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A STUDY OF THE TRAILING VORTICES

BEHIND A RING WING

ABSTRACT

The flow field of a laminar vortex wake behind a ring wing
was investigated. FExperiments were conducted in the GALCIT+
Low Speed Water Channel, using laser Doppler velocimetry tech-
niques to measure vertical and axial velocity components in the
trailing vortex wake. A thin cylindrical ring wing model was
tested at various axial angles of attack and free stream velocities.
Velocity profiles were measured at several downstream stations
from the trailing edge to 45 wing diameters downstream.

The inviscid roll-up of the trailing vortex sheet shed by a
ring wing was numerically examined. A line vortex representation
was used to calculate the evolution of the initially cyliﬁdrical vortex
sheet. The vortex sheet was found to distort in shape and then
smoothly roll up into a pair of doubly connected spirals whose
centers originate from approximately the center of gravity of vor-
ticity in the upper quadrants of the ring wing's circular trailing
edge. (This origin is at an angle of 38° measured from the hori-
zontal wing diameter.)

The experimental and flow visualization results are consis-

tent with the numerical data and show that a pair of counter-rotating

.f.

Graduate Aeronautical Laboratories, California Institute of
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iv
vortices do develop from the rolling up of the vortex sheet shed by
a ring wing in a nonaxial flow. The vortices trail, downstream of
the wing, with their vorticity centroids spaced by m/4 wing diam-
eters.

Saffman and Moore's theory of axial flow in laminar trailing
vortices was adapted and found to be in reasonable agreement with
the experimental results. The flow field near the trailing edge
was found to be in fair agreement with Weissinger's inviscid calcu- -

lations.
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I. INTRODUCTION

Trailing vortices are known to form by the roll-up of the
vortex sheet shed by a lifting surface. This phenomenon was first
_depicted by Prandtl in 1922. His now famous sketch is reproduced
in Figure la. Briefly described, the edges of the vortex sheet
emanating from the wing's trailing edge roll up into a pair of tightly
wound spirals, as a consequence of self-induced velocitieé. During
the roll-up process, vorticity tends to concentrate in the interior
of the spirals. In real fluids, viscosity smoothes out the turns of
the spirals to form the core of the trailing vortex.

The viscosity of the fluid is responsible for the formation of
the vortex sheet, and thus the sheet will possess a finite thickness.
However, for vanishingly small viscosity, the sheet would take on
the form of a mathematical discontinuity surface on which vorticity
is distributed. Therefore, viscosity is neglected to permit inviscid
calculations of the roll-up. Such inviscid calculations made in the
1930's gave valuable insight into the shape of the rolled-up spiral.

Kaden (1931, Ref. 1) simulated the roll-up behind a planar
wing by analytically calculating the roll-up of a semi-infinite vortex
sheet. An identical problem was treated by Anton (1939, Ref. 2)
who studied the vortex formation at the edge of an impulsively
started flat plate. The results of both investigations gave the
shape of the inner turns of the spiral to be of the form

-2/3

r = const. 0 (where r and 6 are the polar coordinates), thus

confirming a result of much earlier work by Prandtl (1922, Ref. 3).



Prandtl's general investigation of vortex formation in an ideal fluid
revealed a rolled-up spiral of the type r = const.e'n where n is
constant and 0 < n < 1. In connection with these results, it is
worth mentioning a much more recent work by Saffman and Moore
(1974, Ref. 5). By physical arguments of vortex motion in an
inviscid flow, they derived the general shape of the inner portion

of the rolled-up spiral behind a lifting planar wing, whose tip loading
is proportional to yl -n’ where y is measured from the tip of the
wing. The resulting spiral was found to be described by

-1/14n '
/ where, for example, n = % corresponds to an

r = const. B
elliptic wing, in agreement with Kaden's result by a lengthier
method. The limiting cases n = 0 and n = 1 correspond, respec-
tively, to a delta wing and a wing with constant loading.

Until recently the problem of trailing vortex formation had
ceased to be one of the leading areas of aerodynamic interest.
High interest in aircraft wake turbulence due to heavily loaded
aircraft (e.g., jumbo jets) has recently stimulated numerous theo-
retical and experimental invéstigations of trailing vortices. These
studies have been mainly concerned with planar wings like elliptic
and delta wings (Refs. 8 and 9). The least popular lifting surface
as an aerodynamic research subject is probably the ring wing. As
usual it lags behind planar wings in aerodynamic developments.

To date, research interest has been confined to the aero-
dynamic characteristics of the ring wing. Perhaps the most com-
prehensive works on the ring wing are the calculations of

Weissinger (Refs. 21 through 24) by linearized lifting surface



theory, and the experimental investigation of Fletcher (Ref. 29).
The vortex wake of the ring wing, however, has hardly been in-
vestigated.

It is the purpose of this study to investigate the formation
of trailing vortices by the roll-up of a ring wing generated vortex
sheet and to measure, in particular, the flow field associated with
the trailing vortices behind a ring wing in a nonaxial subsonic flow.
In addition to research interest in the studies of vortex sheet
roll-up, the ring wing has some important practical applications as
a lifting surface. The ring wing is used as a lifting surface in
VTOL-STOL aircraft and as an antidrag cowl in propulsive systems,
e.g., propeller shrouds and jet engine intakes.

The simplest flow past a ring airfoil is that of an axially
symmetric flow. In this case, there is no net lift on the ring
wing and, therefore, no trailing vortex sheet (Ref. 12). The sur-
face of the wing is characterized by bound ring vortices only. In
the present investigation, the case of nonaxial flow is studied. A
thin cylindrical ring wing, placed at a small axial angle of attack,
develops a pressure distribution on both the inner and outer sur-
faces of the wing so as to cause cross-flows on the wing surface,
as depicted in Figure 2. Fluid will tend to flow on both surfaces
from the pressure side to the suction side. When the inner and
outer flows meet at the trailing edge, vorticity is generated by the
action of viscosity. Vorticity thus generated lies, for wvanishingly
small viscosity, on a cylindrical surface of discontinuity. In a

plane perpendicular to the axis of the cylinder, the trace of the
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vortex sheet is a circle with radius equal to the radius, R, of the
ring wing.

The vorticity distribution on vortex sheets generated by
elliptic wings, say, and by leading edge separation over slender
wings (e.g., delta wings), is characterized by singularities that
serve as the origins of the roll-up process. By contrast, a ring
wing generates a vortex sheet whose vorticity distribut‘ion‘is free
of any singularity. Consequently, the origin of roll-up on the 1jing
wing itself is not obvious. The initial distribution of vorticity on

the cylindricalvvortex sheet, w(p), is given in Appendix A by
w(p) = 2 WosinCp , 1.1

where W0 is the initially induced velocity inside the cylinder, and
¢ is the polar angle measured from the bottom of the median plane
of symmetry.

A steady three-dimensional calculation of the roll-up is
highly intractable. For light loading (i.e., for small angles of
attack) and/or large downstream distances, an approximation may
be made by replacing the steady three-dimensional flow by an
equivalent unsteady two-dimensional flow. The problem is treated
numerically in Section II, using a discrete point vortex simulation
of the cylindrical vortex sheet. A schematic drawing of the roll-
up is shown in Figure lb. The roll-up is very gradual and should

not, therefore, significantly affect the aerodynamic characteristics

of the ring wing.



In the second half of this study, the roll-up process of the
vortex sheet into a pair of trailing vortices and the associated flow
field are both investigated by direct measurement of the velocity
field. The experimental investigation is confined to laminar flow.

In, perhaps, the first velocity measurements in a trailing
vortex, Fage and Simmons (1925, Ref. 28) employed both hot wire
and static pressure probes. The former technique showed axial
velocity excess, whereas the latter indicated a deficit. Similar
results have also been reportedb by recent investigators. The fact
that axial velocities exist in tip vortex cores is well established
(Ref. 8). However, because of flow disturbances caused by probes,
whether an excess or defect occurs is not experimentally clear.

Trailing vortices, particularly laboratory generated vortices,
are very sensitive to any probe placed in the vortex core, and the
probe may even cause vortex breakdown. A vortex which finds a
probe in its core will tend to wander around the probe. Such
"vortex wandering'' could cause drastic changes in the vortex struc-
ture and, thus, alter the flow field inside the core. The ''vortex
wandering' phenomenon is primarily due to free stream velocity
fluctuations. Its effect on the structure and flow field of the
vortex has been discussed in Reference 25. To avoid uncertainties
in the vortex flow field, a velocity anemometry technique which is
free from disturbing the flow is advised. | |

Currently, the laser-Doppler velocimetry (LDV) technique
is the only one which guarantees no flow disturbance. In addition,"

the LDV provides high spatial resolution. Some excellent LDV
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measurements in trailing vorti;:es have recently been reported (Refs.
25 and 26) and have resolved the uncertainty in the direction of
axial flow in the vortex core.

Single scattering particle LDV (described in Section IV) was
used in this investigation. The experiments were conducted in the
GALCIT Low Speed Water Channel which has a very low turbulence
level, and therefore 'vortex wandering'' due to free stream fluctua- .
tions was practically eliminated. In addition to its advantage of
producing high Reynolds number at relatively low channel speeds,
the water channel facilitated flow visualization techniques. Further-
more, the water naturally contained sufficient light scattering
particles to provide good Doppler signals without any seeding, as
may be found necessary in wind tunnels.

Existing theory on laminar trailing vortices is adapted in

Section III and compared to the experimental results in Section V.



II. NUMERICAL CALCULATIONS

II.1 Approximations of the Vortex Sheet

Calculation of the steady three-dimensional flow behind the
ring wing is an intractable problem. Therefore, the usual approx-
imation is made. Time is introduced by t = x/U (where x is in
the downstream direction and U is the freestream velocity), and an
equivalent unsteady two-dimensional flow is instead studied. The
bound ring vortices are thus ignored, and the trailing vortex
lines which bend in practice are assumed straight and parallel,
extending in both directions to infinity. Such an approximation is of
course not expected to represent conditions in the immediate
neighborhood of the wing.

With the above approximation, the problem is restated thus:
at time t = 0 an infinite cylindrical vortex sheet whose constituent
vortex lines are straight and parallel to the x-axis intersects the
z-y plane in the circle r = R, where R is the radius of the ring

wing. The initial strength of the vortex sheet (see Appendix A) is

given by
T
w () :—R—° sin® 2.1
where To is the root circulation. The flow is inviscid and incom-

pressible. The problem is to determine, in the course of time,
the evolution of the vortex sheet in the z-y plane.

The equation of the vortex sheet in time is obtained by
solving the nonlinear singular integro-differential equation given by

Saffman (1974, Ref. 4) in the form



t

27 C,0= z%f T 2.2
Z(r:t) - Z(r ’t)

where the bar through the integral sign implies the Cauchy princi-
pal value of the integral. The bar over Z denotes the complex
conjugate of Z =y (,t) + iz (,t), wbe;‘e y(,t) and z([,t) are the
parametric representation of the sheet, The circulation I is

used as a Lagrangian coordinate by

]
T :f w(s,t) ds 2.3
where W(s,t) = g—g— 2.4

and w(s,t) is the strength of the vortex sheet at time t as a func-
tion of arc length s. The initial condition for a vortex sheet
generated by a ring wing is

zC,0) =% R[l - (I‘/FO)Z]Z * 1RI‘/I‘0, osrsro 2.5

Perhaps it may be emphasized here that Equation 2.2 is
a two-dimensional approximation of the steady three-dimensional
problem which, as mentioned before, is intractable. In the two-
dimensional approach, the bound vortices (and the starting vortices)
are displaced to infinity. In other words, Equation 2.2 describes
the flow in the Trefftz plane where the downwash is twice that at
the lifting line on the wing. (In practice, most of the errors
introduced by ignoring the bound vortices occur within the first

wing span distance in the wake.) Furthermore, vorticity is not
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quite transported downstream at the freestream velocity as assumed
by the two-dimensional approach. In addition to lateral displace-
ments (as borne out by results of the numerical calculation in
Section V. 1) there is stretching of the vortex lines, particularly in
the low pressure vortex core. This changes vorticity but not circu-
lation. The two-dimensional approximation (Eq. 2.2) is valid for
light wing loading and/or large downstream distances. A formal
justification of replacing the steady three-dimensional flow by an
unsteady two-dimensional flow is included in the appendix of Moore
and Saffman's» work (Ref. 5).

The above stated problem, in the form of Equation 2.2 is
still intractable; howevér, it is stated here for future analytic
‘investigation. Further approximation is, therefore, made to make
the problem amenable to numerical computation., The usual pro-
cedure is to replace the initial continuous vortex sheet by either a
number of discrete line vortices which vary in strength, or equi-
strength, unequally spaced vortex filaments. One then numerically
follows the motion of the individual discrete vortices, due to the
velocity field induced on each vortex by the remaining vortices.

Rosenhead (1931, Ref. 10) was the first to use such a dis-
cretization method. He used this approximation to study the
Helmholtz instability problem. Westwater (1935, Ref. 11) later
used the same technique to calculate the roll-up of the vortex sheet
shed by an elliptically loaded wing. Both studies resulted in a
" smooth roll up of the vortex sheet into a spiral where vorticity

concentrated. However, Birkhoff and Fisher (1959, Ref. 13)
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criticized and showed Rosenhead's analysis to be doubtful. They
further pointed out that an array of discrete vortex filaments in a
nonviscous fluid might exhibit a tendency towards randomization of
position; results of their calculation of the same problem substan-
tiated their view. Hama and Burke (1960, Ref. 14) also reexamined
the Helmholtz instability problem and encountered the same random-
ization effect. By taking smaller time steps of integration and
redistributing the initial vorticity in the sinusoidally perturbed
sheet, Hama and Burke were able to obtain a smooth roll-up but
no strong concentration of vorticity resulted. It is worth noting
though that Euler's step-by-step integration method in itself has a
smoothing effect on the point vortices' chaotic motion inside the
rolled-up spiral. This is apparently due to the cumulative errors
introduced by such an integration scheme. It is believed that this
could explain why Rosenhead and Westwater's calculations resulted
in a smooth roll-up.

In view of Birkhoff and Fisher's criticism, Takami (Ref.
15) and Moore (Ref. 6) reexamined Westwater's calculation of
vortex sheet roll up behind an elliptically loaded wing. Both inves-
tigators employed much more refined numerical calculation pro-
cedure. But still the inner point vortices moved irregularly,
implying that the vortex sheet, represented by these point vortices,
would have crossed itself several times, In spite of the random-
ization effect, Takami and Moore's results show an indication
toward vorticity concentration and give a qualitative picture of the

roll-up. It is in this view, to obtain a qualitative picture of the
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roll-up, that a similar numerical calculation is performed on the

cylindrical vortex sheet shed by a ring wing.

