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Abstract

The determination of an aerosol size distribution is presently difficult because current
aerosol instruments cannot perfectly discriminate aerosols based on size and because
a only limited number of data can be obtained. As a result, for a given set of data
the relationship between the unknown distribution and the data is a finite Fredholm
integral equation. If the size distribution is desired, then one should answer the

following
e What measurements should be taken?
o How should the measurements be used to determine a size distribution?

In this thesis, we shed some light on the answers to these questions by finding optimal
solutions to the Fredholm integral equation, and by characterizing the size of the
solution set.

The questions of existence and uniqueness of solutions subject to linear inequal-
ity constraints are examined. Optimal solutions based on regularization are devel-
oped, and numerical methods for finding these solutions are described. Numerical

experiments are presented that demonstrate the importance of
o describing dependent error sources.
e considering the magnitude of the errors in the data when there are few data.

e using generalized cross validation when there are many data and the magnitude

of the errors is unknown.

An analysis that uses some simple information concepts is presented for examin-
ing the size of the solution set. An example is presented that demonstrates the effect
of dependent errors on the information provided by the data, and some illustrative

experiment design studies are presented.



Contents

Acknowledgements
Abstract

Table of Contents
List of Figures
Nomenclature

1 Introduction

1.1 Motivation . . . . . . . . e e e e e e e e e e e e
1.2 Thesis outline . . . . . . . . . . . e

Inversion of Aerosol Size Distribution Data
2.1 Introduction . . . . . . . . & v v i e e e e e e e e

2.2 The ill-posedness of the aerosol inverse problem . . . ... ... ...

2.3 Constrained regularization . . . . . .. ... .. ... .00
2.4 Equivalent optimization statements . . . . . .. ... ...
2.5 Data with independent errors . . . . . . . ... ..o
2.6 Numerical approach . . . . . . . .. .. . ... ... .
2.7 Examples . . . . . . . ...

2.8 Comparison with other aerosol inversion techniques . . . . . .. ...

2.9 Conclusions . . . . . . . i i i e e e e e e

Regularized Solutions to the Aerosol Data Inversion Problem

3.1 Introduction . . . . . . . . . . . . e

3.2 Solution to the regularized problem . . . .. .. ... . ... .....
3.2.1 Some numerical considerations . . . . .. ... ... ...,
3.2.2 A finite-dimensional solution . . . . . ... ... .00

3.3 Minimizing the expected recovered error . . . . . ... ... ... ..

3.4 Generalized cross validation . . . . . . . . . . .. . . . ..

iii

iv

vii

viil

11
15
16
19
21
24
28



vi

3.5 Numerical comparisons of Ap, Ay, and Ag . . ... ... ... .... 59
3.6 Conclusions . . . . . . .. . . .. . e 61

Estimating the Variance in Solutions to the Aerosol Data Inversion

Problem 83
4.1 Introduction . . . . . . . . . .. ... e 85
4.2 Variance of the size distribution . . . . . .. ... ... ... ... .. 86
4.3 Information . ... .. ... .. ... 88
4.4  Application to instrument analysis and design . . . ... ... ... 91
4.5 The covariance matrix . . . . . .. ... .. ... ... 94
4.6 Conclusions . . . . . . . . . .. e e e e 95
Conclusions 110
5.1 Summary . . . ... e e e e 110
5.2 Project impact on the aerosol community . ... ... ... .. ... 111
5.3 Recommendations for futureresearch . .. .. ... ... ... ... 111

5.3.1  Justification for additional work . . . . .. .. ... .. ... 111

5.3.2 Measuring f(z,t) . . ... ... 112

5.3.3 Extrapolationto faco . . . . . ... oL 112
MICRON User’s Guide and Reference 113
Al Introduction . . . . . . . . . ... 114
A2 Anexample . . . . .. .. 116
A3 MICRON’sdatafiles . ... ... ... ... .. . ... . ....... 121
A4 Anotherexample . ... ... ... ... ... ... 136
A.5 A description of theoutput . . .. ... ... ... .. oL 145
A.6 Example instrument response functions . . . . . ... ... ... L. 147

AT Incaseof trouble . . . . . . . . . . ... 153



vil

List of Figures

A.1 Impactor A response curves . . .. ... .. ..

A.2 Size distributions with smoothing defined by CRR. . . . . . . . .. ..

A.3 Size distribution with smoothing defined by CGCV

............



viii

Nomenclature

g.,s'?:“
/-\/-.\
8 8
R

Qi
~
8

~olm mobaXw

R(
T
N(0,1

< S
R g

&=

el

S

C

)

N

Subscripts
A

number of inequality constraints
number of measurements or data
number of linear splines used to represent the size distribution

function
log of particle diameter

datum corresponding to the i** instrument response
measurement errors

smoothing or regularization parameter

i** instrument response or kernel function

aerosol size distribution function

basis for linear splines

operator that maps f(z) to y;

matrix of inequality constraints

finite difference matrix

matrix that relates the standard deviations of the error sources

to the data
Hessian of quadratic functional

left-hand singular eigenvectors in singular value decomposition
right-hand singular eigenvectors in singular value decomposition
157 — g7

regularization functional, f(f®(z))?dz

the set of normal random variables with zero mean and unit

variance
expectation operator

E [[lg* - 7|l
the set of f(z) that satisfy ||[g™ — 7% <s
size interval over which the solution will be computed

obtained from the regularized solution with smoothing parame-
ter A



IX

Superscripts
T  transpose
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Chapter 1

Introduction

1.1 Motivation

A large component of research in aerosol science is devoted to understanding the
physics and chemistry associated with the evolution of the aerosol size distribution,
f(z), that describes how the aerosol is distributed with respect to size z. A frequent
problem in this regard is experimentally measuring the size distribution. The instru-
ments that are designed to measure the size distribution in general separate particles
based on size into a finite number of channels or bins, and then generate a signal
that is in most cases proportional to the amount of aerosol in that channel. The
instruments are not able to discriminate perfectly among the particles, and thus one

is left with the following problem: find f(z) given
/If(a:)k,-(x)d:czyf”—l—ei i=1n (1.1)

subject to inequality constraints, where k;(z) is proportional to the instrument’s
response to an impulse distribution of size z, and yM and ¢; are the corresponding
datum and error respectively. The constraints are generally linear, and reflect f(z) >
0 or |yt — yM| < 6 for example.

This finite Fredholm integral equation is ill-posed. In particular, observe that
(1) for a continuum the solution will be unstable, (2) for a finite number of data, then
the solution is most likely not unique, and (3) because the data are in error, solutions
need not exist.

Much of the motivation for working on this problem comes from the lack of an
acceptable solution procedure. Since 1962, several solution techniques have been pub-
lished [13]. Many of these methods have concentrated on the numerical procedure,
and ignore the lack of uniqueness. As a result, the solution obtained is an uncharac-
terized, random element of the solution set. Even at the time of this writing, these
approaches are still being proposed to the aerosol community because of a general lack

of understanding of the aerosol data inversion problem. Crump and Seinfeld [13,12]



made a significant contribution to the area in 1982 with the use of regularization and
generalized cross validation in the computer codes INVERSE and CINVERSE. Their
work, in addition to containing numerical deficiencies, was incomplete, and in many
cases the proposed solutions were unrealistic.

Additionally, many researchers have sought solutions to the inversion problem
when the number of data are limited. Here, the size of the set of reasonable distribu-
tions is large, and a single size distribution cannot adequately describe the ”solution”
to the inversion problem. A similar problem is describing a random variable with an
undesirably large variance. The mean value of the random variable is only part of
the story; the variance is also important. Thus, in the inversion problem, it is also
desirable to have an estimate of variance of the solution, and this aspect has been

ignored in the literature.

1.2 Thesis outline

The goal of this thesis is to describe optimal solutions to the aerosol data inversion
problem and present techniques for finding these solutions, and to demonstrate the
value and ease of estimating the variance of these solutions.

In Chapter 2, some aspects of existence and uniqueness to the inversion prob-
lem and the regularized approximations are examined. Regularized solutions are
described, and several improvements over the regularized solution shown in [12] are
presented. The problem of dependent errors in the data is examined, and numerical
experiments are presented that demonstrate the value of including a description of
the dependent errors. Theoretical and numerical comparisons are made between the
regularized solution and other techniques in use today.

In Chapter 3, different methods for choosing the regularization parameter are
examined and numerical techniques are developed for the use of these methods when
inequality constraints are important. Numerical experiments are presented that

demonstrate the importance of
e using the inequality constraints to choose the regularization parameter.
e using generalized cross validation when the magnitude of the errors is unknown.
e having sufficient data when using generalized cross validation.

In Chapter 4, the size distribution is viewed as an element of a random process

with a known autocorrelation function. This information could be used to describe an



optimal solution, but the resulting solution is too sensitive to the estimated mean and
autocorrelation function. Instead the information is used to measure the size of the
solution space in terms of the variance of linear functionals of the size distribution and
to measure the amount of information provided by a set of measurements. Examples
are presented that demonstrate the effect of dependent errors on the information
provided by the data. Also some techniques for improving the amount of information
provided by common instruments are experimentally investigated.

Finally, a computer program that makes the theory and calculations described
in this thesis readily accessible was developed and is currently being distributed to
the aerosol community around the world. A user’s manual for this program is in the

appendix.
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Inversion of Aerosol Size Distribution Data



Abstract

A comprehensive analysis of the problem of determining aerosol size distributions on
the basis of data from conventional measuring instruments is presented. An inversion
algorithm based on regularization is developed that enables one to find size distribu-
tions that are both smooth and faithful to a set of data generated by a combination
of instruments. The algorithm includes consideration of the dependent nature of er-
rors in the data. Several numerical examples are presented that compare the present

technique with previously available methods.



2.1 Introduction

Aerosol size distributions are determined by passing the aerosol through instruments
that classify the particles according to size based on their optical, electrical, or dy-
namic behavior. The raw data from these instruments must then be inverted to obtain
the size distribution. The inversion of aerosol size distribution data to find the size
distribution is not a straightforward problem, however, and some evidence of this are
the many different methods proposed in the literature for finding size distributions.
The instruments used to determine the aerosol size distribution usually generate

data as follows:
o the particles are separated into m channels based on size.

e a nonnegative signal, yM, that is related to the number of particles in each

channel is measured.

The relationship between the error-free data and the size distribution is gener-

ally given by
vi= [ K@@ d =1, m, (21)

where the nonnegative kernel function for instrument channel ¢, k;(z), is determined
from calibration data or theoretical models and represents the channel’s response to
a monodisperse aerosol sample of size z, and 7 is an interval such that the product

f(z)ki(z) is zero outside Z. We can rewrite Eq. (2.1) compactly as
Kf=gt=gM+¢& (2.2)

where overbars represent column vectors and £ represents the error of measurement.
Instruments are ideally designed to minimize the range of particle sizes that

contribute to each datum, that is with the goal of having
ki(z) — ab(z — z;),

and they are designed so that particles of each size contribute only to a single datum.
In this case the relationship between f(x) and 7™ can be approximated by a matrix
that has a stable inverse, and an approximate solution is easily found. This technique
is used to invert data from the differential mobility analyzer (DMA) [3,23] that has
kernel functions similar to those shown in Figure 1. The position of the primary peak
is controlled by the strength of the electric field that collects charged particles in a

given electrical mobility interval. The smaller secondary peaks are present in addition



to the primary peak because larger particles that carry two or more charges can have
the same mobility as a small particle carrying a single charge. If the variance of
the peaks in the size distribution is large in comparison to the variance of the DMA
peaks, as in the case of the distribution shown in Figure 1, then the size distribution
can be approximated as a constant in the interval of the DMA peak. Additionally,
if the remaining DMA kernel functions are chosen so that the primary peaks overlap
the secondary peaks then the size distribution can be found by inverting a matrix
that is nearly diagonal. Even though the inverse is stable here, we will see that often
this inversion procedure is inadequate.

In general, however, the kernel functions of aerosol instruments are broad and
can have considerable overlap. This can be seen, for example, from the kernel func-
tions for a screen-type diffusion battery [2] also shown in Figure 1. Each stage consists
of screens that collect the particles by diffusion, impaction, and interception; here the
kernel functions represent the fraction of particles collected by the stages at each
diameter. An m X m matrix approximation relating the data from this instrument
to the size distribution yields an inverse that is overly sensitive to errors in the data.
This instability due to kernel function overlap is compounded when data are available
from more than one instrument responding to particles in the same size interval.

The difficulty of the aerosol data inversion problem lies in the failure of the
inverse of K to exist; for most §* there are infinitely many solutions to Eq. (2.2).
Additionally, the domain of K is constrained to include only nonnegative functions.
This constraint not only adds difficulty to the task of finding solutions, but also
introduces the possibility that solutions to Eq. (2.2) do not exist for a given 7M.
Approximate inverses obtained by discretization usually generate unrealistic results
because of their sensitivity to errors in the data.

The goal of this paper is to present a comprehensive analysis of the aerosol
data inversion problem and to develop an inversion algorithm based on regularization
that enables one to find smooth size distributions that are faithful to data from any
combination of instruments that satisfy Eq. (2.1). We also show how information
on the dependent nature of the errors in the data can be included in the inversion
and show the importance of biasing the data to reflect dependent errors. The results
of some numerical experiments are presented along with theoretical and numerical

comparisons with other inversion techniques currently used.



2.2 The ill-posedness of the aerosol inverse problem

In this section some theoretical aspects of the linearly constrained inversion problem
that apply to the aerosol inversion are discussed. We will show that solutions to
Eq. (2.1) do not exist for all §* and that when solutions do exist, they are rarely
unique. The theorems we present will help explain why some of the inversion methods
described in the literature can fail to converge.

A tool that we use in this paper is the singular value decomposition. Any m xn

matrix F satisfies
X, 0 VpT

0, 0 173

where ¥, is a p X p diagonal matrix whose diagonals are the square roots of the

E = [U,,Uj] { (2.3)

positive eigenvalues of EET, [U,,Us] is an m X m orthonormal matrix, and [V}, Vo]

is an n X n orthonormal matrix. The matrices U, and V), have p columns, and this
leads to

E= UPEPV;,T.
The pseudo-inverse of E, written ET, is

E' =V, 507,

and arises in solutions to least-squares problems [28].
In the remainder of this paper we assume f(z) lies in an n-dimensional vector

space, Hy(0,1), with basis vectors g;(z), and we write
f(e) = fT3(2)

where f is the coordinate vector. The more general case of f(z) in an infinite-
dimensional Hilbert space is not considered here; we only assume that n is large
enough to approximate all size distributions of interest as closely as needed. For
example, it is difficult to justify choosing n < m, since we would be arbitrarily
eliminating a large number of reasonable solutions and restricting ourselves to a set
that contained no solution to Eq. (2.1). We also assume the kernel functions are
linearly independent and that n is large enough to capture this independence.

We assume the size distribution must satisfy

1. f(z) 2 0. This constraint differs from the remaining constraints in that it must
be satisfied by definition. If the data are accurate and the problem is well-
posed, then solutions to the unconstrained inversion will automatically satisfy

this constraint, but this is rarely the case when inverting aerosol data.



2. constraints that arise from ”accurate” linear combinations of data. We will

discuss these further in Section 2.5.

3. constraints that are supplied by the experimentalist. These may include box
constraints on the error or bounds on the total number or mass. The experi-
mentalist should be aware of the danger of placing too many constraints on the

solution, because one could inadvertently eliminate all of the feasible solutions.

4. 7 (yM — yB) < 0 in some cases. We discuss this constraint in more detail in
Section 2.5.

To ease the analysis we assume
f(z)>0 ifandonlyif f; >0 :=1,...n.

In other words one can constrain f(z) to be nonnegative with only linear inequality
constraints on the n f; values. Thus all of the constraints listed above can be written

compactly as the ko inequality constraints
Cf>b (2.4)

where C' is a k¢ X n matrix. We will use C, to represent the set of all f(z) in H,(0,1)
that satisfy Eq. (2.4). Observe that ko = 0 implies C,, = H1(0,1). Unless otherwise
stated, we will assume f(z) is at least constrained to be nonnegative.

Since ™ is in error, we are not only interested in solutions to Eq. (2.1), but

more generally we are interested in all solutions that satisfy
IKf -5 <s (2.5)

where s is a nonnegative constant, and || - || represents the Euclidean norm. We use
the notation C, to represent the set of f(z) in C that satisfy Eq. (2.5); thus Co is
the set of f(z) in Co that satisfy Eq. (2.1). Note also that in this notation

s <38 implies C, CC;

Size distributions that satisfy Eq. (2.5) may not exist, or in other words C, may
be empty. It is clear, for example, that there are no f(z) > 0 that satisfy Eq. (2.1)
when there are two data, y; < y,, and k;(z) > ky(z). This leads to the observation for
any m that if we find a linear combination of data that is negative and the same linear

combination of kernel functions is nonnegative, then Co must be empty. Theorem 5 in
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the Appendix generalizes these observations to arbitrary C and offers an alternative
characterization of the existence of solutions to Eq. (2.5).
If we assume the aerosol size distribution is unconstrained, then b, C?, and U,

are 0, Vo = I, and Theorem 5 reduces to the Fredholm alternative of linear algebra:

One and only one of the following ts true:

(1) |KFf—gM|| <s has a solution f
(i) zTK =0, zTyM™ > s, has asolution [|Z] =1

If the rows of K are linearly independent as we have assumed, then the columns of
K span R™, or Z = 0 is the only vector satisfying Z' K = 0, and a solution to the
aerosol size distribution can always be found when f(z) is incorrectly assumed to be
unconstrained.

If the only constraints on the solution are f > 0, then Uy, V;, and b are 0, C =

Ct = I, and Theorem 5 restates the Farkas alternative [15] of linear programming;:

One and only one of the following is true:

(i) ||Kf—gM||<s hasasolution f>0
(ii) 2TK >0,zTyM > s has a solution ||z|| =1

This coincides with the previous observation that if we find a linear combination of
kernel functions that is nonnegative, then no size distribution can recover a data
vector if the resulting linear combination of data is negative. Note also if C' = I, and
if there exists intervals X; CZ i =1,...m such that k;(z) is the only nonzero kernel
function on Xj;, then for large n the Farkas alternative guarantees Cy is not empty.
This follows from the observation that the existence of X; implies 2T K > 0 is true
only if Z > 0, and this implies ZTgM > 0 since y™ is nonnegative. Thus the second
alternative is false, or Eq. (2.5) has a solution.

One property of the aerosol inversion problem that has been noted is the
nonuniqueness of a solution to Eq. (2.5). This observation is based on the fact that
n > m implies the kernel of K is not empty. This analysis is not complete, however,
because the set of solutions must lie in C,. The statement given in Theorem 6 in the
Appendix is more precise and shows that the solution to Eq. (2.5) is unique in some

rare circumstances. For example if f(z) is constrained to be nonnegative, the single
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datum y, = 0, and k; > 0, then f(z) = 0 is the unique size distribution that satisfies
1K f = g™ <o.
In the remainder of this paper we will be concerned primarily with solutions in

the solution set C,, where sg is the standard deviation of the sum of the errors,
sz = E[ll7* — 7M. (2.6)

Here E denotes the expectation operator. We assume the error sources are normal
random variables and that ™ is bounded. This implies if C,, is not empty, then sg
is bounded. Theorem 7 in the Appendix confirms that the set we are interested in

usually is not empty and that it usually does not define a unique element.

2.3 Constrained regularization

Regularization is a method for finding solutions to ill-posed problems [21,34,40]. To
find a regularized solution, the ill-posed linear inverse problem given by Eq. (2.2) is
approximated by a well-posed A-family of problems that have stable inverses, K:{.
The well-posed family of problems is chosen to approximate the ill-posed problem in
the sense that

KIgM — fo(z) as A — 0

where fo(z) is a least-squares solution, and where A > 0 is referred to as the regu-
larization (or smoothing) parameter. The regularized solution to Eq. (2.2), KIzM, is
stable with respect to perturbations in ™ and can be chosen arbitrarily close to a
least-squares solution.

In our case, we replace the ill-posed problem of finding solutions to Eq. (2.2)
by the following:
Find f(z) € Cs that minimizes q(A, f), where

and

R(f) = |IKf-g"|?
L(f) = [i(f'(=))*dz.
The first term in Eq. (2.7), R(f), penalizes solutions that disagree with the measured

data. The second term, Ja(f), is called the regularization (or smoothing) functional,

and here we set Jy(f) equal to the semi-norm originally proposed by Phillips [38]



12

that penalizes solutions that are not smooth. This form of penalty seems justified
when determining aerosol size distributions because aerosol processes often tend to
smooth rough distributions. Also, in the absence of a priori information, it is difficult
to justify presenting a solution with structure and oscillations that are beyond the
resolving capabilities of the data.

