short));
ctohf (kout [m] .f.wt,sizeof (struct outflt)/sizeof (float));

}
}
acum(outnp) ;
}
}
pr.backup(nrun) ;
}
pr_acum() ;
fflush(stdout) ;

cosmic_exit();
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Sep 30 16:33 1985 host_set.c Page 1

/* This subroutine calculates characteristics of the Cosmic Cube to which
* Host will send data
*/

#include <cube/cubedef.h>

#include "host_2d4.h"

host_set ()
{
pid = mypid();:
dim = cubedim(); /* dimension of the cube, e.g., 6 for 6D-cube */
size = 1 << dim; /* number of the nodes, e.g., 84 for the 6D-cube */
chdim = dim >> 1; /* dimension of the cube in the y-direction
of the simulated flow field, typically 3
for the 6D_cube */
chsize = 1 << chdim; /# number of nodes in the y-direction, e.g., 8 */
cwdim = dim - chdim; /# cube dimension in the x-direction, e.g., 3 */
cwsize = 1 << cwdim; /# number of nodes in the x-direction, e.g., 8 */
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Sep 30 16:36 1985 host_getdat.c Page 1

/* This subroutine opens the data file and reads and prints the data on an
output file */

#include <cube/cubedef.h>
#include "host_2d4.h"

host_getdat ()
{
int n;
char dum[MAXNAM] ;
extern char dat[], printr([];

if ( (datptr = fopen(dat, "r")) == NULL ) {
printf( "Cant open %s\n", dat);
exit(1);

}

facanf (datptr, "%hd\t%hd\t%hd\t¥hd\t%hd\t%hd\t¥%hd\n",
&in.d.runmax, &in.d.nprint, &in.d.nstep,
&in.d.ncx, &in.d.necy, &in.d.mc, &in.d.seed);

printf ( "\n\nrunmax= %6hd nprint = ¥5hd nstep = %5hd ",
in.d.runmax, in.d.nprint, in.d.nstep);

printf( "ncx = %6hd ", in.d.nex);

printf( "ncy = %6hd mc = %6hd seed = %5hd\n",
in.d.ncy, in.d.mc, in.d.seed):

fgets(dum, MAXNAM, datptr);

facanf (datptr,"{L\t%L\t%4L\n", &in.f.xm, &in.f.ym, &in.f.dtm);
printf( "xm = %6.2f ym = %5.2f dtm = %8.3f\n",

in.f.xm, in.f.ym, in.f.dtm);
fgeta(dum, MAXNAM, datptr);

fscanf (datptr, "XLNEULNEALNEAL\EALNEUL\LYL\n",
&in.f.uw, &in.2.Tw, &in.f.g, &in.f.u_init, &in.f.u_enter,
&in.f.mc_enter);
printf( "uw = %6.2f Tw = %6.2¢ g = %65.2f u_init = %5.2f\n",
in.f.uw, in.f.Tw, in.f.g, in.f.u_init);
printf( “"u_enter = %5.2f mc_enter = %5.2f\n",
in.f.u_enter, in.f.v_enter, in.f.mc_enter);
fgets(dum, MAXNAM, datptr);

facanf (datptr, "AL\tLL\tUL\E%L\tAL\t%L\n",
&in.f.ep, kin.f.es, &in.f.ew, &in.f.esw, &in.f.beta, &in.f.diff);

printf( “ep = %6.2f es = %6.2f ew = %6.2¢ v,
in.f.ep, in.f.es, in.f.ew);
printf( "esw = %5.2f beta = %5.2f diff = %5.2f\n\n",

in.f.esw, in.f.beta, in.f.diff);
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Sep 30 16:37 19086 host_dat.c Page 1

/% This subroutine calculates several parameters from data */

#include <cube/cubedef.h>
#include "host_2d4.h"

host_dat ()
{

pi2 = 2 * PI;

8q2 = sqrt(2.);

xm_node = in.f.xm / cwsize;
ym_node = in.f.ym / chsize;
chx = xm_node / in.d.ncx;

chy
vmw
fnd
cxs
sqd
d =
ami
omm
omy
acu
vrm

H W R- NN

ym_node / in.d.ncy;
sqrt(in.f.Tw) ;
in.d.mc / chx / chy;

1. / ( 8q2 * ftnd );

8q2 * PI * fnd;

/ sqrt(sqd);
0.26 * in.f.beta / sqd;
1. / sqrt(ami);
sqrt(in.f.Tw / ami);
in.f.dtm * in.d.nstep * in.d.mc * fnd * cxs * sqrt(2./PI);
2. * sqrt(2./PI);

pslipf = in.f.beta * (1.0 - in.f.es) / (1.0 + in.f.beta);
wvslipf = (1.0-in.f.esw) / (1.0+in.f.beta);
collfac = 2.0 * chx * chy / cxs;

~
*

chx
chy
vmw
fnd
cxs
d

ami
omm
omw
acu
vrm

L R B IR N IR BN IR R I AR

*
~

xm_node = length of node region in x-direction, in mean free paths
ym_node = length of node region in y-direction, in mean free paths

cell size in x-direction, in mean free paths

cell size in y-direction, in mean free paths

most probable thermal speed € T = Tw

unnormalized undisturbed gas number density

hard sphere collision cross section

diameter of the simulated particle

moment of inertia

most probable spin velocity € T = 1

most probable spin velosity ¢ T = Tw

number of collisions per cell per sample short interval
ist approx to relative speed in initial undisturbed state

pslipf, wslipf, collfac ( see coll.c in the cube program )
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/+ This subprogram prints the parameters used in the following calculations */

#include <cube/cubedef.h>
#include "host_24.h"

prinit ()
{
printf( "pi2 = %8.6f 8q2 = %8.6f chx = %8.6f", pi2, sq2, chx);
printf( "chy = %8.6f xm = %8.6f ym = %8.6f\n",
chy, xm, ym);
printf( "vmw = %8.6f fnd = %8.6f\n", vmw, fnd);
printf( "cxs = %8.6f sqd = %8.6f 4 = ¥%8.6f", cxs, sqd, d);
printf( "ami = %8.6f omm = %8.6f omw= %8.6f\n",
ami, omm, omw);
printf( "NN = %hd acu = %8.6f vrm = %8.6f", NM, acu, vrm);
printf( "pslipf = %8.6f wslipf = %8.6f\n", pslipf, wslipf);
printf( “collfac = %8.6f\n\n", collfac);
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/* This suprogram accumulates outputs over the updated run */

#include <cube/cubedef.h>
#include "host_24.h"

acum(outnp)
short outnp;

{

short i, j, m, nx, ny, k;

for (1 = 0; 1 < chsize; i++ ) {
for ( j = 0; j < cwsize; j++ ) {
m = who(j,1);
for ( nx = 0; nx < in.d.ncx; nx++ ) {
for ( ny = 0; ny < in.d.ncy; ny++ ) {
for ( k = 0; k < D6; k++ )
acum_sc [k] [nx] [ny] [m] [outnp] += out[m].f.wt * out[m].f.sc[k] [nx] [ny];

}
}
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/* This subroutine averages the updated accumulated outputs every 5 runs
* and prints them in order to save the latest updated results in case of
* emergency.

*/

#include <cube/cubedef.h>
#include "host_24.h"

pr_backup(nrun)
short nrun;
{
short i, j, nx, ny, k, 1, m, np;

for ( np = 0; np < (in.d.nprint + 1); np ++ ) {
time = np * in.d.nstep #* in.f.dtm;
printf( "Averaged flow properties at time = %10.5f\n", time);
for (k = 0; k < chsize; k++) {
for (1 = 0; 1 < cwsize; 1++) {
m = vho(l,k);
printf( "node = %hd, 1=%hd, k=%hd\n", m, 1, k);
printf( " Cell x y samp dens x-vel");
printf( " y-vel e-tr e-sp etot coll r\n");
for ( nx = 0; nx < in.d.nex; nx++ ) {
for ( ny = 0; ny < in.d.ncy; ny++ ) {
op[0] = acum_sc[0] [nx] [ny] [m] [np] ;
opl1] = opl[0] / (nrun * in.d.mc);
if (opl0] > 0. ) {
op[2] = acum_sc[1] [nx] [ny] [m] [np] / oplO]:
op[3] = acum_sc[2] [nx] [ny] [m] [np] / op[O]:
op[4] = 2.*(acum_sc[3] [nx] [ny] [m] [np]l/op[0]-op[2]*op[2]-0p[3]+*0p[3])/3.;
op[6] =2.*ami*acum_sc[4] [nx] [ny] [m] [npl/(3.%0p[0]);
opl6] = ( op[4] + opl6] ) / 2.;
}
else {
op[2]
op[3]
opl4]
op[6]
opl6]
}
opl7] = acum_sc[6] [nx] [ny] [m] [np]l/ (nrun * acu);
printf( "(%hd, %hd)%5.21%5.2f",
nx, ny, out[m].f.c[0][nx], outiml.f.c[1][nyl);
printf( "%6.0f ", op[0]);
for (4 =1; 1 < 7; 1++)
printf ("47.4f ", op[il);
printf( "%7.4f\n", opl71);

OCO0OO0OO0O
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Sep 30 16:39 1986 pr_acum.c Page 1

/* This subprogram averages the accumulated outputs for all runs and prints
* averaged values as final results.

