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Abstract

Nanometer scale wire structures are fabricated by selective disorder of a GaAs/AlGaAs
quantum well. These structures are investigated by cathodoluminescence (CL). Spec-
trally resolved CL images of the structures as well as local CL spectra of the struc-
tures are presented. The effects of fabricational variations on quantum wire laser
gain spectra and performance are discussed. A new technique for determining carrier
diffusion lengths by cathodoluminescence measurements is presented. The technique
is extremely accurate and can be applied to a variety of structures. The ambipolar
diffusion length and carrier lifetime are measured in Al,Ga;_,As for several mole frac-
tions in the interval 0 < z < 0.38. These parameters are found to have significantly
higher values in the higher mole fraction samples. These increases are attributed to

occupation of states in the indirect valleys, and supporting calculations are presented.
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Chapter 1

Introduction

1.1 Semiconductor Devices

In the course of the past fifty years, semiconductor devices have been at the heart
of many of the technological changes our society has undergone. Diodes, transistors,
and digital logic circuits are in virtually every device or appliance that uses electricity.
Computers and microprocessors serve functions that vary from setting the exposure
in a camera, to controlling the course of remote spacecraft, to storing and processing
most of the documents and data kept by businesses and individuals.

Early semiconductor research was centered on Ge. Because it has a lower melting
point and was easier to purify than Si, the basic material properties and physics of Ge
were uncovered sooner. In the late 1940’s, the research on Ge led to the discovery of
the transistor [1,2]. Because of the potential of the transistor in replacing the vacuum
tube, research on transistors and semiconductors was greatly increased. For use as

diodes and transistors, Si has come to replace Ge almost completely. This is due to



a variety of reasons, such as: Si has a higher bandgap, allowing for higher operating
temperatures for devices, the important fabrication processes of doping and oxide
formation are easier in Si, and the raw material is less éxpensive. Although some
researchers expected GaAs to be a replacement for Si in electronics because of its
high electron mobility and saturation velocity, it is in the area of optoelectronics that
GaAs has had the biggest impact.

An important difference between GaAs and Si or Ge is that GaAs is a direct gap
semiconductor. This allows for the efficient conversion of electrical energy to light.
Also, GaAs, being a compound semiconductor, can form a ternary compound with
Al, Al,Ga;._;As, where z is the Al mole fraction, that is, z represents t.he fraction
of Ga sites that are occupied by an Al atom. The bandgap energy and index of
refraction of Al;Ga;_;As change as z is varied, allowing a great degree of freedom in
determining the electrical and optical properties of a device. It is fortunate that as
the bandgap of Al,Ga;_,As increases, the refractive index decreases, making possible
structures that confine both the optical field and the carriers to the same region. For
the semiconductor laser, which relies on a significant overlap of the regions of high
electron and hole concentration, and the optical field, this “accident of nature” is
essentiall.

The first demonstrations of lasing in a semiconductor occurred in 1962 [3,4,5].
In the early devices, room temperature current densities were on the order of 5 x

10*A/cm?, and only pulsed operation was possible. Clearly, room temperature cw

!This “accident” occurs in any material where the refractive index change is governed by the Kramers-

Kronig relation.



operation was required for these lasers to be useful. Through improvements in the
material quality and laser design, researchers achieved room temperature cw operation
by 1970. Since then semiconductor lasers have been used in fiber optic communica-
tion systems, retrieval of data stored on optical disks, and laser printers, to name a
few of the current applications. One proposed future application for semiconductor
lasers is optical interconnections for complex circuits in computers and other sophis-
ticated electronic devices. Replacing metal strip lines with lasers and detectors has
two basic advantages: first, lasers can be modulated at a high rate, speeding up com-
munication between different elements of the circuit or system, and second, optical
beams can intersect without interfering with each other, which increases the number
of possible layouts on a circuit board. In this proposed application, thousands or tens
of thousands of lasers would be utilized in one computer. For this to be feasible, each
laser must have a threshold current in the low milliampere or microampere range.
Recent efforts with quantum well lasers have pushed threshold current densities as
low as 93A/cm? [6] and threshold currents down to 0.55mA [7] and there is promise

of further reductions down to tens of microamperes.

1.2 Quantum Wells

One of the most important developments in semiconductor technology is the hetero-
junction. A heterojunction is the boundary between two different materials forming
a single crystal. Electrons and holes traveling perpendicular to the heterojunction

see a discontinuity in the bandgap at the heterointerface. With techniques such as



molecular beam epitaxy (MBE) and organometallic chemical vapor deposition (OM-
CVD), these interfaces can be abrupt on the scale of a single atomic layer. In a double
heterojunction structure, with a material of lower bandga‘p (e.g., GaAs) sandwiched
between two layers of higher bandgap (e.g., Al;Ga;_.As), electrons and holes become
confined in the lower bandgap material.

The double heterostructure becomes a quantum well when the width of the confin-
ing structure is comparable to the deBroglie wavelength of the electron in the mate-
rial. This situation is the semiconductor version of the quantum mechanical particle
in a box. The electron wavefunctions are the superposition of a Bloch function and
a standing wave envelope function consisting of two phase coherent, counterpropa-
gating plane waves. This situation is illustrated in Fig. 1.1. Because the electron
momentum in one direction is restricted to the eigenstates of the potential, it has
only two degrees of freedom. Carriers in a quantum well are said to form a quasi-
two-dimensional electron gas. In such a system, the density of states is step-like (see
Fig. 1.2), as compared to the v/E dependence for the bulk case. Because the density
of states increases abruptly from zero at the bottom of the first subband, no carriers
are wasted in regions of the spectrum that lack a sufficient density of states to pro-
vide significant gain. The result of this is that a higher fraction of the carriers are
contributing to the peak gain. When used as the active region of a laser, quantum
well material yields lower threshold currents [7] and higher differential gain (leading
to higher modulation bandwidths) [8,9], narrow linewidth (8,10], and reduced temper-

ature dependence of the threshold current [11]. Quantum well active regions in lasers
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Figure 1.1: Band diagram for a quantum well. E; and E; are the eigenenergies for the
first and second quantized state of the electron, and the Ejn and Ej, states represent
the eigenenergies for the heavy hole and light hole respectively. Quantum wells in GaAs

typically have layer thickness L, in the range of 70-125A.



have proved extremely successful and these lasers are now produced commercially for
a variety of applications.

One interesting application for quantum well structures is as infrared photodetec-
tors, where the absorption process is based on intersubband transitions of electrons
in the conduction band, rather than on band to band transitions [12]. In these de-
vices, electrons are placed in the lowest subband (E; in Fig. 1.1) by heavily doping
the quantum well, and they are excited to a higher subband (E; in Fig. 1.1) or a
continuum state by the infrared photons. The electrons are then swept from these
higher states by a bias voltage, resulting in a photocurrent. By appropriate design of
the quantum wells, you can tailor the absorption spectrum of the structure. Detec-
tors that operate near 10um, which coincides with an atmospheric spectral window,
have been demonstrated [13], and could prove to be competitive with HgCdTe de-
tectors in this wavelength range. These structures also show promise in the areas of
optical computing [14] and second harmonic generation [15]. Recently, an infrared
detector based on intersubband absorption and sequential resonant tunneling in a
GaAs/AlGaAs superlattice has been demonstrated [16].

A device that is closely related to the quantum well is the double barrier tunneling
structure. This electrical device, first demonstrated by Chang, Esaki, and Tsu [17],
is of interest because of its negative differential resistance. When the Fermi energy
of the injected carriers lines up with the subband energy in the quantum well, reso-
nant tunneling occurs. This situation is analogous to the resonance that occurs with

photons in a Fabry-Perot resonator. Resonant tunneling diodes have applications as



multiple state memory cells [18], high speed logic devices [19], and millimeter wave
oscillators [20], and have been operated in a detection experiment at frequencies as
high as 2.5 THz [21].

When quantum wells were first proposed and demonstrated, there were doubts as
to whether these devices could be fabricated well enough to realize the benefits of a
confined structure. Now, it is clear that quantum well devices have real technological

applications and are not restricted to laboratory demonstrations.

1.3 Quantum Wires and Quantum Boxes

Quantum wires and quantum boxes (sometimes called quantum dots) are the one
and zero dimensional analogs of the quantum well. In these structures, the electron
momentum is confined in one (for the wire) or two (for the box) of the lateral (in the
plane of the substrate) dimensions as well as the vertical dimension. With the further
reduction in dimensionality, the density of states becomes even sharper and narrower.
This is illustrated in Fig. 1.2. Many of the advantages of quantum well lasers such
as reduced threshold current, narrow linewidth, reduced temperature dependence
of the threshold current, and high modulation bandwidth are related to the two-
dimensional nature of the electrons in quantum wells, and theoretical investigations of
one-dimensional or zero-dimensional structures have predicted further enhancements
in many of these areas [8,11,22]. It is also possible that quantum wires and quantum
boxes with their rich subband structures will create a host of new devices not yet

conceived.
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Figure 1.2: Illustration of the structure and density of states for a) bulk (three-dimensional),
b) quantum well (two-dimensional), ¢) quantum wire (one-dimensional), and d) quantum
box (zero-dimensional) material. The dashed curves represent gain spectra when these
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There have been several observations of quantum size effects in quantum wires
and quantum boxes, but these structures have proven quite difficult to fabricate. To
date, processing techniques have included etching of narrow ribbons and posts [23],
ion implantation [24], growth of tilted superlattices [25], and growth on patterned
substrates [26]. Quantum well structures in high magnetic fields have been used to
simulate some of these effects [8,27]. As a result of these efforts there is much promise
for quantum wire and quantum box lasers, but it is clear that significant work is still

required before the full potential for these devices will be realized.

1.4 Outline of the Work Presented Here

The first half-of what follows, Chapters 2 and 3, pertains to quantum wire fabrica-
tion. In Chapter 2, the effects of fabricational inhomogeneities on quantum wire gain
spectra and quantum wire laser performance are examined. Although others have
calculated gain spectra for these structures [28], the question of fabrication tolerance
was previously neglected. Inhomogeneities will be much more significant for quantum
wires and quantum boxes than for quantum wells. For quantum wells, confinement
is provided by the heterojunction whose uniformity is good to one or two atomic
layers, typically. In this case, the effects of inhomogeneous broadening are no greater
than those of relaxation broadening, so inhomogeneities can be neglected. Most of the
methods used or tried for fabricating quantum wires require some type of lithographic
patterning and have lower fabrication tolerances than epitaxial techniques. Chapter 2

reexamines quantum wire gain spectra using realistic fabrication tolerances.
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In Chapter 3, a new approach to fabricating quantum wires is demonstrated.
With this method, a shallow Zn diffusion is used to selectively disorder a quantum
well. The technique avoids the problems of free surfaces created by etching, and
the damage created by ion implantation. The technique is only partially successful,
in that, although we see evidence that is suggestive of quantum size effects due to
the lateral confinement, there are other physically reasonable explanations for our
results. We are able to conclude that carrier confinement on a nanometer scale has
been created by this method.

