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Abstract 

Modern integrated circuits are among the most complex systems designed by man. 

Although we have seen a rapid increase in fabrication technology, traditional 

design methodologies have not evolved at a rate commensurate with the increasing 

design complexity potential. These circuit design methodologies fail when applied 

to Very Large Scale Integrated (VLSI) circuit design. This thesis proposes a ne-w 

design methodology which manages the complexity VLSI design, allowing 

economical generation of correctly functioning circuits. 

Cost is one measurement of a design methodology's value. A good design 

methodology rapidly and efficiently translates ~igh level system specifications in.to 

v11orking parts. Traditional techniques partition the translation process into many 

steps; each design tool is focused upon one of these design steps. This partitioning 

precludes the consideration of global constraints, and introduces a literal explosion 

of data being transfered between design steps. The design process becomes 

error-prone and time consuming. 

The technique of silicon compilation presented in this thesis automatically 

translates from high level specifications into correct geometric descriptions. In this 

approach, the designer interacts at a high level of abstraction, and need not be 

concerned with lower levels of detail, facilitating exploration of alternate system 

architectures. Furthermore, since the implementation is algorithmically generated, 

chip descriptions can be made correct by construction. Finally, the user is given 

technology independence, because the high level specification need not require 

. knowledge of fabrication details. This flexibility allows the user to take advantage 

of technology advances. 

This thesis explores various aspects of silicon compilation, and presents a prototype 

compiler, Bristle Blocks. The methodology is demonstrated through the design of 

several chips. The practicality of the methodology results from the concern for 

efficiency of the design process and of the chip d,esigns produced by the system. 
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Introduction 

/'\. circuit qualifies as a VLSI circuit when a single designer, using manual design 

methods, requires more than one lifetime to complete the design. 

Using the above criterion, we are currently at the threshold of VLSI: chips are 

beginning to take more than a person's lifetime to design. Furthermore, industry 

experts project that things will get much worse [ 18]. As fabrication technology 

advances and the density of circuitry increases, so will the functionality of the 

chips. As the functionality increases, the complexity of the design will incn~a,r;e 

Pxponentially due to the interactions among the circuit elements, and therefore the 

design time \Vill also increase exponentially. If we are going to FJXploit these 

density increases, we will have to change the way in which \A.Te design cii-cuits. 

Not loo many years ago, software design engineers (programmers) were faced with 

a very similar problem. The computer technology was advancing and giving the 

programmers ever increasing memory space. Exploiting this tremendous increase jn 

mt:1chine capability, program complexity grew rapidly, resulting in exponential 

increases in design and implementation time, due to interaction between pir:!ces of 

the program. One very successful tool that developed was the higher-levP1 

language and compiler. 

Soft\vare compilers allow programmers to specify their designs more by intent, on a 

semantic level, rather than on an implementation level, freeing programme1·s from 

the concerns of many nitty-gritty implementation details. Programmers also en.joy 

the ability to rapidly modify their programs. The compiler handles the tedious and 

E'rror-prone task of translating the high-level semantic definition of the program to 

its low-level implementation. 

If the techniques and concepts used in creating software compilers were used in 

creating hard ware compilers, or silicon compilers, the VLSI designer would be fri:~ed 

from the complexity of low-level implementation details and could spend more 

time on interesting tasks like product definition and algorithm research. 
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Sirnilari ties between Software Compilers and Silicon Compilers 

Both soft\vare compilers and silicon compilers have the same basic t;o<1l: hiding 

implementation details from the user, allowing the user to work at an algorithmic 

or behavioral level. vVhen writing a program in a high-level language, the usr~r 

does not want to know exact physical addresses where his code is being plac1C:rl, nor 

noPs he care how the compilr:!r allocates registers, nor even what the instruction .c;pt 

is on the target machine. Were he to be bogged down with this incredible volurnP 

of implementation details, software costs would be many times higher than thc·y 

are today. In exactly the same way, a user designing with a silicon compHcr 

language does not need to know the exact physical locations where the compiler is 

pli1cing his circuitry, the mask layers that the compiler uses, or even the desi.i:.~n 

rules required by the fab line. 

Compilers maintain datatype consistency. Most of the modern software languat;1:~s 

require data to be typed: the user must specify what kind of data is stored in the 

program variables. The compiler can then check to make sure that the variables are 

used correctly. If the user attempts to store an INTEGER value into a REAL variable, 

the compiler can either notify the user of an improper assignment, or convert thr" 

INTEGER data into the REAL format before completing the assiJ'~nment. Jn lil"e 

manner, silicon compilers can verify the usage of cells and their interconnections. 

If the output of one cell, vvhich is valid during one clock phase, is connected to a 

second cell which samples that signal during a different clock phase, ·the compiler 

can either notify the user of the timing error or take corrective action on its own. 

The outputs of compilers are correct by construction: no one takes every output of a 

FOHTHAN compiler and runs a design rule checking program on it to verify that tlH-, 

assembly code correctly implements the source specification. Similarly, the output 

of a -ivorking silicon compiler is guaranteed correct. The resulting designs do not 

have to be run through DRC programs to verify the correct design of the chip. This 

is very importclnt as we approach VLSI, where the time and cost to perform a full 

DRC are astronomical. 

Compilers allow for continuous modification of the design. Wh.en thP 

specifications for a software program are changed, the program is m.odified to 

reflect the change. Rarely is the entire program scrapped and written ane\.v, as 
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might be the case if the program were written in machine code. It is quite natural 

in the soft\vare world for programs to go through many revisi.ons as new-. 

d iscovcrics arc made. In hard ware design, machine specifications are in a constant 

st.Jti:' of flux, but radical changes to the design are unaffordable if large portions of 

the design must be redone, as is usually the case if the desi.i:;n consists of geometric 

primitiv8s. Compilers make changes affordable, giving the designer freedom to 

explore many.design strategies. 

Compilers \Vork with templates. Software compilers use templates for each of the 

b<Jsic language constructs. For instance, the IF-THEN-ELSE statement 

IF <expression> THEN <statementl> ELSE <statement2> FI 

alw-ilys compiles into the machine code 

labell: 
l .:ibe 12: 

evaluate <expression> 
£:\RANCH IF FALSE labell 
<statementl> 
GOTO label2 
<statement2> 

In a similar manner. silicon compilers have templates, called 'floorplans', for the 

constructs in the language. These floorplans explicitly state the -wh·j ng 

mana,~~ement for the chip and describe how the pieces of the chip connect together. 

Differences between Software Compilation and Silicon Compilation 

The first major difference bet\veen the tasks of software compilers and silicon 

compilers concerns the dimensionality of the result. Software compilers generate a 

one-dimensional result. The location, or address, of any resulting machine -word is 

a single number. Silicon compilers generate a two-dimensional result. The location 

of any resulting primitive device is given as both an X and a Y coordinate. 

To be completely general, silicon compilers would have to do box-packing -which, 

for large designs, becomes impractical. To avoid this problem, silicon compilers 

make use of the hierarchy of the specification, equating the physical hierarchy 

·with the logical hierarchy as specified by the user and directed by the floorplan of 
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the compiler. 

The second ma.jar difference between software compilation and silicon compilation 

concPrlls the communication between various pieces in the design. In software, the 

GOTO and Cl\.LL instructions provide linkage between the various modules. For <ill 

practical purposes, the communication costs l)etween any two points in m0mory is 

constant, regardless of the rf.!lative positions of the two points. In silicon, wires 

provide the linkage between the modules. The cost to communicate betwer~n t\vo 

points is directly related to the relative positions of the points: the further <Jpart thP 

points are located, the more area and time/power are required to implement thP 

communication. In addition, the wire can not be routed arbitrarily across the chip 

because it must avoid other modules and wires that might be in its path. In fact, a 

communication path may be impossible due to obstacles on the chip. A software 

GOTO has no obstacles; it doesn't have to dodge a certain set of words in memory, 

,1nd it doesn't modify every word that it has to pass over. 

It is interesting that this second problem, the GOTO, can be solved using. the same 

t•:>chnique as the solution to the dinumsionality problem: through the hierarchy. 

Using a hierarchical description of the chip, communication bet\.-veen module::; can 

only occur in well-defined manners between objects on a single level of thr:' 

hierarchy or between two adjacent levels of the hierarchy. The floorplan of the 

compiler can guarantee these t\vo types of communication, and hence the silicon 

compiler can compile any chip which can be specified in the compiler's language. 

Design of a Silicon Compiler 

This thesis explores some of the possibilities available using the silicon. compilation 

concept. The first section reviews various design techniques and weighs the 

potentials of design tools. Some of the newer concepts are dicussed in detail, with 

practical examples to illustrate the techniques. The second section documents a 

working silicon compiler and rlicusses the df!Sign tradeoffs and experience learnE!d 

using the compiler. The work presented in this thesis was performed by the author 

except where explicitly stated otherwise. 
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Part One 

Design Methodologies 
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Chapter 1: The Design Tool Space 

The first integrated circuit masks were designed completely 'by hand'. All of thr~ 

g0ometric features were drawn directly on the film used to expose the working 

plates. The designer was completely free to lay out any circuit desired, but evi=•ry 

single shape had to be drawn on the film. As digitally controlled film plotters were 

1leveloped, the design style incorporated computers to drive the plotters. The masks 

V·.lere st.ill designed on myl<tr, but then the designs were 'digitized': the geomE1 tric 

;,h.ipes were describe<! to the computer. The computer then drove the film plotter to 

lll<Jke the actual mosks [2]. 

Once the computer-film plotter team was introduced, it was noticed that the final 

goal of the layout designer was not necessarily to generate the actual masks, but to 

build the d<Jta description in the computer's memory. Methods were dfJVelop•:!d to 

Pll lt=~r thA geometric sh,1pes directly into thf~ computer, rathf~r than working on 

myl.:ir then digitizing the result. Interactive graphics systems allowed the user to 

dC'si.,c;n the circuits directly on a CRT screen and get instant visual feedback of the 

computer's perception of the design [1][7][8][33]. 

The design task using interactive graphics 1Nas still formidable. The us•~r had to 

v0ri fy that every geometric .shape met all of the process desien rules. The 

fabrication processes ~vere in a constant state of flux, so the design rnl(~s frequently 

ch.:rnged. Due to the lonf:~ design cycle for large chips, these chips could not use the 

slate-of-the-art technolo/;y. Work then proceeded to divorce the design rule;; from 

the dPsign. If the design could be specified independent of the design rules, and if a 

program. could then convert this technology-independent layout description into 

the actual artwork, chips could make use of the most advanced technology, and as 

the technology advanced, the new· masks could be generated from the old ck~signs. 

This dC'cdgn technique was called the 'sticks' approach [21][24](27](28](32][34]. 

These design methodologies are fundamentally 'Geometric' techniques. The basic 

atoms of the design are graphical objects, and an object in the design, like a rr~gister, 

is a collection of graphical objects. As these graphics techniques were being 

developed, a totally different app1·oach using 'Procedural' cell design techn iqUf!S 

-vvas being expl01·E1d. In the procedural methodology, the cells are described as a 

program which, ivhen executed, would generate the description of the layout 
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directly in the computer memory. 

The first step towards procedural cell design was to develop 1anguagi:~s for 

describing art\vork. As these special purpose languages were used, it was notk~,d 

that there ·was a need for higher level programming constructs, which led to the 

development of an 'Imbedded Language'. Rather than design a special purpose 

langu<1ge from scratch, routines for generating the geometric shapes were written 

in a lligh level programming language. The designer in using an imbedded languar~e 

h,1s the fnll power of the high level language to describe the layout [ 4][ 19][ 31 ]. 

vVllen chips are designed using the procedural approach, a large collection of 

subroutines are written to implement each of the low-level units of the design. To 

complete the design task, these pieces must b~ glued together. The tedious and 

Prror-prone wiring task can be done by a program. An imbr~dded language syst<:'m 

'"'i.th au tom a tic wiring generators and cell management systems becomes a 'Chip 

Assern b ler'. In the chip assembler, the designer is interconnecting a series of 

macro-modules. The user designs the low level layouts, while the program 

l~enerates the wiring that puts together the chip [6][29]. 

Extending this approach one step further, the high-level features of a chip class c011 

be hardv\tired into the design system. To design a particular chip in this class of 

chips, the user need only specify the uniq:ue features of the chip, allovving tlrn 

program to automatically generate the remainder of the chip. These systems are 

ciJlled 'Silicon Compilers', reminiscent of software compilers used to write programs 

[5][12][13]. 

VVe have mentioned six bosic design approaches here. Each of these systems Jw::; 

ddvantages for certain design requirements and disadvantages for othr~rs. We wil.1 

discuss some of the design requirements here to put a perspective upon the design 

style used throughout this thesis. 

1.1: Flexibility 

One comparison of the design tools that can be made is that of flexibility: Hovv 

flexible are the design tools? Perhaps the first type of flexibility that comes to. 
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mind has to do with the architectures of chips. Can we design any type of chip 

·with a particular design tool, or docs the tool restrict the kinds of designable chips. 

The most n:!strictive design tool presented here is the Silicon Compiler. The Silicon 

f:ompiler accepts a formal, high-level language specification of the chip to lie 

implmnented. Hence, the kinds of chips compilable with a particular compiler art:J 

limited to those expressible in the language. If you can express the chip in thP. 

input language, you can compile the chip. Chip Assemblers are more flexible than 

compilers. With an assembler, the use·r fuses collections of macro-modules to form 

thE" chip. The number and complexity of the macro-modules, alcing with the 

communict1tion costs, are the primary limiting factors on chip architecture. Still 

more floorplan-flexible are the Sticks and Interactive Graphics systems. Th8se only 

limit the geometric primitives available in the design, and restrict thi:J C(~Jl 

boundries to be rectangles. Finally, hand design and imbedded language system.s 

allow the most flexible design system. It is possible to design any designable chip 

tvith these two system. 

Th~~ above discussion talked about the absolute limits of each of the desjgn system. 

Un the other hand, there are practical limitations to each of the tools. Perhaps t.he 

biggest limitations are design time and the notorious complexity issues. While it ]s 

theor8tically possible to design any chip with the hand design methodology, thr~ 

implc•mentation time may be astronomical. Similarly, the design complexity may be 

so l;irge that it is virtually impossible to design a provably correct chip in a 

reasonable time. Systems like silicon compilers, however, may rie able to design 

these chips in a very short time. 

Another flexibility measure has to do with technology dependence. The silicon 

technology is always advancing. Are the tools able to take advantange of 

tPchnology advancements? It is here that the Sticks design systems really shine. 

Since the system performs all of the design rule dependent operations, the user 

designs 'technology free' designs. This does not mean that the user is not aw-are of 

the CMOS/NMOS differences, but the user does not need to see differencr~s in 

various NMOS processes. Each of the other design systems require work to modify 

an existing design to make use of new technology. For silicon compilers and chip 

cissem blers, the cell libraries have to be redesigned for the new design rules. For the 

other systems, the entire chip must be redesigned when the technology is modified. 
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A third flexibility might be calli:~d specification flexibility. When the 
c:;pccifications for the .chip ch<inge, how much work is it to redesign the chip? 
During the desit;n of virtually every chip, ways are found to make thr:! chip better. 
Another design team may change the environment of the chip, or the chip rlesi,i:;ners 
may rliscover a hidden cost during the implementation of the chip. In any case., it 
may he very desirable to 'start all over' and re-implement the chip. In many cas•'.!s, a 
redesign of the chip may require starting from scratch, and this cost of scrapping 
the whole design may be prohibitive. If the company has invested several 
man-years in the design, the design modifications are not economically feasiblP. 
\Vith a silicon compiler, howr.>ver, a comp~my invests man-days, not man-years, into 
a rlesit:~n. vVith this small in vestment in to the design, redesigns a re virtually f re>!. 
The designer may quickly and easily explore many design tradeoffs, which are 
impossible with the other design techniques. 

1.2: Specification 

Part of the process of riesigning a chip may be thought of as specification 
translations. The design team is given an input specification of a chip, usually a 
functional specifict1tion, and must produce an output specification of the chip. Thi::; 
output chip specification may be a large drawing of the chip, as in hand r:losign, or 
the specification may be a data structure in a computer's memory, as in graphics and 
sticks systems, or the specification may be a program in a high-level langua,go, as in 
th0 compiler, assf:~mbler, and imbedded language systems. The fundamental ta:>k of 
the design team is to translt1te a specification in the input language to a 
specification in the output language. This translation process may be accomplishod 
in one step, or in many steps with different design groups performing each step in 
the translation. 

One 'vould like to match the output language as closely as possible to thr~ langu;;1,;:;e 
used by the design team. If the design team is working with logic equations, 0110 

'vould like the output language to be logic equations; if the design team workr:!d 
vvi th Hegister Transfer (RT) equations, the optimal output language would be an HT 
language. This language match is desirable for two reasons. First, the design 
specification would be intuitive, so that the designers can easily express their 
intent in the language. An expression in the language could be easily understood by 
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thP. dPsigners. Second, the designers can directly produce the output specification as 

the chip is being designed. 

If the design language is intuitive, a great majority of the design errors c.-m br:• 

<1Voided. If the specification is non-intuitive, it is difficult for the designers to 

catch design errors in the chip specification. Of the six design tools mentions, the 

irnbcddcd langu<ige systems are perhaps the least intuitive. The user wishes to 

implement a function. Short of that, the user wishes to describe the picture of a 

circuit to implement the function. In imbeddcd language systems, the usrff writes a 

pro~~ram to generate a picture to implement the function. Things are better with 

lhe hand design, graphics, and sticks tools. With these tools, the USFJr directly 

gf~nerates the picture to implement the function. The most intuitive systems, 

ho'\vevPr, <1re the assemblers and compilers. Here, the user describes the function, 

which is the desired quantity. 

\Nhen the designers are directly designing in the output language, the chip 

.sp1~cification is complete when the designers have finished implemi:mting the 

function. If the designers' specification has to go through translations or 

re-specifications, there is a gnJater probability of errors. Therefore, the output 

langu,1ge should closely match the design language used by the design~!rs. 

The specification language can enforce design correctness. With a sui tahli=> 

spPcification language, it is impossible to generate most design errors because the 

lan,guage does not allow for the specification of errors. For example, the Sticl'..s 

dpsi,t~n ;,,ystem does not allow the user to design circuits with dimensional desi[~H 

rnle violations because the Sticks language does not permit the sped fication of 

dimensional information (except transistor sizes). Since the user can not specify 

the spacing between t"\vo metal features, it is impossible for the user to desi~-i;n 

circuits ·with metal-to-metal spacing violations. Similarly, ·with assemblers and 

compilers. it may he impossible for the user to generate chips with timing errors or 

logical interconnection errors simply because the input languages do not permit 

specification of these errors. 
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1.3: Corn.position 

The design of the lo\-V level cells, which comprise 80% of the chip area, typically 
takP.s lPss than 10% of the design time, with the rest of the design time consumr:~ri 
hy the interconnection of these low level cells. Most of the design errors occur in 
these interconnections, also. Low level cells are small, self-contained units that the 
designers can completely understand while the cell is being designed, while the 
interconnection cells are large, global units which are impossible to fully 
understand. A good design system should aid in the composition of cells. 

There are t"-vo sides to composition systems. On one hand, the system should aid in 
the generation of interconnect geometry where needed. If the design tool can 
automatically generate the interconnection geometry, a great deal of the 
interconnection design time can be performed by the machine. Secondly, the 
system should verify that the interconnection was correct. The verifications n1ay 
assure that electrical and timing constrai.nts are met. At a higher level, the 
composition system may verify that the logical contraints are met, and that signals 
are used correctly. 

Currently, very few of the design tools have the conception of cell composition. 
The chip assembler and silicon compiler have squarely faced the issue of chip 
r.omposition and interconnection verification. In the other systems, it is difficult to 
see how a composition system can be added. 

Closely related to the composition aspect of the chip design system is thr=2 
hierarchical philosophy of the system., The hierarchy of virtually all design tools i.s 
recursive. You are either dealing with a composition cell or with a leaf cell. All 
composition cells look and act the same. This means that the same design tool can be 

.) 11.scd to design every composition cell on the chip. Unfortunately, very few 
hierarchies exhibit a recursive nature. 

In human hierarchies, large companies, for instance, one sees several levels of 
managmnent directing the operation of the companies. Other than the fact that 
people fill each of the positions in a company tree, there is little similarity in each 
of the positions. The tasks of the vice presidents are very different from the tasks 
of the section- managers. The chairman-of-the-board's job relates little to a projPct 
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rnand£er's job. A person well suited to one of these jobs can not in general fill 
another person's job. 

Simil<u-ly, v11e have a hierarchi8s in our dE!Sign systems. At a low level, the u;;i=•r 
may be dealing "tvith polygons. At higher levels, the user is dealing with flip-flop::;, 
registers, ALUs, inicroprocessors, then complete systems. A microprocessor is not 
the same sort of object as a register. One does not design an 68000 the way one 
designs a static D-flip-flop. 

Most existing design tools are recursive systems. At the highest level of design, the 
user is still drawing boxes and polygons. The primitives of the design system are 
still the graphics primitives, rather than being data buses, registers, or 
microprocessors. The silicon compiler is a hierarchical system, but not necessarily a 
recursive system. The system knows the difference between an inverter and an 
f\ T ,U. Any of the other design tools except hand design can make use of 
non-recursive hierarchies, yet none of these systi=Jms currently takes advantagi:J of 
hierarchies of specification primitives. 

1.4: Verification 

J\s VLSI becomes a reality, the verification issue must be squ<Jrely faced. In present 
design systems, verification is done by analysing the graphics primitives which 
comprise the mask sets. All information regarding the structure of the design has 
lieen throtvn atvay. This is like writing a program to analyse the object file 
produced by a FORTRAN compiler to verify that the compiler is operating correctly. 
\Vith VLSI chips, it is impractical to perform verification checks by analysing the 
artwork. 

Instead, we n1ust guarantee correctness by construction. If we generate correct 
layouts, we do not have to verify the artwork. We need only verify our methods 
for constructing the layouts. The task of verifying our construction methods is 
much simpler than verifying artwork. Our construction procedures take a wPll 
defined input language; we need only verify that every legal input produces correct 
output. To verify artwork, we must be prepared to accept any input, including 
tricks-of-the-trade. With the graphics systems and imbedded languages, the input 
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Jan.i:~uage is a direct specification of the artwork, so our verification task is hy 

d1'finition the task of verifying the artwork. Hence, it will become impossible to 

vPrify VLSI designs produced by the current graphics and imbedded language tools. 

The ass0mbler and compiler, hm."7ever, take an input language which is far more 

concise than an artwork specification. Hence, we have a hope of verifying de~-;ign~_; 

prod uccd by these systems. 

Another side _of verification has to do with the capturing of intent. When the 

rlesigner df-~signs a cell, the desiener has an intent about how the cell is to be us•c'd. 

To properly use a cell, the user must know this intent and meet the restrictions of 

the in tent. If the user exceeds the limits of the intent, the cell vv-ill not function 

properly. In design systems which consider a cell to be nothing more than artwork, 

this in tent information must be captured in cell documentation, since it can not bf! 

c;1ptured vv-ith the cell. Users of the cell n1ust check the documentatlon and 

m<1nually verify that the cell is being used properly. The procedural d(c:sign systems 

do not xest1·ict the concept of ri cell to just the artwork. The designer writ.;~::; a 

progxan1 to generate the artwork. The designer can add additional code to the 

program to capture additional intent. This documentation is kept with the cell. In 

addition, the cell itself can verify that it is being used properly. 

1.5: Efficiency 

When one speaks of design efficiency, one usually refers to measures of chip <1rea, 

chip speed, and chip power consumption. Given a chip specification and infinite 

time, one "vould expect hand design and imbedded language systems to produce the 

most optimal chips, follov,red by interactive graphics systems, sticks systems, chip 

assemblers, and finally silicon compilers. These later design systems have area 

penalties due to fixed floorplans and geometric primitives. 

One rarely has infinite time, however, in which to implement a chip. An 

approximation of the ideal chip must be made. For instance, with hand desi~n 

methods, one spends a lot of time planning alternate architectures and 

approximating the design costs for various approaches. Once the range of design 

candidates is narrowed, detailed design can begin. As the dF!tailed design nPars 

completion, many of the design approximations may be found to have been 
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erroneous. Due to the large investment in the design, a redesign of the chip i.s 

seldom feasible. As a result, the final chip may be non-optimal in the ideal ~;Fm;.;•~. 

but may be fairly good from a practical standpoint. 

vVith the more inefficient design systems, chips can be implemented much more 

rapi.dly than with hand design systems (otherwise these other systems would not 

r-xi~;t). Because of this reduced design time, it becomes affordable to iterate the 

design. When these design approximations are found to be in error, the chip may rie 

redesigned. With the possibility of design iterations, dramatic architecture 

variations can be explored. Chips resulting from architecture modifications may 

well have very large performance advantages over the original hand designed chip. 

In highly complex systems, the system organization has a much greater effect upon 

performance than the details of low level cells. Thus, even though the resulting 

chi.p is known to be less optimal than a htind-design of the same architecture, the 

chip is more optimal than the hand designed chip since the hand designed chip 

\.Vould not be implemented in the new architecture. 

1.6: Conclusions 

There arc many design techniques in use today. Each of these systems cater to .::i 

particular desi.!c.;n style. They have various limitations on design capabilities, and 

they have different aides for the designer. As technology advances towards VLSI, 

our design requirements are going to change. We will require fundamentally new 

design principles. Although Silicon Compilers may have undesirable restrictions on 

the types of chips we design, they provide design capabilities that are impossiblo to 

achieve with our present day tools. They have the potential to implement in nn 

hour \.Vhat current design techniques implement in a lifetime, Machine 

architecture tradeoffs can be explored in an almost interactive environment. DE!sit,n 

verification can be performed at a level previously unattainable. For these reasons, 

and others, this thesis explores the realm of the Silicon Compiler. 
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Chapter 2. Hand Design 

The fundamental task of designing a VLSI circuit is to manage the complexity of the 

design. Even modest chips designed today have several million n:Jctang1es anrl 

hundreds of thousands of devices. Unless the management of the design complexity 

is squarely faced when the design process is begun, the implementation of the chip 

may become an impossible task. Fortunately, techniques exist which successfully 

aid in the management of complexity. In this chapter, we will discuss methods for 

man.1ging complexity and chip planning. 

2 .1: Managen1en t of Co1nplexi ty 

We can observe complexity management principles being applied in almost every 

area of life. We can use these same techniques for designing large integrated 

circuits. Three of these techniques will be examined. One technique is the use of 

conventions, a second is partitioning of the design, and a third involves abstraction 

of data. 

Examples of the first complexity tool, conventions, are readily observable in daily 

life. Traffic signals are a successful convention in our modern world. If everyon8 

agrees to abide by the restrictions implied by traffic signals, Cl much more complex 

and inefficient system of maintaining road safety can be avoided. Traffic laws and 

La"\v Enforcement Officers assure us that (almost) everyone agrees to the 

convention. In VLSI design systems, conventions can be made with regard to 

functional partitioning or timing relationships. If the designer faithfully adheres 

to these conventions, he may feel confident that the design will operate correctly. 

If there are circumstances where the designer feels that the conventions should not 

be follov.red, he will have to tol"-e extra steps to verify that the circuit will still 

operate correctly. 

The second design aid is partitioning. Rather than solving a large problem all at 

oncP, the problem can be broken into smaller, separable pieces each of which is 

easier to solve than the original problem. This process may again be repeated for 

each of these new, smaller problems, until we are left with simple problems that 

are straightforward to solve. If we have properly partitioned the problem, each of 
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the solutions can be combined to solve the whole problem. To allow each of th es(?. 
~;···p.ir,1tr> solutions to be used together, we must design and specify an int•:>.rface 
between the pieces. For example, in software programming, a large program. is 
broken into several subroutines. To assure proper operation of the collection of 
subroutines, guidelines concerning register and memory usage, data structure::.:;, 
calling conventions, and parameter types are developed and adhered to. 

The third aid to handling complexity is data abstraction. There are (at least) tvvo 
branches of physics dealing with objects in motion. In Classical Mechanks, 
everything is very deterministic, and we treat objects like air pucks as indivisible, 
uniform objects. If we look very closely at our air pucks and how they interact, we 
find that Classical Mechanics does not precisely describe the observable 
interactions. We use Quantum Mechanics when· we need these precise equations. If 
"\Ve look closer still, we find discrepancies between the physically observable events 
and the calculated Quantum Mechanical events: Quantum Mechanics does not 
completely define how our air pucks work. In both of these cases, we k.now that 
our theories and formulas are wrong, and yet we can still profit by using them. In 
each of these fields, approximations are made. We do not look at each of the 
individual subatomic particles which compose an air puck. Instead, vve abstract 
thi.s incredibly large amount of data into a fairly simple model. Similarly, for VLSI 
design, we do not have to examine every single geometric primitive within a region 
of the chip when designing the neighboring regions. Almost every function 
implemented on a chip, certainly every function of reasonable size, requires two 
areas of silicon: The first is a private area over which this function has exclusive 
rights, and the second is an interface area, ·where external signals connect to the 
function. To use this function, no knowledge of the private area is required. We 
can abstract the function to an interface and a 'black box', and hence have Jr~ss 

information externally required to use the function. By imposing suitable design 
conventions, the interface area can be a small percentage of the total function area, 
which greatly reduces the data requirements. 

These three techniques of complexity management are used in the cell concept of 
VLSf design. A cell's layout is defined to be a rectangular area of silicon with the 
geometric shapes required to implement the cell's function contained completely 
iNithin the rectangular limits and an interface area limited to the perimeter of the 
area. Along this perimeter, there are 'ports' or 'terminals', where external signals 
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may connect to this cell. No external cells or geometric shapes may extend vvithin a 
c1c'll's rectangular limit, the minimum bounding box (MBB) of the cell. 

An important by-product of the cellular design approach concerns data sharing: if .=1 
function is replicated on a chip (or across many chips), the layout whir::h 
implements the function can be shared between the various instances. The function 
is converted to silicon once, and the resulting pattern can be used many times, thus 
factoring the design cost of the chip. This layout sharing is identical to the us•:: of 
suhroutines for code sharing in software programming. 

The internal structure of a cell's layout consi:>ts of combinations of primiUve 
.r~comctric shapes and instances of other cells. This recursive nature of the cell 
definition allows us to hierarchically design chips. Rowson [25] has defined tvJo 
types of cells: Leaf cells and Composition cells. Leaf cells contain only geometric 
primitives, no references to other cells. Composition cells contain only references 
to other cells, no geometric primitives. We will use this Leaf cell definition, Lut 
"tve "tVill allov.r our Composition cells' layouts to contain geometric primitives. 
Adding geometry to composition cells is done for conceptual ease; simple 
transformations convert from one form to the other. 

2.2: Chip Planning: The Floorplan 

The arrangement of subcells within a composition cell can have a dramatic efff~ct 
upon the size and performance of the chip. To aid the user in composing cells, the 
110tion of a 'floorplan' has been developed. A floorplan is the bltwprint whkh 
indicates topologically how the subcells fit together to form the complete cell. The 
floorpl,1n also shows the wiring strategy used in the cell. Floorplans are invaluable 
aids for top-down chip planning. The relative size and placement of the major 
subdivisions of a cell are quickly visuallized. The communication costs for various 
arrangements can also be determined. 

To illustrate the use of floorplaning, we will discuss the planning for the OM2 
datapath chip [ 15][ 16]. A functional block diagram of the datapath chip is shown 
in fi~ure 2-1. At the highest chip level, we needed a chip with three bi-directional 
Input/Output ports. These were to communicate with the datapath of the chip. One 
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of thesE? ports was to be mainly a control port, which brought the instruction word 

into the decoders. The othe1· two ports wm·e data ports, connected to the internal 

data buses. In addition to the datapath, we also required some fl<1g logic, and 

additional control input pads. Our primary data flow was to run horizon tally 

through the chip and the primary control flow was to run vertically. 
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Fig. 2- 1: OM2 Datapath Chip Block Diagram 

Figure 2-Z shows the high level floorplan for the chip. We have the two data ports 

on the '\Vest and east edges of the chip, the clatapath in the center, thr" literal port 

.ind fl.1gs to the north, and the control input pads on the south. Thr" sizes of the 

various boxes ·were estimated, considering the functions of each element, which 

completes the planning of the highest level composition cell layout. 

We can now decompose the subcells within the global floorplan. The datapath 

s~?ction was to be composed of data processing elements and instruction decodrc)rs. 

The d0coders wei·e to take th~ microcontrol bits entering the chip and drive 8ach of 

the processing elements' control lines as a function of the input. Thr;) instruction 

decoder ·was broken into two sections. One section was placed above the processing 

elements, the other was placed below the elements. This was done because the cell 

size estimates showed the processing elements to be much narrower than the full 
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decoder. Buffers were ploced between the decoder and datapath. ThPse buffers 
synchronized the decoder's signals, and satisfied the electrical requirements of 
drivin~ large datapath loads from WC?ak decoder outputs. Figure 2-3 shows the 
floorplan of the datapath section of the chip. 

Decomposing the processing element section, we needed a register array, a barn-'!l 
shifter, and an ALU. To relieve much of the register bottleneck, we had tvvo data 
buses running between the individual elements. Each of the registers in the array 
could read or write to either bus. The shift array read data from the bus and drove 
the ALU multiplexer. The ALU could read data from either of the buses or from the 
shifter. The ALU and shifter were chained together to speed up the multiply and 
divide operations. The ALU's output could drive either bus. The buses also 
connected to the two data ports. Figure 2-4 is the floorplan for the processing 
elements. 
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We can further examine the ALU. The ALU was built of five leaf cells. The first 

spction was the two input registers. The second section was the logic for 

computing carry propagate, carry kill, and carry generate. The third section was 

the actual carry chain. The fourth section computed the ALU output as a function 

of the carry input and the carry propagate signals. The final section was the output 
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registers. Figure 2-5 shows this layout. 
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Fig. Z-5: ALU Logical Floorplan 

At this point, we began designing the leaf cells. For example, we could s•~e that the 

input registers received data from the left side of the cell and drove data out the 

right side of the cell. The two data buses ran through the cell, but were not used by 

the cell. Control lines for the cell ran vertically through the cell. Once the A LU 

Cl'lls vvere drJsigned, we could draw the physical floorplan for the ALU. In fif~11rP 

;?.-G, \Ve have the subcells shown to scale. vVe have also shown the layer for e<Jch 

control and data line. The control lin8s ran in metal, and the data buses were run in 

polysilicon. 

t Metal 

I 
Oat.a Bue l 

-1::=:==:±=::==:=======1!::::========::::!===:=:±=====:=============:::it- Dot.a Bue 2 

Carry Resu 1 t. Out.put. Input. Logio 

Fig. 2-6: ALU Physical Floorplan 

i\s the remaining datapath elmnents were designed, the bit-slice physical floorplan 

took shape (fig. 2-7). The control and data lines in the register array had different 

layer conventions than the other processing elements, as shown in the figure. 

Similarly, the datapath floorplan (fig. 2-8) and finally the entire chip floorpldn 
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(fig. 2-9) were completed in the same manner. The final chip layout is shown in 

figure 2-10. Much of the regularity of the design was due to the use of 

floorplanning. Due to the regularity of the design and the completeness of the 

planning, the chip was designed in nine man-months. 
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Fig. 2-9: Full Chip Physical Floorplan 

2.3: The SliCing Floorplan 

Specific chip architectures have related floorplans which are suitable for those 

particular chip structures. To build general purpose design tools, we would like to 

have general models for cells and floorplans. We can then build the tools to take 

ildvant<lge of the resulting floorplans. 

In top-dm.1\rn design, we take a description of a large unit, and decompose this unit 

into simpler, smaller units. Each of these units can be similarly decomposed. This 

decomposition process continues until all of the descriptions an be easily 
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Fig. 2-10: OM2 Datapath Chip Mask Set 
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implemented. We then work bottom-up, fusing these lower-level implementations 
to form implementations for each of these larger units. When we reach the highest 
chip level, we have an implementation of the chip. We want our general purpose 
floorplan to model the top•down design, bottom-up implementation style of design. 

·Our complexity management strategy uses rectangular cells. Our general-purpose 
floorplan will therefore use rectangular cells. To perform top-down design, we 
need to provide the capability of decomposing cells. To decompose a cell, we will 
divide the given rectangular cell into smaller rectangular regions. To perform 
bottom-up fusions of cells, we need to interconnect each of the subcells to form the 
implementation of the given cell. 

Completely general 'glue' between the cells would allow transistors to be added in 
the interconnections between the cells. Allowing transistors between cells is 
usually an example of local optimization, rather than global optimization, and the 
specification and verification of these 'glue' circuits can introduce many errors into 
the design. Therefore, for our general model, we will restrict all transistors to Ue 
within subcells, and only allow wiring to fuse the subcells together. 

If we allow completely general subdivision of a cell into subcells, we may have no 
preferred order of composition. With preferred composition orders, we can achieve 
more optimal circuit layouts. Without preferred composition orders, we can not 
determine the optimum design for a particular cell until every other cell on the 
chip has been designed. Hence, we can never achieve an optimum design, althout;h 
we can approach optimal designs by iterating the design many times. Figure 2-11 
shows a rectangular arrangement of cells that does not have a preferred order. Not 
only can we not determine a good order for cell generation, but we can not 
determine a good order for routing the wires in the four wiring channels. 

A floorplan that does have a preferred composition order is the Slicing floorplan. A 
slicing floorplan has the following definition. 

A SI icing Cel I is either 
1) A Leaf cell, 
2) Two SI icing eel Is with one to the right of the other, or 3) Two Slicing eel Is with one above the other. 
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Fig. 2-11: Floorplan with 110 Preferred Order 

Figure 2-12 shmvs the three possible types of slicing cells. Due to the recursive 

nature of this definition, we have the capability of designing a rather laTgc-? 

collection of chips. Figure 2-13 illustrates the process of decomposing a chip by 

slicing. 
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Fig. 2-12.: The Three Slicing Cell Floorplans 

ubcel 

ubcel 

Vertical 

For the systE~ms described in this thesis, we will use the Slicing floorplan as the 

floorpl<1n model. While other floorplans can use these same techniques, t:tir:! 

mech<mi.cs of building the tools may be more difficult, and the examples may not he 

as clear as Slicing examples. 
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2.4: Global versus Local Optimization 

In Small Scale Integration (SSI) and Medium Scale Integration (MSI) designs, much 

time was devoted to performing 'Local' optimizations on the circuits. This was 

because the entire circuit was usually considered 'Local'. For LSI, and certainly for 

VLSI, the situation has changed. No longer is the entire chip design considered a 
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'Loc<ll' a~~sign. Where time was previously spent performing local optimizations, 

time must no\".T be spent performing global optimizations. As our designs increas•~ in 

size, we must' depend more upon global design optimization. Local optim i?.ations ciln 

actually hurt the design from a global point of view. 

For example, logic design in discrete or TTL design regimes involves 'lor~ic 

minimization', ·which actually means transistor minimization. Much effort \.Vas 

spent reducing the number of transistors required to implement functions, because 

transistors were the expensive part of the design, the wires were free. In silicon 

design, the majority of the chip area is devoted to wiring. The actual area for the 

transistors is less than 40% of the total chip area for •good' designs. In m.:rny 

instances, the transistors are free; they are placed under the wires. 

Using v.ri.re-v.rrap boards, the designer has completely arbitrary interconnectability: 

.cmy pin of any chip can be connected to any other pin of any other chip, regardless 

of where the chips are positioned on the board and independent of any othPr 

interconnections. In silicon, it is very inexpensive to interconnect shared edges of 

adjacent cells if the connections are well correlated (in approximately the s<1me 

order in each of the cells). Almost any other circumstance, however, costs a gn:•at 

rleal. vVires can not be arbitrarily drawn across the chip because wires can not 

;1rbitrarily cross other wires or cross through cells. Wires consume a great deal of 

the chip area. 

/'\.. final contrast between TTL design and VLSI design is the difference in wire 

loading. In TTL design, the chips are each capable of easily driving fairly long 

wires (from one side of the board to the other). In silicon, however, the i;vires can 

;1drl a large amount of loading to devices, which slows down the operation of the 

circuit. A small gate can not drive a ·wire from one corner of the chip to the other in 

a short period of time. Hence, in VLSI design, circuits which must communicate 

must be fairly close together, adjacent if possible. 

Each of these points argue for global planning. The communication costs for VLSI 

ilre the dominating cost of the design. Global optimization of the communication 

paths can provide greater performance increase than local optimization of each 

circuit on the chip. 
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2.5: Conclusions 

As >Ne move towards VLSI, we can not continue to design chips as we have in the 
p.1:;t, The complexity of design causes the design cost to rise exponentially. Our 
design tools must he designed to cope with the complexity of the design. We have 
seen some techniques 1.vhich aid in the complexity management issues, and we have 
seen some planning tools which will aid in the global optimization of designs. The 
follm . .ving chapters discuss tools which are built upon the techniques presented in 
this chapter. 
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Chapter 3: Imbedded Languages 

When using the cellular design approach, quite often it is the case that a family of 

similar cells is developed. Each cell instance within this family shares most of the 

characteristics common to the family, but has its own personalization vvhich 

d istiguishes it from the others. For example, a group of cells may be designe<i 

where the cells perform the same function but each consumes a different amount of 

power. Another example mi.ght be a collection of similar cells where the aspect 

ratio of the cells varies amoung members. 

Purely graphical systems dictate that each member of the group be completely 

designed, because graphic systrm1s emphasize the differences between cells. For a 

small family· of ceHs, this is not a problem, but for a large collection, perhaps 

containing many independant variables, it is not practical to design the entire 

family. In these cases, users would copy and edit the cell which most closely 

approximates the required cell. 

If constructs for specifying conditional circuitry were added to a graphics language, 

a designer could specify a cell which represents a family of cells, using the 

conditional operators to distinguish between members of the family. To nse those 

conditional constructs, methods would be added to allow parameter passing to thE! 

cells, so that these parameters could participate in the evaluation of the 

conditionals. It would also require the use of expression evaluators, so that the 

parameters could be operated upon as the conditionals were evaluated. Looping 

constxucts would be very handy for generating arrays and vectors of cells. 

By the time these features were added to a graphics system, the system VV"ould no 

longer be a high level graphics system but a low level programming language. 

Rather than add these complexities to a simple graphics system, we might add 

graphics primitives to existing programming languages. Using this new approach, 

cells \.Vould easily .be designed which can be parametrized and which actually 

generate a whole family of cell instances depending upon the parameters passed into 

the cell. 

Another advantage of designing classes of cells has to do with the binding of design 

decisions. In standard graphics designs, virtually all of the design parameters must 
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be bound before the cells are designed. Using the software programming approach, 

the exact parameter values are not needed, but rather a range of acceptable values is 

required. The cells can then be designed to produce correct layouts over thc:-;e 

ranges. When the actual parameter values are known, these cell programs an:~ 

called with the appropriate values and the layout is generated. The design can 

proceed before the details are completely known. 

A third advantage of designing families of cells has to do with the granularity or 

size of cells. With graphics approaches, cells usually contain 10 to 100 primitive 

components, or transistors. This limitation is brought about by limitations on CRT 

terminals and on the ability of the human mind to design large circuits. These 

small cells are assembled to form the chips. Rarely are configurations of these small 

cells stored as a large cell in the library because of the fact that the la1·ge cells are 

exact physical elements which cannot be changed. Inefficiencies in a particn1ar 

instantiation are usually not tolerated, so the large cell is redesigned in each context 

with the minor variations that each context requires. With the software approach, 

these large cells can be parametrized to vary the arrangements of smaller cells and 

remove the inefficiencies in the layout. Thus large cells can be designed and saved 

in libraries and still yield efficient layouts. 

These software languages are referred to as Im bedded Languages. The construction 

for generating graphics primitives are imbedded in a previously existing 

programming language. There are two classes of imbedded languages: translation 

based languages and data structure based languages. The translator imbedderl 

languages output the graphic primitives as they are encountered during the 

execution of the program. Data structure irnbedded languages build up a data 

structure representing the entire chip as the program is executed. Once this data 

structure is built. the graphic primitives are output. The latter approach allows 

programs to modify the design after it is generated, while the former approach 

forbids such_ modification. Im bedded Languages exist in several languages at 

Caltech: ICLIC, written in iCL [ 4]; LAP, written in Simula [ 19]; Clap, written in C; 

others, written in Pascal, Fortran [ 31 ], and Basic. The language presented here is 

ICLIC, which is an example of a data structure irnbedded language. 
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3.1: ICLIC 

ICLIC is a series of functions and datatypes defined within ICL to allow the USF-'r to 
describe integrated circuits. ICLIC was written in ICL by Ron Ayres and Maun~en 
Stone. Integrated circuit descriptions are ultimately geometrical regions, so the 
primitive constructs in ICLIC are representations of simple geometrical shapes. The 
most primitive shape is the BOX, which we will define to be all points on the plane 
•vhose x-coordinates are between the lower and upper x limits of the box 
(inclusive) and whose y-coordinates are between the lower and upper y limits of 
the box. The following ICL code defines the BOX datatype and a function TO which 
aids the user in generating a box: 

TYPE BOX= CLOW,HIGH:POINTJ; 

DEFINE TO(A,B:POINTl=BOX: CLOW: A MIN B . HIGH: A MAX Bl ENDDEFN 

POINT i's a pre-defined ICL datatype which has two real values labeled X and Y. The 
MIN <md MAX functions are defined for POINTs to work coordinate-wise: the M.IN 
of hvo points has an X value which is the minimum of the two point's X values and 
a Y value ·which is the minimum of the two point's Y values. A user may generate a 
box in one of the following two manners: 

VAR [·H, 82=80X; 

01:= TOl3#4,l0#12t 

82:= 3#12 \TO 10#4; 

The t \VO boxes are id en tic al because the point values are sorted. A second primitive 
geometrical region is a polygon. A polygon is defined to be the set of all points in 
the plane which lie 'inside' the line segments which comprise the edges of the 
polygon. vVe can represent the polygon in the computer's memory as a list of points 
which are the verticies of the edge segments. The following code declares the type 
POLYGON: 

TYPE POLYGON= f POINT l; 

Here we have declared that a polygon is an arbitrary list of points. To generate a 
triangle, the following constructions can be used: 
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VAR Pl.P2=POLYGON; 

Pl:= 3#2 10#4 : 8#12 l; 

3#2 10ft.+2 ; .-2#.+8 I; 

Thr:> sL~cond example makes use of the relative-point feature in ICL. The final 

primitive eeometric region used in ICLIC is a WIRE: Formally speaking a WinE is 

I.he set of all points which lie within a fixerl rlistance from any point on a givr~n 

series of line segments. The collection of line segments is called the 'path' of the 

,,vire and the discrimination distance i.s called the 'radius' of the wire. This formal 

definition of a "\Vire requires that circular arcs be present in the boundary of the 

'"'·ire. ICLIC approximates a formal WIRE by 'squaring off' all of the round efiges. A 

WIRE can be defined in ICL by stating: 

TYPE L.llRE= [l.IIOTH:REAL PATH: I POINT J; 

An example of a wire might be 

VAR t.J=l-J I RE; 

1.l:=[~JIOTH:2 PATH: !3tl3;7#.;.tl5;10#8;14ft.l J; 

Figure 3-1 illustrates each of the three primitive regions introduced to this point. 
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We no"\V have representations for the primitive features of our imbedded language. 

We "\.vould like to be able to talk about features in general, not just BOX-featun~s. 

POLYGON-features, and WIRE-features. To do this, we need a new datatype which 
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con be either a BOX, POLYGON, or WIRE. A datatype of this form is called a 'variant' 

in ICL. We declare a datatype RG (for ReGion) which can be any one of the thn~e 

primitives: 

TYPE RG= EITHER 
BOX= 
POLY= 
l~IRE= 

ENOOR; 

BOX 
POLYGON 
~JI RE 

If we have a variable of type RG, we can assign to it a BOX, POLYGON, or WIRE. 

Unfortunately, we can only describe single features with this datatype. Usually IC 

masks contain more than just one geometric primitive. We can extend the 

rlE~finition of an RG to contain the possibility .of many primitives by adding the 

following line to the definition of an RG: 

UNI ON= I RG I 

This now states that an RG may also be an arbitrary list of RGs. In addition to many 

features in an IC design, there are also many 'layers' to an IC sp<Jcification. To 

rliscriminate between layers, the features have a color associated with the region. 

vVe can incorporate this possibility in our definition of RG by adding this line: 

COLOR= lPAINT:RG WITH:SCALARIRED,BLUE,GREEN,BLACK,YELLO~l)J 

Finally, 'tVe may wish to reposition previously declared regions. In almost every 

instance, we are describing features relative to a local origin rather than in absolute 

chip coordinates. Once these sub-pieces are generated, we would like to reposition 

them into the absolute chip coordinates (or to a higher level local coordinate 

system). The primary repositioning operations we would like to perforru are 

translation, rotation, and mirroring. These operations can all be represented as a 

transformation matrix which should be applied to all coordinates of the region to be 

displaced. By adding the matrix displacement case to the RG definition, we can 
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arbitrarily reposition, mirror, rotate, and scale subcells. The following case is added 

to the RG definition: 

DISPLACE= [O!SPLACE:RG BY:MATRIXJ 

and the MATHIX datatype is declared with: 

TYPE MATRIX- CA, B, C, 
0, E, F: REAU; 

We have now completely described the RG datatype definition. With this datatype, 

we can represent the features of integrated circuit masks. 

The datatype definitions presented above are an approximation of the actual ICLIC 

datatype definitions. Appendix 1 lists a more complete description of the datatype 

and functions defined for both generating and examining layouts. The primary 

difference between the definitions presented here and those in the appendix have to 

do \Vith capturing the minimum bounding box (MBB) of the layouts. The MBB of a 

layout is a very useful quantity, and for efficiency, the layout datatype in ICLIC i;~ 

MHG, which stands for Minimum bounding box with ReGion. 

3.2: Parametrized Cells 

To illustrate the design of parametrized cells, let us consider the task of designing a 

shift register cell. The shift register cii·cuit we will implement is sho"Wn in fig~ure 

3-2. This circuit consists of a pair of inverters with a transmission gate connect.int~ 

them and a transmission gate connecting the input to the first inverter. We can 

design the layout of the shift register as shown in figure 3-3. To design this 

layout, we have computed the expected power requirements and aspect ratio of the 

cell. 

As 1.Ve use our shift register cell in various places in several chips, we may find that 

the potver requirements in some cases differ from the power requirements of our 

original cell, so we must design a new cell for these new uses. In other instances, 

we may find that we need to fit the cell into a different aspect ratio. Again, \.Ve 
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Fig. 3-3: Shift Register Layout 

must redesign our cell to fit these new requirements. 

Each time 'tVe must redesign the cells, we increase the chances of errors in the 

design. We also proliferate cell instances in our database, and we must expend the 

P.ffort to document the new cell. 

In our shift register example, it is very easy to mathematically describe our cell 

layout as a function the power requirements. In figure 3-4 we show the layout 

'tVhere some of the coordinates are not fixed, but rather are functions of the power 
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Fig. 3-4: Parametrized Layout 

requirements of the cell. Given this description of the shift register layout, vve can 

now generate a nevv cell every time we compute a new power requirement. In fact, 

vve can write a little program which will generate this new cell for us. 
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DEF I r--JE SH I FT _REG! STER_CELL (PmJER: REAU =f1RG: 
BEGIN VAR ~IIOTH,LENGTH, TOP=REAL; 
DO LENGTH:= 2/POllER 11AX 4; 

lJIOTH: = 32/LENGTH flAX 2; 
TOP: ,,-LENGTH+l5 f1AX 20; 

GIVE I ~llRE!RE0, !0110:.tlTOPl); 

END 
ENDDEFN 

\,j j RE (GREEN. l-3 .1110; L1#. l ) ; 
ll!RE \RED, IG#G; ll+lJIOTHtl. l); 
lHRE(GREEN, 111#0;.lfTOPl); 
l-IIRE <GREEN, 111#10; 13+WOTH#. l l; 
BOXIGREEN,10#3\TO 10+W!DTH#Sl; 
BOXIRE0,8#12\TO 14#12+LENGTHI; 
BOXIYELLOW,8#10\TO 14#14+LENGTHI; 
t,J I RE IBLUE, {0#0; 15+1.J IDTH#. l ) ; 
WIRE !BLUE, !0#TOP; 15+~JIOTH#. l); 
GCB\AT 112#0;.#TOPl; 
GRCBD\AT 51./9; 
GRCBU\AT 12#11 l\AT !Otl0;15+WIOTH#01 

Figure 3-5 shows the results of calling this program with power requirements of 

1 /2 and 1 /8. Rather than call these two specific sets of geometrical primitives 

cells, why not call the program the cell? And we can call these layouts instances of 

the cPll. Each instance of the layout may have a completely different set of 

geometrical primitives, yet they are all instances of the one cell. r 

POWER= 1/8 POWER= 1/2 
Fig. 3-5: Two Cell Instances 

vVe can design this cell program before we know the actual pow-er requirements of 

the cell. In our original approach, vve had to compute the power requirements 

before we could begin the layout design. With this programmatical approach, we 

can estimate reasonable ranges we are willing to accept as power requirements, and 

design our cell before.we know all of the implementation details. 
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Let's continue to parametrize our shift register cell. We could have designed our 

cell 'l.Vith many different aspect ratios. Depending upon how and where this shift 

n~gistE!l' is 11sed, the optimal aspect ratio for the cell changes. Figure 3-6 shows 6 

different aspect ratios for the shift register cell. The first aspect ratio is 

approximately square, and takes the least area. In some cases, hovvever, the 

horizontal space is more costly than the vertical space, so we might wish to use a 

ririrrower cell, even though the cell takes more vertical area, as in the second type 

nr l.1yout. The third and forth layouts were designed so that vertical space isat an 

ah.solute minimum, while the fifth and sixth layouts use an absolute minimum 

amount of horizo.ntal space. Each of these layouts are parametrized with re.<;pect to 

the pov.rer requirements. We can now write a cell program which is parametrized 

in terms of both power requirements and aspect ratio. When we call the shift 

rPt;ister cell, the program chooses the layout. which most closely matches our 

<if:;si ri::id aspect ratio, and generates the corresponding layout. 

Fig. 3-6: Six Shift Register Layouts 

Rarely are single shift register bits used. In most cases, a vvhole string of bits are 

required. In standard approaches, one does not think of a shift register row as a 

single primitive cell, rather a single bit is the primitive cell, and the user must 

interconnect each of the cells into a rov..r for each shift register row needed. This is 

done because there is much variability in the requirements of the shift row (such 

as po•ver, aspect ratio, number of bits). Because of this variability, fixed cells are 

usually not helpful. Since we are designing programmable cells, we can program 
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this arlditional variability into the cell. 

For instance, the user might wish to state how many bits are to be in the shift 

register, so the program could generate the whole row. The user may also wish to 

have more than one shift reei.ster. Some area can be saved by placing two identical 

shift registers side-by-side. \Nhen long shift register chains are used, the chip area 

is long and thin. By folding the long shift registers, the chip area becomes more 

square, usually a desii;able option. So let's di=!sign our shift register cell to take th•~~~e 

parameters: number of bits wide, number of bits long, power per bit, and desired 

area. Our cell will take the power and compute cell sizes for the six different a.spect 

ratios. It will then produce a single row and attempt to fold the rovv to match the 

rlesired area. Finally the cell will return a layout of the entire array, using the 

single bit layout and folding factors that will produce the best layout. 

\Nhat if none of the possible implementations of the shift array fit within the 

desired area? Rather than having the program flag an error or abort the design, we 

may tell the program how to choose the next best area. For instance, we may like to 

c;tate that the desi.re(l area is 500 by 800 lambda, but if nothing fits, the x size is 

free to grow while they size must not get larger than 800 lambda. Or, we may say 

that the area should be 400 by 400, and if nothing fits, the instantiation with 1.h•~ 

smallest area should be used. To allow these possibilities, we will add oni=J more 

parameter to our cell program which is a vveight factor: if none of the 

instantiations fit, we will compute an excess cost for all prospective candidates by 

summing the x oversize times the x-coordinate of the weight and the y oversize 

times the y-coordinate of the weight. We select the candidate with the lowest 

excess cost. 

The ICL code for our cell is listed in appendix 2. The organization of the code is as 

follo•vs. We have routines for generating single bits of the shift register, named 

SHIFT~ELL through SHIFT6 CELL. These routines are parametrized in terms of 

pullup transistor size, pulldown t1·ansisto1· c;ize, and power line widths (PU=pullup 

length, PD=pulldown width, SP=width of single row power line, DP=width of 

double row power line, and HP=width of half-row power line). These return the 

layout for a single bit of the shift array. Next we have routines which generate 

rows of these single bits (SHIFT!_B.OW through SHIFT~OW) plus a routine -which 

turns these rows into a complete array (FINISH). These routines are also 
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par<nnctrized in terms of total pmver, number of bits, and folding factor (TP=·width 

of total power line, NR=numbcr of bits per row, RB=number of rows in each shift 

register, NI3=number of shift registers, and NL= number of bits in the last row of 

each register. TB=total number of bit.;; in each shift register=NR"'(RB-1 )+NL). The 

functions SHIFT!_{\RRAY through SHIFT6 ARRAY simply generate the entire array. 

Given these shift array functions, we would like a routine which determines the 

area of each possible shift array. The SIZE function will return the area of a 

candidate and a routine which, when executed, will generate that candidate. We 

don't want to generate the actual layouts of every candidate to select the best layout 

because thi.s \vould take a lot of space in the computer's memory plus it would tal<e 

a long time. Instead, SIZE computes what the size would he, and generates a 

function reference which we may execute if the candidate is selected as best. Th8 

function SHIF~ELL, which is the function a ·user calls, checks many candidate;.; 

and selects the one best fitting the user's description. The best candidate is 

determined by the following algorithm: 

If there are candidates whose x and y values are less than the 
des i r·ed size, the one 1-1hose >< and y va 1 ues are c I oses t (sum of 
squares) is chosen. 

If no candidates fit, a weight is determined for each candidate. 
and the candidate with the smallest weight is used. The 1-1eight 
is determined as fol lows: 

If the x value is less than the desired x value, use 0 
otherwise use the difference between the actual and 
desired x values. 

Multiply this number by the x weight and square the result. 

Similarly, compute the y weight. 

The total weight is the sum of the x and y weights. 

The remaining functions in the listing (GRAPH and TABLE) produce a graph and 

tabular listing of the candidate sizes. These are useful if a designer wishes to see all 

of the candidate sizes for any particular size of shift array. 

This parametrized cell is used as follows. The designer determines the number of 

bits in the array. For our example, 1l've require 4 shift registers of 100 bits each. 

vVe would like these to be fairly low power, so our power requirements will he 

1 /8. Due to chip area constraints, we would like the array to be approximately 500 
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by 800 lambda. We can get a tabular listing of possible candidates by entering ICL 

and typing the command 

TABLE<~.100,.125,23,1000#1500); 

The first parameter is the number of shift registers (4), the second is the number of 

bits per register ( 100), the third is the power rP-quirement (.125), the fourth states 

"t·vhat the maximum number of folds in thi? shift register should be (23), and the 

last parameter states the maximum size we want listed in the table. Concerning this 

last parameter, the program will generate all possible candidates meeting the other 

parameters, but will only list those candidates whose x dimensions are less.than the 

given x limit ( 1000) and whose y dimensions are less than they limit ( 1600). ICL 

will print the following table: 

CLASS: 1 ROI.JS/Bl T:3 
CLASS:l ROWS/BIT:S 
CLASS:l ROWS/BIT:7 
CLASS:l ROIJS/BIT:9 
CLASS:l ROWS/BIT:ll 
CLASS:2 ROWS/81T:3 
CLASS:2 ROWS/BIT:S 
CLASS: 2 ROllS/81T:7 
CLASS:2 ROWS/BIT:9 
CLASS:3 ROWS/BIT:ll 
CLASS:3 ROWS/BIT:13 
CLASS: 3 ROI.JS/Bl T: 15 
CLASS:3 ROWS/BIT:l7 
CLASS:3 ROWS/8IT:19 
CLASS: 3 ROl.JS/8 IT: 21 
CLASS:3 ROWS/BIT:23 
CLASS:4 RQl.JS/BIT,:5 
CLASS:4 ROWS/BIT:? 
CLASS:4 ROWS/BIT:S 
CLASS: 4 RQl.lS/B IT: 11 
CLASS:4 ROIJS/BI T: 13 
CLASS:4 ROWS/BIT:l5 
Clfl'.:,S: 5 ROllS/B IT: 3 
CLASS:S ROWS/BIT:S 
CLASS: G ROl.JS/8 IT: 1 
CLASS:5 ROWS/BIT:3 

SIZE:982.#405. 
SIZE:590.#G73. 
S!ZE:450.#841. 
SIZE:3GG.#1209. 
SIZE:310.#1477. 
SIZE:845.#531. 
SIZE:509.#883. 
SIZE:389.#1235. 
SIZE:317.#1587. 
SIZE:872.#575. 
SIZE:704.#579. 
SIZE:520.#783. 
SIZE:535.#887. 
SIZE: 535. #991. 
Sl ZE: L152. #1095. 
S!ZE:452.tlll33. 
S!ZE:875.#523. 
SIZE: GGS. #731. 
SIZE: 539.11839. 
SIZE:455.#1147. 
S ! ZE: 371. #1355. 
SIZE:329.#1553. 
SIZE:5G5.#807.5 
SIZE:342.#1343.5 
SIZE:838.5tt499. 
SIZE:310.5#1491. 

<---<<< 
<---<<< 

<---<<< 

<---<<< 

<---<<< 

None of the candidates fit into the area we requested, but there are five entrif.JS in 

the table which are the approximate size we require. We could also make a plot 

showing these candidate sizes by using the GRAPH function, which takes the same 

p.1rameters as the TABLE function: 

PLOT<GRAPH(4,100,.125,23,1000#1500l,HP_7221AJ; 
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N8:4 

TB: 100 

l_P 0 ~ ~-~ ~- -· __ 1 _~-~- -
X Dimension 

Fig. 3-7: Graph of Size Possibilities 

982. 

This graph is shown in figure :3-7. To actually create the layout, we would call the 

SHIFT CELL function. The following code generates five separate shift register 

arrays differing in the area costs. The desired area for all arrays is 500#800. Th<:! 

first array requires that the y dimension is fixed while the x dimension is free to 

vary. The second array fixes the x dimension and allows they dimension to grow. 

The third array allows x and y to vary equally. The fourth array has the x 

dimension costing a bit more than the y dimension, but both are free to vary. The 

final array uses more power, but fits within the 500#800 space requirement. 

Figure 3-8 shows the metal2 layer for each of these arrays. 
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VAR AFlRAY 1, ARRAY2, ARRAY3, ARRAY4, ARRAY5=11RG; 

ARRA Yl : =SH I FT _CELL ( 4, 100, . 125, 50011800, 1 #39999 l ; 

ARRAY2:=SHIFT_CELL(4,100,.125,500#800,99999#ll; 

ARRAY3:=SHIFT_CELL<4,100,.125,500#800,l#ll; 

ARRAY4:=SH1FT_CELL(4,100,.125,500#800,l.5#1l; 

ARRAYS: =SHI FT ~CELL(4, 100,. 25, 500#800, l#U; 

-------------~ ---------
ARRAYl ARRAY2 ARRAY3 ARRAY4 

Fig. 3-8: Five Shift Array Candidates 

3.3: Conclusions 

ARRAYS 

We have seen the description of an imbedded language system and how this system 

can be used to construct integrated circuit layouts. We have also seen the benefits 

of using im bedded languages to design chips. 

One of the advantages of imbedded language systems is that they allow the user to 

design a whole family of cell layouts at one time. Based upon parameters given to 

the cell program, the program will compute and generate the correct layout for the 

particular usage of the cell. This emphasizes the similarities between members of 

the cell family. This also reduces the number of cells in the cell libraries: The cell 

program is saved rather than the many cell instances. 

The cell parameters typically refer to behavioral information, not geometrtcal 

information. Our shift register is parametrized in terms of number of bits and 
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power requirements, not inter-cell spacings and transistor sizes. This allows for 

partitioning of the design. The user of the cell thinks in terms of parameters 

interesting to him:, and he does not have to know the details. of the cell 

implementation. 

Along these same lines, parametrized cells delay the binding of design decisions. 

The shift register program was implemented before the power or area require men ts 

v11ere known. Also, since this cell is now flexible, the entire chip layout can be 

designed before the power requirements are known. When the requirements 

change, a few simple parameter changes will completely correct the layout. 

The task of making design decisions is.also aided with parametrized cells and chips. 

\.Vhen the cells are parametrized in the manner presented here, the user can alter 

the design parameters and actually see the effects these decisions make upon the 

design. The designer does not have to guess, the actual results can be seen. 

Parametrized cells tend to encompass much larger functions than fixed cells. 

Parametrized cells are usually a complete function, whereas fixed cells tend to be 

rather small pieces of layouts which must be combined to construct a function. 

Since fixed cells can not reconfigure themselves depending upon how they are 

used, large fixed cells are not frequent since it is rare that a large function will he 

used id en tic ally in many places. Parametrized cells can reconfigure thernsel ves, so 

similar uses of a function can efficiently use the same cell. 

\.Vith imbedded languages, we are not designing chips as purely graphical data. We 

have the freedom to add additional information to our cells, information which can 

further aid the design process. In the next chapter, we explore some of these 

possibilities. 
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Chapter 4: Chip Assemblers 

In the previous chapters, we have reviewed methods for generating leaf cells, 

which is only the first step to designing a chip. To complete the design of a chip, 

'1\-·e need to generate the composition cells which interconnect the leaf cells. The 

task of interconnecting leaf cells is much harder than the generation of the leaf 

cells. The leaf cells are typically small, self-contained units which can be 

completely defined. Composition cells, on the other hand, deal with global 

information, and are fairly large, complex assemblies at the higher levels of the 

chip hierarchy. In this chapter v.re will explore some of the tools which can aid in 

the interconnection of the leaf cells [29]. 

4.1: Cell Composition 

There are three phases of generating composition cells. The first phase deals with 

the specification of the interconnection betv.reen the cells: how should the cells be 

wired together? The second phase deals with the generation of the geometrical 

primitives required to interconnect the cells. The final phase deals with 

verification: was the interconnection specification correct, or did we just short VDD 

and GROUND? 

Each interconnection methodology presents unique constraints upon these three 

phases of cell composition. In some interconnection strategies, the interconnection 

specification is implied by the cells themselves, freeing the user from the task of 

writing an interconnection list. Other techniques do not require wires to perform 

the interconnection, so the generation phase may be trivial. 

Every interconnection methodology, however, should have a checking phase. Most 

of the errors in chip design have to do with erroneous interconnection of modules, 

virtually all of which would be caught by the checking phase of the 

interconnection. By TYPEing the connections to a cell, one can later verify that the 

connector was connected to the proper signal. For instance, one would not like to 

connect two outputs together. By adding this information to the layout 

representation, it can easily be verified that outputs do not connect to other 

outputs. 
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for the composition systems presented in this chapter, we will assume that the chip 

floorplan is a slicing type floorplan, as presented in Chapter 2. 

4.2: Power Routing 

Povv-er signals are special signals in integrated circuits. They can not be routed as 

ordinary data signals, due to the finite resistance and current limits of the wires. 

Therefore, a strategy should be developed to deal specifically with power wires. 

The first requirement that one might state about power lines is that they should 

always run in metal from very close to the transistor terminals to the edge of the 

chip. With two polarities of power lines in NMOS design, this means that some 

planning must be done before the cell design is begun. Without this planning stage, 

the power requirements may be impossible to satisfy. 

We can analyse the structure of NMOS design to develop a general model of power 

routing [ 14]. In specific cases, special purpose power routing schemes are used, but 

in the general case, the follov.ring power routing scheme has been shown to produce 

close to optimal designs. We define a cell to have not only a rectangular outline, 

but also to have a VDD terminal in the North-East corner of the cell and a Ground 

terminal in the South-West corner of the cell. The cell must also contain power 

consumption information, so that the power lines can be made of the appropriate 

width. 

We will place the following conventions upon the definition of the VDD and 

Ground points. To properly connect power to the cell, we need to touch the VDD 

point v.rith a metal VDD box and to touch the Ground point with a metal Ground 

box. We are free to run Ground lines anywhere along the bottom edge of the cell, 

up to the Ground point, or we may run metal Ground lines anywhere along the left" 

edge of the cell, up to the Ground point. Similar statements can be made about 

running VDD lines. Figure 4-1 illustrates these conventions. The first example has 

the power lines running horizontally while the second example routes the lines 

vertically. 

, i' 111,ly dP.fine a data.type CELL which encapsulates the information needed for 

·handling this style of power routing. 
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Horizontal 
Connection 

Fig. 4-1: Power Line Conventions 

OS 
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Vertical 
Connection 

The CELL has a name, layout, the two power points, and a power consumption 

variable. We will represent the power consumption by a REAL number which 

indicat1:1s the effective conductance (reciprocal of resistance) of the internal 

circuitry. A pre-defined procedure WIDTH converts this conductance into the 

minimum wire width needed to supply the required power. 

We have stated that we will use the slicing floorplan for our chips. As shown in 

Chapter 2, this means that all possible chip floorplans can be implemented as a 

hierarchy of binary cell fusions. If we write routines which will properly 

interconnect two cells in any legal configuration, we will be able to route the 

po~ver for any slicing chip whose cells use the two-point power convention. We 

may recall that there are precisely two legal configurations of two cells in the 

slicing floorplan: one cell may be to the right of the other, or one cell may be above 

the other. We will call these two orientations HORIZONTAL and VERTICAL, 

respectively. 

Let us consider the horizontal case. Given two cells that have already been given 

appropriate relative positions, how do we connect the power line~? Figure 4-2 

gives an example of how this might be done. In the figure, we route boxes frmn 

the pov.rer points to a larger power box which is a suitable distance from the two 

cells. The widths of the two vertical power boxes connected to the left cell are W1, 

which is equal to WIDTH(left.POWER). Similarly, the right cell's power box 
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widths are W2, which is WIDTH(r~ght.POWER). The widths of the large power 

boxes are W3, which is WIDTH(Ieft.POWER+right.POWER). Thus, the w__~rtical 

boxes are wide enough to supply power to one of the cells, while the horizontal 

boxes .are wide enough to supply power to both cells. 

New 
Gr"ound
Po t nt. 

Wl W3 

Wl W2 

W3 
Fig. 4-2: Horizontal Power Connections 

W2 

New 
..._ YOO 

Point. 

It may be noticed that the layout of the power boxes shown in figure 4-2 is fairly 

inefficient. \Ve will now produce more efficient routings. Consider the vertkal 

VDD box of either cell. We have its lower right corner touching the power point of 

the cell. If we had the lower left corner touch the power point, the power box may 

extend past the cell's bounding box if the power requirement is large, as shown in 

figure 4-3a. If we always lined the right edge of the power box with the cells 

bounding box, the box would never extend past the cell's bounding box, but the 

pmver box may not touch the power point, as shown in figure 4-3b. To efficiently 

align the power box, we need to examine the power box width and power point 

location. If the power box width is less than the distance from the power point to 

the cells bounding box, we will align the box to the power point (fig. 4-3c). If the 

po-wer box width is greater than this distance, we align the power box to the cell's 

bounding box (fig. 4-3d). 

Next. let us consider the position of the horizontal power box. In figure 4-2; it w-as 

placed a considerable distance from either cell, so as not to interfere with the 
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Fig. 4-3: Alignment of Vertical Boxes 

geometry "\Vithin the cells. On the other hand, our power routing convention states 

that we may run any VDD boxes we wish above the cell, as long as the box stays 

above the VDD point. Hence, what we might do is lower the VDD box until it .just 

rests upon either of the two VDD points, which ever is higher. Figure 4-4 shows 

the only possible situations. If the left VDD point is above the right VDD point, the 

horizontal box rests upon the left's VDD point. Similarly, if the right's point is 

higher, the box rests upon the right's VDD point. If both points have the same 

height, the box i·ests on both. Notice in the first case that the left's verti.cal po\¥!:'r 

box is not required, since the horizontal box completely overlaps the area where the 

vertical box would be. The second case does not require the right power box, and 

the third case requires neither. 

Lef't Higher Right Higher Same Height 
Fig. 4-4: Positioning Horizontal Box 

To complete the routing of the VDD lines, we need to determine where the VDD 

point for the composition cell should be. The definition of the power point is that 

we may route any VDD boxes to the right or above the specified point. The x 
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component of the point can be determined solely from the right cell. The right 

cell's VDD point stated where we could run boxes over the right cell. This same x 

coordinate can be used for the composition cell. For the y coordinate, we need to 

PX amine both the left and the right CfJlls, but again, they have given us acceptable 

values for running horizontal \Vires. We need only satisfy both cells' requirements. 

This is done by using the larger of the two cells' VDD point's Y values. Since the h~ft 

cell's VDD point xis always less than the right cell's VDD point x, we can state that 

the new VDD point is simply the maximum of the left and right cell's VDD points. 

The analysis of the VDD boxes can be used to analize the Ground boxes, with 

appropriate sign changes. We can now code the routine for horizontally fusing t-wo 

cells. 

DEF I NE HORI ZONTAL_PO!-iER_BOXES (L, R: CELL NAf1E: QS) =CELL: 
BEGIN VAR Wl,W2,W3,Xl,X2,X3,X4,VDDY,GNDY=REAL; 
DO Wl:-W!DTHIL.POWERJ; 

1-12: -I.JI DTH !R. POl.IER) ; 
IJ3 : :lJ I DTH ( L . POl.JER +R. PQl.JER J ; 
Xl:·MBB(L.LAYOUTJ.HIGH.X; 
Xl:= IF Xl-Wl<l.VOO.X THEN Xl-Wl ELSE L.YOD.X Fl; 
X2:=MBB!R.LAYOLJT).H!GH.X; 
X2: • IF X2-l-12<R. YOO. X THEN X2-l.J2 ELSE R. YOO. X FI ; 
X3:-M88(L.LAYOUTJ.LOW.X; 
X3:= IF X3~Jl>L.GNO.X THEN X3 ELSE L.GNO.X-Wl Fl; 
X4: =flBB (R. LA YOU Tl. L0!-1. X; 
X4:= IF X4+112<R.GNO.X THEN X4 ELSE R.GNO.X-~J2 Fl; 
VOOY:= L.VOO,Y MAX R.VOO.Y; 
GNOY:= L.GND.Y MIN R.GNO.Y; 

GI VE [NAtlE: NAtlE 

ENO 
ENOOEFN 

LAYOUT: fl.LAYOUT; 
Fl.LAYOUT: 
BOX (BLUE, X l /IYDOY\ TO X2 +~l2#YDOY +~l3 J ; 
BOX <BLUE, X3#GNOY-m\ TO X4+W2#GNOY): 
IF VOOY\IS_CLOSE_TO L.VOO.Y THEN 

IF VOOY\JS_CLOSE_TO R.YOO.Y THEN NIL 
ELSE BOXIBLUE,X2#R.YOO.Y\TO X2+W2#VOOY+W3J FI 

ELSE 80X(BLUE,Xl#L.YOO.Y\TO Xl+Wl#YOOY+W3) FI; 
IF GNOY\IS_CLOSE_TO L.GNO. Y THEN 

IF GNOY\IS_CLOSE_TO R.GNO.Y THEN NIL 
ELSE BOXIBLUE,X4#GNDY-W3\TO X2+W2#R.GNO.YJ FI 

ELSE BOXIBLUE,Xl#GNOY-W3\TO Xl+Wl#L.GND.Y> Fil 
YOO: L.YOO MAX R.VOO 
GNO: L.YOO fl!N R.VOO 
POIJER: L. PmJER+R. PmJERJ 

Yigure 4-5 shows the resulting layout. The routine for vertical fusion is similar to 

the horizontal routine. 
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Fig. 4-5: Completed Power Connections 

One final observation. We have located the VDD point and Ground point within the 

cell boundaries. Also, when we produced the composition cell, we kept these pnints 

"vell ·within the boundaries of the new cell. WI~y was this done? To consPrve area. 

The higher levels in the chip heirarchy can share this power channel with tlH! 

route done at this level. If anothN cell were added to the left of our composition 

cell, a larger po"ver box would overlap the horizontal power box drawn for this 

composition cell. Overlapping the boxes does not cause problems, because the larf;er 

power box is wide enough to supply power for all three of the cells. Figure 4-6 

contrasts the layout produced when the power points are inside the cell to the 

layout produced when the power points are at the corners of the cells. 

Interior Power Points Exterior Power Points 

Fig. 4-6: Hierarchically Sharing Boxes 



-53-

4.3: Composition Methods 

We will now look at some of the data line interconnection philosophies, and notice 

·what requirements are made upon the three phases of cell composition. 

4.3.1: Cell Abutment 

The simplest interconnection philosophy is that of cell abutment. In this style of 

composition, interconnection between cells is accomplished merely by abuting the 

two cells [24][27]. It is assumed that the interconnection points of the two cells 

are in precisely the correct position so that simple abutment properly connects each 

pair of ports. Figure 4-7 illustrates this concept. Here we wish to join cells A and 

B, with A 'to the left' of B. Given the bounding box information from the tv.ro cells, 

we can automatically position the two cells to get the interconnection. The 

following code will generate a fusion of the two cells. 