The application of regularization to the aerosol inversion problem is more diffi-
cult than to the linear inverse problem described by Phillips because of the inequality
constraints imposed by C'. If the set of constraints is empty then the solution to the

minimization of Eq. (2.7) is well known [42]):
f=(KTK + \DTD)'KTgM

where

Jo(f) = JET D™D f
In our case, however, C' at least contains the n inequality constraints f > 0, and these
prevent us from finding an analytical solution.

It is easy to show that a minimum of Eq. (2.7) always exists in contrast to
solutions defined by Eq. (2.2), as long as Cs, is not empty. A unique minimum of
Eq. (2.7), however, is not guaranteed. For the particular regularization functional
used in this paper, we have a convenient sufficient condition for uniqueness: if linear
functions are not in the kernel of K, then f, is unique. To prove this, note that the
assumed condition implies KTK + ADTD is positive definite, and this implies the
solution is unique [15].

The solution to Eq. (2.2) is still not defined because A is not yet specified. To
help guide us we note that choosing a larger A increases the amount of smoothing at
the expense of fidelity of the solution to the data. Theorem 8 in the Appendix makes
this precise; this theorem tells us that over some interval of R(A) (or J3(f))), the
question of choosing A can be replaced by the problem of choosing R(A) (or Ja(f2)),
and that over this interval the smoothness increases as A increases. It is unlikely that
one can a priori define an appropriate value for A or Jy(fy), but it seems reasonable
to define a target R()).

We proceed as suggested by Morozov [35] and define the target R()), R:, as

(R, — sg)? < VAR[||7* — s™|] (2.8)

where sg is defined in Eq. (2.6), and VAR denotes variance. Theorem 8 does not
guarantee the existence of A that satisfies Eq. (2.8); in fact the following observation
shows that A may not exist: Let J, be the set of all f(z) in Cs that minimizes Jo(f),
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and let Rg oo be the minimum value of R(f) on this set. If sg > Ro, then f)
satisfying Eq. (2.8) does not exist. This claim can be argued by noting that if it is
not true, then we can find a A and a solution to Eq. (2.7), f), such that

R(A) > R(fs)
where f; is an element of J;. This leads to

R(A) + X Jo(fr) > R(fr) + X Jo(f1)

and contradicts the assumption that fy is a minimum of Eq. (2.7). The difficulty
here is that when the expected errors are large, there can be an infinite number
of solutions that both minimize J,(f) and satisfy R(f) < sg; J2(f) is unable to
discriminate among solutions when large errors are acceptable. Here we choose the
solution in J; that minimizes R(f).

Calculating sg is usually difficult, and to simplify the calculations we assume
Eq. (2.1) has been rescaled by /mo;. When k¢ = 0, then the calculation is trivial

and yields
sg =1. (2.9)

Using Eq. (2.9), as suggested in [12], is a simplification that has caused us difficulties
because sometimes the minimum of R(f) on C, is greater than one. One must
remember that the errors may not be normally distributed after g™ is measured if
kc # 0. Here we simplify the calculation of sg by assuming that the range of K,
R(K), is radially distributed about §™, or

y € R(K) implies aﬂ%ﬂ

€ R(K) (2.10)
where
Ry <a< R, (2.11)

and R and R, are the minimum and maximum of R(f) on Ce. If C only implies
f(z) > 0, then for m even we find

R’
=1 - -
B T Sy MRy ®

where o
ml2

M = —=
T m =)
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and = m/2 — 1. If in addition C implies "7 ,(yM — y£) = 0, then we find for m

odd 51
9 —
=1 - - .
SE + :7;0 M{(ﬁR0—21-2 . Rmax—2z-2)

where

§ = elfimes’ BV Ry R,,,. )

and ™ = (m — 3)/2.
One could alternatively account for positive Rg by assuming that the range of

K is bounded by a single plane. Here we find
SE'2 B 1 + R(z)

One can show sg computed from this equation is always greater than the results

obtained from the assumption described by Eq. (2.10).

Alternative smoothing functionals

The penalty term J2(f) biases the solution to reduce unrealistic properties in the size
distribution. As mentioned previously, the penalty term Jy(f) is justified here because
highly oscillatory size distributions are not desirable. For any given experiment,
however, the penalty term J(f) may not be the most appropriate. For example
if one expects most of the particles to be concentrated in a small size interval, then
biasing the inversion procedure to favor solutions that are overly smooth in this region
is not appropriate, or if we expect a small number of particles near the ends of the
distribution, then in this region it is more appropriate to include f(f(x))%dz as part
of the penalty term.
A more general penalty term is

JH= > wi(@)(fO(e) = pi(e)’ d

where w;(z) > 0 is a weighting function, and p;(z) is a desired function. The analytical
and numerical details of using a penalty function of this form are similar to those
required for Jo(f). We do not compare the sensitivity of f) to different forms of
J(f) or discuss the advantages of using different regularization functionals. We only
note that J(f) provides a justifiable method for comparing different solutions that
are equally faithful to the data, and when the experimental conditions suggest an
appropriate J(f), the inverted distributions obtained using this penalty term will be

more desirable than solutions obtained using J3( f), for example.
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2.4 Equivalent optimization statements

In this section we will discuss some optimization problems that are equivalent to
finding the minimum of Eq. (2.7) [39]. This will help motivate and add validity to

some of the statements presented later in this paper.

Theorem 1 Iff, is the unique minimizer of Eq. (2.7) andf is a solution to

minimize || Kf — g™ ||
feCs

subject to  Jo(f) = Jo(f))
then f = f)\.

Proof: Assume instead fy # f. Since fy is the unique minimizer of Eq. (2.7), and
Jo(f) = Ja(fr), we find
IKf —3™ || > R(})

and this contradicts the definition of f . O

This claim says that if one finds a solution to the aerosol inversion problem, f(z), and
the solution has smoothness J3(f), then regularization can provide a solution with

the same smoothness, and the solution will match the measured data better.

Theorem 2 Let ps represent the probability density function of &. Assume that the
unconditioned errors in the data are normal random variables with unit variance and
zero mean. If fy is the unique minimizer of Eq. (2.7), and f is a solution to

mazimize pa(Kf — M)
f(r)eCoo

subject to  Jo(f) = Jo(f),

A

then £, = f.

Proof: To see that this is true, note that if fi(z) and f5(z) lie in C,, then

p=(Kfi —§™) =pa(Kf2—3") <= R(fi(z)) = R(f:(z))
and
pa(K f1 —g™) > pa(K fo — §™) <= R(fi(z)) < R(fa(z)) -
Thus f defined by Theorem 2 is equivalent to f defined by Theorem 1, and thus

Theorem 2 is just a restatement of Theorem 1. O
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Note that p«(K f — §) is a more accurate description of the fidelity of the solution
to the data than ||[Kf — ™ ||, and that the descriptions are equivalent when the
error sources can be modeled as random numbers with zero mean and unit variance.
Thus, as before, if we find a solution to the inversion problem by another algorithm,
and the solution has smoothness J,(f), then regularization can provide a solution
whose roughness is Jy(f), and the solution will be more probable in the sense that

the probability density function of the recovered errors is larger.

Theorem 3 If fy is the unique minimizer of Eq. (2.7), and f is a solution to the

following optimization problem:

minimize Ja2(f)
f(z)€Cx

subject to || Kf —3M || = R(\),
thenf = f,.

This can be verified in the same way as Theorem 1. This restatement says that if
we find a solution to the inversion problem by another algorithm, and the norm of
the recovered errors equals R(f) then regularization can provide a solution with the

same recovered errors, and the regularized solution will be smoother.

2.5 Data with independent errors

As mentioned earlier, R(f) in Eq. (2.7) penalizes solutions that are unfaithful to the
data. Theorem 2 suggests that R(f) takes on more meaning as a penalty term when
pet (K f — ™) is a function only of R(f) for f(z) € C., because here R(f) reflects the
probability that ¥ would be observed if the true solution is f(z). The importance
of this is easy to see in the case m = 2, where the data are independent and normally
distributed with o; = 1 and o3 = 10, and two solutions, f(z) and f(z) are available

that generate the recovered errors

gl = L and éAR: 10 .
10 1

Both solutions have identical values of R(f), but clearly the probability that 7 would
be observed is orders of magnitude larger if f(z) is the solution instead of f(z). When
the errors in the data are independent and normally distributed, this undesirable

property of R(f) is corrected by rescaling the data by the standard deviations o.
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The errors in aerosol size distribution data, however, are dependent. The reason
is that several data can be generated by a single instrument, and a given instrument
usually has operating parameters and noise sources that affect all the readings. The
need to account for dependent errors becomes more apparent when data from multiple
instruments are inverted. One can find that the data from a single instrument are
self-consistent, but that the data from different instruments disagree due to error
sources that affect all the data from a single instrument.

One can model dependent errors in the data by assuming there exist kg inde-
pendent and normally distributed sources of error that affect the data. Each source of
error is capable of adding noise to any datum, and the relationship between the error
sources and the data is given by the matrix E, where the 7j** element of E represents
the standard deviation of the error added to the ¢** datum by the j** source. The
goal is to find a transformation, E*, such that pgi«(E*(K f — ™)) is a function only
of ||E¥ (Kf — g™)||. The following claim makes short work of our search for E*.

Theorem 4 Assume the relationship between the error sources and the data is given
by the matriz E, and let U, ¥, and V refer to the matrices obtained from the singular
decomposition of E. Then the probability density function of the errors in E*gM is
a function only of ||E* (K f —g™)||, where E* = Q,X;'UL, and Q, is any p x p

rotation matriz.

Proof: The probability density function of E*c? is the same as the probability density
function of Q,V.Tz, where z; € A(0,1) (normal with zero mean and unit standard
deviation). Since V is orthonormal, the probability density function of QPV;JTZ is a

function only of ||V.Tz||. Thus given two feasible data vectors, §f and g5,
pere(BX g™ — 1) = ppea(EHGY — 77))
if and only if
IEH G — gl = 1 E*gY - g7)]|.0

The solution obtained using the transformed data reflects the dependent nature of
the errors in the data, and for a given smoothness the regularized solution obtained
using the transformation E* = Q,X1UT is the most probable as measured by pg:..

Note that E* is p x m, and this implies the regularization is performed with
p < m data, or m — p pieces of data are lost when Eq. (2.2) is transformed by E*.
This reflects that the rank of F equals p, or that there are some linear combinations
of data that have negligible error. These linear combinations are given by U g™,
where Uy is defined by Eq. (2.3). Since there is negligible error in the equations

UOI{f = ng
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these must be included in the set of linear constraints.

The transformation E* also reveals difficulties in the data inversion procedure
we have described. As an example, assume C only implies f(z) > 0, and that the
relationship between the errors and the data is given by

aly By
ayz 0 Bys
E= : , (2.12)
0 ’ :
BYm

where @ < 1, and B < 1. Also assume y™ = 1 and that there are a large number
of data so that \/mfB > 1 is satisfied. Then one can show that fo(z) = 0 satisfies
R: < sg by noting that

Ez=3M - Kf,

if z; = §; ;my/m. In other words, even though the data are accurate, as more data
are included in the inversion the solution defined by Eq. (2.8) can collapse to zero,
independent of the kernel functions.

A problem occurred while finding a solution for the given E because there

existed a feasible error vector ||€F || = sg that also satisfied
(E* ) lgR = M, (2.13)

The regularization algorithm will choose this solution if it is available because solu-
tions that satisfy 0 < ™ <« g® are small in magnitude and therefore are smooth.
Note that this problem cannot occur if ¥ is diagonal and o; is a constant fraction of
yM. The solution obtained when Eq. (2.13) is satisfied is undesirable not because it is
rough or because the recovered data are improbable, but because all of the recovered
data are much less than the measured data. This reflects the bias that regularization
has for choosing solutions that satisfy ¥ > 4 simply because they are smoother.
The bias regularization has for choosing cf(z) instead of f(z), ¢ < 1, simply
because cf(z) is smoother is undesirable and can be eliminated by imposing the

constraint
gl(sz - yzR) > E[ znél(%M -yl (2.14)
which usually equals zero. The importance of using this constraint for the error

model described by Eq. (2.12) was tested by simulating 18 data for the DMA while
assuming the true distribution satisfied f* = lgn(1,.07,1.8), where lgn(a, b, ¢) refers to
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a log-normal distribution with concentration a, log-mean diameter b, and geometric
standard deviation c¢. Error was added to the data as described by Eq. (2.12) for
a = 2% while 8 ranged from 0 to 10%. Many sets of erroneous data were inverted for
each value of 3, and the average values of || fF — f*||rv and || f®~ f?||; were computed
for the solutions obtained, imposing and ignoring the constraint given by Eq. (2.14)

where
Iflrv = ™2 f(@)+ [1£(2)lde

and
1l = [ 1/l de.

The results in Figure 2 show that in this example the solution obtained using the
constraint defined by Eq. (2.14) remains accurate for all values of 8, and that the
constraint prevents the solution from collapsing as S becomes large. It is not sur-

prising in light of the preceding discussion that for the unconstrained curve and large

B,
d|IfF~ filli/dB =~ V18

2.6 Numerical approach

To solve the minimization described by Equations 2.7 and 2.8 we assume f(z) € R"
is a linear spline with equally spaced knots. It would be more realistic to restrict
f(z) to lie in some other vector space such as cubic splines or Legendre polynomials;
however, these require the use of nonlinear constraints in order to ensure f(z) > 0,
while the linear spline only requires linear constraints, and this leads to a considerable

savings in the computational effort. We find
f(z) = fla(x)

f € R, and

gi(z) = hi(z)(1 — di(2))(1 = bi;n) + dica(@)hiza(z)(1 = 61)

hi(z) = H(z—ziy1)— H(z — z))

di(z) = (z—1;)/Az

z; = 1+ (—1)Az
Az = (zp—1z1)/(n—1).

H(z) is the Heaviside unit step function, §;; is the Kronecker delta, and =, and z,

are the endpoints of the inversion interval.
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If f € R", then the linear functional of f(z), k;(z) can also be represented as

an element in R™, and one finds

Ki; = /I ki(2)g;(2)dz. (2.15)

We should note that Eq. (2.15) is exact for f(z) in the set of linear splines in contrast

to the commonly used approximation

The quadrature rule defined by Eq. (2.16) can be a major source of error even when
n is large enough to accurately represent the size distribution function. This approx-
imation, for example, helped make the inversion of DMA data with CINVERSE [12]

unnecessarily expensive.

The second derivative of f7g(z) is zero where defined; therefore, we define the
second term in Eq. (2.7) using finite difference and the trapezoidal integration rule.
We find

J2(f) = fTDTDf
where .
VAzDij = (1 = 8i1)(1 = 8n3) (8151 — 26i5 + bij41).

Thus our solution to the aerosol size distribution problem is the fy that mini-
mizes .

5fTHf+ &f (2.17)
subject to the constraint
IEHK fr—g™)|| = E||E*|

where

H = KTEYTEtK +ADTD
¢ = KTET EgM

We calculate the solution, f), and Ry in Eq. (2.11) using the iterative two-phase
active-set QP solver described by Gill et al. [18]. The two phases are a feasibility
phase used to minimize the sum of the squares of the violated constraints, and an
optimality phase used to minimize the quadratic functional. At each iteration of
either phase a working set of constraints is chosen to be satisfied as equalities. Based

on the results of the minimization using the current working set, a constraint may be
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added and (or) deleted from the working set for the next iteration. This method of
solving the QPs described here is superior to linear based QP solvers, such as the one
used by Crump and Seinfeld [12] because small changes in A lead to small changes
in the final working set. This implies the active-set QP solver will require only a few
iterations of constraint swapping to compute solutions for future values of A.

The target smoothing parameter is found by trial and error, and by taking
advantage of the monotonicity of B(A) as a function of A. A simple calculation shows

that for a fixed set of constraints,
dR(\)/dlog(A\) — 0 when A — 0 or A — oo,

and this is demonstrated by a typical plot of R()) as a function of A shown in Figure 3,
where we assumed f! and the data were the same as those used to generate Figure 2,
and error was added to the data assuming oy = 0.01y;. This suggests that if one
uses a derivative based root finder to determine the target smoothing parameter,
then it is important to add safeguards that limit the distance between successive
iterates [6]. The failure to do this was one source of trouble for the inversion routine
CINVERSE [12].

2.7 Examples

In this section we present the results of two numerical experiments. First we present
an example of inverting data with dependent errors and show the importance of
taking the dependence of errors into account when using regularization. In the second
example we show the effect of incorrectly specifying the amount of error in the data.
Both of these examples are similar because they demonstrate the relationship between
the errors (or perceived errors) and the regularized solution.

In the first example, data were simulated for an 11 stage screen-type diffusion
battery [7,8] and a DMA [27,3]. The detector for each instrument was assumed to be
a condensation nuclei counter (CNC) with the response given in [2]. The datum for
channel 2 < 7 < 12 of the diffusion battery was defined as the number of particles
that penetrated stage ¢ — 2 minus the number of particles that penetrated stage
¢ — 1, and the datum for channel 1 was defined as the total concentration detected
by the diffusion battery’s CNC. For the DMA, the evenly spaced voltage sequence
described in [23] was used in this experiment for convenience; unlike the commonly
used methods for inverting DMA data, the inversion algorithm described in this paper
does not require the use of a particular voltage sequence. We also assumed a second
CNC was used as a detector for the DMA.
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Error was added to the data, assuming that two major sources of error existed
for each instrument. First, we assumed that each CNC incorrectly counted particles
according to the rule

NY = N*(1 + B;z;)
where the magnitude of 3; represents the standard deviation of the j* dependent
error source and the index j references either the DMA or the diffusion battery;
z; € N(0,1) is assumed to be constant for a given set of data. The second source
of errors was assumed to be caused by fluctuations in the aerosol source. In other
words, the distribution is incorrectly assumed to be at steady state, but undetected
variations in temperature, humidity, etc., cause fluctuations in the true distribution.
We assumed these fluctuations in the size distribution occur on a time scale smaller

than the data collection time scale and cause counting errors of the form
NM = N'(1 4 o)z,

where i denotes :** datum, and z; € NV(0,1).
Given these assumptions, the error matrix F is 29 x 31 and has the form

- Epma, O ’
0, Eps
where Epasa is 18 x 19 and has the form
ay! Byt
oy} 0 By
Epma = : ,
0 :
ay{s 3%8

and Eppg is 12 x 13 and has the form
(N Byt
aN} —aN} 0 By}

Epp =

aNf; —alNy, Byis
where N! is the number of particles detected by an error free CNC.

In the numerical experiment we assumed f* = lgn(1.0,.07,1.8), a; = 2% for all

i and that 3 was equal for the two CNCs. Error was generated with a pseudo-random
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number generator and added to the true data according to the error model described
above while allowing 8 to vary between 0 and 10%. Many sets of noisy data were

inverted for each value of 3 in the following two cases:
1. the information provided by £ was used.
2. the errors were assumed to be independent.

In the second case, the standard deviation of the i** measurement is defined by the

it row of E,

k
2 2
g; = ZEij7

i=1
where E;; is the j* element of the i*" row of E. The average value of || f* —f)||7v was
computed for each 3, and the results are shown in Figure 4. Here the information
provided by F about the error sources helped bias the solution to prevent unrealistic
recovered errors, and this improved the accuracy of the regularized solution.

The second example shows the importance of correctly specifying the amount
of error in the data. This example is similar to the first because both demonstrate the
effect of incorrectly characterizing the error sources. A single set of noisy data was
simulated for an optical particle counter, impactor, electrical aerosol analyzer, a dif-
fusion battery, and a DMA. The errors in the data were independent, and ¢; = 0.15y,.
The data were inverted while the assumed o; varied between 0.05y; and 0.25y;. The
results are shown in Figure 5; the true distribution is accurately reconstructed in the
figure when the assumed o;/y; = 15%. Notice that the solution exhibits nonexis-
tent structure when the amount of error is underestimated, and that true peaks are
smoothed out as the amount of error in the data is overestimated.