A new method for determining carrier diffusion lengths by cathodoluminescence
(CL) is presented in Chapter 4. This measurement technique is shown to be very
accurate and §tra.ightforwa.rd. As compared with other approaches, the technique has
the advantage that it requires minimal numerical analysis of the data, and no knowl-
edge of other material parameters. This method is also interesting because it could be
applied to quantum wire structures to study the effects of reduced dimensionality on
diffusive transport. (There are predictions of increased mobilities in quantum wires
[29].)

Although we do not measure diffusion lengths in quantum wires, we do apply this
technique to ambipolar diffusion in Al,Ga,_,As for several values of r in the interval
0 < £ £0.37 and find some interesting results. While the electron and hole mobilities
are known to decrease with increasing z in this interval, the diffusion length is found
to increase significantly for z > 0.3. This implies an increase in the carrier lifetime.

To verify this, direct lifetime measurements are also performed by examining the
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photoluminescence signal decay under pulsed excitation. These data are presented in
Chapter 5 along with calculations that indicate that the increased lifetime is due to
the onset of carrier transfer and population of the indirect valleys at ¢ > 0.3.

An experiment in holographic lithography that has possible applications for fabri-
cation of quantum wires as well as distributed feedback lasers is included as Appendix
A.

Chapter 4 and Chapter 5 represent a change in direction from that of the first
three chapters, and some explanation for this is appropriate. In the course of the
investigations of the wire structures described in Chapter 3 we found that the resolu-
tion limit of CL was determined by carrier diffusion. This is discussed in Section 3.2
and illustrated in the CL image of Fig. 3.5. It was our frustration with this limit,
which drove us to devise a way to exploit it, that is, use it to measure carrier diffusion
lengths. The success of the measurement and the interesting results that it uncovered
indicate that it warranted significant time and attention.

Much of the work in this thesis has been published previously: the work of Ref. [30]
is in Chapter 2, Chapter 3 details the work described in Ref. [31], and the work of
Chapters 4 and 5 appears in Ref. [32] and Refs. [33] respectively. The results of
Appendix A have been published in Ref. [34]. Although there are sections of this
thesis that do not appear in any of these articles, everything described in these articles

1s contained in this thesis.



12

Bibliography

[1] J. Bardeen and W. H. Brattain, “The Transistor, A Semiconductor Triode,” Phys.

Rev., 74, 230 (1948).

[2] W. Shockley, “The Theory of p-n Junctions in Semiconductors and p-n Junction

Transistors,” Bell Syst. Tech. J., 28, 435 (1949).

[3] R. N. Hall, G. E. Fenner, T. J. Soltys, and R. O. Carlson, “Coherent Light

Emission from a GaAs Junction,” Phys. Rev. Letts. , 9, 366 (1962).

[4] M. I. Nathan, W. P. Dumke, G. Burnes, F. H. Dills, and G. Lasher, “Stimulated
Emission of Radiation from GaAs p — n Junctions,” Appl. Phys. Letts., 1, 62

(1962).

[5] T. M. Quist, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, R. H. Rediker,
and H. J. Zeigler, “Semiconductor Maser of GaAs,” Appl. Phys. Letts., 1, 91

(1962).

[6] H. Z. Chen, A. Ghaffari, H. Morkoc, and A. Yariv, “Effect of substrate tilting on
molecular beam epitaxial grown AlGaAs/GaAs lasers having very low threshold

current densities,” Appl. Phys. Letts., 51, 2094 (1987).



[7]

[9]

[10]

[11]

[12]

[13]

[14]

13

K. Y. Lau, P. L. Derry, and A. Yariv, “Ultimate limit in low threshold quantum

well GaAlAs semiconductor lasers,” Appl. Phys. Letts., 52, 88 (1988).

Y. Arakawa, K.Vahala, and A.Yariv, “Dynamic and Spectral Properties of Semi-
conductor Lasers With Quantum-Well and Quantum-Wire Effects,” Surf. Sci.,

174, 155 (1986).

K. Uomi, T. Mishima, and N. Chinone, “Ultrahigh Relaxation Oscillation Fre-
quency (up to 30GHz) of Highly P-Doped GaAs/GaAlAs Mﬁltiple Quantum

Well Lasers,” Appl. Phys. Lett., 51, 78 (1987).

P. L. Derry, T. R. Chen, Y. H. Zhuang, J. Paslaski, M. Mittelstein, K. Vahala,
and A. Yariv, “Spectral and Dynamic Characteristics of Buried Heterostructure

Single Quantum Well (Al,Ga)As Lasers,” Appl. Phys. Lett., 53, 271, (1988).

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temper-

ature dependence of threshold current,” Appl. Phys. Lett., 40, 939 (1980).

J. S. Smith, L. C. Chiu, S. Margalit, and A. Yariv, “A new infrared detector
using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B,

1, 376 (1983).

B. F. Levine, C. G. Bethea, G. Hasnain, J. Walker, and R. J. Malik, “High-
detectivity D*=1.0x10"%cmvHz/W GaAs/AlGaAs multiquantum well A =

8.3um infrared detector,” Appl. Phys. Letts., 53, 296 (1988).

B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, “GaAs Quan-

tum Well Intersubband Absorption Tunneling Detectors Compatible with 10um



14

Optical Computing,” SPIE 881 Optical Computing and Nonlinear Materials, 74

(1988).

[15] M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, Jr., “Ob-
servation of Extremely Large Quadratic Susceptibility at 9.6-10.8um in Electric-

Field-Biased AlGaAs Quantum Wells,” Phys. Rev. Letts., 62, 1041 (1989).

[16] B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, “New 10 ym
infrared detector using intersubband absorption in resonant tunneling GaAlAs

superlattices,” Appl. Phys. Letts., 50, 1092 (1987).

[17] L. L. Chang, L. Esaki, and R. Tsu, “Resonant Tunneling in Semiconductor Dou-

ble Barriers,” Appl. Phys. Letts., 24, 593 (1974).

[18] J. Soderstrom and T. Andersson, “A Multiple-State Memory Cell Based on the

Resonant Tunneling Diode,” IEEE Electron Device Letts., 9, 200 (1988).

[19] H. C. Liu and D. D. Coon, “Heterojunction double-barrier diodes for logic ap-

plications,” Appl. Phys. Letts., 50, 1246 (1987).

[20] E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, and C. D. Parker, “Millimeter-
band oscillations based on resonant tunneling in a double-barrier diode at room

temperature,” Appl. Phys. Lelts., 50, 83 (1987).

[21] T. C. L. G. Solner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D.
D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5

THz,” Appl. Phys. Letts., 43, 588 (1983).



[22]

24]

[26]

[27]

15

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-
Dimensional Quantum-Box Lasers,” IEFE Journal of Quantum Electron., QE-

22, 1915 (1986).

K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C. Tamargo,
“Optical Spectroscopy of Ultrasmall Structures Etched From Quantum Wells,”

Appl. Phys. Lett., 49, 1043 (1986).

J. Cibert, P. M. Petroff, G. J. Dolan, A. C. Gossard, and J. H. English, “Optically
Detected Carrier Confinement to One and Zero Dimension in GaAs Quantum

Well Wires and Boxes,” Appl. Phys. Lett., 49, 1275 (1986).

M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldron,
and P. M. Petroff, “Optical Anisotropy in a Quantum-Well-Wire Array with

Two-Dimensional Quantum Confinement,” Phys. Rev. Letts., 62, 466 (1989).

E. Kapon, D. M. Hwang, and R. Bhat, “Stimulated Emission in Semiconductor

Quantum Wire Heterostructures,” Phys. Rev. Letts, 63, 430 (1989).

K. Vahala, Y. Arakawa, and A. Yariv, “Reduction of the Field Spectrum
Linewidth of a Multiple Quantum Well Laser in a High Magnetic Field — Spec-
tral Properties of Quantum Dot Lasers,” Appl. Phys. Lett., vol. 50, pp.365-367,

(1987).

[28] M. Asada, Y. Miyamoto, and Y. Suematsu, “Theoretical Gain of Quantum-Well

Wire Lasers,” Jpn. J. Appl. Phys., 24, L95 (1985).



[29]

[30]

[31]

[33]

16

H. Sakaki, “Scattering Suppression and High-Mobility Effect of Size-Quantized
Electrons in Ultrafine Semiconductor Wire Structures,” Jpn. J. Appl. Phys., 19,

L735 (1980).

Hal Zarem, Kerry Vahala, and Amnon Yariv, “Gain Spectra of Quantum Wires

With Inhomogeneous Broadening,” J. Quantum Electron, QE-25, 705 (1989).

Hal A. Zarem, Peter C. Sercel, Michael E. Hoenk, John A. Lebens, and Kerry J.
Vahala, “Nanometer scale wire structures fabricated by diffusion induced selec-
tive disordering of a GaAs(AlGaAs) quantum well,” Appl. Phys. Letts., 54, 2692

(1989).

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Va-
hala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs

heterostructures by cathodoluminescence,” Appl. Phys. Letts., 55, 1647 (1989).

H. A. Zarem, J. A. Lebens, K. B. Nordstrom, P. C. Sercel, S. Sanders, L. E.
Eng, A. Yariv, and K. J. Vahala, “Effect of Al mole fraction on carrier diffusion

lengths and lifetimes in AlyGa;_xAs,” Appl. Phys. Letts., 55, 2622 (1989).

H. A. Zarem, M. E. Hoenk, W. B. Bridges, K. Vahala, and A. Yariv, “Generation

of 1180A Period Gratings With a Xe Ion Laser,” Electron. Letts., 24, 1366 (1988).



17

Chapter 2

Gain Spectra of Quantum Wires

With Inhomogeneous Broadening

2.1 Introduction

The technology used to fabricate quantum wells relies on growth techniques capable
of atomic layer tolerances, leading to actual quantum well devices that exhibit nearly
ideal properties. Confinement in directions other than the growth direction requires
lithographic patterning and the best lithographic techniques have resolutions on the
order of ten nanometers. Quantum size effects are extremely sensitive to the dimen-
sions of the confining structure. For these reasons, it is important to consider the
effects of fabricational inhomogeneities on quantum wire and quantum dot structures.
Variations in the size and shape of quantum wires or quantum dots will smear some
of the sharpness out of the density of states of these structures, reducing some of the

benefits of lower dimensionality. Inhomogeneities in quantum boxes have been con-
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sidered recently and it was found that quantum box arrays with realistic fabrication
tolerances are not well suited to high gain applications, but they may make possible
very low threshold current lasers and may lead to optical amplifiers with improved
noise characteristics [1]. A critical radius, below which no bound states exist for the
quantum box, was also shown.

