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Abstract

In this thesis, we first describe some results on the following generalized chro-
matic number problem that has its origin in cellular radio (the frequency assign-
ment problem with co-channel constraints only): Given a graph G with vertices
V = {v1,...,v,} and an n-vector M = (my,...,m,) of nonnegative integers (the
requirement vector), find the minimum number of colors, x(G, M), required to as-
sign m; distinct colors to vertex v;, ¢ € {1,...,n}, such that adjacent vertices are
assigned disjoint sets of colors. We develop a lower bound on x(G, M), which gener-
alizes and strengthens the well-known bound x(G)a(G) > n for the usual chromatic
number. We show that this bound is sharp for a number of interesting graphs (e.g.,
perfect graphs and odd cycles), but not for all graphs — the Grotzsch graph be-
ing a counterexample. We also give examples of the application of this bound to

frequency assignment in cellular radio.

In the presence of constraints other than just co-channel constraints (e.g., adja-
cent channel and co-site constraints), the frequency assignment problem is a further
generalization of the graph coloring problem. We describe some heuristic algorithms
for frequency assignment in cellular radio that we developed by suitably adapt-
ing some of the ideas previously introduced in heuristic graph coloring algorithms.

These algorithms have yielded optimal, or near-optimal assignments, in many cases.

We then describe some dynamic channel assignment algorithms for cellular
systems that we have developed. In addition to having a considerable advantage
over fixed channel assignment in the range of blocking probabilities of interest in
current cellular systems (2-4%), these algorithms are feasible for implementation

in these systems. Some of these dynamic channel assignment algorithms are also
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shown to give good performance under overload (heavy traffic conditions).

Finally, we discuss various methods of computing interference probabilities and
the formulation of compatibility constraints on channel assignment based on these
calculations. We also formulate the channel assignment problem as one of coloring
hypergraphs, instead of graphs, and show that, in the case of dynamic channel
assignment, this leads to a considerable increase in the carried traflic for the same

blocking probability and the same maximum probability of interference.
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Chapter 1

Introduction

“Cellular Radio” is the term commonly used to refer to the mobile telephone systems
in use today. The service area (city) is divided into a number of cells; hence the name
“cellular.” Each cell is equipped with a base station and these base stations are
connected by wire-links to a telephone exchange. The “radio” link is only between

the mobile (phone) and the base station of the cell in which the mobile is located.

A bandwidth of 50 MHz is currently allocated in the U.S. for cellular radio
operation and this bandwidth is divided equally between two independent operators.
Therefore, there are two cellular systems in each city, each with its own set of
base sites (or base stations) and its own bandwidth. The available bandwidth is
divided into 30 KHz frequency channels. These frequency channels come in pairs;
one frequency channel is used for communication between the base station and the
mobile, and the other for communication between the mobile and the base station.
Henceforth, we will use the terms “frequency” and “channel” to mean one such
pair of frequency channels. Therefore, there are 416 frequencies available in each
cellular system in the U.S. But 21 of these are “control” channels which are used,
among other things, for setting up the call, so that only 395 “voice” channels are
available*. This extremely limited availability of frequencies means that the same
frequency has to be used simultaneously in different cells, in the same way that TV
channels are used simultaneously in different regions. But two cells which use the

same frequency — more precisely, two cells in which the same frequency is used —

* These numbers pertain to the U.S. and are by no means universal. For instance,
European systems commonly use 25 KHz channels.



must not be located geographically close together, in order to keep the crosstalk (or

interference) within acceptable limits.

Current cellular systems use fized channel assignment, i.e., each cell is assigned
a fixed subset of the available channels. Assume that the pairs of cells that should
not use the same frequency and the distribution of traffic in each cell are known.
Then the problem is to find an assignment of (sets of) frequencies to the cells,
in such a manner that the number of blocked calls is minimized or equivalently,
the carried traffic and (hence the revenue!) is maximized. Consider the following
closely related problem: The pairs of cells that cannot use the same frequency and
the number of frequencies to be assigned to each cell are given. Find the minimum
number of frequencies required. This is a generalization of the usual chromatic
number problem in graph theory because: if a graph is drawn where each vertex
represents a cell and pairs of cells which are forbidden from using the same frequency
are joined by an edge, the problem becomes one of assigning as many distinct colors
to each vertex as the number of frequencies required by the correponding cell such
that, adjacent vertices are assigned disjoint sets of colors and the total number of
colors used is minimized. We study several aspects of this problem in Chapter 2.
The main result of Chapter 2 is a generalization of the independence (lower) bound
on the chromatic number in graph theory. The cligue (lower) bound, which is

commonly used in cellular radio, appears as a special case of this generalization.

But in reality, there are constraints not only on the use of the same frequency
but also on the use of nearby frequencies. Consider a mobile located at the bound-
ary of a cell so that the signals it receives from two base stations are of nearly the
same strength. If the mobile is engaged in a phone call, only one of these signals is of
interest to it (the desired signal) and the other constitutes interference. If the inter-

fering signal is in an adjacent frequency channel, it can cause an unacceptable level



of interference because the filtering process is not ideal. Therefore, one may have to
prohibit the use of adjacent frequencies in adjacent cells. The signals received by a
base station from the mobiles in its cell can have widely differing strengths so that,
the interfering signal (which is on a different frequency) can be much stronger than
the desired signal; hence, within the same cell, not only the use of adjacent frequency
channels, but also the use of frequency channels that have one or more frequency
channels between them, may have to be forbidden. This leads to a generalized
graph coloring problem that is treated in Chapter 3. In that chapter, we describe
some fast heuristic algorithms for finding “good” frequency assignments, which were
obtained by suitably modifying heuristics introduced previously for graph coloring.
(The lower bounds developed in Chapter 2 for the simpler problem are, however,

valid for this more general problem, as well.)

