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Abstract

Modern integrated circuits are among the most complex systems designed by man.
Although we have seen a rapid increase in fabrication technology, traditional
design methodologies have not evolved at a rate commensurate with the increasing
design complexity potential. These circuit design methodologies fail when applied
to Very Large Scale Integrated (VLSI) circuit design. This thesis proposes a new
design methodology which manages the complexity VLSI design, allowing

economical generation of correctly functioning circuits.

Cost is one measurement of a design methodology's value. A pgood design
methodology rapidly and efficiently translates high level system specifications into
working pa.rts. Traditional techniques partition the translation process into many
steps; each design tool is focused upon' one of these design steps. This partitioning
precludes the consideration of global constraints, and introduces a literal explosion
of data being transfered between design steps. The design process becomes

error-prone and time consuming.

The technique of silicon compilation presented in this thesis automatically
translates from high level specifications into correct geometric descriptions. In this
approach, the designer interaéts at a high level of abstraction, and need not be
concerned with lower levels of detail, facilitating exploration of alternate system
architectures. Furthermore, since the implementation is algorithmically generated,
chip descriptions can be made correct by construction. Finally, the user is given
technology independence, because the high level specification need not require
.knowledge of fabrication details. This f lexibility allows the user to take advantage

of technology advances.

This thesis explores various aspects of silicon compilation, and presents a prototype
compiler, Bristle Blocks, The methodology is demonstrated through the design of
several chips. The practicality of the methodology results from the concern for

efficiency of the design process émd of the chip designs produced by the system.
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Introduction

A circuit qualifies as a VLSI circuit when a single designer, using manual design

methods, requires more than one lifetime to complete the design.

Using the above criterion, we are currently at the threshold of VLSI: chips are
beginning to take more than a person's lifetime to design. Furthermore, industry
experts project that things will get much worse [18]. As fabrication technology
advances and the density of circuitry increases, so will the functionality of the
chips. As the functionality increases, the complexity of the design will increase
exponentially due to the interactions among the circuit elements, and therefore the
design time will also increase exponentially. If we are going to exploit these

density increases, we will have to change the way in which we design circuits,

Not too many years ago, software design engineers (programmers) were faced with
a very similar problem. The computer technology was advancing and giving the
programmers ever increasing memory space. Exploiting this tremendous increase in
machine capability, program complexity grew rapidly, resulting in exponential
increases in design and implementation time, due to interaction between pieces of
the program. One very successful tool that developed was the higher-ley_el

language and compiler.

Software compilers allow programmers to specify their designs more by intent, on a
semantic level, rather than on an implementation level, freeing programmers from
the concerns of many nitty-gritty implementation details. Programmers also en joy
the ability to rapidly modify their programs. The compiler handles the tedious and
error-prone task of translating the high-level semantic definition of the program to

its low-level implementation.

If the techniques and concepts used in creating software compilers were used in
creating hardware compilers, or silicon compilers, the VLSI designer would be freed
from the complexity of low-level implementation details and could spend more

time on interesting tasks like product definition and algorithm research.



Similarities between Software Compilers and Silicon Compilers

Both software compilers and silicon compilers have the same basic goal: hiding
implementation details from the user, allowing the user to work at an algorithmic
or behavioral level., When writing a program in a high-level language, the user
does not want to know exact physical addresses where his code is being placed, nor
does he care how the compiler allocates registers, nor even what the instruction set
is on the target machine. Were he to be bogged down with this incredible volume
of implementation details, software costs would be many times higher than they
are today. In exactly the same way, a user designing with a silicon compiler
language does not need to know the exact physical locations where the compiler is
placing his circuitry, the mask layers that the compiler uses, or even the design

rules required by the fab line.

Compilers maintain datatype consistency. Most of the modern software languages
require data to be typed: the user must specify what kind of data is stored in the
-program variables. The compiler can then check to make sure that the variables are
used correctly. If the user attempts to store an INTEGER value into a REAIL variable,
the conipiler can either notify the user of an improper assignment, or convert the
INTEGER data ‘into the REAL format before completing the assignment, In like
manner, silicon compilers can verify the usage of cells and their interconnections.
If the output of one cell, which is valid during one clock phase, is connected to a
second cell which samples that signal during a different clock phase, the compiler

can either notify the user of the timing error or take corrective action on its own.

The outputs of compilers are correct by construction: no one takes every output of a
FORTRAN compiler and runs a design rule checking program on it to verify that the
assembly code correctly implements the source specification. Similarly, the output
of a working silicon compiler is guaranteed correct. The resulting designs do not
have to be run through DRC programs to verify the correct design of the chip. This
is very important as we approach VLSI, where the time and cost to perform a full

DRC are astronomical.

Compilers allow for continuous modification of the design. When the
specifications for a software program are changed, the program is modified to

reflect the change. Rarely is the entire program scrapped and written anew, as



might be the case if the pi’ogram were written in machine code. It is quite natural
in the software world for programs to go through many revisions as new.
discoveries are made. In hardware design, machine specifications are in a constant
state of flux, but radical changes to the design are unaffordable if large portions of
the design must be redone, as is usually the case if the design consists of geometric
primitives, Compilers make changes affordable, giving the designer freedom fo

explore many design strategies.

Cojnpilers work with templates. Software compilers use templates for each of the

basic language constructs. For instance, the IF-THEN-ELSE statemevnt

IF <expression> THEN <statementls> ELSE <statement2> F1I

always compiles into the machine code

evaluate <expression>
BRANCH IF FALSE labell
<astatementl>
GOTO labei?2

labell: <statement2>

fabeld: Jooeees

In a similar manner, silicon compilers have templates, called 'floorplans’, for the
constructs in the language. These floorplans explicitly state the wiring

management for the chip and describe how the pieces of the chip connect together.

Differences between Software Compilation and Silicon Compilation

The first major difference between the tasks of software compilers and silicon
compilers concerns the dimensionality of the result. Software compilers generate a
one-dimensional result, The location, or address, of any resulting machine word is
a single number, Silicon compil_ers generate a two-dimensional result. The location

of any resulting primitive device is given as both an X and a Y coordinate.

To be completely general, silicon compilers would have to do box-packing which,
for large designs, becomes impractical. To avoid this problem, silicon compilers
make use of the hierarchy of the specification, equating the physical hierarchy

with the logical hierarchy as specified by the user and directed by the floorplan of



the compiler,

The second major difference between software compilation and silicon compilation
concerns the communication between various pieces in the design. In software, the
GOTO and CALL instructions provide linkage between the various modules. For all
practical purposes, the communication costs between any two points in memory is
constant, regardless of the relative positions of the two points. In silicon, wires
provide the linkage between the modules, The cost to communicate between two
points is directly related to the relative positions of the points: the further apart the
points are located, the more area and time/power are required to implement the
communication. In addition, the wire can not be routed arbitrarily across the chip
because it must avoid other modules and wires that might be in its path. In fact, a
communication path may be impossible due to obstacles on the chip. A software
GOTO has no obstacles; it doesn't have to dodge‘ a certain set of words in memory,

and it doesn't modify every word that it has to pass over.

It is interesting that this second problem, the GOTO, can be solved using the same
technique as the solution to the dimensionality problem: through the hierarchy.
Using a hierarchical description of the chip, communication betweean modules can
only occur in well-defined manners between objects on a single level of the
hierarchy or between two adjacent levels of the hierarchy. The f{loorplan of the
compiler can guarantee these two types of communication, and hence the silicon

compiler can compile any chip which can be specified in the compiler's 1énguage.

Design of a Silicon Compiler

This thesis explores some of the possibilities available using the silicon compilation
concept. The first section reviews various design technigues and weighs the
potentials of design tools. Some of the newer concepts are dicussed in detail, with
practical examples to illustrate the techniques. The second section documents a
working silicon compiler and dicusses the design tradeoffs and experience learned
using the compiler. The work presented in this thesis was performed by the author

except where explicitly stated otherwise.



Part One

Design Methodologies



Chapter 1: The Design Tool Space

The [irst integrated circuit masks were designed completely 'by hand'. All of the
geometric features were drawn directly on the filmn used to expose the working
plates. The designer was completely free to lay out any circuit desired, but every
single shape had to be drawn on the film. As digitally controlled film plotters were
developed, the design style incorporated computers to drive the plotters. The masks
were still designed on mylar, but then the designs were 'digitized': the geometric
shapes wertre described ta the computer, The computer then drove the film plotter to

make the actual masks [2].

Once the computer-film plotter team was introduced, it was noticed that the final
goal of the layout designer was not necessarily to generate the actual masks, but to
bhuild the data description in the computer's memory. Methods were developaed to
enter the geometric shapes directly into the computer, rather fhan working on
mylar then digitizing the result. Interactive graphics systems allowed the user to
design the circuits directly on a CRT screen and get instant visual feedback of tﬁe

computer's perception of the design [1][7][8][33].

The design task using interactive graphics was still formidable. The user had to
verify that every geometric shape met all of the process design rules. The
fabrication processes were in a constant state of flux, so the design rules Irequently
changed. Due to the long design cycle for large chips, these chips could not use the
state-of~the-art technology. Work then proceeded to divorce the design rules from
the design. If the design could be specified independent of the design rules, and if a
program could then convert this technology-independent layout description into
the actual artwork, chips could make use of the most advanced technology, and as
the techn.ology, adVanced, the new masks could be generated from the old designs.

This design technigque was called the 'sticks' approach [21][24][27][28}[32][34].

These design methodologies are fundamentally 'Geometric' technigques. The basic
atoms of the design are graphical objects, and an object in the design, like a register,
is a collection of graphical objects. As these graphics techniques were being
developed, a totally different approach using 'Procedural’ cell design techniques
was being explored. In the procedural methodology, the cells are described as a

program which, when executed, would generate the description of the layout



directly in the computer memory.

The first step towards procedural cell design was to develap languages for
describing artwork. As these special purpose languages were used, it was noticed
that there was a need for higher level programming constructs, which led to the
development of an 'Imbedded Language'. Rather than design a special purpose
language {rom scratch, routines for generating the geometric shapes were written
in a high level programming language, The designer in using an imbedded language

has the full power of the high level language to describe the layout {4]{19]{31].

When chips are designed using the procedural approach, a large collection of
subroutines are written to implement each of the low-level units of the design. To
complete the design task, these pieces must be glued together. The tedious and
error-prone wiring task can be done by a program. An imbedded language system
with automatic wiring generators and cell management systems becomes a 'Chip
Assembler'. In the chip assembler, the designer is interconnecting a series of
macro~-modules, The user designs the low level layouts, while the program

generates the wiring that puts together the chip [6][29].

Extending this approach one step further, the high-level features of a chip class can
be hardwired into the design system. To design a particular chip in this class of
chips, the user need only specify the unique features of the chip, allowing the
program to automatically generate the remainder of the chip. These systems are

called 'Silicon Compilers', reminiscent of software compilers used to write programs

(si12)13]

We have mentioned six basic design approaches here, Each of these systems has
advantages for certain design requirements and disadvantages for others. We will
discuss some of the design requirements here to put a perspective upon the design

style used throughout this thesis,

1.1: Flexibility

One comparison of the design tools that can be made is that of flexibility: How

flexible are the design tools? Perhaps the first type of flexibility that comes to.



mind has to do with the architectures of chips. Can we design any type of chip
with a particular design tool, or docs the tool restrict the kinds of designable chips.
The most restrictive design tool presented here is the Silicon Compiler. The Silicon
Compiler accepts a formal, high-level language specification of the chip' to be
implemented. Hence, the kKinds of chips compilable with a particular compiler are
limited to those expressible in the language. If you can express the chip in the
input language, you can compile the chip. Chip Assemblers are more flexible than
compilers. With an assembler, the user fuses collections of macro-modules to form
the chip. The number and complexity of the macro-modules, along with the
communication costs, are the primary limiting factors on chip architecture. Still
more floorplan-flexible are the Sticks and Interactive Graphics systems. These only
limit the geometric primitives available in the design, and restrict the cell
boundries to be rectangles. Finally, hand design and imbedded language systems
allow the most flexible design system. It is poésible to design any designable chip

with these two system.

The above discussion talked about the absolute limits of each of the design system.
On the other hand, there are practical limitations to each of the tools. Perhaps the
biggest limitations are design time and the notorious complexity issues. While it is
theoretically possible to design any chip with the hand design methodology, the
implementation time may be astronomical. Similarly, the design complexity may be
so large that it is virtually impossible to design a provably correct chip in a
reasonable time, Systems like silicon compilers, however, may be able to design

these chips in a very short time.

Another flexibility measure has to do with technology dependence. The silicon
technology is always advancing. Are the tools able to take advantange of
technology advancements? It is here that the Sticks design systems really shine.
Since the system performs all of the design rule dependent operations, the user
designs 'technology free' designs, This does not mean that the user is not aware of
the CMOS/NMOS differences, but the user does not need to see differences in
various NMOQS processes. Each of the other fiesign systems require work to modify
an existing design to make use of new technology. For silicon compilers and chip
assemblers, the cell libraries have to be redesigned for the new design rules. For the

other systems, the entire chip must be redesigned when the technology is modified.



-9-

A third flexibility might be called specification flexibility, When the
specifications for the .chip change, how much work is it to redesign the chip?
Diuring the design of virtually every chip, ways are found to make the chip better.
Another design team may change the environment of the chip, or the chip designers
may discover a hidden cost during the implementation of the chip. In any case, it
may be very desirable to 'start all over' and re~-implement the chip. In many cases, a
redesign of the chip may require starting from scratch, and this cost of scrapping
the whole design may be prohibitive. If the company has invested several
man-years in the design, the design modifications are not economically feasible,
With a silicon compiler, however, a company invests man-days, not man-years, into
a design. With this small investment into the design, redesigns are’virtually free,
The designer may quickly and easily explore many-design tradeoffs, which are

impossible with the other design techniques.

1.2: Specification

Part of the process of desi‘gning a chip may be thought of as specification
translations. The design team is given an input specification of a chip, usually a
functional specification, and must produce an output specification of the chip. This
output chip specification may be a large drawing of the chip, as in hand design, or
the specification may be a data structure in a computer's memory, as in graphics and
sticks systems, or the specification may be a program in a high-level language, as in
the compiler, assembler, and imbedded language systems. The fundamental task of
the design team is to translate a specification in the input language to a
specification in the output language. This translation Process may be accomplished
in one step, or in many steps with different design groups performing each step in

the translation.

One would like to match the output language as closely as possible to the languagie
used by the design team. If the design team is working with logic equations, onn
would like the output language to be logic equations; if the design team worked
with RBegister Transfer (RT) equations, the optimal output language would be an RT
language. This language match is desirable for two reasons. First, the design
specification would be intuitive, so that the designers can easily express their

intent in the language, An expression in the language could be easily understood by
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the designers. Second, the designers can directly produce the output specification as

the chip is being designed.

If the design language is intuitive, a great majority of the design errors can be
avoided. If the specification is non-intuitive, it is difficult for the designers to
catch design errars in the chip specification. Of the six design tools mentions, the
imbedded language systems are perhaps the least intuitive. The user wishes to
implement a function. Short of that, the user wishes to describe the picture of a
circuit to implement the function. In imbedded language systems, the user writes a
program to generate a picture to implement the function., Things are better with
the hand design, graphics, and sticks tools. With these tools, the user directly
genervates the picture to implement the function. The most intuitive systems,
however, are the assemblers and compilers. Here, the user describes the function,

which is the desired quantity.

When the designers are directly designing in the output language, the chip
specilication is complete when the designers have finished implementing the
function, If the designers' specification has to go through translations or
re-specifications, there is a greater probability of errors. Therefore, the output

language should closely match the design language used by the designers.

The specilication language can enforce design correctness. With a suitable
specification language, it is impossible to generate most design errors because the
language does not allow for the specification of errors. For example, the Stichks
design system does not allow the user to design circuits with dimensional design
rule violations because the Sticks language does not permit the specification of
dimensional information (except transistor sizes). Since the user can not specify
the spacing between two metal features, it is impossible for the user to design
circuits with metal-to-metal spacing violations. Similarly, with assemblers and
compilers, it may be impossible for the user to generate chips with timing errors or
logical interconnection errors simply because the input languages do not permit

specification of these errors.
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1.3: Composition

The design of the low level cells, which comprise 80% of the chip area, typically
takes less than 10% of the design time, with the rest of the design tiine consuined
by the interconnection of these low lével cells. Most of the design errors occur in
these interconnections, also. Low level cells are small, self-contained units that the
designers can completely understand while the cell is being designed, while the
interconnection cells are large, global units which are impossible to fully
understand. A good design system should aid in the composition of cells.

There are two sides to composition systems. On one hand, the system should aid in
the generation of interconnect geometry where needed. If the design tool can
automatically generate the interconnection geometry, a great deal of the
interconnection design time can be performed by the machine. Secondly, the
system should verify that the interconnection was correct, The verifications may
assure that electrical and timing constraints are met. At a higher level, the
composition system may verify that the logical contraints are met, and that signals

are used correctly.

Currently, very few of the design tools have the conception of cell composition.
The chip assembler and silicon compiler have squarely faced the issue of chip
composition and interconnection verification. In the other systems, it is difficult to

see how a composition system can be added.

Closely related to the composition aspect of the chip design system is the
hierarchical philosophy of the system..The hierarchy of virtually all design tools is
recursive. You are either dealing with a composition cell or with a leaf cell. All
composition cells look and act the same. This means that the same design tool can bhe
used to design every composition cell on the chip. Unfortunately, very few

hierarchies exhibit a recursive nature.

In human hierarchies, large companies, for instance, one sees several levels of

management directing the operation of the companies., Other than the fact that

people fill each of the positions in a company tree, there is little similarity in each

of the positions. The tasks of the vice presidents are very different from the tasks

of the section managers. The chairman-of-the-board's job relates little to a project
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manager's job, A person well suited to one of these Jobs can not in general fill

another person's job.

Similarly, we have a hierarchies in our design systems. At a low level, the user
may be dealing with polygons. At higher levels, the user is dealing with flip-flops,
registers, ALUs, microprocessors, then complete systems. A microprocessor is not
the same sort of object as a register. One does not design an 68000 the Way one

designs a static D-flip~flop.

Most existing design tools are recursive systems. At the highest level of design, the
user is still drawing boxes and polygons. The primitives of the design system are
still the graphics primitives, rather than being data buses, registers, or
microprocessors. The silicon compiler is a hierarchical system, but not necessarily a
recursive system, The system knows the différence between an inverter and an
ALU, Any of the other design tools except hand design can make use of
non-recursive hierarchies, yet none of these systems currently takes advantage of

hierarchies of specification primitives.

1.4: Verification

As VLSI becomes a reality, the verification issue must be squarely faced. In present
design systems, verification is done by analysing the graphics primitives which
comprise the mask sets. All information regarding the structure of the design has
been thrown away. This is like writing a program to analyse the object file
praduced by a FORTRAN compiler to verify that the compiler is operating correctly.
With VLSI chips, it is impractical to perform verification checks by analysing the

artworlg,

Instead, we must guarantee correctness by construction. If we generate correct
layouts, we do not have to verify the artwork. We need only verify our methods
for constructing the layouts. The task of verifying our construction methods is
much simpler than verifying artwork. Our construction procedures take a well
defined input language; we need only verify that every legal input produces correct
output. To verify artwork, we must be prepared to accept any inpui, including

tricks-of-the-trade, With the graphics systems and imbedded languages, the input
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language is a direct specification of the artwaork, so our verification task is by
definition the task of verifying the artwork. Hence, it will become impossible to
verify VLSI designs produced by the current graphics and imbedded language tools,
The assembler and compiler, however, take an input language which is far more
concise than an artwork specification. Hence, we have a hope of verifying designs

produced by these systems.

Another side of verification has to do with the capturing of intent. When the
designer designs a cell, the designer has an intent about how the cell is to be used.
To properly use a cell, the user must know this intent and meet the restrictions of
the intent, If the user exceeds the limits of the intent, the cell will not function
properly. In design systems which consider a cell to be nothing more than artwork,
this intent information must be captured in cell documentation, since it can noi be
captured with the cell. Users of the cell must check the documentation and
manually verify that the cell is being used properly. The procedural design systems
do not restrict the concept of a cell to just the artwork. The designer writes a
program to generate the artwork. The designer can add additional code to the
program to capture additional intent., This documentation is kept with the cell. In

addition, the cell itself can verify that it is being used properly.

1.5: Efficiency

When one speaks of design efficiency, one usually refers to measures of chip area,
chip speed, and chip power consumption. Given a chip specification and infinite
time, one would expect hand design and imbedded language systems to produce the
most optimal chips, followed by interactive graphics systems, sticks systeﬁls, chip
assemblers, and finally silicon compilers. These later design systems have area

penalties due to fixed floorplans and geometric primitives.

One rarely has infinite time, however, in which to implement a chip. An
approximation of the ideal chip must be made. For instance, with hand design
methods, one spends a lot of time planning alternate architectures and
approximating the design costs for various approaches. Once the range of design
candidates is narrowed, detailed design can begin. As the detailed design nears

completion, many of the design approximations may be found to have been
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erroneous. Due to the large investment in the design, a redesign of the chip is
seldom feasible. As a result, the final chip may be non-optimal in the ideal sense,

but may be fairly good from a practical standpoint.

With the more inefficient design systems, chips can be implemented much more
rapidly than with hand design systems (otherwise these other systems would not
oxist). Because of this reduced design time, it becomes affordable to iterate the
design. When these design approximations are found to be in error, the chip may bhe
redesigned. With the possibility of design iterations, dramatic architecture
variations can be explored. Chips resulting from architecture modifications may
well have very large performance advantages over the original hand designed chip. '
In highly complex systems, the system organization has a much greater effect upon
performance than the details of low level cells, Thus, even though the resuliing
chip is known to be less optimal than a hand-d‘esig,n of the'same architecture, the
chip is more optimal than the hand designed chip since the hand designed chip

would not be implemented in the new architecture.

1.6: Conclusions

There are many design techniques in use today. Fach of these systems cater to a
particular design style. They have various limitations on design capabilities, and
they have different aides for the designer. As technology advances towards VLSI,
our design requirements are going to change. We will require fundamentally new
design principles. Although Silicon Compilers may have undesirable restrictions on
the types of chips we design, they provide design capabilities that are impossible to
achieve with our present day tools. They have the potential to implement in an
hour what current design techniques implement in a lifetime, Machine
architecture tradeoffs can be explored in an almost interactive environment. Design
verification can be performed at a level previously unattainable, For these reasons,

and others, this thesis explores the realm of the Silicon Compiler.
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Chapter 2. Hand Design

The fundamental task of designing a VLSI circuit is to manage the complexity of the
design. Even modest chips designed today have several million rectangles and
hundreds of thousands of devices. Unless the management of the design complexity
is squarely faced when the design process is begun, the implementation of the chip
may become an impossible task. Fortunately, techniques exist which successfully
aid in the management of complexity. In this chapter, we will discuss methods for

managing complexity and chip planning.

2.1: Management of Complexity

We can observe complexity management principles being applied in almost every
area of life. We can use these same techniques for designing large integrated
circuits, Three of these techniques will be examined, One technique is the use of
conventions, a second is partitioning of the design, and a third involves abstraction

of data.

Examples of the first complexity tool, conventions, are readily observable in daily
life. Traffic signals are a successful convention in our modern world. If everyone
agrees to abide by the restrictions implied by traffic signals, a much more complex
and inefficient system of maintaining road safety can be avoided. Traffic laws and
Law Enforcement Officers assure us that (almost) everyone agrees to the
convention. In VLSI design systems, conventions can be made with regard to
functional partitioning or timing relationships. If the designer faithfully adheres
to these conventions, he may feel confident that the design will operate correctly.
If there are circumstances where the designer feels that the conventions should not
be followed, he will have to take extra steps to verify that the circuit will still

operate correctly.

The second design aid is partitioning. Rather than solving a large problem all at
once, the problem can be broken into smaller, separable pieces each of which is
easier to solve than the original problem. This process may again be repeated for
cach of these new, smaller problems, until we are left with simple problems that

are straightforward to solve. If we have properly partitioned the problem, each of
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the solutions can be combined fo solve the whole problem. To allow each of these
separate solutions to be used together, we must design and specify an interface
between the pieces, For example, in software programming, a large program is
broken into several subroutines. To assure pProper operation of the collection of
subroutines, guidelines concerning register and memory usage, data structures,

calling conventions, and parameter types are developed and adhered to.

The third aid to handling complexity is data abstraction. There are (at least) two
brancheé of physics dealing with objects in motion. In Classical Mechanics,
everything is very detcrministic, and we treat objects like air pucks as indivisible,
uniforin objects. If we look very closely at our air pucks and how they interact, we
find that Classical Mechanics does not precisely describe the observable
interactions. We use Quantum Mechanics when we need these precise equations. If
we look closer still, we find discrepancies between the physically observable events
and the calculated Quantum Mechanical events: Quantum Mechanics does not
completely define how our air pucks work. In both of these cases, we know that
our theories and formulas are wrong, and yet we can still profit by using them. In
each of these fields, approximations are made. We do not look at each of the
individual subatomic particles which compose an air puck. Insteéd, we abstract
this incredibly large amount of data into a fairly simple model. Similarly, for VLSI
design, we do not have to examine every single geometric primitive within a region
of the chip when designing the neighbbring regions. Almost every function
implemented on a chip, certainly every function of reasonable size, requires two
areas of silicon: The first is a private area over which this function has exclusive
rights, and the second is an interface area, where external signals connect to the
function. To use this function, no knowledge of the private area is required. We
can abstract the function to an interface and a 'black box', and hence have less
information externally required to use the function, By imposing suitable design
conventions, the interface area can be a small percentage of the total function area,

which greatly reduces the data requirements.

These three techniques of complexity management are used in the cell concept of
VLSI design. A cell's layout is defined to be a rectangular area of silicon with the
geometric shapes required to implement the cell's function contained completely
within the rectangular limits and an interface area limited to the perimeter of the

area. Along this perimeter, there are 'ports' or ‘terminals', where external signals
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may connect to this cell. No external cells or geometric shapes may extend within a

cell's rectangular limit, the minimum bounding box (MBB) of the cell.

An important by-product of the cellular vdesign approach concerns data sharing: if a
function is replicated on a chip {(or across many chips), the layout which
implements the function can be shared between the various instances. The function
is converted to silicon once, and the resulting pattern can be used many times, thus
factoring the design cost of the chip. This layout sharing is identical to the use of

subroutines for code sharing in software pProgramming.

The internal structure of a cell's layout consists of combinations of primitive
frometric shapes and instances of other cells. This recursive nature of the cell
definition allows us to hierarchically design chips. Rowson [25] has defined two
types of cells: Leaf cells and Composition cells. Leaf cells contain only geometric
primitives, no references to other cells. Composition cells contain only references
to other cells, no geometric primitives. We will use this Leaf cell definition, but
we will allow our Composition cells' layouts to contain geometric primitives.

Adding geometry to composition cells is done for conceptual ease; simple

transformations convert from one form to the other.

2.2: Chip Planning: The Floorplan

The arrangement of subcells within a composition cell can have a dramatic effect
upon the size and performance of the chip. To aid the user in composing cells, the
notion lof a 'Tloorplan' has been developed. A floorplan is the blueprint which
indicates topologically how the subcells it together to form the complete cell. Th‘e
floorplan also shows the wiring strategy used in the cell. Floorplans are invaluable
aids for top-down chip planning. The relative size and prlacement of the major
subdivisions of a cell are quickly visuallized. The communication costs for various

arrangements can also be determined.

To illustrate the use of floorplaning, we will discuss the planning for the OMZ
datapath chip [15][16]. A functional block diagram of the datapath chip is shown
in figure 2-1. At the highest chip level, we needed a chip with three bi-directional

Input/Output ports. These were to communicate with the datapath of the chip. One
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of these ports was to be mainly a control port, which brought the instruction word
into the decoders. The other two ports were data ports, connected to the internal
data buses. In addition to the datapath, we also required some flag logic, and
additional control input pads. Our primary data flow was to run horizontally

through the chip and the primary control flow was to run vertically.

Control |- FlOS
Port Loglo

Dotapath -

Left Port Data
Right Port Data

Control Imputs

Fig. 2-1: OMZ Datapath Chip Block Diagram

Figure 2-2 shows the high level floorplan for the chip. We have the two data ports
on the west and east edges of the chip, the datapath in the center, the literal port
and flags to the north, and the control input pads on the south. The sizes of the
various boxes were estimated, considering the functions of each element, which

completes the planning of the highest level composition cell layout.

We can now decompose the subcells within the global floorplan. The datapath
section was to be composed of data processing elements and instruction décoders.
The decoders were to take the microcontrol bits entering the chip and drive each of
the processing elements' control lines as a function of the input. The instruction
decoder was broken into two sections. One section was placed above the processing
elements, the other was placed below the elements. This was done because the cell

size estimates showed the processing elements to be much narrower than the Tull
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Fig. 2-2: Full Chip Logical Floorplan

decoder. Buffers were placed between the decoder and datapath., These buffers
synchronized the decoder's signals, and satisfied the electrical requirements of
driving large datapath loads from weak decoder outputs. Figure 2-3 shows the

lloorplan of the datapath section of the chip.

Decomposing the processing element section, we needed a register array, a barrel
shifter, and an ALU. To relieve much of the register bottleneck, we had two data
buses running between the indivic_lual elements. Each of the registers in the array
could read or write to either bus. The shift array read data from the bus and drove
the ALU multiplexer. The ALU could read data from either of the buses or from the
shifter. The ALU and shifter were chained together to speed up the multiply and
divide operations. The ALU's output could drive either bus. The buses also
connected to the two data ports. Figure 2~-4 is the floorplan for the Processing

olements,
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Fig. 2-4: Single Bit-Slice Logical Floorplan

We can further examine the ALU. The ALU was built of five leaf cells. The first
section was the two input registers. The second section was the logic for
computing carry propagate, carry kill, and carry generate. The third section was
the actual carry chain. The fourth section computed the ALU output as a function

of the carry input and the carry propagate signals. The final section was the output
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registers. Figure 2-5 shows this layout.

Carry Out

A
< ?—————B
—
Input Logie Carry HResult] Output
—
4
Carry In

Fig. 2-5: ALU Logical Floorplan

At this point, we began designing the leaf cells. For example, we could see that the
input registers received data from the left side of the cell and drove data out the
right side of the cell. The two data buses ran through the cell, but were not used by
the cell. Control lines for the cell ran vertically through the cell. Once the ALU
cells were designed, we could draw the physical floorplan for the ALU. In figure
2-6

we have the subcells shown to scale. We have also shown the layer for each

control and data line., The control lines ran in metal, and the data buses were run in

polysilicon.
} Motal «——+ Poly
Bata Bue 1
Data Bue 2
Input Leogio Carry Result Cutput

Fig. 2-6: ALU Physical Floorplan

As the remaining datapath elements were designed, the bit-slice physical floorplan
took shape (fig. 2-7). The control and data lines in the register array had different
layer conventions than the other processing elements, as shown in the figure.

Similarly, the datapath floorplan (fig. 2-8) and finally the entire chip fioorplan
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(fig. 2-9) were completed in the same manner. The final chip layout is shown in
figure 2-10, Much of the regularity of the design was due to the use of
floorplanning. Due to the regularity of the design and the completeness of the

planning, the chip was designed in nine man-months.

Literals Flags

i il

Dotopoth

Left Port
Right Port

Pade

Fig. 2-9: Full Chip Physical Floorplan

2.3: The Slicing Floorplan

Specific chip architectures have related floorplans which are suitable for those
particular chip structures. To build general purpose design tools, we would like to
have general models for cells and floorplans. We can then build the tools to take

advantage of the resulting floorplans.

In top-down design, we take a description of a large unit, and decompose this unit
into simpler, smaller units. Each of these units can be similarly decomposed. This

decomposition process continues until all of the descriptions an be easily
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implemented. We then work bottom-up, fusing these lower-level implementations
to form implementations for each of these larger units. When we reach the highest
chip level, we have an implementation of the chip. We want our general purpose

floorplan to model the top-down design, bottom-up implementation style of design.

"Our complexity management strategy uses rectangular cells, Our general-purpose
floorplan will therefore use rectangular cells. To perform top-down design, we
need to provide the capability of decomposing cells. To decompose a cell, we will
divide the given rectangular cell into smaller rectangular regions. To perform
bottom-up fusions of cells, we need to interconnect each of the subcells to form the

implementation of the given cell.

Completely géneral '‘glue’ between the cells would allow transistors to be added in
the interconnections between the celis. Allowing transistors between cells is
usually an example of local optimization, rather than global optimiéation, and the
specification and verification of these 'glue’ circuits can introduce many errors into
the design. Therefore, for our general model, we will restrict all transistors to lie

within subcells, and only allow wiring to fuse the subcells together,

If we allow completely general subdivision of a cell into subcells, wé may have no
breferred order of composition. With preferred composition orders, we can achieve
more optimal circuit layouts. Without preferred bomposition orders, we can not
determine the optimum design for a particular cell until every other cell on the
chip has been designed. Hence, we can never achieve an optimum design, although
we can approach optimal designs by iterating the design many times, Figure 2-11
shows a rectangular arrangement of cells that does not have a preferred order. Not
only can we not determine a good order for cell generation, but we can not

determine a good order for routmg the wires in the four wiring channels.

A floorplan that does have a preferred composition order is the Slicing floorplan. A

slicing floorplan has the following definition.

A Slicing Cell is either
1) A Leaf cell,
2} Two Slicing cells with one to the right of the other, or
3} Tuo Slicing cells with one above the other.
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Fig. 2-11: Floorplan with no Preferred Order

Figure 2~12 shows the three possible types of slicing cells., Due to the recursive
nature of this definition, we have the capability of designing a rather large
collection of chips. Figure 2-13 illustrates the process of decomposing a chip by

slicing.

Subcel ]

Leo‘F
Cell

Subcel ]
SubcelL

?uboell

a) Primitive b) Horizorntal ) Vertical
Fig. 2-12: The Three Slicing Cell Floorplans

For the systems described in this thesis, we will use the Slicing floorplan as the
floorplan model. While other floorplans can use these same techniques, the
mechanics of building the tools may be more difficult, and the examples may not be

as clear as Slicing examples.
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2.4: Global versus Local Optimization

In Small Scale Integration (SSI) and Medium Scale Integration (MSI) designs, much
time was devoted to performing 'Local' optimizations on the circuits. This was
because the entire circuit was usually considered 'Local'. For LSI, and cer tainly for

VLSI the situation has changed. No longer is the entire chip design considered a
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'Local’ degign., Where time was previously spent performing local optimizations,
time must now be spent performing global optimizations. As our designs increase in
size, we must depend more upon global design optimization. Local optimizations can

actually hurt the design from a global point of view.

For example, logic design in discrete or TTL design regimes involves 'logic
minimization', which actually means transistor minimization. Much effort was
spent reducing the number of transistors required to implement functions, because
transistors were the expensive part of the design, the wires were free., In silicon
design, the majority of the chip area is devoted to wiring. The actual area for the
transistors is less than 40% of the total chip area for 'good' designs. In many

instances, the transistors are free; they are placed under the wires.

Using wire-wrap boards, the designer has compietely arbitrary interconnectability:
any pin of any chip can be connected to any other pin of any other chip, regardless
of where the chips are positibned on the board and independent of anyvoth@r
interconnections. In silicon, it is very inexpensive to interconnect shared edges of
adjacent cells if the connections are well correlated (in approximately the same
order in each of the cells). Almost any other circumstance, however, costs a great
deal, Wires can not be arbitrarily drawn across the chip because wires can not
arbitrarily cross other wires or cross through cells. Wires consume a great deal of

the chip area.

A final contrast between TTL design and VLSI design is the difference in wire
loading. In TTL design, the chips are each capable of easily driving fairly long
wires (from one side of the board to the other). In silicon, however, the wires can
add a large amount of loading to dévices, which slows down the operation of the
circuit, A small gate can not drive a wire from one corner of the chip to the other in
a short period of time. Hence, in VLSI design, circuits which must communicate

must be fairly close together, ad jacent if possible,

Fach of these points argue for global planning. The communication costs for VLSI
are the dominating cost of the design. Global optimization of the communication
paths can provide greater performance increase than local optimization of each

circuit on the chip.
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2.5: Conclusions

As we move towards VLSI, we can not continue to design chips as we have in the
past., The complexity of design causes the design cost to rise exponentially. Our
design tools must be desighed to cope with the complexity of the design. We have
seen some techniques which aid in the complexity management issues, and we have
seen sofne planning tools which will aid in the global optimization of designs. The
following chapters discuss tools which are built upon the techniques presented in

this chapter.
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Chapter 3: Imbedded Languages

When using the cellular design approach, quiie often it is the case that a family of
similar cells is developed. Each cell instance within this family shares most of the
characteristics common to the family, but has its own personalization which
distiguishes it from the others, For example, a group of cells may be designed
where the cells perform the same function but each consumes a different amount of
power. Another example might be a collection of similar cells where the aspect

ratio of the cells varies amoung members,

Purely graphical systems dictate that each member of the group be completely
designed, because graphic systems emphasize the differences between cells. Tor a
small family-of cells, this is not a problem, but for a large collection, perhaps
containing many independant variables, it is not practical to design the entire
family. In these cases, users would copy and edit the cell which most closely

approximates the required cell.

. If constructs for specifying conditional circuitry were added to a graphics languasge,
a designer could specify a cell which represents a family of cells, using the
conditional operators to distinguish between members of the family. To use these
conditional constructs, methods would be added to allow parameter passing to the
cells, so that these parameters could participate in the evaluation of the
conditionals. It would also require the use of expression evaluators, so that the
parameters could be operated upon as. the conditionals were evaluated. Looping

constructs would be very handy for generating arrays and vectors of cells.

By the time these features were added to a graphics system, the system would no
longer be a high level graphics system but a low level programming language.
Rather than add these complexities to a simple graphics system, we might add
graphics primitives to existing programming languages. Using this new approach,
cells would easily be designed which can be parametrized and which actually
generate a whole family of cell instances depending upon the parameters passed into
the cell.

Another advantage of designing classes of cells has to do with the binding of design

decisions. In standard graphics'designs, virtually all of the design parameters must
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be bound before the cells are designed. Using the software programming approach,
the exact parameter values are not needed, but rather a range of acceptable values is
required. The cells can then be designed to produce correct layouts over these
ranges. When the actual parameter values are known, these cell programs are
called with the appropriate values and the layout is generated. The design can

proceed before the details are completeiy known,

A third advantage of designing families of cells has to do with the granularity or
size of cells. With graphics approaches, cells usually contain 10 to 100 primitive
compbnents, or transistors. This limitation is brought about by limitations on CRT
terminals and on the ability of the human mind to design large circuits. These
small cells are assembled to form the chips. Rarely are configurations of these small
cells stored as a large cell in the library because of the fact that the large cells are
exact physical elements whigh cannot be changed. Inefficiencies in a particular
instantiation are usually not tolerated, so the large cell is redesigned in each context
with the minor variations that each context requires. With the software approach,
these large cells can be parametrized to vary the arrangements of smaller cells and
remove the inefficiencies in the layout., Thus large cells can be designed and saved

in libraries and still yield efficient layouts.

These software languages are referred to as Imbedded Languages. The construction
for gen_erating graphics primitives are imbedded in a previously existing
programming language. There are two classes of imbedded languages: translation
based languages and data siructure based languages. The translator imbedded
languages output the graphic primitives as they are encountered during the
execution of the program. Data structure imbedded languages build up a data
structure representing the entire chip as the program is executed. Once this data
structure is built, the graphic primitives are output. The latter approach allows
programs to modify the design after it is generated, while the former approach
forbids such modification., Imbedded Languages exist in several languages at
Caltech: ICLIC, written in ICL [4]); LAP, written in Simula [19]; Clap, written in C;
others, written in Pascal, Fortran [31], and Basic. The language presented here is

ICLIC, which is an example of a data structure imbedded language.
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3.1: ICLIC

ICLIC is a series of functions and datatypes defined within ICL to allow the user to
describe integrated circuits. ICLIC was written in ICL by Ron Ayres and Maureen
Stone. Integrated circuit descriptions are ultimately geometrical regions, so the
primitive constructs in ICLIC are Tepresentations of simple geometrical shapes. The
most primitive shape is the BOX, which we will define to be all points on the plane
whose x-coordinates are between the lower and upper x limits of the box
(inclusive) and whose y-coordinates are between the lower and upper y limits of
the box. The following ICL code defines the BOX datatype and a function TO which

aids the user in generating a box:

TYPE BOX= ([LOW,HIGH:POINT];
DEFINE TO(A,B:POINT)=BOX: (LOW: A MIN B HIGH: A MAX BI ENDDEFN

POINT is a pre~-defined ICL datatype which has two real values labeled X and Y. The
MIN and MAX functions are defined for POINTS to work coordinate~wise: the MIN
of two points has an X value which is the minimum of the two point's X values and
a Y value which is the minimum of the two point's Y values. A user may generate a

box in one of the following two manners:

VAR B1,B2=B0X;

Bl:= TO(3#4,18412) ;

BZ2:= 3412 \T0 10#4;

#

The two boxes are identical because the point values are sorted. A second primitive
geometrical region is a polygon. A polygon is defined to be the set of all points in
the plane which lie 'inside’ the line segments which comprise the edges of the
polygon. We can represent the polygon in the computer's memory as a list of points
which are the verticies of the edge segments, The fo_llowing code declares the type
POLYGON:

TYPE POLYGON= { POINT };

Here we have declared that a polygon is an arbitrary list of points. To generate a

triangle, the following constructions can bée used:
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VAR P1,P2=POLYGON;
Fl:= | 3#2 ; 18#4 ; 8HIZ 1

F2i= 1 3#H2 5 18H.+2 3 .-2H.+8

The second example makes use of the relative-point feature in ICL. The f{inal
primitive geometric region used in ICLIC is a WIRE: Formally speaking a WIRE is
the set of all points which lie within a fixed distance from any point on a given
series of line segments, The collection of line segments is called. the 'path’ of the
wire and the discrimination distance is called the 'radius' of the wire. This formal
definition of a wire requires that circular arcs be present in the boundary of the
wire. ICLIC approximates a formal WIRE by 'squaring off’ all of the round edges. A
WIRE can be defined in ICL by stating:

TYPE WIRE= [MIDTH:REAL PATH: { POINT } 33

An example of a wire might be

VAR LI=lIIRE;

o= (UIOTH: 2 PATH: I3H3; 78, U5 1048 14k 1

-Figure 3-1 illustrates each of the three primitive regions introduced to this point.

12.+ 12.+
8. -
] 5.1
4.1 4.1 3.1
2.1
o s #  dd 6 X8 <
BOX POLYGON WIRE
3#4\TO 18#12 {3#2; 10#4; BFLZY [IWIDTH: 2

PATH: {3#3: 7#.: . #5;
10#8; 14%.}1

Fig. 3-1: ICLIC Primitives

We now have representations for the primitive features of our imbedded language.
We would like to be able to talk about features in general, not just BOX-features,

POLYGON-features, and WIRE-features. To do this, we need a new datatype which
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can be either a BOX, POLYGON, or WIRE, A datatype of this form is called a 'variant’
in ICL. Wae declare a datatype RG (for ReGion) which can be any one of the three

primitives:

TYPE RG= EITHER

BOX=  BOX

POLY=  POLYGON
WIRE=  LIIRE
ENDOR:s

If we have a variable of type RG, we can assign to it a BOX, POLYGON, or WIREL.
Unfortunately, we can only describe single features with this datatype. Usually IC
masks contain more than just one geometric primitive. We can extend fhe
definition of an RG to contain the possibility of many primitives by adding the

following line to the definition of an RG:

UNION= | RG }

This now states that an RG may also be an arbitrary list of RGs. In addition to many
features in an IC design, there are also many 'layers' to an IC specification. To
discriminate between layers, the features have a color associated with the region.

We can incorporate this possibility in our definition of RG by adding this line:

CE]LDR= [PAINT:RG WI1TH: SCALAR (RED,BLUE, GREEN, BLACK, YELLOL} ]

Finally, we may wish to reposition previously declared regions. In almost every
instance, we are describing featuzres relative to a local origin rather than in absolute
chip ctoordinates. Once these sub-pieces are generated, we would like to reposition
them into the absolute chip coordinates (or to a higher level local coordinate
system). The primary repositioning operations we would like to perform are
translation, rotation, and mirroring. These operations can all be represented as a
transformation matrix which should be applied to all coordinates of the region to be

displaced. By adding the matrix displacement case to the RG definition, we can



-35-

arbitrarily reposition, mirror, rotate, and scale subcells. The following case is added

to the RG definition:

D.I SPLACE= [DISPLACE:RG BY:MATRIX]

.

.

and the MATRIX datatype is declared with:

TYPE MATRIX= {A, B, C,
‘ D, E, F: REAL];
We have now completely described the RG datatype definition. With this datatype,

we can represent the features of integrated circuit masks.

The datatype definitions presented above are an approximation of the actual ICLIC
datatype definitions. Appendix 1 lists a more complete description of the datatype
and functions defined for both generating and examining layouts. The primary
difference between the definitions presented here and those in the appendix have to
do with capturing the minimum bounding box (MBB) of the layouts. The MBB of a
layout is a very useful quantity, and for efficiency, the layout datatype in ICLIC is

MRG, which stands for Minimum bounding box with ReGion.

3.2: Parametrized Cells

To illustrate the design of parametrized cells, let us consider the task of designing a
shift register cell. The shift register circuit we will implement is shown in figure
3-Z. This circuit consists of a pair of inverters with a transmission gate connecting
them and a transmission gate connecting the input to the first inverter. We can
design the layout of the shift register as shown in figure 3-3. To design this
layout, we have computed the expected pdwer requirements and aspect ratio of the

cell,

As we use our shift register cell in various places in several chips, we may find that
the power requirements in some cases differ from the power requirements of our
original cell, so we must design a new cell for these new uses. In other instances,

we may find that we need to fit the cell into a different aspect ratio. Again, we
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Fig. 3-3: Shift Register Layout

must redesign our cell to fit these new requirements.

Fach time we must redesign the cells, we increase the chances of errors in the

design. We also proliferate cell instances in our database, and we must expend the

effort to document the new cell.

In our shift register example, it is very easy to mathematically describe our cell
layout as a function the power requirements, In figure 3-4 we show the layout

where some of the coordinates are not fixed, but rather are functions of the power
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Fig. 3-4: Parametrized Layout

requirements of the cell. Given this description of the shift register layout, we can
now generate a new cell every time we compute a new power requirement. In fact,

we can write a little program which will g,eneraté this new cell for us.
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DEFINE SHIFT_REGISTER_CELL (POLIER:REAL) =I"RG:
BEGIN VAR LHDTH, LENGTH, TOP=REAL;
DO LENGTH:= 2/PCLER AX 4;
HIDTH: = 32/LENGTH TIAX 23
TOP: =LENGTH+15 MAX 28;

GIVE § NIRE(RED, {B#B: . #TOP1);
WIRE (GREEN, {-3.418:44.} ),
HIRE(RED, {646 11+UIDTHA. 1)
WIRE (GREEN, {1148; .#TOPY ),
WIRE (GREEN, {11#108;13+LI0THA.1 )3
BOX (GREEN, 1843\T0 18+UIDTHA3);
BOX (RED, 8#12\T0 14#12+LENGTH) 5
BOX (YELLOLI, 84#18\TO 14#14+LENGTH) 3
WIRE(BLUE, {@48; 15+HIDTHA. 1 )
WIRE (BLUE, {B#TOP; 15+UI0THA. 1)
GCBNAT {12#48; . #T0P}
GRCBONAT 543;
GRCBUNAT 12411 1\AT {B#2;15+U1DTH#E)

END

ENDDEFN

Figure 3-5 shows the results of calling this program with power requirements of
1/2 and 1/8. Rather than call these.two specific sets of geometrical primitives
cells, why not call the program the cell? And we can call these layouts instances of

the cell. Fach instance of the layout may have a compiletely different set of

geometrical primitives, yet they are all instances of the one cell. |

l
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Fig. 3-5: Two Cell Instances

We can design this cell program before we know the actual power requirements of
the cell. In our original approach, we had to compute the power regquirements
before we could begin the layout design. With this programmatical approach, we
can estimate reasonable ranges we are willing to accept as power requirements, and

design our cell before. we know all of the implementation details.
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Let's continué to parametrize our shift register cell. We could have designed our
cell with many different aspect ratios. Depending upon how and where this shift
register is used, the optimal aspect ratio for the cell changes. Figure 3-6 shows 6
different aspect ratios for the shift register cell., The first aspect ratio is
approximately square, and takes the least area. In some cases, however, the
horizontal space is more costly than the vertical space, so we might wish to use a
narrower cell, even though the cell takes more vertical area, as in the second type
of layout. The third and forth layouts were designed so that vertical space is at an
absolute minimum, while the fifth and sixth layouts use an absolute minimum
amount of horizontal space. Each of these layouts are parametrized with respect to
the power requirements. We can now write a cell program which is parametrized
in terms of both power requirements and aspect ratio. When we call the shift
register cell, the program chooses the layout which most closely matches our

desired aspect ratio, and generates the corresponding layout.

Fig. 3-6: Six Shift Register Layouts

Rarely are single shift register bits used. In most cases, a whole string of bits are-
required. In standard approaches, one does not think of a shift register row as a
single primitive cell, rather a single bit is the primitive cell, and the user must
interconnect each of the cells into a row for each shift register row needed. This is
done because there is much variability in the requirements of the shift row (such
as power, aspect ratio, number of bits). Because of this variability, fixed cells are

usually not helpful. Since we are designing programmable cells, we can program
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this additional variability into the cell.

For instance, the user might wish to state how many bits are to be in the shift
register, so the program could generate the whole row. The user may also wish to
have more than one shift register. Somne area can be saved by placing two identical
shift registers side-by-side. When long shift register chains are used, the chip area
is long and thin. By folding the long shift registers, the chip area becomes more
square, usually a d.esixjablev option. So let's design our shift register cell to take these
parameters: number of bits wide, number of bits long, power per b‘it, and desired
area. Our cell will take the power and compute cell sizes for the six different aspect
ratios. It will then produce a single row and attempt to fold the row to match the
desired area. Finally the cell will return a laycut of the entire array, using the

single bit layout and folding factors that will produce the best layout.

What if none of the possible implementations of the shift array fit within the
desired area? Rather than having the prog,r‘am flag an error or abort the design, we
may tell the program how to choose the next best area. For instance, we may like to
state that the desired area is 500 by 800 lambda, but if nothing fits, the x size is
free to grow while the y size must not get larger than 800 lambda. Or, we may say
that the area should be 400 by 400, and if nothing fits, the instantiation with the
smallest area should be used. To allow these possibilities, we will add one more
parameter to our cell program which is a weight factor: if none of the
instantiations fit, we will compute an excess cost for all prospective candidates by
summing the X oversize times the x-coordinate of the weight and the y oversize
times the y-coordinate of the weight. We select the candidate with the lowest

excess cost.

The ICL code for our cell is listed in appendix 2. The organization of the code is as
follows. We have routines for generating single bits of the shift register, named
SHIFT1 CELL through SHITTS CELL. These routines are parametrized in terms of
pullup transistor size, pulldown transistor size, and power line widths (PU=pullup
length, PD=pulldown width, SP=width of.sing,le row power line, DP=width of
double row power line,‘ and HP=width of half-row power line). These 1'eturn'the
layout for a single bit of the shift array. Next we have routines which generate
rows of these single bits (SHIFT1 ROW through SHIFT6 ROW) plus a roﬁtine which

turns these rows into a complete array (FINISH). These routines are also
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parametrized in terms of total power, number of bits, and folding factor (TP=width
of total power line, NR=number of bits per row, RB=number of rows in each shift
register, NB=number of shift registers, and NL=number of bits in the last row of
each register. TB=total number of bits in each shift register=NR*(RB-1)+NL). The
functions SHIFT1 ARRAY through SHIFT6 ARRAY simply generate the entire array.

Given these shift array functions, we would like a routine which determines the
area of each possible shift array. The SIZE function will return the area of a
candidate and a routine which, when executed, will generate that candidate. We
don't want to generate the actual layouts of every candidate to select the best layout
because this would take a lot of space in the computer's memory plus it would take
a long time, Instead, SIZE computes what the size would be, and generates a
function reference which we may execute if the candidate is selected as bhest, The
function SHIFT CELL, which is the function a user calls, checks many candidates
and selects the one best fitting the user's description. The best candidate is

determined by the following algorithm:

[f there are candidates uhose x and y values are less than the
desired size, the one uhose x and y values are closest (sum of
squares) is chosen.

[f no candidates fit, a ueight is determined for each candidate,
and the candidate with the smallest weight is used. The uweight
is determined as follous:

If the x value is less than the desired x value, use B
otheruise use the difference betueen the actual and
desired x values.,

Multiply this number by the x meight and square the result.
Similarly, compute the y weight,

The total weight is the sum of the x and y weights.

The remaining functions in the listing (GRAPH and TABLE) produce a graph and
tabular listing of the candidate sizes. These are useful if a designer wishes to see all

of the candidate sizes for any particular size of shift array.

This parametrized cell is used as follows. The designer determines the number of
bits in the array. For our example, we require 4 shift registers of 100 bits each.
We would like these to be fairly low power, so our power requirements will be

1/8. Due to chip area constraints, we would like the array to be approximatély 500
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by 800 lambda. We can get a tabular listing of possible candidates by entering ICL

and typing the command

TABLE (4,108,.125,23,1000#16808} ;

The first parameter is the number of shift 1'égisters (4), the second is the number of
bits per register (100), the third is the power requirement (,125), the fourth states
what the maximum number of folds in the shift register should be (23), and the
last parameter states the maximum size we want listed in the table. Concerning this
last parameter, the program will generate all possible candidates meeting the other
parameters, but will only list those candidates whaose x dimensions are less than the
given x limit (1000) and Whose y dimensions are less than the y limit (1600), ICL
will print the following table:

CLASS:1 ROWS/BIT:3 S51ZE:982.#485. .
CLASS:1 ROUG/BIT:5 SI1ZE:538.#673. <——-<<<
CLASS: 1 ROUS/BIT:7 S17ZE:458.8941. <—-—<<<
CLASS: 1 RONS/BIT:3 SIZE:366.#12089.

CLASS:1 ROUS/BIT:11 SI1ZE:318.#1477.

CLASS:2 ROUS/BIT:3 SIZE:845. #531.

CLASS:2 ROMS/BIT:S S1ZE:589. #883. <-—=<<<
CLASS:2 ROUS/BIT:7 SIZE:383. #1235,

CLASS:2 ROUS/BIT:S SIZE:317.#1587.

CLASS: 3 ROMS/BIT: 11 SIZE: 8724575,

CLASS:3 ROUS/BIT:13 SIZE: 784, #6733,

CLASG: 2 ROLS/BIT: 15 SIZE:6Z28. #783.

CLASS:3 ROLS/BIT:17 SIZE:G36.#887. <-—-<<<
CLASS:3 ROUS/BIT:13 SI1ZE:536. #4331,

CLASS:3 ROWS/BIT: 21 S1ZE: 452, #1895,

CLASS:3 ROUS/BIT: 23 S1ZE1 452, #1199,

CLASS: 4 ROLS/BIT:S SIZE:875.#523.

CLASS: 4 ROWS/BIT:7 SIZE:GB5.#731.

CLASS: 4 ROLS/BIT:9 S1ZE:533. #939.

CLASS: 4 ROLS/BIT:11 SIZE:455.41147,

CLASS: 4 ROWUS/BIT:13 SIZE:371.#1355.,

CLASS:4 ROLS/BIT:15 SIZE:323. #1563.

CLAGS:S ROUS/BIT:3 SI1ZE:566.#887.5- <-—-<<x<
CLASS:5 ROUS/BIT:S S1ZE:342.#1343.5

CLASS:6 ROUS/BIT:1 SIZE: 8338.5#/#499.

CLASS:6 ROHS/BIT:3 SIZE:318.5#1491.

None of the candidates fit into the area we requested, but there are five entries in
the table which are the approximate size we require, We could also make a plot
showing these candidate sizes by using the GRAPH function, which takes the same

parameters as the TABLE function:

PLOT(GRAPH (4,188, .125,23,10008#1688) ,HP_7221A);
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Fig. 3-7: Graph of Size Possibilities

This graph is shown in figure 3-7. To actually create the layout, we would call the
SHIFT CELL funétion. The following code generates five separate shift register
arrays differing in the area costs. The desired area for all arrays is 500#800,. The
first array requires that the y dimension is fixed while the x dimension is free to
vary. The second array fixes the x dimension and allows the y dimension to grow.
The third array allows x and y to vary equally. The fourth array has the x
dimension costing a bit more than the y dimension, but both are free to vary. The
final array uses more power, but fits within the 500#800 space requirement.

Figure 3-8 shows the metal2 layer for each of these arrays.
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VAR ARRAY1, ARRAYZ, ARRAY3, ARRAY4A, ARRAYG=I1RG;
ARRAY :=SHIFT_CELL(4,IBB,.125,5883888,1#89899);
ARRAYZ: =SHIFT_CELL (4,188, .125,5084888, 39933411} ;
. ARRAY3:=SHIFT_CELL{4,188,.125,588#888,1#1);
ARRAY4: =SHIFT_CELL (4,108, .125,5084888,1.5#1);
ARRAYS: =SHIFT_CELL (4,188, .25,580#808, 1411,

ARRAY1 ARRAYZ2 ARRAY3 ARRAY 4 ARRAYS

Fig. 3-8: Five Shift Array Candidates

3.3: Conclusions

We have seen the description of an imbedded language system and how this system
can be used to construct integrated circuit layouts. We have also seen the benefits

of using imbedded languages to design chips.

One of the advantages of imbedded language systems is that they allow the user to
design a whole family of cell layouts at one time. Based upon parameters given to
the cell program, the program will compute and generate the correct layout fOi‘ the
particular usage of the cell. This emphasizes the similarities between members of
the cell family. This also reduces the number of cells in the cell libraries: The cell

program is saved rather than the many cell instances.

The cell parameters typically refer to behavioral information, not geometrical

information, Our shift register is parametrized in terms of number of bits and
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power requirements, not inter-cell spacings and transistor sizes. This allows for
partitioning of the design. The user of the cell thinks in terms of parameters
interesting to him, and he does not have to know the details- of the cell

implementation.

Along these same lines, parametrized cells delay the binding of design decisions.
The shift register program was implemented before the power or area requirements
were known. Also, since this cell is now f{lexible, the entire chip layout can be
deéigned before the power requirements are known. When the requirements

change, a few simple parameter changes will completely correct the layout.

The task of making design decisions is also aided with parametrized cells and chips.
When the cells are parametfized in the manner presented here, the user can alter
the design parameters and actually see the effects these decisions make upon the

design. The designer does not have to guess, the actual results can be seen.

Parametrized cells tend to encompass much larger functions than fixed cells.
Parametrized cells are usually a complete function, whereas fixed cells tend to he
rather small pieces of layouts which must be combined to construct a function.
Since fixed cells can not reconfigure themselves depending upon how they are
used, large fixed cells are not frequent since it is rare that a large function will be
used identically in many places. Parametrized cells can reconfigure themselves, so

similar uses of a function can efficiently use the same cell.

With imbedded languages, we are not designing chips as purely graphical data. We
have the freedom to add additional information to our cells, information which can
further aid the design process. In the next chapter, we explore some of these

_possibilities.
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Chapter 4: Chip Assemblers

In the previous chapters, we have reviewed methods for generating leaf cells,
" which is only the first step to designing a chip. To complete the design of a chip,
we need to generate the composition cells which interconnect the leaf cells. The
task of interconnecting leaf cells is much harder than the generation of the leaf
cells., The leaf cells are typically small, self-contained wunits which can be
completely defined. Composition cells, on the other hand, deal with global
information, and are fairly large, complex assemblies at the higher levels of the
chip hierarchy. In this chapter we will explore some of the tools which can aid in

the interconnection of the leaf cells [29].
4.1: Cell Composition

There are three phases of generating composition cells. The first phase deals with
the specification of the interconnection between the cells: how should the cells be
wired together? The secand phase deals with the generation of the geometrical
primitives required to interconnect the cells. The final phase deals with
verification: was the interconnection specification correct, or did we just short VDD

and GROUND?

Each interconnection methodology presents unique constraints upon these three
phases of cell composition. In some interconnection strategies, the interconnection
specification‘ is implied by the cells themselves, freeing the user from the task of
writing an interconnection list. Other techniques do not require wires to perform

the interconnection, so the generation phase may be trivial.

Every interconnection methodology, however, should have a checking phase. Most
of the errors in chip design have to do with erroneous interconnection of modules,
virtually all of which would be caught by the checking phase of the
interconnection. By TYPEing the connections to a cell, one can later verify that the
connector was connected to the proper signal. For instance, one Would not like to
connect two outputs together. By adding this information to the layout
representation, it can easily be verified that outputs do not connect to other

outputs.
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For the composition systems presented in this chapter, we will assume that the chip

floorplan is a slicing type floorplan, as presented in Chapter 2.

4.2: Power Routing

Power signals are special signais in integrated circuits. They can not be routed as
ordinary data signals, due to the finite resistance and current limits of the wires.

Therefore, a strategy should be developed to deal specifically with power wires.

The first requvirement that one might state about power lines is tha{ they should
always run in metal from very close to the transistor terminals to the edge of the
chip. With two polarities of power lines in NMOS design, this means that some
planning must be done before the cell design is begun. Without this planning stage,

the power requirements may be impossible to saiisfy.

We can analyse the structure of NMOS design to develop a general model of power
routing [ 14]. In specific cases, special purpose poWer routing schemes are used, but
in the general case, the following power routing scheme has been shown to produce
close to optimal désigns. We define a cell to have not only a rectangular outline,
but also to have a VDD terminal in the North-East corner of the cell and a Ground
terminal in the South-Waest corner of the cell. The cell must also contain power
consumption information, so that the power lines can be made of the appropriate
width,

We will place the following conventions upon the definition of the VDD and
Ground points. To properly connect power to the cell, we need to touch the VDD
point with a metal VDD box and to touch the Ground point with a metal Ground
box. We are free to run Ground lines anywhere along the bottom edge of the cell,
up to the Ground point, or we may run metal Ground lines anywhere along the left
edge of the cell, up to the Ground point. Similar statements can be made about
running VDD lines. Figure 4-1 illustrates these conventions. The first example has
the power lines running horizontally while the second example routes the lines

vertically.

o may define a datatype CELL which encapsulates the information needed for

"handling this style of power routing.

»
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Fig. 4-1: Power Line Conventions
TYPE  CELL=
INAFE : Qs
LAYOUT:  1RG
VDD.GND:  POINT
POLIER: REALI ;

The CELL has a name, layout, the two power points, and a power consumption
variable. Wae will represent the power consumption by a REAL number which
indicates the effective conductance (reciprocal of resistance) of the i_nternal
circuitry. A preQdefined procedure WIDTH converts this conductance into the

minimum wire width needed to supply the required power.

We have stated that we will use the slicing floorplan for our chips. As shown in
Chapter 2, this means that all possible chip floorplans can be implemented as a
hierarchy of binary cell fusions. If we write routines which will properly
inierconnect two cells in any legal configuration, we will be able to route the
power for any slicing chip whose cells use the two-point power convention. We
may recall that there are precisely two legal configurations of two cells in the
slicing floorplan: one cell may be to the right of the other, or one cell may be above
the other. We will call these two orientations HORIZONTAL and VERTICAL,

respectively.

Let us consider the horizontal case. Given twao cells that have already been given
appropriate relative positions, how do we connect the power lines? Figure 4-2
gives an example of how this might be done. In the figure, we route boxes from
the power points to a larger power box which is a suitable distance from the two.
cells. The widths of the two vertical power boxes connected to the left cell are W1,

which is equal to WIDTH(left.POWER). Similarly, the right cell's power box
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widths are W2, which is WIDTH(right.POWER). The widths of the large power
boxes are W3, which is WIDTH(left. POWER+right,POWER). Thus, the vertical
boxes are wide enough to supply power to one of the cells, while the horizontal

boxes are wide enough to supply powef to both cells,

New

~~ vDD
w1 W3 W2l Potnt

—iliie—W1 W2k

New
Ground—"
Potint

W3

Fig. 4~-2: Horizontal Power Connections

It may be noticed that the layout of the power boxes shown in figure 4-2 is fairly
inefficient. We will now produce more efficient routings. Consider the vertical
VDD box of either cell. We have its lower right corner touching the power point of
the cell. If we had the lower 12t corner touch the power point, the power box may
extend past the éell's bounding box if the power requirement is large, as shown in
figure 4-3a. If we always lined the right edge of the power box with the cells
bounding box, the box would never extend past the cell's bounding box, but the
power box may not touch the power point, as shown in figure 4-3b. To efficiently
align the power box, we need to examine the power box width and power' point
location. If the power box width is less than the distance from the power point to
the cells bounding box, we will align the box to the power point (fig. 4-3c¢). If the
power box width is greater than this distance, we align the power box to the cell's
bounding box (fig. 4-3d).

Next, let us consider the position of the horizontal power box. In figure 4-2, it was

placed a considerable distance from either cell, so as not to interfere with the



-50-

(ad (b> (ed (d>

Possible Aligrnment Correct Alignment
Errors of Boxes

Fig. 4-3: Alignment of Vertical Boxes

geometry within the cells, On the other hand, our power routing convention states
that we may run any VDD boxes we wish above the cell, as long as the box stays
above the VDD point. Hence, what we might do is lower the VDD box until it just
rests upon either of the two VDD points, which ever is higher. Figure 4-4 shows
the only possible situations. If the left VDD point is above the right VDD point, the
horizontal box rests upon the left's VDD point. Similarly, if the right's point is
higher, the box rests upon the right's VDD point. If both points have the same
height, the box rests on both. Notice in the first case that the left's vertical power
box is not required, since the horizontal box completely overlaps the area where the
vertical box would be. The second case does not require the right power box, and

the third case requires neither.

Left Higher Right Higher Samse Height

Fig. 4-4: Positioning Horizontal Box

To complete the routing of the VDD lines, we need to determine where the VDD
point for the composition cell should be. The definition of the power point is that

we may routg any VDD boxes to the right or above the specified point. The x
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component of the point can be determined solely from the right cell. The right
cell's VDD point stated where we coulri run boxes over the right cell. This same x
coordinate can be used for the composition cell. For the y coordinate, we need to
examine both the left and the right cells, but again, they have given us acceptable
values for running horizontal wires. We need only satisfy both cells' requirements.
This is done by using the larger of the two cells' VDD point's Y values. Since the left
cell's VDD point x is always 1éss than the right cell's VDD point x, we can state that

the new VDD point is simply the maximum of the left and right cell's VDD points.

The analysis. of the VDD boxes can be used to analize the Ground boxes, with

appropriate sign changes. We can now code the routine for horizontally fusing two

cells.

DEFINE HORIZONTAL _POLER_BOXES (L,R:CELL NAIME:QS)=CELL:

BEGIN VAR H1,H2,H3,X1,X2,X3,X4,V0DY,GNDY=REAL ;

00 UL:=UIDTH{L.POLER) s
12 =l1DTH{R.POLIER) 4
H3: =HIDTH(L.POLER+R. POLIER) ;
X1:=MBB{L.LAYOUT).HIGH. X;
Xli= [F X1-U4l<L.VDD.X THEN X1-11 ELSE L.VDD.X F1i:
X2:=I"BB (R.LAYOUT) .HIGH. X;
XZi= IF X2-L2<R.VOD.X THEN X2-L2 ELSE R.VDD.X FI;

X3:=MBB (L.LAYOUT}.LOW.X;
X3i1= IF X3+H1-L.GND.X THEN X3 ELSE L.GND.X-U1 FI:
X4 =lBB (R.LAYOUT} ., LOW. X;

(I T I R I

" Xhi= IF X4+2<R.GNO.X THEN X4 ELSE R.GND.X-L2 FI;
vDOY:= L.VDOO.Y MAX R.VDD.Y:
GNDY:= L.GND.Y MIN R.GND.Y;
GIVE [NATME : NAME
LAYOUT: IL.LAYOUT;
R.LAYOUT:
BOX (BLUE, X1 #VDDYNTO X2+U2#VDDY+LI3) ;
BOX (BLUE , X3#GNDY-LB3\TO X4+U2HGNDY) 5
IF VDDYNIS_CLOSE_TO L.VDD.Y THEN
IF YOOY\NIS_CLOSE_TO R.VDO.Y THEN NIL
ELSE BOX (BLUE,XZ#R.VDD.Y\TO X2+L24VO0Y+L3) F1
ELSE BOX{BLUE,X1#L.VDD.Y\TO X1+UW1AVDDY+U3) F1;
IF GNOYNIS_CLOSE_TO L.GND.Y THEN
IF GNDYNIS_CLOSE_TO R.GND.Y THEN NIL
ELSE BOX (BLUE, X4H#GNDY-W3\TO X2+LI24R.GND.Y) FI
ELSE BOX{BLUE,X1#GNDY-U3\TO X1+UW1AL.GND.Y) FIl}
vhD: L.v0D MAX R.vVDD
GND: L.VvDD MIN R.VDD
POWER: L.POLER+R.POLER]
END
ENDDEFN

Figure 4-5 shows the resulting layout. The routine for vertical fusion is similar to

the horizontal routine.
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Fig. 4-5: Completed Power Connections

One final observation. We have located the VDD point and Ground point within the
cell boundaries. Also, when we produced the composition cell, we kept these points
well within the boundaries of the new cell, Why was this done? To conserve area,.
The higher levels in the chip heirarchy can share this power channel with the
route done at this level. If another cell were added to the left of our composition
cell, a larger power box would overlap the horizontal power box drawn for this
composition cell. Overlapping the boxes does not cause problems, because the larger
power box is wide enocugh to supply power for all three of the cells. Figure 4-6

contrasts the 1ayout produced when the power points are inside the cell to the

layout produced when the power points are at the corners of the cells.
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Fig. 4~6: Hierarchically Sharing Boxes
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4.3: Composition Methods

We will now lock at some of the data line interconnection philosophies, and notice

what requirements are made upon the three phases of cell composition.

4.3.1: Cell Abutment

The simplest interconnection philosophy is that of cell abutment. In this style of

composition, interconnection between cells is accomplished merely by abuting the

two cells {247[27]. It is assumed that the interconnection points of the two cells

are in precisely the correct position so that simple abutment properly connects each

pair of ports., Figure 4-7 illustrates t}ﬁs concept. Here we wish to join cells A and

B, with A 'to the left' of B. Given the bounding box information fram the two cells,

we can automatically position the two cells to get the interconnection.

following code will generate a fusion of the two cells.

_
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Fig. 4-7: Cell Abutment

DEFINE ABUTT_HORIZONTAL (A,B:CELL NAME:NAME) =CELL:
DO B::=\AT A.LAYOUT\IMBB\LR - B.LAYOUT\MBB\LL;
GIVE HORTZONTAL _POLIER_BOXES (A, B, NANME)

ENBOEFN ,

DEFINE ABUTT_VERTICAL(A.B:CELL NAME: NAME) =CELL:
Bo Br:=\AT A.LAYOUT\MBBAUL-B.LAYOUT\MBBA\LL ;
GIVE VERTICAL _POLER_BOXES (A, 8, NAME)

The
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ENDDEFN
DEFINE AT(C:CELL P:POINT)=CELL:
DO C.LAYOUT::=\AT P;
C.vDD:: =+P;
C.GND: s =4P;
GIVE Cc

ENDDEFN

DEFINE LL{B:BOX)=POINT: B.LOL MIN B.HIGH ENOOEFN
JEFINE UR(B:BOX)=POINT: B.LOU MAX B.HLGH ENDDEFN
DEFINE LR(B:BOX)=POINT: UR(B}.X # LL(B}.Y  ENDDEFN
DEFINE UL (B:BOX)=POINT: LL(B).X # UR(B).Y ENDDEFN

These abutment routines will handle the composition of two cells. Notice that the
specification phase is trivial: we only specify which two-cells to fuse, and in which
order. Similarly., the generation phase is trivial: we need only position one cell
relative to the other, then call our power box ro‘gtines. On the other hand, we have
done no verification of the design. We have no idea whether the implied
connection locations of the two cells line up. This little piece of checking, if

rigorously applied at all levels of the design, will catch most of the design errors.