In this chapter, we investigate the properties of quantum wires, in particular, the
effects of inhomogeneities on the density of states function and on gain are examined.
The inhomogeneities are treated as a perturbation to an ideal wire and the perturba-
tion energy is calculated to first order. The density of states for an array of wires with
different widths is calculated and is used to calculate the gain of such a structure.
This is done for cylindrical wires of 50A radius and 1504 radius with several different
degrees of inhomogeneity. The properties of a quantum wire laser are examined and
we attempt to answer the question of whether quantum wires with realistic fabri-
cation tolerances can fulfill the expectations of lower threshold currents, and higher
modulation rates. The finite barrier quantum wire is studied and a quasi-critical ra-
dius is established, below which, the carriers are weakly confined by the wire. Upper
limits on the wire radius, determined by the requirement that the energy subbands

be separated by an energy greater than kgT', are also discussed.

2.2 Solution to the Two-Dimensional Finite Well Problem

A calculation of the electron and hole wave-functions is necessary to obtain the posi-

tion of the energy subbands. Here we have treated the case of a cylindrical wire rather
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than the, somewhat simpler, rectangular wire employed elsewhere. This potential is
chosen because the Schroedinger equation can be separated in the case of a finite
cylindrical potential but not for a finite rectangular potenﬁial. A proper treatment of
the finite potential is necessary to investigate the possibility of a critical radius below
which no bound states exist. Such a critical radius has been shown to exist for the
quantum box [1]. In this section we calculate the electron and hole wave-functions
using the effective mass approximation. Their behavior as the radius of the wire goes
to zero is examined.

In cylindrical coordinates the potential takes the simple form

V=V(p) =

0 for p< po
{ (2.1)

Vo forp>po

For this potential the Schroedinger equation is

K (10 ( 8 19> &
- 'é"n'; (;—6—; (pa_p) + ?—6—55 + "6';2' + V(p)> \Il(p, ¢,Z) = E\I/(p, ¢’z) (22)

with solutions
J, (kp)etrbetks= for p < po

\Il(p, ¢7Z) =N o (2.3)
AK,(kp)e®et*+*  for p > po

where J,(kp) is the Bessel function of order v = 0,£1,+2,..., and K,(xp) is the

modified Bessel function. The energy is given by
R 2
= —(k _
E 5 (k,n +k7) (2.4)

The constants N, A, k,., and ,,, are determined by the normalization, the boundary

condition at p = po, and the condition

k?m + K?m = '——.‘/0 (25)
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which follows directly from the Schroedinger equation. The radial momentum, k,,,
is a discrete variable whereas the axial momentum, k,, varies continuousvly to fill the
energy spectrum. In accordance with convention (2], k., is the nth k-value to satisfy
the boundary conditions for J,. In general there are an infinite number of k-values
for each v. In this treatment, only the first eight k-values are considered. This does
not limit the validity of the analysis because only the first two or three subbands will
be populated in realistic configurations.

There is no known way to solve for k,, analytically but for Vo > h%k2, /2m,
the boundary condition J,(kpo) = 0 applies approximately and the zeros of J, are
tabulated [2]. As the radius of the wire becomes smaller, the subband energy is
pushed up towards the top of the potential well and the above approximation is no
longer valid. For small radius wires, the value of k,, can be obtained by expanding
J.(kp) and K,(kp) about the origin. The small argument expansions for Jy and K,
are given by,

Jo=1- %(kp)2 +.. (2.5a)
Ko=—Ilnkp+... (2.5b)

We use this to investigate the behavior of the ground state as the wire diameter

approaches zero. Applying continuity at p = po gives,
2 2
ko = [—] (2.7)
Equations 2.6 and 2.4 are plotted in Fig. 2.1. The intersection of the two curves

gives the eigenvalues for k and «. It appears that Eq. 2.6 intersects the y-axis at

kp = %, but, in fact, it has finite slope until it intersects the origin. As py approaches
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Figure 2.1: Graphical solution of the eigenvalue equation for the cylindrical potential. As

the radius of the wire is reduced, the intersection moves toward the origin.
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Figure 2.2: Quasi-critical radius as a function of the bandgap discontinuity. Electrons and
holes in quantum wires that are smaller than the quasi-critical radius, are bound by the

potential but are only weakly confined by it.
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zero, the radius of the circle goes to zero and it is clear that there is always a bound
state for the cylindrical potential. However, from Fig. 2.1 we see that when the radius
of the circle is less than %, k becomes small, indicating a weakly bound state. At

this point it becomes improbable that the carrier remains in the wire. From this we

1 l h?
Pc—§ m, (2.8)

below which the electron or hole is very weakly confined. Equation 2.7 is plotted in

define a quasi-critical radius,

Fig. 2.2 as a function of V. We have assumed effective masses of 0.067mg for electrons
and 0.45my for heavy holes. The conduction band offset was taken as 60 percent of
the band-gap discontinuity. Due to the large difference in their effective masses,
there are regions where the holes are confined by the potential but the electrons are
not. In the GaAs/AlGaAs system, the region of weakly confined states may occur
only in structures as small as 5 — 10A in radius. At this point, the effective mass
approximation may give only qualitative features. For quantum boxes, there exists a
strict critical radius below which no bound states exist [1]. The quasi-critical radius

for quantum wires is a factor of 7 smaller than the critical radius for quantum boxes.

2.3 Roughened Cylinders

In this section we treat the case of an imperfect quantum wire. The wire is taken
to have hard boundaries with a potential step equal to V; but the potential is no
longer a function only of pg, but of all three coordinates as in Fig. 2.3. We assume

that the wire is close enough to cylindrical that the roughness may be treated as a
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Figure 2.3: The cross section of an ideal and a roughened quantum wire.
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perturbation of the potential V(p) in the form,

{ ~Vo for po < p < po + 6p(4,2)

W(p,,2) = (2.9)

0 otherwise

where ép(¢, z) is an arbitrary, nonnegative function of ¢ and z whose magnitude is
much less than p,. We further require that ép vary on a scale that is smaller than
the coherence distance of the electron. With this perturbation, the average radius of
the cylinder is increased by an amount < §p(@, z) >4 . where <>, , denotes a spatial
average over the coordinates ¢ and z. It is straightforward to show that application

of first order perturbation theory to the ground state gives,

<8F >=< ¥, | w l Yy >= ‘/OchO(KPO)PO < 5p(¢,2) >4z (29(1)

1

ST o] (2.95)

ct= |
where C? comes from the normalization of the Bessel function. In the limit as V,
goes to infinity, Eq. 2.9 becomes

< 5P ¢,z

Po

where,

k2. h*  z2 AP
By = ~a® _ Zor

= 5 (2.12)

is the energy of the first subband for the infinite barrier cylinder. To first order,
the effect of the roughness is only through a change in the average radius. This
implies that, to first order, quantum wires are insensitive to inhomogeneities that
do not affect the average radius of the structure. Therefore, a fabrication tolerance

of ten angstroms may be quite acceptable if the average radius does not change by
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more than a few angstroms from wire to wire. This does not apply if the perturbation
varies with z on a scale that is large compared to the cohereﬁce length of the electron.
Sections of the wire which are at least one coherence Iength apart can be considered
as separate wires so that the averaging of dp should be done for 29 < z < zp+ (. where
l. is the coherence length of the electron. If we assume an intraband scattering time
of 2x107135 [3] and thermal velocity, I, is on the order of 800A at room temperature.

Equations 2.10 and 2.11 are general results in that they can be shown to hold for
quantum wells and quantum boxes as well (with z2, replaced by the appropriate value
for wells or boxes) [1]. In the case of wells and boxes the confinement energy, Eq,
is different, however. The confinement energy increases as the number of confined
dimensions increases. For this reason, inhomogeneities will affect quantum boxes
more severely than quantum wires and, likewise, quantum wires more severely than
quantum wells. As the size of the structure is increased the confinement energy
decreases, reducing the effect of inhomogeneities. The size can be increased only so far
because the subbands must be separated by an energy that is greater than a few kgT
for quantum size effects to be realized. For all three low-dimensionality structures,
the subband energy has a p~? dependence. If we define AE as the separation between
the first and second subbands, we can calculate the proportionality constant between
AE and p~%. The results are shown in Table 2.1 where AFE is calculated for several
values of p with V5 = oo, and using a spherical potential for the quantum box and
a cylindrical potential for the quantum wire. In Table 2.1 and all of the figures and

calculations here, values of constants that are appropriate for GaAs are chosen.
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AE (meV)
Well Wire Box
2 2
12 H
p=p (7.4) —— [(8.9) (10.3)
0 2mp02 2m,002 2mpo2
| 468 202 234
p=50A
25 30 35
vb
cb | 4o 51 59
p=100A
6.2 7.6 8.8
vb
cobf 44 13 15
p=200A
1.6 1.9 2.2
vb

cb=conduction band
vb=valence band

Table 2.1: The separation of the first and second subbands for different size quantum wells,
quantum wires, and quantum boxes in GaAs. The parameter p is the radius, or, in then
case of quantum wells, a half width. When AE is smaller than kg7, thermal broadening

smears out quantum size effects.
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From Eq. 2.11 we see that a small change in radius dp gives a change in subband
energy

d .
dEy = 2L By, (2.13)
0

Po
which is the same as the result from the perturbation calculation. Comparing Eqgs.
2.10 and 2.12 we see that the effect on the subband energy of roughening the cylinders
with an average roughness < ép >4, is equivalent to changing the wire width by
dp =< ép >4 ,. It should be noted that Eq. 2.12 is an upper limit because it
applies for the case of an infinite barrier; the finite barrier case will produce a smaller
shift because of the softer boundaries. In what follows we assume that we have an

ensemble of wires with different values of < ép >, .. In accordance with the central

limit theorem we assume a Gaussian distribution of wire radii

where pg is the average wire radius and §p is the standard deviation of < ép >4 ..
The length of a typical semi-conductor laser is several hundred times the coherence
length of the electron so the gain of a single wire must be obtained by considering

the gain of many wires each of length I..

2.4 Gain Spectra

The density of states for an ideal (unroughened) wire of radius py is,

® (m 2\1/2

I=1

(E — E, — E)~ Yy, (2.15)

2 2
T™Po
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where E is the energy of the transition, E, is the band-gap, E; is the position of
the {** subband (the index [ is a combination of the indices n and v of the previous
sections), 7; is the degeneracy of the I** subband (m; = 1 fér v =0, m = 2 otherwise)
and m, = m.my/(m. + m;) where m, and m,, are the masses of the electron and the
hole respectively. Equation 2.14 is plotted in Fig. 2.4. In Fig. 2.4 and all subsequent
figures, values of the material parameters that are appropriate for GaAs are used.
These values are: m, = 0.067, m), = 0.45, E;, = 1.424. The subband positions, E;, are
calculated assuming an infinite bandgap discontinuity.

