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Abstract

The solidification of a material into an undercooled melt occurs quite frequently in
material processing applications. The interface between the solid and liquid phases
in such cases is inherently unstable. This instability can lead to the formation of den-
dritic growth patterns which may significantly impact the microstructure of the re-
sulting solid. Because the microstructure of materials notably influences their macro-
scopic properties, there is significant interest in understanding and controlling the
formation and evolution of dendrites.

For many years, material scientists have sought to develop a predictive theory that
could relate the observed dimensions and characteristics of dendrites to the thermal
and fluid dynamics conditions that prevailed during their formation. To date, no such
general theory exists. The problem is a difficult one, both from an experimental and
mathematical standpoint.

In this work, we develop an accurate numerical method capable of simulating
dendritic solidification both with and without natural convection effects. The scheme
explicitly tracks and parametrizes the interface between the liquid and solid phases
using a series of independent marker particles. Due to the release of latent heat,
the derivatives of the temperature of a growing dendrite are discontinuous across the
interface. As a consequence, great care is required when discretizing the derivatives
at nodes adjacent to the interface. We use a generalized version of LeVeque and Li’s
immersed interface method to accurately compute the spatial derivatives. We also
develop an accurate one-step time marching scheme for problems with derivatives
that jump discontinuously across a moving interface. The method is notable because

it does not require that the same time discretization scheme be applied to every term

in the governing equation.
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Chapter 1 Introduction

1.1 Motivation

Although foreign to residents of warm weather climates, virtually everyone who lives
in the “snow belt” is familiar with dendritic crystals. Frost patterns and snow flakes
are among the most common examples in nature of materials that result from den-
dritic solidification. The appearance of a snow flake is clearly quite different from
that of an ice cube even though both are made from exactly the same material. The
difference between the two is due to the conditions that prevailed during their forma-
tion. This applies not just to ice, but to most materials. The physical, chemical and
mechanical properties of a solid typically depend on the thermal and fluid dynamic
conditions in the liquid during its solidification. The determination of the relationship
between a material’s properties and the conditions under which it was formed is not
merely of academic interest. Most materials of technological interest have, at some
point, solidified from a liquid state. The conditions during this solidification process
can significantly influence the material properties and, hence, engineering utility of
the resulting substance (see [34]). It is well known that materials resulting from the
solidification of an undercooled liquid (i.e., a liquid below its equilibrium freezing
temperature) can, and frequently do, have a dendritic microstructure. Many mate-
rials, including alloys and semi-conductors, are solidified under these conditions so
there is significant interest in understanding and controlling the evolution of growing
dendrites.

Dendritic growth patterns can occur during the solidification of both pure and
multi-component liquids. In this work, we will limit our consideration to pure sub-
stances. Even for a single component system, insight into the root cause of the rich
and complex observable phenomena has proven to be elusive. In Fig. 1.1 we have

reproduced a photograph of a succinonitrile dendrite. Succinonitrile (SCN) is a com-
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monly used material in dendritic solidification experiments. Its main advantage over
other materials is that its material properties (i.e., density, thermal conductivity, etc.)
are virtually identical in its liquid and solid states. As we shall see, this simplifies
the mathematical model for the problem. From an experimental point of view, it
is convenient to work with because its melting temperature is fairly close to room
temperature (about 58° C). Scientists and engineers wish to be able to predict char-
acteristic properties of dendrites like the one in Fig. 1.1. The goal is to be able to
predict growth rate, tip radius, side branching density and other characteristics as a
function of the prevailing thermal and flow field conditions in the liquid. Although
progress has been made (see [21]), a complete theory capable of reliably predicting

these quantities has not yet been developed.

Figure 1.1: Succinonitrile dendrite

There have been many impediments to the development of a successful predictive

theory for dendritic solidification. The necessary purity of the sample materials and
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exacting degree of thermal control, among other things, pose difficult challenges for
the experimentalist. The inherently non-linear nature of the mathematical models
has also proved troubling for mathematicians and physicists. Given these problems,
it seems clear that numerical methods offer researchers a valuable additional tool
which can complement experimental investigations. Numerical methods can provide
information that is difficult to measure experimentally. In addition, it is possible to
directly ascertain the impact of different physical aspects of the problem by simulating

the system with or without that bit of physics.

1.2 Scope of this work

In this work, we have begun the process of developing a general tool for the inves-
tigation of dendritic solidification. We have constructed several front tracking/fixed
(Eulerian) grid, staggered mesh schemes capable of simulating periodic problems with

moving boundaries. In particular, we develop methods capable of simulating:

1. the flow of an incompressible fluid through an irregular domain with fixed or

deforming boundaries
2. the dendritic solidification of a pure substance in the absence of convection and

3. the dendritic solidification of a pure substance in the presence of natural con-

vection.

All of these methods are based upon a common discretization technique which is a
generalization of the immersed interface method of LeVeque and Li (see [38]). While
this work is exclusively focused on second order accurate solutions, the discretiza-
tion approach that we develop is capable of generating arbitrarily accurate stencils.
We check the accuracy of all our numerical schemes using exact and approximate

solutions. In every case, second order accuracy is observed.
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1.3 Outline of the remaining chapters

In Chapter 2, we discuss the standard mathematical models for dendritic solidification
both with and without natural convection. Two exact one-dimensional solutions are
presented that illustrate the behavior of the temperature field near the interface and
provide valuable benchmarks for our numerical scheme. We also perform a linear
stability analysis to determine the stability of a planar interface propagating at a
constant speed (one of the exact solutions we provide). The analysis is performed
both with and without natural convection effects. The resulting stability predictions
indicate a dependence of the growth rate on the orientation of the system. That is, the
growth rate can be different depending on whether the interface moves with or against
the direction of gravity. This dependence has been noted by experimentalists (see
[37]). These approximate solutions are valuable both for the insight they provide into
the behavior of a solidifying system and as checks on our two-dimensional numerical
method.

In Chapter 3, we introduce the discretization techniques that will be used through-
out this work. Our method discretizes the system on fixed (Eulerian) finite difference
grids. Special care is required at those stencils that span the interface (i.e., involve
both liquid and solid nodes) because, as we will see in Chapter 2, the derivatives of the
temperature are discontinuous across the interface. We develop a generalized version
of the immersed interface method (see [38]) which allows the accurate discretization
of the derivatives of a function even if its value and/or derivatives jﬁmp across the
interface. We also derive a one-step time marching scheme that is capable of accu-
rately evolving a function forward, even if its time derivative jumps, at a prescribed
time, during the simulation.

In Chapter 4, we develop numerical methods in one and two dimensions for the
dendritic solidification problem in the absence of convection. In one dimension, the
domain is discretized by a uniformly spaced finite difference grid and the interface
is tracked by an independent marker particle. We investigate a problem with non-

symmetric (unequal) material properties to illustrate the theory developed in Chap-
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ter 3. In two dimensions, the domain is discretized by a uniformly spaced cell-centered
finite difference grid and a set of independent marker particles are used to explicitly
parametrize and track the interface. We restrict our attention to symmetric problems,
in this case, which allows the discrete system to be solved efficiently. The scheme is
validated against the exact and approximate solutions developed in Chapter 2.

In Chapter 5, we develop a scheme for the simulation of incompressible fluid flow in
complex geometries. The domain is discretized by a fixed, uniformly spaced staggered
mesh. A set of independent marker particles are used to explicitly parametrize and
identify the position of the liquid-solid interface. A flow field is computed everywhere
in the computational domain regardless of whether that region is liquid or solid. The
method simulates the presence of a solid boundary by the application of a forcing at
the interface such that the fluid satisfies the no-slip condition at that location. In this
way, an independent flow is determined in both the liquid and solid regions of the
computational domain. The flow in the liquid region is physically meaningful while
the flow computed in the solid region is not. The advantage of this approach is that
the system can be inverted using “fast solvers” (see [68]) which offsets the additional
degrees of freedom introduced by the fictitious flow in the solid region. An important
degeneracy in the system for the interfacial forcing is identified and eliminated and
problems with mass conservation are also discussed. The scheme is validated using a
combination of simple exact solutions and a convergence study.

In Chapter 6, we couple the techniques introduced in Chapters 4 and 5 and de-
velop a scheme for the simulation of dendritic solidification in the presence of natural
convection. The method employs a regularly spaced staggered mesh with the inter-
face being tracked and parametrized by a series of independent marker particles. The
scheme is validated against the approximate solutions developed in Chapter 2. We
also demonstrate a case in which natural convection has a significant impact on the
evolution of a growing dendrite.

In Chapter 7, we summarize the original contributions made in this work and

discuss various avenues of future research that we feel would extend this work in

useful ways.



Chapter 2 Dendritic solidification

2.1 Mathematical model

Solidification is the process of a liquid undergoing a change of phase into a solid.
This typically occurs at an interface between a region that has already solidified and
the remaining liquid. The solid grows by the accretion of liquid molecules effectively
moving the interface. It is important to recognize that, unlike many moving boundary
problems, the interface in solidification is not a material surface. The interface only
moves through the acquisition or emancipation of material, hence motion is always
accompanied by the release (solidification) or absorption (melting) of latent heat. The
manner in which this latent is removed from the interface has a significant impact on
the evolution of the geometry of the solid and liquid regions. When the liquid is above
the melting temperature of the material, latent heat is removed through the solid and
the interface evolves as a smooth regular surface that is stable to small perturbations
of its geometry. When the liquid is undercooled below the thermodynamic melting
temperature of the solid, however, we will show that the interface is unstable to small
geometric perturbations and can evolve into a highly complicated shape. The case of
a solid solidifying into an undercooled liquid is called dendritic solidification because
of the branching tree like structures that often result (dendrite comes from the Greek
word for tree).

First, we establish the equations governing the transfer of heat in each phase. In

the solid region, heat transfer occurs solely by conduction. Thus the temperature of

the solid, Ts (x,t), satisfies

T
pSCS—a—tS- = stzTS, (21)

where pg is the density of the solid and Kg and cg are the thermal conductivity and

specific heat, respectively, of the solid. Note that we are assuming in this work that
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all material properties are constant in each phase. In the liquid region, heat can
be transported either by conduction or through the physical motion of the material.

Thus the temperature of the liquid, 77, (x,t), is governed by

oT;
Pr.CL ('5; + U-VTL> = KLV2TL, (22)

where u is the local velocity of the liquid and p;, K and ¢ are the liquid density,
thermal conductivity and specific heat, respectively. In order to simplify the model,
the fluid motion in the liquid phase is frequently neglected. Under this assumption,

the temperature in the liquid phase satisfies

oT
pLCL-—a—t£ = KvaTL, (23)

which eliminates the need to consider the additional equations governing the motion
of the fluid. While there are cases where the above is a valid approximation, a large
body of evidence exists (see [37]) indicating that the effects of convection are crucial in
some circumstances. Thus, it is necessary to introduce additional equations governing
the fluid motion. In the absence of some external forcing such as the motion of a
container wall or an imposed pressure gradient, the motion of the liquid is due solely
to the effects of buoyancy. Buoyancy here refers to the small but important variation
of liquid density in a nonuniform temperature field which can induce fluid motion.
We will utilize the Boussinesq approximation (see [36]) which accounts for the effects
of buoyancy through the addition of a temperature dependent forcing term to the
incompressible Navier-Stokes equations. The Boussinesq equations apply only in the

liquid and require that both incompressibility (governed by the continuity equation),
V.-u=0, (2.4)

and conservation of momentum,

(‘%‘; M “‘V“> = =Vp+vViu+t §(Tp — Ty & (2.5)
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are satisfied. We must introduce several new variables to include fluid motion effects.
These are the pressure, p, the fluid viscosity, v, the coefficient of thermal expansion,
B, which is evaluated at the reference temperature, T, and the acceleration due to
gravity, g.

The above equations specify the physical processes occurring in the bulk liquid
and solid regions. In addition to these, it is necessary to supply conditions that stip-
ulate the behavior of the fluid velocity and temperature on the solidifying interface,
X =(X,Y), between the two phases.

From the point of view of the liquid, the interface is the position of a solid bound-

ary. Thus, the tangential velocity of a viscous fluid will satisfy
u-7=0. (2.6)

The interface propagates into the fluid not by pushing the adjacent liquid away but
by acquiring it. Thus, the normal velocity of the liquid is not equal to the normal
velocity of the interface but, in the most general case, is related to it. If the density
of the solid and liquid phases differ, then conservation of mass requires that there be

a flow into or out of the interface

— 0X
u-n= ('Os—p—ji> (—n) (2.7)
Pr ot
In the simulations we perform that include convection, the symmetric model (material

properties equal in each phase) is used so, for our purposes, the liquid satisfies
u=0 (2.8)

at the interface. Next, we examine the consequences of conservation of energy. The
interface moves solely by the melting or solidification of material. Accompanying this
phase change is the liberation of latent heat. Thus, the heat flux must be discontin-

uous across the interface in response to this release of energy. The exact condition



is

(KsVTs — K VTL) -n= pgL (88—)5 . n) (2.9)
where L is the latent heat of fusion, n is the normal to the interface pointing out of the
solid and X is the position of the interface. If the motion of the interface were known
a priori, then the above system of equations would be sufficient to determine the
temperature and fluid velocity at any point later in time. Unfortunately, the motion
of the interface is not known and must be determined as part of the solution. Thus an
additional equation is required to close the system and determine the motion of the
interface. This last constraint arises from the consideration of the thermodynamics
of the problem.

In elementary thermodynamics, it is assumed that a liquid freezes at a constant
temperature. This is an extremely good approximation in most situations. In the case
of the solidification of an undercooled liquid (a liquid cooled below its equilibrium
freezing temperature), however, the assumption of isothermal solidification leads to
mathematically ill-posed models (see [35]). The situation can be rescued, however,

by the inclusion of some additional physics. The Gibbs-Thomson condition,
Ts (x,8) = Tp (x,1) = Tt (1 ~ 2y (n)) , (2.10)

.

governs the solidification temperature at the interface (see [35]) where T), is the
thermodynamic melting temperature, - is the surface tension, x is the local interface
curvature and L is the latent heat of fusion. Note that the surface tension can depend
on the normal, n, to the interface which enables crystalline anisotropy effects to be
modeled. We will introduce a specific functional form for the surface tension in
Chapter 4. It is possible to include additional terms to the above that model, for
instance, the finite rate at which liquid molecules attach to the solid (kinetic effects)
or the effect of discontinuous heat capacity (see [29]) but this is sufficient for our
purposes.

In practice it is useful to re-scale the above equations so that we can work in terms

of dimensionless quantities. The scalings that we use are discussed in Appendix A.
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In terms of the dimensionless temperature, §, the system governing solidification in

the absence of convection is

00g 9

—2 = 0 .

5 HsV*40g, (2.11)
in the solid,

— = = 0 .

5 Hp V<o, (2.12)

in the liquid. On the interface the temperature satisfies

Os =0, = —c. (n) K, (2.13)
and
X
(hsveg — hngL) ‘n = <8a—t . n) . (214)

We will discuss the functional form for the dimensionless capillary parameter, &,
later in this chapter. The dimensionless system governing solidification with natural

convection is

00s

2
—2 = 0 .
o = HsV'0s, (2.15)
in the solid,
V.u=0, (2.16)
Ou 9
E—l—u-Vuz—Vp—FDV u+ By, (2.17)
and
3{‘+U'V9L:HLV 9L7 (2'18)

in the liquid. On the interface the fluid velocity satisfies
u=0, (2.19)
and the temperature satisifies

0s =0 = —e.(n) K, (2.20)
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and
(hSV95 - hLVQL) ‘= (%—}f . 1’1) . (221)

The direction of B = (B, By) determines the orientation of the system with respect
to gravity. The direction of gravity determines the direction of the buoyant forcing
in the fluid which, as we shall see, can have a major impact on the evolution of a
solidifying systém.

The above equations are highly non-linear due to the motion of the solidification
interface. Because of this there are very few exact solutions available. Indeed, this is
the main motivation for the development of numerical methods capable of simulating
solidification problems. Developing numerical methods for complicated systems of
equations is a difficult business, however. It is important to have checks on the
results that the algorithms generate to ensure that more than just “pretty pictures”
are being produced. Several exact solutions are discussed below that we have found

to be useful as benchmarks for our numerical method.

2.2 Analytic solutions

We seek one-dimensional (flat interface) solutions to the dendritic solidification system
without convection. That is, we wish to determine the location of the interface,

y =Y (t), such that the temperature in the solid, y < Y (t), satisfies

00s 0205
— = Hg—— 2.22
ot 5 oy2 (2.22)
and the temperature in the liquid, y > Y (¢), satisfies
00;, 020y,
— =H . 2.23
ot L g2 (2.23)

At the interface, y = Y (), the temperature must satisfy

fs =0, =0 (2.24)
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and

WD, 00, oY
5oy Yoy T ot

(2.25)

As is the case with most moving boundary problems, there are very few exact
solutions known for the above system. We present two solutions here that describe
the motion of a flat advancing interface into an undercooled liquid. They are both
examples of dendritic solidification which are useful for validating one-dimensional
simulations. Because these problems are physically unstable, however, fully two-
dimensional simulations can have trouble maintaining the flat interface solution as

time advances. Later we will use perturbation techniques to construct approximate

solutions that are better suited for such comparisons.

2.2.1 The sub-critically undercooled case

First we consider the evolution of a solid region at a uniform temperature of Os =
0_0o > 0 (clearly 0_., = 0 is the most physically relevant choice) and a liquid region
undercooled at uniform temperature of §; = 0400 < 0 that are brought into contact

at y = 0. Seeking a similarity solution in terms of

n = 2%/; (2.26)

the system can be reduced to a single non-linear algebraic equation for a,

a® a®
hs0_. exp <—ﬁ~—) hr0, o exp <~—ﬁ—>
s L

Vs (1 +erf (\/LH_S)) ’ VAL (1 — erf (\/‘;ﬁ)) +Vma=0, (2.27)

where a is related to the interface position by

Y () = 2av/%. (2.28)



13

The temperature in the solid, y <Y, is given by

Y
1 f| ——
+er (2 tH5>

Os =60_o —0_
1+ erf (

(2.29)

)

and the temperature in the liquid, y > Y, by

1— eI'f (2\/——%?—)
0L = 0100 — O oo . L2, (2.30)
1—erf
(v77)

where erf() denotes the error function (see [1]). A typical temperature profile gen-
erated by the above solution is plotted in Fig. 2.1. Note the discontinuity in the
derivative of the temperature across the interface at # = 0. This is a representative

temperature profile for a solidifying system.

02 T T T T T T

0.1 - —

-01 —

-03 - -

04 |- -

06 1 L

Figure 2.1: Temperature profile at ¢t = 1 with T,, = —0.6 and 7T_., = 0.2

It is not possible to find a solution of the above form for all possible initial tem-
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perature distributions. Consider, for example, the simple case in which the solid
is initially at the melting temperature. Rearranging the above equation for a and
substituting in b = ﬁ yields

hr, b2
g O = Vbe? [1 — erf (b)] (2.31)

which has a bounded monotonically increasing right-hand side. Letting b — co we

find that the liquid undercooling must satisfy

H
B0 < h—L = A, (2.32)

L

for there to be a solution of the above form. We will refer to A, as the critical
undercooling. The solution above is only achievable for undercoolings that are smaller
than this amount. Physically this means that for sufficiently large undercooling there
is no buildup of latent heat ahead of the interface as it propagates into the liquid.
Thus, solutions with under-coolings greater than this must have a different functional

dependence. As we see below, this is indeed the case.

2.2.2 The critically undercooled case

When the liquid is sufficiently undercooled, it is possible for the latent heat released
during solidification to be dissipated without building up near the interface. This can

be demonstrated by seeking “traveling wave” solutions,

95 = (93 (y - Vt) y (233)
0, = 0,(y—Ve), (2.34)

where the interface, Y (¢) = V¢, travels at constant velocity. Seeking solutions of the

above form, we find that the solid must be uniformly at the melting temperature

s =0 (2.35)
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and that the liquid temperature must decay exponentially ahead of the interface

= oo (L=V0) ] -

This solution is valid for all velocities V' > 0 but has a unique undercooling of
O = —A,. (2.37)

It is possible to find solutions with undercooling below this by including molecular
attachment effects in the Gibbs-Thomson relation (see [50]), but this will be sufficient
for our purposes. A plot of the temperature profile with V' = 1/2 is shown in Fig.
2.2.

0.2 T T I T T I T

-06 —

-0.8 —

Figure 2.2: Temperature distribution at ¢t = 1 for V' = 1/2 and all material properties
set to unity

Both of these solutions provide valuable checks for our numerics. We will use

them both in Chapter 4.
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2.3 Stability of a flat interface

We are interested in examining the stability of a solidifying planar interface, y = Y (¢),
that is subject to a small morphological (shape) perturbation. This problem has been
studied extensively in the literature both with and without convection (see [20] and
the references therein). We will restrict our attention to the case in which the material

properties are identical in each phase (the symmetric model), so that

H, = Hgs=H, (2.38)
hy = hg=h. (2.39)

The dimensionless governing equations for this problem are (2.15)-(2.21). We will
only consider problems for which the interface grows against (moves up) or with

(moves down) gravity so
B, = 0. (2.40)

Infinitely far from the interface we assume that the temperature in both the liquid

and the solid decay to constants

ylir_nooes(:v,y,t) = 0_q, (2.41)
ylirf 0r (z,y,t) = 0400, (2.42)

and that there is no motion in the liquid

ligl u(z,y,t) = 0, (2.43)
y—-+o00

i = 0. .44
Jm v (z,y,t) = 0 (2.44)

The quantities in our system that explicitly depend on the geometry of the interface,

parametrically given by (X (¢,t),Y (q,t)), are

w5 |5 ()

2

(2.45)
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ox [(ox\* [ov\¥]®
T, = COS (¢) = a—q [(8—q) + (a—q) J y (246)
C[etxoy  evoex][[fox\* [av\?]? 047
~ara ol |(a) (%) | 247
e (@) = 6o [1 + & sin® (%fﬂ : (2.48)

The above form for the capillary parameter is equivalent to the conventionally as-

sumed form,

Ec(P) =Ec[1— Accos (ka9)], (2.49)
if we let
6o = 2. (1— A,) (2.50)
and
5y = 12—Aj4¢ (2.51)

where the constant £, is directly related to the material properties of the substance
and the values of the constants A, and k4 are selected to model the anisotropy of the

material.

For this stability analysis, we set
q9=uz, (2.52)
so that the shape of interface is reduced to a simple function of z,

X = = (2.53)

Y = Yy (t) +eYi(a,i), (2.54)
where € < 1. We seek a solution of the form

U = &u (x?ya t)) (255)
v o= eV (xayat)7 (256)
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b =Dpo (‘7;73/’ t) +epr (I,y, t) ) (257)
GL = 0[,0 (x,y, t) + 5‘9L1 (l‘,y,t) s (258)
Os =050 (z,y,t) + €051 (2, 9,t) . (2.59)

Neglecting all O () terms, the system, to leading order, is

o:-%} | (2.60)
0= —%% + B,010, (2.61)
L (2.62)
R0 _ iV, (2.63)

The boundary conditions at infinity on the temperature are unchanged,

yli)r_nooﬁgo(a:,y,t) = 0_q, (2.64)
yEI_PooeLO(x7y7t) = 9+OO' (265)

The fluid velocity is assumed O (€) so it does not appear in the O (1) system. No

conditions are imposed on the fluid at this stage. The interface boundary conditions,

again to leading order, are

Os0 (z, YE)(t)at) =0, (2'66)
00 (z,Yo(t),1) =0, (2.67)
0so 9010 1dY, (1)
_555" (x,Yb(t),t) - Oy (xv%(t)at) - ET (2'68)

Note that there is no reference to either fluid velocity or the interface perturbation in
the above. It describes nothing more than a propagating flat interface problem. So,
before we solve for the leading order quantities, it is useful to derive the O (&) system

to see how the leading order solutions will influence the solution at the next stage.
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The system governing the O (&) terms is

8u1 (9'1)1 _
5+ o, =0 (2.69)
aul o 8]91 2
5 = 9, T DVu (2.70)
81}1 - 0p1 9
5t = "oy TPVt By, (2.71)
(90[,1 80,;0 8(9[,0 . 9
8t +'lL1 ax “+ vy ay =HV 0[,1, (272)
5, = HVbs1. (2.73)

It is convenient to represent the flow field in terms of a stream function

9

w = +6—;p, (2.74)
8

v = _5%’ (2.75)

which allows the continuity equation to be eliminated and the momentum equations

to be combined. The final O (&) system is

0 00 L

a( ) = DV* — B,—= o (2.76)
5’0L1 89[,0 ?}é 80L0_ 2
1 (20) 2 (2, )
1 . s
5, = HVs:. (2.78)

The boundary conditions at infinity on the stream function are

lim oy (z,y,t) =0, (2.80)

y—-+oo Jy



20

and on the temperature perturbations

Jm 01 (z,y,8) = 0, (2.81)
yli)inooeLl (z,y,t) = 0. (2.82)

On the interface, the stream function must satisfy no-slip conditions, which for this

problem implies

¥ (x, Yo (2),2) =0, (2.83)
O
3y (z,Yo(t),t) =0. (2.84)

The boundary conditions on the temperature perturbations at the interface are given

by

900 1

051 (z, Yo (t),t) + Y1 (z,t) By (z,Y (t),t) = 60%2—, (2.85)
ol 02y
01 (z, Yo (t) ,t) +Y; (z,1) —a@L’Q (z,Yo (8),t) = 505;, (2.86)
and
0051 0011 .
By (z,Y0 (t) 1) — By (=, Yo (2),2) = (2.87)
1 8Y1 82030 829L0
PRETY + Y1 (,1) B (z, Yo (t),t) - B (z,Yo(t),1)| -

It is worthwhile to examine (2.85) and (2.86) more closely. These equations result
from the condition that the temperature at the interface is the corrected melting
temperature. There is a contribution from the leading order solution because of the
perturbed shape of the interface. It is interesting to note, however, that the discon-
tinuity of the derivative of the leading order solution translates into a discontinuity
in the values of the temperature perturbations. Subtracting (2.85) from (2.86) and
using (2.68), we find

dYy (t)
dt

001 (2, Yo () ) — On (, Yo (£) ,£) = %Yl ) (2.88)
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This interesting consequence of linear perturbation theory is rarely mentioned in the

literature.

Now we examine the stability of a propagating wave solution of the above systems.

In this case a solution to the O (1) system is given by
Yb = Vt7

050 = 07

Or0 = [e—V(y—Vt)/H . 1]

_HB, (H —V(y—Vt)/H
m= BB (B 1 v vyl

Y

>

For the O () system, we seek a solution of the form

Yy = e cos(az),

Y = €”sin(az) f(y - Vi),

Os1 = e cos(az)gs(y— Vi),
z)gr (y — V),

0r1 = e’ cos(a

which, after some manipulation, yields the following equations

Df" + V" — (0+2Da2) ' =adVf + <0a + Da )f+B agr, =0,

00
Hy + Vg, — (o + Ha®) gy + ( LO)f
Hgd+Vgy— <J+Ha)

with boundary conditions

(2.89)

(2.90)

(2.91)

(2.92)

(2.93

~—

(2.94

~—

(2.95

(2.96

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)



g1 (00) = (2.102)
gs (0) = —8ya? (2.103)
gs (—00) =0 | (2.104)
w(o) = g (0) ~ g, (0) o=~ —0, 2.105)

The linear stability of individual modes is determined by whether solutions to the
above have positive or negative values of o. An individual mode is linearly stable if
o < 0 and it is linearly unstable if o > 0.

When the effects of buoyancy induced fluid motion are neglected (i.e., we let
By, = 0), Mullins and Sekerka (see [51]) demonstrated that it is possible to significantly

simplify the above system:

f=0, (2.106)
gr = Ape” =V, (2.107)
gs = Agetsw=V), (2.108)
Ap = —6pa® + % (2.109)
Ag = —6pa?, (2.110)
where
0 - V4 VV? +2g{a + 4H2a2, 2.111)
0= -V 4+ V2 —|2-;le0 + 4H2a2, (2.112)

and the growth rate is determined by the solution of the non-linear algebraic equation

2

v

Q

Solutions of (2.113) are O (—a?) for large a (i.e., high wave number perturbations are
stable) and there is usually a range of wave numbers, 0 < a < a, for which ¢ > 0. A

typical solution of (2.113) is shown in Fig. 2.3.
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Figure 2.3: Growth rate (o) versus wave number (a) for the V = 1/2 case

When fluid motion is allowed (i.e., B, # 0), it is no longer possible to reduce
(2.97)-(2.99) to algebraic equations and the syétem must be solved numerically.

If we consider o known and ignore (2.105), then (2.97)-(2.99) is straightforward
to solve. We discretize gs on a truncated domain, —L < y < 0, using centered finite
differences and take y = —L to be y = —oo. We also solve the coupled system for
f and g; on a truncated domain, 0 < y < L, using centered finite differences and
take y = L to be y = co. This yields a value of w (o) which will most likely violate
(2.105), so we must iterate on o until the entire system is satisfied. We have found
that the secant method is efficient for determining the growth rate, o, given values
for a and B,.

In Fig. 2.4 we have plotted the dependence of o on B, for a = 1, V = 1/2 and unit
material properties. The basic trend in Fig. 2.4 is that the growth rate is increased
when the dendrite grows parallel with gravity and decreased when the dendrite grows
anti-parallel to g. This is in agreement with experimental observation (see [21]). In

Figures 2.5-2.8 we have plotted the spatial variation for all the field variables for
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Figure 2.5: Spatial variation of f for By = —20 and B, = +20
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Figure 2.6: Spatial variation of f' for B, = —20 and B, = +20
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Figure 2.7: Spatial variation of g;, for B, = —20 and B, = 420
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Figure 2.8: Spatial variation of gg for B, = —20 and B, = 420

a=1,V =1/2 and B, £20. It is not a coincidence that the growth rate deviates
will discuss this in Chapter 6.

more from its pure diffusion value and that the flow is stronger when B, < 0. We
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Chapter 3 Discretization of non-smooth

functions

3.1 Introduction

The discretization of the diffusion equation in dendritic solidification problems is
complicated by the discontinuities in the temperature derivatives across the inter-
face. There are many different approaches that researchers use to solve problems
featuring non-smooth solutions across an interface. These include boundary inte-
gral/element methods, finite element methods, domain mapping methods and fixed
grid approaches. We will discuss all of these techniques later in Chapters 4, 5 and 6.
In this chapter we focus our attention on the development of a fixed grid approach
that can accurately discretize non-smooth problems.

Our goal here is to develop accurate finite difference stencils that can be used
to discretize the derivatives of a function with jumps in its value and/or derivatives
across an interface (i.e., a point in one dimension or curve in two dimensions). We
assume that the interface is completely embedded (i.e., contained) in the computa-
tional domain. In many problems, including dendritic solidification, the value of the
solution is prescribed on the embedded interface and simple “cut” finite difference
stencils can be employed (see [28]). One difficulty with this approach is that the
regularity of the computational mesh is broken by the modified stencils adjacent to
the interface. This eliminates the use of so-called “fast solvers” (see [68]) and leads
to discrete systems that can be difficult and expensive to invert. A further difficulty
is that cut stencils are difficult to apply to problems that satisfy non-Dirchlet bound-
ary conditions on the interface. As a consequence, researchers have attempted to
develop alternate approaches. The most significant of these, for our purposes, is the

immersed interface method (see [38], [43] and [78]). The immersed interface method
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was originally developed to discretize elliptic problems (see [38], [40], [43] and [27]). It
has since been extended to solve acoustic problems in heterogeneous media (see [81]),
one-dimensional parabolic problems with moving boundaries (see [41] and [42]) and
incompressible Stokes flow with moving boundaries (see [39]). In this work, we show
how a modified version of the method may be used to simulate dendritic solidification
problems with and without convection and to compute incompressible flow through
irregular regions.

The immersed interface method employs carefully constructed finite difference
stencils which allow the accurate calculation of the derivatives of non-smooth func-
tions. A regular finite difference grid and standard second order accurate difference
formulas are used at nodes whose stencils do not span the interface (i.e., stencils that
use nodes which lie on only one side of the interface). At the nodes whose regu-
lar stencils do span the interface, custom difference formulas are determined. The
resulting stencils span the interface but they are derived in such a way that accu-
rate estimates of the derivatives are determined. The derivation of these difference
formulas, as presented in [38], is quite involved and requires, among other things, a
coordinate transformation if we are solving a partial differential equation. The basic
idea is to use knowledge of the jumps in the function value and its derivatives at a
single point on the interface near the node to make the truncation error of the derived
stencil sufficiently small (see [38] for details). The resulting stencils allow the accu-
rate discretization of problems with non-smooth solutions on regular finite difference
grids.

In this chapter we will generalize the immersed interface method. Our derivation,
while still somewhat involved, does not require any coordinate transforms be applied
when partial differential equations are being discretized. Further, our stencils typ-
ically use multiple points on the interface in their derivation which yields stronger
coupling between the behavior of the function at the interface and it derivatives at the
grid nodes. Working in both one and two dimensions, we will focus on the derivation
of second order accurate stencils. The general formulas we develop, however, apply

to stencils of any order. Finally, we will present a one-step time marching scheme
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which is capable of accurately evolving functions that are subject to discontinuities
in their time derivative. The scheme is notable in that it allows the individual terms
in the governing equation to be discretized differently which can be convenient for

non-linear problems.

3.2 Spatial derivatives in one dimension

In this section we will derive finite difference stencils to accurately calculate the
derivatives of a function, u (), whose value and/or derivatives jumps discontinuously
at a single point, + = X, called the interface. We assume that the function is
sufficiently smooth away from the interface that standard finite difference stencils
yield accurate approximations to the derivatives whenever all the nodes in the stencil
lie to left or right of X. Suppose, however, that we wish to calculate the derivative
of u at z = z; and z = x;; where z;.; — z; = Az and these nodes are separated by
the interface, z; < X < x;;;. We shall demonstrate shortly that naively applying the

standard first order accurate finite difference formulas,

u(i+1) —u(s)

u, (1) = AL + O (Az), (3.1)
w(it1) = 20+ Z)w_ v | o (az), (3.2)

can yield an approximation to the derivative with an error as large as O (Az™!).
Unfortunately, it is impossible to improve the above approximations without more
detailed knowledge of how the function behaves at the interface. In our formulation
we require that jump conditions, which specify a relationship between the derivatives
of the function on each side of the interface, be known.

