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Abstract 

The organization of sensory maps in mammalian brains can change following 

peripheral injury or experience. Such plasticity has been demonstrated for somatotopic 

somatosensory maps in various cortical and subcortical areas. In contrast to somatotopic 

maps, whose representation is distorted but nevertheless shows a detectable relationship to 

the topography of the body surface, cerebellar somatosensory maps have a fractured 

organization. Fractured cerebellar tactile maps display a mosaic of discrete, irregular 

patches representing nonadjacent areas of the body surface. This thesis describes the effect 

of peripheral injury on somatosensory maps in the cerebellum and the influence of their 

cortical and subcortical afferent structures on the pattern of reorganization. 

In normal rats, cerebellar granule cell layer field potentials evoked by a brief tactile 

stimulus consist of two components at different latencies. We carefully investigated the 

temporal relationship between the evoked tactile responses of the somatosensory cortex (ST) 

and the cerebellar granule cell layer, and demonstrated that SI is the primary contributor to 

the long-latency cerebellar response to peripheral tactile stimulation. 

Following lesion of the infraorbital branch of the trigeminal nerve, we investigated 

the developmental plasticity of the fractured tactile map in crus IIa. The tactile maps in the 

granule cell layer of crus IIa reorganized, maintaining a fractured somatotopy, after lesions 

made at all ages (from 1 to 90 days postnatal). The denervated upper lip region was 

consistently and predominantly replaced by representation of the upper incisors, a surprising 

result since this pattern does not correspond with plasticity studies in somatotopic 

somatosensory areas. The age of the animal at deafferentation affected the short-latency 

component of the cerebellar field potential but not the long-latency component. Ths  

suggests a difference in the developmental sensitivity of the cerebellum-related pathways to 

nerve lesion. Possible cerebellar mechanisms for the reorganization were examined. We 



vii 

also explored reorganization in SI, an afferent structure, which we found to have a strong 

influence on cerebellar granule cell activity. The upper incisor representation in SI, which 

we showed to be adjacent to the upper lip representation in the cortex of normal animals, 

increased significantly in SI of deafferented rats. Our results suggest that the site of 

plasticity following deafferentation is not in the cerebellum itself but in its afferent 

pathways. To explore this possibility, a network model of the major somatosensory 

pathways to the cerebellum was developed. Computer simulations, assuming plasticity only 

in the cerebellar afferent pathways, produced patterns of cerebellar reorganization similar to 

those observed experimentally. 



viii 

Table of Contents 

Acknowledgments iii 

Abstract vi 

List of Figures xii 

List of Tables xvi 

1 Introduction 1 
.............................................................................. 1.1 Plasticity in somatosensory maps 2 

................................................ 1.1.1 Reorganization of the somatosensory cortex 2 
................................................. 1.1.2 Mechanisms and location of reorganization 4 

1.1.3 Constraints on the study of plasticity in somatotopically organized maps .. 6 

1.2 Cerebellar fractured somatosensory maps as a model system to explore 
.................................................................................. mechanisms of reorganization 8 

1.3 Overview of this thesis .......................................................................................... 10 

2 Temporal Relationships of Cerebral and Cerebellar Responses to Tactile Stimulation 13 
................................................................................................................ 2.1 Abstract 1 3  

.......................................................................................................... 2.2 Litroduction 1 4  

2.3 Methods .................................................................................................................... 15 
..................................................................................... 2.3.1 Animal preparation 1 5  

................................................................ 2.3.2 Electrophysiological procedures -16 
....................................................................................... 2.3.3 Tactile stimulation 17 

................................................................................ 2.3.4 Experimental design 1 7  
........................................................................................ 2.3.5 Map construction 1 9  

............................................................................................... 2.3.6 Data analysis 1 9  
...................................................................................................................... 2.4 Results 24 

2.4.1 Cerebellar granule cell layer and SI cortex responses to peripheral 
.................................................................................................. stimulation -24 

2.4.2 Correlation between the latency of the SI response and that of the second 
component of the cerebellar response ......................................................... 24 

................ 2.4.3 Effects of sodium pentobarbital on SI and cerebellar responses 27 



2.4.4 Effects of increased frequency of tactile stimulation ................................. 27 

2.4.5 Spatial distribution of the short- and long-latency cerebellar 
.................................................................................................... responses -29 

2.4.6 Disruption of SI selectively interferes with the long-latency 
..................................................................................... cerebellar response -33 

............................................................................................................... 2.5 Discussion 3 5  

2.5.1 Origins of cerebellar granule cell layer responses to tactile 
.................................................................................................. stimulation 3 6  

2.5.2 Temporal properties of cerebellar and cerebral cortical responses ............ 39 

.................................................. 2.5.3 Proposed role of SI in cerebellar function -41 

3 Developmental Plasticity in Cerebellar Tactile Maps: Neonates 44 
.................................................................................................................... 3.1 Abstract 44 

............................................................................................................. 3.2 Introduction -45 

3.3 Methods .................................................................................................................... 46 
...................................................................... 3.3.1 General experimental design -46 

............................................................... 3.3.2 Specific experimental procedures 47 

3.3.3 Electrophysiological procedures ................................................................ -48 
................................................................... 3.3.4 Methodological considerations 51 

...................................................................................................................... 3.4 Results 52 

3.4.1 Complete tactile reorganization .................................................................. 52 

3.4.2 Change in representation of body parts ....................................................... 54 

3.4.3 Preservation of fractured somatotopy within denervated regions .............. 54 
........................... 3.4.4 Preservation of other features of crus IIa representations 56 

3.4.5 Developmentally-related increase in the number of nonresponsive 
recording locations ..................................................................................... -58 

3.4.6 Developmentally-related absence of short-latency evoked response ......... 58 

3.4.7 Spatial extent of field potential effects ........................................................ 60 
.............................................................................................................. 3.5 Discussion 6 1  

3.5.1 Comparison with reorganization in other somatosensory structures .......... 61 

3.5.2 Reorganization and cerebellar development .............................................. -63 
.................................................................... 3.5.3 Mechanisms of reorganization 64 

3.5.4 Significance of the developmental sensitivity of the short-latency 
.................................................................................................. component -67 

3.5.5 Significance of map reorganization for cerebellar function ....................... 68 



4 Developmental Plasticity in Cerebellar Tactile Maps: Adults 71 
................................................................................................................. 4.1 Abstract 1 

............................................................................................................. 4.2 Introduction -72 

4.3 Methods .................................................................................................................... 74 
.............................................................................................. 4.3.1 Animals used -74 

............................................................................................ 4.3.2 Deafferentation 74 

...................... 4.3.3 Cerebellar craniotomy and electrophysiological procedures 75 

............................. 4.3.4 Receptive field mapping immediately following lesion 75 

4.3.5 Map construction ......................................................................................... 75 

4.3.6 Statistical analysis of tactile responses ........................................................ 77 

4.4 Results ...................................................................................................................... 77 

........................................ 4.4.1 Tactile organization in normal adult cerebellum 77 
............................ 4.4.2 Tactile reorganization two months after deafferentation 82 

4.4.3 Tactile reorganization immediately following deafferentation .................. 89 
............................................................................................................... 4.5 Discussion -96 

............... 4.5.1 Comparison with reorganization in neonatally lesioned animals 96 

4.5.2 Comparison with reorganization of other somatosensory structures in 
............................................................................................... adult animals 97 

4.5.3 Significance of the field potentials results .................................................. 98 

4.5.4 Mechanisms for map reorganization ........................................................... 99 

5 Similarities Between Cerebellar and SP Reorganization Following 
Deafferentation 103 

.................................................................................................................. 5.1 Abstract 103 
.......................................................................................................... 5.2 Introduction 1 0 4  

................................................................................................................. 5.3 Methods 1 0 6  
............................................................................................. 5.3.1 Animals used 106 

......................................................................................... 5.3.2 Deafferentation 1 0 6  
........................................................................... 5.3.3 Receptive field mapping 1 0 6  

.................................................................. 5.3.4 Map construction and analysis 107 
................................................................................................................... 5.4 Results 1 0 8  

.......................................................... 5.4.1 Reorganization in the cerebellum 1 0 8  

5.4.2 Contribution of afferent structures to cerebellar reorganization ............... 108 
............................................................................................................. 5.5 Discussion 1 1 3  

5.5.1 Map reorganization and brain development ............................................. 115 



................................................................. 5.5.2 Mechanisms of reorganization 1 16 

6 A Systems Level Topographic Model of the Somatosensory System 119 
................................................................................................................. 6.1 Abstract 1 19 

............................................................................................................ 6.2 Introduction 120 
.......................................... 6.3 Major somatosensory pathways to the cerebellum 1 2  1 

................................................................................................. 6.4 Model description 1 2 3  
........................................................................................... 6.4.1 Projections 1 2 4  

.................................................................................... 6.4.2 Model architecture -126 
........................................................................... 6.4.3 Establishing connections 131 

6.4.4 Simulation of infraorbital nerve lesion ..................................................... 133 
.............................................................................. 6.4.5 Computer simulations -134 

6.5 Results .................................................................................................................... 137 
..................................................................... 6.5.1 Intact somatosensory system 137 

6.5.2 Change in representation of face areas following simulated nerve 
......................................................................................................... lesion 139 

............................................................................................................ 6.6 Discussion 1 4 7  

7 Conclusions 149 
...................................................................................... 7.1 Contribution of this work 149 

7.1.1 Plasticity in cerebellar somatosensory maps ............................................. 149 
............................................. 7.1.2 Influence of cerebellar afferent projections 1 5 0  

...................................................................................................... 7.2 Future research 1 5 1  

7.2.1 Intracortical microstimulation in the cerebellum ...................................... 151 

7.2.2 Plasticity of patch boundaries, transformation from a topographic map 
...................................................................................... to a fractured one 1 5 2  

7.2.3 Behavioral correlate to peripheral lesion .................................................. 153 
................................................................................... 7.2.4 Gating mechanisms 155 

Bibliography 157 



xii 

List of Figures 

Ratunculi of various cortical and subcortical areas ................................................. 7 

Fractured somatotopy in the cerebellum .................................................................. 9 

Simplified circuit diagram of the tactile mossy fiber inputs to the cms IIa folium 
and cerebral and cerebellar cortical responses to peripheral stimulation .............. 21 

Histograms of the latencies of the cerebral and cerebellar responses to tactile 
............................................................................................................. stimulation -23 

Relationship between the latencies of the two peaks of the cerebellar field 
potential and that of the peak of the cerebral cortical field potential .................... 26 

Effects of sodium pentobarbital on SI and cerebellar responses ........................... 28 

Effects of increased frequency of tactile stimulation ............................................. 31 

Distribution of activity in cerebellar cms IIa following tactile stimulation .......... 32 

Effects of lidocaine injection in SI on the cerebellar response to tactile stimula- 
.......................................................................................................................... tion 34 

Complete rnidcollicular decerebration ................................................................... 36 

Simplified circuit diagram of the tactile mossy fiber inputs to the crus IIa folium. 
organization of the tactile map in cms Ha. and photograph of the surface of 
cms IIa .................................................................................................................... 50 

Tactile maps of cms IIa in normal animals and animals lesioned between 
postnatal day 1 to 30 .............................................................................................. 53 

Histogram comparing the representation of various perioral structures in the 
tactile maps of normal rats and rats lesioned between postnatal day 1 to 30 ....... 55 

Histogram comparing response strength in normal rats and rats lesioned between 
postnatal day 1 to 30 .............................................................................................. 57 



xiii 

3.5 Map from a PND 30 animal showing field potentials elicited upon tactile 
............................................................................................................. stimulation 6 0  

3.6 Percentage of recording sites with second waveform only as a function of age 
at the time of the lesion (PND 1 to 30) .................................................................. 61 

3.7 Tactile maps showing the location and type of field potential responses in normal 
animals and animals lesioned at different developmental stages .......................... 62 

4.1 Maps of the dominant and subdominant tactile receptive fields within crus IIa 
in three different normal animals ........................................................................... 77 

4.2 Proportion of different perioral structures comprising the dominant and 
subdominant crus IIa maps in normal animals ...................................................... 79 

4.3 Tactile maps of crus TIa in normal animals and animals lesioned between 
............................................................................................ postnatal day 30 to 85 8 1 

4.4 Histogram comparing the representation of various perioral structures in the 
..... tactile maps of normal rats and rats lesioned between postnatal day 30 to 90 83 

4.5 Percentage of nonresponsive electrode penetrations as a function of age at the 
time of the nerve lesion .......................................................................................... 85 

4.6 Tactile maps showing the location and type of field potential responses in four 
animals lesioned at postnatal day 30 ...................................................................... 8'7 

4.7 Percentage of recording sites with second waveform only as a function of age 
at the time of the lesion (PND 1 to 90) .................................................................. 88 

4.8 Tactile maps of crus IIa in intact animals and immediately following lesion ....... 9 1 

4.9 Histogram comparing the map organization in normal adult rats, adult rats that 
were deafferented between postnatal day 77 and 89, and adult rats that were 
mapped immediately following lesion ................................................................... 93 

4.10 Patch size in normal and lesioned animals ............................................................ 95 

5.1 Histogram comparing the representation of various perioral structures in the 
crus IIa maps of normal rats and rats lesioned between postnatal day 1 to 90 ... 109 



xiv 

5.2 Extent and location of the upper incisor representation in two somatosensory 
cortical tactile maps .............................................................................................. 1 11 

5.3 Tactile maps in the somatosensory cortex and cerebellum for a normal animal 
and animals lesioned between postnatal day 1 and 80 ........................................ 113 

5.4 Mean area of the upper incisor representation in the somatosensory cortex and 
the cerebellum of normal animals and of animals lesioned between postnatal 
day 1 to 90 .......................................................................................................... 114 

6.1 Simplified diagram showing major mossy fiber projections to crus IIa .............. 122 

6.2 Diagram of the tactile projections to crus IIa that are included in the model ...... 124 

6.3 Distribution of receptive field size for each structure in the model .................... 128 

6.4 Depiction of the rings used to assign connections ........................................ 130 

6.5 Locations in the simulated somatosensory system related to a particular position 
............................................................................................................ on the skin 133 

6.6 Locations in the simulated somatosensory system related to a particular unit in 
crus IIa ................................................................................................................. 135 

6.7 Connection pattern in simulated system .............................................................. 136 

6.8 Histograms comparing the dominant and subdominant cerebellar representation 
of various perioral structures observed experimentally and in the simulated 
system .................................................................................................................. 138 

6.9 Organization of the tactile inputs to the trigeminal nucleus Interpolaris and 
....................................................................................... crus IIa in the model 1 4  1 

6.10 Histograms comparing the representation of various perioral structures before and 
after simulation of a nerve lesion ......................................................................... 142 

6.11 Histograms comparing the cerebellar representation of various perioral structures 
observed experimentally and in the simulated system ........................................ 143 

6.12 Histograms comparing the representation of various perioral structures before 
and after simulation of a nerve lesion using a different reorganized Interpolaris 
representation than in Figures 6.10 and 6.11 ....................................................... 144 



6.13 Simulated reorganization of trigeminal and cerebellar tactile maps: location 
of cerebellar units with field potentials consisting of only the long-latency 
component of the response to tactile stimulation ............................................... 146 



List of Tables 

3.1 Map organization of normal rats and rats with peripheral lesions performed on 
postnatal days 1 to 30 ............................................................................................. 56 

4.1 Map organization of normal rats and rats with peripheral lesions performed on 
postnatal days 30 to 90 ........................................................................................... 84 

4.2 Comparison of receptive field type for all responsive recording sites and respon- 
sive sites with only the long-latency component (second peak) of the tactilely- 
evoked field potentials ........................................................................................... 86 



Introduction 

It is probably safe to say that sensitivity in no animal, with 

the possible exception of man, has never been investigated as 

thoroughly as in the rat. The story is, however, not yet 

complete. Large gaps still exist in our knowledge of certain 

aspects of sensitivity [...I. There is still much to be done 

before the precise cortical and subcortical contributions to 

various senses are disclosed. 

N. L. Munn (1950) 

Sensory representations in the brain display a remarkable capacity for reorganization 

following injury of cutaneous, retinal, or cochlear afferents and following sensory 

experiences (for reviews see Kaas 1991, 1994; Kossut 1992). This capacity for plasticity 

has been demonstrated for somatotopic somatosensory maps in various cortical and 

subcortical areas. Despite many studies, the mechanisms underlying reorganization and the 

location of such plasticity-whether cortical or subcortical-still remain a subject of 

considerable debate (for reviews see Snow and Wilson 1991; Kaas 1994). 

This thesis describes the effect of peripheral injury on somatosensory' maps in the 

cerebellum and the influence of their cortical and subcortical afferent structures on the 

pattern of reorganization. Cerebellar tactile maps differ considerably in topography from 

The words "somatosensory" and "tactile" will be used interchangeably throughout the thesis. 



their afferent structures. In contrast to somatotopic maps, whose representation is distorted 

but nevertheless shows a detectable relationship to the topography of the body surface, 

cerebellar somatosensory maps have a fractured organization. Fractured cerebellar tactile 

maps display a mosaic of discrete, irregular patches representing nonadjacent areas of the 

body surface. This fractured organization of cerebellar maps makes it possible to 

distinguish between central and peripheral adjacency2, something difficult to accomplish 

with somatotopic maps. It is known that the cerebellar regions we studied receive direct 

projections from the trigerninal nuclei and indirect projections from the somatosensory 

cortex. We show that by identifying the cerebellar responses arising from each, the effects 

of peripheral injury in both pathways can be inferred without simultaneously recording in 

several structures. Because of this and their particular topography, cerebellar tactile maps 

provide a good model system for exploring the mechanisms responsible for reorganization 

following peripheral nerve lesion. 

In this chapter, a brief review of the evidence for plasticity in somatosensory maps is 

presented, followed by a short description of somatosensory representations in the 

cerebellum. Finally, the contribution and organization of this thesis is described. 

1.1 Plasticity in somatosensory maps 

1.1.1 Reorganization of the somatosensory cortex 

Reorganization of the tactile representation in the primary somatosensory cortex (SI) 

following peripheral injury has been demonstrated in several mammalian species including 

the monkey (Merzenich et al. 1983ab; Wall et al. 1983), the rat (Waite 1984; Wall and 

Cusick 1984), the mouse (Van der Loos and Woolsey 1973), the cat (Kalaska and Pomeranz 

2 Central adjacency refers to the adjacency of the representations of various body parts within a given tactile 
map found in the brain. Peripheral adjacency refers to the adjacency of body parts on the skin. 



1979; McKinley and Smith 1990), the raccoon (Rasmusson 1982; Kelahan and Doetsch 

1984), and the flying fox3 (Calford and Tweedale 1988). 

Various experimental approaches have been used to demonstrate reorganization in 

SI cortex. Elimination of inputs by amputation, deafferentation of peripheral nerves, or 

transection of the spinal cord leads to reactivation of deprived portions of SI by the 

remaining inputs. In an influential series of experiments on monkeys, Merzenich, Kaas, and 

their colleagues showed that after sectioning the median nerve that innervates part of the 

glabrous hand, there is a topographic expansion of the hairy part of the hand in area 3b of SI 

(Merzenich et al. 1983ab). They also demonstrated that amputation of the middle finger, 

digit 3, leads to reactivation of the denervated area of cortex by the adjacent fingers, digits 2 

and 4 (Merzenich et al. 1984a). Similar expansion of intact inputs from adjacent cortical 

areas into the denervated area has been shown in the rat (Wall and Cusick 1984; Cusick et 

al. 1990). The extent and limit of reorganization are quite variable. Jain et al. (1995) found 

no reactivation of cortex in the three months following a dorsal column section that 

removed afferents from the hindlimb skin in the rat, while Cusick et al. (1990) reported that 

partial denervation of the hindlimb led to a progression of reactivation of the hindlimb 

cortex over sevcral months. Following deafferentation of an entire limb and extended 

recovery, Pons et al. (1991) demonstrated a massive reorganization of SI. 

Changes in cortical maps can also be induced by sensory experience. In the 

monkey, cortical representations of specially stimulated skin surfaces increase in area 

(Jenkins et al. 1990; Recanzone et al. 1992b) and surgical connection of two fingers results 

in a fusion of their normally discontinuous cortical representations (Allard et al. 1991). In 

the rat, change in sensory experience resulting from "whisker pairing" (i.e., leaving two 

whiskers intact whle all others are trimmed close to the skin) for less than three days can 

alter cortical receptive fields (Diamond et al. 1993). Cortical lesions (Jenkins and 

An Australian fruit bat. 



Merzenich 1987) and cortical stimulation (Recanzone et al. 1992a) can also reshape the 

tactile representation in SI. 

Comparison of the cortical capacity for reorganization following comparable 

peripheral lesions in developing and adult animals has yielded contradictory results. Many 

studies show an increased capacity for SI of younger animals to adjust to loss of inputs 

(Kalaska and Pomeranz 1979; Waite 1984; McKinley and Smith 1990), some do not detect 

any difference (Kelahan et al. 1981), while others report a decrease in the size of the cortical 

reorganization following lesions in neonatal animals (Wall and Cusick 1986) compared to 

adult lesions (Wall and Cusick 1984). 

A special form of cortical reorganization, structural plasticity, has been 

demonstrated in the developing but not in the adult rodent. A number of anatomical 

techniques, Nissl stain, immiu~ocy~ochem4sii-y of 5-XT, and histochemistry of succinic 

dehydrogenase, cytochrome oxidase, and AChE, reveal cytoarchitectonic units called 

barrels in layer IV of rodent somatosensory cortex (for reviews see Kossut 1992; Killackey 

et al. 1995). The pattern of barrels in SI is a faithful one-to-one representation of the spatial 

organization of the vibrissae (Woolsey and Van der Loos 1970). Anatomical changes in the 

barrel field occur following destruction of input from the vibrissae. Tlvs form of plasticity 

operates only during a critical period that ends a few days after birth (Woolsey and Wann 

1976). Beyond postnatal days 5 or 6, anatomical changes to the normal pattern are not seen. 

Electrophysiological recordings, however, demonstrate a small expansion of intact inputs 

into the barrel cortex following deafferentation of the vibrissae in the adult rat (Waite 1984). 

1.1.2 Mechanisms and location of reorganization 

Despite the large body of knowledge on reorganization in the somatosensory cortex, 

the responsible mechanisms are still a topic of considerable debate. Numerous mechanisms 

have been proposed for the observed reorganization, such as immediate unmasking of 



"silent" projections, potentiation of existing synapses, axonal sprouting, and formation of 

new synaptic contacts. But it is as yet unclear if the mechanisms underlying cortical 

reorganization are intrinsic to the cortex, take place in its afferent structures, or occur at 

several cortical and subcortical levels (for reviews see Snow and Wilson 1991; Kaas 1994). 

There is some evidence for intrinsic cortical plasticity (somatosensory: Recanzone et 

al. 1992a; visual: Gilbert and Wiesel 1992) and, although not as extensively studied as the 

somatosensory cortical maps, there is also evidence for some plasticity in subcortical maps. 

There is considerable evidence for anatomical changes in the brainstem and thalamus 

following peripheral manipulations in developing animals (for review see Woolsey 1990). 

Electrophysiological mapping of the cuneate nucleus after fetal forelimb amputation 

(Rhoades et al. 1993) and of the trigeminal nuclei following neonatal peripheral nerve 

lesion (Waite 1984) demonstrate reactivation of most or all of the denervated area by intact 

adjacent inputs. Following peripheral nerve lesion in the adult rat, however, very limited or 

no evidence of plasticity could be detected in the trigeminal nuclei (Waite 1984) or the 

gracile nucleus (McMahan and Wall 1983). In the thalamus, there is evidence for 

reorganization even in adults (Rhoades et al. 1987; Garraghty and Kaas 1991b; Nicolelis et 

al. 1993)- Following deaffaentation of the glabrous hand in monkeys, there is an extensive 

reorganization of the hand representation in the ventroposterior lateral nucleus of the 

thalamus (Garraghty and Kaas 1991b) which parallels the reorganization in SI of the same 

monkeys (Garraghty and Kaas 199 1 a). 

Thus, the general pattern of reorganization observed in SI, where the denervated 

areas are reactivated by adjacent intact representations, is also found in the thalamus and 

brainstem, implying that the reorganized cortical maps may simply be a reflection of 

changes occurring earlier in the sensory pathway. 



1.13 Constraints on the study of plasticity in somatotopically organized 
maps 

Examination of the neural receptive field or the use of anatomical tracers (in 

rodents) in the somatosensory cortex reveals a representation of the external body surface 

on the cortical surface. This map is not an exact representation of the body surface; the 

projection of the body surface onto the cortical surface is distorted. Further, there are 

discontinuities in the cortical map between parts of the body that are contiguous; for 

example, in SI of the monkey the face is separated from the rest of the head (Woolsey 

1958). Conversely, adjacent cortical areas sometimes represent disjunctive body areas; for 

example, cortical representation of the face is adjacent to that of the forelimb in the rat 

(Welker 1971; Chapin and Lin 1984). In addition, the cortical area occupied by different 

body parts reflects the density of innervation and the importance of the sensory information 

from this region. For example, the hand representation is much larger than that of the trunk 

in humans, other primates, and raccoons (Penfield and Rasmussen 1950; Woolsey 1958) 

whereas SI of the rat is dominated by the whiskers (Welker 1971; Chapin and Lin 1984). 

Thus, the cortical representation is distorted, presenting a caricature of the body surface. 

Nevertheless, there is a detectable relationship between the body surface and its cortical 

representations. Maps that display such representations are referred to as somatotopic. 

Somatotopic maps have also been demonstrated in the subcortical areas discussed in 

section 1.1.2 (thalamus: Ernrners 1965; Waite 1973; trigeminal nuclei: Nord 1967). 

Figure 1.1 shows the somatotopic somatosensory representation, also called ratunculus, for 

the somatosensory cortex, thalamus, and trigeminal nucleus in the rat. 

Part of the difficulty in determining if SI reorganization results from mechanisms 

that are intrinsic or extrinsic to the cortex is that cortical maps and all of their afferent 

structures are somatotopically organized. Because the general pattern of cortical and 

subcortical reorganization involves adjacent intact representations expanding into the 

denervated areas (Wall and Cusick 1984; for review see Kaas 1994), SI reorganization 



could, in principle, result from reorganization in any of several locations, including the 

periphery (Snow and Wilson 1991). Therefore, unambiguously identifying the mechanisms 

responsible for the reorganization of SI is likely to require simultaneous investigation of SI 

and its afferent structures. 

A Trigeminal complex 

B Thalamus 

C Somatosensory cortex 

Figure 1.1 Ratunculi, or schematic representations of the somatotopic 
organization of various cortical and subcortical areas in the rat. A: The 
organization of the spinal trigeminal nucleus Interpolaris is shown in a 
coronal plane (adapted from Nord 1967). B: The thalarnic map is shown in 
a coronal plane (adapted from Emmers 1965). C: The somatosensory cortex 
map is shown in a horizontal plane (adapted from Welker 1971; Chapin and 
Lin 1984). The dots represent vibrissae; hatched area, furry buccal pad; and 
broken lines, portions of the upper and lower lip that curve inside the mouth. 



1.2 Cerebellar fractured somatosensory maps as a model 
system to explore mechanisms of reorganization 

Unlike cortical and subcortical maps, somatosensory maps found in the lateral 

hemispheres of the mammalian cerebellum are not somatotopically organized, but rather 

have a complex, "fractured" somatotopy (for review see Welker 1987). The advantage of 

studying reorganization in the cerebellar fractured somatosensory maps is that they enable 

one to distinguish between peripheral and central adjacency. These tactile maps display a 

mosaic of tiny irregular patches (generally 0.1 to 1 mrn2) representing various parts of the 

body. Adjacent cerebellar areas often represent nonadjacent body areas. Within a patch, 

i.e., a cerebellar area receiving input from a particular body structure, the representation for 

that body structure is somatotopically organized. This fractured pattern of tactile inputs has 

been demonstrated in rats (Joseph et al. 1978; Shambes et al. 1978ab; Bower and Kassel 

1990), cats (Kassel et al. 1984), opossums (Welker and Shambes 1985), and the primate 

Galago crassicaudatus (Welker et al. 1988). As shown in Figure 1.2, the somatosensory 

projections occupy a large portion of the cerebellum: all the hemispheric folia (except the 

copula) as well as several folia of the anterior and posterior vermis. Cutaneous projections 

are predominant in these regions, with some proprioceptive afferents present. All maps 

presented in this thesis represent the cutaneous inputs exclusively. Each folium receives 

tactile input from a characteristic set of body structures. For example, the hindpaw is 

usually represented in the paramedian lobule, PML, but not in crus II. Within a fractured 

map, there are often several patches representing a specific body structure. Further, a body 

structure may be represented in several folia (Figure 1.2). 

