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Abstract

C omputer graphics provides some ideal appiications for the kind of highly paral-

lel implementations made possible by advances in integrated circuit technol-
ogy. Specifically, hidden line and hidden surface algorithms, while easily defined and
simple in concept, entail a substantial amount of computation. This requirement fits
the characteristics of integrated circuit technology, where modular designs involving
regular communication between many concurrent operations are rewarded with high
performance at an acceptable cost.

Ray tracing is a very flexible technique that can be used to produce some of
the most realistic of all computer generated images by simulating the interactions
of light rays with surfaces in a modeled scene. Because light rays are mutually inde-
pendent, many may be processed simultaneously, and the potential for concurrency
is great. Omne architecture for expediting a ray tracing algorithm consists of a con-
ventional computer equipped with a special purpose peripheral device for locating
the intersections of rays and surfaces. This intersection computation is the most
time consuming aspect of a ray tracing algorithm. Although the attached processor
configuration can produce images more quickly than an unaided computer, its per-
formance is limited. Alternatively, a pipeline of surface processors can replace the
peripheral device. Each processor computes the intersections of its stored surface
with rays that flow through the pipe. Such a machine machine can be quite fast,
and its performance can be increased by lengthening the pipeline, but the component
processors are not very effectively utilized. A third approach combines the advantages
of the prior two machines by using an array of processors, each simulating a distinct
subvolume of the modeled world by treating light rays traveling through space as
messages lowing between processors. Local communication is sufficient because light
rays travel continuously through space.

In real time computer graphics, successive images must be produced in times that
are imperceptible to a viewer. Although the ray tracing machines fall short of this
performance, it is possible to compromise image quality in order to produce a highly
parallel machine capable of real time operation. The processors in such a machine
are organized to form a binary tree. Leaf processors scan-convert surfaces, producing
a sequence of segments, where a segment is the portion of a surface that appears on
a single scan line of the display. Processors towards the root of the tree accept two
such segment sequences and produce a third in which all segment overlap has been
resolved. The final image is available at the root of the tree. The communication
bottleneck that would otherwise occur at the root can be eliminated by breaking out
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parallel roots, and the resulting tree may be extended to scenes of almost arbitrary
complexity merely by increasing the supply of available processors.

Massive parallelism can also be applied to the problem of removing hidden edges
from line drawings. A suitable architecture takes the form of a pipeline in which each
processor is dedicated to the handling of a single polygon edge. These processors
successively clip line segments passing through the pipeline to eliminate portions
hidden behind surfaces. Each edge processor can be constructed out of little more
than three serial multipliers.

The machines described here are varied in organization, and each functions differ-
ently, but their treatment of sorting is one ingredient common to all. Sorting is a key
component of hidden surface algorithms running on conventional computers, but its
extensive communication requirements make it costly for use in a highly integrated
design. Consequently, the highly parallel machines described here operate largely
without sorting. Instead, they maintain information in sorted order or make use of
already sorted information to limit communication requirements.



Table of Contents

Acknowledgments . . . . . . . .. .. ... ... ... ..., iii
Abstract . . . . . . .. iv
1. Introduction . . . . . .. ... ... 1
1.1 Integrated Circuit Technology . . . . . . . . . . . . . ... ... 2
1.2 Computer Graphies . . . . . . . . . . . ... ... ... 4
1.3 Overview . . . . . . . . . . ..o e e 5

2. Ray Tracing Machines . . . . . . . . ... ... ........ 7
2.1 The Ray Tracing Algorithm . . . . . . . . . . . ... ... ... 8
2.2 Computations for Ray Tracing . . . . . . . . . .. .. .. ... 16
2.3 A Ray Tracing Peripheral . . . . . . . . . . . . ... ... ... 24
2.3.1 Host-Peripheral Interaction . . . . . . . .. ... .. ... 24

2.3.2 Operation of the Peripheral . . . . . . . . . . . ... ... 26

2.3.3 Implementation of Arithmetic . . . . . . . . . . . .. ... 33

234 Analysis. . . . . ... Lo oo 35

2.4 ARay TracingPipeline . . . . . . . . . . . ... ... ..... 46
2.4.1 Operation of the Pipeline . . . . . . . . . . .. ... ... 48

2.4.2 Implementation of Arithmetic . . . . . . . . .. . . .. .. 49

2.43 Communications Requirements . . . . . . . . . . . . .. .. 49

244 Analysis. . . . . . .. ... s 51

25 ARay Tracing Array . . . . . . . . . . . . . ..o 52
2.5.1 OperationoftheArray . . . . . . . . . . . .. ... ... 55

2.5.2 Processor Organigation . . . . . . . . . . . ... .. ... 59

253 Ampalysis. . . . . . . ... o 63

28 Extensions . . . . . . . . . . .. .. .o 67

3. Real Time Machines . . . . . . . ... ... .......... 73
3.1 ModelPreparation . . . . . . . . . .. .. ..., 74
3.2 Previous Parallel Algorithms . . . . . . . . . . ... ... ... 78
33 AScanLineTree . . . . . . . . . . . . . .. o 85
3.3.1 Transformation and Clipping Processors . . . . . . . . . . .. 90

3.3.2 Scan Conversion Processors . . . . . . . . . . . . .. ... 99

333 MergingProcessors . . . . . . . . . ... ... 101

3.3.4 The Pixel Conversion Processor . . . . . . . . . . . . .. 112



335 Anmalysis . . . . . . ... L L Lo e 113

3368 Extemsions . . . . . . . . . . ..o e e 122

3.4 Hidden Line Elimination . . . . . . . . .. .. ... .. ... 124

4. Observations and Conclusions . . . . . .. ... .. .. ... 141
Appendix A. Implementing Arithmetic . . . . . . . .. ... .. 145
A1 Using Commercial Components . . . . . . . . . ... .. ... 145
A.2 Using Custom Components . . . . . . . . . . . . . ... ... 149
Appendix B. Moving Between Subvolumes . . . . . .. ... .. 155
Appendix C. Programming in Silicon . . . . . ... .. ... .. 159
C.1 Silicon Programming . . . . . . . . . . . . . . ... ... .. 160
C.2 Example:Inner Produet . . . . . . . . . . .. ... ... .. 162
C.3 Example: PDP-8 . . . . . . . . . . ... ... .. 164
C.4 Example: Convolution . . . . . . . . . ... .. ... .... 172
C.5 Example: Self-Sorting Memory . . . . . . ... . . .. ... .. 175
C.6 Example: Two-Dimensional Graphies . . . . . . . . . . . .. .. 178
C.7 Extensions . . . . . . . . . . ... e 183
C.8 Implementation Overview . . . . . . . . . . . . . .. .. ... 185
C9 Dataflow Analysis . . . . . . . . . . . ... 187
C.10 Folding . . . . . . . . . . . e e e e e 200
C.11 Size Determination . . . . . . . . . . . . . . ... ... ... 205
C.12 Functional Simulation . . . . . . . . . . .. .. ... ... 206
C.13 Bit Serial Implementation . . . . . . . . . . . . . ... .. .. 207
C.14 Status of the Serial Implementation . . . . . . . . . . . .. .. 219
C.15 Interactive Implementations . . . . . . . . . . ... ... ... 221

References . . . . . . . . . .. ... 2923



1

Introduction

C omputer graphics is the art and science of making pictures by means of com-
putation. Beginning with little more than an idea for a scene to be depicted,
the artist/programmer must first transcribe that idea into a geometric model. Next,
some form of computing engine processes the model into the electrical signals that
control the electron beam in a cathode ray tube. The modulated beam of electrons
strikes the inside surface of the tube, exciting a phosphor coating to produce the
pattern of light that we perceive as the final image.

Since its inception, progress in computer graphics has been tied to the availability
of suitable computing and display hardware. Some of the earlier displays could show
only patterns of dots, and the images that could be produced were correspondingly
limited. Subsequent displays could draw lines in addition to dots, thereby extending
the range of possible images. The frame buffer, a device for storing a digitized,
continuous tone image and displaying it on a television monitor, represents a further
advance in display hardware. Early frame buffers used magnetic disks for the storage
medium, but as memory technology improved, frame buffers began to use large,
random access memories. The new devices were not only cheaper and more readily
available, but also their very existence suggested new applications and algorithms for
computer graphics.

The progress of computing technology, as well as display technology, has influ-
enced the progress of computer graphies. The algorithms used to make pictures tend to
be computationally intensive. In fact, it has been estimated that even a Cray-1, which
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is generally acknowledged to be among the fastest computers in the world, can produce
only about four minutes of high quality motion pictures per month [WHIT82]. This
figure takes into account the draft work that must precede the finished product. Most
computer graphics, however, is done on minicomputers rather than supercomputers,
forcing compromises in image realism. Another branch of computer graphics makes
use of special purpose processors in order to produce successive images in times that are
imperceptible to the viewer. Because it is so difficult to generate images at this rate,
the pictures produced by these machines tend to be less complex than the pictures that
can be made without timing restrictions. Such machines are typically used in visual
environment simulators, and because the moving images are under direct control of
the viewer, many of the image quality compromises that were made in exchange for
performance can be overlooked.

One of the more recent technological developments that can be applied to com-
puter graphics is the practice of fabricating large scale integrated circuits. Using this
technology, it is possible to fit an entire electronic subsystem onto a single, fingernail-
sized chip of silicon. The cost per computing device is correspondingly diminished,
making it feasible to apply more computing power to a task with the hope of im-
proving performance. Like all technologies, however, integrated circuits have their
own peculiar set of properties that must be considered if the final product is to be a
practical one. For integrated circuit technology, it is cheap to replicate components,
but communicating between the various parts of a system is very expensive. These
characteristics suggest that highly parallel algorithms are suitable, so long as the com-
munication between the various operations taking place concurrently is not excessive.

The following pages explore some computer graphics algorithms that can utilize
the technology for fabricating very large scale integrated circuits. The algorithms
are designed to make effective use of concurrency while keeping communications
requirements down to an acceptable level. The primary emphasis will be on algorithms
for detecting and removing those parts of a simulated scene that should be hidden
from the viewer. One type of algorithm will concentrate on rapidly producing images
of very high quality, while another will accept poorer image quality in order to achieve
high performance. Before proposing the algorithms and their associated machine
architectures, however, a brief overview of the technology characteristics and the
problems involved at the graphics end may be helpful.

1.1 Integrated Circuit Technology

Using large scale integrated circuit technology, it is possible to fabricate a single
chip of silicon containing an amount of logic that formerly required an entire printed
circuit board. It would be a mistake, however, solely to regard integrated circuits
as miniaturized printed circuit boards, because they have a different set of strengths
and weaknesses. The major differences have to do with communications. Within
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an integrated circuit, the cost of transmitting a signal across the chip is substantially
greater than the cost of communicating it locally. Not only does a longer transmission
path consume more area, it is also slower because it has a larger capacitance and stores
a correspondingly greater charge that must be overcome in order to accomplish the
transmission. Compared with these communication paths, the actual active computing
elements consume relatively little power, time, or area. This situation led Sutherland
and Mead to observe that integrated circuits make “switching elements essentially free
... leaving wires as the only expensive component” [SUTHTT7].

Just as the communications within a single chip limit performance, the amount
of communication between chips is restricted. A single printed circuit board might
have hundreds of connections to its environment. In contrast, an unusually large and
complex integrated circuit might have eighty pins connecting it with the outside, while
typical chips have fewer than fifty. These pins supply power to the chip as well as
serving as portals for data transfer. In addition to being limited by the number of pins
on a chip, communication between two chips is generally slower than communication
between points within a single chip.

Testing is another area in which integrated circuitry requires some extra attention.
On a printed circuit board, most of the signals are accessible to an oscilloscope probe.
This is not so with an integrated circuit, where the only access to the internals of
a chip is through the limited number of signal pins. The problem of testing is still
largely unresolved, but one technique that has been used successfully involves chaining
a portion of a chip’s internal state into a long serial register, which may then be
shifted out of the chip through a small number of pins for examination and possible
modification [EICHTT].

In many ways, the process of fabricating integrated circuits is similar to the tech-
niques of book printing. In both cases, the setup costs are high, but the incremental
cost of producing each unit is comparatively low. After printing the pages of the book
or fabricating the chip, a culling phase is required to eliminate defective units before
packaging the final product. Because highly replicated chips are individually less ex-
pensive, an engineer contemplating the use of custom integrated circuits is encouraged
to come up with designs that can make use of many copies of a single chip type.

The characteristics of integrated circuit technology tend to push one in the direc-
tion of highly paralle]l designs with regular, if somewhat constricted, communications
paths. The goal is to achieve high performance by applying a large number of concur-
rently operating processing elements to a particular problem. Sinece it is easy and inex-
pensive to duplicate chips, it is also desirable to apply a myriad of identical processors.
The fact that all processors are the same tends to encourage the use of regular intercon-
nection structures. Notice that this approach is almost completely opposite from the
one that is useful in printed circuit technology, where overall performance is achieved
by relying on the individual component speeds rather than on their combined speeds.

Many types of processor interconnection structures have been proposed or actually
implemented [ANDE75]. The most common of these is the conventional pipeline
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consisting of a linear array of processors, each connected to its two neighbors. Work
flows into one end of the pipe and passes from processor to processor, rather like
the material in an assembly line. Each processor performs a single stage of the
computation before it passes a partial result to the next processor. The final result
appears at the end of the pipeline. More elaborate pipelines have also been proposed
[KUNGS80]. These organizations have more than one input and output stream, and
the internal communication schemes are more complicated, but they still pass partial
results in one direction from processor to processor in a very regular and rigid manner.

Other types of interconnection strategies suggest communication schemes that
are different from the approach used in linear pipelines. In tree structures and ar-
rays, for example, each processor is connected to a few nearby processors. In trees,
each component processor has connections for a superior processor and for two or
more subordinate processors. Component processors in a rectangular array are each
connected to four others, although different kinds of arrays may have richer inter-
connection patterns. For these and other types of structures, asynchronous message
passing is often a more useful communication strategy than the rigid, unidirectional
flow found in conventional pipelines. Using this technique, the communication occurs
only when and where there is information to be transmitted. The disadvantage, of
course, is that message passing requires a great deal more logic devoted to its control.

1.2 Computer Graphics

As mentioned earlier, the first step in making a picture is to transcribe an idea
into a geometric model suitable for manipulation by computer. This usually means
that the surfaces in the scene must be split up into a collection of planar polygons
defined in three dimensions, although some techniques for dealing directly with curved
surfaces have been developed. One way to prepare the scene model is to use a large
digitizing tablet to derive three-dimensional coordinates by tracing blueprints of the
objects. After the geometric properties of the surfaces have been described, it is still
necessary to provide color and texture information for them. Also, the light sources
that illuminate the scene must be identified and described. The result is a complete,
three-dimensional model of the scene to be depicted.

Because television and movie screens are flat, the scene model must be projected
onto two dimensions before it can be displayed. The projection operation simulates
the action of a camera, given its position and the direction in which its lens is pointed.
After projection, surfaces that would obscure one another in a natural scene overlap
each other in the synthetic one. These obscured surfaces must be detected and deleted
if the final image is to appear at all realistic. The process for doing so is called hid-
den surface elimination, and the corresponding techniques are called visible surface
algorithms. -

A great variety of visible surface algorithms have been developed over the years,
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but they generally share a common feature. The algorithms all perform some form
of sorting operation to reduce the amount of computation necessary for locating
overlapping surfaces [SUTH74b]. The sorting is used, in some sense, to bring surfaces
that appear near to each other on the screen into similar proximity within the machine
implementing the algorithm. The goal is to reduce the number of surfaces that must be
compared, since this comparison is usually very time consuming. The visible surface
algorithm is often considered to be the heart of a computer graphics system. Various
algorithms will be considered in greater depth in the chapters that follow.

After the visible surface algorithm has terminated, it is still necessary to deter-
mine the colors of the remaining surfaces. Once again, researchers have devised many
techniques for modeling the interactions between light and surfaces [BLIN77]. The ap-
parent color of a point on a surface is some function of the color and other properties of
the surface, the colors of the light sources, and the relative positions and orientations
of the simulated camera, surface, and light sources.

The completed image can be displayed on some type of frame buffer, as mentioned
earlier. This device consists of a fairly large memory, where each word in the memory
stores the color of a single position on the screen. These individually accessible screen
positions are called picture elements, or pixels. The fact that a screen can display
only a finite number of pixels poses one final obstacle in the image generation process:
aliasing [CROWT7]. The number of pixels on the screen is limited, and the values
of individual pixels are determined by discretely sampling the continuous simulated
scene. If the spatial frequency of the scene is too high relative to the sampling
resolution, aliasing will result. It generally shows up as jagged edges, or as small
features that disappear and reappear in successive frames of a movie. Although its
causes are well understood, there are no really good methods for eliminating aliasing.
One commonly used technique can, however, reduce the visible effects. This method
involves computing the image at a resolution greater than the screen resolution and
then filtering the higher resolution image to obtain the lower resolution one.

There are two reasons that computer graphics provides an ideal application area
for parallel implementations. First of all, the algorithms are sufficiently involved and
time consuming that a parallel solution can provide genuine performance benefits.
Second, the problems can often be cleaved into a collection of smaller problems with
manageable intercommunication requirements. These two properties mesh well with
the characteristics of integrated circuit technology.

1.3 Overview

Computer graphics systems may be classified into one of four broad categories
on the basis of their performance: real time, movie time, still time, and too slow.
Of course, the classification of a particular implementation depends not only on the
algorithm being used, but also on the hardware support that is available and on the
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complexity of the image being produced. Real time systems are the fastest, generating
successive images quickly enough for a viewer to interact with them. That is, a viewer
can make small changes in the scene and immediately see the visible eflects of the
changes. Real time performance is generally considered to mean that the system
must be able to produce thirty completely new images every second, although for
some applications this requirement may be relaxed a bit. Movie time performance is
achieved if the system is fast enough to compute the successive frames of a motion
picture in a reasonable amount of time, but not fast enough to produce them in real
time. Presumably, the goal is to provide better image quality, or lower cost, in a movie
time system than in a real time one. The next category is still time performance,
where the time required to compute a single image is so long that computing an entire
movie would be infeasible. Graphics programs running on minicomputers often fall
into this category. Finally, implementations where the mean time between failures of
the hardware exceeds the time required to make a picture are simply too slow.

Ray tracing is a very flexible approach to making pictures. With it, one can
generate very realistic images that show reflection, refraction, and shadows. The
difficulty is that although it is simple in concept, ray tracing requires a great deal of
computation. Its performance ranges from still time to too slow, although some very
short and limited movies have been made. Fortunately, as discussed in Chapter 2,
special purpose hardware can boost the performance of a ray tracing algorithm solidly
into the movie time category, making ray tracing a practical alternative to approaches
that may be faster, but are more complicated and less functional.

The timing constraints imposed on a real time system are severe, since there is
quite a bit to be done in the thirtieth of a second that is available for each frame.
Existing real time systems have achieved high performance largely by relying on
the speed of their individual components. When using integrated circuit technology,
however, the speed of a single chip is not always very great, and performance must be
achieved by amassing many chips. The challenge of integrated circuits, therefore, is to
devise highly parallel algorithms that have manageable communications requirements,
as well. Chapter 3 discusses some approaches to this problem.
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Ray Tracing Machines

Ray tracing is a technique that is capable of producing some of the most realistic

of all computer generated images. It is primarily a method for performing
hidden surface elimination, but the primitive operation of tracing a ray can also be
used to model shadows, reflective surfaces, and transparent surfaces with refraction.
In fact, essentially all of the effects available in shaded computer graphics can be
achieved by a ray tracing algorithm. Beyond pure image generation, ray tracing can
be used, for example, to estimate the volumes of modeled objects, as well as to simplify
the construction of these models.

As might be expected, the drawbacks of ray tracing are almost as pronounced as
its benefits. First of all, it is among the slowest of the algorithms for hidden surface
elimination that run on commercially available computers. It is so tedious that it
is never considered for most applications. Amnother difficulty is that a ray tracing
algorithm produces an image by sampling the object space, rather than by any kind
of direct or exact computation. This makes it inherently susceptible to the various
alissing problems that can be caused by sampling too infrequently.

Ray tracing is, however, interesting in the context of parallel computation. It
suggests a natural way of separating the problem of hidden surface elimination into
a vast number of simpler computations that are largely independent of one another.
Therefore, it seems especially suitable for implementation on a machine consisting of
a number of relatively unsophisticated processors operating in parallel.

This chapter proposes three different organizations for machines designed to
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implement a ray tracing algorithm. Each of the organizations was designed to exploit a
different aspect of the concurrency that is potentially available in the algorithm. In the
first approach, the primitive ray tracing computation itself provides the concurrency.
In the second approach, all of the polygons in the scene are processed at the same
time. Finally, in the third approach, polygons are separated into disjoint regions
of volume, and these regions are processed simultaneously. Before delving into the
details of these three machines, however, it may be helpful to understand the general
behavior of a ray tracing algorithm.

2.1 The Ray Tracing Algorithm

Ray tracing algorithms were pioneered by Appel back in the late 1960’s. The
Mathematical Applications Group, Inc. (MAGI) has been using ray tracing for quite
some time in their production of television commercials and video logos, among other
things. Other than this, however, the techniques lay dormant for over a decade until
fairly recently when they were revived and extended by Whitted. Ray tracing seems
to be getting more attention lately as people come to appreciate its simplicity and
generality. The remainder of this section describes ray tracing algorithms, and it may
be skipped by readers who are already familiar with them.

To understand how a ray tracing algorithm works, imagine a scene consisting of
a number of objects illuminated by a single light source, as sketched in Figure 2-1.
Light rays emitted from the light source may strike the surfaces of objects in the
scene, and secondary light rays will be emitted from the points of intersection in ways
that depend upon the surface characteristics of the objects. For example, the color of
a secondary ray is partially determined by the color of the surface. In addition, the
distribution of secondary rays depends on how glossy the surface is. Secondary light
rays may strike other objects in the scene to create many levels of interaction.

Eventually, some of the light rays will reach the eye of a nearby observer, who
will perceive them as an image. Suppose that there is a transparent sheet of glass in
a wall between the observer and the scene, so that light rays must pass through the
glass before the observer can see them. Omne ideal in computer graphics is to be able to
replace this sheet of glass with the screen of a television monitor in such a way that the
observer cannot distinguish between the genuine image and a synthetic one. Of course,
this ideal cannot be realized in practice, partly because of the two-dimensional nature
and limited resolution of the display screen. Assume, therefore, that the observer sits
very still, wears a patch over one eye, and is accustomed to viewing the world through
a window screen.

The direct approach to determining the synthetic image is to simulate the be-
havior of light rays using models of the scene, the light source, and the surface inter-
actions. Rays can be simulated by tracing them from the light source to determine
whether they will strike an object. If this happens, the surface interactions must be
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Figure 2—-1. Light rays illuminating a scene.

simulated to create new secondary rays, which should then be traced in a similar
manner. If, by chance, a ray passes through the simulated sheet of glass on a path
leading to the observer, it is captured and displayed on the television screen. Of
course, since the number of rays leaving the light source is essentially infinite, as is the
number of rays emitted from each surface intersection, the rays must be simulated by
using some sort of sampling technique. Unfortunately, only a very small proportion
of the rays leaving the light source will ever contribute to the final image, so that any
effort spent simulating the others will have been wasted.

Notice that the only rays that are really of any interest are those that arrive at the
viewer’s eye by passing through the simulated sheet of glass. Furthermore, since the
final image will be displayed on a television monitor as a raster of pixels, rays passing
through the pixels of this raster are more pertinent than those passing between them.
It seems prudent, therefore, to restrict the algorithm to this subset of the rays. A way
to do this is to trace rays backwards from the viewing position, through the pixels on
the sheet of glass, and out into the scene, as shown in Figure 2-2. These backwards
light rays may be thought of as vision rays.

Tracing vision rays reduces the number of first-level rays that must be simulated,
but the number of secondary rays remains large. Just as a light ray striking a surface
generates secondary rays in all directions, one particular secondary ray could have
been generated by a ray coming from any direction. This means that in order to
simulate vision rays properly, it would be necessary to trace an infinite number of
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Figure 2—2. Tracing vision rays to sample a scene.

secondary vision rays emitted in all directions from each intersection point. Of course,
not, all directions are equally likely, and this fact can be used to reduce the number
of rays under consideration. These types of approximations are successful to varying
degrees.

Consider, for the moment, the simplest possible version of a ray tracing algorithm.
For each pixel in the raster, the algorithm traces the corresponding vision ray to the
first object that it encounters in the scene. The color of the surface at the point
of intersection completely determines the color of the pixel in the final display; that
is, secondary rays are just ignored. The resulting image will not show any hidden
surfaces, but no shadows or other interesting lighting effects will be apparent either.
It will be cartoon-like, resembling an image produced by one of the early algorithms
for hidden surface elimination, like Warnock’s algorithm [WARNG69].

It is not difficult to see why ray tracing algorithms are generally considered to
be slow. They make absolutely no use of any kind of coherence. That is, the process
of tracing one particular ray does not provide any information that may be used to
simplify tracing the next. It is exactly this mutual independence of rays, however,
that makes ray tracing compatible with a parallel implementation. Since rays do not
affect one another, it is possible to trace several rays concurrently. This aspect of ray
tracing will be explored more fully in later sections.

The minimal ray tracing algorithm given above may be extended in a rather
natural way to synthesize shadows. As before, the algorithm begins by tracing a vision
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Figure 2-8. Tracing rays to a light source to determine whether intersection points are in shadow.

ray to determine which object is visible through a particular pixel. But this time, the
algorithm traces a new ray emitted in the direction of the light source from the point
of intersection on the visible surface. See Figure 2-3. If this new ray extends all the
way to the light source without striking any other surface, then the intersection point
is directly illuminated by the light source; otherwise, the point is in shadow. In a
scene illuminated by more than one light source, separate rays must be traced in the
direction of each light source. Appel used an algorithm much like this one in the late
1960°s to produce pictures on, of all things, a digital pen plotter [APPE68]. This was
in the days before there were devices capable of displaying true shaded images.

Reflection is another phenomenon that a ray tracing algorithm can model. As in
the case of shadows, the extension to handle reflection is a rather natural one. The
algorithm traces a vision ray to determine which point in the scene is visible from
a particular pixel. Then, in addition to shadow rays aimed at the light sources, it
generates a new ray in the direction of reflection, as in Figure 2-4. This reflection
ray may, in turn, strike another surface and generate still more rays. The surface
properties and shadowing information at all of the intersection points combine to
determine the color of the original pixel.

Refraction can be produced in much the same way as reflection. Instead of
generating a new ray in the direction of reflection, however, the algorithm must
generate it in the direction of refraction, according to Snell’s Law and the index of
refraction of the material. Refraction rays are illustrated in Figure 2-5. Actually,
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Figure 2—4. Tracing rays from an intersection point in the direction of reflection.

Figure 2-6. Tracing rays from an intersection point in the direction of refraction.
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it is perfectly permissible to generate both a reflection ray and a refraction ray. For
instance, both kinds of rays would be needed to make a picture of a magnifying glass
with reflections visible on its surface.

Sampling too infrequently can be a problem with all ray traced images, but
the techniques used for modeling reflection and refraction can further aggravate the
situation. For example, rays reflected from a convex surface will be more “spread out”
than the incident rays, so that the reflected image is not sampled as frequently as the
rest of the image. Whitted has used ray tracing techniques like those described above
to make images showing reflection and refraction [WHIT80]. He also suggested a fairly
simple way of dealing with the problem of aliasing.

Whitted’s technique for anti-aliasing begins by examining the colors of adjacent
pixels in the displayed image. If the colors are sufficiently different, the algorithm
assumes that the pixels lie on opposite sides of an edge. In this case, it traces another
ray between the pixels so as to determine the color at that intermediate point. This
process is applied recursively either until the colors are sufficiently similar or until some
fixed depth limit is reached. Finally, the algorithm averages, or otherwise filters, the
colors at the intermediate points to determine the colors of the original pixels. This
procedure may still, however, overlook small objects that fall between adjacent pixels
in the raster. Whitted solved the problem by forcing a subdivision in this case, even
when the nearby pixels are colored similarly. A pleasant aspect of this anti-aliasing
technique is that the effort tends to be concentrated along edges, where it is most
needed. Moreover, it meshes well with the rest of the ray tracing algorithm by making
use of the same basic computation.

Ray tracing can also be used with the various surface mapping techniques that
have been developed. These work by setting up a mapping between a unit square
and a surface in the scene, as shown in Figure 2-8, so that values of an arbitrary
function can be associated with points on the surface. Values mapped in this way
can then take part in the computation of the intensities to be displayed in the final
image. Catmull first used the technique to map photographs and images of textures
onto surfaces [CATMT74]. In his pictures, the function values derived by sampling
stored images were used to determine the colors at points on surfaces. Objects in
the resulting images appeared to have photographs glued to their surfaces. Blinn
was able to produce convincing pictures of wrinkled and bumpy surfaces by mapping
perturbations of surface normal vectors [BLINT8].

Still other types of mappings are available in a ray tracing algorithm because of
its greater generality. For example, mapping a surface’s index of refraction might
be an effective way to model a simple lens. Transparency mapping is another tech-
nique that can be used when intricate two-dimensional objects are to be displayed.
Conventionally, this kind of object would be modeled by a myriad of polygons. Using
transparency mapping, however, the usual surface model gives the general spatial
location of the object, while the transparency map determines where on this surface
the object actually exists. Notice that the number of surfaces has been substantially
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Flgure 2—6. Mapping a unit square in the wv-plane to a surface in the scene.

reduced, thereby easing the burden on the hidden surface processor as well as the
modeler.

Although ray tracing is probably the most flexible hidden surface and shading
algorithm available, there are still many effects that are difficult or impossible for it to
achieve. One source of difficulty stems from the fact that ray tracing does not make
use of phase information. Thus, it cannot simulate diffraction, but this is probably
not a very serious shortcoming for most applications. A more important problem
occurs in situations that involve diffuse illumination, reflection, or transmission. In a
diffusely illuminated scene, the light does not come from a point source, and therefore
shadows do not have sharp edges. Diffuse reflection occurs, for instance, when an
object takes on some of the color of another object nearby. Ilumination that is
reflected by a mirror is a related problem. A view through a translucent screen is
an example of diffuse transmission. In each of these cases, the assumptions used to
reduce the number of secondary rays are no longer valid. Of course, it is still possible
to approximate these effects by tracing a random sample of rays, but it would be very
costly to do so.

It was mentioned earlier that the use of a ray tracing algorithm for rendering an
image of a scene could, in some cases, ease the task of producing the scene model.
The basic idea here is that surfaces may be thought of as enclosing either positive
or negative volume and, furthermore, that these volumes can be combined algebrai-
cally. For example, to model a hole in an object, a negative object correspond-
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Figure 2-7. Using negative volumes to model a holes in an object. The square and friangle have

positive volume, while the circle has negative volume. The numbers correspond to the
net volume of each region.

ing to the hole can be superimposed on the positive object, partitioning space into
regions of positive, negative, and zero net volume. Such a case is diagrammed in
Figure 2-7. The surface of the complete object is the boundary between the positive
and zero volumes. To make an image of this object using a ray tracing algorithm,
it is pecessary to find the intersections of a ray with each of the modeled surfaces.
From these intersections, along with the surface descriptions, the algorithm can deter-
mine when the ray is passing through the positive volume, negative volume, or zero
volume. Finally, the visible point is where the ray first passes into the positive volume.
The Mathematical Applications Group, Inc. (MAGI) has been using techniques like
this for quite some time to produce television commercials and the like [GOLDT71].
More recently, the techniques have been applied to the design of automotive parts
[RoTHRO].

In the automotive application, ray tracing can produce not only a realistic image
of the part, but also an estimate of the volume of an object, so that its weight can
be computed. The volume of an object can be determined to any desired precision
by passing a raster of parallel rays through it. For each ray, the algorithm accumu-
lates the length of the ray passing through the object’s positive volume. When the
accumulations from all of the rays are added together and the sum is multiplied
by the cross-sectional area of the original raster, the result is an estimate of the

object’s volume. The precision of this estimate can easily be increased by tracing
more rays.
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2.2 Computations for Ray Tracing

This section describes some of the computations needed to implement a ray
tracing algorithm as outlined in the previous section. The discussion will be limited to
planar surfaces, primarily because this simplification makes hardware implementations
more feasible. Furthermore, only convex quadrilaterals will be considered. These may,
of course, be pieced together in order to form arbitrarily complicated polygons or other
surfaces. For the rest of this discussion, the term “polygon” should be understood to
mean “convex quadrilateral.”

The main computation involved in ray tracing determines whether a given ray
intersects a given polygon and, if it does, determines where on the ray and where on the
polygon the intersection occurs. The position on the ray is described by the distance
between the origin of the ray and the point of intersection. The ray tracing algorithm
will use this distance to isolate the first polygon struck by the ray. The position on the
polygon is specified by a point within a two-dimensional unit square. If the polygon is
considered to be a mapping from the square onto a surface in three dimensions, then
the point on the polygon where the ray and polygon intersect corresponds to a point in
this unit square. The polygon position will be used in the shading computations and,
optionally, for the various effects like texture mapping. Using quadrilaterals makes it
possible to have a fairly direct mapping from the unit square to the polygon.

A ray can be specified by two points: rg is the origin of the ray, and r; is another
point on the ray. The ray itself is represented parametrically, so that an arbitrary
point along the ray is given by

r(t)=(1—t)rg + try = (r; —ro)t +ro.

Notice that if the origin of the ray corresponds to the viewing position, negative values
of the parameter ¢ represent points behind the viewer. Also, since the parameter value
is a measure of the distance between the origin of the ray and a point along its length,
it may be used to determine which of two points on the ray is visible. The unit of
measure is the distance between ro and r;.

The representation of polygons is somewhat more involved. At some point in the
modeling process, polygons are represented as a sequence of vertices, but this format is
not especially convenient for all of the computations needed in a ray tracing algorithm.
Indeed, the polygon will appear in several guises at various stages in the algorithm.

Recall that the primary computation finds the intersection of a ray and a polygon.
This task will be broken down into two steps. The first step finds the intersection of
the ray with the plane containing the polygon. The second step determines whether
the intersection point actually lies within the polygon and, if so, computes the point
on the unit square corresponding to the intersection point in the polygon.

Polygons may be thought of as having a parametric representation. p(u,v) is
a point within the polygon, where u and v each range between zero and one. The
vertices of the polygon correspond to the vertices of the unit square in the uv-plane:



17

po1 =p(0,1), pu=0p(1,1),
Poo = P(0,0),  p1o = p(1,0).

An arbitrary point within the polygon is given by a bilinear interpolation of the vertices
according to the values of u and v. Thus,

p(u,v) = (1 — u)(1 = v)poo + (1 — u)(v)por + (u)(1 — ¥)p10 + (w)(v)P11
= (Poo — Po1 + P11 — P10)uv + (P10 — Poo)u + (Po1 — Poo)v + Poo
== Pal¥ + Ppté + PcV + Pd,
where

Pa = P00 — Po1 + P11 — P10
Pb = P10 — Poo
Pc = Po1 — Poo
Pd = Poo-

The first stage of the ray tracing algorithm, which finds the intersection of the ray

with the plane of the polygon, is most easily done if the plane surface is represented
algebraically:

8p(q) =mn, - q+dp.
sp(q) is the distance from the plane of the polygon to an arbitrary point q; np is the
normal vector of the plane; and dj is the distance from the plane to the origin. Thus,
the intersection of the plane and the ray can be determined from the solution of

sp(r(t)) = 0.
Substituting and solving for ¢, we find that

£ — n,,-ro-l—d,,
ng - (rg—r1)

If n, - (ro —r1) = 0, then the ray is parallel to the plane and therefore does not
intersect it. Otherwise, ¢ exists and can be used to find the point of intersection p,.

Having found the position along the ray, the next stage of the ray tracing com-
putation determines the position on the polygon of the point where the ray and polygon
intersect. That is, it finds u and v such that p(u,v) = p,. It turns out that « and v
can be determined independently of one another. To see how this may be done, first
consider the family of lines derived by mapping constant u lines from the uv-plane
to the plane of the polygon. Corresponding to each member of this family, there is
a plane that both contains the line through the polygon and is perpendicular to the
polygon itself. The equation describing this family of planes is

2,(q) = ny(u) - q + dy(u).

Again, n,(u) is the vector normal to a plane, and d,(u) is the perpendicular distance
from the plane to the origin. The value of u at the intersection point p, may be
determined by solving s,(p,) = 0. It remains to find expressions for n,(u) and d,(u).
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Figure 2-8. Some lines of constant # shown in the plane of a polygon that has no parallel edges.
Some points on the plane do not lic along any of the lines; others are on two lines. For
example, the ¢ == é and u = ~1 lines intersect inside the polygon.

Before deriving these equations, it may be helpful to examine more closely the
situation leading to them. First of all, consider the case, shown in Figure 2-8, where
no two edges of the polygon are parallel. In this configuration, some points in the
plane of the polygon lie along more than one of the constant u lines. The interior of
the polygon is part of the area that is covered more than once. Also, there are other
portions of the plane that do not lie along any of the constant u lines. This situation
suggests that the expression for the constant u planes will be quadratic in u, so that
solving this expression for u at the point of intersection p, will yield two solutions.
The solutions will be real if p, lies in a portion of the plane that is covered by the
lines of constant u; otherwise, they will be imaginary. Only one of the real roots,
however, will lie between zero and one, representing an intersection on the interior of
the polygon.

A distinctly different expression for the constant u planes arises if the v = 0 and
v == 1 edges of the polygon are parallel, as in Figure 2-9. In this case, the lines of
constant u cover most of the polygon plane exactly once, but there is a single point
through which every line passes. This means that for most values of p,, it is possible
to compute a unique value for u, but if p, happens to be the point common {o all
of the constant u lines; no solution for u will exist. This behavior suggests that the
expression for « as a function of p, will take the form of a ratio.

It may now be appropriate to mention the reason for excluding concave polygons
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Flgure 2-9. Some lines of constant v shown in the plane of a polygon whose v =0 and v = 1
edges are parallel. Every point on the plane is on exactly one constant u line except
for the single point through which all sach lines pass.

from consideration. The problem is that the interpolation scheme used to find points
on the interior of a polygon, given its vertices and a uv-coordinate pair, simply doesn’t
work if the polygon is concave. The difficulty is illustrated in Figure 2-10. First, some
of the points on the interior of the polygon can be obtained from either of two valid
uv-coordinate pairs. This fact alone would make it impossible to implement texture
mapping or any of the related techniques. It also means that the computations for
1 and v would be mutually dependent. Second, the fatal flaw is that there are valid
combinations of u and v that actually give rise to points outside of the polygon. Thus,
concave polygons clearly fail to function within the framework that has been set up
here. ‘

The normal vector n,(u) in the equation of the constant u plane may be derived
from the parametric representation for the family of constant ¢ lines in the polygon:

Pu(v) = p(“) ”)'

Note that this line is parametric in v for any fixed value of u. A vector in the same
direction as this line of constant u can be formed by taking the difference of two
points along the line, say p,(0) and p,(1). A vector that is normal to the constant
u plane must be perpendicular both to this direction vector and to the normal vector

of the polygon plane. A suitable vector may be conveniently constructed with a cross
product:
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Figure 2-10. A concave polygon shown with some lines of constant u. Notice that each of these
lines corresponds to a value of & between zero and one, and also that the lines are
restricted to the segment where 0 < v < 1. Because there are valid combinations of
u and v that specify points outside the polygon, concave polygons must be disallowed.

(Pu(1) — pu(0)) X,

((Pa% + Pyt + pe + Pa) — (Pot + Pa)) X 1y
= (Pa X mp)u + (P X mp)

= N,u% -+ N,.

ny(u)

Of course, the magnitude of this vector need not be one, so it is not necessarily a unit
normal vector, but at least its direction is correct.

An expression for dy{u) can be formed by substituting into the plane equation a
point known to be on the constant u plane, setting the result to zero, and then solving
for d,(u). Using the point p,(0) and solving &,(p.(0)) = 0 yields

du(u) = —ny(u) - pu(0)
= —(n,u + n.) - (Pst + Pa)
= —(n, - pp)u® — (0, - Pa + B, - Po)ts — (1. - P4)
= dyats® + dy, 4 + dyo.

With this expression, along with the one for n,(u), the equation of the plane of
constant u becomes

3u(q) == duauz + (na ~q-+ dux)“ + (nc ‘q+ duo)-

The value of u at the point of intersection p, is the solution of s,(p,) = 0:
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du:“2 + (g - pr +dyy)u+ (v, - Pr +dyo) = 0.

In the case where the v == 0 and v = 1 edges of the polygon are not parallel, d,,

will not be gzero, and this expression may be solved by substituting into the quadratic
formula:

— "'(na ‘Pr + dul) + \/(na ‘pr+ dux)2 - 4(dua)(nc ‘Pr+ duo)
2(dus) !

— D, dyy
v= szu.) Pr +(2du.)}
2
Ng dy, n. duo
syl v ()] -G v (2]
This expression, of course, yields two solutions for u, but the only useful value is real
and lies between zero and one. If both solutions are outside of this range, then either
the ray and the polygon plane do not intersect, or the point of intersection is not
inside the polygon. Otherwise, the value where 0 < u < 1 locates the intersection
point, and the other one is spurious.

If the two planes of constant v are parallel, then d,, will be zero, and the equation
84(p,) = 0 becomes

or

(nd- “pr+ dul)u + (nc -pr+ duo) =0,
which has the solution
_ n; - pr + duo

U == .
Do - Pr+ dy,

Again, the value of u must exist and lie between zero and one for p, to be inside of
the polygon.

The technique just described is equally suitable for finding the value of v at the
point where the ray strikes the polygon. As in the prior case, the family of planes
corresponding to constant values of v is represented algebraically:

8,(Q) = mo(v) - q + do(v).

Points along the constant v line are p,(u), so that the normal vector is

ny(v) = (Pv(l) - Pv(o)) X mp
= (Pa X mp)v + (Py X 1mp)
= nNgv -+ 0p.

Substituting this expression into 8,(q) and solving 8,(p,(0)) = 0 for d,(v) gives

do(v) = —(ng - PC)”2 —(ng - pa+mp - pe)v — (04 - Pa)
== duv2 + do, v + dyo,
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and so the complete plane equation is
3.(q) = dosv?® + (Da-q+do,)v+ (03 - g+ dyo).

In the non-parallel case, where d,, 5 0, solving 8,(p,) = 0 produces two values for
— Ba doy
. szo.) pr (m.)]
ng dy, 2 np ) (dvo )}
(o) () - [(32) ()]
As before, the only one of these values that is meaningful is real and lies in the range

0 < v £ 1. If both values are out of range, then the ray misses the interior of the
polygon. In the parallel case, where d,3 = 0, v is given by

_nb'q+dvo

V= .
n, - q+dy,

Again, this solution is valid only if it exists and if 0 < v < 1.

After the algorithm has examined enough polygons to locate the first point at
which the ray strikes a surface, it must apply a lighting model to determine the
apparent color of that point. This color will contribute to the color of a pixel in the
final image. One such lighting model was devised by Bui-Tuong Phong [PHONT75].
It works well in a variety of situations, yet it doesn’t require extensive computation.
Basically, Phong’s model separates the light illuminating a point into ambient, diffuse,
and specular components. An additional component for transmitted light may be used

to model transparent or translucent surfaces. The overall intensity is the sum of these
four components:

I=RI, + ZRI,, cost + Z W(i) Iy (cos 8)" + TI,

where

I = Final intensity value.
R = Proportion of light reflected by the surface.
I, = Intensity of the ambient illumination.
Ip = Intensity of the point light source.
i = Angle between the light source and the surface normal vector.
W(i) = Specular reflection coefficient.
n = Shininess exponent.
8§ = Angle between the reflected light ray and the viewing ray.
T = Proportion of light transmitted by the surface.
I, = Intensity of light passing through the surface.

Notice that if there were more than one light source, the diffuse and specular com-
ponents of each would simply be added together. Also, if the point on the surface is
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shadowed from any of the light sources, the corresponding specular contributions are
omitted from the computation. Finally, although the above description was couched
in terms of a monochrome image, full color is equally possible by using three equations
for the three components of the color vector.

The two cosine terms of the illumination equation may be evaluated by taking
dot products of appropriate vectors. The value of cos¢ may be computed from a unit
vector in the direction of the light source 1 and the unit surface normal vector n:

cost=n-L

Determining the value of cos s requires a vector in the direction of reflected light in
addition to the normalized vector to the viewing position:

R Fo— Ty

coss = (—1 + 2ncost) - (”Po — rl”).
The value of W(t) can most easily be found by look up into a table indexed by cost.
One more thing to notice is that R and 7', the reflection and transmission parameters
of the surface, need not be constant over the entire surface. It is sometimes useful to
define them as functions of u and v so as to map a texture onto the surface. The values
contained in these maps can be computed either directly as mathematical functions of
u and v, or by using 4 and v as array indices. The index of refraction can be mapped
in a similar manner.

A problem with the shading scheme presented above is that complicated surfaces
made up of many polygons will appear faceted. Gouraud recognized this and sug-
gested an approximation that smoothly shades such surfaces [GOURT1]. Subsequently,
Phong devised an improved method that synthesizes a surface normal vector based
on considerations more global than the properties of a single polygon. With the im-
proved method, four normal vectors, mgg, D1, Ny1, and nyg, are associated with the
four corners of a polygon. These vectors are chosen so as to somehow represent the
overall surface in which the polygon is embedded. Normal vectors at points within
the polygon are computed by interpolating the four corner vectors:

n,(u,v) = (1 — u)(1 - v)ngo + (1 — w)(v)nes + (u)(v)ny1 + (u)(1 — v)myo
= (mgo — Moy + Ny1 — Ny0)uv + (N10 — Noo)u + (No1 — Moo)v + ngo
= N u? + mpu + N v + ngyg.

At this stage, the interpolated vector could be perturbed by some function of u
and v in order to perform bump mapping. Finally, although the direction of this
interpolated vector is correct, it must be normalized before it can be used in the
shading computations as described above.
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2.3 A Ray Tracing Peripheral

As mentioned earlier, a ray tracing algorithm is not a particularly speedy way
to make a picture. In fact, Whitted and Rubin have quoted CPU times in excess of
an hour just to generate a single frame [WHIT80, RUBI80]. Whitted also reported
that between 75% and 95% of this time was spent finding the intersections of rays
and surfaces. These findings suggest that some hardware support for the intersection
computations could dramatically improve the running time of a ray tracing algorithm.