In Chapter 4, we consider the problem of minimizing the blocking probability
with the given number of frequencies, using dynamic channel assignment. In fixed
channel assignment, only a fixed subset of the channels is available in each cell
whereas in dynamic channel assignmnent, all the frequencies are available in all
the cells. However, the constraints on the assignment of channels are the same
as in fixed channel assignment. We describe some dynamic channel assignment
algorithms that, for the same offered traffic, not only result in fewer blocked calls
than fixed channel assignment, in the range of blocking probabilities of interest (2—
4%), but also are feasible for implementation in current cellular systems. These

algorithms are also shown to have good performance under heavy traffic conditions.

The probability of interference P; for a call is the probability that the signal-
to-interference ratio falls below a specified level, termed the protection ratio, and is
a quantitative measure of the amount of interference experienced by that call. The

objective in cellular radio operation is to minimize the blocking probability (P;)



while maintaining an acceptable P;, i.e., while maintaining P; < P™** (specified)
for all calls. In Chapter 5, we consider several methods of calculating P; and the
parameters of the graph coloring model. We will then show that a better model for
the frequency assignment problem is hypergraph coloring rather than graph coloring
because, for the same value of P, and P/™**, we can get an increase in the carried
traffic using the hypergraph coloring model, though it is much harder to work with.

The various chapters are more or less independent of one another and each
chapter also has an abstract. The references for each chapter are listed at the end

of that chapter.

Some “Cellular Jargon”
Constraints on the use of the same channel are termed co-channel constraints while
those on the use of adjacent channels are termed adjacent channel constraints. The
term co-site constraints refers to the constraints on channels used in the same cell.
Frequently, in the literature, cellular systems are assumed to consist of regular,
hexagonal cells, with uniform propagation conditions and traffic. In reality, none
of these assumptions are likely to be valid. Though we will use examples from
these ideal systems, we will not specifically use the hexagonal geometry to develop
methods of frequency assignment; hence, our methods are applicable to all cellular
systems. But a phrase that is commonly encountered, and which we will also use
in our examples, is “number of reuse groups.” In the case of infinite (or sufficiently
large) regular, hexagonal systems, the phrase “number of reuse groups is M” means
that the co-channel constraints on frequency assignment are such that to assign
equal numbers of frequencies to all the cells, the total number of frequencies available
has to be divided into M groups, with one group being assigned to each cell. This
is equivalent to saying that two cells can use the same frequency if, and only if, the

distance between their centers is < vV M (see [Mac] and [Gam]).
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Chapter 2

A Graph Coloring Problem in Cellular Radio

Abstract

This chapter describes some results on the following generalized chromatic num-
ber problem that has its origin in cellular radio: Given a graph* G with vertices
V = {v1,...,v,} and an n-vector M = (m4,...,my) of nonnegative integers (the
requirement vector), find the minimum number of colors, x(G, M), required to as-
sign m; distinct colors to vertex v;, ¢ € {1,...,n}, such that adjacent vertices are
assigned disjoint sets of colors. We develop a lower bound on x(G, M), which gener-
alizes and strengthens the well-known bound x(G)a(G) > n for the usual chromatic
number. We show that this bound is sharp for a number of interesting graphs (e.g.,
perfect graphs and odd cycles), but not for all graphs — the Grotzsch graph be-
ing a counterexample. We also give examples of the application of this bound to

frequency assignment in cellular radio.

2.1. Motivation

In the so-called “(fixed) frequency assignment problem” of cellular radio [Pen], it is
necessary to assign to each cell a specified number of frequencies (proportional to the
traffic in that cell) subject to the constraint that (in order to minimize interference)
certain pairs of cells are forbidden from using common frequencies. If a graph is
drawn where each vertex represents a cell, and pairs of vertices corresponding to

pairs of cells that are forbidden from using common frequencies are joined by an

* The term “graph” used in this thesis means an undirected graph with no
(self-)loops or multiple edges.



edge, the problem becomes one of assigning frequencies (or colors) to the vertices
of this graph such that adjacent vertices are assigned disjoint sets of colors. Since
frequency spectrum is scarce, this assignment should use as few colors as possible;
thus we arrive at the generalized chromatic number problem stated in the abstract.
If M =(1,...,1) we obtain the usual chromatic number problem in graphs, i.e.,
to find the fewest colors necessary to assign a single color to each vertex so that

adjacent vertices are assigned different colors.

2.2. Lower Bounds

Definition. If G = (V, E), S C V is an independent set if z,y € S = zy ¢ E. The
independence number a; of v; is the size of the largest independent set containing
v;, 1.e.,

a; = max |S].
5:8CV,
independent,
viES

Theorem 1.

x(G, M) > {Z —-’;’-—] :

=1
Proof: Consider any coloring that uses x = x(G, M) colors. This can be repre-

sented as an n X x matrix A = (a;;), where

S 1, 1if color j is assigned to vertex ¢
710, otherwise.

Let

6; = min_a;. (2.1)

By the definition of «;,

Za,-j _<_ (5]'. (22)
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Example 2.1. Consider the cellular system shown in Figure 2.1. The cells are

located on a regular hexagonal grid and the distance between the centers of adjacent

cells is taken to be unity. Let us assume that if the distance between the centers of

two cells is < 2, they should not use the same frequency. The number of frequencies

to be assigned to each cell is indicated within the cell.

This cellular system can be represented by the graph in Figure 2.2. (The non-

edges are indicated by dashed lines.) The frequency requirement m; at vertex v; is

shown above v;. The independence numbers of vertices v4, v7 and vg are unity and
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the other vertices have independence number 2. For this problem, from Theorem 1,
x(G,M) > [3-20+ 1(5-100 + 2 - 10)] = 320. In this example, 320 colors are also
sufficient as demonstrated by the coloring (frequency assignment) in Figure 2.3,
where the positive integers are used to denote the various colors. [ |

Let a denote the size of the largest independent set in V' (i.e., a is the inde-

pendence or stability number of G). Then, from Theorem 1 we have the following

Corollary 1.
1 n
M)> | — E .
X(G’ ) B |Va =1 mz‘l

If M =(1,...,1), this is the independence bound on the usual chromatic number
(x(G)a(G) > n [Ber, p. 331]).