These fractured maps are obtained by detailed, high-density mapping of the tactile 

projections to the granule cell layer. In that layer, mossy fibers from various regions of the 

central nervous system (CNS) synapse onto granule cells, the only excitatory and smallest 

(5-8 pm diameter) cells in the cerebellum. A given mossy fiber can innervate a small 



granule cell layer area but can also send branches to several folia (Mihailoff 1983). 

Although the anatomical spread of individual mossy fibers has not been determined, the 

examination of horseradish peroxidase-labeled mossy fiber terminals of spinal projections 

to the rat cerebellar anterior lobe indicates a complex topography analogous in several 

aspects to the small neurophysiologically defined patch (Tolbert et al. 1993). 

RAT n 
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....... Contralateral RFs 
---- Bilateral RFs 
- lpsiloteral RFs Rat 

Figure 1.2 Fractured somatotopy in the hemispheres and posterior vermis 
of the rat cerebellum. Abbreviations: LS: lobulus simplex; Ia, Ib: the two 
surface folia of crus I; Ic: the buried folium of crus I; IIa, IIb: the two folia of 
cms II; PML: paramedian lobule; Uv: uvula; Cr: crown; EL: eyelid; Fop: 
furry buccal pad; FL: forelimb; G: gingiva; H: hand; HL: hindlimb; Li: 
lower incisor; LL: lower lip; M: mandible; N: nose; Nk: neck; P: pinna; Rh: 
rhinarium; Tr: trunk; Ui: upper incisor; UL: upper lip; V: vibrissae. (From 
Welker 1987, with permission.) 

Electrophysiological experiments have shown that the fine structure of the tactile 

projection patterns to the cerebellum appears to reflect the complex but apparently precise 

branching pattern of mossy fiber afferents. Recent developmental evidence has suggested a 

possible genetic specificity for some of the cerebellar projections (Sotelo 1995). 



Electrophysiological examination of the trigeminocerebellar mossy fiber branching reveals 

that collaterals from a single trigeminal neuron terminate exclusively in regions of the 

granule cell layer, within a folium or across folia, that respond to tactile stimulation of the 

same body area (Woolston et al. 1981). In addition to the direct trigeminal mossy fiber 

projection, the granule cell layer of the cerebellum also receives equally precise projections 

from the somatosensory cortex and superior colliculus through the pontine nuclei (Kassel 

1980; Bower et al. 1981). Using threshold stimulating current in SI, Bower and his 

colleagues (1981) showed that the projections from a site in SI responding to a particular 

skin location influence regions in the cerebellar granule cell layer receiving information 

from the same skin location directly from the trigeminal nuclei. Similarly, Kassel (1980) 

demonstrated that projections from the superior colliculus are confined within cerebellar 

patches of similar receptive field and overlap spatially with peripheral trigeminal 

projections. In summary, tactile information reaching the cerebellum from the 

somatotopically organized trigeminal nuclei, somatosensory cortex, and superior colliculus 

is in register spatially and conforms to the patch-like fractured somatotopy identified in the 

cerebellar granule cell layer. 

1.3 Overview of this thesis 

The work presented in this thesis examined the tactile inputs to the crus IIa folium in 

the cerebellar hemisphere of the rat. We have shown that a detailed analysis of the temporal 

structure of cerebellar field potentials evoked by tactile stimulation can distinguish between 

inputs from the trigeminal and the cerebrocerebellar pathways. We thus used cerebellar 

field potential analysis to draw inferences on the effects of peripheral injury on the 

trigerninocerebellar and the cerebropontocerebellar pathways without having to record 

simultaneously from many brain areas. 



The upper lip and vibrissae representations occupy a large area in the center of 

cms Ha. Therefore, deafferentation of the upper lip and vibrissae by sectioning the 

infraorbital branch of the trigeminal nerve denervates a large portion of the map. We 

demonstrated that cerebellar somatosensory maps reorganize extensively following 

peripheral nerve lesion at all ages tested. Our results suggest that the reorganization we 

observed in cms Ha following nerve section does not arise through intrinsic cerebellar 

mechanisms but rather appears to be a reflection of reorganization in its afferent pathways. 

The following outline briefly summarizes each chapter and indicates references for 

material that has been published. 

Chapter 2 describes the temporal relationship between the responses evoked in the 

somatosensory cortex (SI) and in the cerebellar hemisphere by peripheral tactile stimulation. 

Cerebellar granule cell layer field potentials evoked by brief tactile stimulations consist of 

two components at different latencies. We demonstrate that the second component of the 

cerebellar field potentials is primarily due to input from SI. The results presented in this 

chapter lay the groundwork for the analysis of the peripherally-evoked field potential in the 

remainder of the thesis. This chapter has been accepted for publication in Experimental 

Brain Research (Morissette and Bower 1996). 

Chapter 3 presents the results of deafferentation experiments in which the infraorbital 

branch of the trigeminal nerve was sectioned in rats 1 to 30 days postnatal. When examined 

two months later, the cerebellar tactile maps had reorganized extensively but maintained a 

fractured somatotopy and several other features of normal maps. This is the first 

demonstration of cerebellar plasticity following peripheral injury. The material presented in 

this chapter was published in the Journal ofComparative Neurology (Gonzhlez et al. 1993). 

Chapter 4 describes the reorganization of cerebellar tactile maps following 

deafferentation in adult animals. Here we show that cerebellar sensory maps reorganize 

even in animals deafferented later in development (40-85 days after birth) and that the 



pattern of reorganization is similar to that observed in neonates. The pattern of 

reorganization immediately following nerve lesion, however, does not predict the pattern 

found two to three months later. The effect of age at deafferentation on the temporal 

structure of the cerebellar field potential is discussed. 

Chapter 5 explores the mechanisms of reorganization by contrasting lesion-induced 

reorganization in the cerebellum and the somatosensory cortex. We show that the 

expansion of the upper incisor representation in cms T[a is paralleled by a similar expansion 

in the somatosensory cortex. We argue that this, combined with results from Chapter 4, 

suggests that cerebellar map reorganization is influenced by the reorganization of its 

afferents. 

Chapter 6 describes a network model of the major somatosensory pathways to the 

cerebellum that was developed to explore the possibility that the site of plasticity following 

deafferentation is not in the cerebellum itself but in its afferent pathways. Computer 

simulations, assuming plasticity only in the cerebellar afferent pathways, produced patterns 

of cerebellar reorganization similar to those observed experimentally. 

Chapter 7 summarizes the major contributions of this work and discusses directions for 

future research. 

Part of this work was done in collaboration with Leila Gonz6lez (Chapter 3), Peter 

Gruen (Chapter 4), Maurice Lee (Chapter 6), and Caroly Shumway (Chapters 3,4,5). 



Temporal Relationships of Cerebral and 
Cerebellar Responses to Tactile Stimulation 

You will see something new. 

Two things. And I call them 

Thing One and Thing Two. 

Dr. Seuss 

The cat in the hat, 1957 

2.1 Abstract 

The spatial coincidence of somatosensory cerebral cortex (SI) and trigeminal 

projections to the cerebellar hemisphere has been previously demonstrated. In this chapter 

we describe the temporal relationship between tactilely-evoked responses in SI and in the 

granule cell layer of the cerebellar hemisphere, in anaesthetized rats. We simultaneously 

recorded field potentials in areas of SI and of the cerebellar folium crus IIa with common 

receptive fields following peripheral tactile stimulation of the corresponding face area. The 

response of the cerebellar granule cell layer to a brief tactile stimulation consisted of two 

components at different latencies. We found a strong correlation between the latency of the 

SI response and that of the second (long-latency) cerebellar component following facial 

stimulation. No such relationship was found between the latency of the SI response and that 

of the first (short-latency) cerebellar component, originating from a direct 

trigeminocerebellar pathway. In addition, any one of lidocaine pressure injection into SI, 



cortical ablation, and decerebration significantly affected the second cerebellar peak but not 

the first. Further, when tactile stimuli were presented 75 msec apart, the response in SI 

failed, as did the second cerebellar peak, while the short-latency cerebellar response still 

occurred. We found a wide spatial distribution of the upper lip response beyond the upper 

lip area in crus IIa for the long-latency component of the cerebellar response. Our results 

demonstrate that SI is the primary contributor to the cerebellar long-latency response to 

peripheral tactile stimulation. These results are discussed in the context of Purkinje cell 

responses to tactile input. 

Introduction 

Tactile projections to the granule cell layer of the rat cerebellar hemispheres are 

organized in a fine grained fractured somatotopic pattern (Shambes et al. 1978ab; Welker 

1987) that is remarkably similar between different individuals (Bower and Kassel 1990). 

Electrophysiological experiments have demonstrated that the fine structure of these 

projection patterns appears to reflect the complex, but apparently precise, branching pattern 

of mossy fiber afferents (Woolston et al. 198 1 ; Welker 1 987). Neurons in the trigeminal 

complex with upper lip receptive fields project exclusively to regions of the granule cell 

layer that also respond to upper lip stimulation (Woolston et al. 1981). These direct 

trigerninal projections also appear to be responsible for the short-latency component of the 

granule cell layer response to peripheral stimulation (Woolston et al. 1981). 

In addition to the organized pattern of direct trigeminal projections to the granule 

cell layer, projections from somatosensory cortex through the pontine nuclei also follow a 

precise pattern (Bower et al. 1981). These projections are organized such that regions of SI 

cortex responding to a particular location on the skin influence regions in the granule cell 

layer receiving information from the same location on the skin directly from the trigeminal 

nuclei. Therefore, tactile information reaching the cerebellum indirectly through 



somatosensory cortex is in register spatially with information received directly from the 

trigeminal nucleus. 

In this chapter we examine in detail the relative timing of these two different 

influences in the cerebellar granule cell layer by recording simultaneously from SI and the 

cerebellum. Kennedy, Grimm and Towe (1966) have shown in cats that cerebral cortex has 

a large influence in tactilely responsive cerebellar regions and that this influence occurs at a 

later latency than the direct projection. We have confirmed that this is the case for rats, and 

have extended these previous results to carefully quantify the spatial extent of the influence 

of SI in the cerebellar regions. We have also documented differences in the variability in 

the timing of the short- and long-latency cerebellar responses to peripheral stimulation with 

respect to the SI response. We believe that these different temporal and spatial patterns of 

the direct and indirect tactile projections to cerebellum (Figure 2.1A) are likely to have 

important implications for cerebellar cortical processing. An abstract describing these 

results has been published (Morissette et al. 1991). 

Methods 

2.3.1 Animal preparation 

Eight adult Sprague-Dawley albino rats (1 male, 7 females) were anaesthetized with 

sodium pentobarbital (12 mgkg body weight) and ketamine hydrochloride (50 mgkg body 

weight) injected intraperitoneally. Supplemental doses of ketamine (15 mgkg body weight) 

were given as needed to suppress reflexive activity. The right cerebral cortex (So and the 

left cerebellar cortex (cms IIa) were surgically exposed and covered with mineral oil 

following standard procedures (Bower et al. 1981). The trachea was cannulated to facilitate 

respiration. Rectal temperature was maintained at 36 to 37OC and heart rate was monitored 

(280410lmin). Further details on surgical procedures can be found in previous 



publications (Bower and Woolston 1983; Bower and Kassel 1990). The experiments 

conformed to the "Principles of laboratory animal care" (NIH publication 85-23, revised 

1985). 

2.3.2 Electrophysiological procedures 

Multiunit activity andfor field potentials were recorded in the granule cell layer 

(400-700 pm deep) of cms IIa of the cerebellum and in layer lV (600-1000 pm deep) of SI 

cortex. Glass microelectrodes filled with 2 M NaCl with tip diameter of 5-10 ym and 

impedance of 1-3 Mi2 were used. Neural signals were amplified, selectively filtered 

(multiunit activity: 300 to 3000 Hz bandpass; field potential: 1 to 1000 Hz bandpass), 

displayed on an oscilloscope, and made audible via speakers following standard procedures. 

As previously noted (Bower and Kassel 1990), multiunit and field potential 

recordings in cerebellum do not distinguish between electrical activity originating from 

mossy fibers and that originating from granule cells. We are therefore not claiming that our 

recordings represent exclusively one or the other source. Instead, in these experiments, we 

have only attempted to assess the patterns of activity induced by peripheral stimuli at 

particular locations in the granule cell layer. Previous studies have made it clear that tactile 

maps obtained using the same procedures as ours actually represent the spatial pattern of 

mossy fiber inputs to these regions of the cerebellum (Woolston et al. 1981). It has also 

been shown that these granular cell layer responses are well correlated spatially and 

temporally with overlying Purkinje cell responses using both extracellular (Bower and 

Woolston 1983) and intracellular (Jaeger and Bower 1994) recordings in vivo. Thus, these 

physiological studies indicate that activity recorded in the granule cell layer is also 

correlated with the activation of the synapses of the ascending granule cell axon on Purkinje 

cells. 



2.3.3 Tactile stimulation 

In each experiment, controlled tactile stimulation of the facial surface was obtained 

using a custom-built tactile stimulator based on a Ling vibrator from Gearing & Watson 

Electronics (Chubbuck 1966). Direct feedback control of the stimulator was achieved by 

sensing displacement of the probe position. In the current experiments, a square wave (5, 

10, or 50 msec width) with a total probe excursion of 0.5 mm was used. The tip of the 

stimulation probe was less than 1 mm in diameter. Stimulus trials consisted of 5 to 50 

sequential stimuli presented with an interstimulus interval of 2 seconds. Timing of stimulus 

trials was controlled using custom software running on an IBM personal computer. More 

information on electrophysiological procedure can be found in Chapter 3. 

2.3.4 Experimental design 

For six of the animals, standard receptive field mapping techniques (Welker 197 1, 

1973; Shambes et al. 1978ab; Bower et al. 1981) were first used to locate regions of SI 

cortex and the cerebellar granule cell layer with common receptive fields. As mentioned in 

the introduction, previous mapping experiments have demonstrated that an SI locus 

influences cerebellar regions with which it shares overlapping peripheral receptive fields 

(Bower et al. 1981). In several cases, the influence of these SI locations on the locus of 

cerebellar recording was directly confirmed by electrically stimulating SI cortex and 

observing the responses in the granule cell layer (not shown here, see Bower et al. 1981). 

Once corresponding regions of SI cortex and the cerebellar granule cell layer had 

been established, two general strategies were used to determine the specific contribution of 

SI cortex to peripherally evoked cerebellar responses. In the first, peripheral tactile stimuli 

were presented, at least 2 seconds apart, while recordings were made simultaneously in SI 

and crus IIa. The latencies and amplitudes of responses in both locations were then 

compared: (I) under normal conditions, (2) following a 0.15 cc peritoneal injection of 



sodium pentobarbital, and (3) as the time delay within pairs of tactile stimuli was shortened 

(the time delay between pairs of stimuli was at least 2 seconds). 

In the second approach, cerebellar responses were recorded after several different 

methods were used to interfere with the physiological integrity of SI cortex. In these 

experiments, cerebellar responses were recorded before and after: (1) local SI pressure 

injection of 2% Lidocaine HC1 (approximately 30 pl) in layer V-VI of SI (1500 to 

2500 pm), (2) local ablation of SI cortex (aspiration with a glass pipette), and (3) complete 

midcollicular decerebration (knife cut at the brachium of the superior colliculus). In order 

to minimize the number of animals used in these experiments, several of these procedures 

were performed sequentially in each animal. For example, in one animal, recordings were 

made following a series of ever larger local ablations of SI cortex and then following a 

complete midcollicular decerebration. 

For the remaining two animals (one shown in Figure 2.6), only the cerebellar cortex 

was surgically exposed. The tactile stimulator was then positioned at the precise location 

on the face that elicited the strongest response (bottom inset of Figure 2.6). Fifty peripheral 

tactile stimuli were given, with two seconds delay between each stimulation, and the field 

potential responses were recorded. Cms IIa was then mapped by making 40 to 50 electrode 

penetrations spaced 100-200 pm apart in three medio-lateral columns. At each electrode 

penetration, the location on the face that elicited the strongest response when stimulated, 

i.e., the receptive field, was noted, but the tactile stimulator stayed in the same location 

(circle with the "1" inside, bottom inset Figure 2.6) for the entire experiment. As the 

electrode was moved away from the center of the upper lip patch, the waveforms 

occasionally became more complex, for example, they might exhibit a third and/or fourth 

distinguishable peak within 50 msec after stimulation onset. The first and second cerebellar 

peaks described in this paper were identified by their latencies. The peak amplitudes of 

both the short- and the long-latency cerebellar responses to 50 tactile stimulations (2 sec 



between stimuli) were measured and averaged. The diameter of each filled circle in 

Figure 2.6 represents the average value at each electrode penetration. 

2.3.5 Map construction 

As in previous experiments (UTelker 1987; Bower and Kassel 1990), cerebellar 

tactile maps were constructed by drawing enclosing boundaries around adjacent electrode 

penetration locations whose receptive fields were from the same body structures. In cases 

where stimulation of more than one peripheral location could induce a response in a 

particular penetration, the region eliciting the strongest response was recorded. When 

responses were of equal strengths, the boundary line was drawn through the site of the 

electrode penetration. 

2.3.6 Data analysis 

In order to quantify the effects of the experimental manipulations on cerebellar field 

potentials, analog responses were digitized and stored on a MassComp 5700 laboratory 

computer. Off-line analysis was done on a Sun SPARCstation 2. The digitized responses 

were read by a custom-developed C program that measured the latencies and amplitudes of 

single responses. The latencies were defined as the time from the onset of stimulator 

movement to the time at the peak of the evoked response. The amplitudes were defined as 

the difference between the average of the potential for 100 msec before the onset of the 

peripheral stimulus and the peak value of the field potential. Comparisons between control 

and drug applications (sodium pentobarbital and lidocaine) were done using a paired 

nonparametric Mann-Whitney U test (Ross 1987). All measures of variability described 

here are standard errors, SE. V is the coefficient of variation, the standard deviation 

expressed as a percentage of the mean; and r is the coefficient of correlation. 
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Figure 2.1 A: Simplified circuit diagram of the tactile mossy fiber inputs to 
the crus IIa folium in the cerebellar hemispheres. The diagram illustrates the 
major pathways: a direct path from the ipsilateral trigeminal complex and an 
indirect path from the contralateral somatosensory cortex via various pontine 
nuclei. Several other areas not shown, including the superior colliculus, also 
project to crus IIa (Kassel 1980; Brodal 1981; Huerta et al. 1983; Marfurt 
and Rajchert 1991). Cer: cerebellum; Tr: trigeminal complex; Vb: 
ventrobasal complex of the thalamus; SI: somatosensory cortex; Pn: pons. 
B-C: Cerebral (B) and cerebellar (C) cortical responses to a brief (10 msec) 
peripheral tactile stimulus of the upper lip. Traces show typical field 
potentials recorded simultaneously in layer IV of the somatosensory cortex, 
SI (B) and in the granule cell layer of crus IIa (C). Recording electrodes 
were in an upper lip region in both SI and crus IIa. Responses to six 
consecutive stimuli, delivered two seconds apart, are superimposed. Arrows 
indicate the onset of the stimuli. Top traces: Multiunit activity, bandpass 
filtered digitally from 300 to 3000 Hz. Bottom traces: Field potentials, 
same recordings as in top traces bandpass filtered digitally from 1 to 1000 
Hz. Positivity upwards in this and all subsequent figures. 
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Figure 2.2 Histograms of the latencies of the cerebral and cerebellar 
responses to tactile stimulation of the upper lip. Latencies were measured as 
the time elapsed from the onset of the stimulus to the time at the peak 
amplitude of the response. Histograms were constructed from the responses 
to 71 consecutive peripheral stimulations, at least 2 seconds apart, in one 
animal. All htstogram bins are 1 msec. The dotted line on each graph 
denotes the mean latency (A, B, C) or mean of latency difference (E). 
A: Histogram of the latencies of the short-latency component of the 
cerebellar field potentials (shown as 1 in D). B: Histogram of the latencies 
of the SI responses to stimulation of the upper lip. C: Histogram of the 
latencies of the long-latency component of the cerebellar granule cell layer 
field potentials (shown as 2 in D). Note how the cerebellar first peak 
latencies (A) are more tightly grouped together than are the SI (B) and 
second cerebellar (C) latencies. D: Simultaneous cortical (top traces) and 
cerebellar (bottom traces) field potential responses elicited by peripheral 
tactile stimulation of the upper lip. Two consecutive responses are 
superimposed. Peripherally evoked cerebellar field potentials consisted of 
two components: one with short-latency (peak shown as 1) and one with 
long-latency (peak shown as 2). Response to first stimulus (solid line): 
cerebellar response peaked at 8.6 and 17.8 msec, cerebral cortex response 
peaked at 14.6 msec. Response to second stimulus (dashed line): cerebellar 
response peaked at 8.6 and 20.4 msec, cerebral cortex response peaked at 
17.0 msec. Arrows denote the time of stimulation. E: Histogram of the 
difference, for each trial, between the latency of the second cerebellar peak 
and that of the SI response following a peripheral stimulation. 



2.4 Results 

2.4.1 Cerebellar granule cell layer and SI cortex responses to peripheral 
stimulation 

Punctate tactile stimulation to the face elicited a burst of activity in layer IV of SI 

and a double burst in the granule cell layer of crus IIa in the rat (Figure 2.1). A brief 

(10 msec) stimulation of the upper lip led to characteristic bursts of multiunit activity in an 

upper lip region of both SI and crus IIa (top traces, Figure 2.1 B and C, respectively). Each 

burst of population spiking was associated with a negative peak in the local field potential 

(bottom traces, Figure 2.1 B and C). A typical cerebellar response to a tactile stimulus 

consisted of an initial short-latency response (range: 8-10 msec) followed by a second, 

long-latency, component peakmg in amplitude between 16 to 22 msec. Different animals 

showed slight differences in the range of latencies (less than 2 msec) for both cerebellar 

peaks. For a sample of 7 1 cerebellar and cortical responses to stimulation in one animal, we 

found that the latency of the first cerebellar waveform, or short-latency response, stayed 

fairly constant, 8.94 + 0.05 msec, V = 4.6%; as did its amplitude, 1.10 + 0.01 mV, 

V = 8.4% (Figure 2.2A, latency only). In contrast, the second cerebellar waveform, or long- 

latency response, was more variable in latency, 19.19 + 0.17 msec, V = 7.4% and 

amplitude, 2.06 + 0.03 mV, V = 11.8% (Figure 2.2C, amplitude not shown). The cerebral 

cortex (SI) response to the same stimulus consisted of a single waveform with latencies 

ranging from 12 to 20 msec. As shown in Figure 2.2B (latency only), the SI response was 

highly variable in latency and amplitude, 15.76 + 0.21 msec, V = 11.3%, 2.77 + 0.10 mV, 

V = 3 1 .O%. 

2.4.2 Correlation between the latency of the SI response and that of the 
second component of the cerebellar response 

The latency of the second peak in crus IIa was highly variable, as was that of the SI 

response, but their latencies varied together. This is illustrated in Figure 2.2D which shows 



two consecutive pairs of simultaneously recorded cerebellar and cerebral responses to tactile 

peripheral stimulation of the upper lip. The two cerebellar peaks evoked by peripheral 

stimulation are denoted as 1 and 2 (Figure 2.2D). We will henceforth refer to the first 

cerebellar peak (denoted as 1 in Figure 2.2D) as the first, or short-latency, response and to 

the second cerebellar peak (denoted as 2 in Figure 2.2D) as the second, or long-latency, 

response. The short-latency responses, 1 in Figure 2.2D, both peaked 8.6 msec after the 

onset of the stimuli. The long-latency responses, 2 in Figure 2.2D, peaked at 17.8 and 20.4 

msec after the tactile stimuli, 3.2 and 3.4 msec respectively after the cerebral cortex 

response (Figure 2.2D, top traces). The peak of the long-latency response in cms Ea 

occurred on average 3.44 rf.r 0.07 msec after the peak of the SI response (\I = 17.8%, n = 71 

in one animal), Figure 2.2E. While varying over a much smaller range than the SI or the 

second cerebellar responses (compare width of Figure 2.2 E with that of B and C), this 

delay between the response in SI and the long-latency component of the cerebellar response 

was not constant. When the latency of the tactilely-evoked SI response was in the later part 

of the normal range, the delay tended to be shorter than when the SI response was in the 

early part of the normal range (not shown). 

Figure 2.3 compzes the latencies of cerebellar and SI responses for four different 

animals. The latency of the second cerebellar peak and that of the cortical response to 

stimulation were highly correlated in each case, r = 0.95, 0.61, 0.61, and 0.80 (Figure 2.3 

A-D respectively, circles), and regression lines fit to the data were significant (P = 0.0001). 

The slopes of the regression lines are m = 0.7, 0.5, 0.7, and 0.7 (Figure 2.3 A-D 

respectively, circles). Note that these slope values are consistent with the delay between the 

SI response and the second cerebellar component response being shorter when the SI 

response occurred later, as mentioned in the previous paragraph. In contrast, the latency of 

the first cerebellar peak was less variable and not correlated with the cerebral peak latency 

(for all 4 animals shown in Figure 2.3, crosses: r < 0.2, regression analysis was not 

significant, P > 0.1). 
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Figure 2.3 Relationship between the latencies of the two peaks of the 
cerebellar field potential and that of the peak of the cerebral cortical field 
potential. Crosses represent the cerebellar first peak latencies. Open circles 
represent the cerebellar second peak latencies. For four different animals (A 
through D), waveforms were recorded simultaneously in cms Ha and SI 
following tactile stimulation of the upper lip. The latencies of the second 
peak of the cerebellar waveforms varied considerably as did the latencies of 
the peak of the SI cortical waveforms, however, the latencies of these two 
responses were highly correlated. In contrast, the latencies of the first peak 
of the cerebellar field potentials were more constant and not correlated with 
the SI response. Linear regression lines are shown for both cerebellar peaks 
for each animal; see text for r and P values. 



2.4.3 Effects of sodium pentobarbital on SI and cerebellar responses 

A 0.15 cc intraperitoneal injection of the barbiturate sodium pentobarbital 

(Nembutal) caused a significant (as judged by a Mann-Whitney U test, P = 0.0001) 

amplitude decrease in the cerebral peak as well as in both peaks of the cerebellar field 

potential (Figure 2.4 B and D). The injection also caused a significant (as judged by a 

Mann-Whitney U test, P = 0.0001) increase in the latencies of both the cerebral and 

cerebellar responses (Figure 2.4 A and C). However, the strong correlation between the 

long-latency cerebellar and SI responses persisted after the sodium pentobarbital injection, 

before: r = 0.95, after: r = 0.86; the slope of the regression line stayed constant before and 

after at 0.7 and was significant, P = 0.0001 (Figure 2.4 A and C, circles). 

2.4.4 Effects of increased frequency of tactile stimulation 

The standard time between each tactile stimulation was at least 2 seconds; however, 

in some experiments, paired pulses with variable interstimulus intervals (of less than 2 

seconds) were given. As shown in Figure 2.5, this had a significant, albeit different, effect 

on the SI and cerebellar responses. At a 75 msec interstimulus interval, the second stimulus 

elicited only the short-latency cerebellar response and not the long-latency cerebellar 

response. At these short interstimulus intervals, cortical traces following the second 

stimulus also showed very little or no response (Figure 2.5A). Figure 2.5B shows three 

examples of responses obtained when the interstimulus interval was increased to 85 msec. 