Suppose for example we know that u satisfies the following jump conditions:

—u”, (3.3)
(3.4)
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where

vt = lim u(X +¢), (3.5)
e—0t

um = EE%U(X_S)’ (3.6)
. du(X +e¢)

+

wpo= Jim SRS )

_ . du(X —¢)

w o= Jlim (38)

and the values of [u] and [u;] are known. Before we proceed it is important to em-
phasize that the above jump conditions simply state that the jumps or discontinuities
of the function value and first derivative are known. The actual value of the function
or its first derivative on either side of the interface can not be deduced from this in-
formation. Only the difference between the function values or derivatives is specified.
This knowledge is sufficient, however, to construct accurate finite difference stencils
as we now demonstrate.

Finite difference stencils are typically derived using Taylor expansions. For in-

stance, to calculate u, (¢), expand u (z + 1) in a Taylor series about x;,
u(i+1) = u (i) + (Az)u, (i) + O (Az?), (3.9)

and solve for u, (7),

ug () = L0+ Z)x_ “@ 4 o (az). (3.10)

The above derivation fails, however, if the interface lies between z;,; and z; because
it assumes u is continuously differentiable everywhere in this interval. This is why
standard finite difference stencils yield poor results when used to differentiate non-
smooth functions. The derivations can be modified, however, to account for the
presence of the interface. We have assumed that w is continuously differentiable
everywhere to the left (where z; is located) and right (where z;,; is located) of
the interface. So, even though it is not possible to expand u(i+ 1) about z = x,

it is possible to expand it about any point to the right of the interface. The most
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convenient choice is a point arbitrarily close to the interface but still on the right-hand

side, z = X+, which yields
u(i+1) = u + (@i — X)uf + 0 (Az?). (3.11)

We can then express u (i + 1) in terms of quantities on the other side of the interface

by substituting (3.3) and (3.4) into (3.11),
u(i+1) =u" + (Tip1 — X)ug + [u] + (zip1 — X) [ug] + O (sz) . (3.12)

Noting that u is continuously differentiable between z; and X~, we can use the

expansions
uT = u(i) + (X —3) ue (6) + O (Az?), (3.13)
W = u,(i)+0(Az), (3.14)
to obtain
wli+1) = u (@) + (A2)us (6) + ful + (w1 — X) ] + O (Ac?) . (3.15)

This is nothing more than the standard Taylor series expansion plus an additive
correction term which is a function of known quantities ([u], [u,] and X). Solving the

above for the derivative, we find

N w1 —u(@) U]+ (@i — X) [u]
Uy (1) = A - Zm +0(Az), (3.16)

which is merely the standard finite difference stencil augmented by an additive cor-

rection. Using an analogous expansion of u (¢) about z = X, we find

up (i +1) = 20 +2m‘ u(@) [+ (””'A; Olel L o (az). (3.17)
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We can verify that this is correct by testing it on

a+br <X
u= ) (3.18)
a+fzr x> X
where, in this case, the known jumps are
[u] = a—a+(8-0)X, (3.19)
[us] = B—0b. (3.20)

A first order accurate stencil for the first derivative should yield the exact value.

Assuming z; < X < x;41, the standard finite difference stencil, (3.10), yields either

u(i+1) —u(i) [u] + (Zi1 — X) [ua]

AL =b+ Ao , (3.21)
u(@+)—u(@) _ o [+ (2= X) [u]
s =B+ N : (3.22)

after some manipulation, which verifies both that (3.16) and (3.17) are correct and
that naive use of the standard stencil can yield an error as large as O (Az~') for this
problem.

We found above that it was possible to calculate the derivative of a non-smooth
function using a simple additive correction to the standard finite difference formulas.
Unfortunately, this is not always the case. Suppose, for example, we wanted to

calculate the derivative of a function that satisfied jump conditions of the form

[u = u"—u7, (3.23)
[hug] = hTul —h ug, (3.24)

where the values of [u], [hu,], AT and A~ are known. Jump conditions of this form
arise for instance in dendritic solidification when the material properties in the solid

and liquid phases are different. As before, we wish to compute the derivative of w at
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z; and x;; where the interface lies between these nodes, z; < X < Z;+1. Following

exactly the same procedure we used above, we expand u (i + 1) about z = X,
u(i+1) =t + (240 — X) uf + 0 (Az?). (3.25)

Using the jump conditions to express this in terms of quantities evaluated on the

other side of the interface, we obtain

u(i+1)=u" + % (i1 — X)ug + [u] + %X_) [hug] + O (Aa:z) . (3.26)

Expanding the derivatives at the interface about z; yields

o= u(i)+ (X —z)u, i)+ O (Am2) , (3.27)
u;, = Uz (1) + O (Az). (3.28)

Substituting these into (3.26) and collecting terms, we find

h+ (X — .’Ez) + h~ ($i+1 - X)
h+

[hug] + O (Aw2) :

u(t+1) = u(i)+ } ug (1) (3.29)

(i1 — X)

+ [u] + s

which, unlike the previous case, is quite different from the standard Taylor expansion.

Solving this for the derivative, we find

u (i)=h+[ u(i+1) —u(d) }_( Rt [u] + (21 — X) [huyg) )
$ (X = @) + ™ (201 — X) P (X —zi) + b~ (Tig1 — X)(S .30)

Expanding u (i) about = X~ and following an analogous procedure, we find

u(i+1) —u(s) J_( h™ [u] + (z; — X) [huy] )
ht (X—fl?l)—f'h_ (SE,L'_H_ —X) ht (X—$Z)+h_ (xi+1 —X) ’
(3/31)

Note that, in this case, the stencil that must be used to calculate the first derivative is

uz(z'+1)=h—[

not simply an additive correction of the standard stencil, but a stencil specific to the
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exact geometry of the interface and the jump conditions we started with. It is quite
easy to verify that the above stencils exactly compute the derivative of a piecewise
linear polynomial satisfying (3.23) and (3.24) so we will not bother to present the
calculation here.

The lesson to take away from the above two examples is that it is possible to
accurately compute the derivative of a piecewise smooth function even when differ-
encing across the interface. We now develop general formulas for stencils that can
accurately compute the derivatives of non-smooth functions. As we found above, to
construct such stencils, it is necessary to have information about how the function

behaves across the interface. We assume that jump conditions of the form

dPut & drFu~
=Y DV ——+ J- 3.32
dxP ;0 ko daxk o (3.32)
and
P dlc +
ddgp = ZDP+ I A (3.33)
are known, where we require
DY =DV =0 ifk>p. (3.34)

To give a concrete example, the jump conditions of the above form for the second

derivative would be

= D2 uy, + D u, + Diu” + J;, : (3.35)

and
- = DXyt + D¥ruf + Ditut + J, (3.36)
where the values of the coefficients D2~, D?~,..., D¥", D" are known as are the

values of the “jumps” J; and J,. Note that it would be incorrect to identify Jy
or Ji with [u,] in the general case as other derivatives are also present. While this

notation may seem somewhat awkward, it is necessary to allow the generality we
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wish. We now develop general stencil formulas of arbitrary order for the calculation
of the derivatives of a piecewise smooth function whose values and /or derivatives may
be discontinuous at the interface.

Suppose we wish to calculate the derivatives of a function u that is sufficiently
smooth to the left and right of an interface located at z = X. We assume that jump
conditions of the form (3.32) and (3.33) are known for u. The stencils we construct
will use N + 1 nodes located at x = z,, 0 < ¢ < N, and approximate the derivatives
at the location z = z5. We will denote the function evaluated at the z = z, node
by u (o). As a demonstration of the general procedure, we begin by calculating the
stencil coefficients for a stencil that is not intersected by the interface (i.e., all of its
nodes lie to the left or right of X).

To determine an IV + 1 node stencil that approximates the derivatives of a smooth

function at z = zy, we expand the function at each node about z = z,

u(o) = EZ:O [(xa ;!xo)n:l di;;io) +0 ((xa — xO)N+1) ) (3.37)

Put in more general terms, we have

Z no O) +0 (25 — 20)™*), (3.38)
n=0
where
Wno = M, (3.39)
n!
and
C,=0. (3.40)

We wish to determine stencils to approximate the m* derivative (0 < m < N) of the

form
dm

d:vm

Z Qom (u(0) — Cy) . (3.41)
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Neglecting the error term and substituting (3.38) into (3.41) yields

dmu (0) d u (0)
d.’Bm Z Z wnaaam I

o=0n=0

or

N (X d™u (0)
7;) <ago WnoQom — 5nm) dzm = 07

where the Kronecker delta is defined by

1 n=m
Onm = )
{0 n#m

Noting that the value of the derivatives are arbitrary, this implies

N
Z WnoOom — 5nm = 07
o=0
which, when written in matrix form, is

wa =1.

Thus the stencil cbefﬁcients are determined by

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

For a concrete example, consider computing the 3 node stencil (N = 2) for a smooth

function associated with the nodes located at zo = z, 1 = z — Az and 25 = z + Ax.

In this case, we find

1 1 1
w=|0 -Az Az |,
0 Az?  Az?

2 2

(3.48)
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which corresponds to the stencil coefficients

R
a=|0 % A_iﬁ , (3.49)
or, using (3.41), the standard finite difference formulas
0 _ sy
d;;(QO) _u(2) - 223(3(2)) +u (1) (3.51)

Suppose we now need to accurately differentiate a function at a node whose stencil
spans the interface (i.e., has nodes that lie on both sides). Moving back to the more
general setting, we know that we can use a Taylor series expansion to express u (o)
in terms of v (0) and its derivatives if the nodes zy and z, are not separated by the
interface (i.e., both lie on the same side of the interface). From (3.38), this implies
that

_ (8o —@0)" (3.52)

wncr - | ’
n:

and
Cy=0 (3.53)

for all o such that zo and z, are on the same side of the interface. We still wish to
express nodes separated from z in terms of v (0) and its derivatives, but this can not
be done directly. Following the approach we used at the beginning of this chapter,
we start by expressing u (o) in terms of values and derivatives evaluated on the same

side of the interface as z,. That is, if z, > X, then we use

— 0 (@ —2)™*) (3.54)

N [(xa — X)pJ dPut
p=0 p!
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and if z, < X we use

wo) =3 [ (2 - X )p} d;;‘; +0 (@, — X)), (3.55)

To simplify the presentation we will assume z, > X from now on. Once the process
is understood, the extension to the z, < X case is trivial. We can express u (0) in
terms of quantities evaluated on the other side of the interface by using the jump

conditions. Substituting (3.32) into (3.54) we find

u(o) = péém:— [(”"" ;!X)pJ T +§[——(“J”“X)p} P

+0 ((@s — XM, (3.56)

The derivatives at the interface can be approximated using a Taylor series expansion

about =z = x,

du- X [(X - $0)n_k} u(0) (X = zo)™*17%).

o 2 (n—k)! dx™

n==k

Substituting this into (3.56) yields

u(o) = > > >'D

N p N - [(xd _‘X)P] [(X —xo)”‘k} d™u (0)

=0 k=0 n—k (n—k)! dz™
N _ Y\
w3 (@ =X L o), (3.57)
0 p! ?
p=
where the error is given by
L p- | (@o — X)F N+1-k
p=0 k=0 :

This can be bounded easily, assuming D}~ = O (1), by noting

DP- [(%_;'X_)p} [X -z =0 (Dgg- (z, — xO)N““’“’“) , (3.59)
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which, from (3.34), implies

E =0 ((zy — z)"™). (3.60)

Although we managed, in (3.57), to express u (o) in terms of u (0) and its derivatives,
it is not yet in a form from which we can easily extract the value of w,,,. To achieve
this, we use (3.34) to extend the sum over k to run from 0 to N which allows the
sums over k and n to be easily exchanged yielding

0 = E{E Lo [5G e

n=0 ( p=0 k=0

N (xa—X)p - N+1
# 3 [E 5 0 e, (3.61)

The number of terms in the inner sum can be reduced slightly by using (3.34) again,

which allow us to write

o = S S [l [Xmm ) mu

n=0 | k=0p=k

+ 3 (B X 5 0 (o - ™). 82)

p=0

Comparing (3.62) and (3.38) we find

o = i iDﬁ— [(xa Z—D!X)P} [(X;’;_xf;g);_k} , (3.63)

k=0 p=k

and
Cr=3" [5—“-’";—)()1 7. (3.64)

If the above analysis is repeated for the case when z, < X, we obtain identical results

save for the replacement of all “-” signs with “+” signs. The general expression for
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the expansion coefficients, wy,, and additive corrections, C,, is given by

n N J_Xp X — n—k
ZZD£+ [(x . )J[( (n—m(])ﬁ))' J if zg>Xandz, <X
k=0 p=F : :

n N B . - X p X — n—k
Wno = ZZDZ [(ff p' ) J [( e 37(;6))' J if zp<X andz,>X (3.65)
k=0 p=k : N

nl

N _ n
Z [M} otherwise

n=0

and v
o X " .
[ S [@ =" 1 i 4y > X and s, < X
= n! "
N - — X n
Co=1 Y @ = X7 - i 20 < X and 7, > X - (3.66)

= n! "

0 otherwise

\

The general procedure required to discretize the derivatives at z is

1. Using (3.65), set the columns of w associated with each stencil node.

2. Using (3.66), set the values of the additive corrections, C,, associated with each

stencil node.
3. Determine the stencil coefficients using o = w™!.
4. Compute the value of the m®™ derivative at zo using

d™u (0)
dx™

= Zoagm (u(o) —Cy,). (3.67)

If the nodal values are unknown and the above is to be incorporated into a system
to determine their values, the additive correction, Zﬁ;o aemCy, is incorporated into
the system forcing. We will see some examples of this later.

Once the expansion coefficients w,, and additive corrections C, have been deter-

mined, it is possible to compute the stencil coefficients o, such that the derivatives
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of the function can be approximated:

ﬁgg@zfymﬂww—ag+owx (3.68)

o=0

with error . The order of the error can be heuristically established as follows. Note
from (3.65) that wn, = O (Az™), where Az is average distance between adjacent
nodes. This implies that we can re-scale the expansion coefficients using a diagonal

matrix,

[ 1
Az

Az?
wa =1, (3.69)

Az

so that all the entries of @, are O (1) . Solving for the stencil coefficients we find

[ 1
Az1

1 Ax—?
o= . (3.70)

Az—N ]

Since the entries of @' are assumed to be O (1), this implies that oy = O (Az™™),
which simply says that the coefficients of the stencil used to calculate the m* deriva-
tive will be O (Az~™). Noting that the expansions for u (¢) — C, include derivatives
out to order NNV, the first neglected derivative will contribute to the error term. Since

the coefficient of this term is O (A:L‘N +1), we have

d™u (0)
dz™

= ﬁ:oaam (u(o) —Cy)+ 0O (AxN+1‘m) . (3.71)
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Thus, if we have a three point stencil (N = 2), the stencil for the first derivative will
be second order accurate while the stencil for the second derivative, in general, will
only be first order accurate.

It is interesting to examine (3.65) and (3.66) for the simple case
Dy” = D" = b, (3.72)

which corresponds to jump conditions

dPut  dPu~

T = am T (3.73)
and

dPu~  dPut

T = g T (3.74)

For this special case, the expansion coefficients for nodes separated from z; by the

interface are given by

o= [ X)’“J EE >} _ (o —a0)" -

TR (n—k)! n!

while the additive correction terms are given by

F(xo — X)n_

N
C, = 2_% — J7, (3.76)
or N )
Ty — X)"
C, = Z_% “—m—) Jr (3.77)

Jump conditions of the form (3.73) and (3.74) are called symmetric jump conditions
because they give exactly the same information. In the symmetric case, only one

jump condition per derivative is required, and we write this as

(3.78)

dPut  dPu dPu,
dzP  dxP dzP |’



43

. .. dP )
where the value of the jump of the derivative, d_:J =J, = —J;” , 1s assumed to be
z

known. For the symmetric case the expansion coefficients are given by

Wno = [(_:C%WJ : (3.79)

regardless of the position of the nodes relative to the interface and the additive cor-

rections are given by

N n
o dn .

_Z{(x 'X) Y if 2> X andz, < X
= n! dz™
N a__)(71 mn

Cy = [(:v ' ) J [d UJ if rop<Xandz,>X - (3-80)

= n! dx™

0 otherwise

It is clear, for non-symmetric jump conditions, that it is necessary to explicitly
calculate w,y,, Cy and oy, in order to accurately approximate the derivatives near the
interface. For symmetric jump conditions, however, it is only necessary to compute -
Cs. Recall that the expansion coefficients are simply the standard Taylor expansion
coeflicients, thus

(o) —C, = né [(m“ - xO)n} dZZiO). (3.81)

nl

From the theory of finite differences and (3.71), we know that when a Taylor series
of the form (3.81) is substituted into

(3.82)

0= d™u (0) ¥ N [(aza - xo)“J d™u (0)

dz™ Z Gom Z n! dzx™

o=0 n=0

and the stencil coefficients, a,,,, are those associated with a r* order method derived
for a smooth function, the value of Q will be O (Az") as long as enough terms are
included in the expansion (i.e., N+1—m > r). Thus, in the symmetric jump condition
case, there is no need to compute custom stencil coefficients. We can simply use

standard stencil coefficients in (3.71) leaving only the values of the additive corrections
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Cs to be determined. If we use the stencil coefficients associated with an " order
scheme, the derivatives at the stencils spanning the interface will remain r** order
accurate provided we calculate enough terms in C, (i.e., we satisfy N+1—m > ). In
general, the order of the approximation of the m®* derivative by an 7** order scheme

will be the smaller of » and N + 1 — m.

Examples

Having established that any function that satisfies symmetric jump relations can be
| accurately differentiated using slightly modified standard finite difference stencils, we
now give some simple applications of this technique. Consider finding the Green’s
function for the steady state heat equation,

26

5 =8@—X), (3.83)

on the domain 0 <z < 1. The jump relations governing G are implicitly given above
in the statement of the problem. Because of the nature of the singularity, we know

that G' must be continuous across the interface at z = X,
Gt=G". (3.84)

Integrating the equation across in the interface establishes the jump in the first deriv-

ative,
dG™ _dG~™

—_—=—141 3.85
dx dz +4 ( )

and evaluating the equation on both sides of the interface fixes the jump in the second

derivative,
d*G+ . d*G-

70 702 (3.86)
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The jumps of the higher derivatives are obtained by differentiating (3.83) and evalu-

ating on both sides of the interface. For this problem

"Gt &G~

s s for n > 2. (3.87)

Therefore, the jumps at x = X are given by

d"G 0 n#1
- . 3.88
[dfb’"] { 1 n=1 (3.88)

The jump conditions calculated above are symmetric. Thus, we can use standard
finite difference stencils to discretize the derivatives of G. From the definition of the
additive correction, (3.80), and (3.88) it is clear that the corrections can be calculated
to arbitrary order using only a one term sum (i.e., the term proportional to the jump
in the first derivative). Discretizing the problem using (3.41) with standard second
order finite difference stencil coefficients and collecting all known quantities on the

right-hand side leads to the system

G@O) =0 (3.89)
Gi+1)-26@)+G6E—-1) . ,

N = f(i),0<i<M (3.90)

G(M) = 0 (3.91)

where Az = %, 2; = iAz, G (i) = G (z;) and, if the interface falls between zj

and Ti41,
Tkt1 — X -
A 1=k
fi) = XA—x;ﬂk ikl (3.92)
0 otherwise
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M | 27 order error | Ratio | 4** order error | Ratio
10 0.01200 0.01170
20 0.00600 2.0000 0.00593 1.9730
40 0.00300 2.0000 0.00298 1.9900
80 0.00150 2.0000 0.00149 2.0000

Table 3.1: Resolution study of the one-dimensional steady heat equation using an
uncorrected second and fourth order accurate stencil

Note that the forcing in this system is due entirely to the additive correction terms
that modified the stencils. Solving this system yields the exact solution

(3.93)

—z(1-X) for0<z<X
G(z;X) =

—X(1-z) for X <z<1

to within machine precision.

For our next example, we again consider solving the steady state heat equation.

This time we suppose that the system

S (3.94)

is subjected to non-uniform heating

0 for0<z<X
= (3.95)
1 for X <z<1
with a fixed temperature specified at both ends of the domain
u(0) = 0 (3.96)
u(l) = 0 (3.97)

In this case, it is possible to naively discretize the problem using standard, uncor-
rected, finite differences. The naive solution will only be first order accurate, however,

regardless of the formal accuracy of the stencils used (X = 0.6 is used to calculate

the results in Table 3.1).
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The accuracy of the solution computed using uncorrected stencils is limited to first
order (see Table 3.1) because the exact solution has a discontinuous second derivative

that is not accounted for. This problem satisfies symmetric jump relations with jumps

[‘—@} _j o072 (3.98)

dzn 1 n=2

which can be determined from the problem statement. Recalling our discussion of
the accuracy of corrected stencils, we found that if the additive correction included
contributions from the jumps in derivatives through order N, that the discrete ap-
proximation to the m® derivative calculated using an r** order finite difference stencil
would have an accuracy given by the minimum of  and N + 1 — m. In this case, the
Jjumps in the value and first derivative of u are zero so including no additive correction
term is equivalent to including one with NV = 1. Thus, the failure to include correc-
tions leads to an O (1) error in the discretization of the second derivative for this
problem. The larger error at the stencils spanning the interface, in turn, pollutes the
solution on the entire grid resulting in an accuracy O (Azx) times the error incurred
at the interface spanning stencils (see [38]), or, in this case, a first order accurate
method. This explains why, in Table 3.1, the computed solution is only first order
accurate, independent of the formal accuracy of the finite difference stencils.

Now we discretize this problem using second order accurate finite differences and

apply the additive corrections outlined above to obtain

w(0) = 0 (3.99)
u(i“)*?ZgH”(”l) = f(d),0<i<M (3.100)
u(M) = 0 (3.101)

where Az = 2, z; = iAz, u (i) = u(z;) and, if the interface falls between z; and
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Tk+1,
0 1<k
(wk‘l“l_X)? =k
. 2Az2 t=
f@) = (50— XV : (3.102)
X
1 1>k+1

\

Solving this system again yields the exact solution

_ ﬁﬁ)—% for0<z< X
u(z)=14q _ (1=2) (z - X?) (3.103)

2

for X<z <1

to within machine precision. We will demonstrate the application of the theory to a

non-symmetric problem in Chapter 4.

3.3 Spatial derivatives in two dimension

In this section we develop a method for accurately differentiating non-smooth func-
tions in two dimensions. As was the case in one dimension, we assume that the
function under consideration is smooth and completely differentiable everywhere ex-
cept at a small subset of points. In the one-dimensional case, the function was allowed
to have discontinuities in its values and/or derivatives at a single point in the domain.
In the two-dimensional case, we allow the function to have discontinuities in its values
and/or derivatives across a smooth curve (interface). The interface must divide the
domain into two distinct regions (i.e., inside and outside). This can be accomplished
using either a simple closed curve or a curve of infinite extent. A point in the domain,
(z,y), is said to be an outside, or “4-”, point if the normal to the curve, (nz,n,), at

the closest point on the curve, (X,Y), is directed towards (z,y), and hence satisfies

(z—=X)ng+ (y—Y)ny, >0. (3.104)
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Similarly, a point (z,y) is said to be an inside, or “-”, point if the normal is directed

away from the point and, therefore, satisfies
(z—=X)n,+(y—Y)n, <0. (3.105)

While it is clearly more complicated to identify which points are on the “+” and “”
sides of the interface in two dimensions, the above is a natural generalization of the
one dimension test (i.e., a “+” point satisfies y — Y > 0 and a “” point satisfies
y—Y <0).

We assume that a parametric representation for the curve, (X (s),Y (s)), in terms

of arc length s is known. The unit tangent of such a curve is given by

dX
Te = —— (3.106)
ay
Ty = E, (3107)
and we take the normal to be
ay
r = ——, Nl
n 7 (3.108)
dX

The jump conditions in two dimensions, which must be known, take the form

o"ut (s 8pu_ (s)

axkayn— I;);)D”k ) paragrr T I (5). (3.110)
and

e S S o me De,  Ga
where . .

gsﬁ_ﬂ _ Elir(% O"ut (X (Sg;cgryzi,_z (5) + sny)’ (3112)

o"u~(s) lim 0"~ (X (s) —eng, Y (s) — eny) (3113)

OzkOyn—F Lo+ Ozkoyn—* ]
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and

D = D= =0 if ¢ > a. (3.114)

As was the case in one dimension, we will demonstrate how to construct a general

expansion of the form

u(o) — C, = Z Z nkaa ka(g)k + 0 (Aa:N+1) , (3.115)

n=0 k=0

which represents u (x5, ¥,) in terms of u (g, yo) and it derivatives. Using (3.115) we
will derive stencils for the derivatives at (xg,yo) that remain accurate even when it
is adjacent to the interface. First we will demonstrate the approach by using it to
determine a stencil for the differentiation of a perfectly smooth function.

The construction of stencils in two dimensions is significantly more involved than
it was in the simple one-dimensional case. We will work through the derivation of the
stencils for smooth functions to demonstrate how to deal with the cumbersome multi-
indexed objects that need to be calculated. Even in the general case of a function
which may jump across the interface, if a line segment connecting the node at (z,, y,)

and the node at (zo,yo) does not intersect the interface, we can use a simple Taylor

series expansion for u (o),

. n—k 9" u(0
Z 3 | x") & — o) "u0) (3.116)

n=0 k=0 (n—Fk)! | 9z*oy"~
The line segment connecting (zo, yo) and (z,,y,) is called the stencil leg associated
with node 0. Comparing (3.115) and (3.116), we see that the expansion coefficients
for a node, o, whose stencil leg is not intersected by the interface, are

Wk = {(x" ;!SEO)ICJ [(yzn__g"z;—k} , (3.117)

with the additive corrections terms,

C, =0. (3.118)
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We will seek an M + 1 node stencil with nodes (2o, yo), (z1,¥1),--,(Zas, yasr) and with

stencil coeflicients defined by

5" omp 1 (0) — ] = 20 (3.119)

=  OzPOy™P
Substituting (3.115) into (3.119) we find

MYz 9"u(0) 9™ (0)
Z Z Z CompWnko 8xk6y""“ = 8xP8ym“P’ (3120)

o=0n=0 k=0

which, using the Kronecker delta, can be rewritten as

Na (X 0"u(0)
Z Z (Z WnkoQomp — 5nm5kp> W = 0. (3121)

n=0 k=0 \o=0
Noting that the values of the derivatives are arbitrary, we have

M
Z WnkoQomp = 6nm5lcp- (3122)

o=0

This is a perfectly valid set of equations, but the use of three indexed objects is
cumbersome. It is possible to represent the equations using two index objects by
parametrizing the sums over (n, k) and (m,p). We do this by defining new expansion
coefficients,

Wio = Wn(\)k(\)o) (3.123)

and stencil coefficients,

Qga = Olom(a)p(a)- : (3.124)

There are Ny = 3 (N +2) (N + 1) terms in the sum over (n, k) so A ranges from 0 to
Ny — 1. The values of n () and & ()\) range over the values they would take on in
the full double sum,

n(A) ={0,1,1,2,2,2,3,3,3,3,4, ...}, (3.125)
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k(2)={0,0,1,0,1,2,0,1,2,3,0,...} . (3.126)

The indices (m,p) specify the derivative that the stencil coefficients are discretizing,

so they are parametrized exactly like (n, k), with a ranging from 0 to Ny — 1 and
m(a) ={0,1,1,2,2,2,3,3,3,3,4, ...}, (3.127)

p(a)={0,0,1,0,1,2,0,1,2,3,0,...} . (3.128)

Using this notation in (3.122), we find

M
> Warlioa = Sn(aym(@)Ok(\)p(a) = Oras (3.129)

o=0

or, in matrix notation,
wa =1L (3.130)

The matrix w has N, rows and M + 1 columns, one associated with each node in
the proposed stencil. In order for the above to be an invertible system, therefore,
we must specify Ny nodes (M = N, — 1) in our stencil. The position of the nodes
is specified relative to the location of the node where the derivatives are evaluated,
(z0,y0). Although it is not necessary for the nodes to be regularly spaced, we will
assume that the computational nodes are located on a uniform grid with mesh spacing
Ay = Az. To discretize all the derivatives up to second order (N = 2), we need a

stencil consisting of six nodes. One such stencil is given by
Ty — X
={0,1,—-1,0,0, -1}, 3.131
s } (3.131)

%’yﬂ = {0,0,0,1,~1,~1}. (3.132)

This stencil is not unique. There are many choices that produce a non-singular w.
The above stencil corresponds to the standard five point cross with the additional

inclusion of the lower left diagonal node to bring the total up to six. The coefficient
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matrix associated with these node positions is

1 1
0 0
0 Az
w =
0 0
0 0
1
| 0 §A$2

or

Ugg (0)
Uzy (0)

Uyy (0)

1

1 1 1 1
0 Az Az —Azx
—Azx 0 0 —Az
Lo 1o 1,0,
0 5 Az 5 Az 2A:c
0 0 0 Az?
1 1
ZAzx2 Z A2
5 T 0 0 2Ax
-2 1 -2
0 (1) Az?2 Az? Ax?
1
0 2A1:c 0 01 Ax?
= -1 1
(1) 2Azx 0 Azx?2  Az?
2A1:c 0 Az? 0 0
— 1 —1
2Azx 0 2 Ax? 0
1
0 0 0 N 0
u(l) —u(2)
2Azx ’
u(3) —u(4)
2Azx

u (1) —2u (0) +u(2)

Az?

?

u(0) —u(2) —u(4) +u(5)

Ax?
u (3) — 2u (0) +u(4).

Az?

Y

(3.133)

(3.134)

(3.135)
(3.136)
(3.137)
(3.138)

(3.139)

Note that all of the above correspond to the standard second order finite difference

stencils except for the formula for the cross derivative, u,,. Unlike the other stencils,

the formula for the cross derivative is only first order accurate. In general, however,
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this is the best we can expect if we only use expansions out to the second order
derivatives. It is possible to obtain higher order formulas by specifying a larger
stencil (10 nodes for third order accuracy, 15 nodes for fourth order accuracy, etc.).

Now we consider the derivation of the expansion coefficients and additive correc-
tions in the general case. The first thing we need to do is establish some notation. We
denote all the points in the domain that are outside the interface, as defined above,
by I'*t. Similarly, we denote all the points inside the interface by I'". Thus, if x € 't
then x is a point in the domain that is outside the interface, and if x € I'™ then it
is inside the interface. Using this notation, the stencil leg connecting u (0) and (o)
is assumed to not intersect the interface if xo € I'* and x, € I'" or xo € ' and
X, € I'" (i.e., both nodes lie on the same side of the interface). As we mentioned
above, when the stencil leg associated with node o is not intersécted by the interface,

the expansion coefficients are the standard Taylor series coefficients

o = [z 20 [ ] 5.140)

! (n—k)!

and the additive corrections terms are not needed,
C, =0. (3.141)

In the general case, however, the above expansion will not be valid because it assumes
the function is well behaved everywhere between the two nodes. We can construct
the expansion coefficients, however, by following a straightforward generalization of
the approach we took in one dimension. Suppose that we are constructing a stencil
to calculate the derivatives at xo € I'". We can use (3.140) and (3.141) for the stencil
nodes that obey x, € I'". For the nodes that lie on the opposite side of the interface
(x5 € T'"), however, the closest we can get to the center node using a Taylor series is

to express u (o) in terms of the derivatives at the interface,

L) = [m ;!Xr} [@a —Y)HJ orut .

a=0b=0 (a/ - b)! 6xbaya"—b '
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The point on the interface (X,Y") is taken to be the intersection between the stencil
leg and the interface but, strictly speaking, this is not required. We can then use the

Jump condition, reproduced here with convenient indices,

O%u™ b u= B
xbaya —b ZZch a da c—d +Jaba (3143)

c=0d=0

to convert (3.142) into an expression relating u (o) to quantities evaluated on the

opposite side of the interface,

- EEEEe [

EEEA s e

a=0b=0

Now we need to find a way to express in terms of u (0) and its derivatives.

6xdayc—d

Recalling that xo € I'", we can approximate u at any sufficiently close x € I'~ using

a standard Taylor series

u(z,y) = Z 3 [ J [ (y(n E/O;)C;_kJ 63:;‘;2)_ . (3.145)

n=0 k=0

Differentiating (3.145) yields a general expression for the derivatives of u(z, ),

O%u x y) N ntd—c JJ _330 (y Yo )n+d—c—k ou (0)
Dzddye—d nZ:C 1;1 ) (nt+d—c—R)l| dzFayF" (3.146)

Evaluating (3.146) at (X,Y’) and substituting the result into (3.144), we find

= Srens s [ [

o (] )
(

S [

a=0
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The values of wyk, are not clear in (3.147) because the sums over “n” and “k” are
performed last instead of first. It is possible to rearrange the order of the summations
if we use (3.114) and extend the sum over “¢” to 0 < ¢ < N. This accomplished, we
can easily exchange summations until the outer most sums are over “n” and “k” and

(3.147) becomes (3.115) with

- S [

Fﬁ;f%T1{$;5?iT;ﬂ} o

and

) (Yo — Y)a—b ~ ‘
€= ;)bz_: [ (a — b)! ab* (3.149)
These are the general expressions for the expansion coefficients and additive correc-

tions for a stencil centered at xg € I'~ with a stencil leg intersected by the interface.

The expressions for the xy € I'" case are

Wrho géénék{ Dot [(:ca ;!X)b} [(yc(ra__};);_b}

Rl o

and

| = P

which are, of course, identical to the above except that D% is replaced by D%* and
J, is replaced by J3,.