Let V! C V and let Gy+ be the subgraph* of G induced by V'. (The vertex
set of Gy+ is V' and the edges of Gy are all edges of G both of whose ends are
in V'.) Let My be the “induced” requirement vector for Gy, i.e., if v; € V', the
requirement at vertex v; in Gy is m;. Then, x(G, M) > x(Gv+,My/). If v; € V',
let a,‘-/ " denote the independence number of v; in Gy/. Applying Theorem 1 to all

such subgraphs, we obtain

Corollary 2.

vVevICV !
- v eV Q;

X(G,M)ZQ(G,M)d—éf max IVZ Ln%]

Example 2.2. Consider the cellular system shown in Figure 2.4. The constraints

are the same as in Example 2.1. Theorem 1 yields a lower bound of 305 frequencies.

* The term “subgraph” is always used in this thesis to mean a vertex-induced
subgraph.



Figure 2.4. Within every cell, the requirement (m;)
and the independence number («o;) of the vertex v;

representing this cell, are shown in the form m;/a;.

However, the graph of Example 2.1 is an induced subgraph of the graph represent-
ing this system. Therefore, Corollary 2 yields a lower bound of 320 frequencies.
The frequency assignment heuristics described in the next chapter yield an assign-
ment that uses 320 frequencies so that the bound of Corollary 2 is sharp in this
example. | |

If V' is a clique, o "=1foralli:v; e V' Applying Theorem 1 to all cliques,

we obtain

Corollary 3. (The Cliqgue Bound)

def
X(G, M) 2 w(G, M) = all cliques V" [ Z mi] '
LY, EVY
This is the most commonly used bound in cellular radio [Pen] and appears as a
special case of our more general bounds.
Example 2.3. The clique bound only yields a lower bound of 280 in both Examples

2.1 and 2.2 — the largest clique consists of the vertices v, v2, v3, vs4, vs, v7 and
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vg of Figure 2.2 — so that our more general lower bounds are necessary in these

cases. l

2.3. Perfect Graphs

For any graph G, let GM denote the graph obtained by replacing each vertex v; of
G by K,,, (the complete graph on m; vertices*) and joining each vertex of K,,; to
all vertices of K, if v; is adjacent to v; in G (and to no vertex of Ky; if v; is not
adjacent to vj in G). Let VM = {vl, ... o, ... ... . ,vk ...,v™} be the vertex
set of GM. Then, clearly x(G, M) = x(GM).

Lemma. If G = (V, E), let a(G) be the independence number of G and 6(G) the
minimum number of cliques needed to partition V. Then, for any M, if m; > 1 for
all i, o(GM) = o(G) and §(GM) = 4(G).

Proof: If {v;,,...,v;,} is an independent set of G then {v],...,v}

} is an inde-
pendent set of GM; hence, a(GM) > a(G). But no independent set of GM contains
two vertices from the same K,,,; hence, o(GM) < o(G). I {vi,,..., v, } is a clique

. my m; . . .
in G, then {v} ,..., i e ,v%k, ooy 0y, *} is a clique in GM. Therefore, to every

<

partition of V into cliques, there corresponds a partition of V¥ into cliques. Hence,
8(GM) < §(G). On the other hand, given any partition of V™ into cliques, we have
a partition of {vi,vd,...,vl} into cliques, which corresponds to a partition of V
into cliques. Hence, 8(GM) > 6(G). |
Definition. A graph G is perfect if for every (vertex-induced) subgraph G4 of G,
a(Ga) = 0(Ga).

Examples of perfect graphs are complete graphs, bipartite graphs (in particu-
lar, paths, trees and even cycles), interval graphs and comparability graphs [Ber,

chap. 16].

* If m; is zero, this results in the deletion of vertex v;.
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Theorem 2. If G is perfect, GM is perfect.*
Proof: Every subgraph of G is isomorphic to GM', for some subgraph Gy of
G and some vector M' with nonzero components. Therefore, applying the above
lemma to all subgraphs of GM, GM is perfect if G is perfect. |
If w(G) denotes the size of the largest clique of a graph G, by the Perfect
Graph Theorem of Lovasz [Ber, chap. 16], a graph G is perfect iff x(G4) = w(G4)
for every induced subgraph G4 of G. Together with Theorem 2, this shows that if
G s perfect, x(G, M) = w(G, M) (= Q(G, M)). In particular, x(G, M) = w(G, M)
for complete graphs, bipartite graphs and even cycles.
Theorem 3, which follows, shows that x(G,M) = Q(G,M) for odd cycles,

which are all imperfect (not perfect) graphs.

2.4. Imperfect Graphs

Theorem 3. If Coxt1 = (V, E) denotes the cycle on 2k + 1 vertices where E =

{01?)27 U2V3,...,V2kV2k41 Uzk+1v1} and

= my+me+...+m
L2k+1(M)q:fmax{ml—{—mg,mz—i-mg,...,m2k+1+m1,[ 1 2 . 2k+1"}

then, x(Cakt1, M) = Log+1(M).

Proof: From Corollary 2, restricted to the 2k 4+ 1 edges and the entire graph (or
by taking the maximum of the bounds obtained from Theorem 1 and Corollary 3),
x(Cak+1, M) > Log41(M). To prove the reverse inequality, we use induction on
Yoymi. I Y .m; = 1, exactly one of the m;s is nonzero and x(Cort1,M) =
Lop+1(M) =1, so that x(Cox+1,M) < Log41(M). If one of the m;s is 0, the sub-
graph induced by the other vertices is Py (the path on 2k vertices) which is a per-
fect graph. Hence, by Theorem 2, x(G, M) = max {m; + m;y1,t =1,...,2k + 1} <

* Note that if m; > 1 for all ¢, the converse is also true since every subgraph of
G is then isomorphic to a subgraph of GM.
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Lok4+1(M) since the edges are the only (maximal) cliques of C2k41. (All subscripts
in this proof are modulo 2k 4+ 1.) Therefore, we assume that all the m;s are > 0. If
min; m; + m;41 = mj+m;j4 assign a single color to each vertex in the independent

set S = {’l)j+2,'l)j+4,. ..,'Uj_l}. Let

| my, otherwise.

and let M' = (m}). Since |S| =k, + 3, m} = (3 3, mi) — 1. Therefore, since S

contains one vertex from every edge except v;v;41,

Loks1(M") = Logyr (M) — 1 (2.4)

unless Lak+1(M) = mj + mjy1 and mj + mjp1 > [+ EZ;H m;]. But this is

impossible because,

1 2k+1 1 k
T ; m; > T ;(mzi + Maiy1) (since my > 0)

> mj + mjp1 (by the minimality of mj; + mj41).