Following the second stimulation of the pair, in some cases, neither cerebral nor cerebellar 

long-latency responses occurred (Figure 2.5B, dotted line: a). At other times (Figure 2.5B, 

solid line: b), a small amplitude cerebral response was observed (7% of the amplitude of the 

response to the first stimulation) but no cerebellar long-latency response occurred. Finally, 

some traces following the second stimulation showed a larger amplitude SI response (7 1% 

of the amplitude of the response to the first stimulation) as well as a cerebellar long-latency 
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Figure 2.4 Effects of a 0.15 cc intraperitoneal injection of sodium 
pentobarbital (Nembutal). Results are shown before (A, B) and 10 minutes 
after (C, D) the injection, in one animal. Measurements of the cerebellar 
first peak are denoted by crosses while those of the cerebellar second peak 
are shown as open circles. Latencies (A, C) and amplitudes (B, D) of the 
two components of the cerebellar response are plotted as a function of those 
of the SI response to tactile peripheral stimulation of the upper lip. 
C: Latencies of both cerebellar peaks as well as that of the SI peak increased 
significantly ten minutes after a sodium pentobarbital injection. The latency 
of the second cerebellar peak was still highly correlated to the latency of the 
cortical peak, while the latency of the first cerebellar peak was not. 
D: Amplitudes of the cerebellar and SI responses decreased significantly 
after the injection. The significance was judged by a Mann-Whitney U test. 



response (Figure 2.5B, dashed line: c). In all cases, the cerebellar short-latency response 

occurred in response to both stimuli. When the interstimulus interval was decreased from 

100 to 75 msec, there was a decrease in the number of long-latency cerebellar and of SI 

responses to the second pulse of the pair (Figure 2.5C). All cerebellar long-latency 

responses to the second stimulus occurred in trials where an SI response to the second 

stimulus was also present. At short interstimulus delay, there was a larger percentage of SI 

responses than long-latency cerebellar responses to the second stimulus. For paired stimuli 

with 75 to 100 msec interstimulus delay, when the second stimulus elicited a long-latency 

cerebellar peak in a trial, the amplitude of the SI response (1.56 k 0.07 mV, 62% of the 

amplitude of the SI response to the first stimulus; n = 88) was on average twice as large as 

when there was no second cerebellar peak (0.79 k 0.07 mV, 32% of the amplitude of the SI 

response to the first stimulus, n = 29). 

2.4.5 Spatial distribution of the short- and long-latency cerebellar 
responses 

In two animals, we attempted to quantify the spread of activity of both latency 

responses ir, cn?s Ha. In the mimd shown in Figure 2.6, we mapped the receptive field at 

42 locations in the folium. Recordings were made in each location while stimulating a 

single location on the rat's upper lip (shown as the circle with the "1" inside, bottom inset 

Figure 2.6). The largest responses were recorded in locations where the receptive field 

matched the stimulated upper lip area. However, smaller responses were recorded 

throughout crus Ila. Comparing the average amplitude of the two components of the 

response (Figure 2.6 A, B), it can be seen that the short-latency component decreased most 

rapidly away from the receptive field center, while the amplitude of the long-latency 

component decreased less, suggesting a somewhat larger projection region. The ratios of 

the amplitudes of the second and first cerebellar peaks, as seen in Figure 2.6C, indicate that 
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Figure 2.5 A: Five superimposed field potentials of the responses in SI (top 
traces) and crus IIa (bottom traces) to a pair of tactile stimuli 75 msec apart. 
The responses to the first stimulus are typical (compare with Figures 2.1 B, 
C and 2.2D). When the second stimulus of the pair occurred, 75 msec later, 
the cerebellar recordings showed only the short-latency response, and the 
cortical traces showed very little or no response. The arrows denote the 
onset of the two stimulations. B: Responses in SI (top traces) and crus IIa 
(bottom traces) to the second of a pair of tactile stimuli, 85 msec after the 
first one. The response to the first stimulus (not shown) was typical, see A. 
Three different field potential responses are superimposed. The onset of the 
second stimulus is denoted by an arrow. C: Percentage of the trials in 
which the second stimulus elicited a response as a function of the delay 
between the two stimuli of paired stimulation. The delay between each pair 
of stimuli was at least 2 seconds. Percentages are shown for the long-latency 
cerebellar (black bar) and cortical responses (hatched bar). The short- 
latency cerebellar response occurred in all but one of the trials (in 164 out of 
165 trials) for all interstimulus intervals shown. Each bar represents the 
percentage of trials with a response to the second stimulus for 30 to 40 
paired stimuli. 
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Figure 2.6 Distribution of activity in cerebellar crus IIa following tactile 
stimulation of the upper lip. Each of the 3 maps (A, B, C) shows a different 
aspect of the same field potential data obtained in one animal. Each circle 
represents an electrode penetration and the diameter of each circle is 
proportional to A: the amplitude of the first, or short-latency, component of 
the response to peripheral stimulation, B: the amplitude of the second, or 
long-latency, component of the response to peripheral stimulation, and 
C: the ratio of the amplitude of the long-latency response to the amplitude of 
the short-latency response. The diameter of each circle was calculated by 
averaging the peak amplitude (or ratio of amplitudes) of the responses to 50 
stimulations of the upper lip. Top inset: positions of electrode penetrations 
on the surface of the crus IIa folium. Bottom inset: circle with the 1 inside 
indicates the area of tactile stimulation; it was stimulated at each electrode 
penetration independent of the receptive field at that penetration. This upper 
lip area was the receptive field at the first electrode penetration shown as 1 



on each map. Top is medial; left is rostral. UL: ipsilateral upper lip; BUL: 
bilateral upper lip; CUL: contralateral upper lip; V: ipsilateral vibrissae; LL: 
lower lip; Li: lower incisors; Ui: upper incisor. Dotted lines: contralateral 
structures; dashed lines: bilateral structures; solid lines: ipsilateral structures. 

the second cerebellar peak becomes more significant further away from the receptive field 

relative to the first peak. 

2.4.6 Disruption of SI selectively interferes with the long-latency 
cerebellar response 

Several methods were used to interfere with the physiological integrity of the 

somatosensory cortex to further confirm the influence of SI responses on the cerebellum. 

Figure 2.7 shows the effects of applying a local pressure injection of 2% lidocaine 

(approximately 30 yl) in the upper lip region in layer V-VI of SI while recording in a 

corresponding upper lip patch in the granule cell layer of cms Ila. After the injection, the 

amplitude of the second peak of the cerebellar response to tactile stimulation of the upper 

lips was significantly reduced (as judged by a Mann-Whitney U test, P = 0.0001). The 

rnaxixd effect, with the cerebeliar long-latency respofise dmost completely vanishing, 

occurred 5 minutes after the injection. In contrast, the short-latency cerebellar response 

showed no significant changes (Figure 2.7B). The effect of lidocaine on the second 

cerebellar peak was repeatable and reversed completely in about 20 minutes (Figure 2.7). 

We also examined the effects on cerebellar responses of local ablations of SI (not 

shown). When the somatosensory cortex was partially ablated, the amplitude of the 

cerebellar long-latency component fell 48%. A more complete ablation in the same animal 

resulted in a greater decline in amplitude, 56%; while the amplitude of the short-latency 

component was not significantly affected. 
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Figure 2.7 Effects of lidocaine injection in SI on the cerebellar response to 
tactile stimulation of the upper lip. A pressure injection of approximately 
30 pl of 2% lidocaine was applied to the corresponding upper lip region in 



layer V-VI of the somatosensory cortex. A: Six superimposed consecutive 
cerebellar field potentials are shown before an injection, and 5 and 20 
minutes after the injection. Arrows denote the onset of the tactile stimulus. 
B: Amplitude of the two cerebellar peaks as a function of time after the 
lidocaine injection. Each point represents the mean amplitude rt SE of 50 
traces like those shown in A. The cerebellar first, or short-latency, peak is 
denoted by an open square and the cerebellar second, or long-latency, peak 
is denoted by a filled circle. Lidocaine injection significantly decreased the 
amplitude of the cerebellar long-latency responses but had little effect on the 
amplitude of the cerebellar short-latency responses. Effects were reversed in 
20 to 30 minutes. The significance was judged by a Mann-Whitney U test. 

The last and most extreme procedure involved a decerebration at the midcollicular 

level. It resulted in a virtually complete elimination of the long-latency component of the 

cerebellar response to peripheral stimulation of the upper lip (Figure 2.8). Once more, this 

procedure affected the second cerebellar peak quite selectively; the first cerebellar peak 

showed little change (before: 8.51 rt 0.51 msec, 0.64 rt 0.07 mV, n = 97; after: 8.12 rt 0.24 

msec, 0.59 It 0.02 mV, n = 100). 

2.5 Discussion 

These experiments carefully investigated the temporal relationship between 

tactilely-evoked responses in the somatosensory cortex and in the cerebellar granule cell 

layer. Our results were consistent with those obtained in the cat by Kennedy, Grimm and 

Towe (1966) in showing that the somatosensory cortex is the primary contributor to the 

long-latency (second peak) cerebellar granule cell layer response elicited by tactile 

stimulation. By recording from SI and the cerebellum simultaneously, we have 

demonstrated a strong correlation between the latency of the SI response and that of the 

second cerebellar peak. Further, as described below, the onset of the SI-related response in 
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Figure 2.8 Complete midcollicular decerebration abolished virtually all of 
the cerebellar long-latency response to tactile stimulation. Ten consecutive 
cerebellar responses to peripheral stimulation of the upper lip are 
superimposed before and approximately 40 minutes after decerebration. 
Arrows indicate the time of the stimulus. 

the cerebellum appears to correspond with several features of Purkinje cell responses to 

peripheral tactile stimulation. 

2.5.1 Origins of cerebellar granule cell layer responses to tactile 
stimulation 

From 1940 through the late 1960s, a large number of studies of cerebellar afferent 

systems were conducted using evoked potential techniques (for review see Bloedel 1973; 

Allen and Tsukahara 1974). These studies used large surface recording electrodes and 

electrical stimulation of peripheral nerves. These techniques have lower spatial resolution 



than the procedures we used, which include recording the afferent potential in the granule 

cell layer (depth of 400 to 700 pm) and a more natural tactile stimulation of the periphery 

(for review see Welker 1987). As a result of the lower spatial resolution in the earlier 

studies, the fine detail of tactile projections to cerebellum was obscured. For example, 

previous evoked potential experiments were interpreted as suggesting an organized 

somatotopic projection to the cerebellum (Snider and Stowell 1944; Provini et al. 1968), 

while Welker and his collaborators, using techniques like those used here, found the 

projection to be fractured (Welker 1987). Many previous studies also averaged large 

numbers of individual traces, which would have obscured the timing relationships reported 

here. 

Short-latency component 

Our results demonstrated that the first, short-latency, component of the cerebellar 

response to tactile stimulation was very regular in latency and amplitude. This short-latency 

response was almost certainly a result of a direct trigeminal projection. A direct projection 

from the trigeminal nuclei to the lateral hemispheres of the cerebellum has been 

demonstrated anztorically using HW, horseradish peroxidase (Watson and Switzer 1978). 

Further, physiological experiments using antidromic collision techniques have demonstrated 

direct trigeminal projections to the same regions of the granule cell layer investigated herein 

(Woolston et al. 1981). It has also been reported that the cerebellar hemispheres may 

receive projections directly from primary sensory nerves, at least in the case of the teeth 

(Elias et al. 1987). Whether direct or relayed through the trigeminal nucleus, the short- 

latency projections clearly provide a large, very fast, and temporally stable cerebellar input. 

Contribution of circuits involving SI cortex to the long-latency component 

The long-latency response to tactile stimulation was demonstrated to be more 

temporally variable and distinct from the short-latency response. We have provided clear 



evidence that these responses substantially involve the somatosensory cortex. Previous 

studies (Bower et al. 1981) have shown that direct electrical stimulation of SI cortex 

induces responses in cms IIa. Numerous studies have described the anatomical properties 

of projections from cerebral to cerebellar cortex (for review see Allen and Tsukahara 1974; 

Angaut and Sotelo 1975). With respect to SI cortex and the lateral hemispheres of the 

cerebellum in particular, a large body of anatomical data shows that the pons receives input 

from layer V-VI cortical (SI) neurons and sends most of its afferents to the contralateral 

lateral hemisphere of the cerebellum, including crus IIa (Wise and Jones 1977; Brodal 1979, 

1982; Mihailoff 1983; Brodal and Bjaalie 1992). There is also evidence of a secondary 

projection through the brainstem lateral reticular nucleus (Allen and Tsukahara 1974; Allen 

et al. 1979), but it projects primarily to the verrnis, not the hemispheres (Clendenin et al. 

1974; Newman and Ginsberg 1992). Thus, it is most likely that the effects described here 

are relayed through the pontine nuclei. 

Contributions of other mid- and forebrain structures to the long-latency cerebellar 
response 

While SI cerebral cortex clearly has a major influence on tactile regions of the 

lateral hemispheres, other structures, like the motor cortex (Sharp and Evans 1982; 

Mihailoff et al. 1985) and the superior colliculus (Kassel 1980), have also been 

demonstrated to influence these regions of the cerebellum, presumably also through the 

pons (motor cortex: Mihailoff et al. 1985; superior colliculus: Dean et al. 1988). We have 

shown that lidocaine injected into SI as well as direct SI cortical ablations substantially 

reduced, but did not eliminate, the long-latency component of the cerebellar response to 

peripheral stimulation. Complete midcollicular transection was required to completely 

abolish the response. This latter procedure should interrupt projections from all forebrain 

structures and all structures projecting through the pons. Following decerebration, the first 

cerebellar peak was not significantly affected whereas the second cerebellar peak 

disappeared. These findings are consistent with those of Kennedy et al. (1966) in the cat, 



who also showed a third peak occurring approximately 30-40 msec after the onset of the 

stimulus that reappeared 30-45 minutes after decerebration. We did not see any such late 

latency peak reappear after comparable time in our preparation. However, in normal rats, 

we found a number of responses with a third distinguishable peak when the peripheral area 

stimulated did not correspond to the primary receptive field of the location recorded from in 

the granule cell layer, such as when we stimulated the upper lip while recording from a 

lower lip patch (experiment described in Figure 2.6). Since Kennedy et al. (1966) did not 

take into consideration the detail of the fine grain input map to the cerebellum, our data 

suggest that the "third peak" responses they describe may have been recorded from regions 

outside but near the forepaw receptive field patch. Further experiments will be necessary to 

determine the origin of that component of the cerebellar response to peripheral stimulation. 

2.5.2 Temporal properties of cerebellar and cerebral cortical responses 

Timing relationships between responses in SI cortex and the cerebellar long-latency 
response 

Our data demonstrate that the latency of activity in SI cortex and the long-latency 

cerebellar response are quite variable but highly correlated temporally. This is true both in 

the regular preparation as well as after the administration of barbiturates (Figure 2.4). 

While barbiturates result in the lengthening of latencies in all responses measured, probably 

through a brain-wide increase in the GABAA-induced C1- current, and thus inhibition of 

synaptic transmission (Snyder 1984), the latencies of the SI and long-latency cerebellar 

responses still remain highly correlated. We have also demonstrated that there is relatively 

little variability in the delay between activity in SI and the long-latency response in the 

cerebellum on individual trials (Figure 2.2E). Finally, we have shown that the latency of the 

short-latency cerebellar response, originating in the trigeminal nucleus, was much less 

variable and not correlated with the timing of the SI response (Figure 2.3). 



SigniJicance of the response timing in cerebellum 

After a response has been induced in the cerebral cortex, the information is 

apparently relayed to the cerebellum rapidly and with essentially fixed latency. This was the 

case for tactile stimulation given every 2 seconds. Our data showed that when two stimuli 

were separated by less than 100 msec, the failure rate for SI and SI-related cerebellar 

responses increased. Previous studies showed similar results at the level of Purkinje cells, 

which were not capable of following stimuli applied at frequencies of 10 Hz (Bantli and 

Bloedel 1977). 

We have also shown that the forebrain influence arrived in the cerebellum with no 

consistent temporal relationship to the initial burst of granule cell layer activity. For this 

reason, we speculate that the detailed timing of information originating in the forebrain and 

projecting to the cerebellum reflects the te=poral requirements of forebrain, not cerebellar, 

processing. When considering these timing relationships, it is important to keep in mind 

that stimuli in these experiments were given irrespective of any intrinsic rhythms of the 

thalamus or cortex. Under more natural conditions, it is entirely conceivable that behaving 

animals coordinate the acquisition of afferent information so that it is in register with the 

intrinsic rhythms of their neural circuits. It has been previously proposed that the primary 

role of the cerebellum may be in the general coordination of sensory data acquisition 

(Bower and Kassel 1990; Bower 1993). Presumably this coordination would involve not 

only the spatial but also the temporal use of sensory receptors. Accordingly, it is interesting 

to consider the timing of this long-latency input with respect to other cerebellar events 

induced by peripheral stimuli. 

Comparison of our granule cell layer responses with extracellular and intracellular 

recordings from Purkinje cells (Jaeger and Bower 1994) shows that the SI influence on the 

granule cell layer coincides with two specific transitions in Purkinje cell responses to 

peripheral stimulation. First, the long-latency granule cell response coincides closely with 

the termination of the short latency inhibition of Purkinje cells that often results from short 



duration peripheral tactile stimuli (Bower and Woolston 1983). Second, the long-latency 

response coincides with the beginning of a prolonged (50-200 msec) increase in simple 

spike firing frequency that can result from tactile stimulation. Intracellular work has 

demonstrated that this prolonged response is due to a prolonged plateau-like Purkinje cell 

dendritic depolarization that likely also results from the initial activation of the granule cell 

layer, although it is initially masked by inhibition (Jaeger and Bower 1994). Intracellular 

recordings have shown that the long-latency granule cell layer response contributes a large 

part of the intracellular increase in potential in absence of inhibition (Jaeger and Bower 

1994). These results suggest a different functional role for the direct and indirect cerebellar 

projecting tactile pathways, despite their spatial coherence. It has been suggested previously 

that peripheral and cortical afferents do not converge on comrnon granule cells (Allen et al. 

1974). For example, the pontine mossy fibers could activate different mossy fibers - 

parallel fibers mechanisms than mossy fibers arriving directly from the trigeminal nucleus. 

Our findings (Figure 2.6) suggest that the SI-related component of the cerebellar responses 

to tactile stimulation is spatially more distributed than the trigerninal-related component 

and, therefore, could influence different granule cells. 

2.5.3 Proposed role of SI in cerebellar function 

It has been known for many years that the cerebral cortex and the cerebellum are 

very strongly interrelated; the growth of cerebral cortex in marnmals is paralleled by the 

growth of cerebellum (Stephan et al. 1981; Jolicoeur et al. 1984). In the current 

experiments, we have again demonstrated that SI cortex provides a substantial input to the 

lateral hemispheres of the cerebellum. Our results, for brief tactile stimulation in 

anaesthetized rats, showed that the SI response followed the direct sensory response from 

the trigerninal nucleus. In our data, the first component of the cerebellar response occurs at 

a latency of 8 to 10 msec, which is before SI is even activated. As it is also known that the 

initial cerebellar influence on motor output is very fast (Orlovsky 1972), our data suggest 



that an initial sensorimotor loop through the cerebellum may very well be completed by the 

time the response to the tactile stimulus arrives in SI and is relayed back to the cerebellum 

(Sharnbes et al. 1978b; Bower and Kassel 1990). 

Most theories of cerebrocerebellar interaction focus on the putative role of 

cerebellum in motor control and, therefore, focus on the influence of motor pathways (Marr 

1969; Albus 1971; Houk 1988; Thach et al. 1992). An alternative hypothesis has been 

proposed: that cerebellar circuits may be involved in monitoring and controlling the active 

acquisition of sensory information on which the performance of the rest of the nervous 

system is based (Bower and Kassel 1990; Bower 1993). Specifically, it has been proposed 

that the cerebellum receives primary tactile sensory information from particular sets of 

sensory surfaces involved in active exploration, and then, through the motor system, adjusts 

the position of these tactile sensory surfaces with respect to each other. In this way, it has 

been proposed that the cerebellum uses the motor system to coordinate the acquisition of 

sensory data. Such a function for the lateral hemispheres is analogous to the known 

influence of the flocculus in the vestibulo-ocular reflex (Paulin et al. 1989a). Recent work 

using functional magnetic resonance imaging in humans (Gao et al. 1995) supports this 

proposal, demonstrating strong activation of the lateral regions of the cerebellum in tactile 

discrimination tasks irrespective of the occurrence of overt finger movements. 

In the context of this hypothesis, we propose that the long-latency, forebrain-related 

response in the cerebellum could provide the cerebellum information on the overall state of 

cortical networks, including information about the appropriate timing of data acquisition. 

Such information could, in principle, serve to modify Purkinje cell responses to the short- 

latency, raw afferent input. In this way, ongoing control of sensory acquisition would be 

dependent both on the raw sensory information and the response of the cerebral cortex to 

that information. The timing of the SI influence during the plateau phase of the Purkinje 

cell response set up by the initial direct response to the stimulus is consistent with this idea. 



Ultimately, a full understanding of the role of cerebral cortical circuits in cerebellar 

function, or the cerebellum itself, will require a close examination of neural activity in 

behaving animals. For example, under natural behavioral conditions, tactile stimuli are 

likely to be of a longer duration with much more complex timing relationships than those 

shown here for a single punctate stimulus. However, we would still expect any new 

stimulus to activate cerebellum first and SI second. Preliminary results from awake 

behaving animals show cerebellar double peak responses similar those reported here 

(Hartmann and Bower 1993,1995). 



Developmental Plasticity in Cerebellar 
Tactile Maps: Neonates 

All changed, changed utterly: 

A terrible beauty is born. 

W. B. Yeats 

Easter, 1916 

3.1 Abstract 

Plasticity following deafferentation has been repeatedly demonstrated in 

somatotopic sensory maps in the mammalian brain. In this study, we investigated the 

developmental plasticity of the fractured somatosensory map found in the tactile regions of 

the rat cerebellum. At various stages of postnatal development between postnatal days 1 

and 30, we cauterized the infraorbital branch of the trigerninal nerve, which innervates the 

upper lip, furry buccal pad, and vibrissae that are represented within cerebellar folium 

crus IIa. The organization of the cms IIa map was then examined two to three months after 

denervation. We found that tactile receptive fields had reorganized throughout the 

denervated area but maintained a fractured somatotopy. Comparison of the reorganization 

in different animals showed that the denervated upper lip region was consistently and 

predominantly replaced by representation of the upper incisors. Analysis of evoked field 

potentials revealed an alteration, in denervated animals, of the response of the granule cell 

layer to brief tactile stimulations. This response in normal animals consists of two 



components at different latencies. Animals lesioned later in development were less likely to 

have the short-latency component. This result suggests a difference in the developmental 

sensitivity of different cerebellum-related pathways to nerve lesions. 

Introduction 

Numerous anatomical and electrophysiological studies have demonstrated that the 

organization of sensory maps in mammals can be modified during development following 

peripheral manipulations. To date, however, this work has involved topographically 

organized cortical and subcortical sensory maps (somatosensory: Table 1, Wall and Cusick 

1984; Merzenich et al. 1983ab; for reviews see Kaas et al. 1983; Verley 1986; Merzenich 

1987; Killackey 1989; Wall 1988ab; Kaas 1991; visual: Fraser and Hunt 1980; Fraser 1985; 

for review see Udin and Fawcett 1988; auditory: Knudsen 1983ab, 1985; for review see 

Knudsen et al. 1987). In somatotopic sensory maps, reorganization generally preserves at 

least the basic topography of the original map through an apparent expansion of 

representations of body parts that are both peripherally and centrally adjacent to the 

$enervated peripheral struct~lre (Kaas et al. 1983; Table 1, Wall and Cusick 1984). 

Nontopographic, fractured tactile maps have been found in the granule cell layer of 

the lateral hemispheres of the rat cerebellar cortex (Sharnbes et al. 1978ab; Welker 1987; 

Bower and Kassel 1990). In contrast to the somatotopic sensory maps in the cerebral 

cortex, tactile maps in these cerebellar regions include topographically discontinuous 

patches, with each patch representing a nonadjacent area of the body surface (Figure 3.1B). 

Similarly, fractured maps have also been demonstrated in the cerebellum of cats (Kassel et 

al. 1984), opossums (Welker and Sharnbes 1985), and the primate Galago crassicaudatus 

(Welker et al. 1988). The overall structure of the cerebellar maps in rats has been shown to 

be invariant in normal animals (Bower and Kassel 1990). In these animals the fractured 

representation of peripheral surfaces is also preserved in both the direct trigeminocerebellar 



projections (Woolston et al. 1981) and in the cerebellar projections originating from other 

somatosensory-related regions (somatosensory cortex, Bower et al. 198 1 ; superior 

colliculus, Kassel 1980). 

In this chapter, we examine whether fractured cerebellar tactile maps, like 

somatotopic sensory maps in other parts of the brain, are capable of reorganizing following 

peripheral lesions. In addition, if reorganization does occur, we were interested in 

determining its precise pattern in the expectation that this would shed light on the 

mechanism of reorganization in the cerebellum. Finally, we were interested in determining 

whether there is a sensitive period for reorganization in the cerebellum as has been reported 

for other somatosensory areas (Weller and Johnson 1975; Woolsey and Wann 1976; 

Durham and Woolsey 1978; Belford and Killackey 1980). 

Our results demonstrate that fractured tactile cerebellar maps reorganize in a 

fractured pattern that is considerably different from other somatosensory regions. The 

reorganized maps appear remarkably similar across animals regardless of the age of 

deafferentation, thus supporting the idea that the fractured structure of these maps is 

important to cerebellar function (Bower and Kassel 1990). Preliminary results of these 

investigations have been presented elsewhere (Paulin and Bower 1988; Morissette et al. 

1990). 

Methods 

3.3.1 General experimental design 

A total of 26 Sprague-Dawley albino rats of both sexes were used: 12 control and 14 

experimental animals. In the experimental animals, the infraorbital branch of the trigeminal 

nerve was cauterized on various postnatal days, ranging from postnatal day (PND) 1 to 



PND 30 (PND 1 (n = 2); PND 2 (2); PND 4 (1); PND 9 (1); PND 12 (1); PND 14 (1); 

PND 15 (1); PND 16 (1); PND 30 (4)). Two to three months after the nerve was sectioned, 

the granule cell layer of cms IIa was mapped with multiunit recordings. In 14 of the 26 

animals used in determining receptive field maps, recordings of field potential responses to 

peripheral mechanical stimulation were also taken at all penetration sites (normal controls, 

(n = 3); PND 1 (1); PND 2 (2); PND 4 (1); PND 9 (1); PND 15 (1); PND 16 (1) PND 30 

(4)). The areal extent of each region of the body surface mapped in cms IIa was statistically 

compared between the normal and experimental animals with a Mann-Whitney U test. 

3.3.2 Specific experimental procedures 

Nerve cauterization 

Cauterization of the infraorbital branch of the trigeminal nerve was performed on 

young rats deeply anaesthetized with avertine (125 mgkg body weight). Under a light 

microscope, an incision was made between the occipital bone ridge and the caudal edge of 

the vibrissae pad. The infraorbital branch of the trigeminal nerve was exposed by teasing 

away surrounding muscie. A cautery unit (Sybron) was used to interrupt the nerve for 

several millimeters. Care was taken to cauterize all of the multiple branches of the nerve. 

To prevent nerve regeneration, bone wax was inserted under the occipital bone ridge in the 

nerve's previous location. The wound was bathed with a local anaesthetic, and the skin 

incision closed with suture. The animals were monitored for two to six hours until they 

appeared to recover completely from the anaesthetic. They were subsequently placed back 

with their mothers and returned to the animal care facility. 

Cerebellar craniotomy 

Two to three months after the nerve cauterization, the rats were prepared for 

cerebellar mapping. Prior to surgery, each rat was anaesthetized with intraperitoneal 



injections of sodium pentobarbital (12 mg/kg body weight) and ketarnine hydrochloride (50 

mgkg body weight). Ketarnine supplements were given as needed during the experiment to 

suppress reflexive movement. The head of the animal was immobilized by an acrylic dam 

bonded to the skull and head-holder. The cranium over the left cerebellar hemisphere was 

surgically removed. Before removal of the dura to expose the cerebellar cortex, the acrylic 

dam was filled with warm mineral oil, wkch was supplemented as needed during the 

experiment. Rectal temperature was maintained at 36-37°C with a feedback controlled 

heating pad. The trachea was cannulated to facilitate respiration. The surface of the 

cerebellum was photographed to allow documentation of electrode recording positions. 