Changing the radius of a wire will affect the gain by moving the subband edge.
We obtain a Gaussian distribution of subband energies by combining Eqgs. 2.12 and

2.13
] i
V= omsE Y| 6EF |

where 6E; and E; are related to ép and p through Eqs. 2.10 and 2.11. The bulk

P(E (2.16)

density of states for the material is found by integrating Eq. 2.14 over all values of

E; weighted by equation 2.15 giving the inhomogeneous density of states,

e 1 m, m _
Dinh(E) =Y ———(=2)2 1 [(E — E, — E))71/?
—(E; — E;)?

The integral in Eq. 2.16 is evaluated numerically and the inhomogeneous density of
states is plotted for wires of radius p = 50A in Fig. 2.5. The effects of the inho-
mogeneities are quite dramatic: for §p = 2.5A, which corresponds to a mono-layer
variation in radius, the subbands are distinct and the density of states recalls the basic

features of the ideal density of states of Fig. 2.4, whereas, for §p = 10A all subband
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Figure 2.4: The density of states for 50A radius quantum wires without inhomogeneous

broadening.
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Figure 2.5: The density of states for 50A radius quantum wires with three different values

of the roughness parameter; §p = 2.5A, 6p = 5.0A, and 6p = 10.0A.
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structure is washed out and the density of states resembles that of bulk material.
As the subbands broaden, their peak value decreases because the area under each
curve must be the same. Fig. 2.6 shows the density of sta;tes for 150A radius wires.
The magnitude of the density of states is reduced by a factor of three as compared
with 50A wires. In general, the magnitude of the density of states will be inversely
proportional to the radius of the wire if 6p/p is kept fixed (this follows directly from
Eq. 2.16 when the dependence of E; and §E; on pg is considered). The shape of these
curves is the same as that of a 50A wire with the same value of §p/p except that
the energy scale is different due to the different subband positions. For §p = 150A
the first and second subband are separated by only 18meV. This means that at room
ternper;ature there will be substantial filling of the second subband when the first
subband is partially filled, leading to increased threshold currents.

The density of states calculations shown in Figs. 2.5 and 2.6 are the basis of the
gain calculations to follow. The broadening caused by the inhomogeneities is, in all
cases considered here, greater than or equal to relaxation broadening. The gain is
therefore given by,

G(E) = Z/ufe | d [ D(E)S. - £.) (218)
where € is the dielectric constant of the material, 4 is the magnetic susceptibility, f.
and f, are the Fermi distributions for the conduction and valence bands respectively,
and d is the component of the dipole moment parallel to the electric field. A value
of d/q = 4A has been assumed and any dependence of d on the orientation of the

electric field with respect to the wire axis is ignored. The light hole band has also
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Figure 2.6: The density of states for 1504 radius quantum wires with two different values

of the roughness parameter; 6p = 154, and 6p = 30A.
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been ignored in the calculation. The overlap of the field with the gain region is not
yet accounted for in these plots so that G(E) is the gain a wave would experience if it
were fully confined to the quantum wire. The gain spectrurﬁ for a 50A radius wire has
been plotted in Fig. 2.7 for carrier densities of 4x10%cm™2 and 8x10'¥cm™3. As the
carrier density is doubled, the peak gain increases almost proportionally, indicating
that, even at this high carrier density, the carriers are going predominantly into the
first subband. In Fig. 2.8 gain is calculated for the density of states functions of
Fig. 2.5, showing the effects of increased inhomogeneities on the gain spectrum. All
of the curves are for the same carrier density. Here, the benefits of a sharp density
of states function are clear as the peak gain drops by roughly a factor of two when
6p goes from 2.5A to 10A. Fig. 2.9 shows the dependence of peak gain on carrier
density for these same wires. The gain rises steeply at first, but it begins to level
off at around 7x10'8cm™3 as the first subband becomes full. At a carrier density of
roughly 1.3x10'®cm™3 the gain begins to rise sharply once again. It is at this point
that the gain of the second subband exceeds that of the first. This has been observed
experimentally in quantum well lasers [4] and it is accompanied by a large change in
lasing wavelength. Curves similar to those of Figs. 2.8 and 2.9 but for 150A radius
wires are shown in Figs. 2.10 and 2.11. For any given carrier density, the gain of
a 150A wire is lower than that of a 50A wire. This is due to two factors: first, the
density of states is smaller for larger wires, and second, the subbands are separated by
an energy that is less than kg7, so several subbands are being filled simultaneously.

Peak gain versus carrier density for the 150A radius wires is plotted in Fig. 2.11.
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Figure 2.7: Gain as a function of photon energy for 50A radius quantum wires with

6p = 2.5A at a carrier concentration of 4x10'%cm™2 and 8x108cm™3.
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Figure 2.8: Gain as a function of photon energy for 50A radius quantum wires with

§p =254, 6p =5.0A, and 6p = 10.0A at a carrier concentration of 4x10'8cm™3.



37

4000
—— 6p=10R
/
o
]
£
G
A 4
£
© 2000
(O]
X
©
o
o
o 1 |
0 5x10® 1x10' 1.5x10"

Carrier Concentration (cm 3)

Figure 2.9: Peak gain as a function of carrier concentration for the quantum wires of Fig. 2.5.
The sudden change in slope at high carrier densities is indicative of second quantized state -

lasing. The point of maximum gain per carrier density is given by the dashed tangent.
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Figure 2.10: Gain as a function of photon energy for 150A radius quantum wires with

6p = 15A, 6p = 30A, at a carrier concentration of 4x10'8cm™—2, and 150A radius quantum

wires with 6p = 15A at a carrier concentration of 4x10®cm™3.
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Figure 2.11: Peak gain as a function of carrier concentration for the quantum wires of

Fig. 2.6. The point of maximum gain per carrier density is given by the dashed tangent.
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2.5 Lasing Properties

So far, we have discussed the properties of quantum wires without considering the
device in which they are to be imbedded. In this section we consider the modal gain,
threshold current, and the modulation rate for a quantum wire laser. Figure 2.12
shows a schematic diagram of a quantum wire array laser. The dashed cylinder
which envelops the quantum wires represents the optical confinement region and the
width of the optical mode in the x and y directions is shown as W, and W,.

The modal gain is obtained by multiplying the bulk gain for a wire by the con-
finement factor, which is a measure of the overlap of the optical field with the gain
region. Switching to rectangular coordinates and keeping the cylinder axis as the
z-axis, the confinement factor is a product of confinement factors for the x and y
directions, I'; and T'y. For a single wire of 50A radius, [, =T y = 0.04 is a reasonable
value [5]. If we take a peak gain of 3000cm™' and the above confinement factors,
the peak modal gain is G4 = 4.8cm™! per wire. This is marginally sufficient gain
to overcome the distributed losses so that to obtain additional gain to make up for
mirror and coupling losses, we must employ an array of such quantum wires to make
a laser.

The threshold gain is given by,

Gmodal,,h =a — %ln R (2.19)

where a is the distributed loss coefficient for the mode, [ is the length of the cavity, and
R is the reflectivity of the mirrors. To estimate threshold current densities we assume

values of a = 3cm™?, | = 300um, and R = 0.9. For these values, Gpogar,, = 6.5cm™1.
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p-AlGaAs _

n-AlGaAs

Figure 2.12: A Schematic of a quantum wire array laser. The width of the optical mode is
given by W, and W, and the wire diameter is d. The confinement factor is given by the

relation [; = d/W;.



42

To achieve the lowest threshold current, we want to pump the wires to the point of
maximum gain per carrier density. This is the point on the peak gain vs. carrier
density curve whose tangent intersects the origin. From Fig. 2.11, we see that this
occurs at a carrier density of approximately 5x10'®cm™2 for a 50A radius wire with
§p = 2.5A. At this point, the gain in the wire is approximately 2250cm™!. With the
above confinement factors, a laser with two such wires would have a modal gain of
7.2cm™!, which is just above the estimated threshold gain. To arrive at a threshold
current, a value of the carrier lifetime must be assumed. The effect of the two-
dimensional confinement on the carrier lifetime is not known, so the bulk carrier
lifetime is used. If we assume a carrier lifetime of 3ns [6], and 100 percent injection
efficiency, this two-wire laser would have a threshold current of approximately 11pA,
which is nearly two orders of magnitude lower than the best quantum well lasers.
When the same considerations are applied to a 50A wire with §p = 10A, the optimal

3 and a laser containing four such wires

carrier density is approximately 6.5x10'®cm™
would have a threshold current of approximately 33uA, which is still extremely low.
In the case of 150A radius wires, the confinement factors increase to I'; = T, = 0.12.
Working backwards, if we assume a modal gain of 6.5cm™! and the above confinement
factors, the bulk gain requirement is only 450cm™!. One wire can provide this gain
and, under the same assumptions as above, the estimated threshold current is 34 A
for the cases of §p = 15A and 6p = 30A (here, thé effects of thermal broadening

exceed those of the inhomogeneities so both §p = 15A and 6p = 30A wires behave

the same at room temperature). It is clear that the threshold current does not suffer
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much as the fabrication tolerance requirements are relaxed.

The modulation bandwidth is determined by the relaxation oscillation corner fre-

quency,

fe

' 11/2
! [G F °] (2.20)

T o |
where G' = dG/dn is the differential gain , Fp is the steady state photon density
in the cavity, and 7, is the photon lifetime [7]. Due to the sharpened density of
states function, the differential gain for quantum wires should be' higher than for
bulk material. The differential gain can be found from Figs. 2.9 and 2.11. For
the 50A radius wires, the maximum differential gain is, dG/dn=1.0x10"%cm? and
2.2x10"6cm? for 6p = 2.5A and 10A respectively. This is to be compared to a value
of dG/dn=2.0x10"16cm? for bulk GaAs, and dG/dn=>5.0x10"'¢cm? for quantum wells
[8]. The differential gain for the 150A wires, as calculated from Fig. 2.11, is close to
the bulk value. We see that the modulation bandwidth of the well fabricated wire is

greater by a factor of v/5 than that of a laser with a bulk active layer, but that for

more realistic fabrication tolerances the increased bandwidth disappears.

2.6 Conclusions

We have calculated the gain spectra of quantum wires accounting for fabricational
inhomogeneities. The inhomogeneities were treated as a perturbation and it was found
that to first order, the component of the perturbation that varies quickly compared
to the coherence length of the carrier is averaged out and has no effect if the wire

radius is chosen so that the roughness function has zero average. This indicates that
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the gain in quantum wires is somewhat insensitive to small scale inhomogeneities.
An ensemble of wires with differing widths was considered and a bulk density of
states and gain were calculated from this. According to th”ese calculations, quantum
wires with realistic fabrication tolerances are advantageous for low threshold laser
applications but unless they are fabricated with atomic layer precision, they will not
display a large enhancement in modulation bandwidth.