To add the verification system to the existing cell system would require a large
program that would analyse the layout portions of the two cells, extracting the
circuit information. The program would then have to verify that the composition
of the two circuits is still a valid circuit. This is a very akward way of determining
the port configuration of a cell. This is like writing a software program which
examines a core dump to see if all subroutine linkages are correct. A more logical
approach would be to have the user specify the intended port configuration of the
low-level cells. This information is trivial for the user to specify, since he has to
generate this information for the cell documentation. Rather than keeping the port
information in the cell documentation, we will keep the information with the cell

in machine-readable form, and use it to verify the composition of the cells.

What sorts of information would we need in the ports of a cell? Obvious data are
location and layer. To aid the user in examining a cell, we may want to add a name
to each connector. These names could convey the intent of the signal. We would
also like to know if a connector was an input, output, or bidirectional signal. With
this information, we can verify that inputs connect to outputs, and that

bidirectional signal connect to bidirectional signals, These three types of signals are
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not inclusive, but they will suffice to illustrate the point. In addition to the
direction of the signal, we would also like to know when the signal is valid. Even
if we have connected an output to an input, if the output is on1y<§:‘7‘7alid when the
clock is high and the input only samples when the clock is low, we have a design
errar. We will add timing information to the connectors. Using a simplified
two-phase clock model, we can have signals valid during PHI-1, PHI-2, or always
valid. Finally, we would like to Xnow if we have connected an incredibly large
load on a frail driver. For the purposes of this discussion, we will model the load
and drive capabilities of connectors by REAL numbers. When we connect two
connectors, we wish that the sum of the drives exceeds the sum of the loads. The

following datatypes hold the information presented here.

TYPE CONNECTOR=

[NAME: NAME

{ OAD,DRIVE: REAL

COLOR: COLOR

AT: POINT

TYPE: CONNECTOR_TYPE
VALID: VALID 1;

CONNECTOR_TYPE= SCALAR(IN,OUT, 10} ;
VALIO= SCALAR(PHIL,PHIZ,ALUAYS)

.

CONNECTORS= { CONNECTORS 1

If we add a CONNECTORS component to our cell definition, our cell designers can
append this connector information directly to the other information about the cell.
Due tolthe implied conventions regarding connectors, we know that all connectors
must lie on the perimeter of the cell, and that the connectors can not be on the metal

layer (because the power boxes may run in metal).

To complete the connector addition to our data structures, there are a few routines
which must be modified. When we move a cell with the AT routine, we must also
move the connection points. Secondly, when we abut two cells, we must verify
that the connectors line up and have the pl;oper characteristics. Finally, we must
extend connectors so that they lie on the perimeter of the new cell., When we add
the power boxes, the boxes may extend the bounding box of the cell. If this
happens, our connectors will no longer be on the perimeter of the cell, We check,
therefore, and if a connector no longer lies on the perimeter, we will move the

connector and draw a wire of the appropriate color from the old to new points.



-56-

This cell abutment technique is a very layout-efficient interconnection technique.
Since the interconnection requires no area, the interconnection is as efficient as
possible. On the other hand, this is not a very general technique. The only time
when cells abut is when they were designed to abut, which makes for a very rigid
system. If any of the cells change, several neighboring cells may also have to be
changed. One would use abutment in special cases, when the set of cells isvsmau

and well defined.

4.3.2: Cell Stretching

A second composition methodology is very similar to the cell abutment approach.
Suppose that we wish to simply abut two cells, but the connectors are not at the
same positions. To avoid generating wires to perform the interconnection, we need
to convert the original cells into cells which can simply abut, which means we
need to arrange the connectors to be in the same positions. This is done by cell
stretching. Consider figure 4V—8. Here we have two cells whose connectors are in
the same order, on the same mask layers, but in different positions. To align the ‘A’
connectors, we need to increase the distance between the bottom of the ri'ght cell
and connector 'A'. We can not decrease the distance between the bottom of the left
cell and connector 'A' because presumably the left cell was designed to have these
distances minimized. Hence, we stretch out the right cell as shown in figure 4-Bb.
Next, we need to align the 'B' connectors. We stretch out the left cell, as shown in
fig. 4-8c. This process continues until all of the connectors have the same

positions, at which point we can call the abut routines to connect the cells.
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Fig. 4-8; Cell Stretching
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This approach has the interconnection program reaching inside the subcells,
modifying the layout, to perform the interconnection. External stretching isa very
dangerous thing to do: by arbitrarily modifying a cell's layout, the electrical
properties of the cell will change, and the cell may cease to function. Rather, one
should design the cell to respond to requests to stretch. The system would ask the
crll to move a connector, and the cell would be responsible for generating the new
layout. In this manner, the cell can monitor changes in the performance of the

circuitry, and correct for the cell stretching.

It may seem that this approach is wasteful, because cells are deliberately expanded
to take more room, creating a larger chip. In actual fact, smaller chips can result
from stretching. The space lost at the low level by stretching may be more than
compensated for globally because the wiring cells are not needed. Similarly,
stretching may increase the loads on some signal lines, so it would seem that
performance would suffer. On the other hand, the routing required between cells
degrades the performance of those wires. So stretching the cells may actually
increase the performance of the system from a global standpoint, even though local
performance has suffered. Finally, by stretching two cells to fit, the resulting
layout might be much greater in the stretch direction that either of the two
original cells, as the example in figure 4-8 shows. These arguments illustrate the
dangers of arbitrarily stretching cells, but there are well-defined cases where

stretching does pay off.

4.3.3: River Routing

In the cell-stretching interconnection scheme, we fused cells with connectors in
the same order but in different pdsitions. We stretched the cells so that the
connectors were in the same positions. Alternatively, we can draw wires to
perform the interconnection. Since the two sets of connectors are in the same order,
the wires that we draw do not have to cross. A routing between cells where wires
do not cross is called a 'River Route'. Figure 4-9 shows a river route between two
cells, A very simple algorithm for generating a river route follows., Draw wires
from each connector on the left cell over one unit. Then, as long as all connectors
are not in the proper position to connect to the right cell, draw wires from the new
connector positions up or down, coming as close to the final height as possible

without getting too close to neighboring wires. This process of moving to the side
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one unit, then approaching the desired height, continues until all wires are at the
appropriate positions. Once this is done, the two cells can be fused using the

standard abutment routine,
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Fig. 4-9: River Routing

The river routing scheme is topologically identical to the stretching and abutment
schemes. Because of this, the interconnection requirements are similar to the
requirements of the other schemes, We do not need to specify the interconnection
list, because this information is implied from the cells. We have mentioned one
algorithm for generating the interconnection wires. Finally, the interconnection is

verified using the simple abutment routine.

The river routing interconnection scheme is more generally useful than either
stretching or abuting, since the connector positions are free to move without
drastically affecting the cell size or performance. The connectors are still réstricted
to being in the same order and on a single mask layer. River routers are useful in
chip assemblers, however, because there are cases where the connectors are in the
proper order and on the proper layers, but not at the proper positions. For example,
if the user connects buffers to each connector on a particular side of a cell, the
buffer cell can be designed to have the appropriate number of connectors in the

correct order so that the cells can be river-routed together.
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There are several schemes for improving and generalizing the river route process.

Appendix 3 discusses river routes in some detail.

4.3.4: One-sided General Interconnect

In each of the wiring methodologies presented above, the connectors of the two
cells were required to be in the proper order on the proper layers. For general
purpose cell composition, such is not the case. For the connectors to satisfy these
requirements, both cells would have been designed with the interface specification
known, so that the connectors can be put in the proper locations. This means that
the wiring is done inside the cells! The user has to do the wiring by hand. There is
also a one-to-one correspondence between connectors of the two cells, which is a

serious limitation on the interconnectability of cells.

A more general interconnection scheme would permit arbitrary interconnections
between the signals on adjacent edges of cells [56]. The user would specify the
interconnections as net-lists, which are lists of connectors to be connected together.
Using this style of interconnectioﬁ, the wuser is required to specify the
interconnection information, whereas the previously presented methods implied

the interconnection information.

An example of a general interconnection is shown in figure 4-10. We no longer
restrict the connectors' layers‘or positions., We do not require that there be the same
number of connectors on the two cells, . The only requirement is that the
interconnections between two cells have the connectors on the edges between the

cells.

An advantage of this interconnection technique is that the design of the chip can
easily be partitioned. The two cells can be designed by independent design teams
given only a functional specifiéation of the interface between the cells. Also, if a
cell is redesigned, the interconnection program is re-run with the original

specification and the new composition cell is complete.

One of the disadvantages of this technique is that the user has to specify the
interconnection between the two cells. This can be a fairly large specification if

there are many connectors on the cells. Also, the possibility of errors requires
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Fig. 4-10: General Interconnection

checking of the specification. Signal typing will catch most of the dumb mistakes,
but many of the logical errors can only be caught by checking the specifications.
Another disadvantage is that this style of interconnection consumes more chip area
than the other approaches. Because of these disadvantages, one would like to use
the stretching and river routing techniques where they logically fit, and reserve

the general interconnection schemes for the remaining routes,

4.3.5: Four-sided General Interconnect

In the One-sided general interconnector, we require that all interconnections
between adjacent cells use connectors on the shared edge of the cells. While this
technique may be useful in many circumstances, there are times when the
connectors do not lie between the cells. Figure 4~11 shows a route which connects
to signals on the North and South edges of the cells, in addition the the shared edges
of the cells. This style of interconnection is termed 'Four-sided interconnect', since

the connectors may be on any of the four sides of a cell [5].

There exists a technique which converts the four-sided interconnect problem into a
series of one-sided interconnections. This means that the four-sided
interconnection can be as time and area efficient as the one-sided interconnect, but
that the generality of the four-sided interconnect can be capitalized upon. In figure

4-12, we show three steps in the fusion of cells. In this figure, we perform all of
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Fig. 4-11: Four Sided Interconnection

the interconnections at one level before moving to the next level. We perform an
Immediate fusion of the two cells. When we do this, some of our interconnecting
wires must route out of the channel between the two cells. For example, in the
figure 4-12a, some of the wires route on the east sides of the two cells, which is
the channel between cells in figure 4-12b, The first two cells have taken channel
area from the next higher level. This higher level channel route cannot share the
area used in this lower level route. If, instead of routing outside the channel, we
only routed inside the channel, but kept a list of incompleted connections, we can
share the channels for the various levels in the hierarchical fusion. In figure 4- 13,
we show the same interconnection, but with the Delayed technique. We have only
routed in the channel, but Kept the incomplete routes with the composition cell,
When we go to fuse this cell to neighboring cells, we add these incomplete routes to
the routes required by the new interconnection and route all of the wires in the
new channel. The resulting layout is considerably smaller than the immediate

interconnection layout.
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Fig. 4-13: Delayed Interconnect

4.4: Conclusions

In VLSI design, the design of the glue which interfaces cells is considerably hafder
than the design of the cells themselves. Much effort has gone into building systems
to aid in the construction of the cells, but the interconnect problem has largely been
ignored. In this chapter we have seen several techniques for fusing cells together,
A Chip Assembler which contains these interconnectors, would Ereatly aid in the

design of large chips.
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We have also introduced checking into the design of chips. Rather than analysing
the results of a chip design to verify the interconnection, we design layouts that are
correct by construction. The analysis style of verification is becomes impractical as
chip sizes and densities increase. We must move to the synthesis technique of

correctness by construction if we wish to design correct layouts at a reasonable

cost.
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Chapter 5: A Simple Silicon Compiler

To illustrate the concepts involved in silicon compilation, this chapter will develop
a simple yet complete compiler. This compiler may be called the Random Logic
Compiler: it is designed to compile TTL-style circuits. Following a discussion of the
floorplan for this particular compiler, we will see the code for the chip assembler
and silicon compiler. After this, we will explore some of the possible extensions

which allow higher-level user specification of the design.

A silicon compiler is a program which translates a high-level, behavioral chip
specification into the 'machine language' of silicon design: a set of VLSI masks. The
foundation of a silicon compiler is an Imbedded Language system. Within the
imbedded language, the structure of the compiler's floorplan is designed. The
floorplan is the logical and physical arrangement of circuitry that the compiler
generates. Given this structure and the graphics language, procedures are written
which generate the 'cells' or circuits to be used on the chips. These cells can take -
parameters and perform calculations as the layout is generated. These cells also
generate logical information, such as the list of connection points, in addition to the
actual physical information that describes the design. The user specification is used
to provide the parameter values for the cell procedures. The compiler links these

sublayouts together to complete the chip.
5.1 The Floorplan

The floorplan limits the capabilities of any compiler. The more limited or fixed the
floorplan, the smaller the class of compilable chips; the more relaxed or generalized
the floorplan, the broader the class. On the other hand, the more specific the
compiler, the more specialized it can be for a particular design style, which has
two-fold benefits: the resulting layouts are usually more optimized, and the

specification for any particular chip are very concise.

For our example compiler, we want to generate arbitrary interconnections ofl NAND,
NOR, and INVERT gates. These gates will be positioned horizontally in a single row,
as illustrated in figure 5-1. The power lines will run along the top and bottom of
the row, signal lines will run horizontally between the power lines, and the gates

will be positioned vertically.
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Fig. 5-1: RLC Floorplan

Since we are not restricting the number of gates, nor the interconnection
possibilities, component locations cannot be fixed fo exact physical locations. For
instance, the location of the upper power line can not be fixed since the power line
width is related to the power consumed by the circuitf, which is a function of the
number of gates in the circuit. Hence, unless we arbitrarily limit the number of
‘gates, we can not state where thé upper power line should be for all designs. These
positions can, however, be parametrized in terms of global variables. For our
compiler, the variable 'YVDD' will be set to the y-coordinate for the center of the
VDD line. All of our cells will be designed to use 'YVDD' when referring to features
associated with the VDD line, allowing us to position this line after we know how
many gates are needed in the circuit. Similarly, 'YGND' will be the y-coordinate for

the center of the ground line, and 'POWER' will be the width of the power lines,

In addition to the physical aspects of the floorplan as described above, we will need
cdnventions for communication of information between the cells and the compiler.
There is some information that the compiler needs which the cells compute, and
there is some information that the cells need which the compiler computes. In our
logic gate compiler, the procedures which generate each type of gate know where
the inputs and outputs of the gates should connect relative to the cell's origin,
while the compiler knows the origins for each cell. If the compiler were required
to compute the connection locations, the compiler would be tied to specific cell
implementations. One could not change a cell without having to change the '
compiler as V\}ell, and verification of the changes would be a formidable task, For
the same reason, local cells should not have to generate information that belongs in

the compiler.
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In the logic gate compiler, there are two bilateral communication paths that are
needed: the compiler gives each cell the x-coordinate of its origin, while the cells
report their width to the compiler, so that the compiler can compute the next
origin; the c.ompiler assigns vertical position for each interconnection wire, but the
cells must give the endpoints of the wires based on where the wire connects inside
the cell. The first communication, involving cell origins, is done by direct
parameter passing. The gate procedures are passed a REAL number which the
procedures use for a horizontal origin, Each gate returns its width by setting a
EZlobal variable CWIDTH. The second communication, for interconnection positions,
is done through instances of a datatype called PHYSICAIi_WIRE. PHYSICAL WIREs
receive y-values from the compiler. The gates can inspect this information in the
PHYSICAIL_}NIRES to determine which channel the wire uses. The gates may pass
x-values to the PHYSICAL__WIRES so that the wires will extend to the proper

horizontal positions.

5.2 Chip Assembler

Having defined the conventions of the compiler, the cell generation routines may be
written. The following code gives the implementation routines for the logic gate

compiler:

TYPE PHYSICAL _WIRE= [HEIGHT,LEFT,RIGHT:REAL NAME: QST
PHYSICAL_HNIRES= { PHYSICAL_WIRE }:

VAR YVDD, YGNO, PLIDTH, CWIDTH=REAL ;

DEFINE CONNECT (LIIRE:PHYSICAL LIIRE X:REAL):
e (UIRE) .LEFT::= MIN X;
@{IRE) .RIGHT:: = MAX X

ENDDEFN

DEFINE PULLUP (OUTPUT:PHYSICAL_UIRE  X:REAL) =HRG:
DO CONNECT (QUTPUT, X-2) ;
GIVE  {BOX(RED,X-164B\TO X-G#B) ;
BOX (YELLOW, X-16#-2.\TO X-5#9);
WIRE (GREEN, 2, IX-13#YVOD; . #3; X-84. ; . #.~5; . +5#. ; . HOUTPUT. HEIGHT} ) 5
GCB\AT  iX-124YVDD; X-2#0UTPUT. HEIGHT! ;
GRCBUNAT X-7#-1.1
ENDOEFN.

DEFINE NAND(INPUTS:PHYSICAL IIRES DUTF’UT:F’HYSICAL_LJIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL _WIRE; NUMBER=INT; X2=REAL;
0O NUMBER:= +1 FOR IN 8E INPUTS:;
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X2: =X-18-2+NUMBER;
DO CONNECT(IN,X2}); FOR IN 8E INPUTS;
CLUIDTH: =X2-5;
GIVE {(GCB\AT X-8#YGNO;
BOX (GREEN, X2+3#YGND-2\TO X-7#-1.);
COLLECT {RCBNAT XZHIN.HEIGHT:
WIRE (RED, 2, {IX2#IN.HEIGHT; X-6#.1)1 FOR IN $E INPUTS;;
PULLUP (QUTPUT, X }
END
ENDDEFN

DEFINE NOR(INPUTS:PHYSICAL _WIRES OUTPUT:PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR [N=PHYSICAL_LIRE;
DO DO CONNECT(IN,X-16); FOR IN $E INPUTS;
CHIDTH: =X-24;
GIVE 1{GCBNAT X-134YGND;
WIRE (GREEN, 2, IX~-284YGND; . #-6.1)
LIRE (GREEN, 2, {X-2HYGND+PUIDTH/2+3; . H-2.1 )
COLLECT ({RCBNAT X-1G#IN.HEIGHT;
WIRE (RED, 2, {(X-15#IN.HEIGHT+1;X-11#.;.#.+51);
WIRE{GREEN, 2, {(X-ZB#IN.HEIGHT+43X-8#.1 )]
FOR IN $E INPUTS;;
PULLUP {OUTPUT, X) 1
END
ENDODBEFN

DEFINE INVERT (INPUTS:PHYSICAL _HIRES OUTPUT:PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_LIIRE;
00 IN:=INPUTSI{11;
CONNECT (IN,X-12}
CUIDTH: =X-17;
GIVE {GCBN\AT X-8#YGND;
BOX (CREEN, X-9H#YCOND-2\TO X-7H#-1.};
RCBNAT X-12#IN.HEIGHT;
WIRE(RED, 2, {X-12HIN.HEIGHT; X-6H#. 1}
PULLUP (QUTPUT, X)}
END
ENDDEFN

SET | —

RESET QuUT

MODE
CLOCK - LOMP

Fig. 5-2: Pulse Synchronizer Circuit

At this point, we have routines for implementing NAND, NOR, and INVERT gates, We
can assemble chips by generating the required PHYSICAL WIREs, initializing

parameters in each wire, calling the appropriate gate functions, collecting the
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resulting cells, and drawing the interconnection wires. The following example
illustrates how one could use our chip assembler for designing a 'pulse
synchronizer'. Figure 5-2 gives the logic diagram of the circuit. This code will

produce the layout shown in figure 5-3:

POLIER: =4
YVDD: =9;
YGND: =-63. 3
CUIDTH: =8;

VAR WIRES=PHYSICAL_WIRES:; LIIRE=PHYSICAL_lIIRE;

WIRES: ={[HEIGHT: -8. LEFT:-999333. RIGHT:-339993.1;
[HEIGHT:-17. LEFT:-3333933. RIGHT:-999339.1;
(HEIGHT:-26. LEFT:-9939383. RIGHT:-333333.1;
[REIGHT: ~35. LEFT:-3993983. RIGHT:-399299.1;
[HEIGHT:-44. LEFT: 33938393, RIGHT:-333333.1;
[MHEIGHT:-53. LEFT: 993953, RIGHT:-939333.7;
[HEIGHT:-17. LEFT: 993999. RIGHT:-393339399.1;
(HEIGHT:-44. LEFT: 939333. RIGHT:-9933939.1;
HEIGHT: -17. LEFT: 93393399. RIGHT:-333999.1;
[HEIGHT:-62. LEFT: 999393, RIGHT:-393333.1;
[HEIGHT:-35. LEFT: 9399339. RIGHT: 333333.1;
(HEIGHT:-17. LEFT: 993933. RIGHT:-333333.1;
(HEIGHT:-8. LEFT: 999933. RIGHT:-933333.1;
[HEIGHT:-8. LEFT: 933333. RIGHT: 333333.]11};

VAR RESULT=INRG:
RESULT: =NAND ( {tIRES (1111 ,UIRES (141 ,CLHIDTH) ;
RESULT: : =\UNION NAND ({LIRES[31;IRES (31}, UIRES[111,CLIDTH) ;
RESULT: : =\UNION NAND({LIRES[8];UIRES[1@]; HIREST111} ,HIRES[3],CUIDTH)
RESULT: s =\UNION NAND ( {HHIRES [6]; LIRES 91 ; HIRES 131} ,HIRES (181 ,CHIDTHY 5
RESUL Tz :=\UNION NAND ( (LIRESIE) ;HIRES 7] LIIRES {13]} ,UIRES (8], CUIDTHY ;
RESULT: : =NUNION NAND CHUTRES (33, HIRES (7] ,CUIDTH)
RESULT: : =\UNTON NAND C{LHRES[11];HIRES (131}, LIIRES {12, CHIDTH) ;
RESULT: : =\UNTON NAND ({WIRES[4]1 :HIRES (8] 3 UIRES 123} ,LIIRES[13),CLIDTH)
RESULT: : =\UNION NAND ({HIRES[21;LIIRES (511 ,LTRES (B ,CHIDTH) 5
RESUL T3 =\UNION NAND ({HIRES[1I;UIRES[B]} ,WIRES[S),CLIDTH) ;
RESUL T3 : =\UNION [COLLECT WIRE(BLUE,3, ICHIDTH MAX WIRE.LEFT # WIRE.HEIGHT;
8 MIN LIRE.RIGHT#.})
FOR WIRE 8E WIRES;t;

RESULT: : =\UNION {BOX (BLUE,CUHIDTH+3#YVDBD-3\TO 4#YVDD+(POLUER-3 {1AX 2});

: BOX (BLUE, CLHDTH-1#YGND+2-PCUERNTO B#YGND+2) } 5

PLOT(RESULT, "G"\AIF);

This example shows how our chip assembler has raised the level of user
specificatibn away from the low-level wires and boxes, yet there are still many
implementation details left for the user to specify. Too; this specification is not in a
form conceptually clear for the user. The designer will make many specification
errors, and these errors will be very difficult to locate, because of the obscure

nature of the specification language.
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" Fig. 6-3: Layout of Pulse Synchronizer
5.3 The Compiler

It is rather clumsy to generate chips in the assembler form given above. The user
must constantly be concerned with implementation details, and design errors are
common. If the implementation details could be hidden from the user so that the
user could design with a higher level description, the design task would be easier
and many errors would be eliminated. We will generate new data structures that
allow us to describe the chip in a more functional manner, without the physical
details, and write a program which will handle the physical concerns, given one of
these new data structures. The following section of code lists both the data

structures and the compiler:

TYPE SIGNAL _WIRE= [FRCOM:GATE
TO:GATES
NAME: QS
PHYSTCAL : PHYSICAL _lIRE
VLEFT, VRIGHT, VHEIGHT: INT] ;

SIGNAL _HIRES= { SIGNAL_WIRE };
GATE= [INPUTS:SIGNAL_WIRES
OUTPUT: SIGNAL _WIRE
TYPE:GATE_TYPE
INDEX: INT] s

GATES= { GATE 1};
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GATE_TYPE= SCALAR (NAND,NOR, INVERT) 3

CHIP= [GATES:GATES
INPUTS, QUTPUTS, STGNALS: SIGNAL_WIRES
SIGNAL _COUNT: INT
NAIE,DESCRIPTION:QS];

DEFINE PHYSICAL (SW:SIGNAL _LITREY=PHYSICAL_LIRE: SU.PHYSICAL ENDDEFN

DEFINE PHYSICAL (SHS:SIGNAL_WIRES) =PHYSICAL _WIRES:
BEGIN VAR S=SIGNAL_HIRE;
{COLLECT S\PHYSICAL FOR S 8E SWS;1
END

ENDDEFN

DEFINE PACK(C:CHIP):
BEGIN VAR SLIS=SIGNAL HIRES +H=INT; G=CATE;S=SIGNAL_lIIRE;
DEFINE SORT({SLS: SIGNAL _WIRES) =SIGNAL _LIIRES:
BEGIN VAR DUT=SIGNAL_HIHES;U=SIGNAL_HIRE:I,J,K=INT;
DO OUT:=NIL;
WHILE DEFINED(SUS}; DO
li=-1;
FOR 11 $E SlIS;88 FOR'J FROM 1 BY 1; DO
[F W.VLEFT>1 THEN
[:=l, VLEFT;
Ke=d; FI
END
QUT: = SLSIK] <8,
SUS [K-1:=5LS [K+1-1;
END-
GIVE 0uUT
END
ENDDEFN
DEFINE DRALI_MIRE(LEFT:INT}):
BEGIN VAR LI=GIGNAL_LIRE; I=INT;
IF THERE_ IS U.VLEFT>LEFT FOR 4 SE SLiS;8& FOR I FROM 1 BY 13
THEN SUS[I-1:=5LiS{I+1-];
e {4) . VHEIGHT : =H;
DRAL_MWIRE (L. VRIGHT); FI
END
ENDDEFN
FOR G 8E C.GATES;&& FOR H FROM 1 BY 1:D0 e(G).INDEX:=H; END
FOR S $E C.SIGNALS; DO
@(S) .VLEFT:= IF DEFINED(S.T0)
THEN S.FROM.INDEX MIN MIN G.INDEX FOR G 8E S.TO;
ELSE S.FROM.INDEX FI;
@{8),VRIGHT:= S.FROM. INDEX MAX MAX G.INDEX FOR G $E S.T0;:
END
FOR S $E C.INPUTS;D0 e(S).VLEFT:=8; ENO
FOR S $E C.0UTPUTS;D0 e(S).VRIGHT:=9393999; END
SHS: =C.SIGNALS\SORT;
LIMILE DEFINED(SHS);8& FOR H FROM 1 BY 1; DO DRAW_MIRE(-1); END
END
ENDDEFN

DEFINE SETUP_DINMENSIONS{C:CHIP):
BEGIN VAR G=GATE;S=SIGNAL_{ITRE;H=REAL;
POLER: = WIDTH(+.25 FOR G 8E C.GATES;) NMAX 4;
YGND: = -3.+:{1AX S.VHEIGHT FOR S 8E C.SIGNALS;)-4-POLIER/2;
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YVOD: =6+POLIER/2 MAX 9;
END
ENDDEFN

DEFINE INITIALIZE_WUIRES(C:CHIP):
BEGIN VAR S=SIGNAL_LIIRE;
FOR S 8E C.SIGNALS; DO
@{S) .PHYSICAL: = [LEFT: 993399
RIGHT: -939399.
HETIGHT: 1-9%S. VHEIGHT
NATIE: S.NAIE] 5
END
FOR S $E C.INPUTS; DO
' @(S) . PHYSICAL.LEFT: =-939999. ;
END
FOR S $E C.OUTPUTS; DO
@{5}),PHYSICAL.RIGHT: =999999;
END
END
ENDDEFN

DEFINE DRAW_CELLS{C:CHIP) =1IRG:
BEGIN VAR X=REAL;:G=GATE;NM=MRG;
{COLLECT DO M:= CASE G.TYPE QF
NOR: NOR (G. INPUTS\PHYSICAL, G. OUTPUT\PHYSICAL , CLIIOTH)
NAND: NAND (G. INPUTS\PHYSICAL G. GUTPUT\PHYSICAL CHIDTH)
INVERT: INVERT (G. INPUTS\PHYSICAL G. DUTPUT\PHYSICAL CHIDTH)

ENDCASE ;
GIVE M
FOR G $E REVERSE (C.GATES) 3}
END
ENDDEFN

DEFINE DRALI_LITRES(C:CHIP) =MRG:
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL ;
00 LEFT: CHIDTH+S
RIGHT:=-2.;
GIVE {COLLECT HIRE (BLUE, 3, {S. PHYSICAL. LEFT#S. PHYSICAL. HEIGHT;
S.PHYSICAL.RIGHT#. })
FOR S 8E C.SIGNALS;
EACH_DO e(S.PHYSICAL).LEFT::= [MAX LEFT;
@(S.PHYSICALY.RIGHT: HMIN RIGHT,.,
BOX (BLUE, CHIDTH+3#YVDD PDHEH/Z\TD 4#YVOD+POLIER/2) 4
BOX (BLUE, CLIDTH-14YGND-POUER/2\TQ BA#YGND+POLER/2) }
END
ENDDEFN

DEFINE LOAD(S:SIGNAL _LIIRE) =REAL:
BEGIN VAR G=GATE; T=SIGNAL_LIIRE;
(+ CASE G.TYPE OF
NOR.: 1
INVERT: 1
NAND: +1 FOR T $E G.INPUTS;
ENDCASE FOR G 8E S.70;)=Q_L0OAD +
LOAD (BLUE, NIDTH(BLUE) S.PHYSICAL.RIGHT-S.PHYSICAL.LEFT)
END
ENDDEFN

DEFINE COMPILE (C:CHIP) =I1RG:
BEGIN VAR M=MRG;G=GATE;S=SIGNAL_LIIRE;
DO CLIDTH: =B;
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PACK(C) ;
SETUP_DIMENSIONS(CY;
INITIALIZE_WIRES(C)
M:=DRALI_CELLS{C);
M: = {M; DRAU_WIRES(C))

GIVE N

END

ENDDEFN

There are two basic datatypes defined here: SIGNAL WIRE and GATE. These are
abstract representations for PHYSICAL WIREs and instances of the gates. There is an
additional datatype, CHIP, which holds references to all of the gates and wires
which comprise the chip. The COMPILE function consumes a CHIP and produces an
MRG, which is the ICLIC representation for layout. COMPILE calls five procedures.
The first assigns horizontal channels to each of the interconnection wires. The
second procedure computes the values for the global positioning variables. The
third procedure initializes the PHYSICAL [, WIREs. The fourth procedure calls each of

the gate cells. The final procedure draws the actual interconnection wires.

We now have a program which will take an abstract structure representing the
behavioral definition of a chip and generate the layout. To facilitate the
construction of these abstract chip specifications, support routines may be designed.

The following code provides routines for modifying this data structure, followed

by routines for generating this data structure.

VAR CHIP=CHIP; ’
DEFINE EQ(A,B:GATE) =BOOL: MACRO-18 (" LSPEQS”)
DEFINE EQ(A,B:SIGNAL_WIRE) =BOOL: MACRO-18 (*LSPEQS$’)

DEFINE LINK_INPUT(G:GATE S:SIGNAL_WIRE):
@(S}.T0::= G <$%;
@{G) . INPUTS::= S <8;

ENDDEFN

DEFINE LINK_OUTPUT(G:GATE S:SIGNAL_WIRE):
@(G).0UTPUT: =S;
@ (5} .FRON: =G;

ENDDEFN

DEFINE UNLINK_INPUT(G:GATE S:SIGNAL _LIRE):
BEGIN VAR 0=GATE;R=SIGNAL MIRE;
@(S).70: = {COLLECT Q FOR Q $E S.TO;MWITH -(Q\EQ G);};

@(G) . INPUTS: = {COLLECT R FOR R $E G.INPUTS;WITH —(R\EG S);
END

ENDDEFN

DEFINE UNLINK_OUTPUT(G:GATE S:SIGNAL_LIIRE):
@(S).FROM: =NIL;
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@{G).0UTPUT: =NIL;
ENDDEFN '

DEFINE ELININATE (G:GATE):
BEGIN VAR (O=GATE;
CHIP.GCATES: = ICOLLECT Q FOR Q $E CHIP.GATES;WITH -(Q\EQ G) ;13
END

ENDDEFN

DEFINE ELINMINATE{S:SIGNAL_HIRE):
BEGIN VAR R=SIGNAL_UIRE;
CHIP.SIGNALS: = {COLLECT R FOR R $& CHIP.SIGNALS;UITH ~(R\EQ S}t
CHIP.INPUTS: = {COLLECT R FOR R 8E CHIP.INPUTS;UITH - (R\EQ S);1i;
CHIP,QUTPUTS: = {COLLECT R FOR R $E CHIP,OUTPUTS;WITH -(R\EQ S);i;
END

ENDDEFN

DEFINE FUSE(A,B:SIGNAL_MIRE):
BEGIN VAR G=CATE;C=CHAR;S=SIGNAL_LIIRE;
IF DEFINED(B.FROMI ! THERE_IS S\EQ B FOR S 8E CHIP.,INPUTS; THEN

IF DEFINED(A.FROM | THERE_IS S\EQ A FOR S $E CHIP.INPUTS; THEN HELP;
ELSE @{A), INPUT: =B, INPUT;
G: =B.FROM;

IF DEFINED(G) THEN
UNL INK_OUTPUT (G, B) 3 '
LINK_OUTPUT(G,A); FI FI FI
IF THERE_IS S\EQ B FOR S $E CHIP.OUTPUTS; THEN CHIP.OUTPUTS::= A <$; FI
FOR G $E B.T0; DO
UNL INK _INPUT (G, B) ;
LINK_INPUT (G, A) ;
END
ELIMINATE (B)
END
ENDDEFN

LET Q5 BECOME SIGNAL_LIIRE BY
BEGIN VAR S=SIGNAL_WIRE;
IF THERE_IS S.NAMENEQ QS FOR S $E CHIP.SIGNALS; THEN S
ELSE D0 S:=[NAME:QS];
CHIP.SIGNALS::= 5 <$%;
GIVE S FI
END;

DEFINE NEW_SIGNAL=SIGNAL_WIRE: SC{(CHIP.SIGNAL_COUNT::=+1;}) ENDDEFN
DEFINE SET(S:SIGNAL_WIRE G:GATE): LINK_OUTPUTI(G,S); ENDDEFN
LET GATE BECONE SIGNAL_WIRE BY

BEGIN VAR S=SIGNAL_HIRE;

DO S:=NEW_SIGNAL;

SET(S,GATE) ;

GIVE S

END;
DEFINE INPUT(Q5:09): CHIP. INPUTS::= Q5 <§; ENDDEFN

DEFINE OUTPUT(OS:Q5): CHIP.OUTPUTS: : = QS <8%; ENDDEFN
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UEFINE NEW_CHIP: CHIP:=NIL; ENDDEFN

DEFINE FINISH: '
CHIP.GATES: =REVERSE (CHIP.GATESY ¢
ENDDEFN

DEFINE NEW_GATE(SLIS:SIGNAL_HIRES TYPE:GATE_TYPE)} =CATE:
BEGIN VAR GATE=GATE;SWU=SIGNAL_UIRE;
DO GATE:=[INPUTS:SUS TYPE:TYPE];
CHIP.GATES: := GATE <8;
DO e(SW).T0::= GATE <8; FOR SW 8E SLIS;

GIVE GATE

END
ENDDEFN
DEFINE NAND {SHS: SIGNAL _HIRES) =GATE: NEL_GATE (SUS, NAND} ENDDEFN
DEFINE NOR (SWS:SIGNAL_WIRES) =GATE: NEUW_GATE (SUS, NOR) ENDDEFN

DEFINE INVERT{SU:SIGNAL_UIRE)} =GATE: NEL_GATE ({Slit, INVERT) ENDDEFN

DEFINE AND{SUWS:SIGNAL_WIRES) =GATE:  SWSA\NAND\INVERT ENDBEFN
DEFINE OR (SLS: SIGNAL_UIRES) =GATE: .SHS\NDR\INVERT ENDBEFN
DEFINE NAND(A,B:SIGNAL_WIRE)=GATE: NAND({A;B}) ENDDEFN
DEFINE NOR(A,B:SIGNAL_WIRE)=GATE: NOR ( {A: B}) ENDDEFN
DEFINE AND(A,B:SIGNAL_HIRE) =GATE: AND ( {A5BH) ' ENDBEFN
DEFINE DR (A,B:SIGNAL_WIRE) =GATE: OR( {A;BY) ENDDEFN

To specify the function of a chip, we call these new procedures. To start the
description of a chip, we call NEW_CHIP, which initializes the system. Next, we
enter the logical equations by calling the SET function. We then state which
signals are inputs or outputs of the chip by calling the INPUT or OUTPUT
procedures. Finally, we call the FINISH routine, which completes the linking of
various portions of the description. Signal wires are identified by enclosing their
names in single quotes. Logical equations are specified by calling the NAND, NOR,
AND, OR, and INVERT functions. To specify the 'pulse synchronizer' from above, the

following code could be used:

NEW CHIP;

SET('ENABLE',NAND('SET', NAND('ENABLE','RESET")));
SET('COMP',NAND('CLOCK','X"));

SET('X',NAND({ NAND({INVERT('CLOCK');'ENABLE';'Y"});

NAND({'ENABLE';'Y';'X'});
'COMP'}));
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SET('Y',NAND({'ENABLE';'MODE;NAND('COMP','Y") }));
SET(OUT' INVERT('COMP));

INPUT(SET';INPUT('RESET' ;INPUT('CLOCK');sINPUT('MODE');
OUTFPUT('OUT" );OUTPUT('COMP');

FINISH; .

Notice how concise this description is compared to the description required for the
chip assembler. In addition, this description is more natural for the designer, which
assures fewer specification errors. In the compiler, we referred to signal wires by
namé, whereas in the assembler we used indexes into a global list. The compiler
allows us to work with more of our own semantics, and to include more of this

semantics in the chip description,

5.4 Compiler Extensions

There is a major difference between the assembler and compiler specifications of a
chip. With the assembler, we wri'te a program which contains the specification of
the chip; with the compiler, we generate a data structure which contains this
information. The data structure representation limits our design capabilities since
the data struéture is not as general as a programming language, but there is an
advantage to data structure representations: we can write programs to modify,

generate, or examine our chip specification.

In the RLC, we may wish to perform logic minimization upon a set of equations to
reduce the number of gates required to implement those equations. Programs of
this class are called Optimizers, which are discussed in section 5.4.1. In addition,
the user may wish to specify the equations using mathematical notation, letting the
program translate this formal mathematical notation into the appro_priate data
structures. Section 5.4.2 shows examples of these Generators and Parsers. Our data
structure contains more information than strictly a layout. The user may wish to
examine this information. In RLC, the user may wish to simulate the circuit. Such

programs are called Examiners, which are discussed in section 5.4.3.

These extensions have been added to the compiler presented above. Appendix 3

contains a users guide to the complete compiler, along with all source listings of the
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compiler.

5.4.1 Optimizers

Through the several levels of chip design (architecture, block, logic, gate, etc.),
much thought is devoted to optimizing the design. Many of the optimizations are
algorithmic in nature: a formula or program can be stated which will apply the
optimization to the design. Since our compiler's input is a data structure, we can
design programs which will operate on the input data in attempts to produce more

optimal chips.

One optimization we might consider is the removal of unnecessary inverters. When
using predefined cells, the user may need to invert a signal before connecting to an
input of the cell, only to have the signal re-inverted by a gate within the cell. One,
perhaps both, of the inverters are superfluous and can be removed. We can design
an optimization program which scans for series inverters and removes the
unnecessary inverters., Figure 5-4 illustrates this process. In the first example,
both polarities of the signal are required, in which case the second inverter is the
only unnecessary inverter. The second example shows a case where the signal is
inverted twice, but the intermediate signal is never used, in which case both
inverters can be removed. The following routines are used to perform this

optimization.

DEFINE GET_INVERT(S:SIGNAL_WNIRE)=SIGNAL_HIRE:
BEGIN VAR T=G1GNAL_WIRE;G=GATE;
IF S.FROM. TYPE=INVERT THEN
GIVING S.FROM. INPUTS (11
DO IF -{DEFINED(S.T0)! THERE_IS T\EQ S FOR T $E CHIP.OUTPUTS;) THEN
G:=5.FROM;
UNLINK_OUTPUT(G,S5) ‘
UNLTNK_INPUT (G, G. INPUTS [11) ;
ELIMINATE (G);
ELIMINATE(S); FI
END
EF THERE_IS G.TYPE=INVERT FOR G 8 S5.TO; THEN G.0UTPUT
ELSE INVERT (S) FI
END
ENDDEFN

DEFINE REMOVE_INVERTERS:
BEGIN VAR G=GATE;S, T=SIGNAL_IIRE;
FOR G $E CHIP.GATES;LIITH G.TYPE=INVERT;WITH DEFINED(G.OUTPUT); DO
Se=6.0UTPUT: '
T:=G.INPUTSI(11;
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UNLINK_CUTPUT (G, S)
UNLINK_INPUT (G, T3
ELIMINATE(G) ;
© FUSE (T\GET_INVERT, S}
END
END
ENODDEFN

Before Before

= »—
After After
Case 1 Case 2

Fig. 5-4: Examples of Redundant Inverters

The GET INVERT function is used to efficiently invert a signal. Figure 5-5 depicts
the various conditions tested by GET INVERT. In the first case, the inversion of a
signal (marked by the '*') is required. The signal does not come from an INVERTER,
and no INVERTERs connect to this signal. In this case, an INVERTER is added to the
circuit and its output (marked by the '**') is returned. In the secqnd case, the
original signal does not come from an INVERTER, but an INVERTER does connect to
this signal, in which case the cutput of the INVERTER is used. In the third case, the
signal comes from an INVERTER and is used other places, in which case the input of
the INVERTER is used. In the final case, the signal comes from an INVERTER, and
the signal is not used in other gates, in which case the INVERTER can be eliminated

and its input signal returned.

Given the GET_ INVERT function, the REMOVE INVERTERS function is
straightforward: remove all INVERTERs from the chip and instead fuse the outputs
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Fig. 5-5: Operation of GET INVERT

to the 'GET INVERT' of the input.

Other optimiéers in the RLC remove redundant gates (for instance two NAND gates
whose inputs are identical), attempt to replace NAND gates with NOR gates if the
- £ate count would be reduced, and vice versa, and to merge NAND gates whenever
possible. These optimizers presented so far look only at the logical specification of
the chip and attempt to produce a more optimal logical specification by reducing the
number of gates. Other optimizers look at wire lengths and gate loads to perform

eletrical optimizations on the design. These optimizers to not change the functional
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specification of the chip, merecly the realization of that specification. This frees the
designer from many of the design constraints while composing the functional

specification of the chip.

5.4.2 Generators and Parsers

The input to the RLC is a data structure containing the functional specification of
the chip. We have presented routines which allow the user to directly generate
these data structures. On the other hand; we can write programs which generate
these data structures for us., One such program might be a parser which accepts
mathematical equations and produces proper RLC input for implementing those
equations. With such a parser, our pulse synchronizer could be specified as

follows.

DEFINE PULSE_SYNCHRONIZER({INPUTS:SET,RESET, CLOCK, MODE
: QUTPUTS: QUT, CalpP
LOCALS:ENABLE, X,Y):
ENABLE= SET & (ENABLE & RESET)
CorP= CLOCK & X
X= (-CLOCK & ENABLE & Y} & (ENABLE & Y & X) & COIP
Y= ENABLE & MODE & (COMP & Y)
OuT= -CONMP
ENDDEFN

The parser which accepts this mathematical notation is listed with the RLC

compiler in appendix 3.

We might also write programs that generate the data structures for us. These
programs specialize in the construction of certain classes of circuits. For instance,
we might like a program that produces divide-by-n circuits. We would call the
program, passing the divisor n, along with an input and output signal, and the
program would generate the circuitry for the counter. The following code is in fact

the program for producing divide-by-n logic.

DEFINE DFLOP(DATA,CLOCK,OUT,BAR: SIGNAL _IIRE) :
BEGIN VAR X1,X2,X3,X4=5]1GNAL_HIRE;
K1e=NEU_STGNAL;

X2 =NEL_SIGNAL;

X3 =NEH_SIGNAL s

X4 =NEW_STGNAL;

SET (X1, NAND(DATA, X2} ) ;
SET(XZ,NAND( {X4;X1;CLOCK} ) )
SET(X3,NAND(X1,X4) )3

SET {X4,NAND (X3,CLOCK) } 5
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SET (OUT, NAND (X4, BAR) )
SET (BAR, NAND (X2,0UT))
END

ENDDEFN

-e ww

DEFINE COUNTER(N:INT IN,QUT:SIGNAL_HIRE):
BEGIN VAR Fli=Fil; TOGGLE,NEXT,Q,QBAR,D=SIGNAL_WIRE; OUTPUT=SIGNAL _LIIRES;
QUTPUT:=NIL, .
Fll: =N-1\FL;
IF N<2Z THEN HELP; FI
WUHILE Fl<sL (8)}; DD
Q: =NEW_SIGNAL;
(QBAR: =NELI_SIGNAL;
D:=NEW_SIGNAL;
IF DEFINED(OUTPUT) THEN
NEXT:=NEl{_SIGNAL;:
SET (NEXT,NOR (QBAR, INVERT (TOGGLE} Y ) 3
SET(D,NOR( {OUT;NEXT;NOR(TOGGLE, Q)1 )1}
ELSE
NEXT: =03
SET(D,NOR(QUT,Q) )5 FI
_ DFLOP (D, IN,Q,QBAR)
TOGGLE: =NEXT;
DUTPUT::= IF FU BIT 8 THEN OBAR ELSE QO Fl <
) Fliz=Fil SHIFTR 1: ' '
END
SET(QUT,NOR{QUTPUT) )
END
ENDDEFN

L2

The following input generates three dividers, with ratios of 5, 3, and 25.

NEL_CHIP;

COUNTER(S, *IN*, "FIVE" ) ;

COUNTER (3, * IN’, ' THREE' ) ;

COUNTER (25, * IN’, * TLHENTY-FIVE’);

INPUT ("IN’ ) ;OUTPUT (' FIVE’) ; OUTPUT (’ THREE” } ; OUTPUT €' TUENTY-FIVE");
FINISH;

A plot of the layout is shown in figure 5-6. The layout has been transformed to fit’

the page better,

This technique of building procedures within the compiler to aid in the generation
of the compiler input is very powerful. The user can build his own environment
within the compiler. With a handful of routines similar to this, the user can
quickly and easily design new chips or experiment with multiple implementations

of a single chip.
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Fig. 5-6: Three Frequency Dividers (Transf ormed)
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5.4.3 Examiners

Our chip specification is an abstract representation of the chip, containing only
functional information. As such, it is not particularly tied to any technology or set
of design rules. There are a very few routines which actually convert the data
structure to physical layouts. The majority of the RLC code is independent of the
physical implementation. Therefore, by modifying the few Physical routines, we

can gemnerate output for a new technology.

This concept can easily be included in the RLC through the use of ICL's suspendable
functions, A datatype TECHNOLOGY is defined which includes all of the technology
dependent information. The user méy generate several technology variables, which
allow him to generate masks for any of these technologies. Figure 5-7 shows eight
different implementations of the pulse synchronizer. Some of the 'technologies’ are

merely pictures, and not meant to be actual mask layouts.

il

1 +HF
22 i

NMOS | NMOS Sticks

Metal2 NMOS MetalZ2 Sticks

Fig. 5-7: Multiple Representations
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Fig. 5-7: Multiple Representations (cont.)

With this capability, the user may design a chip before the technology is available.
When the technology is available, the masks can be generated. Also, if designs are
archived by saving the data structure rather than the mask sets, the designs can be

updated to new technologies quickly.

The user may also wish to simulate his circuit. Again, since we have an abstract
representation of the circuit, it is a simple matter to simulate the chip. In RLC, we
generate a new data structure from the chip specification data structure. This new
data structure contains the information required to simulate the chip. The
following input constructs the simulation data structure for the pulse synchronizer

and plots the result of the simulation, as shown in figure 5-8.

NAKE_STMULATOR;
CLOCK (IPHASE: 588 HIGH:1808 LOW:1288 VALUE:FALSE INPUT:’CLOCK’1);
HAVEFORM ( [VALUE: TRUE DELTAS: {200;70080;80808;2100808;22088} INPUT: RESET’1);

HAVEFDORIM (IVALUE:FALSE DELTAS: {4888;5008; 16600;17000; 24800; 258001
INPUT:"SET" 1)
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MAVEFORM( [VALUE: FALSE DELTAS: {12000;2608@} INPUT:’MODE’1);
RUN (20008) ;
Simulation terminated at time=3000848,

PLOTC°CLOCK” s "MODE " 3 "SET" s "RESET’; "OUT"; "COMP" ;' X ;°Y' s "ENABLE' 1,
"G \AIF, .885);

CLOCK Juuuuuyuyiruyuuwuuyt
MODE [

SET I 11 1
RESET |1 1 T
CuUT JUL Tt I
CoMP U uuuy L]
X [ 1T
Y L
ENABLE 5l |5

Fig. 5-8: Simuiation Plot
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A very important advantage of having the simulation driven from precisely the
same chip description data structure is that we are guaranteed that the simulator is
simulating the circuit that the layout generators produce. If the simulator required
a different specification than the layout producers, the user would manually have
to verify that the specifications matched (plus he would have twice as much typing

to do).

5.56: Conclusions:

In this chapter we have seen the basics of a silicon compiler. The Random Logic
Compiler is a very simple compiler, yet it illustrates the techniques and advantages

of using silicon compilers.
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Virtually the only disadvantage of using a silicon compiler is the restriction of the
floorplan. The only chips that may be designed are those that fit the floorplan, and
forcing a chip into a given floorplan may lead to inefficiencies. On the other hand,
the floorplan aids the user in specifying his chip, and helps in the verification of
the design. To ease the floorplan restrictions, several compilers will be designed,

each one finely~tuned for generating one class of chip or portion of a chip.

One of the major advantages of using a silicon compiler is that the user can work in
his own language. We have seen with the parsers that the user writes logic
equations. Logic equations are natural to the user, and the functional specification
is typically given in terms of logic equations. When the user completes the

functional specification of the chip, the chip can be generated immediately.

With this rapid specification~-to-layout cycle,'the user can explore many of the
design tradeoffs that would otherwise be impossible. When a decision must be
made, the user can try several alternatives and quickly see the accurate cost of each
possibility., This can dramatically shorten the functional design cycle, and the
resulting chip can be significantly more opiimal than a similar chip whose

functional specification was virtually frozen before the physical layout was begun.

The user can extend the language. Every Working group develops its own language
for intercommunication. Similarly, software designers develop subroutine libraries
for commonly used routines. In the same manner, users may extend the language of
the silicon compiler, adding constructs and procedures which allow a more

efficient communication of the chip specifications.

Compilers give us technology independence. Just as FORTRAN is available on many
machines, and programs written in FORTRAN are portable between installations,
silicon compilers allow designs to be portable across technologies. When the
technology changes, the code generation routines are rewritten, but the user need
never see the change. The old design specifications are still valid, and can quickly

generate masks in the new technology.

The silicon compiler gives us three guarantees: there will be no design rule
violations in the generated artwork, the circuit will correctly perform the specified

function, and multiple representations of the circuit indeed represent the same
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circuit. These capabilities and guarantees give the silicon compiler fantastic

advantages over the traditional design techniques,
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Part Two

Bristle Blocks
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Chapter G: Introduction to Bristle Blocks

As the cost of VLSI integrated circuit design increases, the desirability of automated
circuit design programs grows. Previous automated circuit design systems have
evolved from the TTL gate technology, and focus attention upon the logic equation
specification of the design [5][9][10][1 1][23][26]. None of these tools have
confronted the problem of generating efficient designs in the VLSI technology. In
VLSI design, the communication network is the expensive portion of the design,
whereas in TTL design the communication network is essentially free and the
components are expensive. TTL design optimization focuses upon the reduction of
the number‘of components at the expense of increased interconnections. Hence,

TTL-based design systems yield undesirable results when applied to the design of
VLSI circuits,

The Bristle Blocks system addresses the ceniral issues of VLSI design. By adhering
to a wiring strategy which optimizes communication, designs are generated which
compare favorably with hand designs in terms of area and performance. This

wiring strategy provides the framework for both the layout and the user's

specification.

‘ Data
y )  § X Buses
‘ y r y 4 ‘ r
P Pncoeeeing
Elemente
4 4 4 4 4
Microinstruction
Decode
"OF f~Chip"
"Off-Chip” I trol . .
Data Comgunioation entre emmunication

Fig. 6-1: Generalized Datapath Block Diagram

The wiring structure implemented in Bristle Blocks is that of a datapath, which
supports Register Transfer (RT) operations. Figure 6-1 is the block diagram of a
datapath. A datapath may consist of several data processing»elements, such as
Arithmetic/Logic Units (ALUs) and shifters, and storage nodes (registers or latches),
interconnected by data buses. The datapath elements are controlled by a

microcontrol word decoder. The microcontrol word is an arbitrarily long series of
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binary logic values which describe the current operation of the datapath. Portions
of the microcaontrol word may be driven by datapath elements, while the remainder
of the logic value sources are external to the datapath. Given a list of data
processing elements and a behavioral description of the register transfer operations
to be performed, Bristle Blocks will compile a datapath and control logic layout

which implements those operations.

For any preliminary specification of a chip,; there may be many structures which
can be used to implement the specifications. The datapath structure-is one which A
can be used to implement a variety of functions. In chapter 9 we see examples of
pipelined chips, signal processing chips, general purpose computing chips, and

special application chips implemented in Bristle Blocks.

Although general purpose in nature, restrictions are imposed upon the designs by
the physical floorplan and the logical and temporal schema of Bristle Blocks. One
restriction is that all of the data processing elements be of the same width. This
means that all registers and ALUs, for instance, contain the same number of bits.
Another major restriction is that complex instruction sequencing is implemented in

a very inefficient manner.

Gap
Upper Bus
‘ i

nnel

Lower Bus

Charnrel

Microinmstruction
Decode

I

Fig. 6-2: Bristle Blocks Logical Floorplan

The logical block diagram of Bristle Blocks is shown in figure 6-2. There is a single
row of data processing elements with a limit of two data buses running past any
element. There can be more than two data buses on a chip by placing a gap in one of

the two busing channels. The two busing channels are refered to as the 'Upper Bus
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Channel' and the 'Lower Bus Channel’, and the buses in those channels are referred
to as the 'Upper Bus' and the 'Lower Bus'. These two buses are designed into each of
the data processing elements, which does limit the number of buses in the system.
However, by designing these buses into the cells rather than externally routing the

bus wires, considerable chip area is saved.

Bufferse
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Instruction Decode

Pade

Fig. 6-3: Bristle Blocks Physical Floorplan

The physical floorplan of Bristle Blocks is very similar to the logical block diagram.
The .physical floorplan is shown in figure 6-3. The datapath elements are
horizontally abuted in the order they are encountered in the user's specification.
The buffers, testability shift register, and the instruction decoder are placed below

the datapath core. Finally, pads are placed around the perimeter of the chip.

Bristle Blocks uses the two-phase clocking scheme presented in Mead and Conway
[20]. Each of the data buses transfers data from the source register to the
destination register(s) When the PHI 1 clock is high. To improve the performance
of the chip, these buses are precharged during PHI 2, so that the source registers
need only pull appropriate bus lines low, If the registers are asked to refresh their

internal values, refreshing will occur during PHI 2. The processing elements have
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the opposite timing conventions. The carry chains and other internal nodes are
precharged during PHI 1, and the computations occur during PHI 2. Output
registers are loaded during PHI 2. With this timing scheme, data can be transfered
into an ALU's input registers and the ALU can load its output register in one PHI 1 -
PHI 2 clock cycle,

"The control line buffers isolate the instruction decoding from the datapath core
control lines. Each buffer samples an instruction decoder output during one cliock
phase, and drives its control line on the opposite clock phase. This delay allows the
instruction decoder and datapath core to operate in parallel, and eliminates race
conditions in the instruction decoder. The bus transfer controls, which are active
during PHI 1, are driven by microcode conditions existing during the previous PHI
2. Similarly, all ALU operations are decoded during PHI 1 and are then performed
the during the next PHI 2, '

When both system clocks are low, the control line buffers dynamically latch the
values which will drive each control line. If the two testability clocks are strobed,
each buffer will.transfer its value to its righthand neighbor. The leftmost buffer
getsits new value from the testability input pad, and the rightmost buffer transfers
its value to the testability output pad. ‘By repeatedly strobing the two testability
clocks, the user can examine the state of each control line buffer's latch, and can set
each latch to new values., The instruction decoder can be tested by examining the
state of the testability vector, and the datapath core can be tested by setting the

testability vector to specific values and observing the results.

The remaining chapters describe Bristle Blocks in greater detail. Chabter 7
documents the input specifications accepted by the parser. Chapter 8 describes how
Bristle Blocks generates a layout from a specification. Chapter 9 presents several
examples of chips compiled by Bristle Blocks. Finally, Chapter 10 presents the

history of Bristle Blocks, and proposes a new Bristle Blocks system.
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Chapter 7: The Bristle Blocks Input Language

The Bristle Blocks Input Language is a formal language which allows for the
specification of datapath chips. There are four prieces of information needed by
Bristle Blocks to compile a chip: the name of the chip, the width of the datapath,

the data processing elements needed'in the datapath, and the structure of the
‘ microcontrol word., The name is used to identify the datapath, since many
datapaths may reside in the system at any one time. The datapath width is required,
since Bristle Blocks can generate datapaths of arbitrary width. In fact, many times
the difference between a 16-bit chip specification and a 32-bit chip specification is
only this single number. The microcontrol word is described to facilitate the
specif ication of element operations. The data processing elements are listed in the
order they are to appear in the final layout. As these elements are listed, parameter

values are given which define how each element is to behave.

The input parser for Bristle Blocks converts all lower case letters to upper case, so
the input may be typed in either style. All examples presented here will use
strictly upper case to improve the readability of the text. The parser recognizes the

following tokens:

<I0> Identifiers, which are a single letter followed by
an arbitrariiy long sequence of letters, digits,
or underscores. Exampies: A Hi_There =49 R202

<MASK> Masks, which are composed of X, I, and O
characters. These are used to indicate which
bits in the datapath are to be operated upon.
The number of characters in the mask must be
equal to the datapath width. Examples for 8-bit
wide datapaths: XITO0IXX cocoiiii XioxiOlx

<INT> Integers, which are composed of an arbitrarily
long, non-empty set of digits. Examples:
1 32424134 gBse

<BLANK> Bifank characters. All spaces, tabs, carriage
return, and line-feed tokens are ignored by the
parser.

<0THER> Any other character. Any character which can
not be interpreted as a token by the above
definitions becomes a token of this type.
Examples: { +
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The following rules state the syntax for a Bristle Blocks input file,

<CHIP> e <NAME> <BODY> END
<NAME > tii= NAME <ID> <INTs> ;
<BODY> ‘s <DECLARATION>

<BOOY> HH <BOOY> <DECLARATION>

These rules state that a ¢<CHIP>, which is the grammar accepted by Bristle Blocks, is
composed of a <NAME>, followed by a <BODY>, followed by the token 'END'. A
<{NAME> is the token 'NAME', followed by an <ID>, followed by an <INT>, followed
by the token ;'. A <BODY> is either a single <DECLARATION>, or it is a <BODY> _
followed by a single <DECLARATION>. This recursive definition for <BODY> states
that a <BODY> can be any arbitrarily long, non-empty set of <DECLARATION>»s. An
example of a <CHIP> might be

NAME SAMPLE 8;
END

where we have represented the <BODY> by '...". The <ID> in the <{NAME> is the
name of the chip, while the <INT> is the width of the datapath. We can see here
that the name of the chip is SAMPLE and that the datapath is 8 bits wide.

The <DECLARATIONDYs are specifications of datapath elements, and the description of
the microcontrol word. The following sections define the syntax and semantics of
{DECLARATION>s.

7.1: Field Declarations

To specify the functioning of a datapath element, the user must be able to state
microcode conditions associated with each operation of the element. For example, if
the element is to increment an internal value, the user must state when the
incrementation is to occur. This is done by describing the states of the microcode
inputs which should cause this operation to occur, This microcode condition
specification is called an EQUATION. The user therefore gives the EQUATIONSs

associated with the elements' functions when specifying the datapath.



-94-

To facilitate the specification of these EQUATIONSs, the microcode inputs, or control
word, can be broken into FIELDs, so that the EQUATIONs become pairs of FIELDs
with associated values. When the microcode inputs cbrresponding to each FIELD
have the associated value, the EQUATION becomes TRUE, and the element performs

the desired operation.

These FIELDs are described in declarations, using the following syntax:

<DECLARATION> 1= FIELD <FIELD_DECL>

<FIELD_DECL> T
<FIELD_DECL>

<FIELD_SPEC> , <FIELD_DECL>
<FIELD_SPEC>

Informally, these rules state that fields are declared by the keyword 'FIELD'
followed by an arbitrary, non-empty set of field specifications, each separated by
commas, followed by a semi-colon. Field declarations may occur anywhere in the

datapath specification, but the fields must be declared before they are used,

One form of a field specification is the field name followed by numbers indicating
which bits of the microcontrol word compose the field. For instance, a field

specification might be

REG_SELECT<1,3,21>

This specification has declared a new field, named REG SELECT, which is bits 1, 3,
and 21 -of the microcontrol word. In most instances, fields contain contiguous bits,
so a shorthand can be used: if two of the integers in the list of bits are separated by a
colon instead of a comma, all of the integers between and including these two
integers are included in the list. Therefore, the following two specifications are

identical:

ALU_DOP<«1,2,3,4,5>
ALU_DP<1:5>

Bits can not be repeated in a single field. Therefore, t_his specification is in error:
SHIFT_CONST<1,2,1,3,2>

On the other hand, using the short hand notation, if the second integer equals the

first, no error occurs:
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A_SOURCE<3,7,9:9>

Fields may have bits in common. For instance, the following three fields all share
bits 3, 4, and 5 of the microcontrol word, but notice that the third field uses the

bits in reverse order:

FIELD_1<1:5>,FIELD_2<3:7>,FIELD_3<8, 5:3>

To aid the use of macros in the field specifications, simple arithmetic operations
upon the integers in the bit specifications is needed. Therefore, each of the integers
in the bit specifications can be replaced by a simple equation involving addition and

subtraction.

FIELD_X<1,4-2:74+3-5>

At times, one would like to describe a field not as a colle(_:tion of specific
microcontrol word bits, but rather as a subfield of a previously declared field. This

can be specified as follows:

FIELD FIELD_A<3,5,2,8,4,7>,FIELD_B=FIELD_A<4:2>;

Here, FIELD A is declared to be six randomly ordered bits in the microcontrol word.
FIELD B is bits 4 through 2 of FIELD A, which corresponds to bits <8,2,5> of the
microcontrol word. Additionally, one might like to specify a field which is a

concatenation of existing fields. This iS done as follows
FIELD A<2:4>,B<8:6>,C= A & B<2Z>;

Here, A is bits.2, 3, and 4, while B is bits 8, 7, and 6. Field C contains all the bits of
A and the second bit of B, so C contains bits 2, 3, 4, and 7. One final word about
field specifications: each field name must be an identifier, which is a letter
followed by an arbitrary string of letters, digits, and underscores. These rules

concerning field specifications can be summed up in the following syntax rules:
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<BITSPEC> = < <BITSPEC1>

<BITSPECL> 1= <INTSPEC> : <INTSPEC> <BITSPEC2>
<BITSPEC1> tr= <INTSPEC> <BITSPECZ>

<BITSPEC2> HESS , <BITSPEC1>

<BITSPEC2> te= >

<FIELDL> HE <10>

<FIELD1> 1= <1D> <BITSPEC>

<FIELD_LIST>
<FIELD_LIST>

= <FIELDO1l>
<FIELD_LIST> & <FIELDL>

o o
.

<FIELD_SPEC>
<FIELD_SPEC>

<ID> <BITSPEC>
<ID> <FIELD_LIST>

. ee

<INTSPEC> ity = <INT>
<INTSPEC> 1= <INTSPEC> 4 <INT>
<INTSPEC> HERS <INTSPEC> - <INT»>

7.2: Microcode Equations

To specify the operations for many of the datapath elements, the user declares
EQUATIONs, which associate values with fields. When the microcontrol words
associated with the fields have the specified value, the EQUATION is TRUE, and the

datapath element performs its operation,

The syntax for EQUATIONSs can be summarized by the following rules,
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<EQUATIDON> tre ALWAYS

<EQUATION> te= <EQUATION1 >

<EQUATION> 1= GND

<EQUATION> 1= NEVER

<EQUATION> ti= PAD

<EQUATION> 1= VDD

<EQUATIONL > 1= <EQUATION1> OR <EQUATIONZ>

<EQUATION1 > te= <EQUATIONZ >

<EDUATIDN2>V = <EOUATION2> AND <EQUATION3>

<EQUATIONZ> 1= <EQUATIONZ>

<EQUATION3> = ( <EQUATIONL> )

<EQUATIONG3> te= <ID> = <BI17S>

<EQUATION3> 1= IF <EQUATION1> THEN <EQUATION1>
ELSE <EQUATION1> FI

<EQUATION3> 1= NOT ( <EQUATIONL> )

<BITS> toi= <BIT>

<BITS> 1= <BITS> <BiT>

<BIT> t = I

<BIT> 1= 0O

<BIT> HEE X

In the simplest case, the EQUATION would state that a single field have one specific

value. Given the field declaration

FIELD SELECT<I:3>,ENABLE<4:5>,DP<8:8>;

an EQUATION might be

SELECT=IX0

This states that the first bit of SELECT should be high and the third bit should be
low. The state of the second bit of SELECT does not matter. Notice that the high and
low specifications are the letters I and O, not the 'digits 1 and 0. The SELECT field is
three bits long, therefore the value to be associated with that field must be three
bits long.

A more general equation might state that several fields have fixed values. Given
the field declaration from above, the following example shows use of the AND

function.

SELECT=IX0 AND ENABLE=XI

Here we require the second bit of the ENABLE field to be high in addition to the

value required in the SELECT field. The AND function is practically free in terms of
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chip area, so the use of AND is welcomed and encouraged.

To allow more than one value to be associated with a field, an OR function is

required. If we had written the equation as

SELECT=IX0 OR ENABLE=XI

then the equation would be TRUE when either SELECT=IX0O or ENABLE=XI or both.
The OR function does cost some area in the instruction decoder, so some care should
be exercised in its use. The OR functions will apply after all of the AND functions:

we say that OR has a lower precedence than AND, Therefore,
SELECT=I )()(7 AND ENABLE=XI OR SELECT=XXO AND ENABLE=OX
will group as
{SELECT=IXK AND ENABLE=XI} OR {(SELECT=XX0 AND ENABLE=0X)
rather than as

SELECT=IXX AND (ENABLE=XI OR SELECT=XX0) AND ENABLE=0X

To get the second grouping, the parentheses must be used.

To invert the polarity of an equation, the NOT function is used. The following
equation is TRUE unless SELECT=IXX and ENABLE=XI.

NOT{ SELECT=1XX AND ENABLE=XI )

The parenthesis are required. Notice that the following two specifications are not

equivalent.

NOT{ SELECT=100 )
SELECT=011

The first equation will go TRUE if SELECT<1) is low OR if SELECT<2> is high OR if
SELECT<3> is high, whereas the second equation will go TRUE only when
SELECTS1> is low AND SELECT<Z? is high AND SELECT<3> is high. '
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Other equations can use IF...THEN...ELSE...FI constructs. One might say

IF SELECT=IXO THEN ENABLE=XI AND 0P=010 ELSE OP=IXX FI

This equation is TRUE if SELECT¥IXO and ENABLE=XI and OP=0I0 or if
SELECT<>IXO and OP=IXX. FEach of the IF, THEN, and ELSE clauses may be any of
the equations specified up to this point, including other IF...THEN...ELSE...FIs. One
caution, however: The IF...THEN...ELSE...FI equation can take a relatively large
area in the instruction decoder, One should not include equations of this form with

reckless abandon.

Each of the equation constructs presented so far deal with variable equations,
equations that depend on microcode inputs. Other equations may have fixed values,
such as always being low. Fixed equations may have one of five values: ALWAYS,
NEVER, VDD, GND, and PAD. In the ALWAYS case, the equation will always be
TRUE; in the NEVER case, the equation will always be FALSE. In the VDD and GND
cases, the control line is tied directly to the appropriate power line. In the PAD case,
a pad will be added to the chip, and this control line will be the sole signal which

depends upon that pad's value.
7.3: Parameters

The datapath elements are parametrized cells, They consume parameters specifying
the configuration required for the particular instance of the cell and produce the
corresponding layout. There are several kinds of bparameters used in the Bristle
Blocks cells. The first form of parameter is an EQUATION, where the equation
specifies when a certain operation should occur. Another type of parameter is a
REGISTER__SPECIFICATION, which describes a register, for example, the input
register for an incrementer. A third parameter is an integer. For Bristle Blocks,
integers are restricted to positive, usually non-zero values. A fourth kind of
barameter is a FIELD, which might indicate a shift constant, for instance. Another
barameter type is an OUTPUT, which is used to drive a signal from a datapath
element to either an output pad or into the instruction decoder. A sixth parameter
type is a MASK, which is used to specify which bits in the datapath are being
operated upon. A DECODE parameter is used to decode a field into one of many

instructions. Finally, SOURCE and DESTINATION parameters are used to connect bits
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from the datapath to bits in the instruction decoder. Each of these parameter types

will be discussed in more detail, with examples.

There is a uniform syntax for specifying each of the elements in the datapath. The
first token is an identifier specifying the class of the element, and the second token

is always an identifier which is the name of that element. For example,

REGISTER PC .....
ALU ALU ...

Here we have a REGISTER named PC and an ALU named ALU. Following the name is a
list of keywords ahd parameter values. The keywords are a function of the element
class. REGISTERs have one set keywoi‘ds, while the ALU has a different set. Some
of the parameters are required, others are optional. The cell documentation lists the
parameter kéywords, types, and requirement status for each of the element classes.

The following rules define the syntax for calling a datapath element:

<DECLARATION> 1= <1D> <105 ;
<OECLARATION> 1= <10> <I0» <PARANS>
<PARAM> t1= <ID> ; <DECODE>
<FPARAM> ' ti= <1D> : <DESTS»>
<PARAM> 1= <I0> : <EQUATION>
<PARAM> ti= <10> : <ID>
<FARAM> 1= <I10s : <INT>
<PARAM> 1= <lD> : <JIASK>
<PARAM> 1= <ID> : <QUT>
<PARAM> s <10> : <REG_SPEC>
<PARAM> te= <ID> : <S0OURCES>
<PARAM> 1= <ID> : <VAR_EQUATION>
<PARANS> = <PARAM> | <PARAMS>
<PARAINS> : = <PARAM>

7.3.1: Equations

One of the Bristle Blocks elements is a bus precharge unit. This cell will precharge
the upper data bus when its PRECHARGE parameter is high. The FPRECHARGE
parameter is an EQUATION, but the parameter is optional. If the user does not
specify the parameter value, the cell will use a default value which always

precharges the bus. The documentation of the cell reflects these characteristics:
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Element: PRECHARGE _UPPER
Required Parameters: NONE
Optional Parameters: .
Keyuword: PRECHARGE Type: EQUATION Defaut t: ALUAYS

The type of the element is PRECHARGE UPPER, There are no required parameters
and one optional parameter, which is of type EQUATION. The default value for the

parameter is ALWAYS. One might use this element as follows.