Animals were sacrificed at the end of the experiment with an overdose of sodium 

pentobarbital (50 mgkg IP). Further details of these surgical procedures can be found in 

Bower and Woolston (1983). 

3.3.3 Electrophysiological procedures 

Receptive Beld mapping 

Multipie unit activity in the granule ceii layer (400-700 pm below the brain surface) 

was recorded with glass micropipettes filled with 2M NaCl (10 pm in diameter, 1 M a  

impedance). The central region of the exposed folial crown of crus IIa was finely mapped 

with 60 sequential perpendicular electrode penetrations (3 tracts, 20 punctures per tract; 

Figure 3.1C). Depending on surface vasculature, the penetrations were spaced 100-150 pm 

apart mediolaterally (top to bottom on the folium) and 100-200 pm apart rostrocaudally 

(left to right on the folium). The location of the penetrations on the surface of crus IIa were 

directly recorded on an enlarged photograph at the time of recording (Figure 3.1C). The 

central region was selected to avoid difficulties resulting from the downward curvature of 

the granule cell layer on the rostra1 and caudal edges of the folium (Figure 3.1). For each 

electrode penetration, the multiunit granule cell receptive field was determined auditorily 



with hand-held glass probes. At least two experimenters independently determined the 

location of the receptive fields and rated responses subjectively on a scale from 1 (barely 

detectable) to 5 (maximal). The body region that, when stimulated, elicited the strongest 

response from the granule cell layer was carefully recorded on standardized figurine 

drawings of the rat's body surface. 

Map construction 

As in previous experiments (Welker 1987), maps were constructed by drawing 

enclosing boundaries around adjacent electrode puncture locations whose receptive fields 

were from the same body structures. When stimulation of more than one peripheral 

location could induce a response in a particular penetration, the region eliciting the strongest 

response was used. In cases where responses were of equal strengths, the boundary line was 

drawn through the site of the electrode penetration. 

Field potential analysis 

After auditorily determining the receptive field, the center of the receptive field was 

mechanically stimulated with the blunt end probe (< 1 rnm in diameter) of a custom-built 

tactile stimulator. The stimulus pulse was a 50 msec square wave, generated by an IBM 

personal computer. Both the amplitude and duration of the stimulus were monitored from 

the excursion of the stimulus probe itself which was displayed on an oscilloscope. The field 

potential response recorded from the granule cell layer (400-700 pm from the cortical 

surface) was pre-amplified at a gain of 600 (WPI preamplifier) and filtered (1 to 1000 Hz 

bandpass). To asswe proper positioning of the stimulator in the center of the previously 

determined receptive field, from 5 to 10 single, manually controlled stimuli were initially 

presented while the granule cell layer evoked response was observed on the oscilloscope. 

At this time, the presence of one or both normal components of the field potential was also 
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Figure 3.1 A: Simplified circuit diagram of the tactile mossy fiber inputs to 
the crus IIa folium in the cerebellar hemispheres. Several other areas not 
shown, including the superior colliculus, also project to crus IIa (Brodal 
198 1 ; Huerta et al. 1983; Marfurt and Rajchert 199 1). Cer: cerebellum; Tr: 
trigerninal complex; Vb: ventrobasal complex of the thalamus; SI: 
somatosensory cortex; Pn: pons. B: Organization of the tactile map in crus 
IIa, constructed from the brain of a normal rat (from Bower and Kassel 
1990, with permission). The cerebellar map has a fractured somatotopic 
organization, as demonstrated by numerous authors using high-density 
electrophysiological mapping techniques. The location of the different 
receptive fields are shown on the diagram of the rat's head. Inset: Location 
in the folium of the area that has been mapped. C: Representation of the 60 
electrode penetrations used in this study. The three tracks are 100-150 pm 



apart and contain 20 recording sites each. The separation between points is 
100 pm. Inset, top: Histological section indicating a typical location for the 
recording electrode within the granule cell layer; bottom: Representation of 
the typical activity recorded from the granule cell multiple units (from 
Bower and Kassel 1990, with permission). GC: granule cell layer; Mol: 
molecular layer; PC: Purkinje cell layer; Wh: white matter. Other 
abbreviations in this and all subsequent figures: I3p: furry buccal pad; Li or 
LI: lower incisor; LL: lower lip; N: nose; NR: no response; RFs: receptive 
fields; Ui: upper incisor; UL: upper lip; V: vibrissae. 

noted (see below). For further analysis and confirmation of the initial evaluation of the 

signals, the receptive field was stimulated for an additional 5-10 trials (2 second 

interstimulus interval) while the granule cell layer responses were digitized and stored on a 

MassComp 5700 laboratory computer (Concurrent Computer Inc.). 

3.3.4 Methodological considerations 

Mapping procedures 

Tactile receptive fields were determined while manually stimulating the body 

surface and listening to the evoked response on an auditory monitor. While this is standard 

procedure for somatosensory mapping experiments (Robertson 1982, 1987; Kaas et al. 

1983; Merzenich 1987; Welker 1987), inconsistencies between the mapping criteria of 

different investigators could, in principle, influence the results. In order to reduce such an 

effect in the current experiments, the strength of the response was independently assessed 

by at least two investigators. 

Field potential analysis 

Field potential recordings were used to quantify changes in the form and extent of 

granule cell layer responses to tactile stimuli. Field potentials were chosen because of the 



difficulties associated with recording from single granule cells and because it has proven 

difficult to quantify the relatively low amplitude and highly filtered multiunit recordings 

used in mapping receptive fields. 

A possible concern with our field potential analysis involves the ease with which the 

two components of the peripherally evoked cerebellar response (Figure 3.5) can be 

identified and separated. In nonlesioned animals, these two components occurred at 

distinctly different latencies (Chapter 2). However, in some recordings from denervated 

animals, the field potential appeared as a single broad peak, making it difficult to draw a 

clear distinction. In these cases, the location was conservatively scored as having both 

responses present. 

3.4 Results 

3.4.1 Complete tactile reorganization 

In centrally located penetrations in crus IIa of normal animals, on average 64% of 

responses are from structures related to the ipsilateral upper lip (Figures 3.2C and 3.3; also 

see Bower and Kassel 1990). Therefore, deafferentation of the infraorbital branch of the 

trigeminal nerve that innervates these structures eliminates input to a large portion of the 

cms Ha map. Nonetheless, when neonatally lesioned animals were mapped as adults, most 

of crus Ha was found to be responsive to tactile stimulation. We did, however, find a 

tendency for responses in the reorganized maps to be weaker than responses from normal 

adult mapping experiments (Figure 3.4). Complete reorganization was found in all animals 

lesioned, regardless of the age of deafferentation (between PND 1 and 30). 
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Figure 3.2 A: Schematic representation of the complete normal tactile map 
from Figure 3.1 (modified from Bower and Kassel 1990, with permission), 
with shaded areas indicating all crus IIa patches receiving input from the 
infraorbital branch of the trigeminal nerve (ipsilateral upper lip, furry buccal 
pad, and vibrissae). Solid lines: ipsilateral patch boundaries; dotted lines: 
contralateral patch boundaries; dashed lines: bilateral patch boundaries. 
B: Superposition of the folial location of the recording sites presented in C, 
E, G, and I. C: Tactile map of crus Ha constructed from the present study 
from a normal (i.e., nonlesioned) animal. The size and approximate location 
of this mapped region, relative to the complete crus IIa map (A), is 



represented by the dashed lines. E, G, I: Maps of crus IIa maps in 
deafferented animals. Shaded area in I corresponds to nonresponsive 
regions. D, F, H, J: Comparison of the locations of patch boundaries for the 
corresponding maps in C, E, G, and I. Note the similar location of the patch 
boundary for the medial contralateral upper lip patch (bold line) in the 
normal (C) and deafferented (E, G, I) animals. For C, E, G, I, inset indicates 
the location of the recording tracks in the crus IIa folium for each animal. 
Abbreviations as in Figure 3.1. 

3.4.2 Change in representation of body parts 

Comparison of the reorganized area in the maps from different animals indicates 

striking similarities in the replacement structures. As shown in Figure 3.3 and Table 3.1, 

the perioral structure whose representation consistently invaded most of the area of the 

denervated region was that of the upper incisor. The upper incisor patches comprised 46% 

of the map in these deafferented animals (P < 0.001, as judged by a Mann-Whitney U test). 

In contrast, upper incisor patches occupied, on average, only 8% of the map in normal 

animals (Figure 3.3; also see Bower and Kassel 1990). In lesioned animals, the 

contralateral upper lip regions also significantly increased in area (from 7 to 19%, 

P < 0.002), as did the lower lip regions (8 to 16%, P = 0.05). There was no significant 

change in areal extent of either the lower incisor or nose representations. Again these 

results are independent of the age of deafferentation (Table 3.1). 

3.4.3 Preservation of fractured somatotopy within denervated regions 

The reorganized area retained features characteristic of the normal fractured 

somatotopy of crus IIa. First, the reorganized area contained a series of patches with 

typically disjunctive patch boundaries (Figure 3.2). The location of the patch boundaries, 

however, generally did not correspond to those of the normal upper lip and upper lip-related 
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Figure 3.3 Histogram comparing map organization in normal rats (black 
bars, n = 12) and deafferented rats (white bars, n = 14). Each bar represents 
the mean + SE of total recording sites for a given receptive field type. The 
experimental data from the different developmental stages have been 
pooled, as the representation of the perioral structures did not significantly 
differ between the different stages (Table 3.1). Asterisks indicate significant 
differences between the percentage of representation of a given receptive 
field type in the normal and experimental animals, as judged by a Mann- 
Whitney U test. Abbreviations as in Figure 3.1. 



patches which they replaced (Figure 3.2 C, E, G, and I). Second, the maps tended to consist 

of a large (upper incisor) patch surrounded by smaller patches. Ten out of fourteen animals 

(71%) showed this pattern (Figures 3.2 E and G, 3.5, and 3.7). However, four of the 

animals showed a more highly fractured pattern, as shown by the PND 30 animal presented 

in Figure 3.2 I. 

Percent of total recording sites 

Deafferented developmental stage 

Receptive Normal PND 1-4 PND 9-16 PND 30 
field type (n = 12) (n = 5) (n = 5) (n = 4) 

IUL 64.07 t 3.82 2.22 t 2.22 0.30 t 0.30 0 
UI 8.27 rt 2.59 44.88 t 5.38 51.21 + 5.15 41.97 t 5.43 

CUI, 7.41 t 1.81 15.29 _+ 3.34 18.27 t 5.23 24.65 + 3.95 
LL 7.75 t 1.94 21.79 t 5.13 16.05 t 2.67 8.48 + 1.05 
LI 9.66 rt 1.93 12.03 rt 2.97 9.52 rt 3.00 10.45 t 2.39 
N 0.97 t 0.61 3.80 + 3.44 3.16 t 1.09 2.01 t 0.77 

NR 1.88 t 1.08 0 1.49 t 0.50 12.45 rt 5.71 

Table 3.1 Comparison of map organization between normal rats and rats 
with peripheral lesions performed on different postnatal days. Numbers 
reflect the mean percent 5 SE of the total recording sites for a given 
receptive field type. Abbreviations as in Figure 3.1. 

3.4.4 Preservation of other features of crus IIa representations 

In addition to the preservation of fractured somatotopy, other general features of the 

crus IIa maps were maintained within the denervated regions. First, all tactile projections in 

this area originated exclusively from perioral structures normally projecting to crus Ila. 

Second, examination of within-patch topography in the contralateral upper lip patches 

showed that the receptive fields were found to be topographically arranged, as in normal 

animals (Bower and Kassel 1990). 



Finally, the boundary of the contralateral upper lip patch, located in the medial 

region of the crus IIa folium in normal animals (top of map, Figure 3.2A), was similarly 

positioned in experimental animals (Figure 3.2 D, F, H, J, delimited by a thick line). 

NORMAL 

LESIONED 

Figure 3.4 Histogram comparing response strength in normal rats (black 
bars, n = 10) and deafferented rats (white bars, n = 13). Response strength 
was rated subjectively on a scale from 1 (barely detectable) to 5 (maximal). 
Each bar represents the mean ? SE of total recording sites for a given 
response strength. Asterisks indicate significant differences between the 
percentage of recording sites for a given response strength in the normal and 
lesioned animals, as judged by a Mann-Whitney U test. NR, no response. 



3.4.5 Developmentally-related increase in the number of nonresponsive 
recording locations 

In some experimental animals, penetrations were found that were not responsive to 

any form of tactile stimulation. The number of these nonresponsive penetrations increased 

with the age of deafferentation. In normal animals (n = 12), only 2% of the penetrations 

were nonresponsive. In animals whose nerve had been cauterized between PND 1 and 4, 

nonresponsive points were also rare, occurring on average in only 1% of the penetrations 

(n = 5). In animals lesioned between PND 9 and 16, 3% of the penetrations were 

nonresponsive (n = 5). In the PND 30 animals, the number of nonresponsive points 

detected was, on average, 10% (n = 4), although there was considerable variability from 

animal to animal. 

3.4.6 Developmentally-related absence of short-latency evoked response 

Analysis of the field potential data also demonstrates a change in the structure of 

recorded field potentials related to the age at the time of lesion. In normal animals, 

peripherally evoked field potentials always consist of two components, one with short- 

latency (= 8 msec) and one with long-latency (= 18 msec); see Chapter 2. In some 

deafferented animals, however, it is possible to record field potentials that are entirely 

lacking the first component (Figure 3.5). Further, the percentage of punctures containing 

only the second component of the response increases with the age of denervation. 

Figure 3.6 summarizes these developmental effects. In animals whose nerve had 

been cauterized between PND 1 and 9, just a few field potentials were found that contained 

the long-latency component only. This type of field potential occurred, on average, in 3% 

of the mapped locations (n = 4). In animals operated on PND 15 or 16, the second response 

was found in 13% of the mapped locations (n = 2). In animals operated on PND 30, the 

second response was elicited at 20% of the recording sites (n = 4). A regression analysis 

through these points was found to be significant (P = 0.004). 



- 
010 30 

TIME (msec) 

Figure 3.5 



Figure 3.5 Map from a PND 30 animal showing the location and waveform 
of the two different types of field potentials that are typically elicited in the 
deafferented animals upon tactile stimulation of the appropriate receptive 
field. Solid dots: representative field potentials similar to those in normal 
animals, whch include both short- and long-latency components; stars: 
representative field potentials that contain only the long-latency component; 
open circles: penetrations where field potentials were not recorded. Lower 
left trace shows the peak of the short-latency component from this PND 30 
animal at position 1 (x = 10 msec), and the long-latency component at 
position 2 (x = 21 msec) (n = 8 trials). Dotted lines: contralateral receptive 
fields. Abbreviations as in Figure 3.1. 

3.4.7 Spatial extent of field potential effects 

We found no spatial pattern to cerebellar regions that either lack a short-latency 

response or are nonresponsive to tactile stimulation. Examination of the results in 

Figures 3.5 and 3.7, for example, shows that it is not unusual for some patches to contain 

both combined responses (filled dots) and those with the long-latency only (stars). In 

addition, comparison of these figures shows that evoked potentials lacking a short-latency 

response can be found in any region of cms IIa. They are even elicited in contralateral 

upper lip regions of the folium, including both the medial part of the folium and the 

reorganized area. While changes within the medial part of the folium might at first seem 

surprising given that neither the area of these medial patches nor the location of the 

contralateral upper lip border appears to change, it should be noted that, in normal animals, 

some patches in these locations are actually bilateral upper lip representations (Bower and 

Kassel 1990), and thus, might be expected to be affected in some fashion by ipsilateral 

denervation. 
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Figure 3.6 Percentage of penetrations with second waveform only as a 
function of age at the time of the lesion. Each open triangle and filled circle 
displays data from a single animal and represents the percentage of the 60 
recording sites that had field potentials containing only the long-latency 
component (i.e., second waveform). Open triangles indicate normal 
animals; filled circles, lesioned animals. Solid line denotes regression line 
( R ~  = 0.611). The regression is significant as judged by an ANOVA 
(P = 0.004). 

Discussion 

3.5.1 Comparison with reorganization in other somatosensory structures 

The results presented in this chapter provide the first demonstration of plasticity in a 

fractured somatosensory map following peripheral nerve lesions. We have found that 

tactile responsiveness in the crown of cms IIa is largely restored following lesions made up 
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Figure 3.7 A-D: Tactile maps highlighting the location and type of field 
potential responses in normal animals and animals lesioned at different 
developmental stages. Recording sites having the normal type of field 
potential, i.e., including both short- and long-latency components, are 
represented by filled dots. Recording sites having the long-latency field 
potential component only are represented by stars. Open dots: recording 
sites where field potentials were not recorded. Dotted lines: contralateral 
receptive fields. Shaded regions represent areas that were not responsive to 
tactile stimulation. Insets: Locations of the three recording tracks within the 
crus IIa folium. Abbreviations as in Figure 3.1. 



to 30 days postnatally. Similar physiological experiments in the primary somatosensory 

region of the cerebral cortex of rats have also demonstrated the ability of tactile maps to 

reorganize following lesions made postnatally (Waite 1984; Wall and Cusick 1984, 1986; 

Wall et al. 1986; Delacour et al. 1987) and even in adult animals (Wall and Cusick 1984). 

Similar results have been found in a variety of other mammals (Kalaska and Pomeranz 

1979; Frank 1980; Rasmusson 1982; Kelahan and Doetsch 1984; Jenkins and Merzenich 

1987; Merzenich 1987; Pons et al. 1987). Thus, map plasticity seems to be a feature of 

several mammalian somatosensory regions. 

Earlier studies of the cerebral cortex in both neonates and adults have shown that 

substantial lesions of the periphery leave large nonresponsive cortical areas (Merzenich et 

al. 1984b; Waite 1984; Wall and Cusick 1984). More recent studies in the cerebral cortex 

of adult monkeys have shown complete reorganization of the cortical areas (Garraghty and 

Kaas 1991a; Pons et al. 1991). In the cerebellum, even though the peripheral regions that 

were deafferented project to a large percentage of cms IIa (64%), we did not find any large 

nonresponsive location. 

3.5.2 Reorganization and cerebellar development 

Before discussing possible mechanisms of map reorganization, it is important to 

point out that the cerebellum was actually being formed during the period when peripheral 

lesions were made (Altman 1982; Mason 1987). Thus, the process of development of the 

cerebellar cortex itself potentially complicates the interpretation of our results. In fact, at 

the earliest lesion dates in our experiments (PND 1 to 4), the cerebellum is quite immature. 

Mossy fibers are not even recognizable in the granule cell layer until the end of the first 

postnatal week (Altman 1982; Mason 1987). Throughout the second and third postnatal 

weeks (PND 7 to 20), the cerebellum continues to form its internal circuitry with the bulk of 

the granule cells also being forrned during this period (Altman 1982; Mason 1987). It is 

only at the latest lesion dates (PND 30) that the cerebellum assumes anything like its adult 



form. Thus, as discussed below, it is entirely possible that different mechanisms or 

combinations of mechanisms are responsible for the reorganization seen with lesions at 

different times during this period. Nevertheless, we have shown that the general pattern of 

reorganization, at least with respect to the distribution of tactile receptive fields, is the same 

regardless of the date of the lesion. 

3.5.3 Mechanisms of reorganization 

The particular form of lesion-induced reorganization seen in somatosensory maps 

has often been used as a basis for speculation on the mechanisms of map reorganization 

(Kaas et al. 1983). In the somatosensory cortex, for example, such speculations have been 

heavily influenced by the fact that reorganization consists primarily of the expansion of 

representations centrally and peripherally adjacent to the area of denellration (Kaas et al. 

1983; Table 1, Wall and Cusick 1984; Merzenich 1987). However, the similarity in the 

organized somatotopy of SI and the structures that project to it (Ernrners 1965; Nord 1967; 

Waite 1978; Belford and Killackey 1979, 1980; Erzururnlu et al. 1980) makes the actual site 

of reorganization somewhat difficult to determine. For example, Merzenich (1987) has 

suggested, based on deafferentation studies in the primate somatosensory cortex, that 

reorganization is primarily intrinsic to the cortex (also the S2 study by Pons et al. 1988). 

However, others have interpreted the same data to suggest that restructuring of precortical 

somatosensory areas contributes to, or is entirely responsible for, the observed cortical 

changes (Kaas et al. 1983; for review see Killackey 1989). Kaas, in a recent review, 

strongly argues that it is both (1994). 

While the cerebellum also receives projections from brainstem and midbrain nuclei 

whose internal representation of the body surface is sornatotopic (for review see Welker 

1987), the granule cell layer itself has a fractured topography and the reorganization 

following peripheral lesions does not appear to be from normally adjacent representations. 

As discussed in the next sections, we believe that this fractured form of reorganization may 



provide a better opportunity for distinguishing between internal (i.e., within the cerebellum) 

and external mechanisms of reorganization. 

Intrinsic mechanisms 

One of the most obvious intrinsic cortical mechanisms to consider in attempting to 

account for somatosensory map reorganization is the physical sprouting of new connections 

from existing projections (Merrill and Wall 1978; Kaas et al. 1983), although several 

experimenters have argued that this is an unlikely mechanism for reorganization in the 

cerebral cortex (Merzenich et al. 1983ab, 1987; Merzenich 1987). In the cerebellum, 

physical sprouting is a possible mechanism only for animals older than PND 7 since 

afferent projections are not even present in earlier stages of cerebellar development (Altman 

1982). Even for these older animals, however, we would expect that if the denervated 

regions were simply being filled in by sprouting from adjacent intact representations, the 

more heavily represented lower lip, lower incisors, and contralateral perioral regions (as 

shown in the normal map, Bower and Kassel 1990) would have made a much larger 

contribution to the reorganized map. Instead, projections from the upper incisor, which is 

normally ~Animally represented in the f~ l ium (Figure 3.3) m d  whose re~resentztion is often 

not even adjacent to that of the upper lip in normal animals (Bower and Kassel 1990), 

predominately fills in for the missing upper lip representation. Accordingly, our 

observations make sprouting an unlikely explanation for reorganization at any stage of 

development. 

A second intrinsic mechanism of reorganization that has been proposed is the 

physiological unmasking of existing but previously suppressed or silent connections 

(Merrill and Wall 1978; Kaas et al. 1983; Devor 1987). This proposal is based on 

anatomical evidence that the horizontal extent of afferent projections to the somatosensory 

cortex exceeds the region in which physiological responses from particular afferents are 

normally recorded (Jensen and Killackey 1987). Unmasking, however, seems an unlikely 



explanation in the cerebellar cortex for several reasons. First, the dominance of the upper 

incisor in the reorganized maps would require that only the representation of this structure 

be more broadly distributed within the cerebellar cortex. This seems unlikely. Second, 

previous physiological experiments in crus IIa have suggested that the horizontal spread of 

trigeminal afferents is restricted only to the region of the granule cell layer that normally 

responds to those inputs (Woolston et al. 1981). In other words, trigeminal mossy fibers 

appear not to extend outside the tactile patch to which they project. It is important to note, 

however, that actual anatomical data on the distribution of mossy fibers with respect to 

patch boundaries are not yet available. 

Extrinsic influences 

In sum, it seems unlikely that intrinsic cerebellar mechanisms are primarily 

responsible for the patterns of map reorganization we have described. Accordingly, 

reorganization is more likely to be associated with changes in the afferent projections. The 

strongest experimental support for this interpretation comes from the results of our evoked 

potential recordings indicating developmentally-related changes in the temporal structure of 

grafi~le cell responses. These changes are differsntially expressed in the two components of 

the granule cell layer evoked potential. Presumably this reflects the differential 

modifiability of the pathways associated with these two responses, since a mechanism of 

reorganization intrinsic to the cerebellar cortex would be most likely to affect both field 

potential components equally. 

The main effect of the age of lesion on cerebellar evoked potentials is a gradual 

decrease in the areal extent of the cortex responding to peripheral stimulation at short- 

latency. The decrease begins with lesions made after the first postnatal week and intensifies 

through at least 30 days postnatal. This result demonstrates a developmentally-related loss 

of plasticity in one component of cerebellar reorganization. Based on the latency of the 

shortest granule cell layer response to peripheral stimulation, as well as the results of 



previous physiological experiments (Woolston et al. 1982), it is almost certain that the 

affected response is relayed from the periphery through the trigeminal nucleus. 

Our developmental results show that the long-latency evoked response to peripheral 

stimulation is much more resilient to peripheral lesions than the short-latency response. We 

demonstrated in Chapter 2 that the primary contribution to this long-latency component 

comes from a pathway involving the primary somatosensory cerebral cortex. It has also 

been shown that the somatosensory cortex normally projects to these regions of crus IIa in 

register with the short-latency direct trigeminal projections (Bower et al. 1981). 

Accordingly, it seems reasonable to suggest that the resiliency in long-latency responses 

may be directly related to the demonstrated ability of the somatosensory cortex andlor its 

related midbrain structures (i.e., the thalamus and pons) to reorganize throughout 

develop~nent (Merrill and Wall 1978; Kaas et al. 1983; Wall and Cusick 1984, 1986; 

Jenkins and Merzenich 1987; Merzenich 1987; Pons et al. 1987; Killackey 1989). 

3.5.4 Significance of the developmental sensitivity of the short-latency 
component 

An obvious question that arises from these evoked potential results is: Which 

component of the short-latency pathway is responsible for its relative lack of plasticity? 

There are several locations along this direct trigeminocerebellar pathway that could be 

responsible. First, the first-order projections from the periphery to the trigeminal nucleus 

could have a sensitive period for plastic change. Unfortunately, detailed physiological 

studies of map reorganization in the trigeminal system of the developing rat have not yet 

been undertaken. However, anatomical experiments with succinic dehydrogenase (SDH) 

have suggested that the sensitive period for map development in this nucleus ends on 

PND 3 (Belford and Killackey 1980). More recent anatomical experiments with SDH and 

horseradish peroxidase (HRP) are also consistent with an early end to trigeminal plasticity 

(Waite and de Permentier 1991). 



A second possible source of reorganization of the short-latency cerebellar response 

is the second-order projection from the trigeminal nucleus to the cerebellum. It is also not 

yet known when this part of the pathway completes its development under normal 

conditions. However, as mentioned previously, trigeminocerebellar afferents do not appear 

to be present in the cerebellum at the earliest lesion dates of the current experiment (Altman 

1982; Mason 1987). Accordingly, it might be expected that this projection completely 

reorganizes following lesions made at PND 1 and 4. 

By the beginning of the second postnatal week, mossy fibers appear to be present in 

the still undeveloped cerebellum (Altman 1982). However, from their first arrival until the 

end of the third postnatal week, these afferents terminate directly on Purkinje cells (Mason 

and Gregory 1984; Mason 1987). Since a similar mossy fiber to Purkinje cell connection 

has not been reported in the adult, this connection is assumed to be a developmentally- 

related phenomenon. The timing of these connections, between the second and third 

postnatal week, is the same time period in which we have found a gradual reduction in 

plasticity in the short-latency component of the cerebellar granule cell layer response. 

Accordingly, it seems quite reasonable to suggest that these transient connections may play 

a role in the establishment of the spatid organization of at least short-latency mossy fiber 

projection patterns. It is important to note, however, that the bulk of the rest of the 

cerebellar cortical circuitry is also forming during these early postnatal weeks. 

3.5.5 Significance of map reorganization for cerebellar function 

Studies of the somatosensory cortex have suggested that map reorganization 

effectively provides a sensory substitution for deafferented regions, i.e., that structural 

changes reflect functional changes (Jenkins and Merzenich 1987; Merzenich 1987; Pons et 

al. 1987). For example, Kaas et al. (1983) have shown that intact fingers adjacent to 

deafferented ones are heavily represented in the reorganized denervated regions of SI cortex 

in monkeys. Of course, in SI cortex, such structures are both peripherally and centrally 



adjacent. The functional significance of map organization is more strongly indicated by 

recent experiments in intact animal. These experiments have demonstrated that peripheral 

stimulation alone can alter reorganization within the SI map (Recanzone et al. 1990; Jenkins 

et al. 1990). 

In the cerebellum, the consistency of the upper incisor expansion into the denervated 

area leads us to suggest that this structure may be functionally substituting for the upper lip. 