Since only one color has been used to reduce the requirement vector M to M’', this

yields

X(Cart1, M) < x(Cor41, M') + 1

< Lop+1(M') +1 (by the induction hypothesis)

= Logs1 (M) (using (2.4)). 1

It can be verified that the only imperfect graph on five vertices or less is the

pentagon; therefore, x(G, M) = Q(G, M) for all graphs on five or fewer vertices.
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Figure 2.5. The Grétzsch graph.

Using the same method as in the proof of Theorem 3, it can be shown that this
holds for all graphs on six vertices and for the complements of the odd cycles. This
raises the question: Is x(G,M) = Q(G, M) for all graphs? The answer is no as
seen from the following example, which is the smallest one we know.
Example 2.4. Consider the graph (called the Grotzsch graph [BCL, p. 241])
shown in Figure 2.5, with M = (1,...,1) so that we have the usual vertex-coloring
problem. The chromatic number of this graph is 4 [BCL, pp. 241-242] but the
lower bound of Theorem 1 applied to this graph yields only 3. (In Figure 2.5,
ap =+ =as =4, a6 =+ = ayp = 5 and ay; = 3. Hence, by Theorem 1,
X(G, M) > [(5)1 + (5)1 + 3] = 3.) Moreover, it can be verified — there are only 3
cases to check — that this graph is x-critical, i.e., deletion of any vertex decreases

the chromatic number and hence, Corollary 2 also yields a lower bound of only 3.

A class of graphs which is of interest in frequency assignment is the class of
unit disk graphs [Hal].

Definition. Unit disk graphs are graphs whose vertices can be represented by
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points in the plane such that two vertices are adjacent iff the distance between the
corresponding points is < 1. Hezagonal graphs are unit disk graphs which satisfy
the additional constraint that there exists such a representation where these points

form a subset of a regular hexagonal grid in the plane.

Observe that if an induced subgraph of a graph G is not a unit disk graph,
then the graph G is also not a unit disk graph. Therefore, the Grétzsch graph, for
which the bound of ‘Corolla,ry 2 is not sharp, is not a unit disk graph because the
subgraph induced by {vz,v3,vs,vs5,vs,v8,v11} (shown in Figure 2.6) is not a unit

disk graph [Hal, p. 1510].

Figure 2.6.

Is the bound of Corollary 2 sharp, i.e., is X(G, M) = Q(G, M), for all unit disk
graphs, or at least for all hexagonal graphs? The answers are again negative as
shown by the following example.

Example 2.5. Consider the cellular system shown in Figure 2.7. The constraints
are the same as in Example 2.1. Theorem 1 yields x(G,M) > [(2); + (3)3 +
(4)2 4 (6)5] = 4. It can be shown that for this problem x(G,M) = 5. (If there
is a 4-coloring of this graph, let color {1} be used at vy, color {2} at v and colors

{3,4} at v3. Observe that the colors of vertices vy, vs, vs, v7, 8,9, 10, v11 and vi2



Figure 2.7. Within every cell with a nonzero frequency
requirement, this requirement (m;) and the independence number
of the vertex v; representing this cell («;) are shown in the form

m;/a;, below the cell number . The blank cells have m; = 0.

are forced to be {1}, {83,4}, {1}, {2}, {3,4}, {2}, {1}, {3,4} and {1} respectively.
Therefore, none of the vertices {v13,v14,v15} can use colors {1} and {2} but they
must use three distinct colors, which is a contradiction.) It can be verified that
deleting any vertex decreases the chromatic number, so that Corollary 2 also yields
a lower bound of only 4. Hence, the bound of Corollary 2 is not sharp even for all

hexagonal graphs. |
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Chapter 3

Fixed Channel Assignment

Abstract

In this chapter, we describe some heuristic frequency assignment algorithms for
cellular systems that we have developed. These algorithms have yielded optimal, or
near-optimal assignments, in many cases. The frequency assignment problem can
be viewed as a generalized graph coloring problem, and these algorithms have been
developed, in part, by suitably adapting some of the ideas previously introduced in

heuristic graph coloring algorithms.

3.1. Introduction and Problem Statement

The frequency assignment problem discussed in the last chapter is a special case of
a more general problem, some aspects of which we address in this chapter. The only
type of restriction on frequency reuse has hitherto been of the “co-channel” type,
i.e., certain pairs of cells are forbidden from using the same frequency. However,
in practice, principally because the filtering process is not ideal, it turns out to be
necessary to impose restrictions, not only on the use of the same frequency, but
also on the use of nearby frequencies. In addition, we wish to find, not only the
minimum number of frequencies required, but also an assignment of frequencies
that achieves this minimum. This leads to the following more general problem.
Problem Statement

Frequencies are represented by the positive integers 1, 2, 3, ....
Given:

N: the number of cells in the system,
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m;, 1< 1< N: the number of channels required in cell 7, and
cij, 1 £ 4,5 £ N: the minimum frequency separation required between a
frequency used in cell 7 and a frequency used in cell j.

Find:
fir, 1<1<N,1<L k< m;: the frequency assigned to the kth requirement
(or call) in the ith cell
such that,

max fi
i,k

(i-e., the total number of frequencies required), is a minimum, subject to the

separation or compatibility constraints,
|fix — fi1l = cij

for all 7,7, k,1l except for ¢t = 3, k = L.