The sensitivity of the regularized solution to the specified error model may
seem to be a weakness in the algorithm described in this paper; however as brought
out in Section 2.4, this sensitivity must be present in any algorithm that targets an
acceptable amount of error. This sensitivity reflects the importance of knowing the
amount of error in the data. The perceived accuracy of the data is a measure of one’s
confidence in the data’s ability to choose among solutions. When the accuracy of the
data is overestimated, then too much confidence has been placed in the data’s ability
to determine a highly structured solution, or when the accuracy is underestimated, one

needlessly loses confidence that the structure observed in the solution really exists.
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2.8 Comparison with other aerosol inversion techniques

The inversion technique described in this paper can be compared with other inver-
sion algorithms that have been proposed. The comparison is based on fundamen-
tal observations where possible, and a numerical comparison is made with another
method recently proposed. The inversion algorithms we consider are constrained
least-squares [9], Twomey’s [41], EM [32] and STWOM [33].

We point out that the algorithm described in this paper is similar to CIN-
VERSE [12] with the following extensions:

e correcting the definition of the target smoothing parameter to include the pos-
sibility that Eq. (2.5) has no solution.

e eliminating the assumption that the errors in the data are independent.
¢ allowing arbitrary inequality constraints.
e eliminating the numerical errors caused by discretizing the kernel functions.

It is convenient to view the process of finding a solution to the aerosol inversion

problem as having three parts:
1. define the set of feasible solutions.
2. define the optimal solution in the feasible set.
3. find the optimal solution.

In the algorithm we have developed, the set of feasible solutions is the set of nonnega-
tive linear splines. The dimension of the solution vector is chosen so that we have the
largest set possible from which to choose the optimal solution. The optimal solution
is the smoothest solution that is within the expected error, and we have shown that
this definition usually is unique. We concentrate our comparison with other inversion
algorithms based on the first two items listed because most inversion algorithms fail
to properly define the solution set and fail to suitably define an optimal element in
the feasible set. In these cases the numerical details of finding the optimal solution

are less important.
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The set of feasible solutions

Defining the feasible set usually involves defining a vector space in which the solution
will lie and specifying the constraints. Sometimes we observe that inversion techniques
constrain the solution to lie in an unrealistically small vector space. This includes
all methods that attempt to fit an equation with a small number of parameters to
the data, for example the log-normal curve fitting solution described by Helspar et al.
[24]. Another example of this is the EM algorithm described by Maher and Laird [32],
where inversion techniques are compared while the solutions were restricted to a 6-
dimensional vector space. These restrictions are undesirable because they eliminate
without justification an infinitely large set of possible solutions and because they
introduce the possibility that the true solution is far from the artificially small set
of solutions. Artificially small feasible sets are used by some inversion techniques to
ensure the optimal solution is unique; however, if the optimal solution is not unique,
then it seems more reasonable to redefine the target solution than to make unrealistic

restrictions on the feasible set.

The optimal solution

Constrained least squares, EM, and Twomey’s algorithm suffer from a poorly defined
optimal solution. These methods define the optimal solution as the solution that
minimizes the recovered errors. Section 2.2 shows this solution is rarely unique unless
the feasible set has been artificially constrained. This lack of uniqueness is undesirable
because one finds a solution that is a random element of a possibly large solution set.
Even if the solution was unique, finding the solution that minimizes the error is a
questionable objective; Figure 5 shows that the inverted distribution reflects the error

in the data through artificial peaks as ||£®|| tends to its minimum value.

A numerical example

We compare the results of the inversion method described in this paper with STWOM [33].
STWOM is an extension of Twomey’s algorithm that smooths a solution found using
Twomey’s algorithm.

Twomey’s algorithm is an iterative method that corrects the size distribution

f° so that it agrees with ™. The corrected distribution is found by calculating

fiz) = FY2)(1 + aiki(z)) i=1,...m
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where o
Y

kT @)ki()de
and where k;(z) is rescaled to satisfy k;(z) < 1. If f™ does not agree with the

data, then the procedure is repeated as necessary with f° equal to the most recently

1,

Q;

calculated f™. Any size distribution that agrees with the data will cause the procedure
to stop, and depending on the initial guess and kernel functions, the final solution
may be unreasonably oscillatory [13].

Given a Twomey solution f™° that satisfies 37 ,(g;/0;)? < m, STWOM im-

proves the solution by repeating the following procedure p =1,...:
1. repeatedly smooth f™P~1 to obtain f%P that satisfies "7 ,(e:/0:)? > m,

2. use Twomey’s method to correct fO? to obtain f™P that satisfies 17 (g;/0;)? <

m.

A single smoothing in step 1 is carried out by calculating

fo= [w@)f(2)de

where w(z) is a positive averaging function satisfying [w(z)dz = 1. The entire
procedure is terminated after step 2 if [ |(f™?)"(z)|dz does not change with successive
values of p. Thus STWOM improves Twomey’s solutions by eliminating oscillatory
solutions via step 1 while keeping the solution faithful to the data.

Although STWOM is simple to implement and is an improvement over some of
the available algorithms, this method is still flawed because the solution is not optimal
and poorly characterized. Since many solutions are possible, the experimentalist
needs to know of all the possible size distributions that agree with the data, which one
do I have? With STWOM the answer is not clear because the solution is defined
only in terms of the numerical routine; this is in contrast to regularized solutions that
are defined in terms of observables before the numerical search begins (see Sec. 2.3).
STWOM’s lack of a well characterized solution is made evident by the haphazard path
taken to reach the solution (too much smoothing followed by too much roughening
etc.) instead of a path defined by a gradient that leads to a minimum.

We numerically tested the effects of error in the data on the algorithm developed
in the present paper and STWOM. In the first experiment, data from an EAA were
simulated while assuming f* = lgn(1.0,0.08,2.2). The errors in all the channels
were assumed to be normally distributed with o; = ayf, and o was assumed to

range between 1 and 20%. The errors were generated with a pseudo-random number
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generator, and many sets of erroneous data were inverted for each value of «. STWOM
was given the initial distribution that was suggested in [33]. Figure 6 shows the
average ||f* — fE||rv as a function of « for both inversion techniques and shows in
this case that the regularized solution is better able to reconstruct the true solution
at all levels of added error. Here the average || f* — fF|rv for the STWOM solutions
is about twice that of the regularized solutions.

We also compared the ability of these two algorithms to reconstruct a distri-
bution with a larger ||f’||rv as data from more instruments were included in the
inversion. STWOM was originally developed to invert EAA or impactor data, but
the algorithm on which STWOM is based is independent of the instrument as long
as the relationship between the data and the size distribution is given by Eq. (2.2).
Data were simulated for an optical particle counter, MOUDI impactor, DMA, low
pressure impactor, and a diffusion battery while assuming the tri-modal distribution
shown in Figure 7. The DMA and diffusion battery respond to the smaller particles
represented by the larger peak, and the remaining instruments repond to the larger
particles. Random error was added to each measurement with a = 15%, and this was
used to define the stopping criteria for STWOM. The initial STWOM guess was the
same as the true distribution except the mean diameters of the peaks were adjusted
10%.

Three inversions were performed with data from the following combinations of

instruments:

(a) the diffusion battery and the OPC

(b) same as (a) except DMA data were included

(c) same as (b) except the data from both impactors were added.

The results of the inversions are shown in Figure 7. Note that as more data are
added, the regularized solution better reconstructs the true distribution in contrast
to STWOM, which shows little improvement between steps a and c. STWOM is
unable to take advantage of all the information provided by the many pieces of noisy
data because the corrections are inconsistent and lack overall direction; the algorithm
literally goes in circles looking for a solution. It is not surprising that in this example
STWOM required about 10 times as much computing time as the method based on

regularization.
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2.9 Conclusions

Solutions to the aerosol data inversion problem are nonunique. A variety of algo-
rithms have been previously proposed to select one solution from the many possible
solutions. Each of the prior methods has important shortcomings. We have presented
an algorithm for finding a solution that is both smooth and faithful to the data. We
have noted how the dependence of the errors in the data can be modeled and have
shown how to transform the data to bias the solutions to reflect this dependence.
MICRON, a computer program that is based on the work described in this paper and
enables one to invert data from any combination of linear instruments, is available
from the authors. If smooth solutions are not desirable, if information regarding the
magnitude of the errors is lacking, or if significant statistical information is available
a priori about the size distribution, then the solution presented in this paper will
have to be modified to reflect the new conditions.

Appendix
Theorem 5 C, is empty if and only if there exists a vector ( a_cl ), that satisfies
Z2
z.] = 1
iTKV, = 0
zTkCt +z2T0F > 0
FTgM —zTkCh - zTulh < —s

where C1, Uy, and Vo, are defined in Eq. (2.3).

Note that Vj is nonzero whenever some planes in R™ are not constrained by C,
and this eases the task of finding a solution, or alternatively adds difficulty to the
search for z; and Z, defined in the theorem. Up in the last two equations is present

whenever the rows of C are linearly dependent, as, for example, if

v < [ @) f(@)de < yY

must be satisfied, and reflects in some cases an added difficulty in finding solutions
to Eq. (2.5). For example, when b # 0 and the rows of C are linearly dependent, it is
possible to have no solutions to Eq. (2.5) independent of K and M.



Proof: The equations

Kf = gM
Cf > b
can be written
Kf
Y., 0 vT |
U,, U P P
[ Y4 0][ 0’ 0 ‘/OT f

which has a solution if and only if

st 7]

fo
)
fo

[UvaO][ 0, 0

> b

(2.18)

fo is not constrained by the previous equation and can be replaced by

fo = f(;,l - f(;,z
f0120 fo220

Thus Eq. (2.18) has a solution if and only if

[KV,, KVy, —KVy
¥, 0, 0
Up, Us, 0, 0 P
0, 0, 0
0, 0, I, 0
0, I, 0
0, 0, 0, I
0, 0, I

? b

5
foa
foz /
5
fon

f0,2

These are equivalent to the following pair of equations

[ fo
foo
foa
foz

1( 7

Joo
Jou

KV, 0, KVo, —KVp |

0, I, 0, 0

S, 0, 0, 0

?’?’? 8 0, 1, 0, 0
o o o |l %00
Y 0, 0, 0, I|

foz

v

Vv

<O o

o O o
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A KCTb
- (5)-(5)

f2 >0

or Cqy is empty if and only if

KCt, KV, —KV,
Ug, 0, 0

has no solution, or C, is empty if and only if
KC!, KV;, —KV, i = @"+3) | [ KC'b+3)
vk, o, o |77 0 UZh
f2 20

has no solution for all ||3]|| < s. If C, is empty, the cutting plane theorem guarantees

z .
there exists ! independent of 3 that satisfies

T2
— T 7]
7 KCt, KV, —KV, > 0
T U, 0, 0 ] -
T -
(:El) [(ng +3)— KCtb
’ - <0

Setting 5 = Z, we find if C, is empty then the inequalities listed in the theorem

statement hold.
Conversely if C, is not empty, then there exists 3 and f, such that Eq. (2.18) is

satisfied. Thus if Eq. (2.18) holds for ( :fl then

T2

T hd +§)—_KCTB >0
Zo ~UTh -

must also hold. O

Theorem 6 Assume f,(z) € C,, C; = O whenever $ < s, and let C be the matriz of
constraints that are active at f,. Then C, contains a unique element if and only if

Kf=0,Cf>0 implies f=0. (2.19)

Proof: C, is convex, and C; = @ implies all elements of C, have the form f, + fo
where K fo = 0. If Eq. (2.19) holds then

Cfp+ fo) =b+Cfo > b,
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which implies fo = 0, or f, is unique. Similarly if f, is unique then all vectors of the

form
fo +efo, lfoll=1, €>0

must violate at least one constraint. For small € the inactive constraints remain

inactive, or C'fo 2 0if fo#0. O

Theorem 7 C,, is empty if and only if Cy, is empty. Additionally, C,, contains a

unique element if and only if Co, contains a unique element.

Proof: The first statement is clear from the definitions. The second statement follows

from the convexity of C,, and the mean value theorem. O

Theorem 8 Let £ be an interval of positive A\, and assume that the relationship
between A and fy on L is one to one. Then the functions Jo(f)) and R(f)) are

continuous, and R(f)) [J2(f\)] is monotone increasing [decreasing] on L.

Note that the existence of £ is not guaranteed.

Proof: ¢ defined by Eq. (2.7) is a convex function on the convex sets Co, and £, and
this implies the continuity of fy as a function of A, or J,(f,) and R(f)) are continuous
as functions of A\. Observe also that for A, > );, the definition of fy implies

q(Az, fy,) > a(X2, £),) > a(M, f,) > a(Ar, fA).

These inequalities lead directly to the monotonicity of R(A) and Ja(f).
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List of Figures

Figure 1. Kernel functions for the diffusion battery (Cheng et al., 1980) and the
differential mobility analyzer (Alofs and Balkumar, 1982; Hagen and Alofs, 1983).
In both cases a condensation nuclei counter (Agarwal and Sem, 1980) is used as the
detector. The DMA kernels are plotted for 3 different inner rod voltages; -=---------

represents a distribution that the DMA can easily resolve.

Figure 2. The average difference between the true and inverted distributions when
the constraint 37, (yM — y!) > 0 is added.

Figure 3. The average difference between the actual and target discrepancy as a

function of the smoothing parameter.

Figure 4. The average difference between the true and inverted distributions as
a function of the magnitude of dependent error source when the dependence of the

errors was taken into account, — — — — — ; and when the errors were incorrectly

assumed to be independent,

Figure 5. The regularized solution obtained when the assumed amount of error in
the data ranged from underestimated (back, o;/y; = 0.05) to overestimated (front,
o:/y:; = 0.25). The arrow marks the actual o;/y; used to generate the random errors;
at this level of assumed error the regularized solution accurately reconstructs the true

solution.

Figure 6. The average difference between the true solution and the inverted solution
for the algorithm described in this paper and STWOM while inverting EAA data at

a range of noise levels.



33

Figure 7. The inverted solutions obtained using the regularization algorithm de-

scribed in this paper and STWOM as more data are used in the inversion.
represents the true distribution; random error was added to each measurement while

assuming o; = 0.15y,.
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Chapter 3

Regularized Solutions to the Aerosol Data

Inversion Problem
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Abstract

Regularized solutions to the aerosol data inversion problem are presented. An ap-
proximate form of generalized cross validation is developed that is applicable to this
linearly constrained inverse problem. The results obtained with this algorithm for
choosing the smoothing parameter are compared with those obtained by the method
of discrepancy and by minimizing an unbiased estimate of the inverted errors. Ex-
amples are presented that demonstrate the importance of using generalized cross
validation to choose the smoothing parameter when the magnitude of the errors in
the data is difficult to estimate.
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3.1 Introduction

We consider the problem of determining a suitable aerosol size distribution, f(z),
from a set of p measurements, y™. Here, the product f(z)dz can represent the mass,
surface area, or number of particles in the size interval (z,z +dz). Since the diameter
of aerosol particles can range over several orders of magnitude, it is convenient to

define particle size by
log(d/d:)
r = = 3.1
log(dg/dl) ( )
where d is the particle diameter, and (di,d:) is the interval of particle diameters

over which the solution will be computed. For conventional aerosol instruments the

relationship between the aerosol size distribution and the data is

y%z/(;lk,-(:z:)f(m)dw—kef t=1,...,p (3.2)
where k;(z) is commonly referred to as the kernel function and is proportional to
the known response of the instrument to a monodisperse aerosol sample of size .
Note that the interval (dq,d;) must be defined so that the support of the product
ki(z)f(z) lies in the interval (0,1). We will assume that the errors in the data, e,
are independent normal random variables. This assumption is rarely valid; however,
as discussed in [47], if one can represent €’ as a linear combination of independent
normal random variables, error sources for example, then Eq. (3.2) can be transformed
so that the resulting &* are independent normal random variables with unit variance.

Further information about the size distribution can be provided by linear in-
equality constraints on f(z) that arise because the size distribution is nonnegative,
bounds may exist for the true values of the measured data, the value of the distri-
bution may be known at certain zs (e.g., the endpoints), and as discussed in [47],
certain linear combinations of data may be known.

The problem of finding solutions to Eq. (3.2) is ill-posed: for a given y™ and
€', a solution may not exist, and if a solution exists then it is usually not unique.
When the number of data is large, one may attempt to eliminate the ill-posedness by
approximating Eq. (3.2) by an invertible system of linear equations, but this approach
has long been known to yield unstable results [38]. |

Regularization is a powerful technique for finding solutions to the ill-posed
Eq. (3.2). Here, the set of solutions defined by Eq. (3.2) is replaced by the set of

smooth solutions, fy(z), A > 0, that minimize
p

([ Bi@)f (@) dz — g7 + M () (33)

=0
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subject to constraints. J(f) is the regularizing functional that penalizes undesirable
solutions. For example, in this paper we use
1
I = [[(F™(a))? da (3.4)

since high frequency oscillations are undesirable. The unspecified A measures the
relative importance of the solution’s smoothness and its fidelity to the data. If X is
too small then smoothness becomes unimportant, and the solution will be too sensitive
to perturbations in the data and will likely exhibit unrealistic oscillations. On the
other hand, if A is too large then the structure that exists in the true distribution will
be suppressed.

One technique for choosing A that we have used with some success and that is
straightforward to apply to this constrained inversion is the method of discrepancy
[12]: set A = Ap where

Iy%, —yMII* = Elly' — y™|%. (3.5)

and where the superscript ¢ denotes true, the superscript R denotes predicted, bold-
face variables represent column vectors, and || - || denotes the Euclidean norm. Wahba
and others [44] have presented theoretical and numerical evidence on related inversion
problems that shows Ap tends to oversmooth fi(z). The weakness of choosing the
solution to match the statistics of the error in the data is made clear in the following

example presented in [47]. If
vy =(eitep+lyl  i=1....p

where ¢; is an independent normal random variable with a variance of o2, then one
can show that

Ap —r 00 as op — 1

independent of instruments and the data. Here Ap is a poor regularization parameter:
it overestimates the amount of smoothing, and the oversmoothing becomes worse as
more data are included in the inversion.

An additional difficulty with using Ap is that the standard deviations of the
errors in the data are usually not well known, and a poor estimate of the magnitude
of these errors can easily lead to unrealistic solutions [47].

In this paper we use methods similar to those of Kimeldorf and Wahba [26],
and Villalobos and Wahba [43] to find solutions to the aerosol data inversion problem

subject to inequality constraints. Smoothing parameters are chosen to minimize an
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unbiased estimate of the inverted errors, and by generalized cross validation (GCV)
when the number of data is large. We present examples that demonstrate the im-
portance of taking the constraints into consideration when using GCV to choose A.
Additional examples compare the solutions obtained while using Ap with those ob-
tained for the regularization parameters described in this paper, and demonstrate the
importance of using GCV as one’s ability to estimate the magnitude of the errors

diminishes.

3.2 Solution to the regularized problem

The solution to Eq. (3.2) is not easy to find because the subset {f(z) : f(z) > 0},
of £2(0,1) for example, defines an infinite cone, and minimization techniques are not
well developed on this type of set.

One approach we can use is described in [43] in relation to multi-dimensional
interpolation. Here, we assume f(z) lies in the Sobolev space WJ*(0,1), where
f™(z) € £*0,1) and f@(z), i =1,...,m — 1, is absolutely continuous [1]. The
inner product is defined as

(£.0) = S FO0)990) + [ F™(a)g™() da 35)

=0

The constraint that the solution be nonnegative is replaced with the finite set of

constraints:

flz) 20 i=1,...,7 < n (3.7)

so that there are a finite number of linear inequality constraints, and we write these

as

Ci(f)Zbi i=1,...,n (38)

If T(f) is a linear functional on WJ*(0,1), then the Riesz representation theo-

rem [1] guarantees the existence of the representer of T' such that
T(f) = (8, 1) (3-9)

for all f € W3*(0,1). For example, if

1() = [ #@)f(z)do (3.10)
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then integration by parts and the independence on f shows that 8 satisfies the differ-

ential equation

6™ (z) = (-1)™°(2)
with the boundary conditions

(=1)igm+i(0) — gtm=1-9(0) = 9™+ (1) =0 i=0,...,m—1

One readily obtains
m=1 .1 )
(=1)"0(2) = (@) + X = (EH0) + (-1 H2m(0)
=0 °°
where

. L
t‘(w)z/ 7 (s)ds 1=1,...,2m

Thus, if we define the representers «(z) and +(z) by

(fomd = [ B(e)f()do
(f”n) = ci(f)

then f\(z), the minimizer of Eq. (3.3), is also the minimizer of

Z( Kir f )2+ MPyf, PLf)

=0

subject to

<7i,f> =b 1=1,...,n
where P, is the projection on WJ*(0,1) defined by
m—1 g ;
F&(0)z
P(f(@) = f@) - 3 LD

=0

(3.11)

(3.12)

(3.13)

(3.17)

(3.18)

(3.19)

We denote the range and kernel of P; on WJ*(0,1) by Ho(0,1) and H,(0,1), respec-

tively.