Although the upper incisor representation is often not adjacent to that of the upper lip in 

crus Ila, the upper incisor is peripherally adjacent to the upper lip in the three-dimensional 

organization of the rat's perioral region. Thus, through physical contact with the upper lip, 

the upper incisor may be able to transmit information about contact with the upper lip to the 

cerebellum. In some animals, responses could be evoked in the new upper incisor patches 

upon stimulation of the denervated upper lip. The suggestion that this is a functional 

substitution is further supported by the fact that the pattern of the upper incisor 

representation, in deafferented animals, is similar to that of the upper lip in normal animals; 

both representations tend to consist of a large patch in the center of the folium, surrounded 

by smaller patches from other perioral structures. 

In addition to the changes in representation seen in the reorganized cerebellar maps, 

a striking feature of our results is the persistence of many of the previously reported 

invariant features of normal maps (Bower and Kassel 1990). Such features include 

fractured somatotopy; the fact that cms P[a continues to represent the same perioral body 

parts; and, as noted previously, the fact that the center of crus Ila still primarily consists of 

one large representation surrounded by adjacent smaller patches. 

The invariance of these features in the crus IIa maps of both deafferented and 

normal animals, and the likely functional substitution by the upper incisor, supports an 

earlier hypothesis that the detailed arrangement within tactile maps in the cerebellar cortex 

may be highly significant for their function (Bower and Kassel 1990). Specifically, it was 



suggested that those cerebellar regions, which receive somatosensory information following 

peripheral stimulation faster than the somatosensory cortex (Bower et al. 1981; Welker 

1987), are involved in controlling the use of perioral surfaces during sensory data 

acquisition (Bower and Kassel 1990). By monitoring the information obtained from 

sensory structures during sensory exploration and by using the motor system to subtly 

reposition sensory surfaces accordingly, cerebellar circuits might serve to substantially 

improve the quality of the sensory information obtained. This, in turn, is expected to greatly 

increase the efficiency of sensory processing by other brain regions (Paulin et al. 1989ab; 

Rasnow et al. 1989; Bower and Kassel 1990). 



Developmental Plasticity in Cerebellar 
Tactile Maps: Adults 

[...I but the Spirits inhabiting the cerebel pegonn 

unperceivedly and silently their Work of Nature without our 

Knowledge or Care. 

Thomas Willis 

Cerebri anatome, 168 1 

4.1 Abstract 

We have previously demonstrated that the fractured tactile cerebellar maps found in 

the cerebellar folium crus IIa reorganize following deafferentation of the upper lip area in 

neonatal animals (Chapter 3). Subsequently, we examined the capacity of these same 

cerebellar granule cell regions to reorganize following deafferentation of the upper lip in 

adults. TWO to three months after cauterization of the infraorbital branch of the trigeminal 

nerve in adult rats, tactile maps in the granule cell layer of cms IIa reorganized with 

representations of intact structures expanding into the denervated area. The pattern of 

reorganization was similar to that found previously in neonates in several ways: 1) all 

representations in the reorganized maps continued to be from perioral structures; 2) the 

denervated area was predominantly and consistently invaded by a representation of the 

upper incisor; and 3) the reorganized maps maintained a fractured somatotopy. We also 

observed several differences in the pattern of reorganization that were related to the age of 



the animal at deafferentation. For example, the older the rats at the time of nerve lesion, the 

more nonresponsive sites were found in crus IIa when mapped two months after the nerve 

lesion. In addition, and somewhat surprisingly, there was a greater similarity between the 

pattern of tactilely-evoked field potentials in the adults and animals lesioned at early 

postnatal days than for animals lesioned between 30 and 40 days postnatal. Finally, we 

explored possible mechanisms underlying crus IIa reorganization and found that the 

dominance of upper incisor in the reorganized maps was not due to imrnediate unmasking 

of silent projections or expansion of previously weak projections. 

Introduction 

This chapter is a continuation of a series of investigations concerning the ability of 

the tactile maps in the granule cell layer of the rat cerebellum to reorganize following lesion 

of peripheral nerves. We have previously demonstrated that the fractured somatotopic maps 

found in this region of the cerebellum do reorganize in a regular and repeatable fashion 

following peripheral nerve lesions in neonatal animals (Chapter 3). 

Over the last several years, numerous studies have examined the ability of 

somatosensory maps to reorganize following denervation in adults (somatosensory cortex: 

Merzenich et al. 1983ab, 1984a; Wall and Cusick 1984; Calford and Tweedale 1991; 

thalamus: Garraghty and Kaas 1991b; trigeminal nuclei: Waite 1984; for reviews see Snow 

and Wilson 1991; Kaas 1991, 1994). When compared to studies in the same structures 

following neonatal deafferentation, the spatial extent of adult reorganization is often more 

variable and restricted. For example, spinal cord or peripheral nerve transection caused 

extensive reorganization in cortical andlor subcortical areas in neonates, but limited changes 

in adult rats (Waite 1984; McKinley and Smith 1990). However, Wall and Cusick (1986) 

reported a more extensive reorganization of the hindpaw region of SI cortex following 

sciatic nerve section in adults compared to similar section in neonatal rats (Wall and Cusick 



1984). While some studies report complete cortical reactivation following injuries ranging 

from restricted peripheral nerve lesion to extensive deafferentation of an entire limb 

(Merzenich et al. 1983a; Garraghty and Kaas 1991a; Pons et al. 1991), others report that 

part of the denervated cortical area did not reorganize even several months after the 

amputation of two digits in adult monkeys (Merzenich et al. 1984a). Some studies even 

failed to detect any response in the deafferented cortex following dorsal column section in 

the rat (Jain et al. 1995). Cortical reorganization can occur within minutes (Calford and 

Tweedale 1991) and can progress for months (Cusick et al. 1990). 

In this chapter, we demonstrate that lesions of the infraorbital branch of the 

trigerninal nerve in adult rats result in a substantial reorganization of tactile maps in crus IIa 

of cerebellar cortex. We found extensive reorganization in the brain of adult rats two to 

three months after the nerve was cut. Moreover, the pattern of reorganization was in many 

ways similar to the pattern observed when this same nerve was sectioned in neonates. 

There were, however, several differences in map reorganization related to the age of the 

animal at deafferentation. The similarity in the overall structure of the maps further 

supports the idea that the fractured structure of these maps is important to cerebellar 

function. To explore possible intrinsic mechanisms for cerebella reorganization, we 

mapped cerebellar granule cell layer receptive fields before and immediately after lesions, 

and carefully examined the distribution of weak (subdominant) inputs in normal animals. 

Our results show that the large expansion of the upper incisor into the denervated area of the 

cerebellum, observed two months after deafferentation, is not a consequence of immediate 

unmasking of previously weak, or suppressed upper incisor inputs to the region. This, 

combined with the different effect of deafferentation on the two peaks of the granule cell 

layer field potentials, suggests that the principal site of cerebellar plasticity following 

deafferentation is not in the cerebellum itself, but rather in its afferent pathways. 



Methods 

4.3.1 Animals used 

A total of 35 Sprague-Dawley albino rats were used: 15 adult control animals (3 of 

which were used in the studies of cerebellar map organization before and immediately after 

lesion) and 20 experimental animals. The infraorbital branch of the trigeminal nerve of the 

experimental animals was lesioned at different times after birth, including postnatal day 30 

(PND 30, n = 8); PND 40 (3); PND 77 (3); PND 80 (2); PND 85 (3); and PND 89 (1). 

Since not all experiments were undertaken with each animal, the number of animals used 

for any given experiment are presented in the results and figure legends. 

4.3.2 Deafferentation 

The infraorbital branch of the maxillary division of the trigeminal nerve on the left 

side of the face was cauterized in one to three month old rats. Transection of that branch of 

the trigerninal nerve removes all sensation from the upper lip, vibrissae, furry buccal pad, 

and anterior sinus hair on the left side of the face but does not cause any motor deficit. 

Nerve cauterization was performed on rats anaesthetized with chloral hydrate (420 mglkg 

body weight). An incision was made between the occipital bone ridge and the caudal edge 

of the vibrissae pad, and the wound bathed in 2% lidocaine HCI. The infraorbital branch 

was then exposed by teasing away surrounding muscle. A cautery unit (Sybron) was used 

to interrupt the nerve for several millimeters. Care was taken to cauterize all of the multiple 

branches of the nerve. As an additional precaution against nerve regeneration, bone wax 

was inserted under the occipital bone ridge in the nerve's previous location. Following 

another application of the local anaesthetic, 2% lidocaine HCl, the wound was closed with 

silk sutures. The animals were monitored for several hours until they had appeared to 



recover completely from the anaesthesia. They were subsequently returned to the animal 

care facility. 

4.3.3 Cerebellar craniotomy and electrophysiological procedures 

Surgical and tactile mapping procedures were identical to those described in 

section 3.3. 

4.3.4 Receptive field mapping immediately following lesion 

For three of the normal animals, the central region of crus IIa was mapped in detail 

as described in section 3.3.3, then immediately mapped again following nerve section. 

After crus IIa had been completely mapped, the infraorbital branch of the trigerninal nerve 

was cauterized as described in section 4.3.2. Electrode penetrations following 

deafferentation were positioned in the same location as the original map, with the aid of the 

original coordinates and the location of the original penetrations relative to the surface 

vasculature on the photograph. 

4.3.5 Map construction 

As in previous experiments (Welker 1987), and as described in section 3.3.3, maps 

of tactile cerebellar regions were constructed by drawing enclosing boundaries around 

adjacent electrode penetration locations whose strongest receptive fields were from the 

same body structure. In cases where responses were of equal strength, the boundary line 

was drawn through the site of the electrode penetration. 
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Figure 4.1 Maps of the tactile receptive fields within crus IIa in three 
different normal animals. A: Dominant receptive fields: the face areas that 
elicited the strongest response in the granule cell layer following tactile 
stimulation, are shown. B: Subdominant receptive fields: other face areas 
often elicit weaker responses in the granule cell layer upon stimulation. The 
strongest of the subdominant receptive fields are shown in B. For this and 
subsequent map figures: Filled dots represent the location of the electrode 
penetrations; crosses, electrode locations where no subdominant receptive 
field could be detected. Dotted lines around a patch indicate projections 
from contralateral structures; dashed lines, bilateral; and solid lines, 
ipsilateral. Shaded areas indicate cerebellar locations that did not respond to 
any tactile stimulation (nonresponsive). Ash: anterior sinus hair; Fbp: furry 
buccal pad; Li: lower incisor; LL: lower lip; N: nose; Ui: upper incisor; UL: 
upper lip; V: vibrissae. 

4.3.6 Statistical analysis of tactile responses 

Statistical two-sample comparisons of perioral representations between different 

experi~nental groups were conducted with a Mann-Whitney U test. Multiple comparisons 

of receptive fields within maps were conducted with a one-way repeated measures ANOVA 

followed by a Scheff6 F test. The significance level was set at 00,05. All measures of 

variability described here are standard errors, SE. 

4.4 Results 

4.4.1 Tactile organization in normal adult cerebellum 

A number of previous reports have described in detail the pattern of perioral 

representations found in crus IIa of the adult rat (Shambes et al. 1978b; Welker 1987; 

Bower and Kassel 1990). As shown in Figure 4.1A, the upper lip perioral structures 

innervated by the infraorbital branch of the trigeminal nerve (i.e., the ventral upper lip, 



anterior sinus hair, furry buccal pad, and vibrissae) constitute the largest total representation 

in the crown of this folium. This is quantified in Figure 4.2 where the average percentage 

representation of each body structure projecting to crus IIa for 15 animals is shown by the 

black bars. Note that on average all non upper lip perioral structures are represented in 

approximately equal proportion in normal adult animals (no significant difference for all 

pair-wise comparisons, as judged by a Scheffd test). 

Subdominant receptive fields 

Maps, such as those in Figure 4.1A, are routinely constructed with the perioral 

structures eliciting the strongest response (Shambes et al. 1978b; Welker 1987; Bower and 

Kassel 1990). In addition to these "dominant" responses, weaker, "subdominant" responses 

to stimulation of other perioral structures can often be elicited. The maps in Figure 4.1B 

show the spatial distribution of penetrations that had receptive fields associated with weaker 

responses in the granule cell layer. These responses are typically much less robust than the 

dominant receptive fields and, accordingly, are more difficult to map. Such multiple 

representations generally have differing strengths of response, which can be due to a 

number of factors, imluding differences in the total extent of the input, the width of the 

axons, the extent of arborization, etc.; further experiments will be necessary to determine 

what significance, if any, such weak inputs might have for the physiology of crus IIa granule 

cells. Figure 4.2 compares the mean percentage of the subdominant receptive fields from 

different perioral regions in normal animals. The data were derived by counting the total 

number of times a given perioral structure was detected as a subdominant receptive field for 

each animal and subsequently normalizing this number as a percentage of the total number 

of subdominant receptive fields for that animal. As this figure demonstrates, the ipsilateral 

upper lip and its related structures (i.e., furry buccal pad, vibrissae, and anterior sinus hair) 

tended to be the most common subdominant receptive field type, just as it is the most 
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Figure 4.2 Comparison of the proportion of different perioral structures 
comprising the crus lIa maps in normal animals. Each bar represents the 
mean r.t: SE of the total responses elicited by tactile stimulation of a given 
perioral structure. The dominant responses are shown as black bars (n = 15); 
strongest subdominant, as stippled bars (n = 6); and all of the subdominant 
responses, as white bars (n = 6). Abbreviations for this and subsequent 
histograms: IUL: ipsilateral upper lip and related ipsilateral structures 
(vibrissae, furry buccal pad, and anterior sinus hair); UI: upper incisor; CUL: 
contralateral upper lip and related contralateral structures (vibrissae, furry 
buccal pad, and anterior sinus hair); LL: lower lip; LI: lower incisor; N: 
nose; NR: nonresponsive. 



common dominant receptive field type. Of the non upper lip structures, all were 

represented in roughly equal proportion, with the exception of the nose. 

On average, 71% of all responsive penetrations had subdominant receptive fields. 

Of the penetrations with infraorbital-related dominant receptive fields (i.e., upper lip, 

vibrissae, furry buccal pad, anterior sinus hair), 52% had noninfraorbital-related 

subdominant receptive fields. To determine whether some of these subdominant responses 

could be due to passive electrical spread of granule cell layer activity, we determined how 

many of the penetrations with subdominant receptive fields were immediately adjacent to a 

dominant receptive field of the same type. Only the middle mediolateral column of 

electrode penetrations was used for this analysis in order to ensure that all points had 

equivalent adjacent penetrations. The results show that 44% of the locations with 

subdominant receptive fields were adjacent to locations with dominant receptive fields of 

the same type. Thus, the majority of the subdominant responses (56%) appear to represent 

actual weak afferent projections. 

These subdominant representations, like the dominant, are topographically 

organized in patches in crus Ila (Figure 4.1). Figure 4.10A compares the "patchiness" of the 

cerebellar representation for dominant and subdominant responses. Oniy 9% of fhe 

cerebellar sites with dominant responses comprise one electrode penetration, while the 

majority (81%) comprise three or more adjacent electrode penetrations with common 

receptive field. In contrast, 32% of the cerebellar sites with subdominant responses 

comprise one electrode location, 19% comprise two adjacent electrode locations, and 49% 

comprise three or more. Bearing in mind that these weak receptive fields are difficult to 

map, these results indicate that subdominant representations are organized in an even finer 

fractured pattern than those of the dominant, larger amplitude tactile projections to crus Ea. 
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Figure 4.3 Organization of the tactile inputs to the granule cell layers of 
cms IIa for five different rats. A: Tactile map is shown for a normal adult 
animal. The infraorbital branch of the trigeminal nerve was cut in four 
animals and the reorganization of tactile inputs mapped two to three months 
later. The reorganized maps are shown for animals that had their nerve cut 
at B: PND 30, C: PND 40, D: PND 77, and E: PND 85. 



4.4.2 Tactile reorganization two months after deafferentation 

Figure 4.3 shows the pattern of tactile inputs to c ~ u s  Ha two months after the 

infraorbital branch of the trigeminal nerve was lesioned at different postnatal ages (1 to 3 

month old animals). This figure shows that extensive reorganization was found in all 

animals lesioned, regardless of the age at deafferentation. Although there is clear variability 

between the individual reorganized maps, close examination reveals some striking 

similarities. In the following sections we describe the pattern of adult reorganization and 

contrast it with previous data on the reorganization of neonates. 

Patchy organization of reorganized maps 

It is clear from a comparison of the maps shown in Figure 4.3 that different body 

surfaces are represented in "patches" within cms IIa of normal animals (A) as well as after 

peripheral lesions (B-E). Further, the general size and distribution of the patches are 

similar between normal and lesioned maps. Maps found after neonatal lesions were also 

generally similar in their patchy structure (Figures 3.2 and 3.7). 

Change in representation of perioral surfaces 

In each animal mapped, the body surfaces whose representations invaded the 

denervated region were all perioral regions that are also represented in the crus IIa of normal 

animals (Figure 4.3). The upper incisor was the predominant structure represented in 

lesioned animals, covering 44% of the reorganized map. In normal animals, however, the 

upper incisor was the dominant receptive field in only 5% of the penetrations. As shown in 

Figure 4.4, in addition to the significant increase in upper incisor (P = 0.0001, as judged by 

a Mann-Whitney U test), there was also a significant increase in the representation of the 

lower lip (from 6.5% to 2096, P = 0.0001). The contralateral upper lip, lower incisor, and 

nose representation did not increase significantly. The proportion of the various face areas 



that invaded the denervated area did not vary significantly whether the nerve was cut 30,40, 

or more than 70 days after birth (Table 4.1). 
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Figure 4.4 Comparison of the percentage of representation for various 
perioral structures in tactile maps of normal animals (black bars, n = 15) and 
of lesioned animals (white bars, n = 20). The data from animals lesioned at 
PND 30 to PND 90 were pooled as there was no significant difference in the 
body surface representations for these animals (see Table 4.1). Each bar 
represents the mean + SE of total recording sites responding to stimulation 
of a given face area. The upper incisor and lower lip representations were 
significantly larger in lesioned animals. Asterisks indicate significant 
differences in the percentage of representation of a particular face area 
between normal and deafferented animals (as judged by a Mann-Whitney U 
test, P < 0.01). 



When Figure 4.4 is compared with Figure 3.3, it can be seen that the proportion of 

representation for various face surfaces in animals lesioned as adults is very similar to that 

found in neonatally lesioned animals. In both cases, the largest representation post-lesion is 

the upper incisor. Neonatally lesioned animals, however, showed a larger expansion of the 

contralateral upper lip than animals lesioned as adults. 

Percent of total recording sites 

Deafferented developmental stage 

Receptive Normal PND 30 PND 40 > PND 75 
field type (n = 15) (n = 8) (n = 3) (n = 9) 

IUL, 69.28 t 3.53 0.32 rt 0.32 0 0.17 rt 0.17 
UI 5.28 t 1.98 44.18 t 3.10 44.94 + 1.89 42.76 t 3.95 

CUL 8.03 + 3.48 18.54 t 4.26 7.98 2 2.51 13.43 t 3.59 
LL 6.54 + 1.49 16.13 rt 2.69 27.43 t 4.86 21.86 + 2.72 
LI 8.50 t 1.74 11.37 + 3.45 13.85 + 5.36 13.77 + 2.40 
N 0.77 t 0.49 1.26 + 0.53 4.72 ~t: 2.40 0.18 2 0.18 

NR 1.60 rt 0.87 8.20 + 2.92 1.08 + 1.08 7.83 rt 2.42 

Table 4.1 Comparison of map organization between normal rats and rats 
with peripherai lesions performed on different postcatal days. Numbers 
reflect the mean percent k SE of the total recording sites for a given 
receptive field type. Abbreviations as in Figure 4.2. 

Increase in the number of nonresponsive sites 

In most animals deafferented as adults, no response to peripheral tactile stimulation 

of any face area could be elicited at some electrode penetrations. Figure 4.3 indicates the 

locations within each reorganized map that were nonresponsive to tactile stimulation of the 

body surface. Such nonresponsive penetrations only represented 2% of the total 



penetrations in normal animals. The number of nonresponsive penetrations significantly 

increased to 8% when the nerve was cut in adult animals (P < 0.05). 

Figure 4.5 compares the number of nonresponsive recordings for all animals 

lesioned from PND 1 through PND 89. There is an age-of-lesion related increase in the 

number of nonresponsive recording sites. While the variability from animal to animal at a 

given age is quite high, a regression line drawn through the lesioned animals is significant 

(R2 = 0.14, P = 0.03). 
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Figure 4.5 Percentage of nonresponsive electrode penetrations as a function 
of the age at the time of the nerve lesion. Each point displays data from a 
single animal (open triangles: normal animals; filled dots: lesioned animals) 
and represents the percentage of the 60 electrode penetrations for which no 
response could be elicited by tactile stimulation. Solid line denotes 
regression line (R2 = 0.14). The regression is significant as judged by an 
ANOVA (P = 0.03). 



Variation and distribution offield potentials lacking the short-latency component 

In our previous studies of neonatal animals, we found that tactilely-evoked field 

potentials recorded in lesioned animals can sometimes differ from those found in intact 

animals (Figure 3.5). In particular, peripheral tactile stimulations in lesioned animals 

sometimes did not evoke the two-peaked field potential responses characteristic of normal 

animals (Chapter 2). Instead, in some cases, the field potentials consisted of only the 

second waveform, or long-latency component (Chapter 3). Figure 4.6 shows maps from 

four different animals lesioned at PND 30 with the locations of such altered field potentials 

indicated by stars. Note that there appears to be no systematic spatial distribution of the 

field potential responses with only the second waveform. Those field potentials lacking the 

first peak, or short-latency component, of the response to tactile stimulation were found for 

every receptive field type, roughly in proportion to the percentage of representation found 

within the folium (Table 4.2). 

Percent of total recording sites 

Sites with 2nd 
Receptive All recording sites 

waveform only 
field type (I: = 17) 

(n = 17) 

IUL 0 0.28 t 0.20 
UI 42.25 rt 9.1 1 46.78 t 1.74 

CUL 29.84 t 9.83 16.51 t 2.94 
LL 18.48 t 6.76 19.73 t 2.07 
LI 3.51 t 3.20 15.03 rt 2.21 
N 5.92 rt 3.63 1.67 + 0.60 

Table 4.2 Comparison of receptive field type for all responsive recording 
sites and responsive sites with only the long-latency component of the 
tactilely-evoked field potentials. Numbers reflect the mean percent k SE of 
the total recording sites for a given receptive field type. The PND 30 to 
PND 90 animals were pooled together (n = 17). Abbreviations as in 
Figure 4.2. 



Figure 4.6 Tactile maps from four different animals that had the infraorbital 
nerve cut 30 days after birth (PND 30). Each map shows the location and 
distribution of two different types of field potentials seen in deafferented 
animals following tactile stimulation of the face area corresponding to the 
receptive field. Solid dots represent field potentials similar to those seen in 
normal animals, with both a short-latency and a long-latency component 
(Figure 2.2D). Stars denote electrode penetrations for which the field 
potentials contained only the long-latency component. Open circles show 
sites where the field potentials were either not recorded or were not 
analyzable. 



NORMAL AGE AT LESION (days poslnaial) 

Figure 4.7 Percentage of the 60 electrode penetrations for which the field 
potentials elicited by tactile stimulation contained only the long-latency 
component is plotted as a function of the age at the time of the nerve lesion. 
Each point displays data from a singie animal (open triangles: normal 
animals; filled dots: lesioned animals). 

As shown in Figure 4.7 and first discussed in Chapter 3, we found a gradual increase 

in the number of recording sites with field potentials consisting of only the long-latency 

component with lesions made from PND 1 to PND 30. The trend in this data made it 

reasonable to expect that there should be a large percentage of long-latency only responses 

in adults as well. Surprisingly, as shown in Figure 4.7, this was not the case. Instead, there 

was a significant drop in the percentage of recording sites with field potentials lacking the 

first waveform, or short-latency component, from 16.57 f 2.92% for PND 30 and PND 40 

(n = 11) to 5.74 + 1.24% for PND 77 to PND 89 (n = 6). The significance was judged by a 



Mann-Whtney U test (P = 0.02). Animals lesioned 30 and 40 days after birth show 

considerable variability in the percentage of penetrations with field potentials lacking the 

short-latency component (Figures 4.6 and 4.7). In contrast, the reorganized maps following 

adult lesions show less variability and more closely resemble animals with lesions made 

early in postnatal development. This suggests that PND 30-40 animals are significantly 

different in this aspect of lesion-related reorganization. 

4.4.3 Tactile reorganization immediately following deafferentation 

To determine whether the pattern of reorganization observed two months after the 

nerve section could be due to an immediate enhancement of weak or previously silent 

inputs to crus IIa, we recorded responses before and immediately following deafferentation 

of the ipsilateral infraorbital branch of the trigeminal nerve. Figure 4.8 A and B shows the 

tactile maps obtained in crus IIa prior to deafferentation. The maps in A were constructed 

from the dominant receptive fields (i.e., the perioral structures eliciting the strongest 

response). The maps in B represent the strongest subdominant responses that were elicited 

by stimulation of a facial area not innervated by the ipsilateral infraorbital branch of the 

trigeminal nerve (i.e., lower lip, lower incisor, gpper i~cisor, nose, and contralateral 

structures). The thick black line indicates the area norrnally innervated by the infraorbital 

branch of the trigeminal nerve, as suggested by the fact that the dominant neural response 

occurred upon stimulation of the upper lip and its related structures in the intact animal. 

Shaded areas indicate the regions of crus IIa for which no response could be elicited 

immediately following deafferentation. 

Immediately after deafferentation, on average, 36% of the receptive fields withn the 

denervated area were nonresponsive (n = 3). There was, however, considerable variability 

among animals (Figure 4.8C). Within the denervated area, 24% of the receptive fields had 

been previously detected at their penetration sites as either codominant or subdominant 
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Figure 4.8 Tactile maps in intact animals and immediately following 
deafferentation. For each of the two animals shown, crus IIa was mapped at 
60 recording sites, then the nerve was lesioned and crus IIa was immediately 
mapped at the same 60 sites in the same animal. Thick black line denotes 
the area of crus IIa responsive to ipsilateral upper lip and upper lip-related 
structures (V, Ash, and Fbp); thus, this area presumably gets input from the 
infraorbital nerve in intact animals. A: Maps of the dominant receptive 
fields. B: Maps of the strongest subdominant receptive fields that are not 
ipsilateral upper lip or upper lip-related structures. C: Maps of the dominant 
receptive fields imrnediately after the infraorbital branch of the trigeminal 
nerve was sectioned. Abbreviations and meaning of symbols as in 
Figure 4.1. 

receptive fields, while 40% were considered "new," i.e., representations that had not been 

previously detected at their penetration sites prior to deafferentation. Outside of the 

denervated area, 24% of the responsive penetrations were also new, suggesting that some of 

these new responses might be due to such factors as slight differences in electrode locations 

during remapping; the difficulty inherent in mapping these very weak subdominant 

receptive fields; or, possibly, the influence of the upper lip on the normal physiological 

response of other receptive fields. 

To determine whether the new representations within the denervated area result 

from unmasking of previously silent receptive fields or if they could originate from 

surrounding receptive fields, the receptive fields adjacent to new representations were 

examined. Of the 21 new responses out of 38 observed responses (not counting 

nonresponsive sites) in the middle row within the denervated area from all three animals, 

86% (18 of 21) can be explained by adjacency to subdominant or codominant receptive 

fields. Thus, only 8% (3 of 38) of the observed responses in the middle row within the 

denervated area appeared to arise via immediate unmasking of previously silent 

representations (which were not detected previously as codominant or subdominant). 



Irrespective of the origin of the observed responses immediately following 

deafferentation, the upper incisor representation did not occur with any greater frequency 

than any other perioral region. Comparisons between receptive fields of the entire map 

recorded immediately after deafferentation indicate similar frequency distributions; all non 

upper lip perioral structures were represented in roughly equal proportion, with the 

exception of the nose (Figure 4.9, hatched bars). The mean frequency of representation 

among these perioral structures was not significantly different, as judged by a Scheffd test. 