The ray tracing processor proposed in this section acts as one of the peripheral
devices of a medium-sized host computer. Its primary task is to find intersections be-
tween the rays and polygons supplied by the host machine. The ray tracing peripheral
has its own copy of the scene model, not only to reduce the load on the host’s memory,
but also to permit the model to be organized in a way that is suitable for the inter-
section computations; the host, however, retains control of the ray tracing algorithm.
After the scene model has been loaded into the peripheral processor, communications
between the host and the peripheral consist of rays to be traced and the results of
those requests. This division of labor is convenient for two reasons. First, since the
peripheral processor is not burdened with the control of the ray tracing algorithm,
its data paths may be more easily optimized for computing intersections. Second, the
algorithm can be very flexible because it is implemented as a program in the host

machine, yet its performance is acceptable because the expensive computations are
implemented in hardware.

2.3.1 Host~Peripheral Interaction

To understand how the host computer and ray tracing peripheral cooperate to
make pictures, it is helpful to examine the individual steps required in the process of
image generation. First of all, the host must prepare the scene model in a suitable
form and transfer it to the peripheral device. Ray tracing is an object space algorithm,
which means that it operates on a model expressed in a full, three-dimensional coor-
dinate system. In particular, the model representation is independent of viewpoint,
so the host can generate several views of the same scene without reloading the model.
When the model does have to be modified, only those surfaces that actually change
need be sent to the peripheral. This property is useful for making movies depicting
motion through a relatively fixed scene.

After loading the surface model, the host computer can begin to generate the
image. For each pixel on the screen, it selects the corresponding vision ray emanating
from the viewing position. It then sends a specification of this ray to the ray tracing
peripheral. At some later time, the peripheral responds by reporting whether this
ray intersects any polygon in the scene model. If an intersection has occurred, the
peripheral also reports the identity of the intersecting polygon that is closest to the
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viewing position. Notice that this polygon is the one that would be visible along
the original ray. Additionally, the peripheral computes the three-dimensional spatial
coordinates and two-dimensional uv-coordinates of the intersection point, and the
distance from the viewing position to the point of intersection.

After having retrieved the result of the ray tracing operation, the host machine
computes the color of the pixel. This computation may in turn require more rays to
be traced. For example, if the original ray struck a reflective or refractive surface,
the host uses the polygon identity, the point of intersection, and the normal vector
at the intersection point to generate a new ray. It then passes this new ray to the
ray tracing peripheral for processing. If shadowing is being modeled, the point of
intersection and the direction to the light source combine to form still another new
ray. In this case, however, the ray is marked as a shadow ray before it is transferred
to the peripheral, since the exact identity of the polygon occluding the light source
is unimportant and the peripheral can save some time by not attempting to find the
closest such polygon. The host computer determines pixel colors on the basis of the
results of the ray tracing operations together with additional information about the
scene model, possibly including surface coloration and texture information that was
never passed to the peripheral device. Once computed, the pixel color may be written
to a file on disk, or stored directly in a frame buffer for immediate display.

One way to view the interaction between the host machine and the ray tracing
peripheral is to regard the peripheral as a hardware subroutine of a program running
in the host. Thus, whenever the ray tracing algorithm would otherwise invoke a
subroutine to do an intersection computation, it now invokes a computation in another
processor. This view of the situation is, however, somewhat inadequate, because it
suggests that the host machine must wait while the peripheral completes its task,
thereby missing an opportunity for exploiting parallel operation. A better way to
utilize the hardware is to maintain queues between the host and the peripheral. The
first queue contains rays to be traced. These are supplied by the host and removed by
the peripheral as it becomes idle. The second queue buffers results transmitted in the
opposite direction. In order to make use of these queues, the host machine would be
multiplexed between two tasks. The first task generates vision rays that correspond
to pixels in the final image, and it runs whenever the host would otherwise be idle.
The second task processes the results of the ray tracing requests, possibly generating
new requests itself. It is this second task that computes actual pixel colors.

The interesting feature of the two-task ray tracing algorithm just described is
that it is completely asynchronous. There is no way to predict the exact order in
which pixel colors will be computed. This works because the rays are mutually
independent; therefore, the order in which they are processed does not affect the
outcome of the computation. In this case, only two processors, the host machine and
the ray tracing peripheral, are working at the same time, but the fact that rays can be
traced independently and in any order offers a foothold for even greater concurrency.
Machines capitalizing on this extra concurrency are the subjects of later sections. For
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now, let us consider only the parallelism that can be introduced within the ray tracing
peripheral itself.

2.3.2 Operation of the Peripheral

The main task of the ray tracing peripheral, as mentioned earlier, is to find
intersections of rays and polygons. It must also determine which of the polygons
intersecting a given ray is closest to the viewing position. There are many ways of
organizing the peripheral to solve this problem, and the approach taken here is one of
the most straightforward. Upon receiving a ray from the host, the peripheral attempts
to intersect the ray with every polygon in the scene. After doing so, it examines all
of the intersections that it found and selects the one closest to the source of the ray.
This means, of course, that every ray needed to make the picture must potentially
be intersected with every surface in the scene model. Thus, the intersection processor
must be very fast indeed if it is to perform this rather substantial task at an acceptable
rate.

Fortunately, the operation of intersecting rays and polygons is sufficiently simple
and regular that it may be pipelined in order to raise the throughput. The pipe
can be thought of as having three stages, each of which may be pipelined internally;
refer to Figure 2-11. The first stage fetches successive polygons from a scene model
memory and passes their representations to the second stage, which performs the
actual intersection computation. The third stage examines each new intersection and
discards all but the one that is closest to the origin of the ray. After every polygon in
the scene has passed through the pipeline, the final stage of the pipeline contains the
result that should be returned to the host machine.

Clearly, most of the work required of the ray tracing peripheral is concentrated
in the intersection stage of the pipeline. This stage may conveniently be pipelined
internally so as to increase its performance. The three stages of the expanded in-
tersection pipeline correspond to the three steps of the intersection computation that
was described in the previous section and is summarized in Figure 2-12. The resulting
pipeline is diagrammed in Figure 2-13. In the first stage, the processor determines the
value of the ray parameter ¢ at the point where the ray and polygon plane intersect.
In the second stage, it computes the three-dimensional coordinates of the intersection
point p,. Finally, in the third stage, it finds the parameter values « and v, which
describe the position of the intersection point with respect to the polygon.

Within each stage of this expanded pipeline, still more concurrency can be ex-
ploited. Consider first the expression for ¢, which consists of the ratio of two inner
products. The numerator and denominator of this ratio may be computed at the same
time. Further concurrency is available within each inner product operation, since the
three required multiplications may occur simultaneously, and the additions may be
pipelined. Thus, the computation of £ can be expanded into a four-stage pipeline:
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Figure 2-11. The three major pipeline stages in the ray tracing peripheral.

Stage 1: q1 = NpzToz, g2 + NpyToy, q3 +~ Npzfoz,
g4 + (roz — rlz)”pz: ds (”Oy —Tiy)npy, g8 + (roz— flz)ﬂpz-
Stage 2: g7 < g1 +q2, gg + gz +d,
go «— q4 +gs.
Stage 3: ¢io «+ g7 + g3,
g11 + qo + gs.
Stage 4: t+ q10/q11-

The required devices are shown in Figure 2-14. Next, the value of ¢ is used to find
the point p,. Note that each of its three components is independent of the others, so
that all may be computed at the same time. Furthermore, pipelining may be employed
within each of the individual component computations, as diagrammed in Figure 2-15.
Finally, the expressions for u and v also involve dot products, and Figure 2-16 shows
that concurrency is possible here as well.
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Figure 2-12. Summary of the intersection computation.
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Figure 2-18. A three stage pipeline to perform the intersection computation.
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Figure 2-14. A four stage expanded pipeline to compute ¢£. Note that the delays required in an
actual implementation are not shown.

A potential difficulty with the pipelined intersection computation arises in con-
nection with the division operation, since the result may be undefined for some values
of its inputs. One way of handling this situation might be to empty the pipe when an
undefined value arises, but even if this could be done, it would complicate the pipeline.
A better solution is to associate a validity bit with each intermediate result flowing
through the pipe. By convention, operations in the pipeline will always produce a
result, but they will mark that result to indicate whether it is somehow erroneous and
should therefore be ignored. Although later stages in the pipeline will accept these
nonsense values as if they were meaningful, the fact that their own results must also
be invalid will be reflected in the validity bit of the output. Thus, even though some
stages of the pipeline may not always compute useful values, the flow of information
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Figure 2-15. A two stage pipeline to compute the value of p, given t. The three component
computations proceed in parallel.

through the pipe is not disrupted. Finally, the last stage of the pipeline, which isolates
the intersection closest to the origin of the ray, must take into account the settings of
validity bits as it makes its determination.

The validity bit was introduced to correct a problem with the pipelined organiza-
tion of the intersection processor, but it turns out to be useful for other aspects of the
design as well. To begin with, the host machine can supply initial values for validity
bits to distinguish the parallel and non-parallel cases in the computation of 4 and v.
If these bits are injected at the proper point within the pipeline, they can serve to
extinguish the inapplicable branch of the computation. Next, recall that u and v must
each lie in the range from zero to one if the corresponding intersection point is to be
within the polygon. If the validity bit is cleared when these boundary conditions are
violated, the final stage of the pipeline will not bother to consider the corresponding
intersection point when searching for the one closest to the origin of the ray.

Now that the intersection computation has been presented, it is easy to see
how the first stage of the pipeline operates. This is the stage that supplies polygon
parameters to the intersection computation. From the expressions given above, it is
apparent that polygons are described by five vector and five scalar values:
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Figure 2--16. A seven stage pipeline to compute the value of ¢ given p,, shown without delays.
The three values generated correspond to the solution to the parallel case and the
two solutions to the non-parallel case. The computation of v is, of course, completely
analogous.
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Each of these twenty polygon parameters is stored in one of twenty independent
memories so that all may be accessed simultaneously. Consecutive memory locations
hold the parameter values for successive polygons, and the various parameters of a
particular polygon are stored at the same address within each of their corresponding
memories. Were it not for this parallel access, the values could not be retrieved quickly
enough to keep the later pipeline stages full. Notice also, that since the host machine
must supply these parameters in order to define the scene model, some sort of dual-
porting arrangement must be used to load these memories. It does not have to be
extraordinarily fast or complex, because the host does not need to load the scene
model at the same time that rays are being traced.

When fully pipelined as outlined above, the intersection computation consists of
thirteen stages. This extensive pipelining, combined with the parallelism that is in-
herent within each stage, makes it possible to perform fifty-four arithmetic operations
at once. Also, the structure of the pipeline itself is very modular. The individual
devices that perform addition, multiplication, division, and square root operations are
connected in a quite straightforward manner to implement the intersection computa-
tion.

After the ray tracing peripheral has found the first polygon struck by a ray, it
is up to the host processor to apply a lighting model at the point of intersection.
Although the host could certainly perform this computation without assistance, the
addition of a little extra hardware in the peripheral will accelerate it. Because lighting
computations occur less frequently than intersection computations, the corresponding
hardware need not be as fast or as extensively pipelined as the intersection processor.
Instead of allocating hardware wherever it is possible to take advantage of concurrency
in a computation, as was done in the intersection part of the peripheral, the data paths
in the extension will be flexible enough to be reused for several of the computations
required in the lighting model. To see how this can be done, it is helpful to briefly
review the form of these computations.

The first result needed in the lighting computation is the surface normal vector at

the point of intersection. Recall that the normal is interpolated from four precomputed

vectors:
N, = DUV + Nt + NV + Ny.

The three components of this vector can each be computed separately. For example,
the z component is given by

Nyy = Nz UV + Npa U + Nex¥ + N4y,
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where n,, it the z component of n,, and likewise for n,, n.., and ng,. Notice that
this expression is the inner product of the vectors [n,z 74z ncx n42] and [uv u v 1], and
it therefore takes three inner product operations to find the three vector components.
After n, has been computed, it must still be normalized before it can be used in the
subsequent expressions. Normalizing a vector is accomplished, of course, by dividing
each of its components by its magpitude, and the square of a vector’s magnitude is the
inner product of that vector with itself. The two cosine terms in the lighting model
may also be expressed as inner products:

cost=n, -1

. ro—r
cos 8 = (—1 + 2ncos1) .(lll‘o —!‘1|])'
Note that in the latter case, still another inner product operation is needed for nor-
malizing a vector. Thus, it seems that inner products are central to the computation
of the lighting model, and they will therefore be central to the organization of the
lighting portion of the ray tracing peripheral as well.

The lighting processor consists mainly of a pipelined inner product device sur-
rounded by enough interface logic to perform the lighting computations under the
direction of the host computer. The three multipliers in the inner product device may
also be used to scale a vector. Similarly, the three adders can be used to form the sum
of two vectors. A device for determining the reciprocal of a number’s square root is
included for use in vector normalization. Four separate memories hold the components
of the n,, oy, n,, and ng vectors in order that these values need not be communicated
between the host machine and the peripheral for every ray that is traced. Instead,
the host machine transmits them along with the polygon descriptions as part of the
scene model. These memories can also hold intermediate vector results that are found
in the course of the lighting model computation.

The settings of the multiplexors and the clocking of the latches in the lighting
portion of the ray tracing peripheral are rather tightly controlled from the host
machine. Including a microcode engine in the peripheral to relieve the host of this
responsibility would not be too difficult, but doing so would limit the flexibility of the
device. Besides controlling data movement in the processor, the host may examine
and modify values in its memory as required to implement a lighting model. This
capability is necessary, for example, to transfer the results of a mapping operation to
the peripheral where they can take part in the lighting computation.

2.3.3 Implementation of Arithmetic

Deciding how numbers should be represented is one of the more difficult aspects of
designing a graphics processor like the one proposed here. Floating point numbers are
ideal from the standpoint of the final user. For a given word size, floating point rep-
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Multiplication 1
Addition lor3
Long Division 4o0r8
Short Division 2
Square Root 2

Figure 2-17. Number of pipeline stages required for arithmetic operations. Note that addition may
be implemented in one of two ways, and long division uses addition. The result of a
short divide has fewer bits of precision than the result of a long divide.

resentations have a far greater dynamic range than fixed point representations, freeing
the user from having to pay so much attention to scaling. On the other hand, design-
ers of processors often consider a fixed point representation to be easier to implement,
although compromises are possible. For example, the Evans & Sutherland PS-300 uses
a block floating point representation for vectors, where the individual components of
a vector have separate mantissas but share a common exponent [EVANS81]. Purely
fixed point representations are not without problems, however. In order to insure an
adequate range of values, the word size must often be fairly large. This increases the
widths of the data paths, slows down the arithmetic operations, and makes them more
expensive to implement.

The ray tracing peripheral will use a floating point representation for all numbers.
This decision was motivated by two considerations. First, floating point makes the
peripheral much easier to use, simplifying the programs in the host computer as well
as easing the modeler’s task. Second, a device made by TRW reduces the cost and
complexity of implementing floating point operations. The device is a single chip
parallel multiplier capable of producing a 48-bit product from two 24-bit operands in
a maximum of 285 nanoseconds [TRWT78]. Because of this device, it is convenient to
use a floating point representation with a 24-bit fractional part. The exponent will be
represented in eight bits.

Using the TRW multiplier, a floating point multiplication takes about a third
of a microsecond, but the other floating point operations cannot be completed so
quickly. Each of them may, however, be pipelined to operate at the same rate. Since
computations in the ray tracing peripheral are pipelined, it is quite natural to pipeline
the individual arithmetic operations internally as well. Figure 2-17 lists the number
of pipeline stages required for each operation, and a more complete description of
floating point implementation may be found in Appendix A. Using this fully pipelined
arithmetic, the complete peripheral can produce three results every microsecond.
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2.3.4 Analysis

The performance of the ray tracing peripheral described in this section is fairly
respectable. Because of the massive pipelining, once the pipe is full it can compute one
ray/polygon intersection every one third of a microsecond (psec). Depending upon the
technique used for implementing addition, the pipeline has either 17 or 33 stages, which
implies a latency time of 5.6 or 11usec. By way of comparison, a DECSYSTEM-2060
can perform a similar computation in about 100 to 200usec. Since the computation
involves 23 multiplications, 26 additions, 3 divisions, and 2 square roots, the use of
concurrency and massive pipelining enables the ray tracing peripheral to execute 162
million floating point operations per second (MFLOPS) at its peak rate. The Cray-1
can sustain rates of 138MFLOPS, with short bursts of up to 250MFLOPS under certain
circumstances [RUSS78]. These sorts of comparisons cannot be taken too seriously,
however, because the ray tracing peripheral is so optimized to its single task that it can
do nothing else. On the other hand, its cost and complexity are probably comparable
to those of a large minicomputer, so it would seem to be a practical device for at least
some applications.

The time required to generate a picture using the ray tracing peripheral is a more
appropriate consideration than its brute arithmetic performance. Suppose that the
scene model consists of a thousand polygons. At three polygons per microsecond, it
takes ome third of a millisecond to intersect a ray with each of these surfaces. In
an image with 512 X 512 pixels of resolution, it takes about a minute and a half to
trace one ray per pixel. Of course, this time does not include any special lighting
effects. About twice as many rays must be traced to model shadows, for example,
thus doubling the picture generation time. The anti-aliasing procedure increases the
time by another factor of two or three. In the end, it takes mearly ten minutes
to finish the picture of a thousand polygon scene. Note that the time is linearly
dependent on the number of surfaces in the scene, and consequently, increasing the
number of polygons by some factor would boost the execution time by the same
amount.

An unappealing aspect of the ray tracing peripheral is that it must intersect every
ray with every polygon in the scene. This seems rather wasteful when one observes
that surfaces occurring in one part of the image have little effect on the appearance
of other parts. The problem can be eased, however, with the addition of a little extra
hardware. The basic idea is to superimpose a three-dimensional grid on the volume
that contains the scene model, thereby partitioning the modeling space into a number
of rectangular parallelepipeds. Each of these smaller volumes is associated with a
list of surfaces that intersect the volume. Using this representation, the ray tracing
peripheral can confine its attention to only those surfaces that occur in subvolumes
through which the ray actually passes. Furthermore, since only the first intersection
is needed, if the subvolumes containing the ray are processed in order along the length
of the ray, it may be possible to bypass some of them entirely.
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The improved algorithm can be implemented with a small processor that fits
between the host computer and a slightly modified ray tracing peripheral. Upon
receiving a ray from the host machine, this new processor passes the ray on to the
intersection processor, and it determines which scene subvolume contains the origin
of the ray. Next, the auxiliary processor supplies the ray tracing peripheral with
a sequence of polygon descriptor addresses corresponding to surfaces that intersect
the subvolume. These addresses identify polygons by giving the location of their
parameters in the memory of the ray tracing peripheral. The ray being processed
either will or will not intersect one of the polygons in the current subvolume. If
it does, and if the point of intersection lies within the subvolume, then the proper
intersection point has been found. Otherwise, if there is no intersection point within
the first subvolume, the auxiliary processor must generate the addresses of polygons
that intersect the next subvolume along the length of the ray. This procedure continues
either until an intersection point is found or until the ray travels out of the image space.

The auxiliary processor could be simulated in software running on the host
computer, but this would be slow, and furthermore, the task of the auxiliary processor
is simple enough that a hardware implementation is feasible. To find the initial
subvolume, it examines the coordinates of the origin of the ray; succeeding subvolumes
can be determined by an incremental computation. Both of these computations are
described more fully in Appendix B. The auxiliary processor has a local memory,
which is partitioned by subvolume, for storing polygon addresses. After identifying the
subvolume to examine, it locates the appropriate partition and sequentially retrieves
the addresses of polygons stored within the ray tracing peripheral. Thus, its local
memory provides a level of indirection for translating subvolume indices into polygon
addresses. It would be possible to eliminate this indirection by allocating a different
region of memory in the intersection processor for each subvolume, but doing so would
substantially increase memory requirements because an individual polygon might
intersect several subvolumes and would have to be stored redundantly. However, since
the additional level of indirection may be regarded as yet another pipeline stage, its
presence does not hinder the overall throughput of the ray tracing peripheral.

Subdivision techniques similar to the one proposed here have been reported else-
where. Perhaps the most similar one was developed by Franklin as part of a linear time
hidden surface algorithm [FRANS&0]. Franklin’s algorithm worked in the image space,
and a two-dimensional grid was superimposed on the screen. Briefly, the polygons
were sorted into the bins indicated by the grid, and the bins were processed inde-
pendently. Rubin and Whitted suggested another technique in the context of ray
tracing [RUBI80]. They associated an arbitrarily oriented rectangular parallelepiped
with each object to be displayed. The parallelepiped serves as a bounding volume for
the object, and the technique is applied recursively for sub-objects within the volume.
Another method, described by Reddy and Rubin, divides the modeling space into
the eight subvolumes formed by the three planes that pass through the center of the
modeling space and are orthogonal to the three coordinate axes [REDD78]. Each of
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the resulting subdivisions may be further divided in a similar manner until the number
of surfaces contained within each subvolume is reduced to some manageable value.

It would not be particularly difficult to implement either of these other ray tracing
partitioning schemes with the ray tracing peripheral. Each involves checking a ray to
determine whether it passes through a bounding volume before actually examining the
contents of the volume. This check can be implemented with the intersection processor
because a ray that passes through a bounding parallelepiped must intersect at least
one of the parallelepiped’s six faces. The check thus requires six surface intersection
computations, and would take only two microseconds when pipelined. The auxiliary
processor for implementing the grid subdivision algorithm as described earlier requires
only minor modifications in order to handle these other forms of subdivision. Indeed,
a simple change of microcode would almost certainly suffice.

The performance of the three-dimensional grid subdivision technique suggested
here is rather difficult to analyze because it depends so heavily on the scene being
rendered; however, some general observations are possible. Note that when the grid
resolution is made arbitrarily fine, resulting in infinitesimal subvolumes, most sub-
volumes will either be empty or will contain a single surface. Subvolumes enclosing
surface intersections will contain more than one surface, but this case can be ignored
for the present. As a ray is traced, it will pass through a sequence of empty subvolumes
before arriving at a subvolume that contains a single surface. Thus, if enough parti-
tions are used, the subdivision technique will reduce to one the number of surfaces that
must considered for intersection with a ray. This property is similar to that exhibited
by three-dimensional frame buffers, which break the modeling space into small, cubic
volume elements, or “voxels” [ATHES1]. Although it executes fairly rapidly, this latter
approach has the disadvantage that inaccuracies are introduced because the voxels are
merely small, not truly infinitesimal.

There are two factors that limit how finely it is practical to partition the modeling
space using the grid subdivision technique. The first and more obvious is the storage
required for representing each subvolume. Smaller subvolumes are more numerous,
and every subvolume, whether empty or not, uses some minimal amount of memory.
Additionally, individual polygons intersect more small subvolumes than they do large
subvolumes. Each appearance of a polygon in a subvolume consumes another incre-
ment of memory. The second limiting factor is the time required to trace a ray through
an empty subvolume. If the grid that subdivides the modeling space is too small, the
ray tracing peripheral will have to skip many empty subvolumes before coming to one
that encloses some surfaces. There is a danger that the peripheral will spend an ex-
cessive proportion of its time examining empty subvolumes, while spending very little
time actually performing intersection computations. The grid size must therefore be
chosen to balance these two tasks.

It is possible to use some rather crude approximations in order to characterize
the behavior of the ray tracing peripheral with various grid sizes. Define n, to
be the number of regions into which each coordinate axis of the modeling space is
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partitioned. There are thus n3 individual subvolumes according to this definition. If
the average distance that a ray travels before striking a surface is d,, then the number
of subvolumes encountered in that distance can be estimated to be

ng = (ﬂ. bl l)dy + 1.

That is, the number of subvolumes that must be inspected in the process of tracing
a ray grows linearly with the number of subvolumes along each coordinate axis. The
value of d, is, of course, heavily dependent upon the scene, but it does not depend
on n, because the same rays must be traced no matter how extensively the modeling
space has been subdivided. Next, to determine how many of the examined subvolumes
actually contain polygons, suppose that there are n, occupied subvolumes distributed
uniformly throughout the modeling space. For each ray, the number of examined
subvolumes that actually contain polygons is

ne = (nd—-l)% +1.

Note that the final subvolume along a ray always holds polygons, because if it did not,
the ray would have continued. If the total number of polygons in the scene is n,, then
it is necessary to perform n; intersection computations for each ray, where

ni=(2)n..

The value of n, is still unknown.

To derive an expression for n,, the number of subvolumes occupied by polygons,
consider the case where the scene consists of just one polygon. If the area of this

olygon is a,, then 2
POTEORTE G no = [(ns — 1)y/a; +1].

Thus, the number of occupied subvolumes grows linearly with the size of the polygon,
but quadratically with the number of subdivisions. One way to extend this expression

to a scene containing many polygons might be to treat a, as an average polygon size
and to scale the result by the total number of polygons:

ne = n,,[(n. - 1)/a, + 1]2.

This expression, however, produces a highly inflated value because it assumes that
every polygon will be alone in its own subvolume. In actual scenes, polygons are
usually clumped together as components of larger surfaces. Another approach might
therefore be to combine all of the polygons into a single, giant polygon with area nya,:

2
o = [(ne — 1)\/Mpap + 1] .
Unfortunately, this estimate is also excessive. One problem is that it tends to place too

much emphasis on small polygons that merely add detail to larger surfaces. This kind
of detail, which is fine compared to the size of the subdivision, should not contribute



39

to the total area of the scene. Using a, as an estimate of the overall surface area,
overlooking surface detailing, yields the following estimate for the number of occupied

subvolumes: 2
no = [(ne —1)vae +1] .

Notice that even this expression is not quite correct, because in reality the relevant
surface area will depend on the number of subdivisions. As the grid becomes finer,
the level of detail to be included in the area estimate becomes greater. Because it is so
dependent upon the characteristics of the scene, however, this additional refinement
will be omitted.

The time required to trace a single ray through the scene is
t, = ngty + nit; + 1,

where 4 is the time needed to move from one subvolume to the next, ¢; is the time it

takes to intersect a ray with a polygon, and #; is the pipeline latency. In terms of the
number of subdivisions n,, this expression becomes

ty = [(ne — 1)d, + 1Jta + ((1 ~n;1)dn7? + [(ne — 1)\/ae + 1]’2)n,t.- +t.

Notice that the overall intersection time decreases quadratically with the number
of subvolumes, but the time spent stepping between subvolumes increases linearly.
There will thus be some degree of subdivision that produces the minimal computation
time. The ray tracing peripheral takes a third of a microsecond to intersect a ray
with a polygon, and it has a pipeline latency of 5.6usec. Assume further that rays
travel through about half of the modeling space on the average and that it takes
one microsecond to traverse a subvolume. Figure 2-18 shows, for various degrees
of subdivision, the time required to trace a ray through a scene that contains a
thousand polygons and has enough surface area to stretch through the modeling
space twice. The minimal time of 14.3usec occurs at eleven subdivisicns per axis,
and it is nearly twenty-four times faster than the third of a millisecond that it
takes to process a ray without using the subdivision technique. Thus, the picture
that would have taken ten minutes without subdivision now requires less than thirty
seconds.

The expression for estimating the ray tracing time may be used as a guide when
deciding how extensively to subdivide a particular scene. Notice that the curve of
Figure 2-18 is much steeper to the left of the minimum time than it is to the right.
It is therefore less costly to overestimate the number of subdivisions than it is to
underestimate them. Notice also that as the number of subvolumes increases, the
total ray tracing time is dominated by the overhead of moving from one subvolume
to the next, and the intersection times become negligible. This observation suggests
that the total polygon area a, should be tuned for larger subvolumes. That is, it

should not reflect surface detailing that would become important only with very fine
subdivision.
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Figure 2-18. Estimated ray tracing time for various degrees of subdivision. The hypothetical scene

has a thousand polygons, with total area a: = 2 and average ray travel distance
dy = %.
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Simulation results seem to confirm at least the general character of the perfor-
mance estimations given above. Figure 2-19 shows times that were computed in the
process of forming an actual image. The scene consisted of eighty-three randomly
oriented cubes distributed uniformly throughout the modeling space. Figure 2-20
shows the average number of subvolumes visited by a ray for various scene com-
plexities. Notice that as more polygons are added to a scene, the average distance
traveled by each ray may actually decrease. Figure 2-21 illustrates how the num-
ber of intersection computations per ray falls off as subdivisions become finer and

finer. Finally, Figure 2-22 shows the minimal ray tracing times for various scene
complexities.

(Tezt resumes on page 46.)
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Figure 2-19. Simulated time to trace a ray for various degrees of subdivision. The scene consisted
of eighty-three uniformly distributed and randomly oriented cubes.
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2.4 A Ray Tracing Pipeline

The ray tracing peripheral described in the previous section is useful in many
situations, but it does have limitations. In particular, its performance is essentially
fixed, since the peripheral cannot easily be enhanced in order to accommodate a more
complicated scene. Of course, it would be possible to build several such peripherals
and then somehow to multiplex between them, but this solution is rather expensive if
the duplicate peripherals are built using the same technology as the original. Suppose,
however, that the processors for intersecting rays and polygons are implemented as
custom large scale integrated circuits. When considered separately, these processors
are quite a bit less powerful than the ray tracing peripheral described earlier, but they
are 80 inexpensive that many more can be used. The hope is that if enough of the small
processors can be brought to bear on the problem, their combined performance will
exceed that of a ray tracing peripheral made up of standard parts in the conventional
manner. This section explores one possibility for using such a collection of small
processors to make a ray tracing peripheral capable of relatively high performance.

Not too surprisingly, the shift in economies introduced by the availability of cus-
tom integrated circuits causes a corresponding shift in viable machine organizations.
Recall that in the ray tracing peripheral of the previous section, all of the polygons in
the scene shared the use of a single intersection processor. Now, with comparatively
inexpensive processors, each polygon will have its own dedicated intersection proces-
sor. Before, the representation of a ray was fixed in the processor, and the polygons
were streamed through the pipeline. Now, the individual processors are organized as
a pipeline, and it is the rays that are streamed past the relatively fixed polygons.

2.4.1 Operation of the Pipeline

Each of the ray tracing processors that make up the pipeline performs the same
basic computation as the complete ray tracing peripheral of the previous section.
Every processor maintains the representation of a single polygon, and it passes descrip-
tions of rays through its input and output ports. When it receives a ray description,
the processor determines whether that ray intersects its stored polygon, and if so, it
locates the intersection. It must compute not only the three-dimensional coordinates
of the intersection point, but also the distance along the ray and the uv-coordinates of
the point on the polygon. Thus, each processor must potentially compute six numbers.

The processors in the complete ray tracing pipeline are strung together as shown
in Figure 2-23. Each processor has, at least conceptually, a single input and a single
output, and the output of one processor is connected to the input of the next. The
resulting string of processors has one unused input port and one unused output port,

which are connected to the host computer to form its interface to the ray tracing
pipeline.
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Figure 2--28. Processor organization in the ray tracing pipeline.

The inputs and outputs of polygon processors are capable of passing information
about rays. The rays are described by their point of origin, some other point along
the ray, and the six numbers mentioned earlier that describe the intersection of the
ray with a polygon. Finally, one additional number, which will be discussed more
fully in a2 moment, identifies the polygon giving rise to the point of intersection. Since
each point is represented by three numbers, a complete ray description consists of the
thirteen numbers summarized in Figure 2-24.

The host computer causes a ray to be traced by passing a ray description to the
first processor in the pipeline. The two points contained in this description specify the
ray, and except for the distance from the origin of the ray to the point of intersection,
the values of other fields in the description are unimportant. The distance field should
be initialized to infinity, which indicates that no intersection point has yet been found.
Wher it receives the ray description, the polygon processor at the beginning of the
pipeline, like any other processor in the pipe, proceeds to intersect the ray with its
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r¢  Origin of the ray.

r1  Point along the ray.

Pr Intersection of ray and polygon.

t Distance along ray of intersection point.
(u,v) Polygon coordinates of intersection point.

% Identity of intersecting polygon.

Figure 2-24. Fields of a ray description.

own stored polygon. If the ray and polygon intersect, and if the distance from the
origin of the ray to the point of intersection is smaller than the distance carried in the
ray description, then the new intersection takes priority over any that may have been
found previously. In this event, the processor replaces the intersection fields of the ray
description with the results that it has just computed, and it also substitutes its own
identity into the polygon identity field to show which polygon produced the intersection
point. If the polygon and ray do not intersect, or if the intersection point is farther
from the origin of the ray than another one found earlier, then the polygon processor
does not disturb the ray description. After doing all of this, the processor passes the
possibly updated ray description through its output port for intersection with the next
polygon. When the ray description has passed through the entire pipeline, it will have
been updated to reference the first polygon struck by the ray.

From the point of view of the host computer, the ray tracing pipeline described
above is not very different from the ray tracing peripheral described in the previous
section. In either case, the host sends rays to be traced and retrieves the results
of those requests. The primary difference is that the pipeline can accept many ray
tracing requests before it produces the first result. At any instant, a large number of
these requests may be spread out along the pipeline in various stages of completion.
Thus, in order to take full advantage of the pipeline’s performance, it is imperative
that the program running in the host computer be able to pursue many successive
ray tracing computations at once, suspending those that must await results. Some
techniques for doing so were outlined earlier. Finally, notice that the ray tracing
pipeline has no provision for assisting with the lighting model computations. The host
can either perform these computations on its own, or it can make use of a lighting
model processor like the one described previously.

One aspect of the pipeline that has not yet been treated is the mechanism by
which the polygon descriptions are loaded into the processors. These descriptions
contain five vector and five scalar values, as they did in the ray tracing peripheral of
the previous section. Here, however, descriptions carry an additional value that serves
to identify the polygon. The host computer can load a polygon description into the ray
tracing pipeline by presenting it to the first processor in the pipe. Upon detection of
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such a polygon, this first processor passes its current polygon to the second processor
before accepting the new polygon. Every processor in the pipeline behaves in a similar
manner, and the net effect is to shift each polygon description by one position in
the pipeline. The description formerly held in the final processor is shifted back to
the host processor. Notice that if there are fewer polygons than processors, not all
processors will be used, and any idle processors must be loaded with dummy polygons
that are very far away from the scene model. The host computer must then ignore any
intersection results that are marked with the identity of one of these dummy polygons.

2.4.2 Implementation of Arithmetic

Just as in the earlier ray tracing peripheral, using a floating point representation
for numbers in the ray tracing pipeline is desirable because it makes the machine so
much easier to use. Unfortunately, though, nothing equivalent to a TRW multiplier is
available when designing custom integrated circuits. Since one of the properties of the
intersection processor must be a relatively low cost, it would not be feasible to devote
the substantial chip area that would be required to implement parallel multiplication
circuitry. Smaller, shift-and-add multipliers can compute the same result with a much
lower investment in silicon. Although they are slow when considered individually,
their combined performance can approach that of a parallel multiplier. Also, it turns
out that the other floating point operations can be implemented in ways that are
comparable in area and speed to the shift-and-add multiplication. Each arithmetic
operation can be estimated to take about five microseconds, as detailed in Appendix A.

2.4.3 Communications Requirements

Recall that the ray tracing pipeline operates by passing descriptions of rays from
processor to processor. This communication must, of course, take place over the
physical wires that connect the processors. Omne obvious way of transmitting the
information is to use a separate wire for each bit of the ray description, but with
thirteen words of 32-bits each, this solution is clearly infeasible. Another approach
might be to pass a word at a time. Even this improvement is not sufficient, though,
because it requires separate 32-bit data paths into and out of every processor. It would
be possible to arrange for the two data paths to share the same set of wires, either by
connecting all of the processors to a common bus or by using external multiplexors,
but neither of these fixes is really satisfactory. The first is undesirable because it
routes all messages through a central bottleneck, thereby hampering the performance
of the entire pipe. The second fix merely moves the problem instead of eliminating it.

A workable solution to the communications problem is to transmit the ray descrip-
tion data bit-serially, using one wire for each incoming value and one for each out-
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going value. Since rays are described by thirteen numbers, this technique requires
only twenty-six wires, plus handshake signals. It has other pleasant properties as
well. Notice that the cost of transporting a value from the pin of the chip to the
site of its eventual use is small because only one wire is needed. When the value
arrives at its destination, a shift register, which may be part of the arithmetic device,
can be employed to deserialize it. Furthermore, since signal pins are dedicated to
specific values, no multiplexor circuitry is needed for sorting out the incoming values
or for formatting the outgoing ones. Finally, the use of serial transmission for com-
municating between chips suggests that it may also be convenient to perform on-chip
communication serially, thereby limiting the internal wiring requirements.

The performance of the serial communication mechanism depends, of course, on
the time it takes for an integrated circuit to transmit a bit. This time can range from
perhaps 20 nanoseconds up to 200 nanoseconds or more, depending upon fabrication
technologies, the distance over which the communication must take place, the amount
of power the chip can dissipate, and other similar issues. Also, handshake protocols can
boost the number of bits that must be transmitted. The fairly conservative estimate
of about 150 nanoseconds per bit will serve as a basis for the following discussions.
This figure means that transmitting a ray description takes about five microseconds,
which is comparable to the floating point operation time.

The ratio of communication time to arithmetic computation time is important
because it influences the way in which individual processors should be designed. For
example, if the communication time were much greater than the computation time,
the extra speed would be largely wasted because no processor can accept or produce
results faster than it can compute them. This situation suggests that a communication
scheme using fewer wires, or perhaps a different protocol, might be better suited to
the available technology. On the other hand, suppose that the communication path
was very sluggish compared to the time needed to produce a floating point result.
In this case, there is no point in heavily pipelining individual processors, since they
would be unable to obtain raw inputs or dispose of processed outputs through the
slower communication paths. Instead, it would make sense to use fewer arithmetic
devices and to share them between the various parts of the intersection computation.
The smaller, streamlined processors would be cheaper, and although they would also
be slower, this difference could not be detected through the communication paths. As
integrated circuit fabrication technology advances, the speed of operations occurring
within a single chip can be expected to increase more rapidly than the speed of
transmitting values between chips, and this observation suggests that the ray tracing
pipeline will probably become cheaper in the future, but it is unlikely to become very
much faster.

With today’s fabrication technology, it is probably not feasible to place an entire
intersection processor on a single integrated circuit, and therefore the computation
must be separated into pieces that do fit on one chip. The partitions must be chosen
with care to insure that the communication between them does not become excessive.
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There are several places at which the breaks might naturally occur. For example,
the computation of ¢ and p, could be placed in a single chip, while u and v might
each be computed separately. Presumably, the communication between portions of a
single processor would occur at the same rate as communication between successive
processors. Subcomputations can be pipelined as they were in the earlier ray tracing
peripheral, so that the overall performance of the pipeline should not suffer.

2.4.4 Analysis

The performance of the ray tracing pipeline can be estimated rather easily, since
it is essentially determined by the time it takes to pass ray descriptions from one
processor to the next. Communication takes about 5usec, so it follows that the overall
throughput rate is Susec per ray. In other words, the pipeline can complete a ray
tracing computation every Susec, so long as the pipe is kept full. In addition, because
distinct processors are devoted to every polygon in the scene, the throughput rate
is independent of the number of polygons. Of course, a ray description must pass
through every one of these processors to get through the entire pipe, and the latency
time is correspondingly large. If the machine consisted of a thousand processors, for
example, the latency time would be 5 milliseconds (ms), or a two-hundredth of a
second. In comparison, when operating on the same thousand polygon scene, the ray
tracing peripheral of the previous section exhibits both a latency time and throughput
rate of one ray every 333usec. With the ray tracing pipeline, the host computer could
potentially trace enough rays to make a 512 X 512 pixel image in roughly 1.3 seconds.
Doubling this figure for shadowing, and doubling or tripling it again to allow for anti-
aliasing, suggests that it would take about eight seconds to complete an image of a
scene consisting of a thousand polygons.

The ray tracing pipeline does, however, have some substantial difficulties not
mentioned in the foregoing analysis. First of all, the overall system is not very well
balanced, because the pipeline is substantially faster than the host computer. The
ray tracing pipeline can accept a request and produce a result every Susec. Thus,
in order to fully utilize the pipeline, the host must be able not only to generate ray
descriptions at this rate, but also to deal with the responses in the same 5usec. It is
unreasonable to demand such a level of performance from a medium-scale computer
like the one postulated for the host. Even in simple situations where no complicated
lighting effects are desired, the host would almost certainly be unable to keep up. The
overall system would therefore proceed at essentially the rate that an unassisted host
would run if the intersection computation took no time. Unfortunately, most of the
processors in the pipeline would be idle at this speed. One way to resolve the problem
might be to build a special purpose processor to replace the host. This approach is
also rather unsatisfactory, because it sacrifices not only the flexibility inherent in the
general purpose host, but also the simplicity and uniformity of a machine built from
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a single, highly replicated component.

Another problem with the ray tracing pipeline is that most of the intersections
being computed at any one time will turn out to have no bearing on the appearance of
the final image. Thus, even among those processors that are working, very little useful
computation is taking place. In the earlier ray tracing peripheral, the technique of su-
perimposing a three-dimensional grid on the modeling area and then restricting com-
putation to certain subvolumes produced a significant improvement in the efficiency
of the machine. No similar kind of subdivision is possible with the pipeline, because
it would require a separate pipe for each subvolume in the grid. Any sort of dynamic
assignment scheme rapidly becomes unmanageable.

Yet another difficulty is that the ray tracing pipeline is not really so extensible
as it might seem to be. In theory, it would be possible to expand its capabilities by
adding more intersection processors. Although it might be possible to build a machine
composed of ten-thousand of these processors, a machine with a million processors
is almost certainly infeasible. Compare this with the ray tracing peripheral of the
previous section, which could be expanded to handle a million polygon scene with the
addition of ordinary memory.

It would seem, then, that the ray tracing pipeline has at least some of the problems
often associated with so-called innovative large scale integrated circuit designs. While
it can perform its function very rapidly, this speed is largely wasted in an environment
that cannot make use of it. Furthermore, much of the pipeline’s potential speed
is squandered on unproductive computations. One sometimes hears that integrated
circuit technology is advancing at such a rapid pace that computing power will be
cheap enough to waste, but it seems more desirable to devise a different machine
organization that is capable of more fully utilizing its resources.

2.5 A Ray Tracing Array

Each of the two ray tracing architectures that were presented earlier in this
chapter has its own distinct advantages and disadvantages. The ray tracing peripheral
made from standard commercial components was able to use its resources efficiently,
but its performance could not easily be improved. The ray tracing pipeline, on
the other hand, could be expanded almost indefinitely by adding new processors to
the pipe. It achieved this extensibility at the expense of squandering its component
processors, however, and no reasonable host processor could fully utilize its potential,
resulting in still further waste.

The ray tracing array represents an attempt to design a system that combines the
useful features of the two other machines while minimizing their defects. Unlike the
others, the ray tracing array incorporates some general purpose computing capability
in its structure. Its special purpose ray tracing hardware and general purpose comput-
ing hardware are packaged together, so that these two features will remain balanced
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when the machine is expanded incrementally. Like the standard component peripheral,
the organization of the ray tracing array helps to reduce the amount of unproductive
computation in order to utilize the available resources more fully.

Another difference is the way in which the array exploits the concurrency inherent
in a ray tracing algorithm. Recall that the original ray tracing peripheral made use of
the parallelism that was present within the intersection computation itself. The ray
tracing pipeline was able, in addition, to perform many intersection computations at
once. Moreover, the communication in the pipeline occurred in a very uniform and
regular manner. The ray tracing array is also capable of computing many intersections
at the same time, but the communications between various parts of the machine appear
almost chaotic, and the flow of information from one part of the machine to another
follows no easily discernible pattern. This behavior exploits the fact that there is a
great deal of flexibility in the ordering of ray tracing computations. In particular,
unless one ray was generated directly from another, the two rays may be computed
completely independently. Even if the two rays are associated with the same pixel,
their respective contributions may be determined in either order because they will
simply be added together in the final image.

Two basic notions are required for understanding the structure and operation
of the ray tracing array. First, as in the case of the original ray tracing peripheral,
a three-dimensional grid is superimposed on the modeling space to section off the
volume into a collection of subvolumes. In the original ray tracing peripheral, the
single intersection processor was multiplexed between these subvolumes. In the ray
tracing array, on the other hand, every subvolume in the modeling space has, at least in
concept, a dedicated processor. Each of these processors is responsible for maintaining
the surface models in its own subvolume, as well as for computing the intersections
of these surfaces with rays passing through the subvolume. The second major notion
of the ray tracing array is that rays crossing boundaries between subvolumes can be
modeled as messages passed between the corresponding processors. In a sense, the
processor array can be thought of as the medium through which the ray messages
travel. It is the job of the processors to handle the messages in a way that maintains
the analogy between light and the modeled rays. Notice that the structure of the
physical communication paths is compatible with this goal because light rays always
travel through contiguous regions of space and never jump across a region without
passing through it.

As just described, the ray tracing array would be moderately difficult to build
with current packaging technology. The problem is that the machine consists of
a three-dimensional lattice of processors, each of which must communicate with its
six neighboring processors. For a machine of any substantial size, either the spatial
arrangement of processors or the wiring between them becomes cumbersome. To avoid
this situation, the ray tracing array is actually a two-dimensional grid of processors,
as illustrated in Figure 2-25, and individual processors communicate with only four
neighboring processors. The third dimension of the partitioning grid must be simulated
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Flgure 2-26. Organization of processors in a sixty-four processor ray tracing array. Links between
boxes represent bidirectional communication paths between processors.

Figure 2—-28. Organization of subvolumes in a sixty-four processor ray tracing array.
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within each of the processors in the array. The correspondence between processors
and subvolumes is shown in Figure 2-286.

The two-dimensional physical organization of the ray tracing array makes it
convenient to distribute a frame buffer among the processors. The frame buffer is
a region of memory set aside in each processor, and it is used to accumulate the
image produced by the ray tracing algorithm. Each processor maintains storage for a
block of pixels, where the location of the block in the final image corresponds to the
processor’s location in the array. For example, the processor in the upper left corner
of the array holds pixels for the upper left portion of the image. Additional hardware
allows pixel values to be shifted out of the frame buffer in scan line order.

As in the previous designs for ray tracing machines, the ray tracing array operates
as one of a host computer’s peripheral devices. The array is, however, a much more
autonomous device than the previous ones. The host still maintains the scene model,
but it no longer takes an active part in the ray tracing computation itself. After
delivering the scene and supplying the viewing position parameters, the host is free to
perform other tasks until the ray tracing array has completed the image. The function
of the host in this setup has been reduced to that of an interface between the user,
the graphics processor, and the host’s disk drives and other peripherals. Thus, the

host machine need not be especially powerful, and it might even be a non-dedicated
machine like a timeshared computer.

2.5.1 Operation of the Array

Probably the best way to understand how the ray tracing array works is to
examine each of the steps necessary for generating an image. After first initializing
the array, the host computer must transfer the scene model to it by successively
broadeasting polygon descriptions to every processor in the array. When a processor
detects a polygon description being broadcast, it determines whether that polygon
intersects the region of space for which it is responsible. The processor then either
stores the polygon or discards it, depending on the result of this test. Once the
surfaces in the scene model have been transferred, the host computer must broadcast
the other attributes of the scene, including the positions and intensities of every light
source illuminating it.