The wave functions for quantum wires have been examined using a finite cylin-
drical potential and we found a quasi-critical radius, below which, the carriers are
not confined by the potential, although, in a strict sense, the state is a bound state.
This puts a lower limit on the radius of quantum wires. An upper limit on the wire
size is given by the requirement that the subbands be separated by an energy greater
than kT and the effects of increasing the size and changing the number of quantized
dimensions were tabulated for two-, one-, and zero-dimensional structure.

'As a result of these calculations, it is concluded that quantum wire lasers with
realistic fabrication tolerances are promising structures for reduced threshold current.
Reductions of one to two orders of magnitude over the best quantum well lasers
are possible. Such large reductions in threshold current could open new realms of

applications for semiconductor lasers.
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Chapter 3

Fabrication of Wire Structures by

Impurity Induced Disordering

3.1 Introduction

Submicron bandgap tailoring of semiconductors has many applications such as optical
waveguiding and carrier confinement. Growth techniques such as MBE allow for such
tailoring in one dimension, but control of the other two dimensions of the material
on this scale has been and remains a very challenging area of device research. Such
lateral control permits fabrication of quantum wire and quantum dot structures. In
Chapter i, some of the techniques for fabricating quantum wires and dots, and some of
the problems associated with these techniques were discussed. This chapter describes
a set of experiments designed to use Zn diffusion to selectively disorder a quantum
well and create quantum wires. This approach has the advantage that it creates

neither free surfaces nor damage fields. The resulting structures are investigated in
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a scanning electron microscope (SEM) using cathodoluminescence (CL). Sections 3.2
and 3.3 provide brief introductions into the techniques of CL and disorder by impurity

diffusion and Section 3.4 describes the fabrication and analysis of the wires.

3.2 Cathodoluminescence

Cathodoluminescence is the emission of light by a sample which is excited by an
electron beam (cathode ray). Performing CL in an SEM allows one to take advantage
of the existing electron optics and imaging capabilities. The sample can be viewed
under high magnification by imaging of secondary electrons to locate specific regions
of interest, and CL from these regions can be correlated with the surface features. The
CL system employed here differs from most CL systems in that it allows for spectral
analysis of the CL signal. With this system (which is described in detail elsewhere
[1]) one end of an optic fiber is placed near the sample to collect the luminescence.
The fiber passes out of the SEM by means of a high vacuum feedthrough and the light
is then coupled into a monochromator (see Fig. 3.1). A cooled photomultiplier tube
is placed on the output port of the monochromator. There are two basic modes of
operation for this system. In one, the beam position is fixed while the monochromator
scans through the wavelength region of interest. This generates a very local spectrum
as in Fig. 3.4. Alternatively, the monochromator can be fixed at a specific wavelength
while the electron beam is rastered across the sample, generating a spectrally resolved
cathodoluminescence image (SRCI) as in Fig. 3.5. In this mode, the luminescence

intensity at a given time is correlated with the beam position at that time to generate
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Figure 3.1: Diagram of the CL system.
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the SRCI. For either mode, the spatial resolution is determined three parameters: the
electron beam diameter, the volume in which carriers are generated (which depends
on the penetration depth), and the carrier diffusion length; In a given situation, one

of these factors will dominate and limit the resolution.

3.3 Disorder of GaAs/AlGaAs Structures by Impurity Dif-

fusion

The success of the GaAs/AlGaAs material system relies, in part, on the stability of
these heterostructures with regard to Ga-Al interdiffusion. Chang and Koma have
shown that the activation energy for this process is quite high (> 3.6 V) and the
interdiffusion constant is small [2]. The essentially abrupt heterointerfaces remain
sharp after thermal cycles as high as 925°C for several hours [3]. This permits pro-
cessing at the elevated temperatures required for liquid phase epitaxy (LPE) regrowth
(~ 800°C), the introduction of dopants by diffusion (~ 500°C — 800°C), the growth
of SiO, (~ 320°C) and SiN, (~ 720°C) films by chemical vapor deposition (CVD),
and other steps in the fabrication of devices from these materials.

In contrast to this, it has been shown that the introduction of high concentrations
of Zn causes appreciable Ga-Al interdiffusion at much lower temperatures (500°C —
600°C) [4]. This has been used to disorder AlGaAs/GaAs superlattices [4], and single
quantum well structures [5], leaving a region of homogeneous Al,Ga;_,As with Al
concentration, z, which is the average concentration for the superlattice or quantum

well structure. By masking parts of the surface, Zn diffusion can be used to selectively
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disorder regions of the wafer, leaving other regions intact. This technique for locally
altering the bandgap and index of refraction has been used in the fabrication of
devices such as light emitting diodes (LED’s) and semiconductor lasers, among others.
Implantation of Si [6] ions as well as Si diffusion [7] have also proven to be effective
for impurity induced disordering (IID).

The model for Zn diffusion assumes that Zn can exist in two forms in the GaAs

*

7, where it acts as a donor, and as a substitutional

crystal: as an interstitial, Zn
acceptor on a Ga site, Zng, [8]. The diffusion process is dominated by the more
mobile interstitial form, which proceeds through the crystal until it encounters a

Ga vacancy where it makes a transition to the substitutional form. The transition

between the two forms is described by the relationship
Znt + Vg, = Zng, + 2h (3.1)

where Vg, and h represent a Ga vacancy and a hole respectively. Using the reaction
of Eq. 3.1, and applying the law of mass action, it can be shown that the diffusion
coefficient, D, is proportional to the square of the Zn concentration, Cz, [8]. The C%,
dependence of D, which has been verified experimentally (9], is particularly significant
in that it causes the Zn concentration to drop off abruptly, giving a very sharp front
to the diffusion profile.

Although the process of Zn diffusion in GaAs is well understood, the mechanism
for Zn IID is not. It was suggested by Laidig [4] that an intermediate stage occurs in

Eq. 3.1, consisting of a complex of Zn and a group III vacancy, Vi

Znt + Vi = (Zn:Vin)*t = Znj; + 2h. (3.2)
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The suggestion is that through the formation of the complex, the group III vacancy
concentration is effectively increased, which increases the interdiffusion of the group
III elements, Ga and Al. An alternative explanation givenﬁ by Van Vechten explains
the enhanced interdiffusion as resulting from an interaction of the interstitial Zn
with defect complexes [11]'. Regardless of the mechanism, the use of selective IID
is a powerful technique for locally altering the composition and band structure of a

GaAs/AlGaAs heterostructure.

3.4 Selective Disorder of a GaAs/AlGaAs Quantum Well

by Zinc Diffusion

Here we report on a new approach to creating quantum confined structures using a
shallow zinc diffusion technique to selectively disorder a GaAs quantum well. The
technique is illustrated in Fig. 3.2. There is a quantum well 500A below the surface,
and a superlattice 2300A below the quantum well. A Zn diffusion is performed that
goes deep enough to disorder the quantum well, but not so deep as to disorder the
superlattice. In this manner, the superlattice serves as a marking layer. A Si diffusion
mask is deposited on the surface of the wafer. The lateral encroachment of Zn under
the mask is approximately equal to the downward diffusion, leaving a narrow region
of the quantum well under the center of the Si stripe which has not been disordered

by the diffusion. This allows us to start with a mask whose width may be a few

1 An excellent review article entitled “Mechanisms of atomic diffusion in the III-V semiconductors” has

been written by Brian Tuck [10].
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Figure 3.2: Schematic cross section of the wafer after Zn diffusion.
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thousand angstroms and create a confining region that may be only a few hundred
angstroms wide. By placing several stripe masks of different widths on the same
sample, we increase the chance of achieving the correct diffusion depth.

It is well known that certain mask materials enhance lateral diffusion sometimes
showing as much as 20 times that of vertical diffusion. This has been correlated with
stress at the mask-wafer interface [12]. Because we were attempting to create a sub-
micron structure using diffusion, it was imperative that the degree of lateral diffusion
be small and reproducible. Silicon has been shown to be an excellent mask material
for zinc diffusion [13]. Our experiments with SiN, and Si showed that both materials
work well, but SiN_, if it has some SiO; in it, enhances the lateral diffusion. Because
the Si mask is.ma,de by evaporating elemental Si in an ultra-high vacuum (107 torr)
chamber, it proved to be more reproducible. Measurements were performed to inves-
tigate the degree of lateral diffusion under a silicon mask. For these studies, diffusions
over much longer periods of time were performed to achieve much deeper diffusion
fronts. After diffusion, CL measurements confirmed that the quantum well was intact
under the masked areas and completely disordered in unmasked areas. The disorder-
ing was observed to extend approximately one micron under the mask, indicating
the presence of lateral diffusion. Sample cross sectioning and staining, followed by
examination in an optical microscope confirmed this observation. The diffusion front
was seen to have moved laterally under the mask a distance roughly equal to that in
the downward direction.

The sample was grown by molecular beam epitaxy in a Riber 2300 R & D system.
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The layers were grown in the following order: a 1um GaAs buffer layer, a 5004 AlAs
blocking layer, a 1.5um Al 3Gag 7As buffer layer, a superlattice buffer layer consisting
of three T0A GaAs layers separated by 70A Alp3Gag.rAs layérs, a 0.23pum Alg3GagrAs
layer, a 100A GaAs quantum well, and a 500A Alg;7GagssAs cap layer. All layers
were undoped.

The diffusion mask was created on this sample using a combination of electron
beam lithography and a silicon lift off technique. The sample was spin coated with
a 3 percent polymethylmethacrylate (PMMA) solution at 3500 rpm. Electron beam
lithography was performed in a modified Cambridge Instruments S-240 Scanning elec-
tron microscope (SEM). Narrow lines, 4.5um long, ranging from 1600A to 50004 in
width, were written in array patterns and as isolated lines. In addition, regions 40
pum square were exposed uniformly to provide a broad mask for comparison. After
development, the sample was placed in an electron beam evaporator and a 500A layer
of silicon was deposited. Lift off was done with dichloromethane. Fig. 3.3 shows a
typical array of silicon stripes on the surface of the sample.

Following the standard procedure for zinc diffusion in GaAs, the sample was sealed
in an evacuated, fused quartz ampoule with solid zinc arsenide as the diffusion source.
A series of diffusion calibrations established that a one hour diffusion at 535 °C was
sufficient to disorder the quantum well, but not so deep as to disorder the superlat-
tice. This placed the disorder front at a depth between 600A and 2800A. For these
calibration measurements the CL system was used to measure the disappearance of

the quantum well emission peak as well as the spatial uniformity of the diffusion pro-
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Figure 3.3: Scanning electron micrograph of a typical diffusion mask array of silicon stripes.
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cess. CL spectra from uniformly masked and unmasked areas of the sample (after the
535 °C diffusion) are presented in Fig. 3.4. The spectra were taken under excitation
by 20kV electrons at a current of approximately 200nA at abtemperature of 77 K. Two
peaks appear in the spectrum from the uniformly masked region. The smaller peak
at 789nm is identified as the quantum well and the peak at 772nm is the superlattice.
The relative intensities of these peaks are controlled by the accelerating voltage of
the excitation beam and is not an indication of the relative quality of the layers. By
using a lower acceleration voltage we obtained spectra where the quantum well peak
is much stronger than the superlattice. The spectrum from the uniformly masked
region was found to be identical in form to a sample spectrum taken p?ior to the
diffusion. This shows that the broad area mask successfully protected the quantum
well during the diffusion and that all changes noted below can be attributed to the
diffusion process (i.e., not to other effects such as temperature cycling).