*/

#include <cube/cubedef.h>
#include "host_24d.h"

pr_acum()
{
short i, j, nx, ny, k, 1, n, np;

for (np = 0; np < (in.d.nprint + 1); np ++ ) {
time = np * in.d.nstep * in.f.dtm;
printf( "Averaged flow properties at time = %10.5f\n", time):
for (k = 0; k < chsize; k++) {
for (1 = 0; 1 < cwsize; 1++) {
m = who(1,k);
printf( "node = %hd, 1l=%hd, k=%hd\n", m, 1, k);
printf( " Cell X y samp dens x-vel");
printf( " y-vel e-tr e-8p etot coll r\n");
for ( nx = 0; nx < in.d.nex; nx++ ) {
for ( ny = 0; ny < in.d.ncy; ny++ ) {
opl[0] = acum_sc[0] [nx] [ny] [m] [np];
opl[1] = opl0] / ( in.d.runmax * in.d.mc);
if ( opl0] > 0. ) {
op[2] = acum_sc[1] [nx] [nyl[m]lnp]l / op[0];
op[3] = acum_sc[2] [nx] [ny] [m] [np] / op[0];
opl[4] = 2.*(acum_sc[3] [nx] [ny] [m] [np]l/op[0]-op[2]+op[2]-0p[3]*0p[3])/3.;
op{6] =2.*ami*acum_sc[4] [nx] [ny] [m] [npl/(3.*o0p[0]);
opl6] = ( opl4] + opl6] ) / 2.;

}

else {
opl2] = 0.;
opl3] = 0.;
opl4] = 0.;
oplb] = 0.;
oplél = 0.;

}

op[7] = acun_sc[5][nx] [ny] [m] [np]l/( in.d.runmax * acu);
printf( " (%hd, %hd)%6.2£%6.21",
nx, ny, outm].f.c[0]1[nx]., out(m].f.c{1]nyl);
printf( "%6.0f ", op[0]);
for (1 =1; 4 <7T; i++)
printf ("47.4f ", op[il);
printf ( "%7.4f\n", op[7]1);
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#include <cube/cubedef.h>
#include "host_2d4.h"
bin_grey(n) /* calculate grey code from binary code */

return(n -~ (n > 1));

}
grey_bin(n) /* calculate binary code from grey code */
{
short 1;
for(1 = n; n >= 1; 1 “=n);
return(i);
}
vho(x,y) /% calculate node#=whois(x,y) from node location */
{

x = bin_grey(x);
y = bin_grey(y):
x += y << cwdim;
return(x) ;
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/* This file declares all the external variables in the host program. */

#include <stdio.h>
#include <math.h>

#include "24.def"

char printr[MAXNAM];
FILE #prmtptr;
FILE sdatptr;

short node,pid.dim,chdim,cwdim,x,y,size,chsize,cwsize;

float pi2, sq2, sqd;

float xm_node, ym_node, chx, chy, cxs, vmw, omm, ami, acu, fnd, time;
float A, d, vrm, omw, pslipf, wslipf, collfac;

float opfi4];
/* op[14] = dummy variables for normalized prshortout

*/

float acum_sc[D6] [NXCELL] [NYCELL] [NNODES] [100] ;
struct outsht {
short np,nullil;

}:
struct outflt {

float wt; .

float c[DIMEN] [NMXCELL], sc[D8] [NXCELL] [NYCELL];
/* clx, yllnex, ncyl = coord of cell center

sc[0] [ncx] [ncy]l = accum no. parts in cell
sc[1] [ncx] [necy]l = accum u veloc in cell

*
%
* sc[2] [ncx] [ncy]l = accum v veloc in cell
* sc[3] [ncx] [neyl = accum trans enrgy in cell
* sc[4] [ncx] [ncy] = accum spin enrgy in cell
* sc[6] [ncx] [ney]l = accum no. colls in cell
*/

};

struct output {
struct outsht d;
struct outflt f;
};
struct output out [NNODES];

/* Input variables */
struct insht {
short nprint, nstep, seed;
short ncx ,mcy, mc, runmax, null2;
3
struct inflt {
float Tw, beta, uw, u_init, u_enter, mc_enter;
float xm, ym;
float dtm, ep, es, ew, esw, g, diff;
}:
struct input {
struct insht 4;
struct inflt f;
}:

struct input in;
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MAXNAM BO

DIMEN 2 /* # of space dimensions in solution */

D3 3 /* # of random velocity components simulated */
De (] /* # of molecular degrees of freedom simulated #*/
NXCELL b /* Max allowed # of x-cells #*/

NYCELL & /* Max allowed # of y-cells */

NMXCELL b /% Max of NXCELL, NYCELL %/

NM 1200 /* Max allowed number of particles per node */
PI 3.141503

NNODES 64 /* Number of cosmic cube nodes */

NDXMAX 8 /* Number of nodes in x- direction */

NDYMAX 8 /* Number of nodes in y- direction */
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60 1 100 10 2 10 1

runmax nprint nstep ncx ncy me seed

16.0 8.0 0.17726

xm ym dtm

0. 0. 0.5 2.2667 2.2667 10.

uv Tw g u.init u_enter mc_enter

1.0 -1.0 1.0 1.0 0.4 0.

ep es ev esv beta diff

/% runmax = number of runs with a different seed of random number.
nprint = number of prints. each print is done every nstep calculations.
nstep = number of calculation steps in each print out.
nex = number of cells x-direction in each node.
ncy = number of cells y-direction in each node.
mc = number of simulated particles in each cell in the initial state.
seed = gseed value of random number generator, rand().
xm = normalized length of x-direction of the simulated flow field.
ym = normalized length of y-direction of the simulated flow field.
dtm = normalized time step interval.
uw = normalized velocity of the bottom wall(boundary).
Tw = normalized temperature of the walls(boundaries).
g = normalized gravitational acceleration of the simulated field.
u.init = x-comp. of stream velocity in the initial state.
u_enter = x-comp. of new entering stream velocity.
mc_enter= number of new entering particles per dtm.
ep = coefficient of restitution for particle-particle collision.
es = coefficient of slip for particle-particle collision.
ew = coefficient of restitution for particle-wall collision.
esv = coefficient of slip for particle-wall collision.
beta = square of the ratio of gyration radius to particle radius.
dift = >0 for diffusely reflecting wvall, <= for wall with ‘ew’ and

*/

‘esw’ defined.

These input data are read by ’host_getdat.c’ in Host program. They show up
with in.#*, e.g. in.runmax, in Computer Code.
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/* This is the main program of Cube. Each node has an identical code as this
and each node gets to know its own location in the simulated field and its
neighbor nodes from subroutine setup(). Then receives data from a neighbor
node in turn and starts Direct Simulation Monte Carlo calculation. In every
in.step, updated output is sent to Host through node 0. This output sending
is done in.nprint times in each of in.runmax runs.