Some successful techniques to remove chaotic motion of the
point vortices have recently been presented in the literature. These

are briefly described below.

II.2 Methods to Control Chaotic Motion

a) Kuwahara and Takami's "artifical viscosity"
method (Ref. 16),
In this method the induced velocity field of a line vortex is replaced
by the velocity field of a viscous diffusing vortex with a core radius
r_ = (4vt)%, where the kinematic viscosity, v, is chosen arbitrarily.

Thus, the tangential velocity due to a line vortex,

A |
Y9 < Tmr 2.6

is replaced by that due to a diffusing line vortex,

r
vg = 5= [1 - exp (-r%/4ut)], 2.7

where r is measured radialiy from the point vortex, around which
the circulation is I'. Kuwahara and Takami's results, from recal-
culating the vortex sheet roll-up behind an elliptically loaded wing,
showed rather remarkably smooth roll-up. However, it is not clear
what value of v should be most appropriate.

b) Chorin and Bernard's cut-off radius method (Ref. 17).
This approach is analogous to the artificial viscosity method de-
scribed above except that unlike the artificial viscosity the effect of

the cut-off radius is not cumulative. The velocity field is modified
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by
r
Ve T Zmr ° rer
2.8
T
= r, r= r .
21Tr2 ¢
c

The cut-off radius r. is taken to be in the order of the separation
of the initially closest pair of vortices.

Methods a) and b) effectively make the velocity field of the
point vortex bounded, and thus suppress the irregular motion of
vortices which may come too close together within the rolled-up
portion of the vortex sheet.

c) Moore's amalgamation method (Ref. 7).

This method is based on the fact that the velocity field of the inner
portion of the rolled-up spiral is approximately axisymmetric,
Instead of representing the inner turns of the spiral by a finite
number of discrete point vortices, the inner spiral turns are repre-
sented by a single tip vortex placed at the center of the spiral.
This is accomplished numerically in the following way.

Numbering the point vortices from the tip of the wing, the
first point vortex represents the tip vortex. In the course of the
numerical integration, the angle subtended by a vector connecting
the second and third vortices, and a vector connecting the third and
fourth vortices is examined at each integration time step. When
this angle exceeds GC, vortices one and two are combined to form
the new tip vortex with strength equal to the combined strength of

the pair. The tip vortex is then placed at the centroid of the pair.
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Moore found ec = 90° adequate to prevent randomization of position.

d) Redistribution of vortices, Fink and Soh (1974, Ref. 18).
In this technique the vortex sheet is divided into a number of small
segments of equal length. FEach segmené is then represented by a
point vortex whose circulation equals the circulation around the
segment. The representative point vortex is placed at the mid-
point of the. segment. (Note that in the previous methods the point
vortex is placed at the centroid of vorticity of the segment. The
mid-point position makes a logarithmic term in the induced velocity,
introduced by the Cauchy principal value, vanish.) The motion of
the array of point vortices is followed by Euler's step-by-step
integration scheme. At each time step the point vortices become
unequally spaced. To ensure that the vortices remain equispaced
in the course of time, a new set of vortices are created by again
discretizing the new sheet represented by the previous set of
discrete vortices. (The strength of the sheet is found by interpo-
lation.) Thus the new set of vortices will have different strengths
and positions but remain equispaced as integration proceeds.

Fink and Soh used their method successfully in treating
various vortex sheet roll-up problems including that of Westwater
and Rosenhead. No randomization of position was encountered.
Furthermore, increasing the number of segments bettered the cal-
culation in contrast to previous techniques. This is probably the
most successful method. At least no ambiguous parameter like a
cut-off radius is introduced. However, the Euler integration

smoothing effect as mentioned before cannot be discounted.
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It would be interesting to check this approach by other integration
schemes such as the Runge-Kutta method,

In a way, this method of redistributing the vortices at each
time step is analogous to Moore's amalgamation method. Both
methods have the effect of representing the inner portion of the
rolled-up spiral with fewer and fewer but stronger discrete vortices

to eliminate spurious fluctuations during the cause of integration.

I1I. 3 Calculations on the Ring Wing

The discretization approximation s.cherne is used to numer-
ically calculate the roll-up of the cylindrical vortex sheet behind a
ring wing. The vortex sheet is divided into 2M arcs of equal length.
Each segment is then represented by a point vortex, with strength
T‘i equal to the circulation around the segment, placed at the cen-
troid of vorticity of the arc. To reduce spurious fluctuations of
vortices within the spiral, a cut-off radius T, is introduced as in
Equation 2.7, The cut-off radius is kept constant in time and is
taken to be on the order of half the arc length.

A system of ordinary differential equations to be solved

numerically instead of Equation 2.2 is

Z2M r
8w _ _ i ___1 2, 2
EFZk" 2T Zk- Z. [1 - exp(- |Zk-Zj| /rc)]. 2.9
j#k J

Here Z is complex, and the bar over Z indicates the

k- Yk T
complex conjugate. The initial strength of the vortex sheet is
I‘OR“1 cosB, where 6 is measured from a horizontal diameter of

the circular cylindrical sheet, and To is the root circulation.
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ale

. . . - - . *
It is convenient to introduce a dimensionless time, t ,

defined by
T
b
t = %— —52’— t 2.10
m R

Assuming all the vorticity per half wing is concentrated at the
respective centers of gravity, y = * (1/4)R, to form a pair of
circular trailing vortices, then (T‘r3/4)R2'/f‘0 is the time it takes the
pair of trailing vortices to descend through their distance of hori-
zontal separation, (T/2)R. The strengths of the peoint vortices are
normalized by TO and lengths are nondimensionalized with R.
Equation 2.9 is numerically integrated forward in time on
the IBM 370-158 batch processor using the fourth order Runge-
Kutta integration method. The symmetry of the sheet about the
plane of symmetry, y = 0, is used to save computing time. In
using the Runge-Kutta method, the time step is determined by the
shortest time scale. For the equisegmented sheet vortex subdivision
mode (approximately equispaced point vortices), the shortest time
scale is the least orbital period of a pair of the point vortices.
For a pair of vortices with separation s, and strength ', the
orbital period is 4TT2 SOZ/F, The closest and strongest pair in the
point vortex approximation of the cylindrical vortex sheet is the
two point vortices near the horizontal diameter where vorticity is
maximum. The separation of this pair is approximately TR/M, and
their strength is FOTT/M. The orbital period of the pair isvthen
4W3R2/MTO. Thus, one must ensure that the integrating time step

* P
dt satisfies the condition dt < < 16/M. (Note that this is a less
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E
restrictive condition than dt < < 8/TTM2, the condition for the case
of an elliptic wing generated vortex sheet (Ref. 7).
The invariants of the vortex motion are also examined,

These invariants (Refs. 19 and 20) are:

.y

the 'vertical impulse’, i

i

NSS!

the 'angular impulse’', : I‘i lZi - ZO|2

i=1
about the centroid of vorticity, Zo’ and

. I SN r _
the 'energy S I‘i j log lZi ZJ.,
i#j
Due to symmetry and the fact that vorticity generated by
each half of the wing has opposite signs, the 'angular impulse!
invariant is automatically preserved and needs not be calculated.

The results of the computation are presented in Section V.

II.4 Roll-up Rate of the Vortex Sheet

Some insight into the roll-up rate of the vortex sheet behind
the ring wing may be gained by the following approximation. Con-
sider the cylindrical vortex sheet to be represented by four point
vortices placed at the centroid of vorticity of each quadrant (Fig. 6).
Each vortex pair has strength % TO and is placed at the coordinates
(*a, *b), where a = n/4 amd b = % taking the radius of the wing
R = 1. FEach pair of vortices with the same sign of circulation

(e. g., the pair at (a,b) and (a, -b)) will orbit on an orbital path
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centered at the center of gravity of the pair as the system of the
four vortices descend. Consider the moving coordinates n,G),

with the origin at the center of gravity of the pair. The orbital

.i.

path’ can easily be found analytically from the energy invariance

of the four-vortex system to be

1,]2 + QZ = (a.2 - nz) (a2 + Q,Z)/C0 2.11

where CO = a2 (1 + az/bz)

After lengthy algebra, the orbital period T is obtained as

1
-———ZE(CI)], 2.12

3 .2 :
_ 21" R
T=" 1 [ K(Cy) -
1 o
2,2 -1 ‘e
where C, =0 +a /b”)"", K and E are the complete elliptic
integrals of the first and second kinds, respectively, With a = 1m/4

and b = %, the orbital period is

T = 15.51 RZ/FO. 2.13

It is assumed that the vortex sheet may be considered essen-
tially rolled-up by the time the upper vortex (Fig. 6) regains its

original lateral position of y = (n/4)R (i.e., { = 0). This time,

K sk
t>'c, is half the orbital period. Thus tC = 1.0. 1In terms of down-

stream distance from the trailing edge of the ring wing, replacing

t by x/U,

+This is a special case of a vortex pair with the same sign of
circulation near a wall as treated in Reference 34.
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X ﬂ3(ro )—1 *
ﬁ = -g- TI—R t 2.14

and roll-up is considered complete when, tc = 1.0. Thus

3
x\ _ 77" UR
(ﬁ) 8 T 2.15
c o)
T A
T6cL

From lifting line considerations ro = UC CL, where C is the chord

length, C_ 1is the wing lift coefficient, D is the wing diameter and

L
A = D/C is defined as the aspect ratio. (For an elliptic wing,
Kaden (Ref. 1) calculates x/b = 0. 28 A/CL for the downstream
station where the vortex sheet may be considered essentially rolled
up. Here, b is the wing span and A = b/C).

The above approximation is based on the result that the
cylindrical vortex sheet rolls up into a pair of trailing vortices
whose centers are located at y = £ (T/4)R. Approximately, the
centérs of the trailing vortices originate from the centroids of vor-
ticity in the upper quadrants (Fig. 3). The path of the single point
vortex (representing vorticity in' the upper quadrant) is assumed to
roughly simulate the path of the center of the rolled-up spiral.

Equation 2.15 is compared to the numerical and experimental

results and found to be in fair agreement (Section V).
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III. THEORETICAL CONSIDERATIONS

IIT. 1 Inviscid Vortex Flow Field

The structure of the trailing vortex is known to depend on
the geometric configuration of the wing. Moore and Saffman (Ref.
5) have recently presented a theory for the structure of a laminar
trailing vortex generated by a finite wing with a tip loading of the

1-n " Here n is a positive constant with 0 < n < 1,

form U(y) ~ y
and y is measured from the wing tip. Their work is adapted to
obtain a theory to predict the flow field in the trailing vortex
formed behind a ring wing. Detailed reasoning in Reference 5 is
not produced here.

The rolled-up vortex is assumed to be axially symmetric,
and the spiral structure of the inviscid vortex is neglected. The

approximate distribution of circulation I'(r) in the central portion of

the vortex is determined to be (Appendix B)
T(r) = I T si
(r) > L sin Ar/R 3.1

and the tangential velocity due to inviscid flow between spiral turns
is given by

_ o SinAr/R
vg = B /R’ 3.2

where

B =AL_/4R . 3.3

Here R is the radius of the ring wing, To is the root circulation
and A is the compression (or contraction) factor (Appendix C),

The pressure field developed by the inviscid roll-up is determined



from the equation
v 2

-8 3.4
r

I
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1
p

which is obtained from the balance between radial pressure gradient
and centrifugal force. The tangential velocity, Vg given by the

sine function in Equation 3.2, is now replaced by a series of finite

terms,

— . 2j
- j (r/R) .
Ve B.‘ (-1) (2j+1)1 s r 0 . 3.5

j=0

Equation 3.5 is much easier to manipulate than Equation 3. 2; and,
in any case, it is a fair approximation in the inner portion of the
vortex where the present analysis is concerned.

Equations 3.4 and 3.5 then give

W WS
p~ 0/1(-——-) +.L ; (Ar/R) ’ as r—~ 0 3.6

2z R
j=1
where j
. -
bj = (-.1)J ) [(2k+1).’ (2j - 2k + 1)!] 1
k=0

and R/A have been used as a convenient length scale in the log-
arithmic term.

The axial velocity u caused by the inviscid roll-up can now
be determined by making the light loading approximation that
u < < U. Then, in the central region of the rolled-up vortex, the

requirement that total head be conserved leads to

(p—po)/p+uU+—;-v92=0 . 3.7
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Substituting Equations 3.5 and 3.6 into Equation 3.7, one obtains

o A ERTC R O o

j=1

[

3.8

as r =+ 0

It is seen that the inviscid roll-up introduces singularities in both
the pressure and axial velocity on the axis of the vortex core.

Viscous effects will remove these singularities. The finite tangen-
tial velocity on the core axis will be reduced to zero by viscosity.

It is worth noting that u > 0 at r = 0 is in agreement with results

in Reference 5.

1I1. 2 Viscous Effects

Viscous effects are known to be confined to a slender inner
core of the vortex. A solution is sought for this viscous core by
using the inviscid solution in Section III. 1 as an initial condition to

solve the parabolic equation of boundary lvayer type approximations,

viz,
9 9% 9
Yo _ 9,17 "8 3.9
3t Vv 82 r 9r r :
T
o2
8 _19p
= —b—ar 3.10
and S w1 op, (0%, 12u 511
at ~ ~ pU ot “arz r or :

where, in assuming light loading, t replaces x/U and axial sym-

metry is assumed. The flow is rotational, laminar and
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incompressible; the boundary conditions are that Vg = 0 and u is '

1
finite at r = 0; and that as the boundary layer variable r/(vt)2 - @,
the solution matches the inviscid outer solution. A solution is

sought by introducing the similarity variable
T] = e ® > T] > O . 3. 12
Then the inner solution for Vg is of the form

.
RS Y t\‘]

=) F.mn . 3.13
‘'R J

ve:B

)
/
)

j=0

Substituting Equation 3.13 into 3.9, one obtains the set of ordinary

differential equations

111 1 t : 1
F. + (14=) F. -<~l+—— F. =0, j=0,1,2...

3.14
where Fj(O) =0 3.15
oL (=i .
and 1 Fj(r’]) 2+ D) as N —® . 3.16
Solving, one gets
1 j 1
L 3 DY L. 5.
FJ(n) ~ 2 T n ].F]. (2 ~-Js 2: "n): 3. 17
1 1 j
L j T .
and vg =B 3 n% ;. (-1 T Fp G- 25 m), 318
j=0

T :)\2 vt/R2

where 1F1 is a confluent hypergeometric function (p. 504, Ref. 41).