On the same sample were a series of silicon wire masks. Fig. 3.5 shows both
the secondary electron and CL images of a region containing seven arrays of wires
and several single wires. The left half of the figure shows the conventional SEM
micrograph of the silicon wires. The elements of the arrays range from 1600A wide
(lower right array) to 3700A wide (upper left array). The single lower wire is 5000A
wide. The right half of the figure shows the same structures except now viewed using
spectrally resolved CL with the wavelength adjusted to 780 nm. The wavelength of
780 nm was found to give the greatest contrast between the wires and the background.

This wavelength is intermediate to the peak emission wavelength of the quantum well
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Figure 3.4: Cathodoluminescence spectra of a uniformly masked region and an unmasked

region. The sample temperature is 77 K.
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Figure 3.5: Secondary electron and cathodoluminescence images of several arrays of wires
and an isolated wire. The left half shows the silicon mask as a conventional SEM micrograph.
The width of the silicon stripes in the arrays varies from 3700A (upper left array) to 1600A
(lower right array). The right half shows the spectrally resolved cathodoluminescence image

of the same region at a wavelength of 780 nm. The sample temperature is 77 K.
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and the superlattice, which suggests that the diffusion has altered the luminescence
spectra of the regions under the wire masks. Due to carrier diffusion, CL is not
able to resolve the individual elements in each array, but the single 5000A element is
resolved. All arrays tested generated CL images similar to those shown in Fig. 3.5.
Cathodoluminescence spectra of individual arrays were taken by placing the elec-
tron beam at the center of an array. Spectra of arrays with mask stripe widths of
3700A (broad wires) and 3100A (narrow wires) are shown in Fig. 3.6. The spectra
were taken under excitation by 10kV electrons at a current of approximately 20nA
at a temperature of 12K. The emission spectra from the broad and narrow wire ar-
ray structures are intermediate to both the superlattice peak and the quantum well
peak. (The quantum well and superlattice peak positions shown in Fig. 3.6 are as
measured at 12K, not at 77K as in Fig. 3.4). Because the superlattice emission peak
is unshifted by the diffusion, we conclude that the quantum well peak is blue shifting
to produce the peaks seen in the wire spectra. Shifts of 21 meV and 30 meV are seen
in the broad and narrow wire arrays as compared to the quantum well. Spectra from
masked areas containing narrower stripes exhibited features that were merging with
those of the background spectra. One mechanism for the observed blue shift on the
array spectra is increasing confinement by the lateral diffusion induced potential. The
observed shifts are appropriate for a square potential of ~ 150A. It is expected that
the width of the confinement potential would decrease with decreasing mask width,
and furthermore, that the actual potential width will be narrower than the mask

width due to lateral zinc diffusion. Although the blue shift increases with decreasing
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Figure 3.6: Cathodoluminescence spectra of a 3700A wide wire masked region, and a 3100A
wide wire masked region. The sample temperature is 12K. The peak positions of the

quantum well and superlattice at this temperature are indicated by the arrows.
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mask width, the change in the luminescence peak energy as the mask width changes
does not correlate well with the expectations for a square potential. Rough fits to a
more gradual potential can be made but this is of questionable value without a good
knowledge of the form of the actual potential. For this reason, it is not possible to
attribute this to a quantum size effect with certainty. Another possible mechanism for
producing the observed shifts is the introduction of a small amount, approximately
2 percent, of aluminum into the quantum well. The observed shifts may, in fact, be
due to a combination of these two mechanisms.

In conclusion, we have employed a zinc diffusion technique to create a lateral
bandgap variation in a GaAs quantum well. The diffusion process utilized a mask
of silicon stripes as narrow as 1600A to induce selective disordering of the quantum
well. Spectrally resolved cathodoluminescence micrographs were presented sho;ving
selectively disordered patches of wire structures. Local cathodoluminescence spectra
indicate that the emission spectra from the wire structures is blue shifted. Regardless
of the origin of these shifts, it is clear that this technique has produced lateral bandgap

modulations on a nanometer scale.
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Chapter 4

Direct Determination of the
Carrier Diffusion Length in

GaAs/AlGaAs Heterostructures

by Cathodoluminescence

4.1 Introduction

Transport properties of GaAs/AlGaAs heterostructures are of great interest due to
the importance of these structures for optoelectronic devices, high electron mobility
transistors (HEMT), resonant tunneling diodes, etc. Carrier diffusion lengths (minor-
ity and ambipolar) are important both as transport parameters and as quantities that

can be used to obtain information on carrier lifetime or mobility. Many methods have
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been used to measure diffusion lengths, most notably, the Haynes-Shockley experi-
ment [1]. More recently, techniques such as short-circuit photocurrent measurements
(2], electron beam induced currents (3], transient grating t”echniques [4], and time of
flight studies [5] have been applied. Here, we present a new technique for determin-
ing the carrier diffusion length using cathodoluminescence (CL). This method can be
applied to direct gap semiconductors to determine either minority carrier or ambipo-
lar diffusion depending on the sample doping and excitation conditions. Due to the
precision and ease with which one can control the position of the electron beam in
a scanning electron microscope (SEM) the method is very straightforward and accu-
rate. Furthermore, the ability to examine the sample under the high magnifications
available with an SEM allows this technique to be applied to submicron devices and
. microstructures such as quantum wires. In this chapter we apply the technique to

ambipolar diffusion in undoped samples of GaAs quantum well material, bulk GaAs,

Alp.19Gagg1As, and AlgssGagesAs.

4.2 Description of the Technique

The experiment is performed in a modified SEM with the fiber optic CL collection
system described in Section 3.2. In the SEM, an energetic electron beam is incident
upon the sample, generating electron-hole pairs within the interaction region of the
beam with the sample. One end of the fiber is placed approximately 0.5mm from the
sample, collecting luminescence from a region approximately 100xm in radius while

the other end is coupled into a monochromator allowing spectral resolution of the CL
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signal. The luminescence is chopped and detected with a cooled photomultiplier tube
and lock-in amplifier. A thin aluminum mask covers half of the sample and prevents
detection of the luminescence emanating from the region under it. All detected lumi-
nescence is from radiative recombination that occurred in the unmasked region. This
is shown schematically in Fig. 4.1. By generating the carriers in the masked region
of the sample and measuring the luminescence intensity as a function of the distance
of the beam from the mask edge, I(z), we are able to determine the diffusion length,
Lp. To allow different material compositions to be investigated on a single sam-
ple, carriers were confined to narrow channels of the material being studied by high
bandgap barriers on either side. It is important that the barriers be thin compared to
z so that only those carriers that were generated in the channel contribute to its CL
signal. Samples typically contained two channels of different material composition,
and signals from different channels were separated with the monochromator.

The simplicity of the technique results from the fact that the Iumineséence signal
depends exponentially on z/Lp.The exponential dependence on z is significant not
only because of the ease with which it is handled numerically, but also because it
allows us to ignore the size and shape of the interaction region so long as it remains

completely under the aluminum mask.

4.3 Argument for Exponentially Decaying Signal

In this section we show that luminescence signal decays exponentially with the dis-

tance of the beam from the mask edge, and that the characteristic length of the
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Figure 4.1: Schematic diagram of the experiment. An electron beam is incident on the
sample, generating electron hole pairs. Luminescence is collected with the optical fiber. -

The Al mask blocks detection of luminescence from the region under it.
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exponential is the diffusion length. We present two arguments demonstrating this.
The first is a numerical calculation based on a cylindrically symmetric charge distri-
bution, and the second is based on the principle of superposition. Finally, we extend
the argument to an arbitrary charge distribution.

Because the fiber collects light from a region that is of much larger dimension
than the carrier diffusion length, we may assume that all carriers that diffuse into the
unmasked region contribute to the luminescence signal. The luminescence signal is
then proportional to the net flux of carriers into the unmasked region.

The carrier concentration is governed by the continuity equation

oc _

= VT ()

G-R-

|

. .
where C, J, G, R are the carrier concentration, current, generation rate, and recombi-
nation rate for the minority carriers and q is the carrier charge (negative for electrons).

For the zero field case, the current is purely diffusive and is determined by Fick’s law
J=—qDVC (4.2)

where D is the diffusion coefficient. The electron beam generates carriers in a volume
with finite radius pg. Outside of this volume, G = 0. Furthermore, if we assume
steady state conditions, and recombination of the form R = C/r, Egs. 4.1 and 4.2

combine to give

0= ———f— + DV?C, for p > pg, (4.3)

where 7 is the carrier lifetime. The barriers in the samples prevent diffusion per-

pendicular to the channel, eliminating one dimension from the problem. For the
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two-dimensional case with circular symmetry, Eq. 4.3 is Bessel’s equation of zeroeth
order and the only solution that fits the boundary condition at p = oo is the modified

Bessel function of zeroeth order

C(p) = CoK, (fp_) , for p > pg, (4.4)
D

where

Lp =vVDr | (4.5)

is the diffusion length, Cy is a constant and pg is the radius of the generation volume.
This solution can be used to calculate the flux of carriers into the unmasked region
as a function of the distance of the generation volume from the mask edge, z. This
is given by

F(z) = /_ ‘: Ve di (4.6)

where the integral is performed along the mask edge (see Fig. 4.2). In rectangular
coordinates, dl = dye,, where €, is the unit vector in the z direction. Inserting Eq. 4.4

into Eq. 4.6 and using the relation dKy(2)/dz = —K,(z) [6] gives

_ Co o T 2 2

We were not able to solve the integral of Eq. 4.7 analytically, but evaluating it nu-
merically gives a result which, to several significant figures and over a range spanning
several orders of magnitude, is indistinguishable from F(z) « e~*/£P, The simplicity
of this result as compared with the complex appearance of Eq. 4.7 led us to search

for the following, “physical” explanation.
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Masked Region Unmasked Region

Figure 4.2: Coordinates for the flux calculations. A cylindrically symmetrical charge gener-
ation region of radius pg is shown. The integral of Eq. 4.7 is performed along the boundary

between the masked and unmasked regions.
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First, let us examine diffusion in one dimension. In this case, the solution to

Eq. 4.3 is C = Coe~*/LP, which yields
Fip = _Lo sy (4.8)

where Fp represents the flux into the unmasked region due to a point charge in the
one-dimensional case. Next, assume that we generate a line of constant carrier density,
parallel to, and a distance z from the mask edge (see Fig. 4.3). By symmetry we know

that this is equivalent to the one-dimensional problem. We define R,(z,y — yn) as

-

the response due to the nth element of the line, that is, R.(z,y — yn) = VG, -dl.