*/
#include <cube/cubedef.h>

#include "24.h"

main()

{
int nrun,np,ns,nx,ny;
setup() ; /* setup node network */
cube_getdat () ; /* receives input data from HOST */

seed = in.seed + mynode(); /* seed has to be initialized in each node
independently */
/* independently, for example initial seed */
/* = in.seed + mynode() */
srandom(seed) ;

for ( nrun = O; nrun < in.runmax; nrun++) {

time = 0.;

initia(); /* creates in.mc particles in each cell #*/

reset(); /* puts global and local ID on all particles */

step_type = 0; /# re-initialize step_type for new run */

send_ok(); /* sends signal(ready to receive particles) to
neighbor nodes. Signal from the neighbor
nodes will be received at the 1st recv_ok()
in the following loop. */

sample(); /* calculates macro properties for each cell #*/

send_out () ; /* sends output(macro properties) to the next

node. node O sends to Host */

for ( np = O; np < in.nprint; np++ ) {
for ( ns = 0; ns < in.nstep; ns++ ) {

time = ( np * in.nstep + ns + 1 ) * in.dtm;

step_type = np * in.nstep + ns + 1;

move_glob(); /* moves all particles in in.dtm

*/
if (locx == 0) flow(); /* puts entering particles from
left side(upstream) */

recv_ok(); /* receive signal(ready to receive
particles) from neighbor nodes */

send_pt(); /* sends particles to neighbors */

send_end() ; /* sends signal(finish send_pt()) to
neighbor nodes */

recv_pt(); /* receives particles from neighbor
nodes until receives end-signal */

send_ok(); /* sends signal(ready to receive pts)

to neighbors. This signal will be
at recv_ok() in the next step(ns)
in this loop */
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if ( totmol != 0 ) {
if ( totmol > ( 2. * ini_totmol ) ) {

balance();
}
if ( totmol < ( 0.5 * ini_totmol ) ) {
balance();
}
}
reset();

for ( nx = 0; nx < in.ncx; nx++ ) {
for ( ny = 0; ny < in.ncy; ny++ ) {
if ( ct[0][nx][ny] > time ) continue;
if (ic[0l[nxl[ny] < 2 ) {
ct[0] [nx] [ny] = ct[0] [nx][ny] + in.dtm;
continue;
}
coll(nx,ny); /* calculates collision until
celltime(ct [0] [nx] [ny]l) reaches
time */

}
}
sample () ;
send_out() ;
}
step_type += 1;
recv_ok();
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#include <cube/cubedef.h>
#include "24.h"

setup ()

{
MSGDESC in_d;
sdesc(&in_d4,0,0,0,&in,8izeof (in));

node = mynode();
pid = mypid();
dim = cubedim();
gize = 1 << dim;
recvb(&in_d); /* receives input data from node (#node-1) */
if((in_d.node = node + 1) != size) send(&in_d);
/* sends input data to node (#node+l) */
chdim = dim >> §;
chsize = 1 << chdim;
cwdim = dim - chdim;
cwsize = 1 << cwdim;

/* Each node already knows its node# as its ID. Then we have to give the
* location coordinate to each node such that its adjacent node# is one
* bitwize different. The following two equation calculate location coordinate
* for given node whose # is given by mynode{) in <cube/cubedef.h>
*/
locx = grey_bin(node & (cwsize - 1 ));
locy = grey.bin((node >> cwdim));
/% locx and locy are x and y coordinate in the simulated flow field */

/* calclate number of message route for send & recv */
/* number of message route depends on the node’s location */
msg_rt = 8;
if ((locx == 0) || (locx == (cwsize - 1))) msg_rt = b;
if ((locy == 0) || (locy == (chsize - 1))) msg._rt = b;
if ((locx == 0) && ((locy == 0) || (locy == (chsize - 1)))) msg_rt = 3;
if ((locx==(cwsize - 1)) && ((locy==0) || (locy==(chsize - 1)))) msg_rt=3;
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#include <cube/cubedef.h>
#include "24.h"

bin_grey(n) /* calculate grey code from binary code */
return(n * (n > 1));
}
grey_bin(n) /* calculate binary code from grey code */
{
int i;
for{(i =n; n >= 1; 1 “=n);
return(i);
}
vho(x,y) /* calculate node#=whois(x,y) from node location */
{

x = bin_grey(x);
y = bin_grey(y);
X += y << cwdim;
return(x) ;
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#include <cube/cubedef.h>
#include "24.h"

cube_getdat ()
{

int n;

pi2 = 2 * PI;

8q2 = sqrt(2.);

xm_node = in.xm / cwsize;
ym_node = in.ym / chsize;
chx = xm_node / in.ncx;
chy = ym_node / in.ncy;

vmw = sqrt(in.Tw);

fnd = in.mc / chx / chy;
cxs = 1. / ( 8q2 * fnd );
sqd = 8q2 * PI * fnd;

d = 1. / sqrt(sqd);

ami = 0.26 * in.beta / sqd;
omm = 1. / sqrt(ami);

omv = sqrt(in.Tw / ami);

ini_totmol = in.mc * in.ncx * in.ncy;

for (n = 0; n < in.ncx; n++ )
out.c[0l[n] = (n + 0.5) * chx + xm * locx;
for (n = 0; n < in.ncy; n++ )
out.c[1]{n] = (n + 0.5) * chy + ym * (chsize - locy - 1);

acu = in.dtm * in.nstep * in.mc * fnd * cxs * sqrt(2./PI);
vrm = 2. * sqrt(2./P1);

pslipf = in.beta * (1.0 - in.es) / (1.0 + in.beta);

wslipf = (1.0-in.esw) / (1.0+in.beta);

collfac = 2.0 * chx * chy / cxs;



- 60 -

Sep 30 15:5b 1985 initia.c Page 1

/* This subprogram sets the initial states of all the simulated particles. Six
components of thermal velocity are assigned to each particle by sampling
randomly from the Maxwell-Boltzmann distribution corresponding to the
initial temperature and the initial stream velocity in x-direction is set
by "in.u_init’. Position coordinates are associated with each particles as
well as an index label used by the collision routine. This subprogram also
set the initial cell time used in collision routine as a random fraction of

*in.dtm’. */

#include <cube/cubedef.h>
#include "24.h"

initia()
{
int nx, ny, j, k, 1;
float a, b, bb, aa;
totmol = ini_totmol;
out.weight = 1.;
for ( nx = 0; nx < in.ncx; nx++ ) {
for ( ny = 0; ny < in.ncy; ny++ ) {
ct[0] [nx] [ny] = rand() * 2. * chx * chy /
( in.mc * in.mc * cxs * vrm );
ct[1] [nx]1[ny] = 2. * vrm;
for ( § = 0; § < in.me; j++ ) {
k =ny % in.mc + j
+ nx * in.ncy * in.mc;
ptlk] .flag = 0O;
ptlk]l.vt = out.weight;
ptlkl.x = out.c[0]l[nx] + ( rand()
* chx;
ptlkl.y = out.c[1][ny]l + ( rand()
* chy.
ptlkl.vx = sqrt( -log( rand() ) ) * sin( pi2
ptlk]l .vx += in.u_init;

ptlk]l.wx = omm * sqrt( -log( rand() ) ) #* sin( pi2
ptlkl.vy = sqrt( -log( rand() ) ) * sin( pi2
ptlk]l.wy = omm * sqrt( -log( rand() ) ) * sin( pi2
ptlk]l.vz = sqrt( -log( rand() ) ) * sin( pi2
ptlk]l .wz = omm * sqrt( -log( rand() ) ) * sin( pi2

}
}

- 0.5)
- 0.5)
* rand() );

* rand() )
* rand() )
* rand() );
* rand() )
* rand() )
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#include <cube/cubedef.h>
#include "24.h"

send_ok()
{
MSGDESC sd_ok;
sdesc (&sd_ok, O, 0, 0, 0, 0);
sd_ok.type = step_type + 1;
if (( locy + 1) < chsize ) {
s8d_ok.node = who(locx, (locy + 1));
sendb (&sd_ok) ;
if ((locx + 1) < cwsize ) {
sd_ok.node = who((locx + 1), (locy + 1));
sendb (&sd_ok) ;
}
if (locx > 0) {
sd_ok.node = who((locx - 1),(locy + 1));
sendb (ksd_ok) ;
}
}
if ((locx + 1) < cwsize ) {
sd_ok.node = who((locx + 1),locy):
sendb (ksd_ok) ;
}
if (locx > 0) {
sd_ok.node = who((locx - 1),locy):
sendb (ksd_ok) ;
}
if (locy > 0) {
sd.ok.node = who(locx, (locy - 1));
sendb (&sd_ok) ;
if ((locx + 1) < cwsize) {
sd_ok.node = who((locx + 1), (locy - 1));
gsendb (ksd_ok) ;
}
if (locx > 0) {
sd_ok.node = who((locx - 1),(locy - 1));
sendb (ksd_ok) ;