It is worth noting that the first term in Equation 3.18 is in
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agreement with the solution in Reference 5 for n = 0. vy is
plottedvin Figure 10 for different Ts. The peak circumferential
velocity and the core radius are then obtained and plotted in Figure

12. The core radius is given approximately by

-0.43

r. = 1.42\ (vt/4R?)0- 281 3,19

1

The pressure can now be determined by substituting Equation

3.13 into Equation 3.10 and integrating to give

2 .
P_B_ N ]
5 5> T Pj m) 3.20
j=0
where Pj M) :fQj (nm) dn, 3.21
.
i . -1 k j-
and Qm = (-1 Tolegrat p® IFI(J k) 3,22
k=0
k
where lFl( ) = lFl (—é—- k; 2; -n) . 3.23

The pressure checks with the asymptotic value and can be evaluated

numerically. For small T the dominant term is given by

n
P_(n) = Const. + &7 +/ Q_(n) dn : 3.24
0 .

Knowing the pressure enables the axial velocity perturbation

u to be determined. Writing u in the form

1

» | |
u:-g—U-[(vm)H(n)+Gom)+ 7] Gj(n)] 3.25

1

1o~

j
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and substituting with Equation 3.20 into Equation 3.11, a set of
ordinary differential equations is obtained by equating coefficients

of o7 and TJ. The result is

MH +M+1)H =0 3.26
mn 1
nGo+(1+n)Go:H-l+nQo, 3,27
1" 1 dP- .
. 1 + . - 1G. = —d i P. 3.2
and i GJ + ( 1’])GJ JGJ i i j ; 8
j=1,2,...

with the boundary conditions

H(0) = G, (0) = G, (0) = 0 3.29
H- 1
G () = 1 +&n 4n as M - @ 3.30

- 2l 1 j
G.(M 4" (1 + =) b.1
J( ) ( 3 ) j

The solution of Equation 3.26 is H = 1; Equation 3.27 then

becomes

NG+ (1+m) G =nom . 3.31
On and near the axis of the vortex core the dominant terms of the
axial velocity are given by H and Go' For the purpose of com-
parison with the experimental result, only H and Go are solved.
This should give a fair approximation to the axial velocity on the
éxis of the core for small T. Furthermore, for the range of
Reynolds number in which the experiment was conducted, the axial

velocities developed by the roll up of the vortex sheet are small
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compared to velocity defects caused by boundary layer retardation
on the wing surface (Fig. 11).

The solution of Go ‘is

n Z

e Ce™® [LF (3/2; 25 )% aC
—Z— ] 11( s 2 ) dz

0 0 3,32

m
G, (M) =7

+ constant

where the constant is determined by matching G, less the constant
(which can be easily evaluated numerically) with its asymptotic
value. In fact,a check of Equation 3,32 shows that Go“’ const. +énm.

The value of Go on the core axis is found to be 3. 08, and

2
- B <
AUV(O)——ZU[3,08 +onT - oM, T<<1 3. 33
2
where T =2 v 3,34
R

The contribution of axial velocity by boundary layer retardation on
the core axis is estimated in Reference 5; for constant wing

chord, C, it is given by

1
BTG (0) = X5 M (C/x)? ) 3,35

The value of the constant X5 is dependent on whether displacement
or momentum thickness is used in determining the boundary layer
thickness. In this work it seems more appropriate to use the
momentum thickness rather than the displacement fhickness since
roll-up does not occur immediately at the trailing edge of the ring
wing. Roll-up is delayed, consistent with light loading approx-

imation, to far downstream from the trailing edge. Furthermore,
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as pointed out in Reference 5, the use of the momentum thickness
assures the balance of the momentum flux deficit in the vortex
core with the skin friction drag on the wing. Based on momentum
thickness, X = 0.19. This value gives much better agreement
with the experimental results (Section V) than the displacement
thickness value of Xs = 0.48.

On the core axis the axial flow AU(0) is then given by the

sum of AUV(O) and AUa(O); thus

AT(0) = AU_(0) + AU (0)

2

- - %%[3.08 +&z(4>\2 5/Rp)- ] 3. 36

N

- Xg A (C/x)
where 4)\2 5/R << 1
D7D

Here D is the ring wing diameter, A is fhe wing aspect ratio,
D/C, and RD = UD/v is the Reynolds number. The magnitude of
the two terms, Egs. 3.33 and 3. 35, is compared in Figure 11, and
the general theoretical results in this section are compared to the

experimental results in Section V.
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IV. EXPERIMENT

IV.1 Test Facility

The experiments of this study were conducted in the GALCIT
Low-Speed Water Channel (Fig. 13). The channel has a contraction
ratio of about 8:1 and a glass wall 216-inch test section of 18 x 24
inch cross section. The flow straighteners and turbulence control
system in the contraction chamber consist of honeycomb, porous
foam, and fine mesh screens. Additional foam attached downstream
at the end of the test section serves to eliminate long wavelength
surface waves.

The water channel free stream turbulence level is less than
0.1 percent. Low free stream turbulence level is particularly
advantageous to the reduction of vortex wandering (Ref. 25) in
trailing vortex experiments. The maximum channel speed is 90cm/
sec but because of channel vibrations and depth of water, the
experiment was conducted at a maximum free stream velocity of

33cm/sec.

IV.2 Ring Wing Model and Support Mechanism

The test model employed in the experiment‘ was a thin
cylindrical ring wing. It was machined from aluminum tubing and
was black anodized to protect it from corrosion. A symmetric
NACA 0010 airfoil section with chord length C = 3,81 cm was used.
The airfoil section had a leading edge radius of 0.011 chord lengths,
a trailing edge thickness of 0. 0021 chord lengths, and a maximum

section thickness of 0.10 chords at 0.30 chord lengths from the
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leading edge. The diameter, D, of tﬁe ring wing model was 7. 62
cm, giving a wing aspect ratio of A = 2. (The aspect ratio is de-
fined here as the diameter-to-chord ratio, A = D/C.) A schematic
drawing of the model and the reference coordinates used is shown
in Figure 14,

The model was supported by six thin 0. 0127 cm diameter
stainless steel wires as shown in Figure 15. The upper four wires
attached to the model (two wires on each side of the median plane
of symmetry) were fastened to the inside section of a rig above
the water surface. The lower two wires, attached to the bottom of
the model, were fastened to a point on a small plate glued to the
channel floor. The end plates of the inside section of the rig had
arc slots which rode on pins fastened to the outside section of the
rig. The centers of the arc slots and the bottom wires' point of
attachment on the channel floor were arranged to lie on the axis of
rotation for the inner section of the rig. The axis spanned the
channel floor. By moving the inside section of the rig along the
arc slots, the model and wire support system, as a unit, rotated
about the axis without adding additional tension to the wires. In
this manner the angle of attack was set. A vernier height gauge
was then used to measure the angle of attack to within 0.25 degrees.
The angle of attack was checked periodically during the course of
the experiments and was found to be within the accuracy of measure-
ment,

There were three main problems of concern in the use of

the wire support system: Karman street vortex shedding from the
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wire,i model vibrations, and wire breakage. Fortunately, no wire
breakage was encountered and the model was free of any notice-
able vibrations. Some vortex shedding from the wire were observed,
but these quickly decayed within a few wire diameters. At the

free stream speeds at which the experiments were run, the wire
Reynolds number was about 44. (Karman street vortices are
observed to begin at a Reynolds number of about 40 (Ref. 33)).

A wire support system may prove to be a problem at high
free stream speeds. Neverthless, for ring wing vortex wake
experiments, caution must be exercised in the use of the usual thin
strut support. In preliminary tests, a thin strut was used to sup-
port the ring wing model. The strut was found to cause substantial
disturbance to the vortex formation behind the ring wing. The wake
from the strut got entrained into the trailing vortices during the
roll up of the vortex sheet. This is the reason why a wire support

system was adopted.

IV.3 Test Conditions

Using the LDV system described in Section IV.4, axial and
vertical velocity profiles were measured at downstream stations
from 0.2 to 45 wing diameters. Horizontal traverses through the
vortex core yielded the tangential velocities. Tests were run at
angles of attack of 4, 7, 10 and 12 degrees at a Reynolds number
(b#sed on wing diameter) of roughly 2.7 x 104. Some measure-
ments were obtained at lower Reynolds numbers of 1.7 x 104 x

2.1 x 104, all within laminar flow range. A wider range of
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Reynolds numbers could not be tested because of limited test

facilities. The measured results are presented in Section V.

IV.4 Laser-Doppler Velocimeter (LDV)

Laser-Doppler velocimetry has proven to be very advanta-
geous, particularly to experimental studies of trailing vortices.
The LDV has several advantages over conventional velocimeters
such as the hot wire and pressure probes. Perhaps the most sig-
nificant advantage is that the LDV introduces no material into the
flow and hence causes no flow interference. On the other hand,
hot-wire and static pressure probes may cause significant inter-
ference to the flow. Vortices, in particular, are quite sensitive
to probes inserted in the vortex cores. Probes thus inserted may
drastically change the vortex structure and even induce vortex
breakdown. It is also known that a tip vortex tends to wander
around a probe inserted in the vortex core. Due to vortex wander-
ing, the measured velocities which are time-averaged will be sub-
stantially altered from the instantaneous velocities (Ref. 25).
Measured axial and peak tangential velocities will be decreased
from the instantaneous velocities, and the vortex core radius will
increase.

Other LDV advantages include the comparatively high spatial
resolution and the linear response to velocity. High spatial resolu-
tion is particularly important in measuring the vortex core where
high velocity gradients exist. Because of its linear response to

velocity, the LDV requires no calibration except for an easily
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determined constant obtained independently by measuring an angle.
The principles behind the LDV are now well known. Only
a brief account will be given here but more detailed analyses may
be found in References 38 through 40. The underlying principle of
the LDV is the well-known Doppler effect. Consider a sufficiently
small particle moving through a measuring control volume (Fig. 16)
with instantaneous velocity vector Vi' The particle receives light
waves from the incident light sour:e and scatters some of the
incident light in all directions. Both receiving and scattering of
light by the particle result in a frequency shift due to the Doppler

effect. The frequency of scattered 1igh‘t, in the direction of the

unit vector ks’ sensed by a detector is given by

~

v -_-vo[1 Vo (kg -Ei)/d 2 4,1

~ ~~

for particle velocities much less than the speed of light. The

Doppler shift frequency YD is then given by

Vv
_ . .9 . -
VD " Vs T Vo T ¢ Zi (Es ki) 4.2

~

where c is the speed of light, Vo is the frequency of the incident
(or scattering) beam, and ki is a unit vector in the direction of the

~

incident beam. The quantity vo/c equals the wavelength )\o and
,.125 - Ei = (2 sin 6 /2) gi 4,3

where 0, the scattering angle, is the angle subtended by the unit

vectors, ki and ks; n, is a unit vector lying in the plane of the
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unit vectors ki and ks and perpendicular to the bisector of the

scattering angle.

The Doppler shift frequency (Eq. 4. 1) then becomes

_ 2sinf /2 .
vp = —T;—— ,Yi ni 4.4

l

and V,, the particle velocity sensed in the direction of n, is

~

Xo
Vi = 25merz 'p '
Thus, if the scattered light wave is mixed with another light wave
(a reference beam, say) from the same coherent light source, theb
beat frequency is related to the particle velocity through Equation
4. 5.

There exist different modes of LDV operation, as deter-
mined by the optical arrangement. In this study, the ''local
oscillator'" mode, also known as the ''reference scatter' method,
was employed, and a five milliwatt Helium-Neon laser was used as
the light source.

In the '"reference scatter' method (Fig. 17), the laser beam
is split into two beams by a glass beam splitter by means of
partial internal reflections. The emerging beams are parallel and
have unequal fractions of the laser power. The reference beam is
weaker than the scattering beam which contains most of the laser
power. The weaker beam may further have to be attenuated by a
neutral density filter, according to the photo detector specification.
Using a plano-convex lens to reduce spherical aberration, the two

emerging beams are focused in the neighborhood of the focal point
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of the lens. The two beams meet in an overlap volume with
approximately planar phase fronts. A particle which moves
through the measuring volume (i.e., the overlap volume) scatters
light from the scattering beam in all directions, particularly in

the direction of the reference beam. A photomultiplier is aligned
so that the reference beam is normally incident on the photo-
sensitive area of the photomultiplier. Thus, the photomultiplier
detects two waves: the reference beam at the laser frequency Vor
and the wave scattered in the reference beam direction at a
Doppler shift frequency vy = (vo + vD). The two nbrrnally incident
waves are superimposed on the photosensitive area of the photo-
multiplier to yield a photocurrent whose AC component is modulated
at the Doppler shift frequency, V- The Doppler shift frequency ils
related, through Equation 4.2, to the particle velocity compoﬁent,
Vi, which lies in the plane of the intersecting beams and is per-
pendicular to the bisector of their subtended angle, 6 (i.e., the
scattering angle).

The photocurrent output of thev photomultiplier is amplified
and bandpass-filtered to remove noise outside the frequency range
of interest. The output signal may then be processed in the fre-
quency domain, the signal frequency (i.e., the Doppler shift
frequency) is tracked by a phase-loéked loop which produces a
continuous square wave of the same frequency as the Doppler signal.
A digital counter is then used to average the frequency over a

fixed period of, say, 10 seconds.
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A brief description of the time domain signal processing
will be given here; a detailed analysis is given in Reference 35.
Understanding of this system is facilitated by imagining a particle
moving across the interference fringe pattern that the two inter-
secting beams will form on the surface of a square law detector.

The linear fringe spacing, df, is given by

A
= —0
4 = 25072 4.6
Where?\o is the laser wavelength and 6 is the scattering angle,
and the particle velocity, V,, is given by
d
V.L = -t—f- 4 7
f

where tf is the particle's time of flight between fringes. The time
of flight is equal to the time between zero crossings (after DC
component removal) of the signal burst from the photomultiplier
output. A typical photocurrent pattern (signal burst) is shown in
Figure 17b. It is worth noting that the Doppler shift frequency,
vy equals the rate at which the particle crosses the interference
fringes, i.e., vp = l/tf, and therefore Equations 4.6 and 4.7
reduce to Equation 4. 5.

Time-domain signal processing possesses intrinsic advan-
tages over frequency-domain signal processing. The most important
advantage is elimination of "ambiguity noise' caused by finite time
of transit of the scattering particle moving through the measuring
volume. The problem of ''signal drop outs' (caused by the absence

of a scattering particle in the measuring volume) is also
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nonexistent. Furthermore, the spatial resolution can be increased
if the Doppler signal is processed in the time domain. The signal
processor can be designed to have the capability to reject data
from particle trajectories which contain less than a certain speci-
fied number of fringes. In addition, it may be specified that the
signal must satisfy a preset amplitude (i.e., weak signals are
rejected). In essence, a signal burst is processed if the scattering
particle crosses the inner portion of the measuring volume and a
signal burst is rejected if the particle crosses near the édges of
the fringe pattern. Effectively, the spatial resolution is improved.