There exists coefficients k, ¢, and w such that the minimizer of Eq. (3.3) as well

as any element of WJ*(0,1) can be written as

fk(z)zzp:kiplﬁ' +ZczP17z + ZW,W, +f_L( )

=0 =0 =0

(3.20)
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where

i1
w,-(w):T i=1,...,m (3.21)

is a basis for Hy(0,1), and where f,(z) € Hy(0,1) is orthogonal to all «;(z) and
~i(z). This representation may not be unique however because the set of representers
{7(z), k(z)} can be linearly independent. For example, we may require the solution
to satisfy

bri < / 2) dz < by (3.22)

Therefore, it is desirable to identify a subset of the representers, {¥(z), &(z)}, with
p+n < p+n elements, such that { P4, Pk} are linearly independent, and such that
the span of { 1%, Pik} equals the span of { Py, Pik}. With {¥(z), &(z)} identified,
elements of WJ*(0,1) can be written uniquely as

P
=Y kiPiki(z) + Ec,Pm + Z wiw;(z) + fi(z) (3.23)
=0 1=0 =0

Substituting Eq. (3.23) into Eq. (3.17) shows that f,(z) = 0 and that k, & and w

minimize

[1Cx — y™|? + A Dx||? (3.24)
subject to
Cx>b (3.25)
where
K = [(Pi&, PiiT), (Pik, PIAT), (Por,wT)] (3.26)
D = [(P&, PR, (P4, P,AT),0] (3.27)
C = [Py, PRT), (Pry, PAT), (Poy,wT)] (3.28)
k
X = ¢ (3.29)
w

Here, (P15, PicT) , for example, represents a matrix with 7j%* component equal to
(Pyv;, Pik;), and if A is an n X m matrix and B is an n X p matrix then [A, B] denotes
the n x m + p augmented matrix with the first m columns corresponding to A and

the last p columns corresponding to B.
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If the feasible set defined by Eq. (3.25) is not empty, then a minimizer of
Eq. (3.24) must exist. If the rank of the matrix (w, x7T) is m, then it is straightforward
to show that the minimizer is unique; this condition is sufficient though not necessary.

A more detailed discussion on the existence of a unique solution can be found in [47].

3.2.1 Some numerical considerations

To calculate the elements of these matrices, (P;&;, P1£;), for example, Eq. (3.6) and
Eq. (3.13) are not suitable for numerical calculations, and simpler expressions are
readily obtained for a general linear functional by introducing the reproducing kernel
for W;*(0,1) [26]. The reproducing kernel, K(z,y), for the Hilbert space H satisfies:

1. K,(y) e H.

3. (Kx(y),u(y)) = u(z).

where we write K,(y) to mean that K(z,y) should be viewed as a function of y. From

this definition one can see the representer ;(z) for the linear functional T; satisfies

0:(z) = T:K4(y) (3.30)
and

(0:,0;) = TiT; K (2, y) (3.31)

Note also that if K; is the reproducing kernel for H; where W;*(0,1) = Yo H;, then
one can show [22] that K =} K.
From the definitions we can write

[ w@sw)dy = (Kialy), u(o) (332)
= /K("‘) Yul™ (y) dy (3.33)

where é,(y) is the dirac-delta function. Integration by parts plus the independence
of K;..(y) on u(y) shows that K;..(y) satisfies the distributional equation

KE(y) = (-1)"6.(y) (3.34)

subject to the boundary conditions

K0 = k80)=0 i=0,...,m~1 (3.35)
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or

m-—1 ( 1)k m—l—iym-}-i

Ki(z,y) = x> 3.36
1( y) ; ( —-1= ) (m+z) y ( )
One can easily verify that
m—1 xiyi
K = .
Thus
1
(P, Prry) = [ /0 (v) + ki(w)ky(2) x
m-—1 Vapam=1—v v
) T ym+
; Sy W T p———— dz dy (3.38)
or, if it is not efficient to keep the sum inside the integral, one can show that
(Piki, Pik;) = =7 /1 /xk(x)k(y)(:c —y)?" ldz dz
1o 210 2m—1)Jo Jo !
-1 (_I)VM,:?-V le+u
+ VZ:O (m—v-=11m+v)! (3:39)

where M7, is the j™ moment of k;(z) over the interval (0,1). Efficient algorithms for
these 2-D integrals have been developed [14,25,29]. Also, if v;(z) is the evaluation
functional then
(Pryi, Prej) = ﬂn——-—/z‘ ki(y)(zi —y)*" " dy
e 2m -1l 7
1 k m+uMm 1—v
. Z ( )
-1- V)(m + v)!

(3.40)

We find the minimizer of Eq. (3.24) with the active-set algorithm described
n [19,18]. Briefly, a minimum is found by iteratively choosing a set of active con-
straints, constraints that will be treated as equalities, and performing the minimiza-
tion while ignoring the remaining inequalities. A single constraint is added and/or
deleted per iteration.

The upper triangular matrix, R, which satisfies

RTR = KTK + ADTD = H® (3.41)

is used in place of the Hessian H° to reduce the computation and increase the nu-

merical stability. The straightforward method of computing R is to simply form the
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Hessian and then perform the Cholesky decomposition; however, for small A this ap-
proach can lead to a troublesome loss of precision. Instead, if A is small then we

compute upper triangular Ap that satisfies
RTR = (R+ AR)T(R+ AR) (3.42)
where R is the upper triangular matrix that satisfies
R R=KTK (3.43)

Note that R will be available if the minimizer of

Xp:( /0 k(@) (2) da — yy? (3.44)

=1
is computed. In the Cholesky decomposition, one computes the i** row of R given
the first 2 — 1 rows by solving

RiR;=H5' j=i,...,n (3.45)

where
H=H"11—rrl i=1,...,n (3.46)

The column vector r; corresponds to the i** column of RT. Similarly, one can compute

the i** row of Ag given the first 1 — 1 rows by solving

ApiiApij=Di5' j=4,...,n (3.47)
where
D' = D' — ;] — Ari — Arilr] (3.48)
and
D° = \DTD (3.49)

where the column vector #; corresponds to the :** column of RT and the column
vector Ayr; corresponds to the i** column of ARrT. Note that the product RTR is
not formed. Roughly speaking, we avoid precision loss by working with terms on the
order of v/AD relative to R in contrast to working with terms on the order of ADTD
relative to RTR.
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One feature of the algorithm described in [19] is that the inequality constraints

are divided into general constraints and bound constraints:
I
by < {A]XSbL (3.50)

where the matrix I corresponds to the bound constraints and the A corresponds to
the general constraints. If, for example, x is a p-vector, 7 general constraints are
active, and 7 bound constraints are active, one can show [19] that A(6p — 27/ — 27)
multiplications are saved per iteration when a single general constraint is added if the
constraints are treated separately instead of treating them all as general constraints.

In the preceding formulation for the solution to Eq. (3.3), note that all of the
constraints must be treated as general constraints since the condition f(z;) > 0 leads
to a matrix with entries given in Eq. (3.28) instead of the identity matrix. The calcu-
lations will be expensive if a large number of constraints of this type are chosen and
the initial active set chosen is not close to the final active set. Additionally, computing
the entries for the matrices K, D, and C can become expensive. For example, if we
have 40 measurements and 40 constraints, then we will need to numerically evaluate
800 double and single integrals.

An undesirable feature of the previous formulation is that for any finite number

of constraints of the form f(z;) > 0, we always have

Z(/ (z)f)(z)dz —y; M2 _0 (3.51)
as A—0, when in fact we encounter cases where the magnitude of

figf0 So(fo ki(2) f(2) dz — yM)? (3.52)

is significant. This can occur, for example, if
> ki(z) > ki(z) and D yM < ozy;u (3.53)
i#j i#]
where a < 1. The inability of the previous formulation to predict that Eq. (3.52) can
be nonzero could become important if the method used to choose A depends on the

difference between the predicted data and the measured data.

3.2.2 A finite-dimensional solution

An alternative, though similar, approach to solving Eq. (3.3) is to assume that the
solution can be approximated as a n-dimensional linear spline. The difficulty associ-

ated with this assumption is obvious: how can one be certain that n is large enough
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to capture all of the information provided by the data? For now we simply assume
that n is of the same order of magnitude as p, for example n = 2p. Note that in this
setting, f\(z) is able to reflect the lack of a positive solution to Eq. (3.2) for & =0.

With this assumption we seek f), the solution to the following quadratic pro-

gram:
minimize £L(KnTK, + pAD™ DY — oyMT K £ (3.54)
subject to Cf>b (3.55)

where
fr(e) = g7 (2)fx (3.56)

and
1

Koij = /0 g;(2)ki(z) do (3.57)

K, is the matrix that represents the integral operator for the linear splines and
{giz),i = 1,...,n} is a basis for the n-dimensional linear splines. D™ is a dif-

ference matrix such that if f7g(z) is an approximation to f(z), then

1
[ (5™ @)y da ~ €7D Dlvig (3.58)
For example, if the splines are equally spaced we use
(1) _ Gis = diia
D}’ —— (3.59)
and for m even
Dm) — (D(l),TD(l))m/2 (3.60)

. In the remainder of this paper we assume the solution can be approximated as a n-
dimensional linear spline. If the data are consistent and few constraints are required
to keep the solution positive, then it would be better to keep the solution in W3*(0,1);
however, the following analysis is similar for both approaches.

One can show that the solution in the absence of constraints, C' = 0, is

D™f, = KDT(KDKDT + )\pI)—lyM (3.61)

where Kp = D~(™K, and D~(™ is the inverse of D) Note that Kp can be

computed from K, with only Zmn(n — 1) additions and that the inverse defined
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in Eq. (3.61) is order p instead of the larger n. Following [11] we observe that the

predicted data are linearly related to the measured data,

y& = KpKpT(KpKpT + pAI)~'yM = AD)yM.

(3.62)

If the set of constraints that are satisfied at f\ are known, then a simple ex-

pression for the solution can be found by projecting the quadratic functional onto the

null-space of the active constraints. Let the set of linearly independent constraints

that are active at the minimizing f) be denoted by
C.f = by,
then one can show that
D™y = VouAca 'UcTba + Kvol (KyvoKvel + pAlo) 'y¥
where

[ Kvo,Kv, ] = KD[ Voo, Vea ]
yf,w = yM - I(VaACa_lUCTba

and where the singular value decomposition of C, is represented by

VCaT
Vool

Ca=Us [ Aca,0 | [

Here we find an expression similar to Eq. (3.62) for the predicted data,

y(l)* = yﬁ? — I(VaAc,;lUCTba
= KVCJ{VOT(KVOKVOT + P/\IO)_lyg)w

or we can write
y& = Ao(\y.

3.3 Minimizing the expected recovered error

(3.63)

(3.67)

(3.70)

If the standard deviation of the errors in the data is known (and in this case equal
to 1), then one can calculate an unbiased estimate of the expected errors in the
predicted data, ER()), and the regularization parameter that minimizes ER(A), Ar,

can be found.
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If C = 0 then the analysis in [11] can be applied directly. The expression we

want to minimize is

ER(\) = Ely* - y{II" (3.71)
which, when combined with Eq. (3.2) and Eq. (3.62), yields

ER(A) = E[|[(I = AN)y!||? + trA%()). (3.72)
Observe that an unbiased estimate of ER()) is given by R(}) ,
RO = ||(I = AQ)yM||? + trA2(\) — tr(I — A(N))2. (3.73)
The singular value decomposition of Kp,
Kp = UgAVT (3.74)

can be used to show that Eq. (3.73) is equivalent to

R\ =p+ iri(k)zyﬁﬁz —2r;(A) (3.75)
j=1
where
yif = UxyM (3.76)
ri(A) = A,-TpA (3.77)

A = \K (3.78)

Therefore a good choice of A is Ag, the minimizer Eq. (3.75), and Ag is easily found
since y} and ); are independent of ).

If the regularized solution has active constraints, defined by Eq. (3.63), then
Eq. (3.70) must be substituted for Eq. (3.62) in the previous analysis. Thus we find

ER()) = E[lyf - y'|I* (3.79)
or

ER()) = E[[(I = A(N)ysI* + || ' Ao(M)I* (3.80)
Thus an unbiased estimate of ER(\)is Ro()), given by

A

P
Ro(A) = p+ Y roi(N) 2y — 2roi()) (3.81)
s
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where

yo! = Ukoy™ (3.82)
A
roi(A) = X};%—;X (3.83)

The minimizer of Ro()) is not as easily found as the minimizer of Eq. (3.75) because
Ao, and yM are functions of the active set that can vary with \.

The most common case in aerosol data inversion is C' = I, b = 0. Here the
addition of a constraint corresponds to deleting the variable f; and the i* column
of Kp from Eq. (3.2), and we can write Kp = [K,, Ko], where K, corresponds to
the constrained variables. Observe that both Ro()) and R()) tend to [lyM||/p as
A — 00, and if there is a nonnegative solution to Eq. (3.2), &' =0, then Ro(}) and

A

R()) both tend to 1 as A tends to zero. Additionally, one can show that
Ai > Ao, t=1,...,p (3.84)

where strict inequality holds if the rank of K, equals p. Equation Eq. (3.84) implies
that for small A, we can expect R(\) > Ro()A). The relationship between Ry()) and
f?()\) is more clear if the left-hand singular eigenvectors of K, and Kp are approxi-

mately equal; in this case one can show that

A ) p
R(A) = Ro(A) = 3_2pA(1 — o) — (PAVI)*(1 - o) (3.85)

i=1

where
/\0;£ + pA

o = ———t——
Aoi + Ai + pA
and X; is an eigenvalue of K,K,T. The difference defined by Eq. (3.85) is positive for
small A and negative for large A, and because of this one might expect the minimizer
of Ro()) to be less than the minimizer of R()).
In Figure 1 we compare Ro()A) and R()) as functions of A to R(A), || fa(z) — fi(z)|1,

and [|f4(z) — fo(&)llrv, where
@ = [ 1f(@)lda (387)
1F@lry = min (f@}+ [ 1F@)]de (3.59)

Data with a signal-to-noise ratio of 20 (S/N = 20) were artificially generated for the
differential mobility analyzer (DMA) [4] at 54 different inner rod voltages varying

(3.86)
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between 45 and 4500 volts for the distribution shown in Figure la. Since the test dis-
tribution is smooth, the inequality constraints add little information to the problem;
thus, each fi(z) has only a few active constraints, and the difference between R())
and Ro(A) should be negligible as shown in Figure 1b. The difference between R())
and the estimator I:ZO()\) is noticeable, but the minimizers are nearly equal. Also one
can note that the minimizer of R()) is approximately the same as the minimizer of
| fa(z) = fi(z)ll1 and ||f¥(z) — fa(z)||rv. Some meaning to these norms is provided
by Figure 1a, which shows fi(z) for A = 1x10~° (oversmoothed) and for A = 1x10~1°
(undersmoothed).

Similar plots are shown in Figure 1d where we attempt to reconstruct the tri-
modal distribution shown in Figure lc. Data were generated as in the previous
example with S/N = 20. In this case, the inequality constraints are an important
part of the solution; at the optimal A we found that 50 percent of the constraints
were active. However, even here we find only a slight difference between R(/\) and
Ro()). Although Ro()) is a better estimator of R(A) in this case for most A, it does
not provide a better estimate of the minimizer of R()). We do see the expected
R(\) < Ro()) at large A and R()) > Ro()) at small A\. Here, A\p = 2 x 10710,
and the corresponding solution is shown along with the solution corresponding to the
minimizer of RO(A). Here we see that the method of discrepancy causes a significant
amount of oversmoothing.

In a large number of realistic test aerosol inversions, we find only a small dif-
ference in the minimizers of R(A) and Ro(}), and often the minimizer of Ro(}) can
be found with only a few iterations of a successive substitution scheme. Here given

M, an estimate of the minimizer of Ro()), we
1. identify the set of active constraints C,(\*)

2. find A*! by minimizing R, where R approximates Ro(/\) by assuming the set of

active constraints, C,(\?), is fixed.

This procedure will not always converge, and in some cases we are forced to use a

more robust minimization algorithm to choose successive As.

3.4 Generalized cross validation

In the case of aerosol measurements, we often do not have reliable estimates of the
magnitude of the errors available. Here, the analysis in the previous section leads to

trouble because A depends on the unknown or poorly known o.
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If C = 0, then one can predict ¢ and choose A from the data by minimizing

V(3 [,

p
V() =2 (yfi(A) — y¥)*wi(A) (3.89)

i=1
where y[ﬁ(}\) is the :** datum predicted by the regularized solution when the ;**
measurement is omitted from Eq. (3.2). The weights, w;()), are needed to ensure that
V(A) reflects the rotation invariant nature of Eq. (3.2). The idea behind choosing A
to minimize Eq. (3.89) is simple: a good choice of A is the one that best enables the
data to predict an omitted datum. As the number of data increases, this technique
for choosing A becomes optimal as described in [31,30].
One can show that [11]

YN —u = (W) = v!)/(1 = ai(V) (3.90)

where a;;(\) is the ¢** diagonal element of A(A). From this and the observation that

w;(A) should equal 1 if A(A) is circulant, one can show that an appropriate expression
for w;(A) is [20] -
(1 —a:i(V)?

w; A) = 3.91
W= w0 2
This leads to
_ T =AM
Y= T = a0 392
Eq. (3.92) can be combined with Eq. (3.74) to yield
R ONGT
V) = "‘1pr'( ) v (3.93)
(Zizaimi(A)?
where r;(A) and y{f; are defined in Eq. (3.76). Note that
V() — lyM))? as A — 00
p o M? e (3.94)
=19 a4 [A
V(A) — EE:_. lgl//\? as A —0

It is not uncommon for A = 0 to minimize V().

The analysis for the constrained case is similar if we assume the set of constraints
that is active at fy is not affected by the removal of one of the data. Here we choose
the A that minimizes Vo(A),

Vo(A) = Y8 (N) = yo!) *woi(N) (3.95)

=1
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where yf[i](/\) is the constrained analog of yﬁ(/\), and y2 is defined by Eq. (3.66).
Since we assumed that the constraints are not affected by the removal of a single

datum, we find

yoi(A) —voi = (WE(A) — yb) /(1 — a0ii(N)) (3.96)
Similarly, an appropriate expression for the weights is given by
1 — api ()2
we(}) = A 2d)) (397)

(tr[l — Ao(A)])*

and

(AN = Dy M2
Vo(A) = (tr[I — Ao(N)])?

In the constrained case, the calculation can become lengthy if the set of active con-

(3.98)

straints depends on A.

Again we consider in more detail the case C' = I , b = 0. The difference between
Vo(A) and V() is not as transparent as the difference between R(A) and Ro(A). We
only note that for large A we can expect that fi(z) will be very smooth; thus, there
will be few active constraints, if any, and here Vo(A) = V(X).

We have examined Vp(A) and V(A) under the same conditions as those of the
examples presented in the previous section. In Figure 2a we see V() and V(A) in
the case of the smooth distribution where the inequality constraints are unimportant,
and as expected little difference between the two is observed, as was the case in the
previous section for R(A) and Ro(A). Also, we note that the minimizer of V(}) is a
good estimate of the minimizer of R(X).

In Figure 2b we show the V4(A) and V() that are obtained for the reconstruc-
tion of the trimodal distribution shown in Figure 1c. The numerical conditions are
the same as those used to generate Figure lc. Notice that the constraints provide
critical information in choosing A. Here, A = 0 is the minimizer of V'(A), and the plot
of ||ly® — y™||? and the solution difference norms show that this would result in an
unacceptable solution. Similar results were obtained for S/N = 10 and S/N = 100.

It is clear from Figure 2 that the derivative of V5()) need not be continuous, and
this reflects the discrete addition of information as constraints are added or deleted.
For very small A, the set of constraints can be sensitive to small changes in A, and
one may find a minimum of V() in this region of A. This minimum is not desirable
because of the instability of the minimum with respect to changes in the data and
the constraints; additionally, in this region the assumption that the set of constraints

does not change as a datum is deleted is most likely invalid.
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If the minimizers of V5(A) and V(A) are very different, then the technique used
to minimize Ry(A) fails when trying to minimize Vo(A); here, minimizing V(1)) is

difficult, and we do not have a simple technique that applies to all cases.