FIELD PCHG<l>;

PRECHARGE _UPPER  CELL_TO_PRECHARGE _UPPER_BUS  PRECHARGE:PCHG=I;

The element is of type PRECHARGE UPPER. The name of this particular
upper-bus-precharger is CELL TO PRECHARGE UPPER BUS. The one and only
parameter for this cell has the keyword PRECHARGE. The user has specified that
the bus is to precharge whenever the PCHG field is high. The following code uses
the default value for the PRECHARGE parameter;

PRECHARGE _UPPER  CELL_TO_PRECHARGE _UPPER_BUS;

7.3.2: Register Specifications

A second common parameter type is REGISTER SPECIFICATION, or REG SPEC. A REG _

_SPEC describes a register that can be used as an input or output register of a datapath
clement, For example, an ADDER has two input registers and an output register.
The user specifies how the register should interface to the data buses. Equations
may be given to control the reading or writing of the two buses. Additionally, the
register can be made to refresh its internal value, or load with a predetermined
(fixed) constant., The syntax of a REG SPEC is

<REG_SPEC> 1= <REG_SPECL> ]

<REG_SPECL>
<REG_SPEC1»>

<REG_SPEC1> , <ID0> : <REG_VAL>
[ <ID> : <REG_VAL>

<REG_VAL>

e <EQUATION>
<REG_VAL> )

<[TASK>

The keywords for a REG SPEC are READ UPPER, READ LOWER, WRITE UPPER, WRITE _
_LOWER, REFRESH, SUGGEST, and VALUE. These are all EQUATIONs except VALUE,

which is a MASK. When SUGGEST is TRUE, the VALUE is loaded into the register (Xs »

in the mask indicate bits of the register that are not modified by the suggest

operation). For example,
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NAME EXATNPLE 8;
FIELD REG_0P<1:3>;

.«.. [READ_UPPER: REG_DP=100,
URITE_UPPER:REG_OP=101,
READ_LOUER: REG_OP=II0,
HRITE_LOMER:REG_OP=111,
REFRESH: ALLIAYS,
SUGGEST: REG_OP=DIT,
VALUE: XIIXOOXX1. ...

When the REG__OP field is I0Q, this register will take the value from the upper bus
and store it in its internal node.. When REG OP=IOI, the register drives the upper bus
with the data contained in its internal node. Similar functions occur with the
lower bus. The register refreshes its internal value every cycle. When REG OP=0II,
the second and third bits of the register are set high, while the fifth and sixth bits
are set low. The remaining bits are not modified. All of the parameters in the REG _
_SPEC are optional. Also, none of the read or suggest equations should be TRUE when
| either of the write equations are TRUE, because the data buses could be loaded with
garbage. Unfortunately, the compiler can not verify that these equations are
exclusive, due to the fact that the various register equations may be driven by
independent sets of control bits. The correctness of these equations must be insured

in the software.

To illustrate the use of a REG SPEC, consider an INCREMENTER. The documentation
for an INCREMENTER is '

Element: INCREIMENTER
Required Parameters: :
Keyuord: INPUT_REGISTER Type: REGISTER
Keyword: LOAD Type: EQUATION
Optional Parameters:
Keyuord: OUTPUT_REGISTER Tuype: REGISTER
Keyuord: PRECHARGE Type: EQUATION Default: ALLIAYS
Keywnord: CARRY_DUT Type: DUTPUT

The INCREMENTER takes the data from its input register, adds one to this value, and
stores it in the output register when the LOAD equation is true. If the QOUTPUT _
_REGISTER parameter is not specified, the INCREMENTER will store the value into its

input register. The following code shows two incrementers, INC1 and INCZ2, INC1

has only a single register; INC2 has separate input and output registers.
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NAME INCREMENTER_EXAMPLE 83
FIELD RESET<1>,0P<2:3>;

INCREMENTER INC1
INPUT_REGISTER: [ WRITE_UPPER: OP=0I,
. SUGGEST: RESET=I,
VALUE: (0000COC 1,
LOAD: ALUAYS;

INCREMENTER INC2
INPUT_REGISTER: [ READ_UPPER: OP=XI,
REFRESH: ALLIAYS,
SUGGEST: 0OP=I0,
VALUE: OOOOXXXX 1,
QUTPUT_REGISTER: [ WRITE_UPPER: OP=II 1,
LOAD: ALUAYS;

PRECHARGE _BOTH PCHG;
END

When RESET is high, the first incrementer clears its value. The value in this first
incrementer is incremented every cycle, When the OP field equals OI, INC1 writes

its value onto the upper bus.

The second incrementer always increments its input value and stores it in its output
register. When the OP field is 0O, the input register for INC2 does not load with a
new value, so effectively no operation is done by INC2. When the OP field is OI, the
input register is reading from the bus, while INC1 is writing to the bus, so this
operation is a transfer from INC1 to INCZ. When OP is IO, the input register
suggests, but only the four most significant bits are altered: they are cleared. When
OP is II,‘ the input register is also reading from the upper bus, but the output
register is writing to the bus, so this operation transfers data from the output of
INC2 back to the input.

7.3.3: Integers

The third parameter type is that of Integer. Integers in Bristle Blocks must be
positive, and usually must be non-zero, although they may have leading zeros. An
element which takes an integer as a parameter is the STACK element. The

documentation for a STACK is
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Element: STACK
Required Parameters:

Keyuord: DEPTH Type: INTEGER
Keyuword: TOP Type: REGISTER
Keyuword: POP Type: EQUATION
Keyuord: PUSH Tupe: EQUATION
Optional Parameters: ,
Keyword: MIDBLE Tupe: REGISTER Default: [REFRESH:ALLIAYS]
Keyword: BOTTOM Tupe: REGISTER Default: [REFRESH:ALWMAYS]

Keynord: REFRESH Type: EQUATION Oefault: ALUAYS

The STACK is implemented as a TOP register foliowed by DEPTH-1 MIDDLE registers,
followed by a BOTTOM register. Between ad jacent pairs of registers lie circuitry
for transfering data between the registers. When the PUSH equation is TRUE, data
in the TOP register transfers into the first MIDDLE register as data from the first
MIDDLE register is transfered into the second MIDDLE register, etc. The POP control
performs the inverse operation. The following STACK has depth 6:

NAME STACK_TEST_1 8;
FIELD OP<1:2>;
STACK SAMPLE_STACK

DEPTH: 6,
PUSH: O0P=I0,
POP: OP=11,

TOP: [ READUPPER: 0OP=XQ,
HRITEUPPER: OP=01,
REFRESH: ALLIAYS];

PRECHARGE_BOTH PCHG;
END

When OP=00, the TOP register reads data from the upper bus, overwriting what
used to be on the top of the stack. When OP=0I, the data on the top of the stack
writes tb the upper bus, but the stack does not POP. When OP=I0, the stack does a
PUSH, and the register loads from the bus. When OP=II, the stack POPs, but the TOP
register does not write to the upper bus. The stack can not perform a POP operation
on the same cycle that the register is writing to a bus because the bus will be
written with garbage. It is ok to read from a bus while the stack is doing a PUSH,
however. Also, the stack should not do both a PUSH and a POP at the same time,
unless the depth of the stack is 1. For longer stacks, registers in the middle of the
stack would be loaded from their two neighbor registers at the same time, so
garbage would appear in these registers. For a stack of depth 1, however, there are
only two registers (the TOP and the BOTTOM registers), so a simultaneous PUSH and

POP will do a swap of the two register values, as illustrated in the following
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example,

NAME STACK_TEST_2 8
FIELD 0OP<l:4>;

STACK SWAPPER

TOP: [READ_UPPER: 0OP=10XX,
LRITE_UPPER: OP=11XX,
REFRESH: ALLIAYS,
SUGGEST: OP=I111,
VALUE: 000000001 ,

BOTTOM: ([READ_UPPER: OP=XXIDO,
HRITE_UPPER: OP=XXI1I1 AND NOT{OP=11XX},
REFRESH: ALUAYS, ‘
SUGGEST: OP=1111,
VALUE: 000000001,

PUSH: OP=XXOI,

POP:  0OP=DIXX,

DEPTH: 15

PRECHARGE_BOTH PCHG;
END

The following table lists the operations performed by this stack.

oP Operation oP Operation
0003: No Change [000: Load TOP from bus
0001: Copy from TOP ta BOTTOM 1001: Push into TOP

0010: load BOTTOM from bus I1010: Load both TOP and BOTTONM
00l1l: Read BOTTOM to bus I0I1: BOTTOM goes to TOP and hus
0I00: Copy from BOTTOM to TOP 1100: Read TOP to bus

0I0I: Swap TOP and BOTTOMM 1101: TOP goes to BOTTOM and bus
0110: Push into BOTTOM 1110: TOP goes to BOTTOM and bus

DI1l: BOTTOM goes to TOP and bus IIIl: Clear TOP and BOTTOM

7.3.4: Fields

Parameters of type FIELD are used to specify shift constants or bit selects. For
example, a 16-bit datapath may have a shifter capable of shifting data left from O to
15 places in one cycle. A 4-bit field can specify the size of the shift in this case.
For a 32-bit datapath, however, the shifter 'c.an shift between O and 31 places in one
cycle, which requires a 5-bit field to specify the shift constant. The SIMPLE

_SHIFTER element is one example of an element which requires a field to supply the
shift constant. Documentation for the SIMPLE SHIFTER is
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Element: SIMPLE_SHIFTER
Required Parameters:

Keyrord: TOST_SIGNIFICANT_LIORO Type: REGISTER
Keyword: LEAST_SIGNIFICANT_HOROD Type: REGISTER
Keyword: OUTPUT_REGISTER Type: REGISTER
Keyuord: SHIFT_CONSTANT Type: FIELD

Keyuword: LOAD Type: EQUATION

Optional Parameters: NONE

One might use this shifter as follows.

NAME SHIFT_TEST 16;
FIELD REG_SELECT<1:3>,SHIFT_CONST<4:7>;

SINPLE_SHIFTER SHIFTER
LOAD: ALUAYS,
SHIFT_CONSTANT: SHIFT_CONST,
QUTPUT_REGISTER: [MRITE_UPPER: REG_SELECT=IXX],
MOST_SIGNIFICANT_WORD: [READ_UPPER:REG_SELECT=XXI, REFRESH:ALLIAYS],
LEAST_SIGNIFICANT_WORD: [REAB_UPPER:REG_SELECT=XXI, REFRESH:ALMAYS];

PRECHARGE _BOTH PCHG;
END

7.3.5: Outputs

Signals like the carry output of an adder come from the datapath, and may go either
to pads or into the instruction decoder. If the signal goes to a pad, Bristle Blocks
will add an output pad to the chip and connect the pad to the coﬁtrol wire., If the
signal goes to the instruction decoder, it is treated like any other microcontrol word
bit, and so can modify the operation of the datapath. The syntax for specifying the

operation of an output is

<QUT> 1= <ID>

<0QUT> 1= <ID> BIT <INT>
<OUT> HEES PAD

<OUT=> = UNUSED

In the first case, the output specification is a field name., The control line from the
datapath element will drive the first bit of the field. In the second case, a field
name and an index are given. The index indicates which bit of the field will be
driven by the datapath element. The specification of 'PAD' states that the control
line should connect to an output pad. The 'UNUSED' option indicates that the
control line should not connect to anything, This is equivalent to not specifying
the parameter. In the register example, the incrementer element was seen to have a

parameter with keyword CARRY_OUT. This parameter is of type output.
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Augmenting the register example to include connection of the carry output signal

to a pad, we get the following code:

NAME OQUTPUT EXAMPLE 8:
FIELD RESET<1>,0P<2:3>;

INCREMENTER INC1
INPUT_REGISTER: [ WRITE_UPPER: 0OP=0I,
SUGGEST: RESET=I,
VALUE: 00000000 1,
LOAD: ALWAYS,
CARRY_0OUT:. PAD;

INCREMENTER INC2
INPUT_REGISTER: [ READ_UPPER: OP=XI,
REFRESH: ALLIAYS,
SUGGEST: 0P=I0,
VALUE: OOCOXXXX 1,
QUTPUT_REGISTER: [ WRITE_UPPER: OP=I1 1,
LOAD: ALUAYS '
CARRY_OUT: PAD;

PRECHARGE_BOTH = PCHG;
END

Each of the incrementers' carry outputs will go to pads.

7.3.6: Masks

MASKs are used to indicate which bits of the datapath are to be affected by a
particular operation. Recall in the register example that one of the incrementers':
input register had a suggest value of O0O00XXXX. This indicates that the four most
significant bits should be set low, which the four least significant bits were to be
left unchanged. Notice that the length of the MASK is required to be the same as
the width of the datapath, since each character in the MASK represents one bit in
the datapath. The first bit in the MASK is associated with the most significant bit
in the datapath, while the last bit in the MASK is associated with the least

significant bit.
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7.3.7: Variable Timing Equations

For almost every control line in Bristle Blocks, we can state precisely which clock
phase should enable the line. Registers always write to a bus during PHI 1; ALUs
always operate during PHI 2. However, for the input and output ports, we can not
say what the timifng requirements are, for these are dictated by off-chip cohcerns.
Hence, the control lines driving the ports muét have the flexibility of changing the
timing information. <VAP}_}_3QUATIC')N>S are <EQUATION>s with the capability of

having this modified timing.

<VAR_EQUATION>

= <EQUATION>
<YAR_EQUATION> =

: <EQUATION> [ <VAR_TIMING> ]
CLOCKED PHI 1
CLOCKED PHI 2.

NOT CLOCKED

<VAR_TIMING>
<YAR_TIMING>
<VAR_TIMING>

ve oo oo
s o e
U n

We see that a VAR EQUATION may be a standard equation, in which case the timing
takes the default clock phase, or an equation followed by one of the three timing
specifications. The VAR EQUATION may take on PHI 1 or PHI 2 as the enabling
clock, or may asynchronously drive the control line directly. To see an example of
these variable equations, consider an output port. The documentation for the

element is given, followed by an example showing its use.

Element: OUTPUT_PORT
Required Parameters: ;
Keyword: REGISTER Type: REGISTER
Optional Parameters: '
Keyword: DRIVE . Tupe: EQUATION Variable Timing
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NAME OUTPUT TEST 8;

OUTPUT PORT PORT 1
REGISTER: [REFRESH:ALWAYS];

OUTPUT PORT PORT 2
REGISTER: [REFRESH :ALWAYS],
DRIVE: PAD;

OUTPUT PORT PORT 3
REGISTER: [REFRESH:ALWAYS],
DRIVE: PAD [CLOCKED PHI 1J;

PRECHARGE BOTH PCHG;

END

The first port always drives ;che pads. The second port drives the pads during PHI 2
only when its input (coming from an input pad) was high during the previous PHI _
_1. The third port drives the pads during PHI_; 6nly when its input (coming from a
d.ifferent input pad) was high during the previous PH_I_Z.

7.3.8: Decode Operations

The Arithmetie—Logic Unit (ALU) is an example of a cell which can perform a wide
variety of operations, but which has relatively few control lines. The particular
operation performed by the ALU depends upon the state of several control lines. It is
very d1ff1cu1t to spemfy the operation of the ALU in terms of its control line. One
naturally thinks of the specification of the ALU operatmn in terms of operatlons
like ADD and SUBTRACT. A DECODE parameter specifies how a field should be
decoded to perform the appropriate operations. For example, the following is a

partial listing of the ALU's documentation.
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Element: ALU
Required Parameters:
Keyuord: INPUT_A Type: REGISTER
Keyuord: INPUT_B Type: REGISTER
Keyuord: DUTPUT_1 Type: REGISTER
Keyword: DECODE Type: [DECODE
Operations: DONT_CARE
ADD
ADD_Ll_CARRY
SUBTRACT
SUB_{I_BORROW
INCREMENT _A
INCREMENT_B

DECREMENT_A
DECREMENT_B

XOR

AND

SETA

OR

NAND

NOR

Optional Parameters:

Keyword: -0UTPUT_2 Tupe: REGISTER
Keyuord: PRECHARGE Type: EQUATION Defaul t: ALLIAYS
Keyword: CARRY_OUT Type: OUTPUT
Keyword: CARRY_INTO_MSB Tupe: OUTPUT
Keyword: MSB Type: OUTPUT
Keyuword: ZERD Type: OUTPUT

Keyword: WRITE_QUTPUT_1 Type: EQUATION Default: ALWAYS
Keyvord: WRITE_QUTPUT_? Type: EQUATION Default: GND

We can specify the operation of the ALU as follows. o

FIELD ALU_DP<1:2>;

DECODE: ALU_OP
8=> ADD

> SUBTRACT

> AND

> OR

i nou

e WM

When the ALU_OP field has the value 00, the ALU will perform an addition
operation, while an ALU OP of OI will cause a subtraction. ELSE can be used as the

last case in the decode, which can save effort in a large, sparse decaode,

....DECODE: ALU_OP
8=> ADD
2=> AND
ELSE-> OR .....

Another shorthand available allows several field values to be associated with one

operation, using the BITSPEC construction,
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....DECODE: ALU_OP
B=> ADD
2=> AND
<1,3>=> OR .....

The formal syntax for DECODE parameters is

-DNOCONE S te= <DECODE> <DECODE1L>
Vi LUDE > 1= <10> <DECODE1l>
<QECODEL > t1= <BITSPEC> => <ID»>
<DECODEL> HHE ELSE => <ID»>

1= <INT> => <ID>

<DECGDEL >

This states that a DECODE is an <ID>, which is the field to decode, followed by a list
of associations. Each association ties a field value or values to an operation. If there
are some field values which are not associated with operations, a DON'T CARE is
assumed. If the decoded field ever contains one of these values, the operation

performed is unspecified and unguaranteed.

7.3.9: Sources

In Bristle Blocks datapaths, we have data lines running horizontally and control
lines running vertically. There are times, however, when one would like to turn
data lines into control lines. For example, flags from a register leave the register as
data, but should enter the instruction decoder as control lines, The lines have to
‘turn the corner'. Another example would be an instruction register. The
instruction register is loaded with data, the operation to be performed, and it must
communicate this data to the decoder. Bristle Blocks needs to know which bits of
the register should connect to which inputs of the instruction decoder or to which

pads. A parameter of type SOURCE conveys this information.

In the simplest case, a SOURCE parameter is a list of bit index and instruction bit

pairs. For example,

{ 1 => FLAG ; 2 => ENABLE }

indicates that bit 1 (the most significant bit) of the register in question connects to
the FLAG field, which must be a field containing only one bit, Similarly, the second
bit of the register connects to the ENABLE f ield, again a single-bit field, To connect
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to multiple-bit fields, the BITSPEC shorthand is used:

{ <1:4> => OPCOOE }

Here, the OP CODE field must be a four-bit field, which is driven from the four

most significant bits in the register.

One element that uses SOURCES is a DATA TO CONTROL element, This element will
function as an instruction register. Data in the register can drive bits in the

instruction decoder. The documentation for this element is

Element: DATA_TO_CONTROL
- Required Parameters:
Keyuord: REGISTER Type: REGISTER
Keyuord: MAP . Type: SOURCES
Optional Parameters: NONE

One might use this element as follows,

NANME IR_TEST 8:
FIELD FROM<1:4>, T0<5:8>;

INPUT_PORT INSTRUCTION_PORT
REGISTER: [LRITE_UPPER: FROM=00001,
LOAD: ALLAYS; '

DATA_TO_CONTROL INSTRUCTION_REGISTER
REGISTER: [READ_UPPER: T0=0000,
’ SUGGEST: NQOT(T0=0000),
VALUE: 000000003,
MAP: { <l:4> => FROM ; <5:8> => TO i

INCREMENTER PC
INPUT_REGISTER: ([READ_UPPER: T0O=000I,
REFRESH: ALLIAYS,
HWRITE_LOUER: FROM=00001;
LOAD: FROM=0000;

OUTPUT _PORT ADDRESS
REGISTER: [READ_LOLER: FROM=0000, REFRESH:ALLIAYS];

PRECHARGE_BOTH PCHG;
END

This example is portion of thev Fetch/Execute section of a simple microprocessor.
The Instruction Register drives the TO and FROM fields of the microcontrol word.
Notice that if the TO field is not OO0O, the instruction suggests to 00000000 for the
next cycle. The OO0O0O00O0OQ operation causes data in the Instruction Port to be loaded
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into the instruction register, and the PC value increments. Thus, after every
instruction which does not write into the instruction register, the instruction

register automatically loads with the FETCH instruction.

Sources can also specify that certain bits in a register should connect to pads. If
many bits from a register are connecting to pads, OUTPUT PORTS should be used, but
if only a few bits connect to the decoder and a few connect to pads, a DATA TO _

_CONTROL register can be used. Pads are indicated by the token 'PAD' in place of a
field specification. The syntax for SOURCES is

<SINGLE_SOURCE>
<SINGLE_SDOURCE>
<SINGLE _SOURCE >
<5INGLE_SOURCE>

<BITSPEC> => <ID>
<BITSPEC> => PAD
<INTSPEC> => <ID»>
<INTSPEC> => PAD

s ee ov ae
4 4y

<SOURCE> 1= <SINGLE_SOURCE> ; <SOURCE>
<SOURCE> ) t1= <SINGLE_SOURCE> }
<SOURCES> = { <SOURCE>

7.3.10: Destinations

The SOURCE parameters indicate how to turn data lines into control lines. The
inverse operation is also useful: tur.ning control lines into data lines, which allows
equations from the instruction decoder to load into registers, to be used in the
datapath during later cycles. The format for specifying a DESTINATION parameter is

very similar to the SOURCE parameter format.

<DEST> te= <EQUATION1> => <INT> ; <DEST>
<DEST> ti= <EQUATION1> => <INT> }
<DESTS> ‘ 1= { <DEST>

Informally, a DESTINATION parameter is a list of EQUATIONs with associated bit
indicies. The following example illustrates calls of this type. The documentation

for a CONTROL TO DATA element is given, along with a datapath using this element.
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Element: CONTROL_TO_DATA

Required Parameters: »
Keyuord: REGISTER Type: REGISTER
Keyuword: MAP Type: DESTS
Keyuword: LATCH Type: EQUATION

Optional Parameters: NONE

NAME DESTINATION_EXAMPLE 4;
FIELD INPUT<1:2>;

CONTROL_TO_DATA DECODE
REGISTER: [LMRITE_UPPER: ALWAYS],
MAP: {INPUT=00 => 1; INPUT=01 => 2; INPUT=I0 =» 3; INPUT=I1 => 4},
LATCH: ALWAYS;

FRECHARGE _BOTH PCHG;
END

The LATCH equation states that the register should be loaded from the DESTINATION
parameter values every clock cycle. The DESTINATION parameter in this example
'decodes' the value of the input field: When the field has value 0, the most
significant bit of the register will be the only bit with a high value; when the field
has value 1, the next most sig‘nificant‘bit will be the high bit, etc. Any bits of the
register not specified in the DESTINATION parameter will be unaffected by the
LATCH signal.

7.4: Comments and Macros

In addition to the langﬁage constructs presented above, the Bristle Blocks parser has
two meta-commands: comments and macros., These constructs are not part of the
formal language definition, but are processed by the parser before the formal

language is parsed,

Comments consist of all characters between double-quote characters. The parser
removes the double-quotes and all characters between them, before tokenizing the
input stream. This allows comments to be inserted anywhere, even in the middle of

an indentifier or number.

Macros are simple text-replacement facilities which reduce the amount of typing

required to specify a-design. They also aid in the reduction of errors. A macro has a
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name, a set of parameters, and a body. When the macro is instantiated, the body is
inserted into the character stream. Any parameter values to the macro are inserted
in the text where the parameters occur in the macro body. An example of macro

usage follows.

FMACRO TEST1 (ABC,DEF)

% THIS IS A TEST: ©?ABC? IS PARAMETER 1,
70EF? IS PARAMETER 2.

%

/+TEST1 (H1 THERE, XYZZY) w2/

We have defined the macro TEST1. This macro takes two parameters, which are
identified as ABC and DEF. The body of the macro consists of all characters between
the percent signs. Within the macro body, tokens within question marks refer to
instantiations of parameter values. For instqnce, the value of the first macro
parameter is inserted in the macro body where the characters ?ABC? occur,
Following the macro definition, we have a macro instantiation. The characters /*
signify the start of a macro call, while */ indicates the end of the call. Between
these indicators, we have the macro name and parameter values. Here we are
stating that the macro TEST1 is to be called, with the first parameter set to the
characters '"HI THERE' and the second parameter set to the characters 'XYZZY'. The

above macro definition and instantiation is identical to the following text.

THIS IS A TEST: HI THERE 1S PARAMETER 1,
XYZZY 1S PARAMETER 2.

Macro parameters may be given default values. The following example gives

default values for the first and third parameters of the macro.

MACRO TEST2(P1/123,P2,P3/HI MOM) % IF ?P2?=?P1? THEN LIRITE(*?P3?'); FI %
/%TEST2 (453,231, WHAT?) »/

/wTEST2(,X, )%/

/5 TEST2 (XY %/

/% TEST2 () e/

These four macro instantiations will expand into the following text.
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IF 231=453 THEN WRITE CCHHAT?'); FI

IF X=123 THEN WRITE (CHI MOM'): FI
IF X=123 THEN HRITE(’HI nomtys FI
[F =123 THEN WURITE("HI MOM'); FI

In the first example, we specified values for all three parameters, which were
inserted into the text. In the second example, we let the first and third parameters
take their default values. This was done by not specifying a value for the
parameters. In the third parameter, we terminated the Parameter list after the
second parameter, so the third parameter again took on its default value. In the
final example, the parameter list was empty, so every parameter took on its default

value. Since the second parameter did not have a default value, an empty set of

characters was used.

Parameter values consist of all characters upto but not including the first comma or
close parenthesis. There are times, however, when one would like to pass these
characters in as parameter values. To allow this, parameter values or default values

may be enclosed in percent signs. For example,

/%TESTZ (X, 4TLLEGAL CONDITION, PLEASE TRY AGAIN%) s/

produces the following text,

IF X=123 THEN WRITE (* ILLEGAL CONDITION, PLEASE TRY AGAIN'); FI

Macros are instantiated before the parser tokenizes the input, in the same manner as
comments are removed. This allows identifiers 1o be 'split’' across macro
instantiations: part of an identifier or number is generated outside of a macro
instantiation, while the remainder is generated by the macro. Macro instantiations
may nest, and macro definitions may instantiate other macros. Macros must be

defined before they are instantiated.

A macro definition is treated like a declaration to the parser. A formal statement of
macro definition syntax is presented here. Rules which use :*= instead of ::= do not

allow arbitrary insertion of blanks.
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<DECLARATION> 1= MACRO <ID> <MACRO_HEADER> <MACRO_BODY>
<NACRO_HEADER> ::= <IMACRO_HEADER1> )

<MACRO_HEADERL> ::= (

<IMACRO_HEADER1> ::= ( <PARAIMN_DECL>

<MACRO_HEADER1> :

= <MACRO_HEADER1> , <PARAM_DECL>

<PARAM_DECL > 1= <10> .

<PARAM_DECL.> ty= <ID> <PARAIM_DEFAULT>
<PARAM_DEFAULT> 3= / all-characters-until-comma-or-)
<PARAM_DEFAULT> &= !/ % all-characters-until-% %
<MACRO_BODY> tye= <MACRO_BODY1> %

<MACRO_BODY1> HEYE) o

<MACRO_BOOY1> tve= <MACRO_BODY1> <MACRO_BODY_ELEMENT>
<MACRO_BODY_ELEMENT> tve= all-characters-until-%-or-?

<MACRO_BODY_ELEMENT> 1= 7 <10> ?
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Chapter 8: How Bristle Blocks Works

In this chapter, we will discuss the operations performed by Bristle Blocks. We
will use the following chip specification as our example. This chip may be thought
of as a datapath for a simple control processor. We have eight internal registers and
an ALU, along with an input port and an output port. Figure 8-1 gives a block
diagram representation of the circuit. The input specification to Bristle Blocks is

listed here.

NATIE SAMPLE 8;
FIELD REG_SELECT<1:3>,ENABLES<4:6>,ALU_OP<7:9>;
INPUT_PORT INPUT LOAD:ALWAYS,REGISTER: [LRITE_LOWER: ALUAYST;

MACRO ADDRESS (ADDR) : ‘

%REGISTER R?ADDR? OPTIONS: [READ_UPPER: REG_SELECT=?ADDR? AND ENABLES=XXI,
URITE_UPPER: REG_SELECT=?ADDR? AND ENABLES=XXO,
REFRESH: ALUAYST ;%

/+:ADDRESS (000} «/
/+ADDRESS (001) +/
/+:ADDRESS (0101 w/
/ADDRESS (01 1) v/
/+ADDRESS (1001 =/
/+:ADDRESS (101) v/
/v:ADDRESS (110) v/
/+ADORESS(111) %/

PRECHARGE _BOTH PCHG;

ALU ALU
INPUT_A: TREAD_L.OLUER: ALLIAYST,
INPUT_B: [READ_UPPER: ENABLES=IXX, REFRESH:ALWAYS],
QUTPUT_1: LURITE_UPPER: ENABLES=XXIT,
DECODE: ALU_OP

OR

INCREMENT_A

AND

SUBTRACT

XOR

ADD

ZERO

DECREMENT_A;

VvV VVVVVVYV

NONESWNE-®
Bonowon o onodon

CUTPUT_PORT OUTPUT REGISTER: {READ_UPPER: ENABLES=X1X, REFRESH:ALLAYS],
DRIVE: ALWAYS; .

END
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Fig. 8-1: Sample Chip Block Diagram

]

8.1: Parse Input

The first step taken by Bristle Blocks is to parse the user input, determining the
elements and element configurations needed for the chip. The parser's output will

be a series of function calls which, when evaluated, will generate the chip's layout.

In our example, we see that the name of the chip is SAMPLE and that the datapath
width is 8. This name will be kept with the chip, to identify the current chip from
other chips that may reside in the system. This name is also used to compute file
names. For instance, the CIF file name will be SAMPLE.CIF, and the log file, which
lists the testability vector'and pad order, will be SAMPLE.CPL. The file names
adhere to the DEC-10 conventions, which limit file names to six alphanumeric
characters, the first of which should be a letter. In our example, the name SAMPLE
is an acceptable file name. In other examples, the chip's name may not be
acceptable, so Bristle Blocks computes a file name which bears a strong resemblance

to the given name.

The datapath width is used for determining how many bits to place in each register
and each processing element. In addition, for elements like the barrel shifter, the

number of control lines for the element is a function of the datapath width.

The next line of text in the sample file contains the micro-control. word

specification. The user states that the micro-control word will be nine bits long,
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and that this word can be thought of as three non-overlapping fields. The REG
_SELECT field will be used to address one of the registers in the datapath, the
ENABLES field will be used to control the transfer of data across the internal data

bus, and the ALU OP field will control the operation of the ALTU,

Following the micro-control word specification, the input port is declared. This is
an element of type INPUT PORT, which the user chose to call ‘INPUT'. This element
is to 'ALWAYS' load its register from its pads, and its register is to 'ALWAYS' drive
the lower data bus. The timing conventions presented in Chapter 6 state that the
port unit actually loads data from the pads to its register every PHI 2, and that its
register drives the lower bus every PHI 1. We will use the lower bus to transfer
data from the input port to the ALU. The parser will generate a call to an internal
function called PORT IN. One parameter to this function gives the equations to
drive a register, another parameter is the equation to control loading from the pads.
The register has only one equation, which controls writing the the lower bus, and
is set to PHI 1. The load parameter is set to PHI 2, since the port always loads from

the pad, independent of the micro-control word.

Next, the user wants to specify the register array. This register array is composed
of eight registers which function almost identically. To save typing, and to reduce
the possibility of specification errors, the user uses a macro. The macro takes one
parameter, which is the address of the register, and generates the specification for
that register. The MACRO name is ADDRESS, and the single parameter's name is
ADDR. The macro call /*ADDRESS(abc)*/ will generate the text

REGISTER Rabc OPTIONS: [(READ_UPPER: REG_SELECT=abc AND ENABLES=XXI,
WRITE_UPPER: REG_SELECT=abc AND ENABLES=XX0O,
REFRESH: ALUAYS] ;

Following this macro definition, the user calls the macro eight times, passing the

eight register addresses. When this macro is expanded, the parser will see eight

register specifications, so will generate eight calls to the internal REGISTER

function. These registers each have three equations: reading the upper bus, writing

the upper bus, and refreshing. The bus read/write operations occur during PHI 1,

while the refresh occurs during PHI 2.
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After the registers are specified, the user adds the bus precharge element. The buses
in Bristle Blocks are dynamic. They are precharged during PHI 2, and transfer data
during PHI_}. To write on the bus, a datapath element pulls the bits low to write a

zero, or leaves the bus alone to write a one,

Following this, the user specifies an ALU, whose name is ALU., Following the three
ALU register specifications, the user gives the operations performed by the ALU.
The ALU has 13 control lines which are used to determine the operation done by the
ALU, To perform an ADD operatioh, these 13 lines must be set in particular states,
while a SUBTRACT operation requires different states on these wires. Rather than
having the user specify these states, the parser allows the user to specify the
operations. Here, the user has specified that the ALU should perform an ADD when
the ALU OP field is IOI, and a SUBTRACT when the field is OII. The other operations
are seen in the input text, The parser hlust convert this operation-wise
specification into a control-line-wise specification before éalling ‘the internal ALU

function. This conversion will be discussed in section 8.2.

Following the ALU, the user specifies the output port, and then the END. When the
END- is reached, the parser will have collécted 12 function calls to internal datapath
element procedures, along with the description of the micro-control word and
datapath width. Before these function calls can be made, the parser must generate

the instruction decoder functions.

8.2: Generate Instruction Decoder Functions

The instruction decoder used in Bristle Blocks is nothing more than a series of NOR
gates, as shown in figure 8-2. Each NOR gate drives one of the control lines, based
upon the states of its input lines. Given a structure like this, only
very-uninteresting decodes can be performed. The NOR gates can be thought of as
actually AND gates, if all the microcode inputs were negated. Thus, we could only
perform AND functions in the instruction decoder. To allow the inclusion of OR
functions in the decoder, we allow some of the NOR gates to drive new decoder
inputs, rather than driving control lines. Figure 8-3 shows some of these NOR
gates. We can now perform OR functions in the decoder, although the OR functions
cost more both in area and in time than the AND functions. In fact, we use this

technique to generate the compliments of microcode inputs. The user may state
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that an equation is dependent upon a microcode input being low rather than high,
in which case a single-input NOR gate is used to generate the compliment of the

actual input signal.

To Contrel Line Buffers

1
| =T
Fram Miocro-—Control Word

Fig. 8-2: NOR Gate Decoder

Te Contrel Line Buffere

1 I
-

Firam Miore—Contrel Ward

Fig. 8-3: Decoder with Minterm Gates

Each of the microcode equations passed to the internal element functions in Bristle
Blocks must be the NOR form of equations. Hence, the parser must convert all
non-NOR functions to NOR functions by declaring these new 'microcode inputs' and
specifying the NOR gates which will drive these inputs. We convert an AND
function to a NOR function simply by complimenting all of the input signals.

Therefore,

a AND b AND -c
becames

NOR(-a, -b,c)

An OR function is converted to a NOR function by inverting the output, which is

done with another NOR gate, Therefore,
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a OR b OR -c
becomes
NOR (NOR (a, b, ~-c})
An IF...THEN...lELSE...FI function is converted to NOR functions by realizing that
IF a THEN b ELSE c FI
can be stated as
AND {a, b} OR AND(-a,c)
or as
NOR (NOR (NOR (-a, -b} ,NOR (a, -c}))

Similarly, the decode functions, as in the ALU unit, are converted into NOR

functions. In our example, we wish to perfdrm the following decode.

 OUTPUTS

ALUOP

000 I 11000010110t
001 1100001101100
010 1000011101101
011 rooloolcolr1aga
100 0110100101101
1 01 0110000101 T1C0I1
110 0oo0oocti 11101101
I 11 0011000001101

The parser converts this to the following code:



-124-

FIELD NEW_FUNCTION<n>;
NEH_FUNCTION: = ALU_OP=0XI;
QUTPUT_1:

ALU_OP=0XX;
QUTPUT_2:

ALU_OP=X0X;
QUTPUT_3:= NEW_FUNCTION=0 AND OUTPUT_6=0;

OUTPUT _4:= ALU_OP=XI11;
OUTPUT_S:= ALU_DOP=]X0;
OUTPUT_G:= ALU_OP=X10;
OUTPUT_7:= QUTPUT_3=0;
QUTPUT_8: = OUTPUT_4=0;

OUTPUT _3:= NEVER;
OUTPUT_18:= ALLIAYS;
OUTPUT_11:= ALUAYS;
OUTPUT_12:= NEVER;
OUTPUT_13:= NEW_FUNCTION=0;

Once these conversions are completed, all of the equations are in the NOR form,
which can easily be implemented in the instruction decoder. We have effectively
widened the microcontrol word, and we also have a list of equations which drive

these extra microcontrol word inputs.

8.3: Build Datapath Core

At this point, we know the width of the datapath, the equations for each of the
control lines and virtual microcontrol word inputs, plus we have the 12 datapath
element functions. We are set to generate the layout for the core of the datapath.
The datapath core consists of the actual registers and ALUs, without the control line

buffers or instruction decoder.,

Before we actually generate the layouts, we need to determine the physical sizes of
the datapath bits. In Bristle Blocks, we chose to perform global optimization by
having all datapath bits the same physical height over local optimization with the
required routing between cells. Figure 8-4 illustrates the two possible alternatives.

In one case, we would leave the individual cells with their minimum sizes, and
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Fig. 8-4: Comparison of Stretching and Routing

route between the cells. The electrical properties of the individual cells would not
change, but we would degrade the bus signals, and we would take horizontal chip
area for the routing. In the second case, we would stretch the cells so that the
interfaces match, and the cells could pPlug together with no stretching. Horizontal
area is saved at the cost of some vertical area. Additionally, the control line signals
would degrade, and the electrical properties of the cells could change., After an
analysis of the situation, it was determined that the best approach would be to
stretch the cells. But rather than externally stretching the cells, which would rlay
havoc with the electronics, we design the cells to accept stretching parameters S0
that the cell generates the stretched layout. In this way, the cell can monitor the
stretching and alter its geometries to preserve the electronics. The cell may also
select one circuit topology from several potential topologies, depending upon the

physical size of the datapath.
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Fig. 8-5: Single Bit Floorplan

The first step, therefore, is to determine the strétch point values. Figure 8-5 shows
the floorplan of a single bit of the datapath. We have chosen to position the Ground
line which runs through the cell along the x-axis. Above this line we have the
upper bus, at a y-coordinate of 'Y1', and a VDD line, at a y-coordinate of 'Y3°.
Similarly, we have the lower bus and VDD line below the Ground line, at
y-coordinates of 'Y2' and 'Y4'. Finally, the width of the power lines is POWER _
_WIDTH. Each datapath element function can be thought of as an object, as in
object-oriented programming. To determine the stretch point values, we just ask
each function what its minimum requirement is for each spacing. We take the
largest of each of these values as the Spacing between stretch points. In additibn,
we ask each element for its power consumption. By summing the power
consumptions, we can determine the necessary width of the power lines. In figure
8-6 we show the register cell stretching itself to match the requirements of the
system, while figure 8-7 shows the stack cell. The stack cell uses an alternate

layout when the stretching is great enough.

After we have computed the stretch point values, we can call the individual
element functions, requesting the layouts. These functions will examine the
stretch points, along with the parameters passed froin the user's specification, to
determine which layout to use. For _example, we have used several types of
registers in the sample chip, yet there is only one register function. The following

register configurations have been requested.
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17 lrite Lower

2} Read and Urite Upper, and Refresh

3) Read Lower

4} Read Upper and Refresh

5) Urite Upper
A register cell layout which performs all five of the basic operations required here
is shown in figure 8-8, If we were to use this layout in all of the locations that
require a register, we would be wasting a lot of space, since each of these functions
require area. On the other hand, we do not wish to design 31 different registers,
one for each of the possible configurations, What we do is design one register as a
program which computes the appropriate layout from the functions required.

Figure 8-9 shows the five resulting layouts needed by our sample chip.
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Fig. 8-8: Complete Register Cell

As the cell is computing the ylayout, it is very easy to add information about
connection points: where the control lines interface to the datapath core. If this
information were not captured with the layout, some program would have to
determine these positions later, which means that this program would have to have

intimate knowledge of each datapath cell, and would have to duplicate much of the
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Fig. 8-9: Sample Chip Register Instances

computation performed by the cells. Instead, we choose to add information to the
layout datastructure to indicate where the control lines connect. In fact, we need to
know more than just position. What are these connection points to connect to? We
have told the datapath elements which microcode equations drive each line, and the
datapath element knows what style of buffer is required for each line. By adding
this information to the connection point, the buffer program can generate the
buffers by looking at the datapath core layout, and the instruction decoder program

can generate its layout by looking at the result of the buffer program.

Once we have generated the layouts for each datapath element, we may abut the
e]éments and finish the datapath core. To simplify the abutment procedure, we
have defined the following conventions regarding the left and right edge
characteristics of datapath cells: All geometry within a cell must have positive
x-coordinates. All geometric primitives must be at least half the minimum design
rule spacing from x=0. For instance, a diffusion feature must be at least 1.5 lambda
from the edge of the cell, We can state the width of the cell as being the minimum
x-coordinate that is at least half of the minimum design rule spacing from all
geometric features of the cell. Therefore, if a diffusion edge has the largest x
coordinate, the cell's width is 1.5 lambda beyond that coordinate. If we place the
first datapath element at the origin, and displace all other elements by the widths of
all elements to their left, we will have no design rule violations between cells.
Notice that the two data buses and the power buses do not enter into the width
calculation, for these lines must connect between cells, The layouts produced in
this manner are large. Most of the elements communicate with the buses with
~ diffusion connections. We will therefore allow a cell to place a diffusion-to-metal
feedthrough on either edge of a cell, to connect to either bus. If a neighbor cell also

connects to the bus, they will both share the same feedthrough.
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Once we have completed the abutment pbrocess, we have finished the datapath core.
Figure 8-10 ‘shows the layout of the core for our sample chip, In addition to the
layout, we have connection points along the lower edge of the layout for
connecting to the buffers, and we have connection points on the left and right edges

for connecting to pads.
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Flg. 8- 10: Sample Chip Core Layout

8.4: Add Buffers and PLSRs

Given a datapath core, we need to add buffers to each of the control lines. These
buffers latch values from the instruction decoder during one clock phase and drive

the control lines on the other clock phase. These buffers satisfy the electrical
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constraints of driving large loads from the weak signals of the decoder. They also
satisfy the timing constraints by allowing the instruction decoder and datapath to
work in parallel rather than in series. This parallelism allows the chips to run

faster, and removes the possibility of race conditions.

To facilitate the testing of chips, we would like to independently test the
instruction decoder and the datapath. If we had to test the two units together, it
could take a fantastically long time to verify that the chip functions correctly. By
splitting the testing task into testing the two pieces in isolation, one can hope of
completely testing the chip. We do this by adding Parallel-Load Shift Registers
(PLSRs) between the decoder and the datapath. As it turns out, the circuitry
required by the buffers and the PLSRs have a lot in common. If we therefore design
the PLSRs into the buffers, we can save'a lot of érea. The buffer routine adds the
output driver of the buffers, while the PLSR‘ routine adds the remainder of the
buffers and the PLSRs.

The datapath core iells us which buffers it needs on which control lines, since this
information is present in the connection points. We can arrange our buffer
program to generate the buffer layouts in the same order as the connection points,
so that we may river route between the buffers and the core. To generate the
buffers, we need to compute the positions of the individual buffers. If we take the
positions of the connection points as a first approximation, we will generate buffers
which are as close as possible to the wires they drive. Given this first
approximation, we move any buffers which are too close to neighboring buffers.
We continue to shift buffer positions until none of the buffers overlap, and then
we river route to the core. ‘Figure 8-11 shows the buffer programs output for the

sample chip.
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Fig. 8-11: Sample Chip Buffers
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Some of the buffers drive control lines independent of the microcontrol word.
Whenever the user specifies ALWAYS, NEVER, VDD, or GND for a control line
function, that control line does not connect to the instruction decoder. Because
some control lines may not connect to the instruction decoder, and because the
buffers may have to shift positions to avoid overlaps, we put connection points on
the buffer layouts. The PLSR program does not have to compute the positions of the
buffer inputs, this information is given in the connection points. In fact, the type
of the PLSR which needs to connect to each control line can be deduced from
information in these connection points. The PLSR program operates in the same
manner as the buffer program, positioning and shifting the individual circuits to

avoid overlaps. Figure 8-12 shows the PLSR circuit and river route.

Hfﬁ:ﬁiﬁ— =L = L =

Fig. 8-12: Sample Chip PLSRs

8.5: Add Instruction Decoder

After the ﬁuffers and PLSRs are added to the core, we are ready to add the
instruction decoder. The PLSR cells have connection points which state position
and microcode equations. In addition, we have the microcode eduations'for the
virtual control word inputs from the QB functions and the DECODE functions., We
generate the instruction decoder layout in three steps. The first step initialized the
decoder. ’The second step adds the virtual input NOR gates and connections to pads.

The third step packs the wires to conserve chip area.

To initialize the decoder, we add the NOR gates which drive the PLSRs. These NOR
gates are inserted in the column closest to the PLSR which is to be driven. Next, we
add the NOR gates to generate the virtual equations. These NOR gates are driving the
inputs of other NOR gates. We may potentially have a NOR gate driving a wire



-133-

which extends the whole width of the chip and drives many NOR gates. If this
were to be allowed, the instruction decoder would run very slow. To avoid these
long delays, we will limit the loading which we will add to a NOR gate. As we are
scanning across the decoder, if we notice the load getting too great, we will
terminate the line and regenerate the signal where it is needed. To do the scanning,
we need to sort the virtual inputs before adding the NOR gatés, We sort the list so
that equations in the list only depend on equations occurring later in the list and
not on any equations earlier in the list. We then take equations off the list in order,
adding the NOR gates to the decoder as we go. When we have finished adding the
virtual equations, the equations remaining in the list are in fact the actual
microcontrol word inputs, so we connect each of these to wires which will connect

to pads.

When we have completely generated the instruction decoder, we pack the wires to
save space. The packed instruction decoder for the sample chip is shown in figure
8-13. '

Fig. 8-13: Sample Chip Decoder

8.6: Add Pads

When the instruction decoder has inputs which come from pads, it adds wires to
the edge of the cell. To the ends of these wires, it attaches connection points which
will tell the pad router of the existence of the wire and of the type of pad required.
' Similarly, the datapath elements have previously generated connection points
calling for pads. Based upon this information, along with power consumption
information, the pad router can add the pads to the chip. If this datapath is to be a

complete chii), the pad router can be called, which completes the chip. If this
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datapath is to be a portion of a chip, the datapath can be used as is, and the

connection points are available to aid in the interfacing to the datapath.

The pad router gathers all connection points which connect to pads. It then
determines how many pads are needed, and can tell what types of pads are required.
It places the pads and 'Roto-Routes' them as described in the River Router appendix.
This Roto-Route shifts the pads around the chip in an attempt to minimize the wire
lengths. The box river router is then called to route wires to the pads, and the chip

is complete. Figure 8-14 shows the pad layout for the chip.

8.}7: Conclusions

This chapter has described how Bristle Bloéks builds a chip from the user
specification. »It can be seen that much of the task is geared toward this particular
style of chip. This focus upon the floorplan does restrict the capabilities of the
- compiler to a very specific class of chip. On the other hand, this also allows Bristle
Blocks to compile very optimal chips, and it also relieves the user of a lot of
specification, since much of the specification can be implied from the structure of

Bristle Blocks chips.



-1356-

SAMPLE

=

H

i ,

Fig. 8-14: Sample Chip Pads




-136-

Chapter 9: Bristle Blocks Examples

In this chapter, we will show several chips designed by Bristle Blocks. These
examples will not only reinforce the language aspects of Bristle Blocks, but also
illustrate how the design methodology is impacted by a silicon compiler, even one

“with a limited floorplan.

9.1: Lamp Dimmer

The lamp dimmer chip is a variation of a chip designed by Ron Ayres. Ron wanted a
chip which he could use to control the brightness of a lamp. A diagram of Ron's
setup is shown in figure 9~1. Several of these lamp control chips would be
connected to a small processor via a serial bus. .The processor could send commands
to the lamp chips over this bus. The commands would be to select a particular
device by its address or to set a device's lamp brightness to a given value. The lamp

chips would drive Triacs, which controlled each lamp's power supply.

Serial Communication Bue

¢ ¢
J 4
Lamp
Procoesor Dimmer
Chipe

Terminal

Fig. 9-1: Lamp Dimmer System

A block diagram of the lammp dimmer is shown in figure 9-2. We have an 8-bit
shift register which reads the serial data from the command bus and drives the
6~bit data bus and Z2-bit instruction bus, The data bus can load into the address
register for modifing the device's bus address. The data bus is also compared with

the value in the address register duriing the select operation to determine if the



-137-

Serial Address Vaiue Countar
Data In

Borrow To

Q Triac
N A
3
[
1
i 4
Da£a Bue
v 2 Control— Exacute
Logic j———— Sync
J Inetruction Bue

Fig. 9~2: Lamp Dimmer Chip Block Diagram

microprocessor is selecting this device. Finally, the data bus can load into the value

register, which holds the current lamp brightness value.

To drive the Triac, we need to convert the data in the value register to a time. For a
bright lamp, we want to pulse the Triac soon after the zero crossings of the AC line
current. Conversely, for a very dim lamp, we should trigger the Triac just before
the zero crossings. We will convert the data value to a time by comparing the value
register's contents with the contents of a counter. The counter will be reset at the
zero crossings of the AC current, and will be clocked so that the counter reaches full

count just before the next zero crossing.

The 2-bit instruction bus drives the control logic section of the chip. The EXECUTE
pin is used to indicate when the instruction bus and data bus contain valid data.
When EXECUTE is high, the Z-bits are decoded as follows. An instruction of 0O
initializes every device to its initial address. This initial address is read from a 6-bit
" input port, which is hard wired on each chip to a unique number. When the
instruction is 01, the processor is selecting a new device. Each chip compares the
data bus value to its address value and, if they match, the chip becomes enabled.
When the instruction is 10, all selected devices will load their address registers
from the data bus, allowing the processor to change the address of any device.
Finally, when the instruction is 11, all selected devices will load their value

register from the data bus.
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From this description, we can start mapping the chip specification into Bristle
Blocks. Since most of the data widths are 6 bits, we will set the chip width to 6,
We can also state what the microcontrol word looks like, We need a bit to state
whether this chip is the selected chip. We call this the ACTIVE bit. Next, we need
two bits which contain the current instruction from the shift register, which we
call the OP bits. The SYNC bit clears the counter. This signal goes high at each
zero-crossing of the AC line. EXECUTE is an input which states when the
instruction and data values are valid. We also need a data input, which we call

INPUT. Our specification to Bristle Blocks now looks like this.

NANME RONS_CHIP 6;
PRECHARGE_BOTH PCHG;
FIELD ACTIVE<l>,0P<2:3>,5YNC<4>, EXECUTE<S>, INPUT<B>;

We define macros for each of the four basic instructions executed by the lamp
dimmer chip. We have also defined a macro NOT INITIALIZE which is true for any
instruction but INITIALIZE,

MACRO INITIALIZEQ) % OP=00 AND EXECUTE=] %

MACRO SELECT () % OP=01 AND EXECUTE=I %

MACRO LOAD_ADOR() % OP=I0 AND EXECUTE=1 AND ACTIVE=l %
MACRD SET_VALUE() % OP=11 AND EXECUTE=1 AND ACTIVE=1 %
MACRO NOT_INITIALIZE () % NOT(OP=00)} AND EXECUTE=1 %

We can now list the datapath elements we require for this chip. These elements are
the command shift register, the initial address port, the address register and

comparison unit, the value register and comparison unit, and the counter.

The éommand shift register must be 8-bits long, but our datapath is only 6-bits
wide. However, we can think of the 8-bit register as a 6-bit register followed by a
2-bit register. The 6-bit register will contain the data portion of the command
when the ENABLE bit is TRUE, at which time the 2-bit register is holding the
operation portion of the command. The 6-bit register is simply a LEFT RIGHT _
_SHIFTER, while the 2-bit register is a SHIFTING IR, since we need to access the

register's value in the instruction decoder. These two elements are specified by
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FIELD MSB<7>;

LEFT_RICGHT_SHIFT DATA
INPUT_REGISTER: [URITE_LOWUER: /wNOT_INITIALIZE®/1,

SHIFT_LEFT: NEVER,
SHIFT_RIGHT: ALLIAYS,
INPUT: INPUT=1,
rSB: nsB;
SHIFTING_IR OP_CODE
- MAP: f<2:1>=>0P},

INPUT: nse=1,
SHIFT_LEFT: ALLIAYS,

SHIFT_RIGHT: NEVER;

The data in the 6-bit register should write to the lower bus for every operation
except INITIALIZE. This shifter always shifts right, never left., The input comes
from the INPUT pin, and the output drives a new microcode bit calied MSB. This bit
supplies the input data for the 2-bit shifter. The 2-bit shifter always shifts left,
never right, and we feed the input of the shifter from the MSB bit, which is the
output of the 6-bit shifter. The first and second bits in this shifter drive the OP

field of the microcontrol word.

The next element we would like to design is the initial address port, This element
is an input port which should transfer its data to the address register during an
INITIALIZE instruction. The data input shift register does not write the lower bus
during INITIALIZE, so we can have the input port drive the lower bus. The

specification for the input port is simply

CINPUT_PORT FIXED_ADDRESS
REGISTER: [MRITE_LOUER: /+«INITIALIZE%/],
1.DAD: - ALUAYS;
This element always loads its internal register from the pads, and drives the lower

bus during the INITIALIZE instruction.

The address register and comparison unit must contain a latch to save the device
address, a comparator to compare the device address to the select address, and a
mechanism for saving the result of the comparison. To maintain the comparison
result, we can either have a single bit latch for holding the value, or we may have a
register to hold the select address and continuously perform the comparison. In
Bristle Blocks, all registers have the same width as the datapath, so a 1-bit register
takes as much area as a 6-bit register. Therefore, we choose to have a register for

the select address and we will continuously compare the address and select
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registers. To compare two registers' values, we use a subtractor with a 'value
checker' on its output. This unit will compute the difference between its two
input values, then compare this difference to a fixed constant. With a fixed
constant of O, this element's RESULT will be TRUE when the two input values are

equal.

SUBTRACTER_WITH_VALUE_CHECK ADDRESS_CHECKER
VALUE: 000000,
RESULT: ACTIVE,
INPUT_A: [READ_LOUER: /=INITIALIZE«/ OR /+LODAD_ADDR-:/,
REFRESH: ALWAYST,

INPUT_B: [READ_LOUER: /+SELECTw/,
REFRESH: ALWAYST,
LOAD: ALLIAYS;

The INPUT A register is the device address register. This register reads data from
the lower bus during the INITIALIZE instruction and the LOAD ADDRESS instruction
if the chip is currently the selected device, The INPUT B register contains the select

address. This register reads the lower bus during the SELECT operation.

Next, we will specify the value register. This register should load from the lower
bus during the SET VALUE instruction. The contents of this register should be
available for comparison with thé counter's value, We can use the upper bus for
this transfer. Since there are no other transfers on the upper bus, we can simply

drive the upper bus from the register every clock cycle.

REGISTER VALUE
OPTIONS: [READ_LOUER: /#SET_VALUE~/,
REFRESH: ALLIAYS, ‘
HRITE_UPPER: ALLIAYS]

Finally, we need to specify the counter and comparison unit, In the chip
specification, we stated that we wish to compare the data in the value register to
the value in a counter. This counter is reset at the zero-crossing of the AC current,
and simply increments each clock cycle. The clock cycle for the chip is ad justed so
that the counter overflows at the next zero-crossing of the AC current. Rather than
having an incrementer and a comparison unit, we can have a decrementer which is
initialized to the value in the VALUE register at the zero crossing, and simply
decrements each clock cycle. When this decrementer's value passes zero, the triac is
strobed.
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DECREMENTER  QUTPUT
INPUT_REGISTER: [READ_UPPER:SYNC=1 AND NOT (/«SET_VALUEw/),
, READ_LOWER: SYNC=1 AND /SET_VALUEx/1,
LOAD: . ALUAYS,
CARRY_DOUT: PAD;

We use the upper bus to transfer data from the VALUE register to the decrementer
at the zero crossings. Problems arise when the zero crossing occurs during the same
clock cycle as a SET VALUE instruction, because the VALUE register would be
loading from one bus while driving the other. The register documentation in
chapter 7 states that simultaneous read and write operations cause garbage data to

be driven onto the written bus. Therefore, the decrementer reads its data from the

lower bus if SYNC is high and a SET VALUE instruction is being executed.

We have now described each of the elements for the lamp dimmer chip. We need
only decide the order the elements should be placed in the datapath, since the order
of implementation will be the order in which We specify the elements. The order
does not matter a great deal, although the port cells are more efficient at either of
the two ends of the datapath. We will place the fixed address input port on the left

end of the chip. The complete specification for the lamp dimmer chip is listed here.

NAMNE RONS_CHIP  6;
PRECHARGE_BOTH PCHG;
FIELD ACTIVE<l>,0P<2:3>,SYNC<4>, EXECUTE<S>, INPUT<B>,MSB<7>;
MACRO INITIALIZE() % OP=00 AND EXECUTE=1 %
MACRO SELECT() % OP=0I AND EXECUTE=I %
MACRO LOAD_ADDR() % OP=10 AND EXECUTE=1 AND ACTIVE=I %
MACRO SET_VALUE () % OP=I1 AND EXECUTE=1 AND ACTIVE=I %
MACRO NOT_INITIALIZE () % NOT(OP=00) AND EXECUTE=I %
INPUT_PORT FIXED_ADDRESS

REGISTER:  [WRITE_LOUER: /#INITIALIZE=/1,

LOAD: ALLIAYS;

LEFT_RIGHT_SHIFT DATA ,
INPUT_REGISTER: [URITE_LOWER: /+«NOT_INITIALIZE«/1,

SHIFT_LEFT: NEVER,
SHIFT_RIGHT: ALLIAYS,
INPUT: INPUT=I,
nsB: FSBg

SHIFTING_IR 0OP_COCE
[AP: {<2:1>=>0P},
INPUT: 15B=1,
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SHIFT_LEFT: ALUAYS,
SHIFT_RIGHT: NEVER;

SUBTRACTER_MITH_VALUE _CHECK ADDRESS_CHECKER

VALUE: 000000,

RESULT: ACTIVE,

INPUT_A: [READ_LOLER: /wINITIALIZE=/ OR /+LOAD_ADDR=/,
REFRESH: ALUAYS],

INPUT_B: . [READ_LOWER: /+SELECTx/,
REFRESH: ALLIAYS],

LOAD: ALHAYS;

REGISTER  * VALUE
OPTIONS: [READ_LOLIER: /«SET_VALUE/,
REFRESH: ALLIAYS,
NRITE_UPPER: ALLIAYS] ;

DECREMENTER QUTPUT
INPUT_REGISTER: [READ_UPPER:SYNC=] AND NOT (/%SET_VALUE®/) ,
READ_LOMER: SYNC=1 AND /+SET_VALUE«/1,
LOAD: ALLIAYS,
CARRY_OUT: PAD:

END

Bristle Blocks compiled the layout for this chip in 1.8 minutes. The chip
dimensions were 78.9 mil by 102.4 mil, and the chip consumed 26 ma. Figure 9-3

shows the bounding boxes for the various sections of the chip,

9.2: Random Tune Generator

The Player chip was designed to play pseudo-random melodies. The system block
diagram is shown in figure 9-4. External to the player chip is an EPROM memory
chip which contains the melody algorithm. Using the algorithm in the ROM, the
player chip computes a square wave signal. This square wave is multiplied by the
note amplitude to generate an 8-bit output value, The output value is converted to

an analog voltage by a Digital-to-Analog Converter (DAC).

The melody algorithm is contained in an object-oriented data structure contained in
the melody ROM. The ROM is organized as as 256 note '‘objects'’. Each objecf
specifies a note, containing a duration, amplitude, and frequency, along with
potential future notes. A note object is graphically illustrated in figure 9-5. When
‘the player chip is playing a note, it generates a square wave with the specified
duration, amplitude, and frequency. When the given note has finished, the player

chip will follow one of the four next-note pointers to find the next note. This
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CONTROL _TO_DATA_AND_BACK IR

TO_CONTROL: f<l:3>=> OP;<4:B>=> PAD},

LOAD: - OP=0XX OR TIHE I,

REGISTER: {SUGGEST: TIME=0 AND OP=1XX1,

TO_DATA: {IF OP=011 THEN RND=XXI ELSE OP=0XO FI =» 33
IF OP=011 THEN RND=XIX ELSE OP= OOI OR OP=0I0 FI => 2;
OP=011=> 1;

IF OP=DI1] THEN RND=XXI ELSE OP=0X0 FI =» b;

IF OP=011 THEN RND=XIX ELSE OP=00I OR OP=0I0 FI => G;

OP=011=> 4};
The TO_(_:ONTROL parameter specifies that bits 1-3 drive the OP field, while bits 4-6
drive pads, as stated above. The register is loaded from the instruction decoder
when the OP field equals OXX or when TIME=L. When the OP field's MSB is low,
the chip is reading in the note parameters, so the sequencer increments the OP field
value. When the final parameter is read, the OP field is loaded with 100, 101, IIb, or
II, depending upon the next note to be played. The sequencer then waits until the
TIME field goes high, indicating that the note has finished playing.

The pseudo-random number generator uses a shift register with feedback logic.
The feedback logic computes the shifter input value as a function of the current
shift register data. With an appropriate feedback function, the random number
stream repeats every 255 cycles, which is the maximal cycle length attainable
using this form of generator. The RESET2 input, which comes from a pad, will
clear the shift register. This input allows the user to alter the random number
sequence. Without providing this reset, the system may only produce one fixed
melody if the random number shift register always initializes with the same value

on power up. The random number generator is specified by the followmg code.

SHIFTING_IR RANDOM

Nap: {<1,7,8>=>RNDI,

SHIFT_RIGHT: 0OP=000,

SHIFT_LEFT: NEVER,

INPUT: RND=100 OR RND=0I0 OR RND=001 OR RND III

REGISTER: (SUGGEST: RESET2=1, VALUE:00000000, REFRESH:DP:IXX];

The ROM interface is fairly straightforward. An output port supplies the upper 8
address bits for the ROM. These bits select which note object is the active note.
This register is loaded with a new value when the chip begins to play a new note.
The register is cleared when RESET1 is high, which allows the user to reinitialize
the me]ody. An input port reads the data from the ROM. This port always drives
the data unto the lower bus. The Bristle Blocks specification of the_se two ports is

shown here.
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OQUTPUT_PORT SEGHMENT
REGISTER: [READ_LOLER: OP=IXX AND TIME=I,
» SUGGEST: RESETL=I,
VALUE: 000000001 ;

INPUT_PORT DATA
© LOADO: ALUAYS,
REGISTER: [WRITE_LOWER: ALLIAYS]

'The frequency divider is implemented as a 16-bit down-counter. This counter is
initialized to the frequency value read from the ROM. The counter then decrements
once each clock cycle, When the counter’s data reaches zero, the frequency divider
is reinitialized to the frequency value, and the square wave output changes sign.
The 16-bit counter is imi)lemented as a pair of 8-bit decrementers. Both
decrementersA decrement their values each clock cycle. If the least-significant
wdrd‘s value- does not cause a carry, the most-significant value is reset to its
pre-decremented value. In effect, the most-significant word is not decremented
unless the least-significant word caused a carry. When both decrementers have a
carry output, both counters are set to the frequency value and the square wave

changes sign. The frequency divider is specified as follows.

SWAPPING DECREMENTER FREQUENCY LOW

ACTIVE: = [SUGGEST:NEVER],

BACKUP: [READ LOWER:OP=0II, REFRESH:ALWAYS],
RESTORE: FREQ=II,

LOAD: ALWAYS,

CARRY OUT: FREQRIT 1;
REGISTER FREQUENCY HIGH OPTIONS:[WRITE UPPER: ALWAYS
READ LOWER:OP=0I0,
REFRESH.ALWAYS],

SWAPPING DECREMENTER FREQUENCY HIGH DEC

ACTIVE: [READ UPPER:FREQ=II OR OP=0II],

BACKUP: [READ UPPER:FREQ=II OR OP=0If, REFRESH:ALWAYS],
LOAD: ALWAYS,

CARRY OUT:  FREQ BIT 2,

RESTORE: FREQ=XO,

SAVE: FREQ=XI;

Next, we need a timer. The timner is preset to the note duration. The timer's value is
decremented when the TEMPO input is high. When the timer's value becomes zero,

TIME becomes high, and the next note is played.

DECREMENTER TIMER
INPUT REGISTER:[READ LOWER:0P=000, REFRESH:TEMPO=01],
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LOAD: TEMPO=I,
CARRY OUT: TIME;

To generate the output value, we need to multiply the square wave by the note
amplitude. As it turns out, square waves have only two values: +1 and -1. When
the square wave is high, the output value is just the note amplitude, and when the
square wave is low, the output value is the inverse of the note amplitude. Our
output section has a swapping output port. The two registers are loaded with the
amplitude and the inverse amplitude when the note parameters are read. Each time
the frequency divider produces a carry output, the data in these two registers swap
places. The output pads are driven with the data contained in one of these register.

The 'multiplying' output unit is implemented by the following datapath elements.

SUBTRACTER NEGATE

INPUT_A: [SUGGEST: ALUAYS, VALUE:Q00000001,
INPUT_B: (READ_LOWER: OP=0011,
OUTPUT_REGISTER:  [URITE_UPPER: OP=01017,

LOAD: ALLIAYS;

PRECHARGE _BOTH PRECHARGE:
SHAPPING_OUTPUT_PORT QUTPUT

ACTIVE: {READ_LOWER: 0P=00I, SUGGEST:ALUAYST,
BACKUP: [READ_UPPER: OP=010, SUGGEST:ALUAYST,
RESTORE: 0P=IXX AND FREQ=IT,
. SAVE: OP=]XX AND FREQO=11;

The complete chip specification is listed next. Bristle Blocks compiled the chip in
3.67 CPU minutes, and the final chip size is 140 by 154 mil. The chip consumes 59

ma. of power at 5 volts,

NAME PLAYER 8;
FIELD OP<1:3>,RND<4:8>, TINE<7>,FREQ<8:9>,RESET1<18>, TEMPO<11>,RESET2<12>;

OUTPUT_PORT SEGIMENT
REGISTER: [REAB_LOWER: OP=IXX AND TIME=I,
SUGGEST: RESET1=I,
VALUE : DBO0O0000] 5

INPUT_PORT DATA
LOAD: ALLIAYS,
REGISTER:  [LRITE_LOLER: ALLIAYS]

SHIFTING_IR RANDOM

MAP ¢ {<1,7,8>=>RND},

SHIFT_RIGHT: 0P=000,

SHIFT_LEFT: NEVER,

INPUT: RND=100 OR RND=0I0 OR RND=00I OR RND=IITI,

REGISTER: [SUGGEST: RESETZ2=1, VALUE:00000000, REFRESH:0OP=1XX13;
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CDNTRUL_TD_DATA_AND_BACK IR

TO_CONTROL: {<1l:3>=> OP:<4:6>=> PAD},

LATCH: OP=0XX OR TIME=I,

REGISTER: [SUGGEST: TIME=0 ANO OP=IXX1,

TO_DATA: {IF OP=0IT THEN RND=XXI ELSE OP=0X0 Fl => 3;
IF OP=0IT THEN RND=XIX ELSE OP=001 OR OP=0I0 FI => 2:
0P=011=> 1;

IF OP=0I1 THEN RND=XXI ELSE OP=0X0 FI => B;
IF OP=0I1 THEN RND=XIX ELSE OP=00I OR 0OP=0I0 FI =»> 5;

0P=011=> 4};
SWAPPING_DECREMENTER FREQUENCY_LOW
ACTIVE: [SUGGEST:NEVER],
BACKUP: . [READ_LOLER: OP=011, REFRESH:ALLIAYS],
RESTORE: FREQ=ITI,
LOAD: ALLIAYS,
CARRY_OUT: FREQ BIT 1;

REGISTER FREQUENCY_HIGH OPTIONS: [LIRITE_UPPER:ALLIAYS,
READ_LOLER: OP=010,
REFRESH: ALLIAYS] ;

SWAPPING_DECREMENTER FREQUENCY_HIGH_DEC

ACTIVE: (READ_UPPER:FREQ=11 OR. OP=0111,

BACKUP: [READ_UPPER:FREQ=I1 OR OP=011, REFRESH:ALWAYSI,
LOAD: ALLIAYS,

CARRY_OUT: FREQ BIT 2,

RESTORE: - FREQ=XO,

'SAVE: FREQ=XI ;

PRECHARGE_AND_BREAK_UPPER CUT;

DECREMENTER TIMER
INPUT_REGISTER: [READ_LOWER: OP=000, REFRESH: TEMPO=01,

LOAD: TEMPO=1,
CARRY_0UT: TINE;

SUBTRACTER NEGATE
INPUT_A: [SUGGEST: ALLIAYS, VALUE:0Q0000001,
INPUT_B: [READ_LOUER: OP=0011,
OUTPUT_REGISTER:  [WRITE_UPPER: 0P=010],
LOAD: ALLIAYS;

PRECHARGE_BOTH PRECHARGE;
SWAPPING_OUTPUT_PORT OUTPUT

ACTIVE: [READ_LOLER: OP=00I, SUGGEST:ALWAYS],
BACKUP: [READ_UPPER: OP=010, SUGGEST:ALLAYSI,
RESTORE: 0P=IXX AND FREQ=II,
SAVE: OP=IXX AND FREQ=11;

END

9.3: Frequency Scaler Chip

Jeff Sondeen, employed by Hewlett-?ackard, Colorado Springs, was on temf:orary
assignment to Caltech when he designed the frequency scaler (FRESCA) chip. The

chip specification presented here is a slightly modification of Jeff's design. Jeff
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wanted a chip which scales the frequency of an input waveform. The chip would
accept a binary waveform, and generate a new binary waveform with the
frequency scaled, but with the duty factor of the output wave as close as possible to

the input wave's duty factor.

The chip counts the number of clock cycles that occur while the input waveform is
high, and the number of clock cycles occurring while the input signal is low. The
sum of these two numbers is the period of the input signal. These two numbers are
multiplied by one user-supplied constant, and divided by another constant, to
generate two output period numbers. The output generator sets the output high for
the number of clock cycles indicated by the scaled high period value, then sets the

output low for the number of clock cycles indicated by the scaled low period value.