Cells Before 
Abutment 

Cells After 
Abutment 

Fig. 4-7: Cell Abutment 

DEF I NE ABUT T _HOR I ZONT AL (A, B: CELL NA11E: NAt1E) =CELL: 
DO B: :=\AT A.LAYOUT\t·t88\LR - B.LAYOUT\MBB\LL; 
GI VE HOR I ZONTAL_POL.IER_BOXES <A, B, NAt1E) 

ENODEFN 

DEF I NE A BUTT_ VERT l CAL ! A, B: CELL NN1E: NAl1E) =CELL: 
DO B::=\AT A.LAYOUT\MBB\UL-B.LAYOUT\MBB\Ll; 
GI VE VER TI CAL_Pm!ER_BOXES CA, 8, NAMEl 



ENDOEFN 

DEFINE AT<C:CELL P:PO!NTl=CELL: 

ENDDEFN 

DO C.LAYOUT::=\AT P; 
C.VOO::=+P: 
C.GNO::=+P; 

GIVE C 
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DEFINE LL<B:BOXl=POINT: 8.LOW MIN 8.HIGH 

DEFINE URIB:BOXJ=POINT: B.LOW MAX B.HIGH 

DEFINE LRIB:BOXl=POINT: URIBJ.X # LLIBl.Y 

DEFINE ULIB:BOXl=POINT: LL(Bl.X # URIBJ.Y 

ENOOEFN 

ENOOEFN 

ENDDEFN 

ENDOEFN 

These abutment routines will handle the composition of two cells. Notice that the 

specification phase is trivial: we only specify which two cells to fuse, and in which 

order. Similarly, the generation phase is trivial: we need only position one cell 

relative to the other, then call our power box routines. On the other hand, we have 

done no verification of the design. We have no idea whether the implied 

connecti.on locations of the two cells line up. This little piece of checking, if 

rigorously applied at all levels of the design, will catch most of the design errors. 

To add the verification system to the existing cell system would require a large 

program that would analyse the layout portions of the tvvo cells, extracting the 

circuit information. The program would then have to verify that the composition 

of the two circuits is still a valid circuit. This is a very akward way of determining 

the port configuration of a cell. This is like \-VTiting a sofhvare program which 

examines a core dump to see if all subroutine linkages are correct. A more loeic<Jl 

approach would be to have the user specify the intended port configuration of the 

low-level cells. This information is trivial for the user to specify, since he has to 

;~enerate this information for the cell documentation. Rather than keeping the port 

information in the cell documentation, we will keep the information with the cell 

in machine-readable form, and use it to verify the composition of the cells. 

What sorts of information would we need in the ports of a cell? Obvious data are 

location and layer. To aid the user in examining a cell, we may want to add a name 

to each connector. These names could convey the intent of the signal. We vvould 

also like to kno-tv if a connector was an input, output, or bidirectional signal. With 

this information, we can verify that inputs connect to outputs, and that 

bidirectional signal connect to bidirectional signals. These three types of signals are 
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not inclusive, but they will suffice to illustrate the point. In <lddition to the 

direction of the signal, we would also like to know when the signal is valid. Even 
!~ 

if we have connected an output to an input, if the output is onlyi3.)valid when the 
·~, 

clock is high and the input only samples when the clock is low, we have a dE!Sign 

error. We will add timing information to the connectors. Using a simplified 

tvvo-phase clock model, we C\Jn have signals valid during PHI-1, PHI-2, or always 

valid. Finally, we would like to know if we have connected an incredi'bly large 

load on a frail driver. For the purposes of this discussion, we will model the load 

and drive capabilities of connectors by REAL numbers. When we connect two 

connectors, we wish that the sum of the drives exceeds the sum of the loads. The 

following datatypes hold the informati.on presented here. 

TYPE CONNECTOR= 
CNA!1E: 
LOAD.DRIVE: 
COLOR: 
AT: 
TYPE: 
VALi 0: 

NAl1E 
REAL 
COLOR 
POINT 
CON~~EC TOR_ TYPE 
VALID J; 

CONNECTOR_TYPE= SCALARllN,OUT,101; 

VALID= SCALARIPHI1,PHI2,ALWAYSI; 

CONNECTORS= I CONNECTORS l ; 

If we add a CONNECTORS component to our cell definition, our cell designr=rs can 

append this connector information directly to the other information about the cell. 

Due to the implied conventions regarding connectors, we know that all connectors 

must lie on the perimeter of the cell, and th.at the connectors can not be on the metal 

layer (because the power boxes may run in metal). 

To complete the connector addition to our data structures, there are a few routines 

which must be modified. When we move a cell with the AT routine, we m.ust also 

move the connection points. Secondly, when we abut two cells, we must verify 

that _the connectors line up and have the proper characteristics. Finally, we must 

extend connectors so that they lie on the perimeter of the new cell. When we add 

the pmver boxes, the boxes may extend the bounding box of the cell. If this 

happens, our connectors will no longer be on the perimeter of the cell. We check, 

therefore, and if a connector no longer lies on the perimeter, we will move the 

connector and draw a wire of the appropriate color from the old to new points. 
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This cell abutment technique is a very layout-efficient interconnection techniqUf!. 

Since the interconnection requires no' area, the interconnection is as efficient as 

possible. On the other hand, this is not a very general technique. The only time 

when cells abut is when they were designed to abut, which makes for a very rigid 

system. If any of the cells change, several neighboring cells may also have to be 

changed. One would use abutment in special cases, when the set of cells is small 

and well defined. 

4.3.2: Cell Stretching 

A second composition methodology is very similar to the cell abutment approach. 

Suppose that we wish to simply abut two cells, but the connectors are not at the 

same positions. To avoid generating wires to perform the interconnection, "We need 

to convert the original cells into cells which 'can simply abut, which means we 

need to arrange the connectors to be in the same positions. This is done by cell 

stretching. Consider figure 4-8. Here we have two cells whose connectors are in 

the same order, on the same mask layers, but in different positions. To align the 'A' 

connectors, we need to increase the distance between the bottom of the right cell 

and connector 'A'. We can not decrease the distance between the bottom of the left 

cell and connector 'A' because presumably the left cell was designed to have these 

distances minimized. Hence, we stretch out the right cell as shown in figure 4-8b. 

Next, we need to align the 'B' connectors. We stretch out the left cell, as shown in 

fig. 4-Sc. This process continues until all of the connectors have the same 

positions, at which point we can call the abut routines to connect the cells. 

B 8 B 

c 
8 
II A II II 

II 

Initial A Aligned 8 Aligned Final 

Fig. 4-8: Cell Stretching 
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This approach has the interconnection program reaching inside the subceJls, 

modifying the layout, to perform the interconnection. External stretching is a very 

dangerous thing to do: by arbitrarily modifying a cell's layout, the electrical 

properties of the cell will chanee, and the cell may cease to function. Rather, one 

should design the cell to respond to requests to stretch. The system would ask the 

crll to move a connector, a:r:id the cell would be responsible for generating the nevv 

layout. In this manner, the cell can monitor changes in the performance of the 

circuitry, and correct for the cell stretching. 

It may seem that this approach is wasteful, because cells are deliberately expanded 

to take more room, creating a larger chip. In actual fact, smaller chips can result 

from stretching. The space lost at the low level by stretching may be more. than 

compensated for globally because the wiring cells are not needed. Similarly, 

stretching may increase the loads on some signal lines, so it would seem that 

performance v.rould suffer. On the other hand, the routing required betv.reen cells 

degrades the performance of those wires. So stretching the cells may actually 

increase the performance of the system from a global standpoint, even though local 

performance has suffered. Finally, by stretching two cells to fit, the resulting 

layout might be much greater in the stretch direction that either of the tw-o 

original cells, as the example in figure 4-8 shows. These arguments illustrate the 

dangers of arbitrarily stretching cells, but there are well-defined cases where 

stretching does pay off. 

4.3.3: River Routing 

In the cell-stretching interconnection scheme, we fused cells with connectors in 

the same order but in different positions. We stretched the cells so that th8 

connectors were in the same positions. Alternatively, we can draw wires to 

perforn1 the interconnection. Since the two sets of connectors are in the san1e order, 

the '\-Vires that we draw do not have to cross. A routing between cells v.rhere wi.res 

do not cross is called a 'River Houte'. Figure 4-9 shows a river route bet-ween two 

cells. A very simple algorithm. for generating a river route follows. Draw wires 

from each connector on the left cell over one unit. Then, as long as all connectors 

are not in the proper position to connect to the right cell, draw wires from the nevv 

connector positions up or down, coming as close to the final height as possible 

without getting too close to neighboring wires. This process of moving to the side 



-58-

one unit, then approaching the desired height, continues until all wires are at the 
appropriate positions. Once this is done, the two cells can be fused using the 
standard abutment routine. 

Fig. 4-9: River Routing 

The river routing scheme is topologically identical to the stretching and abutment 
schemes. Because of this, the interconnection requirements are similar to the 
requlrements of the other schemes. We do not need to specify the interconnection 
list, because this information is implied from the cells. We have mentioned one 
algorithm for generating the interconnection wires. Finally, the interconnection is 
verified using the simple abutment routine. 

The river routing interconnection scheme is more generally useful than either 
stretching or abuting, since the connector positions are free to move without 
cl t"dSlically affecting the cell size or performance. The connectors are still restricted 
to being in the same order and on a single mask layer. River routers are useful in 
chip assemblers, however, because there are cases where the connectors are in the 
proper order and on the proper layers, but not at the proper positions. For example, 
if the user connects buffers to each connector on a particular side of a cell, the 
buffer cell can be designed to have the appropriate number of connectors in thf~ 
correct order so that the cells can be river-routed together. 
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There are several schemes for improving and generalizing the river route process. 

Appendix 3 discusses river routes in some detail. 

4.3.4: One-sided General Interconnect 

In each of the wiring methodologies presented above, the connectors of the two 

cells "\.Vere required to be in the proper order on the proper layers. For general 

purpose cell composition, such is not the case. For the connectors to satisfy these 

requirements, both cells would have been designed with the interface specification 

known, so that the connectors can be put in the proper locations. This means that 

the ·~1viring is done inside the cells! The user has to do the wiring by hand. There is 

also a one-to-one correspondence between connectors of the two cells, which is a 

serious limitation on the in terconnecta bility of cells. 

A more general interconnection scheme would permit arbitrary interconnections 

between the signals on adjacent edges of cells [5]. The user would specify the 

interconnections as net-lists, which are lists of connectors to be connected together. 

Using this style of interconnection, the user is required to specify the 

interconnection information, whereas the previously presented methods implierl 

the interconnection information. 

An example of a general interconnection is shown in figure 4-10. We no longer 

restrict the connectors' layers or positions. We do not require that there be the same 

number of connectors on the two cells. The only requirement is that the 

interconnections between two cells have the connectors on the edges between the 

cells. 

/\n advant<1ge of this interconnection technique is that the design of the chip can 

easily be partitioned. The hvo cells can be designed by independent design teams 

given only a functional specification of the interface between the cells. Also, if a 

cell is redesigned, the interconnection program is re-run with the original 

specification and the new composition cell is complete. 

One of the disadvantages of this technique is that the user has to specify the 

interconnection between the two cells. This can be a fairly large specificati:on if 

there are many connectors on the cells. Also, the possibility of errors requires 
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Fig. 4-10: General Interconnection 

checking of the specification. Signal typing will catch most of the dumb mistakes, 
l1ut many of the logical errors can only be caught by checking the specifications. 
Another disadvantage is that this style of interconnection consumes more chip area 
than the other approaches. Because of these disadvantages, one would like to use 
the stretching and river routing techniques where they logically fit, and reserve 
the general interconnection schemes for the remaining routes. 

4.3.5: Four-sided General Interconnect 

In the One-sided general interconnector, we require that all interconnections 
between adjacent cells use connectors on the shared edge of the cells. While this 
technique may be useful in many circumstances, there are times when the 
connectors do not lie between the cells. Figure 4-11 shows a route which connects 
to signals on the North and South edges of the cells, in addition the the shared edges 
of the cells. This style of interconnection is termed 'Four-sided interconnect', since 
the connectors may be on any of the four sides of a cell [5]. 

There exists a technique which converts the four-sided interconnect problem into a 
series of one-sided interconnections. This means that the four-sided 
interconnection can be as time and area efficient as the one-sided interconnect, but 
that the generality of the four-sided interconnect can be capitalized upon. In figure 
4-1 Z, we show three steps in the fusion of cells. In this figure, we perform all of 
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Fig. 4-11: Four Sided Interconnection 

the interconnections at one level before moving to the next level. We perform an 
Immediate fusion of the two cells. When we do this, some of our interconnectin,g 
tvires must route out of the channel between the two cells. For example, in the 
figure 4-12.a, some of the wires route on the east sides of the two cells, which i:; 
the channel between cells in figure 4-12b. The first two cells have taken channel 
area from the next higher level. This higher level channel route cannot share the 
area used in this lower level route. If, instead of routing outside the channel, we 
only routed inside the channel, but kept a list of incompleted connections, we can 
sh are the channels for the various levels in the hierarchical fusion. In figure 4-1 :J, 
tve show the same interconnection, but tvith the Delayed technique. We have only 
routed in the channel, but kept the incomplete routes with the composition cell. 
When we go to fuse this cell to neighboring cells, we add these incomplete routes to 
the routes required by the new interconnection and route all of the wires in the 
netv channel. The resulting layout is considerably smaller than the immediate 
interconnection layout. 
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4.4: Conclusions 

In VLSI design, the design of the glue which interfaces cells is considerably harder 
than the design of the cells themselves. Much effort has gone into building systems 
to aid in the construction of the cells, but the interconnect problem has largely been 
ignored. In this chapter we have seen several techniques for fusing cells together. 
A Chip Assembler which contains these interconnectors, would greatly aid in the 
design of large chips. 
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We have also introduced checking into the design of chips. Rather than analysing 
the results of a chip design to verify the interconnection, we design layouts that are 
correct by construction. The analysis style of verification is becomes impractical as 
chip sizes and densities increase. We must move to the synthesis technique of 
correctness by construction if we wish to design correct layouts at a reasonable 
cost. 

• 
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Chapter 5: A Sin1ple Silicon Compiler 

To illustrate the concepts involved in silicon compilation, this chapter will develop 

a simple yet complete compiler. This compiler may be called the Random Logic 

Compiler: it is designed to compile TTL-style circuits. Following a discussion of the 

floorplan for this particular compiler, we will see the code for the chip assembler 

and silicon compiler. After this, we will explore some of the possible extensions 

which allow higher-level user specification of the design. 

A silicon compiler is a program which translates a high-level, behavioral chip 

specification in to the 'machine language' of silicon design: a set of VLSI masks. The 

foundation of a silicon compiler is an Imbedded Language system. Within the 

im.bedded language, the structure of the compiler's floorplan is designed. The 

floorplan is the logical and physical arrangement of circuitry that the compiler 

generates. Given this structure and the graphics language, procedures are written 

which generate the 'cells' or circuits to be used on the chips. These cells can take 

parameters and perform calculations as the layout is generated. These cells also 

generate logical information, such as the list of connection points, in addition to the 

actual physical information that describes the design. The user specification is used 

to provide the parameter values for the cell procedures. The compiler links these 

sublayouts together to complete the chip. 

5.1 The Floorplan 

The floorplan limits the capabilities of any compiler. The more limited or fixed the 

floorplan, the smaller the class of compilable chips; the more relaxed or generalized 

the floorplan, the broader the class. On the other hand, the more specific the 

compiler, the more specialized it can be for a particular design style, which has 

t"\vo-fold benefits: the resulting layouts are usually more optimized, and the 

specification for any particular chip are very concise. 

For our example compiler, we want to generate arbitrary interconnections of NAND, 

NOR, and INVERT gates. These gates will be positioned horizontally in a single row, 

as illustrated in figure 5-1. The power lines will run along the top and bottom of 

the row, signal lines will run horizontally between the power lines, and the gates 

will be positioned vertically. 
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Fig. 5-1: RLC Floorplan 

Since we are not restricting the number of gates, nor the interconnection 

possibilities, component locations cannot be fixed to exact physical locations. For 

instance, the location of the upper power line can not be fixed since the power line 

width is related to the power consumed by the circuit, which is a function of the 

number of gates in the circuit. Hence, unless we arbitrarily limit the number of 

gates, we can not state where the upper power line should be for all designs. These 

positions can, however, be parametrized in terms of global variables. For our 

compiler, the variable 'YVDD' will be set to they-coordinate for the center of the 

VDD line. All of our cells will be designed to use 'YVDD' when referring to features 

associated with the VDD line, allowing us to position this line after we know how 

many gates are needed in the circuit. Similarly, 'YGND' will be they-coordinate for 

the center of the ground line, and 'POWER' will be the width of the power lines. 

In addition to the physical aspects of the floorplan as described above, we will need 

conventions for communication of information between the cells and the compiler. 

The1·e is some information that the compiler needs which the cells compute, and 

there is some information that the cells need which the compiler computes. In our, 

logic gate compiler, the procedures which generate each type of gate know 1.Vhere 

the inputs and outputs of the gates should connect relative to the cell's origin, 

\Vhile the compiler knows the origins for each cell. If the compiler were required 

to compute the connection locations, the compiler would be tied to specific cell 

implementations. One could not change a cell without having to change the 

compiler as well, and verification of the changes would be a fo1·midable task. For 

the same reason, local cells should not have to generate information that belongs in 

the compiler. 



-66-

In th!?. logic gate compiler, there are two bilateral communication paths that are 
needed: the c<;nnpiler gives each cell the x-coordinate of its origin, while the cells 
report their width to the compiler, so that the compiler can compute the next 
origin; the compiler assigns vertical position for each interconnection wire, but the 
cells must give the endpoints of the wires based on where the wire connects insi.de 
the cell. The first communication, involving cell origins, is done by direct 
parameter passing. The gate procedures are passed a REAL number which the 
procedures use for a horizontal origin. Each gate returns its width by setting a 
global variable CWIDTH. The second communication, for interconnection positions, 
is done thtough instances of a data type called PHYSICA~ WIRE. PHYSICAL WIREs 
receive y-values from the compiler. The gates can inspect this information in the 
PHYSICAUVIREs to determine which channel the wire uses. The gates may pass 
x-values to the PHYSICAL WIREs so that the wires will extend to the proper 
horizontal positions. 

5.2 Chip Assembler 

Having defined the conventions of the compiler, the cell generation routines may be 
written. The following code gives the implementation routines for the logic gate 
compiler: 

fYPE PHYSICAL_WIRE= [HEIGHT,LEFT,RIGHT:REAL NME:QSJ; 

PHYSICAL_lJIRES= I PHYSICAL_WIRE l; 

VAR YVOO,YGNO,PWIOTH,CWIDTH=REAL: 

DEF I NE CONNECT ([.J IRE: PHYS I CAL_L-l I RE X: REAU : 
@IWIREl.LEFT::= MINX; 
1;,> llH RE) • RIGHT: : = MAX X; 

ENDDEFN 

DEF I NE PULL UP !OUTPUT: PHYS I CAL_l.J IRE X: REAU =MRG: 
DO CONNECTIOUTPUT,X-2); 
GIVE IBOXIRED,X-15#0\TO X-5#5); 

ENDDEFN 

BOXIYELLOW,X-15#-2.\TO X-5#9); 
W RE !GREEN, 2, !X-131/YVDO;. tf3; X-8#.;. ti. -5;. +5#.;. #OUTPUT. HE I GHTf ) ; GCB\AT IX-12#YVDD;X-2#0UTPUT.HEIGHTI; 
GRCBU\AT X-7#-1.l 

DEF I NE NANO I INPUTS: PHYS I CAL_lJ I RES OUTPUT: PHYS I CAL_W I RE X: REAL l =MRG: BEGIN VAR I N=PHYS I CAL_W IRE; NUl1BER= I NT; X2=REAL; 
DO NUMBER:= +1 FOR IN SE INPUTS;; 
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X2:=X-10-2*NUMBER; 
DO CONNECT<IN,X2J; FOR IN SE INPUTS; 
CWOTH: =X2-5; 

GIVE IGCB\AT X-8#YGNO; 
BOXIGREEN,X2+3#YGN0-2\TO X-7#-1.); 
COLLECT IRCB\AT X2#IN.HEIGHT; 

END 
ENOOEFN 

UIRE!RE0,2, !X2#1N.HEIGHT;X-6#.l)l FOR IN SE INPUTS;; 
PU~LUP<OUTPUT,Xll 

DEF I NE NOR {INPUTS: PHYS I CAL_l.J I RES OUTPUT: PHYS I CAL_W l RE X: REAL> =MRG: 
BEGIN VAR IN=PHYSICALJllRE; 
DO DO CONNECTC!N,X-161: FOR IN SE INPUTS; 

nlIOTH: =X-24; 
GIVE IGCB\AT X-19#YGNO; 

ENO 
ENDOEFN 

WIRECGREEN,2, !X-20#YGN0;.#-6.ll; 
~JIRE {GREEN, 2, IX-8#YGNO+Pt..IIOTH/2+8;. #-2.1); 
COLLECT fRCB\AT X-18#IN.HEIGHT; 

l.JJRE(RE0,2, IX-lS#IN.HEIGHT+l;X-11#.; .#.+SI J; 
WIRECGREEN,2, IX-20#IN.HEIGHT+4;X-8#.l)l 

FOR IN SE INPUTS;; 
PULLUP<OUTPUT,Xll 

DEF I NE INVERT< INPUTS: PHYS I CAL_l.J I RES OUTPUT: PHYS I CAL_W I RE X: REAL l =MRG: 
BEGIN VAR I N=PHYS 1 CAL_t..I IRE; 
DO IN:=INPUTS(lJ; 

CONNECTCIN,X-12l; 
CtJIOTH: =X-17; 

GIVE ICCB\AT X-8#YGND; 
BOXIGREEN,X-S#YGN0-2\TO X-7#-1.l; 
RCB\AT X-12tlIN.HEIGHT: 
t..IIRE <RED,2, fX-12#JN.HEIGHT;X-E;#. l); 
PULLUP<OUTPUT,Xll 

ENO 
ENODEFN 

SET 

RESET 
MODE 

CLOCK---+----+------, 
Fig. 5-2: Pulse Synchronizer Circuit 

At this point, we have routines for implementing NAND, NOR, and INVERT gates. We · 

can assemble chips by generating the required PHYSICAL_ WIREs, initializing 

parameters in each wire, calling the appropriate gate functions, collecting the 
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resulting cells, and drawing the interconnection wires. The following example 

illustrates how one could use our chip assembler for designing a 'pulse 

synchronizer'. Figure 5-2 gives the logic diagram of the circuit. This code will 

produce the layout shown in figure 5-3: 

PQl.JER: =4; 
YV00:=3; 
YGNO: =-53.; 
Cl.JI OTH: =0; 

VAR l.JIRES=PHYSI CAL_l.JJ RES: l-11 RE=PHYSI CAL_l.JIRE; 
l.JlRES:=![HEIGHT:-8. LEFT:-999999. RIGHT:-399999.J; 

[HEIGHT:-17. LEFT:-999999. RIGHT:-999393.J; 
[HEIGHT:-26. LEFT:-939999. RIGHT:-339399.J; 
CHE!GHT:-35. LEFT:-333333. RIGHT:-939399.J; 
[HEIGHT:-44. LEFT: 993939. RIGHT:-339939.J; 
[HEIGHT:-53. LEFT: 999939. RIGHT:-939999.J; 
[HEIGHT:-17. LEFT: 999933. R!GHT:-999399.J; 
CHEIGHT:-44. LEFT: 939339. RIGHT:-893999.J; 
CHEIGHT:-17. LEFT: 399933. RIGHT:-339393.J; 
[HEIGHT:-52. LEFT: 993939. RIGHT:-999939.J; 
CHEIGHT:-35. LEFT: 993999. RIGHT: 999999.J; 
[HEIGHT:-17. LEFT: 999999. RIGHT:-999999.J; 
CHEIGHT:-8. LEFT: 999993. RIGHT:-993999.J; 
[HEIGHT:-8. LEFT: 993999. RIGHT: 999999.Jl; 

VAR RESULT =l'lRG; 
RESULT: =NANO ( !lJl RES (111 I , l.11 RES [143, Cl-JI DTH}; 
RESULT: :=\UNION NANOCIWIRES(3J;WIRES(SJ! ,WIRES[llJ,CWIDTHI: 
f\ESUL T: : =\UN l ON NANO ( !l-1 I RES (81 ; 1.J IRES [l 0J ; kl I RES [l lJ I , ~JI RES [8J , Cl-I IDTH I ; 
RESULT:: =\UNI ON NANO ( {l.JJ RES (51; 1-11 RES [9]; ~JI RES (13] l , ~II RES [10], CW OTHI; 
RESULT: : =\UN I ON NANO ( fl.JI FlES [GJ : t.J I ~1ES [71 ;I.I I RES [131 I , ~I IRES [8J , GJI DTH > ; 
RESULT: :=\UNION NANOC {lJ!RES(3J 1,ll!RES[7J ,GJ!OTH>; 
FlESUL T:: =\UNI ON NANO< fl.II RES (11 J; ~II RES [131 ! , ~II RES Cl2J, Gil DTHl: 
RESULT:: =\UNI ON NANO ( l~ll RES [4J: l-11 RES (5J; ~JI RES 021 l, ~II RES [131, CW OTH); 
RESULT:: =\UNI ON NANO ( ll~I RES [21: ~!IRES C5l l ,l-ll RES [5J, GllDTHl; 
RESULT: : =\UN ION NANO ( ll-1 I RES (1 J ; ~I I RES (51 J , kl I RES (5 J , GI I OTH l ; 
RESULT:: =\UNION !COLLECT WIRE (BLUE, 3, lCl.11 DTH 11AX ~Jl RE. LEFT # ~!IRE. HEIGHT; 

0 MIN WIRE.RIGHT#.!) 
FOR WIRE IE WIRES; I; 

RESULT: : =\UN 1 ON !BOX <BLUE. rn l OTH+3tlYVD0-3\ TO 4#YVOO+ {POl-IER-3 nAX 2) } ; 
BOXCBLUE,CWIOTH-l#YGN0+2-POWER\TO 0#YGN0+21l; 

PLOTCRESULT, 'Q'\AIF); 

This example shows how our chip assembler has raised the level of user 

specification away from the low-level wires and boxes, yet there are still many 

implementation details left for the user to specify. Too, this specification is not in a 

form conceptually clear for the user. The designer will make many specification 

errors. and these errors will be very difficult to locate, because of the obscure 

nature of the specification language. 
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'Fig. 5-3: Layout of Pulse Synchronizer 

5.3 The Con1piler 

It is rather clumsy to generate chips in the assembler form given above. The user 

must constantly be concerned with implementation details, and design errors are 
common. If the implementation details could be hidden from the user so that thrJ 

user could design 11vith a higher level description, the design task would be easier 

and many errors would be eliminated. We will generate new data structures that 

allow us to describe the chip in a more functional manner, without the physical 

details, and write a program which will handle the physical concerns, given one of 

these new data structures. The following section of code lists both the data 
structures and the compiler: 

TYPE SIGNAL_WIRE= [FROf'l:GATE 
TO: GATES 
NAl1E: OS 
PHYSICAL:PHYSICAL WIRE 
VLEFT,VRIGHT,VHEIGHT:INTJ; 

SI GNAL_t.Jl RES= I SI GNAL_W I RE l ; 

GA TE= [INPUTS: SI GNAL_~J I RES 
OUTPUT: SI GNAL_l-JI RE 
TYPE:GATE_TYPE 
INDEX:INTJ: 

GATES= I GATE I; 

I 
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GATE_TYPE= SCALAR(NANO,NOR,lNVERTI; 

CHIP= [GATES:GATES 
INPUTS,OUTPUTS,SIGNALS:SIGNAL_WIRES 
SIGNAL_COUNT: INT 
NAflE,DESCRJPTION:OSJ; 

DEF I NE PHYS I CAL <SW: SI GNAL_l-l l RE l =PHYS I CAL_l-l l RE: St.I. PHYS I CAL ENDDEFN 

DEF I NE PHYS I CAL (SlJS: SI GNAL_l-l I RESI =PHYS I CAL_W I RES: 
BEGIN VAR S=SlGNAL_lllRE: 
!COLLECT S\PHYSICAL FORS SE SWS;l 

END 
ENOOEFN 

DEFINE PACK(C:CHIPI: 
BEGIN VAR Sl.JS=S I GNAL_l.J I RES: H= I NT: G=GA TE: S=S I GNAL_l.J I RE; 

DEF l NE SORT (SI.JS: SI GNAL_WI RES! =SI GNAL_~JI RES: 
BEG! N VAR OUT =SI GNAL_~JI RES; ~l=S I GNAL_~ll RE; I, J, K= I NT; 
DO OUT:=Nll; 

WHILE OEFINEDISWSJ; DO 
I:=-1; 

ENO' 
GIVE OUT 
END 

ENDDEFN 

FOR l-1 SE St-IS; && FOR. J FROf1 1 BY 1: DO 
IF W.VLEFT>I THEN 

I:=W.VLEFT; 
K:=J; Fl 

END 
OUT::= SUS[KJ <S; 
SWS[K-J:=SWS[K+l-J: 

DEFINE DRAW_WIREILEFT:INTI: 
BEGIN VAR l-l=SIGNAL l-IIRE: I=lNT; 
IF THERE_IS l.l.VLEFT>LEFT FOR ~l SE S~lS;&& FOR I FROn 1 BY l; 
THEN Sl-lS [I -J : =SllS [I +1-J ; 

slWl.VHEIGHT:=H: 

ENO 
ENDOEFN 

ORAW_l-lIRE l~J. YRIGHTl: FI 

FOR G SEC.GATES;&& FOR H FROM 1 BY 1:00 @IGJ.JNDEX:=H; ENO 
FOR S SE C.SIGNALS; DO 

END 

@(S).VLEFT:= IF DEF!NEO{S.TO} 
THENS.FROM.INDEX MlN MIN G.INOEX FORGIE S.TO; 
ELSE S.FROM.INDEX Fl; 

s{SJ.YRIGHT:= S.FROM.INDEX MAX MAX G.INOEX FOR G SES.TO;; 

FORS SE C.INPUTS;OO @(SJ.VLEFT:=0; ENO 
FORS SE C.OUTPUTS;OO @(Sl.YRIGHT:=339999; END 
SlJS: =C. SIGNALS \SORT: 
llHILE DEFINED ISi.JS> ;&& FOR H FROM 1 BY l; DO DRAW_W1RE!-l>; ENO 
END 

ENDOEFN 

DEF I NE SETUP _DitlENS IONS lC: CHIP): 
BEGIN VAR G-GATE;S=SlGNAL~-llRE;H=REAL; 
POl-lER:= lJIDTH<+.25 FOR G SE C.GATES;l 11AX 4; 
YGND:= -3.*(MAX S.VHEIGHT FORS SE C.SIGNALS;J-4-POWER/2; 



YVOO:=S+POWER/2 MAX 3; 
END 

ENDDEFN 

DEFINE INITIALIZE_WIRES<C:CHIP>: 
BEGIN VAR S-SIGNAL_l.IIRE: 
FOR S SE C.SIGNALS; DO 
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@!Sl.PHYSICAL:=[LEFT:333333 
RIGHT:-333393. 
HEIGHT:l-9*S.YHEIGHT 
NAllE:S.NAflEJ; 

ENO 
FORS SEC.INPUTS; DO 

@!S}.PHYSICAL.LEFT:=-933993.; 
ENO 
FOR S SE C.OUTPUTS; DO 

@!Sl.PHYSICAL.RIGHT:=333333; 
ENO 
END 

ENDOEFN 

DEF I NE ORAlJ_CELLS !C: CH IP l =llRG: 
BEGIN VAR X=REAL:G=GATE;M=MRG; 
!COLLECT DO M:= CASE G.TYPE OF 

GIVE M 

NOR: NORIG.INPUTS\PHYSlCAL,G.OUTPUT\PHYSICAL,CWIOTHl 
NAND:NAND<G.INPUTS\PHYSJCAL,G.OUTPUT\PHYSICAL,C~JIOTH> 
INVERT:INVERT!G.INPUTS\PHYSICAL,G.OUTPUT\PHYSICAL,C~JIOTHl 
ENDCASE: 

FOR G SE REVERSE!C.GATES};l 
END 

ENOOEFN 

DEF I NE DRAl.J_l.l I RES ( C: CH J P} =llRG: 
BEGIN VAR S=SIGNAL~JIRE:LEFT,RIGHT=REAL; 
DO LEFT:=CWIDTH+5; 

RIGHT: =-2.: 
G l VE lCOLLECT lJ I RE <BLUE, 3, IS. PHYS I CAL. LEFT#S. PHYS I CAL. HEIGHT; 

END 
ENDDEFN 

S.PHYSICAL.RIGHT#.1} 
FOR S SE C.SIGNALS: 
EACH_DO @IS.PHYSICAL> .LEFT::= 11AX LEFT: 

@IS.PHYSICALl.RIGHT::= MIN RIGHT;;; 
BOX!BLUE,CWJDTH+3#YVDD-POWER/2\TO 4#YVOO+POWER/2l: 
BOX<BLUE,CWJDTH-l#YGND-POWER/2\TO 0#YGND+POWER/2ll 

DEF I NE LOAD IS: SI GNAL_l.J I RE l =REAL: 
BEGIN VAR G=GATE; T -SI GNAL_~ll RE; 
(+ CASE G. TYPE OF 

NOR.: 1 
INVERT: 1 
NANO: +l FORT SE G.INPUTS; 

ENDCASE FOR G SE S. TO: } :·:O_LOAO + 
LOAD!BLUE,WIOTH!BLUEl,S.PHYSICAL.RIGHT-S.PHYSICAL.LEFTJ 
END 

ENOOEFN 

DEFINE COMPILEIC:CHIPl=MRG: 
BEGIN V /1R M=MRG; G=GA TE: S=S I GNAL_~l IRE: 
DO CIJIDTH:=0: 



PACK<Cl: 
SETUP _D HlENS IONS (Cl ; 
INITIALIZE_WIRES(Cl: 
t'I: =DRAt.I_CELLS <Cl ; 
M:={M;ORAW_WIRES(Cll; 

GIVE M 
ENO 

ENDDEFN 
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There are two basic datatypes defined here: SIGNA~WIRE and GATE. These are 
abstract representations for PHYSICA~WIREs and instances of the gates. There is an 
additional datatype, CHIP, which holds references to all of the gates and wires 
which comprise the chip. The COMPILE function consumes a CHIP and produces an 
MRG, which is the ICLIC representation for layout. COMPILE calls five procedures. 
The first assigns horizontal channels to each of the interconnection wires. The 
second procedure computes the values for the global positioning variables. The 
third procedure initializes the PHYSICA~WIREs. The fourth procedure calls each of 
the gate cells. The final procedure draws the actual interconnection wires. 

vVe no"\v have a program which will take an abstract structure representing the 
behavioral definition of a chip and generate the layout. To facilitate the 
construction of these abstract chip specifications, support routines may be designed. 
The following code provides routines for modifying this data structure, followed 
by routines for generating this data structure. 

VAR CHIP=CH!P; 

DEFINE EQ(A,B:GATEl=BOOL: MACR0-10('LSPEQS'l 

DEFINE EQ(A,B:S!GNAL_WIREl=BOOL: MACR0-10('LSPEQS'l 

DEFINE LINK_INPUT<G:GATE S:SIGNAL_WIREl: 
@dSl. TO::= G <S; 
@!Cl.INPUTS::= S <S; 

Ef-.JODEFN 

DEFINE LINK_OUTPUT(G:GATE S:SIGNAL_WIREl: 
@!Gl.OUTPUT:=S; 
@(Sl.FROM:=G; 

ENDDEFN 

DEF I NE UNLI NK_I NPUT (G: GATE S: SI GNAL_l.J IRE): 
BEGIN VAR O=GATE: R=S I GNAL_lJl RE: 
@ISJ.TO:=ICOLLECT Q FOR Q IE S.TO;WITH -(Q\EQ Gl;I; 
@!Gl.INPUTS:=ICOLLECT R FOR R SE G.INPUTS;WITH -CR\EQ Sl;l; 
ENO 

ENOOEFN 

DEF I NE UNLINK_OUTPUT {G:GATE S: SIGNAL_WREl: 
@(Sl.FROM:=Nll; 



@{Gl.OUTPUT:=Nll; 
ENDDEFN 

DEFINE ElllllNATE (G:GATEl: 
OEGJN VAR D=GATE: 
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CHJP.GATES:=!COLLECT Q FOR Q SE CHJP.GATES;WJTH -{Q\EQ GJ;I: 
ENO 

ENOOEFN 

DEF I NE ELI 111 NA TE (S: SI GNAL_ll I RE I : 
BEGIN VAR R=SlGNAL_~lIRE; 
CHIP.SIGNALS:=ICOLLECT R FOR R SE CHIP.SJGNALS;WITH -CR\EQ Sl;I; 
CHIP. INPUTS:=ICOLLECT R FOR R SE CHIP.INPUTS;lJITH -(R\EQ Sl;I; 
CHIP.OUTPUTS:=ICOLLECT R FOR R SE CHIP.OUTPUTS;WITH -(R\EQ Sl;l; 
ENO 

ENDOEFN 

DEFINE FUSE (A,B:S!GNAL_!,IIREl: 
BEGIN VAR G=GATE:C=CHAR;S=SlGNAL_~llRE; 
IF DEF I NED (8. FROM! ! THERE_! S S\EQ B FOR S SE CHIP. INPUTS; THEN 

IF DEF I NED (A. FROr-ll ! THERE_! S S \EQ A FOR S SE CH IP. INPUTS; THEN HELP; 
ELSE @(Al.INPUT:=B.INPUT; 

G: =B. FROt1: 
IF OEFINEO<Gl THEN 

UNLINK_OUTPUT(G,Bl; 
LINK_OUTPUT<G,Al; FI Fl FI 

IF THERE_IS S\EQ B FORS SE CHIP.OUTPUTS; THEN CHIP.OUTPUTS::= A <S; FI 
FOR G SE B. TO; 00 
. UNLINK_INPUT(G,Bl; 

LINK_JNPUT (G,Al; 
ENO 
ELIMINATE <Bl: 
ENO 

ENOOEFN 

LET OS BECOl1E SIGNAL_l.JIRE BY 
BEGIN VAR S=SIGNAL~JIRE: 
IF THERE_! s s. NAllE\EO as FOR s SE CH Ip. s I GNALS; THEN s 
ELSE DO S:=[NAME:OSJ; 

CHIP.SIGNALS::= S <S: 
GIVE S FI 

ENO; 

DEF I NE NEIJ_SI CNAL=S I GNAL_l-lI RE: SC (!CHIP. SI GNAL_COUNT:: =+l;)) 

DEFINE SET(S:SIGNAL_WIRE G:GATE): LINK_OUTPUT{G,S}; ENODEFN 

LET GATE BECOl'lE SIGNAL_WIRE BY 
BEGIN VAR S=SlGNAL_l.lIRE; 
DD S: =NEl-l_S I GNAL; 

SET<S,GATE); 
GIVE S 
ENO; 

DEFINE INPUT!QS:QS}: CHIP.INPUTS::= as <S; ENODEFN 
. 

DEFINE OUTPUT!OS:QS}: CHIP.OUTPUTS::= as <S; ENDDEFN 

ENDDEFN 
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DEF I NE NEIJ_CH IP: CHIP:=NIL; ENDDEFN 

DEFINE FINISH: 
CH!P.GATES:=REVERSE(CHlP.GATES>: 

ENOOEFN 

DEF I NE NEl.J_GATE (St JS: S l GNALJ.J l RES TYPE: GATE_TYPEl =GATE: 
BEGIN VAR GA TE=GA TE; St.l=S I GNAL_t.J I RE; 
00 GATE:=UNPUTS:St.lS TYPE:TYPEJ: 

CHIP.GATES::= GATE <i; 
DO m!SWl.TO::• GATE cS; FOR SW SE SWS; 

GIVE GATE 
ENO 

ENOOEFN 

DEFINE NANO <SL.JS: SIGNAL _1-l I RES I =GA TE: NEW_GATE (St.JS, NANO> 

DEF I NE NOR CSLJS: SI GNAL_W I RES l =GA TE: NaJ_GA TE est.JS. NOR) 

DEFINE INVERT !SIJ: SI GNAL_t.JI RE I =GATE: NEU_GA TE ( !SW , I NVERTl 

DEFINE AND<SWS:SIGNALJJIRESl=GATE: SWS\NAND\lNVERT 

DEFINE OR ( SlJS: SI GNAL_l.J I RES l =GA TE: S!.JS\NOR\ ! ~NERT 

DEFINE NAND!A,B:SIGNAL_WIREl=GATE: NANO! IA; Bl ) 

DEFINE NORCA,B:SIGNAL_lJIREl=GATE: NOR( !A;Bl l 

DEFINE ANO <A. 8: S l GNAL_t.11 RE l =GATE: AND< \A;Bl J 

DEFINE OR\A,B:SIGNALJJIREl=GATE: OR! IA; Bl) 

ENODEFN 

ENODEFN 

ENOOEFN 

ENDDEFN 

ENDOEFN 

ENODEFN 

ENODEFN 

ENDOEFN 

E~~DDEFN 

To specify the function of a chip, we call these new procedures. To start the 

description of a chip, we call NEW__fHIP, which initializes the system. Next, -we 

enter the logical equations by calling the SET function. We then state w-hich 

signals are inputs or outputs of the chip by calling the INPUT or OUTPUT 

procedures. Finally, we call the FINISH routine, which completes the linking of 

various portions of the description. Signal wires are identified by enclosing their 

names in single quotes. Logical equations are specified by calling the NAND, NOR, 

AND, OR, and INVERT functions. To specify the 'pulse synchronizer' from above, the 

folloi:"1ing code could be used: 

NEW CHIP; 

SET('ENABLE',NAND('SET',NAND('ENABLE','RESET'))); 

SET( 'COMP' ,NAND( 'CLOCK', 'X')); 

SET('X',NAND({NAND({INVERT('CLOCK');'ENABLE';'Y'}); 
NAND( {'ENABLE';'Y';'X'} ); 
'COMP'})); 
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SET('Y',NAND({'ENABLE';'MODE';NAND('COMP','Y')})); 

SET('OUT' ,INVERT( 'COMP')); 

INPUT( 'SET' J; INPUT( 'RESET' J ;INPUT( 'CLOCK' );INPUT( 'MODE'); 

OUTPUT( 'OUT') ;OUTPUT( 'COMP'); 

FINISH; 

Notice how concise this description is compared to the description required for the 

chip assembler. In addition, this description is more natural for the designer, which 

assures fe"tver specification errors. In the compiler, we referred to signal wires by 

name, whereas in the assembler we used indexes into a global list. The compiler 

allows us to work \.Vith more of our own semantics, and to include more of this 

semantics in the chip description. 

5.4 Compiler Extensions 

There is a major difference between the assembler and compiler specifications of a 

chip. With the assembler, we write a program which contains the specification of 

the chip; with the compiler, we generate a data structure which contains this 

information. The data structure representation limits our design capabilities since 

the data structure is not as general as a programming language, but there is an 

advantage to data structure representations: we can write programs to modify, 

generate, or examine our chip specification. 

In the RLC, we may wish to perform logic minimization upon a set of equations to 

reduce the number of gates requited to implement those equations. Programs of 

this class are called Optimizers, which are discussed in section 5.4.1. In addition, 

the user may wish to specify the equations using mathematical notation, letting the 

program translate this formal mathematical notation into the appropriate data 

structures. Section 5.4.2 shows examples of these Generators and Parsers. Our data 

structure contains more information than strictly a layout. The user may wish to 

examine this information. In RLC, the user may wish to simulate the circuit. Such 

programs are called Examiners, which are discussed in section 5.4.3. 

These extensions have been added to the compiler presented above. Appendix .3 

contains a users guide to the complete compiler, along with all source listings of the 
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compiler. 

5.4.1 Optin1izers 

Through the several levels of chip design (architecture, block, logic, gate, etc.), 

much thought is devoted to optimizing the design. Many of the optimizations nre 

algorithmic in nature: a formula or program can be stated which will apply the 

optimization to the design. Since our compiler's input is a data structure, we can 

design programs which will operate on the input data in attempts to produce more 

optimal chips. 

One optimization we might consider is the removal of unnecessary inverters. When 

using predefined cells, the user may need to invert a signal before connecting to an 

input of the cell, only to have the signal re-inverted by a gate within the cell. 0118, 

perhaps both, of the inverters are superfluous and can be removed. We can design 

an optimization program \vhich scans for series inverters and removes th8 

unnecessary inverters. Fig1ue 5-4 illustrates this process. In the first example, 

both polarities of the signal are required, in which case the second inverter is the 

only unnecessary inverter. The second example shows a case where the signal is 

inverted t\vice, but the intermediate signal is never used, in which case both 

inverters can be removed. The following routines are used to perform this 

optimization. 

DEF I NE GET I NVERTCS: SI GNAL_l-l IRE) =SIGNAL ~!IRE: 
BEGIN V J\R T =SI GNAL_~J I RE; G=GA TE; 
IF S.FROM.TYPEalNYERT THEN 

GIVING S.FROM.INPUTS[lJ 
DO IF -IOEFINEOIS.TOl ! THERE IS T\EQ S FORT SE CHIP.OUTPUTS;) THEN 

G:,,,S.FROM; 

ENO 

UNLINK OUTPUTIG,Sl; 
UNLINK=INPUTCG,G.INPUTS[lJ); 
Ellf1INATE (GJ: 
Ellf1INATE ISJ; FI 

EF THERE_IS G. TYPE=INVERT FOR G SES.TO; THEN G.OUTPUT 
ELSE INVERT(Sl FI 
END 

ENOOEFN 

DEFINE REMOVE_INVERTERS: 
BEGIN VAR G=GATE;S,T=SIGNAL~~IRE; 
FOR G SE CHIP.GATES:UITH G.TYPE=lNVERT;UlTH DEFJNEDCG.OUTPUTJ; DO 

S:=G.OUTPUT: 
T: =G. INPUTS [lJ; 



ENO 
CNO 

LNDDEFN 

UNLJNK_OUTPUT<G,S>; 
UNLINK_INPUT(G,Tl; 
EllllINATE <G>; 
FUSE(T\GET_INVERT.Sl; 

Bef'ore 

Af'ter 

Case 1 
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Bef'ore 

Af'ter 

Case 2 
Fig. 5-4: Examples of Redundant Inverters 

The GE"!:lNVERT function is used to efficiently invert a signal. Figure 5-5 depicts 

the various conditions tested by GE"!:lNVERT. In the first case, the inversion of a 

signal (marked by the'*') is required. The signal does not come from an INVERTER, 

and no INVERTERs connect to this signal. In this case, an INVERTER is added to the 

circuit and its output (marked by the '**') is returned. In the second case, the 

original signal does not come from an INVERTER, but an INVERTER does connect to 

this signal, in which case the output of the INVERTER is used. In the third case, the 

signal comes from an INVERTER and is used other places, in which case the input of 

the INVERTER is used. In the final case, the signal comes from an INVERTER, and 

the signal is not used in other gates, in which case the INVERTER can be eliminated 

and its input signal returned. 

Given the GET INVERT function, the REMOVE INVERTERS function is 

straightforward: remove all INVERTERs from the chip and instead fuse the outputs 
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--- ** 

---** 

** 
Fig. 5-5: Operation of GE'!:_!.NVERT 

to the 'GE'!:...!_NVERT' of the input. 

Other optimizers in the RLC remove redundant gates (for instance two NAND gates 
whose inputs are identical), attempt to replace NAND gates with NOR gates if the 

• gate count would be reduced, and vice ve1·sa, and to merge NAND gates whenever 
possible. These optimizers presented so far look only at the logical specification of 
the chip and attempt to produce a more optimal logical specification by reducing the 
number of gates. Other optimizers look at wire lengths and gate loads to perform 
eletrical optimizations on the design. These optimizers to not change the functional 
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specification of the chip, merely the realization of that specification. This frees the 

designer from many of the design constraints while composing the functional 

specification of the chip. 

5.4.2 Generators and Parsers 

The input to the RLC is a data structure containing the functional specification of 

the chip. \Ve have presented routines which allow the user to directly generate 

these data structures. On the other hand, we can write programs which generate 

these data structures for us. One such program might be a parser which accepts 

mathematical equations and produces proper RLC input for implementing those 

equations. With such a parser, our pulse synchronizer could be specified as 

follows. 

DEFINE PULSE_SYNCHRON!ZER(!NPUTS:SET,RESET,CLOCK,MODE 
OUTPUTS: OUT, CO!IP 
LOCALS:ENABLE,X,Yl: 

ENABLE= SET & (ENABLE & RESET) 
cm1P= CLOCK & x 
X= (-CLOCK & ENABLE & YI & !ENABLE & Y & XI & COf1P 
Y= ENABLE & tlOOE & (COf1P & Yl 
OUT= -COf1P 

ENOOEFN 

The parser which accepts this mathematical notation is listed with the HLC 

compiler in appendix 3. 

We might also write programs that generate the data structures for us. These 

programs specialize in the construction of certain classes of circuits. For instance, 

v.re might like a program that produces divide-by-n circuits. We would call the 

program, passing the divisor n, along with an input and output signal, and the 

program would generate the circuitry for the counter. The following code is in fact 

the program for producing divide-by-n logic. 

DEF I NE DFLOP WAT A, CLOCK, OUT, BAR: SI GNAL_l.I I RE} : 
BEGIN VAR Xl,X2,X3,X4=SlGNAL_wJRE; 
X 1 : =NEl.J_S I GNAL; 
X2: "'NHJ_S I GNAL; 
X3: =NHl_S I GNAL; 
X4: =NHJ_SIGNAL; 
SET(Xl,NAN0(0ATA,X2ll; 
SET<X2.NAN0(£X4;Xl;CLOCKl ll; 
SET!X3,NANO(Xl,X4l}; 
SET!X4,NAND!X3,CLOCKll; 



SETIOUT.NANOIX4,BARll; 
SETIBAR,NANOIX2,0UTll; 
ENO 

ENOOEFN 
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DEFINE COUNTERIN:INT IN,OUT:SIGNAL_WIREI: 
BEG l N VAR FlJ,,,FlJ; TOGGLE, NEXT ,Q, OBAR, D=Sl GNAL_Wl RE; OUTPUT =SI GNAL_t.H RES; 
OUTPUT:=Nll; 
Fl-J: =N-1 \Fl.J: 
IF N<2 THEN HELP; FI 
WHILE FW<>Ll01; DO 

Q: =NHJ_SlGNAL; 
OBAR: =NEll_S I GNAL; 
0: =NElJ_S I GNAL; 
IF DEFINEDIOUTPUTJ THEN 

ELSE 

NEXT:=NE\.l_SIGNAL; 
SETCNEXT,NORIOBAR,INVERTITOGGLElll; 
SETID,NORllOUT;NEXT;NORITOGGLE,Ql!ll; 

NEXT:=O; 
SETIO,NORIOUT,Qll; Fl 

OFLOP(O,IN,Q,OBARJ; 
TOGGLE:=NEXT: 
OUTPUT::= IF FW BIT 0 THEN OBAR ELSE Q FI <i; 
Fl.l:=HI SHIFTR l; 

END 
SETIOUT,NOR!OUTPUTll; 
END 

ENOOEFN 

The following input generates three dividers, with ratios of 5, 3, and 25. 

NEl-l_CHlP; 

COUNTER IS, 'IN', 'FIVE'l; 

COUNTERl3,'IN','THREE'l; 

COUNTERl25,'IN','TWENTY-FIVE'l; 

INPUT<'IN'l;OUTPUTl'FIVE'l;OUTPUTl'THREE'l;OUTPUTl'TWENTY-FIVE'l; 

FINISH; 

A plot of the layout is shown in figure 5-6. The layout has been transformed to fit · 

the page better. 

This technique of building procedures within the compiler to aid in the generation 

of the compiler input is very powerful. The user can build his own environment 

within the compiler. With a handful of routines similar to this, the user can 

quickly and easily design new chips or experiment with multiple implementations 

of a single chip. 
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Fig. 5-s, Three Frequency Diinders (Transformed) 
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5.4.3 Exan1iners 

Our chip specification is an abstract .representation of the chip, containing only 
functional information. As such, it is not particularly tied to any technology or sc~t 
of design rules. There are a very few routines which actually convert the data 
structure to physical layouts. The majority of the RLC code is independent of the 
physical implementation. Therefore, by modifying the few physical routines, w-e 
can generate output for a new technology. 

This concept can easily be included in the RLC through the use of ICL's suspendable 
functions. A datatype TECHNOLOGY is defined which includes all of the technology 
dependent information. The user may generate several technology variables, which 
allo-\v him to generate masks for any of these technologies. Figure 5-7 shows ejght 
different implementations of the pulse synchronizer. Some of the 'technologies' are 
merely pictures, and not meant to be actual mask layouts . 

. HHllll 
NMOS NMOS Sticks 

I 

Metal2 NMOS Metal2 Sticks 
Fig. 5-7: Multiple Representations 
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Metal2 CMOS 

• 
Transistor 

Fig. 5-7: Multiple Representations (cont.) 

With this capability, the user may design a chip before the technology is available. 

vVhen the technology is available, the masks can be generated. Also, if designs are 

archived by saving the data structure rather than the mask sets, the designs can be 

updated to new technologies quickly. 

The user may also wish to simulate his circuit. Again, since we have an abstract 

representation of the circuit, it is a simple matter to simulate the chip. In RLC, we 

,generate a new data structure from the chip specification data structure. This UE!W 

data structure contains the information required to simulate the chip. The 

follo,.ving input constructs the simulation data structure for the pulse synchronizer 

and plots the result of the simulation, as shown in figure 5-8. 

llAKE_S I MULA TOR; 

CLOCK((PHASE:500 HIGH:1000 LOW:1000 VALUE:FALSE INPUT:'CLOCK'J); 

[,JAYEFORM C [VALUE: TRUE DELTAS: 1200; 7000; 8000; 21000; 22000! INPUT:' RESET' J l; 

lJAYEFOml ([VALUE: FALSE DELTAS: !4000; 5000; 15000; 17000; 2'1000; 250001 
INPUT: 'SET' l l; 
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WAVEFORM<CVALUE:FALSE DELTAS: 112000;260001 INPUT:'MODE'Jl; 

RUN!30000); 

Simulation terminated at timem30000. 

PLOT (!'CLOCK'; 'tlODE'; 'SET': 'RESET'; 'OUT'; 'COMP'; 'X'; 'Y': 'ENABLE'!, 
' Q' \A IF, . 005 l ; 

CLOCK 
MODE 
SET n n n 
RESET l n n 
OUT 
COMP Uu Uu1-JlJ LJ 
x LJ n 
y n I 
ENABLE LJ LJ LJ 

Fig. 5-8: Simulation Plot 

LJl_f 

A very important advantage of having the. simulation driven from precisely the 

same chip description data structure is that we are guaranteed that the simulator is 

simulating the circuit that the layout generators produce. If the simulator required 

a different specification than the layout producers, the user would manually have 

to verify that the specifications matched (plus he would have twice as much typing 

to do). 

5.5: Conclusions: 

In this chapter we have seen the basics of a silicon compiler. The Random Logic 

Compiler is a very simple compiler, yet it illustrates the techniques and advantages 

of using silicon compilers. 
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Virtually the only disadvantage of using a silicon compiler is the restriction of the 

floorplan. The only chips that may be designed are those that fit the floorplan, and 

forcing a chip into a given floorplan may lead to inefficiencies. On the other hand, 

the floorplan aids the user in specifying his chip, and helps in the verification of 

the design. To ease the floorplan restrictions, several compilers will be designed, 

each one finely-tuned for generating one class of chip or portion of a chip. 

One of the ma_.ior advantages of using a silicon compiler is that the user can work in 

his own language. We have seen with the parsers that the user writes logic 

equations. Logic equations are natural to the user, and the functional specification 

is typically given in terms of logic equations. When the user completes the 

functional specification of the chip, the chip can be generated immediately. 

With this rapid specification-to-layout cycle, the user can explore many of the 

design tradeoffs that would otherwise be impossible. When a decision must be 

made, the user can try several alternatives and quickly see the accurate cost of each 

possibility. This can dramatically shorten the functional design cycle, and the 

resulting chip can be significantly more optimal than a similar chip whose 

functional specification was virtually frozen before the physical layout was begun. 

The user can extend the language. Every working group develops its own language 

for intercommunication. Similarly, software designers develop subroutine libraries 

for co!nmonly used routines. In the same manner, users may extend the language of 

the silicon compiler, adding constructs and procedures which allow a more 

efficient communication of the chip specifications. 

Compilers give us technology independence. Just as FORTRAN is available on many 

machines, and programs written in FORTRAN are portable between installations, 

silicon compilers allow designs to be portable across technologies. When the 

technology changes, the code generation routines are rewritten, but the user need 

never see the change. The old design specifications are still valid, and can quickly 

generate masks in the new technology. 

The silicon compiler gives us three guarantees: there will be no design rule 

violations in the generated artwork, the circuit will correctly perform the specified 

function, and multiple representations of the circuit indeed represent the same 
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circuit. These capabilities and guarantees give the silicon compiler fantastic 

advantag.es over the traditional design techniques. 
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Part Two 

Bristle Blocks 
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Chapter 6: Introduction to Bristle Blocks 

As the cost of VLSI integrated circuit design increases, the desirability of automated 
circuit design programs grows. Previous automated circuit design systems have 
evolved from the TTL gate technology, and focus attention upon the logic equation 
specificdtion of the design [5](9](10)(11](23](26]. None of these tools have 
confronted the problem of generating efficient designs in the VLSI technology. In 
VLSI design, the communication network is the expensive portion of the design, 
"\Vhereas in TTL design the commun~cation network is essentially free and the 
components are expensive. TTL design optimization focuses upon the reduction of 
the number of components at the expense of increased interconnections. Hence, 
TTL-based design systems yield undesirable results when applied to the design of 
VLSI circuits. 

The Bristle Blocks system addresses the central issues of VLSI design. By adhering 
to a wiring strategy which optimizes communication, designs are generated which 
compare favorably with hand designs in terms of area and performance. This 
'l.Viring strategy provides the framework for both the layout and the user's 
specification. 

_ Prooeeein9 
Element.e 

_ Mi ere i n&:t.ruot ion 
Decode 

"Of'f'-Chip" 
Doto Communiootion 

II Of'f'-Ch i II 

Control Communioot.ion 

Fig. 6-1: Generalized Datapath Block Diagram 

The 'l.Viring structure implemented in Bristle Blocks is that of a datapath, which 
supports Register Transfer (RT) operations. Figure 6-1 is the block diagram of a 
datapath. A datapath may consist of several data processing elements, such as 
l\.rithmetic/Logic Units (ALUs) and shifters, and storage nodes (registers or latches), 
interconnected by data buses. The datapath elements are controlled by a 
rnicrocontrol word decoder. The microcontrol word is an arbitrarily long series of 
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hinary logic values v.rhich describe the current operation of the datapath. Portions 

of the microcontrol word may be driven by datapath elements, while the remainder 

of the logic value sources are external to the datapath. Given a list of data 

processing elements and a behavioral description of the register transfer operations 

to be performed, Bristle mocks will compile a datapath and control logic layout 

which implements those operations. 

For any preliminary specification of a chip, there may be many structures which 

can be used to implement the specifications. The datapath structure-is one whi.ch 

can be used to implement a variety of functions. In chapter 9 we see examples of 

pipelined chips, signal processing chips, general purpose computing chips, and 

special application chips implemented in Bristle Blocks. 

Although general purpose in nature, restrictions are imposed upon the designs by 

the physical floorplan and the logical and temporal schema of Bristle Blocks. One 

restriction is that all of the data processing elements be of the same width. This 

means that all registers and ALUs, for instance, contain the same number of bits. 

Another major restriction is that complex instruction sequencing is implemented in 

a very inefficient manner. 

Gap 

---.--~--r~-x-i___,r-~-r--~~~~a- Upper Bus 
Channel 

Lower Bus 
Channel 
Microinstruction 
Decode 

Fig. 6-Z: Bristle Blocks Logical Floorplan 

The logical block diagram of Bristle Blocks is shown in figure 6-Z. There is a single 

ro'l.v of data processing elements with a limit of two data buses running past any 

element. There can be more than two data buses on a chip by placing a gap in one of 

the two busing channels. The two busing channels are refered to as the 'Upper Bus 
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Channel' and the 'Lower Bus Channel', and the buses in those channels are referred 
to as the 'Upper Bus' and the 'Lower Bus'. These two buses are designed into each of 
the data processing elements, which does limit the number of buses in the system. 
However, by designing these buses into the cells rather than externally routing the 
bus wires, considerable chip area is saved. 

Buf'f'ere 
~-----------------~-Test.obi 1 i ty Shi f't Re9ist:e·r -------------------

Instruction Decode 

Pada 

Fig. 6-3: Bristle Blocks Physical Floorplan 

The physical floorplan of Bristle Blocks is very sim:i,lar to the logical block diagram. 
The physical floorplan is shown in fig1ire 6-3. The datapath elements are 
horL-::ontally abuted in the order they are encountered in the user's specification. 
The buffers, testability shift register, and the instruction decoder are placed below 
the datapath core. Finally, pads are placed around the perimeter of the chip. 

Bristle Blocks uses the two-phase clocking scheme presented in Mead and Conway 
(20]. Each of the data buses transfers data from the source register to the 
destination register(s) when the PHI 1 clock is high. To improve the performance 
of the chip, these buses are precharged during PHI 2, so that the source registers 
need only pull appropriate bus lines low . .If the registers are asked to refresh th8ir 
internal values, refreshing will occur during PHI 2. The processing elements have 
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the opposite timing conventions. The carry chains and other internal nodes are 

precharged during PHI 1, and the computations occur during PHI 2. Output 

registers are loaded during PHI 2. With this timing scheme, data can be transfered 

into an ALU's input registers and the ALU can load its output register in one PHI 1 -

PHI 2 clock cycle. 

The control line buffers isolate the instruction decoding from the datapath core 

control lines. Each buffer samples an instruction decoder output during one clock 

phase, and drives its control line on the opposite clock phase. This delay allows the 

instruction decoder and datapath core to operate in parallel, and eliminates race 

conditions in the instruction decoder. The bus transfer controls, which are active 

during PHI 1, are driven by microcode conditions existing during the previous PHI 

2. Similarly; all ALU operations are decoded during PHI 1 and are then performed 

the during the next PHI 2. 

When both system clocks are low, the control line buffers dynamically latch the 

values which will drive each control line. If the two testability clocks are strobed, 

each buffer will transfer its value to its righthand neighbor. The leftmost buffer 

gets its new value from the testability input pad, and the rightmost buffer transfers 

its v<1lue to the testability output pad. By repeatedly strobing the two testability 

clocks, the user can examine the state of each control line buffer's latch, and can set 

each latch to new values. The instruction decoder can be tested by examining the 

state of the testability vector, and the datapath core can be tested by setting the 

testability vector to.specific values and observing the results. 

The remaining chapters describe Bristle Blocks in greater detail. Chapter '/ 

documents the input specifications accepted by the parser. Chapter 8 describes how 

Bristle Blocks generates a la;yout from a specification. Chapter 9 presents several 

examples of chips compiled by Bristle Blocks. Finally, Chapter 10 presents the 

history of Bristle Blocks, and proposes a new Bristle Blocks system. 



-92-

Chapter 7: The Bristle Blocks Input Language 

The Bristle Blocks Input Language is a formal language which allows for the 
specification of datapath chips. There are four pieces of information needed by 
Bristle Blocks to compile a chip: the name of the chip, the width of the datapath, 
the data processing elements needed in the datapath, and the structure of the 
microcontrol word. The name is used to identify the datapath, since many 
datapaths may reside in the system at any one time. The datapath width is required, 
since Bristle Blocks can generate datapaths of arbitrary width. In fact, many times 
the difference between a 16-bit chip specification and a 32-bit chip specification is 
only this single number. The microcontrol word is described to facilitate the 
specification of element operations. The data processing elements are listed in the 
order they are to appear in the final layout. As these elements are listed, parameter 
values are given which define how each element is to behave. 

The input parser for Bristle Blocks converts all lower case letters to upper case, so 
the input may be typed in either style. All examples presented here will use 
strictly upper case to improve the readability of the text. The parser recognizes the 
follO"~ving tokens: 

<10> Identifiers, which are a single letter fol lowed by 
an arbitrarily long sequence of letters, cligi ts, 
or underscores. Examples: A Hi_There x49 R202 

<MASK> Masks, which are composed of X, I, and 0 

<INT> 

characters. These are used to indicate which 
bits in the datapath are to be operated upon. 
The number of characters in the mask must be 
equal to the datapath width. Examples for 8-bit 
wide datapaths: XI IOOIXX ooooi iii XioxiO!x 

Integers, which are composed 
long, non-empty set of digits. 

1 32424134 0080 

of an arbitrarily 
Examp I es: 

<BLANK> Blank characters. Al I spaces, tabs, carriage 

<OTHER> 

return, and I ine-feed tokens are ignored by the 
parser. 

Any other character. 
not be interpreted as 
definitions becomes a 
Examples: { + 

Any character which can 
a token by the above 

token of this type. 
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The following rules state the syntax for a Bristle Blocks input file. 

<CHIP> 

<NAME> 

: : : = 

: : : = 

.. -.. -.. -.. -

<NAllE> <BODY> END 

NAME <ID> <INT> ; 

<DECLARATION> 
<BODY> <DECLARATION> 

These rules state that a <CHIP>, which is the grammar accepted by Bristle Blocks, is 
composed of a <NAME>, followed by a <BODY>, followed by the token 'END'. A 
<NAME> is the token 'NAME', followed by an <ID>, followed by an <INT>, follow-ed 
by the token ';'. A <BODY> is either a single <DECLARATION>, or it is a <BODY> 
followed by a single <DECLARATION>. This recursive definition for <BODY> states 
that a <BODY> can be any arbitrarily long, non-empty set of <DECLARATION>s. An 
exampie of a <CHIP> might be 

NAME SAt1PLE 8: 

END 

where we have represented the <BODY> by ' .. .'. The <ID> in the <NAME> is the 
name of the chip, while the <INT> is the width of the datapath. We can see here 
that the name of the chip is SAMPLE and that the datapath is 8 bits wide. 

The <DECLARATION>s are specifications of datapath elements, and the description of 
the microcon trol word. The following sections define the syn tax and semantics of 
<DEC LARA TION>s. 

7.1: Field Declarations 

To specify the functioning of a datapath element, the user must be able to state 
m.icrocode conditions associated with each operation of the element. For example, if 
the element is to increment an internal value, the user must state when the 
incrementation is to occur. This is done by describing the states of the microcode 
inputs which should cause this operation to occur. This microcode condition 
specification is called an EQUATION. The user therefore gives the EQUATIONs 
associated with the elem en ts' functions when specifying the datapath. 
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To facilitate the specification of these EQUATIONs, the microcode inputs, or control 
word, can be broken into FIELDs, so that the EQUATIONs become pairs of FIELDs 
"tVi th associated values. When the microcode inputs corresponding to each FIELD 
have the associated value, the EQUATION becomes TRUE, and the element performs 
the desired operation. 

These FIELDs are described in declarations, using the following syntax: 

<DECLARATION> 

<FIELD_OECL> 
<FIELD_DECL> 

: : : = 

: : = .. -.. -

FIELD <FIELD_DECL> 

<FIELO_SPEC> , <FIELD_DECL> 
<FI ELO_SPEC> ; 

Informally, these rules state that fields are declared by the keyword 'FIELD' 
followed by an arbitrary, non-empty set of field specifications, each separated by 
commas, followed by a semi-colon. Field declarations may occur anywhere in the 
datapath specification, but the fields must be declared before they are used. 

One form of a field specification is the field name followed by numbers indicating 
which bits of the microcontrol word compose the field. For instance, a field 
specification might be 

REG_SELECT<l,3,21> 

This specification has declared a new field, named REq_§ELECT, which is bits 1, 3, 
and 21 of the microcontrol word. In most instances, fields contain contiguous bits, 
so a shorthand can be used: if two of the integers in the list of bits are separated by a 
colon instead of a comma, all of the integers between and including these two 
integers are included in the list. Therefore, the following two specifications are 
identical: 

ALU_DP<l,2,3,4,5> 

ALU_OP<l: 5> 

Bits can not be repeated in a single field. Therefore, this specification is in error: 

SHIFT_CONST<l,2,l,3,2> 

On the other hand, using the short hand notation, if the second integer equals the 
first, no error occurs: 
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A_SOURCE<3,7,9:9> 

Fields may have bi ts in common. For instance, the following three fields all share 
bits 3, 4, and 5 of the microcontrol word, but notice that the third field uses the 
bi ts in reverse order: 

FIELD_l<l:5>,FIEL0_2<3:7>,FlELD_3<8,5:3> 

To aid the use of macros in the field specifications, simple arithmetic operations 
upon the integers in the bit specifications is needed. Therefore, each of the integers 
in the bit specifications can be replaced by a simple equation involving addition and 
subtraction. 

FIELD_X<l,4-2:7+3-5> 

At times, one would like to describe a field not as a collection of specific 
microcontrol word bits, but rather as a subfield of a previously declared field. This 
can be specified as follows: 

FIELD FIELD_A<3,5,2,8,4,7>,FIELD_B=FlELO_A<4:2>; 

Here, FIEL~ is declared to be six randomly ordered bits in the microcontrol word. 
FIEL~ is bits 4 through 2 of FI~L~, which corresponds to bits <B,2,5> of the 
microcontrol word. Additionally, one might like to specify a field which is a 
concatenation of existing fields. This is done as follows 

FIELD A<2:4>,8<8:G>,C= A & 8<2>; 

Here, A is bits 2, 3, and 4, while Bis bits 8, 7, and 6. Field C contains all the bits of 
A and the second bit of B, so C contains bits 2, 3, 4, and 7. One final word about 
field specifications: each field name must be an identifier, which is a letter 
followed by an arbitrary string of letters, digits, and underscores. These rules 
concerning field specifications can be summed up in the following syntax rules: 



<BITSPEC> 

<BITSPECl> 
<Bl TSPECl> 

<BITSPEC2> 
<BITSPEC2> 

<FIELDl> 
<FIELOl> 

<FIELD _LIST> 
<FIELD _LIST> 

<FIELD SPEC> -<FIELD _Sf;'EC> 

<INTSPEC> 
<l NTSPEC> 
<l NTSPEC> 

.. -.. -
: : = 
: : = 

: : = .. -.. -
: : = .. -.. -
.. -.. -
: : = 

.. -.. -.. -

.. -.. -.. -.. -.. -.. -
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< <B ITSPECl> 

<INTSPEC> : <INTSPEC> <BITSPEC2> 
<INTSPEC> <BlTSPEC2> 

, <BI TSPECl > 
> 
<ID> 
<ID> <BITSPEC> 

= <FlELDl> 
<FIELO_LlST> & <FlELDl> 

<ID> <BITSPEC> 
<ID> <FIELD_LIST> 

<INT> 
<lNTSPEC> + <INT> 
<lNTSPEC> - <INT> 

7. 2: Microcode Equations 

To specify the operations for many of the datapath elements, the user declares 

EQUATIONs, which associate values with fields. When the microcontrol words 

associated with the fields have the specified value, the EQUATION is TRUE, and the 

datapath element performs its operation. 

The syntax for EQUATIONs can be summarized by the following rules. 



<EQUATION> 
<EOUATION> 
<EOUATION> 
<EQUATION> 
<EOUATION> 
<EQUATION> 

<EOLIA Tl ONl > 
<EOUATIONl> 

<EOUATION2> 
<EOUATION2> 

<EOUATION3> 
<EOLIAT ION3> 
<EOUATION3> 

<EOUATION3> 

<BITS> 
<BITS> 

<Bl T> 
<BIT> 
<BIT> 

: : :::: .. -.. -
: : = .. -.. -
.. -.. -
.. -.. -.. -.. -
: : = .. -.. -

: : = 
: : !:: 

: : = 

: : = .. -.. -
.. -.. -.. -.. -.. -.. -

ALWAYS 
<EOUATIONl> 
GND 
NEVER 
PAD 
VDD 
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<EOUATIONl> OR <EOLIATION2> 
<EOUATJON2> 

<EOUA TI ON2> AND <EOLIA TI ON3> 
<EOUATJON3> 

( <EOLIA T IONl > ) 
<10> = <Bl TS> 
IF <EOUA T IONl> THEN <EOLIA T IONl> 

ELSE <EQUATION!> FI 
NOT ( <EOUATIONl> ) 

<Bl T> 
<BITS> <BIT> 

I 
0 
x 

In the simplest case, the EQUATION would state that a single field have one specific 
value. Given the field declaration 

FIELD SELECT<1:3>,ENABLE<4:5>,0P<6:8>; 

an EQUATION might be 

SELECT=IXO 

This states that the first bit of SELECT should be high and the third bit should be 
low. The state of the second bit of SELECT does not matter. Notice that the high and 
low specifications are the letters I and 0, not the digits 1 and 0. The SELECT field is 
three bits long, therefore the value to be associated with that field must be three 
bits long. 

A more general equation might state that several fields have fixed values. Given 
the field declaration from above, the following example shows use of the AND 
function. 

SELECT=IXO AND ENABLE=XI 

Here we require the second bit of the ENABLE field to be high in addition to the 
value required in the SELECT field. The AND function is practically free in terms of 
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chip area, so the use of AND is welcomed and encouraged. 

To allow more than one value to be associated with a field, an OR function is 

required. If we had written the equation as 

SELECT=IXO OR ENABLE=XI 

then the equation would be TRUE when either SELECT=IXO or ENABLE=XI or both. 

The OR function does cost some area in the instruction decoder, so some care should 

be exercised in its use. The OR functions will apply after all of the AND functions: 

vve say that OR has a lower precedence than AND. Therefore, 

SELECT=IXX ANO ENABLE=XI OR SELECT=XXO ANO ENABLE=OX 

will group as 

<SELECT=IXX ANO ENABLE=XI> OR <SELECT=XXO ANO ENABLE=OX> 

rather than as 

SELECT=IXX AND (ENABLE=Xl OR SELECT=XXOl ANO ENABLE=DX 

To get the second grouping, the parentheses must be used. 

To invert the polarity of an equation, the NOT function is used. The following 

equation is TRUE unless SELECT=IXX and ENABLE=XI. 

NOT( SELECT=IXX ANO ENABLE=XI ) 

The parenthesis are required. Notice that the following two specifications are not 

equivalent. 

NOT ( SELECT =100 

SELECT =DI I 

The first equation will go TRUE if SELECT< 1 >is low OR if SELECT<2> is high OR if 

SELECT<3> is high, whereas the second equation will go TRUE only when 

SELECT< 1 > is low AND SELECT<2> is high AND SELECT<3> is high. 
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Other equations can use IF ... THEN ... ELSE ... FI constructs. One might say 

IF SELECT=IXO THEN ENABLE=Xl AND OP=OIO ELSE OP=IXX FI 

This equation is TRUE if SELECT=IXO and ENABLE=XI and OP=OIO or if 
SELECTOIXO and OP=IXX. Each of the IF, THEN, and ELSE clauses may be any of 
the equations specified up to this point, including other IF ... THEN ... ELSE ... Fls. One 
caution, however: The IF ... THEN ... ELSE ... FI equation can take a relatively large 
area in the instruction decoder. One should not include equations of this form with 
reckless abandon. 

Each of the equation constructs presented so far deal with variable equations, 
equations that depend on microcode inputs. Other equations may have fixed values, 
such as always being low. Fixed equations ma:y have one of five values: ALWAYS, 
NEVER, VDD, GND, and PAD. In the ALWAYS case, the equation will always be 
TRUE; in the NEVER case, the equation will always be FALSE. In the VDD and GND 
cases, the control line is tied directly to the appropriate power line. In the PAD case, 
a pad will be added to the chip, and this control line will be the sole signal which 
depends upon that pad's value. 

7 .3: Parameters 

The datapath elements are parametrized cells. They consume parameters specifying 
the configuration required for the particular instance of the cell and produce the 
corresponding layout. There are several kinds of parameters used in the Bristle 
Blocks cells. The first form of parameter is an EQUATION, where the equation 
specifies when a certain operation should occur. Another type of parameter is a 
REGISTER_?PECIFICATION, which describes a register, for example, the input 
register for an incremen ter. A third parameter is an integer. For Bristle Blocks, 
integers are restricted to positive, usually non-zero values. A fourth kind of 
parameter is a FIELD, which might indicate a shift constant, Jor instance. Another 
parameter type is an OUTPUT, which is used to drive a signal from a datapath 
Plr>ment to either an output pad or into the instruction decoder. A sixth parameter 
type is a MASK, which is used to specify which bits in the datapath are being 
operated upon. A DECODE parameter is used to decode a field into one of many 
instructions. Finally, SOURCE and DESTINATION parameters are used to connect bits 



-100-

from the datapath to bits in the instruction decoder. Each of these parameter types 

vvill be discussed in more detail, with examples. 