In the other ray tracing machines, polygon descriptions were limited to purely
geometric information. Now, however, since the ray tracing array must be able to
compute the entire picture without host intervention, information needed to apply a
shading model must be included as well. In addition to the polygon properties, for
example, if the scene requires any kind of mapping to be performed, the maps must
also be supplied. Storage for these maps is distributed throughout the array just as
the frame buffer image was. That is, every processor in the array stores the portion
of the map corresponding to its own position in the array.
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k  Message type (e.g., vision, shadow, reflection).
(r,¢) Row and column of the pixel for this ray.

ro  Origin of this ray.

rq Direction of this ray.

¢ Color contribution of this ray.

Figure 2-27. Fields of a ray message.

When it has finished loading the scene model, the host computer initiates the
image computation by supplying the viewing parameters. Processors within the array
begin to generate rays in the form of ray messages which are passed from processor to
processor as necessary for implementing the ray tracing algorithm. These ray messages
may be thought of as records having the three vector and three scalar fields listed in
Figure 2-27. The first field is a scalar that identifics the type of the ray message, and
the value of this field determines how the message will be treated as it is passed from
one processor to the next. The two other scalar fields hold the row and column of the
pixel for which the ray is being traced. Two of the vector fields specify the geometry
of the ray: the first is the origin of the ray, and the second is its direction. Finally,
the value of the third vector is the maximum contribution that the ray can make to
the color of the corresponding pixel. The exact use of this field will be described later.

Processors create initial ray messages for pixels that lie within their own portion
of the frame buffer. For example, the processor in the upper left corner of the array
will create a ray message to determine the color of the the upper left pixel in the
image. The type field of this message will identify the ray as a new ray, the pixel
fields will contain the coordinates of this upper left pixel, and the origin of the ray
will be the eye position. The processor will compute the direction vector to make the
ray pass through the upper left raster point on the viewing plane. Finally, the color
field will be set to its maximum value, representing intense pure white. Notice that
since only one new ray is generated for each pixel, the color contribution field must
be maximal, to signify that the entire color of the pixel will be determined from this
ray, and possibly from other rays that it might imply.

Once a processor has created a new ray, it should not immediately begin to search
for intersections of the ray with its own polygons, because the ray might not even pass
through its portion of the modeling space. Instead, it must somehow route the ray
message to the processor responsible for simulating the subvolume that the ray would
first strike after leaving the eye. The identity of the subvolume, and therefore of
the processor, is easy to determine by examining the origin and direction of the ray.
Therefore, if the ray starts in some foreign subvolume, the processor passes the ray
message over one of its communication paths in the direction of the desired location.
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The receiving processor performs a similar test when it receives a new ray, and it
forwards the message once again if necessary. When the ray message finally arrives
at its proper starting point, the type field labeling it as a new ray may be changed to
the value representing a vision ray.

Processors in the array handle vision rays, just as the first ray tracing peripheral
did, by attempting to find the ray/polygon intersection point that lies closest to the
origin of the ray. The hardware implementing the intersection computation will be
described later, but for now it is enough to realize that the processor either will find
an intersection point within its subvolume, or it will not. If no intersection occurs,
then nothing is visible in the processor’s region of the modeling space, and the ray
must be passed to another processor. Since neighboring processors are responsible for
adjoining regions of space, the processor responsible for the next subvolume along the
length of the ray is adjacent to the processor currently bandling the ray. It is not
difficult to identify the correct processor and to transmit the ray message through
the appropriate communication path. Any attempt to transmit a ray message off the
edge of the array, through a communication path that is not connected, results in
the destruction of that ray. This situation will occur if the ray doesn’t intersect any
surface in the scene, and such a ray will not contribute to the color of any pixel. Thus,
if a vision ray falls off the array’s edge, the corresponding pixel will retain its initial
color, black.

A processor’s actions when it locates a valid intersection between a vision ray
and a polygon can be rather complicated. First, it must compute the effect of
ambient illumination on the apparent color of the intersection point. Recall that
this component depends only on the color of the surface at the point of intersection
and on the color of the ambient light source. Once computed, however, the resulting
color must be tempered by the maximum color given in the ray message. That is,
the components of the ambient illumination must be scaled by the corresponding
components of the maximum illumination. After scaling, the vector representing
ambient illumination can be placed into the color field of a ray message that has
a type field identifying it as a result message. The other fields of this message are
all copied directly from the original ray message. Processors in the array respond
to result messages by passing them back to the processor that maintains the portion
of the frame buffer containing the pixel mentioned in the message. When a result
message eventually arrives at its destination, the color contribution carried in the
message will be added to the color already present in the frame buffer.

If shadowing is being modeled, the processor has still more work to do after finding
the intersection point and computing the ambient illumination. It must determine
the contribution of each light source to the apparent color of the intersection point,
assuming for the moment that the intersection is not shadowed. These computations
require the colors of the light sources and of the surface, in addition to vectors
specifying the position of the light sources and the orientation of the surface. Just
as for ambient illumination, the contributions resulting from direct illumination must
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be scaled by the maximum color that was given in the ray message. Because direct
illumination from light sources contributes to the color of the final pixel only if the
intersection point is not in shadow, it is necessary to trace more rays to discover any
shadowing surfaces. Therefore, the processor must create a ray message for each light
source, and it uses the type field to mark them as shadow rays. The pixel fields are
copied directly from the original ray message, but the others are all different. Shadow
rays originate at the intersection point, and they are directed toward the respective
light sources. The color fields hold the direct illumination components that were just
computed.

Ray messages marked as shadow rays are a little easier to handle than vision
rays. As they do for vision rays, the processors must intersect shadow rays with
surfaces in the scene. If a shadow ray strikes a surface, however, it may be discarded
entirely because its contribution to the illumination of the pixel has been blocked by
the surface. Alternatively, if the surface is transparent and non-refracting, the color of
the shadow ray message can be attenuated before the message is processed further. If
a shadow ray passes completely out of the scene model without striking a solid surface,
then its origin is directly illuminated, and the light source does indeed contribute to
the color of the pixel. The processor holding the ray message at the edge of the array
can send the contribution to the proper pixel in the frame buffer by changing the type
field of the message to mark it as a result.

Simulating reflection and refraction also requires tracing additional rays from
the original intersection point. As before, the processor computes the maximum com-
ponents of the reflected and refracted illumination on the basis of surface properties,
and it scales these values by the maximum color from the original ray message. The
resulting reflective and refractive illumination components supply color fields for two
more ray messages. These rays originate at the surface intersection point, and they
are aimed in the direction of reflection or refraction. The pixel fields are, of course,
identical to those found in the original ray message. To be consistent, the type fields of
these two new messages should probably identify them as reflection or refraction rays,
but it turns out that since they will be handled in exactly the same way as vision rays,
they might as well be marked as such. In particular, rays traced to model reflection
and refraction might themselves result in shadow rays, or even in more reflection or
refraction rays. The original pixel identity is propagated throughout, in order that all
eventual contributions to the illumination of that pixel will be properly routed.

There is a potential difficulty that might be encountered when simulating un-
limited reflection and refraction. It is possible for rays to become trapped so that, for
example, an unbounded number of rays might be traced back and forth between two
parallel mirrors. This problem may easily be avoided by requiring all reflective and
refractive surfaces to attenuate rays that strike them. In addition, if the color of a
newly formed ray message is below some intensity threshold, its contribution to the
final pixel color would be negligible, and the message should not be processed.

The ray tracing array can perform texture mapping and similar effects by slightly
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modifying the methods described above. Recall that the maps themselves are dis-
tributed throughout the array of processors, much as was done with the frame buffer.
For example, the upper left portion of the map is stored in the upper left processor in
the array, and so on. When a processor determines from its stored scene model and
the results of an intersection computation that it needs a value from a map, it dis-
patches a message identifying the map and the uv-coordinate to be used as an index.
Sometime later, the processor responsible for the desired section of the map will send
a reply message giving the value out of the map. When the original processor receives
this reply, it can proceed exactly as if the extra level of message passing had not been
necessary. In particular, it might generate messages for results, shadow rays, reflection
rays, or refraction rays. For simple texture mapping, the map value will influence the
color fields of these generated rays. For bump mapping, it will have an effect on the
illumination computations, as well as on the direction of any reflection or refraction
rays that are sent out. If the processor is doing transparency mapping, the value
from the map will determine the relative proportions of the maximum color that are
placed in the result message and refraction message. Finally, in the case of refraction
mapping, the map value will be used in determining the direction of the refraction ray.

Although it was described above as sequential in nature, the operation of the ray
tracing array actually admits quite a bit of concurrency. This is due largely to the fact
that all of the processors in the array can potentially be active at the same time. Notice
that for the most part, processors do not need results computed by other processors in
order to proceed. There are two exceptions to this: mapping requires another processor
to look up a value, and ordinary ray messages passed from one processor to the next
cannot, of course, be processed before they are received. In any case, a processor that
finds itself idle need only dip into its stockpile of untraced ray messages to remedy
the situation. The order in which rays are traced has no effect on the appearance of
the final image, so that it doesn’t really matter if the processing of a particular ray is
interrupted to await, for example, the response to a map lookup request.

The overview of ray tracing array operation is now complete. The machine
proceeds as described above until it runs out of rays to be traced. When this happens,
the image is complete, and the picture may be shifted out of the frame buffer. If the
next picture is to be a different view of the same scene model, the host computer may
immediately send the new viewpoint in order to initiate computation. Otherwise,
if the scene model requires modification, the host must provide the updates before
transmitting the next viewpoint.

2.5.2 Processor Organization

The individual processors that constitute the ray tracing array may be thought of
as miniaturized versions of the ray tracing peripheral and host computer combination
described previously. That is, the processors consist of a general purpose computer in
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tandem with some special purpose hardware to assist with the ray tracing and lighting
model computations. Additional special purpose hardware is dedicated to the task of
communicating with a processor’s four neighboring processors.

The general purpose computing component in one of the ray tracing array proces-
sors may be implemented with a commercial microprocessor. The Motorola MC88000
is probably the most suitable of those that are available [MOTO82]. Its performance
approaches that of a medium-sized computer, and its instruction set is rich enough
to be usable. Present versions of the MC68000 use a sixteen-bit data bus, and since
memory is currently packaged as 64K bit chips, this fact suggests that a natural
memory complement is 128K bytes for each processor in the array.

The special purpose intersection component of the processor can be implemented
as a set of custom integrated circuits. Its organization is somewhere between those of
the ray tracing peripheral and the ray tracing pipeline of the previous sections. On the
one hand, like the original ray tracing peripheral, a single intersection processor will be
shared between the many polygons stored within one element of the ray tracing array.
On the other hand, the processor will use the same shift-and-add style of arithmetic
that was employed in the ray tracing pipeline. .

The organization of the memory for containing the polygon parameters is also
a compromise. Recall that in both the original ray tracing peripheral and the ray
tracing pipeline, each of the polygon parameters was kept in a separately accessible
memory. The ray tracing pipeline differs in that all of the polygon parameters wiil be
stored in the main memory of the individual processors. The memory is thus shared
between the host microprocessor and its intersection processor. Providing a separate
memory for every polygon parameter would make the processors too complicated for
replication throughout the array.

The choice to store all of the polygon parameters in a single memory affects
the organization and performance of the intersection processor. The most important
consideration is the fact that the overall throughput of the intersection processor is
limited by the rate at which it can fetch polygon parameters from memory. Moreover,
since the memory is shared with the microprocessor, the intersection processor cannot
monopolize even the bandwidth that is available. These observations suggest that it
would benefit the performance of the array element if the intersection processor could
be designed to require fewer memory fetches. Fortunately, this is indeed the case.
Recall that the purpose of the intersection computation is to find three values. The
distance along the ray of the point where the ray and polygon intersect is ¢, and the
position on the polygon of the point of intersection is given by the coordinates u and
v. If any one of these three values does not exist or is out of range, the other two
values are meaningless and need not be computed; therefore, the polygon parameters
required for these unnecessary computations need not be fetched from memory.

One way to satisfy the memory referencing constraints on the intersection proces-
sor is to design it as a pipeline, as shown in Figure 2-28. The first stage of the pipe
determines the memory address of the polygon parameters, possibly following some
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pointers in order to accomplish this task. The next pipeline stage fetches the polygon
parameters needed to compute the value of ¢, and the third stage actually computes
this value. If ¢t does not exist, or if it is negative, this third stage has no output;
otherwise, the value of 2 is passed to the fourth stage, which computes the actual in-
tersection point p,. The fifth and sixth stages fetch the polygon parameters associated
with u and compute its value. Again, if the value of u is not within the required range
from zero to ome, the fifth stage has no output. The next two stages behave in a
similar manner to compute the value of v. Finally, the ninth stage of the pipeline ac-
cumulates the result by maintaining the intersection point that is closest to the origin
of the ray. Whenever it updates this intersection point, it also passes the new value
of t back to the third pipeline stage. The third stage, which computes ¢, can use this
value to tighten the bounds on the meaningful range of ¢, thereby further reducing
unnecessary computations in later stages of the pipeline. One last note is that the four
memory referencing pipeline stages are arranged so that the stages occurring later in
the pipeline have priority over those appearing earlier. The object of this ordering
is to prevent the log jams that would occur if the later stages could not obtain the
required values from memory.

From the standpoint of the microprocessor, the organization of the intersection
processor is irrelevant. When it has a ray to be traced, it simply passes the ray origin
and direction vector to the intersection processor along with the address of the polygon
data structure in memory. After the intersection computation has been completed, the
intersection processor will interrupt the host microprocessor, which can then retrieve
the results and proceed with the lighting model computation. In order to do this, it
may call upon a special purpose lighting processor, as in the case of the original ray
tracing peripheral. Now, however, the lighting processor will be implemented as a set
of custom integrated circuits so that it may be more economically replicated for each
element of the ray tracing array.

In addition to the computing hardware, each array element contains facilities
for communicating with its four neighboring processors. These links operate by
copying a ray message from the memory of one array element into the memory of
an adjoining one. Every array element has four input ports and four output ports,
corresponding to the four directions of message travel. All routing is done by software
in the microprocessor, so that the port hardware need only deliver the messages. Both
input ports and output ports accept a memory address that is interpreted either as
the location of a message to be sent or as the location of a buffer that has been set
aside to receive a message. After a transfer has taken place, the ports on either side
of the communication path signal completion, either by interrupting their respective
microprocessor hosts or by setting some flag bit.

One problem that has not yet been mentioned is the memory requirement of the
software running in the microprocessor. Because the program is stored redundantly
within every processor in the array, there may be a substantial waste of memory. This
property might be viewed as the price to be paid for providing an independent path
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to memory in each processor and thereby increasing the total memory bandwidth.
One way to ease the storage requirements somewhat would be to swap the code used
in the various stages of the ray tracing algorithm. The first stage occurs when the
polygon model is loaded into the array. Each processor is expected to test the polygons
to determine whether they intersect the volume assigned to it. Once this step is
complete, the program is no longer required. The pext step sorts the polygons in a
way that simulates the third dimension of the grid subdivision algorithm. Again, the
code for performing this task need not be resident in the microprocessor for any prior
or subsequent stage of the algorithm. The same is true for the final phase in which
the actual image is generated. Thus, the program in the microprocessor can be split
into three smaller parts able to share the same memory.

2.5.3 Analysis

The method by which subvolumes were assigned to processors is straightforward,
but there are some problems with it. Recall that each processor was responsible for a
cross section of the modeling space, as illustrated in Figure 2-28. The problem with
this organization is that for some choices of viewing position, not all processors will
be equally busy. For example, if the scene is viewed from the front, vision rays will be
distributed uniformly to processors throughout the array, as shown in Figure 2-29. On
the other hand, if the eye is off to the side, those processors along the corresponding
edge of the array will be forced to handle all of the vision rays, while the other
processors remain idle. This situation is illustrated in Figure 2-30.

If the ray tracing array used a three-dimensional array of processors rather than
a two-dimensional one, the assignment of subvolumes to processors would not cause
this particular problem. Unfortunately, even aside from the interconnection issues,
a three-dimensional array would be a very inefficient organization. The number of
processors in the array increases as the cube of the number of subdivisions, but, as
previous discussions have revealed, the number of non-empty subvolumes grows only
quadratically. Thus, most of the subvolumes in a large three-dimensional array will
contain no surfaces, and the corresponding processors would be wasted.

A Dbetter solution can be obiained by modifying the correspondence between
processors and subvolumes. The range of possible modifications is limited, however,
because subvolumes that adjoin one another in the modeling space must always be
handled by processors that are connected to each other. This restriction is necessary
because rays that travel continuously through the scene are modeled as messages
passed continuously through the array. As illustrated in Figure 2-31, one way to
satisfy the restriction starts out by assigning the subvolumes at the fromt of the
modeling space to the respective processors in the array. Assignment of the remaining
layers is similar, except that the correspondence between processors and subvolumes
is shifted by one at each successive layer. In order for this reorganization to work,
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Figure 2-81. Processor assignment skewed horizontally in depth.

processors along the left edge of the array must be connected to processors along the
right edge by means of the communication paths that are not otherwise used. If the
viewing position is off to the right of the modeling space, processors in the array will
be uniformly flooded with vision rays, but if the eye is above the modeling space, all
of the vision rays will have to pass through the top layer of processors.

To be able to handle an arbitrary viewing position, the assignment of subvolumes
to processors will have to be shifted down, as well as to the left, for successive layers
of subvolumes. Such an organization is shown in Figure 2-32. The processors along
the top edge of the array must be connected to those along the bottom edge in order
to satisly the continuity restriction. With these additional connections, the processors
in the array form a torus. Note that although the subvolume assignment can shift one
position either horizontally or vertically at each layer, it cannot shift both horizontally
and vertically in the same layer because such an assignment would place adjacent
subvolumes in unconnected processors. If there are n, subdivisions and n2 processors
in the array, it takes n, horizontal shifts and n, vertical shifts to insure that processors
are evenly represented on each of the six faces of the modeling space.

A modification of the skewed processor assignment may be used if there are not
enough processors to sufficiently subdivide the modeling space. For example, suppose
that the most effective way to subdivide a scene required sixteen partitions along
each coordinate axis, but that the available physical array consisted of only sixty-four
processors, or eight along each axis. Such a case may be handled by repeating the
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Figure 2-83. Processor assignment skewed both horizontally and vertically in depth.

pattern of skewing so that each processor will be assigned to more than one subvolume
along the depth of the modeling space.

Assuming that the pattern of subvolume to processor assignment and the sheer
magnitude of the computation are sufficient to insure that every processor in the
array is kept busy, it is a simple matter to estimate the performance of the machine.
The key issue is the speed with which the array can access the scene model stored
in memory. Every processor in the array has its own dedicated memory, accessible
through a 18-bit wide data path, in which all of the polygon parameters reside. Recall
that the original ray tracing peripheral, on the other hand, stored each of the polygon
parameters in a separate memory. Since there are twenty such parameters, each 32-
bits wide, the original peripheral was capable if fetching 640 bits at once. To equal
this performance, a ray tracing array would need forty processors. An array with a
hundred processors would be 250% as fast as the original ray tracing peripheral.

This simple analysis ignores the fact that there are other demands placed on
the component processors beyond mere parameter fetching, but it also discounts
the savings that are accrued because not all of the parameters need to be fetched.
Performance could be increased still further by providing a wider path to memory. The
16-bit data path in the array as described was a limit imposed by currently available
microprocessor technology, but nothing in the nature of the problem prevents this
from being increased by more than an order of magnitude. Also, since the component
processors consist mostly of memory, one might expect the cost of the processors to
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drop dramatically with the rapid advancement of memory technology. Thus, larger
array sizes, in addition to faster individual processors, should become economical. If
built today, a ray tracing array might be just a few times faster than the original ray
tracing peripheral. With improvements in the processors made possible by progress
in integrated circuit fabrication technology, however, the disparity should widen.

2.6 Extensions

There are doubtless many ways to enhance the capabilities of the ray tracing
machines presented in this chapter. Omne possible improvement would permit the
machines to handle more general surfaces. Curved surfaces and non-planar polygons
are useful in a variety of applications for which planar, convex quadrilaterals are too
restrictive. Another potential area for improvement concerns the overall capacity of
the ray tracing machines. In each of the architectures presented, internal memory
capacities limited the number of surfaces that could appear in a scene. This situation
is not satisfactory because it is the very complex scenes that most urgently require
the performance of a ray tracing machine. Thus, the ray tracing machines need a few
modifications to help make them more suitable for practical applications.

The capacity problem occurs in conventional computers as well as in the special
purpose ray tracing machines: programs or data may be too large for the main memory
of the computer. If this happens, the usual technique, called virtual memory, is to
store most of the information on disk, while keeping in main memory only the portion
currently being used [DENNTO0]. When this technique works well, the program rarely
references data on disk, and it therefore runs almost at the speed of main memory.
Programs with this behavior are said to exhibit locality of reference because their
attention is largely confined to a small region of their environment. On the other
hand, programs that do not exhibit locality tend to reference widely spaced portions
of their environment, and they run at the substantially slower speed of the disk. It
turns out that ray tracing machines can use similar techniques in order to boost the
complexity of the scenes that they can handle.

Ray tracing is well suited to disk swapping techniques for two reasons. First,
since rays may be processed in any order, the processing of any particular ray may
be interrupted and suspended indefinitely. This kind of suspension may be necessary
if, for example, the ray requires a portion of the scene model that is currently stored
on disk. Second, rays travel smoothly and continuously through space rather than
jumping around at random. Their references to the scene model are thus fairly
localized. Furthermore, successive rays do not differ by very much, resulting in even
greater locality. It is interesting to note that these properties are exactly the ones
that made ray tracing so susceptible to a highly parallel implementation.

One way of using a disk to hold part of the scene model works in much the
same way that virtual memory does on a conventional computer. Recall that the grid



68

subdivision technique separates the modeling space into a collection of subvolumes.
The contents of a single one of these subvolumes makes a convenient unit for swapping
to the disk. Since a ray passes through only a few subvolumes, only a small portion of
the scene need be kept in the ray tracing machine, and the remainder can be stored on
disk. Furthermore, successive vision rays pass through pretty much the same sequence
of subvolumes, so that the set of subvolumes kept in the processor should not require
frequent changes. Shadow and reflection rays may at first seem to complicate this
behavior, but notice that successive shadow and reflection rays are similar to each
other because they are generated from similar intersection points. Thus, although the
processor must be able to store one set of subvolumes for vision rays, one for shadow
rays, and one for reflection rays, each of these sets will be fairly stable.

Virtual memory systems on conventional computers use a technique called demand
paging for determining when a section of data should be transferred from disk to
main memory. The basic idea is that the program will proceed normally until it
attempts to reference a piece of its environment that is currently being stored on
disk. When this happens, the program will be suspended until the offending in-
formation has been retrieved, whereupon the program will be resumed as if nothing
had happened. The ray tracing machines can use a similar technique. If a ray attempts
to enter a subvolume whose contents are not currently in the scene memory, the ray
tracing process can be suspended while the required subvolume is fetched from disk.
It may even be that the waiting time can be put to good use by tracing some other ray.

A demand paging scheme like the one just outlined would certainly work in the
context of ray tracing machines, but it seems as though there might be a better way.
Notice that a demand paging algorithm waits until a problem arises before taking any
action. In a conventional computer, this approach is sensible because the algorithm
has no way of predicting the future memory requirements of a program. In the ray
tracing machines, on the other hand, vision rays are usually traced in a fixed order,
and it should therefore be possible to identify in advance the subvolumes that will be
needed. The swapping algorithm could maintain 2 supply of likely candidates in an
attempt to reduce the number of accesses to unavailable subvolumes. Of course, the
regular demand paging algorithm would have to be available for those cases in which
the fancier methods failed.

Subvolume swapping should work well for the original ray tracing peripheral
because the machine processes rays in a very orderly and regular manner. In contrast,
the operation of the ray tracing array is much more chaotic. At any particular instant,
the machine might contain many unrelated rays in various stages of completion, and
there is little chance that these rays will be confined to some small collection of
subvolumes. Therefore, if the machine swapped subvolumes, it would probably spend
much of its time waiting for the disk. Fortunately, there is another approach that is
better suited to the properties of the ray tracing array.

In a way, the alternate swapping scheme is a dual of the technique described
above: when a ray enters a subvolume whose contents are currently on disk, instead
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of fetching the subvolume from disk, the new approach stores the ray on the disk. To
see how this scheme would work, imagine that the modeling space is divided into a
few large subvolumes. These subvolumes are as large as possible, but small enough
that the machine can hold every surface in the enclosed portion of the scene model.
In effect, the machine will be considering a portion of the modeling space as if it held
the complete scene. Without swapping, when a ray message reached the edge of the
processor array, it could be discarded. Since the machine now contains only a part
of the entire scene, the message that was formerly thrown away must be captured for
storage on disk. When there are no active messages for the current portion of the
modeling space, the polygons in the next portion can be loaded into the array, and
the suspended ray messages can be reintroduced.

The ray swapping scheme makes use of the fact that the sequential transfer rate
of a disk drive is reasonably high. Thus, there should be no problem in rapidly
streaming ray messages onto and off of the disk. If the contents of a subvolume is
stored in contiguous disk locations, the time required to load that subvolume may also
be reduced. Notice that it may be necessary to reload the scene model a few times in
the process of rendering a frame, because rays can be reflected back and forth across
subvolume boundaries. By choosing overlapping subvolumes, it may be possible to
minimize this difficulty, however.

The ray tracing machines described in this chapter have all operated on scene
models consisting of nothing but convex, planar quadrilaterals. This restriction served
to simplify discussions, but a practical ray tracing machine would probably have to
deal with other kinds of surfaces. Curved surfaces would be nice, and more complex
polygons would be essential. Except for the details of the intersection computation, the
ray tracing machines are equally well suited to handling these other types of surfaces.
None of the subdivision techniques or message passing protocols rely on the fact that
only simple surfaces were being modeled. Indeed, the only change necessary to handle
more complicated surfaces would be to replace the intersection processor.

Probably the most useful upgrade would be to allow the machines to handle more
generalized polygons. These surfaces would not be restricted to four vertices, and
they would not have to be convex, or even planar, for that matter. The generalized
polygons would be specified by a sequence of vertex points with their corresponding
vertex normal vectors. Texture mapping and similar operations could be performed if
a uv-coordinate pair were also included with each vertex. To be in a convenient form
for the intersection computation, the ray would be represented as the intersection
of two planes. The intersection computation itself proceeds in two stages. First, as
shown in Figure 2-334, using one of the ray planes, the intersection processor must
determine which of the polygon edges cross the plane, and it must determine where
the crossings occur. Note that these crossings are the endpoints of line segments that
lie both in the polygon and in the plane. Second, the processor must attempt to
intersect these line segments with the other ray plane, as illustrated in Figure 2-33b.
If such an intersection occurs, it is the point common to the polygon and the two ray
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Figure 2-88. Intersecting a ray with a more general polygon.
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planes. Thus, it is the ray/polygon intersection that was being sought.

The algorithm for intersecting rays with general polygons decomposes convenient-
ly into a pipeline. The first stage of the pipeline accepts polygon vertices and calculates
the distance from the vertex to the first ray plane. This computation requires nothing
more than an inner product, which may be implemented as described earlier. The
second stage of the pipeline examines these distances to detect edges that cross the
ray plane. When it finds such a crossing, it computes the point of intersection, using
a division and a few multiplications. Note that it must compute the interpolated
normal vectors and uv-coordinates as well as the three-dimensional coordinates of
the intersection point. The third pipeline stage calculates the distance between these
intermediate intersections and the second ray plane. Again, this computation takes the
form of an inner product. The fourth pipeline stage counts the number of intermediate
intersection points on either side of the second ray plane, and it accumulates the two
that are closest to the plane. If, after all of the vertices have been processed, there
were an odd number of intersections on each side, then one of the segments must
intersect the second plane. The fifth pipeline stage accepts the two closest intermediate
intersections and computes the final intersection. It may also determine the distance
from the origin of the ray to the intersection point by taking an inner product.

For some applications, it is preferable to use a genuinely curved surface rather
than an approximation pieced together out of polygons. Bicubic surface patches are
a very flexible surface modeling tool, but unfortunately, the computation required to
produce an image of one of these surfaces is rather substantial and not very regular,
making a hardware implementation more difficult. Kajiya has proposed a pipelinable
technique for using a ray tracing algorithm to render these patches, but it can require
as many as about 6000 floating point operations for every ray/patch intersection
[KAJI82]. Given the current state of technology, it is not reasonable to postulate
the massive quantity of hardware required to mount a frontal assault on the problem,
and the issue of rapidly displaying patches remains open.

A simpler kind of curved surface that is often useful is called a quadric surface.
It is specified as the solution of

0= Az? + Bzy + Czz + D=z
+ Ey® + Fyz + Gy
+HZ + 1z

+J.

Suppose that rays are represented parametrically:
z(t) = (21 — zo)t + 2o,

y(t) = (y1 — vo)t + o,
2(t) = (21 — 20)t + 2.

Substituting the parameterized point along the ray into the equation of the quadric
surface yields an expression that is quadratic in ¢ and which may be solved by
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straightforward application of the quadratic formula. This computation may easily
be pipelined. Notice that it is possible to combine quadric surfaces by keeping track
of all intersections with a particular ray. For example, one surface may be denoted
as enclosing negative volume, so that it would create a hole if it ever intersected a
surface enclosing a positive volume. This extra functionality would, of course, require

some additional processing at the end of the pipe, but it fits cleanly into the overall
scheme of ray tracing.
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3

Real Time Machines

F or many applications of computer graphics, the quality of the final image is less

important than the speed at which successive images can be produced. In flight
simulation, video games, and other types of visual environment simulation, new images
must be generated at the rate of about thirty times a second in order to maintain the
desired illusion of reality. As the viewer becomes absorbed in the simulation, the
fact that the synthetic world is not perfect in every detail may go unnoticed. Thus,
although the ray tracing machines of the previous chapter are capable of generating
very realistic images, they are unsuitable for many applications because they cannot
operate in real time. This chapter examines another class of machines designed for
high performance at the expense of some image quality.

Some time ago, researchers began to realize that the problem of hidden surface
elimination could be eased somewhat by taking into account the characteristics of the
display on which the final image would be viewed. In particular, an electron beam
scans the face of a television monitor in a fixed order and with limited resolution,
suggesting that the scene model should be transformed into the screen coordinate sys-
tem, or image space, before the visible surface algorithm proceeds. The computations
in this discretely sampled coordinate system are simpler than the ones that would be
required in the continuous world coordinate system in which the scenes are modeled.

Some of the commercially available systems for visual simulation simplify the
computations by performing them in image space. An early example is 2 machine
based on Watkins’ algorithm, which isolates visible surfaces by examining the scene one
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scan line at a time [WATK70]. Only those surfaces that may appear on the current scan
line need be considered. Also, the computation to find the visible surfaces proceeds
incrementally from left to right across the scan line. The hardware implementation
of Watkins’ algorithm consists of a few very fast and fairly complex pipeline stages,
each of which makes only limited use of concurrency. Instead, the machine relies on
the speed of its individual components to achieve its high performance. The current
generation of flight simulator, the Evans & Sutherland CT-5, uses a different visible
surface algorithm, but the basic hardware configuration is similar [ROBI81]. It, too,
is organized as a pipeline consisting of a few massive stages. The success of these
machines illustrates the suitability of this organization to the technology in which
they are implemented.

As the technology for fabricating large scale integrated circuits advances, a revised
set of economies is emerging. Although the speed of individual components may not be
very great, the cost of each component is dropping dramatically, so that it is becoming
feasible to use many more components in a particular system. Furthermore, integrated
circuit technology may be likened to printing in that the cost of making the second
copy of something is less than the cost of making the first. These considerations
suggest that machines composed of a myriad of identical devices operating in parallel
would be suitable for implementation with custom integrated circuit technology. This
chapter examines some machines for real time visible surface detection and display
that have these properties.

3.1 Model Preparation

All image space hidden surface elimination algorithms must, of course, begin by
converting the scene model from the object space, or world coordinate system, to
the image space, or screen coordinate system. The exact procedure for doing so is
described in a variety of textbooks on computer graphics [FOLE82, NEUMT79]. The
required steps will be outlined here in order to introduce the discussions that follow.
Readers familiar with these notions may wish to skip this section.

First of all, it is assumed that the scene model i8 composed of planar, convex
quadrilaterals embedded in three dimensions. The polygons are specified by the points
at their four vertices, vy, vg, vz, and v4. Normal vectors, denoted by n;, ns, n3, and
n4, are associated with each of these vertices. As in the previous chapter, the normal
vectors will be used only for the shading computation and do not necessarily bear any
relation to a vector perpendicular to the plane of the polygon. Finally, each polygon
is associated with a color vector e, also for use in the shading computation.

Polygons are represented in homogeneous coordinates. That is, a vertex (z,y, 2)
is represented as a row vector [wz wy wz w], where w is an arbitrary non-zero
scale factor. Conversely, [z y z w] is a homogeneous representation of the point
(z/w,y/w,z/w). It is usually convenient to choose a value of 1 for w; hence the
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homogeneous representation of {z,y,2) would be [z y z 1]. Normal vectors are
treated a little differently because they do not undergo translation. A vector (z,y,z)
has the homogeneous representation [z y z 0]. The apparent complication of using
homogeneous coordinates is justified because they allow all of the necessary geometric
transformations to be represented as 4 X 4 matrices. Of course, the polygon color ¢
is never transformed, and it is therefore exempt from this treatment.

The first transformation that must be applied to the polygons of the scene model
is the viewing transformation, which maps points in the world coordinate system into
points in the eye coordinate system. The world coordinate system is right-handed,
and its origin and scaling are chosen in a way that is convenient for the modeling task.
In contrast, the eye coordinate system is somewhat standardized. It is a left-handed
system where the viewing screen is parallel to the zy-plane and centered about the
z-axis at z = 1. The eye is at the origin, directed toward the positive end of the
z-axis. Visible points are enclosed within a pyramid whose apex is at the eye point
and whose faces pass through the four edges of the screen. Two additional planes
parallel to the zy-plane are usually chosen to bound the values of z that are visible,
thereby forming a truncated pyramid.

The transformation from the world to the eye coordinate system may be ac-
complished by multiplying the homogeneous representations of the polygon vertices
by the appropriate transformation matrix:

Ve =VyuV.

In this expression, v, and v,, are vertices in the eye and world coordinate systems, and
V is the viewing transformation. Generally, the viewing transformation is equivalent
to a sequence of translation, rotation, and scaling operations. The polygon normal
vectors do not need to be transformed so long as the locations of the light sources are
also expressed in world coordinates.

The next step is to apply a perspective transformation that maps polygons from
the eye coordinate system into the screen coordinate system. This transformation
moves the eye position along the z-axis to negative infinity and adjusts the scene so
that rays from the eye to points in the scene pierce the screen exactly where they did
before the transformation. Thus, in the screen coordinate system, rays from the eye
to the scene are parallel to the z-axis. This means that two points aligned on the same
vision ray will have the same z- and y-coordinates, corresponding to the location on
the screen to which both points project. The visible point in such a case will be the
one with the smaller 2-coordinate.

Application of the perspective transformation is also accomplished with a matrix
multiplication:

P Ve = VP,
where P is the perspective transformation, v, is a vertex in the eye coordinate
system, and v, is its screen coordinate representation. The perspective transformation
is chosen so that the truncated pyramid enclosing the visible region of space in
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Figure 8-1. Steps in the transformation from World to Screen coordinates. Top: The scene model
is given in the right-handed World coordinate system with the eye at point E, directed
as shown. Center: After the viewing transformation, the scene model is represented
in the left~-handed Eye coordinate system with the eye directed from the origin along
the z-axis. Bottom: The perspective transformation and perspective division move the
position of the eye along the z-axis to negative infinity to achieve the transformation to
Screen coordinates. Orthographic projections onto the zy-axis are shown to the right.
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the eye coordinate system maps onto a standard region in the screen coordinate
system. Visible values of z and y in the screen coordinate system lie in the range
from —1 to +1, and visible values of z are between 0 and 1. Furthermore, the
perspective transformation is chosen to map straight lines in the eye coordinate system
to straight lines in screen coordinates. The perspective transformation does not,
however, preserve the value of w, the scaling factor in the homogeneous representation
of points. This means that in order to derive the three-dimensional coordinates in
screen space, the scale factor must be divided out of the homogeneous representation.
This operation is known as perspective division.

After the perspective transformation has been applied to the polygons, they must
be clipped to eliminate those portions that lie outside the visible volume and, therefore,
should not appear on the screen. Clipping must be performed before the perspective
division because the divide operation destroys a sign bit that distinguishes points in
front of the eye from those behind it. Recall that the bounds for z, in the screen
coordinate system are —1 < z, < +1. In the homogeneous representation, before
the perspective division has been done, these bounds are —w < z < +w. Similarly,
the bounds for ¥ and z are —w < y < +w and 0 < z < w, for positive values of
w. These six inequalities define the six clipping planes. Suppose that the line between
the points [zy y1 21 wi] and [z2 y2 22 wo] crosses the z < w clipping plane. In other
words, suppose that £; < w; and 25 > wp. If the line between these two points is
parameterized by t, it intersects the boundary where

(ze — 21 )t + 21 = (w2 — w1 )t +wy,
or
1 — i

t= (w2 —w1) — (22 — 21)

The value of the parameter £ can be used to find the coordinates of the point at which
the line leaves the visible volume. In addition to finding this new polygon vertex, it is
necessary to interpolate the normal vectors associated with the two ends of the line,
giving a new normal that will be associated with the new vertex. Finally, after a
polygon has been clipped, perspective division may be applied to its vertices, and the
result may be passed to the visible surface algorithm.

The Phong shading algorithm described in the previous chapter gives good results,
but it is difficult to compute in real time. Recall that it was necessary to interpolate
and normalize the four vertex normal vectors for each visible point on the polygon be-
fore the shading model could be applied to compute the color of the interior points. An
earlier method, developed by Gouraud, is substantially simpler, although it can some-
times produce undesirable effects in the final image [GOURT1]. Basically, Gouraud’s
technique involves computing the colors at the four polygon vertices and interpolating
these colors, rather than the normal vectors, at points on the interior of the polygon.
The resulting picture is smoothly shaded, but because the color interpolations have
1o real physical basis, moving objects may not look quite correct. Moreover, in some
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cases, Mach bands may be apparent. Nevertheless, the method is so simple, and the

constraints in a real time system are so rigorous, that Gouraud shading is a viable
choice.

3.2 Previous Parallel Algorithms

Although commercial systems for real time display of moving shaded images tend
to be implemented as pipelines of a few very fast stages, other implementations that
are more parallel have also been reported. Interestingly enough, the first real time
visual environment simulator made use of quite a bit of concurrency. The machine
was built by General Electric in the late 1960’s [SCHU69]. By relying on hardware
duplicated for each polygon, it was able to simultaneously scan convert a large number
of polygons. A network of combinatorial logic served to select the visible polygon for
display at each pixel.

Somewhat more recently, Fuchs has proposed a machine comnsisting of several
microprocessors operating in parallel [FUCHT7, FUCHT9]. In this scheme, respon-
sibility for pixels appearing on the display is divided between the individual processors
so that each processor need compute the appearance of only those pixels assigned to
it. As illustrated in Figure 3-2, pixels are assigned to processors in regular, interleaved
patterns that depend on the number of processors in the machine. For example, if
there were only two processors, pixels might be assigned in a checkerboard pattern.
In systems composed of more than two processors, each processor would be assigned
a rectangular array of pixels, and the final image would be formed by interleaving the
grids of pixels from the individual processors. Of course, the grid resolution would
depend on the number of available processors, because the resolutions of the inter-
leaved grids must combine to make the desired final image resolution.

Fuchs’ machine finds visible surfaces by using a depth buffer, or Z buffer, algo-
rithm running simultaneously on all of the processors [CATM74]. The arrangement
of processors is shown in Figure 3-3. The algorithm begins when a transformed and
clipped polygon is broadcast to the processors from some external host machine. Each
processor then samples the polygon to determine the depth at every pixel within the
polygon. The depth is, of course, the z value of the polygon at the pixel and is related
to the distance from the viewer to the surface. The new depth values are compared
with the depths of the closest surface so far encountered at corresponding pixels. The
polygon is visible at pixels where the new depth is less than the old, stored depth.
For these visible pixels, the processors compute a new color value and replace the old
depth and color with the new ones. Finally, when a processor has finished with the
current polygon, it announces completion. When all processors have finished, the host
can broadcast the next polygon.

It is easy to see how the processors in Fuchs’ machine achieve concurrent opera-
tion. Since all of the processors are working on the same polygon, and since the resolu-
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Figure 3-2. Correspondence between processors and pixels in Fuchs’ multiple microprocessor ar-
chitecture. Processors are identified with letters. (a) A four processor machine. (b) An
eight processor machine. (c) Another arrangement of an eight processor machine.
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tion of pixels assigned to each processor is identical, every processor in the machine will
have to consider approximately the same number of pixels. Unfortunately, the number
of pixels that are both inside the polygon and not obscured by some other polygon
may vary from processor to processor, so that the number of lighting computations
performed by each processor may not be identical. The workload should, however,
be similar enough that all of the processors will finish at about the same time, and
therefore individual processors will probably not be idle much of the time. Because
the scan conversion and lighting computation tasks performed by the processors are
the most time consuming aspects of a depth buffer algorithm, the speedup should be
nearly proportional to the number of processors that are available.

Parke has suggested a machine whose organization is much like that of the Fuchs
machine [PARK80]. The primary difference is in the way pixels are assigned to
processors. In Parke’s machine, processors are responsible for contiguous blocks of
pixels, as illustrated in Figure 3-4. If there were four processors, for example, each
might be assigned one of the four screen quadrants. Instead of broadcasting every
polygon to all of the processors, polygons are broken up according to screen position,
and the resulting fragments are sent to the responsible processor. The polygons are
broken by a binary tree of splitting processors, each of which performs a clipping
operation; see Figure 3-5. Polygons enter at the root of the tree, which separates
them into those portions appearing on, say, the left half of the screen and those
appearing on the right. The two processors at the next level of the tree accept the
corresponding halves and break them into the top and bottom parts. The splitting
operation continues until the polygon fragments reach the leaves of the tree where
they are processed by a depth buffer algorithm. Concurrency is possible because the
machine can simultaneously maintain many polygons in various stages of completion.
The overall processor utilization depends on the extent to which polygons are evenly
distributed on the screen. Parke also proposed a hybrid scheme that uses the splitting
tree down to a certain level and then broadcasts the polygon fragments to a collection
of processors organized as in Fuchs’ machine.

Another Fuchs invention is a system called Pixel-planes, which devotes a simple
processor to each pixel of the final image [FUCH81]. This machine is also based on
a depth buffer algorithm. Conceptually, each processor is capable of simultaneously
evaluating a line equation with the coordinates of every pixel on the screen, besides
being able to perform a depth comparison and store the values that describe the pixel.
Given three coefficients, A, B, and C, each processor will substitute the zy-coordinate
of the corresponding pixel into the equation F(z,y) = Az + By + C. The result of
this computation is interpreted at various stages in the algorithm as the distance from
the pixel to the edge of a polygon, as the distance from the viewer to the polygon,
and as the color of the polygon. The hardware for computing F(z, y) is shared by the
pixel processors in a clever way that makes the implementation more practical than
it might otherwise seem.
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Once a polygon has been converted to a suitable form, three steps are required
to process it with Pixel-planes. The first step serves to identify the pixels on the
interior of the polygon. To do this, a host processor supplies coefficients of the line
equations that describe the two-dimensional projection of the polygon edges on the
screen. As each set of coefficients is processed, the value of the line equation at each
pixel will be either positive or negative, depending upon whether the vertex lies to
one side or the other of the line. Any pixels that lie on, say, the positive sides of all
of the edges are considered to be on the inside of the polygon. After interior pixels
have been identified, it is necessary to find the depth, or the distance from the viewer
to each point within the polygon. Once again, using three coefficients supplied by a
host machine, each processor corresponding to a point inside the polygon computes
this distance for its own pixel. To solve the hidden surface problem, the processors
compare this newly computed depth with the stored depth of the closest polygon so
far encountered. In pixels where the new depth is closer than the old depth, the new
depth replaces the old. The state of the other processors remains unchanged. Finally,
the third step of the Pixel-planes algorithm computes the color of those pixels that
were visible. Again, the colors are specified with the three coefficients of F(z,y).

Fuchs estimates the performance of Pixel-planes at up to about 30,000 polygons
per second. It can thus display a scene consisting of perhaps a thousand polygons in
real time. A 16 X 32 array of processors is expected to fit on a single chip, which
means that §12 chips would hold enough processors for a 512 X 512 image. This does
not, of course, include circuitry for preparing the polygons in a suitable form, or for
interfacing the Pixel-planes processors to a television monitor.

Demetrescu has proposed a highly parallel machine that uses a kind of dynamic
depth buffer algorithm. In this machine, each polygon in the scene is assigned its
own processor in a pipeline of processors, shown in Figure 3-6. The individual
processors are capable of scan converting a polygon and performing some simple depth
comparisons. To produce a picture using this arrangement, descriptions of pixels from
the background of the scene are introduced at the beginning of the pipeline. These
pixel descriptions carry depth and color information, and when a processor receives
one, it compares the incoming depth with the depth of the corresponding pixel from
its own polygon. It then passes the description of the visible pixel to the next processor
in the pipeline. Pixel descriptions appearing at the end of the pipeline correspond to
the unobscured surfaces in the scene. Note that the processing is done in scan line
order, so that the output of the pipeline could conceivably be routed almost directly
to a raster scan display device.

Depth buffer algorithms have two inherent limitations. Since polygons are pro-
cessed sequentially, the number of polygons that can be handled in real time is
determined by the time required to process a single polygon. The difficulty is somewhat
mitigated by the fact that the algorithm can handle an unlimited number of polygons if
given enough time. A more severe problem, however, is the aliasing caused by sampling
at screen resolution without somehow first filtering the polygons. The usual way of
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Figure 8-08. Demetrescu’s machine is a pipeline of processors that can each scan convert a polygon
and compare pixels from two polygons. Background pixels enter the pipe to be replaced

at some stage by pixels that are closer to the viewer. Pixels visible in the final image
emerge at the end.

reducing this problem is to sample the scene at a higher resolution and then to filter the
high resolution image down to screen resolution for display. Unfortunately, increasing
the resolution of the computation causes a dramatic increase in the processing and
storage requirements since, of course, the number of pixels in an image increases as
the square of the linear resolution.

3.3 A Scan Line Tree

Most of the visible surface algorithms that have been devised rely on sorting in
one form or another. Software implementations use sorting to focus attention on one
part of the screen at a time in order to limit the number of objects that must be
considered together. Hardware implementations can use sorting to move objects so
that those appearing close to each other on the screen will be stored in nearby parts
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Figure 8-7. Scan conversion is the process of breaking a transformed and clipped polygon into the
series of strips that appear on each line of a raster scan display.

of the machine where it is convenient to compare them. One difficulty with hardware
sorting schemes is that it is sometimes necessary to move data over great distances to
achieve the desired ordering. This data motion is either very slow or very expensive in
terms of communications costs. Another approach is to start out with sorted streams
of data and then to merge nearby streams. The scan line tree represents an attempt
to make use of this alternative.