Rather than perform a multiply and divide 6n the chip, Jeff used incremental
techniques to achieve the same results. Rather than incrementing a value during
the high period and multiplying this by one of the scaling factors, we accumulate
the scaling factor over the high period. We do the divide and decrement by repeated
subtractions. The simplified block diagram of the FRESCA chip is shown in figure
9-6. The input section computes the high and low periods, scaled by one of the two
scale parameters. The storage section stores these two values. The output unit
computes the output signal, using the period values from the storage section and the
other scale parameter. Finally, the state section computes when various signals

change.

Some additional complexity has been added to the simplified block diagram to
correct for round off errors during the counting processes. The SAVE D BAR and TO _
_OUTPUT elements are the elements added to improve the counting accuracy. Bristle
Blocks compiled the FRESCA chip in 3.0 minutes. The chip size was 124 by 177 mil,A
and the chip consumed 68 ma. at 5 volts. The Bristle Blocks specification for the

chip is shown here.

NAME FRESCA 16;

MACRO CONSTI () % 000000000000XXXX %
MACRO CONSTZO) % TTITITITITDIIXKXX %

FIELD  IN<l»,
LOAD<2:3>,
OLD_IN<é4>,
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Fig. 9-8: Frequency Scaler Block Diagram

Ihput—————
DELTA_IN<S>,
DELTA_QUT<6>,

OUT<7>,
DATA<8:11>;

"Input Section:"

CONTROL_TO_DATA  SAVE_M
REGISTER: [REFRESH: ALLIAYS,
SUGGEST: LOAD=0X,
VALUE: /+:CONST1vw/,
WRITE_LOWER: DELTA_IN=07,
MAP: I DATA=XXX] => 1B ;
) DATA=XXIX => 15 ;
OATA=XIXX => 14 ;
DATA=IXXX => 13 t,
LATCH: LOAD=0X;

CONTROL_TO_DATA  SAVE_D_BAR
REGISTER: [REFRESH: ALLIAYS,
SUGGEST: LDAD=X0,
VALUE: /xCONST2v/,
WRITE_1DIER: DELTA_IN=117,
MAP: { DATA=XXX0 => 16 ;
' DATA=XXOX => 15
DATA=XOXX => 14 ;
DATA=0XXX => 13 1},

LATCH: LOAD=X0;
ADDER INPUT
INPUT_A: [READ_UPPER: DELTA_IN=0,
READ_L OUER: DELTA_IN=I7,
INPUT _B: [READ_LOLER: DELTA_IN=01,
QUTPUT_REGISTER: - [LRITE_UPPER: ALLIAYS],
LOAD: ALLIAYS,

CARRY_IN_BAR: DELTA_IN=0;



-151-

PRECHARGE _AND_BREAK_LOWER  GAP1;

"Storage Section"

" REGISTER HIGH
OPTIONS:

REGISTER LOW
OPTIONS:

[READ_UPPER: DELTA_IN=I AND IN=0 AND

NOT (DELTA_QUT=0 AND 0UT=0),
REFRESH: ALLIAYS,

HRITE_LOWER: DELTA_OUT=0 AND OUT=01;

(READ_UPPER: DELTA_IN=I AND IN=I AND

NOT (DELTA_OUT=0 AND 0OUT=1),
REFRESH: ALWAYS,

WRITE_LOWER: DELTA_OUT=0 AND OUT=I];

PRECHARGE_AND_BREAK_UPPER  GAP2;

"State Section"

CONTROL_TO_DATA_AND_BACK  STATE

REGISTER:
LATCH:
TO_CONTROL :

TO_DATA:

ADDER  TO_OUTPUT

INPUT_B:
INPUT_A:

LOAD:

[REFRESH: ALLIAYS],
ALLIAYS,
{ 1=> PAD ;
2=> 0UT .
3=> OLD_IN ;
4=> DELTA_IN },
{ OUT=] => 1 ;
IF DELTA_OUT=0 THEN OUT=0 ELSE OUT=] FI =» 2
IN=] => 3
IF IN=I THEN OLD_IN=0 ELSE OLO_IN=I FI => 4 }.

.
i

(READ_LOWER: DELTA_OUT=0, REFRESH:ALLIAYST,
(READ_UPPER: DELTA_OUT=I,
WRITE_UPPER:DELTA_OUT= 01,

ALLIAYS; '

PRECHARGE_AND_BREAK_LOWER  GAP3;

"Output Section:"

SUBTRACTER  QUTPUT

INPUT_A:
INPUT_B:

OUTPUT_REGISTER:

LOAD:

CARRY_OUT_BAR:

CONTROL_TO_DATA
REGISTER:

MAP:

LATCH:

SAVE_D

[REFRESH

SUGGEST
VALUE:

(READ_UPPER: ALLIAYST,
{READ_LOLIER: LOAD=X11,
(MRITE_UPPER: DELTA_OUT=I1,
ALLIAYS,

DELTA_OUT;

: ALLIAYS,
:LOAD=X0,
/*CONSTl*/,

WRITE_LOUER: LOAD=XI],

{ DATA=XXXI1 => 16

BATA=XXIX => 15 ;

DATA=X

IXX => 14 ;

DATA=IXXX => 13 1},

LOAD=X0;
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PRECHARGE _BOTH  ENOj

END

9.4: SDLC Chip

John Wawrzynek, a member of Caltech's Silicon Structures Project (SSP), was
interésted in building a synchronous, serial communication chip, similar to_IBM‘s
Synchronous Data Link Control chip, or the synchronous portion of INTEL's 8251A
USART chip. He found that each of these chips had undesirable 'features' because
the chip designers wanted a 'universal' chip. John realized that with a silicon
compiler, chips can be optimized to their application, rather than being 'gemneral

purpose’ in nature.

The SDLC chip is designed to be used with an 8-bit microprocessor. The chip
contains both a transmit and receive buffer, along with a status/command register.
The microprocessor interface consists of an 8-bit data port, a read. (RD) line, a write
(WR) line, and a control/data (C DBAR line). The system interface consists of a reset
(RESET) line, transmit clock signal (TXC), and receive clock signal (RXC), along
with the standard power and clock signals. The network interface consists of the

transmit data (TX) line and the receive data line (RX).

Upon RESET, or when the microprocessor sets bit 3 in the status/command register,
the receiver enters the HUNT mode. In HUNT mode, the receiver circuitry attempts
to matqh each 8-bit window in the incoming bit stream, scanning for the SYNC
character, which is fixed as I000000I. When the sync character is received, the

SDLC chip terminates HUNT mode and begins' assembling characters.

Upon RESET, the SDLC chip will transmit SYNC characters until data is written into
the transmitter buffer. Additionally, whenever a character has finished being
transmitted, and the transmitter buffer is not full, the SYNC character will be

transmitted.

The Bristle Blocks code for the SDLC chip is listed here. Bristle Blocks compiled the
chip in 2.4 minutes, and the resulting chip size was 95 by 148 mils. The chip

consuined 36 ma. of power,.
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NAME SDLC 8;
MACRO SYNC () % 10000001 %

FIELD RESET<1>,RD<2>,lR<3>,C_DBAR<4>,RXC<9>, TXC<18>, TOONE<5>,RDONE<11>,
TXBUF _FULL <B>, RXBUF _FULL <7>,HUNT_IMODE<8>, IS_SYNC<12>,RX<13>;

I0_PORT DATA
QUTPUT_REGISTER: [READ_UPPER: ROD=I,
HRITE_UPPER: 1IR=1,
REFRESH: ALLIAYST,
LOAD: WUR=1,
ORIVE: RO=1;

CONTROL _TO_DATA_AND_BACK STAT_CHMD
REGISTER: [READ_UPPER: LR=1 AND C_DBAR=I,
HRITE_UPPER: RD=1 AND C_DBAR=I,
SUGGEST: RESET=I,
VALUE: 00000000,
REFRESH: ALLIAYS],
TO_CONTROL: { 1=> RXBUF_FULL; 2=> TXBUF_FULL; 3=> HUNT_MODE 1,
TO_DATA: { RDONE=] OR RXBUF_FULL=I AND RD=0
OR RXBUF_FULL=1 AND C_DBAR=1 => 1;
LR=1 AND C_DBAR=0 OR TOONE=0 AND TXBUF _FULL=1 => 2Z;
IS_SYNC=0 AND HUNT_MODE=I => 3 1},
LATCH: ALLIAYS;

REGISTER TXBUF
OPTIONS: {READ_UPPER: LR=1 AND C_DBAR=I,
‘ ' LWRITE_LOWER: TDONE=I,
REFRESH: ALLIAYS)

SHIFTING_IR T

REGISTER: [READ_LOUER: TDONE=1 AND TXBUF _FULL=I,
SUGGEST: TXBUF_FULL=0 OR RESET=I,
VALUE: /*SYNC#/,
REFRESH: ALMAYSI,

SHIFT_RIGHT: TXC=I,

SHIFT_LEFT: NEVER,

MAP: { 8=> PAD };

PRECHARGE _AND_BREAK_{ OLER LOWER_CHARGE;
PRECHARGE_BOTH BOTH_CHARGE;

REGISTER RXBUF
OPTIONS: [LRITE_UPPER: RD=I AND C_DBAR=0,
READ_LOLIER: RDONE=I,
REFRESH: ALLIAYST;

SHIFTER_MITH_VALUE_CHECK R
REGISTER: [LRITE_LOLIER: RDONE=I,
REFRESH: ALUWAYSI,
SHIFT_RIGHT: RXC=1I,

SHIFT_LEFT: NEVER,
VALUE: . /ﬁSYNC*/,V
RESULT: IS_SYNC,
INPUT: RX=1;

LEFT_RIGHT_SHIFT TCOUNT
INPUT_REGISTER:  [SUGGEST: RESET=1 OR HUNT_MODE=I,
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VALUE: 0000000QI,
REFRESH: ALLAYS],

SHIFT_LEFT: TXC=1,
SHIFT_RIGHT: NEVER,
1S8: TOONE;

© LEFT_RIGHT_SHIFT RCOUNT

INPUT_REGISTER: [SUGGEST: RESET=I,
VALUE: 00000001,

' REFRESH: ALWAYSI,
SHIFT_LEFT: RXC=1, '

SHIFT_RIGHT: NEVER,
MSB: ROONE 3

END

In another application, the same baéic function was required, but due to processor
overhead time, FIFOs were required on the transmit and receive buffers.
following listing, 8-word deep FIFOs have been added to the two buffers.

compile time for this new chip was 6.67 CPU minutes, the chip size was 222 by

199 mils, and the power requirements were 103 ma.

NAME SDLCZ 8;
MACRC SYNC () % 10000001 %

FIELD RESET<1>,RD<2>,lR<3>,C_DBAR<4>,RXC<I>, TXC<18>, TDONE<5>,RDONE<11 >,

TXBUF _FULL<B>,RXBUF _FULL<7>,HUNT_IMODE<8>, IS_SYNC<12>,RX<13>,
TXRA<14:21>, TXHA<22:28>,RXRA<14: 21>, RXLA<22: 23>,

10_PORT DATA
OUTPUT_REGISTER:  [READ_UPPER: RD=I,
HRITE_UPPER: WR=I,
REFRESH: ALUAYSIT,
L.OAD: LR=1,
DRIVE: RD=1{;

CONTROL_TO_DATA_AND_BACK STAT_CMD

REGISTER: [READ_UPPER: LIR=1 AND C_DBAR=I,
WRITE_UPPER: RD=1 AND C_DBAR=I,

SUGGEST: RESET=I,
VALUE: 0000000,
REFRESH: ALLIAYS]T,

TO_CONTROL : { 1=> RXBUF_FULL; 2=> TXBUF_FULL; 3=> HUNT_MODE 1},

TO_DATA: { RBONE=1 AND
(RXRA=TXXXXXXX AND
RXRA=XTXXKXXXX AND
RXRA=XXTXXXXX AND
RXRA=XXXIXXXX AND
RXRA=XXXXIXXX AND
RXRA=XXXXXIXX AND
RXRA=XXXXXXIX AND
RXRA=XXAXXAX] AND

UR=1 AND C_DBAR=0 ANO
{TXRA=IXXXXXXX AND
TXRA=XTXXXXXX AND

RXLIA=XXXXXXXT OR
RXLA=TXXXXXXX OR
RXLIA=XTXXXXXX OR
RXLIA=XXTXXXXX OR
RXUA=XXXTXXXX OR
RXUA=XXXXIXXX OR
RXLA=XXXXXIXX OR
RUUA=XXXXXXIN) => 1

TXHA=XXXXXXX1 OR
TXHA=TXXKXXXX OR
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TXRA=XXTXXXXX AND TXLIA=XIXXXXXX OR

TXRA=XXXIXXXX AND TXLIA=XXIXXXXX OR

TXRA=XXXXIXXX AND TXLA=XXXIXXXX OR

TXRA=XXXXXIXX AND TXLIA=XXXXIXXX OR

TURA=XXXXXXIX AND TXWA=XXXXXIXX OR

TXRA=XXXXXXXT AND TXHA=XXXXXXIX)
OR TXBUF_FULL=I => 2;

IS_SYNC=0 AND HUNT_MODE=1 => 3;

NOT (RXRA=TXXXXXXX AND RXLA=IXXXXXXX OR
RXRA=XTXXXXXX AND RXLIA=XIXXXXXX OR
RXRA=XXTXXXXX AND RXLIA=XXIXXXXX OR
RXRA=XXXIXXXX AND RXWA=XXXIXXXX OR
RARA=XXXXIXXX AND RXLA=XXXXIXXX OR
RXRA=XXXXXIXX AND RXLA=XXXXXIXX OR
RXRA=XXXXXXTX AND RXUA=XXXXXXIX OR
RXRA=XXXXXXXT AND RXUA=XXXXXXXI)} =>4

NOT (TXRA=TXXXXXXX AND TXHA=IXXXXXXX OR
TXRA=XTXXXXXX AND TXUA=XIXXXXXX OR
TXRA=XXTXXXXX AND TXUA=XXIXXXXX OR
TXRA=XXXIXXXX AND TXLA=XXXIXXXX OR
TXRA=XXXXIXXX AND TXLA=XXXXIXXX OR
TXRA=XXXXXIXX AND TXUA=XXXXXIXX OR
TXRA=XXXXXXIX AND TXWA=XXXXXXIX OR
TXRA=XXXXXXXI AND TXUA=XXXXXXXI) =»5},

LATCH: ALLIAYS; .

MACRO TXBUFREG (NAME, ADR)
% REGISTER TXBUF_?NAME?
OPTIONS: [READ_UPPER: LIR=I AND C_DBAR=0 AND TXRA=?ADR?,
HRITE LOWER: TDONE=I1 AND TXWA=?ADR?,
REFRESH: ALLIAYS1; %

/% TXBUFREG (1, 000000011 =/
/v TXBUFREG (2, 00000010) v/
/% TXBUFREG (3, 00000100) =/
/«TXBUFREG (4, 00001000} v/
/% TXBUFREG (5, 00010000) ¢/
/7 TXBUFREG (8, 00100000) %/
/+TXBUFREG {7, 01000000) %/
/% TXBUFREG (8, 10000000) s/

SHIFTING_IR TXREAD_POINTER
SHIFT_LEFT: NEVER,
SHIFT_RIGHT: WR=1 AND C_DBAR=0,
MAP: {<1:8> => TXRA},
REGISTER: [SUGGEST: RESET=I,
VALUE: 100000001,
INPUT: TXRA=00000001 ;

SHIFTING_IR TXWRITE_POINTER
SHIFT_LEFT: NEVER,
SHIFT_RIGHT: TDONE=1,

MAP: {<1:8> => TXLAL,
REGISTER: ({SUGGEST: RESET=I,

VALUE: 100000001,
INPUT: TXUA=00000001;

SHIFTING_IR T
REGISTER: [READ_L OWER: TDONE=1 AND TXBUF _FULL=I,
SUGGEST: TXBUF_FULL=0 OR RESET=I,
VALUE: /+%SYNCx/,
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REFRESH: ALLAYST,
SHIFT_RIGHT: TXC=I,
SHIFT_LEFT: NEVER,
AP { 8=> PAD };

PRECHARGE _AND_BREAK_L OLER LOMER_CHARGE;
FRECHARGE_BOTH BOTH_CHARGE;

MACRO RXBUFREG (NANME, ADR)
% REGISTER RXBUF_?NANE?
OPTIONS: [LURITE_UPPER: RD=1 AND C_DBAR=0 AND RXRA=?ADR?,
READ_LOLER: RDONE=1 AND RXiA=?ADR?,
REFRESH: ALLAYSI: %

/+RXBUFREG (1, 00000001 } «/
/+:RXBUFREG (2, 00000010} =/
/+RXBUFREG (3, 000001001 %/
/ +«RXBUFREG {4, 00001000} »/
/+RXBUFREG (5, 00010000} v/
/+RXBUFREG (6, 00100000} s/
/+RXBUFREG (7, 010000001 »:/
/+RXBUFREG (&, 10000000) v/

SHIFTING_IR RXREAD_POINTER
SHIFT_LEFT: NEVER,
SHIFT_RIGHT: RD=1 AND C_DBAR=0,
MAP: {<1:8> => RXRA},
REGISTER: [SUGGEST: RESET=I,
VALUE: 100000007,
INPUT: RXRA=00000001:

SHIFTING_IR RXWURITE_POINTER
SHIFT_LEFT: NEVER,
SHIFT_RIGHT: RDONE=I,

MAP: {<1:8> => RXLIA},
REGISTER: [SUGGEST: RESET=I,

VALLUE: 100000001,
INPUT: RXLIA=0000000I ;

SHIFTER_MITH_VALUE_CHECK R
REGISTER: (LRITE_LOWER: RDONE=I,
REFRESH: ALWAYSI,
SHIFT_RIGHT:  RXC=I,

SHIFT_LEFT: NEVER,
VALUE: /+SYNCy/ ,
RESULT: IS_SYNC,
INPUT: RX=1;

LEFT_RIGHT_SHIFT TCOUNT
INPUT_REGISTER:  [SUGGEST: RESET=1 OR HUNT_MODE=I,
VALUE: 0000600TI,
: REFRESH: ALLIAYS],
SHIFT_LEFT: TXC=1,

SHIFT_RIGHT:. NEVER,
rMsB: TDONE 5

LEFT_RIGHT _SHIFT RCOUNT
INPUT_REGISTER:  [SUGGEST: RESET=I,
VALUE: 00000001,
REFRESH: ALLIAYS],
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SHIFT_LEFT: RXC=1,

SHIFT_RIGHT: NEVER,

MSB: ROONE 3
END

9.5: A Microprogrammed Microprocessor

In this next example, we will see how a silicon compiler allows the user to explore
alternate system architectures. We will design a microprogrammed microprocessor
system, similar to the OM2 [15][16] system designed at Caltech. The basic
architectural plan of the OM system is shown in figure 9-7. We have a datapath
chip, which contains the scratchpad registers and ALU for the system, a microcode
controller, which generates microcode addresses, and a microcode memory, which
contains the instruction code for the machine., Surrounding these three modules are
application dependent peripheral circuits. The basic system communicates with the
peripheral circuitry acfoss two 16-bit data buses, called the Left bus and the Right

bus.

Controller Addrsse Microcode
Chip Memor*y
A
Microcontrol
Word
1
Flasa
. Datapath =
— Chip _
Bidireotional Bidireotional .
BData Bue Data Bue

Fig. 9-7: OM System Block Diagram

We will begin by designing a controller chip. The controller provides microcode
addresses. We need a register to hold the current microcode Program Counter
(mPC). The usual operation of the controller will be to sequence through a series of
microcode words, so the mPC will need an incrementer. If we used an adder 1n5tpad

of an mcrementer we can perform relative microcode branches. Under normal
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operation, one input to the adder can be set to the value 1, so that the adder
performs the increment operation. To branch, we merely load this adder input with
the offset. To do a jump, we can force new data into the mPC register. By including

a small stack on the chip, we can have subroutines in our microcode.

Based upon these desires, we can design a Register Transfer (RT) level diagram of
the datapath, as shown in figure 9-8, We have drawn each of the registers and
transfer paths. The transfer paths have been labeled to aid in the description of the
chip operation. The upper bus is used to transfer the new mPC to the PORT unit,
which drives the address lines of the microcode memory (note: the least-significant
address is connected to the PHI-2 clock line, so that two wards are read from the
microcode memory every clock cycle)., Since we want a new mPC value each clock
cycle, the A control line should be high every clock cycle, and one of C, D, or E
should also be high. The mPC latch, which is one of the adder input registers,
should also be loaded every clock cycle, so the B control line is always high, too.
For normal operation, we want to increment the mPC value each clock cycle, so the
OFFSLET register should normally contain a value of 1, and the NEW mPC register,
which is the adder output, should normally drive the upper bus. Therefore, the L
control, which loads the OFFSET register with 1, and the C control lines should
normally be high. To perform a branch, we want to load the OFFSET register with
the data in the 10 PORT. This transfer_is done by enabling the F and J control lines.
To do a jump, we wish to directly transfer the I0 PORT data into the mPC, so we

enable the E control line instead of the C control line.

B
/‘;r:.l@ J_.J, — _f_g:) T.C? %rf

Stack
~\ Data

1 O

S YRRk

Fig. 9-8: Controller Register Transfer Diagram

Address
Q_.—_—,

mPC

PUSH
POP




-159~

The STACK unit allows calls and returns in the microcode. To perform a CALL
operation, we need to push the NEW_inPC value onto the stack and load the mPC
from the IO PORT. This operation requires setting the G, I, N, and E control lines
high. To perform a RETURN operation, we simply pop the top value off the STACK
and into the mPC. Setting D and M high will perform this transfer.

We have described five operations performed by the controller chip, which means
that a 3-bit microcode field is required to specify the operation. We can have up to
eight operations specified by the 3-bit field, so we can add three more instructions
to the controller's repertoire without impacting the microcode cost. If we can
perform these new operations with the existing controller hardware, these new
instructions are virtually free, One operation we may wish to have is a SAVE
operation, whxch will push new data unto the STA(“K This operation allows us to
store a Jump address in the controller chip several clock cycles before the jump is to
occur. When the time comes to Jump, the RETURN instruction will transfer the
Jump address to the mPC. We may like to use the two remaining instructions as
loop control operations. One of the operations would be used at the start of the loop,
the other at the end, The form of loop we will implement is a DO Ioop The DO
instruction will push the NEW__I_nPC value on the stack, and the ENDDO instruction

will move the top-of-stack value into the mPC.

To allow conditional operations, there will be a condition input to the chip. If the
condition is TRUE (i.e. the pin is high), the instructions will be executed as stated
above. If the condition is FALSE, the normal operation, which increments the
current mPC value, will be executed. If the ENDDO instruction is executed when
the condition is FALSE, we will say that an UNDO instruction is executed, which
causes the controller to 'fall out' of the loop. We will increment the mPC value and
discard the top value on the STACK.

The following table summarizes the driving functions for each of the control lines.

Operation Condition Active Control Lines Optional Active Controls

NOP TRUE A,B,L,C G,H.J
FALSE A,B,L,C G,H,J

JUriP TRUE A,B,E L,F,G,H,J
FALSE A,B,L,C G,H,J



CALL TRUE
FALSE

RETURN TRUE
FALSE

BRANCH TRUE
FALSE

SAVE TRUE
FALSE

0o TRUE
FALSE

ENDDO TRUE
{UNDO) " FALSE

The translation of this chip

A,B,E,L,G,I,N
A.B,L,C
A.B,B,N
A,B,L,C
A,B,C,F,dJ
A,B,L,C
A,B,C,L,I,N,J
A,B,L,C
A,B,C,L,G,I,N
A,8,L,C

A,B,D
A,B,L,C,IMH,K

G,H,J

G,H,J
G,H,J,L,F

description into the Bristle Blocks specification

language is straightforward. The Bristle Blocks input is listed here. Bristle Blocks

compiled the chip in 4.06 CPU minutes, the chip area was 171 by 195 mil, and the

POwer requirements were 88,8 ma.

NAME CONTROLLER 183

DP<1:3>,CONDITIDN<4>,LDAD<5>.DRIVE<6>;

FIELD

MACRO NOP () % OP=000
HACRO JUNP () % 0OP=001
MACRO CALL () % OP=010
MACRO RETURN() % OP=011
MACRO BRANCH() % OP=100
MACRO SAVE () % OP=101
FMACRO DO() % OP=110
MACRO ENDODO() % OP=I11
MACRO UNDO() % OP=111

QUTPUT_PORT PC
REGISTER;:

ADDER NEW_PC
INPUT_A:
INPUT_B:

OR

AND
AND
AND
AND
AND
AND
AND
AND

CONDITION=0
CONDITION=1
CONDITION=1
CONDITION=1
CONDITION=I
CONDITION=1
CONDITION=1
CONDITION=1
CONDITION=0

[READ_UPPER: ALIIAYS] ;

[READ_UPPER: ALLIAYS],
[READ_LOWER: /+BRANCHs/

VALUE: 0000000000000001 7,

LOAD: ALUAYS,
GUTPUT _REGISTER:

%
%
%
%
%
%
%
%
%

» SUGGEST: NOT (/+BRANCHs/) ,

[“RITE_UPPER: /+NOPw%/ OR /BRANCHy./ OR /%SAVEx/ OR /*DD*/.
WRITE_LOWER: NOT(/%UNDOO+/ OR /%BRANCHs:/ OR /%SAVE2/) ]

PRECHARGE _BOTH PCHG;

. STACK STACK
DEPTH: 16,

TOP: [LURITE_UPPER: /wRETURN%/ OR /<ENDDOx/,

HRITE_LONER: /+UNDOx/,

READ_LOMER: /%SAVE:x/ OR /%CA
REFRESH: NOT{( /wRETURNw%/ OR

POP: /+RETURNw/ OR /+UNDOw/,

LLs/ OR /*DO*/,
/+UNDQy:/ )].
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PUSH: /%CALL/ OR /SAVEy/ OR /*.':DD:‘:/;

I0_PORT DATA
OUTPUT REGISTER: [LURITE_UPPER: /+CALL+w/ OR /e JUNPs/
WRITE_LOMER: /+BRANCH=/ OR /%SAVEw/,
READ_LOMER: /vUNDOy/,
REFRESH: ALLIAYS]T,
LOAD: LOAD=I,
DRIVE: DRIVE=I:

END

We can experiment to see how the stack size affects the area and power
requirements of the chip. After compiling controllers with stack'depths of 8 and
12, and interpolating and extrapolating the results, the Power requirements were
found to be approximately 28.8 + 3.75*depth ma. and the width of the chip was
found to be approximately 83 + 5.5*depth mils.

g A N I O O S IFL’I
i e 1 5 5 A0 s O S I A B A e O

Fig. 9-9: Datachip Block Diagram

Next, we can design the datachip for the microprogrammed processor. We need two
bi-directional data ports, some general purpose registers, a fixed constant source, a
shifter, and an Arithmetic/Logic Unit (ALU). A block diagram of the proposed chip
is shown in figure 9-9, Each of the registers in the chip communicate with two
data buses. We can assign a unique bus address for each of the registers. We can
decode the microcode to allow two transfers per clock cycle. There are 16 data
sources for each bus, and 15 data sinks (due to the constant value). Hence, we can
decode a 16-bit microcode word as four 4-bit address field. One address specifies
the upper bus (A bus) source, another specifies the destination. We decode the two

lower bus.(B bus) addresses in the same manner,
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PHI-1 Microcode Word Decode
e e e e e e e S WY S I TSP S S
4'-—~+——+——+——i—-+——+—-+——l——+——+-~+—~-l+—-+——+——+——Jlr

A Source A Dest, B Source B Dest.
The left and right data ports are implemented as single-register I0 PORT. The left
port's register is assigned bus address 2, while the right port's register is assigned
bus address 3. The load and drive controls for these ports come directly from a
microcode field of the PHI-2 microcode word, When the least~significant bit of the
PORT field is high, the right port will drive from its internal register to the pads,
The next bit contraols when the right port reads from the pads into the internal

register. The two high-order bits of the PORT field control the left port.

PHI-2 Microcode Word Decode

e e e st S S S S S S Y
EARIRART LR LD L VL PORT ]
+——+—~+—-+~—+-—+—-+-—+-—+——+——+——+——+——+—-f——+——+

I

Left Port Load ---/ | | |

Left Port Drive -—w—-- /1

Right Port Load ~~-———nv /|

Right Port Drive ————w—ao__ /

It is useful to have a source of constant data in the datapath. Besides giving us a
known value, a constant 'register' does not read data from the bus, Hence, we have
an unassigned bus destination address. If we do not wish to perform a transfer on
one of the two data buses, we can 'transfer' into this non-existing register. We
must choose what our two constant values will be. To aid in the generation of
masks and shift operations, the upper bus constant will be O and the lower bus

constant will be -1,

We will use a barrel shifter for the shift element. The MASKED SHIFTER has
registers for the input most-significant word and least-signficant word, along with
an output register and mask register. With the masked writing capabilities, we can
do field extractions and field insertions. We have a 4-bit shift constant field in the
microcode, along with a two bit field épecifing, how to load under mask. If the two
mask bits are low, the shifter does not write into its output register. If both bits are
high, the shifter directly loads its output register. If the lower bit of the mask op
field is high, the shifter writes into the output register bits whose corresponding
maskK register bits are low. If the upper bit of the mask op field is high, the shifter
writes into the output register bits whose corresponding mask register bits are
high. '
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PHI-2 Microcode lord Decade
It et e e S L B T W SR
| SHIFT PANNANANANNN T MASK AN PORT }
B R e e St T U U S I

g 8 No Urite

g 1 Urite where mask is lou
1 8 \Urite uhere mask is high
1 1 Hrite every bit

For the ALU, we use the Bristle Blocks ALQ_WITH_ELAGS element. This element has
two input registers, either one or two output registers, and a flag register. We will
use both output registers. The CARRY, MSB, and ZERO flags from the flag register
will drive pads so that external c1rcu1try can sense the state of the flags. To allow

external conditions to modify the ALU operations, we will have a condition input

which drives the ALU operation decode. The ALU portions of the PHI 2 microcode
word are listed here.

PHI-2 Microcode Word Decode
e e e e e e ST [T S S PR
l SHIFT ] ALU I MASK | LDADI PORT !
A s e e e e T T WG W U
! ] P
I \--- Load ALU output register 2
N Load ALU output register 1

[
[ T
A
8 8 B 8@ Divide Stepw
8 B8 B8 1 Increment A
B B 1 B8 Subtract with Borrows
8 B 1 1 Subtract
B8 1 8 8 Add uwith Carrysw
B8 1 8 1 Add
B 1 1 8 D0Decrement A
8 1 1 1 Negate A
1 8 8 8 Multtiply Stepw
1 8 8 1 Select A/Bx
1 81 B8 OR
1 B8 1 1 AND
1 1 8 8 A
1 1 B8 1 XOR
1 1 1 8 T7EST
1 1 1 1 Compliment A

% indicates that the operation performed is a function of the
condition input.
Finally, we add the general purpose registers, We have four free bus addresses, so
we will add four registers to the chip. The Bristle Blocks specification for this chip
is listed here. A chip enable input has been added to the chip specification. When

chip enable is low, none of the registers' contents will be modified.
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NAME DATAPATH 16;

FIELD A_SOURCE<l:4>,A_DEST<5:8>,B_SOURCE<9:12>,B_DEST<13:16>,
ENABLE<17>, SHIFT _CONST<1: 4> ALU<5:8>,MASK<3:10>,L0AD<11:12>,
PORT<13:16>, CDNDITIDN<18> ALU_OP= ALU & CONDITION

MACRO ADDR (ADOR)

% {(READ_UFPER: A_DEST=7ADOR? AND ENABLE=I,
READ_LOWER: B_DEST=7ADDR? AND ENABLE-=I,
HRITE_UPPER: A_SOURCE=?ADDR?,
LRITE_LOWER: B_SOURCE=?ADDR?,

REFRESH: ALWAYS 3 %

[0_PORT LEFT_PORT
OUTPUT_REGISTER: /+ADDR(0010)+«/,
LOAD: PORT=IXXX AND ENABLE=T,
ORIVE: PORT=XIXX AND ENABLE=I;

REGISTER R12 OPTIONS: /+ADDCR(1100) v/
REGISTER R13 OPTIONS: /«ADDR(1101)«/;
REGISTER R14 OPTIONS:/«ADDR(III0) %/

REGISTER R15 OPTIONS:/wADDR(II11)x/;

ROM_PAIR CB
LEFT_ENABLE: A_SOURCE=0000, LEFT_UPPER:0000000000000000,
RIGHT _ENABLE:B_SOURCE=0000, RIGHT_LOLER: IIIIIIIIXIIIIIII

PRECHARGE _BOTH PCHG;

MASKED_SHIFTER SHIFTER
MOST_SIGNIFICANT_WORD:  /+~ADDR(1000) =/,
LEAST_SIGNIFICANT_WORD: /+ADDR(1001)+/,

OUTPUT _REGISTER: /+ADOR{I0I0) =/,

MASK_REGISTER: /+ADORA{IOIT) =/,

SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_@: MASK=XI AND ENABLE=I,

LOAD_IF_1: MASK=1X AND ENABLE=I;
ALU_LII TH_FLAGS ALU

INPUT _A: /+ADDR (D100} =/,

INPUT_B: /+=ABDR (DI01) %/,

OUTPUT 1+ /%ADDR(OTI0) 5/,

OutPUT_2: /¥ADDROTT ) =/,

FLAGS: /+ABDR (0001) %/,

LOAD_FLAGS: LOAD=IX AND ENABLE=1,

HRITE_OUTPUT_1: LOAD=IX AND ENABLE=I,
LRITE_OUTPUT_2: LOAD=XI AND ENABLE=1],
TO_CONTROL: {<1,2,9>=>PAD},
DECODE: ALU-OP

<B> => SUBTRACT

<l> => ADD

<Z,3> => INCREMENT_A

<4> => SUBTRACT

<5> => SUB_Ii_BORROU

<6,7> => SUBTRACT

<®> => ADD

<3> => ADO_I4_CARRY

<108,11> => ADD

<12,13> => DECREMENT_A

<14,15> => NEGATE_A
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<16> => SETA
<17> => ADD
<18> => SETA
©<19> => SETB
<28,21> => OR
<22,23> => AND
<24,25> => SETA
<26,27> => XOR
<28,29> =»> TEST
<38,31> => SETCA;

10_PORT RIGHT_PORT
QUTPUT_REGISTER: /+ADDR{DOL1) =/,
LOAD: PORT=XXIX ANO ENABLE=I,
DRIVE: PORT=XXX1 AND ENABLE=1;

END.

This chip was compiled in 6.2 minutes, resulting in a chip whose area was 203 by

276 mil, and whose power consuinption was 96 ma.

The microcode writers were unsatisfied with the limited number of general
purpose registers. There were only four registers in the ofiginal chip specification
that were not used by the data processing elements, although one of the ALU output
registers can be used if the user never loaded the register from the ALU. The system
designers, on the other hand, wished to keep the microcode width at 16-bits, which
presented an addressing problem. How can we address more registers in the
datapath. Four schemes were pursued which lead to an increased register count in

the data chip.

The first scheme involved rearranging the PHI-1 microcode word. Instead of
having 4-bit addressing for both the A and B buses, we tried having 5-bit addresses
for the A bus and 3-bit addresses for the B bus. We would limit the number of
registers which could communicate across the lower bus and at the same time
increase the number of registers which can use the A bus. With this technique, we
were able to add 16 more registers to the chip. The chip area increased to 229 by
2472 mil, and the power consumption rose to 126 ma. The specification for this new

chip is listed here.

NAME DATAPATHZ 16;

FIELD A_SOURCE<1:5>,A_DEST<6:18>,B_SOURCE<11:13>,B_DEST<14:16>,
ENABLE<17>,SHIFT_CONST<1:4>,ALU<5:8>,MASKS<3:18>, L0AD<11:12>,
PORT<13:16>,CONDITION<18>,ALU_OP= ALU & CONDITION;

[MACRO ADDR_BOTH (ADDR)
% (READ_UPPER: A_DEST=007ADDR? AND ENABLE=I,
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READ_LOUER: B_DEST=?ADDR? AND ENABLE=I,
WRITE_UPPER: A_SOURCE=00?ADOR?,
LRITE_LOWER: B_SOURCE=7ADOR?,

REFRESH: ALHAYS 1 %

MACRO ADOR_A (ADDR)

% [READ_UPPER: A_DEST=?AD0R? AND ENABLE=I,
HRITE_UPPER: A_SOURCE=?ADOR?,
REFRESH: ALUAYS 1 %

[0_PORT LEFT_PORT
ODUTPUT_REGISTER: /»ADDR_BOTH{II11)«/,

LOAD:

PORT=IXXX AND ENABLE=I,

‘DRIVE: PORT=XIXX AND ENABLE=I;

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

ROM_PAIR
LEFT

R1 OPTIONS:/~ADDR_BOTHI(OOI) /;
R2 OPTIONS: /+:ADOR_BOTH{OIO) /s
R3 OPTIONS:/#=ADDR_BOTH(OI 1) w/;
R15 OPTIONS: /5:ADDR_A(CIIII) =/
R16 OPTIONS: /w~ADOR_A (10000} /3
R17 OPTIONS: /+ADOR_A (10001} %/
R18 OPTIONS: /+=:ADDR_A (10010} «/;
R19 OPTIONS:/«ADDR_A(I00I) /3
Rz@ OPTIONS: /--ADDR_A(10100) «/;
R21 OPTIONS: /+:ADDR_A (10101} =/
R22 OPTIONS:/«ADDR_A(IOLI10) %/
R23 OPTIONS: /#ADDR_A(IOI11) /3
R24 OPTIONS: /+ADDR_A (11000} =/;
R25 OPTIONS: /ADDR_A(T1001)/;
R26 OPTIONS: /«-ADDR_A (11010} =/
R27 OPTIONS: /s:ADDR_A(TI011)+/;
R28 OPTIONS:/wABDR_ACITI00) =/,
R29 OPTIONS:/-ADDR_A(I1101)+/;
R30 OPTIONS: /ADDR_A (11110} /5

R31 OPTIONS: /+:ADDR_A(ITII1)«/;
Co
ENABLE: A_SOURCE=00000, LEFT_UPPER:0000000000000000,

RIGHT_ENABLE: B_SOURCE=000, RIGHT_LOWER: TITITITIIITIILIIL;

PRECHARGE _BOTH PCHG;

MASKED_SHIFTER SHIFTER
MOST_SIGNIFICANT_HORD:  /-ADDR_A(01000) /,
LEAST_SIGNIFICANT_LORD: /+ADDR_A(OINOI) «/,

OUTPUT_REGISTER: /+ADDR_A{DIDIO) =/,

MASK_REGISTER: /+ADBR_A{0IC0I1) %/,

SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_B: MASKS=X1 AND ENABLE=I,

LOAD_IF_1: MASKS=1X AND ENABLE=1l;
ALU_HITH_FLAGS ALU

INPUT_A: /+ADDR_BOTH(100) =/,

INPUT_B: /+ADDR_A(DOI100) =/,

QUTPUT _1: /+ADBR_BOTH (IO }w/,

OUTPUT_2: /«ADDR_A(OII0I) =/,

FLAGS: /ADDR_A(CIT10) =/,

LOAD_FLAGS: LOAD=IX AND ENABLE=I,

WRITE_OQUTPUT _1: LOAB=IX AND ENABLE=I,
HRITE_OUTPUT_2: LOAD=XI AND ENABLE=I,
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TO_CONTROL: {<1,2,9>=>PAD},
DECODE: ALU_OP
<B> => SUBTRACT
<l> => ADD
<2,3> => INCREMENT_A
<4> => SUBTRACT
<5> =»> SUB_|I_BORROL
<6,7> => SUBTRACT
<8> => ADD
<3> => ADD_LI_CARRY
<18,11> => ADD
<12,13> => DECREMENT_A
<14,15> => NEGATE_A

<16>"=> SETA
<17> => ADD

<18> => SETA
<19> => SETB
<28,21> => OR
<22,23> => AND
<264,25> => SETA
<26,27> => X0OR
<28,29> => TEST
<38,31> => SETCA;

10_PORT RIGHT_PORT
OUTPUT_REGISTER: /+ADDR_BOTH(I10)w/,
LOAD: PORT=XXIX AND ENABLE I,
DRIVE: PORT=XXXI AND ENABLE=I;

END

Another proposed method for increasing the number of datapath registers was to add
backup registers, similar to the alternate register set in the Zilog Z80 chip. We
would have backup registers for each of the four general purpose registers, and
when a swap instruction was executed, the register pairs would swap data values.
For this method to work, we need a bit to indicate when to swap. We can free up
one PHI-2 bit if we only have one ALU output register. The load bit for that
register can then be used as the SWAP bit. The area for this new chip is 220 by 280

mil, and the power consumption is 114 ma.

NAME DATAPATH3 16;

FIELD A_SOURCE<l:4>,A_DEST<5:8>,B_SOURCE<9: 12>,B_DEST<13:16>,
ENABLE<17>,SHIFT_CONST<1: 4> ALU<5:8>, MASKS<9 108>, LOAD<11> SUAP<12>,
PORT<13: 16> CONDITION<18>, ALU _0OP= ALU & CONDITIDN~

MACRO ADDR (ADDR)

% [READ_UPPER: A_DEST=?ADDR? AND ENABLE=I,
READ_LOWER: B_DEST=?ADOR? AND ENABLE=I,
MRITE_UPPER: A_SOURCE=?ADOR?,
WRITE_LOWER: B_SOURCE= ’)IC\DDF“\">
REFRESH: ALUAYS 1 %

MACRO SLIAP (ADDR)
%SHAPPING_REGISTERS R?ADOR?
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LEFT: [REFRESH: LOADS=XXXO,
READ_UPPER: A_DEST=?ADDR? AND ENABLE=I,
READ_LOWER: B_DEST=?ADDR? AND ENABLE=I,
WRITE_UPPER: A_SOURCE=?ADOR?,
WRITE_LOLER: B_SOURCE= 7ADDR7]

RIGHT: [REFRESH: LOADS=XXX01,

RIGHT_TO_LEFT: SWAP=I,

LEFT_TO_RIGHT: SUAP=I; %

[0_PORT LEFT_PORT
OUTPUT_REGISTER: /sADDR(0010) =/,
LOAD: PORT=IXXX AND ENABLE=I,
DRIVE: PORT=XIXX AND ENABLE=];

/:SHAP(1100) «/
/+SUAP (1 [01)/
/SHAP (T TIO) =/
7+ SHAP (11 11}/

ROM_PAIR €8
LEFT_ENABLE: A_SOURCE=0000, LEFT_UPPER:0000000000000000,
RIGHT_ENABLE:B_SOURCE=0000, RIGHT_LOWER: IIIIIIIIIIIIIIII

PRECHARGE_BOTH PCHG;
MASKED_SHIFTER SHIFTER

MOST_SIGNIFICANTHORD: /«ADOR(1000)+/,
LEAST_SIGNIFICANT_LIORD: /ADDR(1001) =/,

QUTPUT _REGISTER: /+ADDR (1010} %/,

FMASK_REGISTER: /+ADDR(IOI 1) =/,

SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_@: MASKS=X1 AND ENABLE=I,

LOAD_IF_1: MASKS=IX AND ENABLE=I;
ALU_LITTH_FLAGS ALU

INPUT_A: /+:ADDR(0100) =/,

INPUT_B: /+ADDR (BI0T) «/,

OUTPUT _1: /:ADDR (0T 10) =/,

FLAGS: /+ADOR (0001) =/,

LOAD_FLAGS: LOAD=1 AND ENABLE=I,

WRITE_OUTPUT_1: LOAD=1 AND ENABLE=I,

TO_CONTROL: {<1,2,39>=>PAD},

DECODE: ALU_OP
<B> =»> SUBTRACT
<1l> => ADD
<2,3> => INCREMENT_A
<4> => SUBTRACT
<5> => SUB_{I BORROLI
<6,7> => SUBTRACT
<&> => ADD
<9> => ADD_li_CARRY
<18,11> => ADD
<12,13> => DECREMENT_A
<14,15> => NEGATE_A

<16> => SETA
<17> => ADD
<18> => SETA
<19> => SETB

<28,21> => OR
<22,23> => AND
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<24,25>

=> SETA
<26,27> => XOR
<28,29> => TEST

<30.31> => SETCA;
REGISTER R13 OPTIONS: /+ADDR(OI11)%/;

I0_PORT RIGHT_PORT
OUTPUT_REGISTER: /+ADDR(OOIT)x/,
LOAD: PORT=XXIX AND ENABLE=I,
ORIVE: PORT=XXX1 AND ENABLE=I;

END

A simpler proposal was to share the shifter and ALU input registers, thereby freeing
up two bus addresses. Since is is difficult to physically share the registers, we can
share the registers in a logical sense; ALU input register A and shifter MSW register
will have the same bus destination address, but only the ALU register will write the -
bus. Whenever a transfer is made to the ALU input register, the shifter register
will also load. Whenever a transfer is made from the ALU input register, only the

ALU register will write the bus., This chip has an area of 209 by 272 mil, and a

power consumption of 100 ma.

NAME DATAFATH4 16;

FIELD A_SOURCE<l:4>,A_DEST<5:8>,B_SOURCE<3:12>,B_DEST«13:16>,
ENABLE<17>,SHIFT_CONST<1:4>,ALU<5:8>,MASKS<3:18>,L0AD<11:12>,
PORT<13:16>,CONDITION<18>,ALU_OP= ALLU & CONDITION;

MACRO ADOR (ADDR)

% [READ_UPPER: A_DEST=?ADDR? AND ENABLE=I,
READ_LOWER: B_DEST=?ADDR? AND ENABLE=I,
HRITE_UPPER: A_SOURCE=?ADDR?,
WRITE_LOHER: B_SOURCE=?ADOR?,

REFRESH: ALWAYS 1 %

MACRO HALF (ADDR)

% [READ_UPPER: A_DEST=7ADDR? AND ENABLE=I,
READ_LOWER: B_DEST=?ADOR? AND ENABLE=I,
REFRESH: ALUAYS 1 %

10_PORT LEFT_PORT
OUTPUT_REGISTER: /+ADDR(00I0) %/,
LOAD: PORT=1XXX AND ENABLE=1,
DRIVE: PORT=XIXX AND ENABLE=I;

REGISTER R8 OFTIONS:/«ABOR(I000)«/;
REGISTER R3 OPTIONS: /=ADDR(ICOI)+/;
REGISTER R12 OPTIONS:/+ADDR{1100)»/;
REGISTER R13 OPTIONS:/=ADDR(1101)/;
REGISTER R14 OPTIONS:/=:ADDR(IIIO0}/;
REGISTER R15 OPTIONS: /+:ABOR(IT11) 5/
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ROM_PAIR CB
LEFT_ENABLE: A_SOURCE=0000, LEFT_UPPER:0000000000000000,
RIGHT _ENABLE:B_SOURCE=0000, RIGHT_LOWER: IIIIIIIIIIIIIIII

FRECHARGE _BOTH PCHG;
MASKED_SHIFTER SHIFTER

MOST_SIGNIFICANT_HORD:  /«HALF (0100) %/,
LEAST_SIGNIFICANT_LIORD: /«HALF (Q101) %/,

OUTPUT _REGISTER: /%ADDR (1010 =/,

MASK_REGISTER: /+ABDR (101 1) %/,

SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_B: MASKS=X] AND ENABLE=I,

LOAD_IF_1: MASKS=IX AND ENABLE=I;
ALU_NITH_FLAGS ALU

INPUT_A: /+ADDOR (0100) =/,

INPUT_B: /~ADDR(0101) %/,

OUTPUT _1: /+ADDR(OIIQ) =/,

OUTPUT_2: /ADDR{OI T 1) 2/,

FLAGS: /+ADDR (0001 ) %/,

LOAD_FLAGS: LOAD=IX AND ENABLE=I,

WRITE_OUTPUT_1: LOAD=IX AND ENABLE=I,
WRITE_QOUTPUT_2: LOAD=XI AND ENABLE=I,
TO_CONTROL ; {<1,2,9>=>PAD},
DECODE: ALU_OP

<B> => SUBTRACT

<l> => ADD

<2,3> => INCREMENT_A

<4> => SUBTRACT

<S> =»> SUB_H_BORROL

<B,7> => SUBTRACT

<8> => ADD

<9> => ADOD_WI_CARRY

<18,11> => ADD :

<12,13> =>'DECREMENT_A

<14,15> =»> hEGATE _A

<1B6> => SETA

<17> => ADD

<18> => SETA

<19> => SETB

<28,21> => OR

<22,23> => AND

<24,25> => SETA
<26,27> => XOR
<28,29> => TEST

- <38,31> => SETCA;

I0_PORT RIGHT_PORT
OUTPUT_REGISTER: /wADDR(OOII) =/,
LOAD: PORT=XXIX AND ENABLE=I,
DRIVE: PORT=XXXI AND ENABLE=I;

END

The final proposal was to add a stack to the chip. We would again have to remove
one of the ALU output registers to free up a control bit for the POP line. This stack

pushes data whenever the top register is written to, and pops data whenever the
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POP signal is high. The top of stack register can be read independent of whether the
stack POPs or not. For an 8-deep stack, the chip area is 231 by 279 mil and the

power consumption is 129 ma.

NAME DATAPATHS 16,

FIELD A_SDURCE<1:4>.A_DE8T<5:8>,B~SOURCE<9:12>,B_DEST<13:18>,
ENABLE<17>,SHIFT_CDNST<1:4>.ALU<5:8>,HASKS<9:1B>,LGAD<11>,PDP<12>,
PORT<13:16>,CONDITION<18>,ALU_OP= ALU & CONDITION;

MACRO ADDR (ADDR)

% [READ_UPPER: A_DEST=?ADOR? AND ENABLE=I,
READ_LOWER: B_DEST=?ADDR? AND ENABLE-=I,
WRITE_UPPER: A_SOURCE=?ADOR?,
HRITE_LOLER: B_SOURCE=?ADDR?,

REFRESH: ALLIAYS 1 %

[0_PORT LEFT_PORT
OUTPUT_REGISTER: /+ADDR(0010) =/, '
LOAD: PORT=IXXX AND ENABLE=I,
DRIVE: PORT=XIXX AND ENABLE=I;

REGISTER R12 OPTIONS: /~ADDR(1100)/;
REGISTER R13 OPTIONS: /+ADDR(I1101) %/
REGISTER R14 OPTIONS: /+ADDR(IIID)«/;
REGISTER R1S OPTIONS: /+ADOR(III1)x/;

ROM_PAIR CB
LEFT_ENABLE: A_SOURCE=0000, LEFT_UPPER:0000000000000000,
RIGHT_ENABLE: B_S0URCE=0000, RIGHT _LOWER: TTITITITITIIINII;

PRECHARGE _BOTH PCHG;
IASKED_SHIFTER SHIFTER

MOST_SIGNIFICANTUORD:  /+ADDR(1000) w/,
LEAST_SIGNIFICANT_NORD: /%ADOR(1001) %/,

OUTPUT _REGISTER: /sADDR(I0I10) %/,

MASK_REGISTER: /xADDRUIOTIT ) %/,

SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_8: MASKS=XI AND ENABLE=I,

LOAD_IF _1: FASKS=IX AND ENABLE=1;
ALU_NITH_FLAGS ALU

INPUT_A: /+:ADOR (Q100) =/,

INFUT_B: /+ABDR(DI0T) %/,

OUTPUT _L: /vADDR(O110) =/,

FLAGS: /+:ADOR (0001 )/,

LOAD_FLAGS: LOAD=1 AND ENABLE=1,

LRITE _OUTPUT_1: LOAD=1 AND ENABLE=],

TO_CONTROL: {<1,2,9>=>PAD},
DECODE: ALU_OP :

<B> => SUBTRACT

<1> => ADD

«2,3> => [NCREMENT_A

<4> => SUBTRACT

<5> => SUB_H_BORROW
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- <B6,7> => SUBTRACT
<8> => ADOD
<9> => ADD_II_CARRY
<18,11> => ADD
<12,13> => DECREMENT_A
<14,15> => NEGATE_A

<16> => SETA
<17> => ADD
<18> => SETA
<19> => SETB
<Z28,21> => 0OR
<22,23> => AND
<26,25> => SETA
<26,27> => XOR
<28,29> => TEST
<38,31> => SETCA;
STACK STACK

DEPTH: 8,

TOP: /+ADDR (01 Il )s'r/.

POP: POP=I1,

PUSH: A_DEST=0111 OR B_DEST=0111;
I0_PORT RIGHT_PORT

OUTPUT_REGISTER: /+ADDR(OQII)+x/,

LOAD: PORT=XXIX AND ENABLE=1,

DRIVE: PORT=XXXI AND ENABLE=I;

END

The following table summarizes the results of the datachip modification

experiments.
Number of Size

Name Free Registers X oy Pouer
DATAPATH 4 | 203 276 96
DATAPATHZ2 28 229 272 126
DATAPATH3 5 with 4 backups 229 288 114
DATAPATHA4 & 289 272 108
OATAPATHS 4 uith 8-deep stack 231 279 123

Figure 9-10 shows the bounding boxes for each of these chips. Given this
comparison data, the microcode designers and the fabrication engineers can haggie

over the design specs.

Later that afternoon, the members of the market staff came by, expressing a desire
for combining the controller and datachip onto a single chip. Additionally, the
‘width of the microcode was to be narrowed from 24-bits to 16-bits. One of the two
bi-directional buses could also be eliminated. Using a handy text editor, the
controller specification was merged with one of the datapath specifications. Bristle

Blocks compiled the new chip in 7 minutes. The chip size was 244 by 246 mil, and
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Fig. 9-10: Bounding Box Comparisions

the power consumption was 128 ma. The source code for the combined chip is

listed here.

NAFE COMBINED 16;

FIELD ADDRESS<1:3>.A_SDURCE<4:7>,A_DEST<8:11>.B_SOURCE<12:14>.
B_DEST<15:16>,SHIFT_CDNST<1:4>.SHIFT_LD<5:6>,ALU<7:1B>,
PORT<13:16>,CONDITION<17>,ALU_OP=ALU & CONDITION;

MACRO NOP () % ADDRESS=000 OR CONDITION=0 %
FMACRO  UHP () % ADDRESS=001 AND CONDITION=1 %
MACRO CALL Q) % ADDRESS=010 AND CONDITION=1 %
MACRO RETURN() % ADDRESS=0I1 AND CONDITION=] %
MACRO BRANCHI{) % ADDRESS=100 AND CONDITION=] %
MACRO SAVE Q) % ADORESS=101 AND CONDITION=1 %
MACRO DO O) -% ADDRESS=110 AND CONDITION=I %

- HACRO ENDDO() % ADDRESS=I11 AND CONDITION=] %
MACRO UNDO O % ADDRESS=111 AND CONDITION=0 %
MACRO REG_A (ADR)

% READ_UPPER: A_DEST=?ADR?,
HRITE_UPPER: A_SOURCE=?ADR?,
REFRESH: ALLIAYS %

MACRO REG_B_0OUT (AADR, BADR)
% [/+REG_A(?AADR?) 2/, LRITE_LOWER:B_SOURCE=?BADR?] %

MACRO REG_B_IN(AADR,BADR} .
% [/+REG_A(?AADR?)+/, READ_LOWER:B_DEST=?BADR?] %

MACRO REG_A_ONLY (ADR) ,
% [/+REG_A (?ADR?) 2/] ¥

MACRO PORT_OUT () % PORT=000X %

MACRO PORT_IN() % NOT(/+PORT_OUTw/) %

OUTPUT_PORT ADDRESS
REGISTER: [READ_UPPER: /#NOP=/ OR /+D0%/ OR /+BRANCHs/ OR
READ_LOUER: /+%JUMPw%/ OR /+CALLv/ OR /+RETURNs/

/%SAVE s/ y
OR /5‘(ENDDO)‘¢/} H
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ADDER NEW_PC
INPUT_A:  [READ_UFPER: /%NOP+«/ OR /+D0x/ OR /+BRANCH:/ OR /#SAVEsw/.
READ_LOUER: /xJUrPs/ OR /<CALLw/ OR /sRETURNw/ OR /+ENDOO%/] ,
INPUT_B: [READ_LOLER: /«BRANCHs:/,
SUGGEST: NOT (/+BRANCH:/) ,
VALUE: 00000000000000017
LOAD: ALLIAYS,
OUTPUT_REGISTER: [LRITE_UPPER: ALMAYS]:

STACK PC_STACK
DEPTH: 8, -
TOP: [READ-UPPER: /vCALL+/ OR /3':00*:':/,
READ_LOMER: /%SAVEx/,
WURITE_LOWER: /+RETURNs/ OR /%ENDDO%/1,
PUSH: /=CALLy/ OR /+D0+x/ OR /s'cSAVEs'c/,
POP: /w%RETURNs:/ OR /+UNDOs/;

PRECHARGE _AND_BREAK_UPPER PCHG1:

REGISTER LINK OPTIONS:
[LRITE_LOWER: /%JUMP»/ OR /+CALL%/ OR /+BRANCHx/ OR /+%SAYEw/,
HRITE_UPPER: A_SOURCE=0001, READ_UPPER: A_DEST=00011;

PRECHARGE _AND_BREAK_LOLIER PCHG2;
FRECHARGE_BOTH PCHG3;

ALU_HTTH _FLAGS ALU .
INFUT_A: /»REG_B_IN(1000,01}/,
INPUT_B: /+REG_A_ONLY(1001)+«/,
OUTPUT_1: /+«REG_B_OUT(I0I0, 100)x/,
FLAGS: /=REG_A_ONLY(IO11) %/,
LOAD_FLAGS: NOT(ALU=IIII),
LURITE_QUTPUT_1: NOT(ALU=IIID),
TO_CONTROL: {<1,2,9>=>PA0,
DECODE: ALU 0P

<B> => SUBTRACT

<l> => ADD

<2,3> => INCREMENT_A
<4> => SUBTRACT

<5> => SUB_LI_BORROW
<B,7> => SUBTRACT
<8> => ADOD _

<3> => ADD_Il_CARRY
<18,11> => ADD
<12,13> => DECREMENT_A
<14,15> => NEGATE_A
<16> => GETA

<17> => ADD

<18> => SETA

<19> => SETB
<28,21> =>» OR
<22,23> => AND
«<24,25> => SETA
<26,27> => XOR
<28,29> => TEST
<38,31l> => DONT_CARE;

MASKED_SHIFTER SHIFTER
MOST_SIGNIFICANT_LIORD: /+REG_A_ONLY (0100) v/,
LEAST_SIGNIFICANT_IIORD: /+REG_B_IN(OIOI, 10}/,
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OUTPUT_REGISTER: /+REG_B_OUT(CI10, [01) =/,
FASK_REGISTER: /+REG_A_ONLY (OI11)+/,
SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_B: SHIFT_LO=XI,

LOAD_IF_1: SHIFT_LD=IX;

ROM_PAIR (8 ’
LEFT_ENABLE: A_SODURCE=000G,
RIGHT _ENABLE:B_SOURCE=110,
LEFT_UPPER: 0000000000000000,
RIGHT_LOWER: TILITIIINEIIIIIL;

REGISTER R2_REG
OPTIONS: WLRITE_UPPER: A_SOURCE=00I1Q,
READ_UPPER: A_DEST=0010,
REFRESH: ALLIAYS,
READ_LOLER: B_DEST=00 AND NOT (B_SOURCE=000),
WRITE_LOWER: B_SOURCE=0001;

REGISTER R13 OPTIONS: /+«REG_B_OUT{I10I,001)=/;
REGISTER Rl4 OPTIONS: /+REG_B_OUT(I110,010)/;
REGISTER R15 OPTIONS: /+REG_B_OUT(ITII,OI1}x/;

T0_PORT RIGHT_PORT .
OUTPUT_REGISTER: [RITE_UPPER: A_SOURCE=00ITI,
READ_UPPER: = A_OEST=00I1T,
READ_LOWER:  B_DEST=II,
HRITE_LOWER: B_SOURCE=III1,
LOAD: - /s':PDRT_I Ns‘:/,
DRIVE: /+PORT_OUTx/;

END

The new system still requires external logic associated with the microcode and
external‘circuitry for the condition select operations. This external circuitry does
provide system flexibility, but it also adds to system complexity. A final proposed
system includes on-chip circuitry for providing strobe signals and condition select

operations.

NAME COMPLETE 163

FIELD ADDRESS<1:3>,A_SOURCE<4:7>,A_DEST<8:11>,B_SOURCE<12:145>,
B_DEST<15:16>,5HIFT_CONST<l:45,SHIFT_LO<5:6>,ALU<7:18>,
PORT<13:16>,CONDITION<17>, ALU_OP=ALU & CONDITION, STROBES<18:24>,
RESET«<25>,FLAGS<26: 28> ,EXTERNAL<23:31 >,

HACRO NOP (), % ADDRESS=000 OR CONDITION=0D %
FIACRO Junp () % ADDRESS=001 AND CONDITION=1 %
MACRO CALL () % ADDRESS=010 AND CONDITION=I %
NACRO RETURN() % ADORESS=011 AND CONDITION=I %
IMACRO BRANCH() % ADDRESS=100 AND CONDITION=I %
TACRO SAVE () % ADDRESS=10] AND CONDITION=I %
HACRO DO () % ADDRESS=[10 AND CONDITION=I %
MACRO ENDDO() % ADDRESS=I11 AND CONODITION=I %
MACRO UNDO () % ADDRESS=111 AND CONDITION=O %
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ITACRO REG_A{ADR)
% READ_UPPER: A_DEST=?ADR?,
LURITE_UPPER: A_SOURCE= 7ADR?,
REFRESH: ALLIAYS %

MACRDO REG_B_QOUT (AADR, BADR)
% /+REG_A(?AADR?) =/, LRITE_LOUER:B_SOURCE=?BADR?] %

MACRO REG_B_IN(AADR, BADR)
% [/+REG_A(?AADR?) %/, READ_LOWER:B_DEST=?BADR?] %

MACRO REG_A_ONLY (ADR)
% U/+REG_A(?ADR?) /1 %

OUTPUT _PORT ADORESS
REGISTER: [READ_UPPER: /«NOP:/ OR /xD0+w/ OR /+«BRANCHw/ OR /%SAVEw/,
READ_LOLIER: /+JUMPs/ OR /%CALLx/ OR /+«RETURNs/ OR /:ENDDDw/]

ADDER NEW_PC

INPUT_A: [READ_UFPER: /%NOPw/ OR /:D0«/ OR /%BRANCHx/ OR /+SAVEs/.
READ_LOLER: /%JUMPs/ OR /xCALL%/ OR /+RETURN:%/ OR /+ENDDO%/,
SUGGEST: RESET-I,
VALUE : 0000000000000000] ,

INPUT_B: [READ_LOWER: /+BRANCHs/,
SUGGEST: NOT (/%BRANCH=/) ,
VALUE: 00000000000000017,

LOAD: ALLIAYS,

OUTPUT_REGISTER: [LURITE_UPPER: ALLIAYS];

STACK PC_STACK
DEPTH: 8,
TOP: [READ_UPPER: /+CALLw/ OR /*.':DD':':/,
READ JLOUER: /»SAVEsw/,
WRITE_LOLER: /wRETURN(/ OR /+ENDDOx/1,
PUSH: /wCALL»/ OR /+D0sx/ OR /%SAVEw/,
POP: /+:RETURNw%/ OR /+UNDOx/;

PRECHARGE _AND_BREAK _UPPER PCHG1;

REGISTER LINK OPTIONS:
(MRITE_LOMER: /%JUMPx/ OR /%CALLw/ OR /«BRANCH=/ OR /%SAVEx/,
HRITE_UPPER: A_SOURCE=0001, READ_UPPER: A_DEST=0001];

PRECHARGE _AND_BREAK_LOLER PCHGZ2;

ALU_NITH_FLAGS ALU

INPUT_A: /+REG_B_IN(I000,01)«/,
INPUT B: /+REG_A_ONLY (1001} =/,
OUTPUT_1: /+REG_B_OUT (1010, 100) %/,
FLAGS: /wREG_A_ONLY (1011)x/,
LOAD_FLAGS: NOT(ALU=IIID),
WRITE_QUTPUT_1: NOT(ALU=IIII),
TO_CONTROL.: {<1,2,9>=>FLAGS},
DECODE: ALU_OP

<B> => SUBTRACT

<l> => ADD

<2,3> => INCREMNENT_A

<4> => SUBTRACT

<5> => SUB_II_BORROW

<B,7> => SUBTRACT



-177-

<8> => ADD

<9> => ADD_LI_CARRY
<18,11> => ADD
<12,13> => DECRENMENT_A
<14,15> => NEGATE_A
<16> => SETA

<17> => ADD

<18> => GETA

<19> => SETB

<28,.21> => OR
<22,23> => AND
<264,25> => SETA
<26,27> => XOR
<28,29> => TEST
<38,31> => DONT_CARE;

MASKEDO_SHIFTER SHIFTER ,
IMOST_SICGNIFICANT_HORD:  /+REG_A_ONLY (OI00)»/,
LEAST_SIGNIFICANT_WORD: /+REG_B_IN(OIOI, 10) %/,

OUTPUT _REGISTER: /+REG_B_OUT(O110, 101}/,
MASK_REGISTER: /REG_A_ONLY(OII1) e/,
SHIFT_CONSTANT: SHIFT_CONST,

LOAD_IF_8:. SHIFT_LD=XI, -
LOAD_IF_1: ‘ SHIFT_LD=1IX;

ROM_PAIR C8
LEFT_ENABLE: A_SOURCE=0000,
RIGHT_ENABLE:B_SOURCE=I110,
LEFT_UPPER: 0000000000000000,
RIGHT_LOWER: TIIITITIRIEIIIIE;

REGISTER RB_REG ‘
OPTIONS: [LRITE_UPPER: A_SOURCE=00I0,
' READ_UPPER: A_DEST=00I10,
REFRESH: ALLIAYS,
READ_LOLER: B_DEST=00 AND NOT{B_SOURCE=000),
HRITE_LOWER: B_SOURCE=0001;

REGISTER B7
OPTIONS: ([LRITE_LOLER: B_SOURCE=III,
READ_LOUER: B_DEST=I1,
REFRESH: ALLIAYS] ;

REGISTER R13 OPTIONS: /+REG_B_OUT(IIOI,001)w/;
REGISTER Rl4 OPTIONS: /+xREG_B_QUT(IIIO,0I0)x/;
REGISTER R15 OPTIONS: /+REG_B_OUT(ITII,01I)+/;

'PRECHARGE_AND_BREAK“LDHER PCHG3;

REGISTER LINK2
OPTIONS: (READ_UPPER: A_DEST=00II,
HRITE_UPPER: A_SOURCE=0011,
REFRESH: ALLIAYS,
READ_LOUER: PORT=0[XX OR PORT=0XIX GR PORT=0XXI,
HRITE_LOUER: PORT=11XX1;

PRECHARGE _BOTH PCHG4;
CONTROL _TO_DATA_AND_BACK STROBES

REGISTER: (SUGGEST: RESET=I, VALUE:OCDODOODOODDOOOD].
LATCH: ALHAYS,



TO_CONTROL.:

TO_DATA:

LOLER_ROM  C1
LOLIER_ROM €2
LOLER_ROM C3
LOUER_ROM  C4
LOLIER_ROM C5
LOUER_ROM  C6

I0_PORYT PORT

{<l:17>=> STROBES;
AND
AND
AND

{STROBES =1 XXXXXX
STROBES=1 XXXXXX
STROBES=XIXXXXX
STROBES=XIXXXXX
STROBES=XXTXXXX
STROBES=XX1XXXX
STROBES=XXXXXX
STROBES=XXXI XXX
STROBES=XXXXIXX
STROBES=XXXXIXX
STROBES=XXXXXIX
STROBES=XXXXX1X
STROBES=XXXXXXI
STROBES=XXXXXXI
CONDITION=00 OR

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
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«<8>=> CONDITION; «3:lb4>=> PADY ,
NOT(PORT=0111) OR PORT=I111=>1;
NOT (PORT=0I11) OR PORT=1111=>9;
NOT(PORT=0I11} OR PORT=1110=>2;
NOT (PORT=0111) OR PORT=1110=>18;
NOT (PORT=0111) OR PORT=1101=>3;
NOT (PORT=0111} OR PORT=1101=>11;

NOT (PORT=1000)
NOT (PORT=1000)
NOT (PORT=1000}
NOT {PORT=1000)
NGOT (PORT=1000)
NOT (PORT=1000}
NOT (PORT=1000)
NOT (PORT=1000)

PORT=1100=>4;
PORT=1100=>12;
PORT=1011=55;
PORT=1011=513;
PORT=1010=>6;
PORT=1010=>14;
PORT=1001=>7;
PORT=1001=>15;

CONDITION=0OI AND FLAGS=IXX OR
CONDITION=10 AND EXTERNAL=IXX OR

CONDITI

ON=11 AND

IF SHIFT_CONST=IXXX THEN

ELS

ENABLE:
ENABLE:
ENABLE:
ENABLE:
ENABLE:
ENABLE:

- DUTPUT _REGISTER:

END

SHIFT_CONST=1001
SHIFT_CONST=1010
SHIFT_CONST=1011
SHIFT_CONST=1100
SHIFT_CONST=1101
SHIFT_CONST=I110
SHIFT_CONST=1111
E
SHIFT_CONST=0000
SHIFT_CONST=0001
SHIFT_CONST=0010
SHIFT_CONST=0011
SHIFT_CONST=0100
SHIFT_CONST=0101
SHIFT_CONST=0110
SHIFT_CONST=0111

PORT=0001,
PORT=0010,
PORT=0011,
PORT=0100,
PORT=0I0I,
PORT=0110,

VALUE:
VALUE:
VALUE:
VALUE:
VALUE:
VALUE:

AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND

AND

1111
IT11
IT11
1110
IT1]
[111

FLAGS=0XX OR
FLAGS=XX0 OR
FLAGS=X0OX OR
EXTERNAL=0XX OR
EXTERNAL=XOX OR
EXTERNAL=XX0D OR
FLAGS=0X0

FLAGS=IXX OR
FLAGS=XXI OR
FLAGS=XIX OR
EXTERNAL=IXX OR
EXTERNAL=XIX OR
EXTERNAL=XXI OR

NOT (FLAGS=0X0) F1

ITTTTTII0000;
00001 1110000;
111100000000;
001110000000;
110000000000;
[T1111010000;

(WRITE_LOWER: PORT=0111,
READ_LOMER: PORT=IIXX,
REFRESH: STROBES= OOOXXXX]
LOAD: NOT (STROBES=000XXXX) ,
DRIVE: NOT(STROBES= XXXDDOD)

=> 8}
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Chapter 10: A History of Bristle Blocks

This chapter provides a brief overview of the Bristle Blocks project., The major
results of a number of experiments are stated, and the motivation behind various
design decisions are given. Finally, a description is given of what the next version

of Bristle Blocks may be like.

10.1: The Past

Bristle Blocks was born out of the OM project [15][16][17]. The OM2 datapath chip
was designedhin nine months, three of which were spent designing the low level
cells.‘and the remaining six of which were spent interconnecting all of the pieces.
The chip was designed using a special purpose programming language, PAL [2]. A

picture of the finished mask set is shown in chapter 2, figure 2-10.

There were many lessons learned from the OM project. The more dramatic (and
painful) lessons dealt with the limited expressability of the language, the
complexity of the global interconnect versus the simplicity of leaf cell design, and

the limited expressibility of a purely graphical design system.

The PAL artwork language is a special purpose drafting language. The purpose of
the language is to describe simple line drawings or printed circuit board layouts.
There ave relatively few standard programming language constructs, It is virtually
impossible to design a parametrized cell in such a language, and there is little hope
for designing automatic routing programs with such a system. Due to the limited
power of PAL, yet the power of textual cell descriptions, imbedded languages were
developed. The first imbedded language developed at Caltech was ICLIC, written by
Ron Ayres and Maureen Stone in the ICL language [4]. Soon thereafter, Bart

L.ocanthi programmed LAP in Simula [ 19].