It is interesting to examine the special case of symmetric jump conditions. In two
dimensions, symmetric jump conditions take the form

omrut o"™u~ o"u
= .152
Oxkdyn—k  dxkdyn—k + [83:’“834”"“} ’ (3 )
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and

(3.153)

v~ Ot "u
OxkOyn—F — Qzkoyn—k | Ozkdyn—Fk |

Clearly only one jump condition per derivative is required in the symmetric case.
Comparing (3.110) with (3.152) and (3.111) with (3.153), we see that symmetric

jump conditions corresponds to

D™ = 84064, (3.154)
_ o"™u
Jnk - l:axkayn_k:l ) (3155)
and
DY = 84654, (3.156)
o™y

+ | "

Jh = [ o 8y"—kJ . (3.157)

When (3.154) is substituted into (3.148), it yields

e £ [ [ [ e

(3.158)
Substituting ¢ = ¢’ 4+ d into (3.158) and reordering terms simplifies (3.158) to

s ] [ ][0

The sums in (3.159) can be calculated explicitly using the binomial formula which

yields
k (370 - X)d (X — xo)k_d B (xg _ ‘,L.O)k
cl%;)[ d! J [ (k—d)! } - R (3.160)
and
n—k s — Y d Y — n—k—c' . — o ek
> [(y i ) J [((n _yk)_ = J _ (y(n _yk))! (3.161)
and we find

o — [(:ﬂa ;Ifﬂo)’“} {(ya - yo)"“’“] | (3.162)
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which are the standard Taylor series coefficients. Obviously, we find the same result
if (3.156) is substituted into (3.150).
Thus non-smooth functions that satisfy symmetric jump conditions have expan-
sions that differ from a Taylor series by only an additive correction. As we demon-
strated in one dimension, this implies that standard finite difference stencil coefficients

can be used to approximate the derivatives of these function. In particular, if

9" u(zo, yo) ~ d
axkayn-—k ~ ;}aank [’LL(LL‘U, ya)] (3163)

is a 7" order approximation to the derivative, a smooth function then, for N = n+r—1

a U m07y0)
awkayn k Z aank 330-, yd) - CO’] ; (3164)

will be a r** order accurate approximation to the derivative of u(z,y) even when it
has jumps between some of the nodes. The supporting argument is so similar to the
one-dimensional case that we will not bother to present it here.

Calculating accurate derivatives in two dimensions is more involved than in one

dimension, but the general procedure is similar. To discretize the derivatives at xo,

we

1. Determine all the stencil leg intersections and the exact location of the points

of intersection (X (sr),Y (sr)) (where s; is the arc length associated with the

intersection point).

2. Using (3.140), (3.148) or (3.150), set the columns of w associated with each

stencil node.
3. Using (3.141), (3.149) or (3.151), set the values of the additive corrections, C,,
associated with each stencil node.

4. Determine the stencil coefficients using o = w™1.
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5. Compute the value of the desired derivative at zy using

an
akxay(n k E%%nk —Col. (3.165)

If the nodal values are unknown and the above is to be incorporated into a system
to determine their values, the additive correction, Zﬁio aemCy, 18 incorporated into

the system forcing.

Examples

In this section we derive the jump conditions for the Poisson problem given by
Viu = f. (3.166)
In addition to the above, we assume that the jump in the value of the solution, [u] (s),
[u] =ut —u~, (3.167)
and the jump in the “flux,” [huy,] (s),
ou™ ou~

[hug) () = [hun] = AT o h~ 5 (3.168)

are known everywhere along the interface as are h*t and A~ which are assumed to be
constants. We will begin by deriving the jump conditions on the derivatives for the
special case of symmetric material properties (h = h*t = h™). For this case, we can

take h = 1 without loss of generality.

Symmetric jump conditions Consider the symmetric Poisson problem given by

Viu = f (3.169)
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in each region, where f (z,y) is a known function, as are the jumps in the solution

value, [u] (s), ‘
[u] = v —u”, (3.170)

and jump in normal derivative, [u,] (s),
[un] = ut —u, (3.171)

along the interface. Our goal is to calculate the jumps in the spatial derivatives, [u,],

[uy], etc.

To determine the jump in the z and y derivatives separately, we must extract this
information from the known jump conditions (3.170) and (3.171). First, we note that
the tangent to the interface is given by (s = arc length)

0X

= — 172
Ta s’ (3.172)
Yy
o= e (3.173)
and define the normal to be
oY
. = —Ty=——, 174
n Ty s (3.174)
0X
ny, o= A=t (3.175)
So, from the definition of a normal derivative, we see that (3.170) implies
(nzuj + nyu, ) - (nmu; + nyu, ) = [uy)] . (3.176)
Similarly, the derivative of (3.171) with respect to arc length implies
_ 0 [u]
+ +) _ -\ _ _
(Tzum + Tyuy> (Twux + Tyuy) =5 = [u], . (3.177)
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Combining these together and using the relationship between the normal and tangent
vectors yields

Te T ub Ty T uy ul,
Y — Y _| . (3.178)

Ng Ty ut Ny 7Ny u; [tn)

Noting that the determinant of the above system is 72 + 75 = 1, we solve for the

jumps in the first derivatives

[ts] uf Uy Ty Mg [u] s
= i = ) (3.179)
[u,] Uy Uy Ty Ty [tn]

Since this expression was obtained purely from our knowledge of the jump of the
solution and its normal derivative across the interface, it is essentially independent
of the equation that we are solving. These jumps can be differentiated to supply

information about how the second derivatives behave near the interface. Noting that

0

s (u;cF (X, Y)) = Tlgy + Tyt (3.180)
and

o . e

5% (uf (X,Y)) = 7oy, + Ty, (3.181)

with similar expressions for the derivatives of u; and u, , we find

Ty Ty 0 o o u; s
! wf, | = ug, | = sl | (3.182)
0 75 Ty N B [y],
Uyy Uyy

In order to close the system and solve for the jumps in the derivatives in this case
we need an additional equation. The only other information that we have available

comes from the Poisson equation itself. Evaluating the equation on both sides of the
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interface and subtracting the result yields
(ks + gy ) = (v + 1) =[], (3.183)
where [f] (s) is the (known) jump in the (known) forcing f,
[fl=fT(XY) - f(X)Y). (3.184)

Note that if the forcing is continuous, [f] = 0. Combining the above we obtain a

system for the jumps in the second derivatives

Te Ty 0 u;:-a: u:;a: [Um ] s
0 74 Ty Uz, | = | Ugy = | [uyl, |- (3.185)
1 0 1 ul, Uy [f]

The determinant of the above matrix is 72 + 72 = 1, so we can solve for the jumps in

the second derivatives and find, after some manipulation

[Usa] Uz, Uz To —Ty Ty || [ual,
[Ugy] | = U;-y T Uy | T Ty Tg —TaTy [uyl, | - (3.186)
[Uyy] Uify Uy Tz Ty 7'3: [f]

It is possible to continue the process and explicitly calculate the jumps of all the
higher order derivatives provided information about the derivatives of the forcing,
[, is available. The general procedure for calculating the jumps in the higher order
derivatives is best demonstrated by calculating the jumps in the third derivatives.
The calculations required to determine the jumps in the third derivatives are

very similar to those for calculating the jumps in the second derivatives. First, we
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differentiate (3.186) with respect to s:

] (e ])
Tz Ty 0 0 im im [Usz)
u u
0 o7y 0 = ), | (3.187)
Ugyy Ugyy
0 0 7o 7y . B [y,
(L Yyyy | | Yy )

As before, an additional equation is required to close the system so that the jumps
may be determined. This equation comes from the normal derivative of the governing
equation. Evaluating the normal derivative of (3.169) on each side of the interface

and subtracting the result yields

where
oft of~
[fa] = g—n (X,Y) - af_n (X,Y). (3.189)

Incorporating this into the above system, we find

_ 1(T - - T3 -

Te Ty 00 Uoo Ugrg [Uae],
0 7 7y O Usay | | Yamy || _ | [wly . (3.190)
0 0 75, Ty Uty Uy [yl

(N Ny Mo Ty | [ Uy | | Uy | | [l

i [Ugzz) ] [ T (1 + T§> —Ty 7'17'32/ —7'2 1T [Ugs)
[Uzzy _ 7'2 Ta —7ir, 7'1.712/ [tgy] | (3.191)
[Uayy] _TwTZ Ty TS —T3Ty [ty

| [uyyy] i | 3Ty 7o Ty (14+72) TS 11 [fn] ]

This procedure can be repeated as many times as necessary to find the jumps in
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arbitrarily high order derivatives. So, for instance, to compute the jumps in the fourth
derivatives, we would combine the derivative of (3.191) with the second derivative of
the Poisson equation in the normal direction. The resulting system has a determinant
of one and can be inverted to determine the jumps in the fourth derivative.

In practice, the algebraic and computational complexity increases with the order
of the derivative being considered. Further, the calculation of higher order jumps
requires higher derivatives of the interface parametrization be computed. So, although
it is possible to compute corrections to arbitrarily high order, the practical limit is
probably sixth order derivatives.

With the above jump conditions determined, the calculation of the stencils is
straightforward. Recalling that standard finite difference stencils can be used for
symmetric problems, we assume that the stencil coefficients, agnk, are known in

8’";

akxayn— Z Aok [u (0) = Co], (3.192)

o=

leaving only the additive corrections to be calculated. Using (3.149) and (3.155) we

see that the additive correction associated with an intersected stencil leg is given by

_ Z > [ X)k} [(y'zn__yk);_k} [ ax,? ;:n_k} , (3.193)

n=0 k=0

when x¢ € ', and by

ZZ[ )k] [(yzn—_yk);_k] [ am,?;:n_k] , (3.194)

n=0 k=0

when x¢ € I'". The additive corrections are
C, =0, (3.195)

when the stencil leg connecting xq to x, does not intersect the interface. The calcu-
lation of the jump conditions for the general non-symmetric case is significantly more

involved.
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Non-symmetric jump conditions For the non-symmetric Poisson problem we
seek jump conditions of the form (3.110) and (3.111). We begin by deriving jump
conditions for the first derivatives. From (3.168) and the derivative of (3.167) we have

= Toly — Tyu, = [u],, (3.196)

+
TplUy + Tyly, z

and

nghuy +nyhtul —nghTug — nyhTu, = [huy] . (3.197)

We can solve (3.196) and (3.197) for either u7 and v in terms of u; and u,,

- + _ )2 ht — h~
wt = {" +(hh+ f )va} u;+[( ;)my} uw (3.198)
Ty
+7g [u]3+h—+[hun],
Wt —h) 7, h=+ (h* — h~) 72
ub = [( h+)77y}ug+[ (h+ )Ty}u; (3.199)
n
+7y [ul, + 7 [P

which implies that

_ h=+ (bt —h7) 72
pi- — [ - , (3.200)
_ (ht —h™) 71eT
Dy~ = [ i E (3.201)
D= = o, (3.202)
D= = o, (3.203)
_ (ht —h™) 7,7
DY- — [ ), (3.204)
_ h=+ (bt — h™) 72
Dy~ = [ = L, (3.205)
Dy~ = 0, (3.206)
Dy~ = 0, (3.207)
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Jn o= Talul,+ Z’—+ [hun) , (3.208)
— n
Jo = Tylul,+ h_i [hu,] (3.209)

or u; and v, in terms of u} and w},

BT+ (b~ — ht) 72 A~ — h*) 7,
u, = [ all = )Tm} ul + [( h_)T Ty] Uy (3.210)
—Tg U], — % [huy],
b —h*) 7, Wt + (b~ — ht) 72
u, = [( h‘)T Ty} ul + [ ( = )Ty} U (3.211)
n
Ty [u]s - h__?i [hun} )
Which implies that,
h+ h~ — h+ 2
pu+ — [ + . )Tw} , (3.212)
b —ht) 7,
Dyt = [( h_)T Ty} , (3.213)
DI = o, (3.214)
Dyt = 0, (3.215)
h™ —ht)7g
Dyt = [( h_)T Ty} : (3.216)
ht + (h~ — h't) 12
Dt = [ ( — )Ty} : (3.217)
DI+ — o, (3.218)
T o= -1y [u]s_Z—f[hun], (3.220)
n
Jh = —7ylul, — h—f [hsy,] . (3.221)

Note that the expressions for the “+” and “-” derivative coeflicients simply have the

“+” and “-” labels exchanged. We can determine the jump conditions for the second
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derivatives by solving
Uy — Uy + Uy — Uy = [f] (3.222)

TT Yy

and the equations resulting from taking the derivative of (3.196) and (3.197) with
respect to arc length for uf,, uf , and uf, in terms of ug,, ug,, and u,, and vice-
versa. The resulting expressions are straightforward to determine, but too lengthy
to reproduce here. Although the expressions become exceedingly long, it possible
to continue on to higher order derivatives as well. For instance, to determine the
jump conditions for the third derivatives, we would solve the equations resulting from

taking the second derivative in arc length of (3.196) and (3.197), the first derivative in

arc length of (3.222) and the jump in the normal derivative of the Poisson equation,

Ng (u:wa: - u:;a:ac> + Ty (u;c'-my - u;:ry) + Ny (u—zi_yy - u;yy) + Ny (u;ljyy - u;t;yy) = [fn] )
(3.223)
for all the “4” derivatives in terms of the “-” derivatives and vice versa. Using the

known jump conditions, we can then construct the stencil coefficients and additive

corrections for each intersected stencil as outlined above.

3.4 Temporal derivatives

In this section we will develop a family of time stepping schemes that can accurately
compute the evolution of a function which experiences a discontinuity in its time
derivative. This is of interest because, as we shall demonstrate later, the time deriva-
tive of the temperature of a solidifying material is discontinuous across the interface.
We can demonstrate why a special scheme is required, however, by examining a much

simpler problem.

Consider the problem of numerically computing the value of € (¢) which satisfies

% = g, (3.224)

0(0) = 6 (3.225)
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where

0 t<tp
g= . (3.226)

a+bt t>t

The exact solution of this problem is

0 t<t
g=1{ ° °. (3.227)

0o+ a(t—to) +3b(t*— %) t>to
If we remove the jump in the time derivative (ty < 0), any second order accurate
time stepping scheme will reproduce the exact solution to within machine precision.
Specifically, using
0™ = 0" + At (ag™! + (1 - @) ") (3.228)

with 0" = 0 (nAt), g" = g(nAt) and o = 3 reproduces the exact solution. As
demonstrated in Fig. 3.1, however, when the time derivative is discontinuous during
the simulation (¢ = 1/3 in this case), the numerical solution is no longer exact.
Furthermore, the error is constant over all time steps during which the time derivative
is continuous. Thus, it appears that the time step during which the discontinuity
occurs is solely reSponsible for the error in the solution. This is not surprising since
there is no information in the numerical scheme concerning the exact time at which
the forcing (i.e., the time derivative) suffers the discontinuity. We now show that
this information is required to accurately compute the solution to problems with

discontinuous time derivatives.

We are interested in correcting the family of time stepping schemes of the form
vt = 0" + At{a] ™ + (1- ) 07}, (3.229)

where a € [0,1]. The above can be considered a discretization of

At
gl = g ¢ / 0, (o + 1) dt. (3.230)
0
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Figure 3.1: Error of the uncorrected discrete approximation using second order accu-
rate time stepping when ¢y = 1/3

We will focus our attention on accurately approximating integrals of the form
At
I= / g (t)dt, (3.231)
0 ,

where the integrand is everywhere bounded and smooth except at ¢t =7, 0 < t; < At,

where it can have discontinuities in its value and derivative,

9] = g(tf)—9(tr)=9" -9, (3.232)
9] = & (t;r) — (tf) =9 —9; - (3.233)

We assume that the values of [g] and [g;] are known. Our goal is to develop discrete

approximations to (3.231) that depend only on [g], [g¢] and one or both of g (0) and

g (At). Because of the discontinuity, we employ separate approximations for g over
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the intervals before and after ¢ = ¢;. In particular, we use

9t) = { g(AL) + (t — At) g (AL) t; <t < At +o(ar), (3:239)

which consists of truncated Taylor series for g expanded around the beginning and
end of the integration interval. The above is a second order accurate approximation

to g (t) which, after substitution into (3.231), yields

I = /Otl (g (0) + tg, (0)) dt + /t > (9 (A8) + (¢ — At) g (At)) dt + O (AF°)

I = trg (0)+ﬁgt (0)—|—(At——tf)g(At)———(At;tl)

2 g: (At) + O (At) (3.235)

Now we develop an expression for I that depends only on g evaluated at ¢t = At.
This means the g (0) and g; (0) terms must be replaced. Noting that these quantities

can be approximated by

9(0) = g~ —tig; +0 (AF), (3.236)
9:(0) = g, +0(AY), (3.237)

we can express them in terms of quantities evaluated on the same side of the jump

as t = At. Using the jump conditions, (3.232) and (3.233),

g(0) = g"—trgf —[g]+tr[g] + O (&), (3.238)
9:(0) = g —lg] + O (A1), (3.239)

and expanded ¢g* and g¢;" in a truncated Taylor series,

gt = g(AY) + (t; — At) g, (AL) + O (Atz) , (3.240)
g = g (At)+ O (AY), (3.241)
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we find

g(0) = g(At) = (At) g (At) — [g] + ¢ [9] + O (A#?), (3.242)
9:(0) = g:(At) —[g:] + O (At). (3.243)
Using (3.242) and (3.243) in (3.235) yields

At? 2

T = (At) g (A8) = Sg (A8 —trlg) + L g + O (A¢), (3244

which does not depend on ¢ (0). Comparing (3.230) and (3.231) we see that (3.244)

enables us to use the backward Euler scheme,
0"t = 0" + (A) 07 — 1, [0,], +0 (AF?) (3.245)

even if the time derivative jumps discontinuously during the course of a time step.
Next, we develop an expression for I that depends only on g evaluated at ¢t =
0. This means the g (At) and g: (At) terms must be replaced. Noting that these

quantities can be approximated by

g(At) = g*+ (At—t)gf +0 (AF), (3.246)
g (At) = g +0(AY), (3.247)

we can express them in terms of quantities evaluated on the same side of the jump

as t = 0. Using the jump conditions, (3.232) and (3.233),

g(At) = g+ (At—tr)g; + o)+ (At —t7) [a] + O (AF),  (3.248)
g (A1) = g7 +[g]+0 (L), (3.249)

and expanding g~ and g; in a truncated Taylor series,

g~ = g(0)+110:(0) + O (A¢), (3.250)



9 = 9(0)+O(At), (3.251)

we find
g(At) = g(0)+Atg, (0) + [g] + (At —t1) [s] + O (A7), (3.252)
gt (At) = g:(0) + [g] + O (A?) . (3.253)

Using (3.252) and (3.253) in (3.235) yields

At?

I'=(At)g(0)+ <7> g: (0) + (At — t;) [9] + (M) 9] +0 (A#), (3.254)

which does not depend on g (At). Comparing (3.230) and (3.231) we see that (3.254)
enables us to use the forward Euler scheme,

0™ = 0"+ (D) 6 + (At — 1) [6,],+0 (A#?) (3.255)

even if the time derivative jumps discontinuously during the course of a time step.
We can develop a general scheme by averaging the above results together. Adding

« times (3.244) with (1 — «) times (3.254) yields

I = At[(1—0a)g(0)+ag (AL +[(1 - a) (At —t;) — aty] [g] (3.256)
+ 5 [0 = @2 0) - g (80]+ |1 - ) S 4 0 .

When « # 3, the above is first order accurate and the higher order terms can be

neglected. The corrected first order scheme is
I=At[(1-a)g(0)+ag(At)]+[(1 —a) (At —tr) — atr][g] + O (AtQ) . (3.257)

For the @ = ; second order case, we use (3.253) to eliminate the g; terms and find
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the corrected second order scheme,

1=+ g (0] + (36—t ol - g (At [l (3:259)

Equating g to 6, we see that we have developed a corrected time stepping scheme of
the desired form,
0™t = 0"+ At [abp T + (1 - ) 0} + B, (3.259)
[(1—a) (At —tr) — atf] [0:] a# s
(34— tz) [0:] — 3tr (At — 1) [0] o=

where

[y

(3.260)

N =

Clearly if the time derivative is continuous during a time step, [6;] = [0,] = 0 and
correction is unnecessary.

Now we return to the simple pfoblem given by (3.224)-(3.226). In order to use
the above scheme, we need to know the jumps in the time derivatives, [0;] and [04].

For this simple test problem, these values come directly from the definition of g

[0] = a+bto, (3.261)
[0u] = 0. (3.262)

Using these jumps and the above time stepping method, the numerical solution to
(3.224)-(3.226) is exact when o = § or when b = 0 and 0 € [0, 1], regardless of the
time that the discontinuity in the forcing occurs. In general, we can not expect to
obtain exact solutions, only approximations that converge at a first order (o # %) or
second order (o = 3) rate.

When discretizing partial differential equations, it is quite common to use different
time marching schemes on different terms in the equation. For instance, the non-linear

convection terms in the Navier-Stokes equations are often treated explicitly even if

an implicit scheme is applied to the viscous terms. Suppose we wish to evolve

00

5=F (t)+ B (t) + T () (3.263)
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forward in time using forward Euler on F', backward Euler on B and the trapezoidal

rule on T'. We can view this scheme as the sum of three integrals,
At At At
gL — g 4 / Fdt + / Bdt+ [ Tdt, (3.264)
0 0 0

each of which can be corrected using the formulas developed above. Unfortunately,

deriving the corrections can be difficult for such schemes. Often, it is easy to calculate
[0:] = [F]+ [B] + [T] (3.265)

for a given equation. When a different time stepping scheme is applied to separate
terms, however, we need to calculate [F], [B], [T] and [T;] individually. Depending on
the equation being considered, this may be quite challenging. We shall see a simple
example of how this can done later, when we discuss the simulation of dendritic

solidification in the presence of natural convection.
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Chapter 4 Solidification without

convection

4.1 Introduction

In the real world there is almost always a buoyancy induced flow in liquids that are
not at a uniform temperature. Thus, the temperature gradients in a liquid under-
going dendritic solidification tend to produce fluid motion. Unfortunately, including
convection in a mathematical phase change model is quite difficult so, traditionally,
the effects of fluid motion have been ignored. In this chapter we develop a numer-
ical method capable of simulating dendritic solidification problems in one and two
dimensions when convection in the liquid phase is neglected.

We begin the chapter With a survey of different numerical methods that researchers
have developed to simulate dendritic solidification. We then review the mathematical
model that we will use to simulate dendritic solidification in the absence of convection.
Focusing on one-dimensional problems at first, we demonstrate how the generalized
immersed interface discretization, developed in Chapter 3, can be used to solve a
non-symmetric dendritic solidification problem. The main step in this process is the
derivation of the jump conditions on the spatial and temporal derivatives. An in-
terpolation scheme is then developed based on the immersed interface stencils. The
scheme is required so that the temperature on the interface can be determined and
the Gibbs-Thomson condition can be enforced. The interpolation method is notable
because it produces an interpolant that varies in a continuous manner as the interface
is moved through the mesh. We wrap up our one-dimensional study by presenting
the complete algorithm and validating the scheme using the exact solutions discussed
in Chapter 2. A comparison of results generated by our method and the immersed

boundary method of Juric (see [29] and below) is also presented. Moving onto two-
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dimensional problems, we discuss how our method tracks the interface and determines
the phase of the computational nodes. Restricting our attention to symmetric prob-
lems, we then calculate the jump conditions on the spatial and temporal derivatives.
After a quick discussion of the discretization of the governing equations, we extend
our interpolation scheme to two dimensions. We wrap up our two-dimensional study
by presenting the complete algorithm and validating the approach using the approx-
imate solutions determined using linear perturbations in Chapter 2. A comparison
between the performance of our method and the immersed boundary method is also
done. In addition, we investigate the effect of surface tension anisotropy by perform-
ing simulations starting with the same initial conditions for three different materials.

After a short summary, we close the chapter with a few suggestions for future work.

4.2 Existing numerical methods

The simulation of dendritic solidification (i.e., solidification into an undercooled lig-
uid) is quite challenging. The unstable nature of the interface requires that methods
be robust enough to compute the temperature in domains that are evolving and typ-
ically quite deformed. Even so, there is a rich body of literature dedicated to the
development of numerical schemes capable of simulating the purely diffusive unstable
solidification problem. An exhaustive survey of all previous work in this area would
be quite lengthy indeed. Instead, we will discuss a number of works that are repre-
sentative of the different general approaches which researchers have used to study the
problem.

The enthalpy method is an extremely popular technique for simulating stable
solidification (i.e., solidification into a liquid above its freezing temperature). Several

different formulations exist (see [75]), but the basic idea is to rewrite the heat equation

% (K
5 (Fc) VAT, (4.1)

in terms of enthalpy, (,



7
where, for stable solidification, ¢ and T are related by

% C<CTM
—L
(i—c'—) (>cTy+L

Once the enthalpy is determined at the next time step, the new temperature is de-
duced from (4.2). The method can be implemented on a fixed grid with no need to
construct special stencils near the interface. In practice, these methods have diffi-
cultly dealing with problems that have a sharp melting temperature, so it is common
to assume that the phase change occurs over a range of temperatures, see [75] for
details. Another difficulty with these methods is that they are rather inaccurate,
with an error scaling like O (At log (1+T/At)Y 2), where T is the time the error is
bounded (see [63]). An advantage of these schemes is that they do not require explicit
knowledge of the interface location. For stable solidification problems, the position of
the interface can be deduced from the temperature field because it is a level set of the
temperature (i.e., the interface is located at all points where T' = T};). If the melt-
ing temperature of the substance depends on the geometry of the interface, however,
it is necessary to have explicit knowledge of the interface location and geometry to
properly modify and evaluate (4.2). Unfortunately, because of the Gibbs-Thomson
condition, this is exactly the case we have for the dendritic solidification problem. It
is still possible to construct an enthalpy based scheme for dendritic solidification, but
it is necessary to track the interface either explicitly (see [61]) or through a fractional
volume representation (see [14]). Both Smith and Chorin were able to simulate some
simple dendritic solidification problems, but they were unable to produce agreement
with linear stability theory and anisotropy due to grid orientation was reported.
The immersed boundary method (see [29]) is another example of a fixed grid
scheme for dendritic solidification. It also requires that the interface be explicitly

tracked. For this method, the heat equation is augmented by a singular forcing term,
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Q,
9 (pcT’)

ot

=V-KVT+Q (4.3)

that accounts for the release of latent heat at the interface during solidification. The

heat source, in two dimensions, is given by

Q=L [Vi(@,)8(z~X (q,8),y~ Y (g,1)) da, (44)

where 6 is a two-dimensional delta function and the normal velocity and the interface,
parametrized by g, are given by Viy (¢,t) and (X (q,¢),Y (g,t)), respectively. The solid
and liquid phases are treated as a single substance with varying material properties,
and (4.3) is discretized on a fixed finite difference grid. The material properties in

(4.3) are given by

K = Ky + (KS - KL)I(xay)7 (45)

pc = prer+ (pses — prer) I (z,y), (4.6)

where I, the indicator function, is constructed such that it is equal to one in the solid,
zero in the liquid and smoothly varies between these values over several mesh spacings
(typically 3 or 4) in the region adjacent to the interface (see [29] for details). We will
restrict our attention to symmetric problems from now on so that consideration of the
indicator function is unnecessary. In order to discretize (4.3), it is necessary to have a
discrete representation of (4.4). This requires knowledge of the interface location and
a discrete representation for the delta function, §. The interface is explicitly tracked
by a series of marker particles, (X (7),Y (z)), that are moved through the domain
at the local normal velocity, Vi (i), of the interface. These markers are connected
together to form an explicit parametrization for both the interface, (X,Y), and the
normal velocity, Vi, whose values are also stored at the markers. The delta function

is approximated by
6 (z,y) =d(z)d(y), (4.7)
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where

d(z) = (Zi?) (l—f—cos (%)) if |z| < 2Az |

0 otherwise

(4.8)

Assuming the normal velocity of the interface is known, it is easy to evaluate (4.4)
and solve (4.3) for the new temperature. With the exception of the first time step,
however, the normal velocity of the interface is not known and must be determined
as part of the solution. It is straightforward to show that solutions of (4.3) and (4.4)
satisfy the heat equation in each phase and the jump condition on the heat flux at
the interface. There is nothing in the above, however, to enforce the Gibbs-Thomson
condition. Indeed, this extra constraint is required in order to determine the motion
of the interface. The Gibbs-Thomson condition is satisfied by iterating on the normal

velocity, Viy (¢), until the error

e(i) =T (i) — Tns ( - E%O , (4.9)

at each marker particle, (X (¢),Y (7)), is sufficiently small. The temperature at the
marker particles, T' (i) = T (X (¢),Y (7)), is found by interpolation off the finite dif-

ference grid using the sampling property of the delta function

T(6) = (A2®) T (@) (X (3) — 20, () ~ ), (4.10)
where (24, yp) is the location of a computational node. The interface curvature, « (7),
is determined using a fourth order polynomial passing through the marker in question
and its two neighbors on each side. The complete algorithm can be found in [29]. The
immersed boundary method is quite robust and is capable of tracking solidification
interfaces of impressive complexity. We will demonstrate later, however, that the
immersed boundary method is only first order accurate and has significant difficulty
agreeing with linear stability theory.
The finite element method is widely applied to problems in which the domain

of interest is irregularly shaped. In the case of dendritic solidification, the domain
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is both irregularly shaped and deforming in time. In the deforming finite element
approach, the computational mesh is allowed to deform as the interface moves in such
a way that the individual elements continually maintain their identity as exclusively
solid or exclusively liquid elements. It is difficult to deform the mesh of an entire
domain without causing highly skewed elements, however, so frequent regridding of
the domain is required. There are two basic approaches that can be employed when
simulating dendritic solidification with the deforming finite element method. In each
case it is necessary to iterate on the normal velocity of the interface. The difference
lies in which interface constraint is incorporated into the discretization directly and
which is left to be satisfied by the proper selection of the normal velocity. In the first
approach (see [44] and [45]), the Gibbs-Thomson condition,

T =Ty, (1 - %7) , (4.11)

is used to fix the value of finite element nodes that lie on the interface. For arbitrary
values of the normal velocity, this leaves the condition on the jump in the heat flux
at the interface,

0X

(K,gVTs — KLVTL) = pSL <E . 1’1) y (412)

unsatisfied. These schemes compute the jump in the heat flux directly and, in effect,
use (4.12) as an error condition for an iterative scheme to determine the normal
velocity of the interface. The second approach (see [66] and [67]) is essentially a finite
element discretization of (4.3). The advantage of the finite element method is that it
is unnecessary to explicitly discretize the delta function since it is eliminated during
the course of the standard discretization (i.e., by the inner product between the (4.3)
and the finite element bases). In this way, the normal velocity is explicitly introduced
into the discrete system for the temperature and (4.12) is automatically satisfied.
Lynch and Sullivan have compared the accuracy of these two different formulations
and found that the second is an order of magnitude more accurate (see [46]). They
show that this is a result of the conservation of heat which is only exact for the

formulation based on (4.3) because the heat equation is explicitly applied everywhere
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in the domain. In [66], a simulation of dendritic solidification using the deforming
finite element method was shown to agree with linear stability theory. In [67], it is
demonstrated that this method is capable of simulating the evolution of modestly
deformed dendrites.
Another scheme based on the finite element method was recently presented in [58)].
It requires a slightly more general form of the Gibbs-Thomson condition,

_ _k _FKE
T_TM<1 Zy LVN>, (4.13)

where pis introduced to account for the finite rate at which molecules can attach
to a solidifying surface, and Vi is the normal velocity of the interface. Schmidt
explicitly tracks the interface and discretizes the domain using finite elements but the
mesh is not aligned with the interface. That is, some of the elements in the mesh
are intersected by the interface and contain both solid and liquid. In order to avoid
ambiguity, the method is only applied to symmetric problems for which the material
properties of the liquid and solid are identical. The method discretizes (4.3) so that
both the heat equation and the jump in normal heat flux are automatically satisfied,
as discussed above. The value of the temperature on the interface is not forced to
satisfy the Gibbs-Thomson equation, however. Instead, the temperature is treated
as a known forcing (i.e., the value from the previous time step is used) and (4.13) is
solved as an independent equation for the new interface position. Thus the system
is evolved without ever having to iterate on the temperature field, which, in general,
is quite expensive. While this approach is limited to symmetric problems and non-
zero values of p, it is capable of simulating solidification in three dimensions and has
produced some extremely impressive results.

In [13],Chen and her co-workers recently developed a level set method capable of
simulating dendritic solidification problems. The idea behind level set methods is to
implicitly track the position of the interface by introducing a new field variable, ¢,
that is defined to be the signed distance from the interface (¢ > 0 in the liquid and

¢ < 0 in the solid) everywhere in the domain. By definition, the interface is the level
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set ¢ = 0. The position of the interface is updated through the solution of

8
6—‘f+u-v¢=o, (4.14)

where, on the interface, u is the normal velocity of the interface and away from the
interface it is an ad hoc extension of the interface velocity. For this method, the
interface velocity is calculated directly by computing the normal derivative on each
side of the interface with one-sided stencils (i.e., stencils that only use nodes from
a single phase) and using (4.12). A viable extension of the velocity, u, for the level
set is then constructed by solving four additional advection equations (consult [13]
for details). The temperature is discretized using standard second order accurate
finite difference stencils except at stencils cut by the interface. For any node close
enough to the interface that the standard stencil would involve both liquid and solid
neighbors, special second order accurate one-sided stencils are constructed. These
stencils treat the interface as a Dirchlet (7" known) boundary using (4.11) or (4.13)
to determine the value there. Because of the construction of u and the interface
stencils, the above solution satisfies all of the equation necessary for the simulation
of dendritic solidification and is repeated at each time step. The authors claim that
the method agrees with linear stability theory and demonstrate that it is capable of
simulating moderately deformed dendrites.