Example 3.1. The number of cellsis N =4. M = (m;) =(1,1,1,3) is the vector

of requirements. The separation or compatibility matriz C = (¢;5) is

S O o Ot
et OO
N 5tO O
O N~ O

It is required to find positive integers (frequencies) fi1, f21, f31, fa1, fa2 and fi3,
such that their maximum is a minimum, subject to the separation constraints spec-

ified by C. (We will return to this example later.) |

This problem is equivalent to the following generalized graph coloring problem.

Consider the graph obtained by representing each call by a vertex, with an edge
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joining two vertices if the corresponding calls cannot use the same frequency. This
edge is labelled with the required minimum separation between the frequencies
assigned to these calls. The frequency assignment problem is then equivalent to
assigning positive integers to the vertices of this graph such that, if two vertices are
connected by an edge, the absolute value of the difference of the integers assigned
to these vertices, is at least equal to the edge label, and the maximum integer
used is as small as possible. If all the ¢;;’s are 0’s and 1’s (pure co-channel case),
this reduces to the classical graph coloring problem. Since the latter is known
to be NP-complete, it follows that the generalized graph coloring problem is also
NP-complete [GJ79]. Thus we cannot expect to find an efficient algorithm that
solves this problem exactly. However, we have found a number of good heuristic

algorithms, which we present in the next section.

3.2. Heuristic Algorithms

The basic idea of all of our algorithms is to list the calls in some order, and use

either a requirement ezhaustive strategy or a frequency ezhaustive strategy (see [ZB]

or [GR)).
Frequency Ezhaustive strategy:

1. Starting at the top of the list, assign to each call the least possible frequency,
consistent with previous assignments, i.e., without violating the separation con-
straints. (In this strategy, one takes a call and goes through or ezhausts all the

frequencies; hence the name.)
Requirement Ezhaustive strategy:

1. Take frequency 1 and assign it to the first call in the list. There may be other

calls, further down the list, which can reuse frequency 1. If so, assign frequency



22

1 again to the first such call in the list. Continue in this manner until there is

no call in the list, to which frequency 1 can be assigned.

2. Now take frequency 2, and starting at the top of the list, similarly assign it to
all possible calls in the list.

3. Continue in this manner until all the calls have been assigned frequencies. (In
this strategy, one takes a frequency and exhausts the requirements (calls); hence
the name.)

Remark. If the calls are ordered such that all calls which are assigned frequency 1,
in an optimal assignment, are at the top of the list, followed by calls which are
assigned frequency 2, and so on, either a frequency exhaustive or a requirement
exhaustive strategy will produce an optimal assignment (i.e., using the minimum
number (span) of frequencies).

But there are n! possible orderings of n calls! Since the problem is NP-complete,
we do not try to find an “optimal ordering” but instead, are content with an or-
dering that yields a “good” assignment, i.e., an assignment in which the number of
frequencies used is close to the minimum. We will, in fact, consider just four differ-
ent orderings of the calls. These orderings are based on the notion of the degree of

a call.

The degree of cell z is defined as
N
di = Zmicz‘j —ci, 1<i<N,
j=1

which is a heuristic measure of the difficulty of assigning a frequency to a call in
that cell. The degree of a call is the degree of the cell in which it is contained. In

the equivalent graph coloring problem described above, the degree of a call is equal
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to the sum of the labels on the edges, incident at the vertex corresponding to the

call.

Based on this, two different orderings of the cells are considered. They are
the node-color and node-degree orderings considered by Zoellner and Beall in [ZB],
except that the above definition of the degree of a cell is used. In the node-degree
ordering, the cells are arranged in decreasing order of their degrees. The node-color
ordering is obtained as follows: Of the N cells, the cell with the least degree is
placed at the last (Nth) place in the list. This cell is eliminated from the system
and the degrees of the remaining cells are recomputed. Now, the cell with the
least degree is placed at the (N — 1)th position in the list, and eliminated from the
system. This process is continued until the ordering is complete. These orderings

are modifications of the “highest degree first” and “least degree last” heuristics in

graph coloring [GJ76, MMI, WP].

Once the cells have been ordered, the calls can be ordered in two ways. The
calls are arranged in an (N XMy ax ) matrix, where N is the number of cells and myax
is the maximum number of calls in any cell. Each row of the matrix corresponds
to the calls in a cell. The rows are arranged in node-color or node-degree order as
explained above. The idea is to arrange the calls such that all the columns have
nearly the same number of calls. Calls in the first row start at the first column.
Calls in the second row start at column (mj + 1), if the first row has m, calls, and
cyclically fill this row. Similarly, calls in the third row start where the second ends

and so on.

Example 3.1 (continued). The degrees of the calls are d = (4,7,6,13). There-
fore the node-degree ordering is (cell 4, cell 2, cell 3, cell 1). The matrix of calls

corresponding to this is
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a41 Q42 Q43
Ad= - asi
a1
In the node-color ordering, cell number 1 is again the last in the list since it
has the least degree. If this cell is eliminated, the degrees of the other cells become
d = (—,3,6,13). Therefore, cell number 2 will be in the third place in the list.
The final node-color ordering is (cell 4, cell 3, cell 2, cell 1). The matrix of calls

corresponding to this is

aqy Q42 a43

asi
Ac —_
azi

ai

Once the calls have been so arranged in a matrix, two orderings of the calls
are obtained by either listing all the calls in the first row, then the second, and so
on (row-wise ordering), or listing the calls in the first column, then the second, and
so on (columnwise ordering). Therefore one obtains four ways of ordering the calls
from two ways of ordering the cells. Combined with two techniques of assigning
frequencies, this gives rise to eight frequency assignment algorithms.