Suppose that the scene to be rendered consists of just a single polygon. The first
step required to make a picture of this scene is, of course, to transform the polygon to
the screen coordinate system and to clip it to the visible volume as outlined earlier.
Next, if there is anything left after clipping, the transformed polygon must be scan
converted. Scan conversion is the process by which the polygon is broken up into a
collection of horizontal bands corresponding to the scan lines of the raster display.
See Figure 3-7. Each of these bands, or segments, is represented by its two endpoints
in screen coordinates and by two color vectors that are interpolated from the vertex
colors. After scan conversion, each segment must be broken up into the individual
pixels that are visible on the scan line. The values of pixels within the segment are
interpolated between the color vectors at its two endpoints. Notice that segments are
generated in a left-to-right, top-to-bottom order so that the pixel conversion takes

place in the same order in which the electron beam sweeps the screen in the television

monitor to produce the image.
Next, suppose that the scene consists of two polygons. Again, the first step in the
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production of an image is to transform, clip, and scan convert the polygons. These
operations can take place independently for each of the two polygons. Because the
polygons might overlap or even intersect one another, however, they must undergo
further processing before the final pixel conversion can take place. It is necessary
somehow to merge the two streams of segments, as shown in Figure 3-8, in order to
elimipate any segments that overlap. The two streams are ordered by screen position,
making merging a relatively simple operation that compares one segment at a time
from each of the two streams. If either of the segments ends before the other one
starts, it may be appended directly to the output stream to be replaced with the next
segment from the corresponding input stream. On the other hand, if the segments do
overlap, it may be necessary to fracture one of them and pass only part of it to the
output stream. The final result is a stream of non-overlapping segments, ordered from
left-to-right and top-to-bottom, that are ready to be broken up into pixels for display.

The method just described for handling a two polygon scene suggests a way to
produce an image of a scene containing an arbitrary number of polygons. Notice
that the output of the merge operation is an ordered sequence of non-overlapping
segments, which is exactly the property that the merge operation requires of its inputs.
Thus, 2 way to make a more complicated picture is to arrange a hierarchy of merge
operations. At the bottom of the hierarchy, merge operations would accept scan
converted polygons as their inputs. In the rest of the hierarchy, the outputs of the
merge operations would be routed to the inputs of the next higher level until, at the
top of the hierarchy, the final output is produced. Like results at every other level
in the hierarchy, the final result is an ordered sequence of non-overlapping segments
ready to be split into individual pixels for display.

It is easy to imagine a binary tree of processors that can implement the hierarchy
just described. Such a tree is illustrated in Figure 3-9. The leaves of the tree are
processors that can accept a polygon, transform it to screen coordinates, and clip it to
the viewing volume. These processors are all connected to a single bus through which
the polygon models may be loaded. Also, the bus provides a mechanism by which the
activities of the individual processors may be coordinated. After the clipping phase,
each processor containing 2 polygon not outside the viewing volume passes the clipped
polygon to a corresponding scan conversion processor. Each of these scan converters
transforms a polygon into the ordered sequence of segments required by the merging
processors that form the rest of the tree. The two inputs of each segment merging
processor are connected either to scan converters or to other merging processors,
depending on their positions in the tree. Finally, the segment merging processor at
the root of the tree is connected to a fourth kind of special purpose device that splits
gegments into pixels and displays the image in a television monitor.

The scan line tree is similar in some ways to the pipeline suggested by Demetrescu
and described earlier. If the tree is maximally unbalanced so that each node has a left
descendant but none has a right one, the structure degenerates into a linear pipeline.
Furthermore, if segments are restricted to be a single pixel in width, the behavior
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Figure 3-9. Orgarization of a scan line tree. Clipping and trapsformation processors at the leaves
of the tree receive polygons from a host machine. When they have been transformed
into screen coordinates and clipped to the visible region, the polygons are sent to
the scan conversion processors. The segments generated here travel through the tree
of merging processors, which remove any hidden segments. The remaining segments
travel to the root, where they are separated into pixels for display.
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of the two machines becomes essentially identical. What, then, are the advantages of
introducing additional communication paths and additional complexity in the merging
operation? First of all, the extra communication paths inherent in the tree structure
are not wasted. They are used to increase the overall speed with which the machine can
communicate with its environment. The exact mechanism involved will be described
in a later section. Second, by considering segments that consist of many pixels, the
total number of communications can be reduced because each communication conveys
more information. Third, the number of pixels in an image increases as the square of
the linear resolution, while the number of segments increases linearly. Thus, to double
the final resolution while maintaining the same level of performance, the speed of the
pixel processors must be increased by a factor of four, whereas the segment processors
need be only twice as fast. Actually, because of the tree organization, it turns out
that the extra performance can be obtained by increasing the number of processors,
rather than by increasing their individual speeds. Once again, the exact technique for
doing so will be presented in a later section.

3.3.1 Transformation and Clipping Processors

If the scan line tree is to operate in real time, it must be able to transform and
clip all of the polygons in the scene at the rate of thirty times per second. However,
since a transformation and clipping processor has been devoted to each polygon, the
polygons may be dealt with independently and in parallel, giving each processor a full
thirtieth of a second to complete its single polygon. This is a fairly generous amount
of time in which to perform the required task, and it therefore seems as though fully
pipelined processors like the ones used in the ray tracing machines are unnecessary.

One alternative to the fully pipelined approach is to employ a more programmed
architecture. In this case, the various arithmetic operations that implement transfor-
mation and clipping would share a few arithmetic devices under program control. The
difficulty with this scheme is that the program is duplicated within each processor.
Although the algorithm that must be performed is reasonably simple, it is nevertheless
complicated enough that its representation would form a substantial portion of each
processor.

A third approach to the design of the transformation and clipping processors is to
concentrate all of the program logic at the end of the bus connecting the processors,
duplicating only the control and computation logic within each processor. Thus, the
collection of processors might be thought of as a single instruction stream, multiple
data stream (SIMD) computer [FLYN68]. Of course, some care must be exercised
when designing the instruction set to insure that the desired application program may
be executed by all of the processors in lockstep.

The polygon transformation task presents no difficulty for a SIMD architecture.
All polygons have four vertices at this stage, and each vertex may be transformed
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myy == literal;, my;:= literal; mj;:= literal; m4;:= literal;
myz:== literal;, mgy:= literal; m3z:= literal; m,o:= literal;
my3:== literal;, myg:=literal; m33:= literal; m,;:= literal,
my4:= literal; mo4:= literal; mg4:= literal; m4,:= literal;
Z = 2ymy -+ Y1Mm2 + Z M3y + Myy;
Y == Timiz + y1Mme2 + 21 m32 + Myg;
Z == Zzymy3 + Y1 M23 + Z1M33 + My3;
Wi== Ty Myy + Y1 Moy + 21 M3q + Myy;

Figure 3-10. Program to load a transformation matrix and transform the first vertex.

by means of a vector-by-matrix multiplication, implemented as a fixed sequence of
operations, without loops or conditionsls, as illustrated in Figure 3-10. When trans-
forming four vertices, the operations can be arranged so that each element of the
transformation matrix need be broadcast only once, even though it is used four times.
This alteration does not affect the straight-line property of the program, but it does
suggest that the speed at which literals are transmitted does not have to be so great
as the speed of transmitting individual instructions.

In addition to transforming the polygon vertices to the screen coordinate system,
the transformation and clipping processors must compute the color at each polygon
vertex. Again, the program for implementing this computation may be written as
straight line code suitable for a SIMD architecture. A simplified lighting model will be
used to reduce the number of operations required in the calculation of the four corner
colors. The intensity of one component of a vertex color vector will be given by

I=(I, +I,cos1)R,
where

I = Final intensity value.
I, == Intensity of the ambient illumination.
I, = Intensity of the point source illumination.

1 == Angle between the incident ray and the surface normal vector.
R = Reflectance of the polygon.

As usual, the cosine is computed as a dot product, and the three components of the
color vector are treated identically. A program for computing the color of the first
vertex is shown in Figure 3-11.

After the processors have transformed the polygons to screen coordinates and
determined the vertex colors, they must clip the new polygons to the viewing volume.
Unfortunately, the clipping process is not quite as simple as the transformation process
was. The difficulty centers around the fact that the clipped polygons do not necessarily
have exactly four vertices, as they do before clipping. Moreover, different polygons
in the scene may have different numbers of vertices. Those polygons that lie outside
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a,:= literal, g,:= literal; a;:= literal;
pr= literal; p,:= literal, p;:= literal;
pz:== literal;, p,:= literal; p,:= literal,
d:= max(0, n12pz + n1yPy + n1:p:);
ri:=(a, + prd)cy;
91:== (ag + pyd)e,;
by:= (ap + pud)cs;
Figure 8-11. Program to compute the color at the first vertex given the color of the ambient
illumination, [ar e, as], the color of the point light source, [pr p; ps], and the

direction of the point light source, [pz py p:]. The colors at the other three vertices
are computed in a similar manner.

the visible region will end up having no vertices at all. The implication of all this is
that the transformation and clipping processors cannot all execute exactly the same
sequence of instructions to manipulate their corresponding polygons. There must be
some mechanism for routing different instruction streams to different processors in the
machine.

Fortunately, there is a fairly simple technique which can be used to handle the
clipping situation. Processors must be capable of ignoring selected sections of the
instruction stream. To implement this behavior, there will be an instruction that will
test some state of the processor and, if the proper conditions are met, will cause the
processor to ignore any further instructions. A signal on a reset line connected to all
of the processors will restore normal operation. Thus, processors may be shut down
selectively, but must be reactivated together. To see how this mechanism will work,
suppose that there is some action to be performed with each vertex of each polygon in
the scene. This task could be programmed as a loop that incremented a vertex index
with each iteration. At the beginning of the loop, the vertex index must be compared
with the number of vertices in each polygon. Processors whose vertex index exceeds
the number of vertices will be instructed to shut down. The remaining processors will
receive and execute a stream of instructions to perform the desired operation on the
vertex. Finally, at the end of the loop, the vertex indices must be incremented before
beginning the mext iteration. After the last iteration, the dormant processors must
be reactivated by means of the reset signal. Notice that the stream of instructions
forming the body of the loop must be broadcast enough times to insure that all of
the processors have finished with all of the vertices and are therefore in the dormant
state. In the clipping algorithm, it turns out that it is always possible to determine
the maximum number of times that each loop may iterate.

The clipping method to be used here is based on Sutherland and Hodgman’s
Reentrant Polygon Clipping Algorithm [SUTHT74a]. This technique results from the
observation that the process of clipping a polygon to a six-faced bounding volume may
be separated into a sequence of six simpler operations in which the polygon is clipped
to a single bounding plane. In the original description of the algorithm, these six stages
were pipelined either in software or in hardware to reduce the intermediate storage
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requirements, increase performance, or both. In the transformation and clipping
processor, however, where computing power is far more costly than memory, the six
stages of the clipping algorithm will be performed in a strictly sequential manner.
That is, a polygon will be clipped against the first boundary plane, forming a new
polygon to be clipped against the second boundary plane, and so on, until all six
boundary planes have been checked.

As noted earlier, it is always possible to determine in advance how many iterations
will be needed to implement a particular loop in the clipping algorithm. For example,
when clipping the original convex quadrilateral against the first boundary plane, there
are, of course, four vertices to be examined. The clipping process may introduce an
extra vertex, so that when clipping against the second boundary plane, the loop might
execute at most five times. In fact, each stage of the clipping algorithm may potentially
add a vertex to the polygon, which means that after the final stage, the polygon might
have as many as ten vertices.

A program for clipping against the first boundary plane, z < w, is shown in
Figure 3-12. The program maintains two lists of vertices. The input list contains
transformed vertices from the original quadrilateral, and the ocutput list, which is
initially empty, will hold the vertices of the partially clipped polygon. This output
list constitutes the input to the next stage of the algorithm. In the program shown,
the body of the loop individually examines successive vertices around the perimeter
of the polygon. I the previous vertex was invisible, but the current one lies within
the clipping volume, then the polygon edge between them passes through the clipping
plane. In this case, the intersection point is a vertex of the clipped polygon, and it
must therefore be computed and appended to the output vertex list. Notice that it is
also necessary to interpolate the vertex color vectors, as well as the vertices themselves.
Next, if the current vertex is visible, it too must be copied to the output list. Finally,
the index of the input polygon vertex must be incremented in preparation for the next
iteration of the loop.

One rather annoying property of the clipping program as just presented is that it
must test the same loop termination condition more than once in the course of a single
iteration. This is because the mechanism for deactivating processors cannot associate
a particular reset command with the corresponding command that originally turned
the processor off. That is, there is no way to undo a selected shutdown command. Of
course, it would be possible to add such a feature, but doing so is not really critical
for the proposed application, and it therefore seems better to retain the original, less
elaborate mechanism.

A more severe problem occurs in connection with the intersection computation.
Notice that most of the instructions given for the clipping algorithm are involved in
performing this operation. Note also that since the instructions occur within the body
of the loop, they must be broadcast to the processors during every iteration of the
loop. Thus, for the first stage of the clipping algorithm, the intersection instructions
must be broadcast four times. However, a convex polygon clipped against a plane
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n=_0; comment: Number of output vertices. ;
1:=1; comment: Index of the current input vertex.
ji=4; comment: Index of the previous input vertex.
repeat 4 times

if i > 4 then shutdown;

if z,[7] < wy[j] then shutdown;

if z,[{] > w,[i] then shutdown,;

comment: Previous vertex was invisible and current vertex is visible,
so the edge crosses the boundary plane.

w“h] - zu(j] .
= (2uli] — 2al3]) — (Wuli] — wa 7))’
ni=n-+1;

2o [n)i= (1 — )2y [] + tzu [i]; roln]i= (1 —t)rufs] + truli];
Yo [nli= (1 —thyo ] + tyu [y  gclnli= (1 — t)gu[s] + tgult);
]
]

y

;

H

e [nli= (1= )z [+ t2 i Bolmli= (1 — )b ] + thali
wc{ nj:= (1 — t)wy [7] + tw,[i];

reset;

if ¢ > n then shutdown;

if z,[¢] > w,[i] then shutdown;

comment: Current vertex is visible. ;

n==n+1;

zc[n}:= zulil; e [n] = yuli]; zZn]:=z2,[i]; w. [n]:= wu[i];
relnl=ruli; ge[n]=gulil; be[nl:=buls];

reset;

Ji==1; ti=1i41;

Flgure 8-12. Program to clip the polygon against the z < w plane. The subscripis u and ¢ refer
to unclipped and clipped vertices.

can intersect that plane in at most two points. As written, the clipping algorithm
must transmit the intersection code two extra times to compensate for the fact that it
does not determine in advance which segments actually cross the clipping boundary.
Later stages in the clipping algorithm transmit this code even more wastefully. A more
conservative approach merely makes a note of the necessary intersection computations
as it examines the polygon vertices, but it does not actually perform the computations
at that time. The code for making these notes is substantially smaller than the
intersection code, so that the loop iteration should execute quite a bit more quickly.
Finally, after all of the iterations have been completed, just two transmissions of the
intersection code will complete the clipping stage.

A problem related to the wasteful transmission of intersection code is the fact
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n.:==0; comment: Number of vertices in the clipped polygon.
1:=0; comment: Index of the current vertex.
Ji=mn,; comment: Index of the previous vertex.
n,:=10; comment: Number of boundary intersections.
repeat 5 times

if ¢ > n, then shutdown;

Af z{iu[j]] > —wliy[s]] then shutdown;
if z[i,[i]] < —w[i,[i]] then shutdown;

comment: The edge from ¢ to 7 passes into the visible region.
Record the presence of an intersection.

ne=n,+1; ny=n,+1; i[n):=n,;

n,=n, +1;

siln.i=1u[5]; 8;:=1.[5]; 8ni=n,;

reset;

if 1 > n, then shutdown;

if z[iu[t]] < —w[i,[i]] then shutdown;

comment: The current vertex is visible.

ne=n,+1; i[n]:=1,[i;

reset;

Ji=1; t=i+1;
comment: Now perform the actual intersections.
repeat 2 times

if n, = 0 then shutdown;

= 8;[n,]; 7= 8j[n.); n:= s.[n,};

—(wly] + =[]} .

(zld] = z[5]) — (wls] — whi])’
[n:= (1 — t)z[s] + tzt]; nz[n]i= (1 = t)n.[5] + tn,[i];
ylnl= (1= thy[f] +tyli]; nyln]:= (1 —t)ny[5] + tnyfs];
[n]:= (1 —98z[7] + tz[i]; n:[nl=(1—t)n.[5] + tn.[i];
nei==n, —1;

.
’

?

H

tim==

]

N

reset;

Figure 8-18. Improved program to clip the polygon against the £ > —w boundary. The three ¢
arrays identify polygon edges that will have to be dipped against the boundary.
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=1
repeat 10 times
if 1 > n_, then shutdown;

s ‘l o z[.c[i]. i [{l]:= y[‘c[‘H. Py Oy o Z[‘lc[t]]
Hebl=oppp vEEI= gy = oy
=141
reset;

Figure 8-14. Program to perform the perspective division.

that the vertices are copied from the input list to the output list. Since vertices are
represented by the four components of the vertex point and the three components of
the vertex color, it is necessary to move a total of seven values. The code for copying
vertices must be transmitted even when the values are never actually moved. One way
of reducing this overhead is to impose an extra level of indirection in the identification
of vertices. That is, the input and output vertex lists will now contain indices of
points, rather than the points themselves, so that a vertex may be moved from the
input list to the output list simply by copying its index. A program incorporating
these revisions is shown in Figure 3-13, using the second, z > —w clipping boundary
as an example. The other stages of the clipping algorithm will remain analogous.

Once the clipping algorithm has been executed for all six bounding planes, the
perspective division may be applied to the vertices of the clipped polygon. Recall that
this operation is performed by dividing the z, y, and 2z components of the vertex points
by the associated w component. The code is shown in Figure 3-14. The perspective
division has the effect of scaling the points so that their £ and y components range
from —1 to +1 and their z components lie between zero and one. Thus, after suitably
denormalizing the floating point representations of the vertices, it is convenient for
representing points in subsequent computations to treat the remaining fractional parts
as fixed point numbers.

Strictly speaking, once it has performed the perspective division, the task of the
transformation and clipping processor is complete; however, the design of the scan
conversion processor can be substantially simplified if the polygon that it receives has
been preprocessed into a suitable form: Briefly, the preparation involves sorting the
vertices by screen position and then finding some slopes so that the computations
in the scan conversion processor may be performed incrementally. Vertex sorting is
simplified by the fact that the polygons are convex. First, it is necessary to find
the topmost vertex that appears on the screen. This is defined to be the first vertex
encountered in the raster scan. Next, the program must substitute some coordinates
into a line equation to determine whether the vertices are arranged in a clockwise or
counter-clockwise order when viewed on the screen. This fact distinguishes the left
edge leaving the topmost vertex from the right edge. Finally, the vertices on the left
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and right edges of the polygon are traced separately from the top of the polygon to
the bottom. As each vertex is traced, the slope of the edge connecting it with the
vertex above it is computed, and the results are passed along to the scan conversion
processor. Notice that the top and bottom vertices must be processed twice, because
each is considered to be part of both the left and right sides of the polygon. Figure 3-15
shows a program that preprocesses a polygon for the scan conversion processor.

To get a better idea of how complicated the transformation and clipping proces-
sors must be, it is useful to scrutinize the code that they must execute. The memory
requirements are the simplest to analyze. The processor must, of course, be able
to store the untransformed representation of the polygon. This is represented as four
vertex points, four normal vectors, and a color vector for a total of nine vectors having
three components each. Each component requires a floating point number, so that the
initial polygon uses up twenty-seven words of storage. Next, after transformation, the
polygon vertices are represented in homogeneous coordinates with four floating point
values per vertex. Adding the three components of the colar vector brings the total
after transformation to seven words of storage for each vertex. There are initially
four vertices after transformation, and each of the six stages of the clipping process
might potentially create two more, so the storage required for the transformed points
is sixteen vertices, or 112 words. The miscellaneous storage used in the program takes,
perhaps, a couple dozen words. Thus, it seems as though 256 words of memory is a
comfortably adequate amount. Each word holds a 32-bit floating point number, so
that the total amount of memory would be 8K bits. It is not unreasonable to fabricate
this much memory on a single integrated circuit.

Examination of the programs that must run on the transformation and clipping
processor reveals that they are composed mainly of floating point operations, with
the addition of a few comparison operations. Notably absent are any kind of control
operations like subroutine calls or jumps, since the program control has been factored
out to the end of the processor bus. It is also apparent that array indexing is a common
way of accessing memory. It seems appropriate, therefore, to postulate a processor
with a floating point arithmetic unit, a floating point accumulator, and several index
registers capable of operations like incrementing and decrementing. Instructions would
contain single eight-bit addresses that could be modified by one of the index registers.
The complexity of such a processor appears to compare favorably with that of some
of the larger existing microprocessors, and hence it secems reasonable to expect that
the transformation and clipping processor could be implemented as a single integrated
circuit. It does not require a much further leap of imagination or technology to expect
that the processor could fit on the same chip as its memory.

The overall performance of the transformation and clipping processor may be
estimated by counting the number of instructions that it executes. The instruction
time is dominated, in turn, by the floating point operation time. Recall that this latter
quantity was estimated in the previous chapter at about five microseconds for a basic,
shift-and-add style of floating point operation. It seems reasonable, then, to assume
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comment: Find the leftmost top vertex.
t=1; =2
repeat 9 times

if ¢ > n. or y[i.[i]] £ yli.[t] or z[i.[i]] > z[i.[t]] then shutdown;

?

if ¢ > n. or yli.[{]] > y[i.[t]] then shutdown;
ti=1;
reset;
ti=1+1;
comment: Determine the ordering of the points.
t_:=(t—1) mod n,; ti:=(t+ 1) mod n,;
a:= y[ic[t-]] — ylic[t]);
bi= aliclt] — o[t ]}
er= aliolt_lylic ] - ol ldlyli.[t-];
d:= sgn(a zfic[t+]] + bylic[t+]] + ¢);
if ¢ > 0 then shutdown;
gi=1_; t_i=14; ti:=2s;
reset;

b

J=1t_; i=ty; =1
repeat 12 times
if ¢ 5% 3 or y[i] < y[;] then shutdown;
ci==4;
reset;
if ¢ 7% 2 or yji] < y[s] then shutdown;
ci=3; 4=t J=t_; d:=-—d;
reset;
if ¢ = 4 then shutdown;
¢:= 1/ quant(y[s] — yi]);
send quant(y [ic[' );
]); send (quant(z[i,[s]]) — quant(z[i. [i]]))g;
), send (quant(z[i.[5]]) — quant(z[i. [5]]))g;
send (quant(r[i.[5]]) — quant(r[i.[s]] )q,
), send (quant(g[i.[s]]) — quant(g[i.[i]}))g;
send quant(b[i.[t]]); send (quant(b[ic[J]]) quant(b[i.[i]]))g;
reset;
if ¢ # 1 then shutdown;
ci=12;
reset;
Ji=1; di:=1i+d mod n,.

Figure 8-15. Program to pre-process polygons for the scan conversion processor.
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Vertex Transformation 272
Color Computation 153
Clipping 1904
Perspective Division 152
Scan Conversion Preprocessing 1171
Total 3652

Figure 8-16. Number of instructions consumed by each part of the program running in the clipping
and transformation processors.

an instruction time of some six or seven microseconds. At thirty frames per second,
there is time to execute about 5000 instructions during each frame time. The program
to transform, clip, and preprocess a polygon takes only about 3652 instructions; the
breakdown according to task is shown in Figure 3-16. These counts were derived
by assuming a simple machine architecture, hand compiling the programs, and then
counting the resulting instructions.

Notice that the basic program run by the clipping and transformation processors
uses only 3652 of the approximately 5000 instructions that can be executed every
thirtieth of a second. The nearly 1400 remaining instructions may be put to good use.
For example, if the scene consists of a several independently moving objects, the extra
time may be used to implement this motion. By successively disabling the appropriate
processors, it is possible to load different transformation matrices for selected polygons
in the scene. Presumably, these polygons are the ones that should move in relation to
the others. After every transformation matrix has been loaded, the code for applying
the transformations and then clipping the polygons may be broadeast to all of the
processors for simultaneous execution.

3.3.2 Scan Conversion Processors

The purpose of a scan conversion processor is to break the polygon received from
the transformation and clipping processor into a sequence of segments. Each of these
segments is that portion of a polygon appearing on a single scan line. Segments are
represented by eleven fixed point numbers: a y value identifies the scan line; a pair
of z and z coordinates represent the two endpoints of the segment, giving horizontal
position and depth; and two vectors specify the colors at each end of the segment. As
the segments are generated from the polygon description, they are passed on to the
merging processors at the leaves of the tree for comparison with segments from other
polygomns.

Because the transformation and clipping processor has prepared the polygon
description in a suitable form, the design of the scan conversion processor is com-
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paratively uncluttered. The processor consists of two essentially identical halves that
calculate successive values for the left and right endpoints of the segment. A device
ghared between the two halves maintains the current y value, or scan line identity, and
each of the two endpoint trackers contains registers to hold the five other values that
describe segment endpoints. Corresponding adders apply the increments that update
the values for successive scan lines. Comparators determine when an edge description
has been exhausted and a new one must be obtained. Finally, there is a memory to
hold the left and right edge lists that describe the polygon. Entries from these lists
will be loaded into the various registers as required to scan convert the polygon. Each
entry consists of eleven numbers, and there may be at most ten such entries. Since
each number is represented by twelve bits, the overall memory requirement is thus
less than 2K bits, including space for other miscellaneous information.

The operation of the scan conversion processor is fairly straightforward. At the
beginning of every frame, it copies the coordinates of the topmost polygon vertex from
the first entry in each list into the registers for both the left and right edges of the
segment. It then loads the increment registers from the second entries in these edge
lists. Recall that one of the components in an edge list entry is the y coordinate of
the bottom of the edge, where the next edge begins. In order to correctly handle
horizontal edges, the scan conversion processor must at this point compare these
bottom y values with the y values of the current scan line. If the bottom of either
edge has been reached, new values for z, 2, and the color vector components must be
loaded from the current entry in the corresponding edge list, and new increments must
be obtained from the next list entry. If it was indeed necessary to update the edge
on either side of the polygon, the edge termination test must be repeated. Once the
processor has established that both edges of the polygon are correctly represented, it
generates a segment from the current z and z values for each end of the polygon and
the corresponding color vectors. Having done so, it must repeat the edge termination
test before generating the next segment. The processor continues until it has emptied
the two edge lists at the bottom of the polygon.

The relevant performance figure for the scan conversion processors is the time
required to communicate a segment to the merging processor. The computation
performed within the scan conversion processor is so minimal that the communication
time is dominant. Since each segment is represented by its y-coordinate and the z, z,
and color vector components at each of its endpoints, a segment description requires
eleven twelve-bit values. It is clearly infeasible to send these 132 bits in parallel, but
the choice between sending the words in sequence or dedicating a bit to each word
and sending them serially is less obvious. The bit serial approach will be taken here
on the assumption that the required encoding and decoding hardware at each end of
the communication will be simpler. At about 150 nanoseconds per bit, the complete
transfer should take a little under two microseconds.

It may at first seem a bit wasteful to design memory into the scan conversion
processor when the clipping and transformation processor has memory that already
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holds the same information. Nevertheless, there are two reasons for proceeding as
described here. The first is that the extra memory allows the transformation and
clipping operation to be pipelined with scan conversion, giving each processor a full
frame time to complete its assigned task. If the memory were shared, the two
processors would have to operate in sequence. The second and more important reason
for duplicating the memory is that this organization permits the same transformed and
clipped polygons to be scan converted more than once if, for some reason, new versions
could not be readied in the time that is available. If the scene were being drastically
modified, for example, there might not be enough time to both load and transform
the altered polygons in a single frame time. Also, if the scene contained too many
moving objects, it might not be possible to apply all of the motion transformations
quickly enough. Since there is an option for displaying successive frames more than

once, these problems will not cause the screen to flicker, although they may result in
rather jerky motion.

3.3.3 Merging Processors

The merging processors are somewhat simpler than one might expect, although
not quite so simple as one might desire. Recall that the merging processors accept
two sequences of segments and produce a third from them. In each of the two input
sequences, segments are expected to be non-overlapping and to occur in scan line order.
This means that within each sequence, one segment must end before the beginning
of the next, and that segment beginnings must be arranged in the order that they
would be scanned by the raster beam. Using segments from these two input streams,
the merging processor forms a single output segment stream that satisfies the same
ordering and non-overlapping constraints as its inputs. Moreover, the output sequence
of segments satisfies the additional constraint that it contain all of the visible segments
and portions of segments from both of the two input streams. In order to satisfy this
extra requirement, the merging processor may have to break segments into several
pieces. Notice that the output of the scan conversion processor meets the specifications
for inputs to merging processors, because the segments are generated in scan line order
and because segments from a single polygon cannot overlap. Thus, identical copies
of merging processors can be used at the leaves of the tree, where they accept inputs
from scan conversion processors, and at levels closer to the root, where they accept
inputs from other merging processors.

The basic strategy of a merging processor is to consider only one segment at a time
from each of the two input streams. The merging processor operates by comparing
one segment from the left input stream with one from the right to produce a sequence
of one or more output segments made up of the visible portions of the inputs. As
input segments are consumed, they are replaced by the next segment in the sequence
from the corresponding subtree. When one of the segment sequences is exhausted, the
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Case 1: Case 2: Case 3:
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Figure 8-17. Step 1 of the Merging Algorithm: Classify the segments. The left endpoint of the
visible segment is either (1) on an earlier scan line than the left endpoint of the other
segment; (2) on the same scan line, but to the left of the other segment; or (3) on the

same scan line as the other segment and aligned with if, but in front of it. Note the
difference in coordinate axes.

output stream may be copied directly from the other segment sequence, since nothing
remains to hide its segments. One way of implementing this termination condition is
to place at the end of each sequence a dummy segment that does not appear on the
screen.

Once it has loaded a segment from each subtree, the merging processor must
determine which of these segments is first visible. That is, it must determine which
of the segments will be the first to be displayed in the raster scan. To make this
determination, the processor compares the left endpoints of each segment, as shown
in Figure 3-17. If one endpoint appears on an earlier scan line than the other, then
of course, it will be the first to be scanned. If the two segments appear on the same
scan line, the leftmost one is first. If the beginnings of the two segments coincide,
then the one closer to the viewer, having the smaller value of z, must be chosen.
Finally, if the two segments start at exactly the same point, an arbitrary choice may
be made. At first, it may seem that the task of determining the first visible segment is
rather complicated, but the choice requires only a single integer comparison. The two
numbers for comparison are constructed from the two left endpoints by concatenating
coordinate values. For each endpoint, the negative y coordinate supplies the high
order bits, the z coordinate goes in the middie, and the z coordinate makes up the
low order part of the word. The segment with the smaller of these combined values
is the first to be encountered in the raster scan. It will be called the visible segment
in the discussions to follow, and the other segment will be called the other segment.
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Figure 8-18. Step 2 of the Merging Algorithm: Check for non-overlapping segments. If the visible
segment is either (1) completely above the other segment or (2) completely to its left,
then the segments do not overlap. Otherwise, the segments overlap and the left end
of the other segment lies within the shaded region.

After identifying the visible and other segments by examining their left endpoints,
the next two points of concern to the merging processor are the next two points in the
raster scan at which the visible segment may become invisible: the right endpoint of
the visible segment and the left endpoint of the other segment. If the visible segment
ends before the other segment begins, then it is not obscured at all and can be placed
directly into the output stream. The test for determining this condition, shown in
Figure 3-18, is the same kind of integer comparison that was initially used to identify
the visible segment. If the visible segment is indeed copied intact to the output stream,
it must be replaced with the next segment in the input stream from which it was
originally obtained. This action reinitializes the algorithm, and another test must be
performed to identify the visible segment, as described above.

If the visible segment does not end before the other segment begins, then the
segments overlap, and the visible segment might pass behind the other segment some-
where along its length. To check for this condition, the merging processor must deter-
mine whether the left endpoint of the other segment is in front of, or behind, the line
containing the visible segment; see Figure 3-19. Since both segments are on the same
scan line, the requisite computations may be carried out in the plane of constant y.
‘When the left endpoint of the other segment is substituted into the equation for the
line containing the visible segment, the sign of the result indicates on which side of
the line the point lies. If the left endpoint is behind the visible segmént, the other
segment does not immediately obscure the visible segment. Conversely, if the point is
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Figure 8—19. Step 3 of the Merging Algorithm: Check for disappearing visible segment. If the left
end of the other segment is in front of the visible segment, then the visible segment
disappears behind the other segment. Otherwise, the left endpoint lies within the
shaded region, below.

in front, the visible segment is actually visible only until the beginning of the other
segment. Should this be the case, the merging processor must break the visible seg-
ment into the two portions on either side of the other segment’s left endpoint. It must
then generate the left portion as an output segment, while retaining the right portion.
Notice that the visible and other designations are incorrect at this point because of the
change in visibility. Therefore, the merging processor must swap them, after which
the algorithm can proceed as though it had just classified the two segments.

Even if the left endpoint of the other segment was obscured by the visible segment,
it is still possible that the other segment passes through the visible segment at some
point along its length. To check for this intersection condition, the merging processor
compares the right endpoint of the other segment with two lines, as illustrated in
Figure 3-20. The first line contains the visible segment, and the second passes through
the right endpoint of the visible segment and the left endpoint of the other segment.
If the other segment’s right endpoint lies in front of both of these lines, then the two
segments do indeed intersect, and the merging processor must compute the point of
intersection. It must then divide both segments into the portions on either side of the
intersection point. The left part of the visible segment is sent to the output stream,
and the right part becomes the new visible segment. The other segment is replaced
by its right portion after the left has been discarded. Once again, this manipulation
leaves the two segments with incorrect designations, and the merging processor must
swap them before proceeding with the two newly classified segments.
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Otherwise:

Figure 3-20. Step 4 of the Merging Algorithm: Check for intersecting segments. If the right end
of the other segment is in front of both the line containing the visible segment and
the line through the left end of the other segment and the right end of the visible

segment, then the two segments intersect. Otherwise, the two segments appear as
shown in the diagram to the right.

If the two current segments do not intersect, it is still possible that the other
segment might extend out from behind the visible segment. To detect this condition,
the merging processor compares the right endpoints of the two segments. The test is
illustrated in Figure 3-21. If the right endpoint of the visible segment occurs before the
right endpoint of the other segment, then the visible segment ends first. The merging
processor must clip the other segment to the portion following the visible segment,
copy the visible segment to the output stream, and fetch a replacement visible segment
from whichever input stream it originally came. Finally, if the test failed, the other
segment ends first and is therefore completely hidden by the visible segment. The
merging processor discards it and fetches a replacement from the proper input stream.
In either of the two alternatives, the algorithm resumes at the classification step.

To summarize, the merging processors repetitively execute a six step algorithm.
The first step classifies the two segments obtained from the two input streams as either
the visible segment or the other segment. The second step determines whether the
two segments overlap at all. If not, the visible segment may be output intact. The
third step in the algorithm checks for the case where the visible segment disappears
behind the edge of the other segment. If this happens, the unobscured portion of
the visible segment is output. Step four tests for segment intersection, and again, if
an intersection occurs, only the unobscured portion of the visible segment is output.
The fifth step in the merging algorithm tests for the case where the other segment
extends from behind the visible segment. If it does, the other segment is clipped
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Figure 8-21. Step 5 of the Merging Algorithm: Check for protruding other segment. If the right
end of the other segment is to the right of the right end of the visible segment, then
the other segment extends out from behind the visible segment. Otherwise, the other
segment is completely hidden behind the visible one.

to the unobscured portion, and the visible segment is copied to the output stream
without modification. Finally, if the algorithm reaches step six, the other segment is
completely hidden behind the visible segment and should be replaced with the next
segment.

It turns out that the merging processor can utilize quite a bit of the concurrency
available in the algorithm that has just been presented. The basic idea is to evaluate
all of the tests and to compute many of the other results simultaneously, and afterward
to use a sort of priority encoder for selecting the proper result. Notice that not all
of the computations will produce meaningful values, but the final selection will ignore
nonsense results. Although this may at first seem like a rather simplistic approach,
it is feasible for two reasons. First, all of the arithmetic is performed with fairly low
precision integers, so that the required devices are relatively inexpensive ones. Second,
it takes only a few arithmetic operations to perform each test, making it acceptable
to dedicate hardware for each of them. '

The first test performed by the merging processor determines which of the two
current segments is the visible one and which is the other segment. Recall that this
{est compares two numbers formed by concatenating coordinate values from the two
current segments. While the test could conceivably be performed in parallel with the
others, it is fast enough that doing so would result in only minimal performance gains.
Moreover, since all subsequent tests depend upon knowing which segment is the visible
one, without this information the tests would have to be twice as complicated in order
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to cover both possibilities. The initial test for classifying the two current segments
will therefore be performed in advance of the other tests.

The remaining tests fall into two categories. The first type, used to detect non-
overlapping segments and a completely hidden other segment, are integer comparisons
analogous to the test for initially classifying the segments. That is, coordinate values

from each segment are concatenated to form two numbers, which are then compared.

The tests are
conc(—yvg, zvn) < CODC(‘!IOL, zoz.)

Zop < ZTvg.

The subscripts V and O refer to the visible and other segments, while L and R
designate the left and right segment endpoints. These two tests, of course, require
only very minimal hardware support.

The second type of test determines the side of a line on which a point occurs. In
order to perform this test, the merging processor must substitute the point into the
equation of the line, after first computing the coefficients of the equation. The sign of
the result indicates where the point lies. The three tests of this nature are

0< ayTor+byvzor +ev
0 < Gy Zop + szOR + Cy
0 < aovZor + bovzor + Cov,

where
Gy = 2Zyp — 2vL Gov = Zyvp — ZoL
by =Zyp— Zvp boy == 2o, — ZTvg
Cy = Zyp2yvyr — Tvi2ve Cov = TvrZorL — Tor?ve-

These tests involve ten multiplications and twelve additions.

The actual results computed by the merging processor take the form of broken
segments. These occur either when the visible segment passes behind the other
segment, when the other segment passes out from behind the visible segment, or when
the two segments intersect. If segments are considered to be parametrically defined
line segments, the place at which a segment should be broken is represented by the
parameter values at the right end of the left portion and at the left end of the right

portion. In the cases where segments are split because they overlap, the parameter

values are Tor —€—ZTyyr Zor— Zver
tv__ -_——— tV+ =
Zyp — Tvy Typ — Ty

Zyp +€— Zoy
toy = —r

Zor — ZoL
In the expressions above, ¢ is a small number based on the horizontal resolution of the
computations. The other segment requires only a single parameter because when it
emerges from the visible segment, the left portion is always hidden and is therefore
always discarded. The computation may be implemented with three dividers and a
handful of adders.

In comparison to the situation where segments overlap, the calculation required



108

when the segments intersect might seem to be a bit more complicated. The expression
for the value of z at the point of intersection is

byeo — bocy
avbo — aoby ’

where ay, by, and ¢y are defined as above, and

Go = Zor — 2oL
bo = Tor — Zor

€o = Zor20rL — TorRoRr-

Notice, however, that most of the values used here are line equation coefficients that
have already been computed, as described earlier. Computation of the additional
coefficients requires only two more multipliers and a few more adders. Furthermore,
once the coefficients are available, the other multiplications and the division required
to find the value of z can be implemented by reusing some of the devices that are
already in place. This resource sharing is possible because after computing the line
equation coefficients, the devices would otherwise be idle. The details of this approach
will be covered shortly.

After the z value at the intersection point has been found, the actual parameter
values that will be used to break the segments must be computed. The parameters
are given by L€~ Ty

by == ———— ty, =

Typ — Tyr Tyg — Tvp
T+ €—ZTor

Z—ZTyy

tO =
+
zOR ZOL

Again, the hardware for evaluating these expressions is already in place. The same
devices that were used to compute the parameter values where segments overlap may
now be used to find the parameter values at the intersection point, because they will
have completed their original task by the time the intersection has been found. Thus,
the intersection computation may be accomplished with only a fairly modest increase
in hardware.

The only task remaining for the merging processor is to break the segments as
indicated by the tests. Notice that except in the case of intersecting segments, by the
time the line segment parameters defining the break are ready, the test results will
also be complete. At this point, performance may be enhanced by providing a parallel
set of segment splitting hardware for each of the various ways in which a segment
may be split. In most cases, there will be three pieces of segment that are of interest:
the left part of the visible segment is generally copied into the output stream, while
the right parts of the visible and other segments are retained. Because it is always
hidden, the left portion of the other segment is always thrown away, and there is no
need to compute it. When the parameter values are available, it is not difficult to
break a segment. The new end of the other segment, for example, is given by
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Zoy =Zyp+€

204 = (2or — Zor)to+ + ZoL
Toy = (roa - rOL)tO+ +7roL
Jo4+ = (gox - gor,)to+ + gor
boy = (boa - bot,)to-{- +bor-

Similar expressions give the new ends of the visible segment parts. To compute all
three new segments requires twelve multiplications and twenty-four additions. Here
again, it is possible to reuse existing devices to implement these computations.

The action of the merging processor may be partitioned into five stages, each of
which uses results computed in prior stages. The computations needed at each stage
are listed in Figure 3-22. Successive stages reuse the same set of multipliers, dividers,
and other arithmetic devices. In the first stage, the processor computes all of the test
results necessary for distinguishing the various possible segment configurations. It also
computes some line equation coefficients that will be useful if the segments intersect.
Finally, it determines the parameter values that will be used to break the segments
in case they overlap. These computations require twelve multiplications and three
divisions. At the end of the first stage, the merging processor will have identified the
segment configuration. If the visible segment should be copied whole to the output
stream, the processor may do so at this point. The second, third, and fourth stages
are executed only if has been determined that the two current segments intersect. The
second and third stages compute the value of z at the point of intersection, and the
fourth stage determines the parameter values required to break the segments around
this point. These intersection stages reuse four of the multipliers and all three of the
dividers that were required in the first stage. The fifth stage, which actually breaks
the segments, is executed only if the segments overlap or intersect. It takes twelve
multiplications to break the segments, and these too are implemented with the same
devices used in the first stage.

If the staged operation of the merging processor were implemented with conven-
tional parallel adders, multipliers, and dividers, the circuitry necessary for transport-
ing values to the proper devices would be a switching nightmare. For example, the
multipliers must be connected in several configurations, requiring the use of a paral-
lel multiplexor for each multiplier. The wiring associated with the multiplexors can
easily occupy an immense region on an integrated circuit, even without considering
the size of the multiplexors themselves. On the other hand, this is exactly the sort of
application at which bit serial communication and bit serial arithmetic excel. When
additions and multiplications are combined, the speed of a serial implementation is
comparable with that of a parallel one. Moreover, the area consumed by serial adders
and multiplexors is substantially smaller than that required by their fully parallel
counterparts. Finally, the basic wiring cost for transporting a value from one part

of a circuit to another is reduced because a bit serial communication scheme requires
only a single wire.
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Stage 1. Identify the segment configuration.

I

Gy = Zyp— 2vy by Zyr—Zygn Cy = Zyp2yL— TvrZvR

Gov = Zyp — 2oy bov == Zor — Zvp Cov = TygrRoL — ToLRvR

Qo = Zop — Zor bo == Zor— Zor Co = TorZoL — ZTorZor

test; = conc(—yor, Tor) — conc(—yy g, Zyz)
teste = @y zor +bvzor +ov

testy == ayZop + byZor +ey

testy == aov Zor + bovZon + Cov

tests = Zyp — Zon

_Zop—€—Zyy _ Tor—ZTyy : __TyptEe—ToL
ty. = ———— ty,. = Q4 TF T

Typ =~ Tyy Tyr — Zyy Zor — oL

Stage 2. Compute values for the intersection computation.
il _ vao i2 == boCV
ig == avbo 1:4 = aoby
Stage 3. Find the segment intersection point.
g=t17%
i3 — %y

Stage 4. Find the parameter values where the segments intersect.

T—€— 2Ty T —ZTyy T+ €—Zoy
by =2"CT8ve oy ETIv o EHETfor
Zve — vy Tyvr — Tvy Tor — ToL
Stage 5. Break the segments.
Ty = ZoL € Ty, = Tor
Zy_ = (Zyp — Zyi)tv_ + ZyvL Zy, = (2yg — ZVL)tV+ + 2vy
Fy_ == (rVR - rVL)tV— +rvyL fvy = (rVR - rVL)tV+ +rve

gv- = (gvr — gvi)tv_ + gve
by_ = (byr — bvi)tv_ +byy

vy = (gVR - QVL)tV+ +gve
by, == (byr —byvi)ty, + byy

Zoy == ZTyp+€

204 = (zon e zOL)tO-{- + 2oL
foy = (for — for)tos + ror
Jo4y = (Qon - got,)to+ + goL
bo+ = (bon - bOL)to+ +bor

Figure 8-22. Values computed in the five stages of merging processor operation.
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At this point, a few words about bit serial devices may be in order. Generally,
in serial systems, the successive bits of a number are transmitted in sequence along
a single wire, with the least significant bit transmitted first and the most significant
bit last. The successive bit values are usually spaced according to some system clock.
Thus, a serial multiplexor needs to switch only a single bit, regardless of how many
bits are used to represent a number. A serial adder accepts two such bit streams and
produces a third. At each bit time, the adder computes the sum of the two input bits
and a stored carry bit. The low order bit of this two bit sum is sent to the output
stream. The high order bit is stored in a register, and it will be used as the carry input
during the next stage of the addition. For this reason, serial adders are sometimes
called carry-save adders.

Serial multipliers are very similar to the shift-and-add multipliers used elsewhere.
They can be thought of as consisting of three registers: one for the multiplicand, one for
the multiplier, and one for the sum. These registers are, of course, loaded and unloaded
serially. As in the parallel case, the least significant bit of the multiplier determines
whether the multiplicand should be added to the sum. In the serial device, however,
the carry bits do not propagate across the sum, but rather are stored with each bit of
the result in the sum register. When the sum is shifted right to produce the successive
bits of the product, the carry bits remain in place, and the sum eventually propagates
to the correct carry bit. A serial multiplication like this can actually be faster than a
parallel shift-and-add multiplication because no carry propagation chain is involved.
In contrast, serial division is a bit more difficult because, among other reasons, the
natural order for producing a quotient has the most significant bit first. For the
current application, therefore, the division devices will be implemented as parallel,
shift-and-subtract dividers with serial-to-parallel and parallel-to-serial converters on
either end.