Like Chen, Udaykumar and Shyy (see [70]) use a one-sided stencil approach. In
their method, however, the interface is tracked explicitly using a series of discrete
marker particles. The heat equation is discretized on an almost uniform grid using
a control volume formulation. The control volumes intersected by the interface (i.e.,
containing both liquid and solid) are locally deformed so that they enclose only one
phase. An approximation to the normal derivative is required on each side of the
discrete control volumes in this formulation. This is problematic because one side
of the deformed control volumes typically lies along the interface where standard
differencing can not be employed. The normal derivative on these faces is determined

using a one-sided stencil with the temperature on the interface itself determined from
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the Gibbs-Thomson condition. The interface markers are moved at a normal velocity
calculated directly using (4.12) where estimates to the normal derivative mentioned
above are utilized. This procedure satisfies all the governing equations and allows
the solution to be advanced forward in time. The authors do not test their method
against linear theory but do compare it against an exact one-dimensional solution
and report good accuracy. They do report, however, that their growing dendrites
exhibit a lack of symmetry even at early stages in their evolution. This is most likely
the result of numerical perturbations introduced by their one-sided stencils (see the
discussion below).

A number of researchers have approached the dendritic solidification problem by
casting it in terms of an integral equation. A significant advantage of this formulation
is that the dimension of the problem is reduced by one since only quantities on the in-
terface are required to evolve the system forward. Traditional integral formulations of
the problem are costly due to the need to evaluate a “memory integral” that accounts
for the evolution of the latent heat that has been released since the start of the sim-
ulation. Due to this difficulty most investigations using this approach have utilized a
traveling reference frame and sought steady state solutions (see [48] and [49]). Strain,
however, has studied the time dependent evolution of a perturbed flat interface using
this approach. He reports agreement with linear theory and demonstrates the ability
of the method to produce experimentally observed phenomena such as tip splitting.
The method is expensive, however, with a cost per time step that increases linearly.
Recently researchers have developed clever approaches which eliminate the need to
evaluate the memory integral directly. These “fast” methods have a fixed cost per
time step (see [7] and [59]). Sethian and Strain combined a “fast” integral formula-
tion with the level set method discussed above and demonstrated their method was
capable of simulating problems with moderately deformed interfaces.

Simulations of dendritic solidification based on phase field methods have become
very popular in recent years (see [8], [11], [17], [18], [30], [53] and [76]). The method
uses an order parameter ¢ which is a new field variable defined everywhere in the

domain. The order parameter is a solution to a reaction-diffusion equation which
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takes on different constant values in each phase (¢ = 1 in the solid and ¢ = —1 in the
liquid is a common but not universal choice) and has a region of rapid variation in
the vicinity of the interface. The heat equation, written in terms of the dimensionless

temperature 6, is coupled to ¢ by

00 ., 10p
5 =V 0+28t’ (4.15)

for the ¢ = %1 choice mentioned above. Because the order parameter is essentially a
smoothed out step function, its time derivative effectively introduces a smoothed out
delta function equivalent to (4.4). The phase field method has been controversial since
its inception because the standard interface boundary conditions are never explicitly
enforced. The method has been shown to be asymptotically equivalent to the standard
sharp interface dendritic solidification model in the limit as the interface thickness
goes to zero, however, and research into its properties continues. Although the results
are not fully resolved, recent three-dimensional calculations by Kobayashi (see [33])
and Karma and Rappel (see [30]) demonstrate the significant promise of this approach.

Finally, some researchers have taken completely unconventional approaches to
simulating dendritic solidification. Roosen and Taylor in [55], for instance, simplify
the problem by restricting the interface to a polygon and assume non-zero kinetic
mobility (i.e., 4 # 0 in (4.13)). They produce some impressive results but report a
grid induced anisotropy. Algren, on the other hand, replaces the standard model by a
variational formulation in which the Gibbs-Thomson condition is enforced through a
balance between bulk and surface energies (see [3]). He reports agreement with linear

theory but the error of the algorithm only scales like O (Atl/ 2).

4.3 Governing equations

We will consider problems that are periodic in the horizontal (z) direction with an
z-periodic interface dividing the domain into a solid region below the interface and

a liquid region above it (see Fig. 4.1). The scaled equations governing the dendritic
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Figure 4.1: Typical Interface Geometry



86

solidification of a pure substance in the absence of convection are

00,

—= = H; V0
ot LVv L,
which applies in the liquid phase and
— = HgV~=0
5 sVils,

(4.16)

(4.17)

which applies in the solid. On the interface the temperature must satisfy

0X oY
(hsVls — h VOr) -n= nzﬁ.—l— ny—ét—,

and

0s =0 = —¢.(n) K,

(4.18)

(4.19)

where the interface is given by (X (q,t),Y (q,t)), where ¢ is a parametric variable.

Several of the above quantities depend on the interface geometry. These are the

interface normal,

the interface curvature,

_[exoy _@vox]|(ox)", (ov)’
" 0¢? 0q  0¢® Oq 0q 0q
and the capillary parameter,

e. (¢) = b0 [1 + 6, sin? (%?ﬂ :

(4.20)

(4.21)

Nl

(4.22)

(4.23)
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The above form for the capillary parameter is equivalent to the conventionally as-

sumed form,

€c(¢) =& [1 — Accos (kag)], (4.24)
if we let
So=2:(1— A,) (4.25)
and
6 = 12_‘4;10 (4.26)

where the constant £, is directly related to the material properties of the substance
and the values of the constants A. and k4 are selected to model the anisotropy of the

material.

4.4 One-dimensional problems

A large variety of different methods are available for discretizing partial differential
equations. The discretization of the dendritic solidification problem is complicated
by the presence of the interface. We saw in Chapter 2 that the derivatives of the tem-
perature are not continuous across the interface during solidification. In Chapter 3,
we developed formulas for finite difference stencils that are applicable to non-smooth
functions such as the temperature in this problem. We will use these finite difference

stencils to discretize the spatial derivatives.

4.4.1 Discretization of spatial derivatives

The discretization of the spatial derivatives can be broken down into two cases: the
discretization of derivatives at regular nodes and the discretization of derivatives at
irregular nodes. From a numerical point of view, a node is considered to be regular if
all the required finite difference stencils centered at its location do not intersect the
interface. That is, if the calculation of the spatial derivatives at a given node, using

the standard centered finite difference stencils (see below), depend only on nodes that
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all lie on the same side of the interface, then that node is defined to be regular. Any
node which is not regular is defined to be irregular. We discuss the discretization of
the governing equations at regular nodes first.
At all regular nodes the function is smooth in a sufficiently large region surround-
ing the node that we can ignore the interface. Therefore, the derivatives at regular
nodes may be calculated using standard finite difference formulas. In one dimension,

we will use the standard formula for the Laplacian given symbolically by
V2=——~——[ 1 =2 1J+O(Ay2). (4.27)

At the irregular nodes, the above stencil can not be used because at least one
of the stencil legs spans the interface. Depending on the jump conditions that the
temperature satisfies, the calculation of the stencils is either trivial or laborious.
In Chapter 3 we found that if a function satisfies symmetric jump conditions, it is
possible to use standard stencils with simple additive corrections to discretize its
derivatives. As we shall see, dendritic solidification is a symmetric problem when
the material properties are the same in both phases. The calculation of appropriate
stencils is significantly more complicated and expensive for non-symmetric problems.
When the material properties are not identical in each phase, dendritic solidification is
an example of a non-symmetric problem. We consider the fully general non-symmetric

case only in one space dimension.

Derivation of the jump conditions

In Chapter 3 we developed a method for accurately discretizing the derivatives of
functions that have discontinuities in their values and/or derivatives across an inter-
face. Restricting our attention to one-dimensional problems, recall that the theory
applies to functions that satisfy jump conditions of the form

omoNt o, (oF\T
(ay—m) =y oy (@) e (4.28)

k=0
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o A . A

k=0

and

where, if the interface is located at Y,

oo\t . 0mO(Y +¢,t)
(—aym) = Jim ——5 (4.50)
om0\~ . 9mA(Y —e,t)
(aym> =0T (4:31)

For the general case where either D/7* # 1 and/or at least one DJ"* # 0 for 0 < k <
m, 1t is necessary to derive custom stencil coefficients for all stencils intersected by
the interface. Examining the dendritic solidification equations, we see that equation

(4.18) in one dimension,

80y . 00, dY
he—m — - =

3 La—y ==V (4.32)

is a jump condition for the derivative of the temperature. Rewriting this in the form

of (4.28), it becomes
hs _ V
+ =29 —
oy o TRy (4.33)
if the normal points out of the solid region (solid for y < Y’). Comparing (4.33) and
(4.28) we find
hs
[DO— D;]=[o —], (4.34)
hr
so, when the material properties in the solid and liquid phases are different, it is
necessary to derive custom stencils near the interface.
From Chapter 3, we know that once the coefficients of the jump conditions in
(4.28) are determined, we can derive the stencils required to differentiate solutions of

the dendritic solidification problem accurately. The temperature is continuous at the

interface, so
Dyt =Dy =1 (4.35)
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and
J&=Jy =0. (4.36)

From (4.33) we have

h
[Dg+ D}+]=[o EE] (4.37)
S
1%
+
Jit = P (4.38)
and
h
[Do_ Dl‘]=[0 h—j] (4.39)
=2 (4.40)
hr,

The derivation of the jump conditions on the time derivative and higher order spatial
derivatives is somewhat more involved, and is explained below.

In one dimension, the equations governing the temperature in the solid and liquid

phases are

% _ HS%%, (4.41)
and

% =H L%, (4.42)

respectively. Evaluating (4.41) and (4.42) on the interface and subtracting them, we
find

90r (Y,t) 905 (Y,t) 9201, (Y, 1) 0205 (Y,t)
- =g, g Z TS A4
ot ot He Oy? Hs oy? 7’ (4.43)
or, recalling that the normal points away from the solid,
0;] = H LQ;L — Hs0,,. (4.44)

We do not know the value of the jump in the time derivative a priori, so this is not yet
a proper jump condition (the values of J;~ and J; must be known). We can calculate

the jump in the time derivative, however, by using the continuity of the temperature
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field at the interface
o+ Y (t),t)=0" (Y (t),t). (4.45)

Differentiating the above with respect to time, we find

0 +VoS =0, + Vo, (4.46)
or
[0 = -V (9; ~ 9;) : (4.47)

where V' denotes the interface velocity

dy
—=V. (4.48)

Taken together, (4.33), (4.44) and (4.47) yields a system of three equations. This

means that we can solve the system for [0,], 6, and 6/, in terms of 6, and 6,

+_ 2=
0 = 320, — ) (4.49)
Hs\ . [(hs—h\. 1, V?
v _ (s o+ —— .
O (HL> O [( Hoks )V} v T H by (4.50)
he—hs\ . ] V2
_ v 4.51

or solve it for [6;], 6, and 6, in terms of 6, and 6,

- = =g 4.52
_ Hp\ hs — hy N V2
— (=L 0 — 4.53
% (Hg) Yo ¥ [( Hshs )V} Y Hgshs’ (4.53)
hr — hg L V2
= || == —. .54
6:] [( hs )V} 9y + hs (4.54)

Note that the jump in the time derivative explicitly depends on the slope of the

temperature at the interface. This is an unfortunate complication which we will
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address later. For now, we simply identify the values of the coefficients of the second

derivatives in the jump conditions (4.28),

_ _ _ hy — hs Hg
[DO D3~ D? ]z{o (HLhL)V EJ (4.55)
_ v?
Jy = T (4.56)
and (4.29),
hs — h H
[D§+ D3t D§+]=[O (;{hL)v FL} (4.57)
Sits S
V2
+ — _
Jf = Hohe (4.58)

As we discussed in Chapter 3, knowledge of the jump conditions through the sec-
ond derivative is sufficient to determine a first order accurate approximation for the
Laplacian at nodes with stencils intersected by the interface. Since all the stencils for
the Laplacian away from the interface provide second order accurate approximations,
the larger discretization error at the interface stencils is insufficient to reduce the
overall accuracy of the numerical solution. While we have enough information at this
point to develop a scheme that is second order accurate in space, it is instructive to
demonstrate how the jumps for the next set of derivatives can be calculated.

To compute the jumps in the third derivatives, we will need the y-derivative of

the equation evaluated on each side of the interface:

0;, = Hsb, (4.59)

yyy

and
9:; = H 6" (4.60)

yyy*

We will also need the time derivative of (4.33),

hs (05 + V26y,) — by, (64, +V?0],) = A (4.61)
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and (4.47),

Y ty

(0] = —A (67 - 0,) =2V (65, — 0,) — V2 (05, — 65, (4.62)

where A denotes the acceleration of the interface

LY

= (4.63)

Using equations (4.33)-(4.47) and (4.59)-(4.62) allows us to determine, among other

things, the jump conditions for the third derivatives

_ hiHy, hpHs — hgHjp,
Opy = < ) 0, + [( ) VJ oF, + (4.64)

hsHg ) ¥¥ hsHZ2

hi —hs\ - 1 Vs
L = s o+ v
[( he 2 )VJ v T ety [‘“HS :

hsHgs\ ,_ hsHy, — hrHg _
9;yy = (hLHL> Hyyy + [( hpH? ) VJ gyy + (4.65)

hs — hr, V2| - — AHL+V3
hpH? * v hy (Hp)® )’

and expressions for the jump in the second derivative with respect to time

0] = -<2HL UI’ZLS —~ hS)) v} — (4.66)

F(HLhS — 2Hghy, + H5h5> V2:| g+ n
vy

Hghg

[(hy — hs
HgA 3| o
(") (s v o +

AV?3 + 3Hg v
Hghg ’

Oy + (4.67)

0n] = [2VHS (:LL - hs)}
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Hghy, —2Hphs + Hphr\ L]
(B v g+
hr — hg N
[( o )(HLAJrV)J 0, +
V4+3HLAV
HLhL )

As we shall see shortly, the dependence of the jump in the second derivatives with
respect to time on the third order spatial derivatives implies that it is necessary to
know all of the above quantities to develop a scheme that is second order accurate

in time. To that end, we now examine the correction of the discrete time derivatives

near the interface.

4.4.2 Discretization of the time derivative

Yltne1)

-/+

t n+1

tatt

—~
>
@

-/+
Y(t,) y

Figure 4.2: Time jump definitions
We will utilize a one-step method of the form

0 (5) = 0™ (3) + At {aH™ (3) O3 (i) + (1 — o) H" (3) 07, (i)} +EG), (4.68)
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to advance the equation forward in time where

(4.69)

Y

Hg ify(i)<y™
H, ify(i)>Yn

the value of E (i) is zero unless the node changes phase during the time step and
a € [0,1]. When the node does change phase during the time step, it is necessary to
set F (i) to a non-zero value to account for the jump in the time derivative across the

interface. Using the correction derived in Chapter 3, we find

0 if no phase change
E(i)=q +[At(1—a) —t;][0:] + Lt1 (¢ — AL) [0 if solid at ¢,  , (4.70)
—[At (1 — ) —t1][0:] — 5t7 (b — At) [6]  if liquid at ¢,

where the time the interface intersects the node, t,, + t;, is determined from

(At —t) Y™ + ¢ty

- =y (i). (4.71)

We found above that [0;] and [6z] can only be calculated in terms of the spatial
derivatives evaluated at the interface. Thus, for the non-symmetric case, the time
correction is not simply an additive correction. Instead, we will need to modify
the spatial stencil discretizing the Laplacian so that the new stencil also calculates
the value of E (i). Suppose that the spatial node located at y (i) is crossed by the
interface during the current time step (Y (¢,) <y (i) <Y (tny1)), as shown in Fig.
4.2. The node begins the time step as liquid (i.e., on the “+” side of the interface)
and completes the time step as solid (i.e., on the “-” side of the interface). We can,
therefore, compute the values of the derivatives at the interface at the beginning

O =6y (5) + (Y™ — y () 6y, (i) + O (Ay?), (4.72)

Yy Y

Op, = Oy, () + (Y™ =y (3)) O, () + O (Ay?), (4.73)
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Oy = Oy (1) + O (Ay), (4.74)
and end
6, =0, (@) + (Y™ —y (@) 65,7 () + O (Ay?) (4.75)
Oy = O () + (Y™ =y () O3 () + O (Ag?), (4.76)
Oy = by (1) + O (Ay), (4.77)

of the time step. Using (4.51), (4.54), (4.66) and (4.67) the values of the jumps in the
time derivative at time ¢,, and time ¢,,; can be estimated. Then, using interpolation

we can calculate the jump in the time derivatives,

1

0] = 57 (At =) 0" + [0, (4.78)
0] = 2 (86— 1) [Bu]" + 10 [6™) (4.79)

at the time of the interface intersection. The spatial derivatives required to calculate
(4.78) and (4.79) and, hence E (i), are incorporated into the system along with the
discretization for the Laplacian. It is important to remember, however, thaf E(i)#0
only for the time steps during which the computational node is intersected by the
interface. The above information is enough to construct a fully second order accurate
scheme in space and time. We have not yet addressed the issue of determining the
interface velocity, however, so we do this now.

A quick glance at the above expressions for the jump conditions on the temperature
derivatives reveals that they all depend on the interface velocity. In order to calculate
stencils for the temperature near the interface, we must know its jump conditions
and, therefore, the interface velocity. If the interface position, Y (¢), is given, then
the above jump conditions and the formulas for modified stencils in Chapter 3 allows
us to discretize and solve (4.68). It is important to note that, because of its use in

the derivation of the jump conditions and incorporation into the irregular interface
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stencils, the condition

80s . 80,
hs gy ~hig =V, (4.80)

will be automatically satisfied by all numerical solutions of (4.68). The only equation
which may not be satisfied by the above is the Gibbs-Thomson condition, which in

one spatial dimension is

(Y (t),t) =0. (4.81)

For any given interface motion, Y (¢), (4.68) and (4.80) will be satisfied by our nu-
merical solution. Thus, for our numerical method, the interface motion is determined
by satisfying (4.81). In order to satisfy (4.81), it is necessary to determine the value
of the temperature at the interface. Unfortunately, the interface is not, in general,
located at a computational node. Thus, we need an interpolation scheme that is

accurate for non-smooth functions such as the temperature.

4.4.3 Interpolation of the interface temperature

There are several approaches that we could use to interpolate the value of the tem-
perature on the interface. Perhaps the most obvious would be to use a one-sided
stencil (all nodes on one side of the interface or the other) to extrapolate the interface
temperature. While this approach is feasible and can even be generalized to higher
dimensions, it has a subtle difficulty that we wish to avoid. To illustrate the potential
problem, consider three adjacent nodes located at y (i) < y (i + 1) < y (¢ + 2) where,
at the beginning of the time step, the interface satisfies y (i +1) <Y (¢) < y (i + 2).

The value of the interface temperature at the beginning of the time step
©=0(Y(t),?), (4.82)

can be approximated using

— 0 Y—y@E+1) ; Y —y (i) )
@_9U(y@_yu+w>+e(+n<ya+nwy@)+wNAyy (4.83)
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Depending on our guess for the new interface position, the above representation may
or may not be valid at the end of the time step. If, at the end of the time step, the
interface still satisfies y (i +1) < Y (¢ + At) < y (i + 2), then the above approxima-
tion for the interface temperature holds. On the other hand, if the interface moves
far enough that y (i +2) <Y (¢ + At) is satisfied, we must instead use
Y —y(+2) >+0@+m(y(y—y@+1) >+CNAf}

@=0@+U<y@+w—y@+@ i+2)—y@+1)
, (4.84)

Thus, depending on our guess for the interface position, the numerical domain of
dependence of our interpolation formula can change discontinuously. Note that the
coefficient of ¢ (i) just before Y crosses y (i + 2) is one but discontinuously jumps to
zero just after Y crosses y (i +2). A jump in the discretization error is also associated
with this change. Discontinuous jumps in the error associated with minute changes
in Y introduce numerical perturbations into the system and can cause difficulties
with the convergence of iterative schemes. We have developed a simple interpolation
scheme that does not suffer from these problems.

Consider the problem of determining the interface temperature, ©, where the
interface lies between two computational nodes, y (i + 1) < Y () < y (i + 2). Since
we have developed a method for accurately calculating derivatives at nodes near the
interface, one thing we could do is estimate the interface temperature using a Taylor

series expansion about the computational nodes,

@1=¢9(i+1)+(Y—y(z’+1))¢9y(i—|-1)+%(Y—y(i+1))20yy(z’+1)+O(Ay2>
(4.85)

and

1 _ .
Oy =0(i+2)+ (Y —y(i+2)0y (i +2)+5 (Y —y(i+2)0y, (1 +2) + 0 (Ay?).
(4.86)
Note that the accuracy of the above is limited to second order despite the order of

the expansion because that is the accuracy to which the nodal values are known. Nei-
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ther of the above are one-sided approximations because the stencils used to estimate
the derivatives utilize nodes on both sides of the interface. If we only choose one
of the above, however, we would still have an estimate for the interface temperature
that jumps discontinuously as the interface moved. That is, if we estimate the inter-
face temperature using a Taylor series expansion about a single node, eventually the
location of the expansion node will have to be moved and the numerical domain of
dependence and discretization error will change with it. Instead of using one node, we
use the estimates for interface temperature at both nodes that bracket the interface
and average the results

[ Y —y@+2) Y —y@+1) ,
- (y(i+1)—y(i+2)> Ort (y(i—l—Z)—y(i—l—l)) 0240 (Ay").  (487)

This yields an interpolation formula that has a continuously varying numerical domain
of dependence because the expansion points bracket the interface. For instance, the
coefficient of ©; just before Y crosses y (i + 2) is zero and will also be zero after Y

crosses y (i + 2) since the interface temperature is then approximated using

_ Y —y(i+3) Y —y(i+2) )
a (y(i+2)—y(z'+3)) @2+(y(i+3)—y(i+2)>@3+O(Ay,)‘ (4.88)

We will demonstrate shortly that this approach can be readily extended to higher
dimensions as well. Now that an interpolation scheme for the interface temperature
has been developed, we are ready to describe the complete algorithm for the solution

of one-dimensional dendritic solidification problems.

4.4.4 Complete scheme

For our discussion below, we assume that the values of the interface position, Y™,
and interface velocity, V™, are known at the beginning of the time step. In general,

these must be supplied as initial conditions to start the algorithm. We estimate the
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interface position and derivatives at the end of the time step using

A

t
yrHl —yn 4 5 (vt +vm), (4.89)
Vn+1 —Vn
Ar= [ —
( ~ ) (4.90)

where V™! is the current guess for the interface velocity. The discrete system for
0™*! and the interpolation formulas then act to implicitly define a non-linear systerﬁ

for V!

0 (Y (tns1) V) =0 (4.91)

The algorithm is as follows:

1. Using the current guess for the new interface velocity V"*!, determine Y™*!

and A" using (4.89)-(4.90).

2. Using the values from step 1, calculate the new temperature using corrected

stencils near the interface.
3. Calculate the velocity error, e = § (Y™*!; V" +1) using (4.87).

4. If error is too large, |e| > tol, update the velocity guess using
Vil =yt —e/w (4.92)

and go back to step 1.

The value of w is an estimate to the system Jacobian. Its value is picked by hand
during the iterations for the first time step and held at that value for the remainder
of the simulation. While this is a crude iterative scheme we have found it to be both
robust and efficient for the problems we present below. The value of tol in the above
algorithm is taken to be 1078. The solution is fairly insensitive to tol with very little
difference observed if tol is taken to be substantially larger (tol = 1075, for example).
Now we use the above algorithm to simulate two simple one-dimensional dendritic

solidification problems.
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4.4.5 Results

First we compute a solution to the traveling wave problem discussed in Chapter 2.

In this case, the temperature in the solid is given by

fs =0 (4.93)

and the temperature in the liquid is given by

9;5—; {exp [%;W)} - 1} . (4.94)

Recall that the interface velocity for the traveling wave problem is not unique. We

wish to compute the solution corresponding to

1
V== 4.
er (4.95)
The material properties used in our simulation are set to
Hs=hg=1 (4.96)
and
Hp =hp=2. (4.97)

Note that although the material properties in the solid do not influence the analytic
solution, they do influence the numerical method so this problem is a useful test case.

We numerically compute the solution of the traveling wave problem starting the
simulation at ¢t = 0 using (4.93) and (4.94) and ending the simulation at ¢t = 10. The
numerical solution is computed using the immersed boundary method (referred to
as IBM from now on, see the discussion above) and our immersed interface method
outlined above. The immersed interface solutions are carried out using the fully
second order accurate in space, second order accurate in time method (o = 1/2,

referred to as IIM2 from now on) which corrects all spatial derivatives through third



102

order and all time derivatives through second order. We also compute immersed
interface solutions using the second order accurate in space and first order accurate
in time scheme (o = 1, referred to as IIM1 from now on) which corrects all spatial
derivatives through second order and the first derivative with respect to time. The
accuracy with respect to time is different for the individual methods. The time
accuracy of IBM and IIM1 is only first order while the accuracy of IIM2 is second
order. To facilitate fair comparisons between the different methods, we perform all
calculations using At = 0.2 (Az)?, so that the error associated with time stepping
decreases by a factor of four as the mesh spacing, Az = (zg — z1) /N with z;, = —2
and xr = 14, is halved. The infinity norm of the temperature error at ¢ = 10 for
several different mesh spacing is found in Tables (4.1), (4.2) and (4.3) for IBM, IIM1
and IIM2, respectively. The first order accuracy of IBM and the second order accuracy
of IIM1 and IIM2 is clear from these results. A plot of the solutions for N = 64 is
shown in Fig. 4.3. Note that there is no observable difference between IIM1, 1IM2
and the exact solution on the plot so only IIM2 is displayed.

01 T T T T T

Im!nersed Interfa(l:e —_
Immersed Boundary =~ —---—-

-0.1 |

-02

-03 |-

-0.5 |~

-06 -

0.7

-0.8 -

0.9 L

Figure 4.3: Comparison of the immersed interface and immersed boundary solutions
at t = 10 for the traveling wave problem
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N | 6w — 0]l | Ratio
32 | 0.37362
64 | 017677 | 2.1136
128 | 0.08727 | 2.0262
256 | 0.04334 | 2.0137

Table 4.1: Immersed boundary resolution study of the traveling wave problem

N | ||0x — 9|, | Ratio
32 | 4.4822x1073

- 64 | 9.4943x107% | 4.7209
128 | 2.7586x107* | 3.4417
256 | 6.5895x107° | 4.1863

Table 4.2: Resolution study for the immersed interface method with first order time
accuracy for the traveling wave problem

N | [0x — 0] | Ratio
32 | 2.2323x10°3
64 | 4.5673x10~% | 4.8875
128 | 1.2673x10~* | 3.6038
256 | 3.0018x10° | 4.2220

Table 4.3: Resolution study for the immersed interface method with second order
time accuracy for the traveling wave problem
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The above results yield a good picture of the quality of the solution at a given
instant in time (¢ = 10 in this case). It is also useful to record the time history of
the temperature at a specific point (y = 3, in our case) which yields an accurate
representation of temperature before, during, and after an interface crossing. The
infinity norm of the temperature error at y = 3 for several different mesh spacings is
| found in Tables (4.4), (4.5) and (4.6) for IBM, IIM1 and IIM2, respectively. The first
order accuracy of IBM and the second order accuracy of IIM1 and IIM2 is clear from
these results. A plot of the solutions at y = 3 for N = 64 is shown in Fig. 4.4. Note
that there is no observable difference between IIM1, IIM2 and the exact solution on

the plot, so only IIM2 is displayed.

0.2 T T T

Immersed In{erface
Immersed Boundary ~ -----

01

-0.1 |~ /

-03 /

04 | %

-05 -

06 L

Figure 4.4: Comparison of the immersed interface and immersed boundary solutions
at y = 3 for the traveling wave problem

Finally, we have plotted the numerical interface velocity for the different schemes
using N = 64 in Fig. 4.5. Note the oscillatory behavior of the interface velocity.
The sharp cusps in the oscillations correspond to points in time where the interface
crosses a computational node. Continuing the trend found in the other results, the

errors associated with the velocity obtained using the immersed interface methods
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N | ||ox — 0], | Ratio
32 0.18598
64 0.09893 | 1.8798
128 | 0.05140 | 1.9247
256 | 0.02629 | 1.9550

Table 4.4: Immersed boundary error at y = 3 for the traveling wave problem

N | ||0n — 0|, | Ratio
32 | 1.8095x10~3
64 | 4.4162x107* | 4.0974
128 | 1.0873x10~% | 4.0617
256 | 2.6958x107° | 4.0332

Table 4.5: Immersed interface error at y = 3 with first order accurate time stepping
for the traveling wave problem

N | ||0n — 0|, | Ratio
32 | 9.8977x10~*
64 | 2.2935x10~* | 4.3155
128 | 5.5008x107° | 4.1694
256 | 1.3460x10~° | 4.0879

Table 4.6: Immersed interface error at y = 3 with second order accurate time stepping
for the traveling wave problem
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are significantly smaller than the error associated with the IBM velocity. In Fig. 4.6
we have plotted the interface velocity obtained just by the immersed interface meth-
ods. Clearly the interface velocity obtained by IIM2 (the fully second order accurate
scheme) is more accurate than the interface velocity calculated using IIM1. The im-
provement in the velocity error for IIM2 comes from two sources. The reduction in
the amplitude of the oscillations is due to the improved spatial resolution. That is,
the calculation of the jumps in all the spatial derivatives out to third order improves
the accuracy of the interpolation of the interface temperature. More accurate in-
terpolation leads to a reduction in the amplitude of the velocity oscillations. The
improvement of the overall error in the IIM2 velocity is due to the use of a second

order accurate time stepping scheme.

06 T T T T
Backward éuler Immersed Interface —

Trapezoidal Immersed Interface ~ ——~—-
Immersed Boundary — ------

0.58 — B -]

M ' ) v Al ' A ’ \
\ ' v I v i v /) Y ' [N \ N
056 5 L L L L VT S
N ' v ' v ' ' B N ' v "
v i v \ " i \ ! V) Vo

dY/dt

054 — —

052 —

0.5 = ——

Figure 4.5: Comparison of the immersed interface and immersed boundary interface
velocity for the traveling wave problem

Next we consider the sub-critically cooled dendritic solidification problem associ-
ated with a solid located at y < 0 initially at a uniform temperature g = 0_,, > 0
and a liquid located at y > 0 initially at a uniform temperature 8;, = 0,,, < 0. As

we saw in Chapter 2, this problem has an exact solution. The interface position is
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Figure 4.6: Comparison of the interface velocity computed using different time step-
ping methods for the traveling wave problem

given by
Y (t) = 2av/%, (4.98)

the temperature in the solid (y <Y (¢)) is given by

[1 + erf (2\/‘?{_@”
=0 oo — 0o , (4.99)
S T

and the temperature in the liquid (y > Y (¢)) is given by

[1 e (2\/%> J (4.100)

0L=0+00—0+00 .
1-at (o))

Q

5
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Using the same material properties as before,
Hs =hg =1, (4.101)

H,=h, =2, (4.102)

and an initial temperature distribution in the solid and liquid is given by

0_oo = 0.2, (4.103)

and
0,00 = —0.6, (4.104)

respectively. We can solve for a as described in Chapter 2 to find
a = 0.77070929661959257638... (4.105)

We numerically compute the solution of this step problem (the initial condition is a
step function) starting the simulation at t = 0.1 using (4.99) and (4.100) and end the
simulation at ¢ = 10. The numerical solution is computed using IBM (the immersed
boundary method) and IIM2 (the second order accurate in space and time immersed
interface method). We again perform all calculations using At = 0.2 (A:c)Q, so that
the error associated with time stepping decreases by a factor of four as the mesh
spacing, Az = (zg — x1) /N with z, = —7.5 and zg = 12.5, is halved. The infinity
norm of the temperature error at ¢ = 10 for several different mesh spacings is found
in Tables (4.7) and (4.8) for IBM and IIM2, respectively. The first order accuracy of
IBM and the second order accuracy of IIM2 is clear from these results. A plot of the
solutions for N = 64 is shown in Fig. 4.7. Note that there is no observable difference
between IIM2 and the exact solution on the plot so only IIM2 is displayed.

The infinity norm of the temperature error at y = 3 for several different mesh
spacing is found in Tables (4.9) and (4.10) for IBM and IIM2, respectively. The first

order accuracy of IBM and the second order accuracy of IIM2 is clear from these
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Figure 4.7: Comparison of the immersed interface and immersed boundary solutions
at t = 10 for the step problem

N |||y — 0], | Ratio
32 0.15596
64 0.08845 | 1.7633
128 | 0.04448 | 1.9883
256 | 0.02203 | 2.0190

Table 4.7: Immersed boundary resolution study of the step problem

N | |l0n — 0|, | Ratio
32 | 2.4469x10~2
64 | 4.6130x10~3 | 5.3044
128 | 1.2177x1073 | 3.7884
256 | 3.1552x10~* | 3.8593

Table 4.8: Immersed interface with second order accurate time stepping for the step
problem
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N | ||on — 6], | Ratio
32 | 0.26892
64 0.14466 | 1.8595
128 | 0.06716 | 2.1538
256 | 0.03192 | 2.1041

Table 4.9: Immersed boundary error at y = 3 for the step problem

results. A plot of the solutions at y = 3 for N = 64 is shown in Fig. 4.8. Note that
there is no observable difference between IIM2 and the exact solution on the plot so

only IIM2 is displayed.