There is a uniform syntax for specifying each of the elements in the datapath. The 

first token is an identifier specifying the class of the element, and the second token 

is always an identifier which is the name of that element. For example, 

REGISTER PC .•.•. 

ALU ALU ... ; 

Here we have a REGISTER named PC and an ALU named ALU. Following the name is a 

list of keywords and parameter values. The keywords are a function of the element 

class. REGISTERs have one set keywords, while the ALU has a different set. Some 

of the parameters are required, others are optional. The cell documentation lists the 

parameter keywords, types, and requirement status for each of the element classes. 

The following rules define the syntax for calling a datapath element: 

<DECLARATION> .. - <10> <l 0> ; .. -
<OECLARATlON> : : = <10> <ID> <PARAtlS> 

<PARAth : : := <ID> <DECODE> 
<PARAtl> .. - <ID> <DES TS> .. -
<PARAM> : : = <ID> <EOUATION> 
<PARAfl> : : = <ID> <ID> 
<PARAtl> : : = <ID> <INT> 
<PARAtl> : : := <10> <1-JASK> 
<PARAfl> : : := <ID> <OUT> 
<PAR Alb : : == <ID> <REG_SPEC> 
<PARAtb .. - <ID> <SOURCES> .. -
<PARAtb : : = <ID> <VAR_EOUATION> 

<PARAtlS> : : = <PARAM> <PARAMS> 
<PARAtlS> : : = <PARAM> 

7 .3.1: Equations 

One of the Bristle Blocks elements is a bus precharge unit. This cell will precharge 

the upper data bus when its PRECHARGE parameter is high. The PRECHARGE 

parameter is an EQUATION, but the parameter is optional. If the user does not 

specify the parameter value, the cell will use a default value which always 

precharges the bus. The documentation of the cell reflects these characteristics: 



EI em en t: PRECHARGE_UPPER 
Required Parameters: NONE 
Optional Parameters: 
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Keyword: PRECHARGE Type: EQUATION Oetaul t: AU.JAYS 

The type of the element is PRECHARG~UPPER. There are no required parameters 

and one optional parameter, which is of type EQUATION. The default value for the 

parameter is ALWAYS. One might use this element as follows. 

FlELO PCHG<l>; 

PRECHARGE_UPPER CELL_TO_PRECHARGE_UPPER_BUS PRECHARGE:PCHG=I; 

The element is of type PRECHARGE_UPPER. The name of this particular 

upper-bus-precharger is CELL_TO_J>RECHARGE_UPPER BUS. The one and only 

parameter for this cell has the keyword PTIECHARGE. The user has specified that 

the bus is to precharge whenever the PCHG field is high. The following code uses 

the default value for the PRECHARGE parameter: 

PRECHARGE_UPPER. CELL_TO_PRECHARGE_UPPER_BUS; 

7.3.2: Register Specifications 

A second common parameter type is REGISTE~PECIFICATION, or RE~PEC. A REG 

~PEG describes a register that can be used as an input or output register of a datapath 

clement. For example, an ADDER has two input registers and an output register. 

The user specifies how the register should interface to the data buses. Equations 

may be given to control the reading or writing of the two buses. Additionally, the 

register can be made to refresh its internal value, or load with a predetermined 

(fixed) constant. The syntax of a REG SPEC is 

<REG SPEC> .. - <REG_SPECl> ] - .. -
<REG _SPEC!> .. - <REG _SPEC!> , <ID> <REG _VAL> .. -
<REG _SPECl> .. - [ <ID> : <REG VAL> .. - -

<REG _VAL> .. - <EQUATION> 
<REG _VAL> : : = <f·JASK> 

The keywords for a REG SPEC are READ UPPER, READ LOWER, WRITE UPPER, WRIT~ 

~OWER. REFRESH, SUGGEST, and VALUE. These are all EQUATIONs except VALUE, 

which is a MASK. When SUGGEST is TRUE, the VALUE is loaded into the register (Xs 

in the mask indicate bits of the register that are not modified by the suggest 

operation). For example, 



NAnE EXAllPLE 8: 

FIELD REG_OP<l: 3>; 

•••• lREAO_UPPER: REG_OP=!OO, 
llRI TE_UPPER:REG_OP=l DI, 
REAO_LOWER: REG_OP=llO, 
IJRJ TE_LOIJER: REG_OP=l 11, 
REFRESH: ALWAYS, 
SUGGEST: REG_OP=Ol 1, 
VALUE: XllXOOXXJ •••• 
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When the RE~P field is IGO, this register will take the value from the upper bus 

and store it in its internal node. When REG OP=IOI, the register drives the upper bus 

with the data contained in its internal node. Similar functions occur with the 

lower bus. The register refreshes its internal value every cycle. When REG OP=OII, 

the second and third bits of the register are set high, while the fifth and sixth bits 

are set low. The remaining bits are not modifi~d. All of the parameters in the REG 

~PEG are optional. Also, none of the read or suggest equations should be TRUE when 

either of the '\.Vrite equations are TRUE, because the data buses could be loaded with 

garbage. Unfortunately, the compiler can not verify that these equations are 

exclusive, due to the fact that the various register equations may be driven by 

independent sets of control bits. The correctness of these equations must be insurf!d 

in the software. 

To illustrate the use of a RE~PEC, consider an INCREMENTER. The documentation 

for an INCREMENTER is 

EI em en t: I NCREftENTER 
Required Parameters: 

Ke\,J1-10rd: INPUT _REGISTER 
Keyi.mrcl: LOAD 

Optional Parameters: 
Ke\,jworcl: OUTPUT_REGISTER 
Keyword: PRECHARGE 
Keyi.JOrd: CARRY _OUT , 

Type: REGISTER 
Type: EQUATION 

Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 

Default: AL~JAYS 

The INCREMENTER takes the data from its input register, adds one to this value, and 

stores it in the output register when the LOAD equation is true. If the OUTPU'!__ 

_BEGISTER parameter is not specified, the INCREMENTER will store the value into its 

input register. The following code shows two incrementers, INCl and INC2. INC1 

has only a single register; INC2 has separate input and output registers. 
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NMIE I NCREMENTER_EXAllPLE 8; 

FIELD RESET<l>,0P<2:3>: 

I NCREflENTER I NCl 
INPUT_REGISTER: [ lJRITE_IJPPER: OP=Ol, 

SUGGEST: RESET=!, 
VALUE: 00000000 J, 

LOAD: AUJAYS; 

I NCREt1ENTER I NCZ 
INPUT _REGISTER: [ READ _UPPER: OP =XI , 

REFRESH: ALWAYS, 
SUGGEST: DP=IO, 
VALUE: OOOOXXXX ], 

OUTPUT_REGISTER: [ WRITE_UPPER: DP=II ], 
LOAD: ALWAYS; 

PRECHARGE_BOTH PCHG; 

ENO 

When RESET is high, the first incrementer clears its value. The value in this first 

incrementer is incremented every cycle. When the OP field equals OI, INC 1 writes 

its value onto the upper bus. 

The second incrementer always increments its input value and stores it in its output 

register. When the OP field is 00, the input register for INCZ does not load with a 

ne11\T value, so effectively no operation is done by INC2. When the OP field is OI, the 

input register is reading from the bus, while INC 1 is writing to the bus, so this 

operation is a transfer from INC1 to INCZ. When OP is IO, the input register 

suggests, but only the four most significant bits are altered: they are cleared. When 

OP is II, the input register is also reading from the upper bus, but the output 

register is writing to the bus, so this operation transfers data from the output of 

INC2 back to the input. 

7.3.3: Integers 

The third parameter type is that of Integer. Integers in Bristle Blocks must be 

positive, and usually must be non-zero, although they may have leading zeros. An 

element which takes an integer as a parameter is the STACK element. The 

documentation for a STACK is 



Element: STACK 
Required Parameters: 

Key1-1ord: DEPTH 
Keyt-mrd: TOP 
Keyt~ord: POP 
Keyt-mrd: PUSH 

Optional Parameters: 
Keyword: f1IDDLE 
Keyt.mrd: BOTTOM 
Keyword: REFRESH 
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Ti,JPe: INTEGER 
Type: REGISTER 
Type: EQUATION 
Type: EQUATION 

Type: REGISTER 
Type: REGISTER 
Type: EQUATION 

Def au I t: [REFRESH: AL~IA YS J 
Default: [REFRESH:ALL-IAYSJ 
Default: ALWAYS 

The STACK is implemented as a TOP register followed by DEPTH-1 MIDDLE registers, 
followed by a BOTTOM register. Between adjacent pairs of registers lie circuitry 
for transfering data between the registers. When the PUSH equation is TRUE, data 
in the TOP register transfers into the first MIDDLE register as data from the first 
MIDDLE register is transfered into the second MIDDLE register, etc. The POP control 
performs the inverse operation. The following STACK has depth 6: 

NAME STACK_TEST_l 8; 

FIELD OP<1:2>; 

STACK SAllPLE_STACK 
DEPTH: 6, 
PUSH: OP=IO, 
POP: OP"'! I, 
TOP: [ READUPPER: DP=XO, 

WRITEUPPER:DP=OI, 
REFRESH: ALWAYSJ; 

PRECHARGE_BOTH PCHG; 

END 

When OP=OO, the TOP register reads data from the upper bus, overwriting -what 
used to be on the top of the stack. When OP=OI, the data on the top of the stack 
writes to the upper bus, but the stack does not POP. When OP=IO, the stack does a 
PUSH, and the register loads from the bus. When OP=II, the stack POPs, but the TOP 
register does not write to the upper bus. The stack can not perform a POP operation 
on the same cycle that the register is writing to a bus because the bus -will be 
·written with garbage. It is ok to read from a bus while the stack is doing a PUSH, 
however. Also, the stack should not do both a PUSH and a POP at the same time, 
unless the depth of the stack is 1. For longer stacks, registers in the middle of the 
stack "\-Vould be loaded from their two neighbor registers at the same time, so 
garbage would appear in these registers. For a stack of depth 1, however, there are 
only two registers (the TOP and the BOTTOM registers), so a simultaneous PUSH and 
POP will do a swap of the two register values, as illustrated in the following 



example. 

NA~lE STACK_TEST _2 8; 

FIELD 0P<1:4>1 

STACK SWAPPER 
TOP: CREAD_UPPER: OP=IOXX, 

~JR f TE_UPPER: OP= 11 XX, 
REFRESH: AU-IA YS, 
SUGGEST: OP=Illl, 
VALUE: 000000001 , 

BOTTOM: lREAO_UPPER: OP=XXIO, 
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~IRITE_UPPER: OP=XXI I AND NOT <OP=l IXX>, 
REFRESH: AUJA YS, 
SUGGEST: OP=II!l, 
VALUE: 000000001 , 

PUSH: OP=XXOI, 
POP: DP=DIXX, 
DEPTH:l; 

PRECHARGE_BOTH PCHG; 

END 

The following table lists the operations performed by this stack. 

OP Ope1-at ion OP Operation 
0000: No Change 1000: Load TOP from 
0001: Copy from TOP to BOTTOM IOOI: Push into TOP 

bus 

0010: Load BOTTOM from bus IOIO: Load both TOP and BOTTOM 
001 I: Read BOTTOM to bus IOI I: BOTTOM goes to TOP and bus 
0100: Copy from BOTTOM to TOP I IOO: Read TOP to bus 
OIOI: Swap TOP and BOTTOM I IOI: TOP goes to BOTTOM and bus 
0110: Push into BOTTOM I I IO: TOP goes to BOTTOM and bus 
011 I : BOTTOM goes to TOP and bus I I I I : Clear TOP and BOTTOM 

7 .3.4: Fields 

Parameters of type FIELD are used to specify shift constants or bit selects. For 

example, a 16-bit datapath may have a shifter capable of shifting data left from Oto 

15 places in one cycle. A 4-bit field can specify the size of the shift in this case. 

For a 32-bit datapath, however, the shifter can shift between O and :31 places in one 

cycle, which requires a 5-bit field to specify the shift constant. The SIMPLE 

~HIFTER element is one example of an element which requires a field to supply the 

shift constant. Documentation for the SIMPLE SHIFTER is 
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Element: SlllPLE_SHIFTER 
Required Parameters: 

K e1J1-JOrd: flOST _SIGNIFICANT _l.JQRO 
Ke1Jword: LEAST _SIGNIFICANT _1.JORO 
Keyword: OUTPUT_REGISTER 
Keyword: SHIFT_CONSTANT 
K el.lL~ord: LOAD 

Option~! Parameters: NONE 

One might use this shifter as follows. 

NAME SHIFT_TEST 16; 

F !ELD REG_SELECT <l: 3>, SHIFT _CONST <4: 7>; 

S IflPLE_SH I FTER SH IF TER 
LOAD: AUJA YS. 
SHIFT_CONSTANT: SHIFT_CONST, 

T\Jpe: REGISTER 
Ti.we: REGISTER 
Type: REGISTER 
Type: FI ELD 
T\:Jpe: EQUATION 

OUTPUT REGISTER: [WRITE UPPER: REG SELECT=IXXJ, 
t10ST _SIGNJF !CANT _WORD: [READ_UPPER: REG_SELECT =XXI, REFRESH: AUJA'fSl, 
LEAST _SIGNIFICANT _WORD: [REAO_UPPER: REG_SELECT =XXI, REFRESH: AU.JAYS] : 

PRECHARGE_BOTH PCHG; 

END 

7.3.5: Outputs 

Signals like the carry output of an adder come from the datapath, and may go either 

to pads or into the instruction decoder. If the signal goes to a pad, Bristle Blocks 

vvill add an output pad to the chip and connect the pad to the control wire. If the 

signal goes to the instruction decoder, it is treated like any other microcontrol word 

bit, and so can modify the operation of the datapath. The syn tax for specifying the 

operation of an output is 

<OUT> : : = <ID> 
<OUT> : : = <ID> BIT <INT> 
<OUT> : : = PAD 
<OUT> : : = UNUSED 

In the first case, the output specification is a field name. The control line from the 

datapath element will drive the first bit of the field. In the second case, a field 

name and an index are given. The index indicates which bit of the field will be 

driven by the datapath element. The specification of 'PAD' states that the control 

line should connect to an output pad. The 'UNUSED' option indicates that the 

control line should not connect to anything. This is equivalent to not specifying 

the parameter. In the register example, the incrementer element was seen to have a 

parameter with keyword CARRY OUT. This parameter is of type output. 
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Augmenting the register example to include connection of the carry output signal 

to a pad, we get the following code: 

NAt1E OUTPUT _EXM1PLE 8; 

FIELD RESET<l>,0P<2:3>; 

I NCREl1ENTER I NCl 
INPUT_REGISTER: ( l.IRITE_UPPER: QP,,,OI, 

SUGGEST: RESET=!, 
VALUE: 00000000 l, 

LOAD: AUJAYS, 
CARRY _OUT:. PAO; 

I NCRH1ENTER I NC2 
INPUT_REGISTER: [ READ_UPPER: OP=Xl, 

REFRESH: AL~JAYS, 
SUGGEST: OP=IO, 
VALUE: OOOOXXXX l, 

OUTPUT _REG I STER: [ WR I TE_UPPER: OP= I I J , 
LOAD: AUJA YS 
CARRY_OUT: PAD; 

PRECHARGE_BOTH PCHG; 

ENO 

Each of the incrementers' carry outputs will go to pads. 

7.3.6: Masks 

MASKs are used to indicate which bits of the datapath are to be affected by a 

particular operation. Recall in the register example that one of the incrementers' 

input register had a suggest value of OOOOXXXX. This indicates that the four most 

significant bits should be set low, which the four least significant bits were to be 

left unchanged. Notice that the length of the MASK is required to be the same as 

the width of the datapath, since each character in the MASK represents one bit in 

the datapath. The first bit in the MASK is associated with the most significant bit 

in the datapath, while the last bit in the MASK is associated with the least 

significant bit. 
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7.3.7: Variable Timing Equations 

For almost every control line in Bristle Blocks, we can state precisely which clock 
phase should enable the line. Registers always write to a bus during PH!..__}; AL Us 
always operate during PH~. However, for the input and output ports, we can not 
say what the timing requirements are, for these are dictated by off-chip concerns. 
Hence, the control lines driving the ports must have the flexibility of changing the 
timing information. <VAR_l:QUATION>s are <EQUATION>s with the capability of 
having this modified timing. 

<VAR_EOUAT I ON> : : = <EOUATIDN> 
<VAR_EOUAT I ON> : : = <EQUATION> [ <VAR_ TIMI NG> ] 

<VAR_TIMING> : : = CLOCKED PHI 1 
<VAR_TlMING> : : :s CLOCKED PHf2. 
<VAR_TIMING> : : = NOT CLOCKED 

We see that a VA~QUATION may be a standard equation, in which case the timing 
takes the default clock phase, or an equation followed by one of the three timing 
specifications. The VA~QUATION may take on PH!..J or PH!_? as the enabling 
clock, or may asynchronously drive the control line directly. To see an example of 
these variable equations, consider an output port. The documentation for the 
element is given, followed by an example showing its use. 

Element: OUTPUT_PORT 
Required Parameters: 

Keyword: REGISTER 
Optional Parameters: 

Keyword: DRIVE 

Type: REGISTER 

Type: EQUATION Variable Timing 



NAME OUTPUT TEST 8; 

OUTPUT PORT PORT 1 - -REGISTER: [REFRESH:ALWAYS]; 

OUTPUT PORT PORT 2 - -REGISTER: [REFRESH:ALWAYS], 
DRIVE: PAD; 

OUTPUT PORT PORT 3 
REGISTER: [REFR-ESH:AL WAYS], 
DRIVE: PAD"[ CLOCKED PH!.._!]; 

PRECHARG E BOTH PCHG; 

END 
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The first port always drives the pads. The second port drives the pads during PH!_? 
only when its input (coming from an input pad) was high during the previous PH_!_ 

_!. The third port drives the pads during PH.!J. only when its input (coming from a 
different input pad) was high during the previous PH.!_?. 

7.3.8: Decode Operations 

The Arithmetic-Logic Unit (ALU) is an example of a cell which can perform a wide 
variety of operations, but which has relatively few control lines. The particular 
operation performed by the ALU depends upon the state of several control lines. It is 
very difficult to specify the operation of the ALU in terms of its control line. One 
naturally thinks of the specification of the ALU operation in terms of operations 
like ADD and SUBTRACT. A DECODE parameter specifies how a field should be 
decoded to perform the appropriate operations. For example, the following is a 
partial listing of the ALU's documentation. 
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Element: ALU 
Required Parameters: 

KeyL~ord: !NPUT_A 
K ey1-1ord: INPUT _B 
Key1~ord: OUTPUT_l 
K ey1~ord: DECODE 

Opera ti ans: 

Type: 
Type: 
Type: 
Type: 

OONT_CARE 
ADD 
ADD_~J_CARRY 
SUBTRACT 
SUB _!.J _BORROl~ 
I NCREf1ENT _A 
I NCREnENT _B 
DECREl1ENT _A 
DECREllENT _B 
XOR 
AND 
SETA 
OR 
NANO 
NOR 

REGISTER 
REGISTER 
REGISTER 
DECODE 

Optional Parameters: 
Keyword: OUTPUT_2 
Keyword: PRECHARGE 
Key1~ord: CARRY _OUT 
Keyword: CARRY _I NTO_JlSB 
K ey1.1orcl: f1SB 
KeyL~ord: ZERO 
Keyword: WRITE_OUTPUT_l 
Key1-1ord: WR! TE_OUTPUT _2 

T1,,Jpe: REGISTER 
Type: EQUATION 
Type: OUTPUT 
T~me: OUTPUT 
Type: OUTPUT 
TiJpe: OUTPUT 
Type: EQUATION 
Type: EQUATION 

We can specify the operation of the ALU as follows. 

FIELD ALU_OP<1:2>; 

ALU 
DECODE: ALU_OP 

0=> ADD 
1=> SUBTRACT 
2=> /\ND 
3=> OR . . . . . ' 

Default: AUJAYS 

Default: ALWAYS 
Default: GND 

• 

When the ALU_OP field has the value 00, the ALU will perform an addition 
operation, while an ALU~P of OI will cause a subtraction. ELSE can be used as the 
last case in the decode, which can save effort in a large, sparse decode . 

.... DECODE: ALU_OP 
0=> ADD 
2=> AND 
ELSE=> OR 

Another shorthand available allows several field values to be associated with one 
operation, using the BITSPEC construction. 



.... DECODE: ALU_OP 
0=> ADO 
2=> ANO 
<l, 3>=> OR 
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The formal syntax for DECODE parameters is 

. rwrnnE> .. - <DECODE> <DECODEl> .. -
'it LUU[> .. - <ID> <DECODEl> .. -

<0ECODE1> .. - <BITSPEC> => <ID> .. -
<DECODE!> .. - ELSE => <ID> .. -
<DECODEl> : : = <INT> => <ID> 

This states that a DECODE is an <ID>, which is the field to decode, followed by a list 
of associations. Each association ties a field value or values to an operation. If there 
are some field values which are not associated with operations, a DON'T CARE is 
assumed. If the decoded field ever contains one of these values, the operation 
performed is unspecified and unguaranteed. 

7. 3 .9: Sources 

In Bristle Blocks datapaths, we have data lines running horizontally and control 
lines running vertically. There are times, however, when one would like to turn 
data lines into control lines. For example, flags from a register leave the register as 
data, but should enter the instruction decoder as control lines. The lines have to 
'turn the corner'. Another example would be an instruction register. The 
instruction register is loaded with data, the operation to be performed, and it must 
communicate this data to the decoder. Bristle Blocks needs to know which bits of 
the register should connect to which inputs of the instruction decoder or to which 
pads. A parameter of type SOURCE conveys this information. 

In the simplest case, a SOURCE parameter is a list of bit index and instruction bit 
pairs. For example, 

1 => FLAG ; 2 => ENABLE l 

indicates that bit 1 (the most significant bit) of the register in question connects to 
the FLAG field, which must be a field containing only one bit. Similarly, the second 
bit of the register connects to the ENABLE field, again a single-bit field. To connect 
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to multiple-bit fields, the BITSPEC shorthand is used: 

I <1:4> => OPCODE I 

Here, the O~ODE field must be a four-bit field, which is driven from the four 
most significant bits in the register. 

One element that uses SOURCES is a DATA TO CONTROL element. This element -will 
function as an instruction register. Data in the register can drive bi ts in the 
instruction decoder. The documentation for this element is 

Element: DATA_TO_CONTROL 
Required Parameters: 

Keyword: REGISTER Type: REGISTER 
Keyword: MAP Type: SOURCES 

Optional Parameters: NONE 

One might use this element as follows. 

NMlE IR_TEST 8: 

FIELD FROM<1:4>, T0<5:8>; 

JNPUT_PORT INSTRUCTION_PORT 
REGISTER: [l.JR I TE_UPPER: FROM=OOOOJ , 
LOAD: ALWAYS; 

OATA_TO_CONTROL INSTRUCTION_REGISTER 
REGISTER: [REAO_UPPER: TO=OOOO, 

SUGGEST: NOT<T0=0000), 
VALUE: 00000000], 

tlAP: I <1:4> => FRot1; <5:8> =>TO l; 

INCREMENTER PC 
INPUT_REGISTER: [READ_UPPER: TO=OOOI, 

REFRESH: AUJA YS, 

LOAD: FROM=OOOO; 

OUTPUT_PORT ADDRESS 

~JR I TE_Lm!ER: FROf·l=OOOOJ ; 

REGISTER: [READ_LO~IER: FROM=OOOO, REFRESH:AL~JAYSJ; 

PRECHARGE_BOTH PCHG; 

ENO 

This example is portion of the Fetch/Execute section of a simple microprocessor. 
The Instruction Register drives the TO and FROM fields of the microcontrol -word. 
Notice that if the TO field is not 0000, the instruction suggests to 00000000 for the 
next cycle. The 00000000 operation causes data in the Instruction Port to be loaded 
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into the instruction register, and the PC value increments. Thus, after every 
instruction which does not write into the instruction register, the instruction 
register automatically loads with the FETCH instruction. 

Sources can also specify that certain bits in a register should connect to pads. If 
many bits from a register are connecting to pads, OUTPUT PORTS shoulrl be used, but 
if only a few bits connect to the decoder and a few connect to pads, a DAT0Q_ 
~ONTROL register can be used. Pads are indicated by the token 'PAD' in place of a 

field specification. The syntax for SOURCES is 

<SI NGLE_SOURCE> 
<SlNGLE_SOURCE> 
<SINGLE_SOURCE> 
<SINGLE_SOURCE> 

<SOURCE> 
<SOURCE> 

<SOURCES> 

: : :::: .. -.. -
! : = 
: : = 

.. -.. -
: : = 

.. -.. -
7.3.10: Destinations 

<BITSPEC> =><ID> 
<BI TSPEC> => PAD 
<INTSPEC> => <ID> 
<INTSPEC> => PAD 

<SINGLE_SOURCE> ; <SOURCE> 
<SINGLE_SOURCE> } 

{ <SOURCE> 

The SOURCE parameters indicate how to turn data lines into control lines. The 
inverse operation is also useful: turning control lines into data lines, which allows 
equations from the instruction decoder to load into registers, to be used in the 
datapath during later cycles. The format for specifying a DESTINATION parameter is 
very similar to the SOURCE parameter format. 

<DEST> .. - <EOUATIONl> => <INT> ; <DEST> .. -
<DEST> .. - <EOUATIONl>· => <INT> } .. -
<:OESTS> .. - { <DEST> 

Informally, a DESTINATION parameter is a list of EQUATIONs with associated bit 
indicies. The following example illustrates calls of this type. The documentation 
for a CONTROL TO DATA element is given, along with a datapath using this element. 



Element: CONTROL_TO_DATA 
Required Parameters: 
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Keyword: REGISTER Type: REGISTER 
Keyword: MAP Type: OESTS 
Keyword: LATCH Type: EQUATION 

Optional Parameters: NONE 

NMlE DEST I NAT I ON_EXAMPLE 4; 

FIELD INPUT<1:2>; 

CONTROL_TO_OATA DECODE 
REG I STER: [l.JR ITE_UPPER: ALWAYS] , 
nAP: IINPUT=OO => l; INPUT=OI => 2; INPUT=lO => 3; INPUT=I I => 41, LATCH: ALWAYS; 

PRECHARGE_BOTH PCHG; 

ENO 

The LATCH equation states that the register should be loaded from the DESTINATION 
parameter values every clock cycle. The DESTINATION parameter in this example 
'decodes' :the value of the input field: When the field has value 0, the most 
significant bit of the register will be the only bit with a high value; when the field 
has value l, the next most significant bit will be the high bit, etc. Any bits of the 
register not specified in the DESTINATION parameter will be unaffected by the 
LATCH signal. 

7 .4: Comments and Macros 

In addition to the language constructs presented above, the Bristle Blocks parser has 
two meta-commands: comments and macros. These constructs are not part of the 
formal language definition, but are processed by the parser before the formal 
language is parsed. 

Comments consist of all characters between double-quote characters. The parser 
removes the double-quotes and all characters between them, before tokenizing the 
input stream. This allows comments to be inserted anywhere, even in the middle of 
an indentifier or number. 

Macros are simple text-replacement facilities which reduce the amount of typing 
required to specify a·design. They also aid in the reduction of errors. A macro has a 
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name, a set of parameters, and a body. When the macro is instantiated, the body is 
inserted into the character stream. Any parameter values to the macro are inserted 
in the text where the parameters occur in the macro body. An example of macro 
usage follows. 

flACRO TES Tl {ABC, DEF l 
% THIS IS A TEST: ?ABC? IS PARAMETER 1, 

?DEF? JS PARAMETER 2. 
% 

/*TESTllHI THERE,XYZZYl*/ 

We have defined the macro TEST 1. This macro takes two parameters, which are 
identified as ABC and DEF. The body of the macro consists of all characters between 
the percent signs. Within the macro body, tokens within question marks refer to 
instantiations of parameter values. For instance, the value of the first macro 
parameter is inserted in the macro body where the characters ?ABC? occur. 
Following the macro definition, we have a macro instantiation. The characters /* 
signify the start of a macro call, while "'I indicates the end of the call. Between 
these indicators, we have the macro name and parameter values. Here we are 
stating that the macro TEST 1 is to be called, with the first parameter set to the 
characters 'HI THERE' and the second parameter set to the characters 'XYZZY'. The 
above macro definition and instantiation is identical to the following text. 

THIS IS A TEST: HI THERE IS PARAMETER 1, 
XYZZY IS PARAMETER 2. 

Macro parameters may be given default values. The following example gives 
default values for the first and third parameters of the macro. 

MACRO TEST21Pl/123,P2,P3/HI MOMl % IF ?P2?-?Pl? THEN WRITE!'?P3?'l; FI % 
/,·, TEST2 {453, 231, WHAT?> M 

I»: TEST2 {. Xl ~·:/ 

These four macro instantiations will expand into the following text. 



IF 231=453 THEN WRITEl'WHAT?'I; Fl 

IF X=l23 THEN WRITE('HI MOM'l: FI 

IF X=l23 THEN WRITE('HI MOM'I; Fl 

IF =123 THEN WRITE('HI MOM'l; Fl 
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In the first example, we specified values for all three parameters, which were 
inserted into the text. In the second example, we let the first and third parameters 
take their default values. This was done by not specifying a value for the 
parameters. In the third parameter, we terminated the parameter list after the 
second parameter, so the third parameter again took on its default value. In the 
final example, the parameter list was empty, so every parameter took on its default 
value. Since the second parameter did not have a default value, an empty set of 
characters was used. 

Parameter values consist of all characters upto but not including the first comma or 
close parenthesis. There are times, however, when one would like to pass these 
characters in as parameter values. To allow this, parameter values or default values 
may be enclosed in percent signs. For example,, 

/*TESTZl,X,%ILLEGAL CONDITION, PLEASE TRY AGAIN%l*/ 

produces the following text. 

IF X=123 THEN WRITEl'ILLEGAL CONDITION, PLEASE TRY AGAIN'l; FI 

Macros are instantiated before the parser tokenizes the input, in the same manner as 
comn1ents are removed. This allows identifiers to be 'split' across macro 
instantiations: part of an identifier or number is generated outside of a macro 
instantiation, while the remainder is generated by the macro. Macro instantiations 
may nest, and macro definitions may instantiate other macros. Macros must be 
defined before they are instantiated. 

A macro definition is treated like a declaration to the parser. A formal statement of 
macro definition syntax is presented here. Rules which use:*= instead of::= do not 
allow arbitrary insertion of blanks. 



<DECLARATION> : : : = 

dlACRO _HEADER> : : = 

d'lACRO_HEADERl > .. -.. -
<~lACRO _HEADERl> .. -.. -
<ilACRO _HEAOERl> : : = 

<PARAf'1 _DECL> : : ::::: 

<PARAf'l_DECL> : : == 

<PARAf'l_DEF AULT> : ~·:= 

<PARAl1_DEF AULT> : ,·,= 

d1ACRO_BODY> : ,·,= 

<ilACRO_BOOYl> : l'c= 

d'lACRO_BODYl > 

<ilACRO_BODY _ELHlENT> 

<llACRO_BODY _ELEIJENT> 
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MACRO <ID> d1ACRO_HEADER> <MACRO_BODY> 

<t·JACRO_HEAOERl > 

( 

( <PARAM_OECL> 

<flACRO_HEADERl > <PARAM_DECL> 

<ID> 

<ID> <PARAM_DEFAUL T> 

I al 1-characters-unti I-comma-or-) 

I% all-characters-until-%% 

<11ACRO_BODY1> % 

% 

<MACRO_BODYl > <MACRO_BOOY _ELEl1ENT> 

.. -.. -
al 1-characters-unti 1-%-or-? 

? <ID> ? 
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Chapter 8: How Bristle Blocks Works 

In this chapter, we will discuss the operations performed by Bristle Blocks. We 

will use the following chip specification as our example. This chip may be thought 

of as a datapath for a simple control processor. We have eight internal registers and 

an ALU, along with an input port and an output port. Figure 8-1 gives a block 

diagram representation of the circuit. The input specification to Bristle Blocks is 

listed here. 

NAtlE SN1PLE 8; 

FIELD REG_SELECT<l:3>,ENABLES<4:G>,ALU_OP<7:9>; 

INPUT _PORT INPUT LOAD: ALWAYS, REGISTER: (l.JRITE_LOWER: ALWAYS]; 

MACRO AODRESS!AOORJ 
%REGISTER R?AOOR? OPTIONS: [REAO_UPPER: REG_SELECT=?ADOR? AND ENABLES=XXI, 

l.JRITE_UPPER: REG_SELECT=?AOOR? ANO ENABLES=XXO, 
REFRESH:ALWAYSJ;% 

/*ADDRESS(000}*/ 
I ,·,ADDRESS COO l } >"<! 
I ,·,ADDRESS (0 I Ol »d 
I ,·,ADDRESS (0 I I l ,·d 
I ,-.ADDRESS I I 00) ,·d 
/*ADDRESS!IOIJ*/ 
/*AODRESS!IIOl*/ 
I ,·,ADDRESS I I I I } >"d 

PRECHARGE_BOTH PCHG; 

ALU ALU 
INPUT _A: rREAD_LmJER: AUJA YSJ , 
INPUT_B: rREAO_UPPER: ENABLES=IXX, REFRESH:ALWAYSJ, 
OUTPUT _1: [WAI TE_UPPER: ENABLES=XXJ], 
DECODE: ALU_OP 

0=> OR 
1 => I NCRHIENT _A 
2=> AND 
3=> SUBTRACT 
4=> XOR 
5=> ADO 
G=> ZERO 
7=> DECREMENT_A; 

OUTPUT _PORT OUTPUT REGISTER: £READ_UPPER: ENABLES=XI X, REFRESH: ALWAYS), 
DRIVE: ALWAYS; 

END 
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/ALU 
..-----... / \Lot.oh 

Fig. 8-1: Sample Chip Block Diagram 

8.1: Parse Input 

Internol 
Doto Bua 

Out.put. Port. 

The first step taken by Bristle Blocks is to parse the user input, determining the 
elements and element configurations needed for the chip. The parser's output vvill 
be a series of function calls which, when evaluated, will generate the chip's layout. 

In our example, we see that the name of the chip is SAMPLE and that the datapath 
width is 8. This name will be kept with the chip, to identify the current chip from 
other chips that may reside in the system. This name is also used to compute file 
names. For instance, the CIF file name will be SAMPLE.CIF, and the log file, which 
lists the testability vector and pad order, will be SAMPLE.CPL. The file names 
adhere to the DEC-10 conventions, which limit file names to six alphanumeric 
characters, the first of which should be a letter. In our example, the name SAMPLE 
is an acceptable file name. In other examples, the chip's name may not be 
acceptable, so Bristle Blocks computes a file name which bears a strong resemblance 
to the given name. 

The datapath width is used for determining how many bits to place in each register 
ilnd each processing element. In addition, for elements like the barrel shifter, the 
number of control lines for the element is a function of the datapath width. 

The next line of text in the sample file contains the micro-control vvord 
specification. The user states that the micro-control word will be nine bits long, 
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and that this word can be thought of as three non-overlapping fields. The REQ_ 
SELECT field will be used to address one of the registers in the datapath, the 
ENABLES field will be used to control the transfer of data across the internal data 
bus, and the ALU OP field will control the operation of the ALU. 

Following the micro-control word specification, the input port is declared. This.is 
an element of type INPUI__!'ORT, which the user chose to call 'INPUT'. This element 
is to 'ALWAYS' load its register from its pads, and its register is to 'ALWAYS' drive 
the lower data bus. The timing conventions presented in Chapter 6 state that the 
port unit actually loads data from the pads to its register every PH!__?, and that its 
register drives the lower bus every PH!.J. We will use the lower bus to transfer 
data from the input port to the ALU. The parser will generate a call to an internal 
function called PORT IN. One parameter to this function gives the equations to 
drive a register, another parameter is the equation to control loading from the pads. 
The register has only one equation, which controls writing the the lower bus, and 
is set to PH!__!. The load parameter is set to PH!_?, since the port al ways loads from 
the pad, independent of the micro-control word. 

Next, the user wants to specify the register array. This register array is composed 
of ei£;ht registers which function almost identically. To save typing, and to reduce 
the possibility of specification errors, the user uses a macro. The macro takes one 
parameter, which is the address of the register, and generates the specification for 
that register. The MACRO name is ADDRESS, and the single parameter's name is 
ADDR. The macro call /*ADDRESS(abc)"'/ will generate the text 

REGISTER Rabe OPTIONS: [READ_UPPER: REG_SELECT=abc ANO ENABLES=XXI, 
1-IRI TE_UPPER: REG_SELECT =abc AND ENABLES=XXO, 
REFRESH:ALWAYSJ; 

Following this macro definition, the user calls the macro eight times, passing the 
eight register addresses. When this macro is expanded, the parser will see eight 
register specifications, so will generate eight calls to the internal REGISTER 
function. These registers each have three equations: reading the upper bus, writing 
the upper bus, and refreshing. The bus read/write operations occur during PH!__!, 
while the refresh occurs during PH~. 
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After the registers are specified, the user adds the bus precharge element. The buses 
in Bristle Blocks are dynamic. They are precharged during PH!_?, and transfer data 
during PH!J.. To write on the bus, a datapath element pulls the bits low to write a 
zero, or leaves the bus alone to write a one. 

Following this, the user specifies an ALU, whose name is ALU. Following the three 
ALU register specifications, the user gives the operations performed by the ALU. 
The ALU has 13 control lines which are used to determine the operation done by the 
ALU. To perform an ADD operation, these 13 lines must be set in particular states, 
"\Vhile a SUBTRACT operation requires different states on these wires. Rather than 
having the user specify these states, the parser allows the user to specify the 
operations. Here, the user has specified that the ALU should perform an ADD when 
the ALU OP field is IOI, and a SUBTRACT when the field is OII. The other operations 
are seen in the input text. The parser must convert this operation-wise 
specification into a control-line-wise specification before calling the internal ALU 
.function. This conversion will be discussed in section 8.2. 

Following the ALU, the user specifies the output port, and then the END. When the 
END is reached, the parser will have collected 12 function calls to internal datapath 
element procedures, along with the description of the micro-control word and 
datapath width. Before these function calls can be made, the parser must generate 
the instruction decoder functions. 

8.2: Generate Instruction Decoder Functions 

The instruction decoder used in Bristle Blocks is nothing more than a series of NOR 
gates, as shown in figure 8-2. Each NOR gate drives one of the control lines, based 
upon the states of its input lines. Given a structure like this, only 
very-uninteresting decodes can be performed. The NOR gates can be thought of as 
actually AND gates, if all the microcode inputs were negated. Thus, we could only 
perform AND functions in the instruction decoder. To allow the inclusion of OR 
functions in the decoder, we allow some of the NOR gates to drive new decoder 
inputs, rather than driving control lines. Figure 8-3 shows some of these NOR 
gates. We can now perform OR functions in the decoder, although the OR functions 
cost more both in area and in time than the AND functions. In fact, we use this 
technique to generate the compliments of microcode inputs. The user may state 
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that an equation is dependent upon a microcode input being low rather than high, 

in "\Vhich case a single-input NOR gate is used to generate the compliment of the 

actual input signal. 

To Control Line BufFere 

Fig. 8-Z: NOR Gate Decoder 

To Cont.rol Line BuFF-

Fro• Mloro-Ccnt.rol Word 

Fig. 8-3: Decoder with Minterm Gates 

Each of the microcode equations passed to the internal element functions in Bristle 

Blocks must be the NOR form of equations. Hence, the parser must convert all 

non-NOR functions to NOR functions by declaring these new 'microcode inputs' and 

specifying the NOR gates which win drive these inputs. We convert an AND 

function to a NOR function simply by complimenting all of the input signals. 

Therefore, 

a AND b AND -c 

becomes 

NOR (-a, -b, cl 

An OR function is converted to a NOR function by inverting the output, which is 

done with another NOR gate. Therefore, 
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a OR b OR -c 

becomes 

NORINOR!a,b,-c)) 

An IF ... THEN ... ELSE ... FI function is converted to NOR functions by realizing that 

IF a THEN b ELSE c FI 

can be stated as 

ANO(a,b) OR ANO(-a,c) 

or as 

NOR!NOR!NOR(-a,-b),NOR(a,-clll 

Similarly, the decode functions, as in the ALU unit, are converted into NOR 

functions. In our example, we wish to perform the following decode. 

ALUOP 
0 0 0 
0 0 I 
0 I 0 
0 I I 
I 0 0 
I 0 I 
1 I 0 
I I I 

OUTPUTs 
I I I 0 0 0 0 I 0 
IIOOOOIIO 
IOOOOIIIO 
I 0 0 I 0 0 I 0 0 
011010010 
0 I I 0 0 0 0 I 0 
OOOOIIIIO 
0 0 l I 0 0 0 0 0 

0 
0 0 
0 I 
0 0 
0 I 
0 I 
0 I 
0 I 

The parser converts this to the following code: 



FIELD NEW_FUNCTIDN<n>; 

NEl-J_FUNCTION: = ALU_DP=OXI; 

OUTPUT_!:= ALU_OP=OXX; 

OUTPUT _2: = ALU _OP =XDX; 
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OUTPUT_3:= NEW_FUNCTION=D AND OUTPUT_6=0; 

OUTPUT_4:= ALU_OP=Xll; 

OUTPUT_5:= ALU_OP=IXO; 

OUTPUT_G:= ALU_DP=XIO; 

OUTPUT_7:= OUTPUT_3=0; 

OUTPUT_8:= OUTPUT_4=0; 

OLITPUT _9: = NEVER; 

OUTPUT_l0:= ALWAYS; 

OUTPUT_ll:= ALWAYS; 

OUTPUT_l2:= NEVER: 

OUTPUT_l3:= NEW_FUNCTION=O; 

Once these conversions are completed, all of the equations are in the NOR form, 
which can easily be implemented in the instruction decoder. We have effectively 
widened the microcontrol word, and we also have a list of equations which drive 
these extra microcontrol word inputs. 

8.3: Build Datapath Core 

At this point, we know the width of the datapath, the equations for each of the 
control lines and virtual microcontrol word inputs, plus we have the 12 datapath 
element functions. We are set to generate the layout for the core of the datapath. 
The datapath core consists of the actual registers and ALUs, without the control line 
buffers or instruction decoder. 

Before we actually generate the layouts, we need to determine the physical sizes of 
the datapath bits. In Bristle Blocks, we chose to perform global optimization by 
having all datapath bits the same physical height over local optimization with the 
required routing between cells. Figure 8-4 illustrates the two possible alternatives. 
In one case, we would leave the individual cells with their minimum sizes, and 
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Routing Stretching 
Fig. 8-4: Comparison of Stretching and Routing 

route between the cells. The electrical properties of the individual cells would not change, but we would degrade the bus signals, and we would take horizontal chip area for the routing. In the second case, we would stretch the cells so that the interfaces match, and the cells could plug together with no stretching. Horizontal area is saved at the cost of some vertical area. Additionally, the control line signals would degrade, and the electrical properties of the cells could change. After an analysis of the situation, it was determined that the best approach would be to stretch the cells. But rather than externally stretching the cells, which would play havoc with the electronics, we design the cells to accept stretching parameters, so that the cell generates the stretched layout. In this way, the cell can monitor the stretching and alter its geometries to preserve the electronics. The cell may also select one circuit topology from several potential topologies, depending upon the physical size of the datapath. 
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Fig. 8-5: Single Bit Floorplan 

The first step, therefore, is to determine the stretch point values. Figure 8-5 shows 

the floorplan of a single bit of the datapath. We have chosen to position the Ground 

line which runs through the cell along the x-axis. Above this line we have the 

upper bus, at a y-coordinate of 'Y1', and a VDD line, at a y-coordinate of 'Y3'. 

Similarly, we have the lower bus and VDD line below the Ground line, at 

y-coordinates of 'Y2' and 'Y4'. Finally, the width of the power lines is POWE~ 

WIDTH. Each datapath element function can be thought of as an object, as in 

object-oriented programming. To determine the stretch point values, we just ask 

each function what its minimum requirement is for each spacing. We take the 

largest of each of these values as the spacing between stretch points. In addition, 

we ask each element for its power consumption. By summing the power 

consumptions, we can determine the necessary width of the power lines. In figure 

8-6 we show the register cell stretching itself to match the requirements of the 

system, while figure 8-7 shows the stack cell. The stack cell uses an alternate 

layout when the stretching is great enough. 

After we have computed the stretch point values, we can call the individual 

element functions, requesting the layouts. These functions will examine the 

stretch points, along with the parameters passed froin the user's specification, to 

determine which layout to use. For example, we have used several types of 

registers in the. sample chip, yet there is only one register function. The follo-wing 

register configurations have been requested. 



-127-' 

Short Mid T CJ 1 1 
Fig. 8-6: Stretching Register Cell 

Short T CJ 1 1 
Fig. 8-7: Stretching Stack Cell 
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1) I.Jr i t e LOL.Jer 
2) Read and Write Upper, and Refresh 
3) Read Lm.Jer 
4! Read Upper and Refresh 
5) Write Upper 

A register cell layout which performs all five of the basic operations required here 
is shown in figure 8-8. If we were to use this layout in all of the locations that 
require a register, we would be wasting a lot of space, since each of these functions 
require area. On the other hand, we do not wish to design 31 different registers, 
one for each of the possible configurations. What we do is design one register as a 
program which computes the appropriate layout from the functions required. 
Figure 8-9 shows the five resulting layouts needed by our sample chip. 

Fig. 8-8: Complete Register Cell 

As the cell is computing the layout, it is very easy to add information about 
connection points: where the control lines interface to the datapath core. If this 
information were not captured with the layout, some program would have to 
determine these positions later, which means that this program would have to have 
intimat1:1 knowledge of each datapath cell, and would have to duplicate much of the 
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Fig. 8-9: Sample Chip Register Instances 

computation performed by the cells. Instead, we choose to add information to the 

layout datastructure to indicate where the control lines connect. In fact, we need to 

know more than just position. What are these connection points to connect to? We 

have told the datapath elements which microcrn;le equations drive each line, and the 

datapath element knows what style of buffer is required for each line. By adding 

this information to the connection point, the buffer program can generate the 

buffers by looking at the datapath core layout, and the instruction decoder program 

can generate its layout by looking at the result of the buffer program. 

Once we hav.e generated the layouts for each datapath element, we may abut the 

elements and finish the datapath core. To simplify the abutment procedure, -we 

have defined the following conventions regarding the left and right edge 

characteristics of datapath cells: All geometry within a cell must have positive 

x-coordinates. All geometric primitives must be at least half the minimum design 

rule spacing from x=O. For instance, a diffusion feature must be at least 1.5 lambda 

from the edge of the cell. We can state the width of the cell as being the minimum 

x-coordinate that is at least half of the minimum design rule spacing from all 

geometric features of the cell. Therefore. if a diffusion edge has the largest x 

coordinate, the cell's width is 1.5 lambda beyond that coordinate. If we place the 

first datapath element at the origin, and displace all other elements by the widths of 

all elements to their left, we will have no design rule violations between cells. 

Notice that the two data buses and the power buses do not enter into the width 

calculation, for these lines must connect between cells. The layouts produced in 

this manner are large. Most of the elements communicate with the buses with 

diffusion connections. We will therefore allow a cell to place a diffusion-to-metal 

feedthrough on either edge of a cell, to connect to either bus. If a neighbor cell also 

connects to the bus, they will both share the same feed through. 
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Once we have completed the abutment process, we have finished the datapath core. 
Figure 8-10 shows the layout of the core for our sample chip. In addition to the 
layout, we have connection points along the lower edge of the layout for 
connecting to the buffers, and we have connection points on the left and right edges 
for connecting to pads. 

Fig. 8-10: Sample Chip Core Layout 

8.4: Add Buffers and PLSRs 

Given a datapath core, we need to add buffers to each of the control lines. These 
buffers latch values from the instruction decoder during one clock phase and drive 
the control lines on the other clock phase. These buffers satisfy the electrical 
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constraints of driving large loads from the weak signals of the decoder. They also 

satisfy the timing constraints by allowing the instruction decoder and datapath to 

work in parallel rather than in series. This parallelism allows the chips to nin 

fast.er. and removes the possibility of race conditions. 

To facilitate the testing of chips, we would like to independently test the 

instruction decoder and the datapath. If we had to test the two units together, it 

could take a fantastically long time to verify that the chip functions correctly. By 

splitting the testing task into testing the two pieces in isolation, one can hope of 

completely testing the chip. We do this by adding Parallel-Load Shift Registers 

(PLSRs) between the decoder and the datapath. As it turns out, the circuitry 

required by the buffers and the PLSRs have a lot in common. If we therefore design 

the PLSRs into the buffers, we can save a lot of area. The buffer routine adds the 

output driver of the buffers, while the PLSR routine adds the remainder of the 

buffers and the PLSRs. 

The datapath core tells us which buffers it needs on which control lines, since this 

information is present in the connection points. We can arrange our buffer 

program to generate the buffer layouts in the same order as the connection points, 

so that we may river route between the buffers and the core. To generate the 

buffers, we need to compute the positions of the individual buffers. If we take the 

positions of the connection points as a first approximation, we will generate buffers 

which are as close as possible to the wires they drive. Given this first 

approximation, we move any buffers which are too close to neighboring buffers. 

We continue to shift buffer positions until none of the buffers overlap, and then 

we river route to the core. Figure 8-11 shows the buffer programs output for the 

sample chip. 

Fig. 8-11: Sample Chip Buffers 
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Some of the buffers drive control lines independent of the microcontrol word. 

\tVhenever the user specifies ALWAYS, NEVER, VDD, or GND for a control line 

function, that control line does not connect to the instruction decoder. Because 

some control lines may not connect to the instruction decoder, and because the 

buffers may have to shift positions to avoid overlaps, we put connection points on 

the buffer layouts. The PLSR program does not have to compute the positions of the 

buffer inputs, this information is given in the connection points. In fact, the type 

of the PLSR which needs to connect to each control line can be deduced from 

information in these connection points. The PLSR program operates in the same 

manner as the buffer program, positioning and shifting the individual circuits to 

avoid overlaps. Figure 8-12 shows the PLSR circuit and river route. 

Fig. 8-12: Sample Chip PLSRs 

8.5: Add Instruction Decoder 

After the buffers and PLSRs are added to the core, we are ready to add the 

instruction decoder. The PLSR cells have connection points which state position 

and microcode equations. In addition, we have the microcode equations for the 

virtual control word inputs from the OR functions and the DECODE functions. We 

generate the instruction decoder layout in three steps. The first step initialized the 

decoder. The second step adds the virtual input NOR gates and connections to pads. 

The third step packs the wires to conserve chip area. 

To initialize the decoder, we add the NOR gates which drive the PLSRs. These NOR 

gates are inserted in the column closest to the PLSR which is to be driven. Next, we 

add the NOR gates to generate the virtual equations. These NOR gates are driving the 

inputs of other NOR gates. We may potentially have a NOR gate driving a wire 
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1.vhich extends the whole width of the chip and drives many NOR gates. If this 

"\.Vere to be allowed, the instruction decoder would run very slow. To avoid these 

long delays, we will limit the loading which we will add to a NOR gate. As we are 

scanning across the decoder, if we notice the load getting too great, we will 

terminate the line and regenerate the signal where it is needed. To do the scanning, 

we need to sort the virtual inputs before adding the NOR gates. We sort the list so 

that equations in the list only depend on equations occurring later in the list and 

not on any equations earlier in the list. We then take equations off the list in order, 

adding the NOR gates to the decoder as we go. When we have finished adding the 

virtual equations, the equations remaining in the list are in fact the actual 

microcontrol word inputs, so we connect each of these to wires which will connect 

to pads. 

When we have completely generated the instruction decoder, we pack the wires to 

save space. The packed instruction decoder for the sample chip is shown in figure 

8-13. 
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Fig. 8-13: Sample Chip Decoder 

8.6: Add Pads 

When the instruction decoder has inputs which come from pads, it adds wires to 

the edge of the cell. To the ends of these wires, it attaches connection points which 

will tell the pad router of the existence of the wire and of the type of pad required. 

Similarly, the datapath elements have previously generated connection points 

calling for pads. Based upon this information, along with power consumption 

information, the pad router can add the pads to the chip. If this datapath is to be a 

complete chip, the pad router can be called, which completes the chip. If this 
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rL1tapath is to be a portion of a chip, the datapath can be used as is, and the 

connection points are available to aid in the interfacing to the datapath. 

The pad router gathers all connection points which connect to pads. It then 

determines how many pads are needed, and can tell what types of pads are required. 

It places the pads and 'Rota-Routes' them as described in the River Router appendix. 

This Rota-Route shifts the pads around the chip in an attempt to minimize the wire 

lengths. The box river router is then called to route wires to the pads, and the chip 

is complete. Fig_ure 8-14 shows the pad layout for the chip. 

8.7: Conclusions 

This chapter has described how Bristle Blocks builds a chip from the user 

specification. It can be seen that much of the task is geared toward this particular 

style of chip. This focus upon the floorplan does restrict the capabilities of the 

compiler to a very specific class of chip. On the other hand, this also allows Bristle 

Blocks to compile very optimal chips, and it also relieves the user of a lot of 

specification, since much of the specification can be implied from the structure of 

Bristle Blocks chips. 
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Fig. 8-14: Sample Chip Pads 
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Chapter 9: Bristle Blocl{S Examples 

In this chapter, we will show several chips designed by Bristle Blocks. These 

examples ~.vill not only reinforce the language aspects of Bristle Blocks, but also 

illustrate how the design methodology is impacted by a silicon compiler, even one 

with a limited floorplan. 

9. 1: Lamp Dimmer 

The lamp dimmer chip is a variation of a chip designed by Ron Ayres. Ron wanted a 

chip ·which he could use to control the brightness of a lamp. A diagram of Ron's 

setup is shown in figure 9-1. Several of these lamp control chips would be 

connected to a small processor via a serial bus. The processor could send commands 

to the lamp chips over this bus. The commands would be to select a particular 

device by its address or to set a device's lamp brightness to a given value. The lamp 

chips would drive Triacs, which controlled each lamp's power supply. 

Processor 

Terminal 

Serial Communication Bue 

Fig. 9.,.1: Lamp Dimmer System 

Lamp 
Dimmer 
Chips 

A block diagram of the lamp dimmer is shown in figure 9-2. We have an 8-bit 

shift register which reads the serial data from the command bus and drives the 

6-bit data bus and 2-bit instruction bus. The data bus can load into the address 

register for modifing the device's bus address. The data bus is also compared w"ith 

the value in the address register during the select operation to determine if the 



Serial 
Data In 

Address 

Oat.a Bue 

-137-

Value Counter 

Borrow To 
Triac 
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Fig. 9-Z: Lamp Dimmer Chip Block Diagram 

mic1·oprocessor is selecting this device. Finally, the data bus can load into the value 

register, which holds the current lamp brightness value. 

To drive the Triac, we need to convert the data in the value register to a time. For a 

bright lamp, we want to pulse the Triac soon after the zero crossings of the AC line 

current. Conversely, for a very dim lamp, we should trigger the Triac just before 

the zero crossings. We will convert the data value to a time by comparing the value 

register's contents with the contents of a counter. The counter will be reset at the 

zero crossings of the AC current, and will be clocked so that the counter reaches full 

count just before the next zero crossing. 

The 2-bit instruction bus drives the control logic section of the chip. The EXECUTE 

pin is used to indicate when the instruction bus and data bus contain valid data. 

When EXECUTE is high, the 2-bits are decoded as follows. An instruction of 00 

initializes every device to its initial address. This initial address is read from a 6-bit 

input port, which is hard wired on each chip to a unique number. When the 

instruction is 01, the processor is selecting a new device. Each chip compares the 

data bus value to its address value and, if they match, the chip becomes enabled. 

vVhen the instruction is 10, all selected devices will load their address registers 

from the data bus, allowing the processor to change the address of any device. 

Finally, when the instruction is 11, all selected devices will load their value 

register from the data bus. 
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From this description, we can start mapping the chip specification into Bristle 

Blocks. Since most of the data widths are 6 bits, we will set the chip width to 6. 

We can also state what the microcontrol word looks like. We need a bit to state 

whether this chip is the selected chip. We call this the ACTIVE bit. Next, we need 

t\vo bits which contain the current instruction from the shift register, which we 

call the OP bits. The SYNC bit clears the counter. This signal goes high at each 

zero-crossing of the AC line. EXECUTE is an input whieh states when the 

instruction and data values are valid. We also need a data input, which we call 

INPUT. Our specification to Bristle Blocks now looks like this. 

NAf1E RONS_CHIP 13; 

PRECHARGE_BOTH PCHG; 

FIELD ACTIVE<l>,0Pc2:3>,SYNC<4>,EXECUTE<5>,JNPUTcl3>; 

We define macros for each of the four basic instructions executed by the lamp 

dimmer chip. We have also defined a macro NO'[_!NITIALIZE which is true for any 

instruction but INITIALIZE. 

MACRO INITIALIZEll % OP=OO ANO EXECUTE=! % 

MACRO SELECT!! % OP=OI AND EXECUTE=! % 

llACRO LOAD_ADOR () % OP= I 0 AND EXECUTE= I ANO ACTIVE= I % 

MACRO SET_VALUEO % OP=ll ANO EXECUTE=! ANO ACTIVE=!% 

r-IACRO NOT _IN IT I All ZE (} % NOT (0P=00l ANO EXECUTE= I % 

We can now list the datapath elements we require for this chip. These elements are 

the command shift register, the initial address port, the address register and 

comparison unit, the value register and comparison unit, and the counter. 

The command shift register must be 8-bits long, but our datapath is only 6-bits 

wide. However, we can think of the 8-bit register as a 6-bit register followed by a 

2-bit register. The 6-bit register will contain the data portion of the command 

when the ENABLE bit is TRUE, at which time the 2-bit register is holding the 

operation portion of the command. The 6-bit register is simply a LEFT_RIGH!_ 

~HIFTER, while the z-bit register is a SHIFTIN~R, since we need to access the 

register's value in the instruction decoder. These two elements are specified by 



FI ELD llSB< 7>; 

LEFT _RIGHT _SH I FT 
INPUT_REGISTER: 
SHI FT _LEFT: 
SHI FT _RIGHT: 
INPUT: 
1158: 

SHIFTING IR 
11AP: 
INPUT: 

OP _CODE 

SHI FT _LEFT: 
SHI FT _RIGHT: 

DATA 
(l.JR I TE_LmJER: 
NEVER, 
AUJAYS, 
INPUT=!, 
llSB; 

1<2: 1>=>0Pl, 
1158=1. 
AU.IAYS, 
NEVER: 
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The data in the 6-bit register should write to the lower bus for every operation 

except INITIALIZE. This shifter always shifts right, never left. The input comes 

from the INPUT pin, and the output drives a new microcode bit called MSB. This bit 

supplies the input data for the 2-bit shifter. The 2-bit shifter al ways shifts left, 

never right, and we feed the input of the shif.ter from the MSB bit, which is the 

output of the· 6-bit shifter. The first and second bits in this shifter drive the OP 

field of the microcontrol word. 

The next element we would like to design is the initial address port. This element 

is an input port which should transfer its data to the address register during an 

INITIALIZE instruction. The data input shift xegister does not write the lower bus 

during INITIALIZE, so we can have the input port drive the lower bus. The 

specification for the input port is simply 

JNPUT_PORT FIXEO_ADORESS 
REGISTER: WRITE_LmJER: l>"dNITIALIZE,·c/J, 
LOAD: ALWAYS: 

This element always loads its internal register from the pads, and drives the lower 

bus during the INITIALIZE instruction. 

The address register and comparison unit must contain a latch to save the device 

address, a comparator to compare the device address to the select address, and a 

mechanism for saving the result of the comparison. To maintain the comparison 

result, we can either have a single bit latch for holding the value, or we may have a 

register to hold the select address and continuously perform the comparison. In 

Bristle Blocks, all registers have the same width as the datapath, so a 1-bit register 

takes as much area as a 6-bit register. Therefore, we choose to have a register for 

the select address and we will continuously compare the address and select 
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registers. To compare two registers' values, we use a subtracter with a 'value 

checker' on its output. This unit will compute the difference between its two 

input values, then compare this difference to a fixed constant. With a fixed 

constant of 0, this element's RESULT will be TRUE when the two input values are 

equal. 

SUBTRACTER_l4I TH_VALUE_CHECK AOORESS_CHECKER 
VALUE: 000000, 
RESULT: ACTIVE, 
1 NPUT _A: lREAO_LmJER: t.·d NIT I ALI ZE,·:/ OR /,•,LOAO_ADDR»:I, 

REFRESH: AU,!AYSJ, 
INPUT_B: [REAO_LOf.lER: !.-.SELECT»:/, 

REFRESH:ALWAYSJ, 
LOAD: ALWAYS; 

The INPU~ register is the device address register. This register reads data from 

the lower bus during the INITIALIZE instruction and the LOAD ADDRESS instruction 

if the chip is currently the selected device. The INPUT B register contains the select 

address. This register reads the lower bus during the SELECT operation. 

Next, we will specify the value register. This register should load from the lower 

bus during the SE'I.:_VALUE instruction. The contents of this register should be 

available for comparison with the counter's value. We can use the upper bus for 

this transfer. Since there are no other transfers on the upper bus, we can simply 

drive the upper bus from the register every clock cycle. 

REGISTER VALUE 
OPTIONS: [READ_LQl.JER: t.·1SET_VALLJE,·:I, 

REFRESH: AUJA YS, 
l.JRI TE_UPPER: AUIAYSJ; 

Finally, we need to specify the counter and comparison unit. In the chip 

specification, we stated that we wish to compare the data in the value register to 

the value in a counter. This counter is reset at the zero-crossing of the AC current, 

and simply increments each clock cycle. The clock cycle for the chip is adjusted so 

that the counter overflows at the next zero-crossing of the AC current. Rather than 

having an incrementer and a comparison unit, we can have a decrementer which is 

initialized to· the value in the VALUE register at the zero crossing, and simply 

decrements each clock cycle. When this decrementer's value passes zero, the triac is 

strobed. 
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DECREMENTER OUTPUT 
INPUT_REGISTER: lREAO_UPPER:SYNC=I ANO NOT(!,·,SET_VALUE,·d), 

REAO_LOL.JER: SYNC= I ANO /,·,SET _VALUE,.,/], 
LOl\O: AL~IA YS, 
CARRY_OUT: PAO; 

We use the upper bus to transfer data from the VALUE register to the decremen.ter 

at the zero crossings. Problems arise when the zero crossing occurs during the same 

clock cycle as a SET_VALUE instruction, because the VALUE register vvould be 

loading from one bus while driving the other. The register documentation in 

chapter 7 states that simultaneous read and write operations cause garbage data to 

be driven onto the written bus .. Therefore, the decrementer reads its data from the 

lovver bus if SYNC is high and a SET VALUE instruction is being executed. 

We have now described each of the elements for the lamp dimmer chip. We nr:?ed 

only decide the order the elements should be placed in the datapath, since the order 

of implementation will be the order in which we specify the elements. The order 

does not matter a great deal, although the port cells are more efficient at either of 

the t"tvo ends of the datapath. We will place the fixed address input port on the left 

end of the chip. The complete specification for the lamp dimmer chip is listed here. 

NNlE RONS _CH IP 13: 

r1flECHARGE_BOTH PCHG; 

FIELD ACTIVE<l>,0P<2:3>,SYNC<4>,EXECUTE<5>,INPUT<l3>,MSB<7>; 

MACRO INITIALIZE{) % OP-00 ANO EXECUTE=! % 

MACRO SELECT!! % OP=OI AND EXECUTE=I % 

t1ACRO LOAD_ADOR<l % OP=IO AND EXECUTE=I AND ACTIVE=! % 

llACRO SET_VALUEO % OP=II AND EXECUTE=! ANO ACTIVE=!% 

MACRO NOT_INITIALIZE<l % NOT!DP=OOJ AND EXECUTE=! % 

INPUT_PORT FIXED_ADDRESS 
REGISTER: [l.JRI TE_LmJER: /,·dNITIALIZE:·dl, 
LOAD: ALWAYS; 

LEFT _RIGHT _SH I FT 
INPUT_REGISTER: 
SHIFT _LEFT: 
SHI FT _RIGHT: 
INPUT: 
llSB: 

SHI FT I NG_IR 
rlAP: 
INPUT: 

OP_COOE 

DATA 
[l.JR I TE_LOL.JER: 

NEVER, 
AU.JAYS, 
INPUT=I, 
llSB; 

!<2: 1>=>0Pl, 
l'ISB=I, 



SHIFT_LEFT: 
SHIFT_RIGHT: 

ALL-IAYS, 
NEVER; 
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SUBTRACTER_WITH_VALUE_CHECK AOORESS_CHECKER 
VALUE: 000000, 
RESULT: ACTIVE, 
JNPUT_A: CREAD_LOl-IER: h·:!NITIALIZE~·:/ OR h·:LOAO_AODR»:I, 

REFRESH:ALWAYSJ, 
INPUT _B: _ CREAD_LOWER: hSELECfo/, 

REFRESH:ALWAYSJ, 
LOAD: ALWAYS; 

REGISTER VALUE 
OPTIONS: [REAO_LOl-JER: 1~·:SET _VALUE1·d, 

REFRESH: AL~lA YS, 
l~R I TE_UPPER: ALWAYSJ ; 

DECRHIENTER OUTPUT 

ENO 

INPUT _REG I STER: CREAO_UPPER: SYNC=! AND NOT U1·cSET _VALUE1•:/ J , 
READ_LOl-IER: SYNC=! AND /i·:SET _VALUEMJ, 

LOAD: ALWAYS, 
CARRY_OUT: PAO; 

Bristle Blocks compiled the layout for this chip in 1.8 minutes. The chip 
dimensions were 78.9 mil by 102..4 mil, and the chip consumed 2.6 ma. Figure 9-3 
shows the bounding boxes for the various sections of the chip. 

9.2: Random Tune Generator 

The Player chip was designed to play pseudo-random melodies. The system block 
diagram is shown in figure 9-4. External to the player chip is an EPROM memory 
chip which contains the melody algorithm. Using the algorithm in the ROM, the 
player chip computes a square wave signal. This square wave is multiplied by the 
note amplitude to generate an 8-bit output value. The output value is converte.d to 
an analog voltage by a Digital-to-Analog Converter (DAC). 

The melody algorithm is contained in an object-oriented data structure contained in 
the melody ROM. The ROfy'I is organized as as 256 note 'objects'. Each object 
specifies a note, containing a duration, amplitude, and frequency, along -with 
potential future notes. A note object is graphically illustrated in figure 9-5. When 
the player chip is playing a note, it generates a square wave with the specified 
duration, amplitude, and frequency. When the given note has finished, the player 
chip will follow one of the four next-note pointers to find the next note. This 
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CONTROL_TO_OATA_AND_BACK IR 
TO_CONTROL: 1<1:3>=> OP;<4:G>=> PADl, 
LOAD: OP=DXX OR TIME=!, 
REGISTER: CSUGCEST:T!ME=O AND OP=IXXJ, TO_OATA: IIF DP=Ol I THEN RND=XXI ELSE OP=DXO FI => 3; 

IF DP=DII THEN RND=XIX ELSE OP=OOI OR OP=OIO FI => 2; OP=DII=> 1; 
IF DP=DII THEN RND=XXI ELSE OP=OXO FI => 5; IF OP=Oll THEN RND=XIX ELSE OP=DDI OR OP=OIO FI => 5; OP=Oll=> 41; 

The TO CONTROL parameter specifies that bits 1-3 drive the OP field, while bits 4-6 
drive pads, as stated above. The register is loaded from the instruction decoder 
when the OP field equals OXX or when TIME=I. When the OP field's MSB is low, 
the chip is reading in the note parameters, so the sequencer increments the OP field 
value. When the final parameter is read, the OP field is loaded with IOO, IOI, IIO, or 
III, depending upon the next note to be played. The sequencer then waits until the 
TIME field goes high, indicating that the note has finished playing. 

The pseudo-random number generator uses a shift register with feedback logic. 
The feedback logic computes the shifter input value as a function of the current 
shift register data. With an appropriate feedback function, the random number 
stream repeats every 255 cycles, which is the maximal cycle length attainable 
using this form of generator. The RESET2 input, which comes from a pad, will 
clear the shift register. This input allows the user to alter the random number 
sequence. Without providing this reset, the system may only produce one fiXF..:d 
melody if the random number shift register always initializes with the same value 
on pov.rer up. The random number generator is specified by the following code. 

SHIFTING_IR RANDOM 
t1AP: · 
SHIFT_RIGHT: 
SHI FT _LEFT: 
INPUT: 
REG! STER.: 

l<l, 7,8>=>RNOI, 
DP=DOO, 
NEVER, 
RND=IOO OR RND=OIO OR RND=OOI OR RND=III, 
[SUGGEST: RESET2=l, VALUE:OOOOOOOO, REFRESH:OP=IXXJ; 

The ROM interface is fairly straightforward. An output port supplies the upper 8 
address bits for the ROM. These bits select which note object is the active note. 
This register is loaded with a new value when the chip begins to play a new note. 
The register is cleared when RESET1 is high, which allows the user to reinitialize 
the melody. An input port reads the data from the ROM. This port always drives 
the data unto the lower bus. The Bristle Blocks specification of these two ports is 
shown here. 
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OUTPUT _PORT SEGl'lENT 
REGISTER: mEAD_LmlER: OP=lXX AND TIME=!' 

INPUT_PORT 
LOAD: 

SUGGEST: RESETl=l, 
VALUE:OOOOOOOOJ; 

DATA 
AUJAYS, 

REGISTER: [!~RI TE_LOWER: AL~lAYSJ; 

The frequency divider is implemented as a 16-bit down-counter. This counter is 

initialized to the frequency value read from the ROM. The counter then decrements 

once each clock cycle. When the counter's data reaches zero, the frequency divider 

is reinitialized to the frequency value, and the square wave output changes sign. 

The 16-bit counter is implemented as a pair of 8-bit decrementers. Both 

decrementers decrement their values each clock cycle. If the least-significant 

word's value· does not cause a carry, the most-significant value is reset to its 

pre-decremented value. In effect, the most-significant word is not decremented 

unless the least-significant word caused a carry. When both decrementers have a 

ca1·ry output, both counters are set to the frequency value and the square wave 

changes sign. The frequency divider is specified as follows. 

SWAPPING DECREMENTER FREQUENCY LOW 
ACTIVE:- [SUGGEST:NEVER], -
BACKUP: [READ LOWER:OP=OII, REFRESH:ALWAYS], 
RESTORE: FREQ= II, 
LOAD: ALWAYS, 
CARRY OUT: FREQ BIT 1; 

REGISTER FREQUENCY HIGH OPTIONS:[WRITE UPPER:ALWAYS, 
READ LOWER:OP=OIO, 
REFRESH:ALWAYS]; 

SWAPPING DECREMENTER FREQUENCY HIGH DEC 
ACTIVE:- [READ UPPER:FREQ=II OR OP=OII), 
BACKUP: [READ UPPER:FREQ=II OR OP=Oll, REFRESH:ALWAYS], 
LOAD: ALWAYS, 
CARRY OUT: FREQ BIT 2, 
RESTORE: FREQ= XO, 
SA VE: FREQ= XI; 

Next, we need a timer. The timer is preset to the note duration. The timer's value is 

decremented when the TEMPO input is high. When the timer's value becomes zero, 

TIME becomes high, and the next note is played. 

DECREMENTER TIMER 
INPUT REGISTER:[READ LOWER:OP=OOO, REFRESH:TEMPO=O], 
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LOAD: TEMPO=I, 
CARRY OUT: TIME; 

To generate the output value, we need to multiply the square wave by the note 

amplitude. As it turns out, square waves have only two values: +1 and -1. When 

the square wave is high, the output value is just the note amplitude, and when the 

square wave is low, the output value is the inverse of the note amplitude. Our 

output section has a swapping output port. The two registers are loaded with the 

amplitude and the inverse amplitude when the note parameters are read. Each time 

the frequency divider produces a carry output, the data in these two registers swap 

places. The output pads are driven with the data contained in one of these register. 

The 'multiplying' output unit is implemented by the following datapath elements. 

SUBTRACTER NEGATE 
INPUT _A: 
INPUT _8: 
OUTPUT_REGISTER: 
LOAD: 

[SLJGGEST:ALWAYS, VALUE:OOOOOOOOl, 
[READ LOWER: OP=OOIJ, 
tWRITE_UPPER: OP=OIOJ', 
AL~JAYS; 

PRECHARGE_BOTH PRECHARGE; 

SI.JAPP I NG_OUTPUT _PORT 
ACTIVE: 
BACKUP: 
RESTORE: 

.SAVE: 

OUTPUT 
rREAD_LOWER: OP=OOI, SUGGEST:AUlAYSJ, 
lREAD _UPPER: OP =0 IO, SUGGEST: AL~IA YS J , 

OP= I XX AND FRED= I I , 
OP=IXX AND FREO=ll; 

The complete chip specification is listed next. Bristle Blocks compiled the chip in 

3.67 GPU minutes, and the final chip size is 140 by 154 mil. The chip consumes 59 

ma. of power at 5 vol ts, 

NMIE PLAYER 8; 

FI ELD OP<l: 3>, RN0<4: 6>, TI ME<7>, FREQ<8: 9>, RESETl <10>, TH1P0<11>, RESET2<12>; 

OUTPUT_PORT SEGMENT 
REGISTER: lREAD_LmJER: OP=IXX ANO Tlf1E=l, 

SUGGEST: RESETl=I, 
VALLIE: 00000000) ; 

INPUT_PORT DATA 
LOAD~ . AL~IA YS, 
REGISTER: [URITE_LOWER:ALWAYSl; 

SHIFTING_IR RANDOM 
flAP: 
SHIFT_RIGHT: 
SH I FT _LEFT: 
INPUT: 
REGISTER: 

l<l, 7, 8>=>RNDI, 
OP=OOO, 
NEVER, 
RND-IOO OR RND=OIO OR RND=OOI OR RND=III. 
[SUGGEST: RESET2=I, VALUE:OOOOOOOO, REFRESH:OP=IXXJ; 
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CONTROL_TO_OATA_AND_BACK IR 
TO_CONTROL: l<l:3>=> OP:<4:G>=> PAOJ, 
LATCH: OP=OXX OR TIME=!, 
REGISTER: [SLJGGEST:TIME=D ANO DP=IXXJ, 
TO_DATA: !IF OP=OII THEN RND=XXI ELSE OP=OXO FI => 3; 

IF OP=DII THEN RNO=XIX ELSE OP=OOI OR OP=OIO FI => 2; 
OP=OI I=> 1; 
IF OP=DII THEN RND=XXI ELSE OP=OXO FI => 5; 
IF OP=OII THEN RND=XIX ELSE OP=OOI OR OP=OIO FI => 5; 
OP=OII=> 41; 

SIJAPP I NG_DECREt1ENTER FREQUENCY _LOW 
ACTIVE: [SUGGEST: NEVERJ, 
BACKUP: CREAO_LOLJER:OP=OI I, REFRESH:ALWAYSJ, 
RES TORE: FREQ= I I , 
LOAD: ALWAYS, 
CARRY_OUT: FREQ BIT l; 

REG! STER FREQUENCY _HIGH OPT IONS: [t.IR ITE_UPPER: ALt.IAYS, 
READ_LOWER:OP=OIO, 
REFRESH:ALWAYSJ; 

SI.JAPP I NG_DECREMENTER 
ACTIVE: 
BACKUP: 
LOAD: 
CARRY _OUT: 
RESTORE: 
SAVE: 

FREOUENCY_HlGH_DEC 
[REAO_UPPER:FREQ=ll 
[REAO_UPPER:FREO=ll 
AUIAYS, 
FREQ BIT 2, 
FREQ=XO, 
FREQ=Xl; 

PRECHARGE_AND_BREAK_UPPER CUT; 

DECREMENTER TIMER 

OR. OP=Ol I J, 
OR OP=OII, REFRESH:ALWAYSJ, 

INPUT _REGISTER: CREAO_LOLJER: OP=OOO, REFRESH: TEMPO=OJ, 
LOAD: Tn1PO=I, 
CARRY_OUT: TIME; 

SUBTRACTER NEGATE 
JNPUT_A: [SUGGEST: ALWAYS, VALUE:OOOOOOOOl, 

CREAD_LOLJER: OP=OOI l, INPUT _B: 
OUTPUT_REGISTER: [WR! TE_UPPER: OP=OIOJ, 
LOAD: ALLJAYS; 

PRECHARGE_BOTH PRECHARGE; 

SIJAPP I NG_OUTPUT _PORT OUTPUT 
ACTIVE: CREAD_LOLJER: DP=DOI, SUGGEST:ALWAYSJ, 
BACKUP: [READ_UPPER: OP=DIO, SUGGEST:ALt.lAYSJ, 
RESTORE: OP=IXX AND FREO=II, 
SAVE: DP=IXX AND FREQ=II: 

END 

9.3: Frequency Scaler Chip 

Jeff Sandeen, employed by Hewlett-Packard, Colorado Springs, was on temporary 
assignment to Caltech when he designed the frequency scaler (FRESCA) chip. The 
chip specification presented here is a slightly modification of Jeff's d~sign. Jeff 
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wanted a chip which scales the frequency of an input waveform. The chip would 

accept a binary waveform, and generate a new binary waveform with the 

frequency scaled, but with the duty factor of the output wave as close as possible to 

the input wave's duty factor. 