The complete merging processor consists of twelve serial multipliers and three
dividers, together with a host of serial adders, multiplexors, and registers, all controlled
by a relatively simple finite state machine. The state machine accepts test results and
configures the multiplexors to insure that the proper values are computed during the
five stages of the merging algorithm. Notice that although the multipliers and dividers
are shared by successive stages of the merging algorithm, adders can be allocated
rather liberally. This apparent waste is feasible because serial adders occupy so much
less area than devices like multipliers and dividers, and because reusing an adder
would require a multiplexor occupying nearly as much space as another adder.

Lyon has implemented some serial devices as integrated circuits [LYONS80], and
their properties can be used to estimate the area and speed of a merging processor.
His 18-bit serial multiplier occupies an area 1800\ wide by about 300X high, where
lambda ()\) is a unit defined by Mead and Conway as half the minimum line width
[MEADS80]. A 12-bit multiplier would probably be about 1400\ in width. Thus,
assuming that dividers are about the same size as multipliers, fifteen of these devices
stacked one atop another would be about 4500) high. Tripling the width of a single
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multiplier to account for miscellaneous registers, adders, and control logic gives a
rough estimate of the processor’s overall horizontal dimension. At 4500\ by 4200),
the merging processor would be a large chip, but still one that is within the range of
current technology. Furthermore, the cost of a merging processor should drop rapidly
with the progress of fabrication technology.

The amount of time required to process a pair of segments depends, of course, on
their configuration: non-overlapping segments use only the first stage of the merging
algorithm, whereas intersecting segments need all five. In actual scenes, intersecting
surfaces tend to occur rather infrequently, and the merging processor will rarely have
to perform more than two stages of the algorithm. The time required for each stage is
dominated by the speed of the multiplication and division operations. Lyon reported
that his circuits run at 12MHz, but the dividers used in merging processors are limited
by their internal carry propagation chain and by the fact that their operands must
be shifted in before they can be used. With this as a guide, one might estimate
that an actual merging processor would require about 3 microseconds (usec) for every
stage of the merging algorithm. Thus, non-overlapping segments could be processed
in 3usec, overlapping segments would take Busec, and intersecting segments would
require 15usec. The smaller figures are comparable to the time it takes to communicate
segments between processors and are therefore satisfactory. On the other hand, the
intersection time appears to be rather large; but recall that intersecting segments are
relatively rare, so that the average processing time will be closer to the smaller figures.
Short queues on the inputs and outputs of merging processors can help to smooth over
these irregularities. These time estimates are intended primarily to serve as a basis for
the ensuing discussions. Their absolute accuracy is of secondary importance because
it turns out that the performance of the overall scan line tree need not be limited by
the speed of individual merging processors.

3.3.4 The Pixel Conversion Processor

The pixel conversion processor accepts segments from the root merging processor
of the scan line tree and breaks them into their constituent pixels. Unlike the other
processors, there is only one pixel conversion processor in a scan line tree. The other
processors in the tree can perform relatively slowly as individuals because there are
so many of them. The pixel conversion processor, on the other hand, must be fast
enough to generate pixels at the rate required to supply the electron beam sweeping
the television monitor. For this reason, the the pixel conversion processor will use
standard high-speed components in order to achieve the desired level of performance.

Recall that the segments received from the root of the scan line tree are described
by eleven numbers: a y value identifies the scan line containing the segment, z and
z values locate each end of the segment within the scan line, and a pair of vectors
specify the colors at the segment ends. The = values are not useful for pixel conversion,
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but the z values, besides describing where the segment starts and stops, are needed *
to interpolate pixel colors between the segment’s two endpoints. The interpolation
is done incrementally so that the tight loop can be performed using only high-speed
additions. Each color component has its own increment, given by

fr—"L I b — b,

e TR Y P .

]
Ip— TL Ip— 2T Tr — XL
The color interpolation loop is

r=ry ¢=g b=0by

for z; to z; do

ri=r 4+ rg
=g +9g;
b:=1"> + b

At the end of each iteration, the three color components are sent to the digital-to-
analog converters that actually drive the electron guns sweeping the screen.

The hardware for computing the color increments must be fast enough to keep
up with the generation of pixels. The first step, finding the reciprocal of z, — z,, can
be done with a high speed table lookup. Since the values of z are represented with a
precision of twelve bits, the size of the table is perfectly reasonable. The second step
is to multiply the reciprocal by each of the values rp — 7., gr — g1, and bp — b to
find the three color increments. TRW multipliers are well suited to this application.
After the multiplication step, the products can be passed to the incremental color
computations.

Aside from the reciprocal lookup table and the three multipliers, the pixel con-
version processor consists primarily of registers and adders. Three registers hold the
three color components of the current pixel, and three more hold the increment values.
Two additional registers hold the current z value and the final z value, while a third
contains the current value of y. It might be a good idea to duplicate the color and
z registers in order to pipeline the transition between successive segments. Finally,
multiplexors and control logic serve to select either the current set of segment color
registers or a set of background color registers if no segment is present for the current

values of z and y. Thus, the pixel conversion processor consists of perhaps a board’s
worth of high speed logic.

3.3.5 Analysis

The scan line tree has a major performance flaw related to its structure. Notice
that the root of the tree, which is a merging processor, can produce a segment about
once every 6usec. However, with 512 scan lines refreshed at 30 times per second, only
about 85usec are available for each scan line. This means that scan lines can contain
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an average of only about ten or eleven segments. In some applications, like video
games, this level of performance may be adequate, but many other potential uses of
the machine require far more detail in the final displayed image.

The performance shortcoming of the scan line tree is an example of a problem that
plagues many highly concurrent systems. The difficulty is that although a machine
may have a great deal of computing power locked within its component chips, the
time required for transmitting signals between chips, or even to transmit them across
a single chip, limits the speed at which the machine can produce its results. The
communication problem seems to occur often enough in the design of highly parallel
machines that it might well be called the non-von Neumann bottleneck.

Tree structured machines like the one presented here seem especially susceptible
to the communications malady. This is because a tree is essentially a hierarchy of
bottlenecks. In a binary tree, each node in the tree has two connections below, but
only a single connection above. If it passed values directly from its inputs to its output,
3 node could accept values from each input at only half the rate that it could produce
values at its output. In the scan line tree, this means that merging processors, which
produce a result every Busec or so, can accept a value from each input only once every
12pusec on the average. This analysis assumes, of course, that the number of segments
created by splitting is balanced by the number of segments destroyed because they are
completely hidden. The communications bandwidth is thus progressively constricted
as the computation proceeds from the leaves of the tree to its root. In order to avoid
this inherent bottleneck, it is necessary somehow to provide more bandwidth at the
root.

One straightforward way to double the bandwidth out of a tree structured ma-
chine is to double the hardware by using two machines. In the problem of hidden
surface elimination, one of the machines might be computing the left half of the
picture while the other machine computed the right. This approach certainly works,
although it seems rather extravagant. Notice that each scan conversion processor at a
leaf of the tree produces a segment every Busec, and since the leaf processors generate
only one segment per scan line, there is a substantial performance reserve at that level.
Duplicating the tree near its leaves therefore seems rather pointless.

A better approach is to concentrate the duplication at the site of the bottleneck
by grafting an extra root onto the tree. This surgery can be accomplished by first
removing the root processor and exposing the two subtrees. Splitting processors, to
be described shortly, are then attached to each of the exposed stumps. Finally, two
new merging processors are connected to the splitting processors. The operation is
depicted in Figure 3-23. A splitting processor has a left output and a right output,
each of which produce segments for the corresponding half of the screen. The two left
outputs form the inputs of the left merging processor, and the right merging processor
is conpected in a similar manner. Notice that the two input streams of the substitute
root are balanced by two output streams. Thus, if everything in the new root can
run at full speed, each of the two subtrees can supply a segment every Busec. More
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Figure 8-28. Replacing the root of a scan line tree can double its output bandwidth.

importantly, the two output paths can produce two segments every Busec, doubling
the output bandwidth of the tree with only a modest expenditure in hardware.

The job of the merging processor is to separate the incoming segments into those
that appear on the left half of the scan line from those that appear on the right. When
it receives a segment from its input, it copies that segment into the proper one of two
queues connected to its two outputs. Once every scan line, it may be necessary to
break a segment that straddles the boundary between the two halves of the screen.
Notice that the queues on the output path are required, because without them the
splitting processor could run only at the speed of a single output, rather than at the
combined speed of both outputs.

Using splitting processors to increase the capacity of the scan line tree makes
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some assumptions about the way in which polygons are distributed throughout the
leaves of the tree. Suppose, for example, that every polygon visible in the final image
was stored in a leaf of the left subtree. In this case, all of the segments that form
those polygons must pass through the root of the left subtree, and inclusion of the
splitting processors has merely moved the bottleneck. For the splitting processors to
be effective, the visible polygons must be evenly distributed between the subtrees. The
easiest way to accomplish this distribution is to assign polygons to processors in some
random fashion, so that on the average, subtrees will be evenly loaded with visible
polygons. A more predictable alternative uses a subdivision scheme similar to the
one described in connection with the ray tracing machines. This approach partitions
the modeling space into a collection of subvolumes, and it insures that the polygons
enclosed by a particular subvolume are evenly spread among the available subtrees.
Such an arrangement should insure that the subtrees are evenly loaded, regardless of
viewpoint, and the risk of bottleneck is therefore reduced.

Although doubling the output bandwidth of the scan line tree is certainly a step in
the right direction, it still permits a maximum scene complexity of only about twenty
segments per scan line. This may not be enough for some applications, especially
considering the fact that the screen resolution is 512 pixels per scan line. Fortunately,
the trick of splitting the tree at its root can be applied repetitively. For example, by
removing two levels of nodes from the root of the tree, the outputs of four merging
processors will be exposed. Suppose that two of these outputs are passed through a
pair of splitting processors, as described above, and that the other two cutputs are
passed through another pair. The result would be two outputs for the left half of the
picture and two for the right half. If the two left outputs were passed through yet
another set of splitting and merging processors, the result would be outputs for the
first and second quarters of the imnage. Similarly, the two right half outputs would be
split into the third and fourth quarters. Thus, by replacing two levels of the tree, the
output bandwidth maybe increased by a factor of four to about 40 segments per scan
line. The bandwidth may be further increased by breaking out as many levels of the
tree as are necessary. Figure 3-24 shows the top of a tree with sixteen outputs for a
total of 160 segments per scan line. If n levels are replaced, increasing performance by
a factor of 27, then n2" splitting processors and (n—1)2" +1 extra merging processors
will be required. For n = 6, giving about 640 segments per scan line, which is more
than can be displayed, this works out to 384 splitting processors and 321 extra merging
processors. In a machine with thousands of such processors, this represents a fairly
modest increase.

When splitting is extensive, an opportunity for even greater integration presents
iteelf. In a scan line tree with just a single root, all of the segments visible in the final
image will be rendered by a single pixel conversion processor. On the other hand,
when a tree is split into many roots, it is possible to consider providing a distinct
pixel conversion processor for each root. Each of these processors will be required to
produce pixels for a vertical strip of the final image. The width of the strip depends, of



117

&
2




118

repeat forever

comment: Get a segment description from the input stream.

retrieve(y, Zp, 21,1, 91, 00, Zr) 202 Th) Ory OR);

if z, < 1 then
comment: The segment lies on the left half of the screen.
enqueueLeft(y, 2., 2,71, 91, br, 228, 28, TR, Or, D)

else if z; > % then
comment: The segment lies entirely on the right half of the screen.
enqueueRight(y, 2(z, — ]2‘): Zp,7L, 0u, b, 2(zR — %), Zgp,Tr,0r, br)

.
’

1

?

else
comment: The segment crosses from left to right. ;
-1 Lte—z,
i = ; ty == ———;
Tp—TL Tp— T
2= (zg — 2 )t- +2;; 24i= (25 — Z)t+ + 21;

roi=(rg—rp)te +ry  re=(rp — o)ty 4+
g—i==(gr — gr)t— +gr; 9+:=(9r — gu)b+ + gs;
b= (bp — b )t— +by; b= (bp —bo)ty +by;
enqueueleft(y, 2z,, 21,71, 92, b1, 1, 2,7, 9, b);
enqueueRight(y, 2¢, 24+, 7+, 9+, b+, 2(zr — 1), 28, 72, 92, br);

Figure 8-25. Program describing the behavior of a splitting processor.

course, on the extent to which the root was split. As splitting increases, the number of
pixels produced by a single pixel conversion processor during each scan line decreases,
while the number of segments that the processors must accept is fixed by the rate
at which they can appear at the split roots. It should therefore be quite feasible to
design » single chip version of the pixel conversion processor that can perform at the
required rate. Of course, some faster hardware must still be included to compose the
resulting bands of pixels into the continuous stream needed for display on a television
monitor.

The structure of a splitting processor is not very complicated, consisting as it does
mainly of memory for implementing its queues. The one test that it must perform
identifies segments that should be broken by comparing the z-coordinates of their
endpoints with the splitting coordinate. The single computation, which performs the
actual break, can be implemented with a divider and a few multipliers, as described
for the merging processor. It might seem as though a processor’s splitting coordinate
would depend on its position in the tree, but this is not the case. A processor can
always split segments about the center of the screen, provided that it also transforms
the output segments so that they are represented in full screen coordinates. This
transformation may be accomplished with single bit shifts.

The size of the queues in splitting processors is another design parameter that
must be settled. Basically, the queue must be large enough to hold about one scan
line’s worth of segments as received from the merging processor at its input. To see
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this, notice that the queue must clearly be able to hold all of the segments destined
for the left output, because until all such segments are accepted from the input, none
of the segments for the right output will be accessible. Similarly, by symmetry, the
queue must be able to hold all of the segments in the right portion of the image,
because the left segments for the next scan line cannot be accepted until the right
segments on the current scan line have passed through the input. Thus, the splitting
processor must be able to buffer the segments for one full scan line. Since merging
processors can produce a segment once every Busec or so, and since the scan line time
is 65usec, a scan line might contain about eleven segments. Of course, a single scan
line in the image could conceivably be more complex than this, but if it were, it could
not be displayed in real time. The situation can be remedied by splitting the tree at a
deeper level to increase the overall bandwidth and ease the burden on individual nodes.
Another possibility is to buffer more than a single scan line and to hope that the scene
complexity averaged over several lines would be more acceptable. The pixel conversion
processor would be required to smooth out irregularities in complexity at some later
stage in the picture generation process. This approach doesn’t work, however, because
of the scan line coherence exhibited by most pictures. That is, consecutive scan lines
don’t differ by very much, and there is a good chance that if one particular scan line
is too complicated, the next one will also be too complicated.

A remarkable property of a splitting processor is that the amount of memory
required for buffering segments does not depend upon the position of the processor
within the tree. It is also independent of the number of other splitting processors
that are in the same tree. Instead, the extra buffering requirement of a deeply split
tree is met by an increased supply of splitting processors. The storage requirement
depends only on the ratio of the scan line time to the segment communication time.
This fact means that a single splitting processor design could be used in a variety of
tree configurations. Notice also that since eleven 12-bit integers represent a segment,
it takes only about 1500 bits to represent the eleven segments that can occur on a scan
line. Considering the simplicity of the remainder of the splitting processor, it should
not be at all difficult to fabricate the complete processor, including buffer memory, on
a single integrated circuit.

Another difficulty with the scan line tree as presented here is the fact that not all
of the processors in the tree may be fully utilized. Recall that after the transformation
and clipping processors at the leaves of the tree have finished with their respective
polygons, each processor may or may not produce a polygon as a result. When a
polygon is outside of the viewing volume, it will be clipped away to nothing. Having
received no input, the scan conversion processors for such invisible polygons must sit
idle, and the merging processor in at least one level of the tree will not have any
segments to merge.

A similar problem occurs in connection with back facing polygons, which form
part of some closed object in the scene and face away from the viewer so that they
cannot be seen in the final image. Back facing polygons are processed in the same
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manner as other polygons, consuming processing resources even though they are
invisible. The transformation and clipping processors could, of course, perform a back
facing polygon cull to eliminate such polygons, but doing so would simply idle some
scan conversion processors; it would not result in more efficient use of resources.

The annoying property of the scan line tree is, then, that its constituent processors
may not always be fully utilized. Thus, a tree of a given size has the processing power
to handle more polygons than it will usually receive at its leaves. The reason for this
situation is that polygons are assigned to leaves before it has been established that the
polygons even lie within the visible volume or face the viewer. The other side of the
argument is that since the culling is not done until after polygons have been assigned
to leaves of the tree, the set of polygons held in the leaves is constant from frame to
frame. Thus, some waste of processing power seems to be the price for eliminating the
communication that would be required for assigning polygons to leaves during every
frame time. Also, notice that if polygons are culled in advance, some processors may
also be idled because the number of polygons in the scene may be reduced to fewer
than the number of leaves in the tree.

One possible trade-off that can increase processor utilization in exchange for
communication cost is to replace all of the transformation and clipping processors
with a single, more conventional transformation and clipping pipeline. Such a device
might contain dozens of TRW multipliers with associated logic, and because of its
pipelined nature, it would be able to transform and clip a stream of polygons in rapid
succession. Invisible polygons would be clipped away, and back facing polygons could
be detected and discarded, leaving only those polygons that are at least potentially
visible.

Distributing the remaining polygons to the leaves of the tree requires some care
to insure that the communication is fast enough. One technique is to shift the
polygon descriptions serially from one scan conversion processor to the next. Several
of these shift chains would be multiplexed from the output of the transformation and
clipping processor in order to improve the overall bandwidth. This is the Gatling gun
approach. Once the polygouns have been transported to the scan conversion processors,
the machine can proceed as usual, except that now more of the individual processors
can be utilized.

For some ranges of scene size, the conventional approach to transformation and
clipping may be more economical than devoting a processor to each polygon. Clark’s
Geometry Engine, for example, uses a mere twelve chips to form a pipeline that can
transform and clip polygons [CLAR80, CLARS2). Its performance has been estimated
at about 900 polygons every thirtieth of a second. If polygon routing can indeed
be performed quickly enough, the Geometry Engine seems suitable for machines
processing a moderate npumber of polygons. The Evans & Sutherland PS300 is a
vector drawing device that uses hardware based upon a collection of TRW multipliers
to accomplish high-speed transformation and clipping, and the implementation fits
on a small number of quite large printed circuit boards. This hardware can handle
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between 5,000 and 10,000 polygons in real time, depending upon vector lengths and
the amount of clipping that is required [EVANS1]. A similar device would be useful
in larger scan line trees.

Another trick can be used when transformations are performed outside the scan
line tree. A bit of sorting can increase the number of polygons that may be handled
by a tree of a given size. Notice that the scan conversion processors are occupied only
for those scan lines overlapped by their corresponding polygons. After scan converting
these polygons, the processors are idle for the rest of the frame. Instead, the processors
could scan convert a sequence of polygons, so long as each polygon in the sequence was
completely above the next. This ordering restriction must be imposed to insure that
the output of the scan conversion processor conforms to its ordering constraint. The
hardware for routing the polygons might use some kind of a bucket sort to accomplish
this ordering.

The phenomenon of aliasing is still another problem that must be considered in
connection with the scan line tree. Since the machine operates by sampling the scene
at scan line resolution, it is inhereﬁtly susceptible to the staircasing and disappearing
polygon effects that are the primary symptoms of aliasing. Probably the simplest way
of dealing with the problem is to compute the image at a higher resolution than the
television monitor is capable of displaying, and then to filter the higher resolution
image down to the screen resolution. The filtering operation can be performed by
taking the weighted average of nearby pixels in the high resclution image to form
a single pixel in the low resolution image. This technique is not perfect, of course,
because the high resolution image was itself computed by sampling the true image.
The effects of aliasing will therefore be visible to a lesser extent in the high resolution
image as well, and no amount of filtering can eliminate them. The higher resolution
sampling and filtering technique does, however, reduce the visible effects of aliasing to
a more acceptable level.

The same basic hardware in the scan line tree can be used to compute a higher
resolution image, although more hardware will be required. Increasing the resolution
in the z direction, parallel to the scan lines, does not present much of a problem.
It may be done by increasing the resolution of the computations within the merging
processor. In fact, the twelve bit resolution already used may be sufficient. Increasing
the vertical or y resolution, on the other hand, is somewhat more difficult because more
scan lines must be computed in the same frame time. This means that the amount of
time available to compute each scan line will be reduced. To offset the reduction, it is
necessary to increase the depth to which the root of the tree is split. Notice, however,
that this change affects only the root of the tree, where the computations bottleneck.
The performance at the leaves is still not taxed by the additional modification.

Perhaps the most appealing aspect of the scan line tree is its flexibility. An in-
ventory of just four standard processor types is sufficient to configure machines having
a wide range of capacities and performance. Identical clipping and transformation,
scan conversion, merging, and splitting processors can be used in differing proportions
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to implement all of these machines. For example, the performance requirements of a
video game are relatively modest, while cost is an important consideration. In such an
application, a tree capable of handling only a hundred or so polygons at low resolution
might be sufficient. At this performance level, transformation and clipping could be
handled in the conventional manner with Clark’s Geometry Engine. Including the two
hundred or so chips in the scan line tree, the entire machine might be expected to fit
on a couple of boards.

At the other extreme, flight simulators must be able to handle scenes consisting
of thousands of polygons. A scan line tree capable of handling 2,500 polygons at high
resolution requires fewer than 10,000 chips if all processors are packaged individually.
This compares favorably with the Evans & Sutherland CT-5, a state of the art com-
mercial flight simulator. The CT-5 is composed of about 85,000 chips and can handle
a scene of similar complexity [HALV82]. Thus, if built today, the scan line tree seems
to be a viable alternative to the conventional approach. Moreover, the performance
of the scan line tree can be extended by increasing the number of processors, or the
number of processors can be reduced in order to lower costs in exchange for perfor-
mance.

As integrated circuit technology advances, the packaging of processors in the scan
line tree can be improved so as to reduce the overall chip count even further. For
example, one chip type might contain a scan conversion processor together with a
merging processor, since a complete system has the same number of both processor

types. Similarly, it might be feasible to package splitting processors with merging
Processors.

3.3.6 Extensions

The structure and operation of the scan line tree is flexible enough to permit
consideration of enhancements to improve its performance or image quality. Recall
that the scan line tree uses Gouraud shading, which computes the color of a polygon at
its vertices and interpolates these to find the colors of interior points. This algorithm
was chosen for its simplicity, but anomalies in the resulting image can occur because
the technique has no real geometric basis. A better approach is to use Phong shading,
which interpolates the vertex normal vectors rather than their colors. This method
requires applying the lighting model at every pixel of the final image. The scan line
tree could easily interpolate the normal vectors at the required speed. In fact, if the
three components of the color vector that it now processes were simply regarded as
the three components of a normal vector, it could perform the required computations
with no hardware modifications at all. Scan converting the final segments in real
time using Phong shading is, however, another matter. The pixel conversion processor
would need extensive modification; but if the necessary changes could be made without
excessively complicating the pixel conversion processor, it seems feasible to consider
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making Phong shaded images in real time.

Another possible extension to the scan line tree involves the use of texture map-
ping. This technique maps a two-dimensional function onto the surface of a polygon
and uses the function values to determine the color of points within the polygon, to
perturb the surface normal vectors before performing a lighting computation, or to
otherwise change the appearance of a polygon in a possibly irregular manner. In order
to accomplish texture mapping, the scan line tree must maintain uy-coordinate pairs
in the same way that it now maintains color vectors. Each vertex of the polygon
is initially assigned a corner of the unit square on the uv-plane. As the polygon is
broken up in the process of clipping, scan conversion, and segment merging, these
coordinates must be interpolated. This additional feature would, of course, require a
modest amount of extra hardware within the scan conversion, merging, and splitting
processors. When segments are finally presented to the pixel conversion processor,
each endpoint will have an associated uv-coordinate. Once again, it is up to the pixel
conversion processor to handle them in real time, probably by performing some sort
of a table lookup for each pixel on the screen.

As described so far, the number of polygons that the scan line tree can handle
is limited by the number of processors that are available. With the addition of a
moderate amount of hardware, the system can sacrifice real time performance in favor
of rapidly produced images of more complicated scenes. It does this by reusing the
existing processors several times in order to simulate a larger tree of processors. The
method begins by partitioning the polygons of the scene model into groups. The num-
ber of polygons in each group must not exceed the number of processors at the leaves
of the tree, but there are no other restrictions on the way polygons are assigned to
groups. Once the first group has been loaded into the tree, the polygons are processed
normally. Instead of pixel converting the resulting segments, however, the machine
must copy them into some external storage device, which can be a semiconductor
memory, a bubble memory, or even a disk, depending on storage and performance
requirements. After the first group of polygons has been processed, the second may be
loaded into the leaves of the tree. This second group is also handled in the usual way,
except that the result must be merged with the segments from the first group. Notice
that because the stored segments were copied directly from the output of a merging
processor, they are in scan line order and do not overlap. They may therefore be used
directly as an input of an additional merging processor. The other input of this extra
processor comes directly from the root of the scan line tree. If there are more than
two groups of polygons, the output of the new merging processor should be saved for
comparison with the next group of polygons. This procedure should be repeated until
all of the polygons in the scene have been considered. When the scene is complete, the
stored segments can be routed to the pixel conversion processor for display. Depending
upon the speed of the memory and the complexity of the lighting model being used,
the television monitor may be refreshed either by repetitively pixel converting the
stored segments or by copying the final image into a conventional frame buffer.
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3.4 Hidden Line Elimination

The problem of eliminating hidden surfaces from a shaded image in real time
has been solved in many ways, but the problem of quickly eliminating hidden edges
from a line drawing has proven resistant to solution. No really workable methods have
been proposed. The difficulties are twofold. In the first place, the calculations for the
hidden line problem must all be exact to the precision of the numeric representation
being used, whereas computations in a hidden surface algorithm need be performed
only to the resolution of the display. The limited resolution, in turn, permits the use
of simplifying approximations. The second major difficulty in a hidden line algorithm
is the fact that there is no natural one-dimensional ordering that can be imposed upon
the two-dimensional objects. In a hidden surface algorithm, pixels on the screen can
be ordered according to the pattern of the raster scan, permitting the use of sorting
techniques to improve the performance or to simplify the implementation. No such
ordering exists in the unquantized hidden line problem, making the use of sorting
more difficult. Sutherland has devised an algorithm that sorts polygon edges on the
basis of their relation to other edges in the scene, but its recursive nature limits its
suitability for a hardware implementation [SUTHT75]. As integrated circuit technology
advances, it is becoming practical to consider alternatives that rely on simple, brute
force computations. The application of massive parallelism can serve as a substitute
for sorting, making hidden line elimination machines almost feasible.

One straightforward approach to designing a real time hidden line elimination
machine is to devote a processor to each polygon and to connect them as a linear
pipeline as in Figure 3-26. After the transformed and clipped polygons have been
loaded into the processors, they must be passed through the pipeline once again.
During this second pass, each processor accepts 2 polygon from its input and compares
that new polygon with the one it has stored. If the new polygon is at all hidden by the
stored polygon, the processor modifies it so that only the visible portions remain. It
then passes these visible parts through its output to the next processor in the pipeline,
which treats them in a similar manner. Polygons, or polygon fragments, that survive
the complete trip through the pipeline are visible and may be displayed.

One of the difficulties with the pipelined approach is that the individual processors
would have to be rather sophisticated in order to be capable of comparing arbitrary
polygons. If one were willing to disassemble polygons at the beginning of the pipeline
and reassemble them at the end, the polygons could be broken into simpler geometric
forms like trapezoids. The processors in this modified machine would need to deal
only with trapezoids, and not with general polygons. This approach would increase
the number of processors required, but each processor would be less complicated.

Another possibility is to maintain the assignment of one polygon per processor,
but to pass polygon edges, rather than complete polygons, through the pipeline. This
revised machine is diagrammed in Figure 3-27. The processors in such a machine
would forward only those parts of edges that are not hidden by their polygon. Com-
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paring a line with a polygon is a substantially simpler task than the comparison of two
arbitrary polygons. The price for simplifying this comparison is that implied edges,
which occur where polygons intersect, cannot be shown because the planar properties
of polygons are, of course, lost when they are treated as separate, unassociated
edges. On the other hand, it is quite natural to mix wire frame drawings with solid
surfaces using this technique. Moreover, for some applications it should be possible
to precompute implied edges and to include them as extra lines in the scene model.

Yet a further simplification can be made by considering infinite extensions of the
polygons, since it is easier to deal with complete lines and planes than it is to process
line segments and polygons. To see how this might work, refer to Figure 3-28 and
notice that the volume of space hidden behind a convex polygon in three dimensions is
bounded by planes. One of the boundaries is the plane containing the polygon itself,
and there is another boundary for each of the polygon’s edges. The edge boundary
planes each contain one edge of the polygon, and they extend off to infinity in a
direction parallel to the lines of sight. In the screen coordinate system, these edge
boundaries are perpendicular to the sereen, which is contained in the zy-plane. The
region of space hidden by a convex polygon is the semi-infinite convex volume enclosed
by these boundary planes.

The task of determining the visibility of a point with respect to these boundary
planes is like the clipping problem turned inside out. Recall that in the usual pipelined
clipping algorithm, each clipping plane divides space into a region that is definitely
invisible and a region in which visibility is indeterminate. If a point is not ruled
invisible by any of the clipping plane tests, it is assumed to be visible. The tests are
reversed in the anti-clipping algorithm needed for hidden line elimination. A boundary
test can determine that a point is visible, but no single test can definitely assert that
a point is invisible. Only after being compared with all of the boundaries can a point
be considered invisible by default.

To determine which parts of a line segment are visible, it is necessary to determine
which part passes through the hidden region of space enclosed by a polygon’s implied
boundary planes. It is easiest to do this by determining the visibility of the complete
line and then later restricting this result to the original line segment. Line segments
will be represented as a parametric interpolation of their two endpoints. A complete
line is thus represented by recognizing values of the parameter that lie outside the
range from zero to one, and the intersection of a line with one of the boundary planes is
represented by the value of its line parameter at the point of intersection. In addition,
it is necessary to know which end of the line lies on the visible side of the boundary
plane. The ends of the line can be identified as corresponding either to very positive
or to very negative values of the line parameter, and so it is possible to associate with
each intersection a one bit flag that signals whether the positive end of the line is on
the visible side of the plane.

The result of testing a line against each of a polygon’s boundary planes is a set
of parameter values with the corresponding flags that signal which end of the line is
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Figure 8-28. The region of space hidden by a polygon is bounded by plapes. There is one plane
for each edge of the polygon, plus one plane for the polygon itself.
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Figure 3-29. Each intersection with a boundary plane asserts the visibility of one end of the line,
shown here as arrows directed toward the visible end. After eliminating redundant
information, at most twe intersections remain for each line.

definitely visible, as shown in Figure 3-29. There is clearly quite a bit of redundant
information here. For example, suppose that two different intersection points each have
flags specifying that the positive end of the line is on the visible side of a boundary
plane. In this case, the positive end of the line is represented as being visible in
two different ways: each visible region extends from one of the intersection points to
positive infinity, and the region extending from the point with the smaller parameter
value includes the region extending from the other point. Because this other point lies
within a region already represented as being visible, it contributes no information and
may be eliminated. After repeatedly applying this technique, at most two intersection
points will remain. One of them describes the earliest point, the point having the
smallest parameter value, at which the positive end of the line is known to be visible.
The other describes the latest point where the negative end is definitely visible. If the
two visible ranges overlap, then the complete line is visible; otherwise, the portion of
the line not covered by either visible region is hidden behind the polygon. Of course,
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those parts of the line where parameter values fall below zero or rise above one are
always invisible, so that some further simplification might be possible.

The complete algorithm for eliminating hidden lines compares each line segment
in the scene with every polygon. The polygon comparison, in turn, intersects the
line containing the segment with every bounding plane implied by the polygon. The
result of this comparison is a collection of intersection points together with their cor-
responding visibility flags. After eliminating redundancies, at most two intersections
remain. One of them describes the extent to which the positive end of the line is
visible, and the other does the same for the negative end of the line. Before the line
is passed to the next polygon, these two intersections are converted into a form that
identifies the single hidden region of the line rather than the two visible regions. As
lines are passed from polygon to polygon, these invisible parts are combined even fur-
ther, as illustrated in Figure 3-30. For example, if two polygons obscure overlapping
portions of the line, then the representations of the two portions may be consolidated.
Finally, after comparing the line with every polygon in the scene, any parts that were
not found to be invisible may be displayed. Notice that if this algorithm were imple-
mented in software, it would be uncomfortably slow because every line segment must
be compared against every polygon. The algorithm is simple enough to implement
in hardware, however, where massive concurrency can help to compensate for the
unsophisticated comparison technique.

A machine architecture to implement this algorithm takes the form of a pipeline
much like the one shown earlier in Figure 3-27. Although from the earlier figure it
might appear that each polygon will be handled by a single processor, in actuality,
responsibility for each polygon is distributed among a pipelined succession of proces-
sors in s manner not unlike the standard clipping pipeline. Figure 3-31 illustrates
the arrangement. Polygons in the scene are assigned one processor for each of their
edge boundary planes, plus an additional processor for the plane of the polygon itself.
Descriptions of the planes are shifted into the processors to prepare them for the
coming hidden line processing. Once the planes have been loaded, the line segments
for display are fed through the pipeline. Each processor must intersect incoming line
segments with its own stored boundary plane to determine which end of the line is
on the visible side of the boundary. Additionally, the pipeline of processors may be
used to eliminate redundant intersections, as discussed above. At the end of the se-
quence of plane processors assigned to a polygon, there is a cleanup processor which
examines the remaining intersection points to determine whether any or all of the
segment has been hidden. The segment description, if any, that is passed on to the
processors representing the next polygon will reflect these changes. Any segments that
survive unscathed their journey through the entire pipeline are not hidden and may
be displayed.

Communication between successive processors in the pipeline takes the form of
asynchronous message passing. Three kinds of messages are used. The first type, plane
messages, carry descriptions of the bounding planes that define the scene. Planes are
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represented by the four coefficients of a plane equation, plus some control bits that
will be described later. The second type of message describes a line segment as two
endpoints. The third message type describes the intersection of a line with a plane,
using the parameter value of the intersection point. There are also some control bits
specifying, for example, which end of the line is known to be visible. Intersection
messages do not contain any information that identifies the line segment to which
they apply. Instead, they are assumed to correspond to the most recent line segment
message to have passed through the pipe, and so in effect, they follow the line segment
description through the pipeline.

The plane messages are used to load the descriptions of the scene’s bounding
planes into the pipeline. The data path for transmitting plane messages forms what is
essentially a shift register running through all of the processors. The communications
occur along a set of wires different from those used to carry the other two types of
messages, and buffer memory is provided within each processor so that the operations
of processing the current scene and loading the next may be overlapped. When it is
time to switch between the two, a command from the end of the pipeline causes the
contents of the buffer memory to be copied into the processor’s active memory. Once
this has been done, the planes defining the next scene may be loaded.

When a plane processor receives a segment message, it must first forward the
message to the next processor in the pipeline and then compute the intersection of the
line with its stored plane. Recall that the processor’s boundary plane is represented
by the four coefficients of a plane equation:

ar+by+ez+d=0.

Also, the line segment carried in the message is represented by its two endpoints,

(21,91, 21) and (22, y2, 22). If the line is parameterized by £, an arbitrary point along
the line is given by

((z2 — zy)t + 31, (y2 — Y1)t + y1, (22 — 21 )t + 21).
Substituting this point into the line equation gives

((az2 + bys + czp) — (azy + byy + c21))t + (azy +byy +cz) +d =0,

or (ko — k1)t +ky +d=0,

where
ki =azy +byy + ez and kg = aze + bye + c2o.

Solving for the parameter ¢ yields

Thus, it takes a couple of dot products and 2 division to find the value of the parameter
at the point of intersection. It turns out, though, that the actual value of ¢ is really
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needed only to find the three-dimensional point of intersection, and this point, in
turn, is not really needed until the segment must be displayed. Therefore, the plane
processors can save a division, with its associated time and hardware, simply by
representing the parameter ¢ as a rational number. A single division device at the end
of the pipeline can replace a divider within each processor. With this modification, the
intersection position must be carried as two numbers, t, and t4, where t, = k; +d
and t4 = ky — kg 8o that ¢ = £, /t;. An additional advantage of using a rational
representation is that the case where the line and plane are parallel, and therefore
where no intersection point exists, will not cause any difficulty. Should this happen,
the value of ¢4 will simply turn out to be zero. This behavior is similar to what
would occur if homogeneous coordinates were being used. Also, by not performing
the division too early, loss of numeric precision may be reduced.

After finding where the line and plane intersect, the plane processor must still
determine which end of the line lies on the visible side of the boundary plane. To see
how this may be easily done, reexamine the expression for the distance from the plane
to a point on the line:

Distance = (ko — k1)t + (k1 + d) = —tat + 1.

As t increases to positive infinity, the distance will have the same sign as —4. Thus,
because the positive side of the plane is the visible one, if —t; > 0, the positive end
of the line is known to be visible. If the line and plane are parallel so that —t; = 0,
the distance has the same sign as ,,, which is the distance from the plane to the first
endpoint of the line segment. Therefore, the positive end of the line is known to be
visible if —t4 > 0, or if —t4 == 0 and ¢,, 2> 0. Similarly, the negative end of the line
is known to be visible if —t4 < 0, or if —t4 == 0 and t, > 0. A one bit visibility flag
v will be set to reflect these conditions:

vi=(—tg < 0).

The intersection is ignored completely if —4 = 0 and t,, < 0, because this is the case
where the entire line is behind the boundary plane. Barring this case, if the positive
end of the line is visible, v will be cleared to zero; ctherwise it will be set to one. Once
it has computed the intersection and visibility, the plane processor retains them until
another segment message is available at its input. Before accepting the new segment,
it packages the intersection values and visibility flag as an intersection message and
passes them on to the next processor. The reason for not immediately forwarding the
intersection will become apparent shortly. k
When a plane processor receives an intersection message, it compares the descrip-
tion of the intersection with the values that it had previously computed and stored.
The purpose of this action is to reduce the number of intersection messages flowing
through the pipeline by eliminating the redundant ones. Suppose that the values
received in the intersection message are &}, ¢, and v/, while the stored values are t,,
t4, and v. If v’ 5% v, the two intersections describe the visibility at different ends of the
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line, and the pair cannot be simplified. By convention, intersection messages referring
to the positive end of the line precede those for the negative end through the pipeline,
so the plane processor must forward the message having a visibility flag of zero and
retain the other message.

If the intersection message received by a plane processor describes the same end
of the line as the processor’s stored message, in other words if ¥/ = v, then one
of the descriptions is redundant and may be eliminated. In order to identify the
redundant description, it is, of course, necessary to compare the parameter values at
the point of intersection. The values are represented as rational numbers, so in order to
compare them, the processor must perform a cross multiplication while paying careful
attention to sign. Notice that the multipliers used earlier to find the intersection are
now idle and may be reused for the cross multiplication. The comparison allows the
plane processor to identify the redundant intersection, which it then discards. The
remaining intersection is retained for comparison with the next incoming intersection
message. These operations may be summarized as follows.

e:= (tnt}y < t,ts) xor (t4 < 0) xor (£, < 0);
if (c=v) then vi=1"; t =t ; tg=1¢,

Thus, when the two intersections describe the same end of the line, no output message
is generated, and when the next segment message arrives, any remaining intersection
description is flushed through the output before the segment is accepted.

A different type of processor, called a cleanup processor, is situated in the pipeline
after the sequence of processors assigned to the boundary planes of a single polygon.
The purpose of the cleanup processor is to use the intersections found by the plane
processors to identify portions of the line segment that are not visible. If it turns out
that the entire line segment is hidden, the cleanup processor will repress the segment
message to insure that it gets no further through the pipe. If the hidden part of the
line does not have parameter values between zero and one, the intersection messages
that carry this information are superfluous because they do not apply to the original
line segment, and the cleanup processor therefore eliminates them. Finally, if part of
the original line segment is obscured, the cleanup processor records this condition by
following the segment message with a pair of specially marked intersection messages
for the two ends of the hidden part. These new messages are identical to the original
intersection messages, except that another control bit k is set to mark them as the ends
of a hidden region. Although not mentioned earlier, when a plane processor receives
an intersection message with the h bit on, it must immediately forward the message
without modification. The final task of the cleanup processor is to merge overlapping
hidden parts of the segment so that the number of messages flowing through the
pipeline does not become excessive.

The actual operation of the cleanup processor is not unreasonably complicated.
When it receives a segment message, it finishes with the previous segment before
storing the new message and reinitializing itself. If it receives an intersection message
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with A = 0, signalling a freshly generated intersection, it retains the intersection
and waits for a second one to appear. When another intersection message arrives to
describe the visibility of the other end of the line, the cleanup processor must compare
them using the same cross multiplication technique found in the plane processors.
If the visible regions overlap, the line does not pass behind the polygom, and the
intersections are of no consequence. On the other hand, if the visible regions are
disjoint, the portion of the line that lies between them is hidden, and the processor
must determine whether this hidden region is part of the actual line segment. This
will be the case only if one of the ends lies between zero and one. Once again, it is
not necessary to perform a division in order to make this determination, rather it is
sufficient to compare the numerator and denominator, t,, and ¢4, at each intersection.
If the hidden region does indeed encompass part of the line segment, the hidden bits
h in the two intersection messages must be set.

The next phase of cleanup processor operation detects and merges overlapping
hidden designations so as to reduce the message flow through the pipeline. In order
to accomplish this merging, the processor attempts to keep the sequence of hidden
parts sorted according to their position along the line. When in sorted order, hidden
parts that should be merged will be adjacent to each other and may therefore be
compared more easily. Unfortunately, the sequence of hidden parts may be arbitrarily
long, and to sort the entire sequence at once would require an arbitrary amount of
memory for storing the individual items. Notice, however, that sorting is not crucial
to the operation of the pipeline; it merely serves to reduce the message traffic. This
observation suggests that it is sufficient for a single processor to sort the messages only
partially, on the assumption that some processor downstream will be able to improve
the ordering even further and that the messages will eventually be sorted perfectly.

The collection of cleanup processors performs a kind of bubble sort. Each proces-
sor has enough memory for two hidden parts, which are made up of four intersection
messages. If they are in the wrong order, it will swap them before transmitting one
of them to its output. Here again, the cross multiplication technique described ear-
lier is used for the comparison. This organization means, of course, that completely
invisible segments may not be culled until after they have passed through several
cleanup processors, since segment messages must precede their associated intersection
messages. For example, if there are three hidden parts for a single segment, when
the third part arrives, the first one must be passed on to make room for the third.
Before the first hidden part may be transmitted, though, the segment message must
be released so that it can precede the subsequent intersection messages. Once sent, the
segment message cannot be retrieved, and it may turn out that a completely hidden
segment is flowing through the pipe. Fortunately, it doesn’t really matter, because
even though the segment has slipped through this stage, some later cleanup processor
will catch it. Finally, it is necessary to have a sequence of cleanup processors at the
end of the pipeline in order to filter out exactly this type of debris.

As just described, the pipeline for eliminating hidden lines consists of a sequence of
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plane processors followed by a cleanup processor for each polygon. This organization is
inconvenient at best, because it allocates a fixed number of processors to each polygon.
If a polygon has fewer boundaries than the number of plane processors, then some of
the processors will be wasted. On the other hand, if a polygon were too complex,
it would have to be broken down into a number of simpler polygons. Also, with
this organization, the cleanup processors must occur more frequently than one might
otherwise prefer. A solution to the problem is to move part of the task of the cleanup
processor into the plane processors. With the new modification, the plane processors
will be responsible for setting the hidden bit A in intersection messages leaving the
processor containing the last bounding plane of a particular polygon. In addition, the
processor must generate a parity bit p that signals whether an intersection message
is the first or second to leave the processor. An extra bit f in the plane description
serves to distinguish the final boundary plane for a particular polygon. The necessary
modifications to the polygon processor are thus very minor ones, but they permit
cleanup processors to be placed drbitrarily within the pipeline. In particular, a cleanup
processor may now occur in the midst of a sequence of boundary planes defining a
single polygon.

Because it retains most of its former duties, the modifications required of the
cleanup processor are also relatively minor. The primary difference is that it must
now merely forward intersection messages that do not have h, the hidden bit, set.
Also, the processor can no longer assume that hidden parts of the segment are well
formed, since the plane processors do not attempt to verify this condition. The cleanup
processor must therefore examine incoming hidden parts to determine whether they
do indeed describe hidden parts of the line, or whether in fact they declare that the
entire line is visible with respect to a single polygon. That is, the cleanup processor
must insure that the visible regions associated with each intersection message do not
overlap. A related problem is that the intersection messages with the hidden bit 4 set
may now arrive singly, rather than in pairs. The processor can detect this situation
by examining the parity bit p and can supply the necessary mate for these unmatched
intersection messages. Beyond the two changes just mentioned, however, the cleanup
processors behave as described above.

The actions performed by the processors in the pipeline are fairly simple ones.
Figure 3-32 shows what happens when a plane processor receives a segment message,
and Figure 3-33 does the same for an intersection message. Figure 3-34 shows a
program that describes the behavior of a cleanup processor. The important thing
to note here is that really very little is happening. Rather, it is the fact that the
processors are amassed that leads to the performance of the overall machine.

The algorithm for hidden line elimination used in the pipeline has two unfortunate
consequences from the standpoint of scene modeling. In the first place, as mentioned
earlier, the machine cannot generate the implied edges that occur when two polygons
intersect. This feature was sacrificed in exchange for the simplicity and regularity that
make a hardware solution feasible. Perhaps there is some other algorithm that can
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to receive segment(zy, 4, 21, 22, ¥2, 22) :
if u then transmit intersection(t,,t4,v, f,p);
transmit segment(zy, y1, 21, 22, ¥2, 22);
ky:=az; + by; + czy;
ko= azo + bys + czp;

tpi= ky + d;
tai= ki — ko;
= (tg # 0 or t, > 0);
vi=(ta > 0);
p=0;

Figure 8-82. Action of a plane processor when it receives a segment message. The used flag u tells
whether the rest of the values refer to a valid intersection point.

to receive intersection(t),t},v', h',p') :
if &' then
comment: Pass through a hidden segment message.
transmit intersection(t,, #;,v', ¥',p')
else if not u then
comment: Not already in use. Capture the intersection.
tp=1t; tg=1ty; u=1; wvi=1o

?

b}

else if (not v) and (not v') and (%’5 < -ttﬂ) then
d d

comment: The new intersection supersedes the one here already.
tpi=1t,; ta=1t}

else if (not v) and ' then
comment: Forward the positive intersection and save the negative one.
transmit intersection{t,, tq, v, k, p);

b

ta=1th; ta=1ty; vi=10'; pi=1
else if v and (not v') then
comment: Forward the positive intersection.
transmit intersection(t],, ¢, v, ¥, p);
=1

b

else if v and v' and (—t—"i > t—") then

tg ~ ta
comment: The new intersection supersedes the one already here.
tai=1t,; ta=1t}

else comment: The new intersection is redundant, ignore it.