Equation 4.6 can be written as

F@) = [~ dyY Bule,y— ) (4.9)

- n=0 :
where Fi(z) is the flux due to a line of charge. Because the line stretches to infinity,
we need not keep track of the position of the element along the line and Eq. 4.9

becomes

Fi(z)

/oo dy i Rn(z,y) (4.10)

—0 nz=0

N[ dyRa(z,y) (4.11)

If the elements of the line are small enough, R.(z,y) represents the response due to

a point charge, so by equating Eqs. 4.8 and 4.11 we conclude that for a point source,
F(z) o e=*/Lp, (4.12)

While there may be certain cases where the carrier generation region may be well

approximated by a point source, to be useful in a more general way, the argument
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Figure 4.3: Coordinates for the flux calculations for a lineal charge distribution.
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must be extended to a more realistic generation volume. We now show that Eq. 4.12
applies for a generation region of arbitrary size and shape with the only restriction
being that it must lie entirely underneath the mask.

Figure 4.4 diagrams an arbitrarily shaped interaction volume. The flux due to a

small element in the generation volume is given by
Fi(z) = Aje™=/to, (4.13)
and the net flux is given by
Fz)=) F= Z:A;e":‘/LD. (4.14)

Equation 4.13 can be rewritten as
Fi(z) = Aje =/Lpe=2/Lp = gle==/lp, (4.15)

where z is the smallest distance from the mask edge to the generation volume, and

z} is a constant. Putting Eq. 4.15 into Eq. 4.14 gives
F(z)=)_ Ale~*/lp = ¢==/Lp > AL (4.16)

Therefore, the net flux of carriers into the unmasked region is of the form F(z) =
Ae~#/Lp regardless of the shape and size of the generation volume, so long as
is positive. It is worth noting that although the argument presented here was for
diffusion in two dimensions, it can easily be extended to the three-dimensional case.
This would be useful if the technique were applied to bulk materials, which do not

have barriers confining the carriers to a channel.
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Figure 4.4: An arbitrary shape charge generation volume.
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4.4 Experimental Conditions and Results

The samples used in the experiment were grown by molecular beam epitaxy (MBE) in
a Riber 2300 R & D system. Sample 1 had a 750 A Alg.35GagesAs channel and a 750A
GaAs channel both with AlAs barriers while Sample 2 had a 7504 Alg19Gag g As
channel with AlAs barriers and a 1004 GaAs quantum well channel with Al;Ga ;As
barriers. The determination of the Al mole fraction was accomplished by room tem-
perature photoluminescence (PL) measurements. The PL spectra were taken using
a relatively low intensity (= 1W/cm?) excitation by the 51454 line of an Argon ion
laser, and Al mole fractions, z, were determined from the PL spectra peak energy, E,,
using the relation E,(eV) = 1.42 + 1.45z — 0.25z2, which has been shown to hold for
0 < z < 0.45 and similar excitation conditions [7]. There was no intentional doping
in either sample. Stripes of aluminum, 7504 thick and 100um wide were evaporated
onto the surface. While thin enough to allow the electron beam to penetrate into
the sample, this mask was found to be sufficiently thick to prevent detection of a
luminescence signal through it. The sample was excited by a 10kV electron beam
with a current of approximately 20nA. This yields a carrier density on the order of
10cm™2 in the generation volume. With a 10 kV beam, the generation volume has
a radius of approximately 0.1um in the channels [8]. For the GaAs, quantum well,
and AlpasGaggsAs channels, the beam position was varied from 3.33pm to 0.91pm
from the mask edge in steps of 4854 with a dwell time of 0.5 seconds. Due to the
shorfer diffusion length in the Alg;9Gagg;As channel, the range of z was shortened

to run between 2.12um and 0.93um in steps of 250A. Figure 4.5 shows typical data
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runs for three different channels. The data is quite linear and there is very little
scatter. All data presented here were taken at room temperature. When the sample
was cooled to liquid nitrogen temperatures, it was observedﬂ that the exposure to the
electron beam altered the luminescence strength and diffusion length of the material.
Similar electron beam effects [9] and laser excitation effects [10] have been observed
by others. Material in the region of the mask was most severely affected, leading us
to suspect that it is strain related. This effect was observed to a lesser degree at room
temperature so care was taken to take data on previously unexposed regions of the
sample. While taking data, the beam was scanned toward the mask edge to assure
that material between the beam and the mask edge had not been altered by the beam.
Once these pre'cautions were taken, the data was found to be quite reproducible and
- consistent across the sample.

Table 4.1 summarizes the data for each channel. The diffusion lengths given
represent an average over four measurements in different regions of the sample. The
extremely small standard deviations demonstrate the precision of the technique. For
the quantum well material, Lp is approximately the same as in the GaAs channel. The
reduction in the diffusion length for the Aly19Gag s As channel can be attributed to a
reduced mobility due to alloy scattering and increased effective mass [11]. A surprising
result is the extremely large diffusion length for the Aly35GagesAs material. Increased
alloy scattering, intervalley scattering, and effective mass, cause further reductions in
the mobility, leading us to conclude that it is an increased lifetime that is responsible

for the large Lp. The aluminum mole fraction of 0.35 is close to the transition
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Figure 4.5: Log of the cathodoluminescence intensity as a function of beam position for
quantum well, Al 35Gag5As,andAlp19Gag g1 As channel. The ambipolar diffusion length is

given by the reciprocal of the slope.
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Material GaAs QW Alo_lgGao,glAS Alo_35Gao,65AS

Lo(um) 0.69  0.68 0.48 1.85

o(pm)  0.01  0.02 0.02 0.1

Table 4.1: Ambipolar diffusion length, Lp, in the 4 materials studied. The value of Lp
given is an average of 4 measurements taken in different regions of the sample and o is the

variance.
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point where Al,Ga;_,As becomes an indirect gap semiconductor. At this point, both
the X and L valleys are approximately 2kgT above the T’ valley making them all
thermally accessible to the carriers at room temperature[l?,lB]. The lifetime in these
indirect valleys can be quite long and the density of states there is large. Because
intervalley scattering times are short compared to carrier lifetimes, the carriers will
scatter between the valleys and may spend a substantial fraction of the time in the
indirect valleys before recombining. Using the electron mobility data of Ref. [11], and
a heavy hole mobility calculated from Ref. [14], our Lp measurements imply an 8.5
times increase in lifetime. This is in the 25ns range. The dependence of the diffusion
length and the carrier lifetime on the Al mole fraction is examined in more detail in

Chapter 5.

4.5 Conclusions

In conclusion, we have presented a new method for measuring either minority carrier
or ambipolar diffusion lengths by cathodoluminescence. The technique is extremely
accurate due to the precision with which one can position an electron beam in a
SEM. A simple exponential dependence of the CL intensity with beam position facil-
itates extraction of Lp from the data. An unexpectedly large Lp was measured for

Alp3sGagesAs and, with knowledge of the mobility, Lp was used to infer a lifetime.
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Chapter 5

Effect of Al Mole Fraction on
Carrier Diffusion Lengths and

Lifetimes in Al,Ga;__As

5.1 Introduction

Measurement of certain basic material parameters such as carrier diffusion length,
lifetime, and mobility is important for device modeling and material characterization.
The Al;Ga;_;As system is an important material system for photonic applications
such as lasers, light emitting diodes (LED), and photovoltaic devices, as well as
electronic devices such as high electron mobility transistors, and resonant tunneling
diodes. Although the electron mobility as a function of Al mole fraction has been
studied systematically [1], reports of lifetimes or diffusion lengths in Al,Ga;_,As are

scattered [2,3] and performed at lower excitation levels than those used in LEDs and
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lasers. In this chapter, we report on measurements of the ambipolar diffusion length
and carrier lifetime in Al,Ga;_,As for several values of z in the interval 0 < z < 0.38.
Both the diffusion length and the lifetime show a dramatic increase for Al mole
fraction near 0.4. Based on a consideration of the relative electron densities in the
direct and indirect valleys, the increase in lifetime is attributed to population of the

indirect valleys for ¢ =~ 0.4.

5.2 Carrier Diffusion Lengths

The samples used in this experiment were grown by molecular beam epitaxy in a
Riber 2300 R & D system. Layers with Al mole fractions of 0.09, 0.19, 0.25, 0.35,
and 0.38 were grown as well as a GaAs layer and a 100A GaAs quantum well. There
was no intentional doping in any of the samples. The determination of the Al mole
fraction was accomplished by room temperature photoluminescence (PL) measure-
ments as described in Section 4.4. Determination of the ambipolar diffusion length
was accomplished by a cathodoluminescence (CL) technique described in Chapter 4.
Figure 5.1 shows the results of the diffusion length measurements. These data were
taken at room temperature at carrier densities in the range of 10'7 - 10'¥cm~3. For Al
mole fraction less than 0.3, the diffusion length remains fairly constant, but for larger
values of z, it shows an abrupt and large increase. The increase in the diffusion length
implies an increase in either mobility or lifetime because Lp = /D1 = W ,
where Lp, D, and p are the ambipolar diffusion length, diffusivity, and mobility, and

where 7, kg, T, and ¢ are the carrier lifetime, Boltzmann’s constant, temperature,
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Figure 5.1: Ambipolar diffusion length at a carrier density of 10!7~10%cm™=3. The samples
with Al mole fraction greater than 0.3 have high values due to the increased lifetime. A

100A GaAs quantum well showed the same value as the thicker GaAs (z = 0.0) layer.
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and the electron charge, respectively. It is not unreasonable to expect the lifetime to
increase as = approaches 0.4 because this is near the point at which AlGaAs becomes
an indirect gap semiconductor and lifetimes in the indirectﬂ valleys can be quite long
if the material is of good quality. Using the electron mobility data of Ref. [1], and
a heavy hole mobility calculated from Ref. [6], our Lp measurements imply an order
of magnitude increase in lifetime for the 0.35 and 0.38 Al mole fraction samples as

compared to GaAs.

5.3 Carrier Lifetimes

To confirm our interpretation of the diffusion length data, carrier lifetimes were mea-
sured by examining the photoluminescence decay signal produced by short-pulse op-
tical excitation of the sample. In this experiment, the sample was excited using
frequency doubled pulses from a mode locked Neodymium YAG laser. The laser
pulses typically had a 100ps width and a peak power of 1W. An electro-optic pulse
extractor reduced the repetition rate from 100MHz to 10kHz. The luminescence was
coupled into a monochromator, which acted as a bandpass filter, passing only the
luminescence from the region of interest. The luminescence decay was measured with
a photomultiplier tube and a boxcar integrator. The system response was measured
to be 4ns.