The chip counts the number of clock cycles that occur while the input waveform is 

high, and the number of clock cycles occurring while the input signal is low. The 

sum of these two numbers is the period of the input signal. These two numbers are 

multiplied by one user-supplied constant, and divided by another constant, to 

generate two output period numbers. The output generator sets the output high for 

the number of clock cycles indicated by the scaled high period value, then sets the 

output low for the number of clock cycles indicated by the scaled low period value. 

Rather than perform a multiply and divide on the chip, Jeff used incremental 

techniques to achieve the same results. Rather than incrementing a value during 

the high period and multiplying this by one of the scaling factors, we accumulate 

the scaling factor over the high period. We do the divide and decrement by repeated 

subtractions. The simplified block diagram of the FRESCA chip is shown in figure 

9-6. The input section computes the high and low periods, scaled by one of the two 

scale parameters. The storage section stores these two values. The output unit 

computes the output signal, using the period values from the storage section and the 

other scale parameter. Finally, the state section computes when various signals 

change. 

Some additional complexity has been added to the simplified block diagram to 

correct for round off errors during the counting processes. The SAVE D BAR and TQ_ 

_QUTPUT elements are the elements added to improve the counting accuracy. Bristle 

Blocks compiled the FRESCA chip in 3.0 minutes. The chip size was 124 by 177 mil, 

and the chip consumed 68 ma. at 5 volts. The Bristle Blocks specification for the 

chip is shown here. 

NM1E FRESCA 16; 

MACRO CONST!{) % OOOOOOOOOOOOXXXX % 
llACRO CONST2 {) % I I I Ill l I I I I I XXXX % 

FIELD I N<l >, 
LOA0<2:3>, 
OLO_IN<4>, 
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Fig. 8-6: Frequency Scaler Block Diagram 

OELTA_IN<S>, 
DEL T A_OUT <6>, 
OUT <7>, 
OATA<8: 11>; 

"Input Section:" 

CONTROL_TO_DATA SAVE_M 
REG I STER: [REFRESH: ALI-IA YS, 

SUGGEST:LOAD=OX, 
VALUE: /*CONSTl*/, 
WRI TE_LOl-JER: DEL TA_! N=OJ, 

MAP: ! OATA=XXXJ => lG 
OATA=XXIX => 15 
OATA=XIXX => 14 , 
OATA=IXXX => 13 I, 

LATCH: LDAD=DX; 

CDNTROL_TO_DATA SAVE_D_BAR 
REGISTER: [REFRESH: ALWAYS, 

SUGGEST:LDAD=XD, 
VALUE: /*CONST2*/, 
WRITE_LOIJER: DELTA_IN=I J, 

MAP: I OATA=XXXO => lG 
OATA=XXOX => 15 
DATA=XOXX => 14 , 
OATA=DXXX => 13 I, 

LATCH: LOAD=XD; 

ADDER INPUT 
INPUT _A: CREAO_UPPER: DELT A_I N=D, 

READ_LOl-JER: DELTA_IN=IJ, 
INPUT_B: · rREAD_LOl-JER: DELTA_IN=DJ, 
OUTPUT _REG! STER: [l.IRI TE_UPPER: ALklAYSJ, 
LOAD: ALWAYS, 
CARRY_IN_BAR: DELTA_IN=D; 
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PRECHARGE_ANO_BREAK_LO!.JER GAPl; 

"Storage Section" 

REGISTER HIGH 
OPTIONS: 

REGISTER LOW 
OPT IONS: 

CREAD_UPPER: DELTA_IN=I ANO IN=O AND 
NOT(DELTA_OUT=O AND OUT=O}, 

REFRESH: ALWAYS, 
1.JRI TE_LOl.IER: DELTA_OUT =0 ANO OUT =Dl; 

CREAO_UPPER: OELT A_I N= I AND IN= I AND 
NOTCOELTA_OUT=O AND OUT=I), 

REFRESH: ALWAYS, 
1-lR I TE_LO!.IER: DELT A_OUT =0 ANO OUT= IJ ; 

PRECHARGE_ANO_BREAK_UPPER GAP2; 

"State Section" 

CONTROL TO OATA_AND_BACK STATE 
REGISTER: (REFRESH:ALWAYSJ, 
LATCH: ALWAYS, 
TO_CONTROL: l 1=> PAD ; 

2=> OUT ; 
3=> OLD_IN ; 
4=> DELTA_IN I, 

TO_DATA: OUT=I => 1 ; 

ADDER TO_OUTPUT 
INPUT_B: 
INPUT_A: 

LOAD: 

IF DELTA_OUT=D THEN OUT=D ELSE OUT=I FI => 2 ; 
IN= I => 3 ; 
IF IN=I THEN OLD_IN=O ELSE OLD_IN=I FI => 4 I; 

CREAO_LOl.JER: DELT A_OUT =0, REFRESH: AU.JAYSJ , 
[REAO_UPPER: DELTA_OUT=I, 
t.JR I TE_UPPER: DEL T A_OUT = OJ , 

AUJAYS; 

PRECHARGE _AND _BREAK _LOl.JER GAP3; 

"Output Section:" 

SUBTRACTER OUTPUT 
INPUT _A: 
INPUT_B: 
OUTPUT_REGISTER: 
LOAD: 
CARRY_OUT_BAR: 

CREAD_UPPER: AUIAYSJ, 
CREAD_LO!.IER: LOAD=X I l , 
[WRITE_UPPER: DELTA_OUT=ll, 
AUJAYS, 
DEL TA_OUT; 

CONTROL TO DATA SAVE_D 
REG Is TER: (REFRESH: AUIA YS' 

SUGGEST:LOAD=XD, 
VALUE: /*CONSTl*/, 
WR I TE_LOl.JER: LOAD=X I l , 

MAP: l DATA=XXXI => 15 
DATA=XXIX => 15 
OATA=XIXX => 14 , 
DATA=IXXX => 13 l, 

LATCH: LOAD=XO; 



PRECHARGE_BOTH ENO; 

ENO 

9 .4: SDLC Chip 
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John \Nawrzynek, a member of Caltech's Silicon Structures Project (SSP), was 

interested in building a synchronous, serial communication chip, similar to IBM's 

Synchronous Data Link Control chip, or the synchronous portion of INTEL's 8251 A 

USART chip. He found that each of these chips had undesirable 'features' because 

the chip designers wanted a 'universal' chip. John realized that with a silicon 

compiler, chips can be optimized to their application, rather than being 'general 

purpose' in nature. 

The SDLC chip is designe1i to be used with an 8-bit microprocessor. The chip 

contains both a transmit and receive buffer, along with a status/command register. 

The microprocessor interface consists of an 8-bit data port, a read (RD) line, a write 

(WR) line, and a control/data (<;_!?BAR line). The system interface consists of a reset 

(RESET) line, transmit clock signal (TXC), and receive clock signal (RXC), along 

with the standard power and clock signals. The network interface consists of the 

transmit data (TX) line and the receive data line (RX). 

Upon RESET, or when the microprocessor sets bit 3 in the status/command register, 

the receiver enters the HUNT mode. In HUNT mode, the receiver circuitry attempts 

to match each 8-bit windoi;v in the incoming bit stream, scanning for the SYNC 

character, which is fixed as IOOOOOOI. When the sync character is received, the 

SDLC. chip terminates HUNT mode and begins assembling characters. 

Upon RESET, the SDLC chip will transmit SYNC characters until data is written into 

the transmitter buffer. Additionally, whenever a character has finished being 

transmitted, and the transmitter buffer is not full, the SYNC character will be 

transmitted. 

The Bristle Blocks code. for the SDLC chip is listed here. Bristle Blocks compiled the 

chip in 2.4 minutes, and the resulting chip size was 95 by 148 mils. The chip 

consumed 36 ma. of power. 



-153-

NAtlE SDLC 8: 

MACRO SYNC() % 10000001 % 

FI ELD RESET <l >, RD<2>, l.JR<3>, C_DBAR<4>, RXC<9>, TXC<10>, TOONE<5>, RDONE<l 1 >, 
TXBUF _FULL<5>,RXBUF _FULL<7>,HUNT_l100E<8>, IS_SYNC<12>,RX<l3>; 

IO_PORT DATA 
OUTPUT_REGISTER: (READ UPPER: RD=l, 

l-IRI TE_UPPER: t.IR=I' 
REFRESH: ALWAYSJ, 

WR=!, LOAD: 
DRIVE: RD=I; 

CONTROL TO DATA AND BACK STAT CMO 
REGISTER: - -(READ_UPPER: WR=l AND C_DBAR=l, 

I.JR I TE_UPPER: RD= l ANO C_DBAR= l , 
SUGGEST: RESET=!, 
VALUE: 00000000, 
REFRESH: ALWAYS], 

TO_CONTROL: { 1=> RXBUF _FULL: 2=> TXBUF _FULL: 3=> HUNT_~10DE I, 
TO_OATA: { RDONE=I OR RXBUF_FULL=I ANO RD=O 

OR RXBUF_FULL=l AND C_DBAR=l => 1; 
t.lR=l ANO C_DBAR=O OR TOONE=O ANO TXBUF_FULL=l => 2; 
IS_SYNC=D ANO HUNT_MODE=I => 3 J, 

LATCH: ALWAYS; 

REGISTER TXBUF 
OPTIONS: 

SHIFTING_lR T 
REGISTER: 

SHI FT _RIGHT: 
SHIFT_LEFT: 
l'lAP: 

[READ_UPPER: l.JR=I AND C_DBAR=l, 
t.JRJ TE_LOWER: TOONE= I, 
REFRESH: ALWAYSJ; 

fREAD_LOllER: TOONE=! AND TXBUF _FULL= I, 
SUGGEST: TXBUF_FULL=O OR RESET=!, 
VALUE: fi".,.SYNC,·d, 
REFRESH: ALWAYS], 

TXC=I, 
NEYER, 
{ 8=> PAO I; 

PRECHARGE_AND_BREAK_LOt.IER LOl.JER_CHARGE; 

PRECHARGE_BOTH BOTH_CHARGE; 

REGISTER RXBUF 
OPTIONS: [I.JR! TE_UPPER: RD=I AND C_DBAR=O, 

READ_L01JER: RDONE=l, 
REFRESH: ALWAYS]; 

SHIFTER_IJI TH_VALUE_CHECK R 
REGISTER: [WRITE_LOt.IER: RDONE=l, 

SHIFT_RIGHT: 
SH I FT _LEFT: 
VALUE: 
RESULT: 
INPUT: 

REFRESH: ALWAYSJ, 
RXC=I, 
NEVER, 
/,·tSYNC»d, 
IS_SYNC, . 
RX=l; 

LEFT_RIGHT_SHIFT TCOUNT 
INPUT_REGISTER: [SUGGEST: RESET=l OR HUNT_MODE=l, 



SHIFT_LEFT: 
SHIFT _RIGHT: 
t'ISB: 
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VALUE: 0000000!, 
REFRESH: ALWAYS}, 

TXC=l, 
NEVER, 
TOONE: 

LEFT_RIGHT_SHIFT RCOUNT 
INPUT_REGISTER: [SUGGEST: RESET=!, 

VALUE: 0000000!, 

END 

SHI FT _LEFT: 
SHIFT _RIGHT: 
llSB: 

REFRESH: ALWAYSJ, 
RXC=l, 
NEVER, 
ROGNE; 

In another application, the same basic function was required, but due to processor 

overhead time, FIFOs were required on the transmit and receive buffers. In the 

following listing, 8-word deep FIFOs have been added to the two buffers. The 

compile time for this new chip was 6.67 CPU minutes, the chip size was 222 by 

199 mils, and the power requirements were 1 O~ ma. 

NNlE SOLC2 8; 

11ACRO SYNC<l % 10000001 % 

FIELD RESET<l>,RD<2>,~lR<3>,C_OBAR<4>,RXC<9>,TXC<10>,TDONE<5>,RDONE<ll>, 
TXBUF _FULL<6>, RXBUF _FULL<?>, HUNT _r10DE<8>, I S_SYNC<12>, RX<13>, 
TXRA<l4:21>,TXWA<22:29>,RXRA<14:21>,RXWA<22:28>; 

I O_PORT DAT A 
OUTPUT_REGISTER: [REAO_UPPER: RD=I, 

l-JRITE_UPPER: WR=l, 
REFRESH: ALWAYS}, 

LOAD: ~IR= I , 
DRIVE: RD=l: 

CONTROL_TO_OATA_AND_BACK STAT_CMO 
REG I STER: [REAO_UPPER: ~JR= I AND C_OBAR= I, 

l-JRITE_UPPER: RD=l AND C_DBAR=I, 
SUGGEST: RESET=!, 
VALUE: 00000000, 
REFRESH: ALWAYS}, 

TO CONTROL: I l=> RXBUF _FULL; 2=> TXBUF _FULL; 3=> HUNT_l100E } , 
TO=DATA:. ! RDONE=l ANO 

!RXRA=IXXXXXXX AND RXWA=XXXXXXXI OR 
RXRA=XIXXXXXX AND RXWA=IXXXXXXX OR 
RXRA=XXIXXXXX AND RXWA=XIXXXXXX OR 
RXRA=XXXIXXXX AND RXWA=XXIXXXXX OR 
RXRA=XXXXIXXX AND RXWA=XXXIXXXX OR 
RXRA-XXXXXIXX AND RXWA=XXXXIXXX OR 
RXRA=XXXXXXIX AND RXWA=XXXXXIXX OR 
RXRA=XXXXXXXI AND RXWA=XXXXXXIX> => 1; 

WR=l AND C_DBAR=O AND 
<TXRA=IXXXXXXX ANO TXWA=XXXXXXXI OR 
TXRA=XIXXXXXX ANO TXWA=IXXXXXXX OR 



LATCH: 
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TXRA=XXIXXXXX AND TXWA=XIXXXXXX OR 
TXRA=XXXIXXXX ANO TXWA=XXIXXXXX OR 
TXRA=XXXXIXXX AND TXWA-XXXIXXXX OR 
TXRA=XXXXXIXX AND TXWA=XXXXIXXX OR 
TXRA=XXXXXXIX ANO TXWA=XXXXXJXX OR 
TXRA=XXXXXXXI AND TXWA=XXXXXXIXJ 

OR TXBUF_FULL=I => 2: 
IS_SYNC=O AND HUNT_MODE=I => 3; 
NOTIRXRA=IXXXXXXX ANO RXWA=IXXXXXXX OR 

RXRA=XIXXXXXX AND RXWA=XIXXXXXX OR 
RXRA=XXIXXXXX ANO RXWA=XXIXXXXX OR 
RXRA=XXXIXXXX AND RXWA=XXXIXXXX OR 
RXRA=XXXXIXXX AND RXWA-XXXXIXXX OR 
RXRA=XXXXXIXX AND RXWA=XXXXXIXX OR 
RXRA=XXXXXXIX AND RXWA=XXXXXXIX OR 
RXRA=XXXXXXXI ANO RXWA=XXXXXXXIJ =>4; 

NOTITXRA=IXXXXXXX ANO TXWA-IXXXXXXX OR 
TXRA=XIXXXXXX AND TXWA=XIXXXXXX OR 
TXRA=XXIXXXXX ANO TXWA=XXIXXXXX OR 
TXRA-XXXIXXXX ANO TXWA-XXXIXXXX OR 
TXRA=XXXXIXXX ANO TXWA=XXXXIXXX OR 
TXRA=XXXXXIXX ANO TXWA-XXXXXIXX OR 
TXRA~XXXXXXIX AND TXWA=XXXXXXIX OR 
TXRA-XXXXXXXI ANO TXWA=XXXXXXXI> =>5l, 

ALWAYS; . 

MACRO TXBUFREG<NAME,AOR) 
% REGISTER TXBUF_?NAME? 

OPTIONS: [REAO_UPPER: WR=! AND C_DBAR=O AND TXRA=?ADR?, 
t.JRITE_LOL..JER: TDONE=I AND TXWA=?AOR?, 
REFRESH: ALWAYS]; % 

/*TXBUFREGll,OOOOOOOIJ*/ 
/*TXBUFREG!2,000000IOI*/ 
/*TXBLJFREGl3,00000100l*/ 
/*TXBUFREG!4,0000JOOOI*/ 
/*TXBLJFREGIS,OOOIOOOOl*/ 
/*TXBLJFREGl6,00100000l*/ 
/*TX8UFREG(7,0IOOOOOOJ*/ 
/*TXBUFREGC8,I0000000)*/ 

SHIFTING_IR TXREAO_POINTER 
SHIFT_LEFT: NEVER, 
SHIFT_RIGHT: WR=I AND C_DBAR=D, 
flAP: !<1:8> => TXRAI, 
REGISTER: [SUGGEST: RESET=!, 

VALUE: I OOOOOOOJ , 
INPUT: TXRA=DOOOOOOI; 

SHI FT I NG_IR TXl~RI TE_POINTER 
SHIFT_LEFT: NEVER, 
SHIFT_RIGHT: TDONE=I, 
MAP: 1<1:8> => TXl~A!, 
REGISTER: (SUGGEST: RESET=!, 

VALUE: I OOOOOOOJ , 
INPUT: TXWA=OOOOOOOI; 

SHIFTING_IR T 
REGISTER: rnEAD_LOl~ER: TDONE=I AND TXBUF _FULL=I, 

SUGGEST: TXBUF_FULL=O OR RESET=!, 
VALUE: hSYNC~·c/, 



REFRESH: ALWAYSJ, 
SHIFT_RIGHT: TXC=I, 
SHIFT_LEFT: NEVER, 
1·1AP: I 8=> PAO I: 
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PRECHARGE _ANO _BREAK _LQL.IER LOl-lER_CHARGE: 

PRECHARGE_BOTH BOTH_CHARGE: 

f!ACRO RXBUFREG <NAME, AOR) 
% REGISTER RXBUF_?NAt1E? 

OPTIONS: [l.lRITE_UPPER: RO=I AND C_OBAR=O AND RXRA=?AOR?, 
R_EAO_LOlJER: RDONE=I AND RXWA=?AOR?, 
REFRESH: ALWAYS]; % 

/*RXBUFREG(l,OOOOOOOil*/ 
/*RXBUFREG<Z,00000010!*/ 
/*RXBUFREG(3,00000I00l*/ 
/*RXBUFREG(4,0000IOOOl*/ 
/*RXBUFREG!S,OOOIOOOOl*/ 
/*RXBUFREG!S,00100000!*/ 
/*RXBUFREG(7,01000000l*/ 
/*RXBUFREG(8,10000000l*/ 

SHIFTING_IR RXREAD_POINTER 
SHIFT_LEFT: NEVER, 
SHIFT_RIGHT: RD=! ANO C_OBAR=O, 
MAP: 1<1:8> => RXRAI, 
REGISTER: [SUGGEST: RESET=!, 

VALLIE: I OOOOOOOJ , 
INPUT: RXRA=OOOOOOOI; 

SHIFTING IR RXWRITE POINTER 
SHIFT_LEFT: NEVER, 
SHIFT_RIGHT: RDONE=I, 
llAP: l<l: 8> ~> RXl-lAI, 
REGISTER: [SUGGEST: RESET=!, 

VALUE: I OOOOOOOJ , 
INPUT: RX~IA=OOOOOOO I : 

SH IF TER_IJ I TH_ VALUE_CHECK R 
REGISTER: [l.JRI TE_LOWER: ROONE=I, 

SHJFT_RIGHT: 
SHI FT _LEFT: 
VALUE: 
RESULT: 
INPUT: 

REFRESH: ALWAYS], 
RXC=l, 
NEVER, 
/,·,SYNC>':!, 
IS_SYNC, 
RX=I; 

LEFT_RIGHT_SHIFT TCOUNT 
INPUT_REGISTER: [SUGGEST: RESET=! OR HUNT_f100E=l, 

VALUE: OOOOOOOI, 

SHI FT _LEFT: 
SHI FT _RIGHT:. 
nss: 

REFRESH: ALWAYS], 
TXC=I, 
NEVER, 
TOONE; 

LEFT_RIGHT_SHIFT RCOUNT 
INPUT _REG I STER: [SUGGEST: RESET= I, 

VALUE: 00000001, 
REFRESH: ALWAYSJ, 



END 

SHI FT _LEFT: 
SHIFT_RIGHT: 
tlSB: 

RXC=I, 
NEVER, 
ROGNE; 
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9.5: A Microprogrammed Microprocessor 

In this next example, we will see how a silicon compiler allows the user to explore 
alternate system architectures. We will design a microprogrammed microprocessor 
system, similar to the OM2 [15][16] system designed at Caltech. The basic 
architectural plan of the OM system is shown in figure 9-7. We have a datapath 
chip, which contains the scratchpad registers and ALU for the system, a microcode 
controller, which generates microcode addresses, and a microcode memory, which 
contains the instruction code for the machine. Surrounding these three modules are 
application dependent peripheral circuits. The basic system communicates with the 
peripheral circuitry across two 16-bit data buses, called the Left bus and the Right 
bus. 

Controller 
Chip 

Lll L ll Lll 

Addreea 

Flc9a 

Bidirectional 
Data Bue 

Microcode 
Memory 

Microcont.rol 
Word 

Oatapath 
Chip 

Bidirectional 
Oat.a Bue 

Fig. 9-7: OM System Block Diagram 

We will begin by designing a controller chip. The controller provides microcode 
addresses. We need a register to hold the current microcode Program Counter 
(mPC). The usual operation of the controller will be to sequence through a series of 
microcode "tvords, so the mPC will need an incrementer. If we used an adder instead 
of an incrementer, we can perform relative microcode branches. Under normal 



-158-

operation, one input to the adder can be set to the value 1, so that the adder 

performs the increment operation. To branch, we merely load this adder input with 

the offset. To do a jump, we can force new data into the mPC register. By including 

a small stack on the chip, we can have subroutines in our microcode. 

Based upon these desires, we can design a Register Transfer (RT) level diagram of 

the datapath, as shown in figure 9-8. We have drawn each of the registers and 

transfer paths. The transfer paths have been labeled to aid in the description of the 

chip operation. The upper bus is used to transfer the new mPC to the PORT unit, 

which drives the address lines of the microcode memory (note: the least-significant 

address is connected to the PHI-2 clock line, so that two words are read from the 

microcode memory every clock cycle). Since we want a new mPC value each clock 

cycle, the A control line should be high every clock cycle, and one of C, D, or E 

should also be high. The mPC latch, which is one of the adder input registers, 

should also be loaded every clock cyde, so the B control line is always high, too. 

For normal operation, we want to increment the mPC value each clock cycle, so the 

OFFSET register should normally contain a value of 1, and the NEW_mPC register, 

\Vhich is the adder output, should normally drive the upper bus. Therefore, the L 

control, which loads the OFFSET register with 1, and the C control lines should 

normally be high. To perform a branch, we want to load the OFFSET register with 

the data in the H~ _ _!>ORT. This transfer is done by enabling the F and J control lines. 

To do a jump, we wish to directly transfer the I~ORT data into the mPC, so we 

enable the E control line instead of the C control line. 

Stack 
Address 

Fig. 9-8: Controller Register Transfer Diagram 
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The STACK unit allows calls and returns in the microcode. To perform a CALL 
operation, we need to push the NEW_mPC value onto the stack and load the mPC 
from the I~ORT. This operation requires setting the G, I, N, and E control lines 
high. To perform a RETURN operation, we simply pop the top value off the STACK 
and into the mPC. Setting D and M high will perform this transfer. 

We have described five operations performed by the controller chip, which means 
that a 3-bit microcode field is required to specify the operation. We can have up to 
eight operations specified by the 3-bit field, so we can add three more instructions 
to the controller's repertoire without impacting the microcode cost. If we can 
perform these new operations with the existing controller hardware, these new 
instructions are virtually free. One operation we may wish to have is a SA VE 
operation, which will push new data unto the STACK. This operation allows us to 
store a jump address in the controller chip several clock cycles before the jump is to 
occur. vVhen the time comes to jump, the RETURN instruction will transfer the 
jump address to the mPC. We may like to use the two remaining instructions as 
loop control operations. One of the operations would be used at the start of the loop, 
the other at the end. The form of loop we will implement is a DO loop. The DO 
instruction will push the NEW_p1PC value on the stack, and the ENDDO instruction 
v.rill move the top-of-stack value into the mPC. 

To allow conditional operations, there will be a condition input to the chip. If the 
condition is TRUE (i.e. the pin is high), the instructions will be executed as stated 
above. If the condition is FALSE, the normal operation, which increments the 
current mPC value. will be executed. If the ENDDO instruction is executed when 
the condition is FALSE, we will say that an UNDO instruction is executed, which 
causes the controller to 'fall out' of the loop. We will increment the mPC value and 
discard the top value on the STACK. 

The following table summarizes the driving functions for each of the control lines. 

Operation Condition Active Control Lines Opt i ona I Active Controls --------- --------- -------------------- ------------------------NOP TRUE A,8,L,C G,H,J FALSE A,8,L,C G,H,J 
JUtlP TRUE A,B,E L,F,G,H,J FALSE A,B,L,C G,H,J 
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CALL TRUE A,8,E,L,G, I ,N 
FALSE A,8,L,C G,H,J 

RETURN TRUE A,8,DJl L,F,G,H,J FALSE A.B,L,C G,H,J 

BRANCH TRUE A,8,C,F,J 
FALSE A,8,L,C G,H,J 

SAVE TRUE A,8,C,L, I ,N,J 
FALSE A,8,L,C G,H,J 

DO TRUE A,8,C,L,G, I ,N 
FALSE A,8,L,C G,H,J 

ENDOO TRUE A,B,O G,H,J,L,F <UNDO) FALSE A,B,L,C,M,H,K 

The translation of this chip description into the Bristle Blocks specification 
language is straightforward. The Bristle Blocks input is listed here. Bristle Blocks 
compiled the chip in 4.06 CPU minutes, the chip area was 171 by 195 mil, and the 
power requirements were 88.8 ma. 

NAME CONTROLLER 16; 

FIELD 0P<l:3>,CDNDITIDN<4>,L0AD<5>,DRIVE<6>; 

~lACRO NOP ( l % DP-ODD OR CONDITION=D % flACRO JUI.JP () % DP=DOI AND C01'JO IT I ON= I % llACRO CALL ( l % OP=OIO ANO CONDITION=! % tlACRO RE TURN {) % OP=Ol I ANO cmmI TION=l % flACRO BRANCH() % DP=IDO ANO CONDITION=! % tlACRO SA VE { l % DP=IDI AND CONDITION=! % ftACRO DO {) % OP-I IO AND CONDITION=! % flACRO ENOOO ( ) % DP=Ill AND CONDITION=! % llACRO UNDO { l % DP=I I I AND CONDITION=D % 

OUTPUT_PORT PC 
REGISTER: £READ_UPPER:AUJAYSJ; 

ADDER NEl.J_PC 
INPUT _A: £READ_UPPER: AL~IAYSJ , 
INPUT _8: [READ_LOl-JER: hBRANCH,·,/, SUGGEST: NOT (/,-,BRANCH,·,/) , VALUE:OOOOOOOOOOOOOOOIJ, 
LOAD: AUJA YS. 
OUTPUT_REGISTER: 

(I.JR I TE_UPPER: I ,-,NOP,·,/ OR I ,·,BRANCH,·,/ OR I ,·,SAVE M OR I ,·,DO,·rl, lJRITE_LDWER: NOTU1·,UND01·d OR hBRANCHi·d OR /,·,SAVE,·,/)); 
PRECHARGE_BOTH PCHG; 

. STACK STACK 
DEPTH: 16, 
TOP: Cl.JR I TE _UPPER: I i"<RE TURN,·,/ DR /.:£NDOO,·d, 

!JR I TE_LO!JER: h«UNDO,·c/, 
READ _LOUER: I ,·,SA VE ,·r/ OR I i«CALL ,.,; OR I ,.,oo,·d. REFRESH: NOT< /*RETURN*/ OR /*UNDO*/ )J, POP: /,·,RETURN,•c/ OR /,·,LJN001·d, 
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IO_PORT DATA 

ENO 

OUTPUT .:_REGISTER: (l,JRI TE_UPPER: h·:CALL,·d OR h'dUt1P,·d, 
lJR I TE _LOIJER: />:BRANCH,·:/ OR /,-,SA VE ,·r/, 
READ_LQl.JER: h:UNOO,·rl, 

LOAD: LOAD= I , 
DRIVE: DRIVE=I; 

REFRESH: AUJAYSJ, 

We can experiment to see how the stack size affects the area and power 
requirements of the chip. After compiling controllers with stack depths of 8 and 
12, and interpolating and extrapolating the results, the power requirements were 
found to be approximately 28.8 + 3.75"'depth ma. and the width of the chip was 
found to be approximately 83 + 5.5"'depth mils . 

• • .I) .I) L .j) L 
L • r • .... C\I • L .j) JI: < ID :::::> [1) 0 0 .I) IJ :a :a .fl I _J j .fl IJ Q.. Q.. • .j) IO U> (f.. ::i l s: s: .. • % ..J .. Q ... ... < d ..... 

0 Ol r ..c lL. 0 • 0 en ..... ..... 
0:: u 

Fig. 9-9: Datachip Block Diagram 

Next, we can design the datachip for the microprogrammed processor. We need two 
bi-directional data ports, some general purpose registers, a fixed constant source, a 
shifter, and an Arithmetic/Logic Unit (ALU). A block diagram of the proposed chip 
is shown in figure 9-9. Each of the registers in the chip communicate with tvvo 
data buses. We can assign a unique bus address for each of the registers. We can 
decode the microcode to allow two transfers per clock cycle. There are 16 data 
sources for each bus, and 15 data sinks (due to the constant value). Hence, vve can 
decode a 16-bit microcode word as four 4-bit address field. One address specifies 
the upper bus (A bus) source, another specifies the destination. We decode the two 
lower bus (B bus) addresses in the same manner. 
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PHl-1 Microcode Word Decode 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ I I I I I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ A Source A Oest. B Source B Oest. 

The left and right data ports are implemented as single-register IC2.__!'0RT. The left 
port's register is assigned bus address 2, while the right port's register is assigned 
bus address 3. The load and drive controls for these ports come directly from a 
microcode field of the PHI-2 microcode word. When the least-significant bit of the 
FORT field is high, the right port will drive from its internal register to the pads. 
The next bit controls when the right port reads from the pads into the internal 
register. The two high-order bits of the PORT field control the left port. 

PHI-2 Microcode Word Decode 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ !\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\! PORT I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I . I I 
Left Port Load ---/ I I I 
Left Port Drive -----/ I I 
Right Port Load --------/ I 
Right Port Drive ----------/ 

It is useful to have a source of constant data in the datapath. Besides giving us a 
known value, a constant 'register' does not read data from the bus. Hence, we have 
an unassigned bus destination address. If we do not wish to perform a transfer on 
one of the two data buses, we can 'transfer' into this non-existing n~gister. We 
must choose what our two constant values will be. To aid in the generation of 
masks and shift operations, the upper bus constant will be 0 and the lower bus 
constant will be -1. 

We will use a barrel shifter for the shift element. The MASKED SHIFTER has 
registers for the input most-significant word and least-signficant word, along with 
an output register and mask register. With the masked writing capabilities, we can 
do field extractions and field insertions. We have a 4-bit shift constant field in the 
microcode, along with a two bit field specifing how to load under mask. If the t-wo 
mask bits ~re low, the shifter does not write into its output register. If both bits are 
high, the shifter directly loads its output register. If the lower bit of the mask op 
field is high, the shifter writes into the output register bits whose corresponding 
mask register bits are low. If the upper bit of the mask op field is high, the shifter 
writes into the output register bits whose corresponding mask register bits are 
high. 
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PHI-2 Microcode Word Decode 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ I SHIFT 1\\\\\\\\\\\1 f1ASKl\\\\\I PORT I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

0 0 No Write 
0 1 Write where mask is low 
1 0 Write where mask is high 
1 1 Write every bit 

For the ALU, we use the Bristle Blocks ALl:!_!"'ITI:!.£LAGS element. This element has 
hvo input registers, either one or two output registers, and a flag register. We will 
use both output registers. The CARRY, MSB, and ZERO flags from the flag register 
vvill drive pads, so that external circuitry can sense the state of the flags. To allovv 
external conditions to modify the ALU operations, we will have a condition input 
which drives the ALU operation decode. The ALU portions of the PHI-2 microcode 
vvord are listed here. 

PHI-2 Microcode Word Decode 
+--+--+--+--+--+--+-~+--+--+--+--+--+--+--+--+--+ I SHIFT I ALU I MASKI LOADI PORT I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I I 
I I I I I \--- Load ALU output 
I I I I \------ Load ALU output 
0 0 0 0 Divide Step,·, 
0 0 0 1 Increment A 
0 0 1 0 Subtract w j th Borrow~, 
0 0 1 1 Subtract 
0 1 0 0 Aclcl with Carry,·, 
0 1 0 1 Adel 
0 1 1 0 Decrement A 
0 1 1 1 Negate A 
1 0 0 0 Mu I t i p I y Step,·, 
1 0 0 1 Select A/B,·, 
1 0 1 0 OR 
1 0 1 1 AND 
1 1 0 0 A 
1 1 0 1 XOR 
l 1 1 0 TEST 
1 1 1 1 Comp Ii ment A 

register 
register 

,., indicates that the operation performed is CJ function of the condition input. 

2 
1 

Finally, we add the general purpose registers. We have four free bus addresses, so 
we will add four registers to the chip. The Bristle Blocks specification for this chip 
is listed here. A chip enable input has been added to the chip specification. When 
chip enable is low, none of the registers' contents will be modified. 
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NAME OATAPATH 16; 

FIELD A_SOURCE<l:4>,A_DEST<5:8>,B_SOURCE<9:12>,B_DEST<13:16>, 
ENABLE<17>,SHIFT_CONST<1:4>,ALU<5:8>,MASK<9:10>,LOAD<ll:l2>, 
PORT<13:16>,CONDITION<l8>,ALU_OP= ALU & CONDITION; 

MACRO ADDRIADDRI 
% [READ_UPPER: A_DEST=?ADDR? AND ENABLE=I, 

READ_LOWER: B_DEST=?ADDR? AND ENABLE=I, 
l,JR I TE_UPPER: A_SOURCE=? ADDR?, 
lJRI TE_LOlJER: B_SOURCE=?ADOR?, 
REFRESH: ALWAYS J % 

IO_PORT LEFT_PORT 
OUTPUT _REG I STER: hADDR <DO I OJ M, 
LOAD: PORT=lXXX ANO ENABLE=!, 
DRIVE: PORT=XIXX AND ENABLE=!; 

REGISTER R12 OPTIONS:/*ADDRIIIOOJ*/; 
REGISTER R13 OPTIONS:/*ADDRIIIOIJ*/; 
REGISTER R14 OPTIONS:/*ADDRIIIIOI*/; 
REGISTER Rl5 OPTIONS:/*ADDRIIIIII*/; 

ROl'l_PA IR C0 
LEFT_ENABLE: A_SOURCE=DOOO, LEFT_UPPER:OOOOOOOOOOOOOOOO, 
RIGHT_ENABLE:B_SOURCE=OOOO, RIGHT_LOL-lER: I I I I I I I I I I I I I I I I; 

PRECHARGE_BOTH PCHG; 

tlASKED __ SH I FTER SHIFTER 
llOST_SIGNIFICANT_WORD: 
LEAST_SIGNIFICANT_WORO: 
OUTPUT_REGISTER: 
tlASK _REGISTER: 
SHIFT_CONSTANT: 
LOAO_IF _0: 
LOAO_IF _1: 

/,·,AOOR I I 0001 ,.,; , 
I ,.,AOOR ( I 00 I I,·:/, 
I ,·,AOOR I I 0 I Ol ,·:/, 
hADDR I I 0 I I l ,·:/, 
SH I FT _CONST, 
MASK=XI ANO ENABLE=!, 
MASK=IX AND ENABLE=I; 

ALU_l-J I TH_FLAGS ALU 
INPUT _A: 
INPUT _8: 
OUTPUT _1: 
OUTPUT _2: 
FLAGS: 
LOAO_FLAGS: 
1-JR I TE_OUTPUT _1: 
[,JR! TE_OUTPUT _2: 
TO_CONTROL: 

hAOOR !O I DOI ,·:/, 
hADDR !O IO I l >":!, 
hAODR !O I IO I ,·:/, 
hAOOR !O I I I I ,·:/, 
hADDR !ODO I l ;":/, 
LOAD=IX ANO ENABLE=!, 
LOAD=IX ANO ENABLE=!, 
LOAD=Xl AND ENABLE=!, 
l<l,2,9>=>PADI, 

DECODE: ALU_OP 
<0> => SUBTRACT 
<1> => ADO 
<2,3> => INCREMENT_A 
<4> => SUBTRACT 
<5> => SUB_lJ_BORROW 
<G,7> =>SUBTRACT 
<8> => ADD 
<9> => ADO_IJ_CARRY 
<10,11> =>ADD 
<12,13> => DECREl1ENT_A 
<14,15> => NEGATE_A 
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<lG> => SETA 
<17> => ADO 
<18> => SETA 
<l!:l> => SETB 
<20,21> => OR 
<22,23> => ANO 
<24,25> => SETA 
<2G,27> => XOR 
<28,29> => TEST 
<30,31> => SETCA; 

IO PORT RIGHT_PORT 
OUTPUT_REGISTER: 
LOAD: 
DRIVE: 

I )'1AODR !001 l > )'d, 
PORT=XXIX ANO ENABLE=!, 
PORT=XXXI ANO ENABLE=!; 

ENO. 

This chip was compiled in 6.2 minutes, resulting in a chip whose area was 203 by 

2 76 mil, and whose power consumption was 96 ma. 

The microcode writers were unsatisfied with. the limited number of general 

purpose registers. There were only four registers in the original chip specification 

that were not used by the data processing elements, although one of the ALU output 

registers can be used if the user never loaded the register from the ALU. The system 

designers, on the other hand, wished to keep the microcode width at 16-bits, which 

presented an addressing problem. How can we address more registers in thE! 

datapath. Four schemes were pursued which lead to an increased register count in 

tne data chip. 

The first scheme involved rearranging the PHI-1 microcode word. Instead of 

having 4-bit addressing for both the A and B buses, we tried having 5-bit addresses 

for the A bus and 3-bit addresses for the B bus. We would limit the number of 

registers which could communicate across the lower bus and at the same time 

increase the number of registers v.rhich can use the A bus. With this technique, we 

were able to add 16 more registers to the chip. The chip area increased to 229 by 

272 mil, and the power consumption rose to 126 ma. The specification for this ne~ 

chip is listed here. 

NMlE OATAPATH2 lG; 

FIELD A_SOURCE<1:5>,A_OEST<6:10>,B_SOURCE<ll:l3>,B_DEST<l4:16>, 
ENABLE<17>,SHIFT_CONST<l:4>,ALU<5:8>,MASKS<9:10>,LOA0<11:12>, 
PORT<13:16>,CONOITION<l8>,ALU_OP= ALU & CONDITION; 

flACRO ADOR_BOTH {AOORl 
% [REAO_UPPER: A_DEST=OO?ADOR? ANO ENABLE=!, 
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READ_LO\.IER: B_DEST=?AOOR? ANO ENABLE=I, 
I.JR I TE_UPPER: A_SOURCE=OO?AODR?, 
!JR I TE_LOlJER: B_SOURCE=?AOOR?, 
REFRESH: ALWAYS J % 

~1ACRO AOOR_A (AOOR) 
% fREAO_UPPER: A_DEST=?ADDR? AND ENABLE=!, 

!,JR I TE_UPPER: A_SOURCE=?ADDR?, 
REFRESH: ALWAYS J % 

IO_PORT LEFT_PORT 
OUTPUT _REG! STER: ;,.,AOOR_BOTH ( 11 l l ,.,; , 
LOAD: PORT=IXXX ANO ENABLE=!, 

'DRIVE: PORT=XIXX AND ENABLE=!; 

REG I STER Rl OPT! ONS: /,·,AOOR_BOTH !001 l::-/; 
REG I STER R2 OPTIONS: I ,·,ADOR_BOTH !O I OJ,·:/; 
REGISTER R3 OPTIONS:hADOR_BOTH!DIIJ,·J; 
REG I STER R15 OPTIONS: /,·,ADOR_A (O! I I I),-:/; 
REGISTER R15 OPTIONS:/,.,AODR_A!IOOOOl::/; 
REGISTER Rl7 OPTIONS:/-:cAOOR_A{!OOOll-;d; 
REG I STER R18 OPTIONS: h·:AODR_A ( IOOIOJ ,-J; 
REGISTER R19 OPTIONS: /,·,AOOR_A ODDI I},·:!; 
REGISTER R20 OPTIONS:hAODR_A!IOIOOl\·d; 
REG! STER R21 OPTIONS: /:':AOOR_A ! I Ol Ol} >'d; 

REG I STER R22 OPTIONS: /,·,ADDR_A (I 0 I I Ol l'd; 
REG !STER R23 OPTIONS: I ,·,AODR_A (I 0 I I I l ,·d; 
REGISTER R24 OPT IONS: hADOR_A (I 1000 l:·d; 
REGISTER R25 OPT IONS: / :':AOOR_A (I 1001 ) ,·:/; 
REG I STER R28 OPT IONS: hAOOR_A (1I0 I OJ,-:/; 
REG I STER R27 OPTIONS: /,·,AOOR_A (I IO I I l :"d; 
REGISTER R28 OPTIONS:hADDR_A!lIIDOl,·:I; 
REGISTER R29 OPTIONS: h·:AODR_A (I I I 0 I ) :":!; 
REGISTER R30 OPTIONS:hADDR_AU!l!Oh/; 
REG I STER R31 OPTIONS: hAOOR_A <I I I I I l ,·d: 

Ron_PAIR C0 
LEFT_ENABLE: A_SOURCE=OOOOO, LEFT_UPPER:OOOOOOOOOOOOOOOO, 
RIGHT_ENABLE:B_SOURCE=OOO, RIGHT_Lm!ER: I! I I I I I I I I I I I I I I; 

PRECHARGE_BOTH PCHG; 

t'lASKED _SH IF TER SH I FTER 
tlOST _SI GNI FI C/\NT _WORO: I »:AODR_A (Q IOOO) ,·:f, 

I »:AODR_A (QI 00 I l :•cf, 
/ ,·:AOOR_A (0 I 0 I 0 l ,·cf, 
/ ,-:ADOR_A (0 IOI I h·cf, 
SHI FT _CONST, 

LEAST_SIGNIFICANT_WORO: 
OUTPUT_REGISTER: 
llASK_REGISTER: 
SH I FT _CONSTANT: 
LOAO_IF _0: 
LOAD_IF _1: 

ALU_l-JI TH_FLAGS ALU 
INPUT_A: 
INPUT_B: 
OUTPUT_l: 
OUTPUT_2: 
FLAGS: 
LOAO_FLAGS: 
LJR I TE_OUTPUT _l: 
~JR I TE_OUTPUT _2: 

MASKS=XI ANO ENABLE=!, 
MASKS=IX AND ENABLE=l; 

hADDR_BOTH (I OOJ ,-:/, 
hADDR_A (QI I 00l l'c/, 
hADDR_BOTH { I 01 ) ,·:/, 
hADDR_A (QJ I or)-::!' 
/,-,AOOR_A (QI I I OJ M, 
LOAD=IX AND ENABLE=l, 
LOAD=IX AND ENABLE=!, 
LOAD=XI ANO ENABLE=I, 



TO_CONTROL: l<l,2,9>=>PADl, 
DECODE: ALU_OP 

<0> => SUBTRACT 
<l> => ADO 
<2. 3> => I NCREf1ENT _A 
<4> => SUBTRACT 
<5> => SUB_l.l_BORRml 
<6,7> =>SUBTRACT 
<8> => ADD 
<9> => ADD_l.l_CARRY 
<10, 11 > => ADO 
<12.13> => OECREMENT_A 
<14,15> => NEGATE_A 
<16» => SETA 
<17> => ADD 
<18> => SETA 
<19> => SETS 
<20,21> => OR 
<22,23> => ANO 
<24,25> => SETA 
<26,27> => XOR 
<28,29> => TEST 
<30,31> => SETCA; 

-167-

IO PORT RIGHT_PORT 
OUTPUT_REGISTER: 
LOAD: 
DRIVE: 

I ~·:ADDR_BO TH ( I I Ol ~·:!, 
PORT=XXIX AND ENABLE=!, 
PORT=XXXI AND ENABLE=!; 

ENO 

Another proposed method for increasing the number of datapath registers was to add 
backup registers, similar to the alternate register set in the Zilog Z80 chip. We 
would have backup registers for each of the four general purpose registers, and 
when a swap instruction was executed, the register pairs would swap data values. 
For this method to work, we need a bit to indicate when to swap. We can free up 
one PHI-2 bit if we only have one ALU output register. The load bit for that 
register can then be used as the SWAP bit. The area for this new chip is 220 by 280 
mil, and the power consumption is 114 ma. 

NAME DATAPATH3 16; 

FI ELD· A_SOURCE<l: 4>. A_DEST <5: 8>, B_SOURCE<9: 12>, B_OEST <13: 16>, ENABLE<l7>,SHIFT_CONST<1:4>,ALU<5:8>,MASKS<9:10>,LOAD<ll>,SWAP<12>, PORT<13:16>,CONOITION<l8>,ALU_OP= ALU & CONDITION; 
MACRO AODR!ADORJ 
% [READ_UPPER: A_DEST=?ADDR? ANO ENABLE=!, 

REAO_LOIJER: B_DEST=?ADOR? AND ENABLE=!, 
ljR I TE_UPPER: A_SOURCE=?ADOR?, 
1-IRITE_LOl-JER: B_SOURCE=?ADDR?, 
REFRESH: ALWAYS 1 % 

t!ACRO Sl-IAP (AODRl 
%SWAPPJNG_REGISTERS R?ADOR? 
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LEFT: [REFRESH: LOADS=XXXO, 
REAO_UPPER: A_DEST=?ADOR? ANO ENABLE=!, 
READ_LOWER: B_DEST=?AODR? ANO ENABLE=!, 
WRITE_UPPER: A_SOURCE=?AOOR?, 
I.JR! TE_LOl.IER: B_SOURCE=?AOOR?J, 

RIGHT: [REFRESH: LOADS=XXXOJ , 
RIGHT_TO_LEFT: Sl..JAP=I, 
LEFT _TO_RIGHT: Sl-IAP=I; % 

IO_PORT LEFT_PORT 
OUTPUT _REG! STER: /;,AOOR (001 Ol ,·,/, 
LOAD: PORT=IXXX ANO ENABLE=!, 
DRIVE: PORT=XIXX ANO ENABLE=!; 

h·:Sl..JAP ( I I OOl ,·r/ 
I ,·,Sl..JAP ( I I 0 I l ,·r/ 
I ,-:SWAP ( I I I Ol .,·,/ 
I ,·,Sl-IAP ( I I I I l ,·r/ 

ROM_PAIR C0 
LEFT_ENABLE: A_SOURCE=DOOO, LEFT_UPPER:OOOOOOOOOOOOOOOO, 
RIGHT_ENABLE:B_SOURCE=OOOO, RIGHT_LOWER:IIIIIIIIIIIIl!ll; 

PRECHARGE_BOTH PCHG; 

MASKEO_SHIFTER SHIFTER 
~lOST _SI GNI FI CANrnORO: /,·,ADDR CI 0001 ,·:f, 
LEAST _SI GNI FI CANT _[,.!ORD: hADDR < IOOI J ,.,/, 
OUTPUT _REG I STER: I ,·,AOOR (I 0 IO>,·:/, 
MASK_REG I STER: hADDR CI 0 I I J ,·,/, 
SHIFT_CONSTANT: SHIFT_CONST, 
LOAO_IF _0: t1ASKS=Xl ANO ENABLE=!, 
LOAD_IF_l: MASKS=IX AND ENABLE=!; 

ALU_l.JI TH_FLAGS ALU 
INPUT _A: 
INPUT_B: 
OUTPUT_!: 
FLAGS: 
LOAO_FLAGS: 
l-IR I TE_OUTPUT _l: 
TO_CONTRQL: 
DECODE: ALU_OP 

I ,-,AODR (0 I 00 l ,·:/, 
hADDR (O!OJ J >'<!, 
hADDR !O I JO h·d, 
I ,.,ADDR <000 I ) ;'c/' 
LOAD=! AND ENABLE=!, 
LOAD=! AND ENABLE=!, 
!<1,2,9>=>PAOI, 

<0> => SUBTRACT 
<l> => ADD 
<2,3> => INCREMENT_A 
<4> => SUBTRACT 
<5> => SUB_lJ_BORROf.,.J 
<6,7> =>SUBTRACT 
<8> => ADO 
<~l> => AOD_lJ_CARRY 
<10,11> =>ADD 
<12,13> => DECREllENT_A 
<14,15> => NEGATE_A 
<16> => SETA 
<17> => ADO 
<18> => SETA 
<19> => SETB 
<20,21> => OR 
<22,23> => ANO 



<24,25> 
<25,27> 
<28,29> 
<30, 31> 

=> 
=> 
=> 
=> 

SETA 
XOR 
TEST 
SETCA; 

REGISTER R13 OPTIONS:/*AOORIOIIII*/: 

IO_PORT RIGHT_PORT 
OUTPUT _REG! STER: /1·:AODR IOOI I I >'d, 
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LOAD: PORT=XXIX AND ENABLE=!, 
DRIVE: PORT=XXXI AND ENABLE=l; 

END 

A simpler proposal was to sharn the shifter and ALU input registers, thereby freeing 

up two· bus addresses. Since is is difficult to physically share the registers, we can 

share the registers in a logical sense: ALU input register A and shifter MSW register 

"vill have the same bus destination address, but only the ALU register will write the 

bus. Whenever a transfer is made to the ALU input register, the shifter register 

v.rill also load. Whenever a transfer is made fr9m the ALU input register, only the 

ALU register will write the bus. This chip has an area of 209 by 272 mil, and a 

power consumption of 100 ma. 

NAME OATAPATH4 lG; 

FIELD A_SOURCE<1:4>,A_DEST<5:8>,8_SOURCE<9:12>,B_DEST<13:1G>, 
ENABLE<17>,SHIFT_CONST<l:4>,ALU<5:8>,MASKS<9:10>,LOAD<ll:l2>, 
PORT<l3:1G>,CONDITION<18>,ALU_OP= ALU & CONDITlON; 

tlACRO ADDR <ADORl 
% [REAO_UPPER: A_DEST=?ADDR? AND ENABLE=l, 

READ_LOl-IER: B_DEST=?ADDR? ANO ENABLE=!, 
l-IRI TE_UPPER: A_SOURCE=?AODR?, 
L.JRI TE_LQl.JER: B_SOURCE=?ADDR?, 
REFRESH: ALWAYS l % 

nACRO HALF!ADORI 
% [REAO_UPPER: A_DEST=?AOOR? ANO ENABLE=I, 

READ_LOL.JER: B_DEST=?AODR? AND ENABLE=!, 
REFRESH: ALWAYS l % 

IO_PORT LEFT_PORT 
OUTPUT_REGJSTER: 
LOAD: 
DRIVE: 

hADOR IOO I OJ ~·:!, 
PORT=IXXX AND ENABLE=!, 
PORT=XIXX ANO ENABLE=!: 

REGISTER R8 OPTIONS:/*AODR!IOOOl*/; 
REGISTER R9 OPTIONS:/*ADDRIIOOII*/: 
REGISTER Rl2 OPTIONS:/*ADDRIIIOOJ*/: 
REGISTER Rl3 OPTIONS:/*AOORIIIOII*/; 
REGISTER R14 OPTIONS:/*AODRIIIIOl*/; 
REGISTER R15 OPTIONS:/*AODR<IIIII*/: 
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ROll_PA IR C0 
LEFT_ENABLE: A_SOURCE=OOOO, LEFT_UPPER:OOOOOOOOOOOOOOOO, 
RIGHT_ENABLE:B_SOURCE=OOOO, RIGHT_LOWER:IIIIIIIIIIIIIIII; 

PRECHARGE_BOTH PCHG; 

rlASKED _SH IF TER SH IF TER 
llOST_SIGNIFICANT_WORD: hHALF <O I OOl 1·rl, 

I ,·,.HALF CO l 0 I ) ,·rl, 
I ,·,AOOR {I 0 I OJ ,·rl, 
/,·,AODR {I DI I J i·rl, 
SHIFT_CONST, 

LEAST _SIGNIFICANT _t.JORO: 
OUTPUT_REGISTER: 
llASK_REG I STER: 
SHI FT _CONSTANT: 
LOAD_! F _0: 
LOAD_IF _1: 

MASKS=XI AND ENABLE=!, 
MASKS=IX AND ENABLE=!; 

ALU_lH TH_FLAGS ALU 
INPUT_A: I ,·,ADOR CO JOO J ,·d, 
INPUT_B: 
OUTPUT_l: 
OUTPUT_2: 
FLAGS: 
LOAO_FLAGS: 
!JR I TE_OUTPUT _1: 
I.JR I TE_OUTPUT _2: 
TO_CONTROL: 
DECODE: ALU_OP 

I l·:ADDR CO IO I l l"</, 
I ,·,ADDR (QI IO h·d, 
I ,·,AOOR (QI I I J ,·:/, 
I ,·,AODR rnoo I ) l'd. 
LOAD=IX AND ENABLE=!, 
LOAD=IX AND ENABLE=!, 
LOAD=Xl AND ENABLE=!, 
f<l,2,9>=>PAOI, 

<0> => SUBTRACT 
<1> => ADO 
<2,3> => INCRH1ENT_A 
<4> => SUBTRACT 
<5> => SUB_~J_BORRmJ 
<5,7> =>SUBTRACT 
<8> => ADO 
<9> => ADD_l-J_CARRY 
<10, 11> = > ADO 
<12, 13> =>' OECREMENT_A 
<14,15> => NEGATE_A 
<16> => SETA 
<17> => ADD 
<18> => SETA 
<19> => SETB 
<20, 21> => OR 
<22,23> => AND 
<24,25> => SETA 
<26,27> => XOR 
<28,29> => TEST 
<30,31> => SETCA; 

IO_PORT RIGHT_PORT 
OUTPUT _REGISTER: I 1':ADOR <00 I I l ,·d, 
LOAD: PORT=XXIX AND ENABLE=!, 
DRIVE: PORT=XXXI AND ENABLE=!; 

ENO 

The final proposal was to add a stack to the chip. We would again have to remove 
one of the ALU output registers to free up a control bit for the POP line. This stack 
pushes data whenever the top register is written to, and pops data whenever the 
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POP signal is high. The top of stack register can be read independent of whether the 
stack POPs or not. For an 8-deep stack, the chip area is 231 by 279 mil and the 
power consumption is 129 ma. 

NAME OATAPATHS 16; 

FI ELD A_SOURCE<l: 4>, A_DEST <5: 8>, B_SOURCE<3: 12>, B_DEST <13: 16>, ENABLE<l7>,SHIFT_CONST<l:4>,ALU<5:8>,MASKS<3:10>,LOAD<ll>,P0P<12>, PORT<l3:16>,CONDITION<18>,ALU_OP= ALU & CONDITION; 

f!ACRO ADOR(ADDR> 
% [READ_UPPER: A_DEST=?ADDR? AND ENABLE=!, 

READ_LOlJER: B_DEST =?ADOR? AND ENABLE= I, 
ljR I TE_UPPER: A_SOURCE=? ADDR?, 
1-lRI TE_LOl.JER: B_SOURCE=?ADDR?, 
REFRESH: ALWAYS J % 

IO_PORT LEFT_PORT 
OUTPUT_REGISTER: 
LOAD: 
DRIVE: 

h·:ADDR mo I 0) ,·d' 
PORT=IXXX AND ENABLE=!, 
PORT=XIXX AND ENABLE=!; 

REGISTER R12 OPTIONS: /*ADDR(l!OO)*/; 
REGISTER R13 OPTIONS: /*AODRIIIOil*/: 
REGISTER Rl4 OPTIONS: /*ADDR(ll!Ol*/: 
REGISTER R15 OPTIONS: /*ADDRCIIIII*/; 

ROil_PA IR C0 
LEFT_ENABLE: A_SOURCE=OOOO, LEFT_UPPER:OOOOOOOOOOOOOOOO, RIGHT_ENABLE:B_SOURCE=OOOO, RIGHT_LOWER:IIIIIIIIIIIIIIII; 

PRECHARGE_BOTH PCHG; 

I !ASKED _SH IF TER SH I FTER 
f10S T _SIGN IF I CAN WORD: I ,·,ADDR CI 000 l ,·d, 
LEAST _SIGNIFICANT _ljORD: /,·,ADOR (I 001) ,·d, 
OUTPUT _REG I STER: h,ADDR CI OI O> ,.,/, 
tlASK_REG I STER: I ,-,ADDR (I 0 I I),·,/, 
SH I FT _CONST ANT: SH I FT _CONST, 
LOAD_IF _0: 11ASKS=Xl AND ENABLE= I, 
LOAD_IF_l: MASKS=IX AND ENABLE=!; 

ALU_!JI TH_FLAGS ALU 
INPUT_A: 
INPUT_B: 
OUTPUT_l: 
FLAGS: 
LOAO_FLAGS: 
lJR I TE_OUTPUT _1: 
TO_CONTROL: 
DECODE: ALU_OP 

I ,-,ADOR (QI OOJ ,.,/, 
I '"AOOR (QI 0 I »·d, 
hADOR (QI I OJ,.,/, 
I »:ADDR COOO I l ,·d, 
LOAD=! AND ENABLE=!, 
LOAD=I ANO ENABLE=!, 
l<l,2,9>=>PADI, 

<0> => SUBTRACT 
<1> => ADD 
<2, 3> => I NCRH1ENT _A 
<4> => SUBTRACT 
<5> => SUB_W_BORROl-l 



<6,7> => SUBTRACT 
<8> => ADD 
<3> => 
<10,11> 
<12, 13> 
<14,15> 
<16> => 
<17> => 
<18> => 
<19> => 
<20,21> 
<22.23> 
<24,25> 
<26,27> 
<28,29> 
<30,31> 

STACK STACK 
DEPTH: 8, 

ADD_l-l_CARRY 
=> ADD 
=> DECREl1ENT 
=> NEGATE_A 
SETA 
ADD 
SETA 
SETB 
=> OR 
=> ANO 
=> SETA 
=> XOR 
=> TEST 
=> SETCA; 

TOP: /*ADORIOIII)*/• 
POP: POP=I, 
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_A 

PUSH: A_DEST=OIII OR B_DEST=OIII; 

IO_PORT RIGHT_PORT 
OUTPUT_REGISTER: 
LOAD: 
ORI VE: . 

ENO 

I ,·:AOOR WOI I ) ,·:/, 
PORT=XXIX AND ENABLE=!, 
PORT=XXXI AND ENABLE=!: 

The following table summarizes the results of the datachip modification 
experiments. 

Number of Size 
Name Free Registers x \:I Power --------- -----------""!"'--
OAT APA TH 4 203 276 36 DATAPATH2 20 229 272 126 OATAPATH3 5 with 4 backups 220 280 114 DATAPATH4 6 209 272 100 OATAPATHS 4 ~' i th 8-deep stack 231 273 129 

Figure 9-10 shows the bounding boxes for each of these chips. Given this 
comparison data, the microcode designers and the fabrication engineers can haggle 
over the design specs. 

Later that afternoon, the members of the market staff came by, expressing a desire 
for combining the controller and datachip onto a single chip. Additionally, th.e 
v-vidth of the microcode was to be narrowed from 24-bits to 16-bits. One of the two 
bi-directional buses could also be eliminated. Using a handy text editor, the 
controller specification was merged with one of the datapath specifications. Bristle 
Blocks compiled the new chip in 7 minutes. The chip size was 244 by 246 mil, and 
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OATAPl\Tlf DATAPl\TH DATAPl\TH DATAPATH 

..... ~~ ... ~ 

DECODER DECODER 

PADS ~-·~ 

OATAPATH OATAPATH2 OATAPATH3 DATAPATH4 DATAPATHS 
Fig. 9-10: Bounding Box Comparisions 

the power consumption was 128 ma. The source code for the corn bined chip is 
listed here. 

NMIE COf"lB I NED 16; 

FI ELD ADDRESS<l: 3>, A_SOURCE<4: 7>, A_DEST <8: 1 b, B_SOURCE<12: 14>, 
B_DEST<l5:16>,SHIFT_CONST<l:4>,SHIFT_LD<5:6>,ALU<7:10>, 
PORT<l3:16>,CONOITJDN<17>,ALU_OP=ALU & CONDITION; 

f1ACRO NOP ( ) 
llACRO JUllP () 
11/\CRO CALL ( > 
flACRO RETURN () 
llACRO BRANCH() 
f IACRO SAVE () 
tlACRO DO (} 
I IACRO ENDOO { l 
f'lACRO UNDO < l 

% ADDRESS=OOO OR CONDITION=O % 
% ADDRESS=OOI AND CONDJTIDN=l % 
% ADDRESS=OIO ANO CONDITION=! % 
% AODRESS=DII ANO CONDITIDN=l % 
% ADDRESS=IDO AND CONDITION=! % 
% AOORESS=lDI AND CONDITION=! % 
% ADDRESS=IIO ANO CONDITION=!% 
% AODRESS=Ill AND CONDITION=! % 
% AODRESS=III AND CONDITION=O % 

tlACRO REG_A<ADR> 
% READ_UPPER: A_DEST=?AOR?, 

IJRJTE_UPPER: A_SOURCE=?ADR?, 
REFRESH:ALWAYS % 

tlACRO REG_B_OUT <AADR, BADR> 
% (1,-,REG_A<?AAOR?li·:/, l.JRITE_LmJER:B_SOURCE=?BADR?J % 

llACRO REG_B_I N !AADR, BADR) 
% [/,.,REG_A !?AADR?h·:/, READ_LOWER:B_DEST=?BADR?J % 

llACRO REG_A_ONL Y !ADA> 
% [hREG_A !?ADR?> ,·:/) % 

llACRO PORT_OUT(} % PORT=OOOX % 

t1ACRO PORT_INO % NOTC/,·,PORT_OUfo/} % 

OUTPUT_PORT ADDRESS 
REGIS TEA: CREAD_UPPER: I ,·,NOP,·:! OR I ,.,DO,·:! OR /,·,BRANCH,·d OR /,·,SAVE i'c/, 

READ_LmtER: /,·,JUIJP,·c/ OR ;,.,CALLi·c/ OR ;,.,RETURNi·c/ OR ;,.,ENODO>":IJ; 
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ADDER NEW_PC 
INPUT _A: CREAD_UPPER: hNOP,·:/ OR /,·:DO,·:/ OR ;,.,BRANCH,·d OR /,'<SAVE,·:/, 

READ_LOIJER: /,·;-J1Jl·1p,'</ OR /,·:CALL\'</ OR Ji·,RETURN\·c/ OR /\·,ENOOO.,-:IJ , 
INPUT _B: CREAD_LOl-IER: /,·,BRANCH.-:!, 

SUGGEST: NOTl/*BRANCH*/l, 
VALUE: OOOOOOOOOOOOOOOIJ, 

LOAD: AUJAYS. 
OUTPUT _REG I STER: (l.JR ITE_UPPER: ALL.JAYS] ; 

STACK PC_STACK 
DEPTH: 8,, -
TOP: CREAD_UPPER: /,·,CALL,·d OR hDO,·c/, 

READ_LOlJER: hrSAVE,•:/ 1 

WR I TE_LOllER: hRETURN,·:/ OR h'1ENDDO,·c/] I 

PUSH: /*CALL*/ OR /*DO*/ OR /*SAVE*/, 
POP: /*RETURN*/ OR /*UNDO*/; 

PRECHARGE_ANO_BREAK_UPPER PCHGl; 

REGISTER LINK OPTIONS: 
[l.JRI TE_LQl.JER: /,',JUMP,.,/ OR /;·:CALL,·:! OR hBRANCH,·d OR /;•1SAVE,·d I 

l-lRI TE_UPPER: A_SOURCE=OOOI. READ_UPPER: A_DEST=OOOI J; 

PRECHARGE_AND_BREAK_LOIJER PCHG2; 

PRECHARGE_BOTH PCHG3; 

ALU_l.JI TH_FLAGS ALU 
INPUT _A: I ,·,REG_B_l N (I 000. 0 I),·:! I 
INPUT _B: I ,·,REG_A_ONL YI I 00 I),-:/, 
OUTPUT_l: hREG_B_OUT(JOIO, 100),·:/, 
FLAGS: hREG_A_ONL Y (I 0 I I l ,·:/. 
LOAO_FLAGS: NOT!ALU=lllll, 
l.JR I TE_OUTPUT _l: NOT !ALU= I I I I l , 
TO_CONTROL: l<l,2,9>=>PADI I 

DECODE: ALU __ OP 
<0> => SUBTRACT 
d> => ADD 
<2,3> => INCREl1ENT_A 
<t+> => SUBTRACT 
<5> => SUB_l.J_BORROW 
<b,7> =>SUBTRACT 
<8> => ADO 
-<8> => ADD_l.l_CARRY 
<10 I 11> => ADD 
<12,13> => DECREl1ENT_A 
<14,15> => NEGATE_A 
dG> => SETA 
<17> => ADO 
<18> => SETA 
<18> "'> SETB 
<20. 21> => OR 
<22,23> => AND 
<21+,25> =>SETA 
<25,27> => XOR 
<28,28> => TEST 
-<30,31> => DONT_CARE; 

tlASKEO_SHI FTER SHIFTER 
llOS.T _SIGNIFICANT _~JORO: /;'1REG_A_ONL y IOI 00) ,·ti I 
LEAST _SIGNIFICANT _1.JORO: /,·,REG_B_I N <O I 0 I , I 0) ,·ti, 



OUTPUT_REGISTER: 
llASK_REGI STER: 
SHIFT_CONSTANT: 
LOAO_IF _0: 
LOAD_IF _l: 
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/1·:REG_B_OUT <DI IO, IOI),·:/, 
/,·,REG_A_ONL Y COi I I l i'rf, 
SHI FT _CONST, 
SHIFT_LO=XI, 
SHIFT_LD=lX; 

ROll_PAIR C0 
LEFT _ENABLE: A_SOURCE=OOOO, 
RIGHT_ENABLE:B_SOURCE=IIO, 
LEFT_UPPER: 0000000000000000, 
RIGHT _LOWER: I I I I I I I I I I I I I I I I ; 

REGlSTER R2_REG 
OPTIONS: f~JRI TE_UPPER: A_SOURCE=OOIO, 

REAO_UPPER: A_DEST =0010, 
REFRESH: AU.IA YS, 
READ_LOl-JER: B_OEST=OO AND NOT <B_SOURCE=OOOl, 
l.JR I TE_LOl.lER: B_SOURCE=0001 ; 

REGISTER Rl3 OPTIONS: hREG_B_OUT(! IOI ,001 )1·d: 
REGISTER R14 OPTIONS: h·:REG_B_OUT(! I IO,O!Ol1·d; 
REG I STER RlS OPTIONS: /,·,REG_B_OUT <I I I I, OI I l i•d; 

IO_PORT RIGHT_PORT 
OUTPUT_REGISTER: U.IR I TE_IJPPER: A_SOURcE::oo I I • 

A_OEST =001 I, 
B_OEST =I I, 
B_SOURCE=IIIJ, 

LOAD: 
DRIVE: 

ENO 

READ _UPPER: 
READ_LQl.IER: 
1-lR I TE_LOWER: 

/,·,PORT _I Ni·:/, 
/1·:PORT _OUT1·:/; 

The netv system still requires external logic associated with the microcode and 

external circuitry for the condition select operations. This external circuitry does 

provide system flexibility, but it also adds to system complexity. A final proposed 

system includes on-chip circuitry for providing strobe signals and condition select 

operations. 

NAt1E COllPLETE 16; 

F 1 ELD ADORESS<l: 3>, A_SOURCE<lf: 7>, A_OEST <8: 11 >, B_SOURCE<12: 14>, 
B_DEST <15: H», SHI FT _CONST <l: 4>, SHI FT_LD<5: 6>, ALU<?: 10>, 
PORT <13: 16>, CONDI Tl ON<l 7>, ALU_OP=ALU & CONDIT I ON, STROBES<18: 24>, 
RESET<25>,FLAGS<2G:28>,EXTERNAL<29:31>; 

I 1ACRO NOP ( l 
flACRO JUIJP {) 
flACRO CALL < l 
tlACRO RETURN(} 
r lACRO BRANCH ( l 
llACRO SAVE{) 
flACRO DO ( l 
f IACRO ENOOO (} 
r1ACRO UNDO ( } 

% AODRESS=OOO OR CONDITION=O % 
% AOORESS=OO! AND CONDITION=! % 
% AODRESS=OIO AND CONDITION=! % 
% AOORESS=Oll AND CONDITION=! % 
% ADDRESS=IDO ANO CONOITION=I % 
% AODRESS=!Ol AND CONOITION=I % 
% ADORESS=IIO AND CONDITIDN=I % 
% AOORESS=lll AND CONDITION=! % 
% ADDRESS=lll AND CONOITION=O % 



flACRO REG_A (ADRJ 
% READ_UPPER: A_DEST=?ADR?. 

l IR I TE _UPPER: A_SOURCE =? ADR?, 
REFRESH: AUJA YS % 

nACRO REG __ B_OUT<AAOR,BADRJ 
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% [/)·:REG_A<?AAOR?h·:/, ~JRITE_LQl.IER:B_SOURCE=?BAOR?J % 

flACRO REG_B_I N (AAOR, BADRJ 
% [/)·,REG_A <?AADR?h·:/, READ_LOWER: B_DEST =?BADR?J % 

llACRO REG_A_ONL Y (AORJ 
% [hREG_A <?ADR?J ,·:/] % 

OUTPUT_PORT ADDRESS 
REG I STER: CREAD_UPPER: hNOP)·r/ OR hDOM OR /,·(BRANCH,·:/ OR /,·(SAVE,·d, 

READ_LQl.IER: /,·:JUflP,·:/ OR /,·(CALL,·:/ OR hRETURN,·:/ OR h(ENOOO,·dJ; 

ADDER NEl.J_PC 
INPUT _A: CREAD_UPPER: hNOP,·:/ OR hOO,·:/ OR hBRANCH,·d OR /,·,SAVE,.,/, 

READ _LQl.JER: / ,·:JUflP,·d OR h':CALUd OR h·(RE TURN~d OR I ,·,ENOOO,·d, 
SUGGEST: RESET=!, 
VALUE:OOOOOOOOOOOOOOOOJ, 

INPUT _8: CREAD_LQl.IER: h-BRANCH,·:/, 
SUGGEST: NOT(/*BRANCH*/J, 
VALUE: 00000000000000011, 

LOAD: AL~IAYS, 
OUTPUT_REGISTER: [~JRITE_UPPER: AU.JAYS]; 

STACK PC_STACK 
DEPTH: 8, 
TOP: CREAD_UPPER: hCALL,·:/ OR h':DO,·:!, 

READ_LQl.JER: h':SAVE,·:/, 
I.JR! TE_LQl.IER: h«RETURN,·:/ OR hENDDO,·r/J, 

PUSH: /*CALL*/ OR /*DO*/ OR /*SAVE*/, 
POP: /*RETURN*/ OR /*UNDO*/; 

PRECHARGE_AND_BREAK_UPPER PCHGl; 

REGISTER LINK OPTIONS: 
[l.JR I TE_LOl-JER: h':JUf1P,·:/ OR /,·(CALL,·:/ OR hBRANCH,·d OR /,·(SAVE,·:/, 
!JR I TE_UPPER: A_SOURCE=ODOI, READ_UPPER: A_DEST =000! J; 

PRECHARGE_AND _BREAK _LOl-IER PCHG2: 

ALU_l.J I TH_FLAGS ALU 
INPUT_A: hREG_B_IN<I000,01 ),·:/, 
INF-'UT_B: hREG_A_ONLY<IOOI l)·d, 
OUTPUT_l: h·REG_B_OUT<IOIO, IOOJ,·d, 
FLAGS: hREG_A_ONLYOOI I ),·d, 
LOAO_FLAGS: NOT<ALU=lllll, 
I.JR I TE_OUTPUT _l: NOT (ALU= I I I I l, 
TO_CONTROL: l<l,2,9>=>FLAGSI, 
DECODE: ALU_OP 

<0> => SUBTRACT 
<l > => AOD 
<2, 3> => ·1 NCREf"IENT _A 
<4> => SUBTRACT 
<5> => SUB_l.J_BORROW 
<5,7> =>SUBTRACT 



<8> => ADD 
<9> => ADD_l.l_CARRY 
<10, 11> = > ADO 
<12, 13> => OECRHlENT _A 
<14,15> => NEGATE_A 
<lEl> => SETA 
<17> => ADD 
<18> => SETA 
<18> => SETS 
<20,21> => OR 
<22,23> => ANO 
<24,25> => SETA 
<26,27> => XOR 
<28,29> => TEST 
<30,31> => OONT_CARE; 
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f lASKED _SH IF TEA SH IF TER 
llOST_SIGNIFICANT_IJORO: 
LEAST _SIGNIFICANT _~JORO: 
OUTPUT_REGISTER: 
f IASK _REGISTER: 
SHIFT_CONSTANT: 

/~·,REG_A_ONLY <0100} M, 
hREG_B_I N <O I 0 I , I Ol )·cl, 
/)·,REG_B_OUT !Ol IO, IOI l )'cl, 
I )·:REG_A_ONL Y (0 I I I l )'cl, 
SHIFT_CONST, 

LOAD_IF _0: SHIFT_LD=XI, 
LOAD_! F _1: SHIFT_LD=IX; 

ROf1_PAIR C0 
LEFT_ENABLE: A_SOURCE=OOOO, 
RIGHT_ENABLE:B_SOURCE=llO, 
LEFT_UPPER: 0000000000000000, 
R I GH T _LOlJER: I I I I I I I I I I I I I I I I ; 

REGISTER R0_REG 
OPTIONS: [1-IR I TE_UPPER: A_SOURCE=OO I 0, 

READ_UPPER: A_DEST=OOIO, 
REFRESH: AL~IAYS, 

REGISTER 87 

REAO_LQl.JER: B_DEST =00 AND NOT (8_SOURCE=000l, 
IJRI TE_LOlJER: B_SOURCE=OOOJ; 

OPTIONS: [l.IR I TE_LOlJER: 8_SOURCE=111 , 
READ_LOl.IER: B_DEST=l I, 
REFRESH: ALl-IAYSJ; 

REGISTER R13 OPTIONS: /~·:REG_B_OUT<IIOI,OOIJ,.cl; 
REGISTER R14 OPTIONS: /*REG_B_OUTCIIIO,OIOJ*/; 
REGISTER Rl5 OPTIONS: /)·,REG_B_OUT<IIll,OIIJ)·cl; 

PRECHARGE_AND_BREAK_LOWER PCHG3: 

REGISTER UNK2 
OPTIONS: lREAO_UPPER: A_OEST=OOII, 

t.JRI TE_UPPER: A_SOURCE=OOI I, 
REFRESH: All,IAYS, 
READ_LOllER: PORT=OIXX OR PORT=OXIX OR PORT=OXXI, 
t.JRITE_LOllER: PORT=l IXXJ; 

PRECHARGE_BOTH PCHG4; 

CONTROL_TO_DATA_AND_BACK STROBES 
REGISTER: [SUGGEST: RESET=!, VALUE:OOOOOOOOOOOOOOOOJ, 
LATCH: ALWAYS, 
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TO_CONTROL: f<l: 7>=> STRORES: <8>=> CONDITION; <9: 14>=> PADI, TO_OATA: lSTROBES=IXXXXXX ANO NOTCPORT=OI!I) OR PORT=llll=>l; 

Lot.JER_ROf1 Cl 
LOl IER_ROfl C2 
LOl-IER_ROM C3 
LOl-lER_ROll C4 
Lot.JER_ROf1 cs 
LOl-lER_ROll CG 

I O_PORT PORT 

STROBES=IXXXXXX ANO NOTCPORT=OIIIJ OR PORT=IIIl=>3: STROBES=XIXXXXX ANO NOTIPORT=Oill) OR PORT=III0=>2; STROBES=XIXXXXX ANO NOTIPORT=OIIIJ OR PORT=l110=>10; STROBES=XXJXXXX ANO NOTCPORT=Ollll OR PORT=ll0l=>3; STROBES=XXIXXXX ANO NOTIPORT=Ollll OR PORT=llOl=>ll; STROBES=XXXIXXX ANO NOTCPORT=IOOOl OR PORT=ll00=>4; STROBES=XXXIXXX ANO NOTIPORT=l000) OR PORT=ll00=>12; STROBES=XXXXIXX AND NOTCPORT=l000) OR PORT=l0ll=>5; STROBES=XXXXIXX AND NOTCPORT=IOOOJ OR PORT=IOil=>l3; STROBES=XXXXXIX AND NOTIPORT=IOOOJ OR PORT-1010=>6; STROBES=XXXXXIX AND NOTCPORT=IOOO> OR PORT=l010=>14; STROBES=XXXXXXI ANO NOTIPORT=IOOO> OR PORT-1001=>7; STROBES=XXXXXXI ANO NOTCPORT=IOOOJ OR PORT=l001=>15; CONDI TI ON =00 OR 
CONDITION=OI AND FLAGS=IXX OR 
CONDITION=IO ANO EXTERNAL=IXX OR 
CONDITION-II ANO 

IF SHJFT_CONST-IXXX THEN 
SHIFT_CONST=IOOI AND FLAGS=DXX OR 
SHIFT_CONST=IOIO AND FLAGS=XXO OR 
SHIFT_CONST=IOII ANO FLAGS=XOX OR 
SHIFT CONST=llOO ANO EXTERNAL=DXX OR 
SHIF(~CONST=l JOI AND EXTERNAL=XOX OR 
SHIFT_CONST=IIIO AND EXTERNAL=XXO OR 
SHIFT_CONST=IIII ANO FLAGS=OXO 

ELSE 
SHIFT_CONST=OOOO 

ENABLE: 
ENABLE: 
ENABLE: 
ENABLE: 
ENABLE: 
ENABLE: 

SHIFT_CONST=OOOI AND FLAGS=IXX OR 
SHIFT_CONST-0010 AND FLAGS-XX! OR 
SHIFT_CONST=OOII AND FLAGS-XIX OR 
SH I FT _CONST =0 JOO AND EX TERN AL= I XX OR 
SHIFT_CONST=OIOJ AND EXTERNAL=XIX OR 
SHIFT_CONST-0110 ANO EXTERNAL=XXI OR 
SHIFT_CONST=OIII AND NOTCFLAGS=OXOJ FI => 81; 

PORT =000I, VALUE:IIIIIIIIIJIIOOOO; 
PORT=OOI 0, VALUE:IIIIOOOOIIIIOOOO; 
PORT=OOI I, VALUE:IIIIIIIIOOOOOOOO; 
PORT=OIOO, VALUE:IIIOOOIIIOOOOOOO; 
PORT~OIOJ, VALUE:IIIJIIOOOOOOOOOO; 
PORT =DI IO, VALUE:IIIIIIIIIIOIOOOO; 

OUTPUT _REG! STER: [!JRITE_Lot.JER: PORT=OI I I, 

ENO 

REAO_LOl-JER: PORT=! IXX, 
REFRESH: STROBES=OOOXXXXJ, LOAD: NOTCSTROBES=OOOXXXXl, 

DRIVE: NOTCSTROBES-XXXOOOO); 
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Chapter 10: A History of Bristle Blocks 

This chapter provides a brief overview of the Bristle Blocks project. The ma.jar 

results of a number of experiments are stated, and the motivation behind various 

design decisions are given. Finally, a description is given of what the next version 

of Bristle Blocks may be like. 