In the case of the 'reference scatter'" mode, ambiguity in
the scattering angle, 8. still exists irrespective of the signal pro-
cessing. In practice, the reference beam is heterodyned with light
scattered through a small range of angles. Because of the scatter-
ing angle ambiguity, it is essential that the reference beam be
aligned normal to the photosensitive area of the detector. This
may be achieved by a series of pin-hole apertures aligned with the
photosensitive area. The scattering angle spread is defined in
terms of the effective aperture, (the smallest of reference beam
diameter, pinhole aperture and photosensitive area) and the distance
from the measuring control volume.

All the velocity measurements presented in this study were
obtained with the single scattering particle LDV. Particles naturally
present in the water channel were employed as scattering 'particles.
No additional seeding was required. Particle time of flight, i.e.,

time between fringe spacings, was obtained by measuring the time
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between zero crossings of the photocurrent signal (after removal of
the DC component). This was done using a single scattering parti-
cle LDV digital processor designed and built at GALCIT by
Dimotakis and Lang (Ref. 37) which has the capabilities mentioned
earlier. The time of flight of a single particle for a distance
corresponding to 10 fringe spacings was measured, and the cor-
responding velocity was obtained from Equations 4.6 and 4. 7.

For each measuring point in the flow, 256 measurements
were processed. The digital data were recorded on a Kennedy
Incremental 1600 Tape Recorder, and read on the IBM 370-158
Batch Processor. The mean velocities, V,, were computed by
taking an ensemble average of the 256 samples, and the root mean

1
square velocity fluctuations, < V; >, were also calculated from

256

— 1 -

VJ_ = -2—5—6- " VJ—i. : 4.8
i=1

and 256 %
P - Vi _ 2

Vi z =1 785 - Vs : 4.9

i=1

The above equations (4.8 and 4.9) are not exact because of the
sampling bias of the measurement process; however, they are valid
for small local velocity fluctuations (Ref. 36). The LDV sampling
bias arises from several factors. The randomly dispersed parti-
cles in the flow result in a random sampling (in time) of the
velocity component. However, the rate at which scattering parti-

cles move through the measuring volume depends on the local
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velocity. Thus, the smapling process is coupled with the meas-
ured quantity and cannot, therefore, be treated as statistically
independent. The sampling bias is further influenced by the signal
processing that introduces a dead timeT during which more parti-
cles are rejected at times when the particle flux is high than when
the flux is low. The signal processing may also influence sam-
pling bias by processing only signals from particles that cross a
certain fixed number of fringes. A detailed treatment of LDV
sampling bias is given in Reference 36.

A schematic representation of the LDV system in reference
to the channel test section is shown in Figure 18. The reference
scatter mode (Fig. 17a), as described previously, measures only
one velocity component. For the purposes of the experiment, the
LDV optics section was modified to accommodate a second refer-
ence beam. Introduction of a second reference beam enabled the
LDV to measure two velocity components simultaneously if a dupli-
cate signal processor were available or to ensure that at least two
velocity components were measured at the same point in the flow
if only one signal processor were available. There was only one
signal processor.

A second reference beam was obtained by placing a second
beam splitter in front of the first one to split the scattering beam
again (labeled 'S' in Figures 17c and 18). Two weak parallel beams

(labeled '2' and '0') emerged in addition to the scattering beam,

Time interval after signal burst during which a signal is rejected.
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such that beam '0' was centered between beams 'S' and '2'. The
two beam splitters were then positioned so that beam '0' was equi-
distant from the rest (i.e., beams 'l', '2' and 'S') which then
formed the apices of a right angle triangle. The four parallel
beams were then arranged on a plano-convex lens such that beam 'O
hit the center of the lens and beams 'l', '2' and 'S' were on an
equal radius from the center of the lens. The radially positioned
beams, as they emerged from the lens (assumed perfect), would
lie on the surface of a cone. The central beam ('0') would be the
axis of the cone with its apex at the focal point of the lens. This
conical arrangement of the beams was important to ensure proper
focusing in the flow after the beams refracted through the glass
wall of the test section,

The central beam was used for the purpose of alignment
only. Beams 'l' (the first reference beam) and 'S' (scattering
beam) were used to measure the axial velocity component, u, and
beams '2' (the second reference beam) and 'S' were used to meas-
ure a velocity component, u,, at an angle, |y, to the axial velocity
cofnponent. (From here on quantities subscripted by 'l'' and '2"
refer to above described beams or the corresponding velocity com-
ponents.) The vertical velocity component, w, was then calculated

by resolving the two measured components. Thus
w = (ucos ¥ - uz)/sin\b . 4,10

The respective scattering angles, 91 and 92, and the angle | were

measured directly to within 0.5% by projecting the beams on a
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vertical wall at a large distance from the lens focal point. For

the measured values of 91 = 4.32° and 92 = 7.28%, the fringe
spacings (Eq. 4. 6) were determined to be d1 = 8.38u and d2 = 4,99,
respectively.

By observing the LDV signal burst on an oscilloscope, a
particle's total time of flight through the measuring volume could
be estimated. From the measured velocity of the flow (assumed
equal to particle velocity) and the total time of flight, the width
of the approximately ellipsoidal measuring volume was estimated
to be roughly 320.0u. The dimensions of the ellipsoidal volume
were estimated to be approximately 0.9 x 0.3 x 0. 3mrn and

0.5 x 0.3 x 0.3mm, respectively, for the two measuring volumes.

IV.5 Traverse Mechanism

On one side of the channel the laser, with its attached
optics, was mounted on a traverse mechanism which moved on all
three axis (x,y,z) to position the focal volume to within 0. 025 mm.
The two photomultipliers (to sense the two reference beams and
scattered light) were attached to a support mechanism on the other
side of the channel. This support mechanism spanned the channel
and was bolted to the same traverse mechanism. Thus, the photo-
detectors remained aligned with the reference beams as the traverse
mechanism was moved. (It may be noted here that due to refrac-
tion in the water, if the optics system is moved inward toward the
channel by, say, Ay, the focal volume is displaced in the same
direction by an amount 0 Ay, where 0 = 1.33 is the refractive index

of water. )
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V. RESULTS AND DISCUSSION

V.1l Numerical Calculation

The initial distribution of the point vortices is given by the

complex-'. relationship

sk . 5k

(0) =y +1iz 5.1
M M
-2'—+1 j —2—+1—J 74‘1-.]
* A1) L] 2m
where YM+1_' = 3{M+ 2[sm il (_] 1)” /F_l\./_l+1_'
2 ) 5+1-]
* =1 il
zM+1_—2{s1nMJ+s1nM(J 1)}
5 Ti7)
and the point vortex strength is given by
r* =T I = singj -
M, .I\_/I.+1_'/ o sin _] sm (j-1) 5.2
2z ) 2z )
i=1, ..., _1\24 and M 2 2

(Note that for large M the point vortices are equispaced. )

The above distribution gives the positions of the point vortices in
the upper positive quadrant (i.e., y > 0, z > 0). In the lower
quadrant (i.e., y > 0, z < 0) the positions of the vortices are

simply the complex conjugate Z. Thus

M0 = Zy(0)
-2—+J 5+ 1-j
% *
and PM ) r M
—2—+J = 7‘*’1—_]

The symmetry of the sheet was employed to save computation time.

TIt was found convenient to carry out the computations in the
complex plane.
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With the above initial conditions, the system of equations

(Section II, Eq.2.9) was integrated forward in time using a fourth-

S

order Runge-Kutta integrating scheme with at = 0. 0025. Double
precision arithmetic, giving a sixteen figure accuracy of the basic
arithmetic operations, was employed on the IBM 375-158 computer.
The results of the calculation for M = 40 (point vortices per half
wing) and a cut-off radius, r(;:< = 0.1 are displayed on Figures 19a
through 19h. These figures show the positions_'- of the point vor-
tices in the time interval 0 < t* < 1.0. The spline interpolation
scheme was used to draw a smooth curve through the point vortices
to indicate fhe trace of the vortex sheet in the y-z plane. The
interpolation, of course, failed in the inner portion of the spiral
where there are few vortices per unit length of the sheet. Where
possible, the curve was drawn in by hand.

The figures show a distortion of the vortex sheet followed
by a smooth roll-up into a pair of doubly branched spirals.
Randomization effect of point vortices within the spiral is realized,
however, after t:>:< = 0. 6. After this time the spiral takes on an
elliptic shape.

Although the figures are quite self-descriptive, some
interesting features of the roll-up process are not obvious and
will therefore be discussed.

Initially, the cylindrical vortex sheet (represented by point

*Two 'dummy' vortices of zero strength were used to locate the
vortex sheet in the plane of symmetry. They are not included
in numbering the point vortices.
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vortices in Figure 19) undergoes distortion from its initial circuiar
shape. During the distortion phase the upper half of the vortex
sheet contracts in length while the lower half of the sheet stretches,
as evidenced by the point vortex spacings. (Initially the point
vortices were approximately equispaced.) The effect of the stretch-
ing and contraction of the sheet is redistribution of vorticity on the
sheet.

In the initial state of the vortex sheet, vorticity is maximum
at ¢ =% m/2 (® measured from the bottom of the median plane of
symmetry). During the distortion phase of the roll-ﬁp process,
the point of maximum vorticity moves from its initial position on
the sheet to a point which originates from an intermediate value of
® =1m/2 and ® = 1 on the initial cylindrical vortex sheet. The
origin of maximum vorticity thus varies in time. At some final
value, D distortion ends, and the sheet begins to roll up about
the point of maximum vorticity into a pair of doubly branched
spirals. The centers of the spirals thus originated from points,
icpo, on the upper quadrants of the ring wing, between ® = 1m/2 and
@ = .

The wvalue of Cpo is obtained from the numerical results and
corresponds to the initial position of vortex number 12. The value
of %, is approximately 128°, (The position of vortex number 12 is
shown by an arrow on Figure 19.) It is interesting to note that the
origins of roll-up approximately correspond to the initial centroids
of vorticity shed from the upper quadrants of the ring wing. An

analytical verification of this fact, if possible, may be worthwhile.
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The roll-up process of the ring wing generated vortex sheet
is different from, say, the roll-up process of the vortex sheet
behind an elliptic wing. In this latter case, the initially induced
velocity normal to the sheet is uniform. Therefore, the vortex
sheet immediately rolls up about the edges of the sheet without
initially distorting in shape.  The origin of roll-up corresponds to
a mathematical singularity in the vorticity distribution. The singu-
larity originates from the tip of the wing, where vorticity shed is
theoretically infinite. On the other hand, the vortex sheet shed by
a ring wing contains no singularity. The strength of the vortex
sheet is Zwocoscp.“— The sheet is actually a shell and, therefore,
has no free edges about which to roll up. At the outset, one may
suppose the sheet to roll up about the initial points of maximum
vorticity @ = * 1m/2). However, as discussed earlier, this is not
the case. Distortion of the sheet, due to nonuniform induced
velocities on the sheet, causes the position of the maximum vor-
ticity to shift.

The mean initial radially induced wvelocity distribution on the
cylindrical sheet is W, cos@ and the mean tangential velocity is
zero everywhere on the sheet. The lower half of the sheet thus
initially experiences positive (i.e., outward) radial velocities re-

sulting in stretching of the vortex sheet; whereas, the upper half

%WO is the initially induced downwash velocity within the cylindrical
vortex sheet. It is equal to FO/D, where Fo is the root circulation

and D is wing diameter.



44

of the sheet, on the other hand, experiences negative (i.e., inward)
radial velocities that result in contraction of the upper portion of
the vortex sheet. Thus, the net effect of the nonuniform radial
velocities is distortion of the sheet.

The center of gravity of the vortex system initially accel-
erates downward during the distortion phase, to a uniform down-
ward velocity as the sheet rolls up. After complete roll-up, the
separation of the trailing vortices is %D, and their speed of descent
is (4/Tr2) Wo' This change in velocity is twice é.s large as that
change experienced in the case of an elliptic wing. Figure 7. shows
the result from the numerical calculation. The maximum downwash
in the plane of symmetry increases from the initial value of Wo to
(16/TT_2) Wo after complete roll-up. In contrast, for the elliptic
wing case, the maximum downwash in the plane of symmetry de-
creases from W0 to (8/Tr2) Wo (where W0 = Fo/b, for a wing span
of b). These fundamental features of the ring wing are borne out
by experimental results (Section Vb). It may be noted here,
however, that due to departure of the shape of the trailing vortices
from circular to elliptic, the theoretical velocity values are not
fully realized.

The point vortex approximation and the introduction of a cut-
off radius have the effect of reducing the initial induced radial
velocities and of introducing small tangential velocities. The effect
of these errors is to slightly slow down the rate of roll-up. (This
effect will be discussed further when the rate of roll-up is esti-

mated.) The magnitude of the slowdown effect is not calculated but
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the relative effects on roll-up, due to the cut-off radii, can be seen
on Figures 19a,b, and c¢. The influence of the cut-éff radius is
localized, and induced velocities of distant portions of the sheet are
not affected. The evolution of the vortex sheet for different cut-off
radii, thus differ where vorticity concentrates.

As anticipated, the cut-off radius effectively prevents early
randomization of the point vortices. The times, ti, after which
chaotic motion of the vortices sets in, initial changes in radial
velocity, Aur, and tangential velocities, Aue, are shown in Table 1,

)

for different cut-off radii rz

TABLE 1
r:k Aur é:l_g t>}<
c W W r
(o] (o]
0 0.016 -0.012 0.16
0. 05 0. 029 -0. 015 0. 35
0.10 0. 056 -0. 028 0.6

Figure 20b shows the beginning of chaotic motion for the

sle

case of rC = 0.05. It may be noted here that, for the times con- - -

sidered, chaotic motion is confined to vortices within the region of
vorticity concentration and does not affect distant portions of the
sheet. However, such spurious motions of the vortices might
eventually spread outward to disrupt other vortices.

A different kind of failure is noted in the case without a cut-

off radius. In this case an instability sets in as early as t = 0. 16,
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before the sheet even gets a chance to roll up. This unphysical
feature of the sheet, unlike randomization of the vortices, quickly
propagates outward to affect other point vortices. The point vor-
tices tend to pair up as they are drawn toward the region of
vorticity concentration where chaotic motion then sets in. Figure
21 displays the instability of the point-vortex representation of the
vortex sheet. The instability occurs on the sheet where vorticity is
maximum in agreement with Saffman's prediction (Ref. 4).