Comparison with subdominant representation of body parts 

The subdominant projections described in section 4.4.1 would be prime candidates 

for an unmasking mechanism in cerebellar map reorganization. As shown in Figure 4.2, 

however, the upper incisor was not more heavily represented in these weak responses than 

the other regions of the face that project to crus IIa. A Scheffd test showed that the upper 

incisor subdominant representation did not differ significantly from that of the other perioral 

structures. 

Comparison with recovered cerebellar representation of body parts 

The pattern of tactile reorganization in crus IIa immediately following 

deafferentation does not predict the pattern found two to three months later, as shown in the 

summary histogram in Figure 4.9. Immediately following deafferentation, the intact 

perioral structures were represented in equal proportion and a large portion of crus IIa was 

nonresponsive (hatched bars). In contrast, two months later, the upper incisor 

representation predominated, extending to 43% of the map (white bars) and few 

penetrations were nonresponsive (8% compared to 31% immediately after). The mean 

frequency of representation of the upper incisor two months after deafferentation differed 

significantly from all of the other receptive field types, as judged by a Scheff6 test 

(P < 0.05). The nose also differed significantly from all other representation. 
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Figure 4.9 Comparison of the map organization in normal adult rats, 
PND77 to PND 89 animals, and adult animals that were mapped 
immediately following lesion. The PND 77 to PND 89 animals were 
mapped two to three months after the nerve was cut. Each bar represents the 
mean + SE of the percentage of total electrode penetrations that responded 
most strongly to each particular face area. Normal animals are shown as 
black bars (n = 15), animals that recovered for several weeks following the 
lesion are shown as white bars (n = 9), and adult animals that were mapped 
immediately after the nerve was cut are shown as hatched bar (n = 3). 
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Figure 4.10 Patch size was examined in normal (A) and lesioned (B) 
animals. This was done by counting (i) the number of responsive 
penetrations with no adjacent penetrations of the same receptive field type 
(patch consisting of a single electrode penetration), (ii) the number of 
responsive penetrations in patches consisting of only two electrode 
penetrations, and (iii) the number of responsive penetrations forming patches 
with three or more electrode penetrations. Each bar represents the 
mean + SE of total responsive penetrations for a given patch size (as 
measured by the number of equally spaced electrode penetrations, 100 Fm 
apart). A: For normal animals (n = 6), the dominant receptive fields are 
shown as black bars and the subdominant receptive fields, as stippled bars. 
B: For lesioned animals, the hatched bars represent the animals mapped 
immediately after the nerve was cut (n = 3); the white bars represent the 
PND 77 to PND 89 animals that recovered for 2 to 3 months before crus Ha 
was mapped (n = 9). 

Comparison of the two different experimental groups showed that the two-fold 

increase in upper incisor representation between animals examined immediately following 

lesion and those several months later was significant, as judged by a Mann-Whitney U test 

(P = 0.006). There was no significant change in areal extent of the other perioral structures 

between the two experimental groups. 

Patch size varied between the two experimental groups (Figure 4.10B). A greater 

diversity of patch size was observed in the rats examined immediately after deafferentation: 

62% of the cerebellar sites formed patches comprising three or more adjacent electrode 

penetrations with common receptive field, 20%, two adjacent penetrations, and 18%, a 

single penetration. The patch size immediately after lesion showed some similarity to the 

feature size of the subdominant representation in intact animals (compare the hatched bars 

in Figure 4.10B with the stippled bars in Figure 4.10A). In contrast, the pattern of patches 

in rats examined two months later more closely resembled the feature size of the dominant 

receptive field maps of normal animals-that of a large patch surrounded by smaller 



patches (compare white bars in Figure 4.10B with the black bars in Figure 4.10A). Only 

8% and 7% of the sites formed patches comprising one and two electrode penetrations, 

respectively, while the majority, 85%, of the responses comprised three or more electrode 

penetrations. 

When considering all the data together, we conclude that: 1) there appears to be 

little immediate unmasking of silent upper incisor projections; and, most importantly, 

2) neither the immediate unmasking of silent projections nor the expansion of previously 

weak projections can be responsible for the dominance of the upper incisor in the 

reorganized cerebellar maps. 

Discussion 

4.5.1 Comparison with reorganization in neonatally lesioned animals 

Studies of the cortical capacity for reorganization following lesion have reported an 

increase (Waite 1984; McKinley and Smith 1990), decrease (Wall and Cusick 1986), or no 

difference (Kelahan et al. 1981) in the reactivation of cortex of younger animals when 

compared with that of adults. Our results demonstrate that the adult cerebellum consistently 

reorganized following peripheral injury. In fact, the extent and pattern of the reorganization 

were extremely similar to what we reported for neonates (Chapter 3), although the adult 

cms IIa showed a small but significant increase in the number of nonresponsive sites. 

The reorganized maps following adult deafferentation, just as those of animals 

lesioned neonatally, maintained several features of the normal maps. First, reorganized 

maps showed a mosaic of patches receiving projection from disjunctive body locations. 

Second, the reorganized maps tended to have a large patch in the middle of the folium 

surrounded by smaller patches, as in the normal animals. Finally, the medial border above 



which contralateral structures are often represented in intact animals (Figure 3.2, also see 

Bower and Kassel 1990) was maintained in deafferented animals. 

4.5.2 Comparison with reorganization of other somatosensory structures 
in adult animals 

Lesions of the infraorbital branch of the trigerninal nerve denervated approximately 

70% of the crown of crus Ha. Two months after lesion of this nerve in adult rats, we found 

that the cerebellar tactile maps had reorganized and that only 8% of the recording sites did 

not respond to tactile stimulation. Thus, we found only a slight limitation to the extent of 

reorganization following adult lesion. 

The extent of reorganization in the somatosensory cortex following injury also 

appears to have limitations and seems dependent in a complex way on the overdl extent of 

the lesion and the time between the lesion and remapping. In the somatosensory cortex of 

adult monkeys, for example, amputation of a single digit causes the representation of the 

adjacent intact digits to completely fill in the denervated cortical area. If two digits are lost, 

however, the surrounding skin surface does not fully reactivate the denervated cortex even 

several months later (Merzenich et al. 1984a). In contrast, removal of inputs to the entire 

glabrous hand, which deprives a larger cortical area, leads to a complete reactivation of the 

denervated area by the dorsal hand (Garraghty and Kaas 1991a). At the same time, Jain et 

al. (1995) reported that inactivation of hindlimb cortex by dorsal column section in rats 

results in no cortical reorganization while a striking large-scale reorganization has been 

demonstrated by Pons et al. (1991) who showed that several years after complete 

deafferentation of the upper limb in monkeys, the denervated cortex is completely 

reactivated by inputs from the face. 

When cortical reorganization does occur, it appears that the intact structures that are 

represented adjacent to the denervated cortical area will expand to fill in some or all of the 

denervated area. Subcortical reorganization is consistent with this description (Garraghty 



and Kaas 1991b). Recall that in somatotopic maps, body surfaces that are adjacent in the 

map are also adjacent on the body surface except in a few cases, such as the upper limb - 

face boundary in SI of the monkey. This is not the case in the cerebellum. The tactile 

cerebellar maps display a mosaic of patches generally representing nonadjacent skin 

surfaces. Our results showed that, in crus IIa, the upper incisor representation, which is not 

necessarily adjacent to the upper lip area, reactivated most of the denervated upper lip area. 

Thus, cms IIa reorganization, in contrast to reorganization in other cortical and subcortical 

maps, does not appear to arise by the filling in of adjacent structures. 

4.5.3 Significance of the field potentials results 

Tactilely-evoked field potentials recorded in the granule cell layer of the cerebellum 

in normal animals usually consist of two peaks: one occurs approximately 8 msec, the other, 

about 18 msec after the onset of the peripheral stimulation (Chapter 2). The first peak, or 

short-latency component, reflects the direct trigeminal input to crus IIa (Watson and Switzer 

1978; Woolston et al. 1981). We have demonstrated that the second peak, or long-latency 

component, is primarily due to indirect input through the somatosensory cortex (Chapter 2). 

Thus, studying the temporal structure of the field potentials in the granule cell layer of ems 

IIa allows us to discern the influence of these two input pathways. We have shown that the 

two components of the cerebellar granule cell layer field potential are affected differently by 

peripheral injury at different postnatal days. There was a developmentally-related gradual 

increase in the number of sites lacking the short-latency component for animals whose 

upper lips were deafferented at different age, from birth to around 30 to 40 days old. 

Animals deafferented when 3 months old were more likely to lack the first component than 

were normal animals, but surprisingly, had significantly less sites lacking the first 

component than animals lesioned at PND 30 and PND 40. 

A possible explanation for this result is that the differences in PND 30-40 lesions 

and those of adults reflect the relative ability of the trigeminal and SI cortex to reorganize 



following peripheral lesions at different ages. We have previously interpreted the increase 

in responses lacking the first component in PND 1 to PND 30 animals as suggesting that the 

trigerninal nuclei become less plastic earlier in development than the somatosensory cortex 

(Chapter 3). The increased number of nonresponsive locations in animals lesioned as adults 

could be interpreted as suggesting that both SI and the trigerninal nuclei were less plastic in 

adults than at earlier ages. Thus, the possibility exists that locations with only the second 

waveform in PND 30-40 animals would, in the adult, become nonresponsive locations. 

To test this idea, we have taken advantage of the substantial variability in the 

number of field potential responses with only the long-latency component found in 

PND 30-40 animals. If the explanation we suggested were correct, one would expect that 

the PND 30-40 animals with fewer second waveform only responses would have more 

nonresponsive locations. This turns out not to be the case; there is no significant difference 

in the number of nonresponsive locations between the PND 30-40 animals with a large 

number of field potentials lacking the short-latency component and those with few or none 

(significance judged by a Mann-Whitney U test, P = 0.2). Thus, our data suggest that 

reorganization in PND 30-40 animals is different than in either adults or neonates. Further, 

the variability in the PND 30-40 data caB not be explained by suggesting that some 

PND 30-40 animals respond as adults while others have an extended neonatal 

reorganization pattern. Instead, we must conclude that ongoing development in the 

somatosensory system interacts in complex ways with lesions made at different 

developmental stages. 

4.5.4 Mechanisms for map reorganization 

One proposed explanation for cortical reorganization is the "unmasking" of 

previously ineffective connections and synapses. Ths  hypothesis is supported, indirectly, 

by the report that thalamocortical arbors are larger than the physiological borders of the 

cortical neuron's receptive field and overlap each other (Landry and Deschenes 1981; 



Garraghty and Sur 1990). It is also supported by the recent electrophysiological evidence of 

nondominant inputs from the dorsum hand in the SI glabrous hand surface representation of 

normal monkeys (Schroeder et al. 1995). Following deafferentation of the glabrous hand, 

the large region of cortex formerly representing that part of the hand becomes responsive to 

peripheral stimulation of the dorsum hand (Garraghty and Kaas 1991a). 

The upper incisor expansion we observed in the cerebellum does not appear to be 

the result of immediate unmasking. Although the anatomical spread of individual mossy 

fibers in crus IIa has not been determined, previous physiological studies suggest that the 

horizontal spread of trigeminal afferents is limited to the regions (patches) of the granule 

cell layer that normally respond to those inputs (Woolston et al. 1981). In addition, analysis 

of the subdominant receptive fields showed that all non upper lip perioral structures were 

represented equally (Figure 4.2). Within the six to ten hours of recording following lesion, 

we did not observe any preponderant increase in the upper incisor representation. However, 

reactivation in the cerebral cortex, at least, can occur immediately (Calford and Tweedale 

1988, 1991; Byrne and Calford 1991; Schmid et al. 1995). Within minutes of digit 

denervation in the rat, neighboring intact inputs expand in the deafferented hindpaw area of 

SI (Syrne and Cdferd 1391). Re~rganization can dso progress over weeks to months 

(Merzenich et al. 1983b; Cusick et al. 1990). These authors concluded that recovered 

reorganization appears to be determined by or related to the general topography of the 

immediately unmasked inputs which initially "seed" a large cortical sector. Elsewhere in 

the somatosensory system, indications of unmasking are less clear. Immediate unmasking 

has been found in the dorsal root ganglion (Metzler and Marks 1979), but not in the 

trigeminal brainstem complex (Waite 1984). Studies have reported no immediate change in 

the thalamus (Wall and Egger 1971; Rhoades et al. 1987); however, Nakahama et al. (1966) 

did encounter some unmasking there. Unlike reorganization in the somatosensory cortex, 

the topography that we observed in the cerebellum two months after nerve lesion can not be 



explained by immediate unmasking (see Figure 4.9). Neither the pattern' of subdominant 

receptive fields in normal animals, nor the pattern of reorganization immediately following 

nerve section predicted the pattern observed two to three months after nerve lesion. 

Another proposed mechanism for cortical reorganization, especially for large-scale 

reorganization, is axonal sprouting and formation of new connections. New growth after 

fetal transection of the infraorbital nerve has been detected in parts of the rat trigerninal 

complex (Rhoades et al. 1989). Sprouting after peripheral injury in the adult has been 

harder to demonstrate but was detected in the spinal cord and visual cortex (Florence et al. 

1993; Darian-Smith and Gilbert 1994). Sprouting, however, is an unlikely mechanism to 

explain the pattern of reorganization in the cerebellum following deafferentation of the 

upper lip. If sprouting were to occur, one would expect the other represented adjacent 

structures in crus Ila, such as the lower lip, lower incisor, and contralateral upper lip to 

make as large, or even larger, contribution to the reorganized map than the upper incisor. 

Given the evidence from other neural maps, if reorganization were occurring within 

the fractured cerebellar map, we would expect the deafferented patches to be invaded by 

afferents from neighboring adjacent patches. However, the upper incisor is not most 

commonly adjacent to the upper lip; other areas are equaliy, if not more iikeiy, to be 

adjacent (Bower and Kassel 1990). Neither can the selective expansion of the upper incisor 

representation be explained by the size of its neural representation in the normal cerebellum; 

the upper incisor representation is no larger than that of any of the other perioral structures, 

whether measured as a dominant or subdominant receptive field (Figure 4.2). We only 

examined the central portion of crus IIa, but mappings of the entire crus IIa show that the 

total extent of the upper incisor representation is the smallest of all perioral structures 

(Bower and Kassel 1990). Thus, our mapping results suggest that the observed 

reorganization in crus IIa following infraorbital nerve section does not arise through 

- - 

' "Pattern" refers to the proportion of the different perioral structures in crus IIa and the overall organization of 
the patches. 



intrinsic cerebellar mechanisms. Our field potential data also support this suggestion: if 

cerebellar map reorganization were due to intrinsic mechanisms, one would expect the two 

components of the cerebellar field potentials to be affected in the same way. 



Similarities Between Cerebellar and SI 
Reorganization Following Deafferentation 

I shall [...I move with the moving ships, 

Change as the winds change, veer in the tide. 

A. C. Swinburne 

5.1 Abstract 

We have shown that fractured tactile cerebellar maps are plastic and maintain a 

fractured somatotopy following deafferentation at all ages (Chapters 3 and 4). Two to three 

months after lesion of the infraorbital branch of the trigerninal nerve, the denervated upper 

lip area in the cerebellar granule cell layer is taken over by intact perioral surfaces, 

predominantly the upper incisor representation. Unlike the pattern in other somatosensory 

regions of the mammalian nervous system, however, the representation filling in the 

denervated area is often not adjacent or even represented in this region of cms Ha of normal 

adult rats. In this chapter, we explore whether the pattern of reorganization might be related 

to reorganization in one of the afferent somatotopic structures, the somatosensory cortex 

(SI) which, through the pons, has a strong influence on cerebellar granule cell layer activity 

(Chapter 2; also see Bower et al. 1981). We first demonstrate that the upper incisor 

representation is adjacent to that of the upper lip in SI cortex of normal adult rats. We 

subsequently show that, in deafferented animals, the upper incisor representation in SI 

invades the normally adjacent denervated upper lip, increasing over five-fold relative to its 



normal area. This result supports the hypothesis that the observed pattern of reorganization 

in crus IIa following peripheral deafferentation is related to changes in structures that are 

afferent to it, such as SI. 

5.2 Introduction 

Numerous studies have demonstrated the remarkable capacity of mammalian 

somatosensory maps, especially those of somatosensory (SI) cortex, to reorganize following 

peripheral denervation (Merzenich et al. 1983ab; for reviews see Kaas et al. 1983; 

Merzenich 1987; Wall 1988ab; Killackey 1989; Kaas 1991, 1994). Nevertheless, the 

mechanisms responsible for such reorganization still remain a subject of considerable 

debate. For example, it is unclear whether SI reorganization is due to mechanisms intrinsic 

to the cortex, such as the immediate unmasking of "silent" projections and/or the sprouting 

and regrowth of connections within the cortex, or is instead a result of extrinsic effects such 

as the reorganization of other somatosensory structures afferent to the cortex itself, or a 

combination of some or all of the above mechanisms (for reviews see Snow and Wilson 

199 1 ; Kaas 1994). 

One reason for this confusion is that SI and its afferent structures are all 

somatotopically organized. Because denervated areas of SI are generally "filled in" by 

adjacent representations (Wall and Cusick 1984; for review see Kaas 1994), SI 

reorganization could, in principle, reflect reorganization in any of several locations, 

including the periphery (for review see Snow and Wilson 1991). For this reason, 

unambiguously identifying the mechanisms responsible for the reorganization of a 

particular SI locus is likely to require the simultaneous investigation of the afferent 

structures as well. 

The advantage of the fractured somatosensory maps in the cerebellum as a model is 

that they enable one to distinguish between peripheral and central adjacency. Although 



these maps receive somatosensory information from somatotopically organized regions, 

such as the trigeminal complex, the thalamus, SI, and the superior colliculus (for review see 

Bloedel and Courville 1981), they have a fractured somatotopy (Shambes et al. 1978ab; 

Welker 1987; Bower and Kassel 1990). In cerebellar maps, specific locations on the body 

surface project to small topographically discontinuous patches (bottom of Figure 5.3), 

resulting in a dissociation between peripheral and central adjacency. 

In Chapters 3 and 4, we described the reorganization of cerebellar somatosensory 

maps in the granule cell layer of cms IIa following lesions of the infraorbital branch of the 

trigeminal nerve. This branch provides input through the trigeminal nuclei (Waite and 

Tracey 1995) to a large upper lip representation as well as representations of related upper 

lip structures (i.e., vibrissae, furry buccal pad, and anterior sinus hair) in the center of the 

crown of cms IIa (Figure 4.1A). Examination of animals deafferented at all ages showed 

that the maps reorganized, with the upper incisor representation consistently filling in the 

cerebellar denervated area. This pattern of reorganization is surprising since it does not 

correspond with plasticity studies in other somatosensory areas. Specifically, the upper 

incisor is not consistently adjacent to the upper lip representation in cms IIa of normal adult 

animals (Bower and Kassel 1990)- The purpose of this chapter is to examine the possible 

contributions of extrinsic influences on cerebellar reorganization. We directly contrast 

lesion-induced reorganization in the cerebellum and the somatosensory cortex. A 

comparison of the reorganized maps of SI and cerebellum in the same animals suggests that 

cerebellar map reorganization is substantially influenced by the reorganization of its 

afferents. Preliminary results of these investigations have been reported in abstract form 

(Shumway et al. 1990). 



Methods 

5.3.1 Animals used 

A total of 49 Sprague-Dawley albino rats were used: 17 adult control and 32 

experimental animals lesioned at different stages of development, including postnatal day 1 

(PND 1, n = 2); PND 2 (2); PND 4 (1); PND 9 (2); PND 12 (2); PND 14 (1); PND 15 (1); 

PND 16 (1); PND 30 (8); PND 40 (3); PND 77 (3); PND 80 (2); PND 85 (3); and PND 89 

(1). In most animals either crus IIa or SI was mapped. For ten animals, however, both crus 

IIa and SI were mapped during the same recording session (two to three months after the 

nerve transection). Not all experiments were undertaken with each animal; the number of 

animals used for any given experiment is presented in the results and figure legends. 

5.3.2 Deafferentation 

Transection of the infraorbital branch of the trigeminal nerve was performed on rats 

of various postnatal ages (PND 1 to 89). The younger animals (16 days old and younger) 

were anaestheiized with avertine (125 mg/kg body weight); the others, with chloral hydrate 

(420 mgkg body weight). The procedure was identical to that described in section 4.3.2. 

5.3.3 Receptive field mapping 

Surgical and tactile mapping procedures were identical to those described in the 

previous chapters. Briefly, prior to surgery, the rats were anaesthetized with intraperitoneal 

injections of sodium pentobarbital (12 mgkg body weight) and ketamine hydrochloride 

(50 mgkg body weight). Throughout the experiment, ketamine supplements were given as 

needed to suppress reflexive activity. The right cerebral somatosensory cortex (SI) and the 

left cerebellar cortex, crus IIa, were surgically exposed and covered with mineral oil. 



Further detail on surgical procedures can be found in sections 2.3.1 and 3.3.2 as well as in 

previous publications (Bower et al. 1981; Bower and Kassel 1990). 

Field potentials were recorded in the granule cell layer of crus Ha (400-700 pm 

below the brain surface) and layer IV of SI cortex (600-1000 pm) with glass micropipettes 

filled with 2M NaCl(5-10 pm in diameter, 1-3 MR impedance). The central region of the 

exposed folial crown of cms IIa was finely mapped with 60 electrode penetrations (3 

parallel tracts, 20 punctures per tract, as shown in Figure 3.1C). The somatosensory cortex 

was mapped with as many penetrations as required to determine the areal extent of the 

upper incisor representation. The location of the penetrations on the surface of crus IIa and 

SI cortex were directly recorded on enlarged photographs at the time of recording. In 

crus IIa, penetrations were spaced 100-150 pm apart rostrocaudally and 100 pm apart 

mediolaterally (or more depending on surface vasculature). In the SI cortex, penetrations 

were spaced 100-200 pm apart in each direction. Near the apparent border of the upper 

incisor representation, penetrations were generally spaced 100 pm apart. For each electrode 

penetration, hand-held glass probes were used to stimulate perioral surfaces and the 

receptive field was determined auditorily from the multiunit activity. Two experimenters 

independently rated responses on a scale from I (barely detectable) to 5 (maximai). 

5.3.4 Map construction and analysis 

The cerebellar and cortical maps were constructed as described in section 4.3.5. All 

measures of variability described in this chapter are standard errors, SE. Statistical two- 

sample comparisons were conducted with a Mann-Whitney U test. Multiple comparisons 

of receptive fields within maps were conducted with a one-way repeated measures ANOVA 

followed by a Scheffe F test. The significance level was set at 0.05. 



Results 

5.4.1 Reorganization in the cerebellum 

As described previously (Figure 4.1A, also see Bower and Kassel 1990), projections 

from the upper lip, furry buccal pad, anterior sinus hair, and vibrissae occupy the largest 

area in the crown of crus IIa. This is quantified in Figure 5.1 where the average percentage 

of representation for each body surface projecting to crus IIa of intact rats is compared 

(black bars). Note that all non upper lip perioral structures are represented in approximately 

equal proportion in normal adult animals (data from 15 animals were pooled, no significant 

difference for all pair-wise comparisons, as judged by a Scheffk test). 

We also reported that the cerebellar upper incisor representation is substantially 

larger two to three months following deafferentation of the infraorbital branch of the 

trigeminal nerve in young (Chapter 3) and older animals (Chapter 4) than in normal adults. 

Figure 5.1 compares the distribution of body surface representations for nosmal (black bars) 

and lesioned animals (white bars); the data from 31 lesioned animals, from PND 1 to 

PND 89, haye been pooled together. The upper incisor is much more prominently 

represented in the reorganized maps, expanding to 45% of the map (from 5% in normal). 

The lower lip significantly expanded as well, from 7% to 20% of the crown of crus IIa. 

5.4.2 Contribution of afferent structures to cerebellar reorganization 

Representation of the upper incisor in SI of normal animals 

The purpose of this study was to contrast the upper incisor dominated reorganization 

of cerebellar tactile maps with the pattern of reorganization of the upper incisor 

representation in SI cortex. It was first necessary to determine the areal extent and position 
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Figure 5.1 Comparison of the map organization in crus IIa of normal (black 
bars, n = 15) and deafferented rats (white bars, n = 31). Each bar represents 
the mean + SE of total recording sites for a given receptive field type. The 
experimental data from all stages of development tested (PND 1 to PND 90) 
were pooled. Asterisks indicate significant differences between the 
percentage of representation of a given receptive field type in the normal and 
lesioned animals, as judged by a Mann-Whitney U test (P < 0.0001). 
Abbreviations: IUL: ipsilateral upper lip and related ipsilateral structures 
(vibrissae, furry buccal pad, and anterior sinus hair); UI: upper incisor; CUL: 
contralateral upper lip and related contralateral structures (vibrissae, furry 
buccal pad, and anterior sinus hair); LL: lower lip; LI: lower incisor; N: 
nose; NR: nonresponsive. 



of the SI upper incisor representation in normal animals since these data had not been 

reported previously for the rat (for maps of other perioral structures in rats see Welker 197 1; 

Chapin and Lin 1984; for maps of the incisors in area 3b and 1 of SI in squirrel monkeys see 

Cusick et al. 1986). Maps of the upper incisor representation in SI of two normal animals 

are shown in Figure 5.2. In our SI maps of normal animals, the upper incisor representation 

was found immediately adjacent to the ipsilateral upper lip representation, specifically the 

rostroventral surface of the upper lip. This is also the region of the upper lip most heavily 

represented in cms IIa of the normal adult rat cerebellum (Chapter 4, also see Bower and 

Kassel 1990). Note that the crus Ha maps are from the left cerebellar hemisphere (which 

mostly represents the left side of the body) whereas the SI maps are from the right 

hemisphere (which mostly represents the left side of the body). In this chapter, a face area 

is termed ipsilateral if it is on the left side of the rat's face, i.e., if it is ipsilateral to the nerve 

lesion. 

Expansion of the upper incisor representation in both SZ and crus ZZa of lesioned 
animals 

We compared the reorganization in the upper incisor area in SI following 

deafferentation with that found in the granule cell layer of the cerebellum. This comparison 

was made for animals lesioned at different postnatal days and mapped two to three months 

later. Figure 5.3 shows SI (A) and cerebellar (A') representations mapped in a normal 

animal and in four animals lesioned at different developmental stages (B-B' to E-E'). The 

upper incisor representation (hatched areas) clearly expands in both structures following 

peripheral lesions. 

When the data for SI and crus Ha are each pooled across age of lesion, as in 

Figure 5.4, there is a statistically significant increase in the area of the upper incisor 

representation in both brain structures (as judged by a Mann-Whitney, P < 0.02). The data 
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Figure 5.2 Portion of the tactile representation in the right somatosensory 
cortex for two different normal rats (A and B). The extent and location of 
the upper incisor representation is shown (hatched area). Top is lateral; left, 
rostral. Filled dots represent electrode penetrations. Shaded areas indicate 
nonresponsive regions of SI. Abbreviations: UL: upper lip; Ui: upper 
incisor; Li: lower incisor; LL: lower lip; Fbp: furry buccal pad; N: nose. 

from the different developmental stages were pooled because there was no significant 

difference in the upper incisor area at different ages. On average, the upper incisor area 

increased 13.2-fold in the cerebellum and 5.4-fold in SI compared to normal animals. In 

fact, regardless of the age of lesion, the upper incisor area in crus IIa was larger in any given 

lesioned animal than any given normal: in other words, the range of upper incisor areas for 

lesioned animals showed no overlap with the range for normal animals (normal: 0 to 
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Figure 5.3 Tactile maps in the right somatosensory cortex (top) and left 
cerebellum (bottom). A-A': Normal animal, B-B': PND 1, C-C': 
PND 12, D-D': PND 30, E-E': PND 80. The two brain regions, SI and 
crus Ha, were mapped in the same animal (i.e., A and A' are from the same 
animal but from a different animal than B and B'). The upper incisor 
representation is indicated by the hatched areas. Shaded areas indicate 
nonresponsive regions; filled dots, electrode penetrations. Solid line around 
a patch indicates projections from the left side of the rat's face (the side 
ipsilateral to the cut I 0  nerve); dotted line, right side. Dashed line at top of 
SI map indicates the lateral edge of the brain. For all maps, left is rostral; for 
SI maps, top is lateral; for crus IIa maps, top is medial. Note the difference 
in the scale for SI and crus IIa maps. Abbreviations as in Figure 5.2, V: 
vibrissae; Ash: anterior sinus hair. 