Sep 30 16:04 1985 sample.c Page 1

#include <cube/cubedef.h>
#include "24.h"

sample ()

{
int nx, ny;
int 1, nmol;

for ( nx = 0; nx < in.necx; nx++ ) {
for ( ny = 0; ny < in.ncy; ny++ ) {
for (1 = 0; 1 < 1c[0] [nx][nyl; 1++ ) {
nmol = ler[ic([1] [nx] [ny] + 11;
out.sc[0] [nx] [ny] += 1.;
out.sc[1] [nx] [ny] += ptInmol].vx;
out.sc[2] [nx] [ny] += pt[nmol].vy:
out.sc[3] [nx] [ny] +=
(pt [nmol] . vx*pt [nmol] .vx
+ ptnmol] .vy*pt[nmol] .vy +
pt [nmol] .vz*pt [nmol] .vz) ;
out.sc[4] [nx] [ny] +=
(pt [nmol] .wx*pt [nmol] .wx +
pt [nmol] .wy*pt [nmol] .wy +
pt [nmol] .wz*pt [nmol] .wz) ;
#ifdef DEBUG
potent += 4. * pt[nmol].y*g / 3.;
#endif
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#include <cube/cubedef .h>
#include "2d4.h"

send_out ()

{
int i, j, 1, nx, ny;
MSGDESC out_sd;
MSGDESC out_rd;
MSGDESC pls_sd;
MSGDESC pls_rd;

/* set up message descriptor to send to HOST */
sdesc (Zout_sd, 0, O, O, &out, sizeof (struct output));
sdesc (&out_rd, O, 0, O, kout, sizeof (struct output));
sdesc (&pls_sd, 0, O, 100, 0, 0);
sdesc (&pls_rd, 0, 0, 100, 0, 0);

out_sd.node = HOST;
if ( node != 0 ) {
if ( locx == 0 ) out_sd.node = who(( cvsize - 1 ),( locy - 1));
else out_sd.node = who(( locx - 1 ),locy);
}
if ( node != who((cwsize - 1),( chsize - 1)) ) {
if ( locx == (cwsize - 1) )
. pls_sd.node = who( 0, (locy + 1) );
else pls_sd.node = who( (locx + 1), locy );
}
out_sd.type = node + 20000;
sendb (kout_sd) ;

for ( j = locy; j < chsize; j++ ) {
for (1 = 0; 1 < cwsize; i++) {
1f ( ((§ == locy) && (i > locx)) Il (§ > locy)) {
sendb(&pls_sd) ;
out_rd.type = who(i,j) + 20000;
recvb(kout_rd);
out_sd.type = who(i,]) + 20000;
recvb(&pls_rd) ;
sendb (kout_sd) ;

}
}
recvb(&pls.rd) ;

for ( nx = 0; nx < in.nex; nx++ ) {
for ( ny = 0; ny < in.ncy; ny++ ) {

for (1 =0; 1< 6; 1++)
out.sc[1] [nx] [ny]

[

}
}
}
for ( nx = 0; nx < in.nex; nx++ )
- out.c{0][nx] = ( nx + 0.5 ) * chx + xm * locx:
for ( ny = 0; ny < in.ncy; ny++ )
out.c[1][ny]l = ( ny + 0.5 ) * chy + ym * ( chsize - locy - 1 );
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#include <cube/cubedef .h>
#include "2d4.h"

move_glob()
{

int nmol;

float dtmi, tt, tty, tttt, ttx, r, ssj, scj, a, b;

for ( nmol = 0; nmol < totmol; nmol++ ) {
dtmi = in.dtm;
for ( tt = 0.; 0. <= dtml; dtmi -= tt ) {
if ( in.g == 0. ) {

}

it (ptlnmoll] .vy == 0.)

tty = 1.e+8;
else if (pt[mnmoll.vy > 0.)

tty = (in.ym_glob - ptlnmoll.y ) / ptlnmoll.vy;
else

tty = - ptlnmoll.y / ptlnmol].vy;

else {

}
it

tttt = ptinmol].vy * ptlnmol].vy + 2. *
in.g * ptlnmoll.y:
if ( tttt < 1.e-9 )
tttt = 1.e-9;
tty = ( ptinmol].vy + sqrt( tttt ) ) / in.g;
tttt = tttt - 2. * in.g * in.ym_glob;
if ( tttt >= 0. && ptlnmoll.vy > 0. ) {
if (tttt < 1.e-9)
tttt = 1.e-9;
tty = (ptinmol].vy - sqrt(tttt))/in.g;
}

else;

(pt[nmoll .vx == 0. )
ttx = 1.e+8;

else if ( ptlnmoll.vx > 0. )

ttx = ( in.xm_glob - ptlnmol]l.x ) /ptInmoll.vx;

else

tt
if

if

ttx = -pt[nmol] .x /ptnmol].vx;
= tty.:

( ttx < tty )

tt = ttx;

( tt > dtml )

break;

ptinmol] .x = pt[nmol]l.x + ptlnmol].vx * tt *0.9999999;
ptinmol]l.y = ptlnmol].y + tt * 0.0000009 =

(pt[nmoll.vy - 0.5 * tt * in.g);

ptlnmol].vy = ptlnmoll]l .vy - in.g * tt;
r=0.5*4d;

if

if

((ttx <= tty) && (ptlmmol].vx > 0.))

break;

( ttx <= tty ) {
it (ptinmoll .vx <= 0.) {
/* On the wall at x=0. */
if ( in.diff <= 0. ) {
ssj = wslipf * (ptlnmol].vz
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}

else if (ptlnmol]l.vy > 0. 2& (in.g =

}
else {

+ ptlnmol] .wy * r);
scj = wslipf * (ptinmoll.vy
-pt[nmol] .wz * r);
in.ew #*ptinmol].vx;

pt[nmol] .vx = -

pt[nmoll.vy = ptlnmoll.vy -
scj * in.beta;
pt [nmol] .vz = ptnmol].vz -
s8] * in.beta;
pt[nmol]l .wx = pt[nmol].wx;
pt[nmol] .wy = pt[nmoll] .wy -
ssj / r;
pt[nmol]l.wz = pt[nmol].wz +
scj / r;
continue;
}
else {
a = vymw * sqrt(- log( rand()
));
b = pi2 * rand();
ptlnmoll.vy = a * sin(b);
pt[nmoll.vz = a * cos(b);
pt[nmol].vx = vmw * sqrt
(- log{ rand()));
rot (nmol) ;
continue;
}

}

/* On the wall at y
if (in.diff <= 0.) {

0
i

.ottt > 0.)) {
n.ym_glob */

ssj = wslip? * ( ptlnmol]l.vz +
pt[nmoll .wx * r );
scj = wslipf * (pt[nmol].vx -
ptnmoll.wz * r);
pt[nmol] .vx =pt[nmoll.vx ~ scj * in.beta;
ptnmoll.vy = - in.ew * ptlnmol].vy;
ptnmol] .vz = ptnmoll.vz - ssj * in.beta;
pt[nmol] .wx = ptinmol] .wx ~ ssj / r;

pt[nmol] .wy = pt[nmol].wy;
pt[nmol]l .wz = ptlnmoll.wz + scj / r;
continue;

}

else {
a = vmw * sqrt(-log(rand()));
b = pi2 * rand();
ptnmol]l .vx = a * sin( b );
pt[nmoll.vz = a * cos (b );
pt[nmol].vy = - vmw * sqrt(-log(

rand()));

rot (nmol) ;
continue;

}

if (in.diff <= 0.) {
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)

rot (nmol)
int nmol;

{

/* On the wall at y = 0 */
8sj = wslipf * ( ptinmol].vz -
ptlnmol].wx * r);
scj = wslipf * (ptlnmol]l.vx - in.uw +
ptlnmol] .wz * r);

pt[nmol] .vx =ptnmol] .vx - scj * in.beta;

ptlnmol]l .vy = - in.ew * pt[nmol].vy;
pt[nmol] .vz = pt[nmol] .vz - ssj * in.beta;

pt[nmoll .wx = ptnmoll.wx + ssj / r;
pt[nmol] .wy = ptlnmoll.wy;
ptlnmol] .wz = ptlnmol].wz - scj / r;
continue;

}

else {
a = vmw * sqrt(-log(rand()));
b = pi2 * rand();
pt[nmol]l .vx = a * sin(b);
ptlnmol] .vz = a * cos(b);
ptinmol] .vy = vmw * sqrt(