The instability and randomization features of the sheet approx-
imation by point vortices were anticipated before hand. Such antici-
pation led to intrbducing the cut-off radius in the first place.
However, since these are most probably the first calculations on a
ring wing generated vortex sheet, it was ‘worthwhile to perform the
calculations without a cut-off radius. Furthermore, the results
confirm the fact that the randomization of point vortices is encount-
ered even in the case of vortex sheets which are free of singular-
ities. In the case of the vortex sheet roll-up behind an elliptic
wing, chaotic motion of vortices sets in quickly if no method for
smooth roll-up is employed. However, as the results presented
here show, it is possible to study at least the distortion phase of
the sheet behind a ring wing without any scheme for smoothiﬁg
effect. For the purpose of this study, the numerical calculations
were performed to obtain some insight into the sheet vortex roll-up
behind a ring wing. Introduction of the cut-off radius seems to
satisfactorily meet that objective. The subject of instabilities will

not, therefore, be discussed any further. Discussions of it may be



47

found in References 4 and 7.

No estimate of errors introduced by the cut-off radius was
made. However, calculations of the point vortex motion invariants
indicate that such errors might not be serious. These invariants

were calculated from the dimensionless expressions below for

M = 40.
M
1 p¥ %
2 . I\i Vi 5.3
i=1
2M
L rF g |z, -zl 5. 3b
T EmoL L otioj OB A T4y

i#

The first invariant is the 'vertical impulse' divided by the net
vorticity per half wing to obtain Y*o’ the lateral position of vorticity
centroid. The initial value of y::; is m/4. The lateral position of
vorticity centroid remained constant for all times considered, even
during chaotic motions; different cut-off radii did not affect it either.
The 'energy' invariant, the second expression listed above, was also
preserved. For all conditions considered, the energy invariant
varied in the third decimal place by 0. 007 at worst. The preserva-
tion of the invariants lends confidence to the accuracy of the compu-
tations.

A further check on the calculation was made by computing
W\:‘, the nondimensional descent speed of the vortex center of gravity
(Fig. 7), and the computed value was found to be 1.50. If the

vortices are considered to be completely rolled up and circular, the

theoretical value of Wg< is m/2 = 1,57. The velocity field at
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different times, due to the point vortices, was also calculated and
was found to be in fair agreement with experimental results pre-
sented later in this section.

Figure 5a shows the trajectories of some particular point

ale
3K

vortices for r, = 0.1. The path of vortex number 12 is of most
interest since it marks the position of the spirall center. The
sudden kink in the path corresponds to the onset of spurious fluctua-
tions within the rolled-up spiral. This occured at t* = 0.6 and
prevented the center of the spiral from reaching the eventual lateral
position, m/4. Figure 5b shows this approach toward the lateral
position more clearly. The path is initially smooth until fluctua-
tions set in. In reality, since the vortex sheet does not completely
roll up, the center of the spiral approaches y* = M/4 asymptotically.
On the same Figure 5b, a dashed line is drawn to indicate roughly
the mean path of vortex number 12. Note that the dashed line
cuts y* = m/4 at about t>:< = 1.06. This time is roughly that pre-
dicted (Section II) for the roll up to be considered essentially com-
plete. To recall, the time of complete roll-up, t;< > 1.0 was
estimated by assuming that it is equivalent to half the orbital period
for M = 2 (Fig. 6) point vortex representation of the sheet.

An attempt was made to verify the estimated results obtained
in Appendix B. These results, referring to the inner portion of
the spiral, are summarized below in the present notation. The
contraction factor X = 2 is used. The circulation distribution

e
<

around a circle with radius r centered with the spiral is given by
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0%

I-l: = % sin 2r>'\ 5.4
o -

The polar equation of the inner portion of the spiral is

ste
3%

r. = 0. ° 5.5
i~ % T-9, .

w

ot
1
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for the 'inner! spiralT, and for the 'outer' spiral the polar equation

is given by

. 3t -t
roo= 1 ° 5.6
o 8 B+ - gm .

te
A4

where t; is the time the sheet begins to roll up, and 8, is an

arbitrary constant of integration.. The radius of the inner portion

of the spiral is

a = A (t -t™ 5.7

where AS is an undetermined constant. From Equations 5.4 and

5.7, the rate of roll-up is obtained as

r i . e B
f_TO_ZSIHZAS (t —to) 5.8

The rolled-up portion of the sheet is arbitrarily defined to be
the portion between the points where a horizontal line through the
center of the spiral (taken to be vortex number 12) last cuts the inner
and outer spirals. The diameter of the spiral was taken to be the

separation of the two points, and a circle with radius equaling half

+The 'inner' spiral refers to the branch of the spiral consisting of sheet
lying to the left of roll-up origin 9, (i. e., the segment lying in

®,= ® = 7, where cos®@, = - T/4), The tail end of the inner spiral is
the upper point where the sheet cuts the plane of symmetry. The other
branch of the spiral is referred to as the 'outer’ spiral.
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this distance was then drawn, centered on the spiral. For times
less than 1:>:< = 0.6, the spiral was found to be quite symmetric on
lines through the center, and the above definition of spiral radius
held quite well. The definition was not so good after chaotic
motion set in and ellipticity of the spiral shape began, due to
mutual interaction of the two spirals. The best possible circles
were then drawn, and the mean radius was taken. The worst case
was at t* = 1.0, the largest time considered, and even here the
spread in radii of the spiral from the mean was only ¥ 0. 03R.

The circulation about the drawn circle was then obtained
by noting the vortices within the circle and their strengths. For
point vortices found near the circle, their strength within the
circle was obtained proportionately, according to the ratio of the
segment within the circle to the length of the sheet segment the
vortex represents. This length of the sheet was taken to be half-
way between the particular point vortex and its neighbors on the
sheet. In other words, the segment of the sheet was assumed to
be equally divided between neighboring point vortices near the
circle. The fractional strength of the vortex, included in the
circle, was thus taken to be the ratio of the sheet within the circle
to the total length of sheet segment that the point vortex represents,
If a point vortex was found exactly on the circle half its strength
was taken since initially the point vortices were approximately
equispaced.

The radius of the spiral is plotted on Figure 8, as aS/D,

where D is the diameter of the ring wing, (als>'< = ZaS/D), and is
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found to be fairly linear, thus confirming the prediction (Eq. 5.7).
The slope of a straight line through points at t* < .6 is found to be
roughly TT/8,‘ giving A_ = m/4. Extrapolating the line back to cut
the time axis, 1:;< is obtained to be roughly 0.13.

The fraction of rolled-up vorticity, f, is also plotted on
Figure 8. Note that for a cut-off radius of 0.1 the value of f and
as/D are less than the values corresponding to rcj< = 0. 05 for times
less than 0.4. This indicates that the cut-off radius retards the
roll-up rate. Thus, for small times, r: = 0.05 is more repre-
sentative than rc;:< = 0.1,

Using As = T/4 and to* 0.13, Equation 5.8 is compared
to the numerical data on Figure 8. The agreement is fairly reason-
able for 1:>:< < 0.6. It is worth noting that due to the point vortex
approximation, f already has an initial value of 0. 03 due to vortex
number 12 (center of spiral). The agreement between prediction
and numerical data becomes better if 0.03 is subtracted from the
data. - At t* > .6 the induced velocity field from the other spiral is
felt and the two mutually interact, tending to make the spiral more
elliptic than circular. It may be recalled here that the basic
assumption in obtaining Equations 5.4 through 5.8 was that bne has
an isolated circular vortex. This assumption is only true in the
early stages of roll-up and in the inner portion of the spiral. The
assumption of circular inner portions of the spiral holds better here

than in the case of an elliptic wing, because of the double branch

feature in the spiral formed behind a ring wing.
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As seen in Figure 8, the rate of roll-up in the case of the
ring wing is very slow, as compared to the case of an elliptic
wing. Numerical data from Reference 7 are compared to the pre-
sent study. (The time scale from this reference has been reduced -
to the time scale of this study.) For example, about 90 percent of
the vorticity is rolled-up behind the elliptic wing at 1:>:< = 0. 51, in
contrast to about 25 percent in the case of the ring wing.

The large difference in the roll-up rate of the two wings is
explainable. Vorticity is distributed over a wide surface area on
the ring wing W(p) = ZWO sin®p), whereas the elliptic wing has vor-

ticity which is concentrated near the wing tip and is given by

o

w(y) = 2W_ (y/b) 2 . 5.9

Here vy is measured from the wing tip, W0 is the initially induced
velocity on the sheet and b is the wing span. Thus roll-up is
very rapid in the latter case. In fact, from Reference 7, 50 per-
cent of the vorticity is rolled up at t* = 0. 02,

The slow roll-up behind the wing justifies the provisional
assumption of light loading approximation, and thus the replacement
of the three-dimensional steady flow by a two-dimensional unsteady
flow is reasonable.

Figure 9 compares Equation 5.4, the circulation distribution
about the inner portion of the spiral, to numerical data. Again
the agreement is reasonably fair, and is almost excellent if 0. 06
(the initial vorticity concentration of point vortex number 12) is

subtracted from the data.
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Finally, the polar Equations 5.5 and 5.6 are compared to

numerical results. The derivations that led to the polar equation

()
<

of the spiral (Appendix B) do not determine the constants t; and

e

«; the coordinates of the spiral center were not determined either.

e
>R

The time roll-up begins, to is taken to be ~ 0.13 as determined
earlier from the numerical data. The integrating constant, 9_, is
also determined from the numerical results. This is done by
equating Equation 5.5 to Equation 5.7, the radius of the spiral; the
polar angle, 8, is arbitrarily chosen to be 2T at the radius‘r of the
- 'Yinner' spiral. Using these constants, ‘c;< and 6_, the spiral was plotted
and centered on vortex number 12. The results are presented on
Figure 4 for the times indicated. (Only the spiral to the right of
the median plane of symmetry is shown; its reflection in the plane
of symmetry is the other spiral.) The agreement obtained is found
to be quite satisfactory, except for the point vortices in the inner-
most portion of the spiral, i.e., in the immediate neighborhood of
the spiral center (vortex number 12). The disagreement here is
expected. As the vortex sheet rolls up into a spiral, the sheet
continuously stretches (evidenced by the separation of the point
vortices) to make more and more turns as the center is approached.
Theoretically the central portion of the spiral (as 6 — «) consists of

an infinite number of turns. One cannot, therefore, represent the

.1.

The numerical spiral radius was arbitrarily defined as the hori-
zontal line from the spiral center to the last turn of the 'inner!'

spiral,
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central portion with a finite number of point vortices. Thus, the
point vortex approximation breaks down in the central portion of

the spiral.
For r: = 0.05, att = O. 30, point vortex number 8 deviates
from the spiral sheet. Examination of the numerical data showed

that the velocity vector of vortex #8 is as shown by the arrow on

Figure 4. This point vortex may therefore be ignored. The

e
3R

second spiral on the same figure corresponds to rC‘ = 0,10 at
£ = 0.40. The slow down effect on roll-up, due to the cut-off
radius, can be seen by comparing the inner portion of the spiral to -

e

that of rc"‘ = 0.05 at t>F = 0. 30, The numerical results show that

Al

the latter, at t = 0.30, has made more turns than the former at

a later time t:>:< = 0. 40,

At 1:>:< = 0.55, the last turn of the 'outer' spiral distorts
from its theoretical shape. This is due to interaction from the
spiral on the left side of the plane of symmetry (not shown in the
figure). Mutual interaction of the two vortices formed by the rolled-
up spirals was ignored in the derivations of the spiral's polar
equations. The agreement obtained here (t* = 0, 55, rc* = 0.10)
is still very good.

It may be noted that for all three cases of the spiral shape
the same vconstants of to* and 8 were used. The agreement obtained
here verifies Saffman and Moore's result (Ref. 5) for the case n = 0
(see Appendix B of this study). The similarity of the spiral in

time, referred to by Kaden (Ref. 1) as proportional expansion of

the spiral, is also demonstrated.
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V.2 Experiment

As described in Section IV, LDV measurements included
axial and vertical velocity profiles in the vortex wake behind a
ring wing model of aspect ratio, A = 2. At least two traverses
were made at each downstream station x; one vertical traverse in
the median plane of symmetry, z axis, and one horizontal traverse,
y axis. Flow visualization techniques, using dye and hydrogen
bubbles, were employed to study the vortex formation. Unfortu-
nately no presentable pictures were obtained. However, flow
visualizations and velocity measurements substantiated the main
numerical result, that the vortex sheet generated by a ring wing
rolls up into a pair of trailing vortices. The experimental study
suggested two main regions of the vortex wake: a) roll-up of the
vortex sheet, and b) decay of the trailing vortices thus formed by
the roll-up. Results and discussion pertaining to these two regions

will be presented here in that order.

V.2.1 Roll-up of the Vortex Sheet

An attempt was made to verify the origin of roll-up on the
wing as suggested by the numerical results. The result was that
the vortex center originated from a point on the ring wing, defined
by 8 = 380, where 8 is measured upward from the horizontal
diameter of the wing. Test of this result consisted of injecting
dye on the periphery of the wing. The énly position of dye injec-
tion where a discernible vortex core could be observed was in the

neighborhood of 8 = 45° on the wing. In other positions of dye
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injection, the dye simply diffused over a large area of the vortex
sheet. Dye injected at the center of the model, for example, was
entrained by both vortices trailing downstream. The cross flow
(Fig. 2) on the surface of the wing was observed. The vortex
sheet was observed to roll up into a pair of vortices at about 10 -
15 diameters downstream from the trailing edge.

LDV traverses were made in the roll-up regions of the
wake to locate the position of the wake in the y-z plane. The
results are shown in Figure 22, for a = 10° at 2.5 and 5 wing
diameters downstream. The numerical results are shown in the
same figure for comparison. There is a clear indication of dis-
tortion and roll-up of the vortex sheetT which, in practice, is the
wake.

Figure 26 presents vertical velocity profiles in the wake at
a downstream station x/D = 0.2. This was the closest station to
the trailing edge that was traversable. The profiles consist of
data from a°® = 4, 7, 10 and 12 degrees as indicated and other
plots which will soon be explained. On-diameter horizontal tra-
verse, giving the upwash and downwash, is shown on the right.
The plot on the left shows the downwash in the plane of symmetry.
The ring wing's trailing edge is shown as a circle. The non-

dimensional vertical velocity w/a®U is plotted as a function of

In reality viscosity is responsible for generating vorticity in the
sheet which the wake approaches for vanishingly small viscosity
in the mathematical sense,
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y/R and z/R respectively, for horizontal and vertical velocity
profiles. The angle of attack a® is in degrees; U is the free-
stream velocity; (or wing speed) and R is the wing radius. The
data shown here were taken at U = 33 cm/sec, corresponding to a
Reynolds number RD = 27,000.