9 . 7 ~ 1 0 ~  pm2; lesioned: 1 7 . 2 ~ 1 0 ~  to 100 .7~10~  pm2). For SI, all but one of the ten 

experimental animals showed an increased upper incisor area relative to the normal animals, 

regardless of the age of lesion (normal: 6.1xlo4 to 1 9 . 2 ~ 1 0 ~  pm2; lesioned: 1 8 . 2 ~ 1 0 ~  to 

128.8x104 pm2). 

5.5 Discussion 

Previous analysis of the latencies of granule cell layer responses to peripheral 

stimuli in reorganized maps suggested that a long latency pathway through SI cortex might 

be contributing directly to reorganized responses in the cerebellum (Chapters 3 and 4). In 

this chapter, reorganization in SI was contrasted with that in crus IIa to determine if the 

pattern of cerebellar reorganization might reflect the reorganization of afferent 

somatosensory structures. By mapping both SI and crus IIa in animals with peripheral 

lesions made at different postnatal days, we showed that the upper incisor representation 

expands significantly in both structures. The overall pattern of reorganization within each 



structure was similar regardless of the developmental stage at which the lesion was made. 

The reorganization in SI appears to be consistent with the "filling in" by adjacent 

representations that has been reported previously (Wall and Cusick 1984; Kaas 1994) since 

the upper incisor is adjacent to the upper lip representation in normal adult animals. In the 

cerebellum, however, the upper incisor representation is not consistently adjacent to the 

upper lip. Comparing the specific pattern of reorganization in cerebellar and SI maps 

suggests that the pattern of cerebellar reorganization may be influenced by changes in SI 

cortex andlor other somatotopic structures afferent to the cerebellum. 

Crus Ila SI 

.Normal 

U Lesioned 

Figure 5.4 Mean area f SE of the upper incisor representation in the 
somatosensory cortex and the cerebellum of nonnal animals (black bars, 
n = 3 for SI, n = 11 for crus Ha) and lesioned animals (white bars, n = 10 for 
SI, n = 14 for cms IIa). Data for the lesioned animals were pooled from all 
ages at deafferentation, as there was no significant difference between the 
upper incisor area at different ages. In both brain regions, the area of the 
upper incisor representation is significantly larger in lesioned animals than in 
normal animals. Significance judged by a Mann-Whitney U test (SI: 
P < 0.02; cms IIa: P < 0.0001). 



5.5.1 Map reorganization and brain development 

These experiments involved lesions made at different stages during the development 

of the rat brain. Accordingly, the final adult pattern of the maps following the lesion is 

almost certainly the result of the complex interplay between lesion-induced changes and 

developmental mechanisms. Interpretations of lesions in the adult, in contrast, can assume 

that reorganization is based on adult morphological and physiological patterns. Another 

potential complication in interpreting the results is that the developmental pace of SI and the 

cerebellum differ; SI cortex achieves its adult morphology earlier than the cerebellum. For 

example, in the cerebellum, although a two to four cell deep granular layer is found at 

PND 5, the bulk of granule cells are formed between PND 8 and 15 (Altman 1972), with 

mossy fiber terminals not forming before PND 7 (Schoen et al. 1991); whle most SI cortex 

neurons are generated between embryonic day 14 and 20 (Bayer and Altman 1991), with 

thalarnocortical projections arriving in SI as early as PND 1 to PND 3 (McCandlish et al. 

1993). 

The timing of the development of connections in the cerebellum and SI gives further 

weight to the idea that the main site of reorganization is extrinsic to the cerebellum, possibly 

in the cerebrocerebellar pathway. We have shown that increases in the upper incisor 

representation in crus IIa were observed with lesions as early as PND 1, when the cerebellar 

circuitry is not yet developed. While the reorganization of cerebellar and SI cortical maps 

in response to early postnatal lesions undoubtedly reflects a complex interaction between 

normal development and abnormalities caused by the lesion, our results indicate that the 

pattern of reorganization in both structures is generally the same regardless of the animal's 

age at deafferentation, even adults. We did not find any significant developmental change 

in the expansion of the upper incisor in cms IIa or SI, although there was a large variation in 

the total area representing the upper incisor (see section 5.4.2). This large range might be 

related to variation in the maps of different individuals (crus IIa: Bower and Kassel 1990; 

SI: Merzenich et al. 1987; Riddle and Purves 1995). 



5.5.2 Mechanisms of reorganization 

A number of mechanisms have been invoked to explain sensory map reorganization, 

including unmasking of previously silent representations in the denervated area (via shifts in 

the balance of excitatory and inhibitory connections); spreading of adjacent undamaged 

afferents within the CNS; sprouting of afferent axons, dendrites of adjacent cells, or the 

migration of adjacent cells; peripheral branching of intact nerve fibers distal to the 

peripheral nerve damage; and cell death (Merrill and Wall 1978; Kaas et al. 1983; 

Merzenich et al. 1983ab; Pons et al. 1991; and Kaas 1994 for discussion of the above 

mechanisms). Various neurotransmitters (such as acetylcholine, norepinephrine, GABA) 

and receptors (NMDA) have also been shown to be involved in reorganization (for review 

see Kaas 1994). The underlying mechanisms generating the cortical pattern of 

reorganization are still under investigation by many laboratories. 

Differences in the pattern of map reorganization 

Our data and that of many others indicate that the typical pattern of SI 

reorganization involves the expansion of intact cortical representations that are adjacent to 

the denervated cortical area (see section 1.1.1 for a brief review; also Merzenich et al. 

1983ab; Wall and Cusick 1984; Pons et al. 1991; for review see Kaas 1994). This pattern 

of reorganization is also found in the thalamus and brainstem, implying that the new cortical 

maps may simply reflect changes occurring earlier in the processing sequence (Waite 1984; 

Garraghty and Kaas 1991b; for review see Woolsey 1990). There is, however, some 

evidence for cortical changes as well (somatosensory: Recanzone et al. 1992a; visual: 

Gilbert and Wiesel 1992). Given the evidence to date, cortical reorganization likely reflects 

changes that occur at all levels of the sensory pathway. 

In the cerebellum, however, the reorganization is not a result of an intrinsic 

expansion of normally adjacent representations. Often, the upper incisor is not adjacent to 



the upper lip in normal animals, and when it is present, has no greater representation than 

other non upper lip structures such as the lower lip and lower incisor (Figures 5.1 and 5.3). 

Our suggestion that the reorganization observed in the cerebellum reflects reorganization of 

its afferent pathways is based on the following: 1) the upper incisor expansion observed in 

the cerebellum can not be explained by (i) a larger upper incisor subdominant cerebellar 

representation (section 4.4.1) or (ii) immediate unmasking of the upper incisor in the 

cerebellum (section 4.4.3); 2) the upper incisor is commonly adjacent to the ipsilateral 

upper lip in somatotopic afferent structures, such as SI cortex and the trigerninal complex; 

and 3) the same changes in organization that occur in crus IIa following infraorbital nerve 

lesion-specifically, the expansion of the upper incisor representation-occur in SI. 

Although we did not compare expansion of other body surfaces, previous investigators have 

reported that infraorbital nerve lesions also result in increased representation of the lower 

jaw, digits, and the vibrissae over the eyes in S1 (Waite 1984). It is important to note that 

infraorbital lesions denervate large sections of SI, since two-thirds of SI receives projections 

from the head and neck; vibrissae alone constitute about a fifth of the total SI area (Welker 

1971). 

Our proposal is that the afferent projections to the cerebellum are hardwired and that 

the information they carry is dependent on the somatotopic organization of afferent 

structures. Thus, the changes in the information carried by these afferents is due to a shift in 

the representations in afferent structures. The demonstration that the SI upper lip area 

projects to the cerebellar upper lip patches by Bower et al. (1981) is consistent with this 

hypothesis. 

Contribution of afferent projections 

In order for our hypothesis to be correct, we would expect that there should be some 

orderly relationship between the shift in SI maps and those of other major cerebellar 

afferents. While the cerebral cortex, via the pontine nuclei, provides a substantial projection 



to cerebellar cortex (Bloedel and Courville 1981; Bower et al. 1981), other somatosensory 

structures have also been shown to influence the lateral hemispheres of the cerebellum 

(Brodal 198 1, Huerta et al. 1983; Marfurt and Rajchert 1991). Perhaps the most substantial 

noncortical influence is from the trigeminal complex, which sends afferents directly to the 

granule cell layer of the cerebellum (Watson and Switzer 1978; Woolston et al. 1981). The 

lateral regions of the cerebellum even receive a minor projection directly from primary 

afferents, at least in the case of the teeth (Elias et al. 1987). In addition, deep layers of the 

superior colliculus provide mossy fiber input to the cerebellum (through the pons), which, 

like the direct projections from the trigeminal complex (Woolston et al. 1981) and the 

indirect cerebrocerebellar projections (Bower et al. 1981), respects the fractured 

somatotopic maps in the granule cell layer of crus IIa (Kassel 1980). 

We have demonstrated that careful analysis of the responses generated in the 

granule cell layer distinguishes between direct trigeminal input to the granule cell layer and 

input relayed through forebrain structures, principally SI (Chapter 2). Our previous analysis 

of the granule cell layer field potentials induced by peripheral stimulation of lesioned 

animals indicates that the new upper incisor representation is carried by both direct and 

indirsct pathways following denemation (Chapters 3 and 4). Lesion-induced reorganization 

in the trigeminal nucleus, as in SI, led to a reactivation of the denervated area by intact 

adjacent inputs, at least in young animals (Waite 1984), which supports the suggestion that 

it is changes in afferent maps that dictate changes in cerebellar responses. 



A Systems Level Topographic Model of 
the Somatosensory System 

We dance round in a ring and suppose, 

But the Secret sits in the middle and knows. 

Robert Frost 

The Secret Sits, 1942 

6.1 Abstract 

Our detailed physiological mapping of the tactile inputs to the lateral hemisphere of 

the cerebellum demonstrated that these regions reorganize following peripheral nerve lesion 

(Chapters 3 and 4). Analysis of cerebellar and cortical reorganization patterns and of the 

temporal structure of tactilely-evoked cerebellar field potentials to infer the influence of 

afferent projections suggested that the principal site of plasticity following deafferentation is 

not in the cerebellum itself but in its afferent pathways (Chapters 4 and 5). We developed a 

network model to explore this possibility. Parts of the trigeminal complex, thalamus, SI, 

and crus IIa were represented in a simplified fashion based on known anatomical and 

physiological features of the system. The network connections were established based on 

the published receptive field size properties and topography of the various brain areas. 

The model was intended to test the hypothesis that the observed pattern of 

reorganization in the cerebellum following peripheral deafferentation is related to changes 



in afferent structures and not due to intrinsic cerebellar plasticity. Computer simulations of 

this network connectivity model support this conclusion by producing reorganized 

cerebellar tactile maps that were similar to experimental maps without assuming any 

intrinsic cerebellar plasticity. 

Introduction 

Reorganization of cortical structures following peripheral manipulations has been 

convincingly demonstrated in a large number of studies (Merzenich et al. 1983ab; Wall and 

Cusick 1984; for reviews see Kaas et al. 1983; Merzenich 1987; Wall 1988ab; Killackey 

1989; Kossut 1992; Kaas 1994), but whether cortical plasticity reflects an intrinsic cortical 

capacity for reorganization, reorganization occurring in its afferent pathways, or a 

combination of both, is still a topic of debate (for reviews see Snow and Wilson 1991; Kaas 

1994). We have demonstrated that cerebellar somatosensory maps reorganize after 

peripheral injury and our results suggested that the particular pattern of cerebellar 

reorganization is due to changes in structures that send projections to crus Ha. This 

suggestion was based on the following re.sults: 1) We fomd no evidence that cerebellar 

reorganization arose through intrinsic cerebellar mechanisms; the predominance of the 

upper incisor representation in the reorganized cerebellar maps could not be explained by 

immediate unmasking of silent projections or expansion of subdominant projections 

(Chapter 4). 2) The expansion of the upper incisor representation in crus IIa was paralleled 

by a similar expansion in the somatosensory cortex (Chapter 5). In addition, the pattern of 

reorganization we observed in SI (expansion of the upper incisor representation into the 

adjacent denervated upper lip area) was consistent with the "filling in" by adjacent 

representations that has been reported previously (Wall and Cusick 1984; for review see 

Kaas 1994). In contrast, the upper incisor representation was not consistently adjacent to 

the upper lip in the cerebellum (Chapter 5). 3) The two components of the tactilely-evoked 



cerebellar field potentials, which reflect a direct trigeminal and an indirect cerebral 

influence (Chapter 2), were present at most recording sites, suggesting reorganization of the 

afferent pathways; moreover, they were sometimes affected differently by nerve lesions-if 

cerebellar reorganization were due to intrinsic mechanisms, one would expect the two 

components of the cerebellar field potential to be affected in the same way (Chapter 4). 

This chapter describes simulation results based on a network model we developed to 

explore reorganization in the somatosensory system. Because trigeminal, thalamic, cortical 

(So, and cerebellar tactile maps have different topographies, even a small change in one of 

the early afferents could lead to extensive reorganization in the cerebellum. The simulation 

results support the suggestion that cerebellar reorganization is substantially influenced by 

reorganization of its afferent pathways. 

6.3 Major somatosensory pathways to the cerebellum 

The cerebellum receives two major excitatory afferent projections, the climbing 

fibers and the mossy fibers. The climbing fibers originate from the inferior olive and 

synapse on Purkinje cells. The mossy fibers arise from various nuclei and excite granule 

cells whose axons project towards the cerebellar surface, bifurcate to form the parallel 

fibers, and synapse on Purkinje cells (for review see Bloedel and Courville 1981). 

Figure 6.1 illustrates two major mossy fiber input pathways to cms IIa in the cerebellar 

lateral hemisphere: the direct trigeminocerebellar pathway (dashed line) and the indirect 

cerebrocerebellar pathway (solid line). Figure 6.1 also indicates the topography of each 

brain area. Thus, the cutaneous inputs from the face are represented somatotopically in the 

trigeminal nuclei (Nord 1967, Waite 1984). The trigeminal nuclei send projections to the 

ipsilateral cerebellum as well as topographical projections to the contralateral thalamus. 
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Figure 6.1 Simplified diagram showing two major mossy fiber projections 
to cms IIa, a direct trigeminocerebellar (dashed line) and an indirect 
cerebrocerebellar pathway (solid line). Ratunculi are shown for the 
somatotopically organized nuclei (trigeminal nucleus shown in a coronal 
plane, adapted from Nord 1967; thalamus shown in a coronal plane, adapted 
from Ernrners 1965; SI shown in a horizontal plane, adapted from Welker 
1971). The cerebellar fractured tactile map is shown in a horizontal plane. 
Dots represent vibrissae; hatched area, furry buccal pad; and broken lines, 
parts of the upper and lower lip that curve inside the mouth. The 
organization of the sensory representation in the pons is not known, thus 
only the outline of a transverse section through the pontine nuclei is shown. 



Several other areas not shown, such as the superior colliculus, also send 
mossy fiber projections to crus IIa (Brodal 1981; Huerta et al. 1983; Marfurt 
and Rajchert 1991). Abbreviations: Fop: furry buccal pad; Li: lower incisor; 
LL: lower lip; Ui: upper incisor; UL: upper lip; V: vibrissae. 

Somatotopic sensory maps are also found in the thalamus (Emmers 1965; Sugitani 

et al. 1990). The thalamus projects topographically to SI, which is also somatotopically 

organized (Welker 197 1; Chapin and Lin 1984). SI then projects through the pontine nuclei 

to the ipsilateral cerebellum. No sensory representation is shown for the pons in Figure 6.1 

since that information is not yet known in detail. 

It has been shown previously that the tactile inputs from the direct 

trigerninocerebeilar and the indirect cerebrocerebeilar pathways are in register spatially, i.e., 

a trigeminal location responding to tactile stimulation of a certain vibrissa influences 

cerebellar regions receiving projections from SI location responding to the same vibrissa 

(Bower et al. 1981; Woolston et al. 1981). 

6.4 Model description 

Our main interest is in the reorganization of the cerebellar tactile areas following 

peripheral injury. The modeling effort described here is a first step toward using systems 

level topographic models to explore plasticity in the somatosensory system of the rat. 

Although it is a simplified representation, the current model is based on features of the 

anatomy and physiology of the real system. It is, however, not "physiological" in the sense 

of capturing detailed single cell physiology (De Schutter and Bower 1994) or of 

representing a large-scale network of cells (Wilson and Bower 1992); rather, it is 

"connectional." 



6.4.1 Projections 

In this model, we have specifically focused on the major cerebellar-related 

somatosensory pathways. Thus, not all known projections are represented; for example, 

projections from the superior colliculus (Kassel 1980) are not included in our model. The 

brain areas shown in Figure 6.1 contain one or more representations of the face and the 

various nuclei are richly interconnected. The subset of the known projections that have 

been included in the model is shown in Figure 6.2. The model begins with a representation 

of the rat's face (Skin). In the model, the afferents from the face project to the trigeminal 

nucleus Principalis (Pr5) and the spinal trigeminal subnucleus Interpolaris (Sp5I) which 

each contain an organized representation of tactile inputs from the face. Both nuclei project 

to the thalamus and to the cerebellum (Mantle-St.John and Tracey 1987). 
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Figure 6.2 Diagram of the tactile projections to cms IIa that are included in 
the model. 

There are two separate representations of the face in the thalamus: one in the medial 

ventroposterior nucleus (VPM) and the other in the medial posterior nucleus (POM). The 



main projection of Pr5 is to the thalamus, in particular to VPM (Chiaia et al. 1991a). The 

sparse projection from Pr5 to POM and to the cerebellum (Mantle-St.John and Tracey 1987; 

Chiaia et al. 1991a) is not represented in this model. The Sp5I projects mainly to the 

cerebellum (Watson and Switzer 1978; Mantle-St.John and Tracey 1987) and also to the 

thalamus (Mantle-St.John and Tracey 1987; Chiaia et al. 1991a). It has been shown 

anatomically (Mantle-St.John and Tracey 1987; Phelan and Falls 1991) and physiologically 

(Woolston et al. 1982) that different populations of Sp5I neurons project to each structure. 

Thus, in the model we simulate two different cell populations in Sp5I that we refer to as 

Interpolaris-Th and Interpolaris-Cb (population projecting to the thalamus and to the 

cerebellum, respectively). 

Both VPM and POM project topographically to the somatosensory cortex (So but to 

different regions. Inputs from VPM terminate mainly in the barrel centers in layer IV (SI- 

IV barrel), while POM projects to the septa regions around the barrels (SI-IV septa) 

(Koralek et al. 1988). 

Corticopontine afferents arise from layer V of SI , (SI-V), (Legg et al. 1989) and the 

pontine nuclei project to the cerebellum (Mihailoff 1983). Since the organization of tactile 

sensory inputs and the receptive field properties have not been established in the pons, the 

model represents the pontine nuclei as a relay station (i.e., it is not explicitly simulated). 

In surnmary, as shown in Figure 6.2, we model the projections from the face of the 

rat to SI as two separate pathways: 1) a "lemniscal" pathway relayed by the trigeminal 

nucleus Principalis and the thalamic VPM to the centers of barrels in layer IV of SI, and 2) a 

"paralemniscal" pathway relayed by the trigeminal subnucleus Interpolaris and the thalarnic 

POM to the septa1 regions in layer IV of SI. Then, layer V of SI projects, through the pons 

(a direct relay in our model since not enough is known about the organization of the pontine 

nuclei), to crus Ha. Finally, the model also includes a direct trigerninocerebellar projection 

from a distinct population of the Interpolaris (Interpolaris-Cb). 



6.4.2 Model architecture 

Basic assumptions 

Several features of the model are based on physiological and anatomical features of 

the real system, but not all aspects of the system are known or implemented in detail. Ow 

simplified representation of the system is based on the following assumptions: 

Each of the brain areas modeled is represented as a 2-0 layer of units. 

The initial topography of the different structures, i.e., the proportion of units with a 

particular receptive field, the neighborhood relationship, etc., was obtained from maps 

published for the various brain areas. Each of the ten structures included in this model are 

represented by 100 "topographical units" each intended to represent the inputs and outputs 

from a particular region of the structure in question. Thus, each unit receives inputs from 

units in its afferent structure(s) and sends outputs to units in its efferent structure(s). In 

effect, these connections carry information on the location of the periphery (skin surface) 

projecting to that region. Exclusively excitatory interactions and feedforward projections 

are simulated. 

The specific pattern of connections between simulated units is established based on the 

receptive field size distribution determined physiologically in the real system. 

The detailed anatomical patterns of divergence and convergence have not been 

determined experimentally for most of the structures in the model. Therefore, the 

connection patterns in the model were established based on the distribution of the size of the 

physiological receptive fields of individual neurons (or multiunit in the case of the 

cerebellum) in each structure as determined experimentally. 



The distribution of receptive field size observed experimentally for the vibrissae is 

generalized to other face areas. 

The receptive field size for the vibrissae has been well studied physiologically. The 

discrete nature of the mystacial vibrissae makes it easy to quantify the size of a receptive 

field; one only needs to count how many vibrissae, when deflected, produce a response in 

the brain area under study. In contrast, very little data are available on the receptive field 

size of other face areas such as the upper lip, lower lip, or teeth. We thus generalized the 

known distribution of receptive field size for the vibrissae to the other perioral structures 

represented in our model. The experimental data incorporated in the model are described 

for each brain area in subsequent sections and summarized in Figure 6.3. 

Trigeminal complex 

Cerebellar-projecting Interpolaris cells (Interpolaris-Cb) have been shown 

experimentally to respond to the deflection of an average of five vibrissae (Woolston et al. 

1982; Jacquin et al. 1989). The probability distribution of receptive field size for 

Interpolaris-Cb units in the model is taken from the proportion of cells responding to one, 

two, three, etc., vibrissze that was reported by Woo!stor, et d. (1982); see Figure 0.3. h the 

simulations shown in Figure 6.3, the average receptive field size of the Interpolaris-Cb units 

is 4.6 vibrissae. To date, the receptive field size distribution of the population of 

Interpolaris neurons that project to POM (Interpolaris-Th) has not been determined 

experimentally. Accordingly, in the model, we used the same distribution as that of their 

efferent structure POM, which is described below. Most of the neurons in the Principalis 

respond to the deflection of a single vibrissa (Rhoades et al. 1987; Doherty et al. 1993; 

Jacquin et al. 1993). Doherty et al. (1993), for example, report that over three-quarters of 

the Principalis cells respond to one vibrissa; however, the distribution of the receptive field 

size for the remaining cells is not given. Thus, in the simulations shown in Figure 6.3, the 

receptive field of each Principalis unit consists of a single vibrissa. 
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Figure 6.3 Distribution of receptive field size for each structure in the 
model. The percentage of cells that respond to deflection of different 
numbers of vibrissae is shown for experiments (white bars) and for a typical 
simulation (black bars). The data were obtained from the following papers: 
Principalis: Jacquin et al. 1993; Interpolaris-Cb: Woolston et al. 1982; VPM 
and POM: Chiaia et al. 1991b; SI-IV barrel, SI-IV septa, and SI-V: 
Armstrong-James and Fox 1987. No experimental data on receptive field 
size were available for Interpolaris-Th; the same distribution as for POM 
was used. Cerebellar receptive field size distribution is from our 
experimental data. The numbers in the upper and lower right corners of 
each histogram are the average number of vibrissae in the peripheral 
receptive field (upper corner: experimental average, lower corner: average in 
the simulation). RF: receptive field. 



Thalamus 

The receptive field size of VPM neurons, on average 1.4 vibrissae, is much smaller 

than that of POM neurons, 3.9 vibrissae (Chiaia et al. 1991b). The probability distribution 

of receptive field size for VPM and POM units in the model is obtained from the 

distribution of receptive field sizes reported by Chiaia et al. (1991b) based on their 

extracellular recordings of neurons in VPM and POM. Thus, in the simulations shown in 

Figure 6.3, VPM and POM units respond to an average of 1.3 and 3.8 vibrissae. 

SI cortex 

The somatosensory cortex is represented in the model as three separate populations 

of units, the barrel population in layer IV (SI-IV barrel) that receives projections from Pr5, 

the septa population also in layer IV (SI-IV septa) that receives projections from 

Interpolaris-Th, and the layer V population (SI-V) that projects to the cerebellum through 

the pons. The receptive field size of SI neurons and the distribution of the receptive field 

sizes was obtained from the data of Armstrong-James and Fox (1987). They report an 

average receptive field size of 1.4 vibrissae for the barrel regions of layer IV, 1.5 for the 

septa regions of layer IV, and 2.9 for layer V (1.7, 1.5, and 3.3 vibrissae, respectively, for 

the simulations shown in Figure 6.3). 

Cerebellum 

Finally, the distribution of receptive field size for vibrissae in crus IIa is from our 

extracellular recordings in the granule cell layer. Because single granule cells have not been 

recorded from, the distribution of receptive field sizes in the model was based on field 

potential recordings in the granule cell layer as described in Chapters 3,4, and 5. In the real 

system, locations in the granule cell layer responded to an average of 3.7 vibrissae 

(cerebellar units responded to an average of 3.5 vibrissae in the simulations shown in 

Figure 6.3). 



Thus, the distribution of receptive field size obtained from published data for each 

structure is encoded in the model as a probability distribution (there is a specific probability 

distribution for each structure; see Figure 6.3). The receptive field size for each unit in a 

given structure is assigned based on the experimentally-derived probability distribution 

(Figure 6.3, white bars) and the resulting average receptive field size for each structure is 

given for a typical simulation (Figure 6.3, black bars). 

Figure 6.4 Depiction of the rings (1" and 2nd) used to assign connections. 
A: The rings shown here are for the "center" unit (filled circle). Every unit 
(small open circle) within, or intersecting, a given ring is considered to be at 
the same distance from the center unit. Only part of the network is shown. 
B: Unit "x" in structure S receives connections from afferent structure and 
sends connections to efferent structure (solid and dotted lines). Filled circles 
show units (centers) from S's afferent and efferent structures that correspond 
to "x". Solid lines show the connections between the corresponding units. 



6.4.3 Establishing connections 

As already described, the 100 units representing each structure were assigned 

receptive fields based on the published data (section 6.4.2). The specific pattern of 

connections is established in order to match the experimental receptive field size (Wsize) 

distribution. The connections were not "hand drawn;" instead, specific connection rules 

were implemented. The connections were automatically established in the simulations 

following the steps outlined below 

A. Topographic connections from skin to trigeminal complex 

1. Unit "x" in structure S is randomly assigned a target receptive field size (trf(x)) based on 
the experimentally observed probability distribution for that structure. 

2. Topographic connection is established from the corresponding unit (center) in the 
afferent layer (skin in this case) to "x" (Figure 6.4B). 

3. Connect (trf(x) - 1) Skin units, randomly chosen from center's lSt ring, to "x". If all lst 
ring units are connected and Wsize(x) < trf(x), start choosing from 2nd ring and so on 
until RFsize(x) = trf(x) (Figure 6.4). 

4. Determine receptive field type for unit "x" (W(x)) by adding number of connections 
from each different receptive type (such as vibrissae, upper lip, upper incisor, etc.), 
W(x) is the face area providing the most connections. For example, let's imagine unit 
"x" in Interpolaris-Th receives projections from vibrissae E4, E5, and E6 from the Skin 
and unit "y" receives projections from vibrissae D5 and E4 as well as from one upper lip 
unit; both units "x" and "y" have an W(x) = W(y) = vibrissae and Wsize(x) = 
RFsize(y) = 3. If "x" and "y" project to unit "z" in POM, then W(z) is also vibrissae 
and Wsize(z) = 5. In this example, not all projections to "y" or "z" were from vibrissae; 
we call the second largest number of connections from a certain face area the 
subdominant RF (subW). Thus, subRF(y) = subW(z) = upper lip; "x" does not have a 
subW as all of its connections were from vibrissae. In some cases, the center has more 
weight than other connections in determining the resulting receptive field. 

B. Topographic connections between trigeminal, thalamus, and SI 

1. Sameas Al.  



3. If RFsize(x) 2 trf(x), no more connections are established. 
If RFsize(x) < trf(x), survey center's immediate neighbors (lSt ring) and connect to 
optimal combination to attain trf(x). If all lSt ring units are connected and 
RFsize(x) < trf(x), start choosing from 2nd ring and so on until RFsize(x) = trf(x). 