0.2

I T I I
' ! ' ’Immersed nterface T
Immersed Boundary =~ ---—-

01~ -

Figure 4.8: Comparison of the immersed interface and immersed boundary solutions
at y = 3 for the step problem

Finally, we have plotted the numerical interface velocity for the two different
schemes using N = 64 in Fig. 4.9. The initially very large error in the IBM velocity
is due to the poor accuracy of its interface temperature interpolation method. Be-
cause the interpolated temperature obtained by the IBM is so inaccurate, the initial
condition appears to significantly violate the requirement that the interface tempera-

ture be zero. This leads to large initial errors as the method artificially releases latent
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N | |6y — 0|, | Ratio
32 [ 3.4214x1072
64 | 6.1143x1073 | 5.5657
128 | 1.6239x102 | 3.7652
256 | 4.2217x10~% | 3.8466

Table 4.10: Immersed interface error at y = 3 with second order accurate time step-
ping for the step problem

heat until the temperature is smoothed out and satisfies the zero interface temper-
ature condition according to the IBM interpolation scheme. The interface velocity
generated by IIM2, on the other hand, is so close to the exact value that we have not
even bothered to plot the exact interface velocity in Fig. 4.9. We have performed
a resolution study of the interface velocity error for IIM2 in Fig. 4.10. The second

order accurate convergence of the interface velocity for IIM2 is clear.

lmmerséd Interface
Immersed Boundary =~ ——--—-

dY/dt

Figure 4.9: Comparison of the immersed interface and immersed boundary interface
velocity for the step problem

We have now demonstrated the accuracy of the immersed interface method for one-
dimensional dendritic solidification problems. Most of the phenomena we observed

are generic and will also be present in our two-dimensional simulations.
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Figure 4.10: Resolution study of the interface velocity error for the immersed interface
method

4.5 Two-dimensional problems

The addition of a spatial dimension to our simulations increases the complexity and
computational cost of the problem significantly. In one dimension the interface can
be represented by a single marker particle that translates along the y-axis. In two
dimensions the interface becomes a curve which can not only translate, but deform
as well. In one dimension, an algorithm to identify the regions occupied by liquid
and solid is trivial to implement. Such an algorithm is much harder to develop in
two dimensions. Finally, in one dimension the discrete systems that must be solved
have a very small band width and can always be inverted efficiently. The band width
of the discrete system in two dimensions is significantly larger. As we shall see later,
efficiency concerns will force us to restrict our attention to symmetric problems in
two dimensions. While many physical materials are not even remotely symmetric,
succinonitrile is widely used in experiments and can be modeled quite accurately as

a symmetric substance. So, while the symmetry assumption is restrictive, it is not
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completely unphysical.

4.5.1 Representation of the interface

Thé problem we are solving is periodic in the horizontal direction with a periodic
interface dividing the domain into two parts, as shown in Fig. 4.1. The interface
is explicitly tracked through the computational domain by a discrete set of marker
particles. The interface is then represented parametrically, (X (q,t),Y (g,t)) where
q € [0,1], using a periodic cubic spline that passes through the marker particles.
The determination of the interpolant requires the solution of a periodic tri-diagonal
system which can be solved efficiently using Keller’s bordering algorithm (see [31]).
The interface is evolved forward in time by moving each marker particle at the local
normal velocity of the interface. The numerical evolution equations we employ depend
on the order of the time accuracy desired. The evolution can be done in either a first
or second order manner. In either case, a prediction is calculated for the new position

of the marker particles using V™, the normal velocity of the interface at time tnil,

X = X"+ At (Vi) (4.106)
Y = Y+ AL (npVEt). (4.107)

For a first order accurate in time scheme, this prediction is sufficient,

X = X~ (4.108)
Y™ = vy (4.109)

To obtain second order accuracy, we use the predicted interface location to calculate

a trapezoidal rule update for the marker particle locations,

At
X = Xt (Vi + n2vVi) (4.110)
At
Y= Yt (VR V), (4.111)
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where (n;, n;j) is the normal calculated from a periodic cubic spline interpolant pass-
ing through (X*,Y™*). The determination of the normal velocity is somewhat involved

and will be discussed later.

4.5.2 Determination of the phase of each node

We are restricting our attention to symmetric problems so it is not necessary to
know if a point is liquid or solid to determine the local material properties. It is
still important, however, to determine the phase of each computational node. When
the effects of convection are included, we will need to know which nodes require the
additional convection terms. For purely diffusive problems, we need to know the phase
of the nodes that are adjacent to the interface to correct the spatial derivatives. We
will also need to determine if any nodes have changed phase during a time step and,

if they have, at exactly what time the phase change occurred.

o, © O
o - ©
o o ©

Figure 4.11: Legs associated with a nine point stencil

The phase of the computational nodes can be determined from the geometry of
the interface. The first step is to determine all of the stencil legs that are intersected

by the interface. The stencil legs associated with each computational node are shown
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in Fig. 4.11. The exact location and parameter value (i.e., ¢ value) of every stencil
leg-interface intersection is determined and stored so that these intersections are only
determined once per iteration. The phase types of all nodes with intersected stencils
are then determined from an examination of the interface normals at the intersection
points. If the normal points away from a node, it is a “minus” or solid node. If the
normal points towards a node, it is a “plus” or liquid node. Nodes that lie exactly
on the interface are assumed to be solid. This determines the phase of all the nodes
adjacent to the interface. Since the phase of the nodes is known initially and can
only change when the node is adjacent to the interface, this is sufficient to track the
phase of all the nodes for the duration of the computation. Note that the ’cost of
these operations only increases linearly as the mesh is refined (i.e., O (Az71)).

Once the nodal phases and stencil intersections are known at time ¢, and, using
the current guess at the interface location (discussed later), at time ¢,.;, the nodal
phase changes can be determined. Using a list of all nodes adjacent to the interface,
we determine those nodes whose phases are different at time ¢,, and ¢,,,. For each of
these nodes, we use the pre-calculated stencil intersection data to determine a nearby
point on the interface. Using the closest intersection as an initial guess, (gr,%;), the
time and exact point of intersection between the interface and computational node

can be found using Newton’s method. The system that must be solved is

tr X" (qr) + (At —t1) X (q)

AL , (4.112)
n+1 _ n
y = 1704 (QI)-I-(AAtt i)Y (QI)’ (4.113)

where (z,y) is the location of the node undergoing the phase change, q; is the para-
meter value associated with the point on the interface that hits the node and ¢; is the
time that elapses between the start of the time step and the intersection. Note that
the above system is independent of the equations being used to evolve the interface.
The cost associated with detecting nodal phase changes and calculating the required

information only increases linearly as the mesh is refined (i.e., O (Az71)).
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4.5.3 Discretization of spatial derivatives

In Chapter 3 we developed a method for accurately discretizing the spatial derivatives
of functions whose values and/or derivatives are discontinuous across an interface. In
that chapter, we found that, in the general case of a function satisfying non-symmetric
jump conditions, it is necessary to derive custom stencils for all nodes with stencil
legs intersected by the interface. For the special case of a function that satisfies
symmetric jump conditions, however, the standard stencil formulas can be used. In
this case, a simple additive correction is all that is required. We will demonstrate, by
direct calculation, that the temperature in the symmetric (equal material properties
in both phases) dendritic solidification problem obeys symmetric jump conditions at

the interface.

Calculation of the jump conditions

Recall that a function, 6, satisfies symmetric jump relations at the interface, (X,Y),
if it is possible to calculate the jump of each derivative independently. That is, we

assume that the value of the left-hand side of

[WJ B (MY - (M) _ (4.114)
Ozkoyn=* Ok Oyr* Oxkoyn—Fk
is known for 0 < k& < n, where
n + "
(%ﬁ) - Jimg © (Xazfg;”éf = (4.115)
and ) ) )
(Go000) - gy 2O zbmen) (g

and (ng,n,) is interface normal defined previously. As discussed in Chapter 3, such
jump conditions are called symmetric because of their mathematical character. How-
ever, we should note that symmetric jump conditions often arise from physical prob-

lems that have symmetric (equal) material properties on each side of the interface
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(ie., in each phase). Such is the case for the temperature of a symmetric material

undergoing dendritic solidification.

The equations governing the temperature of a symmetric material undergoing

dendritic solidification are

a0, )

— =H .

e \YalJ} (4.117)
in the liquid phase and

s _ HV?0 (4.118)

at 5 '

in the solid phase. On the interface, represented parametrically by (X (¢,t),Y (q,t)),

the temperature must satisfy

95 = (9[, = —¢&; (Il) K (4119)
and
0X oY

We can combine (4.117) and (4.118) and write them, formally at least, as a single

Poisson equation,

W=f=—— 4.121

subject to known jump conditions,
0T (X,Y,t) - 07 (X, Y1) = [0], (4.122)
0 (X,Y,t) — 0, (X,Y,t) = [6,], (4.123)

across the interface. For dendritic solidification the temperature is continuous across

the interface, so
0] =0, (4.124)
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and the jump in the normal derivative is related to the interface velocity by

1 0X oY

In Chapter 3 we derived the jump conditions for a Poisson problem (4.121) subject
to jump conditions (4.122) and (4.123). From those results we know that the jumps

in the first derivatives are given by

[0,] = nyl0al], (4.127)

the jumps in the second derivatives are given by

O = 4,20 OO gy (4.125)
[0sy] = +Tya(,£i””] +T$66[)Zy] — a7y [f], (4.129)
] = 20 2] ey (4.130

and the jumps in the third derivatives are given by

0'0zs] r 0 [0sy) + 7_2a [0yy)] _

(Osa] = 472 (L4 7)) =525 =1y =25+ oy =P8 — i [fu], (4.131)
[O2ey] = +T§;a Eg;”] + 7o 0 Eg:y] - riTya [ggy] + 722 [fa] (4.132)
[02yy] = ——Tﬂia Eg;”] + Tya Egjy] + Ti% — 727, [fal, (4.133)
[Oyyy] = +Ti7ya Egj‘”] I gjy] +7y (1+72) % +73f]. (4.134)

Before we can evaluate the above jumps, two issues need to be addressed. First, all of
the above quantities are actually functions of the parameterization variable ¢ € [0, 1],

not arc length. Derivatives with respect to arc length, therefore, should be taken to



119

2 271
5‘9; _ [(%_f) + (%) } a%' (4.135)

The distinction is subtle but important. The length of the interface, S (¢), during

mean

dendritic solidification typically grows. In this case, parametrizing the interface vari-
ables in terms of the arc length, s € [0, S (¢)], introduces an implicit function of time
which is inconvenient. When all the interface variables are parametrized in terms of
a variable that varies over a fixed range, this implicit time dependence is eliminated.
The other issue is that the evaluation of [6,], [f,] and the other jumps requires that
the discontinuity in the forcing, [f], and its normal derivative, [f,], be known. From

(4.121) we have

F=%% (4.136)
which implies
[fl= % [0:] (4.137)
and
ol = 2 6ud (4.139)

The jump in the time derivative follows from (4.124) and the differentiation of (4.122)

with respect to time,

a10) ., 0X . 0Y . _ 0X_ _ oY _
—_— = = —_— —_— —_ _— —_— .]_
T 0 <0t + En 0, + 5 0, 0, + 5 0, + 5 0, ], (4.139)
which implies
0X oY
=—|—=— — . 4.140

It is possible to simplify this even further. Substituting (4.126) and (4.127) into
(4.140) and using (4.125) yields

0] = — (%—fnz + %ny> [0n] = =R [0,]% . (4.141)

The value of [#,,;] can not be represented quite so succinctly. It is determined by dif-
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ferentiating (4.126) and (4.127) with respect to time which, after some manipulation,

yields
0] = 0 gt’”] - (%—f [022] + %/ [9my]) : (4.142)
[0,] = 0 (giy] - (aa__z( [02y] + % [%]) , (4.143)

and allows us to calculate
[Ont] = g [0at] + 1y [0] - (4.144)

Note that given the value of [0,] = [0,](q,t), we can calculate [f] and [f,] and,
therefore, all the discontinuities in the temperature derivatives across the interface
through third order in space and first order in time. In fact, using the above results it
is quite simple to also calculate the discontinuity in the second time derivative of the

temperature. Indeed, differentiating the definition of [f;] with respect to time yields

[0::] = aa[it] - (88_41( [041] + 38_); [Oyt]) ; (4.145)

which expresses [f] in terms of the known value of [0,] and its derivatives.
Examination of the above jump conditions reveals that the temperature of a
symmetric material undergoing dendritic solidification does indeed satisfy symmetric

Jump conditions. This makes the calculation of the spatial derivatives significantly

cheaper and easier.

Calculation of the stencils

We demonstrated above that the temperature of a symmetric material satisfies sym-
metric jump conditions. From Chapter 3, we know that there is no need to derive

custom stencils for such functions. Indeed, we can use a single form for the discrete
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Laplacian, given by

1 4 1
v29(i,j)=6Ax2 4 =20 4 03,5 +C34,7), (4.146)
1 4 1
or
V20 (i,j) = 6A1x2{40(i+1,j)+40(i—1,j)+49(i,j+1)+49(z’,j—1)
—200(3,5) +0 (i + 1,5+ 1) +0 (G —1,5+1) (4.147)

+0(i+1,j-1)+0(~1,7-1)}+C(5,7),

at all grid nodes regardless of their position relative to the interface. Note that we

have elected to use (4.147) instead of the more traditional formula for the Laplacian

given by
0 1 0
vza(z‘,j)=m 1 —4 163,79 +C3G,y5). (4.148)
0 1 0

The traditional stencil is perfectly appropriate far from the interface. We have found,
however, that the robustness of the numerical method is improved if we instead use
a stencil that samples the grid in all possible directions instead of just along the
coordinate axes. This extra sampling is mainly important close to the interface but,
as we shall see shortly, it is important for efficiency reasons to uniformly apply the
same stencil at all points in the domain.

The interface correction, C (3, j), is zero at all stencils not intersected by the
interface. The value of the correction for intersected stencils will generally be nonzero
and can be calculated in the standard way we described in Chapter 3. For instance,
suppose we wish to calculate the Laplacian at the 6 (¢, j) node but the interface lies
between the 0 (4, j) and 6 (i + 1,5 + 1) nodes, as shown in Fig. 4.12. If the position
of 6 (i + 1,5+ 1) relative to the interface intersection point (X* Y*) is (z,7), then
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0(i,j+1) , Interface a(+1,j+1)
L/ } X
XY
E >
(L)) 6(i+1,j)

Figure 4.12: Two temperature nodes separated by the interface

the correction associated with the intersection is

CI*

= 50,] + 78, +

o (52 [00z] + 227 [0y + 7 [eyy])

(4.149)
to second order or
. ~ _ L/ __ _
C' = T+ 5[0 + 5 (7 sl + 227 00,) + 576, (4.150)
1/ o __ _
+§ (xg [ewm:] + 3932:9 [Hmy] + 39”92 [eryy] + 313 [eyyy]) )

to third order. The above correction can then be incorporated into the stencil formula
by substituting

0(i+1,j+1)—0@G+1,5+1)+C*

(4.151)
into (4.147) if 6 (4, 7) is a plus node (i.e., the interface normal points towards 6 (4, 7)),
or substituting

0G+1,7+1)—0(@i+1,j+1)—-C

(4.152)
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into (4.147). This is equivalent to (4.147) with

C*

C(Z,j) = :I:-A?

(4.153)

If the interface intersected other legs of the stencil as well, the correction associated

with each intersection would be calculated and included in C' (3, j) as described above.

4.5.4 Discretization of governing equations

Our numerical scheme determines the temperature in the liquid and solid phases

simultaneously through the solution of
0" (6, §) = 6" (3, §) + HAL {a V20" (4,5) + (1 — @) V20" (i,5) } + E (i, ), (4.154)

where the Laplacian is discretized using the stencils presented above and where E (4, j)
is a time correction term which is only non-zero at nodes that change phase during
the time step. The exact value of the time correction is determined using the time

derivative corrections we derived in Chapter 3. Using those results we have

0 no phase change at node (7, )
E(i,7) =4 {(1 - a) At —t;}[04] phase change with o # 1 ;
{ SAL — tI} [0:] + 3t1 (tr — At) [6y] phase change with o = 1

(4.155)
where the time the interface intersects the node, t, < t, + t; < t,.1, is used to

calculate the jump in the first time derivative. That is, we use

i [et] = Ait {(At - tI) [et] (an tn) +1i [91;] (QI, tn—i—l)} ) (4-156)

where q; is the parameter value associated with the interface point that intersects the
(4,7) node. The jump in the second derivative is evaluated at ¢,,;. Note that, like the
spatial stencils, the time derivative can be calculated using a standard uncorrected

stencil with only a simple additive correction required.
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From the construction of the spatial stencils, we know that the solution of (4.154)

will automatically satisfy
1 0X oY
0, = = [n— — . .
[0,] - (n T + ny 815) (4.157)

In order for the Gibbs-Thomson condition,
0(X,Y,t) = —¢e.(n)k, (4.158)

to be satisfied, however, the interface must move at the correct velocity. Indeed, we
will see shortly that (4.158) can be used as a measure of the error of the interface
velocity. Unfortunately, the interface marker particles are generally not located at the

computational nodes so before we can use (4.158), we need an interpolation scheme

to determine the temperature at the marker locations.

4.5.5 Interpolation of interface temperature

(X4:y4) Interface, (X3,¥3)
W2 p Wi
/1(XY)
w 3 l\\ W 4
x1y1) ' (x2,¥2)

Figure 4.13: Geometric definition of the Taylor interpolation weights

We interpolate the temperature at the marker particles using a generalization
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of the weighted Taylor series technique we developed in one dimension. Consider
an interface marker particle located at (X,Y’) which lies between the computational
nodes located at (z;,v;),1=1,2,3,4, as shown in Fig. 4.13. Using properly corrected
stencils, we estimate the value of the temperature at (X,Y’) using a Taylor series

expansion about each computational node, i = 1,2, 3, 4,

0(X.Y) = 0:=0(zi,y:) + (X — 1) 0z (23, 93) (4.159)
1
+5 (X - mi)Z Oz (mia yz) + (Y - yz) 0y (xu yz)
1
"'5 (Y - y¢)2 Opy (x5, y:) + (X —2) (Y — 4;) Oay (i, 95) + O (Am2) )

Note that the accuracy of the above is limited to second order despite the order of
the expansion because that is the accuracy to which the nodal values are known. The

temperature at the marker particle is then estimated using a weighted average,
4

i=1

where the weights, w;, are area fractions given by

w = @27 )234 —Y) (4.161)
w = &2 xlA)x(f“ —Y), (4.162)
(X —21) (Y — 1)
wy = e , (4.163)
and
. XA)g —u), (4.164)

This defines an interpolation scheme that has continuously varying dependence on

the nodal values as the interface moves through the grid.
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4.5.6 Iterative scheme for interface velocity

The interface velocity at each time step is unknown and must be determined to
successfully evolve the temperature forward in time. It is only defined on the interface
and we discretize it using a periodic cubic spline, Vi (q), that interpolates between
the values determined at the interface marker particles. The temperature has a non-
linear dependence on Vi so an iterative scheme is required. In our scheme, the error
associated with a guess for the normal velocity is defined by the Gibbs-Thomson

condition,
0 = —¢e.(n) k. (4.165)

When the above is satisfied, we have correctly determined V. The goal of our
iterative solver, therefore, is to satisfy the Gibbs-Thomson condition at each interface
marker particle to within a desired tolerance (typically, tol = 10~°). The error at the
i marker is given by

€; = 0n+1 (X“ Y;) + &c (1’11) K. (4166)

As we shall see, to determine e; we need an initial starting guess for V*!, the

unknown normal velocity at time ¢,,;. For the first time step we use the normal
velocity supplied with the initial conditions of the problem. For subsequent time

steps, Vat? = V2 is the initial guess. The algorithm to determine e; is,

1. Using the current guess for the normal velocity of the interface, advance the

interface marker particles forward to their ¢, positions.

2. Using the new interface position, compute all stencil intersections, node types

and stencil corrections.
3. Compute the new temperature field.

4. Determine the new temperature at each interface marker particle.
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5. Calculate the amount by which the Gibbs-Thomson condition is violated at

each marker,

e = 0" (X" (q), Y™ (@) + e (077 (00)) 57 (q2) (4.167)

The above algorithm allows us to calculate the amount by which the non-linear
system defining the normal velocity at the marker particles, V™ (¢;) or V! for
short, is not satisfied. The details associated with the calculation of e; are nested in
the above algorithm so any iterative scheme for an implicitly defined discrete non-
linear system could be employed. This problem is challenging because the calculation
of the error is relatively expensive. Note that each calculation of the error involves the
solution of the heat equation. If we wished to simulate a problem with non-symmetric
material properties, this would require the determination of custom stencils adjacent
to the interface and an expensive system inversion for the temperature. If the material
properties are symmetric, on the other hand, we need only determine an additive
correction for the stencils adjacent to the interface and the temperature system can be
inverted efficiently using a FFT (Fast Fourier Transform) based solver (see [68]). This
is why we have restricted attention to problems with symmetric material properties
in two dimensions. Even using a “fast solver,” however, the evaluation of the error
is expensive which makes the construction of a Jacobian by numerical differentiation

undesirable. It is possible to use the pseudo time stepping scheme that was utilized

in one dimension,
Vith = Vit — e /w, (4.168)

but the Jacobian appears to vary too much with time to allow a single guess for w to
be effective over long periods of time. To address this problem, we have developed a
variant of Broyden’s method (see [9]) that automatically calculates a guess for w after
each iteration. We have also implemented a line search algorithm that attempts to
minimize the error associated with the normal velocity along the “search direction”

defined by —e;/w. The complete algorithm is
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. Determine the error associated with the current guess, e;.

. Save the current error,

*

e; = e. (4.169)

. Save the current guess,

V* = Vet (4.170)
. Calculate a measure of the error associated with current guess,

No—1

go=llellz= > (es)?. (4.171)

=0

. Set the “search direction” associated with current guess,

OV = —e;/w. (4.172)
. Calculate a new guess using
n—+1 * 1
Vo =V*+ —2—51/;, (4.173)
error, e;, and error measure
o N
gz = lleillz = >_ (e)”. (4.174)
i=0
. Calculate new guess
Vit = V* + 6V, (4.175)
error, e;, and error measure
o N
gr=lleillz=>_ (). (4.176)

=0
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8. Using quadratic interpolation (x = 0, 1/2, 1), construct an “error function,”

g (p), which is a measure of the error associated with guesses of the form

Vit = V* + ubVv. (4.177)

9. If g (1) has a minimum, 75 < g, < 10, use that value to calculate a new guess,
V](fH_l = V* + Nmin6‘/;7 (4178)

and the associated error, e;. If there is no minimum, the guess associated with

@ =1 is retained.

10. Compute an approximate Jacobian using

Ng—1

S (e (Vi -V)
w= o — (4.179)
Z (V]’\f[H-l _ V*)
i=0

11. If the error at any of the markers is too big (i.e., ||e;||,, > tol), go back to 2.

The above calculation for w is a specialization of Broyden’s update formula for a

Jacobian of the form J = wI . The heuristic derivation follows from the definition of

the Jacobian,
8ei

av;’

Jij = (4.180)

Replacing the differentials by finite changes and substituting in J;; = wé;;, we find
wbV; = be;, (4.181)

which, in general, has no solution. If it does have a solution, however, the solution is

given by
Ne—1
> 6e;bV;
_ =0
W= N1 ’

S (8v)?

=0

(4.182)
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which we use to calculate the approximate Jacobian above. Once the iterative scheme
for the normal velocity has converged, we have solutions for both V! and 6" and

we can proceed to the next time step, repeating the process.

4.5.7 Complete scheme

Using the algorithms developed above, we can develop a method to solve purely
diffusive dendritic solidification problems. We begin the time step with initial values
for the temperature, the position of the interface marker particles and the interface
velocity at the marker particles. If this is the first time step, this information must
be extracted from the initial condition supplied as part of the problem statement.
The initial spacing of the marker particles is set to be Az. It is possible to make this
larger, but making it too small can lead to an ill-conditioned system for the velocity.

To advance to the next time step, we do the following:

1. Tterate on the normal velocity, V™, until the error associated with the Gibbs-

Thomson condition is sufficiently small, ||e;|| ., < tol.

2. Determine the distance along the curve, s;, of each marker particle and the total

arc length, S = sy, associated with the new interface position determined in

step 1.

3. Assuming there are N, marker particles, if S/N, > 5Ax/4, increase the number

of marker particles so that S/N, = Az is satisfied as closely as possible.

4. Using linear interpoiation and the values of s; calculated above, determine the
parameter values, ¢, associated with the new position of the marker particles

such that they are equally spaced along the interface.

5. Regrid the interface quantities X', Y™*land V2" by interpolating their val-

ues at ¢ = ¢ and use these to establish a new set of evenly spaced marker

particles.
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6. Update all the time dependent quantities and continue with next time step (go

back to step 1).

We have used the above algorithm to compute the solution to several different
problems. In all cases we select the time step such that
Ax?
At = min { —, At .
m1n{5H, I}, (4.183)
where At is the largest time step we can take such that the interface travels a distance
less than Az/10, i.e.,
Ax

(Vi) A1 < 5 (4.184)

The backward Euler method (o = 1) is used to evolve the equations forward in time.
Neither the restriction we place on the time step nor our use of the backward Euler
method is required for successful evolution of the system. We have found in practice,
however, that the above choices result in the most robust method during the later,

highly non-linear stages of the simulation.

4.5.8 Results

There are no periodic fully two-dimensional exact solutions for the dendritic solid-
ification problem to validate our method. In Chapter 2, however, we derived an
approximate solution using linear perturbation theory. The solution describes the
evolution of small periodic disturbances, of wave number a, to the one-dimensional
traveling wave problem. To validate our method, we use the linear perturbation so-
lution as the initial condition and check that we do indeed converge to the predicted
behavior. For our first test we use parameters H = 1, h =1, V = 3, 6y = 74 and
61 = 0 (isotropic material). We then simulate the evolution of the fastest growing
disturbance associated with these values, which is the a = 3 mode.

The computational domain, z € [0,27] and y € [—1, 67 — 1], is discretized using
equal mesh spacing in both directions (Az = Ay). Using ¢ = —107%, the temperature

is set to the linear perturbation solution derived in Chapter 2. The interface is also
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N |0n — 0], | Ratio
32x96 | 6.1136x10~*
64x192 | 1.5673x10~% | 3.9007
128x384 | 3.5469x107° | 4.4188

Table 4.11: Error in the a = 3 mode temperature field at ¢ = 2
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Figure 4.14: Comparison of the position of the a = 3 mode interface at ¢ = 6 according
to linear theory and full simulation with different resolution
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Figure 4.15: Comparison between the linear theory and the full simulation for the
a = 3 mode tip velocity

Tip Velocity

Figure 4.16: Comparison between the linear theory and the full immersed boundary
method simulation for the a = 3 mode tip velocity
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N ON HO'N —O'HOO Ratio
32x96 | 0.85332 | 3.0919x10~2
64x192 | 0.87794 | 6.2890x10~3 | 4.9163
128x384 | 0.88284 | 1.3913x1073 | 4.5202

Table 4.12: Resolution study of the growth rate of the a = 3 mode

set to its initial shape as dictated by linear perturbation theory,

X = 2ngq, (4.185)
Y = ecos(aX), (4.186)

where ¢ € [0, 1]. Evolving the system forward in time we find good agreement between
the numerical and linear perturbation solutions. In Table 4.11, we list the error in
the temperature field at time ¢ = 2. The second order accuracy of the temperature is
apparent. In Fig. 4.14, we have plotted the analytically and numerically determined
interfaces at time ¢t = 6 for several mesh resolutions. The second order accuracy
of the numerically determined interface position is evident. Similarly, in Fig. 4.15
we demonstrate that the tip velocity (maximum interface velocity) generated by the
numerical method is second order accurate. It is interesting to compare this with the
tip velocities generated by the immersed boundary method. In Fig. 4.16 we have
plotted the numerically determined tip velocities for the immersed boundary method
over a time range identical to that of Fig. 4.15. As was the case in one dimension,
the performance of the immersed boundary method is very poor for this problem.
Clearly an extremely small mesh size would be necessary for the immersed boundary
method to approach the accuracy of our scheme at even the coarsest resolution.

The convergence of the interface position and velocity implies the convergence of
the growth rate. It is useful to be able to extract a numerical value for the growth rate,
however, so that we can produce an effective dispersion relation for our method. At
the end of each time step, we determine the amplitude of the interface, b, by numerical

integration and the orthogonality of trigonometric functions. We then assume that
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Figure 4.17: Comparison of numerical dispersion relation with linear theory

the amplitude has the form
b = cexp (ot) (4.187)

and, taking the log of b, construct a cumulative least squares approximation for o
(i.e., the value of b for all time steps is used to continually update o). This produces
a time dependent value for o, but it quickly settles down to a steady state value
that we take as the growth rate. The growth rates measured by this process for the
a = 3 mode are listed in Table 4.12 for each resolution. Measuring the growth rates
of many different modes allowed us, in Fig. 4.17, to compare the dispersion relation
of our numerical scheme with the dispersion relation predicted by linear theory. The
agreement is quite good even for the rapidly decaying modes. As a rule, the numerics
appear to under predict the growth rate. This observation is consistent with the
results in Table 4.12.

Finally, we have plotted the complete history of the numerically determined a =
3 interface for the 128x384 simulation. These plots show the superposition of the

interface at many different evenly spaced intervals in time. In Fig. 4.18 we have
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Sy

Figure 4.18: Superposition of the a = 3 mode for evenly spaced time increments
(6t = 1) begining at t = 0

Figure 4.19: Superposition of the @ = 3 mode solution for evenly spaced time incre-
ments (6¢ = 0.05) begining at ¢ = 11.2
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plotted the initial evolution and in Fig. 4.19 we have plotted the evolution at later
times. The solid and liquid regions are below the interface and above the interface,
respectively, in each plot. Note the tip splitting that occurs late in the simulation. We
will see shortly that phenomena such as tip splitting can be influenced by anisotropy

in the material properties.
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Figure 4.20: Shape of the initial condition for the Jacobi finger problem

For our next example we simulate the evolution of a more concentrated perturba-

tion to the flat interface shown in Fig. 4.20. The shape of the perturbation is given
by

X = or (q—%), (4.188)
v - o[BEES (1)

where ¢ € [0,1] and O, is the Jacobi Theta function of the second kind (see [1])

defined by
0y (z,q) = 2¢"* " ¢V cos[(2n + 1) 2] . (4.190)

n=0
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N |0n — 0], | Ratio
32x128 | 6.0152x10~*
64x256 | 1.5460x10~% | 3.8907
128x512 | 3.5314x10~° | 4.3780

Table 4.13: Error in Jacobi finger temperature field at ¢t = 2

We call the above interface shape a Jacobi finger. It is possible construct an approxi-
mate solution to this problem using the solutions to the linear perturbation problem.
This is done by numerically computing the Fourier coefficients associated with the in-
terface perturbation and then using these to form the appropriate linear combination
of modal solutions to represent the answer. This result is then used to supply the
numerical method with conditions and further validate the code. In Table 4.13 we
have demonstrated convergence of the temperature field to the analytic solution at
time ¢t = 2. In Fig. 4.21 we demonstrate the convergence of the numerically predicted

interface position. In Fig. 4.22 the convergence of the tip velocity is indicated.
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3.490 f

3.485

3480 L1 1

Figure 4.21: Comparison of the position of the Jacobi finger interface at ¢t = 7 ac-
cording to linear theory and full simulation with different resolutions

Finally, we briefly examine the impact that anisotropy can have on the solution.
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Figure 4.22: Comparison between the linear theory and the full simulation for tip
velocity of the Jacobi finger

Note that anisotropy is a higher order effect that has no influence on the linear
perturbation solution. Thus, each case starts with exactly the same initial condition.
We compute the long time evolution of the Jacobi finger using V = %, 6o = 15
8y =2, =10"* and k4 =0, 4 and 6. The results for ¢ > 11.2 of the long time
simulation for the isotropic case, k4 = 0, is shown in Fig. 4.23 while the anisotropic
cases of k4 = 4 and k4 = 6 are shown in Fig. 4.24 and Fig. 4.25, respectively. As
before, the solid occupies the region below the interface in each plot. In the isotropic
case, k4 = 0, the material is equally free to grow in any direction. This case generates
the least “pointy” dendrite of the three, and is the only one to undergo tip splitting.
In the case of k4 = 4, anisotropy introduces preferred growth directions along the x
and y-axes. This produces a much more directed “pointy” dendrite that does not tip
split. Note the beginnings of side branches near the end of the simulation. Also of
interest is the movement of the tip which travels at a constant velocity near the end
of the simulation. Similar comments apply to the k4 = 6 case. In this material, the

anisotropy introduces preferred growth directions along the y-axis and along diagonals
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offset from this axis by 7 /3 radians. This results in the most sharply defined dendrite
of the three with the most pronounced side branching near the end of the simulation.
The tip in Fig. 4.25 also begins to move with constant velocity near the end of the
simulation. The final interface shape generated for the k4 = 6 case is plotted in Fig.

4.26.

4
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4.23: Superposition of the isotropic Jacobi finger solution (k4 = 0) for evenly
spaced time increments (6t = 0.10) begining at ¢ = 11.2
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Figure 4.24: Superposition of the anisotropic Jacobi finger solution (k4 = 4) for
evenly spaced time increments (6t = 0.10) begining at ¢ = 11.2

Figure 4.25: Superposition of the anisotropic Jacobi finger solution (ka = 6) for
evenly spaced time increments (6¢ = 0.10) begining at ¢ = 11.2
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Figure 4.26: Final frame of the anisotropic Jacobi finger solution (k4 = 6)
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Chapter 5 Incompressible flow in an

irregular domain

5.1 Introduction

In order to simulate convection in the liquid phase during solidification, it is necessary
to compute the flow in a complicated time-dependent geometry. In this chapter we
will focus on determining the flow in an irregular domain with fixed boundaries. The
method will be extended to include moving boundaries in Chapter 6.

Our method utilizes an embedded interface similar to the one discussed in Chap-
ter 4. We will treat the entire computational domain as if it were all liquid. Inside the
domain, the position of the liquid-solid interface is tracked by equally spaced marker
particles or control points. The position of these control points is independent of
the computational grid except that we attempt to maintain a spacing between them
of approximately 2Az, where Az is the uniform spacing between the computational
nodes in both the vertical and horizontal directions. The points on the interface
in between the control points are represented by a periodic cubic spline that passes
through the marker particles. The fluid motion is influenced by the interface through
the forcing that it applies along its normal and tangential directions. In our problems
the interface is represented parametrically by (X (¢,t),Y (g,t)), where g € [0,1]. The
interface, in general, does not coincide with the computational nodes, so incorporat-
ing the interface forcing into the momentum equations can be cumbersome. One
convenient way of representing the interface force is in terms of a body force that is
added to the right-hand side of the momentum equations. This body force is given
by |

Fz/olf(q,t)c?(a:—X,y—Y)dq, (5.1)
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where f is the interfacial forcing and § is a two-dimensional delta function. We never
actually explicitly evaluate (5.1). Instead, it is used analytically in the derivation
of the jumps conditions on the flow velocity and pressure. These jumps are then
incorporated directly into the computational stencils that intersect the interface using
the techniques developed in Chapter 3. In order to maintain a desired velocity on
~ the interface, we iterate on f (g, t) until the velocity on the interface, interpolated off
the computational grid, takes on its desired value. Thus we compute a fluid flow in
both the liquid and physically solid regions of the domain. The flow in each region
satisfies the interface velocity boundary condition, but only the velocity in the liquid

region is physically relevant.