10.1: The Past 

Bristle Blocks was born out of the OM project [ 15][16][ 17]. The OMZ datapath chip 

'\Vas designed in nine months, three of which were spent designing the low level 

cells, and the remaining six of which were spent interconnecting all of the pieces. 

The chip was designed using a special purpose 'programming language, PAL [2]. A 

picture of the finished mask set is shown in chapter 2, figure 2-10. 

There were many lessons learned from the OM project. The more dramatic (and 

painful) lessons dealt with the limited expressability of the language, the 

complexity of the global interconnect versus the simplicity of leaf cell design, and 

the limited exp1·essibility of a purely graphical design system. 

The PAL artwork language is a special purpose drafting language. The purpose of 

the language is to describe simple line drawings or printed circuit board layouts. 

There are relatively few standard programming language constructs. It is virtually 

impossible to design a parametrized cell in such a language, and there is little hope 

for designing automatic routing programs with such a system. Due to the limited 

po,ver of PAL, yet the power of textual cell descriptions, imbedded languagi:is were 

developed. The first imbedded language developed at Caltech was ICLIC, written by 

Ron Ayres and Maureen Stone in the ICL language [ 4]. Soon theri:iafter, Bart 

Locanthi programmed LAP in Simula [ 19]. 

The complexity issue of global interconnect had two manifestations in the OM 

project. The first was that the layout of the final portion of the chip took much 

longer than the design of the majority of the chip area, even though much time was 

spent planning the global structure of the chip. The leaf cells were small layouts, 

which could easily be plotted on small sheets of paper. The entire function of each 
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cell could be grasped as the cell was being designed. The control structure, on the 
other hand, was a very large cell, so that it was difficult to make detailed plots of 
the entire cell. The cell was hard to design because of the many timing and logical 
function details which had to be included in the cell. The second manifestation of 
the global interconnect complexity appeared when the chip was tested. It was in 
the global interconnections that all of the design errors were encountered. There 
\Vere two timing errors, one logical error, and one design rule error in the 
interconnections. The first timing error set the chip speed at 2.5 MHz, one quarter 
of the intended operating speed. The second error caused the flag circuitry to 
become inoperative. The logical error was not fatal: the polarity of one of the 
control input pins was negated. The design rule error was the major design error. 
Six of the highest level wires ever so slightly missed their proper connection 
positions on the instruction decoder. They were off less than .2% of their total 
length. For 5000 micron long wires, however, this small error, which is invisible 
on all cell plots, caused six of the control input bits to be shorted to ground. Each of 
these errors was not caused because the global interconnection task for any 
particular signal was difficult, but because there were so many signals to be 
interconnected that the specific details were forgotten. 

The third lesson learned from OM was that cells are more than just layout. Then.~ is 
documentation information about the cells that is just as important as the layout 
information. The design system which was used to create OM only allowed for the 
specification of geometric information, although I was able to add a block diagram 
description of the OM2 datapath chip to the system. As a designer, it was very 
frustrating not being able to add a little more information to the cells' descriptions. 
Even if additional information could be added to the cell, there was no way to access 
that information later. With the new design tools that have been developed, there 
has been a gradual increase in the flexibility of the cell data representation, so that 
additional designer intent can be encapsulated with the design. 

When the OM2 datapath chip design errors were found, there was a strong 
motivation to develop better design tools: to cast away nine months of effort 
because of a few tiny implementation details is not an easy thing to do. The process 
was begun of designing programs to aid in the design of integrated circuits. 
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The first routine implemented was a simple, monochromatic river router. There 

v.rere several places in the datapath chip where a river router could be usnd to 

interconnect cells. Although there were no design errors in the datapath's hand 

designed river routes, the generation of the 500 interconnection wires between two 

of the cells was not a pleasant task. 

The second routine to be implemented was an instruction decode generator. In the 

datapath chip, the instruction decoder was implemented as a collection of 42 

incredibly tiny cells. These cells measured 7 lambdas by 14 lambdas, and were used 

to tile large portions of the chip. The instruction decoders required close to 20,000 

function calls, each of which required an absolute chip position parameter. This 

tedious and error prone task was accomplished without design error. However, the 

design ·was fixed for one particular chip instance, and if there were any change in 

the chip specification, this entire decoder would have to be re-implemented. An 

instruction decoder generator was written to automatically produce calls to cells 

very similar to the cells used in the datapath chip. Data structures were defined in 

ICL to desribe the instruction decoder operations, which became the input 

parameters to the generator. When this programming task was completed, a chip 

designer could rapidly generate an instruction decoder from a functional 

description of the decoder operation, plus positional information for the outputs of 

the decoder. 

The next step in automating the design of chips was to add the timing information 

to the decoder routing, so that the buffers and decoder could automatically be added 

to the datapath. It was at this same time that Ron Ayres presented some fascinating 

news of his Programmed Logic Array (PLA) compiler, RELAY [5]. He pointed out 

some very obvious ideas which helped crystallize the Bristle Blocks framework. A 

short description of RELAY will be presented here. 

Hon Ayres is a software computer scientist. He had a mathematical description of a 

chip he wanted implemented, yet he did not know how to design integrated 

circuits. He built a p1·ograrnming system that let him describe his formal, 

mathematical, chip descriptions. The system accepted a hierarchy of synchronous 

logic equations, and would allow the designer to alter the hierarchy of the logic 

while preserving the function of the description. The designer could simulate the 

operation of the chip at any time to verify the correctness of the specification. Ron 
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then met with a student in the LSI design course, and they composed a simple model 

of a PLA and ·or an interconnect algorithm. Ron added these models to his system, 

which allowed him to quickly see what a set of logic equations would look like 

v·.rhen implemented in PLAs. He could observe the physical impact of editing the 

logic hierarchy. Finally, Ron borrowed a PLA generator and wrote an actual 

interconnect procedure. With these two routines, Ron was able to generate 

complete chip layouts from logic equation specifications. 

To illustrate the form of RELAY input, the following cell examples will be given. 

These examples are not meant to teach the reader how to design chips with RELAY, 

but rather provide the user with the flavor of the design methodology. 

EIN 

IN 
ENABLE 

LOAD 
GPR 

1__ 

EOUT 

DATA 

Fig. 10-1: General Purpose Register Block Diagram 

The first cell is a General Purpose Register (GPR). A block diagram of this register is 

shown in figure 10-1. The register will load data from the IN pin when LOAD and 

ENABLE are TRUE. When ENABLE is TRUE, EOUT will be set to the value contained 

within the register, and when ENABLE is FALSE, EOUT will be set to the value of 

ElN. The RELAY 5pecification for the GPR register is listed here. 

VAR GPR=LL: 
BEGIN VAR DATA,JN,LOAD,ENABLE,EIN,EOUT=BlT; 

OAT A: =NEll_B IT; 
IN: =NEIJ_B IT: 
LOAD: =NEl~_BI T; 
ENABLE: =NHl_Bl T: 
EIN: =NE!.l_BI T; 
EOUT:=NEW_BIT; 
GPR:= 

£EXTERNALS: UN_PJNS: IEIN\NAl1EO 'EIN'; 
ENABLE\NAMEO 'ENABLE': 
LOAO\NAMEO 'LOAD'; 
IN\NM1EO 'IN' I 



END 
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0UT _PINS: IEOUT\NAMED 'EOUT'IJ 
RELATIONS: !EOUT\EOU [IF: ENABLE THEN:OATA ELSE:EINJ; 

OATA\NEXT CIF:LOAD\ANO ENABLE THEN: IN ELSE:DATAJIJ; 

We have declared GPR to be of type LL, which stands for Logic Level, the RELAY 
cell. Internal to a GPR. we have the following signals: DATA, IN, LOAD, ENABLE, 
EIN, and EOUT. We have declared the port characteristics of the GPR cell, and given 
the logic equations relating the signals within the GPR. 

We can now define a cell which uses two of these GPR cells. This GPR PAIR cell has 
a SELECT input which is used to select which GPR cell is being addressed. 

VAR GPR_PAIR=LL; 
BE.GIN VAR L, R"'NAMED_LOG I C_LEVEL; IN, LOAD, SELECT, ENABLE=B IT; 

L: =GPR \NEl.J; 
R: =GPR \NEl.J: 
IN: =NEl.J_B IT; 
LOAD: =NELJ_BI T; 
SELECT:=NEW_BIT; 
ENABLE: =NEl~_B I T: 
GPR_PAIR: = 

CEXTERNALS: [I N_P I NS: IR\S 'EIN'\NAMED 'EIN'; 

RELATIONS: 

ENO 

ENABLE\NAf1ED 'ENABLE'; 
LOAD\NAMEO 'LOAD'; 
IN\NAtlEO 'IN'; 
SELECT\NAMEO 'SELECT'! 

OUT_PINS: !L\S 'EOUT'\NAMED 'EOUT'IJ 
IL\S 'EIN'\EQU R\S 'EOUT'; 
L\S 'IN'\EOU IN; 
R\S 'IN'\EQU IN; 
L\S 'LOAD'\EOU LOAD; 
R\S 'LOAD'\EOU LOAD 
L\S 'ENABLE'\EQU SELECT\ANO ENABLE; 
R\S 'ENABLE'\EOU NOT<SELECTJ\ANO ENABLEIJ; 

In the same manner, we can define a few new register cells. The GPRO cell is 
similar to the GPR cell, except that the data contained within the cell is also 
available as a port. The GPRI cell is used as an interface cell, a shared register 
betvveen two processors, for instance. When one processor writes into the cell, the 
second processor notices the effect in its corresponding interface cell. 

VAR GPRO=LL; 
BEGIN VAR DATA,IN,LOAO,ENABLE,EIN,EOUT=BIT; 

DATA: =NEW_BIT; 
IN: =NHJ_BI T; 
LOAD: =NEW_BI T; 
ENABLE: =NEl-1_81 T; 
EI N: =NEl.J_BI T; 
EOUT: =NEW_B IT; 
GPRO:= 



ENO 
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[EXTERNALS: UN_PINS: IEIN\NAllEO 'EIN'; 
ENABLE\NAMED 'ENABLE'; 
LOAO\NAMED 'LOAD'; 
I N\NAMED ' IN' l 

OUT_PINS: IEOUT\NAt1ED 'EOUT'; 
DATA\NAt1EO 'DATA'}J 

RELATIONS: IEOUT\EOU CIF:ENABLE THEN:DATA ELSE:EINJ; 
DATA\NEXT [IF:LOAO\AND ENABLE THEN: IN ELSE:OATAJIJ; 

VAR GPRl==LL; 
BEGIN VAR OATA,JN,LOAD,ENABLE,EIN,EOUT,DIN=BIT; 

DATA: '°NEW_BI T; 

ENO 

IN: =NEl-l_BI T; 
LOAD: =NElJ_BI T; 
ENABLE:=NEW_BIT; 
EIN: =NEW_BI T; 
EOUT: =NHJ_B IT; 
DIN: =NElJ_BI T; 
GPRI: = 

[EXTERNALS: UN_PINS: IEIN\NAMEO 'EIN'; 

RELATIONS: 

ENABLE\NAMEO 'ENABLE'; 
LOAD\NAMED . 'LOAD' ; 
IN\NN1EO 'IN'; 
DIN\NAMED 'OATA_IN'l 

OUT_PINS: !EOUT\NA11ED 'EOUT'; 
OATA\NAt1ED 'OATA_OUT' l) 

<EOUT\EQU [lF:ENABLE THEN:OIN ELSE:EINJ; 
OATA\NEXT CIF:LOAD\ANO ENABLE THEN: IN ELSE:OATAJlJ; 

As a final example, a shift register loop is described. Externally, the shifter appears 

like a GPR cell, except that shift input signals are included in the interface of the 

cell. The top cell communicates with a series of short shift registers, each of which 

is composed of a series of bits. Hence, the shifter is a hierarchy of shift bits, as 

shown in figure 10-2. 

Y AR LOOP _BI T =LL; 

BEGIN VAR LIN,RIN,LSHIFT,RSHIFT,OUT=BIT; 
LIN: =NEW_BI T; 

ENO 

RIN: =NElJ_BIT; 
LSH I FT: =NEl.J_B IT; 
RSH I FT: =NElJ_B IT; 
OUT: =NEIJ_B IT; 
LOOP _BIT:= 

(EXTERNALS: CIN_PINS: ILIN\NAMED 'LIN'; 
RIN\NAMED 'RIN'; 
LSHIFT\NAMED 'LSHIFT'; 
RSHJFT\NAMEO 'RSHIFT'l 

RELATIONS: 
OUT_PINS: !OUT\NAf1EO 'OUT' J J 

IOUT\NEXT [JF:LSHIFT THEN:RIN 
ELSE: [! F: RSHI FT THEN: LIN 
ELSE: OUTJ JI J; 
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"A LOOP ROI-I IS A STRING OF N LOOP Bl TS, ALL PROPERLY CONNECTED." 

OEF I NE LOOP _ROlHN: I NTJ =LL: 
BEGIN VAR LOOP _8 I TS=NArlED_LOG I C_LEVELS; L, R, Bl, BN=NAf1ED_LOG I C_LEVEL; 
DO LOOP _BI TS:= !COLLECT GPR\Nal REPEAT N; I; 

Bl:=LOOP_BITS(lJ; 

GIVE 

ENO 
ENOOEFN 

BN:=LOOP_BITSCNJ; 
£EXTERNALS: [J N_P I NS: 181 \S 'LIN'; 

BN\S 'RIN'; 
Bl\S 'LSHIFT'; 
81\S 'RSHIFT'l 

OUT _Pl NS: {81 \S 'OUT' \NAl1ED 'LOUT'; 
BN\S 'OUT' \NAr1ED 'ROUT' l J 

RELATIONS: IFOR lL;Rl SC LOOP_BITS: COLLECT 
IL\S 'RIN'\EQU R\S 'OUT'; 
R\S 'LIN'\EQU L\S 'OUT'; 
R\S 'LSHIFT'\EQU 81\S 'LSHIFT'; 
R\S 'RSHIFT'\EOU 81\S 'RSHIFT'll 

GUTS: LOOP_BITSJ 

"A LOOP LOOKS f1UCH LI KE A GPRO EXTERNALLY, BUT IT CONT A I NS AN 
rt*N+l BIT SHIFT REGISTER. EXTERNALLY, IT DOES HAVE THE RSHIFT AND 
LSHIFT SIGNALS." 

DEFINE LOOP!M,N:INT>=LL: 
BEGIN VAR LOOPS=NAMED_LOG I C_LEVELS; L, R, Bl, BN=NAl1ED_LOG I C_LEVEL; 

DATA,IN.LOAD,ENABLE,EIN,EOUT,LSHIFT,RSHIFT=BIT; 
DO DAT A: =NEl-l __ B IT; 

l N: =NElJ_B IT; 
LOAD: =NEl-!_BI T: 
ENABLE: =NEU_B IT; 
EIN: =NHJ_Bl T; 
EOIJT: =NEl-l_B IT; 
LSHIFT: =NEW_BI T; 
RSH I FT: d~El~_B IT; 
Bl: =LOOP _ROl~ (rt); 

LOOPS:=!COLLECT Bl\NEW REPEAT N;l; 
Bl:=LOOPS[ll; 
BN:=LOOPS£NJ; 

GIVE £EXTERNALS: [JN_PINS: IEIN\NAr-tED 'EIN'; 
ENABLE\NAMED 'ENABLE'; 
LOAD\NAMED 'LOAD'; 
IN\NAr1EO 'IN'; 
LSHIFT\NAflED 'LSHIFT'; 
RSHIFT\NAr-tED 'RSHIFT'l 

OUT_PINS: !EOUT\NAMED 'EOUT'; 
DATA\NAMEO 'DATA'll 

RELATIONS: IEOUT\EOU [lF:ENABLE THEN:DATA ELSE:EINl; 
DATA\NEXT CIF:LOAO\AND ENABLE THEN: IN 

ELSE: UF:LSHIFT THEN:BN\S 'ROUT' 
ELSE: CIF:RSHIFT THEN: Bl \S 'LOUT' 
ELSE: OATAJJJ; 

81\S 'LIN'\EQU DATA; 
BN\S 'RIN'\EQU DATA; 
FOR IL;RI nc LOOPS; COLLECT 

IL\S 'RIN'\EQU R\S 'LOUT'; 
R\S 'LIN'\EQU L\S 'ROUT'; 
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R\S 'LSHIFT'\EQU LSHIFT; 
R\S 'RSHIFT'\EQU RSHIFTI; 

81\S 'LSHIFT'\EQU LSHIFT: 
81\S 'RSHIFT'\EQU RSHIFTI 

GUTS: LOOPSJ 

ENDOEFN OUT 

LIN RIN 

LSHIFT RSHIFT 

LOOP BIT 

LOUTOROUT LIN RIN :::} 

LSHIFT RSHIFT 

LOOP ROW 

EIN 

!N 
ENABLE 

LOAD 

LSHlFT 
RSHIFT---

LOOP 

EOUT 

DATA 

Fig. 10-2: Shifter Loop Block Diagram 

These examples illustrate the design of leaf cells and composition cells. Each cell 

(LL) contains an interface specification (EXTERNALS), an interconnection 

specification (RELATIONS), and a subcell specification (GUTS). Lc~af cel1s do not 

have any GUTS, only EXTERNALS and RELATIONS. Composition cells have values in 

all three areas. 

The first version of Bristle Blocks was completed in December, 1978. Version one 

produced small datapath chips, in a variety of representations. The compiler 

produced the NMOS artwork, along with a stick diagram, transistor diagram, logic 

diagram, and block diagram of the chip. In all later versions of Bristle Blocks, the 
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capability of multiple representations (even multiple technologies) has been an 
integral part of the system, although the datapath cells were designed to produce 
only layouts, due to the press of time. 

In the two and a half years since the first running of Bristle Blocks, there have been 
several areas of improvement upon the basic system. Work has been done on the 
Virtual Memory (VM) system, which greatly increased the compilable chip size. 
Many of the algorithms, like the river router and instruction decode generator, 
have been improved and tested. User interfaces have been added to allow 
non-specialists to use the system. Finally, the variety of datapath elements has 
increased, improving the efficiency and flexibility of Bristle Blocks. 

To provide efficient generation of artwork, Bristle Blocks cells were designed to be 
programs, rather than data structures. If the cells were data structures, the user 
would be limited to designed cells expressable in the data structure. Since the user 
is allowed to write programs for the cells, the user is only limited by the 
expressability of the language Bristle Blocks is written in (ICL). ICL allows much 
greater expressability than a simple data structure would allow, so that the user 
can design very flexible cells. 

Unfortunately, the PDP-10 computer has a very small address space, with only 18 
bits for addresses. In current versions of ICL, programs are not swappable to the 
disk, although data structures can be swapped to the disk. Since data structures are 
swappable, we can have a very large effective address space by saving the 
information contained in the data structures in a disk file. The system can read this 
information as it is required, and when the data is no longer needed, the data can ·be 
written back into the file. With swapping, we can effectively have a much larger 
address space if our cells were data structures. 

To make use of swapping, yet still retain the power of cells as programs, a 
compromise was made. Most cells have a lot of relatively fixed, or constant, layout. 
The fixed portion of the cell can be stored in a data structure, and thereby can be 
swapped to a disk file. The variable portions of the cell can be kept as a program. 
The cells compute the variable portions of the layout and swap in the fixed layout 
sections. Partitioning the cells in this manner does add to the complexity of the 
compiler and of the cells, but users of the system never see the additional 
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complexity. 

To free up as much code space as possible, we need to have as much of the cells as 

possible represented in the swappable data structure. To this end, the data 

structures used in Bristle Blocks allow the representation of simple variations in 

the layout and connection points. In many cases, the actual code required by a cell 

simply checks the user's parameters and swaps in the cell implementation from the 

data file, which is called the Virtual Memory (VM) file. 

The following data structure definitions describe the structures used in the current 

version of Bristle Blocks. 

The first primitive user-defined datatype in Bristle Blocks is called the STRETCI_! _ 

_EOINT. The name refers to the common use of the datatype, although a better name 

would probably be VARIABLE. The data structures refer to these STRETCl'!_!'OINTs 

using the ID number as a name. To stretch a layout, the appropriate STRETCH 

_EOINT's value is modified, and the layout is effectively changed. 

TYPE STRETCH_POINT= [ 
NMlE: 
ID,INITIAL,FINAL: 
FRESH: 
XFRtl: 

SC 
INT 
BOOL 
COORDINATE J; 

STRETCH_POI NTS= STRETCH_POINT I; 

VAR STRETCH_POINTS_VALID=BOOL; 

The NAME component of STRETC!i_.!'OINTs holds the user's names for the STRETCI_!__ 

_EOINTs. The system looks through the global STRETCH POINT list to convert a name 

to a STRETCI!._!'OINT. The ID is the internal identification assigned by Bristle Blocks 

to the STRETCH POINTs. The remaining components are used to compute the value 

of a STRETCH POINT. The XFRM component may contain an algorithm for 

computing a STRETCH__!'OINTs value: a STRETCI-!.J>OINT's value may depend upon 

other STRETCH POINT values. The FRESH component states whether the FINAL 

component holds the actual value of the STRETCH__!'OINT. Whenever a STRETCH 

POINT'S value is modified, all of the STRETCH_J'OINTs in the system have their 

FRESH value set FALSE. When computing a STRETCH__!'OINT's value, the FRESH 

component is examined. If FRESH is TRUE, the FINAL component hold the value. If 

FRESH is FALSE, the system recomputes the final value. The FINAL value is set to 
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the INITIAL value, and the FRESH component is set TRUE. The XFRM is then 

evaluated, and the resulting value is stored in the FINAL component. 

COORDINATES are used to express equations in the system. A COORDINATE may 

state, for example, that a certain feature be positioned with a Y-coordinate of 5 

lambdas above the 'Yt' STRETCH POINT. This equation is stated as follows. 

'Yl'\P 5 

The datatypes associated with COORDINATEs are listed here. 

TYPE COORDINATE= EITHER 
INTEGER= I NT 
STRETCH= STRETCH_pO!NT 
OP= [OP:COORDINATE_OP A,B:COORDINATEl 
NEGATE= COORDINATE 
IF= CREL: IF _RELATION C',A,B:COOROINATEl 

ENDOR; 

COORDINATES= { COORDINATE l; 

COORO I NA TE_OP= SCALAR {ADD, SUB, f1UL, DIV, MIN, MAX> ; 

IF_RELATION= SCALAR<ZERO,NZERO,NEG,NNEG,POS,NPOS,EYEN,000); 

In the simplest case, a COORDINATE may be an INTeger. A STRETC!i_!'OINT may al.so 

be a COORDINATE. A COORDINATE may be a simple function of two other 

COORDINATES: A OP B, where A and B are coordinates and OP is either ADD, SUB, 

MUL, DIV, MIN, or MAX. A COORDINATE may be the inverse of another 

COORDINATE, and finally, a COORDINATE may be an IF ... THEN ... ELSE ... FI equation: 

the C COORDINATE is compared with relation REL. If the comparison is TRUE, the 

value of A is returned. Otherwise, the value of Bis returned. 

Using the above definition of COORDINATE, definitions for wires, boxes (VBOXES), 

and polygons (SSXY) were defined. These primitives were not associated with mask 

layers, but all the primitives of a single layer (within a single cell), were collected 

in to a single MASK LA YER. 

TYPE XY_PAIR= [X,Y:COORDINATEJ; 

SXY= I XY_PAIA l; 
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SSXY= { SXY l; 

WIRE= [WIOTH:INT PATH:SSXYJ; 

!~IRES= I l.JJRE I; 

VBOX= CLOW,HIGH:XY_PAIRJ; 

VBOXES= l VBOX }; 

MASK_LAYER= [COLOR: COLOR WIRES:L-IIRES BOXES:YBOXES POLYS:SSXYJ; 

MASK_SET= l MASK_LAYER I; 

Of'IASK_SET = a swappab I e version of f1ASK_SET ; 

A collection of MASK_!,AYERs formed a MAS~ET, which was the complete set of 

geometric primitives for a particular representation. The PICTURE datatype 

described one representation. 

TYPE VIEW= SCALAR<LAYOUT,STICKS, TRANS,BLOCK,LOGIC>; 

PICTURE= [VIHJ:VIEl.J MASKS:OMASK_SETJ; 

PICTURES= I PICTURE l; 

The next set of datatype definitions described connection points. Connection points 

could be kept with the artwork, swapped out in the disk file. Connection points 

contain a name, positions, signal direction (into or out of the cell), connection type 

(control connection, pad connection, etc.), buffer type or pad type, connection edge 

(north, south, east, or west), timing infortn.ation, layer information, and the 

associated microcode function. 

TYPE CONNECT=[ 
NA11E: 
FROf1, TO: 
DIRECTION: 
TYPE: 
BUFFER: 

PAD: 

EDGE: 
VALI 0: 
COLOR: 
UCODE: .... ] ; 

SC 
XYPAIR 
SCALAR<IN,OUT,IO,ANY) 
SCALAR<CONTROL,PAO,CONDITION, .... ) 
SCALAR <PHI _l, PHI _2' Plr1UX' P2r1ux' Pl I NY' P2l NV' YOO, GNO' 

BUFIN,BUFOUT,BUFINV) 
SCALAR (IN, OUT, DOL-IN, I 0, IO _OOL-IN, ENABLE, OUT _ENABLED, 

DOWN ENABLEO,BOTH,IN PULL.DOWN PULL, 
ENABLED_PULL. 1o_pULL:-BoTH_PULL) 

SCALAR<NORTH,EAST,SOUTH,WESTl 
SCALARCPHI1,PHI2,BOTH,NONEl 
COLOR 
OECOOE_COLUMN 

CONNECTS= l CONNECT I ; 

OECODE_COLUMN= [ 
TYPE: SCALARCUCOOE,SOURCE,COMPLIMENT,PAO,WIRE,BLANK> 
COLUflN,LENGTH: INT 
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00,01,00,01: SIJ: 

Next, we have the BLOCK definition. A BLOCK is the basic cell in Bristle Blocks. It 

contains a name, some layout information (pictures), calls to subblocks, connection 

points, and a bounding box. Recall that many of the BLOCKs for a particular chip 

are computed by a program. These BLOCKs have enough flexibility, however, that 

many of the datapath cells can be represented as BLOCKs rather than programs. 

TYPE BLOCK= [ 
NAtlE: 
PICTURES: 
CALLS: 
INTERFACE: 
MBB: .... ) ; 

SC 
PICTURES 
CALLS 
CONNECTS 
VBOX 

BLOCKS= ! BLOCK l; 

DBLOCK= a swappable version of BLOCK ; 

Lastly, we have definitions for CALLs. A CALL is a reference to a subBLOCK. 

TYPE CALL= EITHER 
BLOCK= DBLOCK 
TRANSLATE= [C:CALL 
ROTATE= [C:CALL 
MIRROR= EC: CALL 
STRING= [C:CALL 
VECTOR= [C:CALL 
CALLS= CALLS 

T:XY_PAIRJ 
R:SCALAR!R30,R180,R270)J 
M:SCALAR!MIRX,MIRY,BOTHlJ 
S: SXYJ 
V: [I: XY YAIR N: COORDI NATEJ J 

lJITH_MASKS= [C:CALL fl:MASK_f1AKERSJ 
PASSJIASKS"' [C: CALL N: SI J 
ilASKED= [C: CALL N: I NTJ 
IF= [REL:IF_RELATION C:COOROINATE A,B:CALLJ 

ENDOR; 

CALLS= I CALL l; 

MASK_MAKER= EITHER 
AU.JAYS= DUMMY 
ROTATE= SB 
EXTEND= SB 
FIXED"' SB 

ENOOR; 

MASK_MAKERS= I f1ASK_MAKER I; 

The first four types of CALLs are fairly straightforward. A STRING CALL places a 

subCALL at each point in the list of XUAIRs (SXY). A VECTOR CALL evaluates the 

V.N COORDINATE to determine an iteration count. The V.I Xy__!>AIR specifies a step 

distance. The VECTOR CALL will return a row of the subCALLs, each offset from 
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the previous instance by the step distance. The total number of instances in the row 

is given by the iteration count. The CALLS CALL allows a BLOCK to refer to several 

subBLOCKs. The next three types of CALLs specify masks. Each of the iteration 

type CALLs (STRING, VECTOR, CALLS) can be masked: only a few- of the specified 

subCALLs w-ill be returned. The WITH_MASKS CALL adds masks to a global list of 

masks. PAS-?_ MASKS reorders the masks in the global list, and MASKED extracts one 

mask from the list and applied the mask to the subCALL. Finally, the IF CALL 

returns one of its subCALLs depending upon the correspondence of its COORDINATE 

and relation (similar to the IF type COORDINATE). 

These datatype definitions wexe arrived at through many iterations and trials. 

They are not as general or easy to use as straight procedural cells, but they sufficed 

with the implementation restrictions that existed. 

10.2: The Future 

In the future, there are four areas of improvement needed in Bristle Blocks. The 

first area has to do with the implementation concessions using the current ICL 

implementation. Secondly, the floorplan of Bristle Blocks needs to have a greater 

flexibility, tvhich would allow more efficient implementations of many datapath 

chips. Thirdly, more work has to be done with the simulation aspects of the chips. 

Finally, I need to address the user specification issues. What languages are suital>le 

for the specification of Bristle Blocks chips? 

The main implementation concession in the current Bristle Blocks programs has to 

do with the address space limitations. Because of the 18 bit limit, the datapath cell 

programs have had a split personality. Portions of cells are data structures kept in 

disk files, while the remaining portions exist as programs compiled into the Bristle 

Blocks system. In the new ICL system, code is swappable, so that the cells can be 

entirely represented as programs without exceeding the address space of the 

machine. 

The second improvement to Bristle Blocks modifies the floorplan of the compiler. 

In addition to allowing a greater number of buses in the datapath, I would like to 

add greater flexibility in the instruction decode portion of the chip. The most 
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logical way to enhance the instruction decoder is to perform a fusion of Bristle 

Blocks with the RELAY compiler, allowing the user to design chips which are 

hierarchical compositions of register transfer units and finite state machines. The 

datapath portion of the compiler would generate the efficient register transfer 

circuitry and the PLA portion of the compiler would generate the random logic and 

state machine mechanisms. The proposed compiler will interconnect the various 

datapaths and PLAs using a hierarchical general interconnection system. 

Thirdly, I need simulation procedures in Bristle Blocks. Each version of Bristle 

Blocks has had hooks for linking simulators to the compiler, both register transfer 

simulators and timing simulators. Due to the press of time, these simulators have 

only been dreams. When I have the added flexibility of the Bristle Blocks/RELAY 

fusion, simulation will become a very important aspect of the design. I do not plan 

to do electrical model simulations of the entire chip. The simulation will be 

performed in much the same manner as the layouts are generated. Since the us0r 

provides a very high level specification of the design in the well defined design 

language, RT simulations and timing information can be generated directly from the 

high level specification, without having to generate the artwork and examine the 

resulting layout. 

Finally, I need to develop languages for specifying Bristle Blocks chips which also 

capture the random logic/state machine information. These languages should feel 

natural to the designer, so that the designer can easily express his desires, and so 

that the user can intuitively grasp the meaning of expressions in the language. A 

lo\ver bound exists on the information content required in a chip specification. 

Appropriate languages can capture the information in a clear, concise form. 



-194-

Appendicies 
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Appendix 1: ICL Summary and ICLIC Reference Guide 

This appendix summarizes some of the language features of ICL and lists the ICLIC 

functions use_d in this thesis for describing integrated circuit layouts. For a more 

detailed description of ICL, refer to the ICL appendix of Ron Ayres' thesis [3]. A 

more complete description of ICLIC is given in the ICLIC manual [ 4]. 

A 1.1: ICL Summary 

For the purposes of understanding the code examples presented in this thesis, ICL is 

very similar to PASCAL, with the following exceptions. 

Pointers: ICL makes use of pointers in its memory management scheme, like 

PASCAL. However, the pointers are implicit in ICL, whereas the user must 

explicitly state when pointers are to be used in PASCAL. 

Strings: ICL does not have a mechanism for building arrays. Instead, ICL allows 

the user to build strings. Most languages allow text strings to be arbitrarily long. 

In ICL, the user may build structures which are arbitrarily long strings of any 

desired datatype. Strings are generated in ICL by enclosing the string elements in 

curly brackets, {}. The elements of the string are separated by semicolons. 

Elements can be appended to the front of an existing string using the <$ operator, 

and elements can be appended to the end of an existing string using the$> operator. 

The$$ operator concatenates two strings. Elements of a string can be examined by 

indexing into the string. The ith element of string Sis accessed by writting S[i]. 

The tail of a string (all elements from a specified index to the end of the string) is 

accessed by writting S[i-]. Quantifiers can be used to sequentially access elements 

in a string without indexing into the string. 

Record Generation: ICL has record constructs similar to PASCAL's. There are 

differences between the record generation processes of the two languages. In 

PASCAL, one must explicitly request a chuck of memory for the record, the 

sequentially fill each component of the record. In ICL, one never requests chucks of 

memory. Instead, one merely specifies the record template with the desired values 

for each component. 
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Points: POINT is a basic datatype in ICL, just like integers and reals. A POINT 

contains two real values, which are usually interpreted as X and Y coordinates of a 

point in two-space. Points are generated using the binary operator #. 3#4 is the 

paint whose x-coordinate is 3 and whose y-coordinate is 4. The x-coordinate of a 

POINT P is accessed by writting P.X. 

Polymorphic Functions: In ICL, the user can specify any number of functions 

·(procedures) with the same name. There is no ambiguity if the set of input 

parameters and return parameters uniquely determine the proper function to apply. 

For instance, the user may have a WRITE(INTeger) function, a WRITE(REAL) 

function, and a WRITE(CHARacter) function. For each call to a WRITE function, ICL 

selects the appropriate function based upon the parameter types. If the user writes 

WRITE(5), the WRITE(INTeger) routine is called; if the user writes WRITE(5.), the 

WRITE(REAL) routine is called. 

Coercions: In most languages, there are predefined arithmetic coercions. If the 

user assigns an INTeger value to a REAL variable, the compiler automatically calls a 

routine which translates INTegers to REALs. In ICL, the user may declare coercions 

between any datatypes. ICL will implicitly apply coercions to satisfy datatype 

requirements. 

Infix Operators: Math operators, such as + and -, are infix operators: one writes 

A + B rather than +(A,B). Binary function definitions (functions which take two 

parameters and return one value) typically do not use infix format: f(A,B), not A f 

B. In ICL, any binary function may use the infix format when the function name is 

preceded by the\ operator. f(A,B) can be written A \f B. 

Quantifiers: Virtually every language has constructs for generating loops in the 

program control flow. These loops may be arithmetic loops (FOR loops) or 

conditional loops (WHILE loops or REPEAT loops). In addition to these standard loop 

generators (quantifiers), ICL has mechanisms for sequencing through strings (FOR 

element $E string;). ICL also has unary and binary operators which apply to 

quantifiers. The && operator forces two loops to iterate together; the !! operator 

steps one quantifier for each iteration of the other quantifier. Unary operators may 

eliminate some iterations of the quantifier or perform some actions before each 

iteration of the quantifier. 
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Suspendable Functions: The suspendable function mechanism in ICL allows 

the user to assign function call references to variables. A reference to function X 

may be assigned to the variable Y by writting Y:= 11 X \ \;. Later, function X may be 

envoked by writting <*Y*>. 

A 1.2: ICLIC Reference Guide 

The datatype definitions used in ICLIC are listed here: 

TYPE SP= f POINT I; 

WIRE= [WJOTH:REAL PATH:SPJ; 

RG= EITHER 
POLY= SP 
l-ll RE= 1-11 RE 
BOX= BOX 
UNION= 11RGS 
MATRIX= CDISPLACE:MRG BY:MATRIXJ 
POINT= COISPLACE:MRG BY:POlNTl 
COLOR= [COLOR:MRG WITH:COLORl 

O!SK= 
ENOOR; 

MRG= lRG:RG VMBB:BOX ..... J: 

llRGS= I llRG l ; 

COLOR= SCALAR <RED, BLUE, GREEN, YELLO~I. BLACK, GLASS, BRmlN, YI OLET, BURI EDJ; 

MATRIX= [A, 8, C, 
0, E, F: REAU; 

These definitions declare that SP (String of Points) is an indefinite list of points, a 

WIRE contains a width and a path, and a BOX is two points. An RG (ReGion) may 

either be a POLYgon, represented by an SP, a WIRE, a BOX, an arbitrary list of MRGs, 

an MRG whose points are transformed, a displaced MRG, an MRG with an associated 

COLOR, or other types which are not used in this thesis. An MRG contains an RG 

along with a Virtual bounding box and other internal data. 

There are functions to aid in the generation of MRGs. The basic functions are first 

defined: 



-198-

DEFINE TO(A,B:POINTl=BOX: 

DEFINE AT!M:MRG P:POINTl=MRG: 

DEFINE ROT!M:MRG ANGLE:REALl=MRG: 

DEF I NE r1 !RX <M: llRG l =t'IRG: 

DEF I NE tll RY (M: tJRG l =r-lRG: .......... ~ .... 
DEFINE PAINTEO<M:MRG C:COLORl=MRG: 

DEF I NE UNION <A, B: 11RGJ "'t'IRG: 

ENDDEFN 

ENDDEFN 

ENDDEFN 

ENODEFN 

ENDOEFN 

ENDOEFN 

ENDDEFN 

The TO function takes two points and makes a box. AT takes an MRG and a POINT 

and generates a new MRG ide.ntical to the first MRG with all features displaced by 

the amount specified by the point. ROT takes an MRG and a REAL and generates a 

new MRG identical to the first but rotated counterclockwise the numher of degrees 

specified by the REAL. Similarly, MIRX and MIRY mirror about the X and Y axis, . 

respectively. PAINTED applies the given COLOR to the given MRG, and UNION takes 

two MRGs and merges them. To generate an array of identical MRGs, the following 

routine can be used: 

TYPE ARRAY_OF_OOTS= CIX,IY:REAL NX,NY:INTJ; 

DEF I NE AT (11: tlRG A: ARRAY _OF _DOTS I =MRG: ENDDEFN 

IX and IY specify the distance between columns and rows, and NX and NY specify 

the number of columns and rows. To easily generate colored geometric primitives, 

the following routines have been defined: 

DEF I NE Ill RE CC: COLOR tl: REAL P: SPl ,.,.MRG: 

DEFINE WIRECC:COLOR P:SPl=MRG: 

DEFINE BOX!C:COLOR S:BOXJ=MRG: 

DEFINE POLYGON<C:COLOR SP:SP>=MRG: .... 

DEFINE DISK!M:MRGJ=MRG: ENDDEFN 

ENDDEFN 

ENDDEFN 

ENDOEFN 

ENDDEFN 

The second wire function does not require a width parameter: it uses the default 

width for the given color. The DISK function configures the MRG so that it can 

swap to a disk file with the virtual memory system in !CL. The color interpretation 

for NMOS is as follows: 

GREEN 
RED 
BLUE 

diffusion 
pa I ys i I i can 
metal {first layer) 



YELLOIJ 
BLACK 
GLASS 
BROllN 
VIOLET 
BURIED 

implant 
contacts 
overglassing 
metal-to-metal contact 
second layer metal 
buried contacts 
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There are globally defined MRGs for each of the feedthroughs in the NMOS 

technology: 

GCB 
RCB 
GRCBU 
GRCBL 
GRCBO 
GRCBR 
GCBCB 
RCBCB 
BCB 

Green-to-Blue feedthrough (Green-Contact-Blue} 
Red-Contact-Blue 
Butting contact, Red 'UP' {Green-Red-Contact-Blue-Up) 
Butting contact, Red 'Left' 
Butting contact, Red 'Down' 
Butting contact, Red 'Right' 
Green-to-Metal2 !Green-Contact-Blue-Contact-Blue) 
Red-to-lletal2 
Metall-to-Metal2 

Global variables and routines: 

LAf18DA==REAL 
The basic dimension for describing layouts 

IJ I DTH !REAL l =REAL 
The width of metal wire required to supply power to the given number 
of squares of pul lup. For example, to supply 100 minimum size 
inverters whose pul I ups are each 1/4 squares wide, the metal wire 
should be 1-JIDTH<100i·(.25l ~iide. 

WIOTH!COLORl~REAL 
The default width of features for the given layer 

SPACING!COLOR,COLOR>=REAL 
The spacing between feature edges of the two colors 

CENTER_ TO_cnnER <COLOR. COLOR) =REAL 
The center-to-center spacing for wires of default sizes on the t~ro 

layers 
O_LDAD=REAL 

The capacitive load for the minimum 
LOAO(COLOR,BOXl=REAL 

The capacitive load for the box 
LOAD!WIREl=REAL 

The capacitive load for the wire 

There are routines for input/output of MRGs: 

PLOT<PICTURE,PLOTTER): 
where PICTURE may be one of: 

an llRG 
AIF ( f i I e-namel 
AIF(fi le-name, I ist_of_colors} 

and PLOTTER may be one of: 
HP_7221A 
SCREEN 
HP _2549 
HP_1302 

size transistor 
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A IF ( f i I e-name l 
A IF ( f i I e-name, I i s t_o f _co I ors) 

flBH <rlRG) ~BOX the mini mum bounding box of the 11RG 
CIF2_0UT01RG,file-name); produces a CIF file 
CIF2_1Nlfi le-namel·MRG reads a CIF file 
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Appendix 2: Imbedded Language Example 

The code listed here generates the parameterized shift register cell presented in 

chapter 3. There are several parameters used in the routines below. The following 

table lists these parameters and states what information each parameter represents: 

Parameter 
PU 
PO 
HP 

SP 
OP 
TP 
NR 
RB 

NB 
NL 
TB 

Meaning 
The length of the pul lup transistor in lambda 
The length of the pul I down transistor in lambda 
The width of a power I ine which supplies half a 

rm~ of eel Is 
The power I ine width for a whole row 
The power line width for two rows 
The power line width for the entire array 
The number of shift register bits in a row 
The number of rows for each shift register (always an 

odd number, which indicates how many times the 
long shift register is folded) 

The number of shift reg1sters in the array 
The number of bits in the last row of the shift register 
The total number of bits in each shift register 

The first set of routines generate a single bit of the shift register. There are six 

routines: each generates layouts with one of the six aspect ratios. The first five cell 

layouts generate only one layout for the cell, but the last generates different 

layouts for adjacent bits. By alternating the two layouts, the total array size is less. 

For this reason, the SHIF~ELL datatype is defined, which can contain t-wo MRGs. 

The first five routines only use the ODD component of the SHIF~ELL, -while the 

last routine uses both. 

TYPE SHIFT_CELL= [EVEN,OOD:f1RGJ; 

DEFINE SHIFTl_CELLIPU,PO,DP:REALl=SHIFT_CELL: 
BEGIN VAR CYDD=REAL; 
DO CVOD:=8+0P/2 MAX 4+PU; 
GIVE [000: I IGRCBO\AT 5#-5.; 

GRCBU\AT 12#1; 
RCBCB\AT 5#3; 
GCB\AT 15#-12.-DP/2;.#CVODl; 
t.JIRE(REO, 14#3;.#.5;1#-2.5;.#-3.l l; 
WIRE (GREEN, l0t/0; 1. Sfl.; 4#-2. 5;. #-4. l l; 
~JI RE <RED, !5. 511-8.; 9. 5#-12.; 15#. I J; 
l.JIRE !GREEN, {8#-13. -DP/2;. #-14.; 12#-8.;. #CVOO; 8#. I J; 
IF P0>=3 

THEN POLYGON!GREEN, fGfl-15. ;8+PO#.; .#-9. ;9.5#. ;G#-12.5}) 
ELSE NIL FI; 

BOX<RE0,9#2\TO 15#2+PUl; 
BOX<YELLOW,9#0\TO 15#4+PUJl\AT 10#0;14#01; 

l.JIRE (VIOLET, {5#3;. #9. 5l}; 
WIRECVIOLET, ll9#3;.#-3.51lll 



END 
ENDDEFN 
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DEFINE SHIFT2 CELL!PU.PO,OP:REALl=SHIFT CELL: 
BEGIN VAR CVDD=REAL; -
DO CVOO:=ll+OP/2+PU; 
GIVE [000: I IGRCBO\AT 4#-7.; 

GRCBU\AT 10#1; 
RCBCB\AT 4#5+PU; 

ENO 
ENDOEFN 

GCB\AT 14#-14.-DP/2;10#CVOO!; 
I.JI RE CREO, 14tlG+PU;. #. 5; 1#-2. 5;. #-3. ! l; 
I.JI RE <GREEN, 10#0; 1. 5#.; 4#-2. 5;. #-6. ! J; 
LJI RE <RED. 14. 5#-10.: 8. 5#-14.; 12#. I); 
UI RE CGREEN, 15#-14. -OP/2;. #-14.; 10#-10.;. #CVODl); 
IF P0>=3 

THEN POLYGON !GREEN, 15#-16.; 6+PD#.;. #-12.;. -1#. +1; 
7.5#. ;5#-13.Sl) 

ELSE NIL FI; 
BOX<RE0,7#2\TO 13#2+PUl; 
BOXCYELLOW,7#.5\TO 12.5#4+PUll\AT 10#0;12#0!: 

WIRECVIOLET, 14#6+PU;.#12.5+PUll; 
WIRECVIOLET, 116#6+PU;.#PU-.5l lll 

DEFINE SHIFT3_CELL!PU,PO,OP:REALl=SHIFT_CELL: 
moo: I !RCBCB\AT 4#4; 

GRCBR\AT 111#4;24#.l; 

ENOOEFN 

GCB\AT 116#-l.-OP/2;22+PU#3+0P/2!; 
l-IIRECREO, 15#4; .#-2.1 l; 
tJ I RE (GREEN, 10110: 10#. ; . #3 l } ; 
l.JI RE <RED, 114#5:. #8: 20#.;. #-1. l l; 
LJIRECGREEN, f17#-l.-OP/2; .#1! l: 
WIRECGREEN, 128+PU#0;23#.;.#5:23+PU#.;.#9+0P/2ll; 
IF PD>2 THEN BDX!GREEN,113#0\TO 23#POJ ELSE NIL Fl; 
BOX!RED,25#2\TO 26+PU#8l: 
BOXCYELLOW,23#2\TO 25+PU#10l!\AT 10#0;26+PU#01; 

WIRE !VIOLET, 14#4;. #9+0P /21 ) ; 
WIRE !YI OLET, !30+PU#4;. #-1. -OP/21) l J 

DEFINE SHIFT4_CELL(PU,PO,SP,OP:REALl=SHIFT_CELL: 
BEGIN VAR M=MRG; 
DO M:=IRCBCB\AT 1#4; 

GRCBR\AT {8#4;21#41; 
GCB\AT fl3#-l.-SP/2;19+PU#9+SP/21; 
WIRE<REO, 111#4; .tl7;l71J.; .#-2. l l; 
!JI RE <GREEN, 114#-1. -SP/2;. #0; 20#.;. #5; 20+PU#.;. #9+SP/21); 
IF PD>2 THEN BOXCGREEN,13#-1.\TO 21#P0-1J ELSE NIL FI; 
BOX!RE0,22#2\TO 23+PU#8l; 
BOX!YELLOW,20#2\TO 23+PU#l0ll; 

GI VE [000: IM; 

END 
ENODEFN 

M\MIRX\AT 13#-2.-SP; 
WIRE <RED, !2#4;. #-2. l}; 
WIREIGREEN, l0#0;7#.;.#3l l; 
l.JIRE<REO, 115#-5.-SP;.#.+1.5;21#.+2.5;22#.I ); 
WIREIGREEN, 120#0;.#-5.-SPIJ; 
1-JIRE <GREEN, !33#-2. -SP;. #0; 2G+PU#. I) I l 
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DEFINE SHIFT5_CELL<PU,PO,SP,OP:REALl=SHIFT_CELL: 
BEGIN VAR t1=MRG: Yl. Y2=REAL; 
DO Yl:=-20+SP MAX 2G+PD; 

Y2:= Yl+ C9+DP/2 MAX 5+PUl; 
M:=IGRCBU\AT 10#10;.#Yl+21: 

BCB\AT 0#Yl+2; 
GCBCB\AT 0#-3.: 
l-JIRE(VIOLET. !0#-3.;.#Yl+21l; 
1-J I RE <RED, 10#13; . #21. 5: 2#23. 5; . #24+PDI l ; 
POLYGON (GREEN. 12#20:5#.; .#23+PD;-2.tl.; .11241}; 
l-l 1 RE (GREEN, 1-1. #23+PO; • #Yl +1; 0#. ; • #Y2-1; 4#. l } ; 
BOX<RE0,-3.llY1+3\TO 3#Yl+PU+3l; 
BOX(YELLOW,-3.#Yl+l\TO 3#Yl+PU+5ll; 

GIVE £000: IM\AT 7#0; 

ENO 
ENDOEFN 

t1\t1 IRY\A T 15#0; 
GCB\AT 111#18; .#Y21; 
RCBCB\AT 17#-17.;14#-10.I; 
l-JIRE !GREEN, 10#-1.; .#.5;5#5.5; .#9! l; 
III RE (GREEN, 1811-1.;. ti. 5; 14#5. 5;. #31); 
IJIRE<REO, IG#-15. ;3#.; .#.5;0#3.51 l; 
l-JIRE <RED, 113#-9.; 11#.;. ti. 5: 8#3. 51 l l l 

DEFINE SHIFT5_CELL(PLJ,PO,SP,OP.HP:REAL>=SHIFT_CELL: 
BEGIN VAR M,ML=MRG;Yl,Y2=REAL; 
00 Yl:= 23+HP MAX 29+PO; 

Y2:= Yl+ (9+0P/2 MAX 5+PLJ); 
M:=IGRCBU\AT 10#13:.#Yl+21; 

BCB\AT 0#Yl+2; 
l-l!RE{VJOLET, 10#10;.#Yl+21l; 
IJ I RE !RED, 10#1 G; . #24. 5; 2#25. 5; . 1127 +POI J ; 
POLYGON (GREEN. l 2#23: 5#. ; • #25+PO; -2. ti. ; . #271 ) ; 
1-llRE (GREEN. l-1. #25+PD:. t/Yl+l: 0#.;. #Y2-l; 4#. I); 
l-ll RE {GREEN, 10#0;. #121 l; 
BOX(RE0.-3.#Yl+3\TO 3#Yl+PU+3l; 
BOX!YELLOW.-3.#Yl+l\TO 3#Yl+PU+5ll; 

ML:=IGRCBO\AT 8#-1.; 
GCBCB\AT 3#-10.; 
RCBCB\AT 7#-17.; 
~IIRE (GREEN. 13#-10.; .#-13. l l; 
I.JI RE !RED. 17#-17. : • #-4. I ) : 
WIRE(VIOLET, 10#10;2.5#-3.ll; 
l.JIRE (VIOLET, 13#-28.; 5. 5#-18.1 >I; 

G I VE moo: H1: 

ENO 
ENDDEFN 

M\MIRX\AT 3#-18.;. 
tlL; 
GCB\AT 14#22;.#Y2;7#-40.;.#-18.-Y21; 
RCB\AT 14#5:7#-24.1; 
WIRE<REO, 1-2.#9;3#.; .1171 l; 
~JIRE<REO, 11#-27.;5#.;.#-25.lll 

EVEN: lf'l\t1 I RY\A T 8#0; 
M\ROT 180\AT 11#-18.; 
tlL\AT 8110; 
t.JI RE <RED, !10#9; 5#. ; • 1171 l ; 
WIRE <RED, !13#-27.; 8#.;. #-25.1 l l l 
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We would like a series of routines which would take the shift register bits from 

the routines above and generate complete arrays. As one might expect, much of the 

work in generating these arrays is independent of which type of aspect ratio one is 

using, and as one might also expect, there are some differences. Therefore, we have 

a routine FINISH which contains the code which can be common for each of the 

different cell types and individual routines for generating the type-specific data. 

The datatype SHIFT_!'OW was created to contain the information which must be 

transferred between each of the SHIFTn ROW routines and the FINISH routine. 

TYPE SH! FT _ROl-l= (FIRST, m DOLE, LAST, ALT, ONLY: MRG 
DOWN,UP,TOP,BOTTOM,REOGE:REALJ; 

DEFINE FINISH!R:SHIFT_RQ!.I RB.NB: INT TP:REAU=MRG: 
BEGIN VAR CTC,TOP,BOTTOM=REAL;M=MRG; 
DO CTC: =R. UP-R. Dot.JN; 

TOP:=R.UP+R. TOP; 
BOTTOM:=R.OOWN-R.BOTTOM; 
M:=IF RB>l THEN 

IR.FIRST; 
IF RB>4 THEN 

R.MIODLE\AT 0#2*CTC\AT [NX:l NY:RB/2-1 IY:2*CTCJ 
ELSE NIL FI: 
R.LAST\AT B#CTC*<RB-ll; 
R.ALT\AT [NX:l NY:RB/2 IY:2*CTCJl 

ELSE R. ONLY FI ; 
GIVE 11'1\AT [NX:l NY:INB+ll/2 IY:2,.,crc,·,RBJ; 

END 
ENDDEFN 

11\lllRX\AT 0#2,·:RB,·:CTC+2,·:R.OOllN\AT (NX:l NY:NB/2 IY:2,·,crc,·,RBJ; 
L.I IRE (VIOLET, I-TP+l. S#BOTTOl1+1. 5; -3. II. ; 

.#CTC*IRB*NB-ll+TOP-1.5;-TP+l.5#.f ); 
L.JI RE {VIOLET, IR. REDGE+ TP-1. 51tBOTTOf1+1. 5: R. REDGE+3#. : 

.#CTC*IRB*NB-ll+TOP-l.5;R.REOGE+TP-l.5#.ll; 
BOXIBLUE,-TP#BOTTOM\TO 0#CTC*IRB*NB-ll+TOPl; 
BOXIBLUE,R.REDGE#BOTTOM\TO R.REOGE+TP#CTC*IRB*NB-ll+TOPll 

\AT TP#-BOTTOf1 

DEFINE SHIFTl_RQl.J<PU,PO,OP, TP:REAL NR,RB,NL: INTl=SHIFT_ROL.J: 
BEGIN VAR M,P,R=MRG:LEOGE,REDGE,CVOO,CTC=REAL; 
DO LEOGE:=lF RB>l THEN 7 ELSE 0 FI; 

REDGE:=28*NR+LEDGE+3; 
CVOD:=8+0P/2 MAX 4+PU: 
CTC:=12+0P/2+CVDD: 
~1: =SH I FTl_CELL <PU, PO, OPJ. 000; 
P:=IBOXIBLUE,-1.#-12.-DP\TO REOGE-3#-12.l; 

BOX!BLUE,3#8\TO REDGE+l#CVDO+OP/2); 
~JI RE !VIOLET, 1-3. #3. 5; REOGE-3#. l l; 
WIRE<VIOLET, 13#-3.5;REOGE+3#.lll; 

R:=M\AT LEDGE#0\AT (JX:28 NX:NR NY:lJ; 
GIVE COQl.JN:-12.-0P/2 

UP:CVOD 
TOP:OP/2 
BOTTDrl:OP/2 
REDGE:REDGE 



END 
ENDDEFN 
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FIRST: IR:P;WRE (GREEN, 11-TP#0;LEOGEll.1 l l 
tl!DDLE: IR;PI 
LAST: Hl\AT LEDGEll0\A T [J X: 28 NX: NL NY: 1J ; 

P;lJI RE <GREEN. 128.-:NL+LEDGEt/0; REDGE+ TP-111. I l I 
ALT: IR\ROT 180\AT REOGEf12,«CVDD: 

P\MIRX\AT 0112*CVDD: 
lJI RE <GREEN. 14#2»:CVOO; -1. ti.;. 112,·,CTC; LEDGE#. I l; 
WIRE <GREEN, IREDGE-4110;. +5#.;. 112,·,CVOO; REDGE-LEDGE#. I l l 

ONLY: IR; P; I.JI RE (GREEN, 11-TPll0; LEDGE#. I ) ; 
WIRE!GREEN, IREDGE-3#0:REDGE+TP-lll.lllJ 

DEF I NE SHI FT2_ROlHPU, PO, OP, TP: REAL NR, RB, NL: INTl =SHI FT _ROL-1: 
BEGIN . VAR M,P,R=MRG:LEDGE,REDGE,CVOO,CTC=REAL; 
DO LEOGE:=IF RB>l THEN G ELSE 1 FI: 

REDGE:=24*NR+LEDGE+3; 
CVOD:=ll+OP/2+PU; 
CTC:=l4+0P/2+CVDD: 
M:-SHIFT2_CELL<PU,P0,0Pl.ODO; 
P:=IBOX<BLUE,-1.#-14.-DP\TO REOGE-3#-14.); 

BOX<BLUE,3#ll+PU\TO REDGE+l#CVOO+DP/2); 
I.JI RE (VIOLET, 1-3. llPU+12. S;REDGE-3#. I); 
WIRE<VIOLET, 1311PU-.5:REOGE+3#.lll; 

R:-M\AT LEDGE#0\AT £IX:24 NX:NR NY:lJ; 
GIVE COOWN:-14.-0P/2 

UP:CVOO 
TOP:OP/2 
BOTTOM:OP/2 
REDGE:REDGE 

END 
ENODEFN 

FIRST: IR; P; WI RE (GREEN, ll-TPll0; LEDGE#. I) I 
tl!DDLE: IR;PI 
LAST: 111\AT LEDGEt/0\AT [!X:21+ NX:NL NY:lJ; 

P: 1.JIRE (GREEN, 12r1·::NL+LEDGE#0; REOGE+ TP-1#. l l l 
ALT: IR\ROT 180\AT REDGE#2)·,CVOO; 

P\MIRX\AT 0112*CVOO; 
IJI RE (GREEN, 14#2i'rCVOO; -1. It.:. t/2i•rCTC; LEDGEt/. l); 
l-1 I RE (GREEN. IREDGE-41/B: • +5#. ; • #2,-,cvoo; REDGE-LEDGEll. I ) J 

ONLY: IR; P: l-lI RE (GREEN, 11- TP#0; LEDGE#. I l ; 
LHRE <GREEN, !REDGE-3110;REOGE+TP-l#. l I I l 

DEF I NE SHI FT3_ROlHPU, PD, DP, TP: REAL NA, RB, NL: I NTl =SHIFT _ROL-1: 
BEGIN VAR M,P,R=MRG:LEDGE,REDGE,CTC=REAL; 
DO LEOGE:-IF RB>l THEN PU-5 MAX 1 ELSE 1 FI: 

REDGE:-(52+2*PUl*NR+ IF RB>l THEN 2+ABS<PU-5l ELSE 2 FI; CTC:=l0+DP; 
ti: =SHI FT3_CELL <PU, PO, DP>. ODO; 
P:=IBOX<BLUE,-1.11-1.-DP\TO REDGE-311-1.); 

BOX<BLUE,3#9\TO REDGE+lt/S+DPJ; 
I.I I RE (VIOLET, !-3. #S+DP /2; REDGE-3#. l l ; 
WIRE!VIDLET, 13#-1.-DP/2;REOGE+3#.lll; 

R:=M\AT LEDGE#0\AT £IX:52+2*PU NX:NR NY:ll; 
GIVE CDOWN:-1.-DP/2 

UP:S+DP/2 
TOP:DP/2 
BOTTOll:DP/2 
REOGE:REDGE 
FIRST: IR:P;l.JIRE<GREEN, ll-TP#0;LEOGEll.I ll 
t1I ODLE: !R; Pl 



END 
ENDOEFN 
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LAST: IM\A T LEDGEll0\A T [IX: 52+2)·,PU NX: NL NY: 1 l ; 
P:WIRECGREEN, 1152+2*PUl*NL+LEDGE#0;.#4;REDGE+TP-l#.;.#01 JI ALT: IR\ROT 180\AT REDGE#l8+0P; 

P\MIRX\AT 0#18+DP; 
l-Jl RE CGREEN, 16-PU f1AX 0#18+0P; -1. #.;. #2)·,CTC; LEDGE#. l); 
1-J!RECGREEN, IREDGE-CG-PU f1AX 0l#0;REOGE+l#.;.#18+0P; 

REOGE-LEDGE#. I l J 
ONLY: IR; P: 1-1 I RE (GREEN, 11-TP#0; LEDGE#. l); 

WIREIGREEN, IREDGE-1#0;.#4;REDGE+TP-l#.;.#01JJJ 

DEFINE SHIFT4_ROWCPU,PD.SP,OP,TP:REAL NR,RB,NL:INTl=SHIFT_ROW: BEGIN VAR M,P,R-MRG;REOGE,CTC=REAL; 
DO REOGE:=l2S+PUl*NR+15: 

CTC: =20+2,·,SP; 
M:=SHIFT4_CELLIPU,PD,SP,DPJ.OOD: 
P:=IBOXIBLUE,-1.#-1.-SP\TO REDGE-3#-1.); 

BOXCBLUE,3#9\TO REDGE+l#9+SPl; 
BOXCBLUE,3#-ll.-2*SP\TO REDGE+l#-11.-SPl; 
WI RE (VI OLE T, 1-3. #4: REOGE-3#. I J ; 
WIREIVIOLET, 13#-G.-SP;REOGE+3#.JJl; 

R:-M\AT 4#0\AT [!X:2G+PU NX:NR NY:lJ; 
GIVE [OOWN:-11.-3.*SP/2. 

ENO 
ENDDEFN 

UP:9+SP/2 
TOP:SP/2 
BOTTOl1: SP/2 
REDGE:REDGE 
FIRST: IR: P; I.JI RE (GREEN, ll-TP#0; 4#. l) I 
MIDDLE: IR:PI 
LAST: U-1\AT 4#0\AT [IX:2G+PU NX:NL NY:lJ; 

P:WIREIGREEN, 1125+PUl*NL+4#0;.#4;REDGE+TP-l#.;.#0J JI ALT: iR\ROT 180\AT REOGE#l8+SP: 
P\~IIRX\AT 0#18+SP: 
I-JI RE CGREEN, 111#l8+SP; -1. #. : . #2,·,CTC; 4#. I ) : 
lJI RE I GREEN, IREOGE-11#0;. +10#. ; . #18+SP; REDGE-4#. J ) I ONLY: !R; P: ~JI RE I GREEN, 11-TP#0; 4#. l J ; 

WI RE <GREEN, IREDGE-11#0;. #4; REOGE+ TP-1#.;. #01 I I J 

DEF I NE SH I FTS_ROIHPU, PO, SP. DP, TP: REAL NR, RB, NL: I NT> =SH I FT _ROW: 
BEGIN VAR M,P,R-MRG;REDGE,CTC,Yl,Y2=REAL; 
DO REOGE:=16*NR+2; 

Yl:~ 2l+SP MAX 27+PO; 
Y2:= Yl+ 19+0P/2 MAX G+PLJ); 
CTC:=Y2+1G; 
fl: =SHI FTS_CELL CPU, PO, SP, OPJ. ODD: 
P:=IBOXIBLUE,-1.#18\TO REDGE-3#Yl-3l; 

BOXIBLUE,3#Y1+9\TO REDGE+l#Y2+0P/2l; 
l-JI RE IV I OLET, I -3. #-1 G. : REDGE-3#. l l ; 
lJIRE !VIOLET, 13#-9. ;REDGE+3#. l I I; 

R:=M\AT -2.#1\AT [IX:lG NX:NR NY:lJ; 
GIVE [OQl,JN: -lG. 

UP:Y2 
TOP:DP/2 
BOTTOl1: 2 
REDGE:REOGE 
FIRST: IR;P;WIRECGREEN, ll-TP#0;-2.tt.l JI 
MIDDLE: IR;Pl 
LAST: IM\AT -2.#1\AT UX:l6 NX:NL NY:lJ; 



ENO 
ENDDEFN 
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P;WIREIGREEN, 115*NL-2#0;REDGE+TP-1#.lll 
ALT: IR\ROT 180\AT REDGE#2,·,Y2; 

P\fll RX\AT 0/./2,·:Y2; 
[.JI RE !GREEN, 14#2,·:Y2: -5. #.:. #2,·:CTC; -2. #.I I; 
WIRECGREEN, IREDGE-4#0;.+10#.;.#2*Y2:REDGE+2#.l)l ONLY: IR; P: l.JJ RE !GREEN. 11- TP/10; -2. ti. I l; 

l.JIREIGREEN, IREDGE-4#0;REDGE+TP-l#. I) I J 

DEFINE SHIFT5_ROLJIPU,PD,SP,OP, TP,HP:REAL NR,RB,NL: INTl=SHIFT_ROW: BEGIN VAR ME,MO,P,R=MRG;REDGE,CTC,Yl,Y2=REAL: 
DO REOGE:=8*NR+18.5; 

Y1:=23+HP MAX 23+PD; 
YZ:=Yl+ 13+SP/2 MAX G+PUI; 
CTC: "'z,·,Y2+18; 
COOO!llO EVEN:llEJ: =SHIFT5_CELLIPU,PO,SP,OP,HPI; 

P:=IBOXIBLUE,-1.#20\TO REDGE-3#Yl-31; 
BOX!BLUE,-1.#-15.-Yl\TO REDGE-3#-38.); 
BOXCBLUE,3#Yl+3\TO REDGE+l#Y2+SP/2); 
BOXIBLUE,3#-18.-Y2-SP/2\TO REOGE+l#-27.-Yll; 
W RE !BLUE, IREOGE-5115; 5#. I ) ; 
l.JIRE !BLUE, !5#-24. ;REDGE-5#.; .#-33.1); 
BCB\AT 15#5;REOGE-5#-33.I; 
lJIRE (VIOLET I !-3. #5; 5#.1); 
I-JI RE ! VIOLET, !REOGE-5#-33. ; RE OGE +3#. I ) l ; 

R:=lflO\AT 11.5#0\AT UX:15 NX: !NR+ll/2 NY:lJ; 
llE\AT 11.5#0\AT UX:lG NX:NR/2 NY:lJ I; 

GI VE [DOLIN: -18. -Y2 
UP:Y2 
TOP:SP/2 
BOTTOf"l: SP/2 
REDGE:REOGE 

END 
ENDDEFN 

FIRST: IR; P: t.JJ RE I GREEN, 11- TP#0; 11. 5#. I I l 
11 !DOLE: !R: Pl 
LAST: lflO\AT 11.51/0\AT f!X:15 NX: !NL+ll/2 NY:lJ; 

flE\AT ll.5f10\AT flX:lG NX:NL/2 NY:lJ; 
P ;l.J I RE I GREEN, !8,·:NL+ll. 5#0: REDGE+ TP-1#. I l l 

ALT: IR\ROT 180\AT REOGE#2i":Y2; 
P\MIRX\AT 0#2*Y2; 
t.JIRE!GREEN, !Gt/2,·:Y2;2#.; .#2>":CTC;ll.5#.l I; 
l.JIRE !GREEN, IREOGE-5#0;. +2#.;. #2,·:Y2; REDGE-11. 5#. Ill ONLY: IR;P:~JIRE!GREEN, ll-TP#0;11.5#.ll; 

t.JIREIGREEN, IREDGE-14#0;REOGE+TP-l#.l llJ 

Each shift array function is now trivial: They each call their corresponding SHIFT!!-_ 
ROW function and the FINISH function. Also note that each of the SHIFTn ROW 
functions requires a subset of the total list of parameters, but that the SHIFT!!-_ 
~TIRA Y functions require all parameters, but do not use all of the parameters. This 

is done so that other programs do not have to be aware of the differences in the 
parameter requirements. 

DEFINE SHIFTl_ARRAY!PU,PO,SP,OP, TP,HP:REAL NR,RB,NB,NL: INTl=11RG: FINISH<SHIFTl_ROWIPU,PD.DP,TP,NR,RB,NL},RB,NB,TP} 
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ENOOEFN 

DEFINE SHIFT2_ARRAY(PLJ,PO,SP,OP, TP,HP:REAL NR,RB,NB,Nl: INTl=t1RG:. 
FINISH!SHIFT2_RQl.HPU,PO,OP, TP,NR,RB,NU ,RB.NB, TPJ 

ENCJOEFN 

DEF I NE SHI FT3_ARRAY <PU, PO, SP, OP, TP, HP: REAL NR, RB, NB, NL: I NTJ =f1RG: 
FINISHISHIFT3_ROl-HPU,PO,OP, TP,NR,RB,NU ,RB,NB, TP> 

ENOOEFN 

DEFINE SHIFT4_ARRAY<PU,PO,SP,OP,TP,HP:REAL NR,RB,NB,NL:INT>=MRG: 
FI NI SH <SHI FT4_ROl-J<PU,PO, SP ,OP, TP, NR,RB, NU, RB, NB, TP> 

ENOOEFN 

DEFINE SHIFTS_ARRAY(PU,PO,SP,OP,TP,HP:REAL NR,RB,NB,NL:INT>=MRG: 
FINISH(SHIFT5_ROW<PU,PO,SP,OP,TP,NR,RB,NL>,RB,NB,TP) 

ENDDEFN 

DEFINE SHIFTG_ARRAY(PU,PO,SP,OP,TP,HP:REAL NR,RB,NB,NL:INT>=MRG: 
FINISHISHIFT8_RO~l!PU,PO,SP,OP,TP,HP,NR,RB,NL>,RB,NB, TP> 

ENDDEFN 

To choose between the various possible cell types and configurations, we need to 

know the sizes of all arrays. Since we want to try many configurations, but we 

will only use one, we don't want to perform the expensive computation of 

generating the arrays until we know which one we want. The SIZE function takP-s 

the pertinent parameters and computes what the array size would be if we were to 

actually generate that anay. This computation is very cheap both in terms of time 

and memory space. The SIZE function returns a POINT whose x coordinate is the 

horizontal size of the array and whose y coordinate is the vertical size. The SIZE 

function also returns a Suspendable Function. The suspendable function is 

generated inside the //: \ \ characters. This function is not executed, but is a 

freeze-dried function call. In this usage, all of the parameters for the call to the 

SHIFTn __!\.RRA Y functions are evaluated, but the SHIFTn_ARRA Y function is not 

called. At any time in the future we may, if we wish, actually perform the 

function call and receive the resulting layout. The datatype SHIF'.[_MAKER is our 

freeze-dried function call, and SHIF~ESULT is the datatype which SIZE returns, 

containing both the array size and the suspendable function. 

TYPE SHI FT _flAKER=/ /llRG\ \; 

SHI FT _RESULT= CS! ZE: POI NT SS: SHIFT _llAKERl; 

DEFINE SIZECNB, TB: INT POl.JER:REAL CLASS, RB: INTl=SHIFT_RESULT: 
BEGIN VAR PU,PO,SP,OP, TP,HP=REAL;NR,NL=INT; 
DO PU:=2./POl~ER r-IAX 15./3.; 

PD: =32. /PU l1AX 2.; 
NR:-ITB+RB-ll/RB; 
NL:-TB-IRB-ll*NR: 
SP:=WIOTHIPOWER*NRl; 



OP:=WIOTHl2*POL~R*NRI; 
TP: =I.I I OTH ( TEkNB,·,POl.IER) ; 
HP: =I-JI OTH (PQl.IER,·:NR/21; 

-zog .. 

GIVE IF CLASS=l THEN 

ENO 
ENOOEFN 

[SIZE: 28*NR+ IF RB>l THEN 10 ELSE 3 FI +2*TP # 
((8+0P/2 MAX 4+PUl+l2+DP/21*NB*RB+OP 

SS://:SHIFTl_ARRAY[PU,PD,SP,OP,TP,HP,NR,RB,NB,NLJ\\J 
EF CLASS=2 THEN 

£SIZE: 24*NR+ IF RB>l THEN 9 ELSE 4 Fl +2*TP # 
125+DP+PUl*RB*NB+OP 

SS://:SHIFT2_ARRAY[PLJ,PD,SP,OP,TP,HP,NR,RB,NB,NLJ\\J 
EF CLASS=3 THEN 

[SIZE: C52+2*PUl*NR+ IF RB>l THEN 2+ABSCPU-6l ELSE 2 FI +2*TP # 
( l 0+0P I ,·:RB,·,NB+OP 

SS://:SHIFT3_ARRAY[PLJ,PD,SP,OP,TP,HP,NR,RB,NB,Nll\\J 
EF CLASS=4 THEN 

[SIZE: C2S+PUJ*NR+l5+2*TP # C20+2*SPl*RB*NB+SP 
SS://: SHIFT4_ARRAY CPU.PO, SP, OP, TP, HP, NR, RB, NB, NU\ \J 

EF CLASS=5 THEN 
(SIZE: 16*NR+2+2*TP # 

ELSE 

<16+<2l+SP MAX 27+PDl+<9+0P/2 MAX S+PUll*RB*NB+OP/2+2 
SS://:SHIFTS_ARRAY[PU,PO,SP,OP,TP,HP,NR,RB,NB,NLJ\\J 

[SIZE: 8*NR+l8.5+2*TP # 
12*1C23+HP MAX 29+POl + CS+SP/2 MAX S+PUlJ+181*RB*NB+SP 

SS://:SHIFT6_ARRAYCPU,PD,SP,OP, TP,HP,NR,RB,NB,NLJ\\J FI 

The SHIFT CELL function is our actual shift cell. We call it passing the number of 

shift registers required, the number of bits per register, the power requirements, 

the desired area, and the oversize costs. This function generates several candidates 

by calling the SIZE function and returns the array which best matches the desi.red 

size. If there are candidates which fit within the desired area, the one with the 

closest match to the area is chosen. If no candidates match, the amount of oversize 

in both x and y for all candidates is multiplied by the weights and the candidate 

\Vith the smallest resulting cost is used. 