The assignments obtained using one or the other of these algorithms, in many
of the examples we considered, is close to the best lower bound (LB) that we can
obtain. In many cases, the best lower bound that we can obtain is the clique bound
(see the previous chapter or [Ga86]). In the other cases, we use the lower bounds
described in [Ga86]. (If the clique bound is not sharp it is often the case that, in the
presence of constraints other than co-channel constraints, especially large c;;, the

lower bounds described in [Ga86] are better than the lower bounds of the previous
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chapter. However, the lower bounds of the previous chapter should prove more
useful when the dominant constraints are of the co-channel type.) Some of these

examples are described in the next section.

Example 3.1 (continued). Consider the matrix of calls A4. Ordering the calls
row-wise, one obtains (a1, @42, a43, @21, 431, a11) as the list of calls. A frequency
exhaustive strategy applied to this list of calls gives the frequency assignment (1, 6,
11, 2, 3, 6). A requirement exhaustive strategy, at the first step, assigns frequency 1
to calls 1 and 7 (a41 and a11). The complete assignment using this strategy is (1, 6,
11, 5, 3, 1). The maximum frequency used by both these assignments is 11, which
is also the lower bound. This is because, any two of the three calls in cell number
4 require a separation of 5 between them. Ordering the calls columnwise, one
gets (a41, a1, @42, as1, ag3, a11). The row-wise and columnwise ordering methods
applied to the matrix of calls A, yield (a41, as2, ass, as1, a21, a11) and (a41, asi,
a42, a21, 443, a11), respectively. In all the above cases, in this particular example, a
frequency exhaustive strategy gives the assignment (a11 : 6, a1 : 2, a3 : 3, aq; : 1,
aqz : 6, a3 : 11) whereas a requirement exhaustive strategy gives the assignment

(a11 . 1, asy . 5, asy 3, a4y . 1, a4q2 6, aa3 11). I

The computational complexity of these algorithms is O(nr)*, where n is the
total number of channel requirements and r is the maximum degree of a call. It is
usually the case in cellular sytems, that r is bounded above by a constant, inde-
pendent of n. In this case, the complexity of these algorithms is only linear in n.
These algorithms are much faster than the algorithm proposed by Box [Box], which

appears to be widely used [Ga86, Ga88]. (Box’s algorithm requires a number of

* This assumes that the total number of frequencies used is bounded above by a
constant, independent of n. In cellular systems, this is usually the case. Otherwise,
the complexity is O(nr?).
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iterations; each iteration has a running time of O(nr) and the number of iterations
increases with n.) This feature is particularly important in the case of large cellular
systems. This, and the fact that these algorithms are applicable to any cellular sys-
tem (not necessarily consisting of regular, hexagonal cells), are important when one
is trying to choose the optimal locations for the cell sites, by repeated application
of a frequency assignment algorithm, since a large number of cases may have to be

solved.

3.3. Examples

Example 3.2. The cellular system considered is the 21-cell example found in
[Ga86], which is reproduced as Figure 3.1. The frequency requirements (m;) are
shown within each cell. We tabulate the performance of our frequency assignment

algorithms for various sets of compatibility constraints in Table 3.1.

Example 3.3. We consider the same system as in the previous example but with
a different set of frequency requirements (m;) which is shown in Figure 3.2. Table

3.2 shows the performance of our algorithms in this case.

Example 3.4. The cellular system, frequency requirements and the compatibility
matrix correspond to the example in [Ga88]. The frequency requirements and the
compatibility matrix are shown in Table 3.3*. The performance of our algorithms
is shown in Table 3.4. It is interesting to note that while the algorithm used in
[Ga88] (which is a variant of Box’s algorithm [Box]) takes 78 iterations to achieve
the lower bound of 222 frequencies, our algorithms result in a frequency assignment
that uses only 223 frequencies, which is nearly optimal, in the equivalent of 8 iter-

ations (corresponding to trying all 8 algorithms and choosing the best). This is an

* Each of the combiner groups in the example in [Ga88] is treated as a cell for
the purposes of frequency assignment.
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Figure 3.1.

Table 3.1.
N. acc ¢; LB CRF CRR CCF CCR DRF DRR DCF DCR
122 5 414 543 464 460 476 543 521 475 504
7T 2 5 414 543 468 451 501 543 466 447 495
122 7 5833 536 565 546 562 536 566 546 565
7 2 7T 533 536 564 546 559 536 561 589 566
121 5 381 381 881 881 381 381 381 881 381
7 1 5 381 %81 381 381 381 881 881 981 881
121 7 5833 533 533 583 538 538 538 5839 538
7 1 7 833 533 533 583 53% 538 538 588 538

N, denotes the number of reuse groups corresponding to the co-channel constraints.
A 2 (resp. 1) in column “acc” implies the presence (resp. absence) of adjacent chan-
nel constraints on adjacent cells. The co-site constraint is indicated in column “c¢;;.”
LB denotes the best lower bound obtained using generalizations of the clique bound
described in [Ga86]. A three letter code is used to indicate the algorithms. The
first letter is “C” or “D” and denotes “node-Color order” or “node-Degree order”
respectively. The second letter is “R” or “C” for “Row-wise” or “Columnwise” or-
dering. The last letter is “R” or “F” for “Requirement” or “Frequency” exhaustive
method of assignment. The entries beneath the acronym for each algorithm are the
number of frequencies (span) required by that algorithm. (The numbers closest to
the lower bound in each row are in italics.)
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Figure 3.2.

Table 3.2.
N, acc ¢; LB CRF CRR CCF CCR DRF DRR DCF DCR

12 2 5 258 360 345 296 283 346 296 304 297
7 2 5 229 347 28 274 272 346 270 280 269
122 7 309 381 325 315 327 384 384 310 335
v 2 7 309 310 319 318 328 358 341 333 338
12 2 12 529 529 529 529 529 534 530 534 532

N, denotes the number of reuse groups corresponding to the co-channel constraints.
A 2 (resp. 1) in column “acc” implies the presence (resp. absence) of adjacent chan-
nel constraints on adjacent cells. The co-site constraint is indicated in column “c;;.”
LB denotes the best lower bound obtained using generalizations of the clique bound
described in [Ga86]. A three letter code is used to indicate the algorithms. The
first letter is “C” or “D” and denotes “node-Color order” or “node-Degree order”
respectively. The second letter is “R” or “C” for “Row-wise” or “Columnwise” or-
dering. The last letter is “R” or “F” for “Requirement” or “Frequency” exhaustive
method of assignment. The entries beneath the acronym for each algorithm are the
number of frequencies (span) required by that algorithm. (The numbers closest to
the lower bound in each row are in italics.)
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Table 3.3.