The plot marked 'A' corresponds to the potential flow field
of an infinite cylindrical vortex sheet of sfrength wp = (I‘O/D)sincp.
Here D is the ring wing diameter, I‘O is the root circulation about
the wing, and @ is the polar angle measured from the bottom of
the median plane of symmetry, i.e., y = 0. The downwash inside
 the cylindrical sheet is Wo = TO/D, and the vertical velocity field

outside the cylinder is given by

2 2
W:WORZY_Z_;_EZ_Z , \"22+y2>R 5.10
(z" * y7)

(Note that the flow field is equivalent to the potential flow about a
cylinder with radius R and speed WO.)

From Prandtl's lifting line considerations,

w T 2
R 5.11
«°U  «°uDp 90 (A + 1m/2) -

where A = D/C, the wing diameter to chord ratio, is the aspect
ratio. For A = 2, the aspect ratio of the wing model tested,
WO/OLOU = 0.01535. This value was used to plot 'A' on Figure 26.
Plot 'A' also includes the numerical calculation by point vortex
approximation described earlier, using a cut-off radius of zero

and 0.1. Deviations from the analytic solution are seen to be
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restricted to points near the sheet, with the severest change occur-
ring in the maximum upwash.

As noted earlier in Section II, the two-dimensional approx-
imation is not expected to hold in close proximity to the wing.

The downwash at a lifting line, for example, is only half the two-
dimensional value at infinity, or the Trefftz plane. (For rectangu-
lar or elliptic wings, most of the deviations from calculations using
the Biot-Savart law and taking into account the bound vortices on
the wing occur over about a wing-span distance downstream.)
Furthermore, vorticity is not quite transferred downstream at the
free stream velocity. As demonstrated earlier (Section V. 1)
during roll-up of the vortex sheet the vortex lines undergo stretch-
ing and bending in addition to lateral displacements, thus changing
vorticity. However, the numerical results on the ring wing
(Section V.1) demonstrated that roll-up of the sheet vortex is de-
layed far downstream and should not, therefore, incur serious
errors in the flow field near the wing. It is demonstrated below
that the Trefftz plane is not far removed from the ring wing, at
least for the case of the aspect ratio of 2 considered.

The plot marked 'B' on Figure 26 was obtained from an
inviscid three-dimensional calculation by Weissinger (Ref. 21).
Using the Biot-Savart law he calculated the flow field about the
ring wing represented by a distribution of vortex rings and their
trailing vorticity cylinder. For a thin cylindrical ring wing,

Q (§,p), the vorticity density on the wing surface is represented
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Q (5,9) = Ug; (§) cos® | 5. 12

where gl(g) is represented by Birnbaum series,

8 - ..
gl(’;) = B, ctg 5+ le sin j® 5.13
j=1
where
£ :-Zé-(:-cos(@, 1< E< ]

and X is the axial distance measured from the center of the wing
with chord C. (Note that the Kutta condition at the trailing edge,
Q (1,p) = 0, is satisfied.) The calculations are lengthy and labor-
ious and are performed for each individual wing aspect ratio, A.

.T

A summary of the calculations to obtain le may be found in
Reference 28. Fortunately the Birnbaum coefficients were avail-
able for A = 2 (Refs. 23 or 30), the wing aspect ratio employed
in this study, thus making it possible to compare the experimental
data to Weissinger's calculations. Reference 21 contains tables
for the flow field about the ring wing for the case of a single
bound ring vortex with circulation distribution ' = TO cos®. This
is appropriate for large aspect ratios. For small aspect ratios,
the wing is represented by a continuous distribution of ring vor-

tices (Eq. 5.12), and the induced velocities are obtained by inte-

gration from the induced velocities of the single ring vortex model.

- 1.098, B9 - _o. 238, B(®

0)
j1

Tror A =2, B? - -0. 018,

(0)
B" 3

Q. in radians.

11 21

= 0 for j > 3, for a unit angle of attack,

01
= 0. 002 and B(
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In most cases the single vortex model is sufficient as found here
for A = 2.

Plot 'B' on Figure 26 comprises the two cases of a single
bound ring vortex and one hundred ring vortices distributed accord-
ing to Equation 5.12. A similar approach of the point vortex
approximation was used. (One may refer to this in a similar
manner as the ring vortex approximation.) The wing surface was
divided into 100 ring segments and each segment was represented
by a single ring vortex, with strength equal to the net vorticity in
the segment. The ring vortex was then placed at the centroid of
vorticity of the segment. The induced velocities were then obtained
by summing over the induced velocities from each of the 100
vortex rings and their trailing vortex cylinders. The velocity
field, thus obtained at the downstream station x/D = 0.2, is seen
on Figure 26 to hardly differ from the velocity field of the single
ring vortex model.

The single ring vortex with circulation I' = I‘o cos @ was

placed at the aerodynamic center, Xac’ of the ring wing, given by

(Ref. 24)
(0) (0)
Xac 12 B g B 5 14
C T B0 1500 '
01 2 11

and the root circulation Fo is obtained by integrating Equation 5.12

over the wing surface
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5.15
_m (0) 1 »(0)
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For the aspect ratio A = 2, Xac = -0,.278C (0.222 chords from the
leading edge) which is roughly the quarter chord point, the aero-

dynamic center for A = ®, The root circulation is given by

r w o
o _ _o _
D - T 0.01342a " , 5.16
where the axial angle of attack a® is in degrees. (It is worth

noting that the wing lift coefficient is CL = PO/UC = 0.02684a°
for A = 2. Lifting line approximations give CL = 0.03071 a® and

0.01535a° for A = 2.) It is seen in Figure 26 that

WO/U
Weissinger's calculations are in fair agreement with the experi-
mental results. It will now be demonstrated that the two-
dimensional inviscid flow field is a fair approximation.

An examination of the two-dimensional flow field (Plot 'A",
Fig. 26) shows that if one uses the net lift on the wing predicted
- by Weissinger's calculation, instead of that obtained by the lifting
line theory, the two-dimensional flow field agrees fairly well with
the three-dimensional calculations by Weissenger (Plot 'B'),
Although the results obtained above are for a wing aspect ratio of
2, the two-dimensional calculation is a fair approximation for
other aspect ratios. This deduction is based on the fact that the
aerodynamic center, where the lifting line may be most appropri-

ately placed, lies between the leading edge and the mid-chord
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-point for all aspect ratios of the cylindrical ring wing. Thus the
trailing edge is at least 3/4 chords from the lifting line. The
above stated results of the flow field indicate that the Trefftz
plane is quite close to the trailing edge of the ring wing, within
roughly one wing radius downstream.

It may be pointed out, however, that some features of the
flow field are missed by the two-dimensional calculations. Firstly,
the downwash within the cylindricalysheet is not exactly constant;
the downwash rises slightly from the center toward the cylindrical
sheet vortex. Secondly, the peak upwash is less than the maxi-
mum downwash; at the downstream station x/D = 0.2, the maxi-
mum upwash is about 91% of the downwash in the center of the
cylindrical sheet vortex. Thirdly, induced axial velocities are not
realized by the two-dimensional approximation.

The features mentioned above are reasonably substantiated
by the experimental data. The agreement with Weissinger's results
is fair. The lower experimental values may be due to viscous
effects, in view of the low Reynolds number, (RD = 27,000)., As
plotted, the experimental data display a significant amount of
scatter, although for each angle of attack the velocity profiles have
very little scatter (see, for example, Figure 24a). The low angle
of attack (40) seems to deviate the most from the general trend.
This is because of errors involved in measuring the low velocities
associated with low angles of attack and further normalizing the

measured velocity by the angle of attack,
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Figures 25a through 25h display velocity profiles obtained
by vertical traverses in the play of symmetry at different down-
stream stations. In these profiles, the positions of the axial
velocity defect mark the locations of the vox;tex sheet in the plane
of symmetry. Horizontal traverses were made through the posi-
tion of maximum downwash to obtain tangential and axial veloc{ties
in the vortex core. There is, of course, no well-defined vortex
core during the distortion phase, and one cannot, therefore,
speak of tangential velocities in the core. In such a situation the
velocities measured are simply referred to as vertical velocities.
Figures 24a through 24h present velocity profiles obtained by
horizontal traverses. Only proviles at 12° angle of attack and
U = 33 cm/sec are presented here; they are typical of the flow
field in the vortex wake.

Figures 24a-h and 25a-h clearly show the wvariations in the
flow field as the vortex sheet distorts and rolls up. The meas-
ured flow field in the roll-up regions show a striking resemblance
to the numerically calculated flow field in the vortex wake (Figs.
23a through 23e). The steps in the horizontal traverse profiles
are due to the vortex core and the unrolled portion of the vortex
sheet.’ On Figure 27, the measured maximum downwash velocities,
w_, are compared to the numerical results.

In view of the light loading approximation t = x/U and the

e
<

nondimensional time scale of the numerical calculation, t is

related to the downstream station by
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3

x _nT Ak
B - _1"6 C t 5. 17
L
where t = 0 is taken to correspond to the trailing edge, and the

b
dimensionless velocity w is related to the vertical velocity w by

C
8 L %
—3 —A—' w . 5° 1 8

1

cls

In view of the above relationships it was found convenient to plot

] -1
(WO/OLOU) (A'/CLao) against (aox/D) (CLOLOA ). The slope of the

lift curve C » was obtained from Weissinger's calculations (Refs.

qu

21,23) as described earlier. For A = 2, Aqch 0 = 0. 01342,
04

This value of Cqu will be used in future comparisons of experi-
mental data to theory.

The initial downwash within the cylindrical vortex sheet
before roll-up, Wo’ is also shown on Figure 27. In the non-
dimensionalized form the two-dimensional downwash is equal to
one. It may be recalled that if the vortex sheet is assumed to
completely roll up into a pair of vortex filaments, the separation
of the pair is (T/4)D, and the maximum induced downwash is
(16/1‘r2) Wo; this gives a value of roughly 1.6 in the dimensionless
form plotted.

The experimental data are seen to fall between the two
dimensional values of downwash, except for the data at x/D = 0.2
(the nearest data to the trailing edge, x/D = 0), which are a little

lower than Wo' The data also seem to follow the general trend

of the numerical data which show some decay downstream; this
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apparent decay is due to two main causes. Firstly, during roll-up
the vortex centers move apart laterally, thus decreasing the in-
duced velocities in the plane of symmetry. Secondly, the mutual
interaction of the pair of trailing vortices tend to distort the shape
of the vortex from circular to an elliptic shape, thus changing
vorticity and the induced velocities. In the case of the experi-
mental data, decay is further caused by viscous effects. The roll-
up process is not entirely independent of viscosity, but it is
simultaneously accompanied by viscous diffusion.

Figure 27 also shows the results from Weissinger's three-
dimensional inviscid calculations for a single ring vortex model
(Ref. 23). The maximum downwash on the axis of the cylindrical

vortex sheet, in nondimensional form, is given by

WO A 1 sk
ke :_§[1+g(xo)] 5.19
a'U "L o
a
% xo 1
where g(x ) :'——TZ-—;_[]. +_~ﬁ
° (1+x “)2 1+x
o)
and x " = x /R
o) o

and X is measured from the center of the ring vortex. (Ip this
comparison the ring vortex was placed at the aerodynamic center
of the ring wing). The three-dimensional results are seen to
differ very little from the two-dimensional results (the maximum
deviation is 0. 04 Wo)’ again indicating the closeness of the Trefftz

plane to the trailing edge.
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Figure 28 shows the position of the vortex core in all three
axes. The vertical position of the vortex center was taken to be
the position of maximum downwash in the plane of symmetry,
since the maximum downwash occurs midway between regions of
vorticity concentration, i.e., the vortex cores. The vortex core
is seen to accelerate to épproximately a uniform speed of descent
after roll-up of the sheet vortex is complete.

Now, if the vortex sheet were to completely roll up into a
pair of circular vortices, the net vorticity in each vortex will be
ZTO and their separation distance will be mD/4. The speed of

descent of the vortex pair is then given by

W = @ W 5.20

2
g L2
and the vertical position, z, = Wgt (upon replacing the time t,

by x/U) is given by

Zo 4 CLCLO 0 X
D" Z A (“ '13) 5.21

where TO/UD has been replaced by CL/A' Equation 5,21 is

compared to the experimental result (Fig. 28), using C /A =

Lao

0. 01342 as previously calculated for the wing aspect ratio of 2,
and the numerical result is also shown for comparison. The
experimental value of the vortex descent speed is lower than that
predicted by Equation 5.21 above. Assuming that the ring wing
has the net 1lift predicted by theory, and since channel wall effects

were noted to be negligible (in the cause of the experiments), then
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the vortex low speed of descent may be attributed to three main
causes.

The first cause is distortion of the vortices from their
circular shapes through their mutual interaction, as demonstrated
by the numerical results (Section V.1); this is seen to be true by
the nonsymmetric nature of the velocity profiles (Fig. 24e).
Secondly, vorticity of opposite sign could annul each other at the
median plane of symmetry and thus decrease the strength of the
vortices, reducing their speed of descent. Thirdly, in view of the
low Reynolds number at which the experiments were conducted,
there could be a loss of energy (and thus loss of vorticity) through
viscous effects; this is evident from the data plotted on Figure 28.

It is possible to estimate the strength of the vvortex by
Equation 5.21. From Figure 28, the slope of the dashed line
through the data point is roughly 4.24 x 10—3 (this line is weighted
toward the higher angles of attack of 12 and 10 degrees, and higher
Reynolds number of 2.7 x 104). Equating the slope to the deriva-
tive of Equation 5.21, one obtains the strength of the vortexb in

dimensionless form as

T 2
v :21__

a°UD 4

3

(4.24 x 107 7) = 0.021 ; 5,22

a reduction of about 20% from the expected value (i.e., net vor-

ticity generated per half wing) which is given by

T
2 g = 2 (0.01342)= 0.0268. 5.23
a°UD
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It is interesting to note here that the maximum net vorticity
predicted to be rolled up into the vortex core (Eq. B2, Appendix B)

is given by

T
;’ = 0.021 ) 5.24
a°UD

N3

If this is correct, it would seem that the vorticity contained in the
unrolled portion of the sheet has been annihilated by viscosity.
However, the above stated fact is debatable due to the uncertainty
in the contraction factor, A, and other assumptions. The lateral
position of the vortex core was taken to be the position of maxi-
mum vorticity (i.e., maximum slope), as shown on Figure 29,

for it is at this position that the vorticity, due to the vortex itself,
is zero. The ordinate gives the speed of descent of the pair of
trailing vortices due to their mutual interaction. After complete
roll-up the pair of vortices attain a uniform speed of descent.