3.5 Numerical comparisons of A\p, Ay, and Ay

In this section we present two examples that compare the regularized solutions ob-
tained with the smoothing parameters Ap, Ag, and Ay. We will ignore the smoothing
parameters obtained when the constraints are omitted; if generalized cross validation
is being used then, as shown in the previous section, the results can be catastrophic,
and if ER()) is being minimized then usually the results do not change significantly
if the constraints are removed.

In the first example we compare the average difference between the regularized
solution and the true solution over a range of signal-to-noise ratios for the two true
distributions shown in Figures 3a and 3b. In all cases we assume data from the DMA
described in the previous section were available, along with data from the diffusion.
battery described in [8]. We also assumed that the size distribution was to be zero
outside the interval (0.005 pm , 0.5 um ) and that the solution can be represented by
200 linear splines. Many sets of noisy data were generated with the signal-to-noise
ratio ranging from 4 and 100, and the regularized solutions were calculated for the
smoothing parameters Ag, Ap, and Ay. The average values of || f*(z) — fi(z)||rv and
|l Fx(z) — fi(z)||, are shown in Figures 3c-3f. Also, in Figures 3a and 3b we present
representative solutions for S/N = 20.

In this example, one can see a clear advantage in using Ar or Ay as opposed
to Ap for the range of conditions tested. As the signal-to-noise ratio increases, the
accuracy of the inverted solution must decay on the average; however, this decay
is accelerated when Ap is used to define fy. Also note the difference between the
solutions obtained from Ag and Ay is negligible in most cases, and this lends more
credence to the claim that generalized cross validation is able to provide a good choice
of the smoothing parameter and predict the magnitude of the errors in the data from
the data alone.

Generalized cross validation works well in this example because the amount
of information provided by the data is sufficient to justify minimizing Eq. (3.89);
generalized cross validation cannot be expected to perform well in cases where the
information content of the data is small relative to the amount of structure in the

solution. For example, in the case of only a few impactor data, it is not clear if the
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minimizer of Eq. (3.92) is desirable.

In the second example we investigate the effects of inaccurately estimating the
signal-to-noise ratio. This is important because often the magnitude of the error in
aerosol measurement data cannot be accurately estimated, and here we expect as
the estimate becomes worse, GCV will become more attractive. In this example, we
assumed data were available from the same sources that were used in the previous
example. Many sets of erroneous data were generated for unimodal and trimodal
analogs of the test distributions shown in Figure 3 while the signal-to-noise ratio
varied between 4 and 100. Regularized solutions were calculated for Ay, Ag, and
Ap, while the estimated signal-to-noise ratio remained at 20. The difference between
the regularized solution and the true solution is shown in Figure 4 over the range of
true signal-to-noise ratios. These results clearly demonstrate the power of using v
in the regularized solution. The main point here is that generalized cross validation
was able to consistently predict an acceptable amount of smoothing in the test cases
without being affected by the poorly estimated signal-to-noise ratio; this inaccurate
estimation of the true S/N, however, had a disastrous affect on the f) corresponding
to Ag and Ap. One can also see that of the three methods for choosing the smoothing
parameter, Ap is most sensitive to overestimating the signal-to-noise ratio.

The advantages of using Ay can be further highlighted by examining, for exam-
ple, the average ||f(z) — fi(z)||rv that one would obtain if the estimated signal-to-
noise ratio was 20 while the logarithm of the true signal-to-noise ratio was a uniform
random variable varying between 20c and 20/c, with 1 < ¢ < 5. Thus we seek N(c)

d
efined by ] . - o
N(e) /(20/6) (z)dlog z (3.99)

where N is the average value of the norm of interest evaluated at a signal-to-noise

=210gc

level of z given in Figure 4.

The results are shown in Figure 5 and emphasize the average cost of a poor
estimate of the signal-to-noise ratio. We see in many cases one is better off using Ay,
even if the estimated signal-to-noise ratio is exact. For the two distributions having
the most structure, there may be some advantage to using Ag if one’s estimate of the
true signal-to-noise ratio is within a factor of 1.5; however, the difference is slight.
For distributions with large amounts of structure relative to the amount of data, the
idea behind Ay is lacking, since it may not be possible for the set of data to predict
a key omitted datum as suggested by Eq. (3.89).

The results in Figure 5 point to an advantage of this work over that presented in

[47], where the analysis was based on using Ap. In most realistic situations involving
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aerosol data, the signal-to-noise ratio cannot be estimated accurately enough to justify

using the method of discrepancy.

3.6 Conclusions

Regularization parameters, Ap, Ar, and Ay, based on the method of discrepancy,
minimization of an unbiased estimate of the expected errors, and generalized cross
validation, respectively, have been investigated for the regularized solution to the con-
strained linear inverse problem arising in aerosol data inversion. A computationally
feasible method of finding Agr and Ay when constraints are important has been pre-
sented. An example was presented where consideration of the constraints is crucial
in defining Ay. The results of numerical experiments suggest that Ap is too large and
point out the importance of using generalized cross validation if the signal to noise

ratio cannot be accurately estimated.
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List of Figures

Figure 1. Regularized solution properties over a range of smoothing parameters.
(b) corresponds to the test distribution shown in (a), and (d) corresponds to the test

distribution shown in (c).

Figure 2. GCV function over a range of smoothing parameters. (a) corresponds
to the test distribution shown in 1(a), and (b) corresponds to the test distribution

shown in 1(c).

Figure 3. Average simulated differences between the true solution and the regu-
larized solution over a range of signal to noise ratios. (c) and (e) correspond to the
bimodal distribution shown in (a); (d) and (f) correspond to the 4-modal distribution

shown in (b).

Figure 4. Average simulated differences between the true solution and the regu-
larized solution when the signal to noise ratio is (incorrectly) estimated to equal 20.
(a) and (c) correspond to a unimodal test distribution; (b) and (d) correspond to a

trimodal test distribution.

Figure 5. Average simulated differences between the true solution and the regu-
larized solution when the logarithm of the signal to noise ratio is a uniform random
variable and the estimated signal to noise ratio is 20. (a) and (c) correspond to a
unimodal distribution; (b) and (d) correspond to a trimodal distribution.
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Chapter 4

Estimating the Variance in Solutions to the

Aerosol Data Inversion Problem
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Abstract

Regularization has been successfully used for solving a wide variety of ill-posed prob-
lems such as the inversion of aerosol size distribution data. The solutions are well
characterized and converge nicely to the true distribution as the number of data
increases.

If there are few data, then there can be many reasonable distributions that are
consistent with the measurements. Here, in addition to knowing an optimal solution,
one should also have an estimate of the variance of the solution or a characterization
of the size of the solution set.

We set up the necessary machinery to allow one to estimate the variance of
linear functionals of the size distribution, e.g., the concentration of particles in a
given size interval. This estimate depends on the form of the weighted average, the
variance in one’s a prior: estimate of the size distribution, the instrument’s response,
and the uncertainty in the data.

There are many applications. We demonstrate, for example, how to deter-
mine which of two instruments will better allow one to estimate the concentration of
particles in a given size interval. Also, we determine the number of measurements
necessary to ensure the variance of the estimated concentration is less than a specified

value.
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4.1 Introduction

The inversion of aerosol size distribution data amounts to solving the integral equa-

tion: find f(z) given a set of measurements y and the relation

/f(:z)k,-(x)dm=y,~+e,~ t=1,...,p (4.1)

subject to inequality constraints, where k;(z) is the known instrument response, and
€ is the measurement error.
This inversion problem is ill-posed [40]:

e solutions will become unstable when the number of data are large
e solutions are not unique

e exact solutions often do not exist

Regularization has been successfully used to find realistic solutions to this inverse
problem [47,48]. Here, an optimal element in the feasible set is identified based on
the fidelity of the solution to the data and the stability of the solution. Regularization
is a powerful technique because often the regularized solution will remain stable and
converge quickly to the true solution as the number of data increases [21] .

In many aerosol data inversion problems, however, there are limited data; for
example, a diffusion battery may provide only 12 data. In such a case, many realistic
solutions may agree with the data exactly, and the regularized solution is only one of
these. To illustrate this, we inverted two log-normal test distributions from simulated
data for the diffusion battery [7,8], with the diffusion battery response functions
shown in Figure 1. If the test distribution has a log-mean diameter of 0.020 pm, then
the regularized solution is reasonably accurate as shown in Figure 1. On the other
hand, there is a large disparity between the true and inverted solution when the test
distribution has log-mean diameter of 0.008 pm.

The difficultly behind inverting the distribution with the 0.008 pm peak is
clarified by examining the diffusion battery kernel functions in Figure 2a; the diffusion
battery does not response adequately to the smaller particles. No inversion algorithm
can expect to overcome this inherent deficiency of the instrument and select the true
solution when the true size distribution falls significantly in this size range. As a result,
one will always have more uncertainty in the inverted solution for the distribution
with the 0.008 pm peak in comparison to that with the 0.020 ym peak.

In addition to determining a single optimal distribution, it would also be valu-

able, therefore, to characterize the uncertainty in the distribution. For example,
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instead of stating that there are 100 particles/cm? in the size interval 0.010-0.020 pm
and 100 particles/cm?® in the size interval 0.006-0.012 ym, one would like to include
error estimates and state that there are 100410 particles/cm? in the size interval
0.010-0.020 um and 100480 particles/cm?® in the size interval 0.006-0.012 gm. Thus,
one goal of this paper is to determine the variance of properties of the size distribution,
such as the concentration, or the integral over a certain interval. Along with this,
we can benefit by determining which linear functionals of the size distribution have
the most or least variance. This information can help characterize an instrument’s
performance as well as provide bounds on a linear functional’s variance.

Additionally, it will be valuable to quantify the concept of the amount of in-
formation provided by an instrument, and add rigor to the statement ”the diffusion
battery provides insufficient information about the number of particles in the size
interval 0.006-0.012 um”. With a clear definition of information we can easily deter-
mine which combination of measurements is best to employ in a given experiment,
and we can even examine questions of instrument design. For example, we can inves-
tigate the modifications that one can make to an instrument’s response function to
increase the amount of information that the instrument provides.

In Section 2 we describe the main concepts that are necessary to calculate the
variance of linear functionals of the size distribution. In Section 3 we quantify the
information provided by a set of measurements and show how the information is
affected by the errors in the data and the choice of autocorrelation functions. In Sec-
tion 4 we point out some of the advantages of this approach over a recently proposed
alternative and also discuss shortcomings in our variance analysis. In Section 5 we
examine the information content of several instruments. We show, for example, how
the performance of the diffusion battery can be improved. Finally we demonstrate
that dependent errors in an instrument can place an upper bound on the amount of
information that is provided by the instrument, and that dependent errors point to

an advantage in using more than one instrument to determine a size distribution.

4.2 Variance of the size distribution

We assume that the aerosol size distribution, f(z), can be represented as a histogram,
linear spline, or more generally as a finite linear combination of basis functions g;(z),

and we write

f(z) = _V_Z;f,-gxw) (4.2)
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where n is a sufficiently large integer. Using Eq. (4.2), Eq. (4.1) has the vector

representation

Kf=y+e (4.3)

where the elements of K are
1
Ky = [ ke)g;(a)de (4.4)

In this paper we will assume that f(z) is a sample from a multivariate normal

random process with the covariance matrix p whose elements represent

pi; = E{(fi— f)(fi = )} (4.5)

where E is the expectation operator, and the overbar denotes the expected value. In
Section 4 we explain why it is necessary to assume that p is known, and we attempt
to justify this assumption. We assume that p is positive definite, or equivalently that
all nonzero linear functionals of f(z) have a positive variance. a priori. A linear

functional is denoted by ¢, and
U f(e) =1t =3 Lf; (4.6)
i=1

where [; is an element of the column vector 1. A simple calculation shows that
V{¢(f(z))} =17pl , where V denotes variance.
After the measurements are obtained, a straightforward calculation shows that

the new covariance matrix of f(z), p, is given by

p = (p'+KINTK)™ (4.7)
= p—pp (4.8)

where
pp = pKT(N + KpK")'Kp (4.9)

and where N is the covariance matrix of the errors in the measurements. Note that pp
is positive semi-definite, or if the matrix defined by the measurements is orthogonal
to pl, then the variance of the linear functional £ is unchanged by the measurement;
otherwise the variance must decrease as expected.

Some linear functionals of f(z) with covariance matrix p are worth noting.
We refer to a linear functional, ¢,, as a weighted average if ) ;.;l,; = 1 and as a
nonnegative weighted average if additionally all the /,;s are nonnegative. For example,
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the concentration in a given size interval is proportional to a nonnegative weighted

average. The weighted average of f(z) with the minimum variance solves
minimize 157 pla
subject to Z l,, =1

i=1

or,
A1

p'u
la = m (4.10)

where u is a column vector with every element equal to 1. Also, note that 157 pla
is strictly convex. Thus, if ¢ satisfies p;; > §,;, then l,; = 1 defines a nonnegative
weighted average with the maximum variance. The weighted average with the maxi-
mum variance does not exist since the variance of weighted averages is not bounded.
Additionally, we can look at the linear functionals, £, that lie on the sphere

Ills]l2 =1 . Note that
p= U/;SEU/’;’ (4.11)
where U F is an orthonormal matrix of eigenvectors of p, and Sz is the diagonal ma-
trix of positive eigenvalues. Thus, ¢, with the largest variance is represented by an
eigenvector of p with the largest eigenvalue, and the variance is equal to the largest
eigenvalue. Similarly, ¢, with the least variance is represented by an eigenvector of
p with the smallest eigenvalue, and the variance is equal to the smallest eigenvalue.
These maximal linear functionals are important, not only because they bound the
variance that one will obtain for a given linear functional, but also they can charac-

terize the weak and strong points in a measurement system.

4.3 Information

Information theory provides the useful concept of the amount of information provided
by a set of measurements. The entropy or uncertainty in the random variable z, H(z),
is [5]
400
Hz)= [ pay)logpa(y) dy (+.12)
If 2 has variance o, then the uncertainty of  cannot be greater than that of a normal
random variable with standard deviation o [5].
If a measurement, y;, provides new information about z, then the density func-
tion of = becomes p,/y, (z), and the uncertainty of z becomes H(z/y:). The informa-

tion conveyed about z by y; is denoted as I(z|y;),

I(z|y,) = H(z) — H(z/y1) (4.13)
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and simply measures a reduction in the uncertainty of z. In general we denote the in-
formation added by the measurements |J;2, z; to the random variable = that has been
previously characterized by the data U3, y; as I(x/ UrY, vi| U™, 2:). This measure of

information satisfies the following intuitive requirement:

1EAIUv) = 1)) + 1ED i) (414
= 1(E()ly) + L) k) (4.15)

or information is additive, and the sum is independent of the order in which it is
added. I can be thought of as a state function in much the same way that AS,
entropy change, is a state function in thermodynamics.

For example, assume an unknown constant z’ is characterized as a normal
random variable with variance o2, and that an independent datum can be used alone
to characterize z‘ as a normal random variable with variance aZ. Then one can show

by substituting the normal density function into Eq. (4.13) that

o2

1 I
Iely) = 5log(l+ %)

Y

Oy
~ log— o,>»0y
Oy
ol <
R o, L 0
202 v

It is interesting to note that here the information is independent of the mean values
of the random variables.

One can extend these calculations to apply to the n-dimensional f(z) to look
at the entropy reduction of the random discretized size distribution; however, more
useful information can be obtained by examining the information added to linear
functionals of the size distribution. Here, one is able to determine where information
decrease is (or is not) occurring. If Eq. (4.7) is substituted into Eq. (4.13), then we
find the amount of information added by the p measurements with response matrix
K to 4(f) is given by .

PD
il ] (4.16)
which will always be finite since one can assume N is positive definite. Since {(f) is a

normal random variable and the measurements are linear, the information added by

I((f)IK) = —3log[l -

a set of measurements is independent of the measurements, y. Also, the information

that is added is always nonnegative.



90

An important tool in the analysis of information content is the singular value
decomposition (SVD):
K=USvT (4.17)

Here, S is a diagonal matrix of positive generalized eigenvectors and U is a p X p
rotation matrix of left-hand generalized eigenvectors, and similarly V is the n x n
rotation matrix of right-hand eigenvectors. If p can be approximated as rI where r is
a positive scalar, and N = 1l where 7 is a positive scalar then substituting Eq. (4.17)
into Eq. (4.16) yields

P PTS.’(

1))~ ~4loglL = == (418)
=14
where 1 is the rotated linear functional 1V. This expression highlights the impor-
tance of the SVD in determining the information content of an instrument. The
instrument’s information contribution depends on how well the linear functional is
represented along the principal axes that are defined by V.

In most cases of interest in aerosol science, we can assume 1 < rS;;, or roughly
speaking the variance in our estimate of a measurement is much smaller after the
measurement has been observed, or

r2G2 2
Tt

(4.19)

This may not hold for all S;;, and if not, we also assume the corresponding [s are

not disproportionately large. With these assumptions, we find

2y 357
72

1_1 t

r

I(¢(f)|K) = log — — +log ——=* (4.20)
n

Eq. (4.20) points out an approximate relationship between the magnitude of p

and N and the amount of information provided by an instrument. This motivates us

to define a measure of information that is less sensitive to the magnitude of p and N,

namely

S(IK) = HEDIK) +log AL (421)

where tr [ | is the trace operator that equals the sum of the diagonals, the sum of the
eigenvalues, and the Frobenius norm of the square root of the matrix argument. Thus,
¢(¢(f)| K) should provide knowledge of the information provided by an instrument over

a large range of scale changes of p and V.
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4.4 Application to instrument analysis and design

We will examine the information content of three instruments: the scanning electrical
mobility spectrometer (SEMS) [46], the impactor, and the diffusion battery (DB)
through some illustrative numerical experiments. In all cases, we assume p;; = 1, and
that the off-diagonal elements decrease linearly so that f; and f; are uncorrelated if
the corresponding diameter ratio is less than V10 or half of a decade. The covariance
matrix ensures that the sample size distributions are reasonable and not ” white noise”,
and the covariance matrix used here is only illustrative. As the order of p — oo
, this linear decay will become undesirable since the sample functions will not be
continuous in the expectation sense [10]. If the errors in the data are assumed to be
independent, then NV;; is assumed to equal the integral of the corresponding kernel
function; thus, I(¢(f)|K) is an approximation to (£(f)|K).

If the errors from an instrument are dependent, then all of the channels are
assumed to have a common error source that has the same standard deviation as the
corresponding independent error source. For example the errors, €, in the data of a

3 channel instrument would satisfy

5] 5]
g = Co Co N (422)

C3 Cs3

where v/2¢; equals /N;; in the independent case and N is a vector of independent
normal random vectors with mean = 0, and variance = 1. Note that the constant
defined in Eq. (4.21) is the same for both the dependent and independent errors.

In particular, we will look at I(¢;(f)|K) where 4;(f) = fi. This characterizes the
information that is provided about particles in a narrow size range and highlights the
particle sizes at which the instrument provides or fails to provide information. Note
that a plot of (¢;(f)|K) is not as useful since some I; will be large where S;; is small.
Also we look at I(£(f)|K) where I, denotes the integral of the size distribution
over the first one-third section of the inversion interval. Here, the inversion interval
coincides with the support of the kernel functions. Similar calculations are performed
for I,, I, and 5, Where I o, represents the integral of the size distribution.

The kernel functions for the three instruments are shown in Figure 2 along with
the amount of information provided by the instruments about particles with diameter
d. Note, for example, that for particles in the 0.03-0.1 ym size range, I({;(f)|K) is
2-3 times times larger for the SEMS than the impactor; the interpretation is that the
reduction in variance provided by the SEMS is approximately 10 times larger that
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the variance reduction provided by the impactor. The signal to noise ratio is assumed
to be roughly the same for all channels and instruments. It is also interesting to note
that one can explain the sudden decrease in I({;(f)|K) for the SEMS at the smaller
particle sizes and the more gradual decrease at the larger end of the size range simply

by looking at the kernel functions.

Application: diffusion battery

The diffusion battery is of interest because of the difficulty that has been noted
by some when inverting diffusion battery data [49]. This difficulty is sometimes
incorrectly attributed to the inversion algorithm instead of the diffusion battery’s
inherent lack of information.