-log( rand() ));

rot (nmol) ;
continue;

}

}

ptinmol] .x += ( pt[nmol].vx * dtml * 0.9999990 );
ptinmoll.y += ( dtml * 0.999999 * ( ptlnmol].vy

- 0.5 * in.g * dtm1l * 0.999999 ) );
ptinmol].vy -= (in.g * dtml);

float aa;

aa = omw * sqrt(- log( rand()));

pt [amol]

.wx = aa * sin(pi2 * rand());

aa = omw * sqrt(- log( rand()));

pt [nmol]

.wy = aa * sin(pi2 * rand());

aa = omw * sqrt(- log( rand()));

pt [nmo1]

.wz = aa * sin(pi2 * rand());
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#include <cube/cubedef.h>
#include "2d4.h"

flow()

{

/* New particles enter from left and go out from right %/

/* This subprogram generates new particles entering from left */
/* Stream velocty = ( in.u_enter, 0 ) */

/* in.mc_enter is the exact number of particles entering through left boundary
per cell per dtm, which may not be integer, therfore integer value ‘nflux’
has to be calculated by the appropriate manner #*/

float s, fsl, 82, v, vn, vp;
int nmol, nx, ny, 1, nflux;
float a, b, aa, bb, flux;

8 = in.u_enter;
for (ny = 0; ny < in.ncy; ny++ ) {
nflux = 0;
flux = in.mc_enter;
if ( flux >= 1. ) {
do {
nflux += 1;
flux -= 1.0;
} while ( flux >= 1. );
}
a = rand();
if ( a < flux ) nflux += 1;
fsl = 8 + aqrt( s*s + 2. );
f82 = 0.6 * (1. + s*( 2.%g - 381 ) );

for ( nmol = totmol; nmol < (nflux + totmol); nmol++ ) {
do {
do {
v = 6. * rand() - 3.;
Vn=v +s;
} while ( vn < 0. );

a= (2 #*vn/ fs1) * exp( £82 - v*v );
b = rand();
} vhile (a < b );
a = pi2 * rand();
b = sqrt( -log( rand() ) );
vp = b % sin( a );
ptinmoll.vz = b * cos( a );
pt[nmol] .flag = O;
pt[nmol].wt = out.weight;
ptnmol] .vx = vn;
pt [nmol]l .vy = - vp;
pt[nmol] .wx = omm * sqrt(-log(rand())) #* sin(pi2 * rand());
ptnmol] .¥y = omm * sqrt(-log(rand())) * sin(pi2 * rand());
pt[nmol] .wz = omm * sqrt(-log(rand())) * sin(pi2 * rand());
a = rand() * in.dtm;
ptnmol] .x = pt[nmol].vx * a;
pt[nmol] .y = out.c[1] [nyl+(rand()-0.5)*chy-0.5*in.g*a*a;
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pt[nmol] .vy -= in.g * a;

it ( ptinmoll.y <= 0. ) pt[nmoll.y = 0.000001;
}
totmol += nflux;
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#include <cube/cubedef.h>
#include "24.h"

recv_ok()
{
int count_ok;
MSGDESC rd_ok;
sdesc (&rd_ok, O, 0, 0, 0, 0);
rd_ok.type = step_type:;
count_ok = 0;
vwhile ( count_ok < msg_rt )
{
recvb{&rd_ok) ;
count_ok += 1;

- 69 -
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#include <cube/cubedef.h>
#include "24.h"

send_pt ()

{
int nmoel, nx, ny, node_send;
int k, m;
MSGDESC sd;

sdesc (&sd, 0, 0, 10000, 0, sizeof (struct particle));

for ( mmol = O; nmol < totmol; nmol++ ) {
nx = pt[nmoll.x / xm:
if (nx >= cwsize) {
bunch(nmol) ;
nmol -= 1;

else {
ny = pt{nmol]l.y / ym;
ny = chsize - 1 - ny;
if (nx > (locx + 1)) {
nx = locx + 1;
ptinmol]l.x = (nx + 1) * xm - 0.000001;

if (nx < (locx - 1)) {
nx = locx - 1;
ptinmol]l .x = nx * xm + 0.000001;
}
if (ny > (locy + 1)) {
ny = locy + 1;
ptInmol].y = (chsize - ny - 1) * ym + 0.000001;
}
if (ny < (locy - 1)) {
ny = locy - 1;
ptinmoll.y = (chsize - ny) #* ym - 0.000001;

if (nx >= cwsize) nx = cwsize - 1;
it (ny < 0) ny = 0;
node_send = vho(nx,ny);
if ( node_send != mynode()) {
sd.node = node_send;
sd.buf = (char *)&pt[nmol];
sendb (&sd) ;
bunch(nmol) ;
nmol -= 1;
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#include <cube/cubedef.h>

#include "24.h"

bunch( nmol )

int nmol;

{

/*

*/

_71._.

This subroutine moves the particle

data for particle # totmol-1 into the
memory formerly allocated to particle
nmol, which has just left the node space.
It alse reduces totmol and the molecule
index, nmol, by 1.

ptlnmol] .wt = ptltotmol - 1].wt;
ptlnmol] .x = pt[totmol - 1].x;
pt[nmoll .y = pt[totmol - 1].y;
ptinmol] .vx = pt[totmol -
ptinmol] .vy = ptltotmol -

ptnmol] .vz
pt[nmol] .wx
pt[nmol] .wy

pt[totmol -
ptltotmol -
pt[totmol -

pt[nmol] .wz = pt[totmol -

totmol -= 1;

1] .vx;
1] .vy;
1] .vz;
1] .wx;
11 .wy;
1] .vz;
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#include <cube/cubedef.h>
#include "2d4.h"

send_end ()
{
MSGDESC sd_end;
ptltotmol] .f1ag = 1;
sdesc (&sd_end, O, O, 10000,&pt[totmol],sizeof (struct particle));
if (( locy + 1) < chsize ) {
sd_end.node = who(locx, (locy + 1));
sendb (&sd_end) ;
if ((locx + 1) < cwsize ) {
sd_end.node = vho((locx + 1),(locy + 1));
sendb (&8d_end) ;
}
if (locx > 0) {
sd_end.node = who((locx - 1),(locy + 1));
sendb (&sd_end) ;
}
}
if ((loex + 1) < cwsize ) {
sd_end.node = who((locx + 1),locy);
sendb (&sd_end) ;
}
if (locx > 0) {
sd_end.node = who((locx - 1),locy);
sendb(&sd_end) ;
y
if (locy > 0) {
sd_end.node = who(locx, (locy - 1));
sendb(&sd_end) ;
if ((loex + 1) < cwsize) {
8d_end.node = vho((locx + 1), (locy - 1));
sendb (ksd_end) ;
}
if (locx > 0) {
sd_end.node = who((locx - 1), (locy - 1));
sendb (ksd_end) ;
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#include <cube/cubedef.h>
#include "24.h"

recv_pt ()

int count_end, i;
MSGDESC rd;
sdesc (&rd, 0, O, 10000, O, sizeof(struct particle));
i=0;
count_end = O;
while ( count_end < msg_rt )
{
rd.buf = (char *)&pt[totmol];
recvb(&rd) ;
it ( ptltotmol]l.flag == 1 ) count_end += 1;
it ( ptitotmol] .flag == 0 ) {
if ( ptltotmol].wt == out.veight ) totmol += {;
else weight();
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#include <cube/cubedef .h>
#include "2d4.h"

weight )

{
int m, i;
float a, b;

b = (float) ptltotmol].wt / out.weight;

/% pt{totmol] .wt is the weighting factor of transferred particle */
/* weight is the weighting factor of simulated particles in this node */

m=0;
while ( b>= 1. ) {
m+= 1;
b -=1;
}
a = rand();
if (a<b)m+=1;
if (m==1) {
ptltotmol] .wt = out.weight;
totmol += 1;
}
it (m>1) (
ptltotmol] .wt = out.weight;

/* the simulated particles are duplicated in the following loop */
for (1= 1; 1 <m; i++ ) {

ptltotmol + 1] .wt = pttotmol] .wt;
ptltotmol + i].x = pt[totmol] .x;

ptltotmol + 1].y = ptltotmoll.y;

ptitotmol + 1i].vx = pttotmol].vx;
ptltotmol + il.vy = pt[totmol].vy;
ptltotmol + i].vz = pt[totmol] .vz;
ptltotmol + i].wx = ptltotmol].wx;
ptitotmol + i].wy = ptltotmol].wy;
ptltotmol + i].wz = pt[totmol].wz;