Compatibility matrix
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Table 3.4.

DCR
224

CRF CRR CCF CCR DRF DRR DCF
223 250 252 224

267

LB
222

223

247

(See Table 3.1 or 3.2 for expansion of acronyms.)
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improvement in speed by an order of magnitude! This advantage in speed can be

quite critical in the case of large problems like the next example.

Example 3.5. We applied our frequency assignment algorithms to a typical large
cellular system. This system consisted of 58 cells. But many of the cells were
divided into 60° sectors. For the purposes of frequency assignment, each sector of
a cell can be treated as a cell. When this was done, we had 245 (virtual) cells. All
the cells had modest frequency requirements, the maximum number of frequencies
required in any cell being 15. The total number of requirements was 2285. The best
lower bound that we could obtain on the minimum number of frequencies required
for this problem was 298 and this was obtained using one of the lower bounds in

[Ga86]. Our algorithms yielded an assignment that used 305 frequencies.

3.4. Comments and Conclusions

If all the nonzero entries in the separation matrix are taken to be unity, the cells
ordered using the node-color or node-degree ordering described above, and the calls
ordered row-wise, we obtain the node-color and node-degree orderings described in
[GR]. The best assignment obtained using our algorithms, in all the examples con-
sidered, is better than the assignments obtained by using this ordering of the calls,
and a frequency or requirement exhaustive strategy. However, the performance of
the frequency assignment algorithms obtained by using this ordering of the cells,
and columnwise ordering of calls, is better in some cases. One such case is in Table
3.1, N, = 7, acc = 2 and ¢;; = 5. The minimum number of frequencies used by any
of the algorithms listed there is 447 but with the node-color ordering of cells de-
scribed in [GR], columnwise ordering of calls and a frequency exhaustive assignment

strategy, an assignment which uses only 445 frequencies may be obtained.

Therefore, the two new ideas on channel assignment introduced in this chapter
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viz., the new definition of the degree of a cell (or call) in the presence of arbitrary
constraints (not purely co-channel), and the columnwise ordering of calls, which
corresponds essentially to taking a call from each cell in the system in succession
(with some modification to accommodate the unequal numbers of calls in each
cell), achieve significant savings in the spectrum needed for a frequency assignment
problem.

In addition to being NP-complete, graph coloring is one of the most difficult
problems to develop approximation algorithms for. It is shown in [GJ76] that the
problem of finding a fast (polynomial-time) algorithm that guarantees a coloring
using less than twice the minimum number of colors, is itself NP-complete. In the
light of these results, the performance of the heuristics we have developed seems

good indeed.
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Chapter 4

Dynamic Channel Assignment

Abstract

This chapter describes some dynamic channel assignment algorithms for cellular
systems that we have developed. In addition to having a considerable advantage
over fixed channel assignment in the range of blocking probabilities of interest in
current cellular systems (2-4%), these algorithms are feasible for implementation
in these systems. Some of these dynamic channel assignment algorithms are also

shown to give good performance under overload (heavy traffic conditions).

4.1. Introduction and Notation

In fixed channel assignment (FCA), only a fixed subset of all the channels can be
used in each cell whereas in dynamic channel assignment (DCA), all the channels
can be used in all the cells. A channel is said to be available in a cell if, given the
existing configuration of calls in progress in the system, this channel can be used
for a new call in that cell, without violating any of the compatibility constraints. A
dynamic channel assignment algorithm, or strategy, is a method for choosing, when
more than one channel is available, which of these channels must be assigned to a
new call. We will consider both DCA algorithms that do not permit calls already in
progress to be reassigned to a different frequency, and those that do. The objective
in DCA is to develop a channel assignment strategy which minimizes the total
number of blocked calls and is, in addition, feasible for implementation. Of course,
we would like to do better than FCA. It may be argued that FCA is a special case

of DCA. However, we assume that none of the DCA strategies are allowed to block
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a call, if a channel is available to carry the call (i.e., these algorithms are greedy).
This is not true of FCA assignment since, a call may be blocked under FCA even
though a channel is available to carry the call, because of the restriction that only
a fixed subset of the channels can be used in each cell. Thus FCA is not a special
case of DCA, and indeed in certain rare cases may do better [Kel]. We present
several DCA algorithms, of increasing levels of complexity of implementation, and

compare their performance against that of FCA.
Notation:
N: the number of cells in the system;

¢ij, 1 <1,7 < N: the frequency separation required between a call in cell :

and a call in cell j;

ni, 1< ¢ < N: the number of calls in progress in cell z;

pi, 1 <1< N: the probability that a new call arrives in cell ¢;
p: the total traffic in the system measured in Erlangs®;

pi =pip, 1<t < N: the traffic in cell ¢

Ny: the number of (contiguous) frequency channels available. These channels

are numbered 1 through Ny.

fit, 1<e¢< N, 1<k <m; the frequency assigned to the kth call in the
tth cell.

Some more notation will be introduced later, as the need arises.
Compatibility Constraints:

|[fit — fj1] 2 cij for all 4,7, k,1 except for i =3, k = [.

* If Ais the mean arrival rate of calls, and T is their mean holding time, the traffic
is AT Erlangs. The unit “Erlang” is named after Anger Krarup Erlang (1878-1929),

a Danish mathematician and a pioneer in the field of traffic engineering [Ino, p. 225].
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Assumptions:
e Call arrivals in cell ¢ are independent of all other arrivals and obey a Poisson
distribution with parameter p;.
e Call holding times (durations) are exponentially distributed with a mean of
180 seconds.
e There are no calls handed-off between cells.
e Blocked calls are cleared.