One interesting observation is that we can make two different assumptions about
the diffusion battery measurements: in the first, the data represent the number of
particles collected by the :** stage of screens, and in the second the data represent the
number of particle that penetrate the i stage of screens. The two points of view lead
to equivalent inversion problems as long as N is modified when we change from one
point of view to the other. If NV is unchanged, then we will obtain different conclusions
on the information content of the diffusion battery as shown in Figure 3. Specifically,
the diffusion battery has noticeably larger information content for the smaller particles
if one can assume the fraction of particles collected have independent errors. Also in
Figure 3, we show I(£;(f)|K) when a dependent error source corrupts the data.

We next examine the affect of certain modifications on information content of
the diffusion battery. A straightforward approach that is guaranteed to improve the
information content is simply to add a single SEMS measurement to the data. We
calculated the information that was added by the diffusion battery at various SEMS
inner rod voltages to the 4 integrals of the size distribution described above. The
results are shown in Figure 4 and illustrate the anticipated results. For example, since
the diffusion battery provides less information about smaller particles, the SEMS-DB
combination adds more information to the total integral as the mean diameter of the
SEMS kernel is decreased.

The integral of the smaller particles is difficult to estimate with a diffusion
battery because the contribution to the signal by the larger particles adds uncertainty
to the estimation. Therefore, it seems reasonable to expect that a filter could eliminate
the larger particles and increase the amount of information provided by the diffusion
battery about the smaller particles. The effect of the filter can be more clearly seen
by examining Eq. (4.7). First, the filter decreases the magnitude of N by decreasing
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the signal, and second redirects the right-hand eigenvectors of K to lie in the same
direction as £;.

To test this, we simulated a filter with a geometric standard deviation of 1.4
and looked at the amount of information added by the diffusion battery to the various
integrals. As expected, the information added by the diffusion battery increased for
the smaller particles as shown in Figure 5. For the center section, the information
increased as the larger particles were eliminated until the filter started to remove par-
ticles in the center section. Additionally, as one should expect, the information about

the total integral decreased because components of K parallel to ¢;; were eliminated.

Application: multiple impactors

A single impactor provides little information about the size distribution as shown
in Figure 2. However, if multiple impactors are used, then an unlimited amount of
information can be added as suggested by Figure 6a. Notice that it is not necessary
for the kernel functions to respond over a narrow size interval, as does the SEMS,
for a set of measurements to provide a large amount of information. The increase
in information is not as rapid as one could obtain by increasing SEMS channels
because, roughly speaking, the broad response of the impactor leads more quickly
to approximate linear dependence, and therefore the magnitude of the corresponding
eigenvalues of K is less. If all of the impactors have a dependent error source, then
the variance of a linear functional is substantially increased. This simply reflects that
all of the data are affected in the same way by the dependent source, and making
more measurements does not reduce the effect of this error source.

The most realistic case is that each impactor has its own dependent error source,
or the errors from one impactor to another are uncorrelated. The value of having
multiple instruments for measuring linear functionals of the size distribution is clearly

pointed out in the difference between Figures 6b and 6c.

Application: SEMS

Finally, we examine the effect of dependent error sources on the SEMS by increasing
the variance of the independent error source from 0.1 % of the total variance to
100 % of the total variance. The information I(¢(f)|K) added by the SEMS to the
various integrals is shown in Figure 7, where a in the Figure represents the ratio of
the variance of the independent source to the total variance. Note the large reduction
in the amount of information provided by the SEMS to these linear functionals in the

presense of dependent error sources. Again, the explanation is that none of the data
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are able to detect the errors generated by the dependent source since all of the data

are affected in the same manner.

4.5 The covariance matrix

One could take this analysis a step further and use the expected distribution with
the covariance matrix to determine the most likely solution as in [16]. This approach
is undesirable, however, because the most likely solution is sensitive to the estimated
mean distribution, and a poor estimate can make convergence to the true solution
painfully slow. Additionally, it is expensive to estimate the mean distribution and
covariance matrix. Therefore, we prefer regularization to find the optimal solution,
and the techniques described in this paper are best left to estimating the variance of
the solution.

A weakness one can anticipate with this approach is that information about the
linear inequality constraints cannot be conveyed by the covariance matrix alone. We

anticipate that often this will not be a serious problem because

e often the information provided by the constraints is secondary to the information
provided by the data

e the results in this paper are used only to obtain an estimate of the variance, and
this estimate should be reasonable for general random processes, even those with

inequality constraints.

A second problem is that the experimentalist may have difficulty deciding on a best
p and N. Note, though, that the covariance matrix is simply a method of providing
subjective information about the size distribution that enables one to exclude unre-
alistic size distributions, e.g., dirac-delta functions. When we say ”this distribution
simply cannot be correct”, then we have available some idea of what is realistic or
unrealistic, and this information should be conveyed by the covariance matrix. An
example of specifying a realistic covariance matrix can be found in [16] along with
some discussion. Finally, the results obtained in this paper can always be prefaced
with the statement, "if the covariance matrix is given by p, then one obtains the fol-
lowing results.” For this reason, 1(¢(f)|K) is a useful measure since it is less sensitive
to the magnitude of p and V.

An alternative method for examining the size of the solution set, Extreme-Value
Estimation (EVE), has been presented recently by Paatero and co-workers [36,37].
The technique is to
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1. discretize the integral equation
2. define a maximum acceptable error in the data, 6mas

3. look at the maximum and minimum of selected linear functionals of the size

distribution in the feasible set defined by the inequality constraints and 8,4z

Here, the inequality constraints are usually nonnegativity of the size distribution.
This approach is undesirable, however, not only because the results depend upon
the specified 8,4z, but also because the convex set is not bounded. As a result,
the extremes represent the unrealistic cases. Another problem is that all solutions
in the convex set are considered equally important when in fact some are next to
impossible. A simple example can point out the underlying shortcomings of this
technique. Suppose that one only knows the integral of the unknown size distribution.
What conclusions could be made about f(Z) for example? EVE can only conclude
that 0 < f(2) < +oo for any value of §n,,., even though we may know a priori,
for example, that f(Z) > 100 is likely, f(2) > 10* is unlikely, and that f(z) >
10%° is impossible. This problem can exist even when there are a large number of
measurements. The resulting conclusions thus depend on a fortuitous discretization
and choice of linear functionals.

Equal weighting to all solutions is undesirable because it produces a misleading
measure of the size of the solution set. For example if one applies EVE reasoning to
estimate the size of the sample space of a normal random variable, one would conclude
the set ranged from —oo to +oco. Here, as in our case, a more useful description of

the size of the sample space is the variance.

4.6 Conclusions

The estimation of the variance of linear functionals of the size distribution is a useful
tool in the interpretation of aerosol size distribution data. If there is insufficient
data to determine a single "best” solution, then this tool can be used to reflect
one’s uncertainty in an inverted solution. In addition to estimating the variance of
important properties, like moments, one can compare measurement systems before an
experiment is actually carried out and decide on the best design without expending
a large and possibly misleading effort on inverting simulated data.

The examples demonstrate why, for example, it is difficult to resolve size dis-
tributions with particles less than 8 nm in diameter from diffusion battery data.

Additionally, some possibilities for remedying this problem were presented. A filter,



96

for example, can be useful because particles of the distribution that contribute to the
uncertainty instead of the linear functional are removed.

Finally, dependent errors in an instrument can significantly affect the amount of
information provided about linear functionals. For this reason, multiple instruments
can be valuable when attempting to estimate linear functionals of the size distribution

because the likelihood of dependent error sources is drastically reduced.
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List of Figures

Figure 1. Inverted solutions for the diffusion battery for two log-normal test distri-

butions with log-mean diameters of 0.008 ym and 0.020 pm.

Figure 2. Kernel functions for the (a) diffusion battery, (b) impactor, and (¢) SEMS.

(d) is the normalized information content of each instrument.

Figure 3. Normalized information function for the diffusion battery for three as-
sumed operating characteristics. (DB-ind) : the penetration data have independent
errors; (DB-dep) : the penetration data have dependent errors; (DB-dif) : the pene-

tration difference data have independent errors.

Figure 4. The information added by the diffusion battery plus one SEMS measure-

ment to the various integrals as a function of the mean SEMS response.

Figure 5. The information added by the diffusion battery when a pre-filter with a
geometric standard deviation of 1.4 is operated over the range of dsq .

Figure 6. The information added to the various integrals by multiple impactors
when (a) all of the data have independent errors, (b) all of the data have a common
dependent source, and (c) the data from different impactors are independent, but

each impactor has its own dependent error source.

Figure 7. The information added by the SEMS to the various integrals when the

dependent error source ranges from dominant to nonexistent.
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Chapter 5

Conclusions

5.1 Summary

Aerosol data inversion is an ill-posed problem, and thus solution techniques must
address the lack of a unique solution, increasing instability as the number of data
increase, and the lack of a solution that agrees with the data. The issues can be
effectively addressed with the regularization algorithm described in Chapter 2; an
optimal solution is identified in the feasible set that is both faithful to the data and
stable with respect to fluctuations in the data.

The method of discrepancy that was used in Chapter 2 to choose the regulariza-
tion parameter, can be improved upon in most cases. Two techniques that generally
choose better regularization parameters are (1) minimizing an unbiased estimate of
the inverted errors if the magnitude of the errors is known, and (2) generalized cross
validation if many data are available. If inequality constraints are important to the
solution, then the calculations presented in [11] must be modified since changes in the
regularization parameter can affect the set of active constraints and alter the linear
approximation.

If there are limited data, then the data define a large solution set, and one
can expect a sizable difference between the true and inverted distribution. Here, in
addition to an optimal solution, one should also know the variance in the solution.
A simple approach to this problem is to view the size distribution as a sample of a
random process with a specified autocorrelation function. From this, one can define
the amount of information provided by a set of measurements. One can show, as
in Chapter 4, that dependent errors can place an upper bound on the amount of
information provided by an instrument, and that filters can improve the ability of
an instrument to determine a linear functional by eliminating components of the

distribution that are orthogonal to the linear functional.
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5.2 Project impact on the aerosol community

The results of this research should have a significant impact on the aerosol community.
First, when compared to previously developed inversion algorithms, the algorithms
developed in this thesis provide better resolution of the size distribution and are
successful under a much larger set of conditions. Second, the similarity of aerosol
inversion problems, irrespective of the instrument response functions, has been em-
phasized along with a solution that is independent of the particular instrument. The
benefit here is an elimination of the tide of proposed ad-hoc inversion techniques
that are being developed for specific instruments under specific conditions. Finally,
this research has demonstrated the importance as well as the ease of including all
of the available information into the inversion process. This includes information on
errors in the data, information from multiple instruments, and information provided

by inequality constraints.

5.3 Recommendations for future research

5.3.1 Justification for additional work

There are several exciting possibilities for future research on the inversion of aerosol
size distribution data. One must first answer the following: Is further research in this
direction justified, especially given that improved instrument design will probably
have larger impact on this particular inversion problem? The answer, in my opinion,

is an unconditional yes:

1. This research has opened and can continue to open new opportunities in exper-

imental development.

2. The inversion problem will always exist, especially in relation to measuring prop-
erties of sub-micron aerosol samples, even after the ultimate particle sizing in-

strument has been developed.

3. A common problem in all fields of science is data interpretation, and this often
leads to ill-posed problems. The techniques learned in aerosol data inversion are
directly applicable to many ill-posed problems, and this can open many doors

for the young researcher.
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5.3.2 Measuring f(z,?)

The goal of the first project is to extend the work in this thesis to the determination
of the size distribution as a function of time, f(z,t). This distribution is the desired
result of many experimental studies. Part of the motivation for this project is the
realization that the size distribution at time ¢ provides information about the size
distribution at other times. One can make better use of information provided by the
data if these related sub-inversions are treated as a single inversion problem. This
expected result could readily be confirmed by calculating the information provided
by realistic cross-correlation functions of the random process that generates f(z,t).
The extension of regularization to higher dimensions is straightforward [45].
One detail that needs to be resolved is how to combine derivatives with respect to
time and size to form a regularization functional. The resolution of this detail may
lie in the use of multiple regularization parameters [22]. Also, one can expect to
encounter some numerical difficulties because of the size of the inversion problem.
This project of determining f(z,t) leads nicely to the problem of choosing a
best set of measurements. A choice of measurements is often necessary because one
can only make a single measurement in the time interval At. The choice of subse-
quent measurements depends on how f(z,t) is evolving, which must be inferred from
previous measurements, and on the linear functionals available to apply to f(z,1).
The final result of this project would be, for example, a SEMS [46] that optimally
altered the scan rate as a function of voltage and time to obtain the best resolution
of an evolving size distribution. I feel this project has scientific as well as commercial

value.

5.3.3 Extrapolation to f) o

The second research project attempts to answer the following: If 4n data are available
for a single size distribution, then is it possible to use the regularized solutions fi n,
fazn, and fi 4 to estimate f) o7 Here f; is the regularized solution generated with
a subset of ¢ data. This question has current application, for example, in the case of
epiphaniometer [17], where potentially large data sets can be generated. In the similar
problem of numerical integration, extrapolation techniques are commonly exploited.

The potential benefits are
e improved accuracy for a given computational effort.

e an estimate of the error in the regularized solution.



113

Appendix A

MICRON User’s Guide and Reference
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A.1 Introduction

Purpose

MICRON (Multi-Instrument inversion using Constrained RegularizatiON) is a batch
FORTRAN 77 program that reconstructs an aerosol size distribution from conven-
tional aerosol size distribution data. MICRON will use data from any combination of
instruments if the user supplies FORTRAN subroutines that model the instruments’

response.

Installation

MICRON has been successfully tested on VAX and SUN workstations. The source

code is provided on a diskette and divided into 5 files:

mainmc.f main program and primary subroutines
ioutmc.f input and output subroutines

utilmef  basic math and string handling utilities
gpslmc.f quadratic program solver

usrfmc.f  user supplied instrument subroutines

The user must transfer these files from a PC to a larger computer (e.g., VAX or SUN)

and then compile and link the files to generate an executable file.

Notation

Throughout this manual we will use the following notation:

¢ placeholders for input that should be provided by the user are printed in italics.
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e literal input and output is printed in typewriter type. Also, FORTRAN vari-

ables and source code are printed in typewriter type.

¢ file names are printed in this type.
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A.2 An example

One should take the following steps to invert data with MICRON:

Step A write subroutines that will calculate the instruments’ response and link these

with MICRON.

Step B write a data file, micron.dat, that contains a description of the instruments

and MICRON’s operating parameters
Step C check the instrument response functions.
Step D test MICRON on artificial data.
Step 1 prepare the files that will contain the measured data.

Step 2 write a data file, micron.jbs, that contains the list of jobs that MICRON will

execute.

Steps A-D need to be performed only when MICRON is first set up for a specific set
of instruments. All of these steps are briefly illustrated in the following example.

We assume that a differential mobility analyzer has generated four sets of data.
Each set of data contains 50 measurements that correspond to 50 voltage settings.
The same voltages were used to generate each set of data and are contained in the
file volts.dat.

Step A

First we must provide a subroutine that calculates the instrument’s response to a

monodispersed aerosol source of unit concentration at a given diameter and channel
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(voltage). The instrument response is determined by the experimentalist through
calibrations and/or theoretical models. The units of the data, size distribution, and
instrument response function must be consistent. The following section of code gives

an idea of how to start:

double precision function INST1(dp)
B T T e P

particles detected by the DMA
FUNIT - finds a valid unit number
SENS -~ a function that calculates the response of

#* INST1 calculates the differential mobility analyzer

* (DMA) response described in * Aerosol Sci. and Tech.,
* 2:465-475.

*

* Description of variables:

* dp - particle diameter in microns

* iinst - instrument’s index = 1 for INST1

* iicha - the channel (voltage) of interest

* ncha - the number of channels for this instrument

* (= 50)

# ndma - unit number used to open data file of voltages
* temp - air temperature

* volts - the array of 50 channel voltages

#+ FRAC - a function that calculates the fraction of
*

*

*

*

the detector
T T T T T T T T T S P R T S

integer i, iinat, iicha, ncha

double precision dp, FRAC, par, SENS, temp,
X volt, volts(50)

logical first

parameter (minst = 10, mpar = 6)

common /cmpar/ par(minst ,mpar)

common /cmkerf/ iinst, iicha, ncha
save /cmpar/

save /cmkerf/

save first

data first /.true./

if (first) then
first = .false.
call FUNIT(ndma)
open(ndma, file = ’volts.dat’, status = ’old’)
read(ndma,*) (volts(i), i = 1, ncha)
close(ndma)
end if
temp = par(iinst,1)
volt = volts(iicha)
INSTL = FRAC(volt, temp, dp) * SENS(dp, temp)
return

end

Note the following:

1. the functions must be named INST1, INST2, ...,
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2. the channel number iicha, must be passed to the instrument subroutine as
shown. INST10.

3. parameters, temperature in this case, can be passed to the instrument functions.

The parameters are stored in par(iinst,*) and are accessed as shown.

4. use FUNIT to find a legal unit number if files are opened.

More examples of instrument functions are given in Chapters A.4, Chapters A.6, and
the source code in the file usrfmc.f.

Step B

Next we must provide a data file, micron.dat, that lists the instruments and any op-
erating instructions. The following micron.dat corresponds to the DMA listed above,
and informs MICRON that INST1 has 50 channels and will be referenced by the word
DMA.

# MICRON ignores lines beginning with '#°

# the case of the letters is unimportant

# sample micron.dat

#

Instrument 1 = DMA, number of channels = 50
temp = 298.0

#Have MICRON compute the least squares solutions

Least squares solution: yes

The first line informs MICRON that INST1 has 50 channels and will be refer-
enced by the word DMA. The second states that MICRON has a parameter, TEMP, that
has a default value of 298.0.

There are several options that can be specified in this file, and additional infor-

mation is given in Chapter A.3.

Step C

The instrument response subroutine should be checked before data are inverted. A
data file of DMA response values for channel 5 (for example) can be generated by
writing the following line in the job file, micron.jbs:

PLOT Channel 5
After executing MICRON, the data file dmab.plt should be checked to insure that the

subroutine INST1 is working.
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Step D

A data file that contains artificial data can be generated and inverted by placing the
following lines in micron.jbs and executing MICRON:

simulate sample
invert sample

The instructions that MICRON needs to make sample.inp are in the file sample.sim
that is created by the user:

#

# sample.sim

#

# add 5% random error to the data
add error

error parameters = 0.0 0.05

# simulate data for the dma
instrument = dma

# assume the true distribution is lognormal

test function = log_normal
integral = 100.0

geo_sdev = 1.5

geo_mean = 0.1

Any convenient root name can be used in place of sample. More information on

simulating data is in Chapter A.3.

Step 1

The user must write formatted data files that contain the measurements for each
distribution. The data in each file corresponds to a single distribution. For example:

datasetl.inp

instrument = dma
# list the data for channel 1, 2,
one datum per line, the second number is the standard deviation.

.02 0.05
.11 0.086
etc.

#
# negative data are ignored
1
1
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The user can specify several options in the root.inp file in addition to the measure-

ments, and these are described in Chapter A.3.

Step 2

The user needs to put a list of jobs and commands in micron.jbs and then execute
MICRON. The following file requests all of the jobs mentioned in this chapter:

#

# sample micron.jbs

#

instrument = dma

plot channel 5
simulate sample
invert sample
invert dataseti
invert dataset?2
invert dataset3

The output that corresponds to datasetl.inp is placed in the following files when
MICRON is executed if the message levels are large enough (see Chapter A.3) :

datasetl.log: the warnings and intermediate results.
datasetl.out: the solution vector and solution properties.
datasetl.plt: the solution vector.

datasetl.ech: the echoed input data.

A list of valid commands for micron jbs is listed in Chapter A.3.

An additional example is described in detail in Chapter A.4, and output from
the example is provided. The example problem in Chapter A.4 should be solved to
insure MICRON is working properly.
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A.3 MICRON’s data files

This chapter describes the syntax of each of the data files that the user needs to write
for MICRON. Each data file has a list of valid keywords. MICRON expects (in most

cases) to see entries of the form
keyword = parameters
The parameters are usually on the same line as the keywords. We will write
nothing = 21, ¢1, €2, 71
to mean that the keyword nothing is followed by one integer, two character variables,
and one real number. The parameters should follow the keyword in the order specified.
MICRON usually ignores words following the keyword if they are not expected or
recognized. Brackets, [ ], are placed around optional parameters.
When writing data files for MICRON remember:
e lines beginning with # are ignored
e the case of the letters used in keywords is not important

e some keywords have aliases

e keywords may be abbreviated (truncated) as long as the truncated portion
uniquely defines the keyword. The underlined portion of each keyword listed

below represents the minimum truncation.