}

totmol += m;
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#include <cube/cubedef.h>
#include "2d4.h"

balance()

{
int n, m, 1, nmol, i_totmol;
float a, b, c;

b = ( float ) ini_totmol / totmol;
/% want to genmerate or kill simulated particles with the factor ’'b’ */
/* 'b’ is a estimated value now, and modified later */

c=b;

n=0;

vhile ( b >= 1, ) {
nf:i;
b -=1.;

}

i_totmol = totmol;
/% 1i_totmol is totmol before balance */

for ( nmol = 0; nmol < totmol; nmol++ ) {
m=n;
a = rand();
if (a<b)m+=1;
if ( m == 0 ) bunch(nmol);
it (m>1) {
/* the simulated particles are duplicated in the following loop */
for (i =1; 1 < m; i++ ) {
ptli_totmol - 1 + i].x = pt[nmel].x;

ptli_totmol - 1 + i]l.y = ptlnmoll.y;

ptli_totmol - 1 + ij.vx = pt[nmoll.vx;
ptli_totmol - 1 + il.vy = ptlnmoll.vy;
ptli_totmol - 1 + i}.vz = ptlnmol].vz;
ptli_totmol - 1 + i].wx = ptlnmoll.wx;
ptli_totmol - 1 + il.wy = ptlnmoll.wy;
ptli_totmol ~ 1 + il.wz = ptlnmoll .wz;

}
i_totmol +=m - 1;
}
}
if (c > 1) totmol = i_totmol;
/* duplication of particles increments totmol */

b =c * ( float ) totmol / ini_totmol;
/* factor 'b’' is modified by exact totmol after balance */

out.veight = out.weight / b;
/* weighting factor is changed after balance */

for ( mmol = O; nmol < totmol; nmol++ ) pt[nmol].wt = out.weight;
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#include <cube/cubedef.h>
#include "24.h"

reset ()

{
int nx, ny, nmol;
int k, m;

for ( nx = 0; nx < in.ncx; nx++ ) {
for ( ny = 0; ny < in.ncy; ny++ )
ic[0] [nx] [ny] = O;
}

for ( nmol = 0; nmol < totmol ; nmol++ ) {
nx = (pt{nmol].x - xm * locx) / chx;
ny = (ptinmoll.y - ym * (chsize - locy - 1)) / chy;
ic[0] [nx] [ny] = ic[0] [nx] [ny]l + 1;

}

m=0;
for ( nx = 0; nx < in.ncx; nx++ ) {
for ( ny = 0; ny < in.ncy; ny++ ) {
icl[1] [nx] [ny]l = m;
m += ic[0] [nx] [ny]:
ic[0] [nx] [ny] = O;

}

for ( nmol = 0; nmol < totmol; nmol++ ) {

nx = (pt[nmol]l.x - xm * locx) / chx;

ny = (ptlnmoll.y - ym * (chsize - locy - 1)) / chy;

ic[0] [nx] [ny] = ic[0] [nx][ny] + 1;

k = ic[1] [nx] [ny] + ic[0][nx][ny] - 1;

ler[k] = nmol;

/* Index of first particle in cell [nx][ny] is
ic{1] [nx] [ny].
Index of last particle in cell [nx][ny] is
ic(1] [nx] [ny] + ic[0l[nxI[ny]l - 1 .*/
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#include <cube/cubedef.h>
#include "24.h"

coll(nx,ny)

int ny, nx;

{
int k, 1, m;
float vr, a, b, bimp, sinct, cosct, sinph, cosph;
float e, cose, sinee, xj, yj, zj, al, x1, yl, zl;
float xk, yk, zk, xkum, ykum, zkum, ab, xkvm, ykvm, zkvm;
float xkwm, ykwm, zkwm, xkul, ykul, zkul, xkvl, ykvl, zkvl;
float xkvl, ykwl, zkwl, uml, vml, wml, r, sum, svm, swm;
float sul, svl, swl, forcel, force2, uuu, vvv, wuy;

do {
/* Repeat sample coll’'s till ct[0] [nx] [nyll>time */
do {
/* Choose 2 particles from cell [nx][nyl */
/* Calculate rel velocity & collision time */
for (; ;) {
k = rand() * ic[0] [nx] [ny] + ic[1] [nx] [ny];
1 = ler[kl;
k = rand() * ic[0] [nx] [ny] + ic[1][nx][ny] ;
m = lerfk];
if (m!=1)
break;
}

vrc[0] = ptim].vx - pt[i].vx;
vrc[1] = ptm]l.vy - pt[i].vy;
vrc[2] = ptim].vz - pt[1].vz;

vr = gqrt( vre[0] » vrc[0] + vrcli]l # vrc [1] + vrc[2] * vrcl2] );
it ( vr > ct[1] [nx] [ny] )
ct[1] [nx] [ny] = vr; /% Largest value of cell rel velocity? */
a = vr / ctl1] [nx] [ny];
b = rand();
} while (a < b );

ct [0] [nx] [ny] = ct[0] [nx][ny] + collfac /
( (float) ic[0] [nx][ny]l * (float) ic[0]l[nx][nyl * vr * out.weight ) ;
out.sc[5] [nx] [ny] = out.sc[5][nx][ny] + 1.;

do {
bimp = d * sqrt( rand() );
if ( vrcl0] >= vr ) {

sinct = 0. ;
cosct = 0. ;
sinph = 0. ;
cosph = 0.;
}
else {

cosct = vrc[0] / vr;
sinct = sqrt( 1. - cosct * cosct );
cosph = vrc{1] / ( vr * sinet );
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if ( fabs( cosph ) > 1. )
cosph = 0.;
sinph = aqrt( 1. - cosph * cosph );
if (vrecl2] < 0.)
sinph = - sinph;
}
e = pi2 * rand();
cose = cos(e);
sinee = sin(e);
xj = bimp * cose * sinct;
yj = - bimp * ( cose * cosct * cosph + sinee * sinph );
zj = bimp * ( sinee * cosph - cose * cosct * sinph );
al = sqrt( d * d - bimp * bimp );
x1l = al * vrc[0] / vr;
yl = al * vrcli] / vr;
zl = al * vrcl2] / vr;
xk = (xj -x1) /4d;
ye=(yj-yl)/ q;
2zk = (zj -2z1) / 4;
} vwhile ( zk == 0. );

/* Make axis of molecule m */

xkum = - xk;
ykum = - yk;
zkum = - zk;

zkvm = zk - 1. / zk;

ab = sqrt( xk * xk + yk * yk + zkvm * zkvm );
xkvm = xk / ab;

ykvm = yk / ab;

zkvm = zkvm / ab;

xkwm = yk * zkvm - zk * ykvm;
ykwm = zk * xkvm - xk * zkvm;
zkwm = xk * ykvm -~ yk * xkvm;

/* Make axis of molecule 1 */

xkul = -xkum;
ykul = -ykum;
zkul = -zkum;
xkvl = -xkvm;
ykvl = -ykvm;
zkvl = -zkvm;
xkwl = -xkwnm;
ykvl = -ykwm;
zkwl = -zkwm;

/* Calculate coordinates of molecules m and 1 */
/* Translational velocity */

uml = 0.6 * ( xkum * vrc[0] + ykum # vrc[1] + zkum * vrc[2] );
vml = 0.6 *# ( xkvm * vrc{0] + ykvm * vrc[1] + zkvm * vrc[2] );
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+ ykwm * vrc[1] +

/* 8pin velocity */

r=0.5=*d;

sum = r * ( ptml.wx * xkum + ptIm].wy * ykum + pt[m]l.wz
svm =1 * ( ptiml.wx * xkvm + ptim].wy * ykvm + pt[m].uz
swum =1 * ( ptim].vx * xkwm + ptiml.wy * ykwm + ptiml.wz
sul = r * ( ptll].wx * xkum + pt[l1].vwy * ykum + pt[1].wz
svl = r * ( ptl1].wx * xkvm + pt[1].wy * ykvm + pt[1].wz
swl =r * ( pt[l]l.wx * xkwm + pt[1].wy * ykwm + pt[1].wz
/* Calculate collisions */

forcel = pslipf * ( vml - 0.5 * ( swm + 8wl ) );

force2 = pslipf * (wml + 0.5 * ( svm + svl ) );

uml = - in.ep * uml;

vml = vml - forcel;

wml = wml - forcel;

svl = gyl + forcel / in.beta;

svm = swm + forcel / in.beta;

svl = gvl - force2 / in.beta;

svm = svm - force2 / in.beta;

uuu = uml * xkum + vml * xkvm + wml * xkwnm;

vyv = uml * ykum + vml * ykvm + wml * ykwm;

wwy = uml * zkum + vml * zkvm + wml * zkwm;