The complexity issue of global interconnect had two manifestations in the OM
project. The first was that the layout of the final portion of the chip took much
longer than the design of the majority of the chip area, even though much time was
spent planning the global structure of the chip. The leaf cells were small layouts,

which could easily be plotted on small sheets of paper. The entire function of each



-180~

cell could be grasped as the cell was being designed. The control structure, on the
other hand, was a very large cell, so that it was difficult to make detailed plots of
the entire cell. The cell was hard to design because of the many timing and logical
function details which had to be included in the cell. The second manifestation of
the global interconnect complexity appeared when the chip was tested. It was in
the global interconnections that all of the design errors were encountered. There
were two timing errors, one logical error, and one design rule error in the
interconnections. The first timing error set the chip speed at 2.5 MHz, one quarter
of the intended operating speed. The second error caused the flag circuitry to
become inoperative. The logical error was not fatal: the polarity of one of the
control input pins was negated. The design rule error was the major design error.
Six of the highest level wires ever 50 slightly missed their proper connection
positions on the instruction decoder. They were off less than .2% of their total
length. For 5000 micron long wires, however, this small error, which is invisible
on all cell plots, caused six of the control input bits to be shorted to ground. Each of
these errors was not caused because the global interconnection task for any
particular signal was difficult, but because there were SO0 many signals to be

interconnected that the specific details were forgotten.

The third lesson learned from OM was that cells are more than just layout. There i
documentation information about the cells that is just as important as the layout
information. The design system which was used to create OM only allowed for the
specification of geometric information, although I was able to add a block diagram
description of the OM2 datapath chip to the system. As a designer, it was very
frustratmg not being able to add a little more information to the cells’ descriptions.
Even if additional information could be added to the cell, there was no way to access
that information later. With the new design tools that have been developed, there
has been a gradual increase in the flexibilify of the cell data representation, so that

additional designer intent can be encapsulated with the design.

When the OM2 datapath chip design errors were found, there was a strong
motivation to develop better design tools: to cast away nine months of effort
because of a few tiny implementation details is not an easy thing to do. The process

was begun of designing programs to aid in the design of integrated circuits.
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The first routine implemented was a simple, monochromatic river router. There
were several places in the datapath chip where a river router could be used to
interconnect cells. Although there were no design errors in the datapath's hand
designed river routes, the generation of the 500 interconnection wires between two

‘of the cells was not a pleasant task.

The second routine to be implemented was an instruction decode generator. In the
datapath éhip, the instruction decoder was implemented as a collection of 42
incredibly tiny cells. These cells measured 7 lambdas by 14 lambdas, and were used
to tile large portions of the chip. The instruction decoders required close to 20,000
function calls, each of which required an absolute chip position parameter. This
tedious and error prone task was accomplished without design error. However, the
design was fixed for one particular chip instance, and if there were any change in
the chip specification, this entire decoder would have to be re~-implemented. An
instruction decoder generator was written to automatically produce calls to cells
very.similar to the cells used in the datapath chip. Data structures were defined in
ICL. to desribe the instruction decoder operations, which became the input
parameters to the generator. When this programming task was completed, a chip
designer could rapidly generate an instruction decoder from a functional
description of the decoder operation, plus positional information for the outputs of

the decoder.

The next step in automating the design of chips was to add the timing information
to the decoder routing, so that the buffers and decoder could automatically be added
to the datapath. It was at this same time that Ron Ayres presented some fascinating
news of his Programmed Logic Array (PLA) compiler, RELAY [5]. He pointed out
some very obvious ideas which helped crystallize the Bristle Blocks framework. A

short description of RELAY will be presented here,

Ron Ayres is a software computer scientist., He had a mathematical description of a
chip he wanted implemented, yet he did not know how to design integrated
circuits. He built a programming system that let him describe his formal,
mathematical, chip descriptions. The system accepted a hierarchy of synchronous
logic equations, and would allow the designer to alter the hierarchy of the logic
while preserving the function of the description. The designer could simulate the

operation of the chip at any time to verify the correctness of the specification. Ron
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then met with a student in the LSI design course, and they composed a simple model
of a PLA and of an interconnect algorithm. Ron added these models to his system,
which allowed him to quickly see what a set of logic equations would look like
when implemented in PLAs. He could observe the physical impact of editing the
logic hierarchy. Finally, Ron borrowed a PLA generator and wrote an actual
interconnect procedure., With these two routines, Ron was able to generate

complete chip 1aybuts from logic equation specifications.

To illustrate the form of RELAY input, the following cell examples will be given.
These examples are not meant to teach the reader how to design chips with RELAY,

but rather provide the user with the flavor of the design methodology.

EIN — —> EOQUT

IN —= —= DATA

ENABLE = PR

LOAD -+

Fig. 10-1: General Purpose Register Block Diagram

The first cell is a General Purpose Register (GPR). A block diagram of this register is
shown in figure 10-1. The register will load data from the IN pin when LOAD and
ENABLE are TRUE. When ENABLE is TRUE, EOUT will be set to the value contained
within the register, and when ENABLE is FALSE, EOUT will be set to the value of
EIN. The RELAY specification for the GPR register is listed here. '

VAR GPR=LL;
BEGIN VAR DATA, IN,LDAD,ENABLE,EIN,EQUT=BIT;
DATA: =NELI_BIT;
IN: =NEW_BIT;
LOAD: =NEW_BIT;
ENABLE: =NELI_BI1T;

EIN:=NEW_BIT;
EOUT:=NEW_BIT;
GPR:=

[EXTERNALS: [IN_PINS: {EINANAIMED "EIN';
ENABLEANAMED *ENABLE’ ;
LOAD\NAMED 'L0OAD’;
IN\NAMED *IN'}
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DU‘T_PIN‘“:' {EQUT\NANMED "EOUT’}]
RELATIONS: {EQUT\EQU ([IF:ENABLE THEN:DATA ELSE:EINI;
ODATANNEXT (IF:LOAD\AND ENABLE THEN:IN ELSE:DATAI1];
END

- We have declared GPR to be of type LL, which stands for Logic Level, the RELAY
cell. Internal to a GPR, we have the following signals: DATA, IN, LOAD, ENABLE,
EIN, and EOUT. We have declared the port characteristics of the GPR cell, and given
the logic equations relating the signals within the GPR.

We can now define a cell which uses two of these GPR celis. This GPR PAIR cell has
a SELECT input which is used to select which GPR cell is being addressed.

VAR GPR_PAIR=LL;
BEGIN VAR L,R=NAMED_LOGIC_LEVEL; IN,LOAD, SELECT, ENABLE-BIT;
L: =GPR\NELI;
R: =GPRA\NEM;
IN:=NEL_BIT;
LOAD: =NEW_BI T;
SELECT: =NEL_BIT;
ENABLE : =NEW_BI T;
GPR_PAIR: =
[EXTERNALS: [(IN_PINS:  (R\S 'EIN'\NAMED 'EIN’;
- ENABLE\NAMED 'ENABLE';
LOAD\NAMED *LOAD’;
IN\NAMED "IN’
SELECT\NAMED 'SELECT'}
OUT_PINS: {L\S *EOUT'\NAMED 'EQUT"}]
RELATIONS: {L\S 'EIN'\EQU R\S 'EOUT’;
L\S *IN'\EQU IN;
R\S "IN'\EQU IN;
L\S ‘LOAD’\EQU LOAD;
R\S 'LOAD’\EQU LOAD
L\S "ENABLE’\EQU SELECT\AND ENABLE; ,
R\S 'ENABLE'\EQU NOT (SELECT)\AND ENABLE}1;
END

In the same manner, we can define a few new register cells. The GPRO cell is
similar to the GPR cell, except that the data contained within the cell is also
available as a port. The GPRI cell is used as an interface cell, a shared register
between two processors, for instance, When one processor writes into the cell, the

second processor notices the effect in its corresponding interface cell.

VAR GPRO=LL ;
BEGIN VAR DATA, IN,LOAD, ENABLE,EIN,ECUT=BIT;
DATA: =NEUW_BIT;
IN: =NEL} BIT;
LOAD: =NEW_BIT;
ENABLE: =NELI_BIT;
EIN:=NEWN_BIT;
EOQUT: =NEW_BIT;
GPRO: =
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[EXTERNALS: [IN_PINS: {EIN\NAMED "EIN';
’ ENABLE\NAIMED 'ENABLE';
LOAD\NANMED *LOAD’;
. IN\NAMED *IN’}
OUT_PINS: {EOUT\NAMED ’EOUT";
DATANNAIMED °*DATA’ 11
RELATIONS: {EQUTNEQU [IF:ENABLE THEN:DATA ELSE:EIN];
DATANNEXT [IF:LOABNAND ENABLE THEN: IN ELSE:DATA}! 1
END

VAR GPRI=LL;
BEGIN VAR DATA, IN,LOAD,ENABLE,EIN,EQUT,DIN=BIT;
DATA: =NEW_BIT; :
IN: =NEW_BIT;
LOAD: =NE{4_BIT;
ENABLE: =NEW_BIT;
EIN:=NEW _BIT;
EOQUT: =NEH_BIT;
DIN: =NEW_BIT;
GPRI: =
[EXTERNALS: [IN_PINS: {EIN\NAMED "EIN’;
' ENABLE\NAMED "ENABLE’;
LOAD\NAMED .’LOAD";
IN\NAMED "IN';
DINANAMED *DATA_IN’}
QUT_PINS: {EOQUT\NAMED *EQOUT’;
DATANNAMED "DATA_OUT'})
RELATIONS: {EQUTA\EQU ([IF:ENABLE THEN:DIN ELSE:EINI;
DATANNEXT [IF:LOADNAND ENABLE THEN: IN ELSE:DATAl}];
END

As a final example, a shift register loop is described. Externally, the shifter appears
like a GPR cell, except that shift input signals are included in the interface of the
cell., The top cell communicates with a series of short shift registers, each of which
is composed of a series of bits. Hence, the shifter is a hierarchy of shift bits, as

shown in figure 10-2.

VAR LOOP_BIT=LL;

BEGIN VAR LIN,RIN,LSHIFT,RSHIFT,0UT=BIT;
LIN:=NEW BIT;
RIN: =NEW_BIT;
LSHIFT: =NELI_BIT;
RSHIFT: =NEW_BIT;
OUT: =NEW_BIT;
LOOP BIT:=
[EXTERNALS: [IN_PINS: ILINANAMED "LIN’;
RINANAMED "RIN’;
LSHIFTANAMED 'LSHIFT’
RSHIFT\NAMED °RSHIFT'}
DUT_PINS: ~ {OUT\NANMED 0OUT’}H]
RELATIONS: {OUT\NEXT [IF:LSHIFT THEN:RIN
ELSE: [IF:RSHIFT THEN:LIN
ELSE: OUTII1D;
END



-185-

"A LOOP ROW IS A STRING OF N LBOP BITS, ALL PROPERLY CONNECTED."

DEFINE LOCP_ROLI(N: INT)=LL:
BEGIN VAR LOOP_BITS=NAMED_LOGIC_LEVELS:L,R,B1,BN=NAMED_LOGIC_LEVEL
0o LOOP_BITS: = {COLLECT GPR\NEL REPEAT N3l
Bl: —LOOP_BITS[l]
BN: =LOOP_BITS NI
GIVE [EXTERNALS: [IN_PINS: {BINS "LIN';
BNAS 'RIN";
BI\S *LSHIFT’;
BINS 'RSHIFT' }
QUT_PINSs {BINS ’OUT’\NAMED ’LOUT’;
: BN\S *OUT’\NAMED 'ROUT’}1
RELATIONS: {FOR {L;Rt 8C LOOP_BITS; COLLECT
{LAS "RIN’\EQU R\S '0UT’;
R\S *LIN’\EQU L\S '0UT";
R\S 'LSHIFT’\EQU BI\S 'LSHIFT’;
R\S "RSHIFT’\EQU BI\S *RSHIFT'}}
GUTS: LOOP_BITS]
END
ENDDEFN

"A LOOP LOOKS MUCH LIKE A GPRO EXTERNALLY, BUT IT CONTAINS AN
Me:N+1 BIT SHIFT REGISTER. EXTERNALLY, IT DOES HAVE THE RSHIFT AND
LSHIFT SIGNALS, "

DEFINE LOOP (M,N: INT) =LL:
BEGIN VAR LOOPS=NAMED_LOGIC_LEVELS;L,R,B1,BN=NAMED_LOGIC_LEVEL;
DATA, IN,LOAD, ENABLE,EIN, EQUT,LSHIFT,RSHIFT=BI T}
Do DATA: =NEL_BIT;
IN: =NELL_BIT;
LOAD: =NEW_BIT;
ENABLE: =NEW_BIT;
EIN: =NELl_BIT;
EOUT: =NEI_BIT;
- LSHIFT: =NEW_BIT;
RSHIFT: =NEW BIT;
B1:=LOOP_ROW (M) ;
LOOPS: = {COLLECT B1\NEW REPEAT N; }
Bl:=LOOPSI[1];
BN: L.OOPS [N ;
GIVE [EXTERNALS: [IN_PINS:  {EIN\NAMED 'EIN’;
ENABLE\NANMED *ENABLE’;
LOADANAMED *LDAD’;
IN\NAMED " IN';
LSHIFT\NANMED *LSHIFT’;
RSHIFT\NAMED *RSHIFT'}
OUT_PINS: {EQUT\NAMED ’EQUT’:
DATA\NAMED "OATA’ 1]
RELATIONS: (EQUT\EQU [IF:ENABLE THEN:DATA ELSE:EINI;
DATA\NEXT [IF:LOAD\AND ENABLE THEN:IN
ELSE: [IF:LSHIFT THEN:BN\S 'ROUT’
ELSE: [IF:RSHIFT THEN:B1\S *LOUT’
ELSE: DATAIII;
BI\S *LIN’\EQU DATA;
BNAS "RIN’\EQU DATA;
FOR {L;R} 8C LOOPS; COLLECT
{L\S *RIN’\EQU R\S 'LOUT’;
R\S *LIN’\EQU L\S 'ROUT’;
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R\S *LSHIFT'\EQU LSHIFT;
R\S "RSHIFT’\EQU RSHIFT};
BINS 'LSHIFT'\EQU LSHIFT;
BI\S ’RSHIFT’\EQU RSHIFT]
GUTS: LOOPS]

END
ENDDEFN 0!*17
LIN-» e~ RIN
LSHIFT -+ e RSHIFT
LOOP BIT
LOUT -~ ROUT
LSHIFT -+ e RSHIFT —
LOCOP ROW

EIN-—-—l [——*EUUT

IN -—» - DATA
ENABLE ~
LOAD

LSHIFT—-—f l

RSHIFT —
L. OOP
Fig. 18-2: Shifter Loop Block Diagram

These examples illustrate the design of leaf cells and composition cells. Each cell
(LL) contains “an interface specification (EXTERNALS), an interconnection
specification (RELATIONS), and a subcell specification (GUTS). Leaf cells do not
have any GUTS, only EXTERNALS and RELATIONS. Composition cells have values in

all three areas.

The first version of Bristle Blocks was completed in December, 1978. Version one
produced small datapath chips, in a variety of representations. The compiler
produced the NMOS artwork, along with a stick diagram, transistor diagram, logic

diagram, and block diagram of the chip. In all later versions of Bristle Blocks, the
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capability of multiple representations (even multiple technologies) has been an
integral part of the system, although the datapath cellé were designed to produce _

only layouts, due to the press of time.

In the two and a half years since the first running of Bristle Blocks, there have been
several areas of improvement upon the basic system., Work has been done on the
Virtual Memory (VM) system, whiéh greatly increased the compilable chip size.
Many of the algorithms, like the river router and instruction decode generator,
have been improved and tested. User interfaces have been added to allow
non-specialists to use the system. Finally, the variety of datapath elements has

increased, improving the efficiency and flexibility of Bristle Blocks.

To provide efficient generation of artWork, Bristle Blocks cells were designed to be
programs, rather than data structures. If the cells were data structures, the user
would be limited to designed cells expressable in the data structure. Since the user
is allowed to write programs for the cells, the user is only limited by the
expressability of the language Bristle Blocks is written in (ICL). ICL allows much
greater expressability than a simple data structure would allow, so that the user

can design very flexible cells,

Unfortunately, the PDP-10 computer has a very small address space, with only 18
bits for addresses. In current versions of ICL, programs are not swappable to the
disk, although data structures can be swapped to the disk. Since data structures are
swappable, we can have a very large effective address space by saving the
information contained in the data étructures in adisk file. The system can read this
information as it is required, and when the data is no longer needed, the data can be
written back into the file. With swapping, we can effectively have a much larger

address space if our cells were data structures.

To make use of swapping, yet still retain the power of cells as programs, a
compromise was made. Most cells have a lot of relatively fixed, or constant, layout.
The fixed portion of the cell can be stored in a data structure, and thereby can be
swapped to a disk file. The variable portions of the cell can be kept as a program.
The cells compute the variable portions of the layout and swap in the fixed layout
sections, Partitioning the cells in this ﬁlanner does add to the complexity of the

compiler and of the cells, but users of the system never see the additional
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complexity.

To free up as much code space as possible, we need to have as much of the cells as
possible represented in the swappable data structure. To this end, the data
structures used in Bristle Blocks allow the representation of simple variations in
the layout and connection points. In many cases, the actual code required by a cell
simply checks the user's parameters and swaps in the cell implementation from the
data file, which is called the Virtual Memory (VM) file.

The following data structure definitions describe the structures used in the current

version of Bristle Blocks.

The first primitive user-defined datatype in Bristle Blocks is called the STRETCH _
_EOIN'T. The name refers to the common use of t.he datatype, although a better name

would probably be VARIABLE. The data structures refer to these STRETCH POINTs

using the ID number as a name. To stretch a layout, the appropriate STRETC}_I“
_POINT's value is modified, and the layout is effectively changed.

TYPE STRETCH_FPOINT= [

NAME SC

ID, INITIAL,FINAL: INT

FRESH: BOOL.

XFRM: COORDINATE 33

STRETCH_FOINTS= { STRETCH_POINT i
VAR STRETCH_POINTS_VALID=BOOL;

The NAME component of STRETCH POINTs holds the user's names for the STRETCH _
_I_’OINTS. The system looks through the global STRETCH POINT list to convert a na-me '
to a STRETCH POINT. The ID is the internal identification assigned by Bristle Blocks
to the STRETCH POINTs. The remaining components are used to compute the value .
of a STRETCH POINT. The XFRM component may contain an algorithm for
computing a ’STRETCH __POINTS value: a STRETCH POINT's value may depend upon
other STRETCH POINT values. The FRESH component states whether the FINAL
component holds the actual value of the STRETCH POINT. Whenever a STRETCH _

_POINT's value is modified, all of the STRETCH POINTs in the system have their
FRESH value set FALSE, When computing a STRETCH __?OINT'S value, the FRESH
component is examined. If FRESH is TRUE, the FINAL component hold the value. If
FRESH is FALSE, the system recomputes the final value. The FINAL value is se;t to
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the INITIAL wvalue, and the FRESH component is set TRUE. The XFRM is then

evaluated, and the resulting value is stored in the FINAL component.

COORDINATEs are used to express equations in the system. A COORDINATE may
state, for example, that a certain feature be positioned with a Y~coordinate of 5
lambdas above the 'Y1' STRETCH POINT. This equation is stated as follows.

"Y1'\P 5
The datatypes associated with COORDINATEs are listed here,

TYPE COORDINATE= EITHER

INTEGER= INT

STRETCH= STRETCH_POINT :

0P= {OP: COORDINATE_OP A,B:COORDINATE]

NEGATE= COCRDINATE

IF= [REL: IF_RELATION C,A,B:CO0ORDINATE]
ENDOR;

COOROINATES= { COORDINATE 13
COORDINATE_OP= SCALAR(ADD, SUB, MUL, DIV, MIN, MAX) ;
IF_RELATION= SCALAR(ZERO,NZERO,NEG, NNEG, POS,NPOS, EVEN, GOD) ;

In the simplést case, a COORDINATE may be an INTeger. A STRETCH POINT may also
be a COORDINATE. A COORDINATE may be a simple function of two other
COORDINATES: A OP B, where A and B are coordinates and OP is either ADD, SUB,
MUL, DIV, MIN, or MAX. A COORDINATE may be the inverse of another
COORDINATE, and finally, a COORDINATE may be an IF...THEN...ELSE...FI equation:
the C COORDINATE is compared with relation REL., If the comparison is TRUE, the

value of A is returned. Otherwise, the value of B is returned.

Using the above definition of COORDINATE, definitions for wires, boxes (VBOXES),
and polygons (SSXY) were defined. These primitives were not associated with mask
layers, but all the primitives of a single layer (within a single cell), were collected

into a single MASK LAYER.

TYPE XY_PAIR= ([X,Y:CODRDINATE];
SXY= [ XY_PAIR };
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SS5XY= { SXY 1
WIRE= [WIOTH: INT PATH:SS*Y]:
WIRES= { HIRE t1;
VBOX= [LOW,HIGH:XY_PAIRI;
VBOXES= { VBOX };
MASK_LAYER= [COLOR:COLOR WIRES:WIRES BOXES:VBOXES POLYS:SSXY);
MASK_SET= { MASK_LAYER 1}

DMASK_SET= a swuappable version of MASK_SET ;

A collection of MASK LAYERs formec_l a MASK SET, which was the complete set of

geometric primitives for a particular representation. The PICTURE datatype

described one representation.

TYPE VIEW= SCALAR{LAYOUT,STICKS, TRANS, BLOCK,LOGIC) ;
PICTURE= I[VIEW:VIEL MASKS:DMASK_SET];
PICTURES= { PICTURE };

The next set of datatype definitions described connection points. Connection points
could be kept with the artwork, swapped out in the disk file, Connection points
contain a name, positions, signal direction (into or out of the cell), connection type
(control connection, pad connection, etc.), buffer type or pad type, connection edge

(north, south, east, or west), timing information, layer information, and the

associated microcode function.

TYPE CONNECT=1I

NAME: SC

FROM, T0: XYPAIR ‘

DIRECTION: SCALAR(IN,QUT, 10, ANY)

TYPE: SCALAR {CONTROL,PAD,CONBDITION, ... .)

BUFFER: SCALAR (PHI _1,PHI_2,P1IMUX,PZIMUX,PLINY,P2INV, VDD, GND,
BUFIN, BUFQUT, BUFINV)

PAD: SCALAR {IN,QUT, DOUN, 10, 10_DOLIN, ENABLE , OUT_ENABLED,
DOUN_ ENABLED, BOTH, IN_PULL , DOUN_PULL.,
ENABLED_PULL, I0_PULL,BOTH_PULL)

EDGE: SCALAR (NORTH,EAST, SOUTH, WEST)

VAL1D: SCALAR(PHI1,PHIZ,B0OTH, NONE)

COLOR: COLOR

UCODE: DECODE_COLUMN

el
CONNECTS= { CONNECT 13
DECODE_COLUMN= [

TYPE: SCALAR {UCODE, SOURCE, COMPLIMENT, PAD, WIRE, BLANK)
COLUIMN,LENGTH:  INT
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09,401,00,D1: Sil;

Next, we have the BLOCK definition. A BLOCK is the basic cell in Bristle Blocks. It
contains a name, some layout information (pictures), calls to subblocks, connection
points, and a bounding box. Recall that many of the BLOCKs for a particular chip
are computed by a program. These BLOCKs have enough flexibility, however, that

many of the datapath cells can be represented as BLOCKs rather than programs.

TYPE BLOCK= [

NAME: sC
PICTURES: PICTURES
CALLS: CALLS
INTERFACE: CONNECTS

HMBB: VBOX
S I

BLOCKS= { BLOCK 1;

DBLOCK= a suwappable version of BLOCK ;

Lastly, we have definitions for CALLs. A CALL is a reference to a subBLOCK.

TYPE CALL= EITHER

BLOCK = pBLOCK

TRANSLATE= [C:CALL T:XY_PAIR]

ROTATE= [C:CALL R:SCALAR(RS@,R188,R278)]
[M1RROR= [C:CALL r:SCALAR(MIRX,MIRY,BOTH) ]
STRING= [C:CALL S:SXYI]

VECTOR= [C:CALL V:[I:XY_PAIR N:COORDINATEL]
CALLS= CALLS

WITH_MASKS= ([C:CALL [M:MASK_MAKERS]

PASS_MASKS= [C:CALL N:SIl

MASKED= [C:CALL N:INTI

IF= (REL: IF_RELATION C:COGCRDINATE A,B:CALLI

" ENDOR;
CALLS= { CALL I1;

MASK_MAKER= EITHER
ALLIAYS= DUMMY
ROTATE= SB
EXTEND= SB
FIXED= SB

ENDOR;

MASK_MAKERS= { 1MASK_MAKER 1}

The first four types of CALLs are fairly straightforward. A STRING CALL places a
subCALL at each point in the list of XY PAIRs (SXY). A VECTOR CALL evaluates the
V.N COORDINATE to determine an iteration count. Thé V.I XY PAIR specifies a step
" distance. The VECTOR CALL will return a row of the subCALLs, each offset from
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the previous instance by the step distance. The total number of instances in the row
is given by the iteration count. The CALLS CALL allows a BLOCK to refer to several
subBLOCKs. The next three types of CALLs specify masks. Each of the iteration
type CALLs (STRING, VECTOR, CALLS) can be masked: only a few of the specified
subCALLs will be returned. The WITH MASKS CALL adds masks to a global list of
masks. PASS MASKS reorders the masks in the global list, and MASKED extracts one
mask from the list and applied the mask to the subCALL. Finally, the IF CALL
returns one of its subCALLs depending upon the correspondence of its COORDINATE
and relation (similar to the IF type COORDINATE).

These datatype definitions were arrived at through many iterations and trials.
They are not as general or easy to use as straight procedural cells, but they sufficed

with the implementation restrictions that existed.

10.2: The Future

In the future, there are four areas of improvement needed in Bristle Blocks., The
first area has to do with the implementation concessions using the current ICL
implementation. Secondly, the floorplan of Bristle Blocks needs to have a greater
flexibility, which would allow more efficient implementations of many datapath
chips. Thirdly, more work has to be done with the simulation aspects of the chips.
Finally, I need to address the user specification issues. What languages are suitable

for the specification of Bristle Blocks chips?

The main implementation concession in the current Bristle Blocks programs has to
do with the address space limitations. Because of the 18 bit limit, the datapath cell
programs have had a split personality. Portions of cells are data structures kept in
disk files, while the remaining portions exist as programs compiled into the Bristle
Blocks system. In the new ICL system, code is swappable, so that the cells can be
entirely represented as programs without exceeding the address space of the

machine.

The second improvement to Bristle Blocks modifies the floorplan of the compiler.
In addition to allowing a greater number of buses in the datapath, I would like to

add greater flexibility in the instruction decode portion of the chip. The most .
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logical way to enhance the instruction decoder is to perform a fusion of Bristle
Blocks with the RELAY compiler, allowing the user to design chips which are
hierarchical compositions of register transfer units and finite state machines. The
datapath portion of the compiler would generate the efficient register transfer
circuitry and the PLA portion of the compiler would generate the random logic and
state machine mechanisms. The proposed compiler will interconnect the various

datapaths and PLAs using a hierarchical general interconnection system.

Thirdly, I need simulation procedures in Bristle Blocks. Each version of Bristle
Blocks has had hooks for linking simulators to the compiler, both register transfer
simulators and timing simulators. Due to the press of time, these simulators have
only been dreams. When I have the added flexibility of the Bristle Blocks/RELAY
fusion, simulation will become a very important aspect of the design. I do not plan
to do electrical model simulations of the entire chip. The simulation will be
performed in much the same manner as the layouts are generated. Since the user
provides a very high level specification of the design in the well defined design
language, RT simulations and timing information can be generated directly from the
high level specification, without having to generate the artwork and examine the

resulting layout,

Finally, I need to develop languages for specifying Bristle Blocks chips which also
capture the random logic/state machine information. These languages should feel
natural to the designer, so that the designer can easily express his desires, and so
that the user can intuitively grasp the meaning of expressions in the language. A
lower bound exists on the information content required in a chip specification.

Appropriate languages can capture the information in a clear, concise form.



-194-

Appendicies
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Appendix 1: ICL Summary and ICLIC Reference Guide

This appendix summarizes some of the language features of ICL and lists the ICLIC
functions used in this thesis for describing integrated circuit layouts. For a more
detailed description of ICL, refer to the ICL appendix of Ron Ayres' thesis [3]. A

more complete description of ICLIC is given in the ICLIC manual [4].

A1.1: ICL Summary

For the purposes of understanding the code examples presented in this thesis, ICL is

very similar to PASCAL, with the following exceptions.

Pointers: ICL makes use of pointers in its memory management scheme, like
PASCAL. However, the pointers are implicit in ICL, whereas the user must

explicitly state when pointers are to be'used in PASCAL.

Strings: ICL does not have a mechanism for building arrays. Instead, ICL allows
the user to build strings. Most languages allow text strings to be arbitrarily long.
In ICL, the user may build structures which are arbitrarily long strings of any
desired datatype. Strings are generated in ICL by enclosing the string eleménts in
curly brackets, {}. The elements of the‘ string are separated by semicolons.
Elements can be appended to the front of an existing string using the <$ operator,
and elements can be appended to the end of an existing string using the $> operator,
The $$ operator concatenates two strings. Elements of a string can be examined by
indexing into the string. The ith element of string S is accessed by writting S[i].
The tail of a string (all elements from a specified index to the end of the string) is
accessed by writting S[i-]. Quantifiers can be used to sequentially access elements

in a string without indexing into the string.

Record Generation: ICL has record constructs similar to PASCAL's. There are
differences between the record generation processes of the two languages. In
PASCAL, one must explicitly request a chuck of memory for the record, the
sequentially fill each component of the record. In ICL, one never requests chucks of
memory. Instead, one merely specifies the record template with the desired values

for each component.
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Points: POINT is a basic datatype in ICL, just like integers and reals. A POINT
contains two real values, which are usually interpreted as X and Y coordinates of a
point in two-space. Points are generated using the binary operator #. 3#4 is the
point whose x-coordinate is 3 and whose y-coordinate is 4. The x-coordinate of a

POINT P is accessed by writting P.X.,

Polymorphic Functions: In ICL, the user can specify any number of functions
‘(procedures) with the same name. There is no ambiguity if the set of input
_ parameters and return parameters uniquely determine the proper function to apply.
For instancé, the user may have a WRITE(INTeger) function, a WRITE(REAL)
function, and a WRITE(CHARacter) function. For each call to a WRITE function, ICL
selects the appropriate function based upon the parameter types. If the user writes
WBITE(S). the WRITE(INTeger) routine is called; if the user writes WRITE(5.), the
WRITE(REAL) routine is called,

Coercions: In most languages, there are predefined arithmetic coercions. If the
user assigns an INTeger value to a REAL variable, the compiler automatically calls a
routine which translates INTegers to REALs. In ICL, the user may declare coercions
between any datatypes. ICL will implicitly apply coercions to satisfy datatype

regquirements,

Infix Operétors: Math operators, such as + and -, are infix operators: one writes
A + B rather than +(A,B). Binary function definitions (functions which take two
parameters and return one value) typically do not use infix format: f(A,B), not A f
B. In ICL, any binary function may use the infix format when the function name is

preceded by the \ operator. f(A,B) can be written A \f B.

Quantifiers: Virtually every language has constructs for generating loops in the
program control flow. These loops may be arithmetic loops (FOR loops) or
conditional loops (WHILE loops or REPEAT loops). In addition to these standard loop
generators {(quantifiers), ICL has mechanisms for sequencing through strings (FOR
element $E string;). ICL also has unary and binary operators which apply to
quantifiers. The && operator forces two loops to iterate together; the % operator
steps one quantifier for each iteration of the other quantifier. Unary oper.atozjs may
eliminate some iterations of the quantifier or perform some actions before each

iteration of the quantifier.
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Suspendable Functions: The suspendable function mechanism -in ICL allows
the user to assign function call references to variables. A reference to function X
may be assigned to the variable Y by writting Y:= // X \\;. Later, function X may be
envoked by writting <*Y*>.

A1.2: ICLIC Reference Guide

The datatype definitions used in ICLIC are listed here:

TYPE SP= { POINT };
HIRE= [HIDTH:REAL PATH:SPI;

RG= EITHER
POLY=  SP
HWIRE=  UIRE
BOX= BOX
UNION= FMRGS

MATRIX= [DISPLACE:MRG BY:MATRIXI]
POINT= [DISPLACE:MRG BY:POINT]
COLOR= [COLOR:MRG WITH:COLOR]

DISK=  .....
ENDOR;

MRG= [RG:RG VNBB:BOX .....1;
MRGS= { INRG 1;

COLOR= SCALAR (RED, BLUE,GREEN, YELLOU, BLACK, GLASS, BROLIN, VIOLET,BURIED) ;

MATRIX= (A, B, C,
D, E, F: REALI;

These definitions declare that SP (String of Points) is an indefinite list of points, a
WIRE contains a width and a path, and a BOX is two points. An RG (ReGion) may
either be a POLYgon, represented by an SP, a WIRE, a BOX, an arbitrary list of MRGs,
an MRG whose points are transformed, a displaced MRG, an MRG with an associated
COLOR, or other types which are not used in this thesis. An MRG contains an RG

along with a Virtual bounding box and other internal data.

There are functions to aid in the generation of MRGs., The basic functions are first

defined:



DEFINE TO(A,B:POINTI=BOX: .......00vvenn ENDDEFN
DEFINE AT(1:MRG  P:POINTI=MRG:  .....ivsn ENBOEFN
DEFINE ROT(M:1RG ANGLE:REAL)=IRG: .... ENDOEFN
DEFINE MIRXULTRG)=MRG:  vovevvevnnnnen . ENDDEFN
DEFINE MRY(M:MRG) =MRG: oovvivvvvnneens ENDDEFN
OEFINE PAINTED(M:MRG C:COLOR)=MRG: ... ENDDEFN
DEFINE UNION{A,B:IRG)=MRG: ....c0vvuuunn ENDDEFN

The TO function takes two points and makes a box. AT takes an MRG and a POINT
and generates a new MRG identical to the first MRG with all features displaced by
the amount specified by the point. ROT takes an MRG and a REAL and generates a
new MRAG identical to the first but rotated counterclockwise the numher of degrees
specified by the REAL. Similarly, MIRX and MIRY mirror about the X and Y axis,
respectively. PAINTED applies the given COLOR to the given MRG, and UNION takes
two MRGS and merges them. To generate an array of identical MRGs, the following

routine can be used:

TYPE ARRAY__OF_DDTS= [IX,IY:REAL NX,NY:INT];
DEFINE AT(M:MRG  A:ARRAY_OF_DOTS)=MRG: ..... ENDDEFN

IX and IY specify the distance between columns and rows, and NX and NY specify
the number of columns and rows. To easily generate colored geometric primitives,

the following routines have been defined:

DEFINE lHlRE (C:COLOR LI:REAL P:SP)=IRG: cees ENDDEFN
DEFINE WIRE(C:COLOR P:SP}=MRG: .... ENDDEFN

DEFINE BOX(C:COLOR B:BOX)}=MRG: .... ENODEFN

DEFINE POLYGON(C: COLOR SP:SP)=MRG: .... ENDDEFN
DEFINE DISK(M:MRG)=MRG: .... ENODEFN

The second wire function does not require a width parameter: it uses the default
width for the given color. The DISK function configures the MRG so that it can
swap to a disk file with the virtual memory system in ICL. The color interpretation
for NMOS is as follows:

GREEN diffusion
RED polysilicon
BLUE metal (first layer)
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YELLOW implant

BLACK contacts

GLASS overglassing

BROLIN metal-to-metal contact
VIOLET second layer metal
BURIED buried contacts

There are globally defined MRGs for each of the feedthroughs in the NMOS

technology:
GCB Green-to-Blue feedthrough (Green-Contact-Blue)
RCB Red-Contact-Blue

GRCBU Butting contact, Red 'UP' (Green-Red-Contact-Blue-Up)
GRCBL Butting contact, Red 'Left’

GRCBO Butting contact, Red 'Doun’

GRCBR Butting contact, Red 'Right’

Geeece Green-to-Metal2 {(Green-Contact-Blue-Contact-Blue)
RCBCB Red-to-lletal2

BCB MHetall-to-fletal2

(GGlobal variables and routines:

LAMBOA=REAL
The basic dimension for describing layouts
WIDTH(REAL) =REAL
The width of metal wire required to suppliy pouer to the given number
of squares of pullup. For example, to suppliy 188 minimum size
inverters uhose pullups are each 174 squares wide, the metal unire
should be HIDTH(188x%.25) wide.
WIDTH{COLOR) =REAL
The default width of features for the given layer
SPACING (COLOR, COLOR) =REAL
The spacing betueen feature edges of the two colors
CENTER_TQO_CENTER (COLOR, COULOR) =REAL
The center-to-center spacing for uires of default sizes on the tuwo
layers
Q_LDAD=REAL
The capacitive load for the minimum size transistor
LOAD (COLOR, BOX) =REAL
The capacitive load for the box
LOAD (UIRE) =REAL
The capacitive load for the uWire

There are routines for input/o_utput of MRGs:

PLOT{(PICTURE,PLOTTER);
vhere PICTURE may be one of:
an MRG
AlF (file-name}
AlF(file-name, list_of_calors)

and PLOTTER may be one of:
HP_7221A
SCREEN
 HP_2643
HP_1302
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AIF (file-nane)
AIF (file-name, list_of_colors)

BB (1IRG) =BOX the minimum bounding box of the MRG
CIF2_BUT UIRG, file-name) produces a ClF file
CIFZ_IN(file-name)=IRG reads a CIF file
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Appendix 2: Imbedded Language Example

The code listed here generates the parameterized shift register cell presented in

chapter 3. There are several parameters used in the routines below. The following

table lists these parameters and states what information each parameter represents:

Parameter

Py
PO
HP

Meaning

The length of the pullup transistor in lambda

The length of the pulldoun transistor in lambda

The width of a pouer |ine which supplies half a
rouw of cells

The power line width for a whole rou

The pouer line width for tuwo rows

The power line width for the entire array

The number of shift register bits in a rou

The number of rows for each shift register {atuays an
odd number, uhich indicates hou many times the
long shift register is folded) '

The number of shift registers in the array

The number of bits in the last row of the shift register

The total number of bits in each shift register

The first set of routines generate a single bit of the‘shift register. There are six

routines: each generates layouts with one of the six aspect ratios. The first five cell

layouts generate only one layout for the cell, but the last generates different

layouts for ad jacent bits. By alternating the two layouts, the total array size is less.

For this reason, the SHIFT CELL datatype is defined, which can contain two MRGs.

The first five routines only use the ODD component of the SHIFT CELL, while the

last routine uses both,

TYPE

SHIFT_CELL= [EVEN,ODD:!MRGI;

DEFINE SHIFT1_CELL {PU,PD,DP:REAL)}=SHIFT_CELL:

BEGIN

VAR CVDD=REAL;

DO CvDD: =8+DP/2 NAX 4+PU;

GIVE (00D: ¢

{GRCBONAT S5#-5.
GRCBUNAT 12#1;
RCBCB\AT G#3;
GCB\AT {5#4-12.-0P/2;.4HCVDOY 4
WIRE (RED, {4#3;.#.5;1#-2.5;.#-3.1);
WIRE (GREEN, {0#@;1.5#.4H-2.5: . H#-4.1)
WIRE({RED, {5.5#-8.;3.5#-12.;15#.1);
LIIRE (GREEN, {6#-13.-DP/2; . #-14.;12#-8.; . #CVDD;6#.1 ) ;
1F PD0>=3
THEN POLYGON{GREEN, {6#-15.;8+P0#.; .#-3.;9.5#.;6#-12.51)
ELSE NIL FIi
BOX (RED, S#2\TO 15#2+PU) 4
BOX (YELLOW, S#B\TO 1S#4+PUYI\AT {DHB; 1440} ;
MIRE (VIOLET, {543 .#3.51 ),
HIRE (VIOLET, {19#3; .#-3.51)1]
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END
ENDDEFN

DEFINE SHIFTZ2 _CELL (PU,PD,DP:REAL) =SHIFT_CELL:

BEGIN VAR CVDD=REAL;

D0  CVDO: =11+DP/24PU;

GIVE (000: { {GRCBONAT 4#-7.;
GRCBUNAT 10#1;
RCBCBN\AT 4#6+PU;
GCBNAT {4#-14,-~-DP/2;18HCVODI 4
WIRE (RED, {446+PU; . #.5;14-2.5;.4-3.1);
WIRE (GREEN, 18#0;1.5#.;44-2.5; . #-6.1);
WIRE(RED, {4.5#~18.;8.5#-14.;12#.1);
LITRE (GREEN, {54-14.-DP/2;.#-14.;104#-18.; . 4CVDDY };
IF PD>=3

THEN POLYGON{GREEN, [(5#-16.;6+PD#.; . #-12.;.-14.+1;
7.54.;548-13.51)
ELSE NIL FI;
BOX(RED, 7#2\T0 13#2+PU};
BOX (YELLGW, 7#.5\7T0 12.5#4+PUI\AT {8#9;1248) ;
HIREC(VIOLET, {4#6+PU; . #12.54PUL ) 5
: WIRE(VIOLET, {16#6+PU; . #PU-.51111
END
ENDDEFN

DEFINE SHIFT3_CELL {(PU,PD,DP:REAL)=SHIFT_CELL:
(ODD: { {RCBCB\AT 4#4;
GRCBRNAT {11#4;24#.1
GCBNAT {16#-1.-DP/2; 224PUH#S+DP/2) ;
WIRE(RED, {5#4; .#-2.1);
WIRE (GREEN, {8#8:18#.; . #31);
LIRE(REQ, {1445 (#8284, .4-1.1};
WIRE {GREEN, {17#-1.-DP/2;.#11);
WIRE (GREEN, 128+PUH#B;23H. ;. #5; 23+PUH. 5 . #9+DP/21 ) 5
IF PD>2 THEN BOX(GREEN, 1648\T0O 23#PD) ELSE NIL FI;
BOX (RED, 2542\T0 26+FU#S) ;
BOX(YELLOM, Z3#2\TO 26+PU#18) I \AT 18408;26+PUHA} ;
WIRE {(VIOLET, {484, H3+DP/21 )
WIRE (VIOLET, {30+PU#4; . #-1.-DP/2))1}]
ENDDEFN

DEFINE SHIFT4_CELL (PU,PD,SP,DP:REAL) =SHIFT_CELL:
BEGIN VAR [1=IRG;
D0 T™M:=1{RCBCB\AT 1#4;
GRCBRAAT {8#4:21#41
GCBAAT {13#-1.-SP/2;19+PUH#3+5P /21 3
WIRE(RED, {L1H4; JH7317H. 3 H-2.1)
HIRE (GREEN, {14#-1.-SP/2; . #8;284#.; . #5;28+PU#. ; . #3+5P/2} )
IF PD>2 THEN BOX (GREEN, 13#-1.\T0 Z1#PD-1) ELSE NIL FI;
BOX (RED, 22#2\T0 23+PU#3) ;
BOX (YELLOW, 204#2\TO 23+PU#18}11};
Give {000: iy
PINMTRYXNAT 13#-2.-5P3-
WIRE(RED, 2#45 . #-2.1)
LITRE (GREEN, {Q#8;74.; . #31)
HWIRE (RED, {16#-5.-SP; . #.+1.5;21#.42.5;22K.1 )3
WIRE (GREEN, {2848, .#-5.-5P} )
HIRE (GREEN, {33#-2.-SP; . #0:26+PU#. 1} 11
END
ENDDEFN
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DEFINE SHIFTS_CELL (PU,PD,SP,DP:REAL) =SHIFT _CELL:
BEGIN VAR M=MRG; Y1, Y2=REAL;
D0 Y1:=-208+SP MAX 26+PD;
YZ2:= Yl+ (S+DP/2 MAX 6+PU);
M: = {GRCBUNAT {0418;.#Y1+21;
BCB\AT 8#Y142;
GCBCB\AT 8H-3.
LUIRE(VIOLET, {B# Y1421
HIRE(RED, {B#13; #21 5; “#”3 5 ﬂ24+PD!)
POLYGDN(CREEN {2H28;:54. #23+PD 2 H.;. 8241 ),
HIRE (GREEN, {-1.#23+PD; #Yl+l a4. #YZ -1;44.1);
BOX (RED, ~3.#Y1+3\T0 3#Y1+PU+3)
BUX(YELLDU =3.#Y1+IN\TO 3#Y1+PU+5)I
GIVE [00D: {(M\AT 7#8
H\HIRY\AT 1549,
GCBNAT {11#19;.#Y2}1;
RCBCB\AT {7#-17. 14# 18.1;
WIRE (GREEN, {B#-1.;.4.5; 8#8 5;.H#31);
WIRE (GREEN, 18#-1. # 5;14#6.5; #9!)
WIRE (RED, {G#-16. 3# LH.5;8H43.51);
WIRE (RED, {13#-9. ll# .#.5;8#3.5}))]

END
ENDDEFN

DEFINE SHIFT6_CELL (PU,PD,SP,DP,HP:REAL) =SHIFT _CELL:
BEGIN VAR M,ML=MRG; Y1, Y2=REAL;
DO Yl:= 23+HP MAX L9+PD
YZ2:= Yl+ (S940P/2 MAX 6+PU);
M: = {GRCBUNAT {B#13:.4Y1+21;
BCB\AT 8#Y1+2;
WIRE (VIOLET, {8#10;.4#Y1+2
WIRE (RED, iB#lG H24.5; 4#26 5; #27+PD})
PULYCDN(CREEN 12H23:5H. #“6+PD 2 .3 H271)
HMIRE (GREEN, {-1.#26+PD; #Y1+1 a4. #YZ 1:4#.1);
LIRE (GREEN, {848 . #12}) ;
BOX (RED, -3. #Yl+3\TD °#Y1+PU+3)
BOX (YELLOMU, -3, #Y1+1\TD 3#Y1+PU+5)]
ML: = {CRCBD\AT 8#-1.
GCBCBNAT 3#- 18
RCBCBNAT 7#-17,
LITRE (GREEN, {3#- lB s H-13.1);
HIRE(RED.(?# 17,5 . 8-4.1);
WIRE{VIOLET, (8#18 2.54-9.1} ,
HIRE(VIOLET, (3#- 28 ;6.5#-18.1)1;
GIVE (0DD: {r;
M\MIRX\AT 3#-18.;
ks
GCBNAT {4H22; . HY2;7H-48.; . H#-18.-Y2})
RCBN\AT {46 7H-24.1};
WIRE(RED, {-2.#9;34.;.47});
WIRE (RED, {1#-27.;6H.;.4-25.1)}
EVEN: {M\MIRY\AT 8#48;
MNROT 188\AT 114#-18.;
MLNAT 848;
WIRE (RED, {1049;5#. ;. 471
HIRE (RED, {13#-27.:8#.;.4-25.1)11

I II

END
ENDDEFN
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We would like a series of routines which would take the shift register bits from
the routines above and generate complete arrays. As one might expect, much of the
work in generating these arrays is independent of which type of aspect ratio one is
using, and as one might also expect, there are some differences. Therefore, we have
a routine FINISH which contains the code which can be common for each of the
different cell 'types and individual routines for generating the type-specific data.
The datatype SHIFT ROW was created to contain the information which must be

transferred between each of the SHIFTn ROW routines and the FINISH routine.

TYPE SHIFT_ROW= [FIRSYT,MIDDLE,LAST,ALT,ONLY:TIRG
DOLIN,UP, TOP,BOTTOM, REDOGE: REALT 5

DEFINE FINISH(R:SHIFT_ROL RB,NB:INT TP:REAL)=MRG:
BEGIN VAR CTC, TOP,BOTTOM=REAL ; M=I"RG;
DO CTC:=R.UP-R.DOLIN;
TOP: =R.UP4+R. TOP;
BOTTOM: =R.DOLIN-R. BOTTOM;
M:=1F RB>1 THEN
{R.FIRST;
IF RB>4 THEN -
R.IMIDBLENAT B#2<CTCNAT [NX:1 NY:RB/2-1 1Y:2wLTCI
ELSE NIL FI;
R.LAST\AT BHCTCw (RB-1};
R.ALTNAT INX:1 NY:RB/2 1Y:2«CTC1}
ELSE R.ONLY FI;
GIVE  UNAT INX:1 NY:(NB+1)/2 1VY:2x:CTCvRBI;
FNHIRXNAT BHZ+RB:CTC+2+R.DOWNNAT INX:1 NY:NB/2 IY:2:CTCoRBI H
WIRE(VIOLET, {-TRP+1.5#BOTTOM+1.5;-3.#.
HCTCw (RBNB-1) +TOP-1.5; ~TP+1.5#.1 ) 4
LHREA(VIOLET, IR.REDGE+TP-1.5#B0TTOM+1.5;R.REDGE+3#. ;
HCTCHARBANB-1) +TOP-1 . 5; R.REDGE+TP-1.5#.1 ) ;
BOX (BLUE, ~-TPH#BOTTON\TD B#CTCs (RB+:NB-1)+TOP)
BOX (BLUE,R.REDGE#BOTTOMNTO R.REDGE+TPHCTCy (RB+NB-1)+TOP) }
\AT TPH-BOTTONM
END
ENODEFN

DEFINE SHIFT1_ROW(PU,PD,DP,TP:REAL NR,RB,NL:INT)=SHIFT_ROLl:
BEGIN VAR M,P,R=MRG;|LEDGE, REDGE, CVDD,CTC=REAL;
DO LEOGE:=1F RB>1 THEN 7 ELSE @ FI;

REDGE : =28+NR+LEDGE+3;

CvDD: =8+DP/2 MNAX 4+PU;

CTC:=12+DP/24CVDD; ‘

M:=SHIFTI_CELL (PU,PD,DP).000D;

P: = IBOX(BLUE, -1.#-12.-DP\T0O REDGE-3#-12.):
BOX (BLUE, 3#3\T0O REDGE+14CVDD+DP/2)
LWIRE(VIDLET, {-3.#9.5;REOGE-3#.1);
HIRE(VIOLET, {3#-3.5;REDGE4+3#.1) 1}

R: =lI\AT LEDGE#B\AT [IX:28 NX:NR NY:11;

GIVE [DOUN:-12.-DP/2
UP:CVDOD
T0P:DP/2 .
BOTTOM:DP/2°
REDGE : REDGE
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FIRST: {R:P;UIRE (GREEN, {1-TP#0;LEDGE#.} )}
MIDDLE: {R; P} ‘
LAST: {I\AT LEDGE#B\AT [IX:28 NX:NL NY:173;
P; WIRE {GREEN, {28:NL+LEDGE#8; REDGE+TP-1#.1)}
ALT: {R\ROT 18B\AT REDGE#2+CVDD;:
PAMIRXNAT @#2+CVDD;
HIRE(GREEN.{4#2*CVDD;~1.#.:.#Z*CTC;LEDGE#.}):
NIRE(GREEN,{REDGE—Q#B;.+5#.;.#Z*CVDD;REDGE-LEDGE#.})}
ONLY:{R;P:HIRE(GREEN.fl—TP#B;LEDGE#.i):
' WIRE (GREEN, {REDGE-3#8;REDCE+TP-1#.1)1]
END
ENDDEFN
DEFINE SHIFT2_ROW(PU,PD,DP, TP:REAL NR,RB,NL: INT) =SHIFT_ROU:
BEGIN = VAR M,P,R=MRG; LEDGE, REDGE, CVDD, CTC=REAL ;
00 LEDGE:=IF RB>1 THEN 6 ELSE 1 FI;
REDGE : =24NR+LEDGE+3;
CVDD: =11+DP/2+PU;
CTC:=144DP/24CVDD;
M:=SHIFT2_CELL (PU,PD, DP) . 000;
P:={BOX (BLUE, -1.#-14, -DP\TO REDGE-3#-14.);
BOX (BLUE, 3#11+PU\TO REDGE+1#CVDD+DP/2) 5
HIRE(VIDLET,{—3.#PU+12.5;REDGE—3#;});
HIRE (VIOLET, {3#PU~.5:REDGE+3#.1)1:
R: =M\AT LEDGE#B\AT [IX:24 NX:NR NY:11;
GIVE (DOLN:-14.-DP/2
UP:CVDD
TOP:DP/2
BOTTOM: OP/2
REDGE : REOGE
FIRST: {R;P;LIIRE (GREEN, {1-TP#8;LEDGEH. 1)}
MIDDLE: (R:P}
LAST: (IN\AT LEDGE#B\AT [IX:24 NX:NL NY:11:
P; UIRE (GREEN, {24:NL+LEOGE#B; REDGE+TP-1#.1)
ALT: {R\ROT 18B\AT REDGE#2+CVDD;
PAMIRX\AT 8#2+CV0D;
UIRE(GREEN.§4#2*CVDD;—1.#.:.#Z*CTC;LEDGE#.});
HIRE(GREEN.fREDGE—4#B:.+5#.;.#Z*CVDD:REDGE—LEDGE#.})}
DNLY:{R;P;UIRE(GREEN.{l—TP#B;LEDGE#.});
WIRE (GREEN, {REDGE-3#8;REOGE+TP-1#.1)11
END
ENDDEFN

DEFINE SHIFT3_ROW(PU,PD,DP, TP:REAL NR,RB,NL: INT)=SHIFT_ROU:

BEGIN. VAR M",P,R=M"RG; LEDGE, REDGE,, CTC=REAL ;

D0 LEDGE:=IF RB>1 THEN PU-5 MAX 1 ELSE 1 FI;
REDGE: = (52+2+PU) =:NR+ IF RB>1 THEN 2+ABS (PU-8) ELSE 2 FI;
CTC: =18+0P;

M:=SHIFT3_CELL (PU,PD, 0P} .00D;

P:={BOX (BLUE, -1.#-1.-DP\TO REDGE-3#-1.};
BOX (BLUE, 34#9\T0 REDGE+1#9+DP) ;
HIRE(VIOLET.{—3.#9+DP/2:REDGE—3#.}),
HIRE(VIOLET,{3#—1.-DP/2;REDGE+3#.})};

R: =I\AT LEDGE#B\AT [IX:52+2%PU NX:NR NY:11;

GIVE [DOUN:-1.-DP/2

UP:940P/2

TOP:DP/2

BOTTOM: DP/2

REOGE : REDGE

FIRST: {R;P;WIRE (GREEN, {1-TP#8; LEDGEH. 1)}
MIDDLE: (R;P}
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LAST: (MAT LEDGEA#B\AT [IX:52+2+PU NX:NL NY: 13;
P;LIRE (GREEN, {(52+2xPU)+ NL+LEDGE#G' #4, REDGE+TP 1#.:.481)1
ALT: {R\ROT 188\AT REDGE#18+DP;
P\MIRX\AT B#18+0P;
WIRE (GREEN, 16-PU HAX BH18+DP; ~1.#.; . #2«CTC; LEDGE#.} ) ;
WIRE (GREEN, {REDGE- (B-PU MAX 8)#8 REDGE+1# H18+0P;
REDGE-LEDGE#. 1)}
ONLY: {R;P; LIIRE (GREEN, {1-TP#0;LEDGE#.}) ;
WIRE (GREEN, {REDGE-1#8; . #4; REDGE+TP 14.;.48111]
END
ENDDEFN

DEFINE SHIFT4_ROW(PU,PD,SP,DOP, TP:REAL NR,RB,NL: INT) = =SHIFT_ROU:
BEGIN VAR M,P,R=MNRG;REDGE,CTC=REAL ;
DO REDGE: —(¢6+PU)>NR+15
CTC: =28+25P;
M:=SHIFT4 CELL(PU PD,SP,DP) . 00D:
P:=1{BOX(BLUE, -1.#-1.-SP\TO REDGE-3#-1.);
BOX (BLUE, 34#9\T0 REDGE+143+5P) ;
BOX (BLUE, 3#-11.-2%SP\T0O REDGE+1# 11.-5P);
NIRE(VIDLET {-3. #4 ;REDGE-3#.11};
HIRE(VIOLET, {3#-6.-SP;REDGE+3#.1) 1} ;
R:=IM\AT 4#B\AT [IX Z26+4PU NX:NR NY:11;
GIVE [DOUN:-11,-3.%SP/2.
UP:3+5P/2
TOP:SP/2
BOTTOM:SP/2
REDGE : REDGE
FIRST: {R;P;UIRE (GREEN, {1-TP#B;4#4.1)}
MIDDLE: iR; P}
LAST: {(FINAT 4H#B\AT [IX:26+PU NX:NL NY: 131,
PsLIIRE (GREEN, { (26+PU) «NL+4#B; . #4 + REDGE+TP 1#.;./481))
ALT: {R\ROT 18B\AT REDGE#18+5P;
PXMIRX\AT 8#1845P;
HIRE (GREEN, {ll#lo+SP ~1 8. H2:CTC 4801 )
HIRE (GREEN, {REDGE- 11#8, +18# #18+SP REDGE—é#.})}
ONLY: {R;P;LIRE (GREEN, {1-TP#B;64#.1) 3
HIRE (GREEN, REDGE—ll#B;.#4;REDGE+TP—1#.;.#B})}]
END
ENDDEFN

DEFINE SHIFTS ROH(PU PD,SP,DP, TP:REAL  NR,RB,NL:INT)=SHIFT_ROW:
BEGIN VAR M,P,R=INRG;REDGE,CTC, Y1, Y2= REAL'
DO REDGE: =16+NR+2;

Yl:= 214SP MAX 27+PD;
Y2:= Y1+ (3+DP/2 IAX 8+PU);
CTC: =Y2+16;
M:=SHIFTS CELL(PU PO, SP, DP} . 000;
P:={BOX(BLUE, -1.#18\T0 REDGE- 3#Yl—7)
BOX (BLUE, 3#Y1+3\T0 REDCE+1#Y2+DP/2)
HIRE(VIDLET {-3.#-16.;REDGE-3#.1);
WIRE(VIOLET, {3#-9. REDGE+3# 1)1
:=M\AT -2.#1\AT (IX:16 NX:NR NY:11;
GIVE [DDHN -16.
UP:v2
TOP:DP/2
BOTTOM: 2
REDGE : REDGE
FIRST: iR;P;LIRE (GREEN, {1-TP#8;-2.#.1)}
MIDDLE: {R; P}
LAST: {(M\AT -2 H1N\AT [IX:16 NX:NL NY:11;
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P;LIRE (GREEN, {16+NL-2#8;REDGE+TP-1#.})1}
ALT'{R\ROT 18B\AT PEDFE#ZwYZ
PNITIRXN\AT @42:xv2
LIRE (GREEN, {442 Y2 -6. 4. #2>CTC ~2.H8.1 )
WIRE (GREEN, {REDGE-4#48; . +18# #2:Y2 REDGE+2#.})}
ONLY: {R:P;IIRE (GREEN, {1-TP#8:-2. # 1)
HIRE (GREEN, {REOGE-4#0; REDGE+TP-1#.}1)1]
END
ENDDEFN

DEFINE SHIFTE_ROW(PU, PO, SP 0P, TP,HP:REAL NR,RB,NL:INT)=SHIFT RO
BEGIN VAR IME,MO,P,R=MRG; REDGE CTC,Y1l,Y2=REAL;
bo REDCE =8 NR+18 5;
=23+HP MAX Z29+P0;
=Y1l+ (S+5P/2 NMAX B+PU);
CTC'=_wY4+18
(0DD: M0 EVEN:ME]:=SHIFT6_CELL (PU, PO, SP,0P,HP) ;
P:={BOX{BLUE, -1.#28\T70 REDGE-3#Y1- 3}
BOX(BLUE, -1.#-15.-Y1\T0 REDGE-3#-38. )
BOX{BLUE, 3#Y1+9\TO REDGE+1#Y2+SP/2) ;
BOX (BLUE, 3#-18.-Y2-SP/2\T0 REDGE+1#-27. -Y1};
NIRE(BLUE IREDCE-546:54.1)
HUIRE (BLUE, (S#- 24..REDGE 5#...# 33.1);
BCB\AT {546, REDGE-5#-33.1;
NIRE(VIOLET, {-3.46;5#4.1);
WIRE (VIOLET, {REDGE-5#-33, ; REDGE+3¥. Phig
R:={1IO\AT 11.540\AT [IX:186 NX.(NR+1)/2 NY: 1]
MENAT 11.SH#B\AT [IX:16 NX:NR/2 NY: 11t
GIVE I[DOMN:-18.-Y2
UpP:v2
TOP:5P/2
BOTTOM: SP/2
REDGE : REDGE
FIRST: {R;P;IRE (GREEN, {1-TP#8:11.54.1)}
MIDDLE: {R;P)
LAST: {MONAT 11.5#B\AT [IX:16 NX: (NL+1)/2 NY:11;
FIENAT 11, S#B\AT [IX:16 NX:NL/2 NY:11;
PiUIRE (GREEN, {S«NL+11.548;REDGE+TP- 1#.})}
ALT: {R\ROT 188\AT REDGE#ZWYZ
P\IMIRXNAT B#2:Y2,
WIRE (GREEN, {6#2+:Y2;2H, #ZsCTC 11.54.1);
WIRE (GREEN, {REDGE-6#0; . +2# #2 Y23 REDGE 11.54#.1)1
ONLY: (R;P; HIRE(GREEN {1-TP#B;11. S#.}):
HIRE(GREEN REDGE—IQ#B;REDGE+TP—1#.})l]
END
ENDOEFN

Each shift array function is now trivial: They each call their corresponding SHIFT

_ROW function and the FINISH function. Also note that each of the SHIFTn 1 ROW
functions requires a subset of the total list of parameters, but that the SHIFTn
_ARRAY functions require all parameters, but do not use all of the parameters. This
is done so that other programs do not have to be aware of the differences in the

parameter requirements.

OEFINE SHIFT1_ARRAY (PU,PD,SP,DP, TP, HP: REAL NR,RB,NB,NL: INT) = HRG
FINISH(SHIFT1_ROW (PU,PD,DP, TP,NR,RB, NL},RB,NB, TP)
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ENDBEFN

DEFINE SHIFTZ_ARRAY{(PU,PD,SP,0P, TP,HP:REAL NR,RB,NB,NL: INT)=IRG: .
FINISH(SHIFTZ_ROL(PU,PD,DP, TP,NR,RB,NL} ,RB,NB, TP)
ENDDEFN

DEFINE SHIFT3_ARRAY (PU,PD,SP,0P, TP,HP:REAL NR,RB,NB,NL: INT)=IRG:
FINISH{SHIFT3_ROW(PU,PD,0P, TP,NR,RB,NL},RB,NB, TP}
ENDDEFN

DEFINE SHIFT4_ARRAY (PU,PD,SP,0P, TP, HP:REAL NR,RB,NB,NL: INT) =IRG:
FINISH(SHIFT4_ROLI(PY,PO,SP, 0P, TP,NR,RB,NL) ,RB,NB, TP)
ENDOEFN

DEFINE SHIFTS_ARRAY(PU,PD,SP,DP,TP,HP:REAL NR,RB,NB,NL:INT}=MRG:
FINISH({SHIFTS_ROW(PU,PD,SP,DP, TP,NR,RB,NL) ,RB,NB, TP)
ENODEFN :

DEFINE SHIFT6_ARRAY (PU,PD,SP,DP, TP,HP:REAL NR,RB,NB,NL:INT) =MRG:
FINISH(SHIFT6_ROW(PU,PD,SP,DP, TP,HP,NR,RB,NL) ,RB,NB, TP)
ENODEFN , .

To choose between the various possible cell types and configurations, we need to
know the sizes of all arrays. Since we want to try many configurations, but we
will only use one, we don't want to perform the expensive computation of
generating the arrays until we know which one we want. The SIZE function takes
the pertinent parameters and computes what the array size would be if we were to
actually generate that array. This computation is very cheap both in terrﬁs of time
ahd memory space. The SIZE function returns a POINT whose x coordinate is the
horizontal size of the array and whose y coordinate is the vertical size. Thé SIZE
function also returns a Suspendable Function. Thé suspendable function is
generated inside the //: \\ characters. This function is not executed, but is a
freeze-dried function call. In this usage, all of the parameters for the call to the
SHIFTn_ARRAY functions are evalluated, but the SHIFTn ARRAY function is not
called. At any time in the future we may, if we wish, actually perform the
function call and receive the resulting layout. The datatype SHIFT MAKER is our
freeze-dried function cail, and SHIFT RESULT is the datatype which SIZE returns,

containing both the array size and the suspendable function,

TYPE SHIFT_NAKER=//IRG\\;
SHIFT_RESULT=ISIZE:POINT SS:SHIFT_MAKERI;

DEFINE SIZE(NB,TB:INT POLER:REAL CLASS,RB:INT)=SHIFT_RESULT:
-BEGIN VAR PU,PD,SP,DP, TP, HP=REAL; NR,NL=INT;
DO PU:=2./POUER NMAX 16./3.;
PD: =32./PU NAX 2.;
NR:=(TB+RB-1) /RB;
NL:=TB-{RB-1}+NR:
SP: =UIDTH (POUERNR) 5
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OP: =LIDTH (2+POLIER=NR} 5
TP: =UI0TH(TBNBwPOUER) ¢
HP: <L OTH(POLER=NR/2} ¢
GIVE IF CLASS=1 THEN
[SIZE: 25#NR+ IF RB>1 THEN 18 ELSE 3 FI +2«TP #
((8+DP/2 NAX 44PU) +124DP/2) «NB+RB+DP
SS://:SHIFT1_ARRAY IPU, PB,SP,DP, TP, HP,NR, RB,NB, NLT\\]
EF CLASS=2 THEN - '
ISIZE: 24+NR+ 1F RB>1 THEN 9 ELSE 4 F| +2«TP #
(25+0P+PU) =RB+NB+DP
SS://:SHIFT2_ARRAY [PU,PD,SP,0P, TP,HP,NR,RB,NB,NLI\\]
EF CLASS5=3 THEN : '
[SIZE: (52+42+:PU)=NR+ If RB>1 THEN 2+ABS{PU-B} ELSE 2 FI +2«TP #
(18+DP) +:RB+:NB+DP
SS://:SHIFT3_ARRAY (PU,PD,SP,DP, TP, HP,NR,RB,NB,NL1\\]
EF CLASS=4 THEN
[SIZE: (26+PU}«NR+15+2+TP # (28+2+5P)+«RB=:NB+SP
S5://:SHIFT4_ARRAY {PU,PO,SP,0P, TP, HP,NR,RB,NB,NLI\\]
EF CLASS=5 THEN
[S1ZE: 16w:NR+2+2+TP #
{16+ (2145P IMAX 27+4PD) +{3+DP/2 MAX 6+PU) ) »RB+NB+DP/2+2
SS: //:SHIFTS_ARRAY [PU,PD,SP, DP, TP, HP,NR,RB,NB,NL] \\]
ELSE
[SIZE: &xNR+18.5+2xTP #
{20 U{23+4HP- NAX 29+PD) + (9+45P/2 MAX 6+PU) } +18) «RB=NB+5P
SS://:SHIFT6_ARRAY [PU,PD, SP,DP, TP, HP,NR,RB,NB,NLI\\T F1
END

ENDDEFN

The SHIFT CELL function is our actual shift cell. We call it passing the number of
shift registers required, the number of bits per register, the power requirements,
the desired area, and the oversize costs. This function generates several candidates
by calling the SIZE t:unction and returns the array which best matches the desirerd
size. If there are candidates which fit within the desired area, the one with the
closest match to the area is chosen. If no candidates match, the amount of oversize
in both x and y for all candidates is multiplied by the weights and the candidate

with the smallest resulting cost is used,

DEFINE SHIFT_CELL(NB,TB:INT POLER:REAL SIZE,UEIGHT:POINT) =lRG:
BEGIN VAR I,J=INT;
DEFINE BEST(A,B:SHIFT_RESULT) =SHIFT_RESULT:
IF A.SIZE<SIZE THEN
IF (B.S1ZE<SIZE)&(DIST(B.SIZE,SIZEY<DIST(A.SI1ZE,SIZE))
THEN B ELSE A FI
EF B.SIZE<SIZE THEN B
EF ABS(({(A.SIZE-SIZEI\SCALED_BY LEIGHT) MAX 8#8 ) <
ABS (((B.SIZE-SIZEY\SCALED_BY UEIGHT) MAX 848 ) THEN A
ELSE B FI
ENDOOEFN
<% (\BEST SIZE(NB,TB,POUER,I,J} FOR I FROM 1 7O &; 11
~FOR J FROM 1 70 21 BY 2;).SSw>
END
ENDDEFN
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When the user has specific size requirements for the shift array, a direct call on the
SHIFT CELL function is used. Most of the time, however, the user can make
tradeoffs of chip area between various units. In these cases, the user may wish to
see the sizes of the various candidates. The GRAPH function will plot a graph of all
candidates within a maximum size limit while the TABLE function prints a table of
this same data. Given this information, the user can see what the possible areas are
for the arrays, which will aid in the planning of other circuit sizes, These
functions take the number of shift registers, the number of bits per register, the
power required, the maximum number of folds used (although the SHIFT CELL as
written always‘ uses a maximum of 21), and the maximum candidate size which

filters the output.

DEFINE GRAPHINB, 7TB: INT POLER:REAL N:INT [MAX:POINT)=I"RG:
BEGIN VAR M=MRG;CLASS,RB=INT;P,0=POINT;SPS=5PS;5P=5P
DO SPS:={COLLECT
{COLLECT SIZE(NB, T8,POLER,CLASS,RB}Y.SIZE
FOR RB FROM 1 TO N BY 23!
FOR CLASS FROM 1 TO B3is
P:= MAX IF P<MAX THEN P ELSE @#@ FI FOR (P} $E SPS;;
SPS: = {COLLECT
{COLLECT Q.X%s508/P.X # 0.Y«508/P.Y FOR 0 8$E SP;}
FOR SP 8E SP5;1;
GIVE {COLLECT WIRE(BLUE,8, {COLLECT € FOR Q $E SP;UITH Q<5BB#5B0;1)
FOR SP $E SPSs;
COLLECT (COLLECT M\AT Q FOR O 8t SP;UITH Q<588#588;}
FOR SP 8E SPS; 88 FOR N SE
i BOX{RED, -5.#-5.\T0 5#5) ;
POLYGON(RED, -5.#-4.:5H4.;8#41)
POLYGON (RED, 1B#5; -3.#-4. ,Q#Z 5;-5.#.338-4.1)
{LIIRE (RED, 8, {S45;-5.#-5.1) ;UIRE (RED, @ {-5.H45; 5# 5.1)1
POLYGON (RED, {5#0; 845 -5.408;04-5.11) ;
POLYGON (RED, {Z#5:-2.#.;-5. #2 H-2.05 -2 H-50 328 358-20 5 (H2Y) s
WIRE (GREEN, B, {8#580; B#O; 58@#8
SC (P, X)\PAINTED BLACK\SCALED BY 2H#2\AT 500#18;
SC(P.Y)\PAINTED BLACK\SCALED _BY 2H2\AT 1Q#472;
"NB: " $8SC (NBY\PAINTED BLACKN\SCALED_BY Z2A2\AT 580#138;
*TB: " $8SC (TBI\PAINTED BLACK\SCALED _BY ZHZ2\AT 580H#308;
*POLIER: * $8SC (POLER) \PAINTED BLACK\SCALED_BY 2HZ\AT S00#58}
END
ENDOEFN

DEFINE TABLE(NB,TB:INT POMER:REAL N:INT PMAX:PDINT):
BEGIN VAR CLASS,RB=INT;P=POINT; '
FOR CLASS FRDM 1 TO &:!'Y FOR RB FROM 1 TO N BY 2; 0O
P:=517ZE (NB, TB, POLER, CLASS,RB) . S1ZE;
IF P<IMAX THEN
WRITE (°CLASS: ’ } s UIRI TE (CLASS) s TAB;
WRITE ("ROWS/BIT: ") ; HWRITE (RB); TAB;
WRITECSIZE: ") ;URITE(P);CRLF; FI
END
~ END
ENDDEFN
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Appendix 3: River Routers

This appendix discusses the design of a river router and illustrates some of the
extensions which augment the usefulness of river routers. River routers are used
to interconnect the connectors along the ad jacent edges of two cells. The following
restrictions apply to the connectors, and can be thought of as the definition of a

river route:

1} There must be a one-to-one mapping betueen connectors of
the tuo cells,

2} Corresponding connectors must be on the same mask |ayer.