Examples of all the data files mentioned in this chapter are given in Chapter A.4.
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micron.dat

micron.dat is read when MICRON begins executing and contains a list of the in-
strument names, parameter names, default parameter values, and special operating

instructions.

Keywords and syntax:

constrain instrument largest machine
maximum message norm smoothing

tolerance weak

constrain the sum of the errors: ¢;
where ¢, is either yes or no. If ¢; is yes, then MICRON constrains the sum of the

errors to be nonnegative.

(Default = no)

instrument ¢; = ¢;, number of channels = i,

where 7; is the instrument index, and c¢; is the name the user wants to use to refer to
the instrument, and i, is the number of data that the instrument provides. i; must
immediately follow instrument, and ¢; must immediately follow ;. On the lines that
follow the keyword Instrument, the parameter names and their default values must
be listed. Do not choose a parameter name that can be confused with a keyword. For

example, the entry

instrument 4 = impactor, 8 channels
298.0 +/- 10.0

temperature

informs MICRON that the subroutine INST4 will be referred to by impactor, and
that it has 8 channels. Also the impactor has a single parameter referred to by
temperature; temperature has a default value of 298. The second numeric value
after temperature is optional and informs MICRON that the data base micron kri,
should be updated whenever the parameter value is reset outside the range (288,308).

The default value of the second parameter is two percent of the first parameter.

largest inversion interval = ry, r;
where r; and r, are the endpoints of the largest inversion interval (d,,in, dmas) that
MICRON needs to consider. Larger intervals can require more computer time. The

contribution to the instrument readings must be negligible for particles outside the
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largest inversion interval.

(Default = 0.001, 11.0 (microns))

machine tolerances = ry, 1y, r3, T4
allows the user to specify the following constants associated with the computer being
used:

ry = the machine floating point precision (e.g., 1.d-15)

ro = the minimum positive number of the machine (e.g., 1.0d-38).
r3 = the largest number on the machine (e.g., 1.0d+38).

rs = the default output unit number. (e.g., 6)

(Default: MICRON computes these tolerances if they are not set in micron.dat. These

calculations will cause underflows on some machines.)

maximum failures = 7

resets the number of successive inversion failures that will cause MICRON to quit.
(Default = 5)

message level for ¢; = ¢4
where ¢, specifies an output data file and 7; is an integer that helps MICRON decide
how much output to place in the output data files. ¢; must be one of the following:

.ech the amount of input data that is echoed.

.log the amount of information that is included with the calculation log.
.out the amount of information provided with the solution.

.plt the amount of information sent to the plot file.

.scr the amount of output that is written to the screen.

The integer parameter is interpreted as follows:

.ech < 00 the .ech file is not opened.
> 10 the .inp file is echoed if a reading failure occurs.
> 20 same as 10 but the micron.dat file is echoed.

> 30 same as 20 but the .inp file is always echoed.
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(Default = 20)
.log < 00 the .log file is not opened.

> 20 completion status of each inversion is written along with

any errors to the .log file.

> 30 same as 20 with any warning messages.

> 40 same as 30 with the results of calculating the solution
dimension, minimum error in the transformed data, the

target of the norm squared recovered error.

> 50 same as 40 with the recovered error discrepancy, solution
roughness, and quadratic functional for each smoothing

parameter.

> 60 same as 50 with the matrix representation of the kernel

functions.

> 70 same as 60 with the inverse of the error array.
(Default = 40)
.out < 00 the .out file is not opened.

> 10 header plus solution vector is written to the .out file.

> 20 same as 10 with some solution properties (total number,
variance, mean diameter, roughness, discrepancy, and

value of the functional minimized).

> 30 same as 20 with an echo of the input instrument reading,
bounds on the inverted data, the inverted readings, and

percent differences.

> 40 same as 30 with corresponding solution diameter, and
dV/dlog(diam).

> 50 same as 40 with the computation level, dimension of so-

lution vector, inversion interval.

(Default = 100)

.plt; this tells MICRON how much output to generate to the .plt file. The following rules

are used:
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.plt < 0 the .plt file is not opened.

> 10 the solution vector is written to the .plt file. The solution
is reported in the interval defined by the variances of the

kernel functions.

> 20 same as 10 but including the diameters to which the so-

lution vector corresponds.

> 30 same as 20 but including dV/din(diam), where V is

aerosol volume.

(Default = 0)
.scr £ 0 no output.
> 10 report any program terminating errors.

> 20 same as 10 plus the success/failure of each inversion or
other task.

> 30 same as 20 plus the intermediate progress of each inver-

sion.

> 40 same as 30 plus the solution statistics for each smoothing

parameter.

(Default = 30)

norm of penalty term = 7;

Here iy = 1, 2, 3, 4, or 5 and represents the derivative in the term [(f()(z))? dz used
to define "smooth” in MICRON’s solution.

(Default = 3)

smoothing chosen by ¢
defines the algorithm that MICRON uses to choose the smoothing parameter. c; is

one of the following:

CGCV same as UGCV except the nonnegativity constraints are taken
into account. Recommended over UGCV when constraints are
an important part of the solution. MICRON may have diffi-
culty choosing the initial smoothing parameter when CGCV is
used, and the user may need to specify an initial smoothing

parameter in root.inp.
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CRR Same as URR except that the nonnegativity constraints are
taken into account. May work better than URR for sharp

distributions.

DISC MICRON will choose the smoothing parameter so that the
sum of the squares of the inverted errors is equal to the
expected value of the sum of the squares of the errors in the
measured data. This method is not recommended because
the solution can become unrealistic if the standard deviations

of the errors in the data are not accurately estimated.

UGCV MICRON will use generalized cross validation without tak-
ing the constraints into consideration. This method is rec-
ommended whenever there is a large number of data relative

to the amount of structure in the distribution.

URR MICRON will find the smoothing parameter that minimizes
an unbiased estimate of the inverted error. Recommended if
there are only a few data (=~ 15) , and the amount of error

in the data can be accurately estimated.

(Default = cgev if the number of data is greater than 15 and crr otherwise.)

tolerance for choosing the smoothing parameter = r;

where r; represents log(Anaz/Amin). MICRON will make sure the optimal smoothing
parameter lies inside the interval ( Amin, Amaz), and find a smoothing parameter that
lies inside this interval.

(Default = computed for the method of discrepancy, 0.25 otherwise.)

weak solutions are acceptable: ¢;

where ¢, is yes or no. Small smoothing parameters may cause the minimization
routine that finds the size distribution to find weak minimums. Sometimes this will
cause the solution to include unrealistic bumps.

(Default = yes)
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micron.jbs

micron.jbs contains a list of jobs and instructions for MICRON and is read while

MICRON is executing.

Keywords and syntax:

calculate copy Create drop

echo instrument invert least
make message B_]_.ot Eints
recover simulate smoothing tolerance
update weak

calculate channel 7,

instructs MICRON to create a data file that contains the instrument response for
channel i;. The output file name is a combination of the instrument name and
channel number. If 7, is not a valid channel number, then the instrument response
for all of the channels will be computed for each diameter. The instrument and
number commands will often be used prior to the calculate command.

copy
MICRON will make a formatted copy of the data base micron.kri. The formatted

copy is named micron.cpy.

create
instructs MICRON to create micron.kri. This command is not normally used since

MICRON will automatically create micron.kri if needed.

drop ¢
instructs MICRON to create an unformatted data file named ¢;. The data file will
contain the instrument response matrices that are stored in MICRON. This option

is useful if the instrument response matrix is expensive to calculate.

echo

alias for copy.
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instrument ¢
where ¢; is an instrument name in micron.dat. Following instrument, the instrument

parameters may be reset.

invert ¢
Instructs MICRON to invert the data contained in the file with root name ¢; and
suffix .inp.

least squares solution : ¢;
where c; is either yes or no. If yes, then MICRON will compute the least-squares

solution.

make

alias for create.

message level ¢; =1,

same as the message command in micron.dat.

number of points = 74
resets the number of function evaluations made by MICRON in the calculate com-

mand.

plot

alias for calculate.

recover ¢
instructs MICRON to recover the unformatted file named ¢; that has been previously
dropped by MICRON.

simulate ¢
Instructs MICRON to create a data file with root name c; and suffix .inp that contains
simulated data. The instructions for simulating the data are contained in a file with

root name c¢; and suffix .sim.

smoothing parameter chosen by c;

same as the smoothing command in micron.dat.
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tolerance

same as the tolerance command in micron.dat.

update ¢
where c; is the name of an instrument listed in micron.dat. This command instructs

MICRON to recalculate the information in micron.kri for the instrument c;.

weak solution: ¢;

Same as the weak command in micron.dat.

micron.sim

MICRON reads micron.sim once per run to find out the test function names and

parameters that are needed to simulate data.

Keywords and syntax:

funtion test

function 12, =¢

where 7; is the test function’s index, and ¢, is the name the user wants to use to
refer to the function. ¢; must immediately follow i;, and 7; must immediately follow
function. On the lines that follow the keyword function, the parameter names and
their default values must be listed. Do not choose a parameter name that can be

confused with a keyword. For example, the entry

function 1 = log_normal

integral = 100.0
geo_mean = 1.0
geo_sdev = 1.8

informs MICRON that the subroutine TF1 will be referred to by LOGNORM, and that
the LOG_NORM has three parameters.

test

alias for function.
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root.inp

root.inp contains the instrument readings that correspond to a single distribution.
Special inversion instructions may also be placed in this file. MICRON can be in-
structed to read the root.inp file ( for example sample.inp) by placing the following

entry in micron.jbs:

invert sample

Keywords and syntax:

concentration dimension endpoint ends
error header instrument interval
intvl inversion jterations itns
ndim skip smoothing smp
solution title

concentration constraints = ry, rs
constrains the integral of the size distribution to lie between r; and r,. A negative

value is interpreted as no constraint. For example the entry
conc = -1.0 1.0

constrains the integral of size distribution to be less than 1. This option should be

used cautiously.
(Default = no constraints)

dimension of the solution vector = i;

defines the number of linear splines that are used to represent the solution vector.
Larger values of i, require more computing time. i; must be less than MICRON’s
internal parameter mdim = 151.

(Default: dimension is computed)

endpoint constraints = ¢;
instructs MICRON to constrain the ends to equal zero. ¢; must be one of the following:

both - both ends are constrained.
lower - the lower endpoint is constrained.
neither - neither end is constrained.

none — same as neither.
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upper - the upper endpoint is constrained.

(Default = neither)

ends

alias for endpoint.

error description = ¢

instructs MICRON to begin reading in the elements of the error array. Off-diagonal
entries in the error array can be used to describe dependent errors in the data. The
magnitude of the entry in the i** row and j** column represents the standard deviation
of the j** error source. See [47] for more details. ¢; must be one of the following:

dense: MICRON will attempt to read the error array row by row. For example:

error array is dense
row 3

0.0 0.1 1.0

row 1

1.0 0.2 0.0

MICRON will stop reading a row of the error array when the first entry is non-
numeric. MICRON will stop reading in a dense error array when the first word

1s not row.

diagonal: MICRON will assume the errors are independent and that the diagonal
elements have already been entered; MICRON takes no action when error =

diagonal.

sparse: MICRON assumes that the lines that immediately follow this option will
contain the row index, column index, and the off-diagonal element. For example,

the previous dense error array could have been described by

error array is sparse
320.1
331.0
111.0
120.2

Combinations of the dense and sparse option may be used.
(Default = diagonal)
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header = ¢

where ¢, is a line of text that will be placed at the top of the output file. Two lines
of text may be specified with two header commands. If blank is the first word of the
header, then the line of text is erased.

(Default = blank)

instrument = ¢

where ¢; is one of the instrument names listed in micron.dat. This informs MICRON
that data will follow for the instrument c¢;. Parameters that correspond to the in-
strument may be reset on the lines that immediately follow the keyword instrument.
Following the parameters, the data for all the channels must be entered. Each line

can contain only 1 datum, and the format is

y(1) sigma(i) [bl(0)] [bu(i)]
where y(3) is the datum for the i** channel, sigma(i) is the standard deviation, and
bi(i) and bu(i) are the lower and upper bounds on the inverted data. If the user wants
MICRON to ignore the datum from a channel, then the word skip or a negative

number may be entered in place of the datum.

interval

alias for inversion

intvl

alias for inversion

inversion interval = ry, ry

informs MICRON that the solution distribution needs to be computed for diameters
lying between r; and r3; the size distribution must not contribute to the data outside
this interval. Larger intervals require more computer time.

(Default = the smallest interval such that the kernel functions are zero outside the

interval.)

iterations

alias for smoothing iterations

itns
alias for smoothing iteratioms.



133

ndim

alias for dimension.

smoothing iterations =1,

defines the maximum number of iterations that MICRON will use to find the optimal
smoothing parameter. Note ¢; = 0 can be used to find the least squares solution, and
21 = 1 can be used to specify the final smoothing parameter.

(Default = MICRON’s internal parameter: miter = 20)

smoothing parameter =r
MICRON attempts to minimize a function of the smoothing parameter, and some-
times MICRON’s initial smoothing parameter guess needs to be chosen by the user.
This option should not be used when the smoothing parameter is chosen by URR and
UGCV; (see section micron.dat).

(Default = computed)

smp

alias for smoothing parameter.

solution

alias for dimension.

title
alias for header.

root.sim

root.sim contains instructions that MICRON needs to simulate data for the file root.inp.
MICRON can be instructed to read the root.sim file (for example sample.sim) and cre-

ate sample.inp by placing the following entry in micron.jbs:

simulate sample

Keywords and syntax:

add_error data function Ainstrument

name number seed test
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add.error : ¢

where c; is yes or no. If ¢; is yes, then MICRON will add normal random error to the
data. The random error is generated by a random number generator. The standard
deviation is set by the error command and is reported to the root.inp file.

(Default = no)

function = ¢

alias for test.

instrument = ¢

where c; is the name of an instrument listed in micron.dat. This instructs MICRON
to simulate data for the instrument indicated. The entries that follow instrument
may be used to reset the parameters ( e.g., temperature) that correspond to the

specified instrument. For example:

instrument = dma
temperature = 298.0 K
name = of the test distribution is ¢;

This entry resets the name of the test distribution. ¢; must be the last word on the
line.
(Default = test_dis )

number of function evaluations = 77

MICRON will create a file of test distribution values, and ¢; is the number of function
values that are reported. The function values are logarithmically spaced between the
Aoz and do;, specified in micron.dat, and the test distribution values are placed in a
file named name.plt, where name is the name of the test distribution.

(Default = 100)

seed =1

re-seeds the random number generator that is used to generate random error.

test function = ¢;
where c; is the name of one of the test functions listed in micron.sim. This entry
instructs MICRON to add the specified test function evaluation to the test distribu-

tion. The entries that follow test may be used to reset the test function parameters.
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For example, if log norm corresponds to a log-normal distribution, then a tri-modal

distribution with three modes of equal size could be specified as follows:

name = tri_modal
test function = log_normal

integral = 100.0
geo_mean = 0.03
geo_sdev = 1.8

test function = log_normal
0.06

geo_mean

test function = log_normal
0.12

geo_mean
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A.4 Another example

Below we describe the input and output of an example in detail. This example should
be used as a test when MICRON is first installed.

We assume that two impactors have provided us size distribution data. The two
impactors have slightly different responses, and they are used side by side to measure a
size distribution. Calibrated collection efficiency data is available for each stage of the
impactors, and the efficiency data is in the data files impcta.dat, and impctb.dat. The
first column of these files is the particle diameter in microns at which the efficiency
is calibrated, and the subsequent columns are the efficiency of stage 1, stage 2, etc.

The file impcta.dat is shown here, and impctb.dat is on the diskette with the source

code.
impcta.dat:

0.010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.013 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
0.014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14
0.016 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25
0.018 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.39
0.021 0.00 0.00 0.00 0.00 0.00 0.00 0.01 O0.55
0.024 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.71
0.027 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.83
0.030 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.9%1
0.034 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.96
0.038 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.99
0.043 0.00 0.00 0.00 0.00 0.00 0.01 0.61 0.99
0.049 0.00 0.00 0.00 0.00 0.00 0.02 0.75 1.00
0.055 0.00 0.00 0.00 0.00 0.00 0.07 0.8 1.00
0.063 0.00 0.00 0.00 0.00 0.00 0.16 0.93 1.00
0.071 0.00 0.00 0.00 0.00 0.00 0.31 0.97 1.00
0.080 0.00 0.00 0.00 0.00 0.00 0.50 0.99 1.00
0.090 0.00 0.00 0.00 0.00 0.01 0.69 1.00 1.00
0.102 0.00 0.00 0.00 0.00 0.04 0.84 1.00 1.00
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0.115 0.00 0.00 0.00 0.00 0.10 0.93 1.00 1.00
0.130 0.00 0.00 0.00 0.00 0.21 0.97 1.00 1.00
0.147 0.00 0.00 0.00 0.00 0.37 0.99 1.00 1.00
0.166 0.00 0.00 0.00 0.00 0.56 1.00 1.00 1.00
0.188 0.00 0.00 0.00 0.02 0.74 1.00 1.00 1.00
0.213 0.00 0.00 0.00 0.05 0.87 1.00 1.00 1.00
0.240 0.00 0.00 0.00 0.13 0.96 1.00 1.00 1.00
0.272 0.00 0.00 0.00 0.26 0.98 1.00 1.00 1.00
0.307 0.00 0.00 0.00 0.43 1.00 1.00 1.00 1.00
0.347 0.00 0.00 0.00 0.63 1.00 1.00 1.00 1.00
0.392 0.00 0.00 0.00 0.79 1.00 1.00 1.00 1.00
0.443 0.00 0.00 0.01 0.90 1.00 1.00 1.00 1.00
0.500 0.00 0.00 0.05 0.96 1.00 1.00 1.00 1.00
0.565 0.00 0.00 0.20 0.99 1.00 1.00 1.00 1.00
0.639 0.00 0.00 6.50 1.00 1.00 1.00 1.00 1.00
0.722 0.00 0.00 0.79 1.00 1.00 1.00 1.00 1.00
0.816 0.00 0.00 0.95 1.00 1.00 1.00 1.00 1.00
0.922 0.00 0.01 0.99 1,00 1.00 1.00 1.00 1.00
1.042 0.00 0.07 1.00 1.00 1.00 1.00 1.00 1.00
1.178 0.00 0.25 1,00 1.00 1.00 1.00 1.00 1.00
1.331 0.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00
1.504 0.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00
1.700 0.01 0.96 1.00 1.00 1.00 1.00 1.00 1.00
1.921 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.170 0.17 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.453 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2,772 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.132 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.540 0.99 1.00 1.00 1,00 1.00 1.00 1.00 1.00
4.000 1.00 1.00 1.00 1.00 1.60 1.00 1.00 1.00
Step A

The measured data and the size distribution have units of mass/volume. Here, the

instrument response subroutine represents the fraction of particles collected.

double precision function INST1(diam)

*

i 2 2L

*
* INST1 computes the response for an 8 stage impactor.

* Calibrated stage efficiency data is contained in impcta.dat.

* The size distribution and data must the same units.

*

*+ VARIABLES:

*

* i,j - counters

*# jhigh - higher index used in the binary search routine

* iinst - the instrument index for INST1 = 1

* jlow - lower index used in the binary search routine

* mcha - the variable used to dimension the calibration data array

* ncha ~ the number of LPI channels = mcha = 8

* mdia =~ the number of diameters for which calibration data is avail.
* nlpi - the unit number used to read in the calibration data.

* dia - the array which holds the particle diameters at each impactor
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stage for which calibration data exists.
diam - the diameter for which the kernel function is to be evaluated.
transm - for stage i, it is the fraction of particles which are mot
collected by stages 1 through ichan-1.
xivec =~ the vector containing the calibration data for particle
diameter “diam" for channels i through “"ncha
- the vector containing the kernel function for each stage
at diameter diam (upon exit).
xker - the matrix used to contain the calibration data for
diameters contained in the array "dia".

Description of called subroutines:

FUNIT - finds a unit number which can be used to connect to the file

containing calibration data.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* MATINT - interpolates the calibration data contained in the
* array xker with a binary search routine.