DEF I NE SH I FT _CELL< NB, TB: I NT POl-lER: REAL SIZE, ~JE I GHT: PO I NTJ =MRG: 
BEGIN VAR I,J=INT: 

DEFINE BEST<A.B:SHIFT_RESULTJ~SHJFT_RESULT: 
IF A.SJZE<SIZE THEN 

IF 18.SIZE<SIZEl&CDISTCB.SIZE,SIZEl<DIST<A.SIZE,SIZEll 
THEN B ELSE A FI 

EF 8.SJZE<SIZE THEN B 
EF ABS<<CA.SIZE-SIZEl\SCALED_BY WEIGHT> MAX 0#0) < 

ABS<CCB.SIZE-SIZEl\SCALED_BY WEIGHTJ MAX 0#0 ) THEN A 
ELSE B Fl 

ENDDEFN 
<*(\BEST SIZE<NB,TB,POWER,I,Jl FOR I FROM 1 TO 6; !! 

ENO 
ENOOEFN 

FOR J FROM 1 TO 21 BY 2;l.SS*> 
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When the user has specific size requirements for the shift array, a direct call on the 

SHIFT CELL function is used. Most of the time, however, the user can make 

tradeoffs of chip area between various units. In these cases, the user may wish to 

.see the sizes of the various candidates. The GRAPH function will plot a graph of all 

candidates within a maximum size limit while the TABLE function prints a table of 

this same data. Given this information, the user can see what the possible areas are 

for the arrays, which will aid in the planning of other circuit sizes. These 

functions take the number of shift registers, the number of bits per register, the 

power required, the maximum number of folds used (although the SHIFT CELL as 

written always uses a maximum of 21), and the maximum candidate size which 

filters the output. 

DEF l NE GRAPH !NB, TB: l NT POllER: REAL N: l NT MAX: PO I NTl =f1RG: 
BEGIN VAR M=MRG;CLASS,RB=INT;P,O=POINT;SPS=SPS;SP=SP; 
OD SPS:=ICOLLECT 

!COLLECT SIZE !NB, TB, POllER, CLASS, RB) • SIZE 
FOR RB FROf1 1 TO N BY 2; I 

FOR CLASS FROM 1 TO G;I; 
P:= MAX IF P<MAX THEN P ELSE 0#0 Fl FOR (Pl SE SPS;; 
SPS:=!COLLECT 

!COLLECT Q.X*500/P.X # Q.Y*500/P.Y FOR Q SE SP;I 
FOR SP SE SPS:I; 

GIVE ICOLLECT lJIRE!BLUE,0, !COLLECT 0 FOR 0 SE SP;WITH 0<500#500;1) 
FOR SP $E SPS;; 

END 
ENODEFN 

COLLECT !COLLECT M\AT Q FOR Q SE SP;WITH 0<500#500;1 
FOR SP IE SPS;&& FOR M IE 

! BOX{RED.-5.#-5.\TO 5µ5) ; 
POLYGON IRED, f-5.#-4.;5#.;0#41 J ; 
POLYGON !RED, !0#5;-3. #-4.: 5#2. 5; -5. #.; 3#-4. l J ; 
!L-JIRE IRE0,0, !5#5;-5.#-5. l J ;l.JIRE<RE0,0, !-5.#5;5#-5. l) J 

POLYGON <RED, 15#0; 0#5: -5. #0; 0#-5. J J ; 
POLYGON !RED, 12115: -2. fl..; -5. #2;. #-2.; -2. #-5.; 2#.; 5#-2.;. #21 > 

WIREIGREEN,0, 10#500;0#0;500#01}; 
SC{P.XJ\PAINTED BLACK\SCALED_BY 2#2\AT 500#10; 
SC<P.YJ\PAINTED BLACK\SCALED_BY 2#2\AT 10#472; 
'NB:'llSC<NB)\PAINTEO BLACK\SCALEO_BY 2#2\AT 500#130; 
'TB:'llSC<TBl\PAINTED BLACK\SCALEO_BY 2#2\AT 500#30; 
'PQl.JER: 'USC <PQl.JERl \PAINTED BLACK\SCALEO_BY 2#2\AT 500#50! 

DEFINE TABLE !NB, TB: INT POllER:REAL N: INT i1AX:PDINTl: 
BEGIN VAR CLASS,RB:JNT;P:POINT; 
FOR CLASS FROM 1 TO 5: !! FOR RB FROM 1 TON BY 2; DO 

P::SIZEINB.TB,POWER,CLASS,RB>.SIZE; 

END 
ENO 

ENDDEFN 

I F P <ilAX THEN 
WRITEl'CLASS:'J;WRITEICLASSJ;TAB; 
WRITEl'RDWS/BIT: 'J;WRITEIRBl;TAB; 
WRITEC'SIZE:'l;WRITEIPJ;CRLF; FI 

I .. . . 
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Appendix 3: River Routers 

This appendix discusses the design of a river router and illustrates some of the 

extensions 't\rhich augment the usefulness of river routers. River routers are used 

to interconnect the connectors along the adjacent edges of two cells. The following 

restrictions apply to the connectors, and can be thought of as the definition of a 

river route: 

There 
the 

must be a one-to-one mapping between connectors of 
ti..JO ce I Is. 

2) Corresponding connectors must be on the same masK layer. 

3) Each set of connectors must satisfy the design rules for 
minimum width wires. 

4) Adjacent connector pairs on dependent mask layers must 
not cross. 

The first condition simply states that the two sets of connectors be of the same 

length. We will connect the first connector of one list to the first connector of the 

other list; the second connect.ors will be interconnected, etc. The second condition 

assures us that we can route a single wire between the two connectors without 

changing mask layers. The third condition assures us that we can indeed route 

"\Vires to all the connectors without violating the design rules. The fourth 

condition assures us that we do not have to cross wires. If wires had to cross, we 

would have to change layers, and we do not wish to change layers with our wires 

(see condition 2). Dependent layers are layers that produce undesirable side-effects 

when wires cross. For instance, in NMOS design, when diffusion and polysilicon 

cross, a transistor is formed. Hence, diffusion and polysilicon are dependent layers. 

On the other hand, the metal layer is independent of polysilicon and diffusion since 

metal wires may freely cross wires of these other layers. Notice that every layer is 

dependent with itself: If two wires of the same layer cross, they short together. 

Based upon these conditions, there are a few properties of river routes which can be 

used. One of these properties has already been mentioned: the interconnection 

between two connectors will be a single wire on a single mask layer. A second 

property is that independent layers can be routed independently. We have noticed 

that, in NMOS, metal wires can arbitrarily cross polysilicon or diffusion wires. 

Therefore, we can route all of the metal wires as a group, and then route all of the 
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polysilicon and diffusion wires as a group. This also allows connector pairs to cross. 

provided the connector pairs are on independent layers. 

We can also divide the routing task for each set of dependent layers into groups. 

We will define a group to be all adjacent connector-pairs on dependent layers 

which route in the same direction. Using figure A3-1 as an example, we see that 

the first three connector pairs have wires slanting to the left as we go from top to 

bottom. The next three connectors slant to the right, and the final three connectors 

slant to the left. We can divide the connector pairs into groups and route each 

group independently. This is possible because each wire drawn will only move 

horizontally in one direction, towards its destination. We can also route these 

independent groups as if they were dependent. This allows us to separate the 

connectors into two groups: those that tend to the left and those that tend to the 

right (any wires which need only be vertical can belong in either group). 

Fig. A3-1: Connector Pairs 

Another property we will use is that each wire depends only upon one other wire in 

the route: its adjacent neighbor in its direction of travel. If every wire maintains 

proper distance from its neighbor in its direction of travel, we will not have design 

rule violations between wires. We will use this property to determine the order of 

routing wires. In the left-going group, we will route the left most wire first, 

followed by the next-to-the-left most wire, etc. We will route the right-going 

wires starting with the right most wire. The first wire in each group will move 

directly over to its destination connector's x coordinate and wait. The second wire 

in each group now only needs to avoid this one wire as it heads toward its 



-213-

destination. In a like manner, each wire will only have to consider the previous 

wire as it is generating its path. 

a) Left 
Neighbor 

b) Off set 

Fig. A3-Z: Computing New Path 

c) New 
Poth 

The final property we will use is that the design rule spacing between wires is 

uniform in both directions. This allows us to compute the majority of a ·wire's path 

by simply shifting the points from the previous path. In figure A3-2a we see the 

path of one wire. If we shift the points of this path over in x and down in y, each 

time by the minimum design rule spacing for the two layers in question, we have 

the path of the wire which is as close to the given wire as possible. Given this new 

path, we need only fix the ends of this path to have the route for the next wire. 

We will remove any points of this path which lie beyond the destination and will 

append segments to the front of the wire which connect to the starting connector 

(fig A3-Zc). This efficiently generates each wire given the neighbor's wire. As we 

have already stated, the first wire is trivial to implement: We move from thr.:! 

initial connector over to the final connector's x coordinate, then down. We can 

now prove that each wire only draws in one direction. The first wire draws only 

in one direction, as shown in the previous statement. The central portion of every 

wire follows its neighbor's path until the destination coordinate is reached. Hence, 

once the central portion of the wire is reached, the wire only heads in the direction 

of its destination. To complete the proof, we must show that the start of the wire 

does not move in the opposite direction. The end of the shifted portion of the wire 

is at minimum design rule spacing from the neighbor's wire. For the initial 
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segment of the vvire to run in the opposite direction, the starting connector must be 

closer to the neighbor's wire then design rules allow. This is a violation of 

condition 3. Therefore, every wire draws in one direction, which completes the 

inductive proof. Given this, we can then prove that the extend of a wire is limited 

by the x coordinates of its two connectors. If the wire ever extended beyond one of 

the two connectors, it could never connect to the connector since it would have to 

change directions. Therefore, wire extents are limited, and we can separate the 

routes into groups. 

The following code is the basic river router routine. We will discuss the Forbidden 

Zones later, for now assume that they are identity functions. The River Node 

contains the coordinates of the two connectors, and the common color of the 

connectors. The river routing routine returns a River Return, which contains the 

layout and the height, which is the height of the completed route. The river 

routing routine calls a routine to route the individual sets of dependent layers. This 

routing, GROUP_!iOUTE, also returns a RIVER_!iETURN, but this routine uses the 

DONE component. The Done component contains all of the river nodes at the end of 

the route. Since we can not state how tall the river route will be until the route is 

completed, we do not know hovv long to make each of the final wire segments until 

we have finished the rest of the route. We put each of the nodes into the Done 

component when we are finished jogging them, and we look at these nodes after all 

the wires are jogged to add the final segments to the wires. 

TYPE RIVER_NODE= CFRml, TO: POINT COLOR:COLORJ; 

RIVER_NODES= ! RIVER_NODE I; 

RIVER_RETURN= [LAYOUT:MRG HElGHT:REAL OONE:RIVER_NOOESJ; 

RIVER_RETURNS= ! RIVER_RETURN l; 

FORBIDDEN_ZONE= //WlRE(SP,REAL,COLORJ\\; 

DEFINE SORT<OLD:RIVER_NODESl=RIVER_NOOES: 
BEGIN VAR NEW=RIVER_NODES;Nl,N2=RIVER_NODE;l,J=INT; 
DO NE~!: =NIL; 

WHILE OEFINED(OLOI; DO 
Nl: ~OLD ClJ: 
I: =1: 
<FDR N2 SE OLOC2-l;&& FOR J FROM 2 BY l;)WITH N2.FROM.X>Nl.FROM.X; 

DO I: =J; 
Nl:=N2; 

END 



END 
GIVE NEW 
END 

ENODEFN 

NEL-J:: = Nl<S; 
OLD [I l : =NIL: 
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DEFINE GROUP ROUTE<LIST:RIVER NODES MIN,TOP,BOT:REAL 
- FZl,FZ2:FORBIDDEN_ZONEl=RlVER_RETURN: 

BEGIN VAR RIGHT,OONE=RIVER_NODES;LAST_PATH=SP; 
N,LAST_NODE=RIVER_NOOE;LAST_COLOR=COLOR;COUNT=INT; 
Ll,L2=MRGS;LOW,SPACE=REAL;P=POINT; 

DEFINE AOO<C:COLORl: 
BEGIN VAR P=POINT; 
CPA TH: LAST _PA TH L.JI DTH: LOWJ: =<~·,FZl~·,> <LAST _PATH, LOW, C> ; 
L2::= WIRE<C, «~·,FZ2~·,>(LAST_PATH,LOW,C}).PATH> <S; 
COUNT::=+l; 
IF COUNT>40 THEN 

Ll::= OISK<L2) <S; 
L2:=NIL; 
COUNT:=0; FI 

END 
ENDOEFN 

DO RIGHT:=NIL; 
OONE:=NIL; 
LAST_PATH:=NIL; 
LAST_NOOE:=[FROM:-999999,#999999 COLOR:REDJ; 
LI ST: : =\SORT; 
COUNT:=0; 
L1: :NIL; 
L2:=NIL: 
LOIJ: =TOP-MIN; 
LAST _COl_OR: =RED; 
FOR N SE LIST; DO 

IF N.FROM.X<N.TO.X THEN RIGHT::= N <S; 
ELSE SPACE:=CENTER_TO_CENTER<N.COLOR,LAST_COLOR); 

LAST_COLOR:=N.COLOR; 
IF N.TO.X-SPACE>=LAST_NOOE.FROM.X THEN 

ELSE 

LAST _PA TH:= IN. FRDr1; 
IF N.FROM.Y\IS_CLOSE_TO TOP 
THEN NIL ELSE .#TOP FI; 
N. TO. X#. l; 

LAST_PATH:=ICOLLECT P+SPACE#-SPACE 
FOR P SE LAST_pATH; 
WITH IP.Y=<TOPJ&<P.X+SPACE>=N.TO.Xl:I; 

IF LAST_PATH[ll.X<N.FROM.X THEN 
LAST_PATH::=IN.FROM; 

IF N.FROr-1. Y\IS_CLOSE_TO TOP 
THEN NIL ELSE .#TOP Fl; 
LAST_PATH[lJ.X#.lSS; 

ELSE LAST_PATH::= N.FRDM<S; FI 
P:=REVERSE<LAST_PATHl Cll; 
IF -IP.X\IS_CLOSE_TO N.TO.X> 
THEN LAST_PATH::7 S> N.TO.X#P.Y; FI 
LQl.J:: = f1IN P. Y; 
LAST_PATH:=REFRESHCLAST_PATH>; FI 

ADO IN.COLOR>; 
OONE::=(FROM:N.TO.X#REVERSE<LAST_PATH} (11.Y 

TO:N.TO 
COLOR:N.COLORJ<S; 
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LAST_NODE:=N; Fl ENO 
LAST _NODE:= [FROf1: 838393#383839 COLOR: REOJ; 
FOR N SE RIGHT; DO 

SPACE:=CENTER_TO_CENTER<LAST_COLOR,N.COLOR>; 
LAST_COLOR:=N.COLOR; 
IF N. TO. X+SPACE=<LAST _NOOE. FROf1. X THEN 

LASTYATH: = !N.FRDr1; IF N.FRDr1. Y\IS_CLOSE_TO TOP 
THEN NIL ELSE .#TOP FI;N.TO.X#.1; 

ELSE LAST_PATH:=ICOLLECT P-SPACE#SPACE FOR P SE LAST_pATH; 
WITH (P.Y=<TOPJ&<P.X-SPACE=<N.TO.X};l; 

IF LAST _PATH [l) • X>N. FRot1. X THEN 
LAST _PATH::= IN. FRot1; 

IF N.FROM.Y\IS_CLOSE_TO TOP 
THEN NIL ELSE .#TOP Fl; 
LAST_PATH[lJ.X#.lSS; 

ELSE LAST PATH::= N.FROM<S; FI 
P: =REVERSE <LAST_PATH> (lJ; 
IF -{P.X\IS_CLOSE_TO N.TO.X> 
THEN LAST_PATH::= S> N.TO.X#P.Y; FI 
Lat~: : = MIN P. Y; 
LAST_PATH:=REFRESH<LAST_PATH); FI 

ADD<N.COLOR); 
OONE::=[FROM:N.TO.X#REVERSE(LAST_PATH> ClJ.Y 

TO:N. TO 
COLOR:N.COLORJ<S; 

LAST_NOOE:=N; ENO 
IF COUNT>0 THEN Ll::= OISK(L2} <S; FI 

GI VE CLAYOUT: DI SK Cll l HEIGHT: LOL.l DONE: OONEl 
ENO 

ENODEFN 

DEFINE RIVER ROUTE<LIST:RIVER NODES MIN,TOP,BOT:REAL 
- FZl.FZ2:FORBIDOEN_ZONEl=RIVER_RETURN: 

BEGIN VAR N=RIVER_NOOE;LISTS=RIVER_RETURNS;CLASS=INT;LOW=REAL; 
R =R I VER _RE TURN; 

DO LISTS: =NIL; 
WHILE DEFINED<LISTJ; DO 

CLASS:=CLASS<LISTCll.COLOR>: 
LISTS::= GROUP_ROUTE<ICOLLECT N FOR N SE LIST; 

WITH N.COLOR\CLASS=CLASS;l ,MIN,TOP,BOT, 
FZl, FZ2l <S; 

LIST:=ICOLLECT N FOR N SE LIST;WITH N.COLOR\CLASSc>CLASS;l; 
ENO . 
LOW:= MIN R.HEIGHT FOR R SE LISTS;; 

GIVE CLAYOUT:DISK(ICOLLECT A.LAYOUT FOR R SE LISTS;; 
COLLECT WIRE(N.COLOR, 

END 
ENDDEFN 

HEIGHT: LOl~l 

!<*FZ2*>!1N.FROM;.#LOW+N.TO.Y-80Tl ,0,N.COLORJ.PATHJJ 
FOR [OONE:!NlJ SE LISTS;}} 

The RIVER ROUTE routine takes the list of connector pairs and routes betw-een them. 

The route is assumed to be horizontal. To generate vertical routes, the connector 

positions can be rotated 270 degrees, and the resulting layout rotates 90 degrees. 

The MIN parameter is used to specify a minimum width for the route. We can not 

state maximum width of the route, but we may wish to state a minimum width for 
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the route. (For example, we may wish to run some horizontal metal wires over the 

route, so we would require the route to be tall enough to allow all of the metal 

wires to fit between the cells.) In some cases, the connectors do not lie on the 

perimeter of the cell, but rather lie inside the cell's boundary. To connect to the 

point, we either have to examine the entire set of geometry contained in the cell or 

we have to have conventions for connecting to the cell. We will use the 

convention that if a point lies within the cell boundary, we may draw a minimum 

width wire from the connector straight to the edge of the cell. The TOP and BOT 

parameters indicate the boundries of the two cells. If a node's FROM point has a Y 

value greater than TOP, a wire is drawn from the point straight down to TOP, before 

the river route begins. Similarly, if the TO point has a Y value less than BOT, a wire 

is drawn. The FZ 1 parameter is used to jog the wire, and the FZ2 parameter is used 

to translate the wire. These operations are discussed later. 

The RIVER ROUTE routine takes all of the connectors and separates them into 

groups, based upon the color of the connectors. The CLASS routine in ICLIC is used 

to determine the dependence of the layers. Dependent layers have the same class. 

RIVER ROUTE calls GROUP ROUTE will all of the connectors in each class. Once 

GROU1=._!i0UTE has been called for each group, RIVE~OUTE determines the height 

of the route, extends all of the wires, and returns the layout. 

GROU~OUTE routes all of the wires which slope to the left first, then it routes all 

of the wires which slope to the right. For each wire, it determines the design rule 

spacing between this wire and the previous wire. It then checks to see if the 

previous wire is outside the range of the current wire, in which case it can 

immediately draw the current wire connecting directly to its desired location. If 

the previous wire was in range, all of the points in the previous wire are diagonally 

shifted by the design rule spacing, and the two ends of the wire are adjusted to fit 

the TO and FROM points of the current wire. Given the current wire, the ADD 

routine is called. The ADD routine passes the wire to the first FORBIDDEN~ONE, 

which may jog the wire. The result of the jogs becomes the official path of the 

wire, which the neighboring wires must avoid. This is also passed to the second 

FORBIDDEN_ZONE, which may arbitrarily map the wire from the river rou.te 

coordinate system to the chip coordinate system. For standard river routes, these 

two FORBIDDE~ONEs are indentity functions. The following code facilitates 

calling standard river routes. 
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DEF I NE 1.1 I RE =FORB I OOEN_ZONE: 
//(SP:SP R:REAL C:COLOR> CPATH:SPJ\\ 

ENODEFN 

DEFINE IDENTITY=FORBJDDEN_ZONE: 
//(SP:SP R:REAL C:COLOR> CWIOTH:R PATH:SPJ\\ 

ENDOEFN 

DEFINE RIVER ROUTE(LJST:RIYER NODES f11N,TOP,BOT:REALJ=RIVER RETURN: 
RIYER_ROUTE<LIST,MIN, TOP,BOT,IOENTITY,WIREJ ~ 

ENDDEFN 

This new RIVEI!_ROUTE routine does not require the two FORBIDDE~ONEs, but 

uses the two default routines. 

The first FORBIDDEN _?:ONE is used to jog the wires. Due to global concerns, there 

may be obstacles to the river route. The FORBIDDEN ZONEs allow the user to specify 

a routine which will modify the path of a wire.in the river router. When the river 

router wants to route a wire through one of these obstacles, the user's routine may 

deflect the path of the wire. In figure A3-3a we see a wire which runs through an 

obstacle. The wire's path may be deflected to lie outside the obstacle (fig. A3-3b), 

and the river router will route all future wires to the new path (fig. A3-3c). 

c) Wir-e inside 
obstacle 

b) Wir-e 'pushed' 
out 

Fig A3-3: Jogging the Path of a Wire 

o) Route 
continue• 

We '\Vill define obstacles to be a collection of colored points. For an Upper Left 

obstacle we state that if a wire path begins to the right of the point, the path may 

not contain any points above and to the left of the obstacle. Figure A3-3 illustrated 

an Upper Left obstacle. Similarly, we may have Upper Right obstacles. These t'Wo 

sets of obstacles can be used to describe features of the upper cell which must be 
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avoided in the river route. We would also like to avoid features of the lower cell. 
We can not, hovvever, just 'push' the wires outside of the obstacle points, as we did 
for the upper obstacles. If we did push the wires, they would run into neighboring 
wires. Instead, we push the lower cell down so that the wire path lies outside the 
obstacle, as shown in figure A3-4. 

o) Obstacle crossing 
wire 

b) Obstacle moved 
down 

Fig. A3-4: Moving Lower Cell 

The following COL01l_!.IMIT datatypes are used to describe the obstacles, and the 
LIMIT function will move a path (SP) to remain outside the obstacles. 

TYPE COLOR_LIMIT= CCOLOR:COLOR LIMITS:SPJ; 

COLOR_Lim TS= I COLOR_LIMI T l; 

DEF I NE LIMIT CSP: SP LQL.J: REAL COLOR: COLOR UL, UR, LL, LR: COLOR_LI MI TS l =WIRE: BEGIN VAR CL-COLOR_LIMIT;P,O=POINT;Xl,X2=REAL;W=WIRE; 
DO Xl:=SPClJ.X; 

X2:=REVERSECSPl Cll .X; 
IF Xl<X2 THEN 

IF THERE_IS CL.COLOR=COLOR FOR CL SE UR; 
THEN SP:=RCLIPCSP,CL.LIMITS,Xl,X2l; FI 
IF THERE_IS CL.COLOR=COLOR FOR CL SE LL; 
THEN LOW::= MIN LMOVECSP,CL.LIMITS,Xl,X2l; FI 

ELSE IF THERE_IS CL.COLOR=COLOR FOR CL SE UL; 
THEN SP:=LCLIP<SP,CL.LIMITS,X2,Xll; FI 
IF THERE_IS CL.COLOR-COLOR FOR CL SE LR; 
THEN LOW::= MIN RMOVECSP,CL.LIMITS,X2,Xll; FI FI 

GIVE CWIOTH:LOW PATH:SPJ 
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The LIMIT function takes the current path (SP) and computes a new :path 

(result.PATH). Since this routine may need to push the lower cell down, we must 

also retu1·n the new separation of the cells. The LOW input parameter is the 

previous spacing. We return the new spacing in the WIDTH component of the 

result. The LIMIT function also requires the wire's color, and the list of obstacles. 

The routine determines whether the line slopes to the left or right, and calls the 

appropriate CLIP and MOVE routines. The CLIP routines are used for the upper 

limits to jog the wires, while the MOVE routines are used for the lower limits to 

move the lower cell. The MOVE and CLIP routines are listed here. 

DEFINE LMOVE<PATH;CORNERS:SP LX,HX:REALJ=REAL: 
BEGIN VAR MIN=REAL;P,O=POINT; 
DO MIN:=999999: 

FOR P SE CORNERS:WITH (P.X>LXl&<P.X=<HXJ; DO 

END 
GIVE MIN 
ENO 

ENDDEFN 

IF THERE_IS Q.X>=P.X FOR Q SE PATH; THEN MIN::= MIN Q.Y-P.Y; FI 

DEFINE RMOVECPATH,CORNERS:SP LX,HX:REALl=REAL: 
BEGIN VAR MIN=REAL;P,Q=POINT; 
DO MIN:=999999: 

FOR P SE CORNERS;WITH (P.X>=LXJ&CP.X<HX); DO 

ENO 
GIVE MIN 
ENO 

ENDDEFN 

IF THERE_IS Q.X=<P.X FOR Q SE PATH; THEN MIN::= MIN Q.Y-P.Y; Fl 

DEFINE LCLIPCPATH,CORNERS~SP LX,HX:REAL>=SP: 
BEGIN VAR Y=REAL;P,O=POINT;NEW=SP;FLAG=BOOL; 

.DO Y:=PATH[ll.Y; 
FOR P SE CORNERS;WITH <P.X>LXJ&<P.X=<HXJ&(P.Y<Yl; DO 

FOR Q SE PATH; 
FIRST _00 NElJ: =IQ! ; 

FLAG:=O.X=<P.X;; 
OTHER_OO IF O.X>P.X THEN NE~!;:= 0<8; 

EF O.Y<P.Y THEN 
IF FLAG THEN NEW::= Q.X#P.Y<S; FI 
FLAG:=FALSE; 
NEIJ:: = Q <S; 

EF -FLAG THEN NEW::= !P;P.X#Q.YlSS;FLAG:=TRUE; Fl; 
FINALLY_DO IF FLAG THEN NEW::= LX#P.Y<S; Fl; 
DO NOTHING; END 
PATH:=REVERSE<NEWJ; 

END 
GIVE PATH 
END 

ENDDEFN 
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DEFINE RCLIP!PATH,CORNERS:SP LX,HX:REALl=SP: 
BEGIN VAR Y=REAL;P,Q=POINT:NEW=SP:FLAG=BOOL; 
DO Y:=PATH[ll.Y; 

FOR P SE CORNERS;WITH !P.X>=LXl&!P.XcHXl&(P.YcYl; DO 
FOR Q SE PATH: 
FIRST_DO NEW:={Ql; 

FLAG:=O.X>=P.X;; 
OTHER_DO IF O.X<P.X THEN NEW::= OcS; 

EF Q.Y<P.Y THEN 
IF FLAG THEN NEW::= O.X#P.YcS; FI 
FLAG:=FALSE; 
NEW::=O<S; 

EF -FLAG THEN NEW::= {P;P.X#Q.YISS;FLAG:=TRUE; FI; 
FINALLY_DO IF FLAG THEN NEW::= HX#P.YcS; FI; 
DO NOTHING; END 
PATH:=REVERSE<NEWJ; 

END 
GIVE PATH 
END 

ENODEFN 

The MOVE routines look through the list of obstacles (CORNERS) for points which 
lie within the limits of the wire (PATH). For e;:i.ch obstacle point within the wire's 
limits, the routine computes the offset required to move the lower cell. The largest 
offset is returned by the routine. The CLIP routines take each obstacle which lies 
within the span of the wire, and moves all wire points which lie inside the 
obstacle. 

o) With LIMIT Function b) Without LIMIT Function 

Fig. A3-5: River Route Comparison 

To use this LIMIT routine in the river router, we need only compute the obstacles 
and pass this routine as the first FORBIDDE~ONE. In figure A3-5, we show a river 
route that uses the LIMIT routine and one that does not. The routine that uses 
LIMIT can route some of the wires inside the cell's boundry, while the route that 
does not use limit must remain outside of the cell's boundry. In many cases, the 
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program can compute these obstacles, so that more efficient routes can be used. 

Pads 
Fig. A3-6: River Routing to Pads 

Another interesting use of the river router is to route wires to pads. In figure A3-6, 

we show a cell surrounded by pads. Between the cell and the pads, we need to route 

wires. A river route could be used, except for one thing: a river route is a single 

channel, whereas the pad route routes around a box. 

r 

~ N / 
w 

~J v s 
i ' 

w 5 E N 

Fig. A3-7: Unfolding the Box 

We can still use the river router, if we can convert the box route into a channel 

route, perform the river route, the convert the result back into a box route. In 

figure A3-7, we show the mapping from a box route to the linear route and back. 

We cut the box into four trapezoids and unfold the box into a single strip. The 

shaded portions of the strip are cut out of the river route when the trapezoids are 

folded back into a box. Because the shaded portions are removed, we can not have 
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any wires jogging inside the shaded regions. For this reason, the suspendable 

functions are called FORBIDDEN ZONEs: it is forbidden for the wires to jog inside the 

shaded regions. We will write a procedure, TRAPEZOID, which will constrain vvires 

to jog outside of these forbidden zones. Figure A3-8 shows tw-o cases of wires 

vvhich jogged i~side these shaded areas and were pushed outside of the region. In 

the following code, we describe TRAPEZOIDS as a left point and a right point, along 

-with a left slope (SLEFT) and a right slope (SRIGHT). The TRAPEZOID function takes 

a series of these trapezoids and assures that each wire lies outside of the trapezoid. 

Notice that here we have reversed the polarity of the trapezoids. These trapezoids 

are the shaded regions, no corners may exist within the trapezoid. 

Ir 'V«I ~ >Yrl 
Q) Wires jog in 
Forbidden Zone 

b) Jogs external 
Forbiaden Zone 

Fig. A3-8: Constraining Jogs 

TYPE TRAPEZOID= [LEFT,RIGHT,SLEFT,SRIGHT:POINT CENTER:REALJ; 

TRAPEZOIDS= I TRAPEZOID l; 

JOG_SIZE= //REAL(COLOR}\\; 

VAR TRAPEZOIO_JOG=JOG_SIZE;TRAPEZOID_EDGE=REAL; 

TRAPEZOIO_JOG:=//(C:COLORl CENTER_TO_CENTER<C,Cl\\; 

DEFINE TRAPEZOID<SP:SP LOW:REAL COLOR:COLOR TS:TRAPEZOIDSl=WIRE: 
BEGIN VAR T=TRAPEZOIO;P,0=POINT;Xl,X2,R=REAL;NEW=SP;FLAG=BOOL; 
DO Xl:=SP[lJ.X: 

X2: =REVERSE <SP> [l]. X: 
Xl#X2:= IXl MIN X2l # IXl MAX X21; 
FORT SE TS;~IITH (T.CENTER>Xll&IT.CENTER<X2J; DO 

NEl~: =ISP [11 l: 
FLAG:=FALSE; 
FOR IP;Ql SC SP; DO 

IF Q\INSIDE T THEN 
IF -FLAG THEN 

FLAG:=TRUE; 
WHILE Q\INSIDE T; DO 

R:= IF Q.X<P.X THEN P\RIGHT EDGE T 
ELSE P\LEFT_EDGE T FI; -

NEW::= R#Q. Yd; 
P: =R#P. Y-<~'(TRAPEZOID_JOG~·r> {COLOR>; 
NEW::= P <S; 

to 
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O.Y:=P.Y; 
LOW::= MIN O.Y; 

ENO FI 
ELSE FLAG:=FALSE; FI 
NEW::= O<S; 

END 
SP:=REVERSE!NEWl; 

GIVE CWIOTH:LOW PATH:SPJ 
ENO 

ENOOEFN 

DEFINE INSIDEIP:POINT T:TRAPEZOIDl=BOOL: 
IF P.X=< P\LEFT_EDGE T THEN FALSE ELSE P.X< P\RlGHT_EDGE T FI 

ENDOEFN 

DEFINE RIGHT_EDGE!P:POINT T:TRAPEZOIDl=REAL: 
T.RIGHT.X-T.SRIGHT.X*(T.RIGHT.Y-P.Yl/T.SRIGHT.Y+TRAPEZOID_EDGE 

ENDDEFN 

DEFINE LEFT_EOGE<P:POINT T:TRAPEZOIDl=REAL: 
T.LEFT.X-T.SLEFT.X*!T.LEFT.Y-P.Yl/T.SLEFT.Y-TRAPEZOID_EOGE 

ENODEFN 

DEFINE TRAPEZOID<TS:TRAPEZOIOSl=FORBIDDEN_ZONE: 
//:TRAPEZOIO<SP,REAL,COLORl (TSJ\\ 

ENDOEFN 

We use the second FORBIDDEN ZONE in the river router to map the wire from the 

river route c.oordinate system to the chip coordinate system. We can use this 

function to map from the linear strip into the box. In the following section of code, 

we have a datatype REGION which describes one of the four regions of the route. 

For each region, we have the trapezoid in the linear space which corresponds to one 

section of the box. Additionally, we have transformations from the chip 

coordinates to the linear coordinates and back. If we transform the connectors' 

locations by the MA~O matrix, the new locations correspond to locations along the 

strip. When we transform each point in the wire paths by the MA:i:'._XROM matrix, 

the resulting path has the correct coordinates for the chip coordinate system. We 

may need to add points to the wires when mapping them back to the chip coordinate 

system. If figure A3-9a, we show a route in the river route coordinate system. The 

"tVire travels from one trapezoid to another, which is valid since the wire does not 

jog withing the shaded area. If we just transformed the four points in the wire, we 

would get the layout shown in figure A3-9b, which has one wire cutting across 

our cell. We need to add a point on the edge between the two trapezoids when we 

do the mapping, resulting in the layout shown in figure A3-9c. 

The REGION function takes two corner points and two slopes and computes the 

corresponding region. The REGIONS function takes the wire in the river route's 



-225-

b) Er-r-oneou• 
T l""on•f' or111e1~ l Of"'I 

Fig. A3-9: Mapping Wires into Box 

o) Extr-a po 1..,~ 
odded 

coordinates and computes the path in the chip's coordinates, adding the points 

where needed. 

TYPE REGION= CINSIOE:TRAPEZOID MAP_TO,MAP_FROM:MATRIX 
CORNER,SLOPE:POINT MINX,M~XX:REALl; 

REGIONS= { REGION l; 

DEFINE REGIONCUL,UR,LL,LR:POINT GROUP:INTl=REGION: 
BEGIN VAR A=REAL; 
DO A:=(UR-LJL)\ANGLE; 

GROUP:: =~·,100000; 
GIVE lINSIOE: lLEFT:GROUP#0 RIGHT:GROUP#0+((LJR-LJL)\ROTATED_BY -A) 

ENO 
ENDDEFN 

SLEFT:LL\ROTATED_BY -A SRIGHT:LR\ROTATED_BY -AJ 
MAP _TO: DI SPLACEt1ENTCGROUP#0) \ROTATED_BY -A \AT -UL 
MAP_FROM:DISPLACEMENT(LJL)\ROTATEO_BY A\AT -!GROUP#0) 
CORNER:UR SLOPE:LR MINX:GROUP-50000 MAXX:GROUP+50000J 

DEFINE REGIONS(RS:REGIONSl=FORBIDDEN_ZONE: 
//:REGIONSCSP,REAL,COLORJ [RSJ\\ 

ENODEFN 

DEFINE BEGIONS!SP:SP BOT:REAL COLOR:COLOR RGS:REGIONS>=WIRE: 
BEGIN VAR NEW=SP;P=POINT;I,J,K=INT; 
00 l:=FIXR!SPClJ.X/100000}; 

NEW:=!SP[lJ\AT RGS[JJ.MAP_FROMl; 
FOR P SE SP[2-l; 00 

J:=FIXRCP.X/100000!; 

ENO 

IF I<J THEN 
DO Na!: : = RGS [K J • CORNER-RGS [Kl • SLOPE ~·,p. Y < S; 
FOR K FROM I TO J-1; 

EF J<I THEN 
DO NEW::= RGSCKJ.CORNER-RGS[KJ.SLOPE*P.Y <I: 
FOR K FROM I-1 TO J; FI 

NEW::= P\AT RGS[JJ.MAP_FROM <S; 
I: =J; 

GI VE CPA TH: NEWJ 
ENO 

ENDDEFN 
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There are a few other concerns befoi-e we have completed the box router. First, 

consider figure A3-10. We have a wire that starts on the NORTH and ends on the 

WEST. In the river route space, this wire extends from the far right to the far left, 

shorting out every other wire in the route. To solve this, we may move the WEST 

trapezoid to be to the right of the NORTH trapezoid, but then we would have the 

same problem with WEST/SOUTH wires. Instead, we may have a second WEST 

i·egion, W', which is to the right of the NORTH region. We have two WEST regions 

now. NORTH/WEST wires use W', wh,ile WEST/SOUTH wires use the original 

WEST region. WEST /WEST wires can use either region. 

W S E N 

Fig. A3-10: Erroneous Wire Wrap-Around 

Unfortunately, this causes anotheJ: problem. We now have two independent WEST 

regions in the river route space, but there is only one WEST region in the chip 

space. In figure A3-11, we show two wires, one a SOUTH/WEST wire, the other a 

WEST/NORTH wire. Since these are in the independent regions of the river route, 

they independently route, which causes trouble in the chip space. What we need to 

do is to make the two WEST regions independent. We have noticed above that vvires 

can be routed independently if they run in opposite directions. The two wires in 

figure A3-11 run in the same direction, so they are not independent. We vvill make 

<l new SOUTH region, S', to the right of W', and move the wire AB into the W'/S' 

n~gions. We continue this process until the left-most wire in the river route runs 

in the opposite direction of the right-most wire. (We can also stop the circulation 

of wires when the wire spans do not overlap.) We must check for the condition 

that all wires run in the same direction, and signal an error if this occurs. 

W S E N w~ 

Fig. A3- 1 1: Non-Independent Wires 
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Another potential problem occurs near the edges of the trapezoids. Given two 

neighboring trapezoids, the adjacent edges in the river route coordinates represent 

the same line in the chip coordinates. Wires jogging close to these lines may short 

together in the chip space while quite far apart in the river space, as shown in 

figure A3-12. To combat this problem, we just bloat the trapezoids by half the 

maximum design rule spacing, This assures that wires remain far enough apart. 

Fig. A3-12: Boundary Interference 

The remaining code describes the connection points for box routes, which need to 

know the side on which the connector resides. Also, the routines for implementing 

the route are listed. The NORMALS routine is used for generating the trapezoids 

given the outline of the cell. The OUTSIDE routine is used to invert the polarity of 

the trapezoids. The first ROTO ROUTE function is used to reorder the pads to shorten 

the wire lengths. The final ROT~OUTE routine is the river router which routes 

around the outside of the cell. Figure A3-13 shows a river route around a 

rectangular cell, while figure A3-14 shows a river route around a hexagonal cell. 

TYPE CONNECT2= [FROM,TO:POINT COLOR:COLOR FEDGE,TEOGE:INTJ; 

CONNECT2S= { CONNECT2 \; 

DEFINE NORMALIZEO{A,B:POINTl=PDINT: 
A*<DIST!B,0#01/00T<A,Bll 

ENDDEFN 

DEFINE NORMALS<SP:SPl=SP: 
BEGIN VAR NORMALS=SP;P,Q=POINT; 
00 NORMALS:= !COLLECT rn-PI \NORMAL FOR IP; i'<Ol SC SP; l; 

NORMALS:=REVERSE<NORMALSl; 
NORMALSC2-J:=REVERSE<NORMALS[2-JI; 

GIVE !COLLECT NORMALIZED<P+Q,PI FOR IP;*Q} SC NORMALS;} 
END 

ENOOEFN 



-228-

DEFINE OUTSIOECRGS:REGIONSl=TRAPEZOIOS: 
BEGIN VAR P,O=REGION; 
!COLLECT 

CLEFT:P.INSIOE.RIGHT RIGHT:Q.INSIOE.LEFT 
SLEFT:P.INSIDE.SRIGHT SRIGHT:O.INSIDE.SLEFT 
CENTER: CP.INSIDE.LEFT.X+O.INSIOE.LEFT.Xl/2.l 

FOR IP;OI SC RGS;I 
ENO 

ENDDEFN 

DEFINE RDTO_ROUTECRNS:RIVER_NODES J:!NTl=RIVER_NODES: 
BEGIN VAR RN=RlVER_NOOE;TO=SP;CGF,CGT=REAL;P=POINT; 
DO TO:={COLLECT RN.TO FOR RN SE RNS;l: 

CGF:=+ RN.FROM.X FOR RN SE RNS;; 
CGT:=+ RN.TO.X FOR RN SE RNS;; 
\JHILE ABS CCGF-CGTl >. ss~·d; 00 

END 

IF CGT>CGF THEN 
RN: =RNS [lJ: 
RN.FROM.X::=+J; 
RNS:=RNS[2-JS>RN: 
CGF::=+J: 

ELSE TO:=T0[2-JI> TO[lJ.X+J#TO[lJ.Y; 
CGT::=+J; FI 

GIVE {COLLECT DO RN.TO:=P: 

END 
ENOOEFN 

GIVE RN 
FOR RN SE RNS;&& FOR P SE TO;} 

DEFINE ROTO_ROUTECCS:CONNECT2S MIN,TOP,BOT:REAL OUTLINE:SP ROTO:BOOLl= 
RI VER_RETURN: 

BEGIN VAR NORMALS~SP;P,Q,R,S=POINT;RGS=REGIONS;RG=REGION;C=CONNECT2; 
RNS=RIVER_NODES:RN=RIVER_NOOE;l,J=INT; 

DO NORMALS:=OUTLINE\NORMALS; 
TRAPEZOID_EDGE: =11AX_SPACING/2.: 
RGS:=!COLLECT REGIONCP,Q,R,S,Il 

FOR IPp·:Ol SC OUTLINEUOUTLINE;&& 
FOR IR;*SI SC NORMALSSSNORMALS;&& 
FOR I FROM 1 BY l;l; 

J:=+l FOR P SE OUTLINE:: 
RNS:=ICOLLECT 

[FROM: C. FRDr1\A T 
RGS[C.FEDGE+ IF C.TEDGE<l THEN J ELSE 0 FIJ.MAP_TO. 

TO:C.TD\AT RGSCC.TEDGE+ IF C.TEDGE<l THEN J ELSE 0 FIJ .f1AP_TO 
COLOR:C.COLORJ 

FOR CSE CS;l; 
WHILE RNS[1J.FROM.X>RNS(2J.FROM.X; DO RNS:=RNSC2-JS>RNSCll; END 
J:: =~·(100000; 
IF ROTO THEN RNS::=\ROTO_ROUTE J; FI 
RN:=REVERSECRNSl [11: 
WHILE CRN.FROM.X<RN.TO.Xl=(RNSCll.FROM.X<RNSClJ.TO.Xl;&& 
FOR I FROM 1 TO 1000; DO 

END 

RN: =RNS [lJ; 
RN.FRO!l.X::=+J; 
RN. TO. X: : =+J: 
RNS:=RNS£2-JS>RN; 

IF 1>~1000 THEN WRITE<'ROTO_ROUTE: CIRCULAR'l;CRLF;HELP; FI 
GIVE RIVER_ROUTECRNS,r-JIN, TOP,BOT, 

RGS\OUTSIDE\TRAPEZOID,RGS\REGIONSJ 
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Fig. A3-13: Box Route 
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Fig. A3-14: Hexagon Route 
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Appendix 4: The RLC Compiler 

The appendix contains the complete code listings for the Random Logic Compiler 

described in Chapter 5. In some cases, Chapter 5 used approximations for the data 

structures and routines, so there may be a few differences between the code implied 

by Chapter 5 and the code listed here. 

The PHYSICA1=._ WIRE datatypes are .defined as shown in Chapter 5. In addition, we 

declare a type GAT~RODUCER which is a suspendable function. The input and 

output parameters for this function match the requirements of the NAND, NOR, and 

INVERT functions. We will use instances of this datatype to refer to virtual 

routines for generating the gate layouts. The user at any time may reassign new 

routines to these variables, which will modify the layout produced. 

TYPE PHYSICAL_UIRE= [HEIGHT,LEFT,RIGHT:REAL NAME:QSl; 

PHYSICAL_WIRES= I PHYSICAL_WIRE l; 

GA TE_PRDDUCER= I /11RG <PHYS I CAL_W I RES, PHYS I CAL_w I RE, REAL> \ \; 

We can now define routines for generating gates in a number of technologies. We 

will have global variables set to one group of these functions, which indicate the 

current technology, Currently, we support NMOS, 2-layer metal NMOS, CMOS, and 

2-Jayer metal CMOS. In addition to these actual technologies, we have a few 

pseudo-technologies: NMOS sticks, 2-layer metal NMOS sticks, Logic diagrams, and 

NMOS transistor diagrams. The gate producing functions for these technologies are 

listed here. 

DEFINE NMOS_PULLUPCOUTPUT:PHYSICAL_WIRE X:REALl=MRG: 
DO CONNECT!OUTPUT,X-21; 

POWER::=+.25: 
GIVE IBOXCREO,X-15#0\TO X-5#6!; 

ENDDEFN 

BOXCYELLOW,X-15#-2.\TO X-5#91; 
WIRECGREEN,2. IX-13#YV00;.#3;X-8#.;.#.-5;.+5#.;.#0UTPUT.HEIGHTJ ); 
GCB\AT !X-12#YVOO;X-2#0UTPUT.HEIGHTl; 
GRCBU\AT X-7#-1.l 

DEF I NE NMOS_NAND (INPUTS: PHYS I CAL_~! I RES 
OUTPUT: PHYS I CAL_~J I RE X: REAL> =MRG: 

BEGIN VAR IN=PHYSICAL_l~IRE;NUMBER=1NT;X2=REAL; 
DO NUMBER:= +1 FOR IN SE INPUTS;; 

X2:=X-10-2*NUMBER: 
DO CONNECTCIN,X2); FOR IN SE INPUTS; 
CWIDTH: =X2-5; 
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GlVE IGCB\AT X-8#YGNO; 
BOX<GREEN,X2+3#YGN0-2\TO X-7#-1.l; 
COLLECT IRCB\AT X2#IN.HElGHT; 

END 
ENDOEFN 

WlRE<RE0,2, !X2#lN.HElGHT;X-6#.lll FOR lN SE lNPUTS;; 
NllOS_PULLUP <OUTPUT, X l I 

DEFlNE NMOS_NOR!lNPUTS:PHYSICAL_t.JIRES 
OUTPUT:PHYSICAL_WIRE X:REAL>=MRG: 

BEGIN VAR lN=PHYSICAL_WIRE; 
DO DO CONNECT!IN,X-16); FOR IN SE INPUTS; 

CLHOTH: =X-24; 
GIVE IGCB\AT X-19#YGNO; 

ENO 
ENDOEFN 

WIRE!GREEN,2, IX-20#YGND;.# MAX IN.HElGHT FOR IN SE lNPUTS;+4l l; 
WIRE!GREEN,2, IX-8# MIN IN~HEIGHT FOR IN SE INPUTS;+4;.#-2.l); 
COLLECT IRCB\AT X-16#IN.HElGHT; 

WIRE<RED,2, !X-15#IN.HEIGHT+l;X-ll#.; .#.+51 l; 
WIREIGREEN,2, IX-20#IN.HEIGHT+4;X-8#.lll 

FOR IN SE INPUTS;; . 
NllOSYULLUP (OUTPUT, Xl I 

DEF I NE NllOS_I NYERT I INPUTS: PHYS l CAL_W l RES 
OUTPUT:PHYSICAL_WlRE X:REALl=MRG: 

BEGlN VAR IN=PHYSICAL_WlRE; 
DO lN:=INPUTS[ll; 

CONNECTIIN,X-12!; 
CL.JIDTH: =X-17; 

GlVE IGCB\AT X-8#YGND; 
BDXIGREEN,X-9#YGND-2\TO X-7#-1.l; 
RCB\AT X-12#IN.HEIGHT; 

END 
ENDDEFN 

l.JlRE !RED,2, IX-12f/IN.HEIGHT;X-6#. l l; 
NMOS_PULLUPIOUTPUT,Xll 

DEFINE METAL2 NANOCINPUTS:PHYSICAL WIRES 
- OUTPUT:PHYSlCAL=WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE;NUMBER=INT;X2=REAL; 
DO NUMBER:=+l FOR IN SE INPUTS;; 

X2:= -14. MIN -8.-2*NUMBER; 
DO CONNECTCIN,X+X2+2l; FOR IN SE INPUTS; 
CONNECTCOUTPUT,X+X2+9); 
Cl.JI OTH: =X+X2; 
POl.IER:: =+. 25; 

GIVE !GCB\AT 17#YGN0;8#YVOOl; 
GRCBU\AT 2#-1.; 

ENO 
ENODEFN 

. BCB\AT 12tl-l.;9#0UTPUT.HEIGHTI; 
l.JIRE!YIOLET,3, !2#-1. ;9#.; .#OUTPUT.HEIGHT!); 
BOXCRE0,0#0\TO 11#6); 
BOX<YELLOW,0#-2.\TO 11#8); 
l.JIRE!GREEN,2, 18#YVDD; .#3;3#.; .#-2. ;6#.; .#YGNDI); 
BOXCGREEN,5#YGND-2\TO 5+2*NUMBER#-4.); 
COLLECT IRCB\AT 2#1N.HEIGHT; 

W lRE <RED, 2, 12# IN. HEIGHT; 6+2~·,NUMBER#. l ) I 
FOR IN SE INPUTS;l\AT X+X2#0 
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DEFINE METAL2 NOR(lNPUTS:PHYSICAL WIRES 
- OUTPUT: PHYS I CAL)J I RE X: REAL} =MRG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
00 00 CONNECTCIN,X-12}; FOR IN SE INPUTS; 

CONNECTCOUTPUT,X-5l; 
nJIDTH: =X-17; 
POWER::=+.25; 

GIVE IGCB\AT 12#YGN0;6#YVOOI; 
GRCBU\AT 12#-1.; 

END 
ENDDEFN 

BCB\AT 112#-1.;.#0UTPUT.HEIGHTl; 
l~I RE CV IDLET, 3, 112#-1.;. #OUTPUT.HEIGHT}); 
BOXCRE0,3#0\TO 14#6); 
BOXCYELLOW,3#-2.\TO 14#8); 
WIRECGREEN,2, ll#YGNO;.# MAX IN.HEIGHT FOR IN SE INPUTS;-41 l; 
WIRE<GREEN,2, 113# MIN IN.HEIGHT FOR IN SE INPUTS;-4; .#0!); 
l~IRE CGREEN, 2, !6#YVOO;. #3; 11#.;. #0l l; 
COLLECT IRCB\AT 5#IN.HEIGHT; 

WIRE<RE0,2, 16#IN.HEIGHT-1;10#.;.#.-5Jl; 
1.-JIRE !GREEN, 2, ll#IN. HEIGHT-4; 13#. J} l 

FOR IN SE INPUTS:l\AT X-17#0 

DEFINE METAL2 INVERTCINPUTS:PHYSICAL WIRES 
- OUTPUT: PHYS I CAL)JI RE X: REAU =MAG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
DO IN:=INPUTS[lJ; 

CONNECTCIN,X-12}; 
CONNECTCOUTPUT,X-5l: 
CWIDTH: =X-14; 
POWER::=+.25; 

GIVE IGCB\AT 17#YGN0;8#YVOOI; 
GRCBU\AT 2#-1.; 

END 
ENDDEFN 

BCB\AT 12#-1.;9/IOUTPUT.HE!GHTI: 
1.-1 IRE CV I OLET, 3, !2#-1.; 9#.;. #OUTPUT. HEI GHTI}; 
BOXCRE0,0#0\TO 11#51; 
BDX<YELLOW,0#-2.\TO 11#8); 
[,JI RE <GREEN, 2, !8#YVOO; . #3; 311. ; • 11-2. ; 6#. ; . #YGNOl } ; 
BOX<GREEN,5#YGND-2\TO 7#-4.J; 
RCB\AT 2#IN.HEIGHT; 
WIRECRE0,2, 12#IN.HEIGHT;8#.J ll \AT X-14#0 

DEF I NE LOG I CAL_NANO CI NPUTS: PHYS I CAL_l-l I RES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR I N=PHYSI CAL_l.-IIRE: NUMBER= I NT; Y=REAL; 
DO NUMBER:= +l FOR IN SE INPUTS;; 

DO CONNECTCIN,X+Yl; FOR IN SE INPUTS;&& 
FOR Y FROM 10./NUMBER-25. BY 20./NUMBER; 

CONNECT<OUTPUT,Xl: 
CWI DTH: =X-30; 

GIVE IWIRE<BLUE,0, l-5.#0;-25.#.;-25.#15:-24.5#18;-23.#21;-21.#23;-18.#24.5; 
-15.#25;-14.#25.2;-12.9#25.9;-12.2#27;-12.#28; 
-12.2#29;-12.9#30.1;-14.#30.8;-15.#31;-lG.#30.8; 
-17.1#30.1;-17.8#29;-18.#28;-17.8#27;-17.1#25.9; 
-16.#25.2;-15.#25;-12.#24.5;-9.#23;-7.#21;-5.5#18; 
-5. #15; -5. #01); 

WIRECGREEN,0, 1-15.#31; .#33;0#.; .#OUTPUT.HEIGHT! l; 
COLLECT WIRECGREEN,0, IY#0;.#IN.HEIGHTJ) 
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FOR IN SE INPUTS;&& FOR Y FROM 10./NUMBER-25. BY 20./NUMBER;; 
OUTPUT.NAME\PAINTEO REO\ROT 90\AT -8.#371\AT X#0 

DEFINE LOGICAL_NOR<INPUTS:PHYSICAL_WIRES 
OUTPUT: PHYS I CAL_l.J I RE X: REAL l =MRG: 

BEGIN VAR I N=PHYS I CAL_l~JI RE; NUt1BER= I NT; Y =REAL; 
DO NUMBER:= +1 FOR IN SE INPUTS;; 

DO CONNECT<IN,X+Yl; FOR IN SE INPUTS;&& 

CONNECT<OUTPUT,Xl; 
CWIDTH: =X-30: 

FOR Y FROM 10./NUMBER-25. BY 20./NUMBER; 

GI VE !WIRE <BLUE, 0, 1-5. #0; -9. #1; -13. tll. 7; -17. ti.; -21. #1; -25. #0; 
.#7;-24.7#10;-23.#15:-20.5#20;-18.#22.8;-16.#24.2; 
-15.#25;-14.#25.2:-12.9#25.9;-12.2#27;-12.#28; 

END 
ENODEFN 

-12.2#29;-12.9#30.1;-14.#30.8;-15.#31;-16.#30.8; 
-17.1#30.l;-17.8#29;-18.#28:-17.8#27;-17.1#25.9; 
-16.#25.2:-15.#25;-14.#24.2;-12.#22.8;-9.5#20;-7.#15; 
-5.3#10;-5.#7;.#01 ); 

WIRE<GREEN,0, 1-15.#31;.#33;0#.;.#0UTPUT.HEIGHTll; 
COLLECT WIRE<GREEN,0, IY#IF Y<-21. THEN !25+Yl/4 

EF Y<-17. THEN 1+.7*(21+Yl/4 
EF Y<-13. THEN 1.7 
EF Y<-9. THEN 1-.7*(9+Yl/4 
ELSE 1-(9+Yl/4 FI;.#IN.HEIGHTI l 

FOR IN SE INPUTS;&& FOR Y FROM 10./NUMBER-25. BY 20./NUMBER;; 
OUTPUT.NAME\PAINTED REO\ROT 90\AT -8.#37!\AT X#0 

DEFINE LOGICAL INVERT<INPUTS:PHYSICAL_WIRES 
OUTPUT: PHYS I CAL_l.J I RE X: REAU =MRG: 

BEGIN VAR IN=PHYSICALJJIRE;NUMBER=INT;Y=REAL; 
DO {N:=INPUTS[l); 

CONNECT<IN,X-151; 
CONNECT<OUTPUT,Xl; 
CWIDTH:=X-30; 

GIVE IWIRE<BLUE,0, 1-5.#0;-25.#.; 
-15.#25;-14.#25.2;-12.9#25.9;-12.2#27:-12.#28; 

END 
ENDDEFN 

-12.2#29:-12.9#30.l;-14.#30.8;-15.#31;-16.#30.8; 
-17.1#30.l;-17.8#29:-18.#28;-17.8#27;-17.1#25.9; 
-16.#25.2;-15.#25;-5.#0!); 

WIRE<GREEN,0, 1-15.#31; .#33;0#.; .#OUTPUT.HEIGHT! l; 
WIRE(GREEN,0, 1-15.#0;.#IN.HEIGHTlJ; 
DUTPUT.NAME\PAINTED RED\ROT 90\AT -8.#37!\AT X#0 

DEFINE CMOS NAND(INPUTS:PHYSICAL WIRES 
- OUTPUT:PHYSICAL=WIRE X:REALl=MRG: 

BEGIN VAR I N=PHYS I CAL_W IRE; MN=REAL; 
DO DO CONNECT(IN,X-13J;CONNECT(IN,X-2ll; FOR IN SE INPUTS; 

CDNNECT<DUTPUT,X-2l; 
CWIDTH:=X-33; 
MN:= MIN IN.HEIGHT FOR IN SE INPUTS;; 

GIVE !COLLECT IRCB\AT IX-2l#IN.HEIGHT;X-13#.I; 
WIRE<RE0,2, IX-22#IN.HEIGHT-1; .-4#.; .#.-5!}; 
WIRE <RE0,2, IX-12#IN.HEIGHT; .+5#. 1 l; 
WIRE<GREEN,2, IX-29#IN.HEIGHT-4;X-17#.1JJ 
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FOR IN SE INPUTS;; 
GCB\AT !X~28#YVOO;X-16#YV00-7;.+6#.;.+6#.;X-2#0UTPUT.HEIGHT; 

X-10#YCNDI; 
l.JIRE (BLUE, 3, !X-lG#YVD0-7;. +12#. l l; 
WI RE (GREEN, 2, !X-29#YVDO;. #t1N-4l l; 
l.JIRE(GREEN,2, IX-17#t1N-4; .#YV00-7!); 
WIRE(GREEN,2, !X-9#YVD0-7;.#YCNDll; 
WJRE(CREEN,2, IX-3#YVDD-7: .#OUTPUT.HEIGHT!}; 
BOX(YELLOW,X-32#YGND-3\TO X-13#YV00-4ll 

DEF I NE Cl10S_NOR <INPUTS: PHYS I CAL_W I RES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR I N=PHYS I CAL_l.J I RE; MX=REAL; 
DO DO CONNECT(IN,X-13l;CONNECT(IN,X-2ll; FOR IN SE INPUTS; 

CONNECTCOUTPUT,X-2l; 
CWIOTH: =X-33; 
MX:= MAX IN.HEIGHT FOR IN SE INPUTS;; 

GIVE !COLLECT !RCB\AT !X-21#IN.HEIGHT;X-13#.l; 

ENO 
ENDOEFN 

t.JIRE(RE0,2, !X-22#IN.HEIGHT-l; .-4#.; .#.-5! l; 
l.JIRE !RE0,2, !X-12#IN.HEIGHT; .+5#. l l; 
WIRE(GREEN,2, !X-29#IN.HEIGHT-4;X-17#.l )} 

FOR IN SE INPUTS;; 
GCB\AT IX-28#YGNO;X-16#YGN0+7; .+6#.; .+6#, ;X-2#0UTPUT.HEIGHT; 

X-10#YVDDI ; 
WI RE (BLUE, 3, !X-1G#YCND+7;. +12#. l l; 
WIRE (GREEN,2, IX-29#YGNO;. #MX-41); 
l.JIRE (GREEN, 2,. !X-l 7#MX-4;. #YGND+7l l; 
WIRE(GREEN,2, IX-9#YGND+7;.#YVDDll; 
WIRE(GREEN,2, IX-3#YCND+7;.#0UTPUT.HEIGHT1l; 
BOXCYELLOW,X-13#YGND+4\TO X-6#YVD0+3ll 

DEFINE CMOS INVERTCINPUTS:PHYSICAL_WIRES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
DO IN: =INPUTS [1 J ; 

CONNECT(JN,X-12!; 
CONNECT(OUTPUT,X-2l; 
CWIOTH: =X-18: 

GIVE fRCB\AT X-12#IN.HEIGHT; 

END 
ENDOEFN 

WI RE (RED, !X-6#1 N. HEIGHT; X-11#. ; . #YVOD+ll } ; 
GCB\AT IX-2#DUTPUT.HEIGHT;X-7#YGND;.#YVDD-7;.#YVOO;X-15#YVOD-71; 
WI RE <BLUE, 3, !X-15#YVOD-7; X-7#. I ) ; 
WIRE(GREEN,2, IX-8#YVDO-l;X-14#.;.#YVOD-61l; 
~llRE(GREEN,2, !X-8#YGNO;.#YVD0-8;X-3#.;.#0UTPUT.HEIGHT+lll; 
BOXCYELLOW,X-l8#YVOD-10\TO X-ll#YVDD+2l; 
BOX(YELLOW,X-12#YV00-3.5\TO X-4#YVDD+2ll 

DEFINE CMOS_2_NANO(INPUTS:PHYSICAL_WIRES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE;MN=REAL; 
DO DO CONNECT<IN,X-9l;CONNECTCIN,X-17l; FOR IN SE INPUTS; 

CONNECTCOUTPUT,X-2l: 
Cl.JIOTH: =X-25; 
nN:= mN IN.HEIGHT FOR IN SE INPUTS;; 
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GIVE !COLLECT !RCB\AT IX-91/IN.HEIGHT;X-17#.l; 

END 
ENDDEFN 

WIRE <RED, 2, !X-8#IN. HEIGHT-1; X-4#.;. #. -5}); 
~JIRE<RED,2, !X-18#IN.HEIGHT-l;X-23#.l); 
I.JI RE <GREEN, 2, !X-1#! N. HE! GHT -4; X-13#. l ) l 

FOR IN SE INPUTS:; 
GCB\AT IX-2#YVOO;X-20#YV00-7;.#YGNOI; 
GCBCB\AT X-14#YVOD-7: 
BCB\AT X-2#0UTPUT.HEIGHT; 
l.JIRE (BLUE,3, IX-14#YVD0-7;X-20#. I l; 
~IIRE(VIOLET,3, IX-14#YVOD-7:X-2#.: .#OUTPUT.HEIGHT!); 
WIRE<GREEN,2, !X-l#YVOO; .#llN-41); 
WIRECGREEN,2, IX-13#YVD0-8;.#MN-4l); 
WI RE CGREEN, 2, !X-2l#YVOD-8;. #YGNDI): 
BOX(YELLOW,X+l.5#MN-7\TO X-17#YV00+2)l 

DEF I NE CMOS_2_NOR (INPUTS: PHYS I CAL_~JI RES 
OUTPUT: PHYS I CAL_W.J RE X: REAL) =MRG: 

BEGIN VAR I N=PHYS I CAL_JJ! RE; 11X=REAL; 
DO DO CONNECTCIN,X-9l;CONNECT<IN,X-17); FOR IN SE INPUTS; 

CONNECT(OUTPUT,X-2l; 
Cl.JIDTH: =X-25; 
MX:= MAX IN.HEIGHT FOR IN UE INPUTS;; 

GIVE !COLLECT !RCB\AT IX-9#IN.HEIGHT;X-17#.l; 

END 
ENDDEFN 

l.JIRE<RE0,2, !X-8#IN.HEIGHT-l;X-4#.; .#.-51); 
WIRE <RED, 2, IX-18#I N. HE! GHT-1; X-23#. l); 
WIRE (GREEN, 2, IX-l#IN. HEIGHT-4; X-13#. l) l 

FOR IN SE INPUTS;; 
GCB\AT IX-2#YGNO;X-20#YGN0+7;.#YVOOI; 
GCBCB\AT X-14#YGN0+7; 
BCB\AT X-2#0UTPUT.HEIGHT; 
WI RE <BLUE, 3, !X-14#YGN0+7: X-20#. I l; 
I.JI RE (VIOLET, 3, IX-14#YGN0+7; X-2#.;. #OUTPUT. HE I GHTl ) ; 
l.JIRE <GREEN,2, IX-l#YGNO; .#MX-41); 
WIRE (GREEN, 2, IX-13#YGN0+8;. #f1X-4l); 
WJRE<GREEN,2, IX-2l#YGN0+8;.#YV00l); 
BOXCYELLOW,X-17#YGND+4\TO X-23.5#YVOD+2ll 

DEF I NE Cl"10S~2_I NVERT ( l NPUTS: PHYS I CAL_W I RES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WlRE; 
DO IN:=INPUTS[lJ: 

CONNECT< IN, X-9); 
CONNECT(OUTPUT,X-2l; 
CWIOTH: =X-15; 

GI VE !RCB\AT X-9#1 N. HEIGHT; 

ENO 

WIRE <RE0,2, IX-8#IN.HEIGHT+l; .#. +2;X-1#. l); 
WIRE<RE0,2, IX-6#IN.HEIGHT+3;.#YVDD+lll; 
GCB\AT !X-3#YGNO;X-2#YVDO;X-10#YVDD-7l; 
GCBCB\AT X-2#YVOD-7; 
BCB\AT X-2#0UTPUT.HEIGHT: 
WI RE <BLUE, 3, !X-10#YVDD-7; X-2#. l l; 
WIRE{VIOLET,3, IX-2#YVDD-7;.#0UTPUT.HEIGHTll; 
WIRE (GREEN, 2, !X-3#YGND+l;. #YVOD-8!); 
WI RE (GREEN, 2, !X-9#YVDD-6:. #YVDD-1; X-3#. l); 
BOXCYELLOW,X-13.S#YVDD-10.5\TO X-6#YVOD+2); 
BOXCYELLOW,X-7#YVD0-3.5\TO X#YV00+2ll 



-237-

ENDDEFN 

VAR SWW=REAL; "STICKS WIRE WIDTH" 

SCON-MRG; "STICKS_CONTACT" 

Sl..JW: =· 25; 

SCON:=BOXCBLACK,-1.#-1.\TO l#ll; 

DEF !NE Nt10S_ST I CKS_NAND (INPUTS: PHYS I CAL_~J I RES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
DO DO CONNECTCIN,X-10); FOR IN SE INPUTS; 

CONNECTCOUTPUT,X-21; 
CWIDTH: =X-12; 

GIVE !COLLECT ISCON\AT X-10#IN.HEIGHT; 

END 
ENDDEFN 

l~I RE lREO, SWl~. !X-10#I N. HEIGHT;.#. -4; X-4#. l) l 
FOR lN SE INPUTS;; 
WIRECGREEN,SWW, IX-6#YGN0+2;.#YVDD-21J; 
WIRE<GREEN,SW~J, IX-6#0;X-2#.; .#OUTPUT.HEIGHT} l; 
WIRE <RED. SWW, IX-6#0; X-10#.;. #8; X-2#. l); 
BOX<YELLOW,X-8#4\TO X-4#8); 
SCON\AT IX-8#YGN0+2;.#0;.#YVDD-2;X-2#0UTPUT.HEIGHTJJ 

DEF r NE NMOS_ST r CKS._NOR {INPUTS: PHYS I CAL_W I RES 
OUTPUT:PHYSICAL_WIRE X:REALJ=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
DO DO CONNECT<IN,X-10}; FOR IN SE INPUTS; 

CONNECT<OUTPUT,X-21; 
CWIDTH: =X-16; 

GIVE !COLLECT !SCON\AT X-10#IN.HEIGHT; 

END 
ENDDEFN 

WIRElREO,S~JW, lX-10#IN.HElGHT; .#.-8l l: 
WIRE (GREEN, SWW, !X-14#I N. HEIGHT -4; X-G#. l) l 

FOR IN SE INPUTS;; 
WI RE (GREEN, S~JW, !X-l 4#YGND+2; . # MAX IN. HEIGHT FOR IN SE INPUTS; -4 l } ; 
WIRECGREEN,SWW, IX-G# MIN IN.HEIGHT FOR IN SE INPUTS;-4;.#YVDD-21 }; WIRE<GREEN,SWW, !X-8#0;X-2#.;.#0UTPUT.HEIGHTJJ; 
WIRE lRED, Sl.J~J. !X-6#0; X-10#.;. #6; X-2#. l l; 
BOX<YELLOW,X-8#4\TO X-4#81: 
SCON\AT IX-l4#YGND+2;X-G#0;.#YVDD-2;X-2#0UTPUT.H~IGHTll 

DEFINE NMOS_STICKS_INVERTCINPUTS:PHYSICAL_WIRES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR I N=PHYS I CAL_W IRE; 
DO IN:=INPUTS[lJ; 

CONNECTCIN,X-10); 
CONNECTCOUTPUT,X-2!; 
CWIDTH: =X-12; 

GI VE !WIRE <RED, SWW, !X-10#! N. HEIGHT;.#. -4; X-4#.} l; 
WIRE<GREEN,SWW, !X-6#YGND+2;.#YV00-2l); 
WIRE<GREEN,SWW, fX-6#0;X-2#.;.#0UTPUT.HEIGHTJl; 
WIRECRED,SWW, fX-6#0;X-10#.;.#6;X-2#.ll; 
BOX<YELLOW,X-8#4\TO X-4#81; 
SCON\AT !X-10#IN.HEIGHT;X-G#YGND+2;.#0;.#YVD0-2;X-2#0UTPUT.HEIGHTJJ ENO 
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ENDDEFN 

DEFINE METAL2_STICKS_NAND{!NPUTS:PHYSICAL_WIRES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR I N=PHYS I CAL_~! l RE; 
DO DO CONNECT<IN,X-101; FOR IN SE INPUTS; 

· CONNECT <OUTPUT, X-2); 
CWIDTH: =X-12; 

GIVE !COLLECT ISCON\AT X-10#IN.HEIGHT; 

END 
ENDDEFN 

WI RE <RED, Sl-!W, !X-10#1 N. HEIGHT;.#, -4; X-4#. l J l 
FOR IN SE INPUTS;; 
WIRE<GREEN,SWW, IX-6#YGN0+2;.#YVD0-2J); 
WIRECVIOLET,SWW, IX-6#0;X-2#.;.#0UTPUT.HEIGHTll; 
WIRE !RED, SWW, !X-6#0; X-10#.;. #6; X-2#. l l; 
BOX!YELLOW,X-8#4\TO X-4#8); 
SCON\AT IX-6#YGND+2;.#0;.#YVDD-2;X-2#0UTPUT.HEIGHTll 

DEFINE METAL2_STICKS_NOR!INPUTS:PHYSICAL_WIRES 
OUTPUT:PHYSICAL_WIRE X:REAL)=MRG: 

BEGIN VAR IN=PHYSICAL_~JIRE; 
DO DO CONNECT<IN,X-10); FOR IN SE INPUTS; 

CONNECT<OUTPUT,X-2l; · 
CWIDTH: =X-16; 

GIVE !COLLECT ISCON\AT X-10#IN.HEIGHT; 

ENO 
ENDDEFN 

WIRE<RED,SWW, IX-10#IN.HEIGHT; .#.-6)); 
WIRE <GREEN, SWW, !X-14#1 N. HE I GHT-4; X-6#. l )} 

FOR IN SE INPUTS;; 
WIRE<GREEN,SWW, IX-14#YGN0+2;.# MAX IN.HEIGHT FOR IN SE INPUTS;-4l l; 
WIRE(GREEN,S~!W, !X-6# MIN IN.HEIGHT FOR IN SE INPUTS;-4; .#YVDD-2l); 
WIRE (VIOLET, SW~J. !X-5#0; X-2#.;. #OUTPUT. HE I GHTJ ) ; 
WIRE <RED, Sl.JW, !X-6#0; X-10#.;. #6; X-2#. I J; 
BOX(YELLOW,X-8#4\TO X-4#81; 
SCON\AT IX-14#YGND+2;X-6#0;.#YVD0-2;X-2#0UTPUT.HEIGHTIJ 

DEFINE METAL2 STICKS INVERT<INPUTS:PHYSICAL WIRES 
- - OUTPUT:PHYSICAL-WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_~!IRE; -
DO IN:=INPUTS~ll; 

CONNECTCIN,X-10); 
CONNECT<OUTPUT,X-2l; 
CW!Offl: =X-12; 

GI VE IWI RE <RED, Sl.JW, IX-10#IN. HEIGHT;.#. -4; X-4#. l l; 
WIRE<GREEN,SWW, IX-6#YGND+2;.#YVDD-2l); 

END 
ENDDEFN 

~!IRE <VIOLET, St.J~I. IX-6#0; X-2#.;. #OUTPUT. HEI GHTJ l; 
WI RE <RED, SWl..J, IX-6#0; X-10#.;. #6; X-2#. l); 
BOX<YELLOW,X-8#4\TO X-4#8); 
SCON\AT !X-10#IN.HEIGHT;X-6#YGND+2;.#0;.#YV00-2;X-2#0UTPUT.HEIGHTll 

VAR TRANQ, TRANGNO, TRANPULL=~1RG; 

TRANQ:-IWIRE<BLACK,0, 10#0;2#.l)l 
l..JIRE(BLACK,0, 12#-2.; .#2J ); 
WIRE<BLACK,0, 12.5#-3.;.#31); 
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I.JI RE <BLACK, 0, !2. 5#2; 4#. l l; 
WIRE!BLACK,0, 12.5#-2.;4#.lll; 

TRANGND:=!WIRE!BLACK,0, 1-2.#0;2#.ll; 
WIRE CBLACK, 0, !-1. 2#-. 8; 1. 2#. l l ; 
WIRE !8LACK,0, 1-.4#-1.6; .4#. l l l; 

TRANPULL:=!TRANQ\AT -4.#6; 
WI RE <BLACK, 0, 1-4. #6; . #2; 0#. l l ; 
lJ IRE <BLACK, 0, 10#0; . #4 l l ; 
WIRE CBLACK, 0, 10118; • #14 J l ; 
IJIRE !BLACK, 0, !-. 6#12; 0#14;. 6#121 l J; 

DEF I NE TRANS_NAND <INPUTS: PHYS I CALJ,J I RES 
OUTPUT: PHYS I CAL_~J I RE X: REAL l =MRG: 

BEGIN VAR IN=PHYSICAL_WIRE;SR1,SR2=SR;R,S=REAL; 
DO DO CONNECT!IN,X-10); FOR IN SE INPUTS; 

CONNECTCOUTPUT,X-2l; 
SR2:=1COLLECT IN.HEIGHT FOR IN SE INPUTS;}; 
SRl:=NIL; 
WHILE DEFINED<SR2l; DO 

S:= MAX R FOR R SE SR2;; 
SRl::= S <S; 
SR2:=!COLLECT R FOR R SE SR2;WITH R<>S;l; 

ENO 
CWibTH:=X-12; 

GIVE !COLLECT !TRANQ\AT X-10#IN.HEIGHT-4; 

END 
ENDDEFN 

WIRE !8LACK, 0, !X-10#1 N. HE! GHT;. ti. -41 l l 
FOR IN SE INPUTS;; 
COLLECT WIRECBLACK,0, !X-6#R-2;.#S-6l) 
FOR !R;SJ SC YGND+2 <S SRl S> 6;; 
TRANGND\AT X-6#YGNO; 
TRANPULL\AT X-6#0; 
WIRE CBLACK, 0, !X-6#0; X-2#. ; . #OUTPUT. HE I GHTl > l 

DEF I NE TRANS_NOR (INPUTS: PHYS I CAL_W I RES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
DO DO CONNECT!IN,X-10); FOR IN SE INPUTS; 

CONNECTCOUTPUT,X-2l; 
CWIOTH: =X-16; 

GIVE !COLLECT !TRANQ\ROT 270\AT X-10#IN.HEIGHT; 

END 
ENODEFN 

WIRE !BLACK, 0, !X-14#1 N. HE! GHT -4;. +2#. l l; 
IJ I RE !BLACK, 0, !X-8# IN. HEIGHT -4; . +2#. l l l 

FOR IN SE INPUTS;; 
TRANGND\AT X-14#YGNO; 
WIRE<BLACK,0, !X-14#YGNO;.# MAX IN.HEIGHT FOR IN SE INPUTS;-4ll; WIRE<BLACK,0, !X-6# MIN IN.HEIGHT FOR IN SE INPUTS;-4;.#0;X-2#.; 

.#OUTPUT.HEIGHT!); 
TRANPULL\AT X-6#0! 