The results of the lifetime measurement are summarized in Fig. 5.2. These data
were taken at a carrier density of approximately 3x10'8%cm™>. The samples with Al

mole fraction less than 0.3 all showed a lifetime at the system limit of 4ns. Reports
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Figure 5.2: Carrier lifetimes at a carrier density of approximately 3 x 10'8cm=3. The long
lifetimes for the 0.35 and 0.38 mole fraction samples are attributed to population of the X
and L valleys. The values for the samples with Al mole fraction less than 0.3 are upper

limits because the system response was 4 ns.



88

on GaAs lifetimes for this carrier density are in the 2-4 ns range [4,7]. Lifetimes
on the 0.35 and 0.38 mole fraction samples are an order of magnitude higher than
this, in agreement with the predictions from the diffusion leﬁgth measurements. These
samples also showed a trend of increasing lifetime as the pumping power was increased,
in apparent contradiction with expectations for a bimolecular recombination process.
In the following section, we explain these effects by examining the relative populations

of the direct and indirect valleys.

5.4 Lifetime Enhancement

As the Al mole fraction increases from zero to 0.35, the energy separation between the
I', X, and L valleys decreases to less than 0.05eV [4,5]. This situation persists over the
range 0.35 < z < 0.45. In this region, all three valleys will be significantly populated
under room temperature excitation. This is illustrated in Fig. 5.3, which shows the
gap energies of the three conduction band valleys as a function of Al mole fraction
as determined by Lee [5]'. Because intervalley scattering and intraband relaxation
processes all occur on a time scale that is much shorter than the carrier lifetime [8,9],
the carriers in the conduction band may be assurnéd to be in thermal equilibrium.
To understand the effects of intervalley scattering on carrier lifetimes, we start with

the rate equations for the population of each valley,

dnr nr

7 —'; ~(nr —nx)Ypx ~ (nr = nL)Y, (5.1)

!There is some disagreement as to the relationship between bandgap energy and Al mole fraction [4,5],

particularly in the range 0.35 < £ < 0.45. We have used the relationship of Ref. [5] because it is more recent.
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dn n

___th = X _ (nx —_ n[*)’)/rx - (nX - nL)'YXL (5'2)
TX

dn n

-—(.l-{li = ——k (nL - np)’yn - (nL —nx )7Lx (53)
TL .

where the nr x , represent the populations of the three conduction band valleys, mr x 1,
are the lifetimes of the carriers in the individual valleys due to recombination events
in those valleys, and +;; are the scattering rates between valleys 7 and 7, and it is

assumed that I';; = I'jz. Adding these three yields the result

+ +—= === - — | (5.4)

in which all of the intervalley scattering terms have dropped out. The exclusion of
these terms is no surprise because the left-hand side of Eq. 5.4 represents the rate
of change of the total population of the conduction band, which is not affected by
scattering eve;lts within the band. We now assume that the total population of the
conduction band n(t) can be characterized by a single lifetime 7. This requires the
relative populations of the valleys to remain constant. Such a requirement is valid
when the Fermi level is more than 2kgT below the conduction band edge and is
approximately true for the measurements here, as will be shown below (see Fig. 5.4).

Under this assumption, the populations are given by

nr(t) = np,e” "
nx(t) = nx,e " (5.5)
t/r'

nL(t) = nLoe'

where nr, x,,1, are constants. Putting Eq. 5.5 into Eq. 5.4 gives

nr 1 ny 1 nr 1
Lo i (5.6)
n Tr n Tx n Tr

1
u
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which in the approximation

—_— > — — (5.7)

becomes

T = R where, R = = (5.8)

nr
The parameter R canvbe viewed as a lifetime enhancement factor. On average, each
electron will spend 1/R of its life in the T' valley. Because recombination through
the T' valley dominates the population decay, the decay rate is reduced by the factor
1/R. To calculate R we have calculated the populations of the three valleys of the
conduction band using Fermi-Dirac statistics and the parabolic band approximation.
The bandgaps for these valleys were taken from Ref. [5] and the density-of-states
effective masses from Ref. [6]. In Fig. 5.4, R(n) is plotted for Al mole fractions of
| 0.25, 0.35, and 0.38. At low carrier concentrations, the curves are flat because, in
this region, the Fermi level is in the gap and the Fermi-Dirac distribution above the
band edge is Boltzmann-like, leading to relative populations that are approximately
independent of carrier density. For example, the relative population of the I' and
X valleys in this region is approximately given by nx/nr = (myx/mp)*/2e~2E/ksT
where mx and mr, are the density-of-states effectiv;a masses in the X and T valleys
respectively and AF is the energy separation between the X and I' band minima.
As the Fermi level rises to within 2kgT of the indirect valleys, R begins to increase
sharply. This explains our observations of longer lifetimes for higher pump powers.

Eventually, R begins to level off and approaches the value (mx + mp + mr)/mr

asymptotically. Although it is questionable whether these high carrier concentrations
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Figure 5.4: The ratio of the carrier concentration to the population of the I' valley as a
function of carrier concentration for three different Al mole fractions. The arrows show the
concentration at which the quasi-Fermi level is at the bottom of the conduction band. The
lower and upper endpoints of the curves correspond to quasi-Fermi levels 0.15eV below and

0.55eV above the conduction band edge.
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could be achieved without other effects dominating, values of R > 35 should be
attainable at lower carrier concentrations for slightly higher ‘Al mole fractions. To
compare these calculations with our data we assume a valué for 7 of 3ns. At a carrier
concentration comparable to our experiments, this predicts lifetimes of 32, 12, and

3ns, in good agreement with our measured values.

5.5 Conclusions

In conclusion, we have presented measurements of ambipolar diffusion lengths and car-
rier lifetimes in Al,Ga;_,As for several Al mole fractions in the interval 0 < z < 0.38.
Samples having compositions near the direct gap-indirect gap transition show signifi-
cantly increased lifetimes and diffusion lengths. We presented calculations indicating
that, at these mole fractions, carriers are occupying states in the X and L valleys
for a substantial fraction of their lifetime. These calculations indicate that the life-
time may be as long as 100ns with slightly higher mole fractions than investigated
here. Measurements on the temperature dependence of the lifetime may prove use-
ful in determining the composition at which Al,Ga;_,As becomes an indirect gap

semiconductor.
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Appendix A

Holographic Lithography Using

the 2315A Line of a Xe Ion Laser

The fabrication of structures showing quantum size effects such as quantum wires and
quantum boxes requires lithographic techniques capable of generating patterns with a
feature size of a few thousand angstroms or smaller. Lithographic patterns on this and
smaller scales are also required for diffraction gratings in optoelectronic devices, such
as distributed feedback lasers and distributed Bragg reflectors [1]. The generation
of such fine patterns is generally accomplished eithér by electron beam lithography
or by holographic lithography. In this section we report on the fabrication of 11804
period gratings in polymethylmethacrylate (PMMA) using the 2315A line of a Xe ion
laser and a conventional holographic exposure setup. In such a setup, the period of

the grating is given by the relationship

A

n (sina — sin 3)

d=
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where a and J are the angles of incidence of the two beams, n is the index of refraction,
and A is the wavelength of the light. The shortest period, d = %, is obtained for
a = —f = Z. To reduce d, one can use a high index prism [2] or a shorter wavelength
source. Unfortunately, coherent deep UV sources are not abundant. One approach
is the generation of deep UV radiation as a harmonic of a powerful, lower frequency
source [3].

The interference patterns were recorded on GaAs substrates, which were spin
coated with a 1 percent solution of molecular weight 496K PMMA at 5000 RPM and
prebaked at 170 C for 1 hr. Although usually used for electron beam lithography,
PMMA has been shown to be sensitive to ultraviolet radiation with wavelengths
of 2500A and shorter [4]. In this region of the spectrum, the Novolac resists have
a high absorption coefficient and a low bleachability making them unsuitable. After
exposure, the samples were developed in methylisobutylketone (MIBK) for 60 seconds,
rinsed sequentially in isopropanol and water, and blown dry with nitrogen. The
samples were sputter coated with approximately 50A of Au/Pd to prevent distortion -
of the images due to charging during observation by SEM.

Exposure of the PMMA was made with the 2315A line of ionized xenon. This
ultraviolet transition was first observed by Marling [5]; the energy level assignments
are unknown, but the transition is usually attributed to doubly- or triply- ionized
xenon, Xe III or Xe IV. A simple air-cooled, fused silica discharge tube 5mm inside

diameter and 60cm long with ordinary fused silica Brewster’s angle windows was used.

A 10nF capacitor charged to 10 - 20kV was switched with a 5C22 thyratron to give
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0.5us, 800A discharge current pulses at about 40pps. A pair of mirrors peaked at
2310A obtained from Acton Research Corp. provided the optical cavity: a 98 percent
reflecting 2m spherical mirror and a 97 percent reﬁecting” flat with 2 percent trans-
mission. Lasing occurred for the second half of the current pulse, giving triangular
pulses 0.25us at the base. Average multimode output power was measured with an
Epply thermopile at about 130uW, giving a peak power of about 25W with a duty
cycle of 1075, An intracavity aperture was used to select T E My, operation, with an
estimated average intensity of 1.5mW /cm? at the center of the Gaussian. Because
this particular laser transition exhibited optimum xenon pressures of 5 mtorr or less,
gas cleanup by the discharge was relatively rapid; stable operation was obtained for
about an hour at a time between gas refills. Because the power drifted somewhat
during the exposure, the estimates of total energy deposition are approximate. If we
assume that the ratio of the power in the two beams was two to one and we account
for geometrical factors, the maximum intensity at the PMMA surface waé 0.37 times
that at the center of the Gaussian. This gives an intensity of 0.56mW /cm? in the
center of the exposed regions. Exposure times of 2 to 10 minutes were used, with
about 5 minutes giving the best results. A 5 minute exposure at 0.56mW /cm? corre-
sponds to an energy deposition of 0.17J/cm?. This estimate is considered to be good
to within a factor of two.

Fig. A.1 shows a SEM micrograph of a 1180A period grating in the exposed
PMMA. This is close to the shortest period attainable with this laser without the use

of a prism to shorten the wavelength. The flatness of the region between the stripes
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Figure A.1: SEM micrograph of 1180A period grating in PMMA. Pattern was generated

holographically with 2315A emission from a Xe ion laser.
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indicates that the exposure reaches the substrate. The grating pattern extends over
an area of approximately 1mm?, which corresponds to over 50 percent of the exposed
area. Similar exposures were performed on a thin film 6f AZ1400 series resist, a
Novolac resist, but the resulting resist profiles were poor and did not extend to the
substrate.

In conclusion, a new source has been employed for deep UV holographic lithog-
raphy and it has been shown to be capable of producing features as small as 600A.
A grating was produced with a period appropriate for use as a first order grating
for a GaAs/AlGaAs distributed feedback laser. This technique may also be useful
in the fabrication of quantum wires and quantum dots. The Xe ion laser, although
not commercially available, can be assembled in the laboratory as an inexpensive UV

source for lithographic purposes.
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