5.2 Existing numerical methods

An extensive body of literature exists concerning the simulation of fluid flow in fixed
irregular geometries. An exhaustive review of the subject is well beyond our current
scope. Instead we focus on those methods that are applicable to both the fixed
geometries of this chapter and the deforming domains of Chapter 6.

The finite element method has been used extensively by many researchers (see
[16], [23] and [25], for instance). Grid generation methods are now mature enough
that most irregular geometries can be discretized quite easily and extremely accurate
results can be produced using a combination of locally refined meshing and/or high
order elements. The use of unstructured grids, however, can make the resulting
discrete systems difficult and expensive to solve. In addition, if the geometry of the
domain is allowed to deform with time, the mesh can become skewed and frequent
regridding is required. To minimize this problem, some researchers have tried to
construct boundary conforming meshes by cutting and/or deforming the cells of an
underlying regular grid. The idea is to embed the irregular boundary in a larger
regular mesh. The cells of the regular grid which are intersected by the irregular
boundary (i.e., that contain both solid and liquid) are cut or distorted so that the

embedded surface lies only along the edges of the cell (i.e., the cells exclusively contain
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solid or liquid). The modified cells typically require special treatment when the
governing equations are discretized. Examples of this approach can be found in
[71] and [80]. Other researchers have started with regular grids but accounted for
the irregular geometry in a fundamentally different way. The essential idea is to
compute a flow everywhere in the computational domain (which is regular) and to
force the fluid in such a way that flow obeys the required boundary conditions on the
boundaries of embedded irregular domain. Initial implementations of this approach
accounted for the irregular boundary by adjusting the pressure in the mixed cells
(cells containing both liquid and solid) so that the liquid did not penetrate the solid
surface. The method has been applied to fixed (see [73]) and moving (see [74]) domains
but is not capable of enforcing boundary conditions on the tangential velocity. An
alternate approach is to introduce the normal and tangential forcing on the embedded
domain as additional unknowns. The boundary forcing is coupled into the momentum
equations through the use of a singular body force of the form (5.1). The delta
function singularity is either discretized directly using smoothed delta functions (see
[22]) or through the modification of the stencils intersected by the embedded boundary
(as in this work or, for Stokes flow, [39]). The determination of the forcing has
proved difficult in the past (see ‘[22]) because a degeneracy in the pressure field was
not recognized. We will address this issue below. Finally, some researchers have
employed approximate methods of modeling the irregular boundaries. The two most
popular are the use of a discontinuous viscosity that is taken to be very large in the
solid region (see [57]) and the introduction of a porous media style friction term that
is zero in the fluid and very large in the solid (see [56]). The accuracy associated with
these approaches tends to be quite poor. For instance, in the porous media model,

the momentum equation is given by

%_ltl +u-Vu=-Vp+ DV?u — Ch, (5.2)
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where

0  in the liquid
C= . (5.3)

€72 in the solid

It is noted in [56] that the solution of the above (along with continuity) will have an
error no smaller than O (&‘1/ 2). The value of € is non-physical so it is possible to take
£ < 1 but, in practice, these methods have trouble with ill-conditioning if they select

parameter values which are too extreme (see [57]).

5.3 Computational mesh

In this work we have used a staggered mesh scheme (see [24]) which, in the absence
of an interface, allows the discrete version of the continuity equation to be satisfied

exactly. A typical computational cell in our mesh is given in Fig. 5.1.

A
v(ijt+1)

—

u(ij) Op(i,j) ]U(i+1,j)

A
V(i)

Figure 5.1: Pressure cell with relative indices for all variables

The velocity and pressure nodes in a staggered grid are placed so that there is
a one-to-one identification between the pressure and the flow divergence in a com-
putational cell. This one-to-one mapping is lost on a non-staggered grid, and it is
not possible to exactly satisfy conservation of mass for second order accurate non-
staggered schemes (see [62]). The staggered placement of the unknown variables does
introduce some complexity over a discretization on a uniform grid. This is particu-

larly true when singular forcing is allowed to act on the interface. We have found
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that mass conservation is important in the fully coupled solidification with convection

problem, however, so a conservative scheme is called for.

5.4 Discretization without interfacial forcing

In this section we present a discretization of the Navier-Stokes equations that is ap-
plicable to a puré fluid with no forcing acting on an immersed interface. Although we
do not intend to include the interface forcing yet, it is important that this incorpo-
ration be possible. As mentioned above, the interface forcing is only felt through the
corrections that are made to stencils intersected by the interface. Ultimately, we need
to determine normal and tangential forces that must be applied in order to force the
fluid to obey the no-slip condition at the new position of the interface. This requires
that at least some of the derivative terms in the system be treated implicitly so that
the new forcing influences the flow and acts at the proper location. This requirement
has a significant impact on the scheme that we develop.

In our presentation below, we will only discretize the time derivatives explicitly.
Clearly the spatial derivatives must also be discretized but we have not explicitly
included this. At least at this stage, including all the details in the development
only complicates the presentation without providing additional insight. The stencils
required for all spatial derivatives can be found in Appendix B.

Our scheme is second order accurate and utilizes a staggered mesh to simulate
incompressible fluid flow. Although the use of a staggered mesh allows the discrete
incompressibility constraint to be satisfied exactly, solving the resulting system can be
expensive. One approach (see [14]) is to use an explicit forward Euler time stepping

method to determine an intermediate velocity,
i =u"" + At (V) = u” + At [DVPU" — u" V" + b (5.4)

that, in general, will not satisfy the incompressibility constraint. Note that we have

included an arbitrary body force term, b, in the above that will later be replaced
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by the buoyancy forcing. The intermediate velocity is then used to determine the

pressure,
1
Vil = — V.4 .
and the physical velocity at the new time
u™ = 4—At (Vp”“) . (5.6)

Unfortunately, we can not use the above in this work because none of the spatial
derivative terms are evaluated at the n + 1 time level. Although we need a method
that treats at least some of the derivatives implicitly, this requirement significantly
complicates the problem. If the convective terms are treated implicitly, we are con-
fronted with a fully non-linear system that is difficult and expensive to invert. If the
viscous terms are treated implicitly, the simple de-coupling of the velocity from the
pressure seen above is no longer possible. In the absence of an interface, it is possible
to treat the viscous terms implicitly (see [32]). Unfortunately, that method requires
that the pressure be replaced by a non-physical variable which complicates interface
correction. We have chosen a different approach that maintains both the linearity of
the system and the simple de-coupling of the velocity and pressure.

The scheme utilizes a Runge-Kutta (see [28]) time stepping method. First we

calculate an explicit forward Euler prediction to the physical velocity
u* = u" + At [DVQu" —u™Vu" — Vp" + bn] . (5.7)

Note that because the incompressibility constraint is not utilized to calculate u* it, in
general, will not satisfy conservation of mass exactly. Since it uses an incompressible
flow to calculate the time derivative, however, it will be an accurate approximation to
the physical velocity (u* = u™™ + O (At?)). Next this estimate is used to compute

an intermediate velocity,

u™t + At (V) (5.8)

o
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i = u+At{e[DV0'] + (1 - a) [DV?u"] - u™Vu" + b, (5.9)

which, in turn, is used to determine the pressure,

1
2 n+l — L
Vp _Atv a, (5.10)
and the physical velocity at the new time
u™t = G—At (Van) . (5.11)

Note that the above is a family of time marching schemes with (a € [0,1]). Some
comments are in order concerning the treatment of the different terms on the right-
hand side of (5.9). Starting from right to left, we first consider the body forcing
term b. In some of our later simulations we will find that the dominant balance
in the Navier-Stokes equations is between the pressure gradient and body forcing
(buoyancy) terms. It is important, therefore, that these terms always be evaluated
at the same time level. This is the motivation for evaluating the body forcing at the
old time, b", in (5.7) and at the new time, b™", in (5.9). The convection terms must
be evaluated at ¢, to avoid introducing non-linear dependence of the solution on the
interface forcing. Although this touches on the subject of the next few sections, we

will address it here briefly. Consider the convection terms in the horizontal direction,

which are given by
U— + v—. (5.12)

The value of the vertical velocity, v, is not known at the u nodes so it must be

interpolated using

v =

wiE—1,7)+v@ ) +v@E—1,75+1)+v(,j+1)]. (5.13)

NI

As we shall discuss shortly, if this interpolation stencil is intersected by the interface,

a correction must be added to the above so that the value at the u node is accurately
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computed. If we wish to use (u*,v*) to calculate the convection terms, then the cor-
rections applied to the above derivatives and interpolation will depend on the normal
and tangential forcing on the interface at tny1, (fr, fn)"". Additive corrections will
be required for both the interpolated value of v* and the vertical derivative of u* which
will introduce a non-linear dependence of the flow on the interface forcing (f-, fn)"*".
It is significantly simpler to determine (f;, fn)"Jr1 when it has a linear relationship
with the flow field. In this work, therefore, we only evaluate the convection terms at
t,, to avoid confronting the non-linearity.

Finally we consider the treatment of the viscous terms. For the interface forcing
at t,11 to influence the flow field, at least some of the derivatives must be evaluated
at t,4+1 and the viscous terms are the only ones remaining. This implies that we must
solve the above using oo > 0. In fact, a standard linear stability analysis (see [28])

of the Runge-Kutta scheme reveals that for a = % (trapezoidal rule) the stability

restriction on the time step is identical to the forward Euler method,

A 2
At < Z%' (5.14)

When o = 1 (Backward Euler) the time step can be only half the size of the o = £

case so we compute using o = % Thus, we see that although it is awkward to use a
different time stepping method on each term in (5.9), it is necessary so that all the

demands placed the scheme can be met.

5.5 Discretization with interfacial forcing

5.5.1 Spatial corrections

Correcting the finite difference approximations for the Navier-Stokes equations
follows the same procedure we outlined in Chapter 3. For example, to compute the

momentum in the horizontal direction, we need an approximation for the vertical
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Figure 5.2: Node correction on a staggered grid

velocity at the u-nodes. In the absence of interface intersections, this is given by

v = Z[v(i— Lj)+v(,j)+v@E—1,j+1)+v(,5+1)]. (5.15)
Now, suppose that the interface intersects the diagonal line connecting the u (4, §) node
and the v (i, 4+ 1) node, as shown in Fig. 5.2. If the position of v (4, j + 1) relative

to the interface intersection point (X*,Y*) is (Z,¥), then the correction associated
with the intersection is

C=2z[v;] +7[vy] + % (fz [Vzz] + 227 [Ugy] + 7 [Uyy]) ) (5.16)

where [v,] is the jump in the z-derivative of v, [v,,] is the jump in the second derivative

of v with respect to x and y and so on. The corrected value for v at the u (4, j) node
is then given by

v=i[v(z’—1,j)—|—v(i,j)+v(z’—1,j+1)+v(i,j+1)—C’] (5.17)

if u (7, ) is on the minus side of the interface (i.e., the normal points away from the
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u node) and by

W —1,7)+v(i,5) +v@E—1,7+1)+v(E,j+1)+C], (5.18)

vV =

B |

if u (4,7) is on the plus side of the interface (i.e., the normal points towards the u
node). All of the other discretizations also follow this standard approach with one
exception, which we now address.

The correction of the intermediate velocity, @& = (4,9), is complicated by the
fact that it is not a physical quantity. The jumps across the interface induced by
the forcing are known for the pressure, p, and the physical velocities u and v (see
Appendix C). The intermediate velocity is purely a numerical construct, however, so
we can only determine its jumps by relating them to jumps in the physical variables.

Recall that the intermediate velocity is defined as
o =u"t + At (Vprt). (5.19)

Thus, by definition, the jumps in its horizontal component are given by

[4] = At [ps], (5.20)
[Ge] = [ua] + At [pa] , | (5.21)
[ze] = [toa] + At [Praa] = [tta] + O (A2?), (5.22)

and the jumps in its vertical component are given by

[0] = At [py], (5.23)
[0y] = [vy] + Atlpy,], (5.24)
[O4y] = [vgy] + At [pyyy] = [vyy] + O (sz) : (5.25)

The jumps in the derivatives of pressure are all multiplied by At = O (Az?) so they
make an almost negligible contribution to the quantities above. It is important to

include the pressure jumps through the second order derivatives, however, to satisfy
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continuity.
The staggered grid discretization of the Navier-Stokes equations is able to conserve
mass accurately because the equation for the pressure is derived by direct application
of the discrete continuity equation. In the scalar form, we start with the definition of

the intermediate velocity

i = u"T+ At (g—i) , (5.26)
D o= "4 At (%) , (5.27)
and then apply the discrete continuity equation to find
o*p 9% 1 (04 00
gﬁ+a—y2=z—t~<£+a—y> (5.28)

In order for continuity to be satisfied, the discrete approximation to the second deriv-

ative must be identical whether it is calculated directly using

&%*p 1 . . . . .
32— Az P+ L) +p(—1,7)—2p () (5.29)
or indirectly using
o (0Op 1 (dp,. N~ Op,. |
2 (%) -2z |61 - ) (5.30)
where
op ,. . 1 . . .
5 Ut L) =7+ p@E+1,7) —p(J)], (5.31)
and
Op ,. . 1 . . .
5o (60) = 2= [p(,7) = p(i = 1,4)]. (5.32)

If the equivalence between these two representations is lost, then solving the Poisson
equation for the pressure is no longer equivalent to satisfying continuity and mass
conservation will be poor. Therefore, even though the contribution of the pressure

jumps in (5.20)-(5.25) is small, if these quantities are not included, the corrections
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associated with (5.30) will be different from those associated with (5.29) and the
equivalence will be lost. When the intermediate velocity corrections are calculated
using (5.20)-(5.25), continuity can be accurately satisfied, even in the presence of

singular interface forcing.

5.6 Identification and removal of singularities

5.6.1 Determination of the flow field

The pressure in the incompressible Navier-Stokes equations is only determined up
to an additive constant. This degeneracy is also inherited by the discrete equations.
Thus, the Poisson equation for the pressure is singular with a single null vector that
has all its entries equal to one. By the Fredholm Alternative (see [65]) we know that
this system only has a solution if the inner product of this null vector and the forcing

is zero. It follows from the form of the forcing (see Appendix C) that this inner

product is given by

ZTfp = 2 ifp(iaj) (5.33)
—1 (X rav,,5) —a(0,5)]  Nex![v(, Ny +1) —v(i,0)
_ E{;[ v — }+ ;O [ Am }}(5.34)

which, roughly speaking, is a discrete approximation to the integral of the normal
velocity around the computational domain. For our geometry, the first term on the
right-hand side vanishes due to periodicity in the horizontal direction and the last term
vanishes because the velocities at the lower and upper boundaries are specified to be
zero. Thus the discrete system can have an infinite number of solutions corresponding
to adding an arbitrary constant to the pressure. From a practical stand point, it is
desirable to remove this degeneracy so that we can unambiguously determine the
pressure. In this work the pressure Poisson equation is solved using a “fast solver”
which utilizes the discrete fast Fourier transform (see [68]). Using this approach,

the solution is decomposed into Fourier modes in the horizontal direction that are de-
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coupled and whose vertical dependence is easily determined. That is, the transformed

Poisson equation becomes

(fz o) =1 (5:)

where p, f and O, (n) are the discrete Fourier transforms of the pressure, system
forcing and discrete second order derivative operator, respectively, in the horizontal
direction. The discretization in the vertical direction is neglected above for simplicity.
The above equation is non-singular for all the Fourier modes n = 1 to N, — 1, but
singular for the n = 0 mode which corresponds to modes with no variation in the
horizontal direction. The exact discrete equations for the n = 0 case are, at the

bottom of the domain,

(—A—}B—F 15(1;0) - 5(0;0)] = £ (030), (5.36)
in the interior, 1 < j < N,
W[ﬁ(j‘irl;o)—213(j;0)+25(j—1;0)]=f(j;0) (5.37)
and at the top of the domain
B PN = 10) =P (N0 = F(,:0). (5:39)

This system only determines the pressure up to a constant. We can make the system
non-singular without any loss of generality by simply replacing the equation at the

top of the domain by
B (N,;0) =0 (5.39)

which specifies a value for the additive constant. All the pressures modes can now be
unambiguously determined and transformed back to physical space.

In the absence of interface forcing, the above procedure yields an accurate solu-
tion to the Navier-Stokes equations that satisfies the discrete continuity equation to

machine precision. When forcing acts on the interface, the derivatives of the flow are
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no longer smooth and it is necessary to add corrections to all stencils intersected by
the interface. These corrections destroy the special structure of the pressure Poisson
forcing and the Fredholm Alternative is no longer satisfied. This difficulty was also
encountered by LeVeque (see [39]) when solving the Stokes equations on a regular
grid. Although it is no longer possible to obtain an exact solution for the pressure,
it is still possible to obtain a solution in the least squares sense (see [68]) by using a

perturbed forcing

Nz—1 Ny

fp(iaj)zfp(inj) N, (N +1 Z pr a, b (5'40)

a=0 b=0

that does satisfy the Fredholm Alternative. Note that the sum on the right-hand side
is non-zero because we only correct the derivatives up to second order yielding trun-
cation errors of O (Ax) at stencils intersected by the interface. There are O (Az™?)
stencils intersected by the interface implying that the sum of f, over the grid will be
O (1). Therefore, the difference between f, and f, is O (Az?) which does not change
the order of the accuracy of the solution. Because the pressure Poisson equation can
not be solved exactly when interface forcing is present, it is not possible to satisfy the
continuity equation to machine precision in this case. The divergence of the flow field
instead is equal to a, typically very small, spatially uniform constant that converges

to zero as the computational mesh is refined.

5.6.2 Determination of the interface forcing

We are using singular body forcing to model the effect of a solid boundary at the
interface position. This means that the forcing must be determined such that the
velocity satisfies a no-slip condition at the interface. A consequence of this approach
is that the domain is divided into two completely independent regions that separately
satisfy the Navier-Stokes equations. Typically only the flow in one of these regions is
physically relevant but both must be determined. Two complications arise when this
is implemented in practice. The first difficulty we encounter is that the presence of two

independent flow regions implies the existence of two independent arbitrary pressure
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constants. We determine both flows on a single grid so the procedure described above
eliminates one of the pressure constants, but that still leaves one unspecified. Second,
the specification of the fluid velocity on the interface is non-trivial. The problem is
conservation of mass. Because our simulations are performed on a periodic domain
with zero velocity specified on the upper and lower edges, the exact mass conservation

constraint on the fluid velocity at the interface, U (g,t), is

/ "(U-n) (gg) dq = 0. | (5.41)

Unfortunately, we can only determine the velocity on the interface in our simulations
by interpolating it off the computational grid. The process of interpolation introduces
errors. Even if we interpolate the interface velocity off of a divergence free flow field,
the resulting values would not satisfy (5.41). Instead, the effective constraint on the

interface velocity is

/0 (U-n) (%) dg = A (5.42)

where the value of A depends on the interpolation scheme and the relative position of
the interface control points and grid nodes. We use a second order accurate interpo-
lation scheme so, in our simulations, A = O (Az?). Unfortunately this implies that,
in general, the numerical method can not produce a flow field that satisfies U on the
interface, even though analytically a solution exists. It is possible, however, for the
numerical method to produce a slightly perturbed flow field that has a velocity of
U + An on the interface. Put another way, the numerical method is only capable of
specifying the fluid velocity on the interface up to a constant. This constant is not
arbitrary. As we shall see, it is set automatically by scheme. Before we can do this,
however, it is necessary to discuss the system that must be solved to determine the
interface forcing.

The singular interface forcing modifies the flow field through the application of the
spatial corrections discussed above. Although the dependence is convoluted, careful
inspection of the form that these corrections take reveals that there is a linear rela-

tionship between the interface forcing (fr, f») and the flow field. This implies that
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there is a linear relationship between the interface forcing and the velocity on the
interface (ur,u,). The velocity on the interface is interpolated off the grid using the
averaged Taylor series approach discussed earlier in Chapter 4. The dependence of
(ur,upn) on (fr, fn) is far too complicated to determine analytically but, because we
know that the system is linear, we can apply one of the many iterative solvers which
only require the system residual. In this work we use the preconditioned BiConjugate
Gradient Stabilized method (see [5]).

Before we define the precise system residual, it is instructive to discuss the most
obvious, but not quite correct, definition of the system residual. At each of the
interface control points, 0 < ¢ < N, we interpolate the flow velocity (u,v) off the
staggered grid and use these to calculate the tangential and normal velocities at the

interface control points

ur (i) = 74 (0)u(@)+7y(E)v(5), (5.43)
Up (1) = ng (@) u () +ny (@) v (). (5.44)

The residual associated with the tangential forcing at the control points is calculated

using
r (7’) = Ur (7') - U (’L) ) (545)

where U (i) is the desired tangential velocity on the interface at the i** control point.
The residual associated with the normal forcing at the control points is calculated

using
r(Ne+1) = up (3) — Uy (7), (5.46)

where U, (i) is the desired normal velocity on the interface at the " control point.
As we mentioned above, however, it is not possible to completely specify the normal
velocity on the interface. We must leave a constant that is implicitly determined by

conservation of mass. Using

r(Ne+1) = [un(5) — Up (0)] = [un 0+ 1) = Uy (i + 1)], (5.47)
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to compute the residual for 0 < i < N, — 1 forces the difference between the desired
normal velocity and computed normal velocity to be a constant, as we require. The
above leaves the residual at ¢ = N, — 1 unspecified but this last equation is needed
to remove the arbitrary additive constant associated with pressure. In Appendix C
we found that the jump in the pressure is given by the normal force acting at the

interface

[p] = fn- (5.48)

Any constant value added to the normal forcing at all the control points simply acts
to change the jump in the pressure. Because the flows on each side of the interface
are independent, however, a uniform pressure jump has no dynamic consequence
and simply serves to change the additive pressure constant. This null vector can be
eliminated by setting the average value of the pressure jump to [p],,,, using

1 Nc.—1

PN =1) = 3 fa () = [Pl (549

¢ =0

The value of [p] . simply specifies a relationship between the additive pressure con-

stants in each independent flow region. It is arbitrary and can be set to zero without

avg

any loss of generality. We will sometimes use a non-zero value of [p],, , to aid with
the visualization of the pressure field. Altogether then, the residual for the tangential

forcing at the control points, 0 < i < IV, is calculated using
r (Z) = Ur (Z) -U; (7’) ) (550)

and the residual for the normal forcing at the control points, 0 < 7 < N, — 1, is

calculated using

r(Ne+1) = [un (1) = Un ()] = [un (i + 1) = Un (i + 1)], (5.51)
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and at the final control point using

1 Neg

r(2N,— 1) = — Z Fr (1) = [P 4y - (5.52)

C?,—

Using these residuals, we have a well defined, non-singular system relating the in-
terface forcing to the interface velocity. As far as we know, this is the first time
that the difficulties associated with specifying an embedded boundary velocity in a
fixed grid method have been identified and resolved. It is possible that a similar ap-
proach could be useful in immersed boundary methods that typically have substantial
problems determining the appropriate interface forcing (see [22]).

It is possible to solve the above system for the interface forcing using an uncon-
ditioned iterative method such as the BiConjugate Gradient Stabilized method. It
is quite easy to calculate a preconditioner, however, and we have found that it sig-
nificantly reduces the number of iterations that must be performed during each time
step. The preconditioner that we use is an exact inverse of the system at a previous

time step. Introducing some notation, let

T=[f-,—(0) o fr(Ne=1) fu(0) --- fn(Nc_l):l (5.53)
and A be the system we want to solve so that the residual is given by
r=Ax—b. (5.54)

We can determine A by 2N, + 1 system evaluations. The vector b is determine by
setting x = 0 and calculating the residual. The ™ column of A is determined by
setting x = e;, the i"* unit vector, evaluating the residual and adding b. Once the
system A is determined, we can store it in factored form and use it as a preconditioner.
For fixed interface problems, this preconditioner exactly inverts the system for all
time steps. When the interface moves, the system changes slowly over time, but this

preconditioner is still quite successful.
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5.7 Solution procedure

Now that all the required steps in the algorithm have been discussed, we can fully
describe the solution algorithm. The basic idea is that each iteration for the interface
forcing requires the solution of the Navier-Stokes equations. Thus each BiConjugate

Gradient Stabilized iteration for the interface forcing performs the following steps:

1. Determine u* applying corrections evaluated with (f-, f.)" .

2. Determine & without corrections.

3. Apply corrections to @ using (fr, f,)" and (fr, f,)™"" where appropriate.
4. Determine p™*! applying spatial and temporal corrections where required.
5. Determine u™*! applying spatial corrections for the pressure gradients.

6. Interpolate the interface velocity off the grid using the averaged Taylor series

method.

7. Calculate the residual associated with the current interface forcing.

In practice, the first two steps are precomputed so that the calculation of the
residual is more efficient. The calculation of the preconditioner, described above, is
generic and done automatically by the BiConjugate Gradient Stabilized code. For
problems with a fixed interface, this process converges to the exact solution in a
single iteration. When the interface is allowed to move it is common for two or

three iterations to be performed before the infinity norm of the residual is sufficiently

reduced.

5.8 Calculation of the stream function

The stream function is useful for the visualization of two-dimensional flows. It is

related to the velocity by (see [77])

U = + (5.55)
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Figure 5.3: Location of the stream function nodes

ov
Vo= o (5.56)
which implies
VA = —w, (5.57)
where the vorticity w is defined as
Oov Ou

It is convenient to calculate the stream function at nodes that are located at the
corners of the pressure cell (see Fig. 5.3). Exploiting the no-slip condition on the

boundaries of the computational domain, we set the stream function to

U (z,y=yr)=0 (5.59)
on the lower boundary and
ov

on the upper boundary. The value of the stream function on the interface, which
should be a constant, is determined through the solution of the above system. Re-
calling that the velocity is continuous across the interface, we see from (5.55) and

(5.56) that the stream function and its first derivatives will be continuous even when
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singular forcing is applied. Using the velocity jumps calculated in Appendix C, how-

ever, it is easy to find that the jump in the vorticity across the interface is
W = (5.61)

This implies that the stream function satisfies a Poisson equation with a discontinuous
forcing which, we know from Chapter 3, yields a solution with discontinuous second

derivatives. To be exact, we have

@] = o, (5.62)

[P,] = 0, (5.63)

[,] = 0, (5.64)

[Por] = —nilo], (5.65)

[Woy] = —1gmy [w] (5.66)
and

[Wyy] = —n [w] . (5.67)

Using these jumps to correct the Laplacian and standard methods to correct the
velocity derivatives, the stream function can be easily determined. In general the
value of the stream function on the interface will not be exactly constant but does

converge to a constant at a second order rate.

5.9 Results

The validation of a Navier-Stokes flow code is complicated by the fact that exact
solutions to these equations are rare. The solutions that do exist are typically limited
to straight stream lines in a Cartesian or cylindrical geometry. Unfortunately, these
solutions essentially reduce to solving a heat equation for the velocity and do not
fully test the conservation of mass properties of a numerical scheme. To circumvent

this difficulty, we use three validation flows. Two of these flows have essentially
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straight stream lines and two are general but have no known exact solution. For the
final solution, we validate the code by verifying that the velocities and pressure are
converging to a solution at the expected second order accurate rate. This can be
done using a clever trick (see [39]). Compute three numerical solutions, U;, Us and
Uy, where the grid associated with each solution is twice as fine as the previous grid.
We then determine the infinity norm of the difference between the solutions evaluated

at the grid nodes of the coarsest grid and compute

Uil C(A2)'=C(5)" ar -1

-l (%) —c (%) 2T (568)

¢

8

where ¢ is the order of the numerical method. Solving the above for ¢, we find
q=logy (¢ —1). (5.69)

There is a slight complication for our particular problem due to the position of the
nodes on the staggered grid. To use the above, the infinity norm must be calculated
at nodes that all lie at the same spatial location. When a staggered grid is refined, the
nodes change position and, for instance, none of the pressure nodes on the Us grid will
coincide with the pressure nodes on the U; grid. Since we only expect second order
accuracy, however, this problem is easily resolved. Once the solutions are determined
on each grid, they are interpolated to the stream function nodes, which do coincide

as the mesh is refined. This is done using

s (6,9) = 3 w6 3) +u i = D), (5.70)
0,(13) = 5 [0 () + v (i~ 1,7) (571)

and
pe(ird) = ~[p (i f) +p (g~ 1) +p(—1,5) +p(i—1,5 — 1)] (5.72)

4
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which, of course, must all be corrected, using the standard method, if their interpo-

lating stencil is intersected by the interface. We then use the values of Ui,, Us, and

U,s to determine the order of the method.

5.9.1 Impulsively started flat plate

There is an exact solution to the Navier-Stokes equations for the problem specified

by the initial conditions

U(y,t=0) = Oa
v(y,t=0) = 0,

and boundary conditions (y; < yz):

u(y=y,t>0) = U,
v(y=1y1,t>0)
u(y=1y,t>0) = Uy,
( )

v(y=1y2,t>0) = 0,
given by
p(y,t) = constant,
v(y,t) = 0,
’U,(y,t) — Ul (y_y2) +U2 (3/‘%)
Y1 — Y2 Y2 —
> {2 U, — (=1)" U3 [—nQﬂ'QDt} , [
— exp | ——— | sin
n=1 ™m (y2 - yl)

nm (y — 1)

(5.73)
(5.74)

(5.75)
(5.76)
(5.77)
(5.78)

(5.79)
(5.80)
(5.81)

Note that the above has no dependence on z so it is a trivial example of an z-

periodic flow. We will not solve the above problem exactly. Instead, on an z-periodic

computational domain (—7 < z,y < 7) we solve the problem specified by the initial
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conditions

u(z,y,t=0) =.0, (5.82)
v(z,y,t=0) = 0 (5.83)

with no-slip along the y = 7 boundaries and

u(z=X(q),y=Y(9),t>0) = 1 (5.84)
v(z=X(q),y=Y(q),t>0) = 0 (5.85)

where ¢ € [0, 1] is the parametrization variable and the interface is a periodic cubic

spline interpolation of

X(q) = —m+2mg, (5.86)
Y = -1, (5.87)

using N, control points (¢g; for 0 < ¢ < N,) placed approximately a distance of 2Az

apart. In terms of the above analytic solution, this problem corresponds to

Ul = O, Yy = —m, (588)
U2 = 1, y2=—1, (589)

U, =1, y=-1, (5.90)
U2 = O, Yo = T, (591)

in the region above the interface, —1 < y < —m. We have computed the solution using
At = 0.2A2? and D = 1, until ¢ = 0.2 on three different grids with N, = N, = 32, 64
and 128. The horizontal velocity at ¢ = 0.2 on the 32x32 grid is shown in Fig. 5.4.

The difference between the exact solution and the computed solution, even on the
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Figure 5.4: Horizontal velocity induced by an impulsively started flat plate at y=-1

N, =N, | |luy —ul|, | Ratio
32 0.0120379
64 0.0032118 | 3.74794
128 0.0009318 | 3.44703
256 0.0002114 | 4.40827

Table 5.1: Resolution study for impulsively started flat plate problem

relatively coarse grid depicted in Fig. 5.4, is imperceptible. We note that even though
the velocity at the interface is u = 1, all of the computational nodes have velocities
less than one. This is because the interface lies between the computational nodes
on the grid. The position of the interface is also responsible for the appearance of a
blunt region between the nodes adjacent to the interface. There is, in fact, no blunt
region near the interface. The appearance of one in Fig. 5.4 is due to smoothness
assumptions made by the plotting software. We have confirmed the accuracy of the
computed flow field by comparing the numerical and exact horizontal velocities in
Table 5.1, where the numerical solution is denoted by uy and the exact solution is

denoted by u. It is also possible to compute the exact stream function associated with
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N, =N, | [¢n —¥[l. | Ratio
32 | 0.00677286
64 | 0.00193605 | 3.49829
128 | 0.00073599 | 2.63053
256 | 0.00013965 | 5.27010

Table 5.2: Resolution study for stream function associated with the impulsively
started flat plate

No = Ny | |frv = frllo | Ratio
32 0.0148112
64 0.00338142 | 4.38017
128 | 0.00071172 | 4.75105
256 | 0.00019931 | 3.57091

Table 5.3: Resolution study for the tangential forcing associated with the impulsively
started flat plate

the flow by integrating the above series. The stream function, computed on a 32x32
grid, is shown in Fig. 5.6. We have verified the convergence of our computed stream
function at several different resolutions in Table 5.2. The results indicate second
order accuracy. Finally, for this problem we can compare the exact and the computed

interface forcing which is required to accelerate the fluid. From Appendix C, we see

that

lg—ﬂ = —IDT— (5.92)
and the jump in the derivative can be computed from the known exact solution.
The normal force for this problem is zero since pressure is not needed to maintain
continuity. The tangential forcing is constant along the entire interface due to the
one-dimensional nature of the problem. Thus, it is sufficient to plot the value of f; at
z = 0 which we do for several different resolutions in Fig. 5.5. The exact tangential
forcing required at ¢ = 0 is infinite so, instead of plotting the entire time range we plot
all solutions for t > Atss, where Aty is the time step associated with the 32x32 grid.
Figure 5.5 indicates that the tangential forcing converges quite quickly to the exact
interface forcing. Indeed, the error at ¢t = 0.2 is given in Table 5.3 and the results

indicate that the tangential forcing converges at the expected second order rate.