/* Reset post collision velocity */

ptim]l.vx = 0.6 * ( ptlm].vx + pt[1]l.vx ) + uuu;

ptiml.vy = 0.5 * ( ptim]l.vy + pt[ll.vy ) + vvv;

ptim]l.vz = 0.5 * ( ptiml.vz + pt[l]l.vz ) + www;

ptl1l]l.vx = ptiml.vx - 2. * uuu;

ptil]l.vy = ptiml.vy - 2. * vvv;

ptl1l]l.vz = ptiml.vz - 2. * wwy;

ptlml.wx = ( sum * xkum + svm * xkvm + swm * xkwm ) / r;
ptiml .wy = ( sum * ykum + svm * ykvm + swm * ykwm ) / r;
ptiml .wz = ( sum * zkum + svm % zkvm + swm * zkwm ) / r;
ptll]l.wx = ( sul * xkum + svl * xkvm + swl * xkwm ) / r;
ptlll.vy = ( sul * ykum + svl * ykvm + 8wl * ykwm ) / r;
ptlll.wz = ( sul * zkum + svl * zkvm + swl * zkwm ) / r;

} while (ct[0][nx][ny] < time );

* O K K X X

zkwm * vrc[2] );

zkum );
zkvm );
zkwm ) ;
zkum );
zkvm );
zkwm ) ;
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#ifndef lint

static char sccsid[] = "0(#)random.c 4.2 (Berkeley) 83/01/02";
#endif
#include <cube/cubedef .h>
#include *2d4.h"
/*
random.c:

LN N N D IEE DK I I R R R JEE N I BN B BEE Y Y JEE CBEE R BT BN BN R R RN R K )

An improved random number generation package. In addition to the standard
rand() /srand() like interface, this package also has a special state info
interface. The initstate() routine is called with a seed, an array of
bytes, and a count of how many bytes are being passed in; this array is then
initialized to contain information for random number generation with that
much state information. Good sizes for the amount of state information are
32, 64, 128, and 266 bytes. The state can be switched by calling the
setstate() routine with the same array as was initiallized with initstate().
By default, the package runs with 128 bytes of state information and
generates far better random numbers than a linear congruential generator.
If the amount of state information is less than 32 bytes, a simple linear
congruential R.N.G. is used.

Internally, the state information is treated as an array of longs; the
zeroeth element of the array is the type of R.N.G. being used (small
integer); the remainder of the array is the state information for the
R.N.G. Thus, 32 bytes of state information will give 7 longs worth of
state information, which will allow a degree seven polynomial. (Note: the
zeroeth word of state information also has some other information stored
in it -- see setstate() for details).

The random number generation technique is a linear feedback shift register
approach, employing trinomials (since there are fewer terms to sum up that
way). In this approach, the least significant bit of all the numbers in
the state table will act as a linear feedback shift register, and will have
period 2°deg - 1 (where deg is the degree of the polynomial being used,
agsuming that the polynomial is irreducible and primitive). The higher
order bits will have longer periods, since their values are also influenced
by pseudo-random carries out of the lower bits. The total period of the
generator is approximately deg#*(2**deg - 1); thus doubling the amount of
state information has a vast influence on the period of the generator.
Note: the deg*(2+*deg - 1) is an approximation only good for large deg,
wvhen the period of the shift register is the dominant factor. With deg
equal to seven, the period is actually much longer than the 7*(2%*7 - 1)
predicted by this formula.

*/

/*
*
*
%
*
*

*/

#define TYPE_O
#define BREAK_O

For each of the currently supported random number generators, we have a
break value on the amount of state information (you need at least this
many bytes of state info to support this random number generator), a degree
for the polynomial (actually a trinomial) that the R.N.G. is based on, and
the separation between the two lower order coefficients of the trinomial.

/* linear congruential */

© O
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#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

/*

DEG_O
SEP_0O

TYPE. 1
BREAK_1
DEG_1
SEP_1

TYPE_ 2
BREAK 2
DEG_2
SEP_2

TYPE_ 3
BREAK_3
DEG_3
SEP_3

TYPE_4
BREAK_4
DEG._4
SEP_4

256
63

- 8] -

/*

/*

/*

/*

* Array versions of the above information to make
* on fact that TYPE i == i,

*/
#define

static

static

~
L K SN IR R BN I S AN )

*
~

static

long

long

MAX_TYPES B

degrees [ MAX_TYPES ]

seps[ MAX_TYPES ]

/*

Initially, everything is set up as if from :

initstate( 1, &randtbl, 128 );

x**T + x*%3 + 1 */

x**1p + x + 1 */

x*%31 + x**3 + 1 */

x**63 + x + 1 */

code run faster -- relies

max number of types above */

= { DEG.0, DEG_1, DEG_2,

DEG_3, DEG_4 };

= { SEP_0, SEP_1, SEP_2,

SEP_3, SEP_4 };

Note that this initialization takes advantage of the fact that srandom()
advances the front and rear pointers 10*rand_deg times, and hence the
rear pointer which starts at O will also end up at zero; thus the zeroeth
element of the state information, vhich contains info about the current
position of the rear pointer is just

MAX_TYPES* (rptr - state) + TYPE_3 == TYPE_3.

long

randtbl[ DEG_3 + 1 ]

0x0a319039,
Oxde3b81e0,
0xT7449e66b,
0x8c2e6801,
0xda672e2a,

0x32d9c024,
0xdf0aéfbb,
Oxbebidbbo,
Oxeb3d769f,
0x16588ca88,

= { TYPE_3,

0x9b663182, 0xbdaif342,
0x£103bc02, 0x48£340fb,
Oxabbcb018, 0x9465b41d,
OxbiieeOb7, 0x244368b86,
0xe36973b6d, 0x904f3bf7,
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0xd71568£d6, Ox6fa6f061, Ox616e6b96, OxacO4efdc,
0x36413£03, 0xc622c298, Oxfb5a42ab8, 0xBa88d77b,
0x15ad9d0e, 0x8999220b, 0x27fb47b9 };

~
*

fptr and rptr are two pointers into the state info, a front and a rear

pointer. These two pointers are alvays rand_sep places aparts, as they cycle

cyclically through the state information. (Yes, this does mean we could get

away with just one pointer, but the code for random() is more efficient this

vay). The pointers are left positioned as they would be from the call
initstate( 1, randtbl, 128 )

(The position of the rear pointer, rptr, is really O (as explained above

in the initialization of randtbl) because the state table pointer is set

to point to randtbl[i] (as explained below).

* ¥ ¥ B ¥ H X ¥ *

*
~

static 1long *fptr = grandtbl[ SEP_3 + 1 ]1;
static long *rptr = &randtbl( 1 ]1;

~
*

The following things are the pointer to the state information table,
the type of the current generator, the degree of the current polynomial
being used, and the separation between the two pointers.

Note that for efficiency of random(), we remember the first location of
the state information, not the zeroeth. Hence it is valid to access
state[-1], vhich is used to store the type of the R.N.G.

Also, ve remember the last location, since this is more efficient than
indexing every time to find the address of the last element to see if
the front and rear pointers have wrapped.

LR K JNE BEE IR EE N S

#*
~

static long *state &randtbl[ -1 1;
static long rand_type
static long rand_deg
static long rand_sep

TYPE_3;
DEG_3;
SEP_3;

static 1long *end_ptr &randtbl[ DEG_3 + 1 ];

~
*

srandom:

Initialize the random number generator based on the given seed. If the
type is the trivial no-state-information type, just remember the seed.
Otherwise, initializes state[] based on the given "seed" via a linear
congruential generator. Then, the pointers are set to known locations
that are exactly rand_sep places apart. Lastly, it cycles the state
information a given number of times to get rid of any initial dependencies
introduced by the L.C.R.N.G.

Note that the initialization of randtbl[] for default usage relies on
values produced by this routine.