Due to the uncertainty involved in locating the position of maximum
slope from the velocity profile such as that shown on Figure 29,

it was found convenient to use the experimentally determined value
of the vortex descent speed to locate the position of maximum
slope. From Figure 28 the experimental speed of descent is

W

% = 0.00420° . 5.25

The vortex center may also be defined by the position of
maximum axial velocity defect which, on theoretical grounds,

occurs on the axis of the vortex core; the lateral position of the
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vortex thus defined is shown by 'tagged' symbols on Figure 28.
The two definitions of the vortex center are roughly in mutual
agreement. The experimental result is in reasonable agreement
with the theoretical prediction of (11/4)D vortex core separation
after roll-up. During the roll-up stage, the vortex is seen to
approach the plane of symmetry, i.e., y = 0, then return to the
final position of y = /8D, approximately substantiating a result
of the numerical calculation.

The downstream station where the vortex sheet could be
considered to be essentially rolled-up was predicted in Section II.2
to be given by

a‘ﬂ?)

X A
D_ 16T, 5. 26
¢ L

Using Cy O/A = 0.01342, the dimensionless downstream station of
[
roll-up completion is given by

~ 144 /a° 5.27
C

X
D
and it is shown by the broken line labelled 'complete roll-up' on
Figure 28. The predicted station roughvly coincides with the station
where the vortex core resumes its final lateral position of
y = TD/8, and also attains its uniform speed of descent; both
properties of the roll-up process roughly indicate completion of

roll-up. (Note that during roll-up, the center of the vortex core

does not coincide with the center of vorticity per half wing.)
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V.2.2 Decay of the Rolled-up Trailing Vortices

The experimental data will now be compared with the theo-
retical predictions (Section III). For convenience, the theoretical
predictions will be reproduced as comparison proceeds.

The measured velocity profiles in the trailing vortex (such
as those shown on Figure 24d) are time averages at positions
fixed relative to the wing, and are therefore weighted averages of
the theoretically predicted instantaneous profiles. Vortex wandering
is belie\}ed to cause deviations of the measured profiles from their
instantaneous profiles. In Reference 25, because substantial vortex
wandering was observed, it was found necessary to account for
vortex wandering effects before making the comparison with the
experimental data.

However, in the present study, vortex wandering as describ-
ed in Reference 25 was not observed, and therefore the comparisons
that follow are free of corrections for the vortex wandering phenom-
enon. Furthermore, in the case of a ring wing, maximum velocities
in the trailing vortex (Fig. 10) do not peak as much as the maxi-
mum velocities in the vortices behind an elliptic or rectangular
wing, as evidenced in the typical velocity profiles presented on
Figures 24h and 24i for both wings. It is believed, therefore,
that vortex wandering effects on peak velocities will not be severe
in the case of the ring wing; vortex wandering, however, will add
to the uncertainties in the core radius.

Besides vortex wandering, caused by free-stream turbulence,

mutual interaction of the vortices will also cause some degree of
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wandering in addition to distortion of the vortices. In this study
the vortices were observed to interact, as evidenced in the non-
symmetric tangential velocity profiles; but the mutual interaction
of the vortices did not cause serious velocity fluctuations in the
vortex core (Fig. 24e). At present, such vortex interactions are
not incorporated in the theoretical predictions. The experimental
data are, therefore, compared to an ideal case of a circular
isolated vortex. The vortex is assumed to form at the trailing
edge and then decay from here on. This assumption seems to
contradict the finding that the vortices form far downstream from
the trailing edge. However, as stated earlier, the roll-up process
itself is not free of viscous decay. Placing the initial conditions
of the decay process at the trailing edge should therefore be a

fair approximation.

V.2.2.1 Axial Velocity

The axial velocity u(r,x) measured relative to the free
stream is the sum of two terms. The first term, U, is caused
by the pressure field induced by the roll-up and decay of the trail
vortex, = The second term, Ug 5 is a velocity defect due to retarda-
tion in the boundary layer on the wing. The velocity on the axis

of the vortex core, i.e., r = 0, is written as AU(0), where

AU (0) AUé(O)

5.28
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Here x5 = 0.188, based on the momentum thickness of a Blasius

boundary layer, i.e., 52 = 1.33 (vC/U)%; x is the distance down-

stream from the trailing edge of the wing; D is the wing diameter .
A is the wing aspect ratio (or diameter to chord ratio, D/C); and

Rp is the Reynolds number defined by

_UD
Rp = = | 5.29

where U is the free stream velocity or speed of the wing, and v
is the kinematic viscosity. The contraction factor A (Appendix C)
is set equal to 2. The quantity B is related to the wing loading

and mechanism of roll-up, and it is given by
0 I‘o
B = == = 5 . 5.30

The value of B used in the following comparison was obtained from
Reference 30 and for A = 2 is given by B = 0. 01342 aOU, where
a® is the axial angle of attack in degrees. (The quantity B may

also be obtained from Equation Al2 by the relation

-1
B =T, /D =U (,/UC)/A = UA” C_.) 5,31

Figure 30 shows the axial velocity defect. The quantity
1 i
(-g— A,Z)[AU(O)/U - AU _(0)/U] is plotted agains (x/D) 2. The
experimental data was found to fit the theoretical prediction based

on 62 (the momentum thickness). The agreement is quite

reasonable in view of the ambiguity in A and 8.
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V.2.2.2 Tangential Velocity

The tangential velocity near the center of the vortex core

is given by

1
3 1l - . .
\C :BEZ- r (4vx/U) 2 y (-1)J T 1]5‘1 (%-j; 2; - Ur2/4vx)
j=0 5. 32
2
where T = A VZX = 4X2 % RD—I
UD

and lF1 is the confluent hypergeometric function. The radius of
the vortex core, ry, is defined as. the value of r for which \( is

a maximum. The dimensionless forms of the core radius

T]l = Ur12/4vx, and the maximum tangential velocity Vg /B, are
plotted on Figure 12 as a function of T. (These were numerically
calculated for 10 terms in Equation 5.32.) The dimensionless

core radius is linear over a wide range of T, and can be described
by

n, =092 770 %3 5.33

from which the core radius ) is obtained as

T 0. 28

_ -0.43 x _ -1
- = 1.42 ) 5 Ry ,

Yk

5,34

where the contraction factor A is set equal to 2 .
The axial vorticity Qo on the core axis is 2 9vg /9r evaluated

at r = 0, and is given by the dimensionless form

¢, D % -1 |
A o~ _nmex -1 X -1
= . = = (D R ) [1-16<DRD)+... ] 5. 35
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where X has been set equal to 2, and B - UCL/A. has been used.
Figure 31 compares the predicted peak tangential velocity

with the measured values, W, (Since the velocity profile is not

symmetric about r = 0, W was taken equal to half the jump in the

vertical velocity as defined in Figure 29.) The nondimensional

quantity (W/OLOU) (A_ICL(IO) vs. (x/D) RD-l is plotted. (Here
C = 9C, /80° is the slope of the lift curve.) Considering the
Lao L

assumptions involved, the agreement is reasonably fair. The peak
tangential velocity decays as x_O' 3 approximately, as compared to
x_i—, in the case of trailing vortices behind an elliptic wing (Ref. 4),
On the same plot (Fig. 31), the predicted position of com-
plete roll-up is shéwn for 0 = 12 and RD = 2,7000, and roughly

agrees with the downstream station where the vortex begins to

decay, thus confirming the prediction.

V.2.2.3 Vortex Core Radius

Figure 32 shows predicted and measured values of the core
radius, T /R, as a function of (x/D) RD—I. (Here R is the wing
radius and RD is the Reynolds number based on wing diameter.
The symbols with 'tags' indicate that the vortex center was defined
by the position of maximum axial velocity defect instead of maxi-
mum vorticity.) The contraction factor A was set equal to 2 in
Equation 5. 34 to obtain r1/R = 2.1 ((x/D)/RD)O" 28. The theoreti-

cal prediction underestimates the core radius of the vortex;

however, the growth rate is seen to be in reasonable agreement.
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In the case of an elliptic wing, the core radius grows with
the downstream distance like x%, which is a much faster growth
rate than xo'28 as obtained for the ring wing. From Reference 5,
the core radius of the trailing vortex behind an elliptic wing is

given by

1
r, = 2.92 ((x/b)Rb)2 b, 5. 36.

where b is the wing span, and Rb is the Reynolds number based on
wing span. A simple comparison is made here to illustrate the
vortex core size difference between the two wings, i.e., the ring
and elliptic wings.

Consider an elliptic wing with wing span equal to the ring
wing diameter and let both wings fly at the same Reynolds number,
i.e., Rb = RD. Then, according to the theoretical predictions,
the core radius of the trailing vortices from both wings will be
equal at a downstream station x = 9.6 x 10" Ry wing diameters
(or spans); the core radius being 0.28 diameters (or spans). For
downstream stations less than 9.6 x 10"3 RD’ the vortex core in
the case of a ring wing, is larger than that of an elliptic wing.

It is understandable that initially a ring wing has a larger
vortex core than an elliptic wing because the initial vorticity in
the vortex cores are differently distributed. 1In the case of the
ring wing, vorticity is more evenly distributed over the wing
surface, as compared to an elliptic wing whose vorticity distribu-

tion is very much concentrated at the wing tips. Vorticity in the

vortices formed behind the wings is similarly distributed. Axial



76

vorticity, in the case of a ring wing generated vortex, is distri-
buted over a wide cross sectional area, whereas in the case of an
elliptic wing, vorticity is concentrated at the vortex center. Thus,
the vortex core is initially smaller in the latter case than in fhe
former. For the same reason, tangential velocities in the ring
wing generated vortex are much lower than the tangential velocities
in the vortex behind an elliptic wing. The vortex wake behind a
ring wing is associated with less energy as compared to an elliptic
wing. Consequently, for the same lift, the ring wing has less
induced drag+ than the elliptic wing spanning the wing diameter.
The idea of drag reduction by distributing the vorticity over
a wider surface (on the wing) is incorporated in the wing design
by end plates. It will be interesting to investigate the practicality
and aerodynamic effects of replacing the end plates by ring wings.
It is believed that such a wing configuration, if possible, will also

alleviate the trailing vortex hazard.

V.2.2.4 Axial Vorticity on the Vortex Core Axis

On Figure 33, Equation 5.35 is compared to the experi-

mental data, It is seen that the theory highly over-predicts axial
1

vorticity on the core axis. However, vorticity decays as x 2,
as predicted. (cf. In the case of an elliptic wing, vorticity on the

core axis decays like x_3/4, Ref. 5.) Note that the predicted

TFor a ring wing D, = Lz/(4 qu) and for an elliptic wing

D, = Lz/bzq, where q = % pUZ.
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station of complete roll-up coincides roughly with the onset of

decay.

V.2.2.5 Maximum Downwash in Plane of Symmetry

Finally, the maximum downwash in the plane of symmefry
is plotted on Figure 34 to show the Reynolds number dependence.
The downwash velocity is seen to decay like x-o" 3; however, the
experiments were not conducted over a wide enough range of

Reynolds numbers to warrant any conclusive remarks. Again, the

predicted complete roll-up station is demonstrated.

V.3 Suggested Future Investigations

Some areas of investigation that may be of interest in
connection with this study are listed below:

a) Experiments convering higher Reynolds numbers than
those reported here should be conducted; this will ensure a thinner
wake and better approximate the mathematical model of the vortex
sheet.

b) Measurements of vorticity distribution in the wvortex wake
should be interesting. In this respect, an LDV vorticity meter
presently being developed at GALCIT will prove to be an invaluable
tool. Vorticity measurements should be compared to measured
loading on the ring wing to determine loss of vorticity downstream
in the wake due to frictional heating effect.

c) Photographs of the vortex wake cross section will be

invaluable.
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d) Experiments may be conducted for various wing aspect

ratios.

e) The mutual interaction of the trailing vortices should be
incorporated in the theory. |

f) Numerical éomputations of the sheet vortex roll-up process
may be repeated, using a different scheme to reduce point vortex

randomization effects. In particular, methods due to Fink and Soh

or Moore (Section II) are suggested.
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VI CONCLUDING REMARKS

The vortex sheet emanating from the trailing edge of a thin
cylindrical ring wing in a nonaxial flow has been shown to roll up
to form a pair of counter rotating trailing vortices, spaced by
m/4 wing diameters. The roll up process may be classified into
three phases. These are:

(2) Distortion phase
(b) Roll-up phase

(c) Decay phase

In the distortion phase, the vortex sheet simply distorts in
shape under its own induced velocities, Vorticity is redistributed
on the sheet to concentrate at two points that originate from the
upper half of the wing. The vortex sheet then rolls up about
these points into a pair of doubly branched spirals whose turns
viscosity smoothes out. These points of roll-up origins at the
trailing edge are numerically determined to be approximately 52
degrees from the upper side of the median plane of syinrnetry.
The origins of roll up have been observed by flow visualization
techniques.

In practice, the beginning or the end of roll-up is not well
defined. = Numerical caléulations suggest that roll-up begins at
roughly 0. 26 A/CL diameters downstream from the trailing edge.
The downstream station where the vortex sheet may be considered
to be essentially rolled up has been estimated to be approximately

2A /CL diameters; this has been observed for a wing aspect ratio

of two.
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The trailing vortex has been shown to decay according to
theory based on Moore and Saffman's model of laminar trailing

vortices.
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APPENDIX A

Development and Strength of the Trailing Vortex Sheet Generated by

a Ring Wing

Consider a thin cylindrical ring wing in a nonaxial flow (i. e.,
the ring wing is at an axial angle of attack). On the surface of the
ring wing, a pressure distribution develops in a manner that causes
a cross-flow as depicted in Figure 2 . On the inner surface of
the wing, the fluid will tend to flow from the pressure side (the
upper part) to the suction side (the lower part). A similar flow
develops on the outer surface, except that here the pressure side
is at the lower half of the wing and the suction side is at the upper
half of the wing. When the inner and outer flows meet at the
trailing edge of the wing, the tangential velocities on the inner and
outer surfaces are in opposite directions. Thus a surface of dis-
continuity, in which vorticity is distributed, is formed. = The
trailing vortex sheet thus formed is a thin cylindrical shell with a
circular cross section of radius R, the ring wing radius (Fig. 2 ),
The vorticity has opposite signs on the adjacent sides of the median
plane of symmetry,

The cylindrical trailing vortex sheet is unstable, however,
and will first distort in shape due to its own induced velocities
and roll up as sketched in Figure lb., Analytical treatment of the
roll-up process is difficult. The usual procedure is to numerically
‘calculate the evolution of an infinite vortex sheet in an unsteady

flow. This problem is treated in Section II.
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The vorticity distribution in the vortex sheet may be ob-
tained by the following analogous problem. Consider an infinite
cylindrical fluid inside an infinitesimally thin rigid cylindrical
shell, with radius R. Now let the infinite cylinder of fluid descend
steadily, through a fluid medium, with velocity Wo’ perpendicular
to the cylinder axis. Suppose at some time during the motion,
the thin shell interface is made to vanish instantly. An unstable
surface of discontinuity is thus created. The instantaneous flow
field is equivalent to the flow about an infinite cylinder, which is
well known.