H
?

Figure 8-88. Action of a plane processor when it receives an intersection message.
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to receive segment(z), ¢}, 2], 25,95, 25) :
comment: Dispose of prior segment before accepting this one.
flush; sent:=0; esuppress:==0; pi==1;

H

=12y Y=yl 2i=2; T=12h; yr=yh; 2= 2zh;
to receive intersection(t), ), v', k', p') :

if A’ then comment: Insure that nothing is missing.
if ' = p then insert(—oo,1,1,1,1);
if ' = 0 and v' = 1 then insert(+00,1,0,1,0); p':=1;
insert(t),, £, ', B, p)

else comment: This intersection is not ready for cleanup.
flush;
if not suppress then transmit intersection(t], ¢, v/, i', p');

.
H

.
1

to insert(th,, &, v', A, p') :
if n == 4 then makeSpace;
n=n+1, p=p;
int =t ¢, v, 1 p';
if n = 4 then sortMerge;
to sortMerge :
if tnt!1 < int$ then swap int! with int$;
if int2 < int8 then comment: Merging is possible.
if intf{ < int2 then int2:= intf;
=n—2;

b

to makeSpace :
if int1 > 1 then intl:=1;
if int2 < 0 then int2= 0;
if int1 > int2 then
if int1 =1 and int2= 0 and not sent then suppress:= 1;
if not sent and not suppress then
transmit segment(z;, y1, 21, 22, ¥2, 22); sent:=1;
if not suppress then comment: At least part of the segment is visible.;
transmit intersection(intf); transmit intersection(int2);
intl= ints; nt=1intf; ni=n-—-2;

to flush :
while n > 1 do makeSpace;
if n == 1 then insert(—oc0,1,1,1,1)}; makeSpace;

Figure 8-84. Program describing the behavior of a cleanup processor.
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achieve a similar goal without having to make this compromise. Another unfortunate
property of the algorithm is that the approach of using boundary planes precludes
the use of concave polygons in the scene. Probably the least offensive way around
this limitation is to break all concave polygons into collections of convex ones. The
new polygons may then be surrounded with boundary planes and treated in the usual
manner. Notice, however, that if the line segments sent through the pipeline are taken
from the original concave polygon, the final scene will not show any artifacts of the
splitting operation.

It is interesting to estimate the amount of hardware needed to implement each
processor in the pipeline. First of all, consider the requirements for communications
between successive chips. Segment messages consist of six numbers that specify the
endpoints of a line segment. If 16-bit numbers were used, the total size of the message
would be 96 bits. Similarly, an intersection message includes two numbers and three
flags for a total of 35 bits. Polygon messages coniain four numbers and a flag bit, or
65 bits all together. Recall that polygon messages travel in parallel with the other
two kinds of messages, enabling the machine to load the next scene while processing
the current one. Once again, it appears that some form of bit serial communication
strategy is indicated to insure that the number of wires connected to each processor
will remain reasonable. A straightforward way of allocating signal wires is to dedicate
one for every value that must be transmitted. Suppose, then, that each communication
path consists of six wires shared between the segment and intersection messages, plus
five wires for the polygon messages. In addition, to allow for handshake protocols,
there will be one request line for each of the three message types and one acknowledge
line for each of the two message paths. Doubling the total because each processor
has both an input and an output shows that each processor requires 32 wires for
communication, not including power and miscellanecus control signals like reset. Since
each type of message includes a 18-bit number, at 500 nanoseconds per bit, it would
take about 8usec to transmit a complete message.

Because communications are performed serially, it makes sense to use serial im-
plementations of arithmetic within the processors themselves. Consider first the plane
processor, where the complexity of the computations are almost entirely dominated
by the multiplications. Serial multipliers are clearly appropriate, but notice also that
serial adders and comparators are equally feasible because they can easily keep up with
the communication between processors. The only real decision concerns the number
of multipliers that should be devoted to each processor. The choice must be made by
comparing the multiplication time with the time required to pass a message from one
processor to the next. The plane processor needs to perform six multiplications, and
if multiplication were twice as fast as communication, for example, there would really
be no point in using a full six multipliers, because they would be idle for half of the
communication time. Three multipliers could be multiplexed to compute the same
values in a similar amount of time. It turns out that this performance estimate is a
reasonable one, so suppose that the plane processor does indeed contain three multi-
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pliers. Using the size of Lyon’s serial multipliers as a guide once again, and doubling
the result to account for adders, registers, and control logic, leads to an estimate of
about 900X by 3600\ for the size of a single plane processor. It should be possible to
fit several of these polygon processors on a single integrated circuit, even with present
fabrication techniques.

The size of individual cleanup processors is less critical than the size of plane
processors because they occur less frequently in the pipeline. Here, two multipliers are
needed to form the cross product that compares intersection positions. Aside from
these multipliers, the primary requirements of the cleanup processors are: first, enough
memory to hold the segment and intersections being cleaned; second, signal routing
circuitry to move values around; and third, control logic to orchestrate the whole affair.
The memory requirements are not outlandish—fewer than three hundred bits—and
memory can be packed fairly densely, so that this requirement should not present a
problem. Since values are represented bit-serially, the associated multiplexors also
consume relatively little area. Finally, the behavior of the processor is not very com-
plex, and a small finite state machine should be able to handle the overall control.
Therefore, it seems that a cleanup processor would easily fit on a single integrated cir-
cuit. A more attractive packaging scheme, however, places a single cleanup processor
on the same chip as several plane processors. The chip would be pipelined internally,
and its external connections would be no different from those of a package containing
only a single processor. Using this approach, the complete pipeline could be formed
from a single chip type. Technology is improving rapidly enough that this packaging
scheme should be possible very soon, if it is not already.

The primary performance limitation of the hidden line elimination pipeline is the
delay necessary for a segment description to pass all the way through the pipeline.
Suppose that the pipeline consists of 10,000 plane processors. If ten processors could
be fabricated on a single chip, this pipeline would require only a thousand identical
and regularly connected packages. If each polygon in the scene had four sides, 10,000
plane processors would be enough to handle 2,000 polygons. If the message passing
time is the performance bottleneck, as indeed it seems to be, then it will take about
80 milliseconds, or about a twelfth of a second, for a segment to pass through the
pipeline. This figure merely hovers on the border of real time, but even so, it is
respectable. Conversely, the machine should be able to process between 800 and 900
polygons in a thirtieth of a second. Granted, there are times when a message will be
delayed, as, for example, when new intersection messages are generated, but at other
times, messages will be eliminated either by the plane processors or by the cleanup
processors, causing gaps of idle processors. The delays should tend to close these gaps,
thereby maintaining processor utilization.
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4

Observations and Conclusions

Some time ago, Sutherland, Sproull, and Schumacker scrutinized ten hidden sur-

face algorithms and found that sorting was an important characteristic common
to all of them [SUTHT74b]. They noted further that each of the algorithms made use
of some form of coherence—the property that nearby parts of an image are not very
different—to reduce the computation necessary for sorting. It is interesting to observe
the interplay of concurrency, sorting, and coherence in the parallel machines that were
presented in the prior two chapters.

Of all the machines that were discussed, the ray tracing peripheral constructed
of commercial components made the least use of concurrency. Because it exploited
only the concurrency available within the intersection computation, its operation was
much like that of a program running on a fast, but strictly sequential, conventional
computer. The version of the machine described initially made no use of sorting
to limit its computations, and consequently it bogged down for large scenes. The
machine performed much more efficiently when the modeling space was partitioned
into a three-dimensional grid of subvolumes. Although the ray tracing peripheral did
not itself perform the sorting required to implement this subdivision, it was able to
capitalize on the availability of sorted information. Possibly because it did no sorting,
the machine made no explicit attempt to take advantage of any coherence that might
be present in the scene. In the discussion of subvolume swapping, however, it became
apparent that coherence does play a role in reducing the number of disk accesses
required to render a scene, because the rays traced for nearby pixels in the image tend
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to pass through pretty much the same sequence of subvolumes.

The organization of the ray tracing pipeline enables it to perform potentially
more simultaneous computations than any of the other architectures suggested here.
At any instant, every one of its component processors could conceivably be in the
midst of an intersection computation. Moreover, because each processor is connected
to only two others, and because messages flow unidirectionally through the pipe,
the communication needed during the operation of the pipeline is quite moderate.
Unfortunately, it is also true that the machine performs many more intersection
computations than are actusally necessary to render the scene. It cannot make use of
a sorted scene model, as can the original ray tracing peripheral, to reduce the number
of surfaces that it must consider. In order to reduce communication requirements and
simplify the task of individual processors, the design of the ray tracing pipeline has
completely forsaken any advantage that it might derive from the use of sorting or
image coherence. Not surprisingly, the resulting machine has enough drawbacks to
make it an unlikely candidate for actual implementation.

The ray tracing array was an attempt to combine the efficiencies of the original
peripheral with the performance of the pipeline. Like the pipeline, the ray tracing ar-
ray contains many intersection processors, but it differs in the sense that the capability
for general purpose computation is duplicated as well. Furthermore, the processor in-
terconnection structure is richer in the array than in the pipeline. Like the original ray
tracing periplheral, the array is able to make effective use of a sorted scene model in
order to limit the number of intersection computations required to form an image. In
addition, the array relies upon the presence of sorted data in another, perhaps subtler,
way. Because adjoining subvolumes in the scene are sorted into connected processors
in the array, individual rays passing through the scene may be modeled as messages
passed from processor to processor. Thus, using sorted image data helps to reduce
the need for global communication.

The scan line tree, although quite different from the ray tracing machines in
terms of structure and operation, exhibits some intriguing similarities when viewed
from afar. Its operation is based on the use of sorted data, but for the most part
it does not perform any sorting. Rather, the segments that comprise individual
polygons are generated in sorted order at the leaves of the tree, and the rest of
the tree functions in a way that maintains this ordering. The more obvious benefit
obtained from the use of sorted information is a reduction in the number of com-
parisons that must be performed. Sorting brings nearby parts of the image into cor-
responding proximity in the machine, where they may easily be compared. Widely
dispersed portions of the image need never be explicitly compared. In addition,
because the scene remains sorted at every stage of the tree’s operation, nearby
parts of the image are always in nearby processors. Thus, the use of sorting also
helps to limit the task of communication in the machine. As in the ray tracing
machines, coherence does not play a major role in the operation of the scan line
tree. Although adjacent pixels on a single scan line may be considered as a group,
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there is no attempt to exploit the similarity of successive scan lines.

Sorting is by nature a task requiring intensive communication. In any real
machine, distinct objects to be sorted must be represented in distinct regions of
space. The job of sorting is to move objects from where they are to where they
should be, and it must potentially be possible to move any object to an arbitrary
location. Accomplishing such an extensive movement of data in a physical machine
requires many wires, quite a bit of time, or both. For example, the splitting processors
near the root of the scan line tree, which actually perform a sort, require the richest
interconnection scheme in the whole machine.

It is noteworthy that the machines presented here largely avoid having to sort
any scene information. Therefore, it should not be too surprising to discover that they
make little use of image coherence, since sequential algorithms use coherence primarily
to ease the sorting task. Instead, the machines rely on having presorted information
to ease communication requirements.

In contrast, the earlier machines described by Fuchs and Parke actually do incor-
porate sorting as part of their operation. Recall that each uses a depth buffer algo-
rithm to identify the surface visible at each pixel in the image. For example, in the
Pixel-planes machine, which is the most parallel of the ones discussed, individual pixel
processors examine successive polygons and perform a depth sort by accumulating the
depth and color of the surface closest to the viewer. Note that each of the depth
buffer machines has a single place through which the entire scene must pass. The
resulting bottleneck, which is the performance limiting factor, appears to be related
to the sorting. None of these machines attempt to make use of image coherence in
order to limit the work of sorting.

It may be possible to define a parallel machine that actually does sort the scene
model and yet requires only moderate internal communication. Such a machine would
almost certainly need to exploit image coherence in order to simplify the sorting
operation. For example, Watkins found that the set of polygons appearing on a scan
line doesn’t change very much from one scan line to the next, and further that the
polygons appear in pretty much the same order. Moreover, if the order does change
between scan lines, merely swapping a few pairs of adjacent polygons will almost
always correct the situation. To Watkins, this observation suggested that a bubble
sort was suitable for ordering the segments found on a scan line, but in the context of
parallel machines it might mean that a linear array of segment processors would be
useful. Each processor need only look to its neighbor when comparing or swapping
segments. A similar form of coherence might be used when vertically sorting polygons
for display in successive frames. Of course, the problem of sorting new polygons into
the active scan line still remains, but it may turn out that some form of tree structure
can be applied.

It appears that sorting, which was found to be the central task of programs for
hidden surface elimination, is also important in the parallel machines that perform
a similar task. In sequential algorithms, sorting was used to reduce the number
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of comparisons necessary for the production of an image. In parallel algorithms,
operating on a sorted scene can in addition reduce the amount of communication that
takes place between processes. Similarly, it may be possible to exploit image coherence
in a parallel algorithm. In a sequential algorithm, using coherence could help to reduce
the number of comparisons needed to accomplish a sort. In a parallel machine, on the

other hand, coherence might be used to limit the amount of communication required
for sorting.
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Appendix A

Implementing Arithmetic

Earlier discussions have used the performance of the primitive floating point
arithmetic operations as the basis for estimating the performance of various
machines. Two kinds of implementations, one using commercially available parts and
the other requiring custom integrated circuits, were postulated. This Appendix derives
the performance estimates that were used earlier.

A.1 Using Commercial Components

The basic floating point operation is, of course, multiplication. TRW suggests a
circuit for implementing a floating point multiply using their 285 nanosecond (ns) 24-
bit multiplier and only a handful of additional packages [TRW78]. A multiplier chip
processes the mantissa, and the other chips add the exponents. The TRW multiplier
even has an on-board shifter for normalizing the product, and it informs the support
circuitry when normalization is necessary so that the exponent can be corrected. The
multiplier itself is the slowest component of the cireuit. Allowing 50ns for the latches
needed to pipeline the operation, the floating point multiplication can be done in
335ns. To simplify the following discussions, this figure will be rounded to a third of a
microsecond. TRW also suggests a scheme for doubling the speed of the multiplication
by using two multipliers. It turns out that this trick requires no extra chips aside
from the extra multiplier, and the multiplication rate could easily be boosted to six
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per microsecond in this way. In theory, higher rates can be achieved by using still
more multipliers, but in practice attempting to do so creates a number of difficult
problems. Therefore, in the discussions to follow, the figure of three floating point
multiplications per microsecond will serve as a conservative measure of performance.

Floating point addition is something of a nuisance. The difficulty is that before
two numbers can be added, one of them must be denormalized in order to align
the binary points. This denormalization operation is a barrel shift by an arbitrary
number of bit positions, which is difficult to implement both quickly and inexpensively,
especially for larger word sizes. The TRW multiplier can serve as a barrel shifter if one
of its input operands is set to a power of two. This solution requires just one chip, and
it is, of course, comparable in speed to the multiply operation. Another possibility is
to use a commercial shifter. One such device, made by AMD, could be used to make
a 24-bit, 60ns shifter using about eighteen chips [AMDT7]. A third alternative is to
fabricate a custom designed integrated circuit.

Suppose that the two numbers to be added are given by

ny = 2°“m, and ng = 2%2mg,

where c; and ¢y are the exponent parts or characteristics, and m; and m, are the
fractional parts or mantissas. If ¢; = ¢2, then n; and ne may be added by directly
forming the sum of m; and my. On the other hand, if ¢; 5 ¢, the denormalization
process adjusts the representations of the numbers so that the exponents do match
and the addition may be performed. Multiplying the numbers by a judiciously chosen
representation of the value one denormalizes them:

gmax(cz—ei,0)
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Thus, to denormalize n;, the mantissa m; must be shifted right by max(ce — ¢;,0)
bit positions. If shifts are being implemented as multiplications, they can be formed
by taking the high-order 24-bits of the 48-bit product of m; and 224—max(ca—e1,0),
Likewise, ng can be denormalized by multiplying m, by 224~ max(ei—es9) and taking
the upper half of the result. In either case, the exponent is max(eq, ¢3).

Once denormalization is complete, the sum of the fractions can be computed
in a straightforward manner. In general, the sum will not be normalized, and this
adjustment must therefore be made before the addition operation can be regarded
as complete. The required shift operation can once again be performed by another
multiplier with its associated support circuitry, or by another barrel shifter.
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As the above discussion has indicated, implementing floating point addition is
quite a bit more complicated than implementing multiplication. It is desirable, however,
for the addition operation to proceed at the same rate as multiplication, because
unless it does so, the floating point multipliers cannot be fully utilized. If addi-
tions were slower than multiplications, the entire pipeline would have to be slowed
to the speed of the addition. There is no problem if barrel shifters are used for
normalization and denormalization, because they are fast in comparison to the multi-
plication time. On the other hand, if multipliers were used for shifters, additions would
be substantially slower than multiplications. Notice, however, that in a pipelined sys-
tem it is not the addition time, but rather the addition rate that is important, and this
rate can be improved by pipelining the addition operation itself. A three-stage pipe is
sufficient, wherein the first stage performs the denormalization, the second stage com-
putes the sum, and the third stage renormalizes it. When organized in this way, the ad-
dition operation can proceed at the same rate as multiplication, namely at three opera-
tions per microsecond, no matter which implementation strategy is chosen. In fact, it
will be convenient to design all of the operations in the pipeline to operate at this rate.

As in the case of addition, implementing a high-speed floating point division
operation is not exactly a straightforward task. Other systems have successfully used
Newton’s method [CRAY80], and a similar approach will be taken here. The basic idea
is to compute the reciprocal of the denominator using Newton’s method and then to
multiply this reciprocal by the numerator to complete the division operation. Recall
that Newton’s method is a technique for iteratively finding the roots of the equation

f(z) = 0 [DAHLT4]. Given a guess z,, Newton’s method computes a better guess
Zn+1 according to the formula

_ f(zn)
J'(zn)

To divide a by b, it is necessary first to compute the reciprocal of b, which is the root
of the function f(z) = 1/z —b. The corresponding Newton iteration formula is

Tntl = Typ

Tnt1 = (2 —bZp)Zn.

Newton’s method converges quadratically, doubling the number of bits of precision
with each iteration, so that the number of iterations can be reduced if the initial guess
is very good. The easiest way of arriving at the first guess is by table lookup. If
the table is large enough to produce a result that is accurate to twelve bits, a single
iteration of Newton’s method will improve this guess to the full twenty-four bits.

In order to perform a floating point division at the desired rate of three operations
per microsecond, it must be pipelined. The pipe is longer than it was for addition,
however. The first stage of the pipe uses a table lookup to compute the initial guess for
the Newton iteration. Suppose that the value of b has the floating point representation
2¢my. The high order twelve bits of my are used to find a reciprocal 2°-m,, and the
approximate reciprocal of b is
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Zp = 2ler—cs)yy

Notice that since b is normalized, the high-order bit of m; is always set. Therefore, it
is the next twelve most significant bits that are actually used in the table lookup.

The second stage of the division pipeline begins to compute the result of the
Newton iteration. Since this value is the reciprocal of b, it must be multiplied by a to
finish the divide operation. The final quotient is

(2 - bzo)Zoa.

The second stage of the pipe simultanecusly computes bzg and zoa. The next stage
performs the addition, producing 2 — bzo. Finally, the remaining stage does the last
multiplication to find the quotient.

Using Newton’s method to implement a division operation is accurate, if also
rather involved. The accuracy is necessary when computing the value of ¢ at the point
where the ray and surface intersect, but other division operations in the intersection
computation can be less precise. Recall that the values of u and v are used first to
determine whether a ray strikes the interior of a polygon, then to interpolate surface
normal vectors, and finally to act as indices into texture maps. If these values were
known only to twelve bits, resulting in an error of one part in 2!2, the error would
not be visible on a display with only 512 X 512 or 2° X 2° resolvable pixels. In the
parallel case of the intersection computation, where one or both of the values of u and
v are given by quotients, a less accurate division operation would suffice. For these
values, the first stage of the division pipeline can produce a reasonable guess at the
reciprocal of the denominator by direct table lookup, requiring just a single pipeline
stage to do so. A second stage multiplies by the numerator to complete the division
in two stages with a result that is accurate enough for computing u and v.

The floating point square root operation, used to compute the values of u and
v, could also be implemented using Newton’s method, but again, the full accuracy is
not necessary. Instead, a table lookup technique can perform a floating point square
root operation with a result accurate to twelve bits. Suppose that the number is
represented by 2°m. Its square root is

(2°m)% = (2°)3(m)? = (2°m.)(2°" mum).

Finding the square root can thus be reduced to a pair of table lookups followed by a
multiplication. The first lookup uses the exponent as an index, while the second uses
the twelve high-order bits of the mantissa. The results of these lookups must then be
multiplied to obtain the square root. Notice that this operation must be implemented
as two pipeline stages in order to maintain the desired throughput rate. The first
stage performs the table lookup, and the second performs the multiplication.
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A.2 Using Custom Components

The options available when designing a custom integrated circuit to perform
arithmetic are different from those available when designing with standard parts. In
particular, it is usually impractical to consider using a full parallel implementation
of multiplication and division because of the vast silicon area that would be required.
This section describes one alternative that uses more economical shift-and-add tech-
niques.

The floating point multiplication operation can be separated into two fairly dis-
tinct parts. First, the exponent of the product is formed by adding the exponents of
the multiplicand and the multiplier, and second, the fractional part of the product is
the high-order half of the 48-bit product of the two 24-bit input fractions. These two
results may be computed separately, although it may be necessary to apply a one-bit
normalization shift when finally combining them.

Implementing the fractional multiplication requires a 25-bit register to hold the
product and two 24-bit registers for the multiplicand and multiplier, as shown in
Figure A-1. The product register is initialized to zero. If the low-order bit of the
multiplier is a one, then the multiplicand register is added to the product register.
Next, the product and multiplier registers are each shifted to the right by one bit
position. These steps are repeated twenty-three more times, for a total of once for
each bit of the multiplier fraction. When completed, the product register will contain
the high-order half of the fractional product, as required. The low-order half was
progressively shifted out and discarded. Ap additional shift may be necessary to
normalize the product. The time required to compute the product is thus determined
by the time needed to perform twenty-four additions and twenty-five shift operations,
but note that it may be convenient to combine the shifts and the additions into a
single operation.

The floating point addition operation is conceptually the same as the version made
with commercial components. It is summarized in Figure A-2. The primary difference
is that instead of performing the initial denormalization and final renormalization
in a single cycle, these operations are accomplished with a sequence of single bit
shifts. The denormalization operation shifts the fractional part of one addend while
simultaneously incrementing its exponent. Since the fraction consists of twenty-four
bits, denormalization requires at most twenty-four shift operations. A single addition
forms the sum, and the final renormalization may require up to twenty-four additional
shifts. Thus, forty-eight shifts and one addition are required to complete a floating
point addition.

A floating point division operation is made up of repeated shifts and subtractions.
The exponent of the result is the difference of the dividend exponent and divisor
exponent. Three more registers, shown in Figure A-3, are used to form the quotient of
the fractional parts. Two of these registers initially contain the dividend and divisor,
and the quotient will be formed in the third. If the dividend is at least as large as the
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Exponent, Fraction

7658 10 123 .. - 23 24
Product: €p 0 —> Ip
Multiplicand: €a fa
Multiplier: €p fe

ep==¢q +ep; fp=0;
repeat 24 times
if f3(24) = 1 then fp:= f, + f,;
shift f, right 1;
shift f; right 1;
if fy(1} = 0 then
shift f, left 1;

epi=ep — 1;

Figure A—1. Registers and operations used in floating point multiplication.

divisor, the difference between them replaces the dividend, and the low-order bit of
the quotient is set. Otherwise, this bit is cleared, and the dividend is left unchanged.
Next, the quotient and dividend are each shifted to the left by one bit position. After
these two steps have been repeated twenty-four times, the quotient is complete except
for a possible normalization step. The division operation uses twenty-four additions
and up to twenty-five shifts, but again, as in the case of multiplication, it is convenient
to combine the shifts and additions into a single operation.

The square root operation may at first seem to be a little tough, but the method
taught in high schools for extracting roots using only pencil and paper adapts rather
nicely to a hardware implementation [FLOR63]. Refer to Figure A—4. Before process-
ing the fraction, it is necessary to find the square root of the exponent part. If the
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Exponent Fraction
765 10 123... . 23 24 25
Sum: €s fs
123.. e 23 24
Addend: €q 0 —> fa
Addend: €b 0—> fo

if e, > e then
repeat max(e, — €3, 24) times shift f; right;
€oi==¢€a + 1

ef ¢, < ¢ then
repeat max(ep — €4, 24) times shift f, right;
€ei=€p + 1;

fe=(fa/2) + (f2/2);

1= 0

while f,{1} =0 and { < 24 do
shift f, left;
€yi==¢€, — 1;

if f,(1) = 0 then ¢,:= smallest;

Figure A—2. Registers and operations used in floating point addition and subtraction.

exponent is even, the exponent of the result is just half the exponent of the original
number, and this value may be computed with a shift operation. On the other hand,
if the original exponent is odd, it can be made even by adding one, but the fractional
part must be halved in order to compensate. Extracting the root of the fractional part
uses two registers. The result register holds twenty-six bits, although the low order
two bits are permanently fixed at the value 01. The operand register is forty-nine
bits wide. Its high order twenty-four bits are initially zero and will eventually contain
the remainder of the root extraction. The next twenty-four bits are initialized to the
input fraction, and the final bit is available in case the fraction had to be shifted
to correct for an odd exponent. The root extraction procedure consists of a pair of
steps repeated twenty-four times. First, the result register is compared with the high
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Exponent Fraction
7658« 10 123 s 24 25
Quotient: €q fq — ()
123.. e 23 24
Dividend: €a fa
Divisor: e 0 — fo

€g:=¢€s —¢ep +1;
repeat 24 times
if fo > fo then f,(25):=1; far=fa—Jb
else f,(25):= 0,
shift f, left;
shift f; right;
if f,(1) = 0 then
shift f; left;
eg=¢eg—1;

Figure A-8. Registers and operations used in floating point division.

order part of the operand register. If the operand register is larger, its contents are
replaced with the difference, and a one is shifted into the twenty-fourth bit position
of the result register. Otherwise, zero is shifted into the result. Second, the operand
register is shifted to the left by two bit positions. Like division, then, the square root
operation uses twenty-four additions and twenty-five shifts. Again, most of the shifts
can be combined with the additions.

The performance of floating point arithmetic may be estimated by counting
the primitive operations used in the implementation. To summarize the foregoing
discussion, floating point multiplication, division, and square root operations each
need twenty-four integer additions and twenty-five shifts. Floating point addition uses
forty-eight shifts, but only a single integer addition. Recall also that the additions



153

Exponent Fraction
765 10 123 - 23 24 25 26
Root: ér Ir 01
123 ... e 23 24
Operand: fo
25 28 - o 48 40

if ¢,{0) = 1 then
€= e, +1;
shift f right;
repeat 24 times
if fo(1:26) > fo(1:26) then
fo(l : 26):= fo(1: 26) — f,(1 : 26);
shift fo left twice;
shift f,{1:24) left;
fr{24)=1
else
shift fy left twice;
shift f,(1:24) left;
fe(24):=10;

Figure A—4. Registers and operations used to form the square root of a floating point number.

and shifts can to a large extent be combined. Therefore, if shifts can be performed
at twice the rate of additions, then every floating point operation can execute in a
similar amount of time. It turns out that such an assumption is justified, because the
delay introduced by the carry propagation chain of an adder is its major performance
limitation, and shift registers have no similar bottleneck. The performance of floating
point operations is thus largely determined by the speed of integer additions, which
may be conservatively estimated at between 100ns and 200ms. Including a small
allowance for pipelining delays, it should take no more than about five microseconds
to form the result of a floating point operation.
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Appendix B

Moving Between Subvolumes

Some of the ray tracing machines described earlier operate by partitioning the
modeling space into a grid of subvolumes. This is done in order to reduce the
number of polygons that must be processed to find the earliest intersection of a ray
with a surface in the scene. It was also mentioned in passing that there is a relatively
simple way to determine the sequence of subvolumes through which a ray travels. One
such method will be described here, along with a technique for determining the first
subvolume visited by a ray.

Consider first the equation describing the grid planes that are perpendicular to
the z-axis. Suppose that the coordinates in the modeling space range from zp;, to
Zmax 80d that the space is to be split into n, portions along the z-axis. In this case,
the equations of the planes partitioning the z-axis are given by

Zmax — Tmin ).
z= |2, + T,
Nz

where 1, is an integer from zero to n. that identifies the plane. Next, recall that the
parametric representation of a ray is

l‘(t) == (1‘1 - l'o)t + Prg.

Substituting this into the plane equation and solving for £ gives
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Zmax — Zmin \. Zmin — To .
t — ( max min )Iz + ( min Z) J— a;iz + bz,
(rlx - r()z)n:: iz — oz
where ry, is the z component of ry; likewise for ro, and ry. @, and b, are simply

abbreviations that will be convenient in later discussions. Similar expressions can be
found in terms of the planes that split the y- and 2-axes:

t = ( Ymax = Ymin )iy + (ymin - rﬂy) — ayiy + b,
(r1y — roy)ny Tiy —Toy

Zmax = Zmin . Zmin — T .
t=(—"“—"——'1’—‘9~)z,+(-iu)=a,z,+b,.

(riz —roz)n. riz—ros

To find which subvolume of the modeling space should be examined initially, it
is first necessary to find the position along the ray at which it entered the modeling
space. Using the z-component as an example, this can be done by computing the
smallest value of ¢ at which the z-component of the ray lies between Zmin 30d Zpay,
the valid range of z. Similar values must be computed for the y- and z-components.
The maximum of these three values of £ is the position on the ray where it potentially
passes into the modeling volume. If the maximum is negative, it must be replaced by
zero because negative values of ¢ correspond to points behind the origin of the ray.
To find the index of the initial subvolume, it is necessary to substitute the maximum
value of ¢ into the three equations for ¢, £,, and ¢,. Solving for i, iy, and ¢, gives
the initial subvolume indices. If these indices do not lie within the range from one to
Nz, Ny, OF 1., then the ray misses the subvolume entirely. A program implementing
this algorithm for computing the initial subvolume index is shown in Figure B-1.

Finding the successive subvolumes through which a ray passes is an incremental
task. At each stage, only one of the three subvolume indices needs to be changed,
because the next subvolume must be adjacent to the current one. This also means that
the index that is modified must differ from its current value by exactly one. Consider,
for the moment, the index in the z direction, i,. Since rays are traced outward from
their origin, values of ¢ in the successively examined subvolumes must increase. From
the expression for ¢ in terms of ¢, it is apparent that if a, is positive, incrementing
tz will increase the value of £. If a, is negative, 5, must be decremented in order to
increase the value of t. Corresponding statements can be made about 1y and £,. Thus,
there is a preferred next direction for each of the three components of the index. To
determine which of the three directions is the correct one, it is necessary to examine
the three values of ¢ found with the incremented or decremented versions of iz, ty,
and 1;. The direction producing the smallest value of ¢ is the one that should be
taken. For example, suppose that when the updated value of i, was substituted into
the equation for ¢, the resulting value was smaller than that produced by either i,
or i;. In this case, the index of the next subvolume would have the same i, and
i, components as the current one, but the 1, component would be incremented or
decremented according to the sign of ay.
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t:=20;

i s bom AT b i 1)
ayi= %ﬁ%; byi= yrildf—;.;{)(:—”; t:== max(t, min(by, ayn, + by));
8= 5’—1‘?_%5:“)’%; byi== %::%; :== max(t, min(bs, a.n; + b.));
1gi= t—:a;{’i 3 tei==agiy + b + |ag;

iyi= E ;:""1; ty:==ayi, + by + lay);

$pi= 't—i—;—'j; tyi==ayi, + by + |az];

ifi.<lorn, <i,or
iy <lorny, <iyor
i, < 1 or n; < i; then comment: The ray misses the scene. ;

Figure B—1. Program to compute the initial subvolume index.

if t; < min(ty,t.) then begin i,;:=1; +sgn(a;); t.:=1t; + |a.| end
ef ty < min(t,,t;) then begin {y:== iy, + sgn(a,); t,:== 1ty + |ay] end
ef t; < min(t,,ty) then begin i,:=1; +sgn(a.); t.:=t: + |a:| end;

Figure B—2. Program to increment the subvolume index.

The computations outlined above can easily be performed incrementally. To
do this, it is necessary to maintain three values of ¢, one for each component of
the subvolume index. These values represent the distance along the ray of the next
subvolume boundary crossing in each of the three directions. Choosing a direction is
as simple as determining the smallest of these three values. Suppose that the value
of ¢ corresponding to the z direction was smaller than either of the other two. When
it is time to select the next subvolume, the new index would be computed by either
incrementing or decrementing the current value of 1, depending of course on the sign
of a;. The value of £ maintained for the z direction would also have to be updated by
adding |a.|. A program for incrementing the subvolume index is given in Figure B-2.
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Programming in Silicon
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Appendix C

Programming in Silicon

Athe investigations described in this dissertation progressed, it became apparent
that the existing tools for integrated circuit design were not very suitable
for the kinds of graphics processors that were envisioned at the time. It seemed
appropriate, then, to develop a family of tools more optimized to that application. The
goal was to allow integrated circuit design to be treated as more of a programming task
than a layout generation task. The designer would proceed by coding his application
in a rather ordinary, though greatly simplified, programming language. The resulting
source code could be at least partially debugged by using a functional simulator.
After debugging, another tool would translate the program into a layout suitable for
fabrication as an integrated circuit.

While the tools were being developed, it seemed that the best strategy would
be to implement the graphics processors using bit serial arithmetic. This technique
offers single wire communication and reduced circuit area when compared to a con-
ventional parallel implementation of arithmetic operations. Consequently, most of
the emphasis has been on the tools for bit serial designs. As work proceeded on the
graphics machines, however, the functional benefits of floating point arithmetic began
to outweigh the implementation benefits of serial arithmetic, and the serial design tool
became somewhat irrelevant. On the other hand, some aspects of the tool might be
considered interesting enough in their own right to warrant mention. Therefore, the
use and implementation of the design aids that were developed will be reported here,
even though most of the work was done in 1981.
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The tools to be described are not applicable to the design of an arbitrary chip. In
particular, they are not meant to handle cases where analog effects are needed, where
there are stringent timing requirements, or where layout tricks are to be used. On the
other hand, they do seem to be useful for a variety of applications in digital signal
processing and computer graphics.

The tools are aimed mainly toward individuals who have a special purpose ap-
plication in mind, and who want a few working chips that don’t really push the limits
of technology. These individuals might not be willing to make a substantial invest-
ment in time or effort in order to obtain these chips. Large semiconductor houses, on
the other hand, operate under a different set of constraints. They typically compete
in high volume markets and can afford the greater design time that it takes to get a
more efficient chip. They might therefore be expected to be less interested in ways of
minimizing human interaction in the design process at the expense of performance in
the final result.

The term “Silicon Compiler” is an unfortunate one, having been coined more
for its appeal as a buzz word than for any technical merit. The trouble is that
while Fortran compilers compile Fortran, Pascal compilers compile Pascal, and Simula
compilers compile Simula, silicon compilers do not compile silicon. At best, they
compile ¢nto silicon, but in many cases their operation more nearly resembles that of
an assembler. In any event, the phrase “Silicon Compiler” has caught on and appears
to be with us forever. Also, it seems inevitable that the term will be applied to some of
the tools described here. Therefore, succumbing to the unavoidable, the programming
language discussed below has been named Silicon, making the term “Silicon compiler”
appropriate in at least some sense.

C.1 Silicon Programming

Superficially at least, Silicon resembles many other programming languages, most
notably Pascal [WIRT71]. A major difference is the lack of complicated data structures
and variable typing. Anyone with any exposure to programming should have no
trouble understanding the sample programs used in this document, and descriptions
of the more common aspects of the language have therefore been minimized.

A feature of Silicon not shared by many other programming languages is its
communications ports. A program can use them to communicate with its operating
environment, or several portions of a single program can communicate among them-
selves. These uses correspond to the pads and on-chip communication of an integrated
circuit. Basically, ports consist of some sort of channel that has two ends. Integers go
into one end of the channel and come out the other end at some later time. Operations
on communications ports occur in a strictly sequential manner. That is, one end of
a port may be multiplexed, but it may not be connected to more than one thing at
once. This model is well matched to the physical reality of a wire.
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The availability of concurrency in Silicon is another feature distinguishing it
from most other programming languages. The basic idea is that every operation
in the program may be performed as scon as its operands are ready, so that an ar-
bitrary number of operations might proceed in parallel. The compiler attempts to
implement the program in a way that makes operations occur as soon as possible,
although it may not be able to exploit all of the concurrency that is potentially avail-
able in a given program. This simple notion of concurrency, together with the com-
munications ports mentioned above, makes it possible to program fairly complicated
combinations of cooperating processes, even though Silicon has no syntactic features
devoted to the description of concurrency. This will be illustrated later by means of
example.

The techniques for dealing with concurrency in Silicon are similar to those de-
scribed by Kahn and MacQueen [KAHNT77]. The difference is that parallel operations
in Silicon are not specified explicitly. This means that concurrency may be available
where the programmer might not have anticipated it. Given a greater amount of
potential concurrency, it is conceivable that the compiler would be able to do a better
job of selecting which operations should actually be done in parallel.

Apart from communications ports, the only datatype in Silicon is integer. Integer
values are represented in the generated layout as binary numbers consisting of an
arbitrary but fixed number of bits. That is, the size of every number must be known
to the compiler, but numbers having different sizes may coexist within the same pro-
gram. In general, it is not necessary for the programmer to specify the size of each
number, since the compiler can usually determine it from context. The compiler
will, of course, generate an error message if it is unable {o make this determina-
tion.

Variables in Silicon are somewhat different from those in a language like Pascal,
even though they can be used in much the same way. The difference is that in
Silicon, variables are names for values. In contrast, Pascal variables are names for
storage locations, and the storage locations in turn contain values. In Silicon, storage
allocation is completely independent of variable naming. From the programmer’s point
of view, this means that in certain cases, temporary variables may be used without
incurring any extra cost in storage. Furthermore, a variable used in one section of
the program does not necessarily have any relationship to a variable with the same
name used in another part of the program. They are related only if each variable
names the same value, as would be the case if there were no intervening assignment
statements.

As mentioned earlier, the details of Silicon can easily be understood by drawing
on prior experience with other programming languages, like Pascal. On the other
hand, the broader notions of how one programs chips in Silicon are best illustrated
by means of example. The following few sections present a variety of examples, each
chosen to highlight some particular facet of Silicon.
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C.2 Example: Inner Product

This first example is a simple Silicon program that computes a running inner
product of two sequences of numbers. That is, it accepts two streams of numbers,
multiplies the corresponding numbers from each stream, and maintains the sum of all
such products obtained so far. Every time it gets a new pair of input numbers, it
places the current value of the accumulation into the output stream. Thus, for every

pair of numbers appearing at the inputs, one number will be generated at the output.
Here is the program:

a:= asyncSerIn(16,0);
b:= asyncSerIn(16,0);
c:= asyncSerOut(18,0);
sum:= O;

Do {

sum:= sum + a.get*b.get;
c.put (gum)

00 =3 O O i W RO

The first three lines of this program create communications ports for receiving
inputs and transmitting outputs. The arguments specify that the size of the words
passing through the ports will be sixteen bits, and that there will be zero words of
buffering inside the port itself. All three ports are asynchronous serial ports, so some
handshaking will be involved when values are passed through the ports. The detaiis
of this handshaking are taken care of by the compiler and need not be of any concern
to the programmer. Notice that the port values are assigned to variables in the same
way that an integer value is assigned to a variable, as in Line 4.

The code for the actual inner product appears in the final four lines of the pro-
gram. The DO-statement causes the statements enclosed within braces to be executed
repeatedly. In Line 6, the next value of the sum is computed with two values ob-
tained from the input ports. This new sum is sent to the output port in the following
line. Notice that quite a bit of synchronization may be going on behind the scenes
in these two statements. Since the two input ports are asynchronous, one of them
may produce a value much sooner than the other, and the compiler will have to insert
some buffering. Similarly, it may take some time for the environment to accept the
sum. This kind of detail is handled completely by the compiler.

In the program above, input values were permitted to arrive at arbitrary times.
This, in turn, required the compiler to generate some extra circuitry to perform the
synchronization. It is sometimes possible to write programs that accept their inputs
at a fixed rate and produce their outputs at a fixed rate. Such programs are much
simpler in terms of the generated code. A synchronous version of the inner product
program is as follows.

syncSerIn(i6,1);
syncSerIn(16,1);

1 a
2 b:
3 c¢:= syncSerfut(i6);

.
" n
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4 sum:= Q;

5 DO

6 sum:= sum + a.get*b.get;
7 c.put(sum)

I

Notice that the only difference between this program and the asynchronous ver-
sion is that the asynchronous ports have been replaced with synchronous ones. Again,
the first parameter is the word size, but here, the second parameter specifies the num-
ber of bit times that will elapse between successive words passing through the port.
The output port does not have a second parameter because the compiler computes
the separation value. Many signal processing programs may be written synchronously
in this manner.

A third version of the program computes the inner product of groups of four
pairs of input numbers. That is, the program will send the sum to the output only
after it has accepted four pairs of numbers. After that, the sum will be reset to zero

in preparation for the next four pairs. The code for this program is again rather
straightforward:

1 a:= aeyncSerIn(18,0);
2 b:= asyncSerIn(16,0);
3 c:= aeyncSerQut(16,0);
4 Do{

5 sum:= O

6 n:= 4#3;

7 WHILE n "= 0 DO {

8 n:= n-1;

9 sum:= sum + a.get*b.get
10 };

11 c.put{sum)

12 ¥

One point that may need clarification here is the assignment statement in Line 6.
The number sign (#) specifies that the value four should be represented with three bits.
Why was it necessary to specify the size of this particular constant but none of the
others? The compiler must be able to determine the size of every value so that it can
generate the correct layout to represent that value. Often, the size of a number can
be determined from the context of its use. For example, the zero in Line 5 is known
t0 be a sixteen-bit value because the variable sum is used in a sixteen-bit expression in
Line 9. Similarly, since the size of four was specified in Line 8, the sizes of zero and
one in Lines 7 and 8 can be determined as well. Generally speaking, the compiler is
able in most cases to determine the sizes of constants. Where it cannot, it will issue
an error message.

It turns out that a small amount of concurrency is available in this program. The
computation of the sum and the updating of the loop counter in Lines 8 and 9 do not
depend on each other and may therefore be executed in parallel. The compiler is able

to detect and, in some cases, capitalize on situations like this by generating parallel
hardware.
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The third version of the inner product program, above, is an example of a program
that could not be made synchronous merely by changing the port definitions. This is
because the compiler cannot determine the number of times that the WHILE-loop will
execute, and so it cannot determine the separation between successive values passing
through the output port. In a more general case, the body of a WHILE-loop might not
even be repeated the same number of times whenever the loop is executed. In the
current case, however, it is possible to rewrite the program to make it synchronous,
as demonstrated in this fourth version:

1 a:= gyncSerIn(16,1);

2 b:= syncSerIn(16,1);

3 c:= syncSerCut(16);

4 DO c.put(a.get*b.get + a.get*b.get +
5 a.get*b.get + a.get*b.get)

A final version of the inner product program, shown below, computes a running
inner product, but maintains the sum with extended precision. The input and output
numbers will be treated as sixteen-bit unsigned binary fractions with the binary points
at the left. Internally, the sum will be represented as a thirty-two bit unsigned binary
fraction. In Line 6, the input values are extended, without affecting the positions of the
binary points, by concatenating sixteen bits of zero onto their high-order ends. This
operation is basically a ploy to permit retrieval of the entire, thirty-two bit product
when the two values are multiplied, since Silicon provides only the low-order half of a
product. After the multiplication, accumulation proceeds as before, except that now
the sum is a thirty-two bit fraction. Finally, in Line 7, the most significant half of the
sum is extracted using bit subscription and is sent to the output port.

1 a:= asyncSerIn(16,0);

2 b:= asyncSerIn(18,0);

3 c:= asyncSerDut(16,0);

4 sum:= Q;

5 DO {

6 sum:= sum + (O#16’a.get)*(0O#18°b.get);
7 c.put(sum[31:18])

8

C.3 Example: PDP-8

The next example, a PDP-8, is substantially larger than the previous one. The
part of the program that emulates the instruction set of the PDP-8 was adapted
almost directly from the manual [DEC72]. The bus structure of the PDP-8, however,
uses many more signals than can easily be brought out of a single integrated circuit.
Therefore, this version of the PDP-8 has a rather drastically modified I/O and memory
bus. The design of this replacement bus is not especially clever, but it should serve
to illustrate the essential features of Silicon.
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The PDP-8 has three main registers that are of concern to the programmer. They
are initialized by the following statements.

1 (*+ Register definitions. *)

2 pc:= O#12; -~ Program counter.
3 ac:= O#12; -~ Accumulator.

4 1:= O#1; ~-- Link register.

The program counter and accumulator are each twelve bits wide. The link register,
really an extension of the accumulator, is one bit wide.

This example illustrates the two comment conventions available in Silicon. A
region of text may be commented out by enclosing it between matched pairs of
parentheses and asterisks, as was done in Line 1. Alternatively, the compiler will
ignore any text following and including a double dash on any single line, as shown on
Lines 2 through 4.

The modified bus structure for the PDP-8 consists of a data bus, an address
bus, and some miscellaneous control lines. It can be declared by the following Silicon
statements.

5 (*# Communications port definitions. *)
] addressBus:= syncParOut(12);

7 dataBus:= syncParI0(12);

8 memFetch:= syncParfut(1);

9 memStore:= syncParOut(l);

10 startI0:= syncParOut(l);

11 stopl0:= syncParfut(l);

12 skipIO:= syncParIn(1);

13 loadI0:= syncParIn(1i);

Notice that these statements declare parallel communications ports rather than the
serial ones used in the previous example. The single parameter gives the width of
the port. This is both the size of the words that will pass through the port and the
number of pads that will be used to implement it. Input ports respond to the get
attribute by sampling the current state of the pads and returning that value. Output
ports drive the associated pads with the value received in the most recent put attribute
invocation. The bidirectional communications ports, which are created by syncParlI0,
respond to both the put and get attributes. They behave either as an input port or
an output port, depending on which of these attributes was most recently executed.
The operation of storing a word into the memory of the PDP-8 is one that is
apt to be useful in many parts of the program. Silicon provides two mechanisms by
which such commonly used pieces of code may be given a name and invoked as often
as necessary. The first mechanism is a simple macro facility for replicating code at
various points within the program. The other mechanism uses a similar syntax but
behaves more like a subroutine. The difference is that when a macro is referenced, the
compiler is free to allocate new devices in order to implement the code in the macro
body. On the other hand, each invocation of a subroutine must reuse the same set
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of devices. Thus, subroutines economize on device count by reducing the possibilities
for concurrency.