3} Each set of connectors must satisfy the design rules for
minimum width wires.

4) Adjacent connector pairs on dependent mask layers must
not cross. .

The first condition simply s{ates that the two sets of connectors be of the same
length. We will connect the first connector of one list to the first connector of the
other list; the second connectors will be interconnected, etc. The second condition
assures us that we can route a single wire between the two connectors without
changing mask layers. The third condition assures us that we can indeed route
wires to all the connectors without violating the design rules. The fourth
condition assures us that we do not have to cross wires. If wires had to cross, we
would have to change layers, ahd we do not wish to change layers with our wires
(see condition 2). Dependent layers are layers that produce undesirable side-effects
when wires cross. For instance, in NMOS design, when diffusion and polysilicon
cross, a transistor is formed. Hence, diffusion and polysilicon are dependent layers.
On the other hand, the metal layer is independent of polysilicon and diffusion since
metal wires may freely cross wires of these other layers. Notice that every layer is

depéndent with itself: If twao wires of the same layer cross, they short together.

Based upon these conditions, there are a few properties of river routes which can be
used; One of these properties has already been mentioned: the interconnection
between two connectors will be a single wire on a single mask layer. A second -
property is that independent layers can be routed independently. We have noticed
that, in NMOS, metal wires can arbitrarily cross polysilicon or diffusion wires.

Therefore, we can route all of the metal wires as a group, and then route all of the
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polysilicon and diffusion wires as a group. This also allows connector pairs to cross,

provided the connector pairs are on independent layers.

We can also divide the routing task for each set of dependent layers into groups.
We will define a group to be all adjacent connector-pairs on dependent layers
which route in the same direction. Using figure A3-1 as an example, we see that
the first three connector pairs have wires slanting to the left as we go from top to
bottom. The next three connectors slant to the right, and the final three connectors
slant to the left. We can divide the connector pairs into groups and route each
group independently. This is possible because each wire drawn will only move
horizontally in one direction, towards its destination. We can also route these
independent groups as if they were dependent, This allows us to separate the
connectors into two groups: those that tend to the left and those that tend to the

right (any wires which need only be vertical can belong in either group).

ANN/4

Fig. A3-1: Connector Pairs

Another property we will use is that each wire depends only upon one other wire in
the route: its adjacent neighbor in its direction of travel. If every wire maintains
proper distance from its neighbor in its direction of travel, we will not have design
rule violations between wires. We will use this property to determine the order of
routing wires. In the left-going group, we will route the left mbst wire first,
followed by the next-to-the-left most wire, étc. We will route the right-going
wires starting with the right most wire. The first wire in each group will move
directly over to its destination connector's x coordinate and wait. The second wire

in each group now only needs to avoid this one wire as it heads toward its
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destination. In a like manner, each wire will only have to consider the previous

wire as it is generating its path.

a) Left bY> Offset
Neighbor -

Fig. A3-2: Computing New Path

The final property we will use is that the design rule spacing between wires is
uniform in both directions. This allows us to compute the majority of a wire's path
by simply shifting the points from the previous path. In figure A3-2a we see the
path of one wire. If we shift the points of this path over in x and down in ¥y, each
time by the minimum design rule spacing for the two layers in question, we have
the path of the wire which is as close to the given wire as possible. Given this new
path, we need only fix the ends of this path to have the route for the next wire.
We will remove any points of this path which lie beyond the destination and will
append segments to the front of the wire which connect to the starting connector
{fig A3-2c). This efficiently generates each wire given the neighbor's wire. As we
have already stated, the first wire is trivial to implement: We move from the
initial connector over to the final connector's x coordinate, then down. Wae can
now prove that each wire only draws in one direction. The first wire draws only
in one direction, as shown in the previous statement. The central portion of every
wire follows its neighbor's path until the destination coordinate is reached. Hence,
once the central portion of the wire is reached, the wire only heads in the direction
of its destination. To complete the proof, we must show that the start of the wire
does not move in the opposite direction. The end of the shifted portion of the wire

is at minimum design rule spacing from the neighbor's wire. For the initial
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segment of the wire to run in the opposite direction, the starting connector must be
closer to the neighbor's wire then design rules allow. This is a violation of
condition 3. Therefore, every wire draws in one direction, which completes the
inductive proof. Given this, we can then prove that the extend of a wire is limited
by the x coordinates of its two connectors. If the wire ever extended beyond one of
the two connectors, it éould never connect to the connector since it would have to
change directions. Therefore, wire éxtents are limited, and we can separate the

routes into groups.

The following code is the basic river router routine, We will discuss the Forbidden
Zones later, for now assume that they are identity functions. The River Node
contains the coordinates of the two vconnectors, and the common color of the
connectors. The‘river routing routine returns a River Return, which contains the
layout and the height, which is the height 61‘ the completed route. The river
routing routine calls a routine to route the individual sets of dependent layers. This
routing, GROUP_ROUTE, also returns a RIVER RETURN, but this rou'tine uses the
DONE component. The Done component contains all of the river nodes at the end of
the route, Since we can not state how tall the river route will be until the route is
completed, we do not know how long to make each of the final wire segments until
we have finished the rest of the route. We put each of the nodes into the Done
component when we are finished jogging them, and we look at these nodes after all

the wires are jogged to add the final segments to the wires,

TYPE RIVER_NODE= [FROM,TO:POINT COLOR:COLORI;
RIVER_NODES= { RIVER_NODE 1
RIVER_RETURN= [LAYOUT:MRG HEIGHT:REAL DONE:RIVER_NODESI;
RIVER_RETURNS= { RIVER_RETURN 1};
FORBIDDEN_ZONE= //UIRE (SP,REAL,COLOR) \\;

DEFINE SORT (OLD:RIVER_NODES) =RIVER_NODES:
BEGIN VAR NEW=RIVER_NDDES;N1,N2=RIVER_NODE; I, J=INT;

00 NEW:=NIL;
WHILE DEFINED(OLD); DO
N1:=0LDI{11;
T:=1;
(FOR N2 $E OLD(2-1:88& FOR J FROM 2 BY 1:)UITH N2.FROM.X>N1.FROM.
DO I:=J;
N1:=N2Z;

END
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NEL: ¢ = N1<8;
OLO(I]:=NIL;
END
GIVE NEW
END
ENDDEFN

DEFINE GROUP_ROUTE(LIST:RIVER_NODES ™MIN,TOP,BOT:REAL
FZ1,FZ2:FORBIDOEN_ZONE)} =RIVER_RETURN:
BEGIN VAR RIGHT,DONE=RIVER_NODES;LAST_PATH=SP;
N, LAST_NODE=RIVER_NODE; LAST_COLOR=COLOR;COUNT=INT;
L1,L2=MRGS;L0OW, SPACE=REAL ; P=PDINT;
OEFINE ADD(C:COLOR):
) BEGIN VAR P=POINT;
[(PATH: LAST_PATH LWIDTH:LOW]) s =<aFZ1w> (LAST_PATH,LOW,C) ;
L2::= WIREAC, (<«FZ2+%> (LAST_PATH,LOW,C) ) .PATH) <8;
COUNT: s =41
IF COUNT>48 THEN
Ll::= DISK{L2Z) <$;
L2:=NIL;
COUNT:=B; FI
END
ENDDEFN
DO RIGHT:=NIL;
DONE: =NIL:
LAST_PATH: =NIL;
LAST_NODE: = [FROM: -393933., #933339 COLOR:RED];
LIST::=\S0RT;
COUNT: =83
L1:=NIL:
L2:=NIL:
LOW: =TOP-MIN;
LAST_COLOR: =RED;
FOR N 8E LIST; 0O
IF N.FROM.X<N.TO.X THEN RIGHT::= N <38;
ELSE SPACE: =CENTER_TO_CENTER (N.COLOR,LAST_COLOR}
LAST_COLOR: =N.COLOR;
IF N.TO.X-SPACE>=LAST_NODE.FROM.X THEN
LAST_PATH: = IN.FROI1;
IF N.FROM.Y\IS_CLOSE_T0 TOP
THEN NIL ELSE .#TOP FI1;
N.TO.X#.1
ELSE
LAST_PATH: = {COLLECT P+SPACE#-SPACE
FOR P 8E LAST_PATH;
LITH (P.Y=<TOP)}& (P.X+SPACE>=N.TO. X} s}
IF LAST_PATHI11.X<N.FROM.X THEN
LLAST_PATH: : = {N.FROM;
IF N.FROM.Y\IS_CLOSE_TO TOP
THEN NIL ELSE .#T0P FI;
, ' LAST _PATHI11.X#.1 4%,
ELSE LAST_PATH::= N.FROM<$; FI
P:=REVERSE (LAST_PATH) (11
IF -(P.X\NIS_CLOSE_TO N.TD.X)
THEN LAST_PATH::= $> N.TO.X#P.Y: FI
LOWs:= MIN P.Y;
LAST_PATH: =REFRESH(LAST_PATH); FI
ADD (N.COLOR) s
DONE: : = [FROM:N. TO. XHREVERSE (LAST_PATH) [11.Y
TO:N.TO
COLOR:N.COLOR]1 <$;
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LAST_NODE:=N; FI END
LAST_NODE: = [FROM: 9999334939339 COLOR:REDY;
FOR N 8E RIGHT; DO
SPACE: =CENTER_TO_CENTER(LAST_COLOR,N.COLOR) ;
LAST_COLOR:=N.COLOR;
IF N.TO.X+SPACE=<LAST_NODE.FROM.X THEN
LAST_PATH: = {N.FROM; IF N.FROM.Y\IS_CLOSE_TO TOP ‘
THEN NIL ELSE .H#TOP FI:N.TO.XH#.}:
ELSE LAST_PATH: = ICOLLECT P-SPACE#SPACE FOR P 8E LAST_PATH;
WITH (P.Y=<TOP)&(P.X-SPACE=<N.T0.X);1};
IF LAST_PATHI11.X>N.FROM.X THEN
LAST_PATH::= IN.FROM;
IF N.FROM.Y\NIS_CLOSE_T0. TOP
THEN NIL ELSE .#70P FI;
LAST_PATHI1I.X#.188;
ELSE LAST_PATH::= N.FROM<$; FI
P: =REVERSE (LAST_PATH) (11;
IF -(P.X\IS_CLOSE_TO N.TQ.X)
THEN LAST_PATH::= 8> N.TO.X#P.Y; FI
LOW:se= MIN P.Y;
LAST_PATH: =REFRESH (LAST_PATH) ; FI
ADD (N.COLOR)
DONE: ¢ = [FROM: N, TO. X#REVERSE (LAST_PATH) [1].Y
TO:N.TO
COLOR:N. CDLOR]<$
- LAST_NODE: =N; END
1F COUNT>@8 THEN Ll::= DISK{(L2) <%; FI
GIVE [LAYOUT:DISK(L1} HEIGHT:LOH DONE : DONE]
END
ENDDGEFN

DEFINE RIVER_ROUTE(LIST:RIVER_NODES 1IN, TOP,BOT:REAL
FZ1,FZ2:FORBIDDEN_ZONE) =RIVER_RETURN:
BEGIN VAR N=RIVER_NODE;LI1STS=RIVER_RETURNS; CLASS=INT;LOW=REAL;
R=RIVER_RETURN;
DO LISTS:=NIL;
WHILE OEFINED(LIST); DO
CLASS: CLASS(LIST&l] COLORY ;
L1STS::= GROUP ROUTE({COLLECT N FOR N $E LIST;
WITH N.COLOR\CLASS=CLASS;},MIN, TOP,BOT,
FZ1,F221<$%;

LIST:={COLLECT N FOR N ﬁE LIST;NITH N.COLOR\CLASS<>CLASS 1
END

LOW:= MIN R.HEIGHT FOR R $E LISTS;;
GIVE I[LAYOUT:DISK{ {COLLECT R.LAYOUT FOR R 8E LISTS;;
COLLECT LIRE(N.COLOR,

{<FZ2%> { {N.FROM; . #LOW+N. TO. Y-BOT} , 8, N.COLOR) . PATH} )
FOR [DONE: N} BE LISTS;1)
HETGHT: LOW]
END
ENDDEFN

The RIVER ROUTE routine takes the list of connector pairs and routes between them.
The route ié assumed to be horizontal. To generate vertical routes, the connector
positions can be rotated 270 degrees, and the resulting layout rotates 80 degrees.
The MIN parameter is used to specify a minimum width for the route. We can not

state maximum width of the route, but we may wish to state a minimum width for
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the route. (For example, we may wish to run some horizontal metal wires over the
route, so we would require the route to be tall enough to allow all of the metal
wires. to fit between the cells.) In some cases, the connectors do not lie on the
perimeter of the cell, but rather lie inside the cell's boundary. To connect to the
point, we either have to examine the entire set of geometry contained in the cell or
we have to have conventions for connecting to the cell. We will use the
convention that if a point lies within the cell boundary, we may draw a minimum
width wire from the connector straight to the edge of the cell. The TOP and BOT
parameters indicate the boundries of the two cells. If a node's FROM point hasa Y
value greater than TOP, a wire is drawn from the point straight down to TOP, before
the river route begins. Similarly, if the TO point has a Y value less than BOT, a wire
is drawn. The FZ1 parameter is used to jog the wire, and the FZ2 parameter is used

to translate the wire. These operations are discussed later.

The RIVER ROUTE routine takes all of the connectors and separates them into
groups, based upon the color of the connectors. The CLASS routine in ICLIC is used
to determine the dependence of the layers. Dependent layers have the same class.
RIVER ROUTE calls GROUP_ROUTE will all of the connectors in each class. Once
GROUP ROUTE has been called for each group, RIVER ROUTE determines the height

of the route, extends all of the wires, and returns the layout,.

GROUP ROUTE routes all of the wires which slope to the left first, then it routes all
of the wires which slope to the right. For each wire, it detefmines the design rule
spacing between this wire and the previous wire. It then checks to see if the
previous wire is outside the range of the current wire, in which case it can
immediately draw the current wire connecting directly to its desired location. If
the previous wire was in range, all of the points in the previous wire are diagonally
shifted by the design rule spacing, and the two ends of the wire are ad justed to fit
the TO and FROM points of the current wire. Given the current wire, the ADD
routine is called. The ADD routine passes the wire to the first FORBIDDEN ZONE,
which may jog the wire. The result of the jogs becomes the official path of the
wire, which the neighboring wires must avoid. This is also passed to the second
FORBIDDEN ZONE, which may arbitrarily map the wire from the river route
coordinate system to the chip coordinate system. Foxf standard river routes, these
two FORBIDDEN ZONEs are indentity functions. The following code facilitates

calling standard river routes.



-218-

DEFINE WIRE=FORBIDDEN_ZONE:
£/7(SP:SP  R:REAL C:COLOR) [PATH:SPINA
ENDDEFN

DEFINE IDENTITY=FORBIDOEN_ZONE:
//(SP:SP  R:REAL C:COLOR} [HIDTH:R PATH:SPINN
ENDDEFN ’

DEFINE RIVER_ROUTE(LIST:RIVER_NOBES T™IN,TOP,BOT:REAL)=RIVER_RETURN:
RIVER_ROUTE(LIST,MIN, TOP,BOT, IDENTITY,UIRE) '
ENDDEFN

This new RIVER ROUTE routine does hot require the two FORBIDDEN ZONEs, but

uses the two default routines.

The first FORBIDDEN ZONE is used to jog the wires. Due to global concerns, there
may be obstacles to the river route. The FORBIDDEN ZONEs allow the user to specify
a routine which will modify fhe path of a wire in the river router. When the river
router wants to route a wire through one of these obstacles, the user's routine may
deflect the path of the wire. In figure A3-3a we see a wire which runs through an
obstacle. The wire's path may be deflected to lie outside the obstacle (fig. A3-3b),

and the river router will route all future wires to the new path (fig. A3-3c).

%W
/
74 | Wire L . 7
/ %
Obstacle W
a) Wire inside b) VWire 'pushed' o? Route
obatacle out continues

Fig A3-3: Jogging the Path of a Wire

We will define 6bstacles to be a collection of colored points. For an Upper Left
obstacle we state that if a wire path begins to the tight of the point, the path may
not contain any points above and to the left of the obstacle, Figure A3-3 illustrated
an Upper Left obstacle. Similarly, we may have Upper Right obstacles. These two

sets of obstacles can be used to describe features of the upper cell which must be
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avoided in the river route. We would also like to avoid features of the lower cell,
We can not, however, just 'push’' the wires outside of the obstacle points, as we did
for the upper obstacles. If we did push the wires, they would run into neighboring
wires. Instead, we push the lower cell down so that the wire path lies outside the

obvstacle, aS shown in figure A3-4.

7
= /
a) Obstaclse crossihg b) gbstacle moved

Fig. A3-4: Moving Lower Cell

The following COLOR_LIMIT datatypes are used to describe the obstacles, and the

LIMIT function will move a path (SP) to remain outside the obstacles.

TYPE COLOR_LIMIT= [COLOR:COLOR LIMITS:S5P1;
COLOR_LIMITS= { COLOR_LIMIT 1;

DEFINE LIMIT(SP:SP LOW:REAL COLOR:COLOR UL,UR,LL,LR:COLOR_LIMITS)=WIRE:
BEGIN VAR CL=COLOR_LIMIT;P,Q=POINT;X1,X2=REAL;W=WIRE;
D0 X1:=SPI11.X;
X2:=REVERSE (SP} [11.X;
I[F X1<X2 THEN
IF THERE_IS CL.COLOR=COLOR FOR CL $E UR;
THEN SP:=RCLIP(SP,CL.LIMITS,X1,X2); FI
IF THERE_IS CL.COLOR=COLOR FOR CL $E LL;
THEN LOW::= MIN LHMOVE(SP,CL.LIMITS,X1,X2); FI
ELSE IF THERE_IS CL.COLOR=COLOR FOR CL $E UL;
: THEN SP:=LCLIP{SP,CL.LIMITS,X2,X1); FI
IF THERE_IS CL.COLOR=COLOR FOR CL $E LR;
THEN LOW::= MIN RMOVE (SP,CL.LIMITS,X2,X1); FI FI
GIVE [UIDTH:LOW PATH:SP]
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END
ENDDEFN

The LIMIT function takes the current path (SP) and computes a new path
(result.PATH). Since this routine may need to push the lower cell down, we must
also return the new separation of the cells, The LOW input parameter is the
previous spacing. We return the new spacing in the WIDTH component of the
result. The LIMIT function also requires the wire's color, and the list of obstacles,
The routine determines whether the line slopes to the left or right, and calls the
appropriate CLIP and MOVE routines. The CLIP routines are used for the upper
limits to jog the wires, while the MOVE routines are used for the lower limits to

move the lower cell. The MOVE and CLIP routines are listed here.

DEFINE LMOVE (PATH,CORNERS:SP LX,HX:REAL)=REAL:
‘ BEGIN VAR MIN=REAL;P,Q=POINT;
DO MIN:=333339; :
FOR P 8E CORNERS:HITH (P.X>LX)&(P.X=<HX}; DO
IF THERE_IS Q.X>=P.X FOR Q $E PATH; THEN IN::

MIN Q.Y-P.Y; FI
END
GIVE MIN
END
ENDDEFN

DEFINE RMOVE (PATH,CORNERS:SP L X,HX:REAL) =REAL:
BEGIN VAR MIN=REAL;P,Q=POINT;
00 MIN:=33939399;
FOR P 8E CORNERS;UWITH (P.X>=LX)&(P.X<HX); DO
IF THERE_IS Q.X=<P.X FOR G $E PATH; THEN MIN::
END

GIVE NMIN
END
ENDDEFN

MIN Q.Y-P.Y; FI

DEFINE LCLIP(PATH,CORNERS:SP LX,HX:REAL)}=5P:
BEGIN VAR Y=REAL;P,Q=POINT;NEW=5P;FLAG=BOOL;
.00 Y:=PATHI1l.Y;
FOR P 8E CORNERS;UWITH (P.XSLX)&(P.X=<HX)&(P.Y<Y); DO
FOR Q $E PATH;
FIRST_DO NEW: = {1 3
FLAG: =Q. X=<P. X;;
OTHER_DQ IF Q.X>P.X THEN NEW::= Q<8
EF 0.Y<P.Y THEN
IF FLAG THEN NEW::= Q.X#P.Y<$; FI
FLAG: =FALSE;
NEH::= 0 <8;
EF -FLAG THEN NEW::= {P;P.XHQ.YI88;FLAG:=TRUE; FI;
FINALLY_DO IF FLAG THEN NEW::= LX#P.Y<8; FI;
DO NOTHING; END
PATH: =REVERSE (NEL) ¢
END -
GIVE PATH
END
ENDDEFN
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DEFINE RCLIP (PATH,CORNERS:SP LX,HX:REAL)=5P:
BEGIN VAR Y=REAL;P,Q=POINT;NEW=SP; FLAG=BOOL ;
00 Y:=PATHI{11.Y;
FOR P 8E CORNERS;LITH (P.X>=LX)&(P.X<HX)&(P.Y<Y); DO
FOR O $E PATH:
FIRST_DO NEW: = {Q1 ;
FLAG: =Q.X>=P.X;;
OTHER_DO - IF 0.X<P.X THEN NEW::= Q<$;
EF Q.Y<P.Y THEN
IF FLAG THEN NEW::= Q.XH#HP.Y<$; FI
FLAG: =FALSE;
NEW::= O <8
EF -FLAG THEN NEW::= {P;P,X#Q.Y}8%$;FLAG: =TRUE; FI;
FINALLY_DO IF FLAG THEN NEW::= HX#P.Y<#; FI;
DO NDTHING: END
PATH: =REVERSE (NEW) ;
END
GIVE PATH
END
ENDDEFN

The MOVE routines look through the list of obstacles (CORNERS) for points which
lie within the limits of the wire (PATH). For each obstacle point within the wire's
limits, the routine computes the offset required to move the lower cell. The largest
offset is returned by the routine. The CLIP routines take each obstacle which lies

within the span of the wire, and moves all wire points which lie inside the

obstacle.
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Fig. A3-5: River Route Comparison

To use this LIMIT routine in the river router, we need only compute the obstacles
and pass this routine as the first FORBIDDEN ZONE. In figure A3-5, we show a river
route that uses the LIMIT routine and one that does not. The routine that uses
LIMIT can route some of the wires inside the cell's boundry, while the route that

does not use limit must remain outside of the cell's boundry. In many cases, the
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program can compute these obstacles, so that more efficient routes can be used.
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Fig. A3-6: River Routing to Pads

Another interesting use of the river router is to route wires to pads. In figure A3-6,
we show a cell surrounded by pads. Between the cell and the pads, we need to route
wires. A river route could be used, except for one thing: a river route is a single

" channel, whereas the pad route routes around a box.
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Fig. A3-7: Unfolding the Box

We can still use the river router, if we can convert the box route into a channel
route, perform the river route, the convert the result back into a box route. In
figure A3-7, we show the mapping from a box route to the linear route and back.
We cut the box into four trapezoids and unfold the box into a single strip. The
shaded portions of the strip are cut out of the river route when the trapezbids are

folded back into a box. Because the shaded portions are removed, we can not have
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any wires jogging inside the shaded regions. For this reason, the suspendable
functions are called FORBIDDEI\LZONES: it is forbidden for the wires to jog inside the
shaded regions. We will write a procedure, TRAPEZOID, which will constrain wires
to jog outside of these forbidden zones. Figure A3-8 shows two cases of wires
which jogged inside these shaded areas and were pushed outside of the region. In
the following code, we describe TRAPEZOIDs as a left point and a right point, along
with a left slope (SLEFT) and a right slope (SRIGHT). The TRAPEZOID function takes
a series of these trapezoids and assures that each wire lies cutside of the trapezoid.
Notice that here we have reversed the polarity of the trapezoids. Thése trapezoids

are the shaded regions, no corners may exist within the trapezoid.

a) Wires jog in b)Y Jogs external to

Forbidden Zorne ' Forbidden Zorne

Fig. A3-8: Constraining Jogs -

7

TYPE TRAPEZOID= ([LEFT,RIGHT,SLEFT,SRIGHT:POINT CENTER:REALI;
TRAPEZOIDS= { TRAPEZOID 1};
JOG_SI1ZE= //REAL {COLORIN\\;
VAR TRAPEZOID_JOG=JOG_SI1ZE; TRAPEZDID_EDGE=REAL;
| TRAPEZQID_J0G:=//{(C:COLOR} CENTER_TO_CENTER(C,CIN\;

DEFINE TRAPEZOID(SP:SP LOW:REAL COLOR:COLOR TS:TRAPEZOIDS) =WIRE:
BEGIN VAR T=TRAPEZOID;P,Q=POINT;X1,X2,R=REAL ;NEWU=5P;FLAG=BOOL ;
D0 X1:=SPI[11.X;

XZ: =REVERSE (SP) [11.X;
X1AX2:= (X1 MIN X2} # (X1 MAX X2);
FOR T BE TS;UITH (T.CENTER>X1)&(T.CENTER<XZ2}; DO
NEW: = {SPI11};
" FLAG: =FALSE;
FOR {P;0Q} 8C SP; DO
IF Q\INSIDE T THEN
IF -FLAG THEN
FLAG: =TRUE;
WHILE QN\INSIDE T; DO
R:= IF Q.X<P.X THEN P\RIGHT_EOGE T
ELSE P\LEFT_EDGE T FI;
NEW: : = R#Q.Y<$:
P:=RHP.Y-<xTRAPEZOID0_JOG=> (COLOR)
NEW::= P <$;
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Q.Y:=P.VY;
LOWs:s= MIN Q.Y
END FI
ELSE FLAG: =FALSE; FI
NEL: := Q<$;
END
SP: =REVERSE (NEW)
END
GIVE HIDTH:LOW PATH:SP]
END
ENDDEFN

DEFINE INSIDE(P:POINT T:TRAPEZOID) =BOOL:
IF P.X=< P\LEFT_EDGE T THEN FALSE ELSE P.X< P\RIGHT_EDGE T FI
ENDDEFN

DEFINE RIGHT_EDGE (P:POINT T:TRAPEZOID)=REAL:
T.RIGHT . X~-T.SRIGHT. Xv (T.RIGHT.Y-P.Y) /T.SRIGHT. Y+TRAPEZQID_EDGE
ENDDEFN '

DEFINE LEFT_EDGE (P:POINT T:TRAPEZOID) =REAL:
TLEFT.X-T.SLEFT. X% (T.LEFT.Y-P.Y) /T.SLEFT.Y-TRAPEZOID_EOGE
ENDOEFN

DEFINE TRAPEZQOID(TS:TRAPEZQIDS) =FORBIDOEN_ZONE:
//: TRAPEZOID (SP,REAL,COLOR} [TSIA\N
ENDDEFN

We use the second FORBIDDEN ZONE in the river router to map the wire from the
Tiver route coordinate system to the chip coordinate system. We can use this
function to map from the linear strip into the vox. In the following section of code,
we have a datatype REGION which describes one of the four regions of the route.
For each region, we have the trapezoid in the linear space which corresponds to one
section of the box. Additionally, we have transformations from the chip
coordinates to the linear coordinates and back. If we transform the connectors'
locations by the MAP TO matrix, the new locations correspond to locations along the
strip. When we transform each point in the wire paths by the MAP FROM matrix,
the resulting path has the correct coordinates for the chip coordinate system. We
may need to add points to the wires when mapping them back to the chip coordinate
system. If figure A3-9a, we show a route in the river route coordinate system. The
wire travels from one trapezoid to another, which is valid since the wire does not
Jog withing the shaded area. If we just transformed the four points in the wire, we
would get the layout shown in figure A3-9b, which has one wire cutting across
our cell., We need to add a point on the edge between the two trapezoids when we

do the mapping, resulting in the layout shown in figure A3-3c.

" The REGION function takes two corner points and two slopes and computes the |

corresponding region. The REGIONS function takes the wire in the river route's
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Fig. A3-9: Mapping Wires into Box

coordinates and computes the path in the chip's coordinates, adding the points

where needed.

TYPE REGION= CINSIDE:TRAPEZOID MAP_T0,MAP_FROM:MATRIX
‘ CORNER, SLOPE:POINT  MINX,MAXX:REAL];

REGIONS= { REGION 1;

DEFINE REGION(UL,UR,LL,LR:POINT GROUP:INT)=REGION:
BEGIN VAR A=REAL;
D0 A:=(UR-UL)\ANGLE;
GROUP: : =+1000060;
GIVE [INSIDE [LEFT: GROUP#@ RIGHT:GROUP#B+ ( (UR-UL}\ROTATED_BY -A)
SLEFT:LL\RDTATED_BY -A SRIGHT:LR\ROTATED_BY -Al
MAP_TO: DISPLACENMENT (GROUP#B)\ROTATED_BY -ANAT -UL
AP _FROM: DISPLACEMENT (BLY\RDTATED_BY ANAT - (GROUP#@)
CORNER:UR SLOPE:LR MINX:GROUP-58008 MAXX:GROUP+5008001]
END
ENDBEFN

DEFINE REGIONS (RS:REGIONS) =FORBIDDEN_ZONE:
// s REGIONS (SP, REAL, CDLDR)[RS]\\
ENDDEFN '

DEFINE REGIONS{SP:SP. BOT:REAL COLOR:COLDOR RGS:REGIONS)=WIRE:
BEGIN VAR NEW=SP;P=POINT:1,J,K=INT;
B0 1:=FIXR(SP{11.X/10080888);
NEW: = {SP [1I\AT RGSII]. NAP _FROM};
FOR P $E SP([2-1:; DO
J:=FIXR(P.X/168@GB);
IF I<J THEN
DO NEW::= RGSIK].CORNER-RGSIK].SLOPEwP.Y <$;
FOR K FROM I TO J-1;
EF J<I THEN
DO NEUW::= RGSIK].CORNER-RGS [K1.SLOPExP.Y <$;
FOR K FROM 1-1 TO J; FI
NEW: : = P\AT RGS[Jl.MAP_FROM <$;
T:=dy
END
GIVE [(PATH:NEW]
END
ENDOEFN
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There are a few other concerns before we have completed the box router. First,
consider figure A3-10. We have a wire that starts on the NORTH and ends on the
WEST. In the river route space, this wire extends from the far right to the far left,
shorting out every other wire in the route. To solve this, we may move the WEST
tr‘apezoid to be to the right of the NORTH trapezoid, but then we would have the
same problem with WEST/SOUTH wires. Instead, we may have a second WEST
region, W', which is to the right of the NORTH region. We have two WEST regions
now. NORTH/WEST wires use W', while WEST/SOUTH wires use the original
WEST region. WEST/WEST wires can use either region,

S E

T~ €

Fig. A3~10: Erroneous Wire Wrap-Around

Unfortunately, this causes another problem. We now have two independent WEST
regions in the river route space, but there is only one WEST region in the chip
space., In figure A3-11, we show two wires, one a SOUTH/WEST wire, the other a
WEST/NORTH wire. Since these are in the independent regions of the river route,
they independently route, which causes trouble in the chip space. What we need to
do-is to make the two WEST regions independent. We have noticed above that wires
can be routed independently if they run in opposite directions. The two wires in
figure A3-11 run in the same direction, so they are not independent. We will make
a new SOUTH region, S', to the right of W', and move the wire AB into the W'/S!
regions. We continue this process until the left-most wire in the river route runs
in the opposite direction of the right-most wire. (We can also stop the circulation
of wires when the wire spans do not overlap.) We must check for the condition

that all wires run in the same direction, and signal an error if this occurs.

dm A A A

Fig. A3-11: Non-Independent Wires
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Another potential problem occurs near the edges of the trapezoids. Given two
neighboring trapezoids, the adjacent edges in the river route coordinates represent
the same line in the chip coordinates. Wires jogging close to these lines may short
together in the chip space while quite far apart in the river space, as shown in
figure A3-12. To combat this problem, we just bloat the trapezoids by half the

maximum design rule spacing, This assures that wires remain far enough apart.

Fig. A3-12: Boundary Interference

The remaining code describes the connection points for box routes, which need to
know the side on which the connector resides. Also, the routines for implementing
the route are listed. The NORMALS routine is used for generating the trapezoids
given the outline of the cell. The OUTSIDE routine is used to invert the polarity of
the trapezoids. The first ROTO ROUTE function is used to reorder the pads to shorten
the wire lengths. The final ROTQ ROUTE routine is the river router which routes
around the outside of the cell. TFigure A3-13 shows a river route around a

rectangular cell, while figure A3-14 shows a river route around a hexagonal cell.

TYFE CONNECTZ= ([FROM, TO:POINT COLDR:COLOR - FEDGE, TEDGE: INTI;
CONNECT2S= { CONNECT2 1;

DEFINE NORMALIZED(A,B:POINT)=POINT:
Av{DIST (B, B#Q) /DOT (A,B))
ENODEFN '

OEFINE NORMALS (SP:SP) =SP:
BEGIN VAR NORMALS=SP;P,Q=POINT;
DO NORMALS: = {COLLECT (Q-P)\NORMAL FOR {P;=Q} $C SP;};
NORMALS: =REVERSE (NORMALS) 3
NORMALS [2-] : =REVERSE (NORMALS [2-1) 4
GIVE {COLLECT NORMALIZED(P+Q,P)} FOR {P;=0} $C NORMALS:}
END
ENODEFN
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DEFINE OUTSIDE (RGS:REGIONS) =TRAPEZOIDS:
BEGIN VAR P,0=REGION;
{COLLECT
[LEFT:P. INSIDE.RIGHT RIGHT:Q.INSIDE.LEFT
SLEFT:P.,INSIDE.SRIGHT SRIGHT:Q.INSIDE.SLEFT
CENTER: (P.INSIDE.LEFT.X+U.INSIDE.LEFT.X)/2.]
FOR {P;Q1 8C RGS;!
END
ENDDEFN

DEFINE ROTO_ROUTE (RNS:RIVER_NODES J:INT)=RIVER_NODES:
: BEGIN VAR RN=RIVER_NODE; T0=5P;CGF,CGT=REAL;P=POINT;
DO T0:=({COLLECT BN.TG FOR RN $E RNS;1;
CGF: =+ RN.FROM.X FOR RN $E RNS;;
CGT:=+ RN, TO.X FOR RN 8E RNS;;
WHILE ABS(CGF-LGT)>.55w%J; DO
IF CGT>CGF THEN
RN:=RNS {1];
RN.FROM. X2 s =+J;
RNS: =RNS [2-1 $>RN;

CGF s =+J;
ELSE T0:=TO[2-1%> TOL11.X+JH#TO(11.Y;
CGTe:=+J; FI
END
GIVE {COLLECT DO RN.TO:=P;
GIVE RN
} FOR RN $E RNS;:;8& FOR P $E TO;1}

END

ENDDEFN

DEFINE ROTO_ROUTE (CS:CONNECT2S MIN, TOP,BOT:REAL OUTLINE:SP ROTO:BOOL) =
RIVER_RETURN:
BEGIN VAR NORMALS=SP:P,0,R,S=POINT;RGS=REGIONS; RG=REGION; C=CONNECTZ;
RNS=RIVER_NODES;RN=RIVER_NODE; [, J=INT; '
DO NORMALS: =0UTLINE\NORMALS:
TRAPEZOID_EDGE: =MAX_SPACING/2. ;
RGS: = {COLLECT REGION(P,Q,R,S, D)
FOR {(Ps;«Q} $C OUTLINE#$80OUTLINE;&&
FOR {R;~St $C NORMALS$8NORMALS;8&
FOR I FROM 1 BY 1;1;
Ji=+1 FOR P $E OUTLINE:;
RANS: = {COLLECT _
[FROM:C.FROM\AT :
RGSIC.FEDGE+ IF C.TEDGE<]1 THEN J ELSE 8 FI1.MAP_TO
TO:C.TONAT RGSIC.TEDGE+ IF C.TEDGE<1 THEN J ELSE @ FI1.MAP_TO0
COLDR:C.COLOR]
FOR C $E CSst;
HHILE RNSI{11.FROM.X>RNSI[2]1.FROM.X; DO RNS:=RNS{2-18>RNS[11; END
J:1=71800008;
IF ROTO THEN RNS::=\ROTO_ROUTE J; FI
RN: =REVERSE (RNS) [11;
WHILE (RN.FROM.X<RN.TO.X)=(RNS({1].FROM.X<RNS{11.T0.X);&&
FOR I FROM 1 TO 1888; 0O
RN:=RNS 11
RN.FROM. Xt s =+;
RN.T0. Xt :=+J;
RNS: =RNS [2-] 8>RN3;
END .
IF I>=1008 THEN WRITE( ROTO_ROUTE: CIRCULAR’);CRLF;HELP; FI
GIVE RIVER_ROUTE (RNS, 1IN, TOP,BOT,
RGS\QUTSIDENTRAPEZOID, RGS\REGIONS}
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END
ENDDEFN
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Fig. A3-13: Box Route
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Fig. A3-14: Hexagon Route
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Appendix 4: The RLC Compiler

The appendix contains the complete code listings for the Random Logic Compiler
described in Chapter 5. In some cases, Chapter S used approximations for the data
structures and routines, so there may be a few differences between the code implied

by Chapter 5 and the code listed here.

The PHYSICAL WIRE datatypes are.defined as shown in Chapter §. In addition, we
declare a type GATE PRODUCER which is a suspendable function. The input and
output parameters for this function match the requirements of the NAND, NOR, and
INVERT functions. We will use instances of this datatype to refer to virtual
routines for generating the gate layouts. The user at any time may reassign new

routines to these variables, which will modify the layout produced.

TYPE PHYSICAL_WIRE= [HEIGHT,LEFT,RIGHT:REAL NAME:QS];
PHYSICAL_MIRES= { PHYSICAL_MWIRE 1
GATE_PRODUCER= //MRG (PHYSICAL _HIRES, PHYSICAL _WIRE,REAL) \\;

We can now define routines for generating gates in a number of technologies. We
will have global variables set to one group of these functions, which indicate the
current technology. Currently, we support NMOS, 2-layer metal NMQOS, CMOS, and
Z-layer metal CMOS. In addition to these actual technologies, we have a few
pseudo-technologies: NMOS sticks, 2~layer metal NMOS sticks, Logic diagrams, and
NMOS transistor diagrams. The gate producing functions for these technologies are

listed here.

DEFINE NMOS_PULLUP (OQUTPUT: PHYSICAL_WIRE X:REAL}=MRG:
DO CONNECT(OUTPUT, X-2);
POUWER: : =+. 25
GIVE {BOX (RED, X-1648\T0 X-5#6};
BOX (YELLOLL, X-164-2.\TO X-5#3};
WIRE (GREEN, 2, {X-13#YVD0; .#3; X-8#.; . #.-5; . +5#.; . HOUTPUT.HEIGHT} ) ;
GCBAAT (X-128YVOD; X-2HO0UTPUT . HEIGHT} 5
GRCBUNAT X-7#-1.1}
ENDDEFN

DEFINE NMOS_NAND (INPUTS:PHYSICAL_LIIRES
QUTPUT: PHYSICAL _HIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_WIRE;NUMBER=INT;X2=REAL;
DO NUMBER:= +1 FOR IN 8E INPUTS;;
X2:=X-18-2+NUMBER;
DO CONNECT(IN,X2); FOR IN 8E INPUTS;
CUWIDTH: =X2-5;
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GIVE {(GCB\AT X-84YGND;
BOX (GREEN, X2+3#YGND-2\T0 X-7#-1.):
COLLECT {RCB\AT X2HIN.HEIGHT;
HIRE (RED, 2, {X24IN.HEIGHT;X-6#.})} FOR IN 8E INPUTS; ;
NMOS_PULLUP (OUTPUT, X) } '
END
ENDDEFN

DEFINE NMOS_NOR(INPUTS:PHYSICAL_WIRES
OUTPUT: PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_UIRE;
DO DO CONNECT{IN,X-18); FOR IN $E INPUTS;
CUIDTH: =X-24;
GIVE {GCB\AT X-139#YGND;
LUIRE (GREEN, 2, {X-2B#YGNO; . # MAX IN.HEIGHT FOR IN $E INPUTS; +41 ) ;
WIRE (GREEN, 2, {X-8# MIN IN.HEIGHT FOR IN $E INPUTS; +43 . #-2.1)
COLLECT {RCB\AT X-1G6#IN.HEIGHT;
WIRE(RED, 2, {X-15#IN.HEIGHT+1;X-11#.;.4.45} )
WIRE (GREEN, 2, {X-28#IN.HEIGHT+4;X-8#.1)}
FOR IN $E INPUTS;;
NMOS_PULLUP (BUTPUT, X) }
END
ENDDEFN

- DEFINE NNMOS_INVERT (INPUTS: PHYSICAL _WIRES
OUTPUT: PHYSICAL_UIRE  X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
DO IN:=INPUTS(1];
CONNECT (IN, X-12)
CHUIDTH: =X-17;
GIVE (GCB\AT X-8#YGND:
BOX (GREEN, X-S#YGND-2\TO X-7#-1.);
RCB\AT X-12#IN.HEIGHT;
WIRE (RED, 2, {X-12#IN.HEIGHT; X-B#4.1) ;
NMOS_PULLUP (QUTPUT, X) }
END
ENDDEFN

DEFINE METALZ2_NAND(INPUTS:PHYSICAL _WIRES
' OUTPUT:PHYSICAL_WIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL _WIRE;NUMBER=INT;X2=REAL ;
D0 NUMBER:=+1 FOR IN $E INPUTS;: '
X2:= -14. MIN -9, -2+NUMBER;
DO CONNECT (IN,X+X2+2)3 FOR IN $E INPUTS;
.CONNECT {OUTPUT, X+X2+9) ;
CUIDTH: =X+X2;
POLER: : =+, 25;
GIVE {GCB\AT {7H#YGND;8#YVDD} ;
GRCBUNAT 2#-1.:
- BCB\AT {2#-1.; 9#OUTPUT.HEIGHT} ;
NIRE(VIOLET, 3, {2#-1.;9#.; . #OUTPUT.HEIGHT}) ;
BOX (RED, 8#B\T0 1146) ;
BOX (YELLOW, 8#-2.\TO 11#8);
WIRE (GREEN, 2, {8#YVDD; . #3;3#.3 . #-2. ;6#.; . #YGND} ) ;
BOX (GREEN, S#YGND-2\TO 5+2+NUMBER#~4. ) ;
COLLECT {RCB\AT 2#IN.HEIGHT;
WIRE (RED, 2, {2#IN.HEIGHT ; 8+2+xNUMBER#.} )}
FOR IN 8E INPUTS;}\AT X+X248
END
ENDDEFN
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DEFINE METALZ2_NOR{INPUTS: PHYSICAL_WIRES
OUTPUT:PHYSICAL _LIIRE X:REAL}=MRG:
BEGIN VAR IN=PHYSICAL_LIIRE;
DO DO CONNECT(IN,X-12); FOR IN $E INPUTS;
CONNECT (QUTPUT, X-5) ;
CUIDTH: =X-17:
POLER: s =+.25;
GIVE {GCB\AT ({2#YGND;64YVDD! ;
GRCBUNAT 12#-1.;
BCB\AT {12#-1.;.#0UTPUT.HEIGHT} ;
HIRE(VIDLET.B,le#-l.:.#OUTPUT.HEIGHT});
BOX (RED, 3#8\T0 14#6);
BOX (YELLOL), 3#-2.\TO 14#8);
WIRE (GREEN, 2, {1#YGND; . # MAX IN.HEIGHT FOR IN 8$E INPUTS; -41)
WIRE (GREEN, 2, {13# MIN IN.HEIGHT FOR IN $E INPUTS; 45 . 481 )
NIRE(GREEN,Z,(6#YVDD;;#3:11#.;.#B));
COLLECT {RCB\AT S#IN.HEIGHT; ‘
NIRE(RED.Z.{B#IN.HEIGHT—1;18#.;.#.—5});
LIIRE (GREEN, 2, {1#IN.HEIGHT-4;13#4.1)}
FOR IN 8E INPUTS:;}\AT X-17#8
END )
ENDDEFN

DEFINE NETALZ_INVERT(INPUTS:PHYSICAL_HIRES
OUTPUT:PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
DO IN:=INPUTSI(1];
CONNECT (IN,X-12);
CONNECT (OUTPUT, X-5) :
CUIDTH: =X-14;
POLIER: : =+, 25;
GIVE {GCBN\AT {74YGND;8#YVDD} ;
GRCBUNAT 2#-1.:
BCB\AT {2#-1.; 9#0OUTPUT.HEIGHT} ;
HIRE(VIULET,3,{Zﬂ—l.;8#.:.#UUTPUT.HEIGHT});
BOX (RED, 84B\T0O 11#6);
BOX (YELLOW, B¥-2.\TO 11#8);
HIRE(GREEN,Z.{S#YVDD;.#3;3#.;.#—2.;6#.;.#YGND});
BOX (GREEN, S#YGND-2\T0 7#-4.);
RCB\AT 2HIN.HEIGHT;
WIRE(RED, 2, {2#IN.HEIGHT: 8#. 1 Y1 \AT X-14#8
END
ENDDEFN

DEFINE LOGICAL_NAND (INPUTS:PHYSICAL LIIRES
OUTPUT:PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_WIRE;NUMBER=INT; Y=REAL ;
DO NUMBER:= +1 FOR IN 8E INPUTS::
DO CONNECT(IN,X+Y); FOR IN $E INPUTS;:8&&
FOR Y FROM 18./NUMBER-25. BY 28./NUMBER;
CONNECT (QUTPUT, X) 3
CUIDTH: =X-38;

GIVE {UIRE(BLUE,B,{—5.#8;—25.#.;—25.#15;-24.5#18;—23.#21;—21.#23;—18.#24.5;
-15.#25; -14.#25,2; -12.9#25.9; -12.2#27: -12. #28;
-12.24#23;-12.9430.1;-14.4308.8; -15.#31; -16.#38.8;
—17.1#38.l:—17.8#29:-18.#28;~l7.8#27;—17.1#25.9;
—18.#25.2;—15.#25;-12.#24.5;—8.#23;—7.#21:-5.5#18;
-5, #15;-5.481);

UIRE(GREEN.B.{—15.#31;.#33;8#.;.#DUTPUT.HEIGHT});
COLLECT WIRE(GREEN, @, {Y#8; .#IN.HEIGHT})
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FOR IN 8E INPUTS;88& FOR Y FROM 18./NUMBER-25. BY 28. /NUMBER; ;
OUTPUT.NAME\PAINTED RED\ROT 98\AT -8.#371\AT X#9
END ‘ '
ENDDEFN

DEFINE LOGICAL_NOR (INPUTS:PHYSICAL_WIRES
QUTPUT: PHYSICAL _UIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_WIRE;NU'BER=INT; Y=REAL;
DO NUMBER:= +1 FOR IN $E INPUTS;;
DO CONNECT(IN,X+Y); FOR IN 8E INPUTS;&&"
FOR Y FROM 18@./NUMBER-25. BY 28./NUMBER;
CONNECT (QUTPUT, X) 5
CWIDTH: =X-38;

GIVE lNIRE(BLUE,B.(—5.#8:—9.#1;-13.#1.7:—17.#.;—21.#1;—25.#8;
.#7:—24.7#18;—23.#15;—28.5#28;—18.#22.8;—16.#24.2;
-15.H25;-14.#25.2;-12, 9425, 9; -12. 2427 -12. #28;
—12.2#29;—12.8#38.l;—l4.#38.8;—15.#31;—18.#38.8;
—17.1#38.1;—17.8#28;—18.#28:—17.8#27;—17.1#25.9;
—16.#25.2;—15.#25;—14.#24.2;-12.#22.8;—9,5#28;-7.#15:
-5.3#18:-5.47; .48} ) ;

WIRE (GREEN, @, {-15.#31;.433;0#. ;. #OUTPUT.HEIGHT} ) ;
COLLECT UWIRE (GREEN, 8, {Y#IF Y<-21. THEN (25+Y)/4
' EF Y<-17. THEN 1+.7%(21+Y)/4
EF Y<-13. THEN 1.7
EF Y<-3. THEN 1-.7%(9+Y)/4
ELSE 1-(9+Y)/4 FI;.#IN.HEIGHT})
FOR IN 8E INPUTS;&8& FOR Y FROM 18./NUMBER-25. BY 28./NUMBER; ;
OUTPUT.NAMENPAINTED RED\ROT 98\AT -8.#37}\AT X#8
END
ENDDEFN

DEFINE LOGICAL_INVERT (INPUTS:PHYSICAL _WIRES
OUTPUT: PHYSICAL _HIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_MIRE;NUMBER=INT; Y=REAL
DO [N:=INPUTSI1],
CONNECT (IN,X-15);
CONNECT (CUTPUT, X) 5
CHIDTH: =X-38;
GIVE {(WIRE(BLUE,®, {-5.#08;-25.#.;
-15.425; -14.425.2; -12.9425.9; -12. 24273 -12. #28;
-12.2#423;-12.9430.1;-14.438.8; -15. #31; -16. #30. 8;
—17.1#38.1;—17.8#29;—18.#28;—17.8#27:—17.1#25.8:
-16.#25.2;-15.425;-5. 48} ) ;
NIRE(GREEN,B,{—15.#31;.#33;8#.;.#OUTPUT.HEIGHT}):
WIRE (GREEN, 8, {-15.#8; . #IN.HEIGHT} ) ;
OUTPUT. NAME\PAINTED RED\ROT 98\AT -8.#371\AT X#9
END
ENDDEFN

DEFINE CHOS_NAND(INPUTS:PHYSICAL LIRES
OUTPUT:PHYSICAL _LIIRE  X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_WIRE;MNN=REAL;
DO DO CONNECT (IN,X-13);CONNECT (IN,X-21): FOR IN $E INPUTS;
CONNECT (OUTPUT, X-2) ;
CUIDTH: =X-33;
MN:= MIN IN.HEIGHT FOR IN 8E INPUTS;;
GIVE {COLLECT {(RCB\AT ({X-21H#IN.HEIGHT;X-13#.};
NIRE (RED, 2, (X-22#IN.HEIGHT-1;.-4#.;.#.-5} ) ;
WIRE(RED, 2, {IX-12#IN.HEIGHT; . +5#.1); -
WIRE (GREEN, 2, {X~294#IN.HEIGHT-4;X-17#.1)}
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FOR IN 8E INPUTS;;
GCBA\AT {X-284YVDD; X-16#YVDD-7; . +6#.; . +6#. ; X-2#OUTPUT . HEIGHT;
X-18#YGND}
NIHE(BLUE.3.{X—lB#YVDD—7;.+12#.}):
WIRE (GREEN, 2, {X-23#YVYDO; . #IN-41 } 3
I41RE (GREEN, 2, {X-17#MN-4; . #YVDD-7} )
HIRE {(GREEN, 2, {X-3#YVDD-7; . #YGND} } 5
WIRE(GREEN, 2, {(X-3#YVDO-7; . #0UTPUT.HEIGHT} } 3
BOX (YELLOW, X-32#YGND-3\T0 X-13#YVDO-4)}
END
ENDDEFN

DEFINE CMOS_NOR(INPUTS:PHYSICAL _WIRES
QUTPUT: PHYSICAL _WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_MIRE;IMX=REAL;
D0 DO CONNECT{IN,X-13};CONNECT(IN,X-21}; FOR IN 8E INPUTS;
' CONNECT (QUTPUT, X-2) 5
CUIOTH: =X-33;
- MX:= MAX IN.HEIGHT FOR IN 8E INPUTS;;
GIVE  {COLLECT {RCBA\AT (X-21#IN.HEIGHT;X-13#.1};
WIRE(RED, 2, (X-22H#IN,HEIGHT-1;.-4#.; . #.-5});
WIRE(RED, 2, {IX-12#IN.HEIGHT; .+5#.1 1)
WIRE (GREEN, 2, {X-23#IN.HEIGHT-4;X-17#.1)}
FOR IN 8E INPUTS;;
GCBN\AT {X-284YGND; X-16HYCND+75 . +6#. ; . +6H. s X-2H0UTPUT . HEIGHT;
X-18H#YVDD} 4
WIRE (BLUE, 3, {X- 1F#YGND+7, +124. 1);
LIRE (GREEN, 2, {X-23#YGND; . #1X-41) 5
NIRE(GREEN.Z,{X-17#HX—4:.#YGND+7});
WIRE (GREEN, 2, {X-9H#YGND+7; . #YVDDH ) 5
WIRE (GREEN, 2, {X-3H#YCND+7; . HOUTPUT.HEIGHT}) ;
BOX (YELLOW, X-13#YGND+4\TO X-6#YVYDD+3)}
END :
ENDBEFN

DEFINE CHMOS_INVERT (INPUTS: PHYSICAL_WIRES
OUTPUT:PHYSICAL_WIRE X:REAL}=MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
DO IN:=INPUTSI(11;
CONNECT (IN,X-12}
CONNECT (QUTPUT, X-2};
CUIDTH: =X-18;
GIVE {RCB\AT X-12#IN.HEIGHT;
WIRE (RED, {X-BHIN.HEIGHT s X-11#.; . #YVDD+11 )
GCBNAT {X-2HOUTPUT.HEIGHT; X~ 7#YGND;.#YVDD—7;.#YVDD;X—lS#YVDD—7);
WIRE (BLUE, 3, {(X-15#YVDD-7;X-7#.1);
HIRE (GREEN, 2, {X-8#YVDD-1sX-14#.; . #YVOD-611;
WIRE (GREEN, 2, {X-8#YGND; . #YVDD-8; X-3#.; . #OUTPUT.HEIGHT+11 } 3
BOX (YELLOL, X-184#YVOD-18\TO X-11#YVDD+2);
BOX (YELLOW, X-124YVDB-3.5\T0 X-4#YVOD+2)}
END
ENDDEFN

DEFINE CHMOS_2_NAND (INPUTS:PHYSICAL _HIRES
OUTPUT: PHYSICAL_WIRE X:REAL)}=PMRG:
BEGIN VAR IN=PHYSICAL_WIRE;IN=REAL;
DO DO CONNECT(IN,X-3) :CONNECT{IN,X-17); FOR IN $E INPUTS;
CONNECT (OUTPUT, X-2) 5
CHIDTH: =X-25;
MN:= MIN IN.HEIGHT FOR IN $E INPUTS;;
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GIVE {COLLECT ({RCB\AT {X-SHIN.HEIGHT;X-174.};
UIRE(RED,Z,{X—S#IN.HEIGHT—I:X—Q#.;.#.-5});
WIRE (RED, 2, {X-18#IN.HEIGHT-1;X-23#.1);
WIRE (GREEN, 2, {X-1#IN.HEIGHT-4;X-13#.1)}
FOR IN $E INPUTS 4
GCB\AT {X-2#YVDOD; X-28#YVDD-7; . #YGND} ;
GCBCBA\AT X—l4#YVDD—7;
BCB\AT X-ZH#OUTPUT.HEIGHT;
HIRE (BLUE, 3, {X-14#YVDD-7;X-284.1); ‘
WIRE(VIOLET, 3, {X-14#YVDD-7;X-2#. s . HOUTPUT.HEIGHT} ) ;
WIRE (GREEN, 2, {X~-1#YVDD; . #MN-41) ;
WIRE (GREEN, 2, {X-13#YVDD-8; . #MN-4}) ;
WIRE (GREEN, 2, {X-21#YVDD-8; . #YGND} ) ;
BOX (YELLOW, X+1 .5#MN-7\TO X-17#YVDD+2)}
END
ENDDEFN

BEFINE CMOS_2_NOR (INPUTS:PHYSICAL_UIRES
QUTPUT: PHYSICAL _WIRE  X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_IIIRE;MX=REAL; ,
D0 DO CONNECT (IN,X-9) CONNECT(IN X-17); FOR IN 8$E INPUTS;
CONNECT (QUTPUT, X- 2)
CUIDTH: =X-25;
- MX:= MAX IN.HEIGHT FOR IN SE INPUTS;;
GIVE {COLLECT {RCBN\AT {X-9#IN.HEIGHT;X-17#.};
WIRE(RED, 2, (X-8#IN.HEIGHT-1;X-4#.;.4.-5});
WIRE (RED, 2, {X-18#IN.HEIGHT-1;X-23#.1);
NIRE (GREEN, 2, {X-1#IN.HEIGHT-4;X-134.1)}
FOR IN 8E INPUTS;;
GCBNAT  {X-2HYGND; X-28#YGND+7; . #YVYDD} ;
GCBCBNAT X-148YGND+7;
BCB\AT X-2#0UTPUT.HEIGHT;
WIRE (BLUE, 3, {X-14#YGND+7;X-20#.1) ;
HIRE(VIOLET, 3, IX-14#YOND+7; X-2#. ; . #OUTPUT.HEIGHTI ) ;
WIRE (GREEN, 2, {X-1#YGND; . #MX-4}) ;
WIRE (GREEN, 2, {X-13#YCND+8; . #11X-41}) ;
WIRE (GREEN, 2, {X-21#YGND+8; . #YVDD} ) ;
BOX (YELLOW, X-17#YGND+4\TO X-23.5#YVDD+2)}
END :
ENDDEFN

DEFINE CMOS_2_INVERT (INPUTS: PHYSICAL_WIRES
OUTPUT:PHYSICAL_WIRE X: REAL) =I"RG:
BEGIN -~ VAR IN=PHYSICAL_WIRE;
DO IN:=INPUTSI{1];
CONNECT(IN,X—S);
CONNECT (OUTPUT, X-2} ;
CUTDTH: =X-~15;
GIVE {RCBN\AT X-SHIN.HEIGHT;
WIRE(RED, 2, {X-GHIN.HEIGHT+1; . #. +2;:X-1#.1);
WIRE (RED, 2, {X-6H#IN.HEIGHT+3; . #YVDO+1} ) ;
GCBNAT  {X-3#YGND; X-24#YVDD; X-184#YVDD-71} 5
GCBCBN\AT X-2#YVDD-7;
BCBNAT X-2HOUTPUT.HEIGHT;
WIRE (BLUE, 3, {IX-1B#YVDD-7;X-2#.1);
WIRE(VIOLET, 3, {X-24YVDD-7; . #OUTPUT .HEIGHT} ) ;
WIRE (GREEN, 2, {X-3#YGND+1;.#YVDD-8});
WIRE (GREEN, 2, {X-3#YVDD-6;.#YVDD-1;X-3#.1);
BOX(YELLOW, X-13.5#YVDD-18.5\T0 X- 8#YVDD+2)
BOX(YELLOW, X-7#YVDD-3.5\TO X#YVDD+2)}
END
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ENDDEFN

VAR SWW=REAL; "STICKS WIRE WIDTH"
SCON=MRG; "STICKS_CONTACT"

SUU: =, 25,

SCON: =BOX (BLACK, -1.#-1.\T0O 1#1);

DEFINE NMOS_STICKS_NAND (INPUTS:PHYSICAL _LIIRES
OUTPUT: PHYSICAL_WIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
DO DO CONNECT(IN,X-18); FOR IN $E INPUTS;
CONNECT (OUTPUT, X-2) 3
CUIDTH: =X~12; ‘
GIVE ({(COLLECT {SCONNAT X-18#IN.HEIGHT:
. WIRE(RED, SWN, {X~1B#IN.HEIGHT; . #. -4 X-4#.1 )}
FOR IN 8E INPUTS;;
WIRE {GREEN, SWL, {X-B#YGND+2; . #YVDO-21) ;
NIRE(GREEN,SUH,(X—B#B;X—Z#.;.#OUTPUT.HEIGHT));
WIRE (RED, SWU, {(X-B#B;X-184. ; . #6;X-2#.1) ;
BOX (YELLOW, X-8#4\TO X-4#8) ;
SCONNAT  {X-GHYGND+2; . #8; . #YVDD-2; X-280UTPUT. HEIGHT} }
END
ENDDEFN

DEFINE NMOS_STICKS_NOR (INPUTS:PHYSICAL_WIRES
OUTPUT: PHYSICAL_WIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
DO - DO CONNECT(IN,X-18); FOR IN $E INPUTS;
CONNECT (OUTPUT, X-2) ;
CUIDTH: =X-16;
GIVE {COLLECT {SCON\AT X-1BHIN.HEIGHT;
: WIRE (RED, SLU, {X-18#IN.HEIGHT; . #.-6});
WIRE (GREEN, S, {X~14#IN.HEIGHT-43 X-B#.1)}
FOR IN $E INPUTS;;
HIRE (GREEN, SUW, {X-14#YGND+2;.# MAX IN.HEIGHT FOR IN $E INPUTS; -4} )
WIRE (GREEN, S, {X-6# MIN IN.HEIGHT FOR IN $E INPUTS; -4; . #YVDD-21 ) 3
WIRE (GREEN, SUW, {X-6#8;X-2#. ; . #OUTPUT.HEIGHT} ) ;
WIRE (RED, SLU, {X-B48;X-184. ; . #8: X-28.1) ;
BOXAYELLOW, X-8#4\TO X-4#8)
SCONNAT {X-14#YGND+2; X-648; . #YVDD-2; X-240UTPUT. HEIGHT} }
END
ENDDEFN

DEFINE NIMOS_STICKS_INVERT (INPUTS: PHYSICAL LIIRES _
OUTPUT:PHYSICAL_WIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL WIRE;
DO IN:=INPUTSI(1];
CONNECT (IN, X-18)
CONNECT (QUTPUT, X-2) 5
CUIDTH: =X-12; ,
GIVE {WIRE (RED, Sk, IX-1BH#IN. HEIGHT; . #. ~43 X-4#.1 )
LITRE (GREEN, SUL, {X-BA#YGND+2; . #YVOD-2} ) 5
WIRE (GREEN, SWM, {X-648; X-24. ; . #OUTPUT.HEIGHT} ) ;
HIRE (RED, SWW, {X-BH#B; X-18H. 5 . 465 X-28.1 ) 3
BOX (YELLOW, X-8#4\TO X-448);
SCONNAT  {X-1B#IN.HEIGHT; X-6#YGND+2; . #8; . #YVDD-2; X-2#0UTPUT . HE I GHT} }
END S ' -
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ENDGEFN

DEFINE METAL2_STICKS_NAND (INPUTS:PHYSICAL LIIRES
QUTPUT: PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_LIIRE;
DO DO CONNECT(IN,X-18); FOR IN $E INPUTS;
- CONNECT (OUTPUT, X-2) ;
CUIDTH: =X-12;
GIVE ({COLLECT {SCON\AT X-1B#IN.HEIGHT;
WIRE(RED, SWld, {X-18#IN.HEIGHT; . #. ~4;X-4#.1 )}
FOR IN $E INPUTS;:
WIRE (GREEN, SUW, {X-B#YGND+2; .#YVDD-21 ) ;
WIRE (VIOLET, SWUM, {X-6#B; X-2#4. ; . HOUTPUT.HEIGHT} ) ;
WIRE (RED, SWW, (X-BH#B;X-18H.; . HB; X-2H.1) 3
BOX (YELLOUW, X-8#4\TQ X-4#8) ;
.~ SCONNAT {X-B#YGND+2; .#8; . #YVDD-2; X-2HOUTPUT . HEIGHT} }
END '
ENDDEFN

DEFINE METALZ2_STICKS_NOR (INPUTS:PHYSICAL_WIRES
, OUTPUT:PHYSICAL_WIRE X:REAL)=IMRG:
BEGIN VAR IN=PHYSICAL_UIRE; -
D0 DO CONNECT(IN,X-18); FOR IN $E INPUTS;
CONNECT (OUTPUT, X-2) ; '
CUIDTH: =X-186;
GIVE {COLLECT ({SCONNAT X-18#IN.HEIGHT;
WIRE(RED, SHU, {X-1B#IN.HEIGHT; .#.-6});
WIRE (GREEN, SHW, {X-14H#IN.HEIGHT-4;X-6H#.1)}
FOR IN 8E INPUTS;;

WIRE (GREEN, SUWI, {X-14#YGND+2; .# MAX IN.HEIGHT FOR IN $E INPUTS; -41 )
WIRE (GREEN, SLIW, {X-B6# MIN IN.HEIGHT FOR IN $E INPUTS; -4 . #YVDD-21) ;

WIRE (VIOLET, SULI, {X-B#B; X~2#. ; . HOUTPUT.HEIGHT} ) ;
WIRE (RED, SHU, {X-B#B;X-18H. ;. #63X-24.1);
BOX (YELLOW, X-8H#4\TO X-4#8);
SCONNAT  {X-144#YGND+2; X~-6#8; . #YVOD-2; X-2#0UTPUT.HEIGHT} }
END ‘
ENDDEFN

DEFINE METAL2_STICKS_INVERT (INPUTS:PHYSICAL_LIIRES
OUTPUT: PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
DO IN:=INPUTSI11;
CONNECT (IN,X-10) ;
CONNECT (OUTPUT, X-2) 3
CHIDTH: =X-12;
GIVE {WIRE(RED,SWW, {(X-1@#IN.HEIGHT; . #. -4;X-4H#.});
WIRE (GREEN, SHI, {X-6#YGND+2; . #YVDD-21) ;
HIRE (VIOLET, SUM, {X-6#8;X-2#. ;.. HOUTPUT.HEIGHT} ) 3
WIRE (RED, SHM, {X-BHO; X-184. ; . HE;X-2#.1) ;
BOX (YELLOW, X-8#4\TO X-4#8);

END
ENDDEFN
VAR TRANG, TRANGND, TRANPULL =MRG;
TRANQ: = {HIRE (BLACK, @, {B#8;2#.1) i

WIRE(BLACK, B, {2#-2.; .42} )
WIRE (BLACK, 8, {2.5#-3.; .43} );

SCONNAT  {X-1BH#IN.HEIGHT; X-64#YGND+2; . #@; . #YVDD~2; X-2#0UTPUT .HEIGHT} }
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WIRE (BLACK, @, {2.5#2;4#.1)
WIRE (BLACK, 8, {2.5#-2.;44.1)}

TRANGND: = {HIRE (BLACK, B, {-2.#8;2#.1);
HIRE(BLACK,B,{~1,2#—.8;1.2#.});
WIRE (BLACK, 8, {-.4#-1.6;.44.1))

TRANPULL : = {TRANQ\AT -4, #B;
WIRE(BLACK, 8, {-4.46;.#2;08#4.1);
WIRE (BLACK, B, {8#8; .#4}) ;
WIRE (BLACK, 8, {B#S;.#141);
NIRE(BLACK, 8, {-.6#12;8#14; .6#121)1 ;

DEFINE TRANS_NAND (INPUTS:PHYSICAL_MIRES
- QUTPUT: PHYSICAL LIIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_WIRE;SR1,SR2=SR;R, S=REAL ;
.DO DO CONNECT (IN,X-18); FOR IN $E INPUTS:
CONNECT (OUTPUT, X-2) +
SR2:={COLLECT IN.HEIGHT FOR IN $E INPUTS;}
SR1:=NIL;
WHILE DEFINED(SR2); DO
S:= MAX R FOR R 8E SR2;:
SR1::=" 5 <$;
SR2:={COLLECT R FOR R $E SR2;UITH R<>S;};
END :
CUIDTH: =X-12;
GIVE {COLLECT {TRAND\AT X-18#IN.HEIGHT-4;
WIRE (BLACK, B, {X-18#IN.HEIGHT; . #. -4} )}
FOR IN $E INPUTS;;
COLLECT WIRE(BLACK, B, {(X-6#R-2;.45-6}1)
FOR {R;S} $C YGND+2 <% SR1 $> 6;;
TRANGND\AT X-B#YGND;
TRANPULL\AT X-6#48;
WIRE (BLACK, B, {X-B#B;X-2#.; . #HOUTPUT.HEIGHT} )}
END
ENDDEFN

DEFINE TRANS_NOR (INPUTS:PHYSICAL_WIRES
OUTPUT: PHYSICAL_WIRE X:REAL)=MRG:
BEGIN VAR IN=PHYSICAL_lIRE; '
D0 DO CONNECT(IN,X-18); FOR IN $E INPUTS;
CONNECT (OUTPUT, X-2) ;
-CUIDTH: =X-16;
GIVE {COLLECT {(TRANG\ROT 278\AT X-18H#IN.HEIGHT;
WIRE (BLACK, 8, {X-14#IN.HEIGHT-4;.+24.}) ;
NIRE (BLACK, B, {X-8#IN.HEIGHT-4; . 4+2#.1)}
FOR IN 8E INPUTS;;
TRANGND\AT X-14#YGND;
WIRE (BLACK, 8, {X~-14#YGND; . # MAX IN.HEIGHT FOR IN $E INPUTS; -41)
WIRE {BLACK, @, {X-6# MIN IN.HEIGHT FOR IN $E INPUTS; -4; . #0; X-2#. ;
-HOUTPUT.HEIGHT1 )
TRANPULL\AT X-6#0}
END ’
ENDDEFN

DEFINE TRANS_INVERT (INPUTS:PHYSICAL_WIRES
OUTPUT: PHYSICAL_WIRE X:REAL) =MRG:
BEGIN VAR IN=PHYSICAL_WIRE;
00 IN:=INPUTSI[11;
CONNECT (IN,X-18);
CONNECT (QUTPUT, X-2} 3
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CHIDOTH: =X-12;
GIVE {TRANQNAT X-1BHIN.HEIGHT-4;
WIRE (BLACK, 8, {X~-18#IN.HEIGHT; . #. -4} ) ;
WIRE (BLACK, 8, {X-B#YGND; . #IN.HEIGHT - 8})
TRANGNDA\AT X-GHYGND;
TRANPULL\AT X-6#48;

NIRE(BLACK,B,{X—B#IN.HEIGHT-Z;.#8;X—2#.;.#DUTPUT.HEIGHT})}
END

ENDDEFN

In addition to the gate producing routines, each technology requires a function
which will draw the final signal wires on the chip. This wire function accepts a
chip as the input parameter and produces an MRG as the output parameter. Since we
want the user to be able to change the wire drawing routine at will, this too will be
a global variable which is a suspendable function. The following type declaration

declares the type. The wire drawing routines are listed after the type declaration.