*
*

LAST MODIFIED: 9 NOV 1988

g 4] ok *EA *k *

integer i, ihigh, iinst, ilow, i, jcha,
3 mcha, mdia, ncha, nlpi

double precision dia, diam, transm, xivec, xker

logical first

parameter (mcha = 8)

parameter (mdia = 50)

common /cmkerf/ iinst, jcha, ncha

save /cmkerf/

dimension dia(mdia), xker(mcha,mdia), xivec(mcha)
save xker, dia, first
data first /.true./
c
c ##READ CALIBRATION DATA
c
if (first) then
first = .false.
call FUNIT(nlpi)
open{nlpi, file = ’impcta.dat’, status = ’old’)
revind(nlpi)
read(nlpi, *) (dia(j),(xker(i,j),i=1,mcha),j=1,mdia)
close{nlpi)
end if
c

¢ #%#INTERPOLATE THE CALIBRATED EFFICIENCY DATA FOR EACH STAGE
c
do 100 i = 1, jcha
ilow =1
ihigh = mdia
call MATINT(i, 1, mcha, 1, mdia, xker, dia, xivec(i), diam)
100 continue

[
c #%SINCE THE IMPACTOR STAGES ARE IN SERIES THE FRACTION DETECTED BY
¢ ##STAGE "“i" DEPENDS OF THE FRACTION WHICH HAVE NOT BEEN
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¢ ##COLLECTED BY STAGES 1 THROUGH "i'-1

[+

400

*

transm 1.400
do 400 i = 2, jcha
(1.400 - xivec(i - 1)) * transm

transm
continue
IE¥ST1 = xivec(jcha) * transm
return

*_ _.end of INST1___*

*

tained and described in the diskette with the example instrument response functions.
INST2 is similar to INST1 except that the calibration data is in the file impctb.dat.

end

The subroutine MATINT is a linear interpolation routine; the source code is con-

Step B

Next we need to write micron.dat. The two

# Sample micron.dat

Instrument 1 = impcta, number of channels
Instrument 2 = impctb, number of channels

message level .plt = 20

No parameters are passed to these instrument subroutines.

Step C

Files can be generated that contain the instrument response data for all of the chan-
nels. These are generated by writing the following micron.jbs data file and then

executing MICRON:

points = 500

instrument =

plot
plot
plot
plot
plot
plot
plot
plot

channel
channel
channel
channel
channel
channel
channel

Oowo»m.hmwng
o
o
b

channel

instrument = impctB

plot
plot
plot

channel 1
channel 2
channel 3

impactors are named impcta and impctb.
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Instrument Response

51 T 0
Diameter (microns)

Figure A.1: Impactor A response curves

plot channel 4
plot channel 5
plot channel 6
plot channel 7
plot channel 8

The x,y data are contained in the files impctal.plt, impcta2.plt, ..., impcta8.plt.
The plots of these data files are shown in Figure A.1.

Step D

Next we should test MICRON on artificial data. We can instruct MICRON to gen-
erate three files that contain noisy data by creating the data files ab05.sim, a05.sim,
b05.sim, and micron.jbs. ab05.sim:

# ab05.sim

# assume 5 percent error is in the data

error parameters = 0.0 0.05

# add the error
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add error
seed = 100

# generate data for both impactors
instrument = impcta
instrument = impctb

# the test distribution is bimodal
test function = log_norm

integral = 100.0
log_mean = 1.0
geo_sdev = 1.5

test function = log_norm
integral = 20.0
log_mean = 0.1
geo_sdev = 1.5

# generate a file that contains the test distribution
name = bimodal
points = 500

micron.jbs:

simulate a05
simulate b05
simulate ab05

a05.sim and b05.sim are the same as ab05.sim except a05.sim does not reference
impctb, and b05.sim does not reference impcta. Also, b05.sim should not contain the
seed command. MICRON will create three input files that contain noisy data: a05.inp
contains data for the impcta, b05.inp contains data for the impctb, and ab05.inp
contains data for both impactors. The same bimodal distribution is assumed for all
three files, and MICRON places the bimodal function values in the file bimodal.plit.
Note that MICRON must have access to micron.sim.

Next we invert the data from all three files by writing the following micron.jbs
and executing MICRON:

smoothing chosen by crr
message level .plt = 20
invert ab05

invert a05

invert b05
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Figure A.2: Size distributions with smoothing defined by CRR.

MICRON will create the data files a05.plt, b05.plt, and ab05.plt. These files
contain the inverted distributions and are shown in Figure A.2. Here, the distribution
that was obtained by inverting the data from both impactors seems best.

We can also compare the inversion shown in Figure A.2 with the inversions
obtained when CGCV is used to choose the smoothing parameter. The user should
replace crr in the previous micron.jbs with cgcv and re-execute MICRON. The
results are shown in Figure A.3 and demonstrate that CGCV does not work well when
only a few data are available.

One also can (and should) test the effects of the following:

e varying the magnitude of the error in the data
o adding dependent error to the data
e specifying an inaccurate error magnitude

The subroutines INPSPC and QUTSPC can simplify these tasks. See the accompanying
MICRON Programmer’s Manual.
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Figure A.8: Size distribution with smoothing defined by CGCV.
Step 1
A data file that contains instrument data will look like the following:

impabl.inp

instrument = impcta
2.1 0.3
5.2 0.3
6.3 0.4
11.6 0.5
10.1 0.5
6.0 0.4
2.8 0.3
1.1 0.1

# The first two channels of impctb are not reliable
instrument = impctb

skip

skip

5.5 0.1

8.2 0.1

10.5 0.3

8.1 0.2

3.0 0.1

1.7 0.1
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# The distribution should be zero at the endpoints.
ends = both

Step 2

We can invert many sets of data (e.g. impabl.inp) by writing the following micron.jbs
and executing MICRON:

message level .plt = 20
invert impabil
invert impab2
invert impab3
invert impab4
etc.
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A.5 A description of the output

MICRON will create up to 4 output files per inversion in addition to writing to
the screen: root.ech, root.log, root.out, and root.plt. Additionally, MICRON can also
create micron.dmp and micron.cpy while executing. Below we will describe some of the
output that is generated by MICRON while inverting ab05.inp. Most of MICRON’s

output is self-explanatory and is not described below.

ab05.log

The minimum norm square of the transformed error
vector is 0.4466D+01

Smoothing parameter iteration: 1

smoothing parameter = 0.1982880D-06
Smoothing choice function (CGCV) = 0.5314418D+01
roughness of solution = 0.1689037D+06
objective function = 0.9590015D+00

1. The minimum norm square of the transformed error vector is the minimum
achievable sum of the squares of the errors when the system of equations is
rescaled so that the errors are independent with unit variance. If this number is
on the same order of the number of data, then the magnitude of the errors that

was specified by the user is probably incorrect.

2. the smoothing choice function is the value of the function that MICRON is trying
to minimize as a function of the smoothing parameter. If MICRON is choosing
the smoothing parameter poorly, then this number may give some insight to the

problem.
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3. the roughness of the solution is the integral of the square of the second derivative
of the size distribution function.

4. the objective function is the sum of the matching term and the penalty term.

ab05.out
Most of the output in this file is self-explanatory. Only a few comments apply:
1. the size distribution is provided in log base e.

2. the column next to the inverted data titled rsdiff. represents the difference of
the inverted and the measured data divided by the standard deviation.

ab05.plt
This file only contains the solution vector. Only a few comments apply:

1. the size distribution is provided in log base e.

2. the size distribution is provided only over the interval defined by the variance of

the kernel functions.

3. the third column is 7/ Gdg times the second column, where d, is the diameter

provided in the first column.
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A.6 Example instrument response functions

Below are two thoroughly documented example instrument response functions. We

assume the reader is familiar with writing FORTRAN subroutines. There are several

utility routines in the file usrfmc.f that can ease the task of writing an instrument

response function, and the use of these is illustrated below. Additional examples of

response functions are in usrfmc.f. The user should attempt to modify an existing

response subroutine before writing a new one from scratch.

The first subroutine is for a screen-type diffusion battery. MICRON passes four

parameters to INSTS.

double precision function INST5(diam)

* 2t 312 2 Lttt 3134

INSTS models the TSI 3040 model screen type diffusion battery

response described in J. Aerosol Sci. 11:549-556. The response is
assumed to follow eq. 6 on page 551. It is assumed that a condensation
nuclei counter is used to detect the particles, and that the channel
response for stage i is the number of particles detected before

stage i minus the number of particles detected after stage i.

Description of variables:

minstt - the declared value of "minst" in MICRON, used to check
minst is properly declared

mpart = the declared value of "mpar" in MICRON, used to check if
mpar is properly declared.

msgscr - the MICRON’s screen message level.

L2 I B BN I 2N N R RN K R B IR BEE B R N SR R ]

ndiff - the instrument index of the condensation nuclei counter (CEC)
nchat = the number of channels associated with the CEC

nscr - the default output unit number for the screen.

jchat - the channel number of the CEC for which a response is desired
alpha - solid volume fraction of filter

cexp = -log(Penetration) per screen

daf - fluid flow cross section diameter of diffusion battery in cm
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ad - fiber radius in microns

flow - sampling flow rate (liters/min)

frp
inte

pe

-~ eq. (4) J. Aero. Sci. 11:550
rc - eq. (5) J. Aero. Sci. 11:550
- particle Peclet %

premul - holds the product of FILTER and the CNC response

rho - particle density g/cc

rmin - the smallest positive number on the computer
st -~ particle Stokes ¥

temp - air temperature in Kelvin

pres
uo

Desc
AIRV
ce

8 - air pressure in atmosphere
~ undisturbed flow velocity cm/sec

ription of called subroutines:
SC - air viscosity in g/cm/s
- Cunningham slip correction

DCPART - diffusion coefficient of particle in cm~2/s
EZKERX - computes the condensation nuclei counter respomse that

is assumed to be computed by INST4.

PARCEK - used to check if the value of a FORTRAN parameter declared

in the instrument subroutine is the same as the value
declared in MICRON.

LAST MODIFIED:25 JAN 1988

P I =% P whkkk

integer iinst, jcha, jchat, ktscrn, minst, minstt,
& mpar, mpart, msg, msgscr, ncha, nchat,
f 3 ndiff, nscr

double precision AIRVSC, alpha, artfil, CC, cexp, convcm,
& diam, DCPART, d4f, dfbmax, EZKERX, fibrad,
3 FILTER, flow, frp, interc, one, pe,
4 par, pi, premul, press, T, rho,
3 min, p, st, temp, two, uo,
& xilow, xiup, zZero

logical first

parameter (convem = 1.d+04, alpha = 3.45d4-01)
parameter (af = 3.81400, dfbmax = 1.d+0)
parameter (fibrad = 10.400, pi = 3.141592400)
parameter (mpar =6, minst = 10)

parameter (one = 1.d+0, zero = 0.d+0)
parameter (tvo = 2.d+0)

common /cmrmin/ rmin

save /cmrmin/

common /cmpar/ par{(minst, mpar)
save /cmpar/

common /cmkerf/  iinst, jcha, ncha
save /cmkerf/

common /cmscr/ msgscr, nscr

save /cmscr/

common /cmparm/ minstt, mpart

save /cmparm/

save msg, first

data msg, first /O, .true./

data ndiff, nchat, jchat
/4, 1, 1/
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*

[

c ##check to make sure PAR is dimensioned correctly

c

a 0 o a0

a 0 o a0

c
[+
[+

if (first)
first =

then
.false.

call PARCEK(minst, minstt, ’minst’, ’INST5’)
call PARCHK (mpar, mpart, ’mpar’, ’INSTS?)

end if

#MWRITE A WARNING IF THE RESPONSE IS COMPUTED ABOVE THE
##CALIBRATION INTERVAL

if (diam .gt. dfbmax) then

if (msg

.eq. 0) then

if (msgscr .ge. 10) then
write(nscr, 1) dfbmax

msg = 1

end if
end if
end if

#¥FIRST CHECK IF FILTER OR THE CEC RESPONSE WILL ALLOW A

#¥QUICK EXIT

artfil = FILTER(diam, dfbmax)

if (artfil .le. rmin) then
premul = zero
else
premul = artfil » EZKERX(ndiff, jchat, nchat, diam)
end if
if (premul .le. rmin) then
INSTS = zero
else

#3ELSE WE’RE FORCED TO COMPUTE THE RESPONSE

temp
flow
rho =

press =
uo =

pe =

st =

H
1]

interc =

ceaxp =

ktscrmn =

= par(iinst,1)

par(iinst,2)

= par(iinst,3)

par(iinst,4)

200.4d00 / 3.d00 * flow / pi / dfe«s2

two *# fibrad * uwo / DCPART(diam, press, temp) /
convem

rho * diame*2 * CC(diam, press, temp) * no / 18.400 /
AIRVSC(temp) / fibrad / convem

diam / fibrad / two

r + one

= (one / rp) - xrp + (two * rp * dlog(rp))

(29.6400 ~ 28.400*(alpha*#0.62)) * r»*2 -
(27.5d00 * (r++2.8d00))
1.96d00*pe*+(~two/3.d+0) + 1.69d00+frp +
3.91d00*interc*st +1.94d00/dsqrt(pe) *
r**(two/3.d+0)

(jcha*(jcha + 1))/2
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xiap = dexp( - cexp*dble(ktscrn))
xilow = dexp( - cexp*dble(ktscrn - jcha))

INSTS = (xilow - xiup) * premul
end if
return
1 format(/,’ Warning:’,/,
%’ The instrument response for the diffusion battery is not’,/,
&’ well known above ’,d10.3, ’ microns.’)

*
*___end of INSTS___*
*

end

The next subroutine is for a differential mobility analyzer; MICRON passes six

parameters to INSTS8.

double precision function INST8(diam)

stk Kook kR ok Ekkkk b2 2 2L L2 *k ke

INST8 returns the theoretical differemtial mobility analyzer (DMA) re-
sponse as described in Aerosol Sci. and Tech., 2:465-475. The
calculations follow those outlined in AS&ET 2:474. The detector is

the condensation nuclei counter.

Description of variables:

mcha =~ the number of channels

mingtt - the declared value of "minst' in MICRON, used to check
minst is properly declared

mpart -~ the declared value of “mpar" in MICRON, used to check if
mpar is properly declared.

ndiff =~ the instrument index of the condensation nuclei counter (CNC)

nchat - the number of channels associated with the CNC

jchat - the channel number of the CEC for which a response is desired

diam - the particle diameter in microns

[ - electron charge dyne cm/V

geo - length/ln(outer radius/inner radius) of the DMA

parl - air temperature in Kelvin

par2 - clean air flow rate in cc/sec

par3 - main exit flow rate in cc/sec

par4 - sample aerosol flow rate in cc/sec

par5 - inlet aerosol flow rate in cc/sec

par6 -~ air pressure

volt =~ DMA rod voltage

Description of called subroutines:

ATIRVSC - air viscosity in poise

cc - Cunningham slip correction

CHDST ~ computes the fraction of particles of size "diam"
carrying "ichrg" charges when exposed to bipolar charging

DTXF -~ computes the function omega in eq. 2 in Aero. Sci. & Tech.
2:466.
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* EZKERX - computes the fraction of particles detected by the
* condensation nuclei counter which is assumed to be

*
*
*
*

*

SRF

calculated by INST4.
* PARCHK - used to check if the value of a FORTRAN parameter declared

in the instrument subroutine is the same as the value
declared in MICRON.
- computes semnsory response function

* LAST MODIFIED:25 JAN 1988

PrrT T % % P ERERREEE

integer icha, ichrg, iinst, jcha, jchat, 1lchrg,
4 mcha, minst, minstt, mpar, mpart, ncha,
3 nchat, =nchrg, ndiff, ndma

double precision AIRVSC, CC, CHDST, chdstt, dmatmp, diam,
3 DTXF, dtxft, e, geo, par, pi,
4 pis4, pkht, pmf, press, rmin, scale,
3 SRF, srft, stemp, temp, v, v0,
3 vi, v2, v3, v4, visc, volt
logical first

parameter (mcha = 20, pi = 3.14159265d00)
parameter (pi4 = 4.4+0 * pi, e = 1.602d-12)
parameter (geo = 60.246400, mpar = 6)

parameter (minst = 10)

common /cmpar/ par{minst, mpar)

save /cmpar/

common /cmkerf/ iinst, jcha, ncha

save /cmkerf/

common /cmrmin/ rmin

save /cmrmin/

common /cmparm/ minstt, mpart

save /cmparm/

dimension volt(mcha)

save scale, stemp, visc, volt, first

data first, stemp, visc

& /.true., 0.4+0, 0.d+0/

*

G 0 o

##FIRST READ THE DATA FILE CONTAINING THE DMA VOLTAGE SETTINGS

if (first) then
first =

.false.

call PARCHK(minst, minstt, ’minst’, ’*INST8’)
call PARCEK(mpar, mpart, ’mpar’, ’INST8’)
call FUNIT(ndma)

open(ndma, file

rewind (ndma)

= ’dmal.dat’, status = ’old’)

read(ndma, *) (volt(icha), icha = 1, ncha)

close(ndma)

scale = 1.d+04 * e * gaeo / 3.d+0 / pi

end if
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temp = par(iinst, 1)

press = par(iinst,6)

vO = par(iinst, 2) + par(iinst, 3)

vl = (v0 - par(iinst, 4) -~ par(iinst, 5))/pi4

v2 = (vO - dabs(par(iinst, 4) - par(iinst, 5)))/pi4
v3 = (vO + dabs(par(iinst, 4) - par(iinst, 5)))/pi4
v4 = (vO + par(iinst, 4) + par(iinst, 5))/pi4

pkht = dmin1(1.d00, (par(iinst, 4)/par(iimnst, 5)))

dmatmp = rmin
if (stemp .ne. temp) then

stemp = temp
visc = scale / AIRVSC(temp)
end if
pmf = visc * (CC{(diam, press, temp) * volt{(jcha)) / diam

call FDCEGI(lchrg, nchrg, diam, pmf, temp, vi, v4)

#2THE PARTICLE MAY HAVE O, 1, 2, ... CHARGES AND WE NEED SUM THE
#¥DMA RESPONSE DUE TO THE PARTICLES CARRYING EACH NUMBER OF CHARGES.

a o o o

v = dble(lchrg)*pmf

do 100 ichrg = lchrg, nchrg
chdstt = CHDST{(diam, temp, ichrg)
dtxft DTXF{pkht, v, vi, v2, v3, v4)
srft SRF (ichrg, jchat, nchat, ndiff, par(iinst, 4), diam)
dmatmp = dmatmp + chdstt * dtxft * srft
v = v + pmf

100  continue
INST8 = dmatmp*par(iinst, 5)
return

*___end of INST8___=
*

end

Note that MICRON has open files, and FUNIT must be called to return a valid
unit before opening any additional files. All of the subroutines referenced in INST8

are contained in the file usrfmec.f.
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A.7 1In case of trouble

Failed inversion will occur and have the following manifestations:

1.
2.

MICRON complains about an input error.

MICRON complains about a numerical error.

. the solution is unrealistic.

If an error occurs the user should always

check steps C and D described in this manual.

check the output files to make sure that the input files were read correctly.
check for warnings in the .log file.

attempt to simulate data and construct a similar inversion problem with a known
solution. If a similar inversion problem cannot be found, then the original prob-

lem may be unrealistic.
If the solution is unrealistic:

use MICRON to find the least-squares solution. If the rsdiff. of any inverted
datum in the .out file is much larger than 1, then the specified standard deviations
may be unrealistic. Also, the minimum error should be less than the number of
data.

use an alternative smoothing algorithm. See below.
If a numerical error occurs:

solve a simpler, related problem (e.g., reduce the solution dimension, eliminate

constraints, choose the smoothing parameter, etc.)
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Specific problems that may occur are the following

e the instrument response matrix can cause numerical difficulties due to scaling
problems. For example, the number distribution response matrix for an impactor
can cause difficulties; here, the problem can be avoided by working with the mass
distribution.

¢ the algorithm that is used to choose the smoothing parameter can fail. If RR or
DISC is used, then the specified standard deviations may be incorrect. If GCV
is used, then the initial smoothing parameter may be poorly chosen, there may
be too few data, or in some cases GCV can fail due to instabilities. This can be
avoided in many cases by manually choosing the first smoothing parameter, or

by using RR to choose the smoothing parameter.

e the user may have specified zero standard deviations; these place a severe con-

straint on the solution.
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