4. Same as A4. 

C. Nontopographlc connections to cerebellum 

1. Same as Al. 

2. For each cerebellar patch, randomly select a "seed" unit in both SI-V and Interpolaris-Cb 
that has the same RF. Seed plays the same role as center did for topographic 
connections. Connection is established from the seed unit (center) in afferent layers to 
"x". 

3. Same asB3. 

4. Same as A4. 

In making these connections, interesting observations came to light. For example, 

structures with large receptive fields project to structures with a smaller average receptive 

field size. This is characteristic of the paralemniscal pathway, for example, POM to SI-IV 

septa (Figure 6.3). It was not possible to make connections between such structures as the 

simulated units could not match the experimental receptive field size distribution. It was 

necessary to add "silent" connections between some of the structures to match experimental 

receptive field size. Under these conditions, when a unit receptive field size is greater than 

its target receptive field size, i.e., when RFsize > trf, then (RFsize - trf) connections chosen 

at random become silent. The silent connections are "physically" still there but do not 

contribute to the establishment of the receptive field size or type of their target units. 

Following disturbance of the simulated system, however, such as when simulating a 

peripheral injury (as considered in the results section), these connections might influence 

the reorganization. 





described by Waite (1984) under similar conditions to the experiments described in this 

thesis. Unfortunately, the published data on trigeminal reorganization following peripheral 

lesion of the infraorbital branch of the trigeminal nerve treated LL, Li, and Ui as the single 

structure "lower jaw and inside mouth" (Waite 1984) and made no differentiation between 

these three structures (Waite, personal communication). The simulated trigeminal 

reorganized maps are based on Waite's data with some extrapolations subject to the 

following constraints: 1) The total area of Ui, Li, and LL is equivalent to Waite's "lower 

jaw and inside mouth." 2) The reorganized map is somatotopic. 3) Adjacent intact 

representations expand into the denervated area. 4) The reorganized trigeminal map should 

be such that it leads to an SI upper incisor representation that expands approximately six- 

fold from its normal value because we showed in Chapter 5 that the Ui representation 

expands by such a factor in experiments with lesioned rats. 

Fixed connections 

In our simulations, once the connections were established based on data from 

normal animals and using the algorithms described in section 6.4.3, they were kept fixed. 

After reorganization of the afferent structures to mimic the effect of infraorbital nerve lesion 

as just described, the new information was propagated throughout the entire system (the 

connections were kept the same but the information they carried changed) and the effects on 

the cerebellum organization were studied. 

6.4.5 Computer simulations 

Simulations were performed on a SPARCstation 10 (Sun Microsystems), using the 

neural simulator GENESIS (Wilson et al. 1989; Bower and Beeman 1995). Typically, for a 

network consisting of 1000 units, it took 12 minutes to establish the network connections 

and less than 2 minutes to simulate the effects of nerve lesion. 
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Figure 6.6 Locations in the simulated somatosensory system related to the 
particular position in crus IIa shown as a white square with a black asterisk. 
All the units in each structure are shown as squares. Black squares indicate 
units that send information (directly and indirectly) to that specific cerebellar 
area. Arrows indicate the direction of the projections between two 
structures. 
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Figure 6.7 Connection pattern in simulated system. All the units in each 
structure are shown as squares. An arrow indicates projections from the 
square with an asterisk (in the structure at the tail of the arrow) to the black 
squares and the square with an asterisk (in the structure at the head of the 
arrow). 



6.5 Results 

6.5.1 Intact somatosensory system 

Once the connections are established based on the principles described in 

section 6.4, one can look at divergence and convergence in the system. This is implied in 

the receptive field and mapping data used to build the model, but the simulation brings 

together all of the separate data and allows visualization. Figure 6.5 shows all the regions in 

the simulated somatosensory system that are activated by tactile stimulation of a small 

location on the skin. A large cerebellar area receives input from that skin location. 

Conversely, one can look at all the regions that send information, directly or indirectly, to a 

small area of cms Ha. A single cerebellar location receives inputs from several skin 

locations (Figure 6.6). Finally, Figure 6.7 shows the connection pattern at each level fro111 a 

single location of the afferent structures. 

Subdominant receptive fields 

The data presented in Chapter 4 showed that over 70% of all cerebellar recording 

sites had receptive fields associated with weaker responses (subdominant receptive fields) 

in the granule cell layer. The presence and type of such weaker responses were also 

explored in the model. On average, about half of the simulated cerebellar units had 

subdominant receptive fields (see section 6.4.3 for definition). Most of the subdominant 

receptive fields were responsive to upper lip and upper lip-related structures and, as in the 

experimental case, the upper incisor was not represented more frequently than other perioral 

structures (Figure 6.8). 
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Dominant vs Subdominant MODEL (Crus Ila) 

Figure 6.8 Comparison of dominant (white bars) and subdominant (black 
bars) cerebellar representation of the various face areas observed 
experimentally and in the simulated system. Each bar represents the mean 
percent f SE of total number of electrode penetrations or units with a given 
receptive field type. Top: experimental results from six normal animals. 
Bottom: simulation results, n = 18. Abbreviations for these and subsequent 
histograms: UL: upper lip and related structures (i.e., vibrissae, furry buccal 
pad, and anterior sinus hair); LL: lower lip; Li: lower incisor; Ui: upper 
incisor; N: nose; NR: nonresponsive; CUL: contralateral upper lip and 
related structures (i.e., vibrissae, furry buccal pad, and anterior sinus hair). 



6.5.2 Change in representation of face areas following simulated nerve 
lesion 

As shown in Figures 6.9 and 6.10, when the maps in the trigeminal nuclei alone are 

changed based on existing data (Waite 1984), the reorganization seen both in SI and in the 

cerebellum were remarkably similar to real maps. For example, the reorganized cerebellar 

map maintained a fractured somatotopy and the upper incisor representation expanded 

significantly in the reorganized cms IIa (Figure 6.9B). In SI, the upper incisor also replaced 

the upper lip representation. This is quantified in the histograms in Figure 6.10. It can be 

seen that a six-fold expansion of the upper incisor in the trigeminal complex led to a six- 

fold expansion in SI and a twenty-one-fold expansion in cms IIa. The simulated 

reorganized cerebellar maps were very similar to experimental maps, with significant 

increase in the representation of upper incisor and lower lip (Figure 6.11). 

In order to assess the robustness of the results presented in Figure 6.1 1, we did two 

things. First, we used normal cerebellar topography from a different animal as a starting 

point to establish the normal connection pattern, since cerebellar tactile map organization, in 

particular the positional relationships between different body part representation, has been 

demonstrated to v x y  among normal animals (Bower Kassel 1990). The simulated 

cerebellar reorganization patterns were still similar to real patterns. Second, we explored 

the possible range of trigeminal reorganization and looked at the effect of different 

trigeminal reorganized maps on cerebellar reorganization. As described in section 6.4.4, the 

organization of the Interpolaris in lesioned animals is not known precisely. Thus, even 

based on Waite's data and with the constraints described in section 6.4.4, there was some 

flexibility in determining the reorganized Interpolaris maps used in the model. We tried 

many possible combinations, with most giving results similar to Figure 6.1 1. To give an 

idea of the range, Figure 6.12 shows results from simulations that were the most different 

from experimental data. In these simulations, the lower lip representation expanded more 
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Figure 6.9 Organization of the tactile inputs to the trigeminal nucleus 
Interpolaris and crus IIa in the model. A: Model representation of the 
trigeminal nucleus Interpolaris: normal (based on data from Waite 1984) and 
reorganized (based on data from Waite 1984 and subject to the constraints 
discussed in section 6.4.4). B: Model representation of crus IIa: normal 
(based on our experimental data) and reorganized (resulting from simulated 
infraorbital nerve lesion). Units are shown as squares. Enclosing 
boundaries are drawn around units with common receptive field type. Solid 
lines represent projections from ipsilateral body areas; dotted line, 
contralateral. Shaded areas indicate nonresponsive units. Abbreviations: 
Fbp: furry buccal pad; Li: lower incisor; LL: lower lip; Ui: upper incisor; 
UL: upper lip; N: nose; OV: vibrissae over the eye (not innervated by 
infraorbital nerve); V: vibrissae. 

than the upper incisor did. This is not usuaily seen exyserimne~~tally. It still, however, 

retained important similarities to experimental results, for example, the upper incisor 

representations did expand significantly and the lower incisor did not. 

Cerebellar field potentials 

As described in Chapter 2, in normal animals, cerebellar granule cell layer field 

potentials evoked by tactile stimulations usually consist of two components: a short-latency 

component (from the direct trigerninocerebellar pathway) peaking around 8 msec after the 

onset of the stimulation and a long-latency component (from the indirect cerebrocerebellar 

pathway) pealung around 20 msec. We have also shown in Chapters 3 and 4 that peripheral 

lesions affect these field potentials components differently. In animals deafferented later 

than two weeks after birth, between 5 to 30% of all cerebellar field potentials recorded 

lacked the short-latency component (only the long-latency component was present). 
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Figure 6.10 Representation of the various face areas before (white bars) and 
after (black bars) simulation of infraorbital nerve lesion using reorganized 
Interpolaris representation as described in section 6.4.4. Each bar represents 
the mean percent f SE of total number of units with a given receptive field, 
n = 19. Abbreviations as in Figure 6.8. OV: vibrissae over the eye (not 
innervated by infraorbital nerve). 
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EXPERIMENT (Crus Ila) 

MODEL (Crus Ila) 

Figure 6.11 Comparison of cerebellar representation of the various face 
areas observed experimentally and in the simulated system. Each bar 
represents the mean percent k SE of total number of electrode penetrations 
or units with a given receptive field type. Top: experimental results from 15 
normal animals (white bars) and 31 animals lesioned from 1 to 89 days 
postnatally (black bars). Bottom: simulation results before (white bars) and 
after (black bars) simulation of infraorbital nerve lesion, n = 19 (same 
simulations as in Figure 6.10). 
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Figure 6.12 Representation of the various face areas before (white bars) and 
after (black bars) simulation of infraorbital nerve lesion using a different 
reorganized Interpolaris representation than in Figures 6.10 and 6.1 1 ; see 
text for details. Each bar represents the mean percent + SE of total number 
of units with a given receptive field type, n = 16. 
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In our model, field potentials were not explicitly simulated, but a cerebellar unit was 

considered to have a "field potential" consisting of both components if it received 

responsive connections from both the direct trigeminocerebellar and the indirect 

cerebrocerebellar pathway. It had only the long-latency component if it received responsive 

connections from the cerebrocerebellar pathway but no connections or connections carrying 

no tactile information (RF = nonresponsive) from the trigeminocerebellar pathway. In order 

to test the effect of lesions on field potentials, we assumed in this particular instance of the 

model that some regions of the trigeminal nuclei did not reactivate following peripheral 

injury. Thus, a small number of units (black circle in Figure 6.13) from the trigeminal map 

based on Waite's data (Figure 6.9) were made nonresponsive to tactile stimulation. This is 

a reasonable assumption since Waite (1984) showed that nonresponsive areas in the 

trigeminal nuclei of animals lesioned as adults remained several months after peripheral 

injury. 

We found that following simulation of an infraorbital nerve lesion, several locations 

throughout the reorganized cerebellar map had only the long-latency component of the field 

potential. The simulation results share many features of the real system. For the simulation 

results presented in Figure 6.13, 8% of the cerebellar units lacked the short-latency 

component of the field potentials; this is within the range observed experimentally. In 

addition, it was not unusual for the same patch (real or simulated) to contain units 

exhibiting the normal two-peaked response as well as units with only the long-latency 

component. Finally, as in the real system, the field potentials consisting of only the long- 

latency component are not regionally localized but are spread throughout the folium. Note 

that both the direct trigeminocerebellar and the indirect thalamocerebropontocerebellar 

projections synapse through the trigeminal nuclei on their way to the cerebellum. These 

results suggest that the difference in the convergence and divergence of connections in the 

two pathways might explain the emergence of cerebellar locations with long-latency 

response only. 
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Figure 6.13 Simulated reorganization of trigeminal and cerebellar tactile 
maps: location of cerebellar units with field potentials consisting of only the 
long-latency component of the response to tactile stimulation (from indirect 
SI pathway). Trigerninal nucleus: Reorganized Interpolaris was based on 
data from Waite 1984 and constraints discussed in section 6.4.4. A small 
patch in the ~niddle of the denervated area of Interpolaris was made 
nonresponsive following peripheral lesion (black area) and the effect on 
cerebellar reorganization was studied. Units are represented as squares. 
Crus IIa: Effects of simulated infraorbital nerve lesion on the cerebellar 
field potentials are shown. Open circles represent units with field potentials 
similar to those seen in normal animals, with both a short-latency (from 
direct trigeminocerebellar pathway) and a long-latency component (from the 
indirect cerebropontocerebellar pathway). Stars denote units for which the 



field potentials consisted of only the long-latency component. Enclosing 
boundaries are drawn around units with common receptive field type. Solid 
lines represent projections from ipsilateral body areas; dotted lines, 
contralateral. Shaded areas indicate nonresponsive units. Abbreviations as 
in Figure 6.9. 

6.6 Discussion 

The trigeminal nuclei, thalamus, SI, and cms IIa have been shown experimentally to 

reorganize following peripheral nerve lesion (Chapters 3, 4, and 5; Waite 1984; Garraghty 

and Kaas 1991b; Gonziilez et al. 1993). One of the goals of this modeling effort was to 

explore the possibility that cerebellar reorganization might be a reflection of reorganization 

occurring in its afferent pathways. Xn ibis chapter, we described a systems level topographic 

model we developed to explore the possibility that the connection patterns to the cerebellum 

are hardwired and that the site of reorganization is extrinsic to the cerebellum. There has 

been some recent experimental evidence for genetic specificity of cerebellar projections 

(Sotelo 1995) that support our assumption of fixed, non activity dependent cerebellar 

projections. 

Our simulation results show that cerebellar reorganization patterns remarkably 

similar to experimentally observed ones can be generated by assuming plasticity, i.e., active 

reorganization, only in the cerebellar afferent pathways. For example, the significant 

increase in the upper incisor representation and the smaller, but also significant, increase in 

the lower lip representation following simulation of an infraorbital nerve lesion 

(Figure 6.1 1) were comparable to the increase observed experimentally following 

infraorbital nerve lesion (Chapters 3,4, and 5). In addition, as described in Chapters 3 and 

4, a number of cerebellar field potentials evoked by tactile stimulation in lesioned rats 

lacked the short-latency component. In the model, cerebellar locations with evoked field 

potentials consisting of only the long-latency component (representing the indirect 



trigeminal-thalamus-SI-pons pathway), thus lacking the short-latency (direct trigeminal 

input) component of the response, were observed after a small area in the middle of the 

reorganized trigeminal maps (based on Waite's data) was made nonresponsive. Waite 

reported such nonresponsive areas in the trigeminal nuclei of animals deafferented as adults 

(Waite 1984). These simulation results suggest that a small continuous nonresponsive area 

in the reorganized trigeminal map could lead to the experimentally observed emergence of 

cerebellar field potentials with only the long-latency component in widely spread locations 

of crus IIa. 

Models allow for visualization and synthesis of a large amount of experimental data; 

they can also provide motivation and serve as context for additional data collection. With 

the available experimental data, our model could be refined and made more physiological. 

It is also clear, however, that there is a need for additional experimental data in order to 

build a detailed, physiologically and anatomically realistic model of the somatosensory 

system. For example, more information about the organization and the receptive field 

properties of pontine nuclei neurons would allow the explicit modeling of this part of the 

pathway. Detailed analysis of the receptive field properties of the population of cells in the 

spinal trigeminal nl-lclel-ls Interpolaris that project to the thalamic POM would allow 

simulation of a more realistic paralemniscal pathway. More detailed and complete maps of 

reorganized trigeminal and SI representations following nerve lesion would reduce the 

degrees of freedom in our simulations. This model is a first step and provides a basis for 

future work to create more realistic and sophisticated models of the somatosensory system. 



Conclusions 

La science est comme une corde que nous tenons par un bout 

que nous voyons; l'autre bout est duns l'eau et il tient 13 

l'inconnu. Toutes les fois que l'on prktendra prksenter un 

travail complet ou rien ne reste obscur, on pourra dire que 

cela est faux. 

Claude Bernard 

The main contributions of this research will be summarized in this chapter; detailed 

discussions can be found at the end of each individual chapter. A discussion of related 

areas for future research is also presented. 

7.1 Contribution of this work 

7.1.1 Plasticity in cerebellar somatosensory maps 

The results presented in this thesis provide the first demonstration of plasticity in a 

cerebellar somatosensory map following peripheral nerve lesion. Our detailed 

electrophysiological mapping of the crown of crus Ila shows that cerebellar tactile maps, 

like somatotopic sensory maps in other parts of the brain, are capable of reorganizing 

following peripheral injury. Moreover, these cerebellar somatosensory maps reorganized 



following deafferentation at all ages tested, from the first day after birth to adulthood 

(PND 1 to PND 89). There was no critical period after which the peripheral lesion did not 

produce reorganization, unlike anatomical studies reported for other somatosensory areas of 

the rat (for reviews see Belford and Killackey 1980; Woolsey 1990). All reorganized maps, 

independent of the animal's age at deafferentation, maintained a fractured somatotopy as 

well as several features of normal maps. Animals deafferented as adults, though, showed a 

significant increase in the number of cerebellar recording sites not responsive to any tactile 

stimulation compared to animals deafferented earlier in development. 

The cerebellar denervated upper lip area was consistently and predominantly 

invaded by the upper incisor representation and to a lesser extent by the lower lip 

representation. Th~s  pattern of reactivation is considerably different from other 

somatosensory regions, since the upper incisor representation is often not adjacent to the 

upper lip and sometimes not even represented in crus IIa of normal adult rats. In addition, 

our results showed that neither the immediate unmasking of silent projections nor 

previously weak (subdominant) projections appeared to be responsible for the dominance of 

the upper incisor in the reorganized maps. We found no evidence that intrinsic cerebellar 

mchanisms were responsible for the observed patterns of map reorganization. 

7.1.2 Influence of cerebellar afferent projections 

The detailed analysis of the temporal structure of the cerebellar field potentials 

presented in this thesis provides a new tool to study the influence of afferent projections 

without having to simultaneously record in many brain areas. The evoked field potentials 

recorded in the granule cell layer of cms IIa of normal animals consist of two components at 

different latencies within the first 50 msec following brief peripheral tactile stimulations. 

By simultaneously recording in both the somatosensory cortex (SI) and cms IIa, we 

demonstrated that the latency of the second peak in the cerebellar response, or long-latency 

component, is strongly correlated to the latency of the SI response to tactile stimulation. 



Moreover, using several methods to interfere with the physiological integrity of SI, we 

showed that the long-latency component of the cerebellar response is primarily due to inputs 

from SI. The short-latency component of the cerebellar response to tactile stimulation was 

already known to result from the direct trigeminal projection (Watson and Switzer 1978; 

Woolston et al. 1981). Thus, the effects of peripheral injury on the trigeminocerebellar 

pathway (reflected by the short-latency cerebellar component) and the cerebroponto- 

cerebellar pathway (reflected by the long-latency cerebellar component) can be inferred 

from a detailed analysis of the cerebellar field potentials. Our results showed that the age of 

the animal at deafferentation affected the short-latency but not the long-latency component 

of the cerebellar field potential, suggesting a difference in the developmental sensitivity of 

the trigeminocerebellar and the cerebropontocerebellar pathways. In addition, we directly 

explored SI reorganization following peripheral lesions and demonstrated that the upper 

incisor representation, which we showed is adjacent to the upper lip in SI of normal rats, 

increased significantly in size. Our results suggest that the site of plasticity following 

deafferentation is not in the cerebellum itself but in its afferent pathways. This hypothesis 

was tested with a network connectivity model of the rat somatosensory system that we 

developed. In these simulations, it was possible to obtain cerebellar reorganization similar 

to what was observed experimentally without assuming any intrinsic plasticity in the 

cerebellum. This model provides a framework upon which more detailed simulations can 

be built. 

7.2 Future research 

7.2.1 Intracortical microstirnulation in the cerebellum 

We found no evidence for an intrinsic mechanism underlying the cerebellar 

reorganization following peripheral injury. In order to further explore the possibility of 



intrinsic mechanisms of reorganization, the cerebellar representation could be examined 

following microstimulation in the cerebellar granule cell layer. Although this stimulus is 

not natural, stimulating the cerebellum directly would bypass any role of peripheral inputs 

in driving cerebellar reorganization and could therefore help rule out, or support, the 

possibility of intrinsic cerebellar mechanisms of reorganization. Such microstimulation in 

the middle layers of SI in monkeys led to an expansion of the cortical representation of a 

skin area and was interpreted as demonstrating a capacity for intrinsic plasticity in SI 

(Recanzone et al. 1992a). 

7.2.2 Plasticity of patch boundaries, transformation from a topographic 
map to a fractured one 

Studies of individual differences in somatotopic cerebral maps and fractured 

cerebellar maps have shown that these two maps have different patterns of variability. In 

the normal cerebral cortex, the greatest variability is in the spatial pattern across 

somatotopically-related body surfaces, in particular, size and shape; neighborhood relations 

are among the least variable, i.e., there is a constant overall general somatotopy (Merzenich 

et al. 1987; Riddle and Purves 1995). In the normal cerebellar cortex, in contrast, the main 

variability is in the positional relationships between different body surfaces, while the 

relative proportions of representations do not appear to change significantly (Bower and 

Kassel 1990). Future studies could examine the plasticity of patch boundaries in crus Ha to 

determine if a boundary between two different body structures can be extended or reduced 

following an alteration in the spatial relationship or use of these body structures. It is also 

important to understand how the topographic information from the somatotopic SI cortex is 

transformed into the fractured information found in the cerebrocerebellar projection, and 

where such a transformation occurs; similarly with the somatotopic trigeminal nuclei and 

the trigerninocerebellar projection. 



7.2.3 Behavioral correlate to peripheral lesion 

Ultimately, a full understanding of the role of the cerebellum, the significance of 

afferents circuits in cerebellar function, and the functional consequences of brain 

reorganization will require a close examination of neural activity in behaving animals. The 

observations in this thesis have resulted in a new series of behavioral studies; preliminary 

results from awake behaving rats show cerebellar field potentials with short- and long- 

latency components similar to the ones reported here (Hartmann and Bower 1993, 1995). 

Awake behaving rats use their vibrissae extensively to explore their environment. 

When the input from these sensory structures is destroyed, as when the infraorbital branch 

of the trigerninal nerve is lesioned, the sensory maps in crus IIa and SI reorganized 

(Chapters 3, 4, and 5; Waite 1984); Waite also demonstrated reorganization in the 

trigeminai nuclei. We therefore undertook a series of preliminary experiments to search for 

a behavioral correlate to the neural reorganization associated with deafferentation of the 

upper lip and vibrissael. We were also interested in comparing the behavioral results of 

deafferentation with those resulting from lesions of crus II. 

Seventeen normal adult female rats were trained to put their head through a hole in a 

plexiglass wall in order to drink from a nozzle. The hole was only large enough for either 

the head or the paws, but not both. Animals were water deprived for several hours before 

each experiment. Their exploratory behavior was videotaped and later analyzed frame by 

frame. After establishing a typical and repeatable drinking behavior for each rat (about 10 

days), we deafferented the infraorbital branch of the trigeminal nerve of 5 rats, lesioned 

crus It of 4 animals, and performed sham surgeries on the remaining animals. We then 

resumed videotaping the exploratory behaviors for 1 week to 3 months. 

In normal rats, a typical drinking sequence began with the rat exploring the hole in 

the plexiglass wall. As its head crossed the midplane of the hole, the rat's snout gradually 

' These experiments were done in collaboration with Mitra Hartmann and Mike Lin. 



approached the nozzle; the vibrissae palpated the nozzle, and curled and uncurled around it. 

The mouth stayed closed for the entire exploratory sequence until the tongue protruded to 

lick the nozzle (Zeigler et al. 1984). 

Cerebellar lesions have been shown to cause slowing of voluntary movement and to 

disrupt the completion of fast actions, such as saccadic eye movements (Dichgans 1984) but 

merely produce temporary deficits in grooming sequences (Berridge and Whishaw 1992). 

We found that cerebellar lesions only transiently affected the drinking sequence; the 

lesioned animals appeared to miss the nozzle more frequently than the controls (sham 

surgery). Moreover, they often exhibited rhythmic licking activity in the air next to the 

nozzle. Some of the lesioned rats put their paws through the hole to explore the nozzle 

before drinking, a behavior never exhibited by normal animals. 

Infraorbital nerve section caused an increase in the duration of perioral contact and 

disrupted drinking in the days following surgery. But again, this was a transient effect; no 

significant difference was observed in the drinking behavior of deafferented animals several 

weeks after the lesion. Zeigler and h ~ s  colleagues reported similar effects for infraorbital 

lesions in their thorough study of the effect of trigeminal denervation on ingestive behavior 

(Zeigler et al. 1984, for review see Zeigler et al. 1985). The rats appeared to continue using 

both sides of their upper lip for nozzle exploration, even when unilateral infraorbital nerve 

sections were performed. We were unable to determine whether sensory information was 

transferred from the upper lip to the upper incisors, or whether the drinking task could be 

done in the absence of upper lip and vibrissae sensory information. 

Berridge and Fentress published a series of experiments in which they studied the 

effect of trigeminal nerve lesion (Berridge and Fentress 1985, 1986, 1987). Their 

behavioral testing of lesioned animals was performed withn two weeks of the 

deafferentation. In their study, lesions were much more extensive than ours. They 

sectioned the inferior alveolar, lingual, and auriculotemporal nerves of the mandibular 



branch as well as the anterior superior alveolar and infraorbital nerves of the maxillary 

branch; in effect, removing sensation from the upper and lower lip, gums, incisors, lower 

molars, chin, anterior tongue, oral mucous membrane, vibrissae, and furry buccal pads. 

Such lesions have been shown to severely disrupt food and water intake in the rat (Jacquin 

and Zeigler 1983) and the pigeon (Zeigler 1973). Berridge and Fentress (1985) showed that 

these trigeminal lesions selectively reduced the ingestive actions elicited by preferred tastes 

but left the aversive actions elicited by unpreferred tastes unchanged. They also showed 

that such lesions disrupted the fomz of individual action during grooming, such as forelimb 

stroke across the face (Berridge and Fentress 1986) but the sequential organization of the 

actions during grooming were not affected (Berridge and Fentress 1987). 

The effects of sensory map reorganization on perception and performance is not 

clear. In some cases, the reorganization appears to relate to behavioral recovery and 

increase in perceptual ability such as in the demonstration of hypersensitivity to tactile 

stimulation of intact representation adjacent to a denervated cortical area (Wall and Kaas 

1985). Also, after training that improved the performance of monkeys at detecting change 

in the frequency of a tactile stimulation to a particular skin area, the cortical representation 

of that skin area had significantly ixcreased (Recanzone et al. 1992b). In other cases, 

deafferentation of sensory input resulted in mislocalization of tactile stimuli (Wall and Kaas 

1985). A striking example of such mislocalization of tactile stimuli was provided by 

Rarnachandran et al. (1992). They showed that following amputation of an upper limb, 

tactile stimulation of the face of human patients evoked sensation in precise locations of 

their missing limb. Pons et al. (1991) have shown that following similar injuries in 

monkeys, the face representation expanded in the denervated forelimb area of SI. 

7.2.4 Gating mechanisms 

Finally, our simultaneous recordings of SI and crus IIa produced an interesting and 

unexpected result. We showed that the failure rate for SI and SI-related cerebellar 



responses increased when the interstimulus interval within a pair of stimuli was less than 

100 msec (10 Hz). At 75 msec interstimulus interval (13 Hz), failure in these responses was 

nearly complete, even though the short-latency component of the cerebellar response 

remained unchanged. In the olfactory system, these frequencies correspond to the sniffing 

rate of the animal which effectively gates cortical afferent input (Bressler 1984). Thus, our 

studies also lay the groundwork for future studies of the interaction between SI and the 

cerebellum in normal animals. 
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