TYPE CHIP_TO_MRG= //MRG{CHIP)I\\;

"DEFINE NMOS_WIRES(C:CHIP)=MRG:
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT, PUIDTH= REAL;
DO LEFT: CUIDTH+5
RIGHT: =-2.
PUIDTH: HIDTH(PDHER) [MAX 4
GIVE {COLLECT WIRE(BLUE, 3, {S.PHYSICAL.LEFTH#S.PHYSICAL. HEIGHT;

S.PHYSICAL.RIGHT#.1)
FOR S 8E C.SIGNALS;

EACH_DO @(S.PHYSICAL).LEFT::= MAX LEFT;
@{S.PHYSICAL) .RIGHT: : = MIN RIGHT‘.,
BOX{BLUE, CLIDTH+34#YVDD-3\TO 4#YVDD+(PHIDTH 3 MNAX 21}

BOX (BLUE, CUIDTH-1#YGND+2-PLUIDTH\TO BHYGND+2) }
END

ENDDEFN

DEFINE METAL2_WIRES(C:CHIP) =MRG:

BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT,PLIDTH=REAL :
DO LEFT: CUIDTH+2

RIGHT: =-5,
PUIDTH: NIDTH(POHER) MAX 4;
GIVE {COLLECT WIRE (BLUE,3, (5. PHYSICAL.LEFT#S.PHYSICAL.HEIGHT;

S.PHYSICAL.RIGHT#.})
FOR S 8E C.SIGNALS;
EACH_DO e(S.PHYSICAL).LEFT::= MAX LEFT;
@{S.PHYSICAL}. RIGHT = MIN RIGHT,,,
BOX (BLUE, CUIDTH#YVYDD-3\TO l#YVDD+(PNIDTH 3 MAX 2));

BOX (BLUE, CHIDTH-4#YGND+2~PUIDTH\TO -3.#YGND+2)}
END

ENDDEFN

DEFINE LOGICAL_WNIRES(C:CHIP) =MRG:

BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL;
DO LEFT:=CUIDTH-2;
RIGHT: =5;

GIVE (COLLECT WIRE (GREEN, 8, {S.PHYSICAL.LEFT#S.PHYSICAL. HEIGHT;

S.PHYSICAL.RIGHT#.}1)
FOR S 8E C.SIGNALS;
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EACH_DO e(S.PHYSICAL).LEFT::= MAX LEFT;

@{S.PHYSICAL}. RIGHT = MIN RIGHT;;}
END

ENODEFN

DEFINE CMOS_WIRES(C:CHIP)=MRG:
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL;
DO LEFT: CUIDTH+12
RIGHT: =-2,
GIVE {COLLECT HIRE(BLUE 3, {S.PHYSICAL.LEFTH#S.PHYSICAL.HEIGHT;
S.PHYSICAL.RIGHTH.1)
FOR S 8E C.SIGNALS;
EACH DO @(S.PHYSICAL).LEFT::= MAX LEFT;
@{S,PHYSICAL). RIGHT = MIN HIGHT,,,
WIRE(BLUE, &4, {CUIOTH+4#YVDD; 2# 1)y
HIRE(BLUE,4 {CHIDTHAYGND; -2, #.1)}
END
ENDDEFN

DEFINE CMOS_2_WIRES(C:CHIP) =MRG:
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL ;
DO LEFT: CHIDTH+8
RIGHT: =-2,
GIVE {COLLECT NIRE(BLUE 3, {S.PHYSICAL .LEFT#S.PHYSICAL .HEIGHT:
S.PHYSICAL.RIGHT#.})
FOR S 8E C.SIGNALS;
EACH_DO @(S.PHYSICAL).LEFT::= MAX LEFT;
@{S.PHYSICAL). RIGHT 1= NIN RIGHT,,;
WIRE (BLUE, 4, {CUIDTH+5H#YVDD; 24.1)
WIRE (BLUE, 4, {CLIDTHA#YGND; -2. #. })}
END '
ENDDEFN

DEFINE NMOS_STICKS_WIRES(C:CHIP) =MRG:
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL;
DO LEFT: CHIDTH+2
RIGHT:=-2.
GIVE {CDLLECT WIRE (BLUE, SHU, {S.PHYSICAL.LEFT#S.PHYSICAL. HEIGHT;
- S.PHYSICAL.RIGHT#.1)
FOR S 8E C.SIGNALS;
EACH_DO e(S.PHYSICAL).LEFT::= MAX LEFT;
@(S.PHYSICAL) . RIGHT = MIN RIGHT,,,
WIRE (BLUE, SWW, {LEFT#YVDD-2; 2# 1)
WIRE (BLUE, SWUW, {CWIDTH- 2#YGND+2 RIGHT# 1)}
END
ENDDEFN

"METAL-2 sticks uses the NIMOS_STICKS_WIRES routine"

OEFINE TRANS_WIRES(C:CHIP) =IRG:
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL ;
D0 LEFT: CHIDTH+2
RIGHT: =-2.
GIVE {CDLLECT WIRE (BLACK, 8, {S.PHYSICAL.LEFT#S.PHYSICAL. HEIGHT;
S.PHYSICAL.RIGHT#.1)

FOR S 8$E C.SIGNALS;
EACH_DO e(S.PHYSICAL).LEFT::= MAX LEFT;

@(S.PHYSICAL) . RIGHT = MIN RIGHT;;}
END
ENODEFN
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In addition to the wire drawing routine, each technology has a routine for
initializing the global coordinates and a routine for calculating wire positions in the
wiring channel. The first routine requires the chip as an input parameter, and
produces no output. The second routine takes a channel index, an INTEGER, and
returns the channel pPosition, a REAL. These two routines will be CHIIi_CONSUMERs
and INT TO REALs.

TYPE CHIP_CONSUMER= // (CHIP}\\;
INT_TO_REAL= //REAL (INT)\\;

DEFINE NMOS_SETUP (C:CHIP) :
BEGIN VAR S=SIGNAL_lIRE;
YGND:= -3.%(MAX S.VHEIGHT FOR S $E C.SIGNALS;) -6,
YvOD: =9;
END
ENDDEFN

"METAL2 uses NMOS_SETUP"
"LOGICAL uses NMOS_SETUP"

DEFINE CMOS_SETUP (C:CHIP) :
BEGIN VAR S=SIGNAL_MIRE;
YVDD: =0;
YOND: =-3, % (MAX S.VHEIGHT FOR S $E C.SIGNALS;)-19;
END
ENDDEFN

"CMOS_2 uses CMOS_SETUP"

DEFINE NMOS_STICKS_SETUP(C:CHIP):
BEGIN VAR S=SIGNAL_WIRE;
YGND:= -18.%(MAX S.VHEIGHT FOR S $E C.SIGNALS; ) -B;
YVDD:=12:
END
ENDDEFN

"METAL2_STICKS uses NMOS_STICKS_SETUP"
DEFINE TRANS_SETUP (C:CHIP):
BEGIN VAR S=SIGNAL_UIRE;
YGND: = -18.v%{MAX S.VHEIGHT FOR S $E C.SIGNALS;) -8;
END
ENDDEFN
DEFINE NMOS_WIRE_HEIGHTS (1:INT)=REAL: 1-9xl1 ENDDEFN
"METAL2 uses NMOS_WIRE_HEIGHTS"

"LOGICAL uses NMOS_WIRE_HEIGHTS"



-243-
DEFINE CMOS_WIRE_HEIGHTS (1:INT) =REAL: ~-5.-9%] ENDDEFN
"CMOS_2 uses CMOS_WIRE_HEIGHTS"
DEFINE NMOS_STICKS_WIRE_HEIGHTS (1:INT) =REAL: 6-18+] ENDDEFN
"METAL2_STICKS uses NMOS_STICKS_IRE_HEIGHTS"
DEFINE TRANS_WIRE_HEIGHTS (I: INT)=REAL: 6-18x1 ENDDEFN

The final technology dependent routines in RLC concern wire i::acking and gate
sorting. For each technology, we may desire to have a routine which will pack the
wires in the wiring channel, Similarly, we may desire sorting routines which sort
the gates to achieve higher performance or smaller area. These routines are similar
to the SETUP routines: They require a CHIP as an input parameter, and they return

no output data.

With these considerations in mind, we can declare a TECHNOLOGY datatype Which'
contains all of the technology-dependent information. We can define new
technologies and add them to the technology list at any time, and can then output

our circuits in any of the available technologies.

TYPE TECHNOLOGY=
INAND,NOR, INVERT: GATE_PRODUCER

MIRES: CHIP_TO_I"RG
PACK, SORT,SETUP: CHIP_CONSUMER
WIRE_HEIGHT: INT_TO_REAL
VDO, GND: REAL

NAME QS1;

TECHNOLOGIES= { TECHNOLOGY 1}
YAR TECHNOLOGIES= TECHNOLOGIES;

VAR NMOS,METAL2,LOGICAL,CMOS, CHMOS2,NMOS_STI CKS,METAL2_STICKS,
TRANSISTOR=TECHNOLOGY;

NNDS::[NAND://:NNDS_NAND(PHYSICAL_HIRES,PHYSICAL_HIRE,REAL)\\
NOR://:NHDS_NDR(PHYSICAL_HIRES,PHYSICAL_NIRE.REAL)\\
INVERT://:NHDS_INVERT(PHYSICAL_UIRES,PHYSICAL_HIRE,REAL)\\
WIRES: //:NMOS_WIRES (CHIP) \\

PACK: //:NNMOS_PACK_2 (CHIP) \\
‘SORT://:NO_SORT(CHIP) \\

SETUP: //:NMOS_SETUP (CHIP) \\
HIRE_HEIGHT: //:NMOS_WIRE_HEIGHTS (INT) \\
vbhD: 3

GND: B

NAME: *NMOS’ 1

METALZ: = INAND: //: METAL2_NAND (PHYSICAL _WIRES, PHYSICAL _WIRE,REAL)\\
NOR: //:METAL2_NOR (PHYSICAL_WIRES, PHYSICAL_LTRE,REAL) \\
INVERT://:METAL2_INVERT (PHYSICAL_WIRES, PHYS] CAL _WIRE,REAL) \\
WIRES: //:METAL2_WIRES (CHIP) \\
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PACK: //:NMOS_PACK _2 (CHIP)\\
SORT://:NO_SORT (CHIP}\\

SETUP: //:NMOS_SETUP (CHIP) \\
WIRE_HEIGHT: //:NIMOS_WIRE_HEIGHTS (INT)\\
vhD: 3 '

GND: @

NAME: *METAL2' ]

LOGICAL : = INAND: //: LOGICAL _NAND (PHYSICAL _MIRES, PHYSICAL _LIRE,REAL) \\
NOR: //:LOGICAL _NOR (PHYSICAL _WIRES, PHYSICAL _WIRE,REAL)\\
INVERT: //:LOGICAL _INVERT (PHYSICAL_WIRES, PHYSICAL_NIRE REAL) \\
WIRES: //:LOGICAL_IIRES (CHIP) \\
PACK: //:NIMOS_PACK_2 (CHIP) \\
SORT: //:NO_SORT (CHIPI\\
SETUP: //:NMOS_SETUP (CHIP)}\\
WIRE_HEIGHT: //:NMOS_WIRE_HEIGHTS (INT)\\
NAME:”LOGICAL’1;

CrOS: = INAND: //: CMOS_NAND (PHYSICAL _LIRES, PHYSICAL _WIRE, REAL) \\
NOR: //:CMOS_NOR (PHYSICAL _WIRES, PHYSICAL_WIRE,REAL)\\
INVERT: //: CMOS_INVERT (PHYSICAL_WIRES, PHYSICAL _WIRE,REAL) \\
WIRES: //:CMOS_WIRES (CHIP)I\\

PACK: //:NMOS_PACK_2 {CHIP)\\

SORT: //:NO_SORT (CHIP)\\

SETUP: //:CMOS_SETUP (CHIP)I\\
WIRE_HEIGHT://:CMOS_LIRE. HEIGHTS(INT)\\
vDhD: 3

GND:-1.

NAME: 'CMOS’ 1

CMOS2: = INAND: //: CMOS_2_NAND (PHYSICAL _WIRES, PHYSICAL_WIRE,REAL) \\
NOR: //:CMOS_2_NOR (PHYSICAL _WIRES, PHYSICAL _WIRE,REAL)\\
INVERT: //:CMOS_2_INVERT (PHYSICAL_WIRES, PHYSICAL _WIRE,REAL)\\
WIRES: //:CNMOS_2_WIRES(CHIP)\\

PACK://:NMOS_PACK_2 (CHIP)\\
SORT://:NO_SORT(CHIP)I\\

SETUP: //:CMOS_SETUP (CHIPY \\
WIRE_HEIGHT: //:CNMOS_WIRE_HEIGHTS (INT)\\
vhD: 3

GND:-1.

NATME: *CM0S2°1;

NMOS_STICKS: =
INAND: //: NMOS_STICKS_NAND (PHYSICAL _WIRES, PHYSICAL_WIRE, REAL) \\
NOR: //:NMOS_STICKS_NOR (PHYSICAL_WIRES, PHYSICAL _WIRE,REAL)\\
INVERT://:NMOS_STICKS_INVERT (PHYSICAL_WIRES, PHYSICAL _WIRE,REALI\N\
HIRES: //:NMOS_STICKS_WIRES (CHIPY\\
PACK: //:NMBS_PACK_2 (CHIPY\\
S0RT: //:NO_SORT{CHIP)\\
SETUP: //:NMOS_STICKS_SETUP (CHIP)\\
LIRE _HEIGHT://:NMOS_STICKS_WIRE_HEIGHTS (INT)\\
voD: 2
GND: -2.
NAME: *NMOS_STICKS 1;

METALZ2_STICKS: =
[NAND: //:METAL2_STICKS_NAND (PHYSICAL _WIRES, PHYSICAL _LIIRE,REAL) \\
NOR: //:METAL2_STICKS_NOR (PHYSICAL_WIRES,PHYSICAL_WIRE, REAL) \\ '
INVERT://:METAL2_STICKS INVERT(PHYSICAL _HIRES, PHYSICAL _HIRE,REAL}I\N\
LITRES: //:NMOS_STICKS_WIRES (CHIP) \\
PACK: //:NIMOS_PACK_2 (CHIP)I\\
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SORT://:NO_SORT{CHIP) \\

SETUP: //:NMOS_STICKS_SETUP (CHIP) \\
WIRE_HEIGHT: //:NMOS_STICKS_WIRE_HEIGHTS (INT) \\
vDO:1

GND: -1.

NAME: "METALZ_STICKS'1;

TRANSISTOR: = [INAND: //: TRANS NAND(PHYSICAL _HIRES,PHYSICAL WIRE,REAL)Y\\
NOR: //: TRANS_NOR (PHYSICAL _IIRES, PHYSICAL _WIRE,REAL)Y\\
INVERT: //: TRANS_INVERT (PHYSICAL _WIRES, PHYSICAL _WIRE,REAL)\\
WIRES: //: TRANS_WIRES (CHIPI\\

PACK: //:NMOS_PACK_2 (CHIP}\\

SORT: //+NO_SORT {CHIP) \\

SETUP: //: TRANS_SETUP {CHIP)\\
WIRE_HEIGHT: //: TRANS_WIRE_HEIGHTS (INT) \\
vDB: 1

GND: -1.

NAME: " TRANSISTOR1;

DEFINE NMOS=MRG: COMPILE (CHIP,NMOS) ENDDEFNv
DEFINE METAL2=MRG: COMPILE(CHIP,METAL2) ENDDEFN
DEFINE LOGICAL=MRG: COMPILE (CHIP,LOGICAL) ENDDEFN
DEFINE CHMOS=MRG: COMPILE(CHIP,CMOS) ENDDEFN

DEFINE CMNOS2=MRG: COMPILE (CHIP,CMOS2) ENDDEFN
DEFINE NMOS_STICKS=MRG: . CONPILE(CHIP,NﬁDS_STICKS) ENDDEFN

DEFINE METAL2_STICKS=MRG: COMPILE(CHIP,METAL2_STICKS) ENDOEFN
DEFINE TRANSISTOR=MRG: COMPILE (CHIP, TRANSISTOR)  ENDDEFN
DEFINE PUT_NMOS: PUT (CHIP,NMNOS) 4 ENDDEFN

DEFINE PUT_METALZ: PUT(CHIP,METAL2); ENDDEFN

DEFINE PUT_LOGICAL: PUT (CHIP,LOGICAL) ; ENDDEFN

DEFINE PUT_CMOS: PUT (CHIP,CMOS) 5 . ENDDEFN

DEFINE PUT_CMDSZ: PUT (CHIP,CMBS2) 4 ENDDEFN

DEFINE PUT_NMOS_STICKS: PUT (CHIP,NMOS_STICKS) ; ENDDEFN
DEFINE PUT_METALZ_STICKS: PUT(CHIP,METAL2_STICKS) ; ENDDEFN
DEFINE PUT_TRANSISTOR: PUT (CHIP, TRANSISTOR) ; ENDDEFN

TECHNOLOGIES: = {NMOS;METALZ; LDGICAL ; CMOS; CMOS2; NMOS_STICKS; METAL2_STICKS;
TRANSISTOR} ;

Now that we have our basic technologies defined, we will present the data

 structure definitions for representing the chip. These definitions, which follow
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the definitions in Chapter 5, represent the wires and gates of the chip. In addition,
the definition for the CHIP datatype is given. The DCHIP type is a swappable CHIP,
which means that an instance of type DCHIP can be swapped into the Qirtual
memory by the system. ICL allows the user to specify what datatypes are
swappable, because the user can do a much better job of describing conceptual units

than a program can,

TYPE SIGNAL_WIRE= [FROM:GATE
TO:GATES
NAFME: QS
PHYSICAL : PHYSICAL _LIIRE
INPUT, QUTPUT : BOOL
VLEFT, VRIGHT, VHEIGHT: INT
VINVERT:SIGNAL_WIRE];

SIGNAL_WIRES= { SIGNAL_WIRE 1;
GATE= [INPUTS:SIGNAL_IIIRES
OUTPUT: SIGNAL _WIRE
TYPE:GATE_TYPE
INDEX: INT
RINDEX:REAL];
GATES= { GATE 1,
GATE_TYPE= SCALAR (NAND,NOR, INVERT) ;
" CHIP= [GATES:GATES
SIGNALS: SIGNAL_IIRES
SIGNAL_COUNT: INT
NAME, DESCRIPTION: QS1 ;

OCHIP= PRIVATE DISK_NODE;

VAR YVDO, YGND, POLER, CHIDTH=REAL ;
CHIP=CHIP;

LET DCHIP BECOME CHIP BY MACRO-18(’ INCORS$’)
DEFINE DISK(C:CHIP)=DCHIP: MACRO-18(’DSKIZ$’)
DEFINE MODIFIED(D:DCHIP): MACRO-18 (' DMODS$’)

BEFINE PUT(D:DCHIP N:QS):
BEGIN  LET DCHIP BECOME GLS24 BY MACRO-18(’ [DENTS’)
PUT(D,N,*DCHIP 1/2/81’);
END

ENDDEFN
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OEFINE PUT(C:CHIP): PUT(DISK(C},C.NAME); ENDDEFN

DEFINE GET(N:QS)

=DCHIP:

BEGIN  LET GLS24 BECOME DCHIP BY IMACRO-18 (' IDENTS')

GET (N, "OCHIP
END
ENDDEFN

This next section

172/81")

of code is the actual compiler, which closely follows the code in

Chapter 5. Because of the similarity of the code, no additional comments will be

given here.

DEFINE PHYSICAL {
DEFINE PHYSICAL (

BEGIN VAR
{COLLECT S\P
END

ENODEFN

DEFINE INPUTSI(C:

BEGIN VAR
ICOLLECT S F
END

ENDDEFN

DEFINE QUTPUTS(C:

BEGIN VAR
{COLLECT S F
END

ENODEFN

SU:SIGNAL _LIRE) =PHYSICAL _WIRE: Sil.PHYSICAL ENDDEFN

SHS: SIGNAL _LIRES) =PHYSICAL_WIRES:
S=SIGNAL_UIRE;
HYSICAL FOR S 8E SWS;}

CHIP) =SIGNAL _I4IRES:
S=SIGNAL_lIIRE;
OR S 8k C. SIGNALS sHITH S.INPUT;}

CHIP)=SIGNAL_WIRES:
S=51GNAL_NIRE;
OR S $E C. SIGNALS WITH S.0UTPUT;}

DEFINE CONNECT (LIRE:PHYSICAL_WIRE X:REAL):

@{lUIRE) .LEFT::=

MIN X;

@{LIRE) .RIGHT: : = MAX X;

ENDDEFN

DEFINE INITIALIZE_WIRES(C:CHIP T:TECHNOLOGY):

BEGIN VAR

S=S1GNAL _iIRE;

FOR S 8E C.SIGNALS; DO
@(S) .PHYSICAL: = [LEFT: IF S.INPUT THEN -939999. ELSE 9939999 FI

END
END
ENDDEFN

DEFINE DRAW_CELL
BEGIN VAR
{COLLECT <x

FOR G $E RE
END
ENDDEFN

RIGHT: IF S.OUTPUT THEN 999993 ELSE -999999. FI
HEIGHT: <3 T.UIRE_HEIGHTx> (S. VHEIGHT)
NAME: S, NAME] ;

S{C:CHIP T:TECHNOLOGY) =MRG:

X=REAL; G=GATE;

CASE G.TYPE OF

NOR: T.NOR

NAND: T.NAND

INVERT: T.INVERT

ENDCASE v> (G.INPUTS\PHYSICAL,G. UUTPUT\PHYSICAL CUIDTHI\DISK
VERSE (C.GATES) 3}
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DEFINE LOAD(S:SIGNAL_WIRE) =REAL:
BEGIN VAR G=GATE; T=SIGNAL_LIRE;
(+ CASE G.TYPE OF
NOR: 1
INVERT: 1
NAND: +1 FOR T 8E G.INPUTS;
ENDCASE FOR G $E S.70;)»Q_LOAD +

LOAD (BLUE,WIDTH (BLUE) ,S. PHYSICAL.RIGHT-S. PHYSICAL. LEFT)
END

ENDDEFN

BEFINE COMPILE(C:CHIP T:TECHNOLOGY)=MRG:
.- BEGIN VAR TIM=MRG;
00 CUIDTH:=B;

POLIER: =@;
<%T. SORTae> (C} H
<wT. PACK > (C) H
<T. SETUP> (C) H
INITIALIZE_WIRES(C,T);
M: =DRAL_CELLS(C, T}

GIVE {M; <#T.WUIRES+> (C)} \DISK
END
ENDDEFN

DEFINE PUT(C:CHIP T:TECHNOLOGY): '
BEGIN VAR M=MRG;G=GATE;S=SIGNAL_WIRE;
M: =COMPILE(C, T);

PUT ( INAHE: C. NAME
DESCRIPTION: C.DESCRIPTION
LAYOUT:
vDO: T.VDD#YVDD-2
GND: CHIDTH+T.GND#YGND+2
POLER: POLER
PORTS: {COLLECT (NAME: {S.NAME}
AT: {{{COLOR:BLUE
EOGE: LIEST
AT:S.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT]}}
LOAD: LOAD(S)]
FOR S 8E C\INPUTS;;
COLLECT [NAHE:{S.NAHEI
AT: {{[COLOR:BLUE
EDGE:EAST

AT:S.PHYSICAL.RIGHT#S.PHYSICAL.HEIGHT] 1}
DRIVE:1

LOAD: LOAD(S)]

FOR S $E C\OUTPUTS;}1\DISK,C.NAME) ;
END

ENDOEFN

DEFINE EQ(A,B:GATE) =BOOL: MACRO-18 (" LSPEQS*)
DEFINE EQ(A,B:SIGNAL_IIRE) =BOOL: MACRO-18(’LSPEQS”’)

DEFINE LINK INPUT(G GATE S:SIGNAL_WIRE):
@(5).T0::= G <83
e(G). INPUTS =5 <8;

ENDDEFN

DEFINE LINK_OUTPUT (G:GATE S:SIGNAL _WIRE)}:
@(G).0UTPUT: =5;
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@(S).FROM: =G
ENDDEFN

DEFINE UNLINK_INPUT(G:GATE S:SIGNAL _LIIRE):
BEGIN VAR 0=CGATE:R=SIGNAL_WIRE;
@(S).T0:= {COLLECT Q FOR Q $E S.TO;WITH -(Q\EQ Gl
@(G). INPUTS: = {COLLECT R FOR R $E G.INPUTS;WITH -(R\EQ Sl
END :
ENDDEFN

DEFINE UNLINK_OUTPUT(G:GATE S:SIGNAL_MIRE):
@(5).FROM: =NIL;
@{(G) . QUTPUT: =NIL;

ENDDEFN

DEFINE ELIMINATE (G:GATE):
BEGIN VAR Q=GATE;
CHIP.GATES: = {COLLECT Q FOR Q %E CHIP.GATES;WITH -(Q\EQ Glsts
END

ENDDEFN

DEFINE ELIMINATE (S: SIGNAL _LIRE)
BEGIN VAR R=SIGNAL_WIRE;
CHIP.SIGNALS: = {COLLECT R FOR R $E CHIP.SIGNALS;WITH —(R\EQ S)sis
IF DEFINED(S.VINVERT) THEN @(S.VINVERT) . VINVERT: =NIL; FI
END
ENDDEFN

DEFINE VINVERT(A,B:SIGNAL_WIRE) :
IF DEFINED(A.VINVERT) THEN @(A.VINVERT) . YINVERT: =NIL; F1
IF DEFINED(B.VINVERT) THEN @(B.VINVERT).VINVERT: =NIL; FI
@(A} .VINVERT: =B;
@(B).VINVERT: =A;

ENDDEFN

DEFINE FUSE(A,B:SIGNAL_WIRE):
BEGIN VAR G=GATE;C=CHAR;
IF DEFINED (B.FROM) !B. INPUT THEN
IF DEFINED(A.FROM 1A, INPUT THEN HELP;
ELSE @(A) . INPUT: =B, INPUT;
G: =B.FROM;
IF DEFINED(G) THEN
UNLINK_DUTPUT (G, B) s
LINK_OUTPUT(G,A); FI FI FI
IF ALLIAYS C\DIGIT FOR C $E A.NAME; THEN @(A) .NAME: =B.NAME; FI
IF DEFINED (B.VINVERT) THEN VINVERT(A,B.VINVERT); FI
@{A) .OUTPUT:: =B, OUTPUT;
FOR G $E B.T0; DO '
UNLINK_INPUT(G,B)
LINK_INPUT (G, A);
END
ELINMINATE(B) ;
END
ENDDEFN

LET QS BECOME SIGNAL_WIRE BY
BEGIN VAR S=SIGNAL_lIRE;
IF THERE_IS S.NAME\EQ QS FOR S $E CHIP.SIGNALS; THEN S
ELSE D0 S:=INAME:QS];
CHIP.SIGNALS::= S <8$;
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GIVE S FI
END;:

DEFINE NEL_SIGNAL=SIGNAL_WIRE: SC({(CHIP.SIGNAL_COUNT::=+13)) ENDDEFN
DEFINE SET({S:SIGNAL_WIRE G:GATE): LINK_QUTPUT (G, S) ; ENDDEFN
LET GATE BECOME SIGNAL_WIRE BY

BEGIN VAR S=SIGNAL_WIRE;

D0 S:=NEW_SIGNAL;
LINK_OUTPUT (GATE,S) ;

GIVE S

END;
DEFINE INPUT(S:SIGNAL LIRE): @(S).INPUT:=TRUE; ENDDEFN
DEFINE OUTPUT (S:SIGNAL_LIIRE} ; @(S).0UTPUT: =TRUE; ENDDEFN

DEFINE INPUTS(SQS:SQS):
BEGIN VAR (S=QS:
DO INPUT(QS): FOR OS $E sSQS;
END

ENDDEFN

DEFINE OUTPUTS (S0S:50S) :
BEGIN VAR (5=05;
00 OUTPUT(QS); FOR QS $E SQS;
END

ENDDEFN

DEFINE NANE(GS:US): CHIP.NAME: =0S; ENDDEFN
DEFINE DESCRIPTION(QS:QS): CHIP.DESCRIPTION: =QS; ENDDEFN
DEFINE NEN_CHIP: CHIP:=NIL; ENDDEFN
DEFINE FINISH:
CHIP.GATES: =REVERSE (CHIP.GATES) ;
ENDDEFN
DEF INE NEW_GATE (SLIS: SIGNAL_WIRES TYPE:GATE_TYPE) =GATE:
BEGIN VAR GATE=GATE;SW=SIGNAL_WIRE;
DO GATE:={TYPE: TYPE];
CHIP.GATES::= GATE <8; -
DO LINK_INPUT(GATE,SW); FOR SW 8E SUS;
GIVE GATE
END
ENDDEFN
DEFINE NAND(SWS:SIGNAL_WIRES) =GATE: NEW_GATE (SUS, NAND) ENDOEFN
DEFINE NOR(SWUS:SIGNAL_WIRES) =GATE: NEW_GATE (SIS, NOR) ENDDEFN
DEFINE INVERT (SW:SIGNAL_I{IRE) =GATE: NEW_GATE ( {SW} , INVERT) ENDDEFN
DEFINE AND(SHS:SIGNAL_WIRES) =GATE:  SLS\NAND\INVERT ENDDEFN

DEFINE OR(SWS:SIGNAL_WIRES) =GATE: SWS\NORNINVERT ENDDEFN
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DEFINE NAND{A,B:SIGNAL_WIRE)=GATE: NAND({A;B}) ENDOEFN
DEFINE NOR(A,B:SIGNAL_WIRE) =GATE: NOR({A;B}) ENDDEFN
DEFINE AND(A,B:SIGNAL_WIRE)=GATE: AND({A;B}) ENDDEFN
DEFINE OR(A,B:SIGNAL_WIRE)=GATE: OR({{A;B}) ENDDEFN

BEFINE XOR(A,B:SIGNAL_IIIRE) =GATE:
BEGIN VAR C=SIGNAL_UIRE;
DO C:=NAND(A,B};
GIVE NAND(A\NAND C,B\NAND C)
END

ENDDEFN

The following code lists the optimizers defined in the RLC. These optimizers look at
the logical structure of the chip, replacing gates while preserving functionality.
The GET INVERT function is a utility function which generates the inverse of its
input signal, using existing inverters if they exist. The REMOVE INVERTERS
function removes extra inverters from the chip's logic. REMOVE REDUNDANCIES
looks for redundant gates, removing those which don't add to the functionality of
the chip. The DE_MORGAN function will convert a NAND gate into a NOR
implementation and turn a NOR gate into a NAND implementation. This function is
used by REMOVE NANDS and REMOVE NORS, which eliminate all instances of their
respective gates. REMOVE NANDS is used to turn a NAND circuit into a NOR circuit,
while REMOVE NORS does the inverse transformation. DE _MORGAN COST is a
function which computes the relative cost of a NAND or NOR gate in the chip's logic
equations. The DE MORGAN function calls this cost routine to determine which
gates to replace. If the cost of converting a particular gate into its dual gate is
negative, which means we would use fewer gates to implement the chip, the DE
_MORGAN function will perform the transformation. The UNIQUE INPUTS function
removes extra inputs to NAND and NOR gates, If a particular gate hés more than one
connection to a signal, all but one of those connectioﬁs are removed. Finally, the

MERGE function moves signals which connect to strings of NAND or NOR gates.

DEFINE GET_INVERT (S:SIGNAL_IIRE) =SIGNAL_WIRE:
BEGIN VAR T=SIGNAL_lIRE;G=GATE;
IF S.FROM. TYPE=INVERT THEN

GIVING S.FROM. INPUTS{1]

DO IF -(DEFINED(S.T0}!S.QUTPUT) THEN
G:=S.FROM;
UNLINK_DUTPUT (G, S) 5
UNLINK_INPUT (G, G. INPUTS [11) ;
ELIMINATE (G}

ELIMINATE(S); FI
END
EF DEFINED(S.VINVERT) THEN S.VINVERT
EF THERE_IS G.TYPE=INVERT FOR G $E S.TO; THEN G.OUTPUT
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ELSE INVERT(S) FI
END
ENDDEFN

DEFINE REMOVE _INVERTERS:
BEGIN VAR G=GATE:S, T=SIGNAL_WIRE;
FOR G 8t CHIP.GATES;UWITH G.TYPE=INVERT; NXTH DEFINED(G.QUTPUT); DO
S:=G.0UTPUT
T:=G.INPUTS([1];
UNLINK_OUTPUT(G,S) s
UNLINK_INPUTI(G,T)
ELIMINATE (G} 5
FUSE (T\GET_INVERT, S} ;
END '
END
ENDDEFN

DEFINE REMOVE_REDUNDANCIES:
BEGIN VAR G,G1,G2=GATE;L1ST=GATES;S,S1,52=SIGNAL_MIRE; I=INT;
LIST:=NIL;
((FOR Gl $E CHIP. GATES:8& FOR I FROM 2 BY 1;}UITH DEFINED(GL.QUTPUTY
1l FOR G2 8E CHIP.GATES(I-1;UITH DEFINED(GZ QUTPUT) 3)
WITH IF Gl.TYPE<>G2.TYPE THEN FALSE
ELSE ALLAYS THERE_IS SINEQ S2 FOR 52 8E G2.INPUTS;
FOR S1 $E GL.INPUTSy &
ALUAYS THERE_IS S2\EQ Sl FOR S1 8E Gl.INPUTS;
FOR S2 $E G2.INPUTS; FI; 0O
S2:=62.0UTPUT;
S1:=G1.0UTPUT;
FOR S 8E GZ.INPUTS; DO
UNLINK_INPUT (GZ,S) 3
END
UNLINK_QUTPUT(GZ,82) 3
LISTe:= G2 <83
FUSE (51,52} ;
END
DO ELIMINATE(G)s FOR G $E LIST;
END
ENDDEFN

DEF INE DE._ _NORGANA(G:GATE) :

BEGIN VAR TYPE=GATE_TYPE;S, T= SIGNAL _HIRE; SUS=SIGNAL _WIRES;N= GATE
TYPE:= CASE G.TYPE OF

NAND: NOR
NOR: NAND
ELSE: NIL
ENDCASE ;
IF DEFINED(TYPE} THEN
SHS: =NIL;

FOR S $E G.INPUTS; DO -
UNL INK_INPUT(G,S);
SISt := S\GET_INVERT <8;
END '
N: =NEW_GATE (SWS, TYPE) 3
S: =G.0UTPUT;
UNLINK_BUTPUT (G, S}
ELIMINATE (G);
IF THERE_IS G.TYPE=INVERT FOR G 8$E S.T0;
THEN T:=G.0UTPUT;
UNLINK_OUTPUT(G,T)
LINK_OUTPUT(N, 11
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UNLINK_INPUT (G, S)
IF DEFINED(S.T0) !S.0OUTPUT
THEN LINK_INPUT(G, T},
LINK_OUTPUT (G, S) ;
ELSE ELIMINATE(G);
ELIMINATE(SY; FI
ELSE LINK_OUTPUT (INVERT (N}, S) ; FI FI
END
ENDDEFN

DEFINE REMOVE_NANDS:
BEGIN VAR G=GATE:
CHIP.GATES: =REVERSE (CHIP.GATES) 3
00 DE_MORGAN(G); FOR G $E CHIP.GATES;WITH G.TYPE=NAND;
FINISH;
END
ENDDEFN

DEFINE REMOVE_NORS:
BEGIN VAR G=GATE;
CHIP.GATES: =REVERSE (CHIP.GATES) ;
00 DE_MORGAN(G); FOR G $E CHIP.GATES;WITH G.TYPE=NOR;
FINISH;
END
ENDDEFN

DEFINE DE_MORGAN_COST (G:GATE) =INT:
BEGIN VAR S=SIGNAL_I{IRE;N=GATE;
IF G.TYPE=NAND ! G.TYPE=NOR THEN
IF NEVER N.TYPE=INVERT FOR N $E G.QUTPUT.TO; THEN 1
EF -{DEFINED(G.OUTPUT.TO[2-1) I1G.OUTPUT. OUTPUT) THEN -1
" ELSE 8 FI +
+ IF DEFINED(S.VINVERT} THEN B
EF S.FROM. TYPE=INVERT THEN
IF DEFINED(S.70(2-1}!S.0UTPUT THEN 8 ELSE -1 FI

EF THERE_IS N.TYPE=INVERT FOR N $E S.TO; THEN 8 ELSE 1 FI

FOR S 8E G.INPUTS;
ELSE 939999 FI
END
ENDDEFN

DEF INE DE_MORGAN:
BEGIN VAR G=GATE;
CHIP.GATES: =REVERSE (CHIP.GATES) ;

FOR G 8E CHIP.GATES;UITH DE NORGAN _COST(G)<@B; DO DE_MORGAN(G) ;

FINISH;
END
ENDDEFN

DEFINE UNIQUE_DESTINATION(S:SIGNAL_LIIRE) =BOOL:
IF S.0UTPUT THEN FALSE ELSE -DEFINED(S.TO([2-]) FI
ENDDEFN

DEFINE UNIQUE_INPUTS:

BEGIN VAR G=GATE;S1,S2=SIGNAL _HIRE; I=INT; SLIS=SIGNAL_WIRES;

FOR G $E CHIP.GATES; DD
SHS: =NIL;
FOR S1 $E G.INPUTS;8& FOR I FROM 2 BY 1; DO
IF THERE_IS S2\EQ S1 FOR S2 $E G. INPUTS[I ] &

NEVER S1\EQ S2 FOR S2 $E SWS; THEN SWS::= S1 <$; FI

END

END
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FOR S1 $E SWS; DO
UNLINK _INPUT(G,S1);
LINK_INPUT(G,S1); -
END
END
END
ENDDEFN

DEFINE MERGE:
BEGIN VAR LIST=GATES;G,H, I=GATE;S, T,U=SIGNAL_LIIRE;

LIST:=NIL;
(FOR G $E CHIP.GATES;WITH DEFINED(G.OUTPUT) s W1 TH G.TYPE=NAND!G. TYPE=NOR; ) 11
(FOR S $E G.INPUTS;WITH (I1:=S.FROM;}. TYPE=INVERT;

WITH S\UNIQUE_DESTINATION;
WITH (H:=(T:=S.FRDH,INPUTS[1];).FRDH;).TYPE=G.TYPE;
WITH T\UNIQUE_DESTINATION;) DO
FOR U 8E H.INPUTS; DO
UNLINK_INPUT (H,U)
LINK_INPUT{G,U};
END
UNLINK_OUTPUT (H, T) ;
UNLINK_INPUT(1,T);
UNLINK_QUTPUT(1,S)
UNLINK_INPUT (G,S) ;

ELIMINATE(T);
ELIMINATE(S) ;
LIST:e= {H;11 8%,
END
DO ELIMINATE(G); FOR G $E LIST;
END
ENDDEFN

The ANNOTATE function is used to label plots. All of the input and output signals of
the chip have their names drawn on the plot. This function has the technology as a

parameter, so that any technology's layout can be annotated.

DEFINE ANNOTATE(C:CHIP T:TECHNOLOGY) =MRG:
: BEGIN VAR H:HRG;LENGTH=INT;S=SIGNAL_HIRE:X=REAL;SCALE=PDINT;
DO M:=COMPILE(C,T);
LENGTH: = MAX LENGTH(S.NAME) FOR S $E CNINPUTS;
X1 =CHIDTH-3B=LENGTH/7. -4;
SCALE:=.8*(<*T.NIRE~HEIGHT*>(1)—<*T.UIRE_HEIGHT*>(2))/14.*(1#1);
GIVE i1
COLLECT S.NAME\SCALED_BY SCALENAT X#S.PHYSICAL.HEIGHT-2.5
\PAINTED VIOLET FOR S $E C\INPUTS;;
COLLECT S.NAME\SCALED_BY SCALE\AT BH#S.PHYSICAL.HEIGHT-2.5

\PAINTED VIOLET FOR S $E C\OUTPUTS;}
END
ENDDEFN

To allow the use of macro definitions, RLC allows the user to expand a previously
declared CHIP into the current chip. The user specifies the set of interconnections
via a set of SIGNAL VALUESs, each of which state which signal of the current CHIP
connects to the ports of the expanding CHIP. The inputs of the expanding CHIP may
be tied to TRUE or FALSE signals. The FIXED HIGH and FIXED___LOW routines
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eliminate these fixed value signals, and in doing so may eliminate the gates they

connect to. The EXPAND function takes a CHIP INSTANCE, which states which CHIP

to expand and how to interconnect the signals, and adds the equations to the current

chip.

TYPE

POSSIBLE_SIGNAL= EITHER
FIXED= BOOL
VAR= SIGNAL_HIRE
ENDOR;
SIGNAL_VALUE= [NAME:GS FROM:POSSIBLE_SIGNALT;
SIGNAL _VALUES= { SIGNAL_VALUE 1}

CHIP_INSTANCE= ICHIP:CHIP NAME:QS VALUES:SIGNAL _VALUES];

DEFINE FIXED_HIGH(S:SIGNAL _WIRE):
BEGIN VAR G=GATE; T=51GNAL_WIRE; J=INT;

FOR

END

DEFINE ZAP(G:GATE):
T: =6, 0UTPUT;
UNLINK_OUTPUT (G, T)
ELININATE(G) s
FIXED_LOW(T);
ENDDEFN
G 8E 5.70; OO
UNLINK_INPUT(G,S)
CASE G.TYPE COF
INVERT: ZAP(G);
NAND: Ji=+1 FOR T $E G.INPUTS:;
IF -J=8 THEN ZAP(G);
EF J=1 THEN e{G).TYPE:=INVERT; FI
NOR: DO UNLINK_INPUT(G,T); FOR T 8E G.INPUTS;
ZAP(GY;
ENDCASE

ELIMINATE(S) s

END
ENDDEFN

DEFINE FIXEOD_LOW(S:SIGNAL_LIREY:
BEGIN' VAR G=GATE; T=SIGNAL_NIRE; J=INT;

FOR

DEFINE ZAP(G:GATE):
T:=G.0UTPUT;
UNLINK_DUTPUT (G, T) ;
ELIMINATE (G) ;
FIXED_HIGH(T);
~ ENDDEFN
G $€ S.70; OO
UNLINK_INPUT (G, S)
CASE G.TYPE OF
INVERT: ZAP(G);
NOR Jr=+1 FOR T $E G.INPUTS;;
- IF J=B THEN ZAP(G);
EF J=1 THEN e(G).TYPE:=INVERT; FI
NAND: DO UNLINK_INPUT(G,T); FOR T $E G.INPUTS;
ZAP (G) ; , '
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ENDCASE
END
ELIMINATE(S);
END
ENDDEFN

DEFINE COPY(C:CHIP N:QS)=CHIP:
BEGIN VAR CHIP=CHIP;G,H=GATE;S, T=51CGNAL_WIRE; I=INT;
DO DO elG).INDEX:=1: FOR G 8E C.GATES;&& FOR 1 FROM 1 BY 1;
DO e(S}.VHEIGHT: =13 FOR S 8E C.SIGNALS;&& FOR I FROM 1 BY 1;
CHIP:={CATES: {COLLECT [TYPE:G.TYPE] FOR G 8E C.GATES;!
SIGNAL_COUNT: C.SIGNAL_COUNT
SIGNALS: {COLLECT [NAME: N8$85.NAME] FOR S $E C.SIGNALS;}
NAME: C.NAME
DESCRIPTION: C.DESCRIPTIONI
FDR G 8$E CHIP.GATES; &8 FOR H $E C. GATES Do
IF DEFINED(H,0UTPUT) THEN
LINK_OUTPUT(G,CHIP.SIGNALS [H.OUTPUT.VHEIGHT]I); FI
DO LINK_INPUT(G,CHIP.SIGNALSI[S.VHEIGHT1); FOR S $E H.INPUTS;:
END
DO IF DEFINED(S.VINVYERT)
THEN @f{T).VINVERT:=CHIP.SIGNALS[S.VINVERT.VHEIGHT]; FI
FOR S 8E C. SIGNALS &8 FOR T $E CHIP.SIGNALS;
GIVE CHIP
END
ENDDEFN

DEFINE EXPAND(C:CHIP_INSTANCE) : _
BEGIN VAR SY=SIGNAL_VALUE;HIGH, LOW=SIGNAL_WIRES;Q=CHIP;
S=SIGNAL WIRE;PS=POSSIBLE_SIGNAL ;N=0OS;
HIGH: =NIL;
LOW: =NIL;
Q:=C.CHIP\COPY C.NAME;
CHIP.GATES: =REFRESH (CHIP.GATES $8 Q.GATES)
CHIP.SIGNALS: =REFRESH{(CHIP.SIGNALS #% Q.SIGNALS):
FOR SV 8$E C.VALUES; DO
N:=C.NAME $8 SV.NAME;
S:=IF THERE_IS S.NAME=N FOR S $E Q.SIGNALS; THEN S ELSE NIL Fi;
PS: =SY.FROM;
CASE PS OF
VAR: FUSE (PS,S)
FIXED: IF PS THEN HIGH ELSE LOW FI ::= S <$;
ENDCASE
END
FOR S 8E HIGH:; DO FIXED HIGH{S):; END
FOR S 8E LOW; DO FIXED_LOW(S}: END
END
ENDODEFN

When the chip expanders and chip optimizers have been used upon a chip, the logic

equations of the chip are changed, although the function of the chip has remained

constant. To allow the user to see what the new logic equations are, the UNPARSE

function is used. This function displays the logic of the chip in the same format as

the parser reads chip definitipns.

DEFINE LOCAL (S:SIGNAL_WIRE}=BO0L:
- {S. INPUT!S.0UTPUT tUNIQUE_DESTINATION (S}}
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ENDBEFN

DEFINE UNPARSE (C:CHIP}):
BEGIN VAR SU=SIGNAL_I{IRE;B=BOOL;
CRLF;
WRITE ("DEFINE ’88CHIP.NAMESS’ ('),
IF THERE_IS SUW.INPUT FOR Sl $E C.SIGNALS; THEN
WRITE (" INPUTS: ") 5
FOR Sl 8E C. SIGNALS WITH SW.INPUT; OTHER_DO WRITEC(’,®
00 WRITE (SWU.NAME} ;
END
B:=TRUE;
ELSE B:=FALSE; FI
IF THERE_IS SW.OUTPUT FOR SW $E C.SIGNALS; THEN
IF B THEN LRITE(’ 'Yy FI
WRITE (COUTPUTS: ')

- FOR SU $E C. SIGNALS sWITH SW.OUTPUT; OTHER_DO WRITE(’,’);; |

D0 HWRITE{SU.NAME);
END
B:=TRUE; FI
IF THERE_IS SW\LOCAL FOR Sl $E C.SIGNALS; THEN
IF B THEN. HRITE(’ *); FI
WRITE (" LOCALS:
FOR Sl 8$E C. SIGNALS sWITH SUALOCAL; OTHER_DO WRITE(’,’
00 WRITE (SW.NAME) ;
END FI
WRITE ("} :")3CRLF;
FOR Sl $E C.SIGNALS; WITH SW.OUTPUT | SW\LOCAL; DO UNPARSE (SW3 5
WRITE (*ENDDEFN’ } ;CRLF;
END
ENDBCEFN

ODEFINE UNPARSE (SL: SIGNAL_I{IRE) ;
LRITE (? "HESLLNAMESS = '),
UNPARSE (SUW, TRUE} ;

CRLF;

ENDOEFN

DEFINE UNPARSE (SW:SIGNAL_LIRE B:B0OL):
BEGIN VAR S=SIGNAL _IIRE;G=GATE;
IF -B & (S, INPUT'LUCAL(SU)'SU OUTPUT) THEN WRITE (SW.NAME) 5
ELSE  G:=SW.FROM
CASE G.TYPE OF
INVERT: LRITE (* =) ;UNPARSE (G. INPUTS (11, FALSE) ;
NAND:  IF -B THEN WRITE(’ (*); FI
FOR S $E G.INPUTS;0THER_DO WRITE(C® & *) ;3
DO UNPARSE (S, FALSE) ;
END
IF -8B THEN WRITE(*)*); FI
NOR:  IF -B THEN LRITE(’ (*}; FI
FOR S $E G.INPUTS;OTHER_DO WRITE(® ! *);;
00 UNPARSE (S, FALSE) ;
 END
IF -B THEN WRITE(*)"); FI
ENDCASE FI
‘ END
ENDDEFN

END”
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DEFINE UNPARSE: UNPARSE (CHIF); ENDDEFN

In conjunction with the unparsing of logic equations, the user might like a quick
summary of the size of the chip. This allows the user to judge the usefulness of
various optimizations which can be applied to the chip. The STATS function will
list the aréa of the chip, the number of gates, and the number of wiring channels, as

a function of the technology and the current chip.

DEFINE STATS (T: TECHNOLOGY) &
BEGIN VAR G= GATE; S=51GNAL _WIRE;
CRLF;
WRITE(* Technology:');
WURITE(T.NAME} s
TAB;
WRITE(*Size: ')
WRITE (COMPILE(CHIP, T)\INBB};
CRLF;
WRITE (" Number of gates: '}
WRITE(+1 FOR G 8E CHIP.GATES;);
TAB;
WRITE (*Number of channels:’};
LRITE (MAX S.VHEIGHT FOR S $E CHIP. SIGNALS }s
CRLF;
END

ENDDEFN

As mentioned above in the technology definition, we have routines to pack the
interconnection wires. The packing routines attempt to have wires share channels,
so that the number of channels (and the size of the chip) is minimized, There are
two packers presented here. The first, NMOS PACK 1, does not 'know’' about the
internals of a cell. It assumes that every wire which connects to a cell consumes
the channel for the entire width of the cell, This packer is more general for new
technologies. The second packer, NMOS PACK 2, knows enough about the internals
of the cells to allow the ocutput wire to share a channel with one of the input wires,
under certain circumstances. Since this packer knows about the implementation of
cells, it is not as general as the first packer, but it does a better job of packing the

wires for the currently defined technologies.

DEFINE SORT (SHS:SIGNAL_WIRES) =SIGNAL_WIRES:
BEGIN VAR OUT=SIGNAL_LIIRES:W=SIGNAL_WIRE;1,J,K=INT;
00 0OuUT:=NIL;
WHILE DEFINED(SWS); DO
I:=-1;
FOR Ll '$E SLIS:8& FOR J FROM 1 BY 1; DO
\ IF W.VLEFT>I THEN
[:=l,VLEFT;
Ki=d; FI
END
QUT::= SUSIK] <8;
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SWSIKI:=NIL;
END
GIVE OUT
END
ENDDEFN

DEFINE NMOS_PACK_1{C:CHIP):
BEGIN VAR SWS=SIGNAL_WIRES;H=INT;G=GATE;S=S1GNAL_WIIRE;
DEFINE ORAU HIRE(LEFT INT):
BEGIN VAR W=SIGNAL_WIRE;I=INT;
IF THERE_IS W.VLEFT>LEFT FDR W 8E SWS;8& FOR I FROM 1 BY 1;
THEN SUS[11:=NIL;
elll. VHEIGHT =H;
DRAW_WIRE (W.VRIGHT); FI
END
ENDDEFN
FOR G $E C.GATES;&& FOR H FROM 1 BY 1;D0 @(G).INDEX:=H; END
FOR S $E C. SIGNALS 0o
e(S).VLEFT:= IF S. INPUT THEN @
EF DEFINED(S.TO)
THEN S.FROM. INDEX MIN MIN G.INDEX FOR G $E S.TO;
ELSE S.FROM. INDEX FI;
@(S) . VRIGHT: = IF S.OQUTPUT THEN 988998
_ ELSE S.FROM.INDEX MAX MAX G.INDEX FOR G $E S.TO; FI;
END '

SUS: =C.SIGNALS\SORT; ‘
WHILE DEFINED(SWS);&& FOR H FROM 1 BY 1; DO DRAU_WIRE(-1): END
END

ENDDEFN

DEFINE NMOS_PACK_Z(C:CHIP):
BEGIN VAR SHS=SIGNAL_LITRES;H=INT;G=GATE; S=SIGNAL_IIRE;
DEFINE DRAW NIRE(LEFT INT):
BEGIN VAR W=SIGNAL_WIRE; I=INT;
IF THERE_IS W.VLEFT>LEFT FOR U $E SLIS;8& FOR I FROM 1 BY 1;
THEN SHS[11:=NIL;
@ (L) . VHEIGHT : =H;
ORAU_MIRE (W. VRIGHT) 5 FI
END
ENDDEFN
FOR G 8E C.GATES;&& FOR H FROM 1 BY 2;00 e(G).INDEX:=H; END
FOR S $E C. SIGNALS 0o
e(S).VLEFT:= IF S. INPUT THEN @
' EF DEFINED(S.T0)
THEN S.FROM. INDEX+1 MIN MIN G.INDEX FOR G $E S.TO;
ELSE S.FROM. INDEX+1 FI;
@{S).VRIGHT: = IF S.QUTPUT THEN 999999

ELSE S.FROM. INDEX+1 MAX MAX G.INDEX FOR G $E S.TO; FI;
END

SUS: =C.SIGNALS\SORT;

WHILE DEFINED (SWS);8& FOR H FRDH 1 BY 1; DO DRAW_WIRE(-1); END
END
ENDDEFN

In addition to the packers, we have sorters. The sorters may reorder the gates in
attempts to minimize wire lengths or minimize the number of wiring channels.
The first 'sorter’, NO SORT, does nothing. The SMALL SORT routine rebuilds the chip

from left to right, each time adding the gate which will add the fewest wiring
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channels. This is a local optimization, which means that it will not necessarily
~(and, in fact, rarely) produqé the smallest chip. The BELAXATION__SORT is an
iterative routine.. Each time it is executed, it 'averages' each gates position. For
each gate, the routines averages the indexes of the gates input and output gates. It
then sorts the gates by these averages. Presumably, if this routine is executed a

few times, gates will tend to be near the gates they connect to.

DEFINE NO_SORT(C:CHIP): NOTHING; ENDOEFN

DEFINE SMALL_SORT(C:CHIP):
BEGIN ~ DEFINE ACTIVES(SWS:SIGNAL_WIRES GS:GATES)=SIGNAL WIRES:
BEGIN VAR G=GATE;S, T=SIGNAL_WIRE;
{COLLECT S FOR S 8E SWS;UWITH
IF S.0UTPUT THEN TRUE
ELSE THERE_IS (G.OUTPUT\EQ S P
THERE_IS T\EQ S FOR T $E G.INPUTS;)
FOR G 8E GS; FIji
END
ENODEFN
DEFINE UNIQUE (S1,S2:SIGNAL_IIRES) =SIGNAL_LIIRES:
BEGIN VAR A B=SIGNAL_MIRE;
0O FOR A $E Sl; 00
IF NEVER ANEQ B FOR B $E S2; THEN S2::= A <$; FI
END :
GIVE S2
. END
ENDDEFN
VAR ACTIVE,L1,L2=SIGNAL_WIRES;0LD,NEW=GATES;S1, S2=S1GNAL _UIRE;
G,G1=GATE;1,d,K,L=INT;
OLD: =C.GATES;
NEW: =NIL;
ACTIVE: {CDLLECT S1 FOR S1 8$E CHIP.SIGNALS; WITH S1.INPUT;};
WHILE DEFINED(OLD)Y; DO
:=93893393;
FOR G $%E OLD;&& FOR J FROM 1 BY 1; DO
L2:=ACTIVES (UNTQUE (G.OUTPUT<%G. INPUTS, ACTIVE) ,
fCOLLECT GI ({FOR G1 $E DLD ;&8 FOR K FROM 1 BY 13)

WITH K<>J31) 3
K:=+1 FOR S1 $E L2;;

IF K<I THEN
I:=K;
L:=ds
Ll:=L2; FI
END
NEW::= OLDILY <$8;
OLDILY:=NIL;
ACTIVE:=L1;
END
@{C) .GATES: =REVERSE (NEW) ;
END
ENDDEFN

DEFINE RELAXATION_SORT(C:CHIP):

BEGIN ~ VAR OLD,NEW=GATES;G,H=GATE;S=SIGNAL_WIRE; I,N=INT;R= =REAL;
OLD: =C.GATES;
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N:= +1 FOR G $E OLD;+1;
FOR G $E 0OLD:;&& FOR I FROM 1 BY 1; DO e(G).INDEX:=1; END
FOR G 8$E OLD;00 e(G).RINDEX:=
{(+ IF S.INPUT THEN B ELSE S.FROM.INDEX FI FOR S $E G.INPUTS; +
IF G.OUTPUT.OUTPUT THEN N ELSE 8 FI +
+ H.INDEX FOR H 8E G.QUTPUT.TG;)/
(+1 FOR S 8E G.INPUTS; + +1 FOR H $E G.QUTPUT.TO; +
. IF G.OUTPUT.QUTPUT THEN 1 ELSE B FI); END -
NEL: =NIL;
WHILE DEFINED(OLD) DG
R:=~1.
(FOR G $E OLD:;8& FOR | FROM 1 BY 1:) UITH G.RINDEX>R; DO
R:=G.RINDEX;
N:=1;
H: =63
END
NEW: 1= H <$8;
OLDIN] : =NIL:
END
@{(C) .GATES: =NEL;
END
ENDDEFN

Next, we have the parser. The parser acceptis a series of function definitions and
generates a CHIP for each function. The following input is an example of the

parser's input.

DEFINE DFLOP {INPUTS:DATA,CLOCK,RESET,SET OUTPUTS:0UT,BAR LOCALS:X1,X2,X3):
X3 = X2 & RESET & DATA
X2 = X1 & CLOCK & X3
X1 RESET & CLOCK & ( X3 & SET & X1 )
BAR = OUT & X2 & RESET -
OUT = BAR & X1 & SET
OUT~BAR
ENODEFN

]

DEFINE EQ(INPUTS:A,B,CIN OQUTPUTS:COUT):
COUT = (A & B) ( A & B)=CIN
ENDDEFN

DEFINE GE (INPUTS:A,B,CIN OUTPUTS:COUT):
: COUT= (-A&B)+~CIN
ENDDEFN

DEFINE COUNTER (INPUTS:RESET,EI,CLOCK OUTPUTS:0UT,BAR,EQ):
<DFLOP (DATA:BAR SET:.TRUE.
RESET:RESET CLOCK: {(-CLOCK!-EI} OUT:0UT BAR:BAR)>
EO=-EI !BAR
ENDDEFN

DEFINE ONE_BIT{INPUTS:SYNC,SHIFT,DATA, LCAD_ADR, LOAD_VAL,ONI,EGI,CNTI
OUTPUTS: VALUE, ONG, EQO,CNTO
LOCALS: VAL, ADR,COUNT) ¢
<DFLOP {DATA: DATA SET:.TRUE., RESET:.TRUE. CLOCK: SHIFT OUT: VALUE) >
<0OFLOP (DATA: VALUE SET:.TRUE. RESET:.TRUE.
CLOCK: (-LBAD VAL' ~-SHIFT) OUT:VAL)>
<DFLOP {DATA: YALUE SET:.TRUE. RESET:.TRUE.
CLOCK: (-LOAD_ADR{-SHIFT) OUT:ADR)>
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<COUNTER (RESET: SYNC ET:CNTI CLOCK:SHIFT OUT:COUNT EO:CNTO) >
<GE (A: COUNT B:VAL CIN:ONI COUT:0NO)>
<EQ(A:ADR B:VALUE CIN:EQI COUT:EQO)>

ENDDEFN

This inpui will produce five CHIPs in the virtual memory. The final two CHIPs
have expansions of the previously defined CHIPs. This parser will accept characters
from a character string, a data file, or from the terminal. There is a file INCLUDE

feature which uses the ICL metalanguage syntax: /*READ file;*/.

DEFINE PRODUCER (SC: SC) =CHAR_PROOUCER:
//1SC; 1 IF DEFINED(SC) THEN GIVING SC({1] DO SC:=SC[2-1; END
ELSE THE_CHAR(8) FI \\
ENDDEFN '

DEFINE FILE_PRODUCER(FILE:FILE_SC)=CHAR_PRODUCER:
BEGIN VAR F=IN_CHAR_FILE;
// (F:=FILE\OPEN;]
BEGIN VAR C=CHAR;
DO C:=F\NINPUT;
IF EOF (F) THEN CLOSE(F);C:=THE_CHAR(B); FI
GIVE C .
ENDB\\
END
ENDDEFN

VAR NESTING_LEVELS=S0S;
PRODUCER= CHAR_PRODUCER;
PRODUCERS= { CHAR_PRODUCER i:
PUSHED_SC=5C;

TOKEN=QS+
INS, OUTS, LOCALS=5QS;
CALL _NUMBER=INT;

DEFINE PARSE_SC(SC:SC):
HOLDING NESTING_LEVELS:=NIL;
DO  ALSO_PARSE (SC\PRODUCER) ;
ENDHOLD

ENDOEFN

DEFINE PARSE_FILE(SC:SC):
HOLOING NESTING_LEVELS:=NIL;
D0 ALSO_PARSE (SC\FILE_PRODUCER) ;
ENDHOLD

ENDDEFN

DEFINE ALSO_PARSE (CP:CHAR_PRODUCER) :
HOLOING PRODUCER: =CP;
D0 WHILE DO VERIFY ({"DEFINE"; {THE_CHAR(26)}},’Definition’);
GIVE- TOKEN="DEFINE"; ‘
DO OGET_DEFINITION; END
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ENDHOLD
ENDGEFN

DEFINE GET_A_CHAR1=CHAR:
BEGIN VAR C=CHAR;
IF DEFINED{PUSHEDB_SC) THEN GIVING PUSHED_SCI11

00 PUSHED_SC:=PUSHED_SC{2-13 ENO

EF -DEFINED (PRODUCER) THEN THE_CHAR(26)
ELSE D0 C:=<+PRODUCER=>\UPPERCASE;
IF C=THE_CHAR(8) THEN
PRODUCER: =PRODUCERS [11] 5
PRODUCERS: =PRODUCERS {2-1 5
C:=GET_A_CHARL; FI
GIVE C FI
END
ENDDEFN

OEFINE GET_A_CHAR2=CHAR:
BEGIN VAR C=CHAR;
D0 C:=GET_A_CHARIL;
IF C=""" THEN
WHILE GET_A_CHAR1<>'"'; DO NOTHING; END
C:=GET_A_CHAR1; FI
GIVE C - .
END
ENDOEFN

DEFINE GET_A_CHAR=CHAR:
BEGIN VAR C=CHAR;
DO C:=CET_A_CHARZ;
IF C="/" THEN
C:=GET_A_CHARZ;
IF C="+" THEN C:=IMETALANGUAGE;
ELSE PUSHED_SC:=I(C};
C:e="/"y FI FI
GIVE C
END
ENDDEFN

DEFINE IS_BLANK(C:CHAR)=BOOL: CNIN_SET {SPACE:; TAB;CR;LF}
OEFINE IS_10_CHAR(C:CHAR)=BOOL: LETTER(C) IDIGIT(CY1(C="_")

DEFINE GET_TOKEN=0S:
BEGIN VAR C=CHAR;SC=5C;
00 WHILE (C:=GET_A_CHAR;)\IS_BLANK; DG NOTHING; END
IF C\NIS_ID_CHAR THEN
SC:=1C};

ENDDEFN
ENDDEFN

WHILE (C:=GET_A_CHAR;)\IS_ID_CHAR; DO SC::= C <$%; END

PUSHED_SC::= C <83
SC: =REVERSE (SC) 3
ELSE SC:=1{Ci; FI
GIVE (TOKEN:=5C3)
END
ENDDEFN

DEFINE ERROR({A:QS}:
CRLF;
WRITE ("ERROR: Expected ’$8A88°, got '$8TOKEN);
CRLF;
HELP;
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ENDDEFN

DEFINE VERIFY(SQS:5QS B:QS):
BEGIN VAR (S, TOKEN=0QS;
TOKEN: =GET_TOKEN;
IF NEVER QS=TOKEN FOR QS $E 5QS; THEN ERROR(B); FI
END
ENDDEFN

DEFINE VERIFY{Q:QS): VERIFY({Q},Q); ENDDEFN

DEFINE CHECK_TOKEN (50QS:SQS) =BO0L
BEGIN VAR (S, TOKEN=QS;
D0 TOKEN:=GET_TOKEN; :
GIVE IF THERE_IS QS=TOKEN FOR QS $E SQS; THEN TRUE
ELSE DO PUSHED_SC::= TOKEN $8; GIVE FALSE FI
END
ENDDEFN

DEFINE CHECK_TDKEN(D:DS)=BODL: CHECK_TOKEN ( {Q}) ENDDEFN

DEF INE METALANGUAGE=CHAR:
BEGIN VAR SC=5SC;C=CHAR;:
DEFINE FILE_DOES_NOT_EXIST(SC:SC)=5SC:
00 CRLF; :
WRITE('File '485C88
CRLF;
HELP;
GIVE SC
ENDDEFN
DEFINE NMETAHELP:
CRLF;
HRITECError in metalanguage termination.’)
CRLF;
HELP;
ENDDEFN
00 VERIFY(’READ’);
SC:=GET_TOKEN;
IF CHECK_TOKEN('.") THEN SC::= $8 *.'<8GET_TOKEN;
ELSE SC::= 8% '".RLC’; FI
" IF GET_A_CHAR2<>';’ THEN METAHELP; FI
IF GET_A_CHAR2<>"w" THEN METAHELP: FI
IF GET_A_CHAR2<>'/’ THEN METAHELP; FI

.
s

does not exist. Reset SC to new name.’);

WHILE IF DEFINED(SC) THEN -EXISTS(FILE_SC::SC) ELSE FALSE FI;

DO SC::=\FILE_DOES_NOT_EXIST; END
IF DEFINED({SC}) THEN
PRODUCERS: : = PRODUCER <$;
PRODUCER: =SC\FILE_PRODUCER; FI
GIVE GET_A_CHAR
END '
ENDDEFN

DEFINE GET_DEFINITION:

BEGIN VAR NAME,NEST=QS;

HOLDING INS:=NIL;
OUTS:=NIL;
LOCALS: =NIL;
CHIP: =NIL;
CALL_NUMBER: =8;

D0 NAME:=GET_TOKEN;
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NAME (88 NEST FOR NEST 8E REVERSE (NESTING_LEVELS); $% NAME);
NESTING_LEVELS::= (NAMES>"_") <$;
GET_HEADER;
WHILE GET_TOKEN<>'ENDDEFN'; DO
IF TOKEN='DEFINE® THEN GET_DEFINITION;
EF TOKEN={THE_CHAR{286)} THEN
CRLF;
LRITECENd of file encountered inside DEFINE’);
CRLF;
HELP;
EF TOKEN='<’ THEN GET_CALL;
ELSE GET_EQUATION{(TOKEN); FI
END
FINISH;
NESTING_LEVELS: =NESTING_LEVELS (2-];
PUT(CHIP};
CRLF;
WRITE("DEFINED: ' 88CHIP.NAME) ;
CRLF;
ENDHOLD
END
ENDODEFN

DEFINE GET_HEADER:
BEGIN VAR GROUP,S1G=0S;S0S=50S;
VERIFY (" (") ;
WHILE DO VERIFY (1" INPUTS®;'DUTPUTS’ ; "LOCALS ;) "}, Signal type’);
GIVE TOKEN<>')';
DO GROUP: =TOKEN;
VERIFY ("t )3
SQS:={COLLECT GET_TOKEN UNTIL -CHECK_TOKEN(',");};
IF GROUP="INPUTS* THEN INS::= S0S 88;

: INPUTS(S0S) 4
EF GROUP="OUTPUTS’ THEN 0OUTS::= SQS $8;
OUTPUTS(5Q5) 5

ELSE LOCALS::= 50S $8%; FI

END

VERIFY(":");

END '

ENDOEFN

DEFINE GET_POSSIBLE=POSSIBLE_SIGNAL:
IF CHECK_TOKEN(’.”)} THEN
DO  VERIFY({'TRUE’;"FALSE’}l,’.TRUE, or .FALSE.’)};
GIVE GIVING TOKEN='TRUE’
DO VERIFY(.’}; END
ELSE GET_RHS1 FI '
ENDDEFN

DEFINE GET_CALL:
BEGIN VAR NAME,NEST,SIG=05;C=CHIP;SY=SIGNAL _VALUES;
S=SIGNAL_WIRE; I=INT;
IF CHECK_TOKEN(’e’} THEN
NAFME: =GET_TOKEN;
ELSE NATE : =GET_TOKEN;
IF DEFINED(NESTING_LEVELS) THEN
IF THERE_IS
88 NEST FOR NEST $E REVERSE (NESTING_LEVELS{I-1);
88 NANME \VIM_EXISTS_AS ’DCHIP 1/2/81°
FOR T FROM 1 TO 1++1 FOR NEST 8E NESTING_LEVELS:;
THEN NAME::= 88 NEST
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FOR NEST $E REVERSE (NESTING_LEVELS({I-1);88;
FI FI FI

IF NAMENVHM_EXISTS_AS 'OCHIP 1/2/81' THEN
CALL _NUMBER: : =+1;
C: =GET (NAME) ;
SV:=NIL;
VERIFY(’ ()
WHILE (SIG:=CGET_TOKEN;}<>")': DO
IF THERE_IS S. NAHE:SIG FOR S $E C.SIGNALS;UWITH S.INPUT!S.OUTPUT;
THEN VERIFY("
SV:is= [NANE SIG FROM:GET_POSSIBLE] <$;

ELSE CRLF
URITE( Chip *88NAMESS’ does not have a port named '88S1G)
CRLF;
HELP; FI
END
VERIFY('>");
EXPAND ({CHIP:C NAME:'..’$8#SC(CALL_NUMBER) VALUES:S5V]1);
ELSE CRLF;
HRITE( There is no CHIP named '$8NAME);
CRLF;
HELP; FI
END

~ ENDOEFN

DEFINE GET_EQUATION(QS:0S):
BEGIN VAR Q=0S;
IF THERE_IS G=Q0S FOR Q $E OUTS$8LOCALS; THEN
VERIFY({{’="3;"~"1, Equation’);

IF TOKEN='=" THEN FUSE(QS,GET_RHS1); ELSE VINVERT(QS,GET_TOKEN); FI
ELSE CRLF;
WRITE('There is no local or output named '880S)
CRLF;
HELP; FI
END
ENDDEFN

DEFINE GET_RHS1=SIGNAL_WIRE:
BEGIN . VAR S=SIGNAL_LIIRE;
DO S:=GET_RHS2;
WHILE CHECK_TOKEN('XOR’); DO S: XOR(S GET_RHS2); END
GIVE §
END
ENDBEFN

DEFINE GET_RHS2=SIGNAL_I{IRE:
BEGIN VAR SWS=SIGNAL_LIIRES;
00  SLS:={GET_RHS3t;

WHILE CHECK_TOKEN('!’); DO SLS: GET_RHS3 <$%; END
GIVE 1F DEFINED(SWS([2-1) THEN NOR(SUS) ELSE SHS[l] Fl1
END
ENDDEFN

DEFINE GET_RHS3=SIGNAL_IJIRE:
BEGIN VAR SLIS=SIGNAL_WIRES;
DO  SUS: ={CGET_RHS41 3
HHILE CHECK_TOKEN('+"); DO SWS::= GET_RHS4 <8; END
GIVE IF DEFINED(SWS(2-1) THEN DR(SNS) ELSE SUSI1]1 FI
END
ENDDEFN
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DEFINE GEY_RHS4=S1GNAL_IIRE:
BEGIN VAR SWS=SIGNAL_MIRES;
00 SWS: = {GET_RHSGL
HHILE CHECK_TOKEN('&’); DO SWS::= GET_RHS5 <8; END
GIVE IF DEFINED(SHS([2-1) THEN NAND(SWSY ELSE SWUS(11 FI
END
ENDDEFN

DEFINE GET_RHSS5=SIGNAL_WIRE:
BEGIN VAR SWS=51GNAL_WIRES;
DO  SHS: = {GET_RHSE!}
WHILE CHECK_TOKEN({'#"); DO SUS::= GET_RHSE <8%; END
GIVE IF DEFINED(SUS{2-1} THEN AND(SWS) ELSE SWSI11 FI
END ’
ENDDEFN

DEFINE GET_RHS6=51GNAL_MNIRE:
IF CHECK_TOKEN('-") THEN INVERT(GET_RHS?7) ELSE GET_RHS7 FI
ENDDEFN .