The memory store operation may be written as a macro:

14 (*+ Store a word of data at a

15 specified address. *)

16 MACRO store(address,data

17 |memStore, addressBus,dataBus,d)
18 BEGIN

19 addressBus.put(address) ;

20 dataBus.put(data);

21 memStore.wait(addressBus) .wait{(dataBus)
22 .put (1) .delay(d) .put(0) .delay(d);
23 dataBus.wait (memStore) .get

24 END;

This definition has two input parameters, address and data, which convey the address
of the word in memory that is to be modified and the new value for that word. Notice
that these parameter names are written before the vertical bar and are enclosed within
the parentheses following the macro name. The definition also references four global
variables: memStore, addressBus, dataBus, and 4. The last of these, d, is expected
to have as its value an integer specifying timing delays. The others are some of the
communications ports that were described earlier. Global input parameters are listed
after the vertical bar in the declaration.

The body of the definition shows how the address and data values are placed onto
their respective busses; this happens in Lines 19 and 20. Notice thai these two lines
are independent of each other, so that the operations may occur in either order, or
even at the same time. In the next line, the memStore control port waits for both of
these operations to complete before transmitting a write pulse. The wait attribute of
parallel communications ports takes as its parameter another communications port.
‘When this attribute is invoked, both ports complete any pending operations and wait
for the other to become idle. When both are idle, each is free to proceed. Thus,
the wait attribute may be used to synchronize ports that are otherwise independent.
The delay attribute of parallel ports, used in Line 22, causes the port to wait for
the specified number of clock cycles. The actual wait time must be a compile-time
constant. After pulsing the memory store line, the program stops driving the data
bus by attempting to read from it, ignoring the value so obtained. Notice that a little
bit of concurrency is available when this definition of store is invoked. The caller
does not have to wait while the store operation finishes because the definition does
not return any value that the caller needs.

The memory fetch operation can be packaged like the store operation:

25 (* Fetch a word of data from a

26 specified address. ¥)

27 MACRO fetch(address|memFetch,addressBus,dataBus,d)=>
28 (data)

29 BEGIN

30 addressBus.put(address);
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31 memFetch.wait(addressBus) .put(1) .delay(d);
32 data:= dataBus.wait(memFetch) .get;

33 menFetch.wait(dataBus) .put(0) .delay(d)

34 END;

This definition has a single input parameter that supplies the address of the memory
location. As in the case of the store operation, the definition of fetch references four
global variables that specify the communications ports and the delay time. These
could, of course, have been passed as input parameters, but then there would be five
parameters to be included every time a memory fetch was needed. The single output
parameter, data, serves to return the memory value to the caller of the definition.

The body of the fetch definition is also much like that of store. The statement in
Line 30 drives the address onto the address bus. On Line 31, the memory fetch signal
is held high for a while in order to allow sufficient time for the memory to respond.
Notice, however, that this will not happen until after the addressBus port has begun
to supply the address. Next, after the memory fetch line has been asserted for a
while, a value is sampled from the data lines. Finally, in Line 33, the memory fetch
signal is returned to its quiescent state. By delaying the memFetch output port, the
program insures that the signal remains unasserted for some minimal length of time.
Even though this delay is taking place, the result of invoking the fetch definition is
available as soon as the value is received from the data bus, because after that point,
the result no longer depends on the memory fetch port.

Another useful definition is one that computes an effective address from an
instruction and the value of the program counter. In the PDP-8, nine bits are available
to specify a twelve-bit memory address. Two of these are flag bits, so there are really
only seven bits in the instruction word that end up as part of the final twelve-bit
effective address. Depending on one of the flag bits, the five high-order address bits
are either zero or come from the five high-order bits of the program counter. The
other flag bit specifies whether indirect addressing is to be performed. Finally, if
indirect addressing is used with one of a few special memory locations, the content of
that location is automatically incremented. The code is somewhat simpler than this
explanation might suggest:

35 (* Compute the effective address referenced in
38 the current instruction. =)

37 MACRO effectiveAddress

38 (linstruction,pec,

39 memFetch,memStore, addressBus,dataBus,d)
40 =>(address)

41 BEGIN

42 := instruction[11-3]; -- Indirect bit.

43 p:= imstruction{11-4]; -~ Page bit.

44 a:= instruction[11-6:11-10]; =-- Low-order addr.
45 address:= (IF p THEN O ELSE pc[11-0:11-4]1)’a;
46 IF i THEN -- Indirect addressing.

47 { a, address:= address, fetch(address);

48 IF a[11-0:11-8] = 1 THEN store(a,address+1)
490 }
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50 END;

This definition has no input parameters, but it does reference seven global vari-
ables. The first two of these, instruction and pc, are expected to name the current
instruction, supplying the low-order bits of ‘the address, and the program counter,
possibly supplying the high-order bits. The remaining five global variables are those
required by the memory fetch and store definitions, which may be needed to compute
the effective address. The single output parameter, addrees, is used to return the
result.

Notice that the definition of effectiveAddress contains three local variables: 1,
P, and a. Any variable used within the body of a definition, but not declared in the
header, is assumed to be local to that definition. Of course, as for any other variable
in Silicon, local variables are declared simply by their use.

The bit subscripts used in Lines 42 through 45 and on Line 48 are rather more
complicated than they might be because the PDP-8 numbers bits within a word
differently than does Silicon. In the PDP-8, bit zero is the high-order bit, while in
Silicon it is the low-order bit. Thus, the expression 11-3 in Line 42 converts bit three
in PDP-8 conventions to bit eight in Silicon conventions. Expressions may be used
as the subscript values even though the compiler requires constant subscripts because
constant expressions will be evaluated at compile-time.

Examples of definition invocation appear in Lines 47 and 48 in the definition of
effectiveAddress. They look just like an ordinary procedure call that might be
found in many other languages. The result is returned in place of the call, also in
the usual manner. Line 47 also confains a multiple-valued assignment statement. In
this case, the expressions on the right side produce two values that are assigned to the
corresponding variables on the left side.

With all of the pieces in hand, the structure of the main PDP-8 emulation
loop is relatively straightforward. The program repeats a fetch-decode-execute cycle
indefinitely. A CASE-statement describes instruction decoding, and the individual
cases contain the code for executing the corresponding instruction. Since a PDP-8
has only eight instructions, this code is not very difficult to produce. Actually, the
CASE-statement was never implemented in the most recent implementation of Silicon,
but a conditional statement could serve equally well. Here, then, is the main body of
the code, with additional remarks to follow:

51 (* Delay time. *)

52 d:=B5;

53

54 {* This is the main instruction
55 fetch~-decode-execute loop. *)
58 Do

57 { ipstruction:= fetch(pc);

58 pc:= pc + 1;

59 CASE instruction[11-0:11-2] OF
60

61 0: =~- AND Y (Logical AND)
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62 ac:= ac AND fetch{effectiveAddress)

63

64 1: -- TAD Y (Two's complement ADD)

85 ac, l:= ac + fetch(effectiveAddress),

66 NOT (1 EQV addSubCarryOut)

67

68 2: -- ISZ Y (Increment and skip if zero)

69 { address:= effectiveAddress;

70 temp:= fetch(address) + 1

71 store (address, temp) ;

72 IF temp = O THEN pc:=pc + 1

73 }

74

75 3: -- DCA Y (Depoeit and clear accumulator)
76 { store(effectiveAddress,ac);

77 ac:= 0

78 }

79

80 4: -~ JMS Y (Jump to subroutine)

81 { address:= effectiveAddress;

82 store (address,pc) ;

83 pc:= address + 1

84 }

85

86 §: -- JMP Y (Unconditional jump)

87 pc:= effectiveAddress

88

89 6: -- IOT (Input/Output transfer)

20 { addressBus.put{instruction);

91 dataBus.put(ac);

92 startIO. walt(addressBus) wait(dataBus)
93 .put (1) .delay(d) .put(0) .delay(d);
94 dataBus.wait(startI0).get;

95 stopI0.wait(dataBue) .put (1) .delay(d);

96 IF skipIO.wait(stoplI0).get THEN pc:= pc + 1;
97 IF loadIO.wait(stopI0).get THEN

98 ac:= dataBus.get;

99 stopl0.wait (skipI0) .wait(loadIl)

100 .wait(dataBus) .put (0) .delay(d)

101 }

102

103 7. =-- Operate instructions.

104 IF NOT instruction[11-3] THEN ~- Group 1.
105 { ~-- Clear accumulator.

108 cla:= instruction[i1-4];

107 == Clear link.

108 ¢ll:= imstruction[11-5];

109 -~ Complement accumulator.

110 cma:= instruction[11-8];

111 -= Complement link.

112 cml:= instruction([11-7];

113 -~ Rotate accumulator and link right.
114 ror:= instruction[11-8];

115 ~~ Rotate accumulator and link leift.
116 rol:= instruction[11-9];

117 -- Rotate two places.

118 two:= instruction[11-10];

119 -- All three rotate bits.
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130 rot:= instruction[11-8:11-10];

121 -- Increment accumilator.

122 iac:= instruction[ii-11];

123 (* Bequence 1 *)

124 IF cla THEN ac:= O;

125 IF ¢11 THEN 1:= O;

126 (* Sequence 2 %)

127 IF cma THEN ac:= NOT ac;

128 IF cml THEN 1:= NOT 1,

129 (* Sequence 3 *)

130 IF iac THEN ac:= ac + 1;

131 (* Sequence 4 *)

132 CASE rot OF

133 2: 1,ac:= ac[i1], acl10:0]’1

134 3: 1,ac:= ac[10], ac[9:0]’1’ac[11]

135 4: 1,ac:= ac[ 0], l’acfi11:1]

136 5: 1,ac:= ac[ 1], ac[0]'1l’ac[11:2]

137 b4

138 EF NOT instruction[11-11] THEN -- Group 2.
139 { ~-- Clear accumulator.

140 cla:= instruction[11-4];

141 -- 8kip on minus accumulator.

142 sma:= instruction[1ii-B];

143 -- Bkip on zero accumulator.

144 gza:= instruction[i1-8];

145 -~ Skip on non-zero link.

148 snl:= instruction[11-7];

147 -~ Reverse the sense of the skip.

148 rev:= instruction[11-8];

149 -~ OR accumulator with switch register.
150 osr:= imstruction[11-9];

151 -- Halt.

152 hlt:= instruction[11-10];

153 skip:= (sma AND ac[11-1i])

154 OR (sza AND ac ™= 0) OR (snl AND 1);
155 (* Sequence 1 *)

156 IF NOT (skip EQV rev) THEN pc:= pc + 1;
157 (* Sequence 2 *)

158 IF cla THEN ac:= O;

159 (* Sequence 3 *)

160 IF osr THEN { (* No Switch Register! *) };
161 IF hlt THEN BREAK

182 }

163 ELSE ~- Extended imstructiom.

164 { (* No Extended Arithmetic Element (EAE). %)
165 ¥

166 }

The first six PDP-8 instructions, with opcodes O through 5, are the memory
referencing instructions. These are all fairly straightforward, although there are a
few interesting points. First, notice the variable addSubCarryOut in the code for the
TAD instruction on Line 66. This variable, which was never explicitly assigned a
value, is automatically set to the value of the carry out of the most recent addition
or subtraction operation. In the present program, it is used to toggle the link bit
or not, depending on the result of the prior addition. Although potentially available
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after every addition or subtraction, addSubCarryOut costs nothing in terms of the
final layout unless it is actually used. If ignored, it will simply atrophy.

Next, consider the ISZ instruction on Lines 88 through 73. The code for this
instruction uses two temporary variables: temp and address. The compiler can
determine that these are temporaries because they are referenced nowhere else. The
variable address is used again in the JMS instruction, but there is an intervening
assignment statement, and the values named by the two occurrences of the variable are
therefore independent. The compiler will not generate storage for temporary variables
unless it must do so in order to satisfy timing or synchronization constraints.

Lines 114 through 118 contain three statements that extract values from various
bit fields of the instruction and assign them to variables. Notice, however, that these
variables are not referenced anywhere else in the program. The three statements
may have been written to improve the clarity of the program, or they may simply
be a leftover from a previous version of the program. In any case, not only will the
compiler refrain from generating storage for these variables, it will not even generate
circuitry to compute their values. In general, the compiler will not generate code that
cannot affect the behavior of the communications ports. This property is also useful,
for example, if the program includes code to be used with a functional simulator when
debugging. Arbitrarily complex debugging code may be left in even the final version
of a program, from which it will automatically be removed by the compiler.

The single I/O instruction on the PDP-8, called IOT, is rather similar to 2 memory
write followed by a memory read. It supplies the contents of the accumulator to
the data bus, using the instruction itself as the address. The startI0 port takes
the place of the memStore port used for accessing memory. Peripherals that have
access to the bus are expected to interpret the low-order nine bits of the instruction
in some reasonable manner. After the write phase of the I/O operation is complete,
the program begins the read phase. Again, this is similar to a memory fetch except
that the stopI0 port is used instead of memFetch. The input port skipI0 provides
a way for the peripheral device to specify a skip operation. This is typically used for
testing the status of a device. The 10adI0 input port signals whether this is an input
operation. The peripheral asserts this signal if it has placed on the data bus a value
that should be loaded into the accumulator.

The operate instruction, with opcode 7, is probably the most complicated and is
certainly the strangest instruction in the PDP-8. The low-order bits of the instruction
each specify some operation that may take place. The bits may be set in various com-
binations, causing the corresponding combinations of operations to occur. Actually,
the situation is somewhat more complicated even than this. There are some flag bits
in the instruction that select between alternate interpretations of the remaining bits.
These alternatives are known as the Group 1 and Group 2 operate microinstructions
and the extended instructions.

For the purpose of this discussion, it is enough to consider only the Group 1
operate microinstructions. The bits used to encode the instruction are broken up into
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four functional groups for clearing, complementing, incrementing, and shifting the
accumulator and link register. The four groups are supposed to operate in sequence,
so that, for example, by specifying the bits for clearing and complementing the
accumulator, one could be certain of setting all of its bits. Within one of the groups,
operations could proceed in parallel. Thus, the accumulator and the link could Le
cleared at the same time.

These constraints on the execution order of microinstructions are implicit in the
Silicon code. For example, the compiler can determine that the complement operation
in Line 127 cannot be performed until the clearing operation in Line 124 is complete.
On the other hand, neither of these statements interacts with Line 125, which clears
the link register, so the clearing may occur in parallel with either of the others. The
remaining cases are similar. While on the subject of concurrency, notice that all of
the bit field extractions on Lines 108 through 122 might potentially be performed at
the same time if the compiler finds this to be an advantageous implementation.

The version of the PDP-8 presented here is by no means an ideal one. It was
intended to serve mainly as an illustration of some of the features of Silicon. It is
especially weak in its off-chip dealings. The memory and I/O structure is not especially
flexible, and in particular, the PDP-8 emulator chip imposes what may turn out to
be unreasonable timing constraints on its memory and peripheral devices. There
is no provision for a delayed response to any processor request. Finally, interrupt
handling and direct memory access (DMA) have been entirely omitted. None of the
modifications required to correct these defects is impossible, but neither would they
increase the illustrative value of the example.

C.4 Example: Convolution

The next example, taken from the field of digital signal processing, is a simple
one-dimensional convolution that might be used to construct a finite impulse response
(FIR) filter. The program contains four values that make up the convolution kernel,
and it has storage for four samples of the input signal. Figure C-1 shows a block
diagram. At each step of the computation, the kernel values are multiplied by the
corresponding signal values. The four products are then added together, and the
result is the next in the sequence of values that make up the convolution. Finally, a
new sample value is shifted in, replacing the oldest one which is shifted out, and the
process is repeated. Here is the program that implements the convolution:

1 sIn:= asyncSerIn(16,0); -- Input sigpal samples.
2 cOut:= asyncSerOut(16,0); -- Convolution output.

3 (* Btorage for the input signal... %)

4 sl, 82, 83, 84:=0, 0, 0, O;

5 (* Kernel values to be supplied... *)

6 k1, k2, k3, k4:= ...something...;

7 bo
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Figure C-1. Block diagram of a machine capable of convolving a four element kernel with a
sequence of signal samples. Boxes labeled ¢; represent storage for samples, while those

labeled k; represent kernel values.

8 { (* Gensrate a value of the convolution. )

9 cOut.put(sixkl + B2%k2 + 53*k3 + B4xkd4);

10 (* Bhift in a new value of the input signal. =*)
11 sl, 82, 83, s4:= glIn.get, sl, 82, 83

12 }

Although this program is relatively straightforward, it has some problems. First
of all, the program works ounly for a convolution kernel with four coefficients. Although
it is easy to increase this limit by changing the program, the required modifications
would involve more than the simple alteration of a few constants. A powerful macro
preprocessor could help in this particular situation, but the basic problem is that

Silicon lacks any sort of higher-level data structures like arrays.

Another problem with the convolution program given above is that the kernel is
fixed. That is, in order to change the characteristics of the filter, it would be necessary
to fabricate a new chip. The following program eliminates that problem by allowing

the kernel coefficients to be shifted in one at a time.

(* Storage for the input eignal...
sl, 82, 83, 84:= 0, 0, 0, O;

ki, k2, k3, k4:= 0, 0, 0, O;
DO

00 =X C O O3 O =

*)

(*+ Storage for the kernel coefficients...

*)

gln:= asyncSerIn(i6,0); -- Input signal samples.
kin:= asyncSerIn(16,0); -~ Kernel coefficients.
cOut:= asyncSerOut(16,0); -- Comnvolution output.
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Figure C-2. A pipeline of convolution chips. sIn, kIn, and ¢In represent the signal, kernel, and
carry inputs, while sOut, kOut, and cOut represent the corresponding outputs.

9 IF XIn.ready THEN -- Bhift in a kermel value.
10 k1, k2, k3, k4:= kIn.get, ki, k2, k3

11 EF gln.ready THEN =-- Shift in a new sample.
12 { s1, 82, 83, s4:= sIn.get, 81, 82, 83;

13 y cOut.put(si*kl + s2%k2 + 83%k3 + s4¥kd)

14

Notice that the main loop has been transformed into something more nearly
resembling an idle loop. The construct kIn.ready returns the value True if a value
may be obtained from the input port allocated for kernel coefficients. It returns
False if there are no values waiting. In either case, it immediately returns so that
the program may proceed. Thus, the idle loop continually checks for either a sample
valule or a new kernel coefficient. In the first case, it uses the sample value to compute
the next element in the convolution. When a new kernel value becomes available, it
is shifted into the kernel.

A third version of the convolution program allows several chips to be cascaded.
This feature would useful if the convolution kernel contained more coefficients than
could be fabricated on a single integrated circuit. The new version of the program
is basically the same as the prior one, but sample values and kernel values must be
shifted out so that they are available to the next chip in the sequence. In addition, the
partial sums of the convolution must be passed along so that they may be reflected
in the final result. The diagram in Figure C-2 shows how several convolution chips
might be cascaded. The final result is available on the cOut port of the last chip.
Notice also that the c¢In port of the initial chip must be supplied with a constant
stream of zerces, or whatever constant offset is desired. Here is the program:

sIn, sOut:= asyncSerIn(16,0), asyncSerOut(18,0);
kIn, kOut:= asyncSerIn(18,0), asyncSerOut{16,0);
cIn, cOut:= asyncSerIn(16,0), asyncSerDut(16,0);

s1, 82, 83, 84:= 0, 0, 0, O;
ki, k2, k3, k4:=0, 0, O, O;
DO
IF kIn.ready THEN
{ kOut.put(k4);
ki, k2, k3, k4:= kIn.get, ki, k2, k3

o W e

(-3 -2 -]

Pt
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11 EF sln.ready THEN

12 { s0ut.put(s4);

13 sl, 82, 83, s4:= sIn.get, sl, 82, E3;
14 cOut.put(cIn.get + slxkl + s2xk2

15 + 83*%k3 + B4%k4)

16 }

C.5 Example: Self-Sorting Memory

A self-sorting memory is a device that stores numbers presented to it [ARMSTT].
‘When these numbers are retrieved, they appear in order of decreasing numerical value.
The version of the self-sorting memory presented here is a particularly simple one with
no added frills. As shown in the diagram of Figure C-3, each cell is capable of storing
a single value, and every cell has a bidirectional link to each of its two neighbors.

Numbers to be sorted are presented to the topmost sorting cell, which then
compares the new value to its previously stored value. It passes the smaller of these
two values to its lower neighbor. Because all cells behave in the same way, larger
numbers end up near the top of the memory, while smaller ones sink to the bottom.
If the memory becomes full, the smallest values will fall from the bottom of the chain
and will be lost.

The environment of the memory retrieves values from the top cell. As each cell
gives up its value, it obtains a new value from its lower neighbor. Notice that the
bottom of the memory must be supplied with an arbitrary number of very small
values. This particular version of the self-sorting memory does not detect overflow
or underflow, although modifications could be made to handle these conditions. The
code for a single memory cell is as follows.

1 MACRO sortCell(topIn,topOut,botIn,botlut)
2 BEGIN

3 myValue:= topIn.get;

4 DO

5 IF topIn.ready THEN {

6 new:= topln.get;

7 IF new > myValue THEN myValue,new:= new,myValue;
8 botOut.put (new)

9

10 EF topOut.waiting THEN {

11 topOut . put (myValue);

12 myValue:= botIn.get

13 }

14 END

The waiting attribute in Line 10 returns True if the process on the other end of the
communications port is expecting to receive a value through that port.

The definition of sortCell expects to send values to and receive values from
neighboring cells over communications ports. Thus, the definition might be invoked



178

! t

topln topOut
myValue
botOut botIn
)
\
topln toplut
myValue
botOut botIn
]
\
topln topOut
myValue
botOut botIn

$ !

Figure C-3. A set of chips implementing a self-sorting memory. topIn is a port for accepting values
to be sorted, botOut passes overflow values to the rest of the memory, topOut produces
sorted values, and botIn reirieves sorted values from the rest of the memory.
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by the following code.

sortCell (asyncSerIn(18,0),asyncSerfut(16,0),
asyncSerIn(18,0),asyncSerfut(18,0))

This statement would create a chip containing just one sorting cell. Since the cells
are probably fairly small, however, it would be nice to fit several of them on a single
chip.

Internal communications ports may be used to allow independent parts of a pro-
gram to communicate within a single chip. These ports are like other communications
ports, except that both ends are available to the program, and no pads are generated
in the layout. Internal ports are created with a statement like this:

i,0:= asyncInt(186,0)

This statement creates an internal port capable of passing sixteen it values and having
no internal buffering. Notice that two port values are returned. One of them is for
doing input, while the other does output.

The following program uses internal ports to describe a chip that consists of two
sorting cells.

i1, ol:= asyncInt(16,0);
i2, o2:= asyncInt(16,0);
sortCell(asyncSerIn(16,0),asyncSerOut(168,0),i2,01);
sortCell(il,o2,asyncSerIn(16,0) ,asyncSerOut(16,0));

0 DD e

The two cells are connected by two internal ports, one for communicating in either
direction. Since the attributes of each end of an internal port are the same as those
for the corresponding external port, the definition of a sorting cell works equally well
for either kind of port.

Now the program above is adequate for a memory consisting of just two cells,
but would become a bit tedious if extended for a hundred-cell memory. The following
definition might be used to describe a larger memory. It accepts the number of cells
to create, along with an input port and an output port for accessing the top cell.

MACRO sorter(nm,toplIn,topOut)
IFn > 1 THEN {
newTopIn,botOut:= asyncInt(18,0);
botIn,newTopOut:= asyncInt(16,0);
sortCell(topIn, toplut,botIn,botlut);
sorter(n-1,newTopIn,newTopOut)

© 00 ~T X i WD

ELSE sortCell(topIn,topQlut,
asyncSerIn(18,0),asyncSerfut(16,0))

This is a recursive definition that creates one sorting cell per invocation. It creates
internal ports to connect at the bottoms of all but the final sorting cell, which is
connected directly to an external port. With this definition, a complete sorting chip
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consisting of twenty-five cells could be described by the following single statement:
gorter(26,asyncSerIn(16,0),asyncSerfut(18,0))

The recursive definition given above worked only because the depth of recursion
was controlled by a constant expression. Clearly, the compiler must be able to
determine how many sorting cells to create, since they cannot be created dynamically
in the final chip. The constant 25 is explicitly mentioned in the definition invocation,
permitting the compiler to determine the value of n within the definition. Armed
with this, it can evaluate the condition and choose the appropriate clause of the IF-
statement. Thus, the compiler will not generate code for conditionals if it can test the
condition at compile time. This makes for a kind of conditional compilation.

Notice that the trick for iterating sorting cells may be applied to the convolution
example presented earlier. Recall that the problem was to write a program that could
produce a convolution chip for a kernel of arbitrary size. As the program was written,
the only way to do this was to manually change the number of variables present in the
program. It is now apparent, however, that the mechanism shown there for connecting
several chips could serve equally well to connect parts of a single chip if internal ports
were used. Such a scheme would certainly work, but it would not be very efficient.

It should come as no surprise that using internal ports will cost more in terms
of area in the final layout than not using them. It seems, therefore, that they would
have to offer some potential benefit before one would consider using them. In the
case of the self-sorting memory, internal ports were used to advantage because they
allowed cells to operate in parallel. The top cell might receive a new value before
another value had trickled all the way to the bottom. This would not be possible if
the program had been written sequentially. For the convolution example, however,
no real concurrency could be gained by adding internal ports. Even as written, the
necessary multiplications may be done in parallel, and several of the additions can
proceed concurrently. Also, even if the convolution were broken up using internal
ports, the partial sum would have to propagate all the way through the device before
the sample values could be shifted.

The conclusion to be drawn from all of this is that the programmer must be
aware of what he is doing. Even though the compiler will, at least in theory, produce
a correct implementation for any valid program, no optimizing compiler can repair a
poorly designed algorithm.

C.8 Example: Two-Dimensional Graphics

The final example of Silicon shows how simple pieces can be fit together to form
complete chips. Some basic tools for two-dimensional graphics, including coordinate
transformation, clipping, and line rasterization, will be used for illustration. The
fundamental idea is shown in the diagram of Figure C-4. The program will process
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Input Module
xNext yNext pNext
 J Y
xIn yin pin

Transformation Module
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Clipping Module

xNext yNext pNext

) 4 \  §

xIn yIn pln

Line-Drawing Module
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Output Module

Figure C—4. Basic two-dimensional graphics pipeline consisiing of transformation, clipping, and
line-drawing modules. Ports whose names start with x and y pass coordinates from

one module to the next, while those starting with p pass parameters that define the
behavior of the modules.
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line segments represented as two successive coordinates passed through the x and y
ports. The other port, labeled p in the diagram, will be used for passing parameters
to the clipper and transformer. These constants will be shifted through each of the
pieces, just as values were shifted between chips in the convolution example.

Recall that a point (z,y) can be transformed in homogeneous coordinates as
follows.

a d 0
[z y 1)|]b ¢ O0|=[(az+by+c) (dz+ey+[) 1]
¢ [ 1

This formulation allows for rotation, translation, and scaling. Also, recall that the
endpoints of line segments transform independently, so that the transformation pro-
gram need not consider points in pairs. With this in mind, here is the code for
performing the transformation:

1 MACRO transform(xIn,yIn,pIn)=>(xNext,yNext,pNext)
2 BEGIN

3 xNext, x0ut:= asyncInt(18,0);

4 yNext, yOut:= asyncInt(i6,0);

5 pNext, pOut:= asyncInt(16,0);

8 a, b, ¢,d, e, £:=1, 0, 0, 0, 1, O;

7 DO

8 IF pIn.ready THEN

9 { pOut.put(l);

10 a, b, ¢, 4, e, £:= pIn.get, a. b, ¢, d, e
11

12 EF xIn.ready AND yIn.ready TEEN

13 { x, y:= xIn.get, yIn.get;

14 x0ut.put(axx + b*y + c);

15 yOut.put(d*x + exy + f)

16 }

17 END;

The construct EF in Line 12 is an abbreviated notation for the sequence ELSE IF.

The declaration of transforn illustrates the conventions that will be followed by
the graphics modules. They will each have three input parameters and three output,
or result, parameters. The input parameters are input ports that supply points and
constants to the module. The result parameters are also input ports. Other modules
can use them to retrieve points and constants that have passed through the module.

The next module, which performs clipping, is divided into four submodules. Each
clips the line segment against one of the edges of the clipping area. By the time a
line segment has passed through all four modules it will have been completely clipped.
The edge clippers use a little trick so that they can all be described by the same code.
As line segments are sent from one module to the next, they will be given a quarter
turn to the left. This allows each module to behave as though it were clipping against
the left edge. After passing through all four modules, a line segment will have rotated
back to its original position. Here is the code for the edge clipper:

18 MACRO clipEdge(xIn,yIn,pIn)=>(xNext,yNext,pNext)
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19 BEGIN

20 xNext, x0ut:= asyncInt(16,0);

21 yNext, yOut:= asyncInt(18,0);

22 pNext, pOut:= asyncInt(16,0);

23 xEdge:= 0;

24 DO

25 IF pIn.ready THEN

26 { pOut.put(xEdge); xEdge:= pIn.get }
27 EF xIn.ready AND yIn.ready THEN

28 { xi, yi:= xIn.get, yIn.get;

29 X2, y2:= xIn.get, yIn.get;

30 vi:= (x1 >= xLeft);

31 v2:= (22 >= xLeft);

32 IF vi AND NOT v2 THEN

33 { x1, x2:= x2, xi;

34 yi. y2:= y2, yi;

35 vl, v2:= v2, vi

36 };

37 IF v2 AND NOT vi THEN

38 x1, yil:= xleft,

39 yIntercept(xi-xLeft, y1, x2-xleft, y2);
40 IF vi OR v2 THEN

41 { x0ut.put(-y1); yOut.put(x1);
42 x0ut.put(~y2); yOut.put(x2)
43 }

44 >

45 END;

46

47 MACRO yIntercept(xi, yi, x2, y2)=>(yInt)
48 REPEAT

49 xInt:= (I1#1°'x1 + O#1'x2)[16:0];

50 yInt:= (1#1°y1 + O#1'y2) [15:0];

51 IF xInt < O THEN x1, yi:= xInt, yInt;
52 IF xInt > O THEN x2, y2:= xInt, yInt
53 UNTIL xInt = Q;

Notice that the code for computing the actual edge intersection has been broken out
into a separate definition. It uses the midpoint subdivision algorithm in order to avoid
doing an explicit division operation [SPRO6S].

Four edge clippers are joined in the following definition:

54 MACRO clipper(xIn,yIn,pIn)=>(xNext,yNext, pNext)

56 xNext, yNext, pNext:=

56 clipEdge(

57 clipEdge(

58 clipEdge(

59 clipEdge(xIn,yIn,pIn))));

This functional style of notation is useful for Joining the various elements of a pipeline.

The line drawing module uses Bresenham’s Algorithm [BRES65). Pairs of input
coordinates are interpreted as the endpoints of line segments, and the output coor-
dinates are the points that lie on the line segment. Here is the code:

60 MACRO abs{(n)=>(n) IF n < O THEN n:= -n;
61

82 MACRO twice(n)=>(n) n:= n+n;
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63

64 MACRO lineDraw(xIn,yIn,pln)=>(xNext,yNext, pNext)
65 BEGIN

66 xNext, x0ut:= asyncInt(18,0);
67 yNext, yOut:= asyncInt(16,0);
68 pNext, pOut:= asyncInt(16,0);
69 DO pOut.put(pIn.get);

70 DO

71 { x1, yi:= xIn.get, yIn.get;
72 x2, y2:= xIn.get, yIn.get;
73

74 dx:= x2 - x1; absx:= abs(dx)
75 dy:= y2 - y1; absy:= abs(dy)
76

77 CASE (dx < 0)'(dy < 0)'(absx-absy < 0) OF
78 0: -~ Octant 1

79 { da:= absx; db:= absy;
80 mix:= +i; miy:= O;
81 m2x:= +1; m2y:= +1
82 }

83 1: -~ QOctant 2

84 { da:= absy; db:= absx;
85 mix:= O; mly:= +1;
86 m2x:= +1; m2y:= +1
87 }

88 2: -- Octant 8

80 { da:= absx; db:= absy;
90 mix:= +1; mly:= O;
g1 m2x:= +1; m2y:= -1
92 }

93 3: -~ Octant 7

94 { da:= absy; db:= absx;
95 mix:= O; mly:= -1;
96 m2x:= +1; ml2y:= -1
97 }

98 4: -- Octant 4

99 { da:= absx; db:= absy;
100 mix:= -1; mly:= O;
101 m2x:= ~-1; m2y:= +1
102 }

103 B: -~ Octant 3

104 { da:= absy; db:= absx;
105 nix:= 0O; miy:= +1;
106 m2x:= -1; m2y:= +1
107 2

108 8: =-- Octant b

109 { da:= absx; db:= absy;
110 mix:= -1; miy:= O;
111 m2x:= -1; m2y:= -1
112 }

113 7: -- Octant 8

114 { da:= absy; db:= absx;
115 mix:= O; miy:= -1
116 m2x:= -1; m2y:= -1
117 }

118

119 d:= twice(db) - da;

120 x:= x1; y:=7vy1;
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121 Do

122 { x0ut.put(x); yOut.put(y):

123 IF (x = x2) AND (y = y2) THEN BREAK;
124 IF 4 < 0 THEN

125 {x,y:= x + mix, y + myl;

126 d:= d + twice(db)

127 >

128 ELSE

129 {x,y:=x + m2x, y + n2y;

130 d:= d + twice(db) - twice(da)
181 }

132 }

133 }

134 END;

Two more modules are needed to complete the program. These communicate

off-chip to get input line segments and send output points. The code for the two
modaules is pretty simple.

135 MACRD input=>(xNext,yNext,pNext)

136 BEGIN

137 INext:= asyncSerIn(16,0);
138 yNext:= asyncSerIn(18,0);
139 pNext:= asyncSarIn(16,0)
140 END;

141

142 MACRD output(xIn,yIn,pIn)

143 BEGIN

144 x0ut:= asyncSerOut(18,0);
145 yOut:= asyncSerOut(18,0);
148 plut:= asyncSerOut(16,0);
147 DO xOut.put(xIn.get);

148 DO xOut.put(xIn.get);

149 DO xOut.put(xIn.get)

150 END;

The input definition simply supplies the three external input ports. The output
definition creates three output ports and then continually copies values to them.
With all of the tools in place, the program for the complete chip is quite trivial:

151  output(lineDraw(clip(transform(input))))

C.7 Extensions

In its current form, Silicon lacks some features that would be useful for program-
ming certain applications and essential for others. These features were omitted from
the first version of Silicon because of a desire to restrict the scope of the original im-
plementation. For the most part, however, they fit well into the existing framework of
the language. This section lists and briefly describes some of the possible extensions.

One area in which there is substantial room for improvement concerns the inter-
actions between a Silicon program and its operating environment. In particular, it
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would be useful to develop a wider range of communications ports. Each different
kind of port might have differing electrical properties, or it might be functionally well
suited to a particular range of applications. As ports become more specific, the Silicon
code for dealing with them can be simplified somewhat. Since more of the control
operations would be handled directly by the port, it might be reasonable to expect
that a better overall chip implementation would result.

An example of a more specialized communications port is a signalling port,
which can be used to implement handshaking protocols. Signalling ports would be
implemented with a single pad that could either be sampled or driven, depending upon
whether the port was for input or output. These ports would be used for sending or
receiving transitions. That is, an output signalling port would changes its state on
command, while an input signalling port would wait until it had detected a state
change. For example, the following program fragment uses two signalling ports and

a parallel input port to read a number. A two-phase signalling convention is used for
the synchronization.

1 signalln.get;
2 n:= inputPort.wait(signalln).get;
3 signalOut.wait (inputPort) .put;

The code in Line 1 waits for a signal that the value is ready. The next two lines
sample the value and signal the fact that the value has been accepted. Notice that
this program could have been written with simple parallel ports, but it would have
been substantially more complicated. The wait operations, for example, would have
had to be performed by a loop that continually sampled an input value. In addition
to being more awkward to code, this scheme would have resulted in a far less efficient
implementation than could be obtained with signalling ports.

Another useful extension to Silicon would be the addition of explicit memories.
Recall that the Silicon compiler generates storage wherever it is required and that this
operation is practically invisible to the programmer. Sometimes, however, it is more
natural for the programmer to deal with explicitly defined memories. For example,
a register file and a table of constants can conveniently be thought of as a random
access memory (RAM) and a read-only memory (ROM). Memories would be defined
in the same way as communications ports. Thus, a memory consisting of eight words
of sixteen bits apiece might be defined as follows.

reg:= RAM(8,18);
It is easy to imagine the definition of a dual-port memory, which might look something
like this:
porti, port2:= dualPortRAM(8,18);

After defining the memory, values could be stored in and retrieved from it like this:

1 reg.store{address,newValue);
2 oldValue:x reg.fetch(address);



185

Of course, read-only memories would have only a fetch attribute. The constant values
would have to be supplied during compilation.

Memories like those described above are rather similar in their behavior to com-
munications ports. Notice that a particular memory can perform only one operation
at a time, although two different memories may be busy simultaneously. Also, the ge-
quence of memory operations must be preserved. For example, read and write opera-
tions on a memory must be performed in the order specified by the source code if the
program is to work correctly. Entities like communications ports and memories are
known as resources in Silicon. Later sections will show how similar their implementa-
tions can be.

Silicon would benefit greatly from the ability to include user-supplied operation
and resource definitions. Sometimes a specific computation that is difficult to perform
in Silicon is comparatively simple to implement with a custom-designed layout. It
would be convenient for the programmer to reference these lower level modules from
a Silicon program. Such a scheme allows 2 designer to derive some of the benefit of a
custom design, while at the same time having the compiler do much of the detail work.
These are the same reasons offered for the use of assembly language subroutines with
higher level languages. The syntax for invoking user-supplied operations and resources
would be the same as that for invoking definitions, and it would be necessary to design
the compiler in a way that made it easy for the designer to define his additions. This
in itself is a fairly major undertaking.

Finally, there appears to be some need in Silicon for higher level data structures,
like arrays. Notice that arrays are quite different from RAMs. For the latter, it is the
programmer who manages the memory. In the former case, the compiler must not only
manage, but also allocate, the storage used by the array elements. Another problem is
that it is not even obvious how arrays should behave. Questions like these are perhaps
best left unanswered until more experience with Silicon has been accumulated.

C.8 Implementation Overview

It is fairly obvious that programs written in Silicon are technology independent.
That is, there is nothing in the language that would, for example, favor CMOS over
nMOS. On the other hand, it may not be so clear that programs are also representation
independent. Although numbers are represented as bit strings of known length,
nothing specifies the representation of those bits, or of the devices that manipulate
them. For example, a sixteen-bit number might be communicated on sixteen separate
wires or on a single wire that contains successive bits of the number af sixteen
successive clock times. Between these extremes of fully parallel and fully bit-serial,
byte-serial and nibble-serial representations are possible.

It might be argued that the use of, let us say, a serial communications port would
restrict a program to a serial implementation, but this is not so, because a port only
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determines the interaction of a chip with its environment; it does not constrain the
internal workings of the chip. Notice, however, that although transparent to the
Silicon programmer, the implementation of a communications port will have to be
tailored to the main representation being used. For example, a serial port used on a
parallel chip must include some mechanism for converting between the two formats.

In addition to being independent of the spatial aspect of numeric representation,
Silicon does not depend upon any particular timing strategy. Although clocked,
synchronous chips will be of the most interest for this discussion, other protocols are
possible. For example, the interior of a chip might follow the conventions for self-timed
systems [SEIT80]. Again, such chips could range anywhere from completely serial to
fully parallel.

The reason for Silicon’s representation independence is that operations in the
language specify a function to be performed rather than a device for performing that
function. For example, a plus sign specifies an addition operation; it does not declare
that an adder should be generated. On the contrary, several addition operations may
be implemented with the same adder, or several adders may be required to implement
an addition specified by a single plus sign. Furthermore, addition operations and
subtraction operations might even be implemented with the same device, if this were
convenient in the representation being used. All of these considerations are below the
level of detail that is visible in the Silicon source code.

Although Silicon programs are representation independent in the purest sense,
there are some difficulties in the engineering sense. The problem is that a chip
implemented with a fully parallel representation, for example, might not have an
equally efficient implementation if a bit-serial representation were used. The reverse
might also be true. This should come as no surprise, just as it is no great shock
that not every program is a good program. Programmers have long known that a
more efficient program can result if the characteristics of the programming language
implementation are taken into account. What this means for Silicon is that it may
pot be desirable or even feasible to implement a particular program in every possible
representation.

The representation independence of Silicon programs does have some advantages,
however. First, a functional simulator that works at the source code level will work for
any representation. Second, it turns out that about half of the code for the compiler
itself does not depend upon the target representation; this should help to encourage
the production of new versions of the compiler. Third, notice that there is nothing
forcing every part of the chip to use the same representation; different parts of the
same chip may be implemented differently.

The remainder of this section is devoted to an overview of the structure of the
Silicon compiler. There are four relatively distinct phases of the compilation process,
each of which is briefly described below. Later sections will treat each aspect of the
compiler in greater detail.

The first phase of the compiler performs a lexical and syntactic analysis of the
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incoming Silicon source code. The program is tokenized and parsed by a simple set of
recursive descent procedures that transform it into a reverse polish string. Definitions
are also extracted, and one of the first phase results is a symbol table that associates
definition names with the reverse polish representation of the definition body. The
actions of the first phase are all pretty straightforward and will not be described
further.

The second phase performs a dataflow analysis of the program using the polish
strings generated in the first phase. The dataflow analysis is used in later phases to
determine which operations specified in the source code can be executed at the same
time. Phase two is also where constant expressions are evaluated, definition invocations
are processed, and constant sizes are determined. The output of the second phase is
a directed graph representation of the program, called a dataflow diagram. It will be
described more completely later on, but for now it suffices to realize that the dataflow
diagram is a convenient representation of the program for use in subsequent phases
of the compiler.

The third phase of the Silicon compiler applies function preserving transforma-
tions to the dataflow diagram in an attempt to somehow improve it. Notice that
unlike the operations of the previous phases, this optimization process depends very
heavily on the data representation being used. For example, in a parallel, bus struc-
tured representation, implementing two addition operations with a single adder device
might require the simple alteration of a PLA. To do this with serial devices, however,
would require extra wires for routing the operands, in addition to switching and logic
circuitry for choosing between the two sets of operands. Thus, transformations that
are optimizations for one representation may have just the opposite effect for other
representations. In fact, this observation leads to one of the main reasons that it
is possible to compile a single Silicon program into multiple representations: The
dataflow diagram is a sufficiently neutral form that it may be stretched in any one of
2 number of directions.

The fourth 2nd final phase of the compiler resembles a conventional “chip as-
sembler.” It accepts the list of devices, along with the interconnection and timing
information that was produced by the third phase, and generates the final layout.
This is just a matter of placing standard cells and tailoring them to suit their sur-

roundings. It seems pretty clear that this phase is not only representation dependent,
but also technology dependent.

C.9 Dataflow Analysis

Dataflow analysis is really the heart of the Silicon compiler. It produces a dataflow
diagram, which is a convenient form for later optimization. The dataflow diagram is
also a halfway point in the generation of a layout. Serial versions of the compiler use
it as a starting point for the final geometry, while parallel versions use it to locate
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Figure C-&. A dataflow diagram node that will be created for the addition operation.

opportunities for parallelism in the program implementation. This section describes
the process of dataflow analysis in reasonably great detail, but it stops short of delving
into the programming details.

The process of dataflow analysis is basically a symbolic execution of the Silicon
program. The reverse polish strings produced by the parsing phase are interpreted
sequentially, but instead of actually performing the computations specified in the
polish string, the interpreter builds a data structure that represents the computations.
This data structure, called a dataflow diagram, is a directed, possibly cyclic graph
where the nodes represent operations and the ares linking the nodes represent values.

The way in which dataflow analysis is performed is similar to the implementation
of type checking in conventional programming languages. In fact, the compiler per-
forms a sort of elementary type checking as it generates the dataflow diagram. The
compiler insures, for example, that the operands of arithmetic operators are indeed
numeric, that communications ports are used properly, and that the correct numbers
of parameters are supplied for each definition invocation. It can also detect such errors
as a reference to an uninitialized variable.

Addition is an example of one of Silicon’s simple operations. Its representation
in a dataflow diagram is shown in Figure C-5. As illustrated, addition is drawn as
a node having two input arcs for the two addends and two output ares for the sum
and carry results. For this example, neither the input arcs nor the cutput arcs are
connected to anything, but in the actual dataflow diagram the input ares of every
node will be connected to the output arcs of some other nodes. Not all output arcs
need be connected, of course, because it is not strictly necessary to use the result of
every operation. Also, a single output arc might be conrected to more than one input
arc, corresponding to the case where a single result is used several times. For example,
the addition of three numbers might be represented as in the fragment of a dataflow
diagram that is given in Figure C-8.

Notice how similar dataflow diagrams are to the notion of a dataflow machine. It
is often useful, in fact, to think of the dataflow diagrams as a kind of idealized dataflow
machine. Values may be thought of as flowing along the ares in little capsules. When
an operation receives all of its inputs, it produces a result capsule. If an output is
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Figure C-9. A fragment of a dataflow diagram that will be generated to represent the addition of
three numbers.

connected to more than one input, the capsule effortlessly replicates itself as often as
necessary. Notice that this ideal dataflow model may or may not have anything to
do with the implementation of the final chip. Whether it does will depend to a large
extent upon the actual representation being used.

The program for generating the dataflow diagram makes use of two main data
structures. First, a symbol table associates values with variable names. The valhies are
arcs in the dataflow diagram under construction. The second data structure consists
of a simple stack used to store intermediate values during expression evaluation.

A simple example will help to illustrate how the stack and the symbol table can
be used to construct a dataflow diagram. Consider the following Silicon expression.

a*a + b*b

Recall that the parsing phase of the compiler will translate this expression into a
reverse polish string:
aa*xbb*+

Suppose that the values of the two variables a and b are known and therefore appear
in the symbol table. When the interpreter encounters the variable names in the polish
string it will thus be able to push their values onto the stack. After execution of the
first two tokens, the stack will look like it does in Figure C-75. When it executes the *
in the polish string, the usual thing for a polish interpreter to do would be to actually
execute the operation. Here, however, the interpreter will pop two values from the
stack and use them as input arcs to a newly constructed node in the dataflow diagram.
It will then push the output arc of the new node onto the stack, which would look like
Figure C-7¢. The remaining stages of execution are shown in Figure C-7d through g.
Notice that the final result on the top of the stack is an arc leading from the desired
sum. The second output from the addition operation, the carry out, is not pushed
onto the stack; instead, its value is inserted in the symbol table with the variable name
addSubCarryOlut.