DEFINE TRANS INVERT!INPUTS:PHYSICAL_WIRES 
OUTPUT:PHYSICAL_WIRE X:REALl=MRG: 

BEGIN VAR IN=PHYSICAL_WIRE; 
DO IN:=INPUTS[lJ; 

CONNECTCIN,X-10); 
CONNECT<OUTPUT,X-2); 
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CWIDTH: =X-12: 
GIVE ITRANQ\AT X-10#IN.HEIGHT-4; 

END 
ENDOEFN 

l-IIRE <BLACK, 0, IX-10#1 N. HEIGHT;.#. -41}: 
WIRE !BLACK, 0, IX-G#YGND:. #IN. HEIGHT-Gl}: 
TRANGNO\AT X-G#YGNO; 
TRANPULL\AT X-8#0; 
WIRE <BLACK, 0, IX-G#I N. HEIGHT -2;. #0; X-2#.;. #OUTPUT. HE I GHTl } l 

In addition to the gate producing routines, each technology requires a function 
which will draw the final signal wires on the chip. This wire function accepts a 
chip as the input parameter and produces an MRG as the output parameter. Since we 
want the user to be able to change the wire drawing routine at will, this too will be 
a global variable which is a suspendable function. The following type declaration 
declares the type. The wire drawing routines are listed after the type declaration. 

TYPE CHIP~TO_MRG= //MRG<CHIPl\\; 

. DEFINE NMOS_WIRES<C:CHIPl=MRG: . 
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT,PWIDTH=REAL; 
DO LEFT:=CWIDTH+5; 

RIGHT:=-2.; 
PWIDTH:=WIDTH(POWER} MAX 4; 

GIVE !COLLECT WIRE<BLUE,3, IS.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

ENO 
ENDDEFN 

S.PHYSICAL.RIGHT#.l) 
FOR S SE C.SIGNALS: 
EACH_OO @(S.PHYSICALJ.LEFT::= MAX LEFT; 

@(S.PHYSICALl.RIGHT::= MIN RIGHT;;; 
BOX<BLUE,CWIOTH+3#YV00-3\TO 4#YVOD+<PWIDTH-3 MAX 2l); 
BOX<BLUE,Cl-IIOTH-l#YGN0+2-PWIOTH\TO 0#YGN0+2}l 

DEF I NE METAL2_WIRES (C: CHI Pl =f1RG: 
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT,PWIDTH=REAL; 
DO LEFT:=CWIDTH+2; 

RIGHT:=-5.; 
PWIDTH:=WIOTH(POWERl MAX 4; 

GIVE !COLLECT WIRE<BLUE,3, IS.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

ENO 
ENDOEFN 

S.PHYSICAL.RIGHT#.J} 
FOR S SE C.SIGNALS; 
EACH_OO @(S.PHYSICAL}.LEFT::= MAX LEFT; 

@(S.PHYSICAL}.RJGHT::= MIN RIGHT;;; 
BOX<BLUE,CWIOTH#YV00-3\TO l#YVOO+<PWIOTH-3 MAX 2ll; 
80X!BLUE,CWIOTH-4#YGND+2-PWIDTH\TO -3.#YGN0+2)J 

DEFINE LOGICAL_WIRES<C:CHIP>=MRG: 
BEGIN VAR S=SIGNAL_wIRE;LEFT,RIGHT=REAL; 
DO LEFT:=CWIOTH-2; 

RIGHT:=5; 
GIVE !COLLECT WIRE<GREEN,0, IS.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

S.PHYSICAL.RIGHT#.J} 
FOR S SE C.SIGNALS; 
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EACH_DO @{S.PHYSICALl.LEFT::= MAX LEFT; 
@{S.PHYSICALl.RIGHT::= MIN RIGHT;;} 

DEFINE CMOS_WIRESCC:CH!Pl=MRG: 
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL; 
DO LEFT:=CWIDTH+l2; 

RIGHT:=-2.; 
GI.VE !COLLECT WIRECBLUE,3, !S.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

S.PHYSICAL.RIGHT#.}) 

ENO 
ENDOEFN 

FOR S SE C.SIGNALS; 
EACH_OO @CS.PHYSICALl.LEFT::= MAX LEFT; 

@{S.PHYSICALl.RIGHT::= MIN RIGHT;;; 
WIRE CBLUE, 4, !CW IDTH+4#YVOO; 2#. l l ; 
WIRE<BLUE,4, !CWIOTH#YGN0;-2.#.l Jl 

DEFINE CMOS_2_WIRES{C:CHIPl=MRG: 
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL; 
DO LEFT:=CWIDTH+8; 

RIGHT: =-2.; 
GIVE !COLLECT WIRE<BLUE,3, !S.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

S.PHYSICAL.R1GHT#.I) 

ENO 
ENDDEFN 

FOR S SE C.SIGNALS; 
EACH_DO @{S.PHYSICALJ.LEFT::= MAX LEFT; 

@CS. PHYSlCAU. RIGHT::= MIN RIGHT;;; 
WIRE CB LUE, 4, !CW I 0 TH+S#YVOO; 2#. l l ; 
WIRECBLUE,4, fCWIDTH#YGN0;-2.#.l)l 

DEFINE NMOS_STICKS_WIRESCC:CHIPJ=MRG: 
BEGIN VAR S=SIGNAL_WIRE;LEFT,RIGHT=REAL; 
DO LEFT:=CWIDTH+2; 

RIGHT:=-2.; 
GIVE !COLLECT WIRE<BLUE,SWW, !S.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

END 
ENDDEFN 

· S.PHYSICAL.RIGHT#.}) 
FOR S SE C.SIGNALS; 
EACH_OO @CS.PHYSICALl.LEFT::= MAX LEFT; 

@CS.PHYSICALJ.RIGHT::= MIN RIGHT;;; 
WI RE CBLUE, SWW, ILEFT#YV00-2: 2#. l ) ; 
WIRE<BLUE,SWW,!CWIOTH-2#YGN0+2;RIGHT#.JJJ 

"METAL-2 sticks uses the NMOS_STICKS_WIRES routine" 

DEF I NE TRANS_W I RES CC: CH IP) =11RG: 
BEGIN VAR S=SIGNAL_~JIRE;LEFT ,RIGHT =REAL; 
DO LEFT:=CWIDTH+2; 

RIGHT:=-2.; 
GIVE !COLLECT WIRE<BLACK,0, !S.PHYSICAL.LEFT#S.PHYSICAL.HEIGHT; 

ENO 
ENDDEFN 

S.PHYSICAL.RIGHT#.J) 
FOR S SE C.SIGNALS; 
EACH_DO @{S.PHYSICALJ.LEFT::= MAX LEFT; 

@CS.PHYSICALl.RIGHT::= MIN RIGHT;;! 
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In addition to the wire drawing routine, each technology has a routine for 
initializing the global coordinates and a routine for calculating wire positions in the 
wiring channel. The first routine requires the chip as an input parameter, and 
produces no output. The second routine takes a channel index, an INTEGER, and 
returns the channel position, a REAL. These two routines will be CHIP CONSUMERs 
and INT TO REALs. 

TYPE CHIP _CONSUllER= //(CHIP)\\; 

INT_TO_REAL= //REAL(INTJ\\; 

DEFINE NMOS_SETUP!C:CHIP>: 
BEGIN VAR S=SIGNAL_WIRE; 
YGND:= -8.*(MAX S.VHEIGHT FORS SE C.SIGNALS;J-6; YVDO: =9; 
END 

ENDOEFN 

"llETAL2 uses NllDS_SETUP" 

"LOGICAL uses NMOS_SETUP" 

DEFINE CMOS_SETUP(C:CHIP>: 
BEGIN VAR S=SIGNAL_WIRE; 
YV00:=0; 
YGND:=-9.*(MAX S.VHEIGHT FORS SE C.SIGNALS;)-19; ENO 

ENDOEFN 

"CMOS_2 uses CMOS_SETUP" 

DEFINE Nnos_STICKS_SETUP(C:CHIP): 
BEGIN VAR S=SIGNALJ.JIRE; 
YGND:= -10.*(MAX S.VHEIGHT FORS $E C.SIGNALS;)-6; YV00:=12; 
ENO 

ENDOEFN 

"llETAL2_STI CKS uses NMOS_STVCKS_SETUP" 

DEFINE TRANS_SETUP(C:CHIP): 
BEGIN VAR S=SIGNAL_WIRE; 
YGND:= -10.*<MAX S.VHEIGHT FORS SE C.SIGNALS;)-8; ENO 

ENDDEFN 

DEFINE NMOS_WIRE_HEIGHTS<I:INT>=REAL: 

"METAL2 uses NMOS_WIRE_HEIGHTS" 

"LOGICAL uses NMOS_WIRE_HEIGHTS" 

ENDDEFN 
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DEF I NE CMOS_W I RE_HE I GHTS (I : I NT l =REAL: -5. -9~" I ENDOEFN 
"CllOS_2 uses cnos_w IRE_HE I GHTS II 

DEF I NE Nl10S_ST I CKS_W I RE_HE I GHTS (I: I NT J =REAL: ENDOEFN 
"t1ETAL2_STICKS uses NMOS_STICKS_WIRE_HEIGHTS" 

DEFINE TRANS_WIRE_HEIGHTS(I:INTl=REAL: 5-10~'<1 ENDDEFN 

The final technology dependent routines in RLC concern wire packing and gate 
sorting. For each technology, we may desire to have a routine which will pack the 
-wires in the wiring channel. Similarly, we may desire sorting routines -which sort 
the gates to achieve higher performance or smaller area. These routines are similar 
to the SETUP routines: They require a CHIP as an input parameter, and they return 
no output data. 

With these considerations in mind, we can declare a TECHNOLOGY datatype -which 
contains all of the technology-dependent information. We can define ne-w 
technologies and add them to the technology list at any time, and can then out1:mt 
our circuits in any of the available technologies. 

TYPE TECHNOLOGY= 
[NANO,NOR,INVERT: 
t..IJRES: 
PACK,SORT,SETUP: 
WI RE_HE I GHT: 
VOO,GNO: 
NAME: 

GA TE __ PROOUCER 
CHIP _TO_f1RG 
CH IP _CONSUf1ER 
INT_TO_REAL 
REAL 
QSJ; 

TECHNOLOGIES= TECHNOLOGY l; 

VAR TECHNOLOGIES= TECHNOLOGIES; 

VAR NllOS,METAL2,LOGICAL,CMOS,CMOS2,NMOS_STICKS,METAL2_STICKS, TRANSISTOR= TECHNOLOGY; 

NMOS: =[NANO: I I: NllOS_NANO <PHYS I CAL_t..JI RES, PHYS! CAL_WI RE, REAL>\\ NOR: I I: Nf10S_NOR <PHYS I CAL_W I RES, PHYS I CAL_W I RE, REAL J \ \ INVERT: I I: NllOS_I NVERT <PHYS I CAL_WI RES, PHYS I CAL_t..II RE, REAL>\\ WIRES://:NMOS_WIRES(CH!Pl\\ 
PACK://: Nt1DS_PACK_2 (CHIP)\\ 
SORT://:NO_SORT<CH!Pl\\ 
SETUP://:NMOS_SETLJP{CHIPJ\\ 
I.JI RE_HEI GHT: /I: NMOS_WI RE_HE I GHTS (I NT>\\ 
V00:3 
GND:0 
NAME:'NMOS'J; 

11ETAL2: =[NANO: I I: t1ETAL2_NAND <PHYS I CAL_l.JI RES, PHYSICAL_WI RE, REAL>\\ NOR://:METAL2_NOR(PHYSICAL_WIRES,PHYSICAL_WIRE,REALl\\ INVERT://:METAL2_INVERT<PHYSICAL_WIRES,PHYSICAL_WIRE,REALJ\\ WIRES://:METAL2_WIRES(CH!Pl\\ 
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SORT://:NO_SORT<CHIPl\\ 
SETUP:/l:NMOS_SETLJP(CH!Pl\\ 
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WI RE_HE I GHT: I I: Nf10S_WI RE_HE f GHTS (I NTJ \ \ 
VD0:3 
GN0:0 
NAME:'METAL2'l; 

LOG I CAL: = [NANO: I I: LOG I CAL_NAND (PHYS I CAL_t~ I RES, PHYS I CAL_~J I RE, REAL l \ \ 
NOR://:LOGICAL_NOR(PHYSICAL_WIRES,PHYSICAL_WIRE,REALl\\ 
INVERT:l/:LOGICAL_INVERT<PHYSICAL_WIRES,PHYSICAL_WIRE,REAL}\\ 
WI RES: I I: LOG I CAL_~J I RES {CH IP l \ \ 
PACK: 11: Nf10S_PACK_2 <CH IP}\\ 
SORT:/l:NO_SORTCCH!Pl\\ 
SETUP:/l:NMOS_SETUPCCHIPJ\\ 
~JI RE_:_HE I GHT: I I: NMOS_W I RE_HE I GHTS (I NT) \ \ 
NAME:. ' LOG I CAL' l ; 

Cf''IOS: =[NANO: I I: CMOS_NANO <PHYS! CAL_~JI RES, PHYS I CAL_WI RE, REAL>\\ 
NOR://:CMOS_NOR<PHYSICAL_WIRES,PHYSICAL_WIRE,REALJ\\ 
INVERT: I I: cr1os_1 NVERT <PHYS! CAL_WI RES, PHYS I CAL_WI RE' REAL)\\ 
WIRES://:CMOS_WIRES<CHIPl\\ 
PACK://:Nl10S_PACK_2{CHIPl\\ 
SORT:l/:NO_SORT(CH!Pl\\ 
SETUP://:CllOS_SETUP<CHIPl\\ 
WIRE_HEIGHT://:CMOS_WIRE~HEIGHTS(INTl\\ 
V00:3 
GNO: -1. 
NAME:'CMOS'J; 

Cf'10S2: = CNANO ~I I: Cl'lOS_2_NAND (PHYS ICAL_~l!RES, PHYS I CAL_WIRE, REAU\\ 
NOR://:CMOS_2_NOR(PHYSICAL_WIRES,PHYSICAL_WIRE,REALl\\ 
INVERT://: CMOS_2_I ~JVERT (PHYSICAL_WI RES, PHYSICAL_WIRE, REAL)\\ 
l.J I RES: I I: U10S_2_l~ I RES (CHI Pl\\ 
PACK://:Nf'10S_PACK_2<CHIPl\\ 
SORT://:NO_SORTCCHIPl\\ 
SETUP: I I: U10S_SETUP <CHI Pl\\ 
WIRE_HEIGHT://:CllOS_WIRE_HEIGHTS(JNTl\\ 
V00:3 
GN0:-1. 
NM1E: 'CMOS2' J; 

NMOS_STICKS:= 
[NANO: I I: Nl'10S_STI CKS_NANO <PHYS ICAL_WI RES, PHYSICAL_WI RE, REAL l \ \ 
NOR://:Nl'lOS_STICKS_NOR(PHYSICAL_WIRES,PHYSICAL_WIRE,REALl\\ 
INVERT://:NMOS_STICKS_INVERT(PHYSICAL_WIRES,PHYSICAL_WIRE,REALl\\ 
l-lI RES: I I: Nt10S_ST I CKS_WI RES (CHIP>\\ 
PACK://:NMOS_PACK_2<CHIPl\\ 
SORT://:NO_SORT<CHIP}\\ 
SETUP://:NMOS_STICKS_SETLJP(CHIPJ\\ 
UI RE_HE IGHT: //: NMOS_STI CKS_WIRE_HEIGHTS (INT>\\ 
VD0:2 . 
GN0:-2. 
NM1E: 'NMOS_ST I CKS' J ; 

11ETAL2_STICKS:= 
[NANO://:METAL2_STICKS_NANO(PHYSICAL_WIRES,PHYSICAL_WIRE,REALJ\\ 
NOR:l/:METAL2_STICKS_NOR(PHYSICAL_WIRES,PHYSICAL_WIRE,REALl\\ 
INVERT://:METAL2_STICKS_INVERT<PHYSICAL_WIRES,PHYSICAL_WIRE,REALJ\\ 
l-lIRES: //:Nt10S_STICKS_WIRES (CHIP>\\ . 
PACK://:Nl10S_PACK_2CCHIPl\\ 
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SORT://:NO_SORT(CHIPJ\\ 
SETUP://: NMOS_STI CKS_SETUP <CHIPJ \ \ 
1-l I RE_HE I GHT: I I: NMOS_ST I CkS_wI RE_HE I GHTS (I NT)\\ 
VDD:l 
GND: -1. 
NAME:'METAL2_STICKS'J; 

TRANSISTOR:=[NAND://:TRANS_NAND<PHYSICAL_WIRES,PHYSICAL_WIRE,REAL)\\ 
NOR: I I: TRANS_NOR (PHYS! CAL_l-lI RES, PHYS! CAL_l-JI RE, REAL J \ \ 
I ~NERT: I I: TRANS_! NVERT <PHYS I CAL_W I RES, PHYS I CAL_W I RE, REAL} \ \ 
WIRES: I I: TRANS_U I RES <CHI Pl\\ 
PACK://:NMOS_PACK_2(CHIPJ\\ 
SORT://:NO_SORT<CHIPJ\\ 
SETUP://:TRANS_SETUP<CHIPJ\\ 
WIRE_HEIGHT://:TRANS_WIRE_HEIGHTS<INTJ\\ 
VDD:l 
GND:-1. 
NAME:'TRANSISTOR'J; 

DEFINE NMDS=MRG: COMPILE<CHIP,NMOS) ENDDEFN 

DEFINE METAL2=MRG: COMPILE<CHIP,METAL2J ENDDEFN 

DEFINE LOGICAL=MRG: 

DEFINE CMDS=MRG: 

COMPILE<CHIP,LOGICAL> ENDDEFN 

COMPILECCHIP,CMOSJ ENDDEFN 

DEFINE CMOS2-MRG: COMPILE<CHIP,CMOS2J ENDDEFN 

DEF I NE N~10S _ST I CKS =MRG: . 

DEFINE METAL2_STICKS-MRG: 

DEFINE TRANSISTOR=MRG: 

COMPILE(CHIP,NMOS_STICKS) ENDDEFN 

COMP I LE <CH IP, f1ETAL2_ST I CKS J ENDDEFN 

COMPILE<CHIP,TRANSISTORJ ENODEFN 

DEFINE PUT_NMOS: PUT<CHIP,NllOSl; ENDDEFN 

DEFINE PUT_METAL2: PUT<CHIP,METAL2l; ENDDEFN 

DEFINE PUT_LOGICAL: PUT(CHIP,LOGICALJ; ENDDEFN 

DEFINE PUT_CMOS: PUT<CHIP,CMOSJ; ENDDEFN 

DEFINE PUT_CMOS2: PUT<CHIP,CMOS2J; ENDDEFN 

DEFINE PUT_NMOS_STICKS: PUTCCHIP,NMOS_STICKSJ; ENDDEFN 

DEFINE PUT_METAL2_STICKS: PUTCCHIP,METAL2_STICKSJ; ENDOEFN 

DEFINE PUT_TRANSISTOR: PLJT(CHIP,TRANSISTORJ; ENDDEFN 

TECHNDLOGI ES:= !N~lOS; nETAL2; LOG I CAL; Cl10S; CMOS2; NMOS_STI CKS; METAL2_STI CKS; 
TRANSISTOR!; 

Now that we have our basic technologies defined, we will present the data 
structure def~nitions for representing the chip. These definitions, which follow 
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the definitions in Chapter 5, represent the wires and gates of the chip. In addition, 
the definition for the CHIP datatype is given. The DCHIP type is a swappable CHIP, 
which means that an instance of type DCHIP can be swapped into the virtual 
memory by the system. ICL allows the user to specify what datatypes are 
swappable, b~cause the user can do a much better job of describing conceptual units 
than a program can. 

TYPE SIGNAL_WIRE= CFROM:GATE 
TO: GATES 
NNlE:OS 
PHYS I CAL: PHYS I CAL_L.J I RE 
INPUT,OUTPUT:BOOL 
VLEFT,VRIGHT,VHEIGHT:INT 
VINVERT:SIGNAL_WIREJ; 

SIGNAL_WIRES= I SIGNAL_WIRE l; 

GATE- [INPUTS:SIGNAL~JIRES 
OUTPUT:SIGNAL_WIRE 
TYPE:GATE_TYPE 
INDEX: INT 
RI NDEX: REAU ; 

GATES= I GATE l; 

GATE_TYPE= SCALAR(NANO,NOR,INVERTl; 

·CHIP= [GATES: GATES 
SIGNALS: SI GNAL_lJ I RES 
SIGNAL_COUNT:INT 
NAME,OESCRIPTION:QSJ; 

OCHIP= PRIVATE DISK_NODE; 

VAR YVOO,YGNO,POWER,CWIOTH=REAL; 

CHIP=CHIP; 

LET OCHIP BECOME CHIP BY MACR0-10('1NCORS'l 

DEFINE OISKCC:CHIPJ=DCHIP: MACR0-10{'0SKIZS'J 
DEFINE MOOIFIED<D:OCHIPJ: MACR0-10{'0MODS'J 

DEFINE PUT<D:OCHIP N:QSl: 
BEGIN LET OCHIP BECOME GLS24 BY MACR0-10{'IDENTS') PUTCO,N,'DCHIP 1/2/81'); 
END 

ENDOEFN 
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DEFINE PUT<C:CH!Pl: PLJT(D!SK(Cl,C.NAMEl; ENDDEFN 

DEFINE GET(N:OSl=DCHIP: 
BEGIN LET GLS24 BECOME DCHIP BY MACR0-10('10ENTS'l GET<N,'DCHIP 1/2/81') 
END 

ENDDEFN 

This next section of code is the actual compiler, which closely follows the code in 
Chapter 5. Because of the similarity of the code, no additional comments -will be 
given here. 

DEF I NE PHYS I CAL <SW: SI GNAL_~J I RE l =PHYS I CALJJ I RE: SW. PHYS I CAL ENDOEFN 
DEF I NE PHYS I CAL CS~JS: SI GNAL_~J I RES l =PHYS I CAL_W I RES: 

BEGIN VAR S=S I GNAL_~J I RE; 
!COLLECT S\PHYSICAL FORS SE SWS;I 

END 
ENDOEFN 

DEF I NE INPUTS <C: CH IP l =SI GNAL_~l I RES: 
BEGIN VAR S=S I GNAL_~I I RE: 
!COLLECT S FORS SE C.SIGNALS;WITH S. INPUT;l 

END 
ENDDEFN 

DEFINE OUTPUTS<C:CHIPl=SIGNAL_WIRES: 
BEGIN VAR S=S I GNAL_LH RE; 
!COLLECT S FOR S SE C.SIGNALS;WITH S.OUTPUT;l 

END 
ENDOEFN 

DEFINE CONNECTCWIRE:PHYSICAL_WIRE X:REALl: 
@llJIREl .LEFT::= MIN X; 
@IWIREl.RIGHT::= MAX X; 

ENDDEFN 

DEFINE INITIALIZE_WIRES<C:CHIP T:TECHNOLOGYl: 
BEGIN VAR S=SI GNAL_m RE; 
FOR S SE C.SIGNALS; DO 

ENO 
ENO 

ENDOEFN 

@<Sl.PHYSlCAL:=[LEFT:lF S.INPUT THEN -999999. ELSE 999999 FI 
RIGHT:IF S.OUTPUT THEN 999999 ELSE -999999. FI 
HEIGHT: <~'( T. W IRE_HE I GHfo> CS. VHE I GHTl 
NAME:S.NAMEJ; 

DEFINE DRAW_CELLS(C:CHIP T:TECHNOLOGYl=MRG: 
BEGIN VAR X=REAL;G=GATE; 
!COLLECT <* CASE G. TYPE OF 

NOR: T. NOR 
NANO: T.NANO 
INVERT: T.INVERT 
ENOCASE *> <G.INPUTS\PHYSICAL,G.OUTPUT\PHYSICAL,CWIOTHl\DISK FOR G SE REVERSECC.GATESl;l 

ENO 
ENDOEFN 
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DEFINE LOAO(S:SIGNAL_WIREl=REAL: 
BEGIN VAR G=GATE;T=SIGNAL_WIRE; 
(+ CASE G. TYPE OF 

NOR: 1 
INVERT: 1 
NANO: +1 FORT SE G.INPUTS; 

ENDCASE FOR G SES. TO;hQ_LOAD + 
LOAD!BLUE,WIDTH(BLUEl,S.PHYSICAL.RIGHT-S.PHYSICAL.LEFTJ ENO 

ENDDEFN 

DEFINE COMPILE(C:CHIP T:TECHNOLOGYJ=MRG: 
BEGIN VAR M=MRG; 
DO CWIOTH: =0; 

POWER:=0; 
<1'< T. SORT.1·r> (CJ; 
<~·,T. PACK,·:> (CJ; 
<,., T. SETUP)':> (Cl ; 
INITIALIZE_WIRES(C,Tl; 
M:=DRAW_CELLS(C,Tl; 

GIVE IM;<~T.WIRES*>(Cll\OISK 
END 

ENDDEFN 

DEFINE PUT<C:CHIP T:TECHNOLOGYJ: 
BEGIN VAR ~1=t1RG;G=GATE;S=SIGNAL_WIRE; 
M:=COMPILE(C,Tl; 
PUT ( CNAflE: C. NAt1E 

END 
ENOOEFN 

DESCRIPTION:C.OESCRIPTION 
LAYOUT: f1 
VDD:T.VDD#YVD0-2 
GND:CWIDTH+T.GND#YGN0+2 
POl-JER: POl-IER 
PORTS: !COLLECT CNAf'lE: IS.NAf1EI 

AT: I { [COLOR: BLUE 
EDGE: lJEST 
AT:S.PHYSICAL.LEFT#S.PHYSICAL.HEIGHTJll LOAD: LOAD!Sll 

FORS SE C\INPUTS;; 
COLLECT [NAME: IS.NAME! 

AT: I I [COLOR: BLUE 
EDGE: EAST 
AT:S.PHYSICAL.RIGHT#S.PHYSICAL.HEIGHTJll ORIVE:l 

LOAD: LOAD (SJ J 
FORS SE C\OUTPUTS;JJ\OISK,C.NAMEl; 

DEFINE EQ(A,B:GATE>=BOOL: MACR0-10('LSPEQS'J 

DEF I NE EQ !A, B: SI GNAL_l~l REl =BOOL: MACR0-10!'LSPEQS'l 
DEFINE LINK_INPUT<G:GATE S:SIGNAL_l~lREJ: 

@!SJ.TO::= G <S; 
@(Gl.INPUTS::= S <S; 

ENDDEFN 

DEFINE LINK_OUTPUT!G:GATE S:SIGNAL_WIREI: 
@(G) .OUTPUT:=S; 
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@(SJ. FROM: ·G: 
ENDDEFN 

DEFINE UNLI NK_I NPUT !G: GATE S: SI GNAL_~ll REJ: 
BEGIN VAR O·GATE:R=SIGNAL_WIRE; 
@{SJ. TO:-!COLLECT Q FOR Q SE S.TO;WITH -(Q\EQ Gl;l; 
@!Gl.INPUTS:=!COLLECT R FOR R SE G.INPUTS;WITH -!R\EQ Sl;l: 
END 

ENDDEFN 

DEFINE UNLINK_OUTPUTCG:GATE S:SIGNAL_~JIREJ: 
@!SJ.FROM:=NIL; 
@(Gl.OUTPUT:=NIL; 

ENOOEFN 

DEFINE ELIMINATECG:GATEJ: 
BEGIN VAR O=GATE; 
CHIP.GATES:=fCOLLECT Q FOR Q SE CHIP.GATES;WITH -CQ\EQ Gl;l; 
ENO 

ENDDEFN 

DEFINE ELIMINATECS:SIGNAL~JIREJ: 
BEGIN VAR R=S I GNAL_l-J I RE; 
CHIP.SIGNALS:=!COLLECT R FOR R SE CHIP.SIGNALS;WITH -{R\EQ Sl;l; 
IF DEFINEDCS.VINVERTJ THEN @CS.VINVERTJ~VINVERT:=NIL; FI 
ENO 

ENDOEFN 

DEFINE VINVERTCA,B:SIGNAL_WIREl: 
IF DEFINEOCA.VINVERTJ THEN @CA.VINVERTJ.VINVERT:=NIL; FI 
IF DEFINEOCB.VINVERTJ THEN @CB.VINVERTl.VINVERT:=NIL; FI 
@CAJ.VINVERT:=B: 
@{BJ.VINVERT:=A; 

ENDDEFN 

DEF I NE FUSE CA. B: SI GNAL_l-JI REJ: 
BEGIN VAR G=GATE:C=CHAR: 
IF DEFINEO<B.FROf1) !B. INPUT THEN 

IF DEFINED CA.FROM) !A.INPUT THEN HELP; 
ELSE @(Al.INPUT:=B.INPUT; 

G: =B. FROf1; 
IF DEFINED<Gl THEN 

UNLINK_DUTPUT!G,Bl; 
LINK_OUTPUT<G,Al; Fl FI FI 

IF ALWAYS C\DIGIT FOR CSE A.NAME; THEN @!Al.NAME:=B.NAME; FI 
IF DEFlNED<B.VINVERTl THEN VINVERTCA,B.VINVERTl; FI 
@CAJ.OUTPUT::=!B.OUTPUT; 
FOR G SE B~TO: DO 

UNLINK_INPUT!G,Bl: 
LINK_INPUT{G,Al; 

END 
ELI 111 NATE <Bl; 
END 

ENDDEFN 

LET OS BECOME SIGNAL_~JIRE BY 
BEGIN VAR S=SIGNALJJIRE; 
IF THERE_IS S.NAME\EQ QS FDR S SE CHIP.SIGNALS; THEN S 
ELSE DO S:-[NAME:QSJ; 

CHIP.SIGNALS::• S <S; 
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GIVE S FI 
ENO; 

DEF I NE NHJ_S I GNAL =SI GNAL_W I RE: SC ( !CH IP.SI GNAL_COUNT: : =+1; ) ) 
DEFINE SET<S:SIGNAL_WIRE G:GATE>: LINK_OUTPUT!G,S>; ENDOEFN 
LET GATE BECOME SIGNAL_WIRE BY 

BEGIN VAR S=S I GNAL_~J I RE: 
DO S: =NEl~_SIGNAL: 

LINK_OUTPUT<GATE,S>; 
GIVE S 
END; 

DEFINE INPUT(S:SIGNAL_WIRE>: @<S>.INPUT:=TRUE; ENDDEFN 
DEFINE OUTPUT<S:SIGNAL_WIREI: @(S).OUTPUT:=TRUE; ENDOEFN 
DEFINE lNPUTS!SQS:SQS): 

BEGIN VAR QS=QS; 
DO INPUT(QS); FOR QS SE SQS; 
ENO 

ENDOEFN 

DEFINE OUTPUTS<SQS:SOS>: 
BEGIN VAR QS=QS; 
DO OUTPUT<QS); FOR QS SE SOS; 
ENO 

ENODEFN 

DEFINE NAME<OS:QS): CHIP.NAME:=OS; ENODEFN 

DEFINE DESCRIPTION<OS:QSI: CHIP.DESCRIPTION:=OS; ENDOEFN 
DEF I NE NEl~_CH IP: CHIP:=NIL: ENODEFN 

DEFINE FINISH: 
CHIP.GATES:=REVERSE<CHIP.GATES); 

ENDDEFN 

DEF I NE NEW_GATE (St.JS: SI GNAL_W I RES TYPE: GATE_ TYPE) =GATE: BEGIN VAR GATE=GATE;SW=SIGNAL_WIRE; 
DO GATE:=[TYPE:TYPEJ; 

CHIP.GATES::= GATE <S; 
DO LINK INPUT(GATE,SW); FOR SW SE SWS; GIVE GATE -

ENO 
ENDOEFN· 

ENDDEFN 

DEFINE NAND<SWS:SIGNAL_WIRESl=GATE: NEW_GATE<SWS,NANO) ENOOEFN 
DEFINE NOR<SWS:SIGNAL_WIRES>=GATE: NEW_GATE<SWS,NOR) ENODEFN 
DEFINE INVERT <SW:SIGNAL_l.JIRE> =GATE: NEW_GATE ( !SWJ, INVERT> ENDDEFN 
DEF I NE AND <S~JS: SI GNAL_W I RES) =GATE: SWS\NANO\ INVERT 
DEFINE OR<SWS:SIGNAL_WIRES>=GATE: SWS\NOR\INVERT 

ENODEFN 

ENODEFN 
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DEFINE NAND<A,B:SIGNALJJIREl=GATE: NAND<IA;Bll ENDOEFN 

DEFINE NOR<A.B:SJGNAL_WIREl=GATE: NOR(!A;Bll ENDOEFN 

DEFINE AND<A.B:SIGNAL_WIREl=GATE: ANO(IA;Bll ENDDEFN 

DEFINE OR(A,B:SIGNAL_WIREl=GATE: OR((A;Bll ENDDEFN 

DEFINE XOR!A,B:SIGNALJJIREl=GATE: 
BEGIN VAR C=S I GNAL_~J I RE; 
DO C:=NAND(A,Bl; 
GIVE NAND!A\NAND C,B\NAND Cl 
END 

ENODEFN 

The following code lists the optimizers defined in the RLC. These optimizers look at 
the logical structure of the chip, replacing gates while preserving functionality. 
The GE~NVERT function is a utility function which generates the inverse of its 
input signal, using existing inverters if they exist. The REMOVE INVERTERS 
function removes extra inverters from the chip's logic. REMOV~EDUNDANCIES 
looks for redundant gates, removing those which don't add to the functionality of 
the chip. The DE_MORGAN function will convert a NAND gate into a NOR 
implementation and turn a NOR gate into a NAND implementation. This function is 
used by REMOV~ANDS and REMOV~ORS,, which eliminate all instances of their 
respective gates. REMOVE NANDS is used to turn a NAND circuit into a NOR circuit, 
"\Vhile REMOVE NORS does the inverse transformation. DE MORGAN COST is a 
function which computes the relative cost of a NAND or NOR gate in the chip's logic 
equations. The D~MORGAN function calls this cost routine to determine which 
gates to replace. If the cost of converting a particular gate into its dual gate is 
negative, which means we would use fewer gates to implement the chip, the D~ 
~ORGAN function will perform the transformation. The UNIQu:l~J.NPUTS function 

removes extra inputs to NAND and NOR gates. If a particular gate has more than one 
connection to a signal, all but one of those connections are removed. Finally, the 
MERGE function moves signals which connect to strings of NAND or NOR gates. 

DEF I NE GET _INVERT !S: SI GNALJ.JI REl =SI GNAL_WI RE: 
BEGIN VAR T=SIGNAL_~lIRE:G=GATE; 
IF S.FROM.TYPE=INVERT THEN 

GIVING S.FROM.INPUTSCll 
DO IF -COEFINED!S.TOl !S.OUTPUTl THEN 

G:=S.FROM; 
UNLINK_OUTPUTCG,Sl; 
UNLINK_INPUT(G,G.INPUTSClll; 
ELIMINATE !Gl; 
ELIMINATE!Sl; FI 

END 
EF OEFINED!S.VINVERT) THEN S.VJNVERT 
EF THERE_IS G.TYPE=INVERT FOR G SES.TO; THEN G.OUTPUT 



ELSE INVERTCS> FI 
ENO' 

ENDDEFN 

DEFINE REMOVE INVERTERS: 
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BEGIN VAR G=GATE;5,T=SIGNAL_WIRE; 
FOR G SE CHIP.GATES;WITH G.TYPE=INYERT;WITH DEFINEO<G.OUTPUT>; DO 

S:=G.OUTPUT; 
T: =G. INPUTS fll ; 
UNLINK OUTPUTCG,S); 
UNLINK=INPUTIG,T>; 
ELIMINATE <Gl: 
FUSE(T\GET_INVERT,Sl; 

END 
END 

ENDDEFN 

DEFINE REMOVE REDUNDANCIES: 
BEGIN VAR G,Gl,G2=GATE;LIST=GATES;S,Sl,S2=SIGNAL_WIRE;I=INT; 
LI ST: =NIL; 
((FOR Gl SE CHIP.GATES;&& FOR I FROM 2 BY l;lWITH OEFINEO<Gl.OUTPUTl; 

! ! FOR G2 SE CHIP.GATESCI-J;WITH DEFINEDIG2.0UTPUT>;> 
WITH IF Gl.TYPE<>G2.TYPE THEN FALSE 

END 

ELSE AUlAYS THERE_! S Sl \EQ S2 FOR S2 SE G2. INPUTS; 
FOR Sl SE Gl.INPUT5~ & 

ALWAYS THERE_IS S2\EQ Sl FOR Sl SE Gl.INPUTS; 
FOR 52 SE G2.INPUTS; FI; DO 

S2:=G2.0UTPUT; 
Sl:=Gl.OUTPUT; 
FORS SE G2.INPUT5; DO 

UNLINK_INPUT<G2,Sl; 
END 
UNLINK_OUTPUT<G2,S2l; 
LIST::= G2 <S; 
FUSE <Sl, 52!; 

DO ELIMINATE<GJ: FOR G SE LIST: 
END 

ENDDEFN 

DEFINE DE MORGAN<G:GATEl: 
BEGIN- VAR TYPE=GATE_TYPE;S,T=SlGNAL_wlRE;SWS=SlGNAL_WIRES;N=GATE; 
TYPE:= CASE G.TYPE OF 

NANO: NOR 
NOR: NANO 
ELSE: NIL 
ENDCASE; 

IF DEFINED<TYPEJ THEN 
Sl~S: =NIL; 
FORS SE G.INPUTS; DO 

UNLINK_INPUTCG,Sl: 
SWS::= S\GET_INVERT <S; 

ENO 
N: =NE!.l_GA TE <SWS, TYPE l ; 
S:=G.OUTPUT; 
UNLINK_OUTPUT(G,5J; 
ELIMINATE <G>; 
IF THERE_IS G.TYPE=INVERT FOR G SES.TO; 
THEN T:=G~OUTPUT; 

UNLI NK_OUTPUHG, J) ; 

LINK_OUTPUTIN,T>; 



END 
ENDDEFN 

-253-

UNLINK_INPLJT(G,Sl; 
IF DEFINED(S.TOl !S.OUTPUT 
THEN LINK_INPLJT(G,Tl; 

LINK_OUTPUT<G,Sl; 
ELSE ELIMINATEIGl; 

ELIMINATEISl; FI 
ELSE LINK_OUTPLJT(INVERT(N),S); FI FI 

DEFINE REMOVE_NANDS: 
BEGIN VAR G=GATE: 
CHIP.GATES:=REVERSEICHIP.GATESl; 
DO DE_MORGAN<Gl; FOR G SE CHIP.GATES:WITH G.TYPE=NAND; 
FINISH; 
END 

ENDDEFN 

DEFINE REMOVE_NORS: 
BEGIN VAR G=GATE; 
CHIP.GATES:=REVERSEICHIP.GATESJ; 
DO DE_MORGAN<Gl; FOR G SE CHIP.GATES;WITH G.TYPE=NOR; 
FINISH; 
ENO 

ENDDEFN 

DEFINE DE_MORGAN_COST(G:GATEl=lNT: 
BEGIN VAR S-SIGNALJJIRE;N=GATE; 
IF G.TYPE=NAND ! G.TYPE=NOR THEN 

IF NEVER N.TYPE=INVERT FOR N SE G.OUTPUT.TO; THEN 1 
EF -(DEFINEDIG.OUTPUT.T0[2-Jl !G.OUTPUT.OUTPUTJ THEN -1 . ELSE 0 FI + 
+ IF DEFINEO(S.VINVERTJ THEN 0 

EF S.FROM.TYPE=INVERT THEN 
IF DEFINEDCS.T0[2-JJ !S.OUTPUT THEN 0 ELSE -1 FI 

EF THERE_IS N.TYPE=INVERT FOR N SES.TO; THEN 0 ELSE 1 FI 
FORS SE G.INPUTS; 

ELSE 999999 FI 
END 

ENDDEFN 

DEFINE DE_MORGAN: 
BEGIN VAR G=GATE: 
CHIP.GATES:=REVERSE(CHIP.GATESJ; 
FOR G SE CHIP.GATES;~JITH DE_MORGAN_COSTCGJ<0; DO DE_MORGAN(G); ENO 
FINISH; 
ENO 

ENDDEFN 

DEFINE UNIQUE_DESTINATION(S:SIGNAL_WIREl=BOOL: 
IFS.OUTPUT THEN FALSE ELSE -DEFINEO<S.TOC2-J) FI 

ENDDEFN 

DEFINE UNIQUE_INPUTS: 
BEGIN VAR G=GATE;Sl,S2=SlGNAL_WIRE;I=INT;SWS=SlGNAL_WIRES; 
FOR G SE CHIP.GATES; DO 

SWS:=NIL; 
FOR Sl SE G.INPUTS;&& FOR I FROM 2 BY 1; DO 

IF THERE_IS S2\EQ Sl FOR S2 SE G.INPUTS[l-l; & 
NEVER Sl\EQ 52 FOR S2 SE SWS; THEN SWS::= Sl <S; FI 

END 



END 
END 

ENOOEFN 

FOR Sl SE Sl~S; DO 
UNLINK_INPUT(G,Sll; 
LINK_INPUT(G,Sll; 

ENO 
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DEFINE MERGE: 
BEGIN VAR LIST=GATES;G,H,I=GATE;S,T,U=SIGNAL_WIRE; LIST: =NIL; 
IFOR GS[ CHIP.GATES;WITH DEFINED<G.OUTPUTJ;WITH G.TYPE=NANO!G.TYPE=NOR;J ! ! <FORS SE G.INPUTS:WITH (l:=S.FROM;J.TYPE=INVERT; 

END 

W TH S \UN IOUE_DES TI NAT ION; 
WITH IH:=IT:=S.FROM~INPUTS[ll;l.FROM;J.TYPE=G.TYPE; WITH T \UN IOUE_DES TI NAT ION; l DO 

FOR USE H.INPUTS; DO 
UNLINK_INPUTIH,UJ; 
LINK_INPUT <G,Ul; 

END 
UNLINK_OUTPUTIH,Tl; 
UNLINK_INPLJT(l,TI; 
UNLINK_OUTPUTII,SI; 
UNLINK_INPUT(G,SJ; 
ELI MI NATE <Tl; 
ELI MI NATE £SJ: 
LIST::= IH;ll SS; 

DO ELIMINATEIGJ; FOR G SE LIST; 
ENO 

ENDDEFN 

The ANNOTATE function is used to label plots. All of the input and output signals of 
the chip have their names drawn on the plot. This function has the technology as a 
parameter, so that any technology's layout can be annotated. 

DEFINE ANNOTATE(C:CHIP T:TECHNOLOGYJ=MRG: 
BEGIN VAR M=MRG;LENGTH=INT;S=SIGNAL_WIRE;X=REAL;SCALE=PDINT; DO M:=COMPILEIC,Tl; 

LENGTH:= MAX LENGTHIS.NAMEJ FORS SE C\INPUTS;; X:=CWIOTH-30*LENGTH/7.-4; 
SCALE:=. 8,·, (<,·, T. WI RE_HE I GHfo> Ill -<1': T. WIRE_HE I GHT ic> (2) l 114. id ltlll ; GIVE IM; 

END 
ENDDEFN 

COLLECT S.NAME\SCALED_BY SCALE\AT XtlS.PHYSICAL.HEIGHT-2.5 \PAINTED VIOLET FORS SE C\INPUTS;; COLLECT S.NAME\SCALED_BY SCALE\AT 5#S.PHYSICAL.HEIGHT-2.5 \PAINTED VIOLET FORS SE C\OUTPUTS;l 

To allow the use of macro definitions, RLC allows the user to expand a previously 
declared CHIP into the current chip. The user specifies the set of interconnections 
via a set of SIGNA~VALUEs, each of which state which signal of the current CHIP 
connects to the ports of the expanding CHIP. The inputs of the expanding CHIP may 
be tied to TRUE or FALSE signals. The FIXED HIGH and FIXED LOW routines 



-255-

eliminate these fixed value signals, and in doing so may eliminate the gates they 

connect to. The EXPAND function takes a CHI~NSTANCE, which states which CHIP 

to expand and how to interconnect the signals, and adds the equations to the current 

chip. 

TYPE POSSIBLE_SIGNAL= EITHER 
FIXED= BDOL 
VAR= SIGNAL_~JIRE 

ENDOR; 

SIGNAL_VALUE= [NA!1E:QS FROM:POSSIBLE_SIGNALJ; 

SIGNAL_VALUES= f SIGNAL_VALUE l; 

CHIP_INSTANCE= [CHIP:CHIP NAME:QS VALUES:SIGNAL_VALUESl; 

DEFINE FIXEO_HIGH{S:SIGNAL_WIREJ: 
BEGIN VAR G=GATE;T=SIGNAL_WIRE;J=INT; 

DEFINE ZAPCG:GATEJ: 
T:=G.OUTPUT: 
UNLI NK_OUTPUT<G, Tl ; 
ELIMINATE <Gl; 
FI XEO_LDW <Tl ; 

ENDOEFN 
FOR G SE S. TO; OD 

UNLINK_INPUT<G,SJ; 
CASE G.TYPE OF 
INVERT: ZAPCGJ; 
NANO: J:=+l FORT SE G.INPUTS;; 

IF J=0 THEN ZAPIGJ; 
EF J=l THEN @CG).TYPE:=INVERT; FI 

NOR: DD UNLINK_INPLJT(G,TJ; FORT SE G.INPUTS; 
ZAP<Gl; 

ENOCASE 
ENO 
ELIMINATE<SJ; 
END 

ENDOEFN 

DEFINE FIXEO_LOWCS:SIGNAL_WIREJ: 
BEGIN VAR G=GATE; T =SI GNAL_t~IRE; J=l NT; 

DEFINE ZAP(G:GATEJ: 
T:=G.OUTPUT; 
UNLINK_OUTPUTCG,Tl; 
ELIMINATE<GJ; 
FIXED_HIGH<Tl; 

ENDOEFN 
FOR G SES.TO; 00 

UNLINK_INPUTCG,SJ; 
CASE G.TYPE OF 
INVERT: ZAPCGJ; 
NOR~ J:=+l FORT $E G.INPUTS;; 

IF J=0 THEN ZAP(GJ; 
EF J=l THEN @(GJ.TYPE:=INVERT; FI 

NANO: DO UNLINK_INPUTlG,TJ; FORT SE G.INPUTS; 
ZAPCGJ; 
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ENDCASE 
END 
ELIMINATE CS>; 
END 

ENDDEFN 

DEFINE COPY<C:CHIP N:OSl=CHIP: 
BEGIN VAR CHIP=CHIP;G,H=GATE;S, T=SIGNAL_WIRE; !=INT; 
DO DO @CGJ.INDEX:=I; FOR G SEC.GATES;&& FOR I FROM 1 BY 1; 

DO @CSJ.VHEIGHT:=I; FORS SEC.SIGNALS;&& FOR I FROM 1 BY l; 
CHIP:= [GATES: !COLLECT [TYPE:G. TYPEJ FOR G SE C.GATES; l 

SIGNAL_COUNT: C.SIGNAL_COUNT 
SIGNALS: {COLLECT [NAME: NUS. NAf1EJ FOR S SE C. SIGNALS; l 
NAME: C.NAME 
DESCRIPTION: C.DESCRIPTIONJ; 

FOR G SE CHIP.GATES;&& FOR H SE C.GATES; DO 

END 

IF OEFINEDCH.OUTPUT) THEN 
LINK_OUTPUTCG,CHIP.SIGNALSfH.OUTPUT.VHEIGHTJ); FI 

DO LINK_INPUTCG,CHIP.SIGNALS(S.VHEIGHTJ); FORS SE H.INPUTS; 

DD IF DEFINED<S.VINVERT> 
THEN @(Tl.VINYERT:=CHIP.SIGNALSfS.VINVERT.VHEIGHTJ; FI 

FOR S SE C.SIGNALS;&& FOR T SE CHIP.SIGNALS; 
GIVE CHIP 
END 

ENDDEFN 

OEFINE EXPANDCC:CHIP_INSTANCEl: 
BEGIN VAR SV=SIGNAL_VALUE:HIGH,LOW=SIGNAL_WIRES;Q=CHIP; 

S=SIGNAL_WIRE;PS=POSSIBLE_SIGNAL;N=OS; 
HIGH:=NIL; 
LOl~: =NIL; 
O:=C.CHIP\COPY C.NAME; 
CHIP.GATES:=REFRESHCCHIP.GATES SS a.GATES}; 
CHIP.SIGNALS:=REFRESH{CHIP.SIGNALS SS a.SIGNALS>; 
FOR SY SEC.VALUES; DO 

END 

N:=C.NAME $$SY.NAME; 
S:=IF THERE_IS S.NAME=N FORS SE a.SIGNALS; THENS ELSE NIL FI; 
PS:=SV.FROM; 
CASE PS OF 
VAR: FUSE CPS, SJ; 
FIXED: IF PS THEN HIGH ELSE LOW FI ::= S cS; 
ENDCASE 

FORS SE HIGH; DO FIXED_HIGH{S); ENO 
FORS SE LOW; DO FIXED_LOWCS); ENO 
END 

ENDDEFN 

When the chip expanders and chip optimizers have been used upon a chip, the logic 

equations of the chip are changed, although the function of the chip has remained 

constant. To allow the user to see what the new logic equations are, the UNPARSE 

function is used. This function displays the logic of the chip in the same format as 

the parser reads chip definitions. 

DEFINE LOCAL<S:SIGNAL_WIRE>=BOOL: 
-(S.INPUT!S.OUTPUT!UNIQUE_DESTINATION<Sll 
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ENDDEFN 

DEFINE UNPARSElC:CHIPJ: 
BEGIN VAR SW=S I GNAL_~JI RE: 8=800L; 

CRLF; 

END 
ENDDEFN 

l~RITE('OEFINE 'SSCHIP.NAMEU' ('J; 
IF THERE_IS SW.INPUT FOR SW SEC.SIGNALS; THEN 

WRITEl'INPUTS:'J; 
FOR SlJ SE C.SIGNALS;WITH SW. INPUT; OTHER_OO WRITE!',' J;; 
DO WRITEISW.NAMEJ; 
END 
8:=TRUE; 

ELSE B:=FALSE; FI 
IF THERE_IS SW.OUTPUT FOR SW SE C.SIGNALS; THEN 

IF B THEN WRITE!' '); FI 
WRITEl'OUTPUTS:'J; 

. FOR SW SE C.SIGNALS;WITH SW.OUTPUT; OTHER_DO WRITE!',');; 
DO WRITEISW.NAMEJ; 
END 
B:=TRUE; FI 

IF THERE_IS SW\LOCAL FOR SW SE C.SIGNALS; THEN 
IF B THEN WRITE!' 'J; FI 
WRITEl'LOCALS:'J; 
FOR SW SE C. SIGNALS; WITH SW\LOCAL; OTHER_DO WRITE <' , ' ) ; ; 
00 WRITECSW.NAMEJ; . 
ENO FI 

WRITEC'J:'J;CRLF; 
FOR SW SEC.SIGNALS; WITH SW.OUTPUT SW\LOCAL; DO UNPARSECSW); END 
WRITEC'ENDDEFN'J;CRLF; 

DEFINE UNPARSElSW:SIGNAL_WIREJ: 
WRITE<' 'BSSW.NAMEBB' = 'J; 
UNPARSECSW,TRUEJ; 
CRLF; 

ENDDEFN 

DEFINE UNPARSE(SW:SIGNAL_WIRE B:BOOLJ: 
BEGIN VAR S=SIGNAL_WIRE;G=GATE; 

END 
ENDDEFN 

IF -8 & ISW.INPUT!LDCALISWJ !SW.OUTPUT) THEN WRITE<SW.NAMEJ; 
ELSE G:=SW.FROM; 

CASE G. TYPE OF 
INVERT: WRITEl'-'J;UNPARSECG.INPUTSClJ,FALSEJ; 
NANO: IF -8 THEN WRITE<' ('J; FI 

FDR SSE G.INPUTS;OTHER_DO WRITE!' & ');; 
DO UNPARSE<S,FALSEJ; 
END 
IF -B THEN WRITE(')'); FI 

NOR: IF -B THEN WRITE(' ('J; FI 
FOR S SE G. INPUTS; OTHER_DO WRITE (' 'J;; 
DO UNPARSECS,FALSEl; 
ENO 
IF -8 THEN WRITE(')'); FI 

ENDCASE FI 
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DEFINE UNPARSE: UNPARSE<CHIP>; ENDDEFN 

In conjunction with the unparsing of logic equations, the user might like a quick 

summary of the size of the chip. This allows the user to judge the usefulness of 

various optimizations which can be applied to the chip. The STATS function will 

list the area of the chip, the number of gates, and the number of wiring channels, as 

a function of the technology and the current chip. 

DEFINE STATS<T:TECHNOLOGY}: 
BEGIN VAR G=GATE;S=SIGNAL_WIRE; 
CRLF; 
WRITE('Technology:'I; 
WRITE (T. NAME l ; 
TAB; 
WRITE('Size: '); 
WRITE<COMPILE<CHIP,TJ\MBBI;. 
CRLF; 
WRITEC'Number of gates: '); 
WRITE<+l FOR G SE CHIP.GATES;J; 
TAB; 
WRITEC'N~mber of channels:'); 
WRITE<MAX S.VHEIGHT FORS SE CHIP.SIGNALS;}; 
CRLF; 
END 

ENDDEFN 

As mentioned above in the technology definition, we have routines to pack the 

interconnection wires. The packing routines attempt to have wires share channels, 

so that the number of channels (and the size of the chip) is minimized. There axe 

two packers presented here. The first, NMO~ACK~, does not 'know' about the 

internals of a cell. It assumes that every wire which connects to a cell consun1es 

the channel for the enti1·e width of the cell. This packer is more general for new 

technologies. The second packer, NMOS PACK 2, knows enough about the internals 

of the cells to allow the output wire to share a channel with one of the input wires, 

under certain circumstances. Since this packer knows about the implementation of 

cells, it is not as general as the first packer, but it does a better job of packing the 

wires for the currently defined technologies. 

DEFINE SORTISWS:SIGNAL_WIRESl=SIGNAL_WIRES: 
BEGIN VAR OUT=SIGNAL_l.JIRES;W=SIGNAL_WIRE; I ,J,K=INT; 
DO OUT:=NIL; 

WHILE DEFINEDCSWSI; DO 
I: =-1; 
FOR W SE SWS;&& FOR J FROM 1 BY l; DO 

IF W.VLEFT>I THEN 
l~=W.VLEFT; 
K:=J; FI 

END 
OUT::= SWS[KJ <S; 



SWS[Kl:=NIL; 
END 

GIVE OUT 
ENO 

ENDDEFN 

DEFINE NMOS_PACK_l(C:CHIPJ: 
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BEGIN VAR Sl-JS=S I GNAL_~I I RES; H= I NT; G=GATE; S=S I GNAL_~J I RE; 
DEFINE DRAW_WIRE!LEFT:INTJ: 

BEG! N VAR W=SI GNAL_l~IRE: I= I NT; 
IF THERE_IS W.VLEFT>LEFT FOR W SE SWS;&& FOR I FROM 1 BY l; 
THEN SWS[Il:=NIL; 

END 
ENDDEFN 

@(~JJ. VHEIGHT: =H; 
DRAW_WIRECW.VRIGHTJ; FI 

FOR G SEC.GATES;&& FOR H FROM 1 BY 1;00 @(GJ.INDEX:=H; END 
FOR S SE C.SIGNALS; DO 

@ISJ.VLEFT:= IFS.INPUT THEN 0 
EF DEF I NED CS. TOJ 
THEN S.FROM.INOEX MIN MING.INDEX FOR G SES.TO; 
ELSE S.FROM.INDEX FI; 

@(SJ.VRIGHT:= IFS.OUTPUT THEN 999999 
ELSE S.FROM.INOEX MAX MAX G.INDEX FOR G SES. TO; 

END 
SWS:=C.SIGNALS\SORT; 
WHILE DEFINEDISWSJ;&& FOR H FROM 
END 

ENDDEFN 

DEFINE NMOS_PACK_21C:CHIPJ: 

1 BY l; DO DRAW_WIREl-ll; END 

BEGIN VAR Sl.JS=S I GNAL_~l I RES; H=I NT; G=GATE; S=SI GNAL_wI RE; 
DEFINE DRAl.J_l,JJRE !LEFT: INTJ: 

BEGIN VAR l,J=SIGNAL_WIRE; !=INT; 

FI; 

IF THERE_IS W.VLEFT>LEFT FOR W SE SWS;&& FOR I FROM 1 BY 1; 
THEN SWS[IJ:=N!L; 

END 
ENDDEFN 

@CWJ .VHEIGHT:=H: 
DRAW_t.JIRECW.VRIGHTJ; FI 

FOR G SEC.GATES;&& FOR H FROM 1 BY 2;DO @CGJ.INDEX:=H; END FOR S SE C.SIGNALS; DO 
@CSJ.VLEFT:= IFS.INPUT THEN 0 

EF DEFINEDCS.TOJ 
THEN S.FROM.!NDEX+l MIN MING.INDEX FOR G SES.TO; 
ELSE S.FROM.INDEX+l Fl; 

@CSJ.VRIGHT:= IFS.OUTPUT THEN 999999 
ELSE S.FROM.INDEX+l MAX MAX G.INOEX FOR G SES.TO; FI; END 

SWS:=C.SIGNALS\SORT; 
WHILE DEFINEOISWSJ;&& FOR H FROM 1 BY l; DO DRAW_WIRE(-ll; END 
ENO 

ENDOEFN 

In addition to the packers, we have sorters. The sorters may reorder the gates in 
attempts to minimize wire lengths or minimize the number of wiring channels. 
The first 'sorter', NO SORT, does nothing. The SMALL SORT routine rebuilds the chip 
from left to right, each time adding the gate which will add the fewest wiring 
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channels. This is a local optimization, which means that it will not necessarily 
(and, in fact, rarely) produce the smallest chip. The RELAXATION SORT is an 
iterative routine. Each time it is executed, it 'averages' each gates position. For 
each gate, the routines averages the indexes of the gates input and output gates. It 
then sorts the gates by these averages. Presumably, if this routine is executed a 
few times, gates will tend to be near the gates they connect to. 

DEFINE NO_SORT!C:CHIPJ: NOTHING; ENOOEFN 

DEFINE SMALL_SDRT!C:CHIPJ: 
BEGIN DEFINE ACTI YES !SL-IS: SI GNAL_WIRES GS: GATES> =SI GNAL_WIRES: 

BEGIN VAR G=GATE;S,T=SIGNAL_WIRE; 
!COLLECT S FDR S SE SWS;WITH 

IF S.OUTPUT THEN TRUE 
ELSE THERE_I5 <G.OUTPUT\EQ S ~ 

ENO 
ENOOEFN 

THERE_I5 T\EQ 5 FORT SE G.INPUTS;l 
FDR G SE GS; FI;l 

DEFINE UNIQUE!Sl,S2:5IGNAL WIRE5l=51GNAL WIRES: 
BEGIN VAR A,B=51GNAL}l!RE; -
DD FOR A SE 51; DO 

ENO 
GIVE 52 
END 

ENDDEFN 

IF NEVER A\EQ B FOR 8 SE S2; THEN 52::= A <S; FI 

VAR ACTIVE,Ll,L2=SIGNAL_WIRE5;DLD,NEW=GATES;Sl,S2=SIGNAL_L-lIRE; G,Gl=GATE;l,J,K,L=INT; 
OLD: =C. GA TES: 
NEW:=NIL; 
ACTIVE:=ICOLLECT Sl FOR Sl SE CHIP.SIGNALS; WITH Sl.INPUT;l; 
WHILE DEFINED<OLDl: DO 

I:=999999; 
FOR G SE OLD;&& FOR J FROM 1 BY l; DO 

L2:=ACTIVES!UNIQUE!G.OUTPUT<SG.INPUTS,ACTIVE), 

END 

{COLLECT Gl <FDR Gl SE OLD;&& FORK FROM 1 BY l;l 
WITH K<>J;ll; 

K:=+l FOR Sl SE L2;; 
IF K<I THEN 

I: =K: 
L:=J; 
L1: =L2; FI 

NEW::= OLD[LJ <S; 
OLD[Ll:=NIL; 
ACTIVE: =Ll; 

END 
@!Cl.GATES:=REVERSE!NEWl; 
END 

ENDDEFN 

DEFINE RELAXATION_50RT!C:CHIPJ: 
BEGIN VAR DLO,NEW=GATES;G,H=GATE;5=51GNAL_WIRE;I,N=INT;R=REAL; OLD:=C.GATES; 
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N:= +1 FOR G SE OLD;+l: 
FOR G SE OLD;&& FOR I FROM l BY l; 00 @{Gl.INDEX:=l; END 
FOR G SE OLD:DO @IGl.RINDEX:= 

I+ IFS.INPUT THEN 0 ELSE S.FROM.INDEX FI FORS SE G.INPUTS; + 
IF G.OUTPUT.OUTPUT THEN N ELSE 0 FI + 
+ H.INOEX FOR H SE G.OUTPUT.TO;I/ 

1+1 FORS SE G.INPUTS; + +1 FOR H SE G.OUTPUT.TO; + 
IF G.OUTPUT.OUTPUT THEN 1 ELSE 0 FIJ; END 

NHI: =NI Li 
WHILE DEFINED<OLDJ; DO 

R: =-1.; 
<FOR G SE OLD;&& FOR I FROM 1 BY l;l WITH G.RINDEX>R; DO 

R:=G.RINDEX; 
N: =I; 
H:=G; 

END 
NEW::= H di; 
OLDCNJ:=NIL; 

END 
@<Cl.GATES:=NEW; 
ENO 

ENOOEFN 

Next, we have the parser. The parser accepts a series of function definitions and 

generates a CHIP for each function. The following input is an example of the 

parser's input. 

DEFINE DFLOPIINPUTS:DATA,CLOCK,RESET,SET OUTPUTS:OUT,BAR LOCALS:Xl,X2,X3J: 
X3 = X2 & RESET & DATA 
X2 = Xl & CLOCK & X3 
Xl = RESET & CLOCK & I X3 & SET & Xl J 
BAR = OUT & X2 & RESET 
OUT = BAR & Xl & SET 
OUT--.-BAR 

ENDOEFN 

DEFINE EQIINPUTS:A,B,CIN OUTPUTS:COUTl: 
COUT = IA & -Bl*l-A & BJ*CIN 

ENDDEFN 

DEFINE GEIINPUTS:A,8,CIN OUTPUTS:COUTJ: 
COUT= 1-A&BJ*CIN 

ENODEFN 

DEFINE COUNTERIINPUTS:RESET,EI,CLOCK OUTPUTS:OUT,BAR,EOl: 
<DFLOPIDATA:BAR SET:.TRUE. 

RESET:RESET CLOCK: 1-CLOCK!-Ell OUT:OUT BAR:BARl> 
EO=-EI !BAR 

ENODEFN 

DEFINE ONE_BITIINPUTS:SYNC,SHIFT,DATA,LOAD_ADR,LOAO_VAL,ONI,EQI,CNTI 
OUTPUTS:VALUE,ONO,EQO,CNTO 
LOCALS:VAL,AOR,COUNTI: 

<DFLOPlDATA:DATA SET:.TRUE. RESET:.TRUE. CLOCK:SHIFT OUT:VALUEJ> 
<DFLOP<DATA:YALUE SET:.TRUE. RESET:.TRUE. 

. CLOCK: 1-LOAD_VAL!-SHIFTJ OUT:VALJ> 
<DFLOP<DATA:VALUE SET:. TRUE. RESET:. TRUE. 

CLOCK: (-LOAO_ADR!-SHIFT> OUT:ADRJ> 
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<COUNTER<RESET:SYNC EI:CNTI CLOCK:SHIFT OUT:COUNT EO:CNTO)> <GEIA;COUNT B:VAL CIN:ONI COUT:ONOI> 
<EOIA:AOR B:VALUE CIN:EQI COUT:EQOl> 

ENODEFN 

This input will produce five CHIPs in the virtual memory. The final two CHIPs 
have expansions of the previously defined CHIPs. This parser will accept characters 
from a character string, a data file, or from the terminal. There is a file INCLUDE 
feature which uses the ICL metalanguage syntax: /*READ file;*/. 

DEFINE PROOUCERISC:SC>=CHAR_PROOUCER: 
II ISC;l IF OEFINEDISCJ THEN GIVING SCUJ DO SC:=SC(2-J: END ELSE THE_CHARl0l FI \\ 

ENODEFN 

DEFINE FILE_PROOUCERIFILE:FILE_SCl=CHAR_PROOUCER: 
BEGIN VAR F=IN_CHAR_FILE: 
llCF:=FILE\OPEN;l 

END 
ENODEFN 

BEGIN VAR C=CHAR; 
DO C:=F\INPUT; 

IF EOF<F> THEN CLOSE<Fl;C:=THE_CHARl0J; FI 
GIVE C 
ENO\\ 

VAR NESTING_LEVELS=SOS: 

PRODUCER= CHAR_PROOUCER; 

PRODUCERS= I CHAR_PROOUCER I; 

PUSHED_SC=SC; 

TOKEN=QS;-

I NS, OUTS, LOCALS=SQS; 

CALL_NUMBER=INT; 

DEFINE PARSE_SCISC:SCI: 
HOLDING NESTING_LEVELS:=NIL; 
DO ALSO_pARSEISC\PROOUCERJ; 
ENDHOLO 

ENDOEFN 

DEFINE PARSE_FILEISC:SCI: 
HOLDING NESTING_LEVELS:=NIL; 
DO ALSO_PARSEISC\FILE_PRODUCERJ; 
ENDHOLD 

ENDDEFN 

DEFINE ALSO_PARSE<CP:CHAR_PROOUCERI: 
HOLDING PRODUCER:=CP; 
DO IJHILE DO VERIFYl!'OEFINE'; !THE_CHAR1261Jl,'Definition'); 

GIVE TOKEN='DEFINE'; 
DO GET_DEFINITION; ENO 
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ENDDEFN 

DEFINE GET_A_CHARl=CHAR: 
BEGIN VAR C=CHAR; 
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IF OEFINEO!PUSHED_SC} THEN GIVING PUSHED_SCClJ 
00 PUSHED_SC:=PUSHEO_SCl2-J; END 

EF -DEFINED!PRODUCER) THEN THE_CHAR<26l 
ELSE DO C: =<~·,PRODUCER»:> \UPPERCASE; 

ENO 
ENOOEFN 

IF C=THE_CHAR(0) THEN 
PRODUCER:=PROOUCERS[lJ; 
PRODUCERS:=PROOUCERS[2-J; 
C:=GET_A_CHARl; FI 

GIVE C FI 

DEFINE GET_A_CHAR2=CHAR: 
BEGIN VAR C=CHAR; 
DO C:=GET A CHAR!; 

IF C='"'-THEN 

GIVE C 
END 

ENDDEFN 

WHILE GET_A_CHARl<>'"'; DO NOTHING; END 
C:=GET_A_CHARl; FI 

DEFINE GET A CHAR=CHAR: 
BEGIN - VAR C~CHAR; 
DO C:=GET A CHAR2: 

IF C='f'-THEN 
C:=GET_A_CHAR2; 

GIVE C 
END 

ENOOEFN 

IF C='*' THEN [:=METALANGUAGE; 
ELSE PUSHED_SC:=IC!; 

C:='/': FI FI 

DEFINE IS_BLANK(C:CHAR>=BOOL: C\IN_SET ISPACE;TAB;CR;LFl ENODEFN 

DEFINE IS_ID_CHAR<C:CHAR>=BOOL: LETTER<Cl !OIGIT(Cl ! (C=' _') ENOOEFN 

DEFINE GET_TOKEN=OS: 
BEGIN VAR C=CHAR;SC=SC; 
DO WHILE <C:=GET A CHAR:l\IS BLANK: DO NOTHING; ENO 

IF C\IS_ID_CHAR-THEN -
SC:= IC!; 
~JHILE CC:=GET_A_CHAR;l\IS_ID_CHAR; DO SC::= C <I; END 
PUSHED_SC::= C <I; 
SC:=REVERSE(SCl; 

ELSE SC:=ICI; Fl 
GIVE (TOKEN:=SC;) 
END 

ENODEFN 

DEFINE ERROR(A:QSJ: 
CRLF; 
WRITEC'ERROR: Expected 'SSASS', got 'SSTOKENJ; 
CRLF; 
HELP: 
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ENDDEFN 

DEFINE VERIFY(SQS:SOS B:QS): 
BEGIN VAR as. TOKEN=OS; 
TOKEN:=GET TOKEN: 
IF NEVER OS=TOKEN FOR as SE SOS; THEN ERROR<B>; FI 
END 

ENDDEFN 

DEFINE VERIFY<O:OSJ: VERIFY< IOI ,Q); ENDOEFN 

DEFINE CHECK_TOKEN!SOS:SOSl=BOOL: 
BEGIN VAR OS,TOKEN=OS; 
DO TOKEN:=GET_TOKEN: 
GIVE IF THERE_IS OS=TOKEN FOR as SE SOS; THEN TRUE 

ELSE DO PUSHED_SC::= TOKEN SS; GIVE FALSE FI 
ENO 

ENDDEFN 

DEFINE CHECK_TOKEN!O:OS>=BOOL: CHECK_TOKEN!IQl) 

DEFINE METALANGUAGE=CHAR: 
BEGIN VAR SC=SC;C=CHAR; 

DEFINE FILE_DOES_NOT_EXIST(SC:SCJ=SC: 
DO CALF; 

WRITE!'Fi le ·ssscss 

ENDDEFN 

' does not exist. Reset SC to new name.'}; 
CRLF: 
HELP; 

GIVE SC 
ENOOEFN 
DEF I NE r·1E TA HELP: 

CRLF; 
l-JR I TE ('Error in meta I anguage termination.'); 
CALF; 
HELP; 

ENDOEFN 
DO VERIFY('REAO'); 

SC: =GET TOKEN; 
IF CHECK_TOKEN('.'} THEN SC::= SS '.'<SGET_TOKEN; 
ELSE SC::= SS '.RLC'; FI 
IF GET_A_CHAR2<>';' THEN METAHELP; FI 
IF GET _A_CHAR2 <>' ,., ' THEN MET AHELP; FI 
IF GET _A_CHAR2 <>' I' THEN f1E T AHELP; FI 
LJHILE IF DEFINEO(SCJ THEN -EXISTS<FILE_SC::SC> ELSE FALSE FI; 
DO SC: :. =\FI LE_OOES_NOT _EX I ST; ENO 
IF DEFINEO!SCJ THEN 

PRODUCERS::= PRODUCER <S; 
PROOUCER:=SC\FILE_PROOUCER; FI 

GIVE GET_A_CHAR 
ENO 

ENOOEFN 

DEFINE GET_DEFINITION: 
BEGIN VAR NAME,NEST=OS; 
HOLDING INS;=NIL; 

OUTS:=NIL; 
LOCALS:=NIL; 
CHIP:=NIL; 
CALL_NUMBER:=0; 

DO NAME:=GET_TOKEN; 
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NAi1E {SS NEST FOR NEST SE REVERSE <NESTING_LEVELS); SS NAf1E); 
NESTING_LEVELS:: = <NM1Etb' _' l <S; 
GET_HEADER: 
WHILE GET_TOKEN<>'ENDDEFN'; DO 

IF TOKEN='DEFJNE' THEN GET_DEFINITION; 
EF TOKEN=!THE_CHAR{2Gll THEN 

CRLF; 
WRITE<'End of file encountered inside DEFINE'); 
CRLF: 
HELP; 

EF TOKEN='<' THEN GET_CALL: 
ELSE GET_EQUATION(TOKENl: FI 

END 
FINISH: 
NESTING_LEVELS:=NESTING_LEVELSC2-J; 
PUT<CHIPl; 
CRLF; 
WRITE{'OEFINEO:'SSCHIP.NAMEl; 
CRLF: 

ENDHOLD 
ENO 

ENOOEFN 

DEFINE GET_HEADER: 
BEGIN VAR GROUP,SIG=QS;SQS=SQS; 
VER I FY {' (' J ; 
WHILE 00 VERIFY( l'INPUTS';'OUTPUTS';'LOCALS';'J'I ,'Signal type'!; 

GIVE TOKEN<>')'; 
DO GROUP:=TOKEN; 

VER I FY (' : ' } ; 

END 

SOS:=ICOLLECT GET_TOKEN UNTIL -CHECK_TOKEN<','l;l; 
IF GROUP=' INPUTS' THEN INS::= SOS SS; 

INPUTS <SOS l : 
EF GROUP='OUTPUTS' THEN OUTS::= SOS SS; 

OUTPUTS {SQSl; 
ELSE LOCALS::= SOS SS; FI 

VER I FY (': 'l; 
END 

ENDDEFN 

DEFINE GET_POSSIBLE=POSSIBLE_SIGNAL: 
IF CHECK_TOKENC'. ') THEN 

DO YERIFY(!'TRUE';'FALSE'l,'.TRUE. or .FALSE.'); 
GIVE GIVING TOKEN='TRUE' 

DO VERIFY<'. 'l; END 
ELSE GET_RHSl FI 

ENDDEFN 

DEFINE GET_CALL: 
BEGIN VAR NAf1E, NEST, SI G=OS; C=CHI P; SV=SI GNAL_VALUES; 

S=SIGNAL_WIRE;I=INT; 
IF CHECK_TOKEN<'@'l THEN 

NAME:=GET_TOKEN: 
ELSE NAl1E: =GET_ TOKEN; 

IF DEFINED<NESTING_LEVELSJ THEN 
IF THERE_IS 

SS NEST FOR NEST SE REVERSE(NESTING_LEVELSCI-Jl; 
SS NAME \VM EXISTS AS 'DCHIP 1/2/81' 

FOR I FROM 1-TO l++l FOR NEST SE NESTING_LEYELS;; 
THEN NAME::= SS NEST 
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FOR NEST SE REVERSE<NESTING_LEVELS[J-JJ;SS; FI FI FI 
IF NAME\Yt1_EXISTS_AS 'DCHIP 112/81' THEN 

CALL_NUl"lBER: : =+l; 
C: =GET <NAME>; 
SV:=NIL; 
VER I FY (' (' } : 
WHILE <SIG:=GET_TOKEN;}<>'l'; DO 

IF THERE_IS S.NAME-SIG FORS SE C.SIGNALS;WITH S.INPUT!S.OUTPUT; THEN VERIFY(':'!; 
SY::= [NAME:SIG FROM:GET_POSSIBLEl <S; 

ELSE CALF; 

END 
VERIFY('>'}; 

WRITE<'Chip 'SSNAMESS' does not have a port named 'SSSIGJ; CALF; 
HELP; FI 

EXPAND<CCHIP:C NAME:' .. 'SSSC!CALL_NUMBERJ VALUES:SVJ); ELSE CALF; 

END 
ENDDEFN 

WRITE<'There is no CHIP named 'SSNAMEJ; 
CALF; 
HELP; FI 

DEFINE GET_EOUATION!QS:OSJ: 
BEGIN VAR 0=05; 
IF THERE_IS 0=05 FOR Q SE OUTSSSLOCALS; THEN 

VER I FY ( {' =' ; '"''I , 'Equation' J : 
IF TOKEN='=' THEN FUSE(QS,GET_RHSlJ; ELSE VINVERT<OS,GET_TOKEN}; FI ELSE CALF: 

END 
ENODEFN 

WRITEC'There is no local or output named 'SSQS}; 
CALF: 
HELP; FI 

DEFINE GET_RHSl=SIGNAL_WIRE: 
BEGIN VAR S=S I GNAL_l.J I RE; 
DO S: =GET _RHS2; 

WHILE CHECK_TOKEN<'XOR'l; DO S:=X0R(S,GET_RHS2J; END 
GIVE S 
END 

ENDOEFN 

DEF I NE GET _RHS2 =5 I GNAL_lj I RE: 
BEGIN VAR SljS=SIGNAL_WIRES; 
00 S~IS: =!GET _RHS3l; 

1-IH I LE CHECK_ TOKEN ( ' ! ' ) ; DO S~JS: : = GET _RHS3 <S; END 
GIVE IF DEFINED<SWS[2-ll THEN NOR<SWSl ELSE SWSClJ FI 
ENO 

ENDOEFN 

DEF I NE GET _RHS3=S l GNAL_l~ I RE: 
BEGIN VAR SWS=SIGNAL_WIRES; 
DO S~JS: = IGET _RHS4J ; 

UH I LE CHECK_ TOKEN (' +' l ; DO SWS: : = GET _RHS4 <S; END 
GlVE fF DEFINED<SWSC2-ll THEN ORCSWSJ ELSE SWSClJ FI 
END 

ENDDEFN 
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BEGIN VAR SlJS=S I GNAL_l.JI RES; 
00 SWS:=!GET_RHS51; 
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l-IHILE CHECK_TOKENC'&'l; 00 St.JS::=: GET_RHS5 <S; ENO 
GI VE IF DEF I NED !SlJS (2-J l THEN NANO !SlJSJ ELSE SWS [lJ FI 
END 

ENDDEFN 

DEF! NE GET _RHSS==SI GNAL_tJI RE: 
BEGIN VAR SIJS=SIGNAL_WIRES; 
DO SIJS: = IGET _RHS6l: 

WHILE CHECK_ TOKEN (' i·t' l : DO SlJS: : = GET _RHS6 <S: ENO 
GIVE IF DEFINEO<St.JS(2-Jl THEN ANOISl.ISl ELSE SWSClJ FI 
END 

ENDOEFN 

DEFINE GET_RHS6=SIGNAL_IJIRE: 
IF CHECK_TOKENC'-'} THEN INVERT!GET_RHS7} ELSE GET_RHS7 FI 

ENDOEFN 

DEFINE GET RHS7=SIGNAL WIRE: 
BEGIN - VAR a.x-os~S.IF=SIGNAL_WIRE;ALL,IFS=SIGNAL_WIRES; 

DEF I NE POSSIBLE (St.JS: SI GNAL_~l 1 RES) : 
. BEGIN VAR P =POSS IBLE_S I GNAL; 

P:,,,,GET_POSSIBLE; 
CASE P OF 
FIXED: IF P THEN ALL::= NAND<SWSl <S; FI 
VAR: ALL::= NANOCSWSS>Pl <S; 
ENOCASE 
ENO 

ENDOEFN 
DO IF CHECK_TOKEN!' (') THEN 

S: =GET _RHSl: 
VER I FY {' ) ' ) : 

EF CHECK_TOKEN{'JF'l THEN 
IF: =GET _RHSl; 
ALL:=NIL; 
VERIFY ('THEN' l; 
POSSIBLE ((!Fl l; 
IFS:=IGET_INVERT!IFll; 
WHILE DO VERIFY! l'EF';'ELSE'J,'EF or ELSE'l; 

GIVE TOKEN=='EF'; 
DO IF:=GET_RHSl; 

ENO 

VER I FY C' THEN' } ; 
POSSIBLE!IFSS>IFl; 
IFS::= GET_INVERT!lF> <S; 

POSS IBLE <IFS l ; 
VER I FY ( ' F I ' l : 
S: =NANO !ALLl: 

ELSE O:=GET_TOKEN; 

GIVE S 
ENO 

ENDOEFN 

IF THERE_IS X=Q FOR X SE INSUOUTSHLOCALS; THEN S:=O: 
ELSE CRLF: 

I-JR I TE ('There i s no s i gna I named 'UQ) ; 
CRLF; 
HELP; FI FI 

• 
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There is a tau-model simulator built into RLC. The MAKE SIMULATOR function 

will take the current CHIP and construct a SIM_CHIP, which is the simulator 

representation of the chip. The user then defines the pulse trains which drive the 

input wires, using the CLOCK and WAVEFORM functions. Following this, the 

RUN(time) function is called, which actually runs the simulation from t=O to 

t=time. RUN will initialize all of the nodes in the circuit. In some cases, like for 

cross-coupled circuits, RUN will ask the user whether a node should be initiallized 

high or low. Once the simulation is complete, the user may plot waveforms of any 

of the nodes using the PLOT functions. The simulator saves the waveforms of each 

node so that many plots can be generated from a single simulation run. 