DEFINE GET_RHS7=SIGNAL_LIRE:
BEGIN VAR Q,X=0S;5, [F=5IGNAL_WIRE; ALL, IFS=SIGNAL_WIRES;

DEFINE POSSIBLE (SUS:SIGNAL_LIRES}):
BEGIN VAR P=POSSIBLE_SIGNAL;:
P:=GET_POSSIBLE;
CASE P OF
FIXED: IF P THEN ALL::= NAND(SUS) <$%; FI
VAR: ALL: = NANDO(SLIS8>P) <%;
ENDCASE
END

ENDDEFN

00 IF CHECK_TOKEN(' (") THEN
S:=GET_RHS1;
VERIFY{’)’};
EF CHECK_TOKEN('IF'} THEN

[F:=GET_RHS1;

AlLL:=NIL; ‘

VERIFY (" THEN'") 4

POSSIBLE({IFt ),

IFS: = {GET_INVERT(IF}}t; |

WHILE DO VERIFY({'EF’;’ELSE’},’EF or ELSE’};

GIVE TOKEN='EF’; :

DO 1F:=GET_RHS1:
VERIFY (' THEN" ) ;
POSSIBLE (1FS8>1F)
IFS::= GET_INVERT({IF} <$§;

END

POSSIBLE(IFS)

VERIFY('FI');

S:=NAND(ALL};

ELSE (Q:=GET_TOKEN;

IF THERE_IS X=0 FOR X $E INS$80UTS8$$LOCALS; THEN S:=Q:

ELSE CRLF;
HRITE(’ There is no signal named '$8Q);
CRLF;
HELP; FI FI
GIVE S
END

ENDBEFN
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There is a tau-model simulator built into RLC. The MAKE SIMULATOR function
" will take the current CHIP and construct a SIM_CHIP, which is the simulator
representatiori of the chip. The user then defines the pulse trains which drive the
input wires, using the CLOCK and WAVEFORM functions. Following this, the
RUN(time) function is called, which actually runs the simulation from t=0 to
t=time. RUN will initialize all of the nodes in the circuit. In some cases, like for
cross-coupled éircuits, RUN will ask the user whether a node should be initiallized
high or low. Once the simulation is complete; the user may plot waveforms of any
of the nodes using the PLOT functions. The simulator saves the waveforms of each

node so that many plots can be generated from a single simulation run.

TYPE SIM_GATE= [INPUTS:SINM_WIRES
DUTPUT:SIM_WIRE
TYPE:GATE_TYPE
GATE:GATE];

SIMN_GATES= 1 SIN_GATE 1};

SIM_WIRE= [NAME:QS
FROM: SIM_GATE
TO:SIM_GATES
WIRE: SIGNAL_UIRE
VALUE,NEUW, SET:BODL
TAU:REAL
TRACE:SP1

SIN_WIRES= 1 SIM_UWIRE };

SIN_CHIP= [UIRES:SINM_HIRES GATES:SIM_GATES];

VAR SINM_CHIP=5IM_CHIP;

DEFINE MAKE_SINULATOR:
BEGIN VAR G= GATE 1=INT;S, T=SIGNAL_WIRE;Q=SIM_GATE;
DO e(G).INDEX:=1 ;3 FOR G 8E CHIP.GATES; && FOR 1 FROM 1 BY 1
SIH_CHIP:=[GATES:(CDLLECT [TYPE:G.TYPE GATE:G] FOR G $E CHIP.GATES;}];
D0 e{(S).VHEIGHT:=1: FOR S $E CHIP.SIGNALS:88 FOR 1 FROM 1 BY 1
SIM_CHIP.WIRES: = {COLLECT
INATIE: S. NAME
FROM:SIM_CHIP.GATES [S.FROM. INDEX]
TO: {COLLECT SIM_CHIP.GATESIG.INDEX] FOR G 8E 5.70;}
WIRE:S
SET:FALSE
TAU: + CASE G.TYPE OF
NOR: 1
INVERT: 1
NAND: +1 FOR T $E G.INPUTS;
ENDCASE FOR G 8E S.T0;1
FOR S $E CHIP.SIGNALS;?:
DO e{Q).0UTPUT:=SIN_CHIP.WIRESIQ.GATE.OQUTPUT.VHEIGHT];
@{Q) . INPUTS: = {COLLECT SIM_CHIP.UIRESI[S.VHEIGHT]
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FOR S $E QO.GATE.INPUTS;1;
FOR O 8E SIM_CHIP.GATES;
END
ENDDOEFN

TYPE EVENT= EITHER
WIRE=  SIM_UIRE
SS= 55
ENDOR;

EVENTS= { EVENT 1}

TIME_SLDT= [TIME:REAL EVENTS:EVENTS];
TIME_LINE= { TIME_SLOT };
GATE_SIMULATION= //{SIM_GATE}\\;

VAR TIME=REAL;
TIME_LINE= TIME_LINE;

NAND_SIMULATION, NOR_SIMULATION,
INVERT_SIMULATION= GATE_SIMULATION;

ABORT_SIMULATION= BOOL;

DEFINE CLEAR_SIMULATION:
BEGIN VAR S=SIM_UWIRE;
TINE_LINE:=NIL;
TINE: =8;
D0 e(S).TRACE:=NIL;
@(S).SET:=FALSE; FOR S $E SIM_CHIP.WIRES;
END
ENODEFN

DEFINE SIMULATE(GS:SIM_CATES):
BEGIN VAR G=SIM_GATE;
FOR G $E GS; DO
CASE G.TYPE OF
INVERT: <INVERT_SIMULATION:>(G);

NOR: <wNOR_SIMULATION=>{G) ;
NAND: <3 NAND_SIMULATIONvw> {G) 5
ENDCASE
END
END
-ENDDEFN

DEFINE SIMULATE(E:EVENT}):
CASE E OF
WIRE: @{E) ., VALUE: =E.NEU;
@(E) .TRACE::= TIME# IF E.VALUE THEN 1 ELSE B FI <$;
SIMULATE(E.TD) ; ’
S5: <:’(E7’:>;
ENDCASE
ENDDEFN
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DEFINE SIMULATE (T: TIME_SLOT) :
BEGIN VAR E=EVENT;

TIME: =T. TIME; _
WHILE -ABORT_SIMULATION;&& FOR E $E T.EVENTS; DO SIMULATE(EJ: END
END

ENDDEFN

DEFINE SIMULATE:
HOLDING ABORT_SIMULATION: =FALSE;
DO  WHILE -ABORT_SIMULATION; DO
SIMULATE(GIVING TIME_LINE[1].
’ DO TIME_LINE:=TIME_LINE([2-]; END);
END ‘
ENDHOLD
ENDBDEFN

DEFINE EQ(A,B:SIN_WIRE)=BOOL: MACRO-18 (*LSPEQ$”’)

DEFINE EQ(A,B:EVENT) =BOOL:
CASE A OF
WIRE: CASE B OF
WIRE: A\EQ B
ELSE: FALSE

ENDCASE
ELSE: FALSE
ENDCASE
ENDDEFN

DEFINE HOLD_UNTIL(E:EVENT R:REAL):
BEGIN VAR TS=TIME_SLOT; I1=INT;V=EVENT;
1:=0;
IF DEFINED(TIME_LINE) THEN
FOR TS 8$E TIME_LINE;WITH TS.TIME-EPSILON=<R;88 FOR I FROM 1 BY 1; DO
IF TS.TIMENIS_CLOSE_TO R THEN
IF NEVER E\NEQ V FOR V $E TS.EVENTS; THEN
@(TS}.EVENTS::= E <$%; FI
I:=-1; FI
END
IF 1>8 THEN TIME_LINE(I+1-1:=[TIME:R EVENTS: {E}]
- <% TIME_LINELI+1-1;
EF 1=8 THEN TIME_LINE::= [TIME:R EVENTS: {E}] <$; FI
ELSE TIME_LINE:={[TIME:R EVENTS:{E}]}; FI
END .
ENDDEFN

DEFINE HOLD(E:EVENT R:REAL): HOLD_UNTIL (E, TIME+R) 3 ENDDEFN

TYPE GATE_EVALUATOR=//BO0L (SIM_WIRES) \\;

DEFINE GATE_SIMULATOR(G:SIM_GATE GE:GATE_EVALUATOR):
BEGIN VAR R=BOOL;
‘Rt =<GEv> (G, INPUTS)
IF R<>G.0UTPUT.NEW THEN
@ (G.DUTPUT) . NEW: =R;
HOLD (G.OUTPUT, . 31%G.OUTPUT. TAU) ; FI
END
ENDDEFN

DEFINE NAND (WUS:SIM_WIRES) =BOOL: -
BEGIN VAR S=SIM_UIRE;
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THERE_rS -S.VALUE FOR S $E US;
END
ENDDEFN

DEFINE NOR(WS:SIM_WIRES)=BOOL:
BEGIN VAR S=SIM_WIRE;
NEVER S.VALUE FOR S $E WS;
END

ENDDEFN

- DEFINE INVERT(WS:SIM_WIRES) =BOOL:
-US[17.VALUE
ENDDEFN

NAND_SIMULATION: =//:GATE_SIMULATOR (SIM_GATE) [//:NAND (SIM JHIRESIANTAN;
NOR_SIMULATION: =//:GATE _SINULATOR(SIM_GATE)} [//:NOR(SIM_WIRESI\\I\\;
INVERT_SINULATIUN:=//:GATE_SIMULATDR(SIN_GATE)[//:INVERT(S[N_NIRES)\\]\\

DEFINE INITIALIZE(G:SIM_GATE):
BEGIN VAR U=SIM_WIRE;0Q=SIM_GATE;
DEFINE INIT(B:BOOL):
PRESET {G.OUTPUT, B) ;
Do INITIALIZE(Q) FOR Q 8E G.OUTPUT.TO;
" ENDDEFN
IF -G.OUTPUT.SET THEN
CASE G.TYPE OF
INVERT: IF G.INPUTSI[1].SET THEN
INIT(-G. INPUTSI[1].VALUE); FI
NAND : IF THERE_IS W.SET & -W.VALUE FOR W $E G.INPUTS; THEN
INLT(TRUE) ;
EF ALLAYS L. SET & W.VALUE FOR W $E G.INPUTS; THEN
INIT(FALSE}); FI
NOR: IF THERE_1S W. SET & W.VALUE FOR W 8$E G.INPUTS; THEN
INIT(FALSE) ;
EF ALWAYS U.SET & -W.VALUE FOR W $E G.INPUTS; THEN
‘ INIT(TRUE}; FI
ENDCASE FI
END
ENDDEFN

DEFINE INITIALIZE:
BEGIN VAR G=SIM_GATE;W=SIM_MIRE;
DO INITIALIZE(G); FOR G $E SINM CHIP GATES;
IF THERE_IS -U. SET FOR L 8E SIM_CHIP.WIRES; THEN
CURITE ¢’ /NInitialize node '$8LI.NANESS®. High{l) or Low(@)?');
PRESET (W, GET_RESPONSE (" 18" )="1");
INITIALIZE; FI
END
ENDDEFN

DEFINE RUN{T:REAL):
BEGIN VAR SW=SIM_WIRE;
TIME: =8;
HOLD_UNTIL (//ABORT_SIMULATION: =TRUE;\\, T)
INITIALIZE:
SINMULATE;
CRLF;
WRITE(’Simulation terminated at time=');
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WRITE(TIMEY
CRLF;
FOR Sl $E SIM_CHIP.WIRES; DO
@{SW) . TRACE: =REVERSE (TIME#IF SW.VALUE THEN 1 ELSE B FI <$ SW.TRACE):
END
END
ENDDEFN

DEFINE PRESET{(MU:SIM_WIRE V:BOOL):

@ (L) . VALUE: =V;

@ () .NEW: =V

e (W) .SET:=TRUE;

@(l4) . TRACE: = {B#IF V THEN 1 ELSE B Fl1};
ENDDEFN :

DEFINE PRESET(N:QS V:BOOL):
BEGIN VAR U=SIM_WIRE;
IF THERE_IS W.NAMENEQ N FOR W $E SIM_CHIP.WIRES; THEN PRESET (L, V};

ELSE CRLF;
WRITE(’ There is no wire named '}
WRITE(N};
CRLF;
HELP; FI
END
ENDDEFN

DEFINE PRESET_HIGH (50S5:505):
BEGIN VAR Q5=0S;
DO PRESET(QS, TRUE); FOR QS $E SQS;
ENO ’

ENDDEFN

DEFINE PRESET_LOU(S05:505) ¢
BEGIN VAR 05=05;
DO PRESET(QS,FALSE}; FOR QS $E SOS;
END

ENDDEFN

TYPE CLOCK= [PHASE,HIGH,LOW:REAL VALUE:BOOL WIRE:SIM_WIRE INPUT:0
UAVEFORM= [VALUE:BOOL DELTAS:SR WIRE:SIM_UWIRE INPUT:QS3;

DEFINE NEXT_CLOCK(C:CLOCK) :
e{C.UIRE) .VALUE: =(C.VALUE: 1 =—; )
e(C.HIRE) . TRACE: : = TIME#IF C.VALUE THEN 1 ELSE B FI <«<$;
SIMULATE(C.UIRE.TO) :
HOLD (//:NEXT_CLOCK [CI\\, IF C.VALUE THEN C.HIGH ELSE C.LOW FI);
ENDDEFN

DEFINE CLOCK (C:CLOCK):
BEGIN YAR W=SIM_WIRE;
IF THERE_IS W.NAMENEQ C.INPUT FOR W $E SIM_CHIP.UWIRES;UITH W.UWIRE. INPUT;
THEN PRESET (W, C.VALUE) ;
C.WIRE: =W; '
CHOLD_UNTIL (//:NEXT_CLOCK [CI\\,C.PHASE} ;
ELSE CRLF;
WRITE(’ There is no input named ')
WRITE(C.INPUT)
CRLF;
HELP; FI
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. END
ENDDEFN

DEFINE NEXT_WAVEFORM (L: JAVEFORM) ¢
@(U.UIRE) .VALUE: = (W, VALUE: : =—35 ) 3
e(W.NHIRE)Y. TRACE: : = TIME# IF W.YALUE THEN 1 ELSE @ FI <8$;
SIMULATE (L.WIRE.TO) ;
e () .DELTAS: =lJ.DELTAS [(2-3;
1F DEFINED (U.DBELTAS) THEN

HOLD_UNTIL (//:NEXT_AVEFORM IWI\\,W.DELTAS[11); FI
ENDDEFN

DEFINE WAVYEFORM{(4: LIAYEFORM) :
BEGIN VAR I=SIM_WIRE;
IF THERE_IS I.NAMENEQ W.INPUT FOR I $E SIM_CHIP.WIRES;
WITH T.WIRE.INPUT;
THEN PRESET(1,W.VALUE) ;
W.WIRE: =1}
HOLD_UNTIL (/7 :NEXT_WAVEFORM IMINN, W.DELTAS111)
ELSE CRLF;
WRITE (" There is no input named ');
WRITE (L. INPUT};
CRLF;
HELP; FI
) END
ENDDEFN

DEFINE PLOT(PATH:SP NAME:QS START,SCALEX:REAL)=MRG:
BEGIN =~ VAR P,0=POINT;
{NAMENPAINTED RED\SCALED_BY .5 {1#1};
WIRE(BLUE,@,PATHI1T . XHPATHIIT . Y7 <8 88 Q. XoSCALEXHP.Y=7; . #Q. Y%7}
FOR {P;0Q1 8C PATH;)}\AT START#B}
END

ENDDEFN

DEFINE PLOT(SOS:5Q0S PLT:SIZABLE_COLOR_PLOTTER SCALEX:REAL):
. BEGIN VAR QS=0S:X, Y=REAL;SW=SIM_LIRE;
X:=Bx MAX LENGTH(SC::QS) FOR QS $E SQS; + 43
PLOT (MRG: : {COLLECT IF THERE_IS SH.NAME\EQ QS FOR Sk 8E SIM_CHIP.WIRES;
THEN PLOT (SW. TRACE, SH. NAME, X, SCALEX) \AT B#Y

ELSE NIL FI FOR QS $E SUS;&88FOR Y FROM 8 BY -12.;1,PLT);
END

ENDDEFN

DEFINE PLOT(505:50S PLT:SIZABLE_COLOR_PLOTTER) :
. PLOT(SQS,PLT,1);
ENDDEFN

Finally, the RLC has a Run Time System (RTS) which interacts with the user. The
user types commands to the RTS, which then calls the appropriate routine. We
want the user to be able to add new routines (such as sorters or packers) at any
time, just as new technologies can be added. This requires the use of suspendable
functions. We will name these functions, so users may call them by name. The
NAMED SS datatype holds functions which require no parameters, while NAMED
_QHIP___CONSUMERS hold functions which require a CHIP as its single input
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parameter. We then define global lists of these functions, and assign the existing

routines to the list.

TYPE NAMED_SS= [NAME:QS FUNCTION:SS1;
NAMED_SSS= { NAMED_SS 1
NAMED_CHIP_CONSUMER= [NAME:QS CONSUMER:CHIP_CONSUMER]
NAMED_CHIP_CONSUMERS= { NAMED_CHIP_CONSUMER 1}

VAR OPTINMIZERS= NAMED_SSS;
SORTERS, PACKERS= NAMED_CHIP_CONSUMERS;

OPTIMIZERS: =
{ INAME:’REMOVE_INVERTERS® FUNCTION://:REMOVE_INVERTERS\\] ;

[NAME: " REMOVE_REDUNDANCIES®  FUNCTION: //:REMOVE_REDUNDANCIES\\]
[NAME: *REMOVE_NANDS’  FUNCTION: //: REMOVE_NANDS\\]
INAME: "REMOVE_NORS® FUNCTION://:REMOVE_NORS\\]
INAME: " DE_MORGAN"  FUNCTION://:DE_MORGAN\\] ;
[NAME: "UNIQUE_INPUTS® FUNCTION://:UNIQUE_INPUTS\\]
INAME: "MERGE*  FUNCTION://:MERGEAN] 1}

.
*
.
’

.
’

PACKERS: = :
{ INAME: *NMOS_PACK_1"  CONSUIMER: //:NMOS_PACK_1 (CHIP)\\] ;
INAME: *NMOS_PACK_2*  CONSUIMER: //:NMOS_PACK_2 (CHIP)\\] 1}

SORTERS: =
{ INAME:’SMALL_SORT’ CONSUMER://:SMALL_SORT(CHIP)\\]
[NAME: *NO_SORT’ CONSUMER: //:NO_SORT(CHIP)\\] ;
[NAME: *RELAXATION_SORT' CONSUMER: //:RELAXATION_SORT (CHIP)\\] };

.
14

The following section is the RLC run time system. The user types commands to the
RTS, which then calls the appropriate routine. When typing a command, the user
need only type enough to make the command unambiguous. Question marks can be

typed at any point to list the current options.

DEFINE RLC_SYSTEM:
SYSOUT (SAVE _INDEPENDENT) ;
RLC; .
SYSOUT (NO_SAVE) ;

ENDDEFN

DEFINE RLC:
BEGIN VAR GO=BOOL;
GO:=TRUE;
WHILE GO; DO
JRST(MENU(* ?*, {GET chip’;*PUT chip’;’READ file'; "PARSE input’;
"SIMULATE’ s "EBIT logic’;'PLOT chip’;’FILE plot’;
'SORT gates’:’DIRECTDRY’;’UNPARSE’;’STATSf:'DUIT’)))
B=> CRLF;
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RTS_GET;
RTS_PUT:
RTS_READ;
RTS_PARSE;
RTS_SIMULATE:
RTS_EDIT;
RTS_PLOT:
RTS_FILE;
RTS_SORT;
CRLF; ,
VM_DIR("+’, DCHIP - 1/2/81');
CRLF;
11=> UNPARSE;
12=> RTS_STATS;
13=> GO:=FALSE;
ENDJRST ’
END
END
ENDDEFN
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DEFINE RTS_GET:
BEGIN VAR V=VM_DIRECTORY_ELEMENT;
CRLF; '
V:=MENU (’CHIP name?’,’x',’DCHIP 1/2/81');
IF DEFINED (V) THEN CHIP:=GET{V.NAME); FI
END

ENDDEFN

DEFINE RTS_PUT:
CRLF;
WRITE (CPutting *$8CHIP.NAMESY’ into virtual memory...'};
CRLF;
PUT {CHIP) ;
ENDDEFN

DEFINE RTS_READ:
BEGIN VAR FILE=SC;
- CRLF;
FILE:=GET_SC{"Enter file name’,CR);
WHILE IF DEFINED(FILE) THEN -EXISTS(FILE) ELSE FALSE F1; DO
CRLF;
HRITE(’The file *$$FILES$%’ does not exist. ')
FILE: =GET_SC(’Enter new file name’ ,CR);
END
IF DEFINED{FILE) THEN PARSE_FILE(FILE); FI
END
ENDDEFN

DEFINE RTS_PARSE:
BEGIN VAR SC=5C;
CRLF;
SC:=GET_SC(’Enter RLC source:’,BELL);
IF DEFINED(SC) THEN PARSE_SC(SC); FI
END '
ENDDEFN

DEFINE RTS_SIMULATE:CRLF; ENDDEFN
DEFINE RTS_EDIT:

BEGIN VAR GO=BOOL ; NSS=NAMED_SS; 1=INT;
GO: =TRUE;
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CRLF;

WHILE GO; DO . :

: J:=MENU('EDIT>’, {"DONE’ ;COLLECT NSS.NAME FOR NSS $E OPTIMIZERS;1});
IF 1<2 THEN GO:=FALSE;
ELSE <xOPTIMIZERS[1-1].FUNCTIONs>; FI
CRLF; ’

END

END

ENDDEFN

VAR RLC_MPICTURE=MPICTURE;

DEFINE RTS_STATS:
BEGIN VAR T=TECHNOLOGY;1=INT;
CRLF;
[:=MENU('Enter Technology:', {COLLECT T.NAME FOR T 8E TECHNOLOGIES;});
CRLF;
IF I>8 THEN STATS(TECHNOLOGIESII1}; FI
END :
ENDDEFN

DEFINE RTS_PLOT:
BEGIN VAR T=TECHNOLOGY;I=INT;
CRLF:
:=MENU{"Enter Technology:’, {COLLECT T.NAME FOR T $E TECHNOLOGIES;1);
CRLF;
IF I-8 THEN
RLC_MPICTURE: =COMPILE(CHIP, TECHNOLOGIESI[I1)
RTS_PLOTTER; FI
END

- ENDDEFN

DEFINE RTS_FILE:
BEGIN YAR SC=5C;
CRLF;
SC:=GET_SC{’Enter AIF file name:’,CR);
CRLF;
IF DEFINED(SC) THEN
RLC_MPICTURE: =SC\AIF;
RTS_PLOTTER; FI
END
ENDDEFN

DEFINE RTS_PLOTTER:
BEGIN VAR I=INT;5C=5C;
JRST(MENU{'Enter Plotter:’, {"HP7221A";"HP1382" ; "HP2643" ; " SCREEN" ;
'FILE’ s AREA_HP7221A% s AREA_HP2643°1))

P=> NOTHING;

l1=> PLOT(RLC_MPICTURE,HP_7221A};
2=> PLOT(RLC_MPICTURE,HP1382};
3=> NOTHING;

4=> PLOT(RLC_MPICTURE,SCREEN};
5=> CRLF;

SC:=CET_SC{’Enter file name:’,CR};
IF DEFINED(SC) THEN PLOT(RLC_MPICTURE,SC\AIF}; FI
B=> PLOT(RLC_MPICTURE, AREA_HP_7221A_NO);
7=> NOTHING;
ENDJRST
CRLF;
END
ENDDEFN
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DEFINE RTS_SORT: A
BEGIN VAR I=INT;NCC=NAMED_CHIP_CONSUMER;
CRLF;
I:=MENU(’Sort routine?’, {COLLECT NCC.NAME FOR NCC $E SORTERS;});
IF 1>8 THEN <%SORTERS(1].CONSUMERs>{(CHIP); FI
CRLF;
END
ENDDEFN
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Appendix 5: Bristle Blocks Elements

The following elements are available for use in Bristle Blocks. - The type of each

element is given, followed by the required and optional parameters for element of
the given type.

Ab.1: Registers

There are four basic styles of registers in Bristle Blocks. The first type is the
standard scratchpad register. It may read or write data from the two data buses. Its
internal value may refresh, and it may load with a constant. The second type of
register acts like the scratchpad register, but its value may be driven into the
instruction decoder. The third register type acts like the scratchpad register, but it
may also load selected bits from the inétruction decoder. The fourth register type is
a combination of the second and third types: the register may drive the instruction
decoder, and the register may load from the instruction decoder. In the second and
fourth types, the LATCH parameter controls the loading of the register, which
occurs during PHI 2.

{1} Element: REGISTER

Required Parameters:

Keyword: OPTIONS Tupe: REGISTER
Optional Parameters: NONE

(2) Element: DATATO CONTROL

Required Parameters:
Keyuord: REGISTER Type: REGISTER
Keyword: MAP Type: SOURCES
Optional Parameters: NONE

{3) Element: CONTROITO DATA

Required Parameters:
Keyword: REGISTER Type: REGISTER
Keyuord: MAP Type: DESTS
Keyuord: "LATCH Type: EQUATION
Optional Parameters: NONE

(4) Element: CONTROITO DATA AND BACK

Required Parameters:

Keyuword: REGISTER Type: REGISTER
Keyuword: TO_CONTROL Type: SOURCES
Keyword: TO_DATA Tupe: DESTS
Keyword: LATCH Type: EQUATION

Optional Parameters: NONE
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AbB.2: Simple Arithmetic Elements

There are four simple arithmetic elements in Bristle Blocks: Incrementers,
Decrementers, Adders, and Subtracters. The incrementer and decrementer each have
an input register and an optional output register. If the output register is specified,
the output 6f the incrementer/decrementer will load the register. If the output
register is not specified, the incrementer/decrementer will load the input register.
The LOAD equation states when the load should occur. The carry output is

available, if desired, to drive the instruction decoder or an output pad.

The adder and subtracter have tWo input registers and an optional output register.
If the output register is specified, the results of the operation are stored in the
output register. If the output register is not specified, the result of the operation is
stored in the INPUT A register. For the subiracter, INPUT B is subtracted from
INPUT A. The LOAD equation again controls when the register is to be loaded. The
-LATCH equation transfers data from the input registers into internal nodes, and this
happens during PHI 1. The user may specify a carry input and may use the carry

output. Notice that these signals are inverted.

{5} Element: INCREMENTER

Required Parameters:
Keyword:  INPUT_REGISTER Type: REGISTER

Keyword: LOAD Type: EQUATION
Optional Parameters: :

Keyuord: DUTPUT__REGISTER Type: REGISTER
Keyuword: PRECHARGE Tupe: EQUATION = Default: ALLAYS
Keyuword: CARRY_0OUT Tupe: OUTPUT

(68} Element: DECREMENTER

Required Parameters:
Keyword: INPUT_REGISTER Type: REGISTER

Keyword: LOAD Type: EQUATION
Optional Parameters:

Keyuord: QUTPUT_REGISTER Tupe: REGISTER
Keyword: PRECHARGE Type: EQUATION Default: ALWAYS
Keyuword: CARRY_DUT ‘ Type: OUTPUT
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(7) Element: ADDER

* Required Parameters:

Keyword: -INPUT_A Type: REGISTER
Keyword: INPUT_B Type: REGISTER
Keyuord: LOAD Type: EQUATION

Optional Parameters:
Keyuord: OUTPUT_REGISTER Type: REGISTER

Keyuord: PRECHARGE Type: EQUATION Default: ALWAYS
Keyword: CARRY_OUT_BAR Type: DUTPUT

Keyuord: LATCH Type: EQUATION Default: ALLIAYS
Keyword: CARRY_IN_BAR Tupe: EQUATION Default: NEVER

(8) Eiement: SUBTRACTER

Required Paraneters:

Keyuword: INPUT_A Type: REGISTER
Keyword: INPUT_B Type: REGISTER
Keyword: LOAD Type: EQUATION

Optional Parameters:
Keyword: OUTPUT_REGISTER Type: REGISTER

Keyword: PRECHARGE Type: EQUATION Default: ALLIAYS
Keyword: CARRY_OUT_BAR Tupe: OUTPUT

Keyword: LATCH Type: EQUATION Default: ALUAYS
Keyuord: CARRY_IN_BAR Type: EQUATION Default: NEVER

A5.3: Arithmetic/Logic Units

There are three versions of ALUs in Bristle Blocks. The differences have to do with
the flag logic. In the first case, the flags are valid during the PH]I 2 that the ALU is
operating, so they may control an operation occurring the next PHI 1. In the second
case, these flags may load a flag register, which sits on the buses like any other
register. The flag bits from this register may drive the instruction decoder. The
third type. of ALU has a complex flag wunit that allows selectable
loading/testing/modifying of any bit in the flag register.

Each of the ALUs has two input registers and either one or two output registers.
Equations control when the two output registers are to be loaded from the ALU. In
addition, the flags from the ALU are immediately available in the instruction
decoder, or to pads. The carry output and carry into the MSB are inverted polarity
logic. Overflow is detected by 'exclusive-oring these two output signals.
Additionally, the MSB and the ZERO flag are available,

There are several operations which the ALUs will perform. The basic arithmetic
operations are ADD, SUBTRACT, SUBTRAC'I:_BEV, NEGATE A, and NEGATE B. The
subtract operation subtracts INPUT B from INPUT A, while subtract reversed does
the opposite. Each of these operations assumes there is no carry (or borrow) input.

CorreSponding to each of these operations is an operation which forces a carry or
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borrow on the input. These operations are ADD W CARRY, SUIi_W__lBORROW, SUBI}___V\L_

_BORROW, .NEG_Q_W__BORROW, and NEG B W BORROW, respectively. Similarly, the
incrément/ decrement operations are available: INCREMENT A, INCREMENT B,
DECREMENT A, and DECREMENT B. These operations force a carry or borrow input.
The operations which assume no carry or borrow input are just SETA, SETB, SETA,
and SETB, respectively.

There are operations which set the output of the ALU to a constant value or to one
of the input values. These operations are SETZ (or ZERO), SETO (or ONES), SETA,
SETB, SETCA, and SETCB. SETA sets the ALU output to be the value in the INPUT A
register, while SETCA sets the output to be the compliment of this value.
Additionally, the ALU can do AND and OR bperations on either the input data or its
compliment. These operations are AND, ANDCA, ANDCB (or TEST), ANDC (or
NOR),OR, ORCA, ORCB, and ORC (or NAND). The basic AND and OR functions perform
the obvious operation. The -CA suffix indicates that the operation is performed
using the compliment of the INPUT_A value, while -CB indicates that the
-compliment of the INPUT B value is used. -C indicates that compliments of both
input values are used. The exclusive-or operations are also available: XOR and EQV
(or XNOR). '

The ALU can perform single bit left shift operations: SHIFT A, SHIFT B, SHIFT A w
_LSB, and SHIFT B W LSB. The SHIFT A and SHIF'I:_B operations shift a zero into the

least significant bit, while the remaining operations shift a one into the LSB.

The remaining operations include MASK operations and Find-First-One (or zero).
The MASK AB and MASK BA instructions are used to generate masks. With the
MASK AB operation, the ALU output will be high between the least significant high
bit in A and the next high bit in B, and between the next high bit in A and the next
high bit in B, etc. High bits in A generate carrys while‘high bits in B kill the carry.
The FFO A instruction produces an output which is low in every bit position except
the first low bit in A. This is the Find First Zero in A instruction. Similarly, the
FF1 A, FFO B, and FF1 B instructions exist.

The DONT CARE instruction is also listed. This operation states that the particular

instruction is an undefined opcode, so Bristle Blocks can fill this with any

instruction.



(3) Element:
‘Required Para
Keyword:
Keyuord:
Keyword:
Keyword:
Operati
- ADD
SUBTRAC

ALU

meters:
INPUT_A
INPUT_B
OUTPUT_1
DECODE
ons:
ADBD_W_CARRY
T. SUB_H_BORROW

NEGATE_A NEG_A_lI_BORROW

INCREME
SHIFT_A
FFB_A
SETZ
ANDCA
AND
SETA
~ ZERO -
‘ XNDR
Uptional Para
Keyuord:
Keyword:
Keyuord:
Keyuord:
Keyuord:
Keyuord:
Keyuord:
Keyword:

NT_A INCREMENT_B

SHIFT_A_W_LSB

FFB_B

ANDC

SETCB

EQvV

ORCB

ONES

TEST
meters:
OUTPUT_2
PRECHARGE
CARRY_OUT_BAR
CARRY_INTO_1SB_BAR
Mse
ZERO
WRITE_QUTPUT_1
WRITE_OUTPUT_2
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Type:
Tupe:
Type:
Tupe:

MASK

REGISTER
REGISTER
REGISTER
DECOOE

AB

SUBTR
NEGAT
DECRE
SHIFT
FF1_A
ANDCB
XOR
SETB
OR
NAND

Tupe:
Type:
Type:
Type:
Tupe:
Type:
Type:
Type:

ACT_REY
E_B
MENT_A
B

DONT_CARE

REGISTER
EQUATION
QUTPUT
ouTPUT
guTPUT
ouTPUT
EGUATION
EQUATION

MASK_BA
SUBR_LI_BORROLI
NEG_B_LI_BORROU
DECREMENT_B
SHIFT_B_LI L SB
FF1_B

SETCA

ORC

ORCA

SETO

NOR

Default: ALUAYS

Default: ALLIAYS
Default: NEVER
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(10) Element: ALU WITH FLAGS

Required Parameters:

Keyuword: INPUT_A Type: REGISTER -
Keyuord: INPUT_B : Type: REGISTER
Keyuword: BUTPUT_1 Type: REGISTER
Keyuord: DECODE Type: DECODE
Operations: :
ADD ADD_W_CARRY MASK_AB MASK_BA
SUBTRACT SUB__BORROW SUBTRACT_REV SUBR_LI_BORROL!
NEGATE_A NEG_A_U_BORROW NEGATE_B NEG_B_l_BORROW
INCREMENT_A INCREMENT_B DECREMENT_A  DECREMENT_B
SHIFT_A SHIFT_A_UH_LSB  SHIFT_B SHIFT_B_l_L.5B
FFB_A FFa_B FF1_A FF1_B
SETZ "~ ANDC ANDOCB SETCA
ANDCA SETCB XO0R ORC
AND ' eav SETB ORCA
SETA ORCB OR SETO
ZERO ONES NAND NOR
XNOR TEST DONT_CARE
Optional Parameters:
Keyword: OUTPUT_Z2 Tupe: REGISTER
Keyword: PRECHARGE Type: EQUATION Default: ALUAYS
Keyword: CARRY_OUT_BAR Type: OUTPUT
Keuword: CARRY_INTO_MSB_BAR Type: QUTPUT
Keyword: MSB Type: DUTPUT
Keyword: ZERO Type: CUTPUT
Keyword: WURITE_DUTPUT_1 Type: EQUATION Defaul t: ALLIAYS
Keyword: LIRITE_OUTPUT_2 Type: EQUATION Default: NEVER
Keyword: FLAGS Type: REGISTER Default: [REFRESH:ALLIAYS]
Keyword: LOAD _FLAGS Tupe: EQUATION Befault: NEVER
Keyuord: TO_CONTROL Type: SOURCES

This element is similar to the ALU element, with the addition of a flag register. The
flag register will load from the ALU when the load flags equation is true. Bit 1 of
the register loads with the carry output, bit 2 loads with the MSB, bit width/2 + 1
loads with zero, and bit width loads with the LSB. If the datapath width is 8, bit 5
loads with zero and bit 8 loads with LSB. The remaining bits are unaltered by the

load flags control. The to control specification allows these flag bits to drive lines

of the instruction decoder.
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(11) Element: ALU WITH FULL FLAGS

Required Parameterst

Keyword: INPUT_A Type: REGISTER
Keyuword: INPUT_B Type: REGISTER
Keyword: QUTPUT_1 Type: REGISTER
Keyuword: DECCDE Type: DECODE
Operations: ’
.~ ADD ADD_ii_CARRY MASK_AB MASK_BA
SUBTRACT SUB_l_BORROUW SUBTRACT_REY SUBR_W_BORROL
NEGATE_A NEG_A_LI_BORROW NEGATE_B NEG_B_LI_BORROU
INCREMENT_A INCREMENT_B - DECREMENT_A  DECREMENT_B
SHIFT_A SHIFT_A_W_LSB SHIFT_B SHIFT_B_W_LSB
FFB_A : FFe_B FF1_A FF1_B
SETZ ANDC ANDCB SETCA
ANDCA SETCB XOR ORC
AND ’ EQV SETB ORCA
SETA ORCB - OR SETO
ZERD ONES NAND NOR
XNOR TEST DONT_CARE
Keyuword: MASK ' Type: REGISTER
Keyword: FLAGS Type: REGISTER
Keyuord: FLAG_ACCUMULATER Tupe: REGISTER
Keyuword: FLAG_SELECT Type: FIELD
Keyword: FALSE_FALSE Type: EQUATION Default: NEVER
Keyword: FALSE_TRUE Type: EQUATION Oefaul t: NEVER
Keyword: TRUE_FALSE Type: EQUATION . Default: NEVER
Keyword: TRUE_TRUE Type: EQUATION Defaul t: NEVER
KeywWord: OPERATION Tupe: DECODE
Operations:
DONT_CARE LOAD_ALL
LOAD_MASKED TEST_SELECTED
SET_SELECTED CLR_SELECTED
CHP_SELECTED LOAD_SELECTED
Optional Parameters:
Keyword: OUTPUT_2 Type: REGISTER
Keuword: PRECHARGE Type: EQUATION Default: ALLAYS
Keyword: CARRY_0OUT_BAR Type: COUTPUT
Keyword: CARRY_INTO_MSB_BAR Type: OUTPUT
Keyword: MSB ) Tupe: OQUTPUT
Keyuword: ZERO Type: OUTPUT
Keyword: WRITE_BUTPUT_1 Tupe: EQUATION Defaul t: ALLIAYS
Keyword: LRITE_DOUTPUT_2 Type: EQUATION Default: NEVER
Keyword: OLD_FLAG “Type: EQUATION Default: NEVER
Keyword: FLAG Type: CUTPUT

In addition to the operations available with the standard ALU, this ALU includes a
wide variety of flag operations. The FLAGS register holds the values of the flags,
the MASK register may select which of the FLAGS register's bits should load, and
the FLAG ACCUMULATOR register is used to accumulate flag values. A function
block (see» #29 in section A5.8) exists between the FLAGS register and theb FLAG
_ACCUMULATOR to implement the flag accumulations. The LOAD__ALL operation
loads all flags from the ALU into the FLAGS register. The LOAD MASKED operation
only loads those bité whose corresponding MASK register bits are high. TEST
_SELECTED will load the FLAG bit (MSB of FLAGS) with the FLAGS bit selected by the
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FLAG SELECT field. SET SELECTED will set the bit which FLAG SELECT indicates,
and CLR SELECTED will clear that bit. ‘CMP SELECTED complements the selected bit.
LOAD_SELECTED transfers from the FLAG bit to the selected bit.

The bits in the flag register have the following values. The MSB is carry out, the
next bit is carry into the MSB, the next bit is MSB, the next bit is overflow, the
next is greater than or equal, the next is higher, the next is greater than, the next is

zero, the next is the value of OLD FLAG (an optional input), and the LSB is LSB. Bits
10-15 are not used. This element can only be used in datapaths than are
16 bits wide.

Ab5.4: Ports

The port units are used for data communication with off-chip circuitry. The INPUT
_PORT has a register which will load data from off chip when the LOAD equation is
TRUE. The OUTPU'I_‘_PORT will always drive the data in its register off chip unless
the DRIVE equation is present, in which case the port only drives when the
equation is TRUE, The 10 PORT incorporates features of both the input ports and the
output ports. When the LOAD equation is TRUE, the off chip data are loaded into the
input register. When the DRIVE equation is TRUE, data in the output register are
driven off chip. If the INPU’I:_BEGISTER is not specified, the port will have only a

single register, which is uses for both types of data transfer.

In each of these ports, the LOAD and DRIVE equations have variable timing, which
means that the timing requirements of the control line buffers may be given by the
user. These dperations will occur during PHI 2 by default, but the user may state
either PHI 1 timing or asynchronous timing should be used. Each of these ports has
.an optioﬁal mask, Which can be used to indicate which bits of the register(s)
actually connect to pads. Bits of a register which do not connect to a pad will be

unaffected by a LOAD operation.
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(12) Element: INPUT PORT
Required Parameters: —

Keyuword: REGISTER Tupe: REGISTER

Keyuword: LDAD Type: EQUATION Yariable Timing
Optional Parameters:
Keyword: MASK - Type: MASK

(13) Element: QUTPUTPORT
Required Parameters: —

Keyuword: REGISTER Type: REGISTER

Optional Parameters:
Keyword: DRIVE Type: EQUATION Variable Timing
Keyword: MASK Type: MASK

(14) Element: JCPORT
Required Paraméters:

Keyuord: OUTPUT_REGISTER Type: REGISTER

Keyword: LDAD Type: EQUATION Variable Timing

Keuuord: DRIVE Type: EQUATION Variable Timing
Optional Parameters:

Keyword: INPUT_REGISTER Type: REGISTER

Keyword: MASK Type: MASK

A5.5: Constants

The ROM (Read Only Memory) functions in Bristle Blocks are used to drive constant
data onto the data buses. The value(s) contained in these ROMSs can drive each bit of
the data bus(es) high or low or not affect the value on the bus. The enable
functions control the gating of the fixed value onto the bus. The LOWER ROM
function drives the lower data bus, the UPPEIE{OM‘function drives the upper data
bus, while the EOM and BOM__PAIR functions drive both buses. The ROM PAIR

function is logically equivalent to two ROM f unctions, but requires less chip area.

(15) Element: LOWER ROM

Required Parameters:——
Keyword: VALUE Type: MASK
Keyword: ENABLE Type: EQUATION
Optional Parameters: NONE

(16) Element: UPPERIOM

Required Parametersi—

Keyword: VALUE Type: MASK
. Keyuord: ENABLE Type: EQUATION
Optional Parameters: NONE

(17) Element: ROM

Required Parameters:
Keyword: UPPER Tupe: MASK
Keyuword: LOWER Type: MASK
Keyuord: ENABLE Type: EQUATION

Optional Parameters: NONE
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(18) Element: ROM PAIR

Required Parameters: :
Keyuword: LEFT_ENABLE Tupe: EQUATION
Keyword: RIGHT_ENABLE Tupe: EQUATION

Optional Parameters:

Keyword: LEFT_UPPER Tupe: MASK
Keyword: LEFT_LOUWER Type: MASK
Keuword: RIGHT_UPPER Type: MASK
Keyuword: RIGHT_LOUER Type: MASK

AbH.6: Barrel Shifters

The barrel shifters are capable of performing multiple-bit shifts in a single clock
cycle. These shifters have two input words: the Most Significant Word (MSW) and
the Leavst Significant Word (LSW). Thé output register may load from almost any
contiguous set of bits in the combined MSW-LSW register, The shift constant
indicates how many bits from the most significant end of the LSW are to apﬁear in
the output, with the remaining bits coming from the least significant end of the
MSW. The width of the shift constant field must be at least log base two of the
datapath width. In the SIMPLE SHIFTER, the user specifies registers for the MSW,
LSW, and the output, along with the shift constant and a LOAD equation, which
controls the loading of the output register. The MASKED SHIFTER has an additional
mask register which can be used to control the loading of the output register. The
two load signals, LOAD IF O and LOAD IF 1, specify the polarity of the mask bits.
When the LOAD IF O line is high, the only bits of the output register than are loaded
from the shift operation are those bits whose corresponding mask bits are low.
Similarly, the LOAD IF 1 line‘controls loading the output register's bits whose
corresponding mask bits are high. If both control lines are high, all of the output
register bits are loaded. The BARREL . SHIFTER does not have an explicit MISW
register or LSW register. Instead, two input registers are provided, along with
circuitry which multiplexes various values into the MSW and LSW of the shifter.
The MSW can be loaded from either of the two input registers or from the constants
b, 1, -1, and -2. The LSW can be loaded from either of the two input registers or
from the constants O and -1. Given these possibilities, any of the arithmetic or
logical shifts and rotates can be performed with the shifter. The following table
lists the MSW and LSW values for the various OPERATIONSs of the BARREL SHIFTER.
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=
=
—
145]
=

Operation
ROTATE_A
ROTATE_B
SHIFT_AB
SHIFT_BA
SLA
SLB
SRA_LOGICAL
SRB_LOGICAL
UNARY
UNARY_BAR
SRA_ZERO
SRB_ZERCG
SRA_ONE
SRB_ONE
DECODE
DECODE_BAR

PODrXro0>O~FD>O00P>0T>

{see SRA_LOGICAL)
{see SRB_LOGICAL)

!

PP~ OOOD>TD>T >0

)
N
!

The most significant bits of the two input registers are available to drive the
instruction decoder, which is useful for computing the sign-extention constants

for arithmetic shifts. The BARREL SHIFTER also has a mask register.

(13) Element: SIMPLE SHIFTER
Required Parameters: —

Keyword: MOST_SIGNIFICANT_LORD Type: REGISTER
Keyuord: -LEAST_SIGNIFICANT_WORD Type: REGISTER
Keyword: OUTPUT_REGISTER Type: REGISTER
Keyword: SHIFT_CONSTANT Type: FIELD

Keyuord: LOAD Type: EQUATION

Optional Parameters: NONE

(20) Element: MJASKED SHIFTER
Required Parameters: —

Keyword: MOST_SIGNIFICANT_LIORD Type: REGISTER
Keyword: LEAST_SIGNIFICANT_WORD Type: REGISTER
Keyword: OUTPUT_REGISTER Tupe: REGISTER
Keyword: MASK_REGISTER Type: REGISTER
Keyuword: SHIFT_CONSTANT - Type: FIELD

Keyword: LOAD_IF_B Type: EQUATIGN
Keyword: LOAD_IF_1 Tupe: EQUATION

Optional Parameters: NONE
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(21) Element: BARREL , SHIFTER

Required Parameters:

Keyuword: INPUT_A Type: REGISTER
Keyuword: INPUT_B Tupe: REGISTER
Keyuword: OUTPUT_REGISTER Type: REGISTER
Keyword: SHIFT_CONSTANT Type: FIELD
Keyword: LOAD_IF_B Tyupe: EQUATION
Keyword: LOAD_IF_1 Tupe: EQUATION
Keyword: OPERATION Type: DECODE
Operations:

ROTATE_A ROTATE_B

SHIFT_AB : SHIFT_BA

SLA SLB

SRA_LOGICAL SRB_LOGICAL

UNARY UNARY_BAR

SRA_ZERO SRB_ZERO

SRA_ONE SRB_ONE

DECODE DECODE_BAR

Optional Parameters:

Keyuord: MASK REGISTER Type: REGISTER
Keyuword: A_MSB Type: OUTPUT
Keyword: B_MSB ‘ Type: OUTPUT

Ab5.7: Bus Precharge Elements

The bus precharge elements are used to precharge the data buses. Each of the data
- processing elements in Bristle Blocks (except for the ROM cells) only drives the data
‘buses low. To transmit a high value, the data processing elements do not affect the
bus, assuming that the bus originally had every bus line high. In order to transmit
data, therefore, the buses must be precharged. These elements precharge one or
both of the buses during PHI 2. The data buses can be used to store data from one
cycle to the next, if the clocks run fast enough, and if no other element writes on
‘the bus. The first three elements simply precharge the buses. The remaining two
functions not only precharge the bus, but they 'break' the bus. The bus to the left is
terminated, and a new bus begins to the right (this new bus must be precharged by
a different bus precharge element). This allows Bristle Blocks to compile chips
with more than two data buses, although only two data buses may pass any

element.

(22) Element: PRECHARGE LOWER
Required Parameters: NONE

Optional Parameters:
Keyword: PRECHARGE Type: EQUATION Default: ALLIAYS

(23) Element: PRECHARGEUPPER

Required Parameters:
Optional Parameters:

Keyword: PRECHARGE Type: EQUATION Defaul t: ALWAYS
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(24) Element: PRECHARGE BOTH
Required Parameters: NONE—

Optional Parameters:
Keyword: PRECHARGE Type: EQUATION Default: ALLAYS

{25) Element: PRECHARGEAND BREAK LOWER
Required Parameters: NONE— — I

Optional Parameters:
“Keyuord: PRECHARGE Type: EQUATION Default: ALWAYS

(26) Element: PRECHARGEAND BREAK UPPER
Required Parameters: NONE— — —

Optional Parameters:
Keyword: PRECHARGE Type: EQUATION Defaul t: ALLAYS

Ab5.8: Random Simple Elements

There are a few simple elements which do not fit in the categories presented above.

These elements are described here,

{(27) Element: BUS CAM

Required Parameterst
Keyword: VALUE Type: MASK
Keyword: OUTPUT Type: OUTPUT
Optional Parameters:
Keyword: LATCH Type: EQUATION Default: ALUAYS

The BUS CAM element will monitor data flow across the lower bus. When the
sampled data matches the fixed value wired into the CAM, the output signal will go
high. The LATCH equation controls the sampling of the bus. The VALUE mask
states the comparison value for the CAM. When all the bus bits corresponding to 0
bits in the mask are low and when all the bus bits corresponding to I bits in the

mask are high, the output signal goes high.

(28) Element: CAM

Required Parameters:
Keyword: REGISTER -Type: REGISTER
Keyword: VALUE Tupe: MASK
Keyword: QUTPUT Type: OUTPUT

Optional Parameters: NONE

This element is similar to the BUS CAM but that the CAM monitors the value
contained in its register. Whenever the register's value matches the CAM's value,

the output signal goes high. There is no LOAD signal, since the CAM always

monitors the register's value.
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(23} Element: FUNCTION BLOCK

Required Parameters:

Keuyword: INPUT_A Type: REGISTER
Keyword: INPUT_B Type: REGISTER
Optional Parameters:
Keyword: OUTPUT Type: REGISTER
Keyuord: PRECHARGE Type: EQUATION Default: ALUAYS
Keyuword: LOAD_INPUT_A Type: EQUATION Default: NEVER
Keyword: LOAD_OUTPUT Tupe: EQUATION Defaul t: ALUWAYS
Keyword: FALSE_FALSE Type: EQUATION Default: NEVER
Keyuword: FALSE_TRUE Type: EQUATION Default: NEVER
Keyuord: TRUE_FALSE Type: EQUATION Defaul t: NEVER
Keyword: TRUE_TRUE Type: EQUATION Default: NEVER

The FUNCTION___BLOCK element is used to perform boolean operations between
values. The function block takes data from the two input registers, and can store
data into the INPUT A register and the OUTPUT register. The FALSE FALSE (FF),
FALSE TRUE (FT), TRUE FALSE (TF), and TRUE TRUE (TT) lines control the function
of the element. If the FF line is high, all bits of the output which correspond to low
bits in both input registers will be high. Similarly, the TT line controls the output
bits corresponding to high bits in both registers. If TF is high, all output bits which
correspond to high bits in INPUT A and low bits in INPUT B will be high. The FT
control is similar to the TF control. An alternative statement of the FUNCTION
_BLOCK operation is that each pair of input bits selects which control line drives the
correspdnding output bit. For example, if the MSB of INPUT A is high and the MSB
of INPUT B is low, the MSB of the output will be the value of the TRUE_fALSE
control. If TT, TF, and FT are high and FF is low, the function block performs an OR
operation, while if TT is the only high control, an AND function is performed. The

PRECHARGE equation controls the loading of data from the input registers to

internal nodes,

(381 Element: LEFT RIGHT I' SHIFT

Required Parametersi—

Keyword: INPUT_REGISTER Type: REGISTER
Keyword: SHIFT_LEFT Type: EQUATION
Keyword: SHIFT_RIGHT Type: EQUATION

Optional Parameters:
. Keyword: OUTPUT REGISTER Type: REGISTER

Keyuword: INPUT Type: EQUATION Default: NEVER
. Keyword: M5B Type: OUTPUT
Keyword: PRECHARGE Type: EQUATION Default: ALUAYS

The LEFT RIGHT SHIFT element is a bi-directional, single-bit shifter. When the
SHIFT LEFT control is high, the data in the INPUT REGISTER are shifted one bit
toward the MSB and loaded into the OUTPUT REGISTER. If the OUTPUT REGISTER is
not specified, the data are loaded into the INPUT REGISTER. The LSB of the output
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register is loaded with value of the INPUT equation. The SHIFT RIGHT control
shifts data toward the LSB, with the MSB receiving data from INPUT. The
PRECHARGE equation loads the input register's data into internal nodes, The MSB of

the input register is available to drive the instruction decoder.

(31) Element: STACK
Required Parameters:

Keyword: DEPTH Tuype: INTEGER

Keyuword: TOP Tupe: REGISTER
Keyuword: POP Type: EQUATION
Keyuord: PUSH Type: EQUATION
Optional Parameters:
Keyword: MIDOLE Type: REGISTER Default: [REFRESH:ALLIAYS]
Keyword: BOTTOM Type: REGISTER Default: [REFRESH:ALLIAYS]

Keyword: REFRESH Type: EQUATION Default: ALWAYS

The STACK element implements a stack in the datapath. The stack is consists of a
TOP register followed byb DEPTH-1 MIDDLE registers, followed by a BOTTOM
register. Between adjacent register pairs lie circuitry for transfering data between
the registers. When the PUSH control is TRUE, data is moved away from the TOP
register: The TOP register's data loads the first MIDDLE register, while the first
MIDDLE register's data are loading the second MIDDLE register, etc. When the POP
control is TRUE, data are moved towards the TOP register. The PUSH and POP
controls should not both be high', nor should POP be high while the TOP register is

writing onto a data bus.

Ab5.9: Compound IR Elements

The following cells combine the DAT!_&_TO__CONTROL circuitry with another simple
element function. The DATA TO CONTROL function is useful for implementing
Instruction Registers (IR) because the function of an IR is to turn data values into
control values, In the INCREMENTING‘_}R example, the IR's data can be incremented.
Alternatively, one may think of the incrementer's output driving the instruction
decoder. The operation of each of these units can be found by comparing the
functions of the DATA TO CONTROL element (2) and the simple element which is
fused with the IR. '
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{32) Element: INCREMENTING IR

Required Parameters:

Keyuword: HAP Type: SOURCES
Keyword: REGISTER Type: REGISTER
- Keyuword: LOAD Type: EQUATION

Optional Parameters: .
Keyuord: PRECHARGE Type: EQUATION Default: ALUAYS
Keynord: CARRY_OUT Type: OQUTPUT

xxxxx*x see (2) and (5)

(33) Element: DECREMENTINGR

Required Parameters:

Keyuord: MAP Tgpe: SOURCES
Keyuord: REGISTER Tupé: REGISTER
Keyuord: LDAD Type: EQUATION

Optional Parameters:
Keywuord: PRECHARGE Tupe: EQUATION Default: ALWAYS
Keyuord: CARRY_QUT Type: OUTPUT

**xxxx cee (2) and (6)

(34) Element: SHIFTINGR

Required Parameters:

Keyword: SHIFT_LEFT Type: EQUATION
Keyword: SHIFT RIGHT Type: EQUATION
Keyuord: MAP Type: SOURCES
Optional Parameters:
Keyuword: INPUT Type: EQUATION Default: NEVER
Keyuord: MSB Type: OUTPUT
Keyword: PRECHARGE Tupe: EQUATION Default: ALLAYS
Keyuword: REGISTER Type: REGISTER Default: [REFRESH:ALLIAYS]

*xxxxx goe (2) and (30)

{35) Element: SWAPPINGR

Required Parameters:

Keyuord: ACTIVE Type: REGISTER
Keyword: MAP Type: SOURCES
- Optional Parameters:
Keyuord: BACKUP Type: REGISTER Default: [REFRESH:ALLIAYS]
Keyword: SAVE Type: EQUATION Default: NEVER

Keyword: REFRESH Type: EQUATION Default: ALLIAYS
Keyuword: RESTORE Type: EQUATION Default: NEVER
*xxxxx see (2) and (31), also section A5.11

This element is a depth=1 stack. One of the registers (ACTIVE) is connected to the
IR, the other (BACKUP) is a backup register. SAVE moves the data from ACTIVE to
BACKUP, RESTORE moves the data from BACKUP to ACTIVE, and if both are high,
the two registers swap value.
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(36) Element: INPUT IR |
Required Parameters: —

Keyuword: LOAD . Type: EQUATION Yariable Timing
Keyuord: MAP Tupe: SDURCES

Optional Parameters:
Keyword: MASK Tupe: MASK

Keyword: REGISTER Type: REGISTER Oefault: [REFRESH:ALLIAYS]
¥xxxxx see (2) and (12)

A5.10: Compound Output Port Elements

In the same manner as section A5.9 presented IR compounds with various elements

13

this section lists Output ports (13) fused with other simple elements.

(37) Element: INCREMENTING PORT

Required Parameters:

Keyuord: LOAD Type: EQUATION

Optional Parameters:
Keuword: DRIVE Type: EQUATION Variable Timing .
Keyword: MASK : Type: MASK ' !
Keuword: REGISTER Type: REGISTER . Default: [REFRESH:ALWAYS]

Keyword: PRECHARGE Tupe: EQUATION Defaul t: ALLIAYS
Keyuord: CARRY_OUT Tupe: 0OUTPUT
¥xxxxx see (5) and (13)

{38) Element: DECREMENTING PORT

Required Parameters:

Keyuord: LOAD Type: EQUATION
Optional Parameters:
Keyuord; DRIVE Type: EQUATION Variable Timing
Keyword: MASK Type: MASK
Keuyword: REGISTER Type: REGISTER Default: [REFRESH:ALUAYS]

Keyuord: PRECHARGE Type: EQUATION Default: ALULAYS
Keyword: CARRY_OUT Type: QUTPUT
*xx*xX see (6) and (13)

{39) Element: ADDING PORT

Required Parameters:

Keyword: LOAD Type: EQUATION
Optional Parameters:
Keyword: DRIVE Type: EQUATION Yariable Timing
Keyuord:, MASK Type: MASK ‘
Keyuord: ACCUMULATOR Type: REGISTER Default: [REFRESH:ALLIAYS]
Keyword: OFFSET Type: REGISTER Defaul t: [REFRESH:ALLIAYS]
- Keyuord: PRECHARGE Type: EQUATION Default: ALUAYS
Keyword: CARRY_OUT_BAR Type: DOUTPUT
Keyuord: LATCH Type: EQUATION Default: ALLAYS
Keyuword: CARRY_IN_BAR Type: EQUATION Default: NEVER

¥xxxxx see (7) and (13)
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148) Element: SWAPPING OUTPUT PORT

Required Parameters:

Keyuord: ACTIVE Tupe: REGISTER

Optional Paraneters:
Keyuword: BACKUP Type: REGISTER Default: [REFRESH:ALLIAYS)
Keyuord: SAVE Tupe: EQUATION Default: NEVER

Keyuord: REFRESH Tupe: EQUATION Oefaults ALUAYS
Keyuword: RESTORE Type: EQUATION Default: NEVER
Keyuord: DRIVE Tupe: EQUATION Variable Timing
Keyword: MASK Type: IMASK

*xxxxx* see (31) and (13), also section A5.11

A5.11: Compound Swapping Elements

In the same manner as section A5.9 presented IR compounds with various ele.ments,
this section lists swapping registers fused with other simple elements. Swapping
registers are effectively a depth=1 stack. One of the registers (ACTIVE) is connected
to the simple element with which the swapper is compounded, the other (BACKUP)
is a backup register. SAVE moves the data from ACTIVE to BACKUP, RESTORE moves
. the data from BACKUP to ACTIVE, and if both are high, the two registers swap

value.

(41} Element: SWAPPING REGISTERS

Required Parameters:
Keyuord: LEFT ’ Type: REGISTER
Keyuword: RIGHT Type: REGISTER

Optional Parameters:
Keyword: RIGHT_TO_LEFT Type: EQUATION Default: NEVER
Keytord: REFRESH Type: EQUATION Defaul t: ALHAYS
Keyuword: LEFT_TO_RIGHT Tupe: EQUATION Default: NEVER

This element is just a pair of swapping registers.

42) Element: SWAPPING INPUT PORT

Required Parameters:

Keyword: LOAD Type: EQUATION Variable Timing
Keyword: ACTIVE Type: REGISTER

Optional Parameters:
Keyword: MASK Type: MASK

Keyuword: RESTORE Type: EQUATION Default: NEVER

Keyuword: REFRESH Type: EQUATION Default: ALWAYS

Keyuword: SAVE Type: EQUATION Default: NEVER

Keyword: BACKUP Type: REGISTER Default: [REFRESH:ALUAYS]
XX KX KX see (lz) .
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(48) Element: SWAPPING OUTPUT PORT

Required Parameters:

Keyword: ACTIVE Type: REGISTER

Optional Parameters:
Keyword: BACKUP Type: REGISTER Default: [REFRESH:ALWAYS]
Keyword: SAVE Type: EQUATION Defaul t: NEVER

Keyuord: REFRESH Tupe: EQUATION Default: ALWAYS
Keyword: RESTORE Type: EQUATION Oefault: NEVER
Keyword: DRIVE . Type: EQUATION Yariable Timing
Keyword: MASK Type: MASK

EXKEKKX see (13)

(43) Element: SWAPPING INCREMENTER

Required Parameters:
"~ Keyword: LOAD Tupe: EQUATION
Keyuword: ACTIVE Type: REGISTER
Optional Parameters:
Keywuord: PRECHARGE Tupe: EQUATION Default: ALWAYS
Keyuord: CARRY_QOUT Type: OUTPUT

Keyword: RESTORE Type: EQUATION Default: NEVER
Keyuword: REFRESH Tupe: EQUATION Default: ALLIAYS
Keyword: SAVE Tupe: EQUATION Defaul t: NEVER
Keyword: BACKUP Tupe: REGISTER Default: [REFRESH:ALWAYS]

L2 3 2 see (5)

(44) Element: SWAPPIN®ECREMENTER
Required Parameters: "
Keyword: LOAD Tuype: EQUATION
Keuword: ACTIVE Type: REGISTER
Optional Parameters:
Keyword: PRECHARGE Type: EQUATION Default: ALLIAYS
Keyword: CARRY_OUT Type: OUTPUT

Keyword: RESTORE Tupe: EQUATION Defaul t: NEVER
Keyuord: REFRESH Tupe: EQUATION Defaul t: ALLIAYS
Keyuord: SAVE Type: EQUATION Default: NEVER
Keyword: BACKUP Tupe: REGISTER Default: [REFRESH:ALWAYSI]

XWX KX see (6)

(35) Element: SWAPPINGR

"Required Parameters:
Keyword: ACTIVE Type: REGISTER

Keyword: MAP ‘Type: SOURCES

Optional Parameters: :
Keyuword: BACKUP Type: REGISTER Default: [REFRESH:ALWAYS]
Keyuord: SAVE Type: EQUATION Default: NEVER

Keyuord: REFRESH Type: EQUATION Defaul t: ALWAYS
Keyword: RESTORE Type: EQUATION Default: NEVER
XXXKXX soe (2)

Ab5.12: Compound CAM Elements

In the same manner as section A5.9 presented IR compounds with various elements

" this section lists CAM registers (28) fused with other simple elements,

]



{45) Element: ADDER WITH VALUE CHECK |

Required Parameters:
Keyword: VALUE
Keyword: RESULT
Keyuord: INPUT_B
‘Keyuord: INPUT_A
Keyword: LOAD

Optional Parameters:
Keuword: OUTPUT
Keyword: PRECHARGE
Keyuord: CARRY_OUT_BAR
Keyword: LATCH
Keyuord: CARRY_IN_BAR

*xxxxx see (28) and (7)
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Type: MASK
Type: OUTPUT
Type: REGISTER
Type: REGISTER
Type: EQUATIOCN

Type: REGISTER
Type: EQUATION
Type: OUTPUT

Type: EQUATION
Type: EQUATION

Default: [REFRESH:ALUAYS]
Defaul t: ALWAYS

Default: ALUAYS
Defaul t: NEVER

(46) Element: SUBTRACTERVVITH VALUE CHECK

Regquired Parameters:

Keyuword: VALUE
" Keyuord: RESULT

Keyuord: INPUT_B
Keyuord: INPUT_A
Keyword: LOAD

Optional Parameters:
Keyword: OUTPUT
Keuwmord: PRECHARGE
Keyuword: CARRY_DUT_BAR
Keyuword: LATCH
Keyuord: CARRY_IN_BAR

xxxxxx see (28) and (8)

Type: MASK
Type: OUTPUT
Tupe: REGISTER
Type: REGISTER
Type: EQUATION

Type: REGISTER
Type: EQUATION
Type: BUTPUT

Tupe: EQUATION
Type: EQUATION

Default: [REFRESH:ALLIAYS]
Defaul t: ALLIAYS

Defaul t: ALLIAYS
Default: NEVER

(47) Element: INCREMENTEFWITH VALUE CHECK

Required Parameters:
Keyword: VALUE
Keyuord: RESULT
Keyword: REGISTER
Keyword: LDAD

Optional Parameters:
Keyuord: PRECHARGE .
Keyuord: CARRY_OUT

*xxxxx see (28) and (5)

Type:
Tupe:
Type:
Type:

Type:
~Type:

MASK
OuUTPUT
REGISTER
EQUATION

DUTPUT

EQUATION Default: ALLIAYS

48) Element: DECREMENTEFRWITH VALUE & CHECK

Required Parameters:
© Keyword: VALUE
Keyword: RESULT
Keyword: REGISTER
Keyuord: LDAD
Optional Parameters:
Keyword: PRECHARGE
Keyuord: CARRY_OUT
*xxx*x soe (28) and (6)

Tuype:
Type:
Type:
Type:

Type:
Type:

MASK
QuTPUT
REGISTER
EQUATION

ouUTPUT

EQUATION Default: ALLAYS
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(49) Element: ACCUMULATOR WITH VALUE CHECK

Required Parameters:

Keyuord: VALUE. Type: MASK
Keyword: RESULT Type: OUTPUT
Keyuorcd: INPUT Type: REGISTER
Keyword: LOAD Type: EQUATION
Opticonal Parameters: '
Keyuword: ACCUMULATOR Tupe: REGISTER Defaul t: [REFRESH:ALLIAYS]
Keyword: PRECHARGE Type: EQUATION Default: ALLIAYS
Keyuord: -CARRY_OUT_BAR Type: QUTPUT
Keyword: LATCH Type: EQUATION Defaul t: ALLIAYS
Keyword: CARRY_IN_BAR Type: EQUATION Default: NEVER

xxxxxx caa (28) and (7)

(58) Element: SHIFTERWITH VALUE CHECK
Required Parameters: - —

Keyword: SHIFT_LEFT Type: EQUATION
Keyword: SHIFT_RIGHT Type: EQUATION
Keyword: VALUE Type: MASK
Keyword: RESULT Tupe: OUTPUT
Optional Parameters:
Keywords INPUT Type: EQUATION Default: NEVER
Keyword: ISB Type: QUTPUT
Keywmord: PRECHARGE Type: EQUATION = Default: ALLIAYS
Keyuord: REGISTER Type: REGISTER Default: [REFRESH:ALLIAYS]

*xXXxX cspa (28) and (30)

A5.13: Random Compound Elements

The remaining two elements are SHIFTING ACCUMULATOR and INCREMENTEFL_
_DECREMENTER. The SHIFTING ACCUMULATOR is a two register adder (7) with a
.left-right shifter (30) on the input/output register. The INCREMENTER
_DECREMENTER is a Dback-to-back two-register INCREMENTER (5) and

DECREMENTER (6). When the LOAD DEC line is high, the incrementer input

register is loaded with one less than the value in the decrementer input register.

When the LOAD INC line is high, the decrementer input register is loaded with one

more than the value in the incrementer input register,
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(51) Element: SHIFTING ACCUMULATOR

Required Parameters:
Keyuord: SHIFT_LEFT
Keyword: SHIFT_RIGHT.
Keyword: - ACCUMULATOR
Keyword: LOAD

Optional Parameters:
Keyuord: INPUT
Keyword: MNSB
Keyuord: PRECHARGE_2
Keyuord: INPUT
Keyword: PRECHARGE_1
Keyword: CARRY_OUT_BAR
Keyword: LATCH
Keyword: CARRY_IN_BAR

(62) Element: INCREMENTER DECREMENTER

Required Parameters:
Keyword: LOAD_DEC
Keyword: INC_INPUT
Keyuord: DEC_INPUT
Keyword: LOAD_INC

Optional Parameters:
Keyword: PRECHARGE_DEC
Keyword: CARRY_QOUT_DEC
Keyuword: PRECHARGE_INC
Keyuord: CARRY_QUT_INC

AbB.14: Summary

Tupe:
Type:
Type:
Type:

Tupe:
Type:
Type:
Types
Tupe:
Type:
Type:
Type:

Tupe:
Type:
Type:
Type:

Type:
Type:
Type:
Tupe:

EQUATION
EQUATION
REGISTER
EQUATION

EQUATION
QUTPUT
EQUATION
REGISTER
EQUATION
OUTPUT

- EQUATION

EQUATION

EQUATION
REGISTER
REGISTER
EQUATION

EQUATION
OUTPUT

EQUATION

QuUTPUT

Defaul t:
Defaul t:
Defaul t:
Defaul t:

Default:
Default:

Defaul t:

Defaul t:

NEVER

ALLIAYS

[REFRESH: ALUAYS]
ALLIAYS

ALLAYS
NEVER

ALLAYS
ALLIAYS

The following list shows the Bristle Blocks element in alphabetical order.
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- A7)

(45)
(33)
(9}
(18)
{11)
(21)
(27)
{28)
(3)
{4)
2y
(6)
(48)

(33} -

(38)
(23)
(5)

{52)
(47)
(32)
(37}

(361 -

(12)
(14)
(39)
(15)
(20)
{13)
(25)
(26)
(24)

- (22)

(23)
(1)

(17}
(18)
(58)
{51)
(34)
(13)
(31)
(8)

(46)
{44)
(43)
(42)
(35)
(48)
{41)
(18)
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AIXZUB&UIJYTOP(VVITT{\LALIHZCE{ECPC
ADDER

ADDER WITH VALUE CHECK
ADDING PORT

ALU

ALU WITH FLAGS

ALU WITH FULL FLAGS

BARREL SHIFTER

"BUS CAM

CAM
CONTROL TO DATA
CONTROL TO DATA AND BACK

‘DATA TO CONTROL ™

DECREMENTER

DECREMENTER WITH VALUE CHECK:
DECREMENTING IR
DECREMENTING PORT
FUNCTION BLOCK
INCREMENTER

INCREMENTER DECREMENTER
INCREMENTER WITH VALUE CHECK
INCREMENTING IR ~—
INCREMENTING PORT

INPUT IR

INPUT PORT

I0 PORT

LEFT RIGHT SHIFT

LOWER ROM

MASKED SHIFTER

QUTPUT PORT

PRECHARGE AND BREAK LOWER
PRECHARGE AND BREAK UPPER
PRECHARGE BOTH
PRECHARGE LOWER
PRECHARGE UPPER

REGISTER

ROM

ROM PAIR

SHIFTER WITH VALUE CHECK
SHIFTING ACCUMULATOR
SHIFTING IR

SIMPLE SHIFTER

STACK

SUBTRACTER

SUBTRACTER WITH VALUE CHECK

' SWAPPING DECREMENTER

SWAPPING INCREMENTER
SWAPPING INPUT PORT
SWAPPINGIR
SWAPPING OUTPUT PORT
SWAPPING REGISTERS
UPPER ROM
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