L IR I I I A IR K Y O

*
~



- 83 -

Sep 30 16:28 19856 random.c Page 4

srandom( x )

~
*

#* X N RE R R W N RN NN

unsigned x;
long i, §:

if( rand_type == TYPE O ) {
state[ 0 ] = x;
}

else {
=1
state[ 0] = x;
for( i = 1; 1 < rand_deg; i++ ) {
state[1] = 110351b6246*state[i - 1] + 12345;
}
fptr = kstate[ rand_sep 1;
rptr = kstate[ 0 1;
for( i = 0; 1 < 10*rand_deg; i++ ) rand();

initstate:

Initialize the state information in the given array of n bytes for
future random number generation. Based on the number of bytes we

are given, and the break values for the different R.N.G.’'s, we choose
the best (largest) one ve can and set things up for it. srandom() is
then called to initialize the state information.

Note that on return from srandom(), we set state[-1] to be the type
multiplexed with the current value of the rear pointer; this is so
successive calls to initstate() won't lose this information and will
be able to restart with setstate().

Note: the first thing we do is save the current state, if any, just like
setstate() so that it doesn’'t matter vhen initstate is called.
Returns a pointer to the old state.

*
~

char =
initstate( seed, arg_state, n )

unsigned seed; /* seed for R. N. G. */

char *arg._state; /* pointer to state array */

int n; /* # bytes of state info */
char *ostate = (char *)( &state[ -1 1 ):

if( rand_type == TYPE O ) state[ -1 ] = rand_type;
else state[ -1 ] = MAX_TYPES#*(rptr - state) + rand_type;
if( n < BREAK.1 ) {

if( n < BREAK_O ) return;

rand_type = TYPE_O;

rand_deg = DEG_O;

rand_sep = SEP_O;
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else {
if( n < BREAK.2 ) {
rand_type = TYPE_ 1;
rand_deg = DEG_1;
rand_sep = SEP_1;

}
else {
if( n < BREAK.3 ) {
rand_type = TYPE_2;
rand_deg = DEG_2;
rand_sep = SEP_2;
}
else {
if( n < BREAK 4 ) {
rand_type = TYPE_3;
rand_deg = DEG_3;
rand_sep = SEP_3;
}
else {
rand_type = TYPE_4;
rand_deg = DEG_4;
rand_sep = SEP_4;
}
}
}
}
state = ¥( ( (long *)arg_state )[1] ) /* tirst location */
end_ptr = &state[ rand_deg ]; /* must set end_ptr before srandom */

srandom( seed );

if( rand_type == TYPE O ) state[ -1 ] = rand_type;
else state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
return( ostate );

}
/*
* getstate:
* Restore the state from the given state array.
* Note: it is important that we also remember the locations of the pointers
* in the current state information, and restore the locations of the pointers
* from the old state information. This is done by multiplexing the pointer
* location into the zerceth word of the state information.
* Note that due to the order in which things are done, it is 0K to call
* getstate() with the same state as the current state.
* Returns a pointer to the old state information.
*/
char *
setstate( arg_state )
char *arg_state;
{
long *nev_state = (long #*)arg_state;
long type = new_state [0]1AMAX_TYPES;

long rear = nev_state [0] /MAX_TYPES;
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~
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r

{

char *ostate = (char *)( &statel -1 1 );

if( rand_type == TYPE.O ) statel -1 ] = rand_type;
else state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
switch{ type ) {

case TYPE_O:
case TYPE_1i:
case TYPE_2:
case TYPE_3:
case TYPE_4:

rand_type = type;

rand_deg = degrees[ type ];
rand_sep = seps{ type 1;
break;

default:
print ( "error" );
}
state = new_state[ 1 ];
if( rand_type != TYPE O ) <
rptr = kstate[ rear ];
fptr = kstate[ (rear + rand_sep)¥rand_deg ];

}

end_ptr = &state[ rand_deg ]; /* set end_ptr too */

return( ostate );
*
* random:
* If ve are using the trivial TYPE_ O R.N.G., just do the old linear
* congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
* same in all ther other cases due to all the global variables that have been
* set up. The basic operation is to add the number at the rear pointer into
* the one at the front pointer. Then both pointers are advanced to the next
* location cyclically in the table. The value returned is the sum generated,
* reduced to 31 bits by throwing away the "least random" low bit.
* Note: the code takes advantage of the fact that both the front and
* rear pointers can’t wrap on the same call by not testing the rear
* pointer if the front one has vrapped.
* Returns a 31i-bit random number.
*/
loat
and()

long i;

float i

if( rand type == TYPE O ) (
i = state[0] = ( state[0]*1103516245 + 12345 )&OxTLfLfffe;
}
else {
*fptr = *fptr + *rptr;
i = (xfptr >> 1)&OxTLLLLLLL; /* chucking least random bit */
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if( ++fptr >= end_ptr ) {
fptr = state;

++rptr;
}
aelse {

if( ++rptr >= end ptr ) rptr = state;
}

}
j = (float)i / OxTLLLfffs;
return( j );
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#include <cube/cubedef.h>

#include "24.h"

char printr[MAXNAM];

short
short
short
float
float
float
float
float
float

step_type;
node,pid.dim,chdim,cwdim,x,y,locx,locy,size,chsize,cwsize, msg_rt;
1c[2] [NXCELL] [NYCELL], lcrNM], ini_totmol, b_totmol, totmol;
pi2, sq2, sqd;

xm, ym, chx, chy, cxs, um, vmw, time, omm, ami, acu, fnd;

d, vrm, omw, pslipf, wslipf, collfac;

<t [2] [NXCELL] [NYCELL], vrec[D3];

opl14};

rand() ;

unsigned int seed;
#ifdef DEBUG

float

#endif

potent, totale;

struct particle pt[NN];
struct output out;
struct input in;
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/* This file declares all the external variables in the cube program. */
/* Their types are defined in the file ’2dcube.c’ */

#include <math.h>
#include "24.def"

extern

extern
extern

extern
/*

*

*

*

*

*/
extern
extern
extern
/*

*

*/
extern
extern
/*

*

%*

*/

extern

extern
extern

gtruct

}:

extern

struct

/*
/*

*

char printr [MAXNAM] ;

short step_type;
short node,pid,dim,chdim,cwdim,x,y,locx,locy,size,chsize,cwsize,msg_rt;

short i1c[2] [NXCELL] [NYCELL], lcr[NM]l, ini_totmol, b_totmol, totmol;
ic[0] [nx] [ny] = no. particle in cell
ic[1] [nx] (ny] = summation by columns to nx, ny-1
lcrlnmol] = particle label related to storage of
particle quantities -- assigned to a particle
during initial problem setup

float pi2, sq2, sqd:
float xm_node, ym_node, chx, chy, cxs, vmw;
float time, omm, ami, acu, fnd;
totmol = total number of molecules in node mesh (MUST ALWAYS
BE LESS THAN NM)

float d, vrm, omw, pslipf, wslipf, collfac;
float ct[2] [NXCELL] [NYCELL], vrc[D3];
ct[0] [nx] [ny] = cell time
ct[1] [nx] [ny] = maximum relative speed
vrclx, y, z] = components of collision pair relative speed

float opl14];

float rand();
unsigned int seed;

particle {
int flag: /% flag = 1 for end messages, flag = O for particles */
float wt; /* wt is weighting factor, and initially = 1. */
float x;
float y:
float vx;
float vy;
float vz;
float wx;
float wy;
float wz;

struct particle ptil;

output {
short np,nulli;
float weight;
weight = weighting factor for this node */
float c[DIMEN] [NMXCELL], sc[D6] [NXCELL] [NYCELL];
c[x, ylIncx, ncy] = coord of cell center
sc[0] [ncx] [ncy] = accum no. parts in cell
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* sc[1] [nex] [ney] = accum u veloc in cell
* sc[2] [ncx] [ncy]l = accum v veloc in cell
* sc[3] [nex] [ncy]l = accum trans enrgy in cell
* sc[4] [ncx] [ney] = accum spin enrgy in cell
* sc[6] [ncx] [ncy]l = accum no colls in cell
*/

}:

extern struct output out;

/% Input variables */
struct input {
short nprint, nstep, seed;
short ncx ,ncy, mc, runmax, null2;
float Tw, beta, uw, u_init, u_enter, mc_enter, xm, ym;
float dtm, ep, es, ev, esv, g, diff;
}:

extern struct input in;
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