With respect to a stationary coordinate system, the instan-
taneous tangential velocity on the outer surface of the discontinuity
surface is given by

ve+ = W_sinp . Al

On the inner surface, the instantaneous tangential velocity is

vg = - WO sin® . A2

The jump in tangential velocity across the discontinuity surface is
equivalent to the circulation per unit arc length, w(®p), i.e., the

vorticity. Thus
wE) = Vg - Vg =2 W0 sin® . A3

The circulation distribution ['(p) is then given by integrating

Equation A3. One obtains
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m/2
F') :/ W) Rdp = 2RW  cos® A4
®

where ® is a polar angle méasured from the bottom of the vertical
plane of"sirmkmetry.

A practical problem, in view of the above described
problem, is the case of the motion of gas bubbles in a fluid medi-
um, The vortex sheet formed in this case will be spherical, and
will roll up into a vortex ring depending on shear stresses at the
interphase. The ''mushrooming' effect from atomic blasts may
also be described in a similar fashion.

The strength of the trailing vortex sheet is equivalent to
the wing loading. For large diameter-to-chord ratios, the well-
known Prandtl's lifting line theory may be applied to the ring wing.

From Reference 27, the circulation distribution is
L) =T cosyp A5
where FO is the root circulation. From Equation A4
w,=T_ /2R =T _/D Ab

which is the initially induced downwash inside the infinite vortex
sheet. The initial downwash is constant everywhere within the
cylindrical sheet. The initial mean tangential velocity on the
vortex sheet is zero and the mean radial velocity V. = W0 cos®.
The initial radial velocity distribution explains why the sheet first

undergoes distortion before rolling up. (By contrast, the induced
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normal velocity on the vortex sheet generated by an elliptically
loaded wing is constant and equals Tolb, where b is the wing span.
In this case the sheet rolls up immediately. )

From lifting line considerations, the root circulation for

the ring wing is given by

. nuca
L " T5n2s AT

where a is the axial angle of attack, U is the wing speed, and A
is the aspect ratio defined by the diameter-to-chord ratio, i.e.,
A = D/C (the two-dimensional sectional lift coefficient slope of 2T

is used here). The ring wing lift coefficient is then

r

= =2
CL = Fe , A8

and the induced drag coefficient is

c.. = = A9

For large aspect ratios, Equation A7 is a valid approximation and

ma

CL = T¥n/2 AlO

and for very small aspect ratios, i.e., C >> D, the downwash

W, = Un, giving Fo = UDa and from Equation A8

CL = Aa . ' All

The drag and lift coefficients are defined as
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Lift

C, = ——
L1, u’s
Induced Drag
CD T 2
i 2P U'S

where p is the fluid density and S = mDC is the wing surface area.
Weissinger (Ref. 24) uses linearized lifting surface theory
to calculate the aerodynamic coefficients of the ring wing. The
calculations are long and involved but the results (presented in
Ref. 22) are in excellent agreement with the experimental data
(Ref. 29). He gives an approximation to the lift coefficient of a

cylindrical ring wing by

TAQ

L ~E¥n/2+arctan(l.2/A) Alz

C

(Note that this approximation matches with Equations Al10 and All.)
In the practical range of aspect ratio, the lifting line theory over-

predicts lift by about 10-20%.
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APPENDIX B

B.l. Estimate of Circulation Distribution, I'(r), within Rolled-up

Spiral

The initial distribution of circulation about the cylindrical
vortex sheet (Fig. 3 ) is given by I' = Po sin8 (Eq.A5), where 8 is
measured from the horizontal diameter. The problem is to deter-
mine the circulation distribution about circles concentric with the
center of the spiral formed by the roll-up of the infinite vortex
sheet.

It is assumed that the central portion of the spiral consists
of approximately concentric circles. This assumption is valid in
the inner portion where the spiral consists of tightly wound turns
and, due to the double branch nature of the spiral, the center of
the spiral closely approximates the vorticity centroid.

The vortex sheet rolls up into a doubly branched spiral
whose center originates from a point, 6 = Go, on the original
cylindrical vortex sheet. Results from the numerical calculations
(Section II) give 90 = arcos (/4), approximately. Referring to
Figure 3a, take a contour CS enclosing 90 such that the arc
lengths, s, on both sides of 90 are equal. The net vorticity Fc,

in the segment of vortex sheet enclosed by the contour is

=T s - i -
Tc o, sin (90 + s/R) Po sin (eo s /R) Bl

H

2 lo cos 90 sin (s/R)

where R is the radius of the cylindrical vortex sheet,
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The sheet segment enclosed by the contour Cs rolls up
into a doubly branched spiral enclosed by a circle of radius r,
concentric with the center of the spiral (Fig. 3 ). The original
net vorticity in the sheet segment is then equal to the net vorticity
in the spiral enclosed by the circle.

In the inner portion of the spiral where the spiral turns
are roughly circular, the mean radial velocity is zero; further-
more, the flow is inviscid. Thus the net vorticity in fhe circle
(i. e., the circulation about the circle) is not a function of time.
By making the linear transformation s = Ar, relating the arc
length to the radius of the circle, and putting cose0 = T/4 in

Equation Bl, the net vorticity, ['(r), within the spiral is roughly

given by
I'(r) = -z—ro sin A\r/R), _Xﬁr <-21T B2
T Ar m
= _-..—2 —
2 I‘o R 2

where A is a dimensionless constant known as the contraction
f';ctor. It indicates the size of the circle into which a segment
of the original vortex sheet rolls (Ref. 5). In Appendix C, the
value of A is estimated to be 2.

From the approximations outlined above, it is seen that a
fraction of 7 /4, of the original total vorticity per half wing ZPO,
is rolled up. The remaining vorticity is contained in the unrolled

portion of the vortex sheet.
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B.2 Nature of the Rolled-up Spiral

From Reference 5, for a circulation distribution of the form

D(r) = 2YQA r)l_n, the polar equation of the inner spiral is given by

A
1-n l+n
.1 t
R ’ B3
and the radius of the central portion is
1
1 1+n
yA o
as (t) o o t . B4
nl
In the case of the ring generated vortex sheet, I'(r) ~ 2 —2—]59- (A r),
for r > 0. Thus n = 0 and Y = WTO/ZD. The polar equation+ is
ALt - ty
T 72D 09 B>

where 8 is a constant of integration. The radius of the central

portion of the spiral is

A I‘o
as(t) Qa 2D (t - tO) B6
where ty is the time when the sheet begins to roll up.
Results obtained here are compared to the numerical

results in Section V.

.t,.

In the case of the ring wing the spiral consists of two branches.
The polar equation of the other branch is obtained by replacing
6 by 8 + 1 in Equation B5.



89

APPENDIX C

Estimate of the Contraction Factor \

Three methods are outlined below to find an approximate
value for A. The first two are based on similar derivations from
Reference 5.

(a) Betz' Theorem of Conservation of Angular Impulse

Betz theorem (Ref. 32) states that for a given net vorticity
in a strip of a vortex sheet (0,s) say, the angular impulse, J,
measured relative to the centroid of vorticity, remains constant
as the strip rolls up into a spiral to fill a circle of radius r.

The theorem is based on the assumption that the change in A due
to the induced velocity caused by the vorticity external to the con-
sidered spiral is negligible. Therefore, the theorem should be
valid in the inner portion of the spiral where vorticity is concen-
trated.

Now consider the initial cylindrical vortex sheet with vorti-
city distribution w(®) = POR_I cos8. The net vorticity in the arc

length s (Fig. 3 ) is given by

ml
L(s) ~ g5 s cl
and
r
_dl "o
e s = I|m Y% - c2

The center of gravity of vorticity in the strip s is given by

8
-L‘ w(s') s' ds!'

s = =

fs w(s') ds'

o}

[

s , C3
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ignoring the curvature in the arc. The angular impulse relative

to s is

The vorticity in s is then assumed to roll up into a circle

of radius r (Fig. 3 ) around which the circulation contributed by

the segment s is

D(r) = wos(r) . | C5

The angular impulse of vorticity within the circle is given by

r
2 dI
Jr:—%pfr' a?,dr'

By Betz approximation, J,. = T

differentiating, one obtains

s = 2r (o]

and
A =2 C8
where A , known as the contaction factor, indicates the radius of

the circle into which vorticity in a segment of the vortex sheet is

compressed,
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(b) Conservation of Energy (Refs. 5 and 31).

In this approach, the vortex core radius is obtained by
equating the energy per unit length of the vortex wake to the in-
duced drag (i;e. , energy spent to generate a unit length of the
trailing vortex sheet).

The vortex sheet is assumed to completely roll up into a
pair of circular trailing vortices with core radius T The dis-
tance of separation of the vortex cores, D', may be obtained from
conservation of vertical impulse. Before roll-up the vertical
impulse, due to the cylindrical vortex sheet with vorticity distribu-
tion wW(yp) = ZD“1 ro sinp, is given by

T
D D T
Zp/ UU(CP)-Z-smCPZ-dCP=p§DF
0]

After complete roll-up, the impulse is

t
D

2 p (ZTO)2 .

Equating the two quantities, one obtains

where D is the diameter of the ring wing.

The circulation distribution in the vortex cores is taken to

be
_ . 2Ar T
L (r) = ZTO sin (2Ar/D), 5 < 5
2Ar i
= 2T >
2 o D 2
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(Since complete roll-up is considered, the total vorticity shed per
half wing, ZTO is used (Eq. B2 of Appendix B).)

The kinetic energy per unit length of the vortex wake is

approximately given by

T '
p ’ L (x)° p P (Zl‘o)Z
K. E = > dr + > - dr
o
o
2[, D 1
- P = =
= 5 2T ) [1 r ) C1n(ﬂ)] , cl2
T
where Cin (m) = / }L}Sf’——%— dx = 1.648 .
o)
The induced drag on the ring wing is given by
Tr 2
=—p
Di 7Py . C13>
From Equations Cl12 and Cl13, one obtains
1
r0”0,664D = 0,52 D Cl4
and with 2\ rO/D = TM/2, one gets
A 1.57 . Cl15

Note that the estimated core radius is greater than half the vortex
separation, thus violating the assumption that the vortex pair does

not interact. The vortices actually interact and distort to take on

an elliptic shape.
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(c) Geometric Consideration

It is assumed that axial velocities caused by the rolling
up of the vortex sheet are negligible compared to the free stream
velocity. This is a fair assumption for light loading (i.e., for
small angles of attack). Sinée no fluid crosses the cylindrical
vortex sheet, then by mass conservation the cross sectional area
enclosed by the vortex sheet must necessarily remain constant as
the sheet rolls up.

The cylindrical vortex sheet is assumed to roll up into a
pair of circular vortices with radius T The cross sectional area
of each vortex is then TTrOZ. Half the initial area enclosed by the
cylindrical vortex sheet is (Tr/8)D2. Equating the two quantities,

one obtains

o = 0. 35D, Clé

and with 2Ar/D = m/2 one gets
A ™= 2.2 . Cl7

The values of A, obtained by each of the three different
methods above, are of the same order of magnitude. However,
they are not exact and should be taken as approximate values. In
particular, the method by geometric consideration does not take
into account the fact that fluid initially outside the cylindrical sheet
is entrained into the vortex. Furthermore, the vortex sheet does
not completely roll-up. It seems the entrained fluid 1is balanced
by fluid enclosed by the unrolled-up portions of the sheet. Thus,

the rather crude method by geometric considerations gives a value
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of A which is quite close to the value estimated by Betz theorem,
which is reasonably appropriate for the inner portion of the rolled-

up spiral. The method by energy considerations is also not quite

appropriate since it concerns only the final state of roll-up. When

required, A = 2 is used in this investigation.
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Figure 19a. Point Vortex Approximation to the Roll-up

of Vortex Sheet Behind a Ring Wing
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Figure I9b Point Vortex Approximation to the Roll-up
of Vortex Sheet Behind a Ring Wing
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t" = 0.300
c - z = -0,423
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Figure [19¢ Point Vortex Approximation to the Roll-up
of Vortex Sheet Behind a Ring Wing
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Figure

19d.

Point Vortex Approximation to the Roll-up
of Vortex Sheet Behind a Ring Wing
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Figure

19e.

Point Vortex Approximation to the Roll-up
of Vortex Sheet Behind a Ring Wing
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Figure 191.

Point Vortex Approximation to the Roll-up
of Vortex Sheet Behind a Ring Wing
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Figure 19g. Point Vortex Approximation to the Roll-up

of Vortex Sheet Behind a Ring Wing
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Figure 19h. Point Vortex Approximation to the Roll-up

of Vortex Sheet Behind a Ring Wing
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Figure 20a

Point Vortex Approximation to the Roll-up
of Vortex Sheet Behind a Ring Wing
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Figure 20b.

Point Vortex Approximation to
of Vortex Sheet Behind a Ring

the Roll-up
Wing
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Figure 21. Point Vortex Approximation to the Roll-up

of Vortex Sheet Behind a Ring Wing
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Profiles in Rolled-up Vortex Sheet

— —
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6 4 2 0 - o.
W>,< _ 40
Figure 23a. Numerically Calculated Velocity
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t" = 0.25

Figure 23c. Numerically Calculated Velocity
Profiles in Rolled-up Vortex Sheet
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Figure 23b.

Numerically Calculated Velocity
Profiles in Rolled-up Vortex Sheet
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£ = 0.30

Figure 23d.

Numerically Calculated Velocity
Profiles in Rolled-up Vortex Sheet
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Figure 23e. Numerically Calculated Velocity
Profiles in Rolled-up Vortex Sheet
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FIG.g4bVELOCITY PROFILES IN VORTEX (RING WING)
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FIG. 29 DEFINITION OF VORTEX CORE
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