It is easy to see how an assignment statement works in Silicon. Suppose that the
following statement is being executed.
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Figure C-8. Dataflow diagram resulting from the assignment statement a:= a®a + bsb.

a:= a*a + bxb;

The expression is evaluated as described above, leaving its value on the top of the
stack. To implement the assignment statement, the interpreter simply pops this value
off the stack and uses it to modify the symbol table entry for the variable a. The
resulting fragment of the dataflow diagram is shown in Figure C-8. Notice that the
variable a names different values at different stages of the dataflow analysis, and there
is thus no single arc in the dataflow diagram that corresponds to a particular variable.
In fact, after the dataflow analysis, the compiler has ne further need for the variable
names other than for use in error messages.

Macro expansion is another exercise in stack and symbol table manipulation.
When the actual parameters of the macro are computed, they are left on the top of
the stack. Next, if the macro references any global variables, these too are pushed onto
the stack. At this point, both the symbol table and the current code stream are saved
away on different stacks, to be replaced by a new symbol table and the code for the
body of the macro. The formal parameter names and the global input variable names
are then bound to the values on the top of the stack. After the code for the body of
the macro has been executed, the reverse of this process takes place. The values of
the output parameters are pushed onto the stack, followed by the current values of
the global output variables. The symbol table and code stream are discarded, and the
previous ones are revived. Finally, the values of the global output variables are stored
in this original symbol table, while the other values returned from the macro remain
on the stack, ready to be used in an expression.

As the previous discussion suggests, after a macro has been expanded, no indica-
tion remains in the dataflow diagram that it was ever there at all. This means that the
compiler cannot make use of any hierarchical structure that the designer may have
included in the Silicon source program. On the other hand, the actual silicon wafer
is an inherently homogeneous material, and it is often the case that a hierarchical
structure will be imposed more for the benefit of the designer than for the satisfaction
of constraints imposed by the implementation. The programming language Silicon
derives two benefits from its policy of discarding hierarchy information. First, the
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Figure C-9. An ifYes operator iz denoted by Y; i2No and Merge operators are denoted by ¥ and K.

programmer can choose a program structure that suits the application, rather than
the compiler. Second, the compiler itself is free to apply optimizations across hierar-
chical boundaries in ways that may not have been apparent to the programmer.

Control structures are a little more difficult to implement than the simple ex-
pressions described above, but not unreasonably so. Implementing the conditional
statement requires three dataflow operators that behave somewhat differently from
the usual expression operators. These are the ifYes, ifNo, and Merge operators,
shown in Figure C-9. The ifYes operator has a condition input and a value input.
The condition input must have a value of zero or one, corresponding to False or
True. When the ifYes operator receives both of its inputs, it either passes the value
input along as its output or does nothing, depending on the value of the condition
input. Thus, if the condition input is one, meaning True, the value is propagated
through the ifYes operator. If the condition is zero, or False, the value is blocked.
Notice that this behavior differs from that of the ordinary operators because there is
no strict one-to-one correspondence between sets of inputs and sets of outputs. The
1fNo operator, of course, passes its value input if the condition input is False. Finally,
the Merge operator expects to receive a value on one or the other of its inputs, and it
simply propagates this value along to its output.

Consider next the following conditional statement.

IF a > b THEN a, b:= at+b, a~b ELSE b:= a

Recall that the condition, a>b in this case, produces a one-bit value that specifies which
of the two clauses should be executed. This bit is routed to the condition inputs of
the ifYes and ifNo operators that screen the inputs to the portions of the dataflow
diagram for each clause of the conditional. At the end of the conditional, Merge
operators rejoin the final results from each clause. The complete dataflow diagram
appears in Figure C-10. At first glance, the graph looks rather complicated, but it
actually is not. Variable names have been placed next to the corresponding arcs in
an attempt to make the diagram more readable. One interesting thing to note is that
the assignment statement in the ELSE-clause causes a single value to be named by two
variables. Another is that the output of the 1fNo operator for the variable b is never
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Figure C—-10. Dataflow diagram resulting from the Silicon statement IF a > b THEN a, b:= a+h,

a~b ELSE b:= a.

used, so it will eventually atrophy and disappear from the dataflow diagram.

As one might expect, generating the dataflow diagram for conditional statements
requires some careful symbol table manipulation on the part of the interpreter. At
the beginning of the conditional, it is necessary to generate a new symbol table for
each clause. These must each contain all of the variables from the original symbol
table, passed through the appropriate ifYes or ifNo operator. At the end of the
statement, these symbol tables must be combined by passing corresponding entries
through Merge operators.

It may seem that this scheme would generate a dataflow diagram that is substan-
tially more complicated than pecessary, especially if there were many variables not
used in the conditional statement. This problem turns out to be relatively minor, as
will be shown in a later section. An alternate technique for doing the dataflow analysis
avoids the problem by adding an extra pass to determine what variables are used in
the conditional statement. This method turns out to have difficulties that make it
unsuitable for use here. This will also be discussed later.

The CASE-statement implementation is very similar to that of the conditional
statement. It does, however, require the additional dataflow operator shown in Figure
C-11. The Case operator has a single input that is used to determine which branch
should be executed. Upon decoding the input value, it generates either a zero or a
one on each of its outputs. These outputs are all connected to ifYes operators that
control the inputs to the various alternatives of the CASE-statement. Thus, only those
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Figure C-12. Dataflow diagram resulting from the statement DO a:= a+b.

alternatives receiving a True value from the Case operator will be executed.
Looping statements use the same Merge operator that was described for condi-
tional statements. For loops, however, one input to the Merge is the initial value of the
loop and the other is the value from the previous iteration. For example, consider the
following statement and the corresponding dataflow diagram given in Figure C-12.

DO a:= a+b;

Notice that the value of the variable a will never be completely computed, while the
value of b never changes. This can be determined from the dataflow diagram by
noting that the output of the Merge operator for the variable b is the same as its
input. Again, some rather tricky symbol table manipulation is required to reflect this.

Loops that terminate are quite 2 bit more complicated than infinite loops, but
they still use the operators that were described for conditional statements. Here is 2
fairly simple example that illustrates the general idea:

DO
{a:=3a+b;
IF a > b THEN BREAK;
b:=a-b
>

The corresponding dataflow diagram appears in Figure C-13. The effect of the BREAK
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Flgure C-18. Dataflow diagram corresponding to a loop that terminates.

statement is to pull all of the values in the symbol table to the outside of the loop.
The values of the variables a and b will therefore be available after the loop when
the condition a>b has been satisfied. When the condition has been satisfied and the
loop terminates, the values are not only permitted to leave the loop, they are also
prohibited from cycling around it any further. The mechanism for loop termination
thus prepares the loop to be executed again, if it should it be enclosed within an outer
loop.

The YHILE and UNTIL forms of loops are just special cases of the loop outlined
above. For these, the loop termination test is either the first or the last statement of
the loop body. A complication, however, is the case where a loop has several possible
exit points. This would occur if there were more than one BREAK statement within a
single loop. To implement this case, it is necessary to route the corresponding outputs
from each exit point through Merge operators. This must be done, of course, for every
variable, and it has the effect of joining the various operators that may be the last
ones executed before leaving the loop.

Until now, no mention has been made of where the dataflow diagram is rooted.
That is, every operator described so far has had inputs that must be supplied before
an output could be produced. There is a single exception to this observation. The
Reset operator, shown in Figure C-14, has no inputs. Instead, it produces its single
output when the chip represented by the dataflow diagram is initialized. Recall that
most operators produce encapsulated values as outputs. The Reset operator produces
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Figure C-18. Dataflow diagram corresponding to the statement a:= &+10, illustrating the use of
constants.

an empty capsule; that is, there is no associated value. This means, for example, that
its result cannot be used as the input of an adder because there is no value to add. On
the other hand, passing the Reset value through an ifYes, ifNo, or Merge operator
is perfectly legitimate, so that the value may be referenced from within loops and
conditional statements. The Reset value is intended for use only by the compiler and
possibly by the compiled layout, and it is therefore inaccessible from the Silicon source
program.

The Reset value is used primarily for implementing constants. These are opera-
tors that produce a predetermined value upon receipt of some other value. This input
value will be ignored, so that the use of the Reset value is reasonable. The next
example illustrates the use of constant operators. Figure C-15 shows the dataflow
diagram for the following statement.

a:= a + 10

Notice how triggering constant operators in this manner insures that the correct
number of constant values will be generated. For example, if a constant operator
is used within a loop, it will generate only one value per iteration because the Reset
value cycles through the loop at that rate.

Communications ports provide another example of “valueless values.” Recall that
consecutive accesses to a communications port must not only be separated in time,
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they must occur in the same order as specified in the source program. Maintaining
this order for, say, additions is no problem because the outputs of an adder will not
appear until the inputs are ready. Furthermore, if two additions are independent of
each other, the order in which they are performed doesn’t really matter. In contrast,
while the inputs of two put operations to the same port may become available in
either order, the operations themselves must be performed as specified in the source
program. This problem ean be solved with the introduction of port values. Like the
Reset value, these are values in form only. The put operation just mentioned would
have two inputs: the value to be put and the port value. Its single cutput would be
the port value, which would not be generated until the numeric value had been sent
through the port. The get attribute of input ports would thus have a single input for
the port value, one output for the value obtained from the port, and one output for
the propagated port value.

An example of communications ports might help to clarify the description given

above: p:= syncParQut(16,0);

p.put(1);
p.-put(2);
The dataflow diagram for this program is given in Figure C-16. The syncParOut
operator creates a port value upon receipt of its input value. Notice that the port
value can be assigned to other variables or used within loops and conditionals pretty
much as any other value might be. The one restriction is that the compiler must be
able to trace every path from a particular port access to the same port definition.
This is because the compiler must be able to determine which port is being accessed
so that it can run a wire there. Here is a program that violates this restriction:
pl:= syncParOut(16,0);
p2:= syncParOut(16,0);

-~ The following statement is wrong.
(IF a > O THEN pl ELSE p2).put(10);

Figure C-17 shows the corresponding dataflow diagram. The problem is that when
the port input of the put operator is traced backwards to determine the port, the
two paths lead to two different ports. If this situation is detected in a program, the
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Figure C-17. Dataflow diagram corresponding to an incorrect use of ports. The compiler cannot
determine whether the put operation is being applied to output port pl or output
port p2.

compiler will issue an error message.

Once the dataflow analysis is complete, the only handles that the compiler main-
tains on the dataflow diagram are through the communications port values. That is,
variable names have disappeared, and only those operators that are accessible from
the final port values will be considered as part of the dataflow diagram. Notice that
these are the only operators that can possibly have any effect on the external behavior
of the chip. Thus, at practically no cost in terms of compilation time, code that was
included solely for the purpose of debugging will be rendered invisible. This code may
be arbitrarily complicated, possibly even including definition invocations.

Although not explicitly stated, it is probably clear that concurrency information is
readily available in the dataflow diagram. In order to determine whether one operation
may be performed at the same time as another, it is necessary only to determine if
there is a path in the dataflow diagram from the first operator to the second. The
existence of such a path implies that the first operator depends on the output of the
second. If no such dependencies exist, and if sufficient hardware is available, then the
operations may be performed at the same time.

The process of tracing through the dataflow diagram in order to determine
potential concurrencies works even for seemingly more complicated cases. Consider
the following program in which two infinite loops cooperate by means of an internal
communications port.
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Figure C-18. Dataflow diagram illustrating a wire implemented with internal communication ports.

pl:= asyncSerIn(16,0);
p2:= asyncSerQut(18,0);
i,o:= asyncInt(18,0);

D

0}
{ v:= pi.get;
o.put(v)
}i
bo
{ v:i= i get;
3 p2.put(v)

This is a very expensive implementation of a wire, but it does serve to illustrate some
interesting points. The corresponding dataflow diagram is shown in Figure C-18.
Notice that the invocation of asyncInt produces two ports that are independent
with respect to the dataflow diagram. This makes it possible for the loops to be
independent. Since the loops are independent, that is, no operator in one uses a result
produced in the other, they may be executed in parallel. This is not, however, to say
that they will run independently. The shared communications port will require some
sort of synchronization to take place.

A few things have been left out of the foregoing discussion of the dataflow analysis
phase of the Silicon compiler. These are mainly concerned with generating the simplest
diagram that can accurately represent a given source program. Such matters are
treated in the next section.
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C.10 Folding

A dataflow diagram produced by the algorithm described in the preceding section
will end up containing many artifacts that were simply not present in the original
Silicon source program. For example, values may pass through many operators having
to do with implementing loops, even though those values are not generated or even
referenced from within a loop in the source code. This unfortunate state of affairs can
be corrected by a technique called folding, which attempts to merge nearby operations
in the dataflow diagram. In addition to this kind of remedial work, the folding process
can evaluate constant expressions at compile time. A simple extension of this action
implements Silicon’s conditional compilation facility.

Although it may be thought of as a distinct operation, folding can be performed
as part of the dataflow analysis. There are several reasons for doing so. First of all,
folding reduces the size of the dataflow diagram, so that unneeded parts do not have
to be carried through the whole compilation. Second, in order to perform conditional
compilation, it is essential that the value of the condition be known early in the
compilation process. This is especially true if the condition is being used to terminate
a recursive definition. Improper handling of this case could cause the compiler to enter
an endless loop. Finally, better error messages can be generated if folding is done as
part of the dataflow analysis., This is so because the source code line numbers and
variable names are available in the reverse polish code used by the dataflow analysis
program, but this information is missing from the completed dataflow diagram.

The simplest case where folding can be applied occurs when every input to a
particular operator in the datafiow diagram is a constant. For example, consider
the fragment of the dataflow diagram produced by the Silicon expression 5+7, which
is shown in Figure C-19a. If the addition operation is performed at compile time,
it and the two constants may be replaced by the comstant result, as illustrated in
Figure C-19b. This type of folding is useful primarily in situations like bit subscription,
where the actual value must be known at compile time.

Another, somewhat more complicated folding operation detects values that pass
through a conditional statement or expression without being modified. The general
form of the dataflow diagram is shown in Figure C-20, before and after the folding has
taken place. Recall that when the conditional statements or expressions are processed
in the dataflow analysis, every variable in the symbol table is somehow passed through
this configuration of ifYes, ifNo, and Merge operators. If most of these variables are
not referenced within the body of the conditional, many extra nodes in the dataflow
diagram will be created. Thus, the folding operation that eliminates these extra ones
can effect a substantial savings.

Looping statements cause a similar problem. When a loop is encountered in a
Silicon program, the dataflow analysis routine will pass through the loop every variable
that exists at the time. For every variable that is not used within the loop, unnecessary
nodes will appear in the dataflow diagram. Figure C-21 contains a fragment of a
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Figure C—19. Dataflow diagram corresponding to the expression 5+7 before and after folding.
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Figure C—20. Datafiow diagram before and after an unnecessary conditional operation has been
eliminated by folding.
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> Value Result
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Figure C-21. Fragment of a dataflow diagram shown before and after an unnecessary loop has
been folded away.
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Value

Figure C-22. Even values not referenced within an infinite loop are inaccessible afterwards if
folding is not performed properly.

dataflow diagram shown before and after folding has been performed. Here, too,
substantial savings will be derived if the body of the loop doesn’t reference most of
the variables in the program. Beyond this, loop folding can affect the timing of a
program. Since a loop may execute an arbitrary number of times, an arbitrary delay
may occur before the values are released. If a value is not computed within the loop,
there is no reason for this delay, and so the folding operation produces a dataflow
diagram that is, in some sense, more correct.

When infinite loops are not folded properly, it is actually possible for an erroneous
dataflow diagram to be generated. Before folding, a value that is never referenced in
the infinite locp will be trapped inside of it, as shown in Figure C-22. Notice that the
loop has no outlet, so if the program would be unable to reference the value after the
loop. It is clearly unreasonable for all of the variables to be unavailable after every
infinite loop, and the folding operation that breaks invariants out of loops insures
that this will not happen. Notice, however, that it is possible for infinite loops to
consume values if variables are changed within the loop. In this case, since the loop
is infinite, the computation of the values never finishes. Finally, this case provides
another reason for performing folding in tandem with the dataflow analysis, since the
code following the infinite loop cannot be processed until values not used in the loop
have been made to bypass it.

It is sometimes possible to perform more folding if constants defined outside of
loops or conditionals are pulled to the inside. The following excerpts of Silicon code,
for example, illustrate the basic principle.

-- Before folding --
n:= 10; a:= 100;
DO
IF a > n THEN a:= a-n ELSE a:= a-i
UNTIL a < 2#n

-- After folding --
n:= 10; a:= 100;
DO
IF a > 10 THEN a:= a-10 ELSE a:= a-1
UNTIL a < 20
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Figure C-28. Conditionals having a constant conditional input may be eliminated by folding.

Of course, the transformation is not performed on the source program, but rather on
the underlying dataflow diagram. Notice that the constant could be pulled inside of
the loop only because the variable naming it, n, was not modified within the loop.

Another type of folding, used to implement conditional compilation, makes use of
the pseudo-value Undefined. This is a sort of cancerous value in that it is propagated
directly to the outputs of almost any cperator receiving it as an input. For example, if
one or both of the inputs of a + operator are Undefined, both the sum and the carry
outputs will be folded to the undefined value as well. Undefined values are created by
the 1f£Yes and ifNo operators if a constant condition input is of the wrong sense. The
four combinations of these operators and constant values, together with their folded
representations, are illustrated in Figure C-23. When the condition input of an ifYes
or ifNo operator is known, its output will be folded either to its value input or to
Undefined. The only operation with any immunity at all to the undefined value is
Merge. If one of its inputs is Undefined, its output will be folded to the value of its
other input.

A simple example may help to illustrate how the undefined value is used to provide
for conditional compilation. Here is a fragment of a Silicon source program:

double:= 1;
b:= IF double THEN 2#a ELSE a;

Figure C~244 shows the dataflow diagram that corresponds to this program fragment.
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Figure C-24. Folding may be used to achieve a sort of conditional compilation, as illustrated by the
dataflow diagram before folding, after folding the conditional operators, and after
folding the merge operator.
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After the 1fYes and ifNo operators are folded, the dataflow diagram is changed so
that it corresponds to Figure C-245b. Folding the Merge operation gives the final result,
shown in Figure C-24c.

The compiler uses a similar technique when it expands macros. Upon encounter-
ing a macro invocation, the compiler will check the value of Reset. If this value is
Undefined, it will not expand the definition. The Reset signal is used because it
should have a defined value in every circumstance but this one. By testing the Reset
signal before expanding the definition, the compiler can handle recursive definitions
without going into an infinite loop.

It may seem that much of the effort required for the folding operation goes
into making up for the ineptness of other parts of the compiler. If the dataflow
analysis generated less spurious junk, there would be less need for folding. Although
it is generally true of optimizing compilers that much of their effort is spent solving
problems introduced by the compiler itself, this is especially true here. One way to
improve this situation would be to introduce an extra pass for performing a source/sink
analysis before the dataflow analysis, as is done in typical compilers. With this
information the dataflow analysis program could avoid, for example, running values
through loops where the value was never used. This scheme almost works here, but
not quite. Part of the problem is that not all of the required information is available
until the folding of definition expansions has been completed. While the scheme would
work most of the time, it still requires a folding operation like the one described here to
handle the odd cases. By adding an extra pass for source/sink analysis and modifying
the dataflow analysis and folding operations, it would probably be possible to make
a cleaner and better implementation. For the current, trial implementation, however,
this was deemed unnecessary.

C.11 Size Determination

Part of the compiler’s task is to determine the sizes of values used in a Silicon
program. This information is needed for the later stages of the compiler, which select
the devices used to implement the program. Be performing size determination as part
of the dataflow analysis, more meaningful error messages can be generated. Aside
from this consideration, however, it might just as well be performed as a separate
pass over the dataflow diagram.

Size information is available from several places. The first and most obvious
source is constants whose size was specified explicitly. Next, values produced by
invoking the get attribute of communications ports have a known size that was
specified when the port was created. - Similarly, values used as inputs of the put
attribute also have known sizes. Finally, some operators always produce fixed-size
results. For example, comparison operators like < always produce a one-bit value.

In addition to the explicit sources of size information, most operators impose
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some kind of constraint on the sizes of their inputs and outputs. The multiplication
operator, for example, requires that its two inputs and single output all be of the same
size. The comparison operators expect only that the sizes of the two inputs match.
For the bit concatenation operator, the size of the result must be the sum of the sizes
of the two inputs.

Size determination may be done, then, by propagating the known sizes through
the dataflow diagram while observing the constraints imposed by the operators at
the nodes. There are two potential problems here. The first is that there may not
be enough information to determine the size of every value. In some cases, like bit
subscripts, this is not a problem because the size doesn’t matter, but in most situations,
an error message is called for. The second problem is that sizes may be inconsistent,
as, for example, when a ten-bit value is given as a parameter to the put attribute of
a sixteen-bit port. Here again, the compiler must issue an error message.

C.12 Functional Simulation

Once the dataflow diagram has been constructed, it is a relatively simple matter
to perform a functional simulation. Notice that the simulator is representation inde-
pendent, as is the datafiow diagram itself. Thus, a single functional simulator could
serve for every version of the compiler. It would not entirely replace the low-level,
representation specific simulators, however. These would supply timing information
as well as provide a double-check on the validity of the compiler itself.

The Silicon language includes a debugging statement that has not yet been
described. The statement consists of a text string, enclosed within quotes, and an
expression, in the following form:

"Number of points: ® nPoints;

At the appropriate point in the simulation, the text string will be typed out on the
user’s terminal, along with the value of the expression. Recall that for ordinary com-
pilation, the only handles on the completed dataflow diagram are through the opera-
tions on communications ports. For simulations, the debugging statements provide an
additional handle. This means that debugging statements will be removed automati-
cally if an ordinary compilation is underway, and furthermore, the expressions used
in the debugging statement may be arbitrarily complex.

The actual functional simulation process is fairly simple, proceeding in two indef-
initely repeated phases. During the first phase, a new value is computed for each of
the operators in the dataflow diagram. During the second phase, each of these new
values is made available at the output of the operator. Of course, the undefined value
is a perfectly legitimate result at this stage. Debugging statements and accesses to
communications ports cause terminal or file 1/O to occur.

A slight problem with the simulation technique just described is that it may
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require an arbitrary amount of storage along each of the arcs. Such would be the case
if certain portions of a loop ran at a rate substantially different from the others. The
problem can be solved by forcing all values in a particular loop to circulate at the
same speed. A convenient way to accomplish this is to synchronize all of the Merge

operators for that loop. None would be permitted to produce a result until all were
ready to do so.

C.13 Bit Serial Implementation

This section outlines the process used to transform the dataflow diagram repre-
senting a Silicon program into a layout that implements it. This process is broken down
into three stages. First, the compiler applies transformations to the dataflow diagram
in order to make it more suitable for a serial implementation. Next, it analyzes the
timing properties of the program to determine where it must insert storage elements.
Finally, it selects and places the serial components to be used, and it generates the
connections between them.

Bit serial arithmetic has several properties that make it well suited for implemen-
tation as an integrated circuit. The individual computing elements require just a
{fraction of the space used by their fully parallel counterparts. Moreover, the wiring
costs are substantially reduced because the number of wires used to represent a value is
independent of and much smaller than the actual word size. Also, the communication
that does occur tends to be fairly localized.

On the other hand, bit serial circuits may be substantially slower than functionally
similar parallel circuits. This is so because, although the area consumption of the
computing elements is independent of word size, the computing time is not. There
are, however, cases where this is not a great problem. For example, a shift-and-add
multiplier looks and performs much the same whether implemented serially or in
parallel. If other serial operations can be pipelined together with multiplications, their
performance limitations can be minimized. Furthermore, because of their smaller size,
more serial devices can fit on a single chip. In some applications, it is possible to
enhance the performance by making use of this potential for parallelism.

The convention followed here for bit serial arithmetic uses two wires to represent
a single number. One of these, the data wire, carries the actual bits that make up
the number. These are passed at the rate of one bit per clock cycle, with the least
significant bit appearing first and the most significant bit last; there are no gaps
between successive bits of a word. The second wire carries a control signal that is
high whenever the data wire represents the bits of a word; it is low between words.
Note that there must be a gap of at least one clock cycle between successive words.
The data line must be held low between words when the control line is low. The
timing diagram in Figure C-25 is an example illustrating how the value fifty would
be represented as an eight-bit number.
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Figure C-26. Timing diagram showing the number fifty represented bit serially as an eight-bit
number (5010 == 00110010;).

This dual wire representation has two main advantages. The first is that the
serial devices need not maintain counters to be able to determine where a word starts
and where it ends. Adders, for example, can use the control line to determine when
the carry bit should be cleared. The second advantage is that there is no centralized
control. Since values announce themselves, global circuitry for synchronizing events is
unnecessary. This circumstance, in turn, lessens the need for global communication.

The compiler makes two kinds of modifications to the dataflow diagram in its
attempt to improve it for a bit serial implementation. The first modification concerns
the use of constants. Recall that constants are represented in the dataflow diagram as
nodes with a single input serving as a sort of trigger for the constant valued output.
This trigger input is somehow connected to the reset signal in the dataflow diagram,
and that is the potential source of the inefficiency. If the constant is used in a deeply
nested control structure, many nodes in the dataflow diagram will be required simply
to propagate the reset signal.

The constant optimization improves the dataflow diagram by finding suitable
substitutes for the reset value used as constant inputs. Constants are most often
used as one of the two inputs of a binary operator, and therefore the other input
is a convenient replacement for the reset value. Figure C-26 illustrates a dataflow
diagram before and after this modification. Note that operators with a constant
input will always have at least one non-constant input because if all of the inputs
had been constant, the operator would have been folded out at an earlier stage of the
compilation.

The method just described for dealing with the constants has other attractive
properties besides getting rid of the reset signal. These have to do with the implemen-
tation of the serial elements themselves. First, notice that most of the serial devices
expect to receive their inputs at the same time. For example, the two inputs of an
adder must arrive together. If 2 constant input to the device is triggered by another
input, this constraint will be satisfied without the use of additional circuitry. Second,
for many devices, both operands must be of the same size. If this is the case, and the
control signal for the non-constant input is made to double as the control signal for
the constant input, the implementation of the constant can often be made simpler.



209

Reset f— 1

4
i

b
YV

(2) (6)

Figure C-28. Constant optimization to reduce the use of Reset.

Moreover, the actual wiring cost may be reduced slightly.

The second form of optimization performed by the compiler is known as Common
Subexpression Elimination, or CSE. In its simplest form, this optimization simply
combines the code for multiple occurrences of the same computation. For example,
the following Silicon excerpts show how a program might be transformed by CSE.

Before: b:= (a+1)*(a+1);
After: tmp:= (a+1); b:= tmp*tmp

This is a rather contrived example, but it does serve to illustrate the basic idea. It is
possible for entire statements to be merged in a similar manner.

The scope of common subexpression elimination is the entire program. This
means that if two portions of the dataflow diagram can be merged, those portions will
be found even if the corresponding parts of the source code were widely separated.
In addition, since macros have been completely expanded by this point in the com-
pilation process, macro expansions present no barriers to the removal of redundant
subexpressions.

The compiler is also capable of reaching inside of conditionals when performing
CSE. That is, if there were common subexpressions within two alternatives of a
conditional statement, or even within different conditional statements, they would be
merged and implemented just once. For example, suppose that some combinations of
the alternatives of a CASE-statement contained code to increment a program counter.
This computation would be implemented just once, and the result would either be
passed through the CASE-statement or ignored, depending on the value of the switch.
The inherently parallel nature of serial systems makes it reasonable to compute
values that are simply discarded later. Once a serial device has been created, the
interconnection structure is rich enough that it costs no more to compute than to sit
idle. If the result of its computation is useful, so much the better.

Eliminating common subexpressions cannot, of course, work miracles. One limita-
tion is that although CSE can detect and merge duplicate conditionals, duplicate loops
are completely out of its reach. Another is that it cannot automatically convert macro
expansions into something more akin to subroutine calls. In other words, it would be
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desirable if complicated macros could be expanded only once and then somehow be
linked to each of the places where they were referenced. Such an operation could be
performed by creating a separate process for the subroutine and then connecting it
to the main process by means of internal communications ports. The compiler should
leave simple macros unchanged because the overhead needed to combine them would
outweigh any benefits that might be derived. This kind of behavior begins to move
from the realm of optimization into the area of system design, and it should probably
be left in the hands of the user rather than be fully performed by a compiler.

After the compiler has finished applying transformations in its attempt to tailor
the dataflow diagram for serial arithmetic, it must perform a timing analysis of the
entire dataflow diagram. With the resulting information, the compiler can determine
where storage devices are required for the correct functioning of the circuit. It then
inserts the necessary devices into the datafiow diagram immediately before producing
the final layout.

Serial devices each require some number of clock cycles or bit times in which to
perform their respective operations. This time is the delay introduced by the device,
and it may take one of two forms. Fixed delays are those that can be determined at
compile time. For example, an adder invariably produces the first bit of its result one
clock cycle after it has received the first bit of its inputs. Fixed delays, denoted by f,
are the most common in serial systems. The second type of delay cannot be predicted
at compile time. It is called a variable delay, denoted by v, because it depends on the
environment of a working chip. For example, an asynchronous communication port
might not produce a value until some person walks by and pushes a button. Notice
that the delay introduced in this way may not even be the same each time the device is
activated. Another, less obvious example is the loop. Loops may repeat an indefinite
number of times, perhaps governed by a value received from off-chip. Since values
cannot escape a loop until it terminates, an arbitrary delay will result.

In addition to their delay characteristics, most serial devices impose constraints
on the arrival times of their inputs. An adder, for example, expects to receive both of
its inputs at the same time. A concatenation device, on the other hand, requires the
second input to immediately follow the first. Another type of constraint arises from
loops. Here, the total delay through the body of the loop must be at least as large
a8 the word size of the values used within the loop. If this constraint is violated, the
initial values of the loop will collide with the results of the first iteration at the merge
operator. Yet another constraint is that the delay through a loop must be the same
for all of the values computed or referenced within the loop. Without this constraint,
some parts of the loop could run faster than others. This situation, in turn, might
require the compilation of unbounded storage, which is, of course, rather difficult to
implement.

In order to satisfy the constraints imposed by the network of serial devices, it is
necessary to introduce extra delays, or storage devices. These devices accept one input
value that will be copied to their single output at some time after it arrives. These
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introduced delays, denoted by d, may potentially appear in the dataflow diagram
before the inputs of any operator that has at least two operands. No delays are
necessary for single input operators because there is nothing to synchronize. For
example, Figure C-27 shows the dataflow diagram corresponding to the following
Silicon program, including the required delays.

i:= asyncSerIn(16,0);

o:= asyncSerOut(18,0);

sum:= O;

n:= i.get;

YHILE n > O DO

{ sum:= sum + i.get;

n:=n -1

o.i:ut (sum) ;
Notice that the loop makes use of a variable delay to express the fact that it is
executed repetitively. The value of the variable delay is zero for the initial iteration
and increases by one for every successive iteration. The length of each iteration is
denoted by m.

It is now possible to write a set of equations that describe the constraints. There
will be one equation for each device having more than one input, in addition to the
equations required to express the loop constraints. Basically, these equations are
formed by computing the arrival times of each of the inputs in terms of the f, v,
and d values. Appropriate combinations of these are then set equal tc each other,
perhaps with some constant offset. The equations for the previous example are given
in Figure C-28

In theory, it should be possible to find values for the d’s in terms of the f’s,
v’s, and m that minimize some cost function. There are some problems with this
in practice, however. For one thing, it isn’t clear what the cost function should
be. Should it measure area utilization, execution time, or something else? What is
more, any solution would depend on the v’s and would therefore have to be computed
symbolically. Even if it could compute such a solution, the compiler would probably
have difficulty implementing it.

An alternative is to use a heuristic approach in order to find a solution that may
not necessarily be optimal in every case, but that would always work. This is the
approach taken here. Basically, the compiler will generate circuitry to insure that
devices with more than one operand will receive their inputs at the correct times.
It will also generate devices to insure that the constraints imposed on variables used
within loops are satisfied.

To begin with, consider the techniques required for aligning the inputs of a two-
operand device. Loops and devices with more than two inputs are just extensions of
these basic techniques. There are three cases to consider, determined by how much is
known about the relative timing of the inputs.

The first case occurs when the difference between then arrival times of the two
inputs can be determined at compile time. This would be the case if the expressions
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Figure C-27. Dataflow diagram corresponding to a simple summation program.
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Figure C-28. Timing constraints for the dataflow diagram of Figure C-27.

for the two times contained the same variable delay. Figure C-29a shows a dataflow
diagram that gives rise to the following set of equations.

hh=v+f1
ta=vi+fp

The difference in arrival times is

t1—t2 = f1 — fo.

Notice that the variable delay terms cancel in the subtraction, leaving only fixed
delays. Since these are known to the compiler, a numeric answer will result. In this
case, a fixed-length delay must be inserted before one of the inputs to the binary
device, as shown in Figure C-295. The delay is implemented as a simple shift register
with its length chosen to delay the earlier value by the amount required for alignment
with the later one.

The second case in the problem of storage insertion for a binary device occurs
when one of the inputs is known to follow the other. This happens if all of the variable

delay terms present in one of the times are also present in the other, as in the following

set of equations.
4 ti=uv1+u+f

te2 =v1 + fo

The difference here is
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Figure C-29. A dataflow operator whose inputs are ready at comparable times, shown before and
after delay insertion.
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Figure C--80. Representation of a stoppable shift register in a dataflow diagram.

th—t=v+(fi — fo)

If the value of vy is large enough, the first input will arrive after the second. By
inserting a fixed delay before the first input, effectively increasing f;, the compiler can
insure that the first input will always arrive after the second. Notice, however, that
since v, might be arbitrarily large, the second input may be required to wait for an
arbitrary length of time. An ordinary shift register cannot implement this operation,
because its length would have to vary. Instead, the compiler uses a stoppable shift
register, represented as shown in Figure C-30. This device is like a shift register
having a length equal to the word size, but once a value has been shifted all the way
in, it is stopped and stored until released by 2 signal on the trigger input. The trigger
output signals when a value being held is ready to be released. Using a stoppable
shift register, the delays required by the binary device can be implemented as shown
in Figure C-31. The length of the standard shift register is chosen to insure that the
second value will always be waiting in the stoppable shift register when the first value
arrives. Using the control signal of the first input as the trigger for the second input
guarantees that they will arrive simultaneously at the binary device.

The third and final case arises when the compiler has no information whatsoever
about the ordering of the two arrival times. This would happen if each of the arrival
times contained variable delays that were not present in the other.



215

t » Shift, Register

ty f Stoppable Shift Register

Figure C-81. Delays used to synchronize a binary device when one of the inputs is known to arrive
some time later than the other one.
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Figure C-82. Dataflow diagram showing synchronization required when the two inputs of a binary
device arrive at incomparable times.

tLh=wv+fi
e =vp + fo

The difference in arrival times is

t —te = (v1 — v2) + (f1 — fa).

Depending on the relative values of v; and vz, either value might be the first to
arrive at the device. Each of the wvalues must, therefore, be prepared to wait for the
other, and two cross-coupled stoppable shift registers are required, as illustrated in
Figure C-32. The earlier value will thus be held until the later one is available.

Stoppable shift registers are sometimes used where an ordinary shift register
might suffice. This would happen if the difference in the arrival times of a device’s
inputs could be determined at compile time, but was very large. In such a case, it
would be more economical to use a stoppable shift register, because its maximum
length is limited to the size of the word that it must be able to hold.

As mentioned earlier, synchronizing the inputs of loops or devices with many
inputs is basically an extension of the techniques used for binary devices. The inputs
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Fligure C-88. A last-of device used to synchronize three signals.

can be split up into groups according to their arrival times. The groups would be
defined so that the compiler could compute the difference in the arrival times of any
pair of values within a group. If it turns out that there are just one or two such
groups, synchronization can be performed pretty much as described for binary devices.
However, another device is necessary if more than two groups must be synchronized.

The device required for synchronizing three or more mutually incomparable de-
vices is called a C-element, or last-of device. It has a single output, which is not
asserted until all of its inputs have been asserted. This output will not be deasserted
until all of the inputs have been subsequently deasserted. If the compiler cannot
determine the order of arrival of the inputs of a device having many operands, all
inputs must passed through stoppable shift registers that are triggered by a last-of
device. Figure C-33 contains an example showing a last-of device being used to
synchronize the three inputs of another device. This notion can also be extended
beyond devices having just three inputs, or three input groups.

After storage allocation is complete, the only task remaining for the compiler to
generate the actual layout. By this point in the compilation process, nodes in the
dataflow diagram correspond directly to physically realizable devices. The compiler
selects them from a library of serial devices, tailors them to their electrical environ-
ment, places them on the layout, and routes wires to connect them as indicated in the
dataflow diagram.

Serial devices in the compiler’s library must adhere to some conventions. Power,
ground, and two clock signals are accessed in a standard way on the metal layer.
The control and data inputs and outputs are also standardized. Figure C-34 outlines
a device having a single input and a single output. A device having more than one
input or output would be formed from more than one copy of this basic layout, stacked
vertically one atop the next. It is also necessary for the internals of the serial device to
be defined in coordinates that are relative to the global metal wires. This convention
allows the distance between the wires to be adjusted to fit the largest device. Another
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Figure C-84. Overall layout scheme for a device having a single input and a single output.

reason for this is that the compiler may find it necessary to widen the power or ground
lines; it might even split them so that it can route wires through the center of a cell.
Therefore, communication crossing power or ground lines in a single cell must be
implemented on either the polysilicon layer or the diffusion 'layer using coordinates
relative to different wires on each end.

The overall layout of the chip includes many copies of the power and clock busses,
described above, running horizontally across the chip. The serial devices hang on
these wires as required, and the spaces between them are used as wiring channels
for connecting them. Vertical wires run in polysilicon between neighboring cells;
horizontal wires run in metal either between cells or through them. This latter type
of routing is accomplished by splitting power and ground lines, as mentioned earlier.
Finally, the pads surround the whole affair and are connected to the rest of the circuit
with the routed wires.

One possible placement operation, which determines where on the buses serial
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devices should be hung, is simplified somewhat by the fact that it need not be done
perfectly. If it isn’t exactly right, the wire routing algorithm will still be able to
connect the devices. Moreover, since only two wires are needed to represent a value,
the cost of any extra wiring is not prohibitive.

The placement algorithm makes use of the timing information that was computed
earlier during the storage allocation stage of compilation. By setting all of the variable
delays to zero, the compiler can determine the earliest time at which each value might
be available. This time can then be used as an approximation to the horizontal position
of a device, so that devices used early in the program tend to appear to the left of the
layout, and those active later appear to the right. Similarly, device outputs will be
somewhere to the left of the inputs that reference them. The vertical position should
be chosen in an attempt to reduce wiring by maintaining the continuity of values.
That is, a device should be vertically placed in an attempt to keep down the distance
to the devices producing its inputs.

A reasonable placement can be accomplished by controlling primarily the order
in which the devices are placed. That is, the compiler traces through the dataflow
diagram to find devices used for computing a single value, and it lays them out near
each other in the order that they appear in the diagram. Devices used to compute the
next value are placed beneath the first row, and so on. This method works well for
single-input devices, but is less than perfect for others. It does seem to be adequate,
however, and the wire routing algorithm can always take up the slack.

Pad placement is not very difficult. Recall that the pads are spread around the
periphery of the circuit. The power and ground pads are at the upper left and lower
right corners. The two clock pads are at the other two corners, and the reset pad is
somewhere along the top. The pads implementing communications ports appear along
the left edge if they are input ports, or along the right edge if they are output ports.
If there isn’t enough room on these two edges, the top and bottom can be used. Since
the ports are connected to the rest of the circuit by only a few wires, their placement
is not extremely critical.

The actual wire routing algorithm can be fairly simple because it is permitted to
create all the space that it may need. The output of the placement phase consists of
a tightly packed layout and a wiring list. The router goes through the list, one net at
a time. It determines the most direct path for each net and shoves the serial devices
aside to make room for the wire. Other more sophisticated schemes are available, but
they do not seem really necessary.

Finally, although not mentioned earlier, there is almost unlimited room for in-
genuity in the code generation process. It is often possible to replace two devices
with a single one that is perhaps more complicated but occupies less space than the
original two. This is the case, for example, when many bit-fields of a single value are
extracted using the bit subscription operation. Also, clever selection of the control
inputs of constants and other devices may result in some simplification. Each one
represents individually only a small improvement, but the result is cumulative. Tricks
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of this nature do not change the overall structure of the compiler, however, and useful

though they may be, they were deemed unsuitable for inclusion in the first version of
the Silicon compiler.

C.14 Status of the Serial Implementation

When the Silicon compiler project was undertaken, it was thought to be a rela-
tively simple task that would require a detour of no more than a few months. It
turned out to be substantially more involved than anticipated, not because any part
of the implementation was especially difficult, but rather because there were so many
individual parts. The implementation of the compiler was carried through two ver-
sions to the point where every phase has at least some tentative behavior. The current
version will accept simple Silicon programs and will produce a layout that is essentially
complete, except for pads and the actual serial devices themselves.

The newest version of the Silicon compiler consists of six passes. The first pass
parses the Silicon source program to produce a symbol table and a series of polish
strings. Pass two transforms the polish strings into a dataflow diagram. Pass three
folds constant subexpressions and propagates sizes throughout the dataflow diagram.
The fourth pass examines the dataflow diagram and performs an analysis to determine
where storage should be inserted. Pass five generates a placement for the serial devices;
and lastly, pass six routes wires though the devices and generates the final layout in
the form of a CIF file [SPROSO].

The second version of the Silicon compiler was streamlined in many ways to
simplify the resulting implementation. The primary technique for doing so was to
substitute several simple passes for the few complex passes that were used in the
initial approach. For example, the folding and size determination operations have
been separated from the task of generating the datafiow diagram. The code for
producing the dataflow diagram must still be capable of determining when values are
not used in loops, but it need no longer be cluttered with the code for folding and size
determination. On the other hand, the code for these operations no longer has access
to the variable names and line numbers present in the polish sfring form of the source
program. In order to be able to generate intelligible error messages, this information
had to be included in the dataflow diagram. It was easy for the dataflow analysis pass
to add this information, and moreover, having the line numbers and variable names
in the dataflow diagram turned out to be useful when debugging the compiler itself.

Delay insertion in the second version of the compiler differs somewhat from the
description given earlier. The goal was to attempt to generate reasonable code,
but if that wasn’t possible, to generate correct code at all times. There is still
considerable room for improvement, however. The new delay insertion algorithm
begins by performing a constant optimization, just as the old one did. Recall that the
old algorithm treated loops by forcing all of the inputs of a loop to arrive at known
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relative times. The new algorithm begins by assuming that none of the loop inputs
arrive at times that are comparable to any other. It then determines what constraints
are actually required within the body of the loop, and finally, after processing the
inside of the loop, it inserts the required synchronization hardware. The advantage of
postponing the insertion of extra hardware is that, in theory at least, only those signals
that actually require synchronization will be synchronized. Furthermore, if values
entering the loop for the second or succeeding iteration also require synchronization,
the hardware may be shared between the two tasks. Similarly, if the looped values do
not require synchronization, they need not endure the extra delay, since the hardware
will be placed outside of the loop.

One aspect of the compiler that was not carried directly from the old version to the
new one was common subexpression elimination (CSE). This feature was omitted, not
because it was deemed undesirable, but rather because it was thought to be inessential
to a demonstration compiler. In fact, some aspects of CSE survived. For example,
when delays are being inserted, two shift registers passing the same value will be
merged. Source level optimizations are still available to the programmer, although
admittedly, it would be better to spend programmer effort on more creative aspects
of the design.

The revised placement algorithm was designed primarily to splatter the serial
devices down in two dimensions and not particularly to optimize overall connection
lengths or any other such parameter. The basic idea is to place every device im-
mediately to the right of the device producing its inputs. Since the desired location
may already be occupied, the new device will be moved up or down in order to fit.

As for other aspects of the compiler, the routing algorithm used is pretty minimal.
It consists of two phases. The first phase allocates vertical wiring space between
adjacent serial devices, pushing them to the right, if necessary, to create space. The
second phase adds the horizontal portions of the connection path, pushing the serial
devices up and down to make room. As might be expected, this simple approach can
produce some rather anomalous results, but the intent was to demonstrate that the
compiler could make use of a wire router. Other researchers are tackling the problem
of producing wire routers that are capable of greater efficiency.

Although it is still incomplete, the serial version of the Silicon compiler is capable

of processing some simple examples. For example, it has processed the following Silicon

program.
in, out:= asyncSerIn(10), asyncB8erlut(10);
n:= in.get;
sum:= Q;
WHILE n > O DO n, sum:= n-1, sum+in.get;
out.put (sum)

The resulting layout is reproduced in Figure C-35. As mentioned earlier, the serial
devices themselves have not yet been designed, so they are represented on the layout as

large empty boxes. Although it is clearly not a production design, the layout illustrates
the feasibility of compiling Silicon into silicon.
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Figure C-85. Sample layout generated by the serial version of the Silicon compiler.

C.15 Interactive Implementations

Interactive implementations of the Silicon compiler would share some of the better
features of custom design and automatic layout generation. On the one hand, more
of the designer’s experience and global knowledge of the problem could be used to
determine a solution. On the other hand, the compiler’s attention to detail could help
produce a design free from errors.

Interactive compilation might take several forms. In what is perhaps the simplest,
the compiler would generate a trial layout from a Silicon program. The designer,
upon examining this layout, might see a more efficient implementation of parts of the
program. The compiler would make those changes only if they preserved the function
as specified in the original Silicon program.

Another possibility along these lines would permit the designer to participate in
the optimization of the dataflow diagrams. He would have a catalog of transformations
that could be applied to the diagram. The compiler would insure that each transfor-
mation did indeed preserve the function of the program, and that it was correctly
applied. This scheme partitions the design task in a way that is more suitable for
each party involved. The human designer is very adept at making the higher level
decigions, while the mechanical compiler is better suited to carrying them out without
error.

A further possibility for interaction would permit the designer to specify differing
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representations within a single chip. For example, a particular time-critical part of
the chip might be implemented in parallel. Another part might have a lot of inherent
concurrency and would be better if implemented serially. The compiler would handle
the transduction between the two representations.

Perhaps the most interesting scheme would allow the designer to interfere at any
stage of the compilation process. While the compiler would be able to produce a
complete layout without assistance, the incorporation of hints from the designer would
probably result in a better final product. Moreover, this process might be repeated
several times, enabling the designer to try out many different ideas.

What makes all of this possible is using the dataflow diagram as the internal
representation of a program. Dataflow diagrams contain very little information that
is not present in the original program. That is, they make few assumptions about a
program that might restrict its later implementation. Chip assemblers do not share
this property, because they start out with a complete specification of the exact devices
to be used, together with their interconnection properties. The dataflow diagram, on
the other hand, can be a very flexible and malleable representation of a program.
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