TYPE SIM_GATE= UNPUTS:Sil1_lJIRES 
OUTPUT: SI ll_IJ I RE 
TYPE: GATE_ TYPE 
GATE:GATEJ; 

SIM_GATES= I Slll_GATE l; 

s I M_W IRE= rNM1E: as 
FROl1: Slll_GATE 
TO: SI II_ GATES 
WlRE:SlGNAL_WlRE 
VALUE,NEW,SET:BOOL 
TAU: REAL 
TRACE:SPJ; 

SIM_WIRES= I SlM_WlRE l; 

SIM_CHIP= [WIRES:Slt1_WIRE5 GATE5:SIM_GATE5J; 

VAR SIM_CHlP=SlM_CHlP; 

DEF l NE MAKE~S I ~!ULA TOR: 
BEGIN VAR G=GATE; I= l NT; S, T =5 I GNAL_~II RE; 0=5 l M_GATE; 
DO mfGJ.INOEX:=l ; FOR G SE CHIP.GATES;&& FOR I FROM 1 BY l; 
SIM_CHIP: =[GATES: !COLLECT CTYPE:G. TYPE GATE:GJ FOR G SE CHIP.GATES; l J; 
DO @<Sl.VHEIGHT:=l; FORS SE CHIP.SIGNALS;&& FOR I FROM 1 BY l; 
SIM_CHIP.WIRES:=ICOLLECT 

lNM1E: S. NAME 
FROl1: SI M_CH IP. GA TES CS. FROll. I NOEXJ 
TO: !COLLECT Slf1_CHIP.GATE5[G.INDEXJ FOR G SE S.TO;l 
WIRE:S 
SET:FALSE 
TAU: +CASE G.TYPE OF 

NOR: 1 
INVERT: 1 
NANO: +1 FORT SE G.INPUTS; 
ENOCASE FOR G SES. TO;J 

FORS SE CHIP.SIGNALS;}; 
DO @(0).0LJTPUT:=SIM_CHIP.WIRES[Q.GATE.OUTPUT.VHEIGHTJ; 

@(Q}.INPUTS:=ICOLLECT SIM_CHIP.WIRES[S.VHEIGHTJ 
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FORS SEQ.GATE.INPUTS;}; 
FOR Q SE SIM_CHIP.GATES; 
END 

ENDDEFN 

TYPE EVENT= EITHER 
WIRE= SIM_WIRE 
SS: SS 

ENOOR; 

EVENTS= I EVENT l ; 

TIME_SLOT= [TJME:REAL EVENTS:EVENTSJ; 

TIME_LINE= I TIME_SLOT }; 

GATE_SIMULATION= //(SIM_GATE)\\; 

VAR TIME=REAL; 

TIME_LINE= TIME_LINE; 

NAND_SIMULATION, NOR_SIMULATION, 
INVERT _SIMULATION= GATE_S I f1ULAT I ON; 

ABORT_SIMULATION= BOOL; 

DEFINE CLEAR_SlllULATION: 
BEGIN VAR S=SIM_WIRE; 
T lt1E_Ll NE: =NIL; 
TIME:=0: 
DO @1SJ.TRACE:=Nll; 

@(Sl.SET::FALSE; FORS SE SIM_CHIP.WIRES; 
ENO 

ENDOEFN 

DEFINE SIMULATE(GS:SIM_GATESl: 
BEGIN VAR G=SIM_GATE; 
FOR G SE GS; DO 

CASE G.TYPE OF 
INVERT: <,·:INVERT_SIMULATION..-,> (Gl: 
NOR: <-::NOR_Sl\1ULATION,·,> (Gl: 
NANO: <>'(NAND_SI MULAT I ON,·,> IGl: 
ENDCASE 

ENO 
END 

-ENODEFN 

DEFINE SIMULATE(E:EVENTJ: 
CASE E OF 
WIRE: @(EJ.VALUE:=E.NEW; 

@{El.TRACE::= TIME# IF E.VALUE THEN 1 ELSE 0 FI <I; 
SIMULATE CE. TOl; 

SS: <,·£,·,>; 
ENDCASE 

ENDDEFN 
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DEFINE SIMULATE<T:TIME SLOTJ: 
BEGIN VAR E=EVENT: 
Tl ME: = T. T IME: 
WHILE -ABORT_SIMULATION;&& FORE $ET.EVENTS; DO SIMULATE<E); END 
END 

ENDOEFN 

DEFINE SIMULATE: 
HOLDING ABORT_SIMULATION:=FALSE; 
DO WHILE -ABORT_SIMULATION; DO 

SIMULATE<GIVING TIME_LINE[ll 

END 
ENDHOLD 

ENODEFN 

DO Til1E_LINE:=TIME_LINEC2-J; END>; 

DEFINE EQ<A,B:SIM_WIRE>=BOOL: MACR0-10C'LSPEQ$'} 

DEFINE EQ(A,B:EVENTl=BOOL: 
CASE A OF 
WIRE: CASE B OF 

WIRE: A\EQ B 
ELSE: FALSE 
ENOCASE 

ELSE: FALSE 
ENDCASE 

ENOOEFN 

DEFINE HOLD_UNTIL<E:EVENT R:REAL>: 
BEGIN VAR TS=Til1E_SLOT;I=INT;V=EVENT; 
I: =0; 
IF OEFINED<TIME_LINEJ THEN 

FOR TS SE Tl 11E_LI NE; WI TH TS. T H1E-EPS I LON=<R; && FOR I FROI! 1 BY 1; DO 
IF TS.TIME\IS_CLOSE_TO R THEN 

END 

IF NEVER E\EQ V FOR V SE TS.EVENTS; THEN 
@(TSJ.EVENTS::= E <$; FI 

I:=..:.l; FI 

IF 1>0 THEN TIME_LINEU+l-J:=[Tlt1E:R EVENTS: !Ell 
<S TIME_LINEU+l-J; 

EF I=0 THEN TIME_LINE::= [TIME:R EVENTS: !EJJ <S; FI 
ELSE TIME_LINE:= I [T!ME:R EVENTS: !El JJ; FI 
END. 

ENDOEFN 

DEFINE HOLD<E:EVENT R:REALl: HOLD_UNTILCE,TIME+Rl; ENOOEFN 

TYPE GATE_EVALUATOR=//BOOLCSIM_WIRESJ\\; 

DEFINE GATE_SIMULATOR<G:SIM_GATE GE:GATE_EVALUATORJ: 
BEGIN VAR R=BOOL; 
R:=<*GE*>(G.INPUTSl; 
IF R<>G.OUTPUT.NEW THEN 

@CG.OUTPUTJ.NEW:=R; 
HOLOCG.OUTPUT,.3l*G.OUTPUT.TAUl; Fl 

END 
ENDDEFN 

DEF I NE NANO CWS: SI f1_W I RES l =BDDL: 
BEGIN VAR S=SIM_WIRE; 



THERE_IS ~S.VALUE FORS SEWS; 
END 

ENDDEFN 

DEF I NE NOR ( WS: SI M_W IRES) =BOOL: 
BEGIN VAR S=SIM_WIRE; 
NEVERS.VALUE FORS SEWS; 
END 

ENDDEFN 

DEFINE INVERT(WS:SIM_WIRES>=BOOL: 
-WS Cl l. VALUE 

ENDDEFN 
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NAND_SIMULATION:=//:GATE_SIMULATORlSIM_GATE> [//:NANDlSIM_WIRES}\\J\\; 

NOR_SIMULATION:=//:GATE_SIMULATOR!SIM_GATE> [//:NOR<SIM_WIRES}\\J\\; 

INVERT_SIMULATION:=//:GATE_SIMULATOR!SIM_GATEl C//:INVERT!SIM_WIRES)\\J\\ 

DEFINE INITIALIZE<G:SIM_GATE>: 
BEGIN VAR W=SIM_WIRE;O=SIM_GATE; 

DEFINE IN!T(B:BOOLl: 
PRESETCG.OUTPUT,Bl; 
DO INITIALIZE!Q); FOR Q IE G.OUTPUT. TO; 

. ENDDEFN 
IF -G.OUTPUT.SET THEN 

CASE G.TYPE OF 

END 
ENDOEFN 

INVERT: IF G.INPUTSClJ.SET THEN 
INIT(-G.!NPUTSClJ.VALUEl; FI 

NANO: IF THERE_IS W.SET & -W.VALUE FOR W SE G.!NPUTS; THEN 
INJ.T (TRUE>; 

EF ALWAYS W.SET & W.VALUE FOR W BEG.INPUTS; THEN 
INITlFALSEl; Fl 

NOR: IF THERE_IS W.SET & W.VALUE FOR W SE G.INPUTS; THEN 
INIT!FALSt:>; 

EF ALWAYS W.SET & -W.VALUE FOR W SE G.!NPUTS; THEN 
IN! T<TRUEl; FI 

ENDCASE FI 

DEFINE INITIALIZE: 
BEGIN VAR G=SIM_GATE;W=SIM_WIRE; 
DO INITIALIZE!GJ; FOR G SE SIM_CHIP.GATES; 
IF THERE_IS -W.SET FOR W SE SIM_CHIP.WIRES; THEN 

END 
ENODEFN 

CWRITE('/Nlnitial ize node 'SSW.NAME$$'. High(lJ or Low!0J?'J; 
PRESET!W,GET_RESPONSEC'10'J='l'J; 
I NIT I ALI ZE; FI 

DEFINE RUN!T:REALl: 
BEGIN VAR SW=SIM_WIRE; 
TJr1E: =0; 
HOLD_UNTIL!//ABORT_SIMULATION:=TRUE;\\,T); 
I NIT I ALI ZE; 
SIMULATE; 
CALF; 
WRITE('Simulation terminated at time='); 



WRITE {TlMEl; 
CRLF; 
FOR SW SE SIM_CHIP.WIRES; DO 
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@(SWl.TRACE:=REVERSE<TIME#IF SW.VALUE THEN 1 ELSE 0 FI <SSW.TRACE>: 
END 
END 

ENDDEFN 

DEFINE PRESET<W:SIM_WIRE V:BOOL}: 
@(W. VALUE: =V; 
@dW).NEW:=V; 
@(Wl.SET:=TRUE; 
@CWl.TRACE:=l0#IF V THEN 1 ELSE 0 Fil; 

ENOOEFN 

DEFINE PRESETCN:OS V:BOOLI: 
BEGIN VAR ~!=SI M_l.J IRE; 
IF THERE_;IS W.NAME\EO N FOR W SE SIM_CHIP.WIRES; THEN PRESET Cl.I, V); 
ELSE CRLF; 

ENO 
ENDDEFN 

WAITEC'There is no wire named'); 
WRITE<Nl; 
CALF; 
HELP; FI 

DEFINE PRESET_HlGHISOS:SOSl: 
BEGIN VAR OS=OS; 
DO PRESETCQS,TRUEl; FOR OS SE SOS; 
ENO 

ENDDEFN 

DEFINE PRESET_LOWCSQS:SQSl: 
BEGIN VAR OS=OS; 
DO PRESET(QS,FALSEl; FOR OS SE SOS; 
END 

ENDDEFN 

TYPE CLOCK= [PHASE, HIGH, LOW: REAL VALUE: BOOL WIRE: SI M_W I RE I NP! IT: r; 

WAVEFORM= lYALUE:BOOL DELTAS:SR WIRE:SIM_WIRE INPUT:OSJ; 

DEFINE NEXT_CLOCKCC:CLOCKl: 
@CC.WIREJ.VALUE:=(C.VALUE::=-;l; 
@CC.l.JIREl.TRACE::"' TIME#IF C.VALUE THEN 1 ELSE 0 FI d~; 
SIMULATECC.WIRE.TOl; 
HOLDC//:NEXT_CLOCKCCJ\\,IF C.VALUE THEN C.HIGH ELSE C.LOW Fil; 

ENDDEFN 

DEFINE CLOCKCC:CLOCKl: 
BEGIN VAR W=SIM_WIRE; 
IF THERE_lS ~l.NAME\EO C. INPUT FOR W SE SIM_CHIP.WIRES;~JITH W.WIRE. INPUT; 
THEN PRESETCW,C.VALUEl; 

C. WIRE: =W; 
HOLD UNTJL{//:NEXT CLOCK[CJ\\,C.PHASEl; 

ELSE CALF; . -
WRITEC'There is no input named'); 
WAI TE CC. INPUT>; 
CRLF; 
HELP; FI 



END 
ENDDEFN 

DEFINE NEXT_WAVEFORM<W:WAVEFORMl: 
@{W.WIREl.VALUE:=<W.VALUE::=-;l; 
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@{W.WIRE>.TRACE::= TIME# IF W.YALUE THEN 1 ELSE 0 FI <S; 
SIMULATE CW.WIRE.TO!; 
e<WJ.DELTAS:=W.DELTASC2-l; 
IF DEFINED<W.OELTASl THEN 

HOLO~UNTlL{//:NEXT_WAVEFORMlWJ\\,W.DELTAS[lll; FI 
ENDDEFN 

DEF I NE l.JA YEFORM (l.J: ~JA VEFORM l : 
BEGIN VAR I=SIM_WIRE; 
IF THERE_IS I.NAME\EQ W.INPUT FOR I SE SIM_CHIP.WIRES; 

WITH I.WIRE.INPUT; 
THEN PRESETCl,W.YALUEl; 

W.WIRE:=I; 
HOLO_UNTILC//:NEXT_WAVEFORM[Wl\\,W.DELTAS[lJ>; 

ELSE CRLF; 

END 
ENDDEFN 

WRITEC'There Is no Input named'); 
WRITE CW. INPUT>; 
CRLF; 
HELP; FI 

DEFINE PLOTCPATH:SP NAME:OS START,SCALEX:REALl=MRG: 
BEGIN VAR P,O=POINT; 
!NAME\PAINTED RED\SCALEO_BY .s~·dl#ll; 
WIRE<BLUE,0,PATH[ll.X#PATH[ll.Y*7 <$ $$ IQ.X*SCALEX#P.Y*7;.#0.Y*7l 

FOR !P;Ol $C PATH;l\AT START#0l 
END 

ENDDEFN 

DEFINE PLOT<SOS:SQS PLT:SIZABLE_COLOR_PLOTTER SCALEX:REALl: 
BEGIN VAR QS-QS;X,Y=REAL;SW=SIM_WIRE; 
X:=8* MAX LENGTHCSC::QSJ FOR QS SE SOS; + 4; 
PLOT<MRG:: !COLLECT IF THERE_IS S~J.NAf1E\EQ QS FOR SW SE Slt1_CHIP.WIRES; 

THEN PLOT<SW.TRACE,SW.NAME,X,SCALEXl\AT 0#Y 

END 
ENDDEFN 

ELSE NIL FI FOR QS SE SQS;&&FOR Y FROM 0 BY -12.;l ,PLTl; 

DEFINE PLOTCSQS:SQS PLT:SIZABLE_COLOR_PLOTTERJ: 
PLOT<SQS,PLT,ll; 

ENDDEFN 

Finally, the RLC has a Run Time System (RTS) which interacts with the user. The 

user types commands to the RTS, which then calls the appropriate routine. We 

w-ant the user to be able to add new routines (such as sorters or packers) at any 

time, just as new technologies can be added. This requires the use of suspendable 

functions. We will name these functions, so users may call them by name. The 

NAME~S datatype holds functions which require no parameters, while NAME:Q__ 

CHIP CONSUMERs hold functions which require a CHIP as its single input 
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parameter. We then define global lists of these functions, and assign the existing 
routines to the list. 

TYPE NAMED~SS= [NAME:OS FUNCTION:SSJ; 

NAMED_SSS= I NAMED_SS l; 

NAMED_CHIP_CONSUMER= [NAME:OS CONSUMER:CHIP_CONSUMERJ; 

NAMEO_CHIP_CONSUMERS= { NAMED_CHIP_CONSUMER J; 

VAR OPTIMIZERS= NA11ED_SSS; 

SORTERS.PACKERS= NAMEO_CHIP_CONSUMERS; 

OPTIMIZERS:= 
[NAME:'REMOVE_INVERTERS' FUNCTION://:REMOVE_INVERTERS\\J ; 
CNAME: 'REMOVE_REDUNOANC I ES' FUNCTION: I I: REMOVE_REDUNDANC I ES\ \J 
CNAl1E: 'REMOVE_NANDS' FUNCTION: II: REMOVE_NANOS\\J ; 
CNAME: 'REMOVE_NORS' FUNCTION:ll:REMOVE_NORS\\J ; 
CNAl1E: 'DE_MORGAN' FUNCTION: I I: DE_f10RGAN\ \J ; 
[NAME:'UNIQUE_INPUTS' FUNCTION://:UNJOUE_INPUTS\\J 
[NAME:'MERGE' FUNCTION://:MERGE\\J l; 

PACKERS:= 
! [NAME:'NMOS_PACK_l' CONSUMER://:NMOS_PACK_lCCHIP)\\J ; 

[NAME: 'Nt10S_PACK_2' CONSUf1ER://:NMOS_PACK_2CCHJP)\\J l; 

SORTERS:= 
{ [NAME:'SMALL_SORT' CONSUMER:ll:SMALL_SORTCCH!Pl\\J ; 

[NAME:' NO_SORT' CONSUMER: II :NO_SORTCCHI P) \\J ; 
CNAME:'RELAXATION_SORT' CONSUMER://:RELAXATION_SORTCCHIPl\\J l; 

The following section is the RLC run time system. The user types commands to the 
RTS, V\.Thich then calls the appropriate routine. When typing a command, the user 
need only type enough to make the command unambiguous. Question marks can be 
typed at any point to list the current options. 

DEFINE RLC_SYSTEM: 
SYSOUTCSAVE_INDEPENDENTl; 
RLC; 
SYSOUTCNO_SAVE); 

ENDOEFN 

DEFINE RLC: 
BEGIN VAR GO=BOOL; 
GO: =TRUE; 
WHILE GO; DO 

JRST <MENU ('?' , {'GET chip' ; 'PUT chip' ; 'READ f i I e' ; 'PARSE ·, npu t' ; 

0=> CRLF; 

'S !11ULA TE' ; 'ED IT I og i c' ; 'PLOT chip' ; 'FI LE p Io t' ; 
'SORT gates':'DIRECTORY';'UNPARSE';'STATS';'QUIT'l }) 



1 => RTS_GET; 
2=> FHS_PUT; 
3=> RTS_READ; 
4=> RTS_PARSE; 
5=> RTS_SHIULATE; 
8=> RTS_EDIT; 
7=> RTS_PLOT; 
8=> RTS_FILE; 
9=> RTS_SORT; 
10=> CRLF; 
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VM_DIR C' "'" 'DCHI P 112/81'); 
CRLF; 

END 
END 

ENDDEFN 

11 =.> UNPARSE; 
12=> RTS_STATS; 
13=> GO:=FALSE; 
ENDJRST 

DEFINE RTS_GET: 
BEGIN VAR V=VM_DIRECTDRY_ELEMENT; 
CRLF; 
V:=MENUC'CHIP name?','*','OCHIP 1/2/81'); 
IF DEFINEDCV> THEN CHIP:=GET<V.NAME>; Fl 
END 

ENDDEFN 

DEFINE RTS_PUT: 
CRLF; 
WRITEC'Putting 'SSCHJP.NAMESS' into virtual memory ... '); 
CRLF; 
PUTCCHIP>; 

ENDDEFN 

DEFINE RTS_READ: 
BEGIN VAR FILE=SC; 
CALF; 
FILE:=GET_SCC'Enter file name' ,CR>; 
WHILE IF OEFINEOCFILEJ THEN -EXISTSCFILE> ELSE FALSE FI; DO 

CALF; 

ENO 

WRITEC'The file 'SSFILEU' does not exist. '); 
FILE: =GET _SC<' Enter new f i I e name', CR>; 

IF DEFINEDCFILE> THEN PARSE_FILECFILE>; FI 
END 

ENODEFN 

DEFINE RTS_PARSE: 
BEGIN VAR SC=SC; 
CRLF; 
SC:·=GET_SCC'Enter RLC source:' ,BELU; 
IF DEFINEOCSC) THEN PARSE_SCCSCJ; Fl 
END 

ENDDEFN 

DEFINE RTS_SIMULATE:CRLF; ENDDEFN 

DEF I NE RTS_ED IT: 
BEGIN VAR GO=BDOL;NSS=NAMED_SS;I=INT; 
GO: =TRUE; 
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CRLF; 
WHILE GO; DO . 

I : =MENU ('EDIT>' , ! 'DONE' ; COLLECT NSS. NAME FOR NSS SE OPT Ir1 I ZERS; l ) ; 
IF 1<2 THEN GO:=FALSE; 

END 
END 

ENDDEFN 

ELSE <*OPTIMIZERSU-lJ.FUNCTION*>; FI 
CRLF; 

VAR RLC _tlP I C TURE =MP I C TURE; 

DEFINE RTS_STATS: 
BEGIN VAR T=TECHNOLOGY;l=INT; 
CRLF; 
1:-MENUl'Enter Technology:', lCOLLECT T.NAME FORT SE TECHNOLOGIES;!); 
CRLF; 
IF 1>0 THEN STATSCTECHNOLOGIESCIJ); FI 
END 

ENDDEFN 

DEFINE RTS_PLOT: 
BEGIN VAR T-TECHNOLOGY:I=INT; 
CRLF; 
I: =MENU ('Enter Techno I ogy: ', !COLLECT T. NAME FOR T SE TECHNOLOGIES;}); 
CRLF; 
IF 1>0 THEN 

END 
ENDOEFN 

RLC~MP I CTURE: =CDf·1P I LE <CH IP, TECHNOLOGIES [I J ) ; 
RTS_PLOTTER; FI 

DEFINE RTS_FILE: 
BEGIN VAR SC-SC; 
CRLF: 
SC:=GET_SCC'Enter AIF file name:',CRJ; 
CRLF: 
IF DEFINEDCSC) THEN 

RLC_MPICTURE:=SC\AIF; 
RTS_PLOTTER; FI 

END 
ENDDEFN 

DEFINE RTS_PLOTTER: 
BEGIN VAR l=INT;SC=SC; 

END 
ENDOEFN 

JRST !MENU {'Enter PI otter:', {' HP7221A'; 'HP1302': 'HP2549'; 'SCREEN' ; 
'F!LE':'AREA_HP7221A';'AREA_HP2843'l )) 

0=> NOTHING; 
1=> PLOT!RLC_MPICTURE,HP_7221A); 
2=> PLOT!RLC_MPICTURE,HP1302); 
3=> NOTHING: 
4=> PLOT<RLC_MPICTURE,SCREENl; 
5=> CALF; 

SC:=GET_SC!'Enter file name:',CRJ; 
IF OEFINEO!SC) THEN PLOTCRLC_MPICTURE,SC\AIFl; FI 

5=> PLOT!RLC_MPICTURE,AREA_HP_7221A_NOl; 
7=> NOTHING; 
ENDJRST 
CALF; 
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DEFINE RTS_SORT: 
BEGIN VAR I=INT;NCC=NAMED_CHIP _CONSUt1ER; 
CRLF; 
I: =MENU C' Sort routine?', !COLLECT NCC. NAME FOR NCC SE SORTERS; l l; 
IF 1>0 THEN <*SORTERS[JJ.CONSUMER*>CCHIPJ; FI 
CRLF; 
END 

ENDOEFN 



-278-

Appendix 5: Bristle Blocks Elements 

The following elements are available for use in Bristle Blocks. The type of each 
element is given, followed by the required and optional parameters for element of 
the given type. 

A5.1: Registers 

There are four basic styles of registers in Bristle Blocks. The first type is the 
standard scratchpad register. It may read or write data from the two data buses. Its 
internal value may refresh, and it may load with a constant. The second type of 
register acts like the scratchpad register, but its value may be driven into the 
instruction decoder. The third register type acts like the scratchpad register, but it 
may also load selected bi ts from the instruction decoder. The fourth register type is 
a combination of the second and third types: the register may drive the instruction 
decoder, and the register may load from the instruction decoder. In the second and 
fourth types, the LATCH parameter controls the loading of the register, which 
occurs during PH!_?. 

lU Element: REGISTER 
Required Parameters: 

Keyword: OPTIONS Type: REGISTER 
Optional Parameters: NONE 

l2> Element: DATAl'OCONTROL 
Required Parameters: -

Keyword: REGISTER Type: REGISTER 
Keyword: MAP Type: SOURCES 

Optional Parameters: NONE 

(3) EI ement: CONTROITO DATA 
Required Parameters: -

Keyword: REGISTER Type: REGISTER 
Keyword: MAP Type: DESTS 
Keyword: ·LATCH Type: EQUATION 

Optional Parameters: NONE 

(4) EI ement: CONTROITO DATA AND BACK 
Required Parameters: -

Keyword: REGISTER 
Keyword: TO_CONTROL 
Keyword: TO_DATA 
Keyword: LATCH 

Optional Parameters: NONE 

Type: 
Type: 
Type: 
Type: 

REGISTER 
SOURCES 
DES TS 
EQUATION 
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A5.2: Simple Arithmetic Elements 

There ~re four simple arithmetic elements in Bristle Blocks: Incrementers, 

Decrementers, Adders, and Subtracters. The incrementer and decrementer each have 

an input register and an optional output register. If the output register is specified, 

the output of the incrementer/decrementer will load the register. If the output 

register is not specified, the incrementer/decrementer will load the input register. 

The LOAD equation states when the load should occur. The carry output is 

available, if desired, to drive the instruction decoder or an output pad. 

The adder and subtracter have two input registers and an optional output register. 

If the output register is specified, the results of the operation are stored in the 

output register. If the output register is not specified, the result of the operation is 

stored in the INPU'l2_A register. For the subtracter, INPUT~ is subtracted from 

INPUT A. The LOAD equation again controls when the register is to be loaded. The 

LATCH equation transfers data from the input registers into internal nodes, and this 

happens during PH!_!. The user may specify a carry input and may use the carry 

output. Notice that these signals are inverted. 

(5} Element: INCREMENTER 
Required Parameters: 

Key1.iord: INPUT_REGISTER Type: REGISTER 
Key1.iord: LOAD Type: EQUATION 

Optional Parameters: 
Keyword: OUTPUT_REGISTER Type: REGISTER 
Keyword: PRE CHARGE Type: EQUATION Default: Alt.JAYS 
Key1.iord: CARRY_OUT Type: OUTPUT 

(E)) Element: DEC REMENTER 
Required Parameters: 

Keyword: INPUT_REGISTER Type: REGISTER 
Keyword: LOAD Type: EQUATION 

Opt i ona I Parameters: 
Keyword: OUTPUT_REGISTER Type: REGISTER 
Keyword: PRECHARGE Type: EQUATION Default: ALWAYS 
Keyword: CARRY_OUT Type: OUTPUT 



(7) Element: ADDER 
Required Parameters: 

K·eyword: -INPUT _A 
K ey1.iord: INPUT _B 
Keyword: LOAD 

Optional Parameters: 
Key1.iord: OUTPUT_REGlSTER 
Keyword: PRECHARGE 
Keyword: CARRY_OUT_BAR 
Keyword: LATCH 
Key1.iord: CARRY _I N_BAR 

<8> EI ement: SUBTRACTER 
Required Parameters: 

Keyword: INPUT _A 
Keyword: INPUT_B 
Key1mrd: LOAD 

Optional Parameters: 
Keyword: OUTPUT_REGISTER 
Keyword: PRECHARGE 
Keyword: CARRY_OUT_BAR 
Keyword: LATCH 
Keyword: CARRY_IN_BAR 
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Type: REGISTER 
Type: REGISTER 
Type: EQUATION 

Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 
Type: EQUATION 
Type: EQUATION 

Type: REGISTER 
Type: REGISTER 
Type: EQUATION 

Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 
Type: EQUATION 
Type: EQUATION 

A5.3: Arithmetic/Logic Units 

Default: ALWAYS 

Default: AaJAYS 
Default: NEVER 

De fau I t: AL~JAYS 

Default: ALWAYS 
Default: NEVER 

There are three versions of ALUs in Bristle Blocks. The differences have to do with 

the flag logic. In the first case, the flags are valid during the PH.!_? that the ALU is 

operating, so they may control an operation occurring the next PH.!_J. In the second 

case, these flags may load a flag register, which sits on the buses like any other 

register. The flag bits from this register may drive the instruction decoder. The 

third type. of ALU has a complex flag unit that allows selectable 

loading/testing/modifying of any bit in the flag register. 

Each of the ALUs has two input registers and either one or two output registers. 

Equations control when the two output registers are to be loaded from the ALU. In 

addition, the flags from the ALU are immediately available in the instruction 

decoder, or to pads. The carry output and carry in to the MSB are inverted polarity 

logic. Overflow is detected by exclusive-oring these two output signals. 

Additionally, the MSB and the ZERO flag are available. 

There are several operations which the ALUs will perform. The basic arithmetic 

operations are ADD, SUBTRACT, SUBTRACT_llEV, NEGATE~, and NEGAT~. The 

subtract operation subtracts INPU~ from INPU~, while subtract reversed does 

the opposite. Each of these operations assumes there is no carry (or borrow) input. 

Corresponding to each of these operations is an operation which forces a carry or 
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borrow on the input. These operations are ADD W CARRY, SUB W BORROW, SUER vy_ 
~ORROW, NEG A W_!30RROW, and NEG B W_!30RROW, respectively. Similarly, the 
increment/decrement operations are available: INCREMENT_A, INCREMENT_]3, 
DECREMENT A, and DECREMENT B. These operations force a carry or borrow input. 
The operations which assume no carry or borrow input are just SETA, SETB, SETA, 
and SETB, respectively. 

There are operations which set the output of the ALU to a constant value or to one 
of the input values. These operations are SETZ (or ZERO), SETO (or ONES), SETA, 
SETB, SETCA, and SETCB. SETA sets the ALU output to be the value in the INPU~ 
register, while SETCA sets the output to be the compliment of this value. 
Additionally, the ALU can do AND and OR operations on either the input data or its 
compliment. These operations are AND, ANDCA, ANDCB (or TEST), ANDC (or 
NOR),OR, ORCA, ORCB, and ORC (or NAND). The basic AND and OR functions perform 
the obvious operation. The -CA suffix indicates that the operation is performed 
using the compliment of the INPUT A value, while -CB indicates that the 

. compliment of the INPUU value is used. -C indicates that compliments of both 
input values are used. The exclusive-or operations are also available: XOR and EQV 
(or XNOR). 

The ALU can perform single bit left shift operations: SHIF~, SHIF~, SHIFT AW_ 
~SB, and SHIFT B W_!.SB. The SHIFT A and SHIF~ operations shift a zero into the 

least significant bit, while tp.e remaining operations shift a one into the LSB. 

The remaining operations include MASK operations and Find-First-One (or zero). 
The MASK_!\.B and MASK_!3A instructions are used to generate masks. With the 
MASK AB operation, the ALU output will be high between the least significant high 
bit in A and the next high bit in B, and between the next high bit in A and the next 
high bit in B, etc. High bits in A generate carrys while high bits in B kill the carry. 
The FFO A instruction produces an output which is low in every bit position except 
the first low bit in A. This is the Find First Zero in A instruction. Similarly, the 
FF!._{\., FF~. and FF~ instructions exist. 

The DONT CARE instruction is also listed. This operation states that the particular 
instruction is an undefined opcode, so Bristle Blocks can fill this with any 
instruction. 



(9) EI ement: ALU 
Required Parameters: 

Keyword: INPUT_A 
Key1.iord: INPUT _B 
Keyword: OUTPUT_! 
Keyword: DECODE 

Operations: 
ADD 
SUBTRACT 
NEGATE_A 
INCREMENT_A 
SHIFT _A 
FF0_A 
SETZ 
A NOC A 
AND 
SETA 
ZERO 
XNOR 

ADD_W_CARRY 
SUB_W_BORRO!,J 
NEG_A_W_BORROW 
I NCRH1ENT _B 
SH I FT _A_W_LSB 
FF0_B 
ANDC 
SET CB 
EQV 
ORCB 
ONES 
TEST 

Optional Parameters: 
Key1.iord: OUTPUT _2 
Keyword: PRECHARGE 
Keyi.1ord: CARRY _OUT _BAR 
K eyt~ortl: CARRY _I NTO_l"lSB_BAR 
Keyword: MSB 
Key1~ord: ZERO 
Keyword: WRITE OUTPUT 1 
Keyword: WRI TE=OUTPUT:) 
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Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: DECODE 

MASK AB 
SUBTRACT_REV 
NEGATE_B 
OECREMENT_A 
SHI FT _B 
FFl_A 
AN DCB 
XOR 
SETB 
DR 
NANO 
OONT_CARE 

Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 
Type: OUTPUT 
Type: OUTPUT 
Type: OUTPUT 
Type: EQUATION 
Type: EOUATI ON 

MASK_BA 
SUBR _L.J _BORRmJ 
NEG_B_~J_BORROW 

DECREMENT_B 
SH I FT _B_W_LSB 
FFl_B 
SET CA 
ORC 
ORCA 
SETO 
NOR 

Defau It: ALWAYS 

Def au It: AUJAYS 
Default: NEVER 



( 10) Element: ALU WITH FLAGS Required Parameters: · 
Keyword: INPUT_A 
Keyword: INPUT_B 
KeyMord: OUTPUT _1 
Keyword: DECODE 

Operations: 
ADD ADD_W_CARRY 
SUBTRACT SUB_W_BORROW 
NEGATE_A NEG_A_W_BORROW 
INCREMENT_A INCREMENT_B 
SHIFT_A SHIFT_A_W_LSB 
FF0_A FF0_B 
SETZ ANDC 
ANDCA SETCB 
ANO EQV 
SETA ORCB 
ZERO ONES 
XNOR TEST 

Optional Parameters: 
Key1.Jord: OUTPUT _2 
Keyword: PRECHARGE 
Keyword: CARRY_OUT_BAR 
K ey1.Jord: CARRY _I NTO_MSB_BAR 
Key1Jord: MSB 
Key1.Jord: ZERO 
Keyword: l~R I TE_OUTPUT _1 
Key1.Jord: l.JRITE_OUTPUT_2 
Key1.Jord: FLAGS 
Key1-1ord: LOAD_FLAGS 
Key1-1ord: TO_CONTROL 
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Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: DECODE 

MASK_AB 
SUBTRACT _REV 
NEGATE_B 
DECREMENT_A 
SHIFT_B 
FFl_A 

MASK_BA 
SUBR_w_BORROW 
NEG_B_W_BORROW 
DECREMENT_B 
SHI FT _B_iJ_LSB 
FFl_B 

AND CB SET CA 
XOR ORC 
SETB ORCA 
OR 
NANO 
OONT _CARE 

Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 
Type: OUTPUT 
Type: OUTPUT 
Type: OUTPUT 
Type: EQUATION 
Type: EQUATION 
Type: REGISTER 
Type: EQUATION 
Type: SOURCES 

SETO 
NOR 

Default: ALWAYS 

Oefaul t:' AL~IAYS 
Default: NEVER 
De fau It: [REFRESH: AL~IAYSJ 
Default: NEVER 

This element is similar to the ALU element, with the addition of a flag register. The 
flag register will load from the ALU when the load flags equation is true. Bit 1 of 
the register loads with the carry output, bit 2 loads with the MSB, bit width/2 + 1 
loads vvith zero, and bit width loads with tlie LSB. If the datapath vvidth is 8, bit 5 
loads vvith zero .and bit 8 loads with LSB. The remaining bits are unaltered by the 
load flags control. The to control specification allows these flag bits to drive lines 
of the instruction decoder. 
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<11 > EI ement: ALU WITH FULL FLAGS 
Required Parameters: 

Keyword: INPUT_A 
Keyword: INPUT_B 
Keyword: OUTPUT_l 
Keyword: DECODE 

Operations: 
ADO 
SUBTRACT 
NEGATE_A 
INCREMENT _A 
SHIFT_A 
FF0_A 
SETZ 
AN DC A 
AND 
SETA 
ZERO 
XNOR 

Keyword: MASK 
Keyword: FLAGS 

ADD_W_CARRY 
SUB_W_BORROW 
NEG_A_l,J_BORROW 
INCREMENT_B 
SH I FT _A_W_LSB 
FF0_B 
ANDC 
SET CB 
EQV 
ORCB 
ONES 
TEST 

Key1-iord: FLAG_ACCUMULATER 
Key1.iord: FLAG_SELECT 
Keyword: FALSE_FALSE 
Keyword: FALSE_TRUE 
Keyword: TRUE_FALSE 
Keyword: TRUE_TRUE 
Keyword: OPERATION 

Operations: 

Type: 
Type: 
Type: 
Type: 

REGISTER 
REGISTER 
REGISTER 
DECODE 

MASK_AB 
SUBTRACT_REV 
NEGATE_B 
DECREMENT_A 
SHIFT _B 
FFl_A 

MASK_BA 
SUBR_W_BORROW 
NEG_B_W_BORROW 
DECREMENT_B 
SH I FT _B_W_LSB 
FFl_B 

ANDCB SE TC A 
XOR ORC 
SETB 
OR 
NANO 
DONT_CARE 
Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: FIELD 
Type: EQUATION 
Type: EQUATION 
Type: EQUATION 
Type: EQUATION 
Type: DECODE 

ORCA 
SETO 
NOR 

Default: 
Default: 
Default: 
Oefaul t: 

NEVER 
NEVER 
NEVER 
NEVER 

DONT_CARE 
LOAD _MASKED 
SET_SELECTED 
CMP _SELECTED 

LOAD_ALL 
TEST_SELECTED 
CLR_SELECTEO 
LOAD_SELECTED 

Optional Parameters: 
Keyword: OUTPUT_2 
Keyword: PRECHARGE 
Keyword: CARRY_OUT_BAR 
Keyword: CARRY_INTO_MSB_BAR 
Keyword: MSB 
Keyword: ZERO 
Keyword: WRITE OUTPUT 1 
Keyword: I.JR! T(::OUTPU() 
Keyword: OLO_FLAG 
Keyword: FLAG 

Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 
Type: OUTPUT 
Type: OUTPUT 
Type: OUTPUT 
Type: EQUATION 
Type: EQUATION 
Type: EQUATION 
Type: OUTPUT 

Default: ALWAYS 

Default: ALWAYS 
Default: NEVER 
Default: NEVER 

In addition to the operations available with the standard ALU, this ALU includes a 
'Wide variety of flag operations. The FLAGS register holds the values of the flags, 
the MASK register may select which of the FLAGS register's bits should load, and 
the FLAG~CCUMULATOR register is used to accumulate flag values. A function 
block (see #29 in section A5.8) exists between the FLAGS register and the FLA~ 
~CCUMULATOR to implement the flag accumulations. The LOAD_ALL operation 

loads all flags from t~e ALU into the FLAGS register. The LOA~MASKED operation 
only loads those bits whose corresponding MASK register bits are high. TEST 
~ELECTED will load the FLAG bit (MSB of FLAGS) with the FLAGS bit selected by the 
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FLAq__§ELECT field. SE~ELECTED will set the bit which FLA~ELECT indicates, 
and CLR SELECTED will clear that bit. CMP SELECTED complements the selected bit. 
LOAD SELECTED transfers from the FLAG bit to the selected bit. 

The bits -in the flag register have the following values. The MSB is carry out, the 
next bit is carry into the MSB, the next bit is MSB, the next bit is overflow, the 
next is greater than or equal, the next is higher, the next is greater than, the next is 
zero, the next is the value of OL12_!LAG (an optional input), and the LSB is LSB. Bits 
10-15 are not used. This element can only be used in datapaths than are 
16 bits wide. 

A5.4: Ports 

The port units are used for data communication with off-chip circuitry. The INPUI_ 
_!'.ORT has a register which will load data from off chip when the LOAD equation is 

TRUE. The OUTPU':!:._!'ORT will always drive the data in its register off chip unless 
the DRIVE equation is present, in which case the port only drives when the 
equation is TRUE. The IQ__!'ORT incorporates features of both the input ports and the 
output ports. When the LOAD equation is TRUE, the off chip data are loaded into the 
input register. When the DRIVE equation is TRUE, data in the output register are 
driven off chip. If the INPU~EGISTER is not specified, the port will have only a 
single register, which is uses for both types of data transfer. 

In each of these ports, the LOAD and DRIVE equations have variable timing, which 
means that the timing requirements of the control line buffers may be given by the 
user. These operations will occur during PH!_? by default, but the user may state 
either PH!.J timing or asynchronous timing should be used. Each of these ports has 

. an optional mask, which can be used to indicate which bits of the register(s) 
actually connect to pads. Bits of a register which do not connect to a pad will be 
unaffected by a LOAD operation. 
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<12l Element: INPUTPORT 
Required Parameters: -

Keyword: REGISTER 
Keyword: LOAD 

Type: REGISTER 
Type: EQUATION Variable Timing Optional Parameters: 

Keyword: MASK Type: MASK 

<13> EI ement: OUTPU'JPORT 
Required Parameters: -

Keyword: REGISTER 
Optional Parameters: 

Type: REGISTER 

Keyword: DRIVE 
Keyword: MASK 

Type: EQUATION 
Type: MASK 

Variable Timing 

<14 l EI ement: Ia>ORT 
Required Parameters: 

Keyword: OUTPUT_REGISTER 
Keyword: LOAD 
Keyword: DRIVE 

Optional Parameters: 
Keyword: INPUT_REGISTER 
Keyword: MASK 

A5.5: Constants 

Type: REGISTER 
Type: EQUATION 
Type: EQUATION 

Type: REGISTER 
Type: MASK 

Variable Timing 
Variable Timing 

The ROM (Read Only Memory) functions in Bristle Blocks are used to drive constant 
data onto the data buses. The value(s) contained in these ROMs can drive each bit of 
the data bus(es) high or low or not affect the value on the bus. The enable 
functions control the gating of the fixed value onto the bus. The LOWER ROM 
function drives the low-er data bus, the UPPER ROM function drives the upper data 
bus, while the ROM and ROM PAIR functions drive both buses. The ROM PAIR ' ~ ~ function is logically equivalent to two ROM functions, but requires less chip area. 

( 15) Element: LOWER ROM 
Required Parameters:-

Keyword: VALUE Type: MASK 
Keyword: ENABLE Type: EQUATION 

Optional Parameters: NONE 

<15) EI ement: UPPEIB.OM 
Required Parameters-: -

Keyword: VALUE 
Keyword: ENABLE 

Optional Parameters: 

Type: MASK 
Type: EQUATION 

NONE 

<17> EI ement: ROM 
Required Parameters: 

Keyword: UPPER 
Keyword: LOWER 
Keyword: ENABLE 

Optional Parameters: 

Type: 
Type: 
Type: 

NONE 

MASK 
MASK 
EQUATION 



( 18) Element: ROM PAIR 
Required Parame teFS: 

Keyword: LEFT_ENABLE 
Keyword: RIGHT_ENABLE 

Optional Parameters: 
Keyword: LEFT_UPPER 
Keyword: LEFT_LOWER 
Keyword: RIGHT_UPPER 
Keyword: RIGHT_LOWER 

A5.6: Barrel Shifters 
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Type: EQUATION 
Type: EQUATION 

Type: MASK 
Type: MASK 
Type: MASK 
Type: MASK 

The barrel shifters are capable of performing multiple-bit shifts in a single clock 
cycle. These shifters have two input words: the Most Significant Word (MSW) and 
the Least Significant Word (LSW). The output register may load from almost any 
contiguous set of bits in the combined MSW-LSW register. The shift constant 
indicates how many bits from the most significant end of the LSW are to appear in 
the output, with the remaining bits coming from the least significant end of the 
MSW. The width of the shift constant field must be at least log base two of the 
datapath width. In the SIMPL~HIFTER, the user specifies registers for the MSW, 
LSW, and the output, along with the shift constant and a LOAD equation, which 
controls the loading of the output register. The MASKE12_§HIFTER has an additional 
mask register which can be used to control the loading of the output register. The 
two load signals, LOAJL!:t:._9 and LOA:Q__!U, specify the polarity of the mask bits. 
When the LOAQ_!~ line is high, the only bits of the output register than are loaded 
from the shift operation are those bits whose corresponding mask bits are low. 
Similarly, the LOAD_JF_1 line controls loading the output register's bits whose 
corresponding mask bits are high. If both control lines are high, all of the output 
register bits are loaded. The BARREL_§HIFTER does not have an explicit MSW 
register or LSW register. Instead, two input registers are provided, along with 
circuitry which multiplexes various values into the MSW and LSW of the shifter. 
The MSW can be loaded from either of the two input registers or from the constants 
0, 1, -1, and -Z. The LSW can be loaded from either of the two input registers or 
from the ·constants 0 and -1. Given these possibilities, any of the arithmetic or 
logical shifts and rotates can be performed with the shifter. The following table 
lists the MSW and LSW values for the various OPERATIONs of the BARREL SHIFTER. 
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Operation MSW LSW 
ROTATE_A A A 
ROTATE_B 8 8 
SHIFT_AB A B 
SHIFT _BA B A 
SLA A 0 
SLB B 0 
SRA_LOGICAL 0 A 
SRB_LOGICAL 0 B 
UNARY 0 -1 
UNARY_BAR -1 0 
SRA_ZERO 0 A {see SRA_LOGICALl 
SRB_ZERO 0 B {see SRB _LOG I CAL l 
SRA_ONE -1 A 
SRB_ONE -1 8 
DECODE 1 0 
DECODE_BAR -2 -1 

The most significant bits of the two input registers are available to drive the 
instruction decoder, which is useful for computing the sign -ext en ti on cons tan ts 
for arithmetic shifts. The BARREL SHIFTER also has a mask register. 

<18> E lenient: SIMPLE SHIFTER 
Required Parameters: -

Keyword: MOST_SIGNIFICANT_WORD 
Keyword: -LEAST_SIGNIFICANT_WORD 
Keyword: OUTPUT_REGISTER 
Keyword: SHIFT_CONSTANT 
Keyword: LOAD 

Optional Parameters: NONE 

<20> Element: MASKED SHIFTER 
Required Parameters: 

Keyword: MOST_SIGNIFICANT_WORD 
Keyword: LEAST_SIGNIFICANT_WORD 
Keyword: OUTPUT_REGISTER 
Keyword: MASK_REGISTE'R 
Keyword: SHIFT_CONSTANT 
Keyword: LOAD_IF_0 
Keyword: LOAD_IF_l 

Optional Parameters: NONE 

Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: FIELD 
Type: EQUATION 

Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: FIELD 
Type: EQUATION 
Type: EQUATION 
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C21> EI ement: BARREL SHIFTER 
Required Parameters: 

Keyword: INPUT_A 
Keyword: INPUT_B 
Keyword: OUTPUT_REGISTER 
Keyword: SHIFT_CONSTANT 
Keyword: LOAD_IF_0 
Keyword: LOAD_IF _1 
Keyword: OPERATION 

Operations: 
ROTATE_A 
SHIFT_AB 
SLA 
SRA_LOG I CAL 
UNARY 
SRA_ZERO 
SRA_ONE 
DECODE 

Optional Parameters: 
Keyword: MASK_REGISTER 
Keyword: A_MSB 
Keyword: B_MSB 

ROTATE_B 
SHIFT_BA 
SLB 
SRB _LOG I CAL 
UNARY_BAR 
SRB_ZERO 
SRB_ONE 
DECODE_BAR 

A5.7: Bus Precharge Ele1nents 

Type: REGISTER 
Type: REGISTER 
Type: REGISTER 
Type: FIELD 
Type: EQUATION 
Type: EQUATION 
Type: DECODE 

Type: REGISTER 
Type: OUTPUT 
Type: OUTPUT 

The bus precharge elements are used to precharge the data buses. Each of the data 
processing elements in Bristle Blocks (except for the ROM cells) only drives the data 
buses low. To transmit a high value, the data processing elements do not affect the 
bus, assuming that the bus originally had every bus line high. In order to transmit 
data, therefore, the buses must be precharged. These elements precharge one or 
both of the buses during PH!_?. The data buses can be used to store data from one 
cycle to the next, if the clocks run fast enough, and if no other element writes on 
the bus. The first three elements simply precharge the buses. The remaining two 
functions not only precharge the bus, but they 'break' the bus. The bus to the left is 
terminated, and a new bus begins to the right (this new bus must be precharged by 
a different bus precharge element). This allows Bristle Blocks to com.pile chips 
with more than two data buses, although only two data buses may pass any 
element. 

C22J Element: PRECHARGE LOWER 
Required Parameters: NONE 
Optional Parameters: 

Keyword: PRECHARGE Type: .EQUATION 

<23> Element: PRECHARGRJPPER 
Required Parameters: NONE~ 
Optional Parameters: 

Keyword: _PRECHARGE Type: EQUATION 

Default: AUJAYS 

Default: ALWAYS 



(24) Element: PRECHARGE BOTH 
Required Parameters: NONE-
Opt ional Parameters: 
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Keyword: PRECHARGE Type: EQUATION Default: ALWAYS 

t25> EI ement: PRECHARGEA.ND BREAK LOWER Required Parameters: NONE-
Optional Parameters: 

Keyword: PRECHARGE Type: EQUATION Default: ALWAYS 

t26> EI ement: PRECHARGEA.ND BREAK UPPER Required Parameters: NONE-
Opt i ona I Parameters: 

Keyword: PRECHARGE Type: EQUATION Default: ALWAYS 

A5.8: Randon1 Simple Elements 

There are a few simple elements which do not fit in the categories presented above. 
These elements are described here. 

t27> EI ement: BUS CAM 
Required Parameters: 

Keyword: VALUE 
Keyword: OUTPUT 

Optional Parameters: 
Keyword: LATCH 

Type: MASK 
Type: OUTPUT 

Type: EQUATION Default: ALWAYS 

The BUS CAM element will monitor data flow across the lower bus. When the 
sampled data matches the fixed value wired into the CAM, the output signal will go 
high. The LATCH equation controls the sampling of the bus. The VALUE mask 
stat.es the comparison value for the CAM. When all the bus bits corresponding to O 
bits in the mask are low and when all the bus bits corresponding to I bits in the 
mask are high, the output signal goes high. 

(28) Element: CAM 
Required Parameters: 

Keyword: REGISTER Type: REGISTER 
Keyword: VALUE Type: MASK 
Keyword: OUTPUT Type: OUTPUT 

Optional Parameters: NONE 

This element is similar to the BUS CAM but that the CAM monitors the value 
contained in its register. Whenever the register's value matches the CAM's value, 
the output signal goes high. There is no LOAD signal, since the CAM always 
monitors the register's value. 
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<28> EI ement: FUNCTION BLOCK 
Required Parameters: 

K ey1-1ord: INPUT _A 
Keyword: INPUT_B 

Optional Parameters: 
Keyword: OUTPUT 
Keyword: PRECHARGE 
Keyword: LOAD_INPUT_A 
Keyword: LOAD_OUTPUT 
Keyword: FALSE_FALSE 
Keyword: FALSE TRUE 
Keyword: _TRUE_FALSE 
Keyword: TRUE_TRUE 

Type: REGISTER 
Type: REGISTER 

Type: 
Type: 
Type: 
Type: 
Type: 
Type: 
Type: 
Type: 

REGISTER 
EQUATION 
EQUATION 
EQUATION 
EQUATION 
EQUATION 
EQUATION 
EQUATION 

Default: ALWAYS 
Default: NEVER 
Default: ALWAYS 
Default: NEVER 
Default: NEVER 
Default: NEVER 
Default: NEVER 

The FUNCTIO~LOCK element is used to perform boolean operations betvveen 
values. The function block takes data from the two input registers, and can store 
data into the INPU~A register and the OUTPUT register. The FALS~ALSE (FF), 
FALS~RUE (FT), TRU~ALSE (TF), and TRUE TRUE (TT) lines control the function 
of the element. If the FF line is high, all bits of the output which correspond to lovv 

"Qits in both input registers will be high. Similarly, the TT line controls the output 

bits corresponding to high bits in both registers. If TF is high, all output bits vvhkh 

correspond to high bits in INPU'I.J\ and low bits in INPU':!:.J3 will be high. The FT 
control is similar to the TF control. An alternative statement of the FUNCTION 

~LOCK operation is that each pair of input bits selects which control line drives the 
corresponding output bit. For example, if the MSB of INPUT A is high and the MSB 

of INPUT_? is low, the MSB of the output will be the value of the TRU~ALSE 

control. If TT, TF, and FT are high and FF is low, the function block performs an OR 

operation, while if TT is the only high control, an AND function is performed. The 
PRECHARGE equation controls the loading of data from the input registers to 

in tern al nodes. 

<30l Element: LEFT RIGHT SHIFT 
Required Parameters:

K ey1-1ord: INPUT _REG I STER 
Key1-1ord: SHIFT_LEFT 
Keyword: SHIFT_RIGHT 

Optional Parameters: 
Keyword: OUTPUT_REGISTER 
Keyword: INPUT 
Keyword: MSB 
Keyword: PRECHARGE 

Type: REGISTER 
Type: EQUATION 
Type: EQUATION 

Type: 
Type: 
rype: 
Type: 

REGISTER 
EQUATION 
OUTPUT 
EQUATION 

Default: NEVER 

Default: ALWAYS 

The LEFT RIGHT SHIFT element is a bi-directional, single-bit shifter. When the 
SHIFT_!,EFT control is high, the data in the INPUT~EGISTER are shifted one bit 

tovvard the MSB and loaded into the OUTPUT REGISTER. If the OUTPUT REGISTER is 
not specified, the data are loaded into the INPU'~EGISTER. The LSB of the output 
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register is loaded with value of the INPUT equation. The SHIFT RIGHT control 
shifts data toward the LSB, with the MSB receiving data from INPUT. The 
PRECHARGE equation loads the input register's data into internal nodes. The MSB of 
the input register is available to drive the instruction decoder. 

<3U Element: STACK 
Required Parameters: 

Keyword: DEPTH 
Key1.Jord: TOP 
Keyword: POP 
Keyword: PUSH 

Optional Parameters: 
Key1~ord: MIDDLE 
Keyword: BOTTOM 
Keyword: REFRESH 

Type: INTEGER 
Type: REGISTER 
Type: EQUATION 
Type: EQUATION 

Type: REGISTER 
Type: REGISTER 
Type: EQUATION 

Oefaul t: rREFRESH:ALt,,lAYSJ 
Def au It: [REFRESH: ALl,JAYSJ 
Default: ALWAYS 

The STACK element implements a stack in the datapath. The stack is consists of a 
TOP register followed by DEPTH-1 MIDDLE registers, followed by a BOTTOM 
register. Between adjacent register pairs lie circuitry for transfering data betvveen 
the registers. When the PUSH control is TRUE, data is moved away from the TOP 
register: The TOP register's data loads the first MIDDLE register, while the first 
MIDDLE register's data are loading the second MIDDLE register, etc. When the POP 
control is TRUE, data are moved towards the TOP register. The PUSH and POP 
controls should not both be high, nor should POP be high while the TOP register is 
writing onto a data bus. 

A5.9: Compound IR Elements 

The following cells combine the DAT~~ONTROL circuitry with another simple 
element function. The DATA_JCL_.90NTROL function is useful for implementing 
Instruction Registers (IR) because the function of an IR is to turn data values in to 
control values. In the INCREMENTIN~R example, the IR's data can be incremented. 
Alternatively, one may think of the incrementer's output driving the instruction 
decoder. The operation of each of these units can be found by comparing the 
functions of the DATA_JCLfONTROL element (2) and the simple element which is 
fused with the IR. 
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<32> EI ement: INCREMENTING IR 
Required Parameters: 

Keyword: MAP 
Keyword: REGISTER 
Key1-1ord: LOAD 

Optional Parameters: 
Keyword: PRECHARGE 
Keyword: CARRY_OUT 

******see (2) and (5) 

Type: SOURCES 
Type: REGISTER 
Type: EQUATION 

Type: EQUATION 
Type: OUTPUT 

133> Element: DECREMENTINGR 
Required Parameters: 

Key1-1ord: MAP 
Keyword: REGISTER 
Keyword: LOAD 

Optional Parameters: 
Keyword: PRECHARGE 
Keyword: CARRY_OUT 

******see (2) and (6) 

Type: SOURCES 
Type: REGISTER 
Type: EQUATION 

Type: EQUA Tl ON 
Type: OUTPUT 

134> Element: SHIFTINGR 
Required Parameters: 

Key1-1ord: SHI FT _LEFT 
Key1-1ord: SHIFT_RIGHT 
Key1-1ord: MAP 

Optional Parameters: 
Key1-1ord: INPUT 
Key1-1ord: r1SB 
Keyword: PRECHARGE 
Keyword: REGISTER 

******see (2) and (30) 

Type: EQUATION 
Type: EQUATION 
Type: SOURCES 

Type: EQUATION 
Type: OUTPUT 
Type: EQUATION 
Type: REGISTER 

I 35 > E I em en t: SW APP IN GR 
Required Parameters: 

Keyword: ACTIVE 
Keyword: MAP 

Optional Parameters: 

Type: REGISTER 
Type: SOURCES 

Keyword: BACKUP Type: REGISTER 
Keyword: SAVE Type: EQUATION 
Keyword: REFRESH T~pe: EQUATION 
Keyword: RESTORE Type: EQUATION 

******see (2) and (31), also section A5.11 

Default: ALWAYS 

Default: ALWAYS 

Default: NEVER 

Default: ALWAYS 
Def au I t : [REFRESH: ALWAYS] 

Def au I t: CREFRESH: ALWAYS] 
Default: NEVER 
Def au It: AL~JAYS 
Default: NEVER 

This element is a depth=l stack. One of the registers (ACTIVE) is connected to the 
IR, the other (BACKUP) is a backup register. SAVE moves the data from ACTIVE to 
BACKUP, RESTORE moves the data from BACKUP to ACTIVE, and if both are high, 
the two registers swap value. 
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<;36 > EI emen t: INPUT IR 
Required Parameters:

Keyword: LOAD 
Key1.Jord: MAP 

Optional Parameters: 

Type: EQUATION 
Type: SOURCES 

Variable Timing 

Key1.Jord: f"lASK 
Keyword~ REGISTER 

******see (2) and ( 12) 

Type: MASK 
Type: REGISTER Def au I t : CREFRESH: ALWAYS J 

A5.10: Compound Output Port Elements 

In the same manner as section A5.9 presented IR compounds with various elements, 
this section lists Output ports ( 13) fused with other simple elements. 

(37) Element: INCREMENTING PORT Required Parameters: 
Key1.Jord: LOAD Type: EQUATION 

Opt i ona I Parameters: 
Keyword: DRIVE Type: EQUATION Variable Timing Keyword: MASK Type: MASK 
Key1.JOrd: REGISTER Type: REGISTER Default: CREFRESH: ALWAYS J Keyword: PRE CHARGE Type: EQUATION Default: ALWAYS Keyword: CARRY_OUT Type: OUTPUT 

******see (5) and ( 13) 

(38) Element: DECREMENTING PORT Required Parameters: 
Keyword: LOAD Type: EQUATION 

Opt i ona I Parameters: 
Key1.Jord: ORI.VE Type: EQUATION 
Key1.Jord: MASK Type: MASK 
Kei,Jword: REGISTER Type: REGISTER 
Keyword: PRECHARGE Type: EQUATION 
Key1.Jord: CARRY _OUT Type: OUTPUT 

****** see (6) and ( 13) 

<33J Element: ADDING PORT 
Required Parameters: 

Keyword: LOAD 
Optional Parameters: 

Key1.Jord: DRIVE 
Key.word:. f"lASK 
Keyword: ACCL~ULATOR 
Keyi..1ord: OFFSET 
Keyword: PRECHARGE 
Keyword: CARRY_OUT_BAR 
Keyword: LATCH 
Keyword: CARRY_IN_BAR 

******see (7) and ( 13) 

Type: EQUATION 

Type: EOUA T ION 
Type: MASK 
Type: REGISTER 
Type: REGISTER 
Type: EQUATION 
Type: OUTPUT 
Type: EQUATION 
Type: EQUATION 

Variable Timing 

Default: £REFRESH: ALWAYSJ 
Default: ALWAYS 

Variable Timing 

Default: CREFRESH:AUJAYSJ 
Def au I t: CREFRESH: AL~JA YS J 
Default: ALWAYS 

Default: ALWAYS 
Default: NEVER 
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(40) Element: SWAPPING OUTPUT PORT 
Required Parameters: · 

Keyword: ACTIVE Type: REGISTER 
Optional Parameters: 

Keyword: BACKUP Type: REGISTER 
Keyword: SAVE Type: EQUATION 
Keyword: REFRESH Type: EQUATION 
Keyword: RESTORE Type: EQUATION 
Keyword: DRIVE Type: EQUATION 
Keyword: MASK Type: MASK 

***"'**see (31) and ( 13), also section AS.11 

A5.11: Compound Swapping Elem.ents 

Default: 
Default: 
Oefaul t: 
Default: 
Variable 

[REFRESH: AL~JAYSJ 
NEVER 
AU-IAYS 
NEVER 
Timing 

In the same manner as section AS.9 presented IR compounds with various elements, 

this section lists swapping registers fused with other simple elements. Swapping 

registers are effectively a depth= 1 stack. One of the registers (ACTIVE) is connected 

to the simple element with which the swapper is compounded, the other (BACKUP) 

is a backup register. SAVE moves the data from ACTIVE to BACKUP, RESTORE moves 

the data from BACKUP to ACTIVE, and if both are high, the two registers swap 

value. 

C4U EI ement: SWAPPING REGISTERS 
Required Parameters: 

Key1.1ord: LEFT 
Keyword: RIGHT 

Optional Parameters: 
Keyword: RIGHT_TO_LEFT 
K~yt-Jord: REFRESH 
Keyword: LEFT_TO_RIGHT 

Type: REGISTER 
Type: REGISTER 

Type: EQUATION 
Type: EOLIA TI ON 
Type: EQUATION 

Default: NEVER 
Def au I t: AL~JAYS 
Default: NEVER 

This element is just a pair of swapping registers. 

{42> Element: SWAPPING INPUT PORT 
Required Parameters: 

Key14ord: LOAD 
Keyword: ACTIVE 

Optional Parameters: 
Keyword: MASK 
Keyword: RESTORE 
Keyword: REFRESH 
Keyword: SAVE 
Key14ord: BACKUP 

******see ( 12) 

Type: EQUATION 
Type: REGISTER 

Type: 
Type: 
Type: 
T1.:1pe: 
T1.:1pe: 

MASK 
EQUATION 
EQUATION 
EQUATION 
REGISTER 

Variable Timing 

Default: NEVER 
Default: ALWAYS 
Default: NEVER 
Oefaul t: CREFRESH:ALWAYSJ 
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<40> Element: SWAPPING OUTPUT PORT 
Required Parameters: 

Keyword: ACTIVE 
Optional Parameters: 

Keyword: BACKUP 
Keyword: SAVE 
Key1-1ord: REFRESH 
Keyword: RESTORE 
Keyword: DRIVE 
Keyword: MASK 

******see ( 13) 

Type: REGISTER 

Type: 
Type: 
Type: 
Type: 
Type: 
Type: 

REGISTER 
EQUATION 
EQUATION 
EQUATION 
EQUATION 
MASK 

Default: 
Default: 
Default: 
Default: 
Variable 

£REFRESH: ALWA YSJ 
NEVER 
ALWAYS 
NEVER 
Timing 

!43> Element: SWAPPING INCREMENTER 
Required Parameters: 

Keyword: LOAD 
Keyword: ACTIVE 

Optiorial Parameters: 
Keyword: PRECHARGE 
Key1-mrd: CARRY _OUT 
Key1-1ord: RESTORE 
Keyword: REFRESH 
Keyword: SAVE 
Key1-1ord: BACKUP 

******see (5) 

Type: EQUATION 
Type: REGISTER 

Type: 
Type: 
Type: 
Type: 
Type: 
Type: 

EQUATION 
OUTPUT 
EQUATION 
EQUATION 
EQUATION 
REGISTER 

!44> Element: SWAPPING>ECREMENTER 
Required Parameters: 

K ey1-1ord: LOAD 
Key1-1orcl: ACT I VE 

Optional Parameters: 
Keyword: PRECHARGE 
K ey1-1ord: CARRY _OUT 
Key1.mrd: RESTORE 
Keyword: REFRESH 
Keyword: SAVE 
Keyword: BACKUP 

******see (6) 

Type: EQUATION 
Type: REGISTER 

TkJpe: 
TkJpe: 
Type: 
Type: 
TkJpe: 
Type: 

EQUATION 
OUTPUT 
EQUATION 
EQUATION 
EQUATION 
REGISTER 

<35) EI ement: SWAPPINCIR 
Required Parameters: 

Key1-1ord: ACTIVE 
Key1-1ord: ~1AP 

Optional Parameters: 
Keyword: BACKUP 
Key1-1ord: SAVE 
Keyword: REFRESH 
Key1-1ord: RESTORE 

****** see (Z) 

TkJpe: REGISTER 
Type: SOURCES 

Type: 
Type: 
Type: 
Type: 

REGISTER 
EQUATION 
EQUATION 
EQUATION 

A5.12: Compound CAM Elem~nts 

Default: ALWAYS 

Default: NEVER 
Default: AUIAYS 
Default: NEVER 
Def au I t: CREFRESH: ALWAYSJ 

Def au I t: AL~JA YS 

Default: NEVER 
Default: ALWAYS 
Default: NEVER 
Def au I t: CREFRESH: ALWAYS J 

Def au I t: CREFRESH: ALWA YSJ 
Default: NEVER 
Default: ALWAYS 
Default: NEVER 

In the same manner as section A5.9 presented IR compounds with various elements, 
this section lists CAM registers (28) fused with other simple elements. 
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{45> Element: ADDER WITH VALUE CHECK 
Required Parameters:~ 

Ket.1word: VALUE 
Keyword: RESULT 
Key1.,1ord: 1 NPUT _B 
Key1.Jord: INPUT_A 
Keyword: LOAD 

Optional Parameters: 
Key1.,1ord: OUTPUT 
Keyword: PRECHARGE 
Keyword: CARRY_OUT_BAR 
Keyword: LATCH 
Key1.,1ord: CARRY _I N_BAR 

**"' 0 * see (28) ai:id (7) 

Type: 
Type: 
Type: 
Type: 
Type: 

Type: 
Type: 
Type: 
Type: 
Type: 

MASK 
OUTPUT 
REGISTER 
REGISTER 
EQUATION 

REGISTER 
EQUATION 
OUTPUT 
EQUATION 
EQUATION 

Default: [REFRESH:ALWAYSJ 
Default: ALWAYS 

Default: ALWAYS 
Default: NEVER 

{48l Element: SUBTRACTERWITH VALUE CHECK 
Required Parameters: 

Key1-1ord: VALLIE 
Key1-1ord: RESULT 
Keyword:. INPUT_B 
K ey\.1ord: INPUT _A 
Key1-1ord: LOAD 

Optional Parameters: 
Key1-1orcl: OUTPUT 
Keyword: PRECHARGE 
Keuworcl: CARRY OUT BAR 
Keyword: LATCH- -
K ey1.iord: CARRY _I N_BAR 

nun sf;!e (28) and (8) 

Type: 
Type: 
Type: 
Type: 
Type: 

Type: 
Type: 
Type: 
Type: 
Type: 

MASK 
OUTPUT 
REGISTER 
REGISTER 
EQUATION 

REGISTER 
EQUATION 
OUTPUT 
EQUATION 
EQUATION 

Def au I t: £REFRESH: AL~JA YS J 
Default: AUJAYS 

Default: ALWAYS 
Default: NEVER 

<47> Element: INCREMENTERWITH VALUE CHECK 
Required Parameters: 

Key1.Jord: VALUE 
Keyword: RESULT 
Keyword: REGISTER 
K ey1.Jord: LOAD 

Optional Parameters: 

Type: 
Type: 
Type: 
Type: 

MASK 
OUTPUT 
REGISTER 
EQUATION 

Keyword: PRECHARGE Type: EQUATION 
Keyi.1ord: CARRY _OUT . Type: OUTPUT 

******see (28) and (5) 

Def au It: AUJAYS 

<48 > EI emen t: DECREMENTEIMTITH VALUE CHECK 
Required Parameters: 

Keyword: VALUE 
Keyword: RESULT 
Keyword: REGISTER 
Keyword: LOAD 

Optlonal Parameters: 
Keyword: PRECHARGE 
Keyword: CARRY_OUT 

****** see (28) and (6) 

Type: 
Type: 
Type: 
Type: 

f1ASK 
OUTPUT 
REGISTER 
EQUATION 

Type: EQUATION 
Type: OUTPUT 

Default: ALWAYS 
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(49) Element: ACCUMULATOR WITH VALUE CHECK 
Required Parameters: 

Keyword: VALUE. 
Keyword: RESULT 
Key1-1ord: INPUT 
Keyword: LOAD 

Optional Parameters: 
Keyword: ACCUMULATOR 
Keuword: PRECHARGE 
Keyt~ord: -CARRY _OUT _BAR 
Keyword: LATCH 
Key1~ord: CARRY _I N_BAR 

•u•u see (28) and (7) 

Type: 
Type: 
T'dpe: 
Type: 

Type: 
Type: 
Type: 
Type: 
Type: 

MASK 
OUTPUT 
REGISTER 
EQUATION 

REGISTER 
EQUATION 
OUTPUT 
EQUATION 
EQUATION 

C50l Element: SHIFTERNITH VALUE CHECK 
Required Parameters: -

Keyword: SHIFT_LEFT Type: EQUATION 
Keyword: SHIFT RIGHT Type: EQUATION 
Ke~word: VALUE- Type: MASK 
Keyword: RESULT Type: OUTPUT 

Optional Parameters: 

Def au I t: rREFRESH: ALWA VS l 
Default: AL~JAYS 

Def au I t: AUIA YS 
Default: NEVER 

Keyword: INPUT Type: EQUATION Default: NEVER 
Keyword: MSB Type: OUTPUT 
Keyword: PRECHARGE Type: EQUATION Default: ALWAYS 
Key1-1ord: REGISTER Type: REGISTER Oefaul t: [HEFRESH:ALWAYSJ 

unu see (28) and (30) 

A5.13: Random Compound Elements 

The remaining two elements are SHIFTING ACCUMULATOR and INCREMENTER 

DECREMENTER. The SHIFTIN~CCUMULATOR is a two register adder (7) with a 

. left-right shifter (30) on the input/output register. The INCREMENTER 

DECREMENTER is a back-to-back two-register INCREMENTER (5) and 

DECREMENTER (6). When the LOAD_!JEC line is high, the incrementer input 

register is loaded vvith one less than the value in the decrementer input register. 

When the LOA~NC line is high, the decrementer input register is loaded with one 

more than the value in the incrementer input register. 
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{51) Element: SHIFTING ACCUMULATOR 
Required Parameters: 

Key1-1ord: SHIFT _LEFT Type: EQUATION 
Key1.iord: SHIFT_RIGHT. Type: EQUATION 
Key1..Jord: ACCUt·1ULA TOR Type: REGISTER 
Key1..Jord: LOAD Type: EQUATION 

Opt i ona I Parameters: 
Kew.Jard: INPUT Type: EQUATION Default: NEVER 
Key1..Jord: J1SB Type: OUTPUT 
Key1--1ord: PRECHARGE_2 Type: EQUATION Default: AUIAYS 
Key1--1ord: INPUT TiJpe: REGISTER Oefaul t: lREFRESH:ALWAYSJ 
Keyword: PRECHARGE_l Type: EQUATION Def au It: ALWAYS 
Key1-1ord: CARRY _OUT _BAR Type: OUTPUT 
Key1.iord: LATCH Type:. EQUATION Default: ALWAYS 
Keyword: CARRY _I N_BAR Type: EQUATION Default: NEVER 

(52) Element: INCREMENTER DECREMENTER 
Required Parameters: 

Keyword: LOAD_DEC Type: EQUATION 
Key1-1ord: INC_INPUT Type: REGISTER 
Keyword: DEC INPUT Type: REGISTER 
Key1..Jord: LOAD_INC Type: EQUATION 

Opt i ona I Parameters: 
Keyword: PRECHARGE_DEC Type: EQUATION Default: ALWAYS 
Key1.iord: CARRY _OUT _DEC Type: OUTPUT 
Key1--1ord: PRECHARGE_INC Type: EQUATION Default: AL~IAYS 
Keyword: CARRY_OUT_INC Type: OUTPUT 

A.5.14: Summary 

The following list shows the Bristle Blocks element in alphabetical order. 



(48) 
(7) 
(45} 
(38) 
(8) 
(10) 
(11} 

(21) 
(27) 
(28} 
(3) 
(4) 
{2} . 

(8) 
(48) 
(33) . 
(38) 
(28) 
(5) 
{52) 
(47) 
<32) 
(37) 
{35} 
( 12) 
(14) 
(30) 
(15) 
(20) 
(13) 
(25) 
{25) 
(24) 
<22) 
(231 
{1) 
(17} 

(18) 
{50) 
{51) 
(34) 
(18) 
(31) 
(8) 
(45) 
{44} 
(43) 
(42) 
(35) 
(40) 
{41) 
(15) 
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ACCUMULATOR WITH VALUE CHECK 
ADDER 
ADDER WITH VALUE CHECK 
ADDING PORT 
ALU 
ALU WITH FLAGS 
ALU WITITTULL FLAGS 
BARREL SHIFTER 
BUS CAM 
CAM 
CONTROL TO DATA 
CONTROL TO DATA AND BACK 
·DATA TOCONTROL -
DEC REMENTER 
DECREMENTER WITH VALUE CHECK 
DECREMENTING IR 
DECREMENTING PORT 
FUNCTION BLOCK 
INCREMENTER 
INCREMENTER DECREMENTER 
INCREMENTER WITH VALUE CHECK 
INCREMENTING IR 
INCREMENTING PORT 
INPUT IR 
INPUT PORT 
IO PORT 
LEFT RIGHT SHIFT 
LOWER ROM 
MASKED SHIFTER 
OUTPUTPORT 
PRECHARG E AND BREAK LOWER 
PRECHARG E AND BREAK UPPER 
PRECHARGE BOTH 
PRECHARGE LOWER 
PRECHARGE UPPER 
REGISTER 
ROM 
ROM PAIR 
SHIFTER WITH VALUE CHECK 
SHIFTING ACCUMULATOR 
SHIFTINGIR 
SIMPLE SHIFTER 
STACK 
SUBTRACTER 
SUBTRACTER WITH VALUE CHECK 
SWAPPING DECREMENTER
SWAPPINGINCREMENTER 
SWAPPING INPUT PORT 
SWAPPINGIR 
SWAPPING OUTPUT PORT 
SWAPPINGREGISTERS 
UPPER ROM 
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