For this simple problem we were able to determine exact solutions for every computed
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Figure 5.5: Tangential forcing applied at the interface as a function of time for the
impulsively started flat plate problem
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Figure 5.6: Stream function associated with the impulsively started flat plate problem
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quantity and uniformly demonstrate second order accuracy. Although we are not able
to be quite as thorough in the remaining examples, they will also demonstrate the

accuracy of the computed flow field.

5.9.2 Impulsively started cylinder

There is an exact solution to the Navier-Stokes equations for the problem specified

by the radially symmetric initial and boundary conditions

up (r =a,t) = Qa, (5.93)
up(r,0) = 0, r<a (5.94)

given in terms of Bessel functions (see [1]) by

> 2Qa — D)2t AnT ’
Ug = Qr—l-’;]—)\njo o) exp { 2 J J1 ( . ) (5.95)

where ug is the velocity in the #-direction, a is the radius of the impulsively started

cylinder and ), are the solutions to
J1 (M) = 0. (5.96)

Using the above, we can determine the horizontal and vertical velocities inside the

cylinder with

u= (ﬁ) ua, (5.97)

and

x
We solve this problem numerically on an z-periodic computational domain (—7 <

z,y < ) with initial conditions

u(z,y,t=0) = 0, (5.99)



171
v(z,y,t=0) = 0, (5.100)

no-slip boundaries at y = +7 and with the circular interface maintained at

u(z=X(q),y=Y(q),t>0) = —Qy, (5.101)
v(Ez=X(q),y=Y(q),t>0) = +Qu. (5.102)

Note that ¢ € [0,1] is the parametrization variable for the interface. In this case, the

interface is a periodic cubic spline interpolation of

X (q) = +acos(27q), (5.103)
Y (¢g) = —asin(2nq), (5.104)

using N, control points (g; for 0 < ¢ < N,) placed approximately a distance of 2Az
apart. The numerical solution will converge to the above analytic one for r < a.
Outside the cylinder, the numerical solution will converge to the flow associated with
a periodic array of impulsively started cylinders positioned between two infinite flat
plates. While there is no exact solution available to validate the flow on the entire

domain, we will verify that it does converge to a solution at a second order rate.

All the simulations are run using At = 0.2Az? until t = 0.2 with D = 1, ¢ = 2
and 2 = 1. The numerically determined stream function, horizontal and vertical
velocities and pressure are plotted in Figures 5.7, 5.8, 5.9 and 5.10, respectively. The
flat region in the center of the cylinder for the stream function and velocity fields
indicates that the solution has not reached steady state at ¢ = 0.2. The position
of the interface is clear from the velocity fields due to the pronounced jumps in the
normal derivatives. Note that the appearance of a blunt region, particularly in Fig.
5.9, near the interface is an artifact of the plotting software. The derivatives on both
sides of the interface are sharp and jump discontinuously across it. We have computed

using Jpaug = —0.5 to ease the visualization of the pressure (Fig. 5.10). Note the
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Figure 5.11: Interface forcing in the normal direction for the impulsively started
cylinder problem '
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Figure 5.12: Interface forcing in the tangential direction for the impulsively started
cylinder problem
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Ny =N, | |luy —ul|,, | Ratio
32 0.01075240
64 0.00284287 | 3.78223
128 0.00074858 | 3.79769
256 0.00018295 | 4.09175

Table 5.4: Resolution study of the horizontal velocity inside the cylinder

Ny = Ny | |low — 0|, | Ratio
32 0.01077110
64 0.00282913 | 3.80721
128 0.00074599 | 3.79244
256 0.00018269 | 4.08337

Table 5.5: Resolution study of the vertical velocity inside the cylinder

oscillation of the pressure near the domain boundary is required to force the fluid
between the no-slip computational boundary and the cylinder. All the flow variables
are completely smooth both inside and outside the cylinder. The forcing along the
interface is also smooth, as indicated in Figures 5.11 and 5.12.

Inside the cylinder, the numerical and exact solutions for the velocity can be
compared. A resolution study of the horizontal and vertical velocities inside the
cylinder is pfovided in Tables 5.4 and 5.5, respectively. The results indicate that the
numerical method is second order accurate.

Although it is not possible to determine the exact flow everywhere in the compu-
tational domain, we can verify that the numerical solution is indeed converging to a
solution everywhere. Using the approach outlined above, the computed convergence
rate for all the flow variables is given in Table 5.6. As expected, second order accuracy
is indicated. We can also compute the divergence of the flow field on the entire grid.

As mentioned above, the discrete divergence of the flow will not, in general, be zero

Variable | Order of Convergence
u 2.02929
v 2.04117
D 1.94944
Y 2.20631

Table 5.6: Computed rate of convergence for the impulsively started cylinder problem



176

Ny = N, V-u Ratio
32 1.1385x107°
64 2.5105x 10" | 4.53520
128 8.2173x107° | 3.05497
256 2.0011x1078 | 4.10643

Table 5.7: Resolution study of the flow field divergence for the impulsively started
cylinder problem

Ny = Ny | ||uny — un||,, | Ratio
32 3.6360x10~°
64 1.0881x107° | 3.34164
128 1.6498x 10" | 65.9518
256 7.7136x1078 | 2.13888

Table 5.8: Resolution study of the error in the normal velocity for the impulsively
started cylinder problem

(to machine precision) when interface forcing is applied. 1nstead, the divergence will
have a spatially uniform value that converges to zero with the mesh spacing. For this
problem the value of the divergence at ¢ = 0.2 for the different grid resolutions is
listed in Table 5.7. Note that the flow field divergence is quite small and converges to
zero as the mesh is refined. Finally, we noted earlier that the normal velocity of the
interface can only be specified up to a constant which is determined automatically by
the scheme. In this problem, the normal velocity we wish to specify satisfies the con-
servation of mass so the differences between the exact and computed normal velocity
on the interface should vanish as the grid is refined. The error of the normal velocity
is listed in Table 5.8. Note that although the error decreases somewhat erratically,

comparing the error on the 32x32 and 256x256 grids indicates at least a second order

rate of convergence.

5.9.3 Pressure gradient driven flow around cylinders

The above solutions are useful because they allow the numerical results to be com-
pared with exact analytic solutions. They do not fully test the capabilities of the
numerical code, however, because the pressure simply cancels against the convective

terms. Here we solve a more general problem in which the ability of the pressure
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to conserve mass is more rigorously tested. We again consider an z-periodic domain

(—m < z,y < 7) with initial conditions

u(z,y,t=0) = 0, (5.105)
v(z,y,t=0) = 0, (5.106)

no-slip boundary conditions on y = 7 and on the interface

u(z=X(q),y=Y(g),t>0) = 0, (5.107)
v(z=X(q),y=Y(q),t=20) = 0. (5.108)

Note that ¢ € [0, 1] is the parametrization variable for the interface. In this case the

interface is a periodic cubic spline interpolation of the unit circle,

X (g) = +cos(2mq), (5.109)
Y (¢) = —sin(27q), (5.110)

using N, control points (g; for 0 < ¢ < N,) placed approximately a distance of 2Az
apart. In this problem, the flow is driven by a body force (pressure gradient) in the

periodic (horizontal) direction,
b = (10,0), (5.111)

which is applied at all points in the computational domain. Although no exact so-
lution exists for this problem, we will verify that it does converge to a solution at a
second order rate.

All the simulations are run using At = 0.2Axz? until ¢ = 0.2 with D = 1. The
numerically determined stream function, horizontal and vertical velocities and pres-
sure are plotted in Figures 5.13, 5.14, 5.15 and 5.16, respectively. We consider the
region inside the cylinder first. Comparing the stream function and velocity fields
we see that there is no flow inside the cylinder. Indeed, it is clearly evident from

Fig. 5.16 that in this region there is a hydrostatic balance between the computed
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Figure 5.14: Horizontal velocity for pressure driven flow around cylinders
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Figure 5.17: Interface forcing in the normal direction for pressure driven flow around
cylinders
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Figure 5.18: Interface forcing in the tangential direction for pressure driven flow
around cylinders
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Ny = Ny V- u Ratio
32 3.4235x107°
64 1.6658x 10" | 20.5513
128 4.7673x107Y | 34.9426
256 1.3485%x107° | .35351

Table 5.9: Resolution study of the flow field divergence for the pressure driven problem

pressure ([p],,, = 0) and the supplied body force. The flow outside the cylinder is
quite different. Here, the fluid is not enclosed and is free to accelerate, as indicated
in Figures 5.14 and 5.15. The complete independence of the solutions on each side of
the interface is clearly demonstrated in this problem. They are both solutions to the
Navier-Stokes equations and each have an arbitrary constant associated with their
pressure. We can adjust the relative values of the pressure inside and outside the
cylinder anyway we wish, by choosing different values for J, 4., without changing
the velocity fields. Even though the flow fields on each side of the interface are phys-
ically independent, they are numerically coupled through the determination of the
normal, Fig. 5.17, and tangential, Fig. 5.18, interface forcing. Note that the forcing
is a smooth function despite the large jumps in the pressure and velocity derivatives
evident above. Although we have no exact solution available for this problem, there
are several checks that we can perform to verify that the code is working properly.

The first thing we can check is the divergence of numerical solution. As mentioned
previously, the continuity condition can not be satisfied exactly when forcing is applied
at the interface. Instead the divergence of the flow field is uniformly equal to a small
value that converges to zero as the grid is refined. The value of the flow divergence for
various resolutions is listed in Table 5.9. The divergence is clearly small and, although
it decreases somewhat erratically, comparing the error on the 32x32 and 256x256 grids
indicates at least a second order rate of convergence. A quantity related to the flow
field divergence that is also easy to calculate is the normal velocity error at the
interface.

We mentioned previously that it is not possible to completely specify the normal

velocity of the interface. Thus, we only specify it up to a constant which is auto-
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N, = N, | lunny — un]l. | Ratio
32 3.1286x10~°
64 1.1314x10~° | 2.76533
128 | 2.8136x10~7 | 40.2421
256 | 2.9561x10~° | 9.51036

Table 5.10: Resolution study of the error in the normal velocity for the pressure
driven problem

Variable | Order of Convergence
u 1.94978
v 2.14038
D 2.61605
P 1.92732

Table 5.11: Computed rate of convergence for the pressure driven problem

matically set by the numerical scheme. The convergence of the numerical normal
velocity to the exact normal velocity is another measure of the solution error. The
normal velocity error for this problem is listed in Table 5.10 for various grid resolu-
tions. The error clearly decreases with grid resolution and the results indicate a rate
of convergence that is at least second order.

Finally, comparing the numerical solutions for three different resolutions (64x64,
128x128 and 256x256 in this case), it is possible to directly approximate the conver-
gence of the computed flow variables. In Table 5.11 we list the computed convergence

rates for each variable. Second order accuracy is confirmed for each.
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Chapter 6 Solidification with natural

convection

6.1 Introduction

In this chapter, we will combine all of the techniques of the preceding chapters and
develop a scheme capable of simulating dendritic solidification in the presence of nat-
ural convection. Due to the non-uniform temperature profile in systems undergoing
dendritic solidification, natural convection is ubiquitous. The solution of the fully
coupled fluid and thermal system, however, is a formidable task. Although meth-
ods theoretically capable of simulating systems of this type have been developed,
simulation of the unstable problem has remained almost virgin territory.
Simulations of melting and stable solidification feature a stable, isothermal inter-
face. In these problems, the domain in which fluid flow must be computed tends to be
fairly regular and many different schemes have been used (see below). The unstable
solidification problem, however, is much more difficult. The interface in the unstable
problem tends to become significantly deformed. This implies that fluid flow must be
simulated in an irregular deforming region which can cause many schemes trouble. In
fact, the only simulations of unstable dendritic solidification §ve are aware of impose
a fixed shape on the dendrite, significantly simplifying the geometry of the problem.
These studies examine the effect of convection on the local thermal/concentration
gradients but do not allow the geometry of the interface to respond to such changes
(see [10] and [52]). We demonstrate in this chapter that our approach yields a viable
method for the simulation of the fully coupled unstable solidification problem with a

growing, deforming interface.
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6.2 Existing numerical methods

As noted above, we are not aware of any full simulations of dendritic solidification in
the presence of natural convection. There is, however, a large body of literature asso-
ciated with the simulation of stable melting/solidification in the presence of natural
convection. Fixed grid methods are quite popular for the stable problem. Fixed grid
approaches typically use the enthalpy method (discussed in Chapter 4) to implicitly
track the interface and account for latent heat release. The no-slip condition on the
solid-liquid interface is commonly modeled using an artificial viscosity or porous me-
dia friction term in the solid region (see Chapter 5). Examples of this approach can
be found in [26], [12], [54] and [72]. The smooth regular interfaces that are formed
during many stable solidification processes lend themselves quite naturally to do-
main mapping techniques. In this approach, the time dependent physical domain is
mapped into a fixed computational domain. Although it can be difficult to determine
a mapping that will do this for general problems, in this case the interface is typically

assumed to be given by
y=F(z1) (6.1)

and the mapped coordinates are given by

n = y/F(z1). (6.3)

The governing equations are then discretized and solved in the (£,7) domain. The
position of the interface, F' (£, 1), is not known and appears in the governing equations
in (£,7m) space in a non-linear fashion requiring an iterative scheme be employed to
solve the system. An example of this approach applied to a melting problem can
be found in [6]. Cut cell methods (see Chapter 5) have been used effectively to a
stable solidification problem in the presence of natural convection (see [71] and [60]).
Finally, deforming finite element methods (see Chapters 4 and 5) are a popular and

accurate technique for simulating the stable problem (see [79] and [47]).
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6.3 Governing equations

Liquid

(neny)

Interface

T—> X Solid

Figure 6.1: Location of the solid and liquid phases relative the interface

The problem we are solving is periodic in the horizontal direction with a periodic
interface dividing the domain into two distinct parts, as shown in Fig. 6.1. The solid
phase occupies the region below the interface and the liquid occupies the region above
it. In the solid phase heat transfer occurs solely by diffusion. Thus, in the solid the
temperature satisfies

00s

—_— 2
5, = HV'0s. (6.4)

In the liquid phase, heat transfer can occur due to diffusion or the bulk transport of

material via convection. In the liquid, the temperature satisfies

% +u-Vl, = HV?;. (6.5)

Note that we have assumed symmetric material properties (Hs = Hy = H) in (6.4)
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and (6.5). In this Chapter, we will investigate the symmetric case exclusively. As
mentioned previously, material symmetry is not a fundamental limitation of our ap-
proach, but is imposed so that the resulting discrete systems can be solved efficiently.
The dependence of the temperature on the liquid velocity necessitates that equations
governing the fluid motion be solved simultaneously with (6.4) and (6.5). The flow is
driven by the buoyant forcing that occurs due to the small but important dependence
of the liquid density on temperature. We use the Boussinesq approximation which
models this effect as a forcing term in the incompressible Navier-Stokes equations.

The equations governing the motion of the liquid are the continuity equation,

V.-u=0, (6.6)
and the conservation of momentum,
Oou 9

The conditions on the temperature at the interface are unchanged from the purely
diffusive case. On the interface, (X,Y), the temperature must satisfy the Gibbs-

Thomson condition
0s (X,Y,t) =0, (X,Y,t) = —e.(n) %, (6.8)

and conservation of energy,

n- (Vs (X,Y,t) — VO, (X,Y,1)) = (6.9)

R\ "ot Yot)’
The symmetric model implies p; = pg, so the fluid satisfies the no-slip condition on

the interface,
u(X,Y,t) =0. (6.10)

The above set of equations form a highly non-linear system. The motion of the inter-

face and, hence, the domain occupied by fluid, must be determined simultaneously
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with the velocity and temperature fields. We now demonstrate that the methods
we have developed in the previous chapters can be combined to produce an efficient

scheme for simulating this system.

6.4 Discretization

Most of the material in this section is merely a summary of the material from the
previous chapters. We will start by discussing the representation of the interface and
the determination of the phase of each computational node. Once the phases of the
nodes are known, it is possible to discretize the governing equations. We will then
discuss the correction of the spatial and temporal stencils that appear in the discrete
governing equations. Finally, we review the interpolation scheme used to determine

the temperature and fluid velocity on the interface.

6.4.1 Representation of the interface

The interface is explicitly tracked by a series of discrete marker particles. These
markers are embedded in the computational domain and allowed to move freely.
There is no restriction placed on their position relative to the stencil nodes associated
with the temperature or flow variables. In addition to the marker position, (X,Y), we
also store the values of the normal velocity, Vy, of the interface as well as the normal,
fn, and tangential, f,, components of the force acting on the fluid at each marker
particle location. The location of the interface between the markers is determined by
a periodic cubic spline interpolant that passes through all the marker particles. The
values of Vv, fr and fy between the markers are also determined by periodic cubic
spline interpolation.

The marker particles are advanced forward using a first order accurate time march-

ing scheme. The new position of the marker particles is calculated using

X = X" At (V) (6.11)
Y™ o= v+ At (VT (6.12)
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where the n + 1 and n superscripts imply that the quantity they are attached to is
evaluated at time ,y; and t, = ¢, + nAt, respectively. Note that even though the
above is only first order accurate, the system solution will still improve by a factor of

four when the mesh size is halved since At = O (Az?).

6.4.2 Determination of the phase of each node

The determination of which side of the interface (solid or liquid) each computation
node resides is handled using the algorithm described in Chapter 4. This algorithm
also determines the time at which a node changes phase for all nodes crossed by the

interface during the current time step.

6.4.3 The system

A
v(i,jt+1)

6(1.j)
u(i,j) C>p(i,j) EJU(HLJ')

A
v(i.j)

Figure 6.2: Single cell in the staggered grid

The temperature and flow equations are discretized on a staggered grid. As shown
in Fig. 6.2, the pressure and temperature nodes are jointly located at the center of
the computational cells and the horizontal and vertical components of the velocity
are located on the horizontal and vertical sides of the cells, respectively. We will not
explicitly write out the discrete form of the spatial derivatives in this section. The
stencils that we use are exactly the same as those discussed in Chapters 4 and 5.

Detailed expressions for all required spatial stencils can be found in Appendix B.
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The time derivatives, on the other hand, will be written out in discrete form and the
required corrections for the time derivatives will be derived later in this chapter.
The equations governing the evolution of the temperature, (6.4) and (6.5), can be
combined into a single equation. Our discrete equation for the temperature, which

applies everywhere in the computational domain, is
vt = 0" + At (HV?0" — G™) + By, (6.13)

The value of Ey is selected to correct the time derivative (discussed later) and the
effects of convection are included in G which is defined by

o = 0 if 0™ (4, 7) is a solid node . (6.14)

u™-veor if 0" (i,7) is a liquid node

Although there is only liquid in part of the computational domain, we follow the
approach discussed in Chapter 5 and assume that the entire domain is filled with .
fluid. The resulting flow field will include both the required velocities in the liquid
phase and physically irrelevant velocities in the solid domain. The flow calculated
in the solid region does not enter into the temperature equation and, hence, does
not influence the computed solution in any way. The discrete equations for the flow

variables, which apply everywhere in the computational domain, are

u* = u" + At (DV?u" — " Vu"+BO" - Vp") + E, (6.15)
i =u"+ At ED (V" + V2u©) — u™-Vu" + BH”H} +E, (6.16)
1
2, n+1 - B 1
u"t = a—At (Vp”“) : (6.18)

where B = (B, By) is a constant and E* and E are corrections to the time derivative

(discussed later).
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6.4.4 Calculation of the jump conditions
The Navier-Stokes equations

Recall in Chapter 5, we developed discretizations for the spatial derivatives of solu-

tions to the incompressible Navier-Stokes equations,

Vou=0 (6.19)

% +u-Vu=-Vp+ DV?u+b, (6.20)

subject to a continuous body force, b. As noted above, we assume that the entire

domain is filled with fluid. Comparing (6.7) and (6.20) we see that we can use
b =Bf (6.21)

as our body forcing term in each phase (in the liquid, @ = 61, and § = g in the solid).
Because the temperature must be continuous at the interface (the Gibbs-Thomson
condition), this yields a continuous body force. The above will accurately predict the
fluid velocity in the liquid phase provided that the forcing on the interface, (f,, fn),

is determined such that the no-slip condition on the interface, (X,Y’), is maintained:
u(X,Y,t) =0. (6.22)

There will also be an independent flow calculated in the solid region that has no

physical relevance and does not influence the temperature of the solid. The jump

conditions for this problem are identical to those presented in Chapter 5. For com-

pleteness, we repeat them here. Using (6.22), the jumps in the pressure and its
derivatives are given by

[p] = fa, (6.23)

Ofn n Ofr (6.24)
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8f,  Of
[py] = af +ny aj; (6.25)

pec) = 4722 2B 22114, 6, (6.26)
o = 47,728 42,2 BB+ B0, (620)
) = .22+ 7, 2P (3, 0+ B, ). (6.29

The jumps in the horizontal velocity and its derivatives are given by

[u] = 0, (6.29)

fus] = —nsz%, (6.30)

[uy] = —nm%, (6.31)

[ue] = — (%—f [ue] + %Y [uy]> : (6.32)

OO T CORPA1 SyT F (633
] = 7, g:”] 7,2 g:’] — 2 ([u] + [pa)) (6.34)
) = —r 2] 20 T ) (6.35

[v] =0, (6.36)

fr :
[v] = —naTy 5, (6.37)
[vy] = _nyTy%7 (6.38)

o1 == (G b+ ). (6:39)



ue] = 4. 200 P00 Ty, (6.40)
o) = 47,75 7T T (] + ), (6.41)
ol =~ 200 2 T ) . (6.42)

The heat equation

In Chapter 4 we calculated the jump conditions appropriate for the solidification
problem in the absence of convection. We demonstrate below that the inclusion of
the convection terms in the liquid phase does not modify the jump conditions on the
temperature, at least through the second order derivatives.

The conditions on the temperature at the interface are unchanged by the inclusion
of convection in the liquid phase. Thus the jump condition on the temperature and
its normal derivative are identical to those found in Chapter 4. This implies that the

Jump conditions on the first derivatives are also unchanged,

[0y] = ny [6] , (6.44)
0X oYy 2
0=~ (G 01+ 5 0)) = —hio (6.45
The value of [0,] is related to the normal velocity of the interface by (6.9) which
implies
6,] = % (6.46)

Recall that the normal velocity is one of the quantities that is stored at the marker
particles and which must be determined as part of the solution. To determine the
Jump in the second derivatives, we will need to examine the equations governing the
evolution of the temperature. The equations governing the temperature in the solid

and liquid phases can be combined, formally at least, as a single Poisson equation
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subject to a forcing that is discontinuous at the interface,

V30 = f, (6.47)
where 1 80
T In the solid
f= 1 /80 o (6.48)
T (a +u- VG) In the liquid
From (6.22) we see that the jump in the effective forcing,
/) =716 (6.9
- H t]» .

is exactly the same as it was for the pure diffusion case implying that the jumps in

the second derivatives will remain the same as well. They are given by

— a [093] a [Oy] 2 h‘ 2
[022] = +75 55 "V e "V [0.]%, - (6.50)
[02y] = +Ty6 g:] + Ty 0 (,ﬁy] + TwTy% [6.]7, (6.51)
. 91[6,] 06y] ok

(6.52)

[ny]:—-‘ Ty s +Ty ds Tmﬁ[en]2'

The jumps in the third derivatives differ from the purely diffusive case because the
jump in the normal derivative of the effective forcing, [f,], picks up a non-zero con-
tribution from the convective term. This contribution would have to be explicitly
interpolated from the nodal values, however, so we will only correct through the

second order derivatives for these simulations.

6.4.5 Correction of spatial stencils

The correction of the spatial stencils follows the standard approach discussed in Chap-
ters 3 through 5. The problem we are solving satisfies symmetric jump conditions so

we use standard finite difference stencils with additive corrections. It is important
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to note that any quantity that is calculated through the use of a spatial stencil must
be corrected if one of its stencil legs is intersected by the interface. This is not just
limited to derivatives but includes the averages that must be calculated due to our
use of a staggered grid. For instance, the body forcing term, B,6, in the vertical
momentum equation requires that the value of the temperature at the v (¢, 7) node

be interpolated using

9:%(9(i,j)+9(i,j— ). (6.53)

If the interface cuts the stencil leg connecting the v (¢, ) node to the 6 (z,j) node,

then we substitute

or
0(,7) =0(,j)+C (6.55)

into (6.53) if the v (¢, j) node is a solid or liquid node, respectively. The correction is

given by
v 1

C=(y=Y)[0]+5—Y) ], (6.56)

where (, %) is the position of the 6 (%, ) node and (X,Y") is the point on the interface
that intersects the stencil leg (note, in this case z = X). The values of the jumps are
all evaluated at the point of intersection between the stencil leg and the interface. All

other spatial stencils can be corrected in a similar manner.

6.4.6 Correction of time derivatives

Following the approach outlined in Chapter 3, we utilize the values of [0,], [u] and [v{]
to correct the time derivatives at nodes which undergo a phase change. To calculate
the correction to the time derivative of the temperature, we use

tnt1
mﬂ=m+/+§%n (6.57)
t, Ot
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It is important to take care when translating the formulas developed in Chapter 3.

Recall that, in Chapter 3, we defined
[0 = 0; (tn + £ ) — 0, (ta +17) = 6 — 6, (6.58)

which means that [0;] is the value of the time derivative after the discontinuity minus
the value of the time derivative before the discontinuity. The definition of [;] in this

chapter, however, is
[0;] = lir(%r {6; (X +eng, Y +eny,t) — 0, (X —en,,Y —eny, t)} =0 —0;, (6.59)

where (X,Y") is the location of the interface and (n;,n,) is the interface normal
pointing away from the solid. From the definition of the normal, the liquid phase
is the “+” side of the interface and the solid is the “-” side of the interface. Thus,
formulas developed in Chapter 3 can be used directly provided we note that they
apply at a node which starts out solid (i.e., 67 =~ 6; ) and changes phase to liquid
(i.e., 077" ~ 6;) during the time step. If we are interested in the more typical case

of a node changing from a liquid to a solid, we simply make the substitution
[0:] — — [64] (6.60)

in the correction term. We will derive the appropriate corrections for the solid to
liquid transition case and give the general form for the correction terms at the end.

Thus, using (6.13), (6.57) and Chapter 3 implies
0 = 0" + At (HV?0™ — G™) — t [HV?0] — (At — ) [G), (6.61)

where the above assumes that the 6" (i, ) node is solid at ¢, and liquid at t,,; with
the phase change occurring at ¢, + t;. Using the fact that (6.4) and (6.5) can be

combined as
0. +G = HV29, (6.62)
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we see that
0] +[G] = [HV]. (6.63)

Substituting (6.63) into (6.61) yields

vt = 0"+ At (HV20™ — G™) — 1, [0,] — At[G]. (6.64)

For our problem (6.10) implies [G] = 0. Thus we have

0 if 0™ (i,j) does not change phase
FEo=1q —tr[0:;] if 0" (i,7) is solid at ¢, : (6.65)
+tr[0:]) if 6" (4,7) is liquid at ¢,

The determination of the fluid velocity requires two evolution equations be solved for
each flow component. The first is used to obtain an explicit prediction for the flow

at t, 1. Casting the equation in terms of an integration we have

i Ou
f=u" ——dt. .
u=utt (6.66)

In this case, all the terms making up the time derivative are evaluated at ¢, so we

can use the standard correction derived in Chapter 3,
u* = u" + At (DVu" — u™Vu"+B6” — Vp*) + (At —t1) [wy], (6.67)

where we assume that the u™ (4, ) or v™ (¢,7) node is solid at ¢, and liquid at ¢,
with the phase change occurring at t,, + t;. Comparing (6.15) with (6.67) and using
E* = (E}, EZ), we find

0 if u™ (4,7) does not change phase
E, =9 + (At —t;)[ug] if u™(i,7) is solid at ¢, (6.68)
— (At —t) [ug] ifur(i,j) is liquid at ¢,
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and
0 if v™ (i,7) does not change phase

Ey =4 + (At —t7)[v] if v™(i,7) is solid at ¢, : (6.69)
| = (At =) [v] ifv™(4,7) is liquid at ¢,

To derive the time correction for the intermediate velocity @, we will correct the

effective evolution equation for u™*'. We begin by noting that

tnt1 Ou

= g ——dt 6.70
u u” + . h ( )

and (6.16) implies
u"tl = w4 At BD (Vu* + Vu") — u™Vu" + BO" - Vp""'l} (6.71)
+ (%At - t,) [DV2u] — (At —t7) [a- V] — £ ([B)] — (V)

where the corrections again assume that the u™ (¢, j) or v™ (¢, j) node is changing from

solid to liquid. We have also used the fact that u* = u"*! + O (At?). The momentum

equation implies |
[w] + [u- Vu] = [DV?u] + [BS] - [V, (6.72)

which, when substituted into the above, yields
1
u"tt = u"+ At [§D (V2u* + Vzu"> —u™-Vu" + B"H! — Vp"“] (6.73)

+ (%At - t,) [ue] + %At ([Vp] = [u- Vu] - [BF]).

Noting that [u- Vu] = 0 by (6.10) and [Bf] = 0 due to the continuity of the tem-

perature at the interface, we find

un+1 = u"+ At [_21_D (Vzll* + v2un> —uVu" + B@n-l—l _ Vpn—l-l:l (674)

+ (-;-At - tI) [u] + %At [Vp].
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Using i = u™*! + AtVp"™! and comparing the above to (6.16) yields

if u™ (4,j) does not change phase

0
+ (LAt — 1) [w] + At [pa] if u” (i, ) is solid at t, (6.75)

A

E, =
— (38t —tr) [u] — $At [po] if u” (3,5) is liquid at ¢,
and
0 if v™ (i,7) does not change phase
E,={ + (%At - tI) [v] + 1At [p,] if v™ (i, 5) is solid at t, . (6.76)

— (3At—tr) [oe] - 3A¢t[p,) if o™ (3, 5) is liquid at t,

6.4.7 Interpolation of interface values

In addition to evolving the partial differential equations for the temperature and flow
variables forward in time, it is necessary to satisfy the conditions at the interface as
well. By the construction of our discrete stencils, the jump in the normal derivative
of the temperature, (6.9), is automatically satisfied. The values of the interface
normal velocity, Vi, and the interfacial fluid forcing, (fr, fnv), are determined by
the remaining requirements which are that the Gibbs-Thomson condition, (6.8), and
no-slip condition, (6.22), be satisfied. To determine whether the Gibbs-Thomson
and no-slip conditions are satisfied at the interface marker particles, it is necessary
interpolate the values of the temperature and fluid velocity off the computational grid.
We use the weighted Taylor series interpolation scheme discussed in Chapter 4. As
discussed previously, this provides a smoothly varying estimate from the temperature

and fluid velocity on the interface as the marker particles move through the mesh.

6.5 Solution algorithm

The complete solution algorithm is essentially just a combination of the algorithms
presented in Chapters 4 and 5. Note from (6.13) that only the values of u™ are

required to determine ™. This means that the convection terms are essentially
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just an additional forcing that must be added to heat equation. The algorithm for
determination of the normal velocity, presented in Chapter 4, is unaffected by the
addition of a forcing term so it applies equally well to the fully coupled problem.
Similarly, once "' and the new position of the interface is determined, the buoyancy
term that couples the Navier-Stokes and heat equations together is essentially just
a known forcing. Thus, the algorithm presented in Chapter 5 to determine the new
interfacial forcing, (f, fn)"+1, applies to this problem as well.

For the algorithm presented below, we assume that the values of 6, u”, p*, Vi and
(fr, fz)" are known. If this is the first time step, these values can be extracted from
the initial conditions. The complete algorithm to advance the interface, temperature

and flow field forward one time step is
1. Using the algorithm from Chapter 4, determine ™!, (X, V)" and V2+! by
iterating until the error associated with the Gibbs-Thomson condition is suffi-

ciently small, ||e;|| < tol.

2. Use the BiConjugate Gradient Stabilized iteration scheme presented in Chap-
ter 5 to determine the values of u™*, p"* and (f,, fy)""" such that u”*! =0

at the new interface location.

3. Determine the distance along the interface, s;, of each marker particle and the

total arc length, S = sy, associated with the new interface position determined
in 1.
4. Assuming there are N, marker particles, if S/N, > 5Az/2, increase the number

of marker particles so that S/N. = 2Axz is satisfied as closely as possible.

5. Using linear interpolation and the values of s; calculated above, determine the
parameter values, ¢, associated with the new position of the marker particles

such that they are equally spaced along the interface.

6. Regrid the interface quantities X™+!, Y+l Vot fn+l and ft! by interpolat-
ing their values at ¢ = ¢f and use these to establish a new set of evenly spaced

marker particles.
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N,xN, | ||0n — 0|, | Ratio

16x64 | 3.43x1073
32x128 | 8.77x107* | 3.92
64x256 | 2.17x107* | 4.03

Table 6.1: Resolution study of the temperature error for the B, = —20 case

7. Update all the time dependent quantities and continue with next time step (go

back to step 1).

We have used the above algorithm to compute the solution to several different

problems. In all cases we select the time step such that
Az?
At = min{ —, At .
mm{5D, I}, (6.77)

where At; is the largest time step we can take such that the interface travels a distance
less than Az/10, i.e.,
Ax

(Vi) A1 < 5 (6.78)

The above choices for At ensure that the explicit time stepping used in our Navier-

Stokes solver will be stable.

6.6 Results

In this section we will compare the results of our numerical scheme with linear theory
and verify that our simulations are indeed second order accurate. We will start the
code at t = 0 using the linear theory solution as an initial condition with e = 1074,
V=1/2,H=D=1,h =1, 6 =1/100, 6 = 0, B, = —20 and a = 1. Recall
that this corresponds to the case where linear theory predicted that convection would
have a strong impact on the evolution of the system.

Tables 6.1-6.3 compare the difference between the numerical solution and linear
theory at t = 8. Table 6.1 demonstrates the second order accurate convergence of
the temperature while Tables 6.2 and 6.3 demonstrate the second order accuracy of

the horizontal and vertical velocities, respectively. Table 6.4 shows the convergence
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NoxNy | |lun — ul|, | Ratio

16x64 | 7.69x107°
32x128 | 1.47x107° | 5.21
64x256 | 3.90x107° | 3.78

Table 6.2: Resolution study of the error in the horizontal velocity for the B, = —20
case

NxNy | |lon — v||, | Ratio

16x64 | 5.99x107°
32x128 | 8.43x107° | 7.10
64x256 | 2.14x107% | 3.94

Table 6.3: Resolution study of the error in the vertical velocity for the B, = —20 case

NxN, | ||V-uyll, | Ratio
16x64 | 3.04x107°
32x128 | 1.93x107° | 1.57

64x256 | 1.57x107'! | 123.04

Table 6.4: Resolution study of the error in mass conservation for the B, = —20 case

0.514 T T T T T T
exact

128x512 ————-
64x256

32x128 -

0.512

0.510

0.508

0.506

Tip Velocity

0.504

0.502

0.500 ok

0.498 1
0

Figure 6.3: Tip velocity comparison between the numerical scheme at three different
resolutions and linear theory for the B, = —20 case
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NzXNy ON HO’N - 0'”00 Ratio
32x128 | 0.3516 | 2.97x10~°

64x256 | 0.3539 | 6.72x10~* | 4.43
128x512 | 0.3544 | 1.85x10~* | 3.63

Table 6.5: Resolution study of the growth rate for the B,

—20 case

4006 | ,
4004 |
4002 |-
4000
=
3.996

3.994 -

3.992 L L

Figure 6.4: Resolution study demonstrating the second order rate of convergence of
—20 case

the interface position for the B,
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of the divergence of the flow field. The convergence of the tip velocity, which we take
to be the maximum of the normal velocity of the interface, is demonstrated in Fig. -
6.3. Note that the numerical results converge at a second order rate to the linear
theory up to about ¢t = 12, after which the two approaches yield different results.
Even though there is a discrepancy between linear theory and our results at latter
times, the numerical solution is clearly still converging to a solution at a second order
rate. We will see shortly that this late time disagreement is due to convection induced
tip splitting which our simple linear theory can not predict. While the convergence
of the growth rate is all but implied by the convergence of the tip velocity, it can
also be measured directly using the procedure discussed in Chapter 4. The results of
this measurement, which confirm second order convergence, are listed in Table 6.5.
Note that the-growth rate in the absence of convection for these parameter values is
o = 0.47. Thus, the predicted growth rate of o = 0.35 for this problem demonstrates
that convection can indeed make a significant impact. Finally, Fig. 6.4 demonstrates

the convergence of the interface position to linear theory at ¢ = 8.

Figure 6.5: Evenly spaced snapshots (6t = 0.25) showing the evolution of the interface
into the strongly non-linear regime for the B, = —20 case
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In Fig. 6.5 we have superimposed a series of snapshots of the interface at equally
spaced intervals in time (6¢ = 0.25). Examining the initial shape of the interface
(Fig. 6.4) we see that the dendritic finger undergoes a tip splitting very early in its
evolution when the amplitude of the interface perturbation is still quite small. We
shall see later that this behavior is a direct result of the bulk transport of energy in
the liquid by natural convection.

In Figures 6.6-6.14 we examine the flow field (via the streamlines) near the inter-
face at several different non-evenly spaced points in time. Note that the spacing of the
stream lines in these figures is such that the interface, ¥ = 0, lies halfway between the
first positive (solid line) and negative (dashed line) stream line. Thus, although the
interface is included for reference in each figure, care must be taken when using the

distance between the interface and the closest streamline to infer information about

the flow field.
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Figure 6.6: Snapshot showing the clockwise (dashed) and anti-clockwise (solid) vor-
ticies above the interface before it becomes significantly perturbed

Figure 6.6 shows the flow field before the interface has been significantly perturbed.
Note that the dendritic finger has been flattened in this figure. The solid lines in
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20 -

Figure 6.7: Snapshot of the streamlines and interface showing the initial occurrence
of tip splitting

Figures 6.6-6.14 correspond to positive values of the stream function, while the dashed
lines correspond to negative values. This implies that the flow in Figures 6.6-6.7
sweeps fluid from the valleys of the interface to the tip and then out into the bulk of
the liquid. This implies that the fluid which reaches the tip has already been warmed
by the interface (recall the bulk liquid is undercooled) before it ever reaches the tip.
This decreases the temperature difference between the tip and the liquid immediately
surrounding it, slowing its growth and causing the flatting, Fig. 6.6, and splitting,
Fig. 6.6, of the tip quite early in its evolution.

Figures 6.8-6.11 show the formation and evolution of a pair of secondary vorticies
formed in the valley created by the splitting of the initial dendritic finger. Note the
decay of the initial vorticites and growth of the new vortices with time as the no-slip
interface extends further out into the bulk liquid. Finally, in Figures 6.12-6.14 we see
that the initial vorticies have been eradicated and the new vortex pair rotates in the
opposite direction.

We now examine what happens if we “flip” the above problem over. That is, we
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Snapshot of the streamlines showing the initial formation of secondary

Figure 6.8
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Figure 6.14: Final snapshot of the streamlines showing the continued evolution of the
new primary vortices

take B, = 420 which corresponds to having the solid grow in the opposite direction
with respect to gravity. This reverses the buoyant forces acting on the system and,
as we shall see, has a dramatic influence on the evolution of interface.

We will forego an exhaustive validation for this problem. As we saw in the B, =
—20 case, the results indicate a universal second order rate of convergence. It is
interesting, however, to compare the convergence of the tip velocity for this case with
what we found using B, = —20. Comparing Figures 6.3 and 6.15, we see that there
is better agreement between our numerical simulations and linear theory at larger
interface perturbations for the B, = +20 case. The interface in the B, = —20 case
quickly exhibited non-linear behavior that is not modeled by our simple linear theory.
Such non-linear behavior does not occur until later in the evolution of the dendrite
for the B, = +20 case, so better agreement with linear theory is to be expected. It is
also interesting to compare the influence of convection on the growth rate for the two
different cases. Recall that the growth rate for the B, = —20 case was approximately
o = 0.35. In contrast, the growth rate for the B, = +20 is approximately ¢ = 0.50
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NxN, | oy ||loy —o|l., | Ratio
32x128 | 0.5032 | 1.71x1073
64x256 | 0.5020 | 5.10x10~* | 3.36
128x512 | 0.5016 | 1.33x10* | 3.83

Table 6.6: Resolution study of the growth rate for the B, = 20 case

(see Table 6.6) which is only a minor change from the o = 0.47 predicted in the

absence of convection.
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Figure 6.15: Tip velocity comparison between the numerical scheme at three different
resolutions and linear theory for the B, = 420 case

In Fig. 6.16 we have superimposed a series of snapshots of the interface at equally
spaced intervals in time (6t = 0.05). Unlike in the previous example, we see that in
this case the dendritic finger maintains its basic shape until it is quite deep into the
non-linear regime. The difference between the previous case and this one is the initial
flow field. In the B, = —20 case, the valleys of the interface were supplied with the
“cold” fluid from the bulk liquid. The fluid was then heated against the interface
before it arrived at the dendrite tip. As we see in Fig. 6.17, however, the flow in the

B, = +20 case directs the “cold” fluid from the bulk liquid directly against the tip.



Figure 6.16: Evenly spaced snapshots (6t = 0.05) showing the evolution of the inter-
face into the strongly non-linear regime for the B, = +20 case

This increases the heat transfer from the tip and acts to counter the surface tension of
the interface, hence, increasing the growth rate. Figures 6.17-6.19 demonstrate that
this flow is maintained as the dendrite finger grows.

Figures 6.20-6.22 show the continual reduction of both the flow towards the tip
and the flow in the valleys as the valley regions become enclosed by the growing solid
region. Finally Fig. 6.23 shows that, even in this case, tip splitting does eventually
occur. Also in Fig. 6.23 we see that flow in the valley region has been effectively
extinguished. In fact, the lack of movement by the portion of the interface forming
the valleys indicates that there is, at most, only a slight temperature gradient in that
region. Thus, there is no net forcing available to drive the fluid trapped in the valleys,

explaining its demise.
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Figure 6.18: Snapshot of the streamlines

around the interface for the B, = 420 case
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Figure 6.19: Another snapshot of the streamlines around the interface for the B, =
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Figure 6.20: Snapshot of the streamlines around the interface showing a reduced flow
towards the dendrite tip for the B, = +20 case
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Figure 6.21: Snapshot of the streamlines around the interface showing a further
reduced flow towards the dendrite tip for the B, = 420 case
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Figure 6.22: Snapshot of the streamlines around the interface showing the initial
stages of tip splitting for the B, = +20 case
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Chapter 7 Summary

7.1 Present work

The objective of the present work has been to develop a front tracking/fixed grid
method capable of simulating dendritic solidification in the presence of natural con-
vection. We have demonstrated that our method is second order accurate and capable
of simulating experimentally observed phenomenon such as tip splitting and growth
rate variation with system orientation. To our knowledge, this is the first time the
fully coupled unsteady dendritic solidification problem has been successfully simu-
lated. This is also the first time that the immersed interface method has been used
to discretize the fully non-linear incompressible Navier-Stokes equations. In addition,

several less significant contributions to the state of the art have been made. These

are

1. The generalization of the immersed interface method to higher order stencils
with the added benefit of improved coupling between interface jumps and nodal

derivatives.

2. The development of an interpolation scheme that features a smoothly varying

discretization error as the location of the interpolant moves through the grid.

3. The identification and removal of a degeneracy in the forcing system associated

with the immersed interface/boundary method formulation of incompressible

flow in irregular geometries.

4. The demonstration that the jump in the Laplacian of the pressure can be cal-
culated directly in terms of the interfacial forcing for the full Navier-Stokes

equations, without resorting to the interpolation of velocity derivatives off the

computational mesh.
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7.2 Recommendations for future work

The method we have developed is currently restricted to symmetric (equal material
properties) problems. While this restriction is easily lifted using the theory developed
in Chapter 3, the efficient solution of the resulting discrete systems remains an area
of research. One approach would be to use a multigrid method like the one developed
by Adams (see [2]). An alternate approach would be to use a different variant of
the immersed interface method altogether. Viable options would be the methods
described in [27] or [78]. It would be quite interesting to implement the different
approaches and compare the results.

It would also be interesting to develop an adaptive mesh formulation of this
method. The simulations we have performed have demonstrated that dendritic so-
lidification typically requires the simultaneous resolution of both very large and very
small scale features. Such problems are tailor-made for adaptive grid approaches. Our
discretization method would allow an adaptive mesh algorithm to subdivide regions
based solely on accuracy requirements with no need to distort the computational
mesh to locally conform to the interface. An adaptive mesh would also allow the con-
sideration of very large computational domains which would allow longer simulation
of problems with low undercooling.

A method that implemented both of the above suggestions would yield a very

powerful tool for the investigation of dendritic solidification.
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Appendix A Non-dimensionalization of

the system

The selection of scales in phase change problems with convection is a difficult issue.
There are a wide variety of phenomena occurring on disparate length scales. A careful
examination of the different issues involved can be found in [60]. We have followed the
main recommendation of [60] and scaled the problem such that the interface velocity

is O (1). The dimensional quantities are related to the dimensionless variables by:

Ts = Ty + Abg, (Al)

TL = TM -+ A@L, (A2)

u = U, (A.3)

b= pLU2ﬁ7 (A4)

k= <R (A.5)
=3 .

T = AT, (A.6)

X = \X, (A.8)

Y = )Y, (A.9)

t =Tt (A.10)

Dropping the tilda’s and using
A

= — A1

= (A.11)

U="tst, (A.12)



Trer = T,
where
Kg
og = —
PsCs
K,
oy =
PrcL

Pr= —V——,
ay,
the Stefan number is defined as
St = Pret
psL
and the Grashof number of defined as
3
Cr — ﬂgAzx\
v
we find the dimensionless system:
00g 9
Vs 9
5 HgV<0s,
in the solid,
V.-u=0,

Ou

— 4+ u-Vu=—-Vp+ DV?u+ Bé,,

ot

and

00y,

— +u- VOL = HLVZQL,

ot

in the liquid and, on the interface,

u=0,

0s =0 = —e.(n) K,

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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and

(heVls — hyV;) -1 = (%—f - n) . (A.25)

The values of dimensionless material properties are given by

D= (%) (A.26)

Hg = (z—i) % | (A.27)
H, 3,1; (A.28)

hs = % (A.29)

hy =1, (A.30)
£c(n) =%, (A.31)
B.=¢, (%)2 Gr, (A.32)
B, =¢, (%)2 Gr, (A.33)

where B = (B,,B,) and g = g (gw, gy).
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Appendix B Spatial discretization on a

staggered grid

The placement of the various physical variables at differing points in space in a stag-
gered grid simulation adds an extra layer of complexity to the calculations. In this

section we outline the different formulas that must be employed.

B.1 Vertical momentum

B
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Figure B.1: Centered stencil for the vertical velocity nodes

The computational stencil for the v velocity is shown in Fig. B.1. The relative
indices for the u velocity and pressure are shown in Fig. B.2. The scaled equation

governing the vertical momentum is

ov ov ov Op 9
L by oy = 2 B.
3t+u6x+v(9y 8y+va+By0’ (B.1)
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Figure B.2: Vertical velocity cell with relative indices for all variables

where the spatially discrete version (time dependence is implicit) of each term eval-

uated at the (4, j) v-node location (1 < j < N,) is

B,0 = % 0,5 —1)+0,j)], (B.2)

= Al ~p (i, - 1), (B3)

w= gl =D +uld) tuli+1j- ) tul+1)],  (B4)
v%:Z%[v(iﬂ,j)ﬂ(i—1,j)+v(¢,j+1)+v(i,j—1)—4v(¢,j)], (B.5)
S e g L) v~ 1,5), (B.6)
Z—Z=ﬁ[v(i,j—l—l)—v(i,j—l)]. (B.7)

Our computational domain is periodic in the horizontal direction and the velocities
are specified at the top and bottom of the domain. Thus the values of v (z,0) and
v (1, N, + 1) are known. Because the position of the upper and lower boundaries coin-
cides with the position of v-nodes, no special stencils are required near the boundaries.
The other variables, however, are not evaluated at nodes exactly on the top and bot-
tom of the computational domain. The remaining variables, therefore, will all require

modified stencils for the nodes adjacent to the top and bottom boundaries.
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B.2 Horizontal momentum

Figure B.3: Centered stencil for the horizontal velocity nodes

Av(i-l,jﬂ) AV(i,j+1)
Qp(i-l,j) Du(i,j) O1r>(i,j)
V(i' 1 s.l) A V(I’J)

Figure B.4: Horizontal velocity cell with relative indices for all variables

The computational stencil for the u velocity is shown in Fig. B.3. The relative
indices for the v velocity and pressure are shown in Fig. B.4. The scaled equation

governing the horizontal momentum is

ou Ou Ou  Op 9
E-l—uax—i-vay— ax—I—DVu—i—Baﬂ (B.8)
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where the spatially discrete version (time dependence is implicit) of each term eval-

uated at an (4, j) interior (0 < j < N,) u-node location is

B ="2106i—1,1)+0 (7). (B.9)

P e (i)~ p i~ 1), (B.10)
v=é—i[’u(i—1,j)+v(z’,j)+v(i—1,j+1)+v(z’,j+1)], (B.11)
v%:Aiﬁ[u(iﬂ,j)—m(i—1,j)+u(i,j+1)+u(z‘,j—1)—4u(z',j)], (B.12)
%;ﬁ[u(i+l,j)—u(i—l,j)}, (B.13)
Z—Z=§~Al~£[u(i,j+l)—u(i,j—1)]. (B.14)

At the lower (j = 0) and upper (j = N,) boundaries the stencils for the derivatives
in the vertical direction must be modified. The velocity is specified at the boundaries

so, for j = 0, the value u (i,j — %) is known and

4 8 1
2 . . . s . = . . e . s _ . .
vu_—AwQ [u(z—l—l,])+u(z 1,])+3u(z,]+1)+3u(z,] 2) 6u(z,])],
oy 1 \ 1 (B.15)

Similarly, for j = N, the value u (i, Jj+ %) is known and

1 8 1 4
2 . . . . © .o = = coe N ..
Viu= 5o [uli+ L) +uli—19) +5u i+ 5) +5ulig - 1) = 6uG,5)]
(B.17)

ou 174 (.. 1 . 1 .
5y = 2z [5v (#9+3) ) —guls 1] (B.18)

B.3 Pressure

The computational stencil for the pressure is shown in Fig. B.5. The relative

indices for the u and v velocities are shown in Fig. B.6. From the continuous equations
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Figure B.5: Centered stencil for the pressure nodes
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Figure B.6: Pressure cell with relative indices for all variables
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it is possible to derive a Poisson equation governing the pressure (see [19])

00 00 [ ou\> ou [ 0Ov Ov 2]
vy = B % ov | [ou ou\ (ov ov
P= Bxax Bgc?y L(@x) 2 (03/) (89:) <6y> ] ' (B-19)

While the right-hand side of the above is never directly discretized, the functional
form of the forcing is required to accurately calculate the jumps across the interface.

The discrete equation governing the pressure is derived directly from the discrete
continuity equation

u(i+1,§) —u(g) v(j+1)—v(ij) _
a n - =0, (B.20)

and the expressions relating the physical and intermediate velocities

u(iy) = 26.9) — (52) () 2 = 1,9)], (B:21)

o At o .
v(i.4) = 9(0,5) = (5 ) [P (2) = p (i, = 1)]. (B.22)
Since our domain is periodic in the horizontal direction, the only special cases that
occur are near the upper (j = N,) and lower (j = 0) boundaries. For the interior
pressure nodes (0 < j < N,) substituting the above expressions for the physical
velocity into the continuity equation and rearranging yields

At Az Az ’ (B.23)

Vp =
where the standard discretization for the Laplacian is obtained

Vip= < lp(i+1,9) + 0= 10) +p G+ 1) 4G5 — 1)~ 4p (i) (B24)

At the lower (5 = 0) boundary, the vertical velocity, v (4, 7), is specified so it is not

necessary to substitute in an expression from this quantity. This modifies the equation
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governing the pressure which becomes (5 = 0)

Vip = Y o + Ay , (B.25)

where a modified discretization for the Laplacian is obtained due to the presence of

the lower boundary
Vip= 5+ L5)+p(—14) +p@5+1) = 3p(,5). (B.26)

Similarly, at the upper boundary (j = N,) the vertical velocity, v (¢,j 4+ 1), is also

specified and the equation governing the pressure is (j = N,)

At Az Az ’ (B.27)

Vip =

where a modified discretization for the Laplacian is again obtained due to the presence

of the upper boundary
Vip = A pE+1,5)+p(t—1,7)+p(i,5—1)—=3p(s,7)]. (B.28)

It is important to note that there is no need to supply boundary conditions on the

pressure.

B.4 Temperature

The temperature and pressure nodes lie at exactly the same spatial locations and
share a common indexing scheme; see Fig. B.6. The computational stencils associated
with the temperature, however, differ somewhat from those used by the pressure (see

Fig. B.7). In the liquid, the temperature satisfies

86 86 06 )
a3 gy g, = HY, (B.29)
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Figure B.7: Centered stencil for the temperature nodes

while in the solid, the temperature obeys

% = HV?). (B.30)

For locations, 0 < 7 < N, the above quantities are calculated at the (7, 7) tem-

perature node using

w= 5 li+1,9) +ulid), (B.31)

v= 2o+ 1)+ o), (B.32)
%:ﬁ[@(z’—i—l,j)—@(i—l,j)], (B.33)

= 5Az 8.+ 1) =65~ 1), (B.34)

V3 = GAlxz{4[9(z’+1,j)+9(i—1,j)+9(’i,j+1)+9(i,j“1)]+ (B.35)

0G+1,7+1)+0(+1,5—-1)+60(G—-1,7+1)+0(GE—1,7—1)

—200 (3,7)}
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. Near the upper and lower vertical boundaries, the derivatives in the y-direction

must be modified. For j = 0, the value of 6 (z’, j— %) is specified and

2__1~[ . : oo, 4 §(__l>_ ]
VH_AZZ O(t+1,7)+0( l,j)+30(z,j—|—1)—|—30 57— 5 66 (i,4)] ,
(B.36)
1

00 111, .. 4
5 ~ s [50(1,3—1—1)—!—6’(2,3)—59 (m—§>]- (B.37)

Similarly, for j = N,, the value of ¢ (i, i+ %) is specified and

1 8 1\ 4
V20 — s [6’(i+1,j)+0(i—1,j)—|—§9 (i,j—l—~2~) +30(6,7 - 1) —69(1',3')} ,
(B.38)

00 1714,/ . 1 . |
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Appendix C The jump conditions for the

Navier-Stokes equations

The determination of the jump conditions for the fluid velocities and pressure is com-
plicated by the lack of a separate evolution eqliation for the pressure. The jump
conditions for Stokes flow were derived by LeVeque and Li in [39]. The calculation of
the jump conditions for the full Navier-Stokes equations we present here is a gener-
alization of that work.

For this derivation, it is convenient to use indicial notation and work with the
Navier-Stokes equations in vector form. The scaled incompressible Navier-Stokes

equations in vector form are

8ui
8$1‘

ou; ou,; Op

=0, (C.1)

2, .
4D 0“u;

Bt " Y5s;, ~ om T Powas, TH T (©2)

where b; is a body force due to buoyancy and F; is a singular forcing term that exerts
the same force on the fluid that a no-slip surface, I', would. In particular, if the
interface is given by X; (¢,t), where ¢ € [0,1] is the parametrization variable, the

interface forcing can be expressed as
1
Fi= [ £:(0,0)6 (@~ X (a,t) da (C.3)

The above forcing is singular since the integrand contains a two-dimensional delta
function. It is probably worthwhile to note that although, in this work, the singular
forcing on the interface models the effects of a solid surface embedded in the domain,
we will treat the problem as if the entire domain is filled with a fluid. This is entirely
consistent with our goal of determining the flow in the liquid region of the domain.

Even though the computed flow will associate a fluid pressure and velocity with every
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point in the domain, liquid or solid, only the flow in the liquid region is utilized or
even physically relevant.

Our goal is to determine the jumps in u; and p and their derivatives across I'
due to application of the singular forcing on that surface. To this end we replace
the continuity equation with the pressure Poisson equation. The pressure Poisson
equation is obtained by taking the gradient of the momentum equation, (C.2), and
using the continuity equation, (C.1), which, after some manipulation, yields

Now we need to introduce some notation. The surface along which the singular forcing
acts, I, is a simple smooth curve that is periodic in the z( (horizontal) direction. The
vectors n; and 7; are the normal and tangent to I', respectively. We will be considering
a domain €2, which contains a single period of I'. The domain is bounded by I'y. and
I'_. which are xg periodic simple smooth curves that do not touch I' and have no
point farther than +e or —e away, respectively, as measured along the normal to I'
(see Fig. C.1).

First we examine the continuity of the velocity field. Multiplying the continuity
equation by w, an arbitrary zo-periodic and twice continuously differentiable function,

and integrating over €). yields, after some manipulation,

0 ow

€

The velocity field is bounded so the second term will be O (g). Using the divergence

theorem on the first term, we find

/ wu;n;ds = / wu;n;ds — / wunds = O (g) . (C.6)
0Qc Fye .

Taking the limit as ¢ — 0 and using the fact that w is an arbitrary function, we
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Figure C.1: Integration domain surrounding the interface

conclude

where [-] denotes the jump in a quantity across the interface, X;,

[a] = lim a(X; +en;) — lim a(X; —en;). (C.8)

e—0t e—0t

Assuming that the pressure is bounded at the interface, a quick examination of C.2
and C.3 reveals that the forcing is not singular enough to support jumps in the

tangential velocity, thus
[uiTs] = 0. (C.9)

Combining these two results, we conclude that the velocity field must be continuous

onT’

[u;] = 0. (C.10)

While it was necessary to assume that the pressure is bounded everywhere to derive
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the above, we will find that this assumption is consistent with the restrictions on the
pressure we determine now.
The pressure Poisson equation contains terms that are quite singular. Not every
term in (C.4), however, is singular enough to make a contribution to the pressure

jump relations. Multiplying (C.4) by w and integrating over £, yields

/wax,axsz / 83:sz / {81;- - (0352) (axj)}dA' (C.11)

The buoyancy term, which is proportional to temperature, is assumed to be con-

tinuous across the interface and we know from (C.10) that the velocity is as well.
Therefore, the last integral above will vanish as e — 0 so we need only consider the

first two terms:

[vacgai=[vgaro@ €12
Using the identity
&p o ( dp o [ ow 52w

and the divergence theorem, we find

/ w Bm,c?:csz / pds— / p—ds—!— / paxl A. (C.14)

Noting that the last term of the above is O (&) because of the smoothness assumptions

on w and taking the limit as € — 0 yields

0%*p Op
- 1
hm w 3. Gm,dA [ }ds / o [p] ds. (C.15)

Qs

Now consider the integral on the right-hand side of (C.12). Using the identity

OF; 0 ow
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and the divergence theorem, we find

ow
/ wy Zpy. / wn; Fyds — axiFidA. (C.17)

From the definition (C.3) we note that the above is equivalent to

8F
3301

ow
‘dA = —f .
9%, fids, (C.18)
. r
where it is important to note that F;, the integral of the interface forcing times a
delta function, has been replaced by f;, the magnitude of the interface forcing, in the
integrand. Now combining (C.12), (C.15) and (C.18) and taking the limit as € — 0,

we find

/ [gﬂd - %:Mds:_ o, = fuds, (C.19)

which is not immediately useful because of the form the w dependence takes. It is

possible to rescue the situation, however, by rewriting

ow Ow ow

where s is arc length, which hold along I' and implies

Oow ow ow
8_%fids"i‘/<a_nni+ s )fzds (C.21)

Focusing our attention on the tangential derivative, we note that the identity

0 (wﬂﬁ) = zfz (;;fz) (C.22)

allows us to conclude

dw 9 (7ifi)
T?,fz) ds = (wrifi)ds — | w—=—"~ds. (C.23)
[ (ns)n [t 425
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The first integral on the right-hand side of the above vanishes because the integrand
consists of zo-periodic functions integrated over a period of an zg-periodic curve.
Using this fact and substituting (C.23) into (C.21), we find

| & fuds = F/ ( nify — w s )ds. (C.24)

Using this identity in (C.19) and collecting like terms yields

F/w{[g—ﬂ —Q%}ds—r g—::{[p]—nifi}ds=0. (C.25)

Because w is almost completely arbitrary, this allows us to conclude that

[p] = n,f; (0-26)
and
op| 0(rify)
2] -2t e

Now that the jump conditions for the pressure have been established, the jump
conditions for the velocity can be computed. Integrating (C.2) multiplied by w over
2. and using the continuity of the velocity field and the buoyancy forcing across the

interface, we derive

0%u; Op
/w <Daxjaxj> dA _Q/waxidA —Q/wFidA +O(e). (C.28)

€

Using the definition of F; and arguments similar to those used for the pressure, we

find

/ w (Daui) ds = / w (n;p) ds — / wfds+ O (g), (C.29)
00 00,

on
0.

and taking the limit as € goes to zero, we get

D [gﬂ = [p]m; — f. (C.30)
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Finally, using the fact that [p] = f;n; and

i (fingne — fi) = 0, (C.31)
Tk (fingme — fr) = —Tifr (C.32)

we see that the jump relation for the velocity field is

D Bﬂ = — (Tufe) i (C.33)

While the above results are most easily derived in vector form, it is useful to

summarize the results in terms of scalar variables as well. Thus, the Navier-Stokes

equations,
' Oou Ov
= = .34
9 + By 0, (C.34)
Ou + w2 + b2 % + DV?u + B,#, (C.35)

ot ox Oy 0x
Ov Ov @ _Op

2
it e £ B .
5 T Y3 V3 3 + DV v + B0, (C.36)

satisfy the following jump conditions for the horizontal velocity

[u] = 0, (C.37)
ou|  fr7g
[O_nJ =~ (C.38)

the vertical velocity

[v] = 0, (C.39)
v frTy
— = - 4
[ an] Ty, (C.40)

and the pressure

[p] = fa, (C.41)
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op| _ Ofr
o] - o O ew

With the above jump conditions known, we can compute the jumps in all the deriv-
atives of the flow variables.

The pressure satisfies the Poisson equation given by

06 00
2

= F=B,— + B,— —
Vip=F Bax+ Yoy

e (2 2 (2)(2) + (22) o

Using the results derived for Poisson’s equation in Chapter 3 we can easily find the

A, (C.43)

where

jumps in the first derivatives

el e
y Ty Ty Bs ,

The jumps in the second derivatives are given by

[Paa] o o~y Ty || %
[pay] | = Ty Tz —TgTy %}] ) (C.46)
[Pyy] Tz Ty T2 [F]

which requires that the jump in the forcing, [F], be known. This jump is given by
[F] =B [093] + By [Qy] - [A] ] (C.47)

where

and
ul = 11%1+ ug (X +eng, Y +eny), (C.49)
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u, = lim u, (X —en,,Y —eny), (C.50)

T emot
etc. While the jumps in the temperature, [0,] and [6,], are known, it is not clear that
[A] can be calculated solely from our knowledge of the jumps in the velocity. One
possible way to compute [A] would be to interpolate the first derivatives of the velocity
field off the computational grid points. This is somewhat cumbersome, however, and,
for our problem at least, unnecessary.

The easiest way to compute [A] would be to find some way of calculating the
values of all the first derivatives of velocity. Following this approach, we would need
to compute the values of eight quantities: uF, u, w}, u,, v}, v, v and v, . This
is a lot of unknowns but, fortunately, there is a substantial amount of information

available. For our problem, the velocity at the interface is specified

u(X,Y,t) = Uls,t), (C.51)
v(X,Y,t) = V(st), (C.52)

and, as we found above, continuous. Thus, differentiating the above and evaluating

it on each side of the interface yields four equations:

,_0U

Toul + Tyul = ——, C.53
TV Bs
Toly + Ty, = aa—g, (C.54)
ToUy + Tyv) = %Z—, (C.55)
and
TaVp + Tyv, = %—‘: (C.56)

We also know that the flow must satisfy the continuity equation, so evaluating that

on both sides of the interface supplies two further equations

uy + v} =0, (C.57)
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uy +v, =0, (C.58)

bringing our total to six. It is tempting, at this point, to use the jumps in the normal

derivatives across the interface
Ny (u;ﬂ,‘ — u;) + ny (u;jF — u;) = [u,)], (C.59)

Ng (v: - v;) +ny, (v; - vy‘) = [vy], (C.60)

to close the system. Unfortunately, only one of these is linearly independent of the
equations already present. Thus there is only enough information for one equation,

which, in its most convenient form, comes from a linear combination of the above
- - - - f
ToMy (uj - ux)—l—Twny (u;' - uy)—I—Tynx (vg;,F — v )—I—Tyny (v; — v, ) = —BT. (C.61)

Note that the right-hand side of the above follows from the definitions of [u,] and
[vn]. This leaves us with seven linearly independent equations in eight unknowns.

The last equation is motivated only by our desire to close the system,
TaNally + TeNylly + Tyngvy + Tynyv, =W, (C.62)

where the value of W is unknown. The complete set of equations is

- Te Ty 0 0 0 0 0 0 ] (u; ou
0 0 Te Ty 0 0 0 0 ut W
0 0 0 0 Tx Ty 0 0 uy %%
0 0 0 0 0 0 Ta Ty u, | o

1 0 o0 o o0 1 0 0 vl | o |
0 0 1 0 0 0 0 1 v; 0
TNz TeMy —TgNg —TgNy Tylg TyMy —TyNg —TyMy vy _%
TNz  TaNy 0 0 0 0 TyNz TyTy vy w
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4
which has a determinant of (Ti + 75) = 1. Solving for the first derivatives yields a
series of lengthy expressions that are dependent on all the terms found on the right-
hand side, including W. Fortunately, we do not need to know the values of the first

derivatives individually. Substituting the values obtained above into the definition of

[A] yields
2f [ OU 8V
[Al =~ (nx—as +ny——as) (C.64)

which is independent of the unknown quantity W.
The value of the [F] can now be calculated without resorting to interpolation

2f,

B, (0] + By [0,] + == (nm (C.65)

[£]

Il

s " os

ou ov
i) .

In contrast to the pressure, the jumps in the derivatives of the velocities are fairly
easy to compute. Formally at least, we can view the momentum equations as Poisson’s
equation which allows us to use the results derived in Chapter 3. Thus, rewriting the

momentum equation in the horizontal direction as

_Ljou e Ou gyl (C.66)

2— _ | —
Viu=M=51% 1t "5 t o

the jumps in the first derivatives of the horizontal velocity are
[us] = ns [un] (C.67)

[uy] = ny [un] . (C.68)

The jumps in the second derivatives are given by

Olug
[Uge] Te —Ty 7'5 —[gl
[usy] | = Ty Tz —TgTy %L] . (C.69)

[tyy] Tz Ty T2 [M]
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These can be calculated once the jump in the forcing,

(M) = = ([ + U fa] 4V [e] + [pa]) (.70

the interface velocities U (s,t) and V (s,t), the jump in the time derivative

il == (G b+ 5 [uy]) (1)

and the jump in the z-direction pressure derivative, [p,], are known.

Similarly, rewriting the momentum equation in the vertical direction as

U2y N = 1 [8’0 ov  Ov  Op

=—|= —+v—+ ——B,0 C.72
D 8t+u8w+08y+6y y}’ (C.72)
the jumps in the first derivatives of the vertical velocity are

[vz] = 1 [va] (C.73)

[vy] = 7y [vn] : (C.74)

while the jumps in the second derivatives are given by

[Vaa] Te —Ty T Qa%l
[voy] | =] Ty To —TaTy Ao | (C.75)
[Vyy] Tz Ty T [V]
These can be calculated once the jump in the forcing,
1
[N = 5 (foe] + U [vs] + Vo] + [py]) (C.76)

the interface velocities U (s,t) and V (s,t), the jump in the time derivative

[v] = — (%—f [vs] + %—f [vy]> (C.77)
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and the jump in the y-direction pressure derivative, [p,], are known.
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