The assumption of memoryless arrivals and holding times is standard in wireline
telephony [Fel, p. 282, p. 293, pp. 458459, Ino, p. 225] and it is reasonable to assume

that these hold for mobile telephony as well.

Four dynamic channel assignment strategies will be considered. They are:
1. Simple: An incoming call is assigned the least available frequency.

2. Mazavail: Of all the frequencies that can be assigned to an incoming call, the
frequency which maximizes the total number of channels available in the entire

system is assigned to an incoming call.

3. Remazl: If no frequency is available for assignment to an incoming call (using
the Maxavail strategy), one of the calls in progress is permitted to be reas-
signed to a different frequency. The reassignment is also carried out using the

“Maxavail” principle.

4. Remaz?: If no channel is available for assignment to an incoming call using
the Remax1 strategy, one more call is permitted to be reassigned to a different

frequency.

Each strategy is more complex (in terms of difficulty of implementation) than

the previous one. However, we will see that there is a payoff in terms of performance.
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4.2. Details of the Strategies

The details of the simulation and the channel assignment algorithms will now be

described. Since the arrival process is assumed to be memoryless, the time between

call arrivals is exponentially distributed. The Mean Time Between call Arrivals

(MTBA) in the entire system equals (180/p) seconds, since the mean call duration

is assumed to be 180 seconds. To simulate the process of call arrivals and departures,

the following steps are carried out:

Time is discretized to steps of 10 ms. The minimum duration of a call, and the

minimum time between call arrivals, are both assumed to be one time step.

1.

10.

To start the process, generate an exponentially distributed random variable
(ERV) with mean = MTBA.

Increment the time by one step and check for a call arrival. If there are no
arrivals, go to step 8.

Choose a cell for the call with the required distribution (i.e., choose cell i with
probability p;).

Generate an ERV with mean = MTBA for the time to the next call arrival.
Call the channel assignment routine.

If it returns a channel, assign it to the call, and also make the required call
rearrangements, if any. If it reports, “call blocked,” go to step 8.

Generate an ERV with mean 180 seconds for the call duration, and keep track
of the channels that are not assignable to future calls in each cell because of
this assignment.

Check for call departures.

If there are any departures, free all the channels that were tied up in each cell
because of the frequencies assigned to the departing calls.

Go to step 2.
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Each of the following channel assignment algorithms requires that the cell in
which the call arises, referred to as “callcell” below, be passed to them. They
can access all the existing assignments (say, through global variables). They either
return a channel that can be assigned to the call, or report, “call blocked.” If it is

a rearrangement strategy, the required call rearrangements are also returned.

Simple:
1. From the list of channels 1 through Ny in “callcell,” return the first channel
that is free.

2. If there is no free channel, report “call blocked.”

Maxavail:

1. For each available channel in “callcell,” compute

Systemwide Channel Availability = Z Number of available channels,
all cells

assuming that this channel is assigned to the call.
2. Return that channel which maximizes this sum.
3. In the case of a tie, return the least channel.

4. If no channel is available in “callcell,” report “call blocked.”

Remax1 :
1. Call Maxavail.
2. If Maxavail reports “call blocked,” go to step 3. Otherwise, return the channel
returned by Maxavail.
3. Make a list of all the channels in “callcell” that are unavailable because of
exactly one other call that is in progress.

4. Call Maxavail for each of these calls (interferers).
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For each of the interferers that are not reported “blocked” by Maxavail, by
assuming that the channel returned by Maxavail is assigned to them, and that
the corresponding “freed” channel is assigned to the new call, compute “Sys-

temwide Channel Availability.”

6. Return that interferer which maximizes this sum, the channel to which it should
be reassigned, and the channel that is to be assigned to the new call.

7. If no channel can be freed by reassigning a single call, report “call blocked.”

Remax2 :

1. Call Remax1.

2. If Remax1 reports “call blocked,” go to step 3. Otherwise, return the channel
returned by Remax1.

3. Make a list of all the channels in “callcell” that are unavailable because of
exactly one other call that is in progress.

4. Call Remax1 for each of these calls (interferers).

5. For each of the “interferers” that are not reported “blocked” by Remaxl, by
assuming that the rearrangement required by Remax1 is made, the channel
returned by Remax1 is assigned to the “interferer,” and that the corresponding
“freed” channel is assigned to the new call, compute “Systemwide Channel
Availability.”

6. Return the two rearrangements, and the freed channel, corresponding to that
call which maximizes this sum.

7. If no channel can be freed using this strategy, report “call blocked.”

4.3. Performance of the Strategies

The performance of these channel assignment strategies is now investigated. The

cellular system that is chosen for this purpose is the N = 21 system described
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in [Gam, p. 13]. This cellular system is reproduced in Figure 4.1. The channel

assignment constraints are:

e co-channel constraints corresponding to 12 reuse groups, i.e., two cells can use

the same frequency if, and only if, the distance between their centers is > /12,

e adjacent channel constraints for adjacent cells, i.e., adjacent cells cannot use

the same or adjacent frequencies but may use any other frequency, and
e a co-site constraint of 5.

The compatibility matrix C = (¢;;) corresponding to these constraints is shown

in Table 4.1.

Case 1: Homogeneous Spatial Traffic Distribution

In this case, p; = (1/N) for all <. The number of channels available is Ny = 96.
The operation of the cellular system is simulated for a period of 3 hours and the
average blocking, which is the ratio of the number of blocked calls and the number
of call attempts and is an estimate of the blocking probability, is plotted as a func-
tion of the offered traffic, in Figure 4.2, for each of the dynamic channel assignment
strategies considered. Because of the constraints chosen, the fixed channel assign-
ment that minimizes the blocking probability* assigns 16 channels each to cells 5, 6,
12, 13 and 14, and 8 channels each to the other cells (see Figure 4.1). The blocking
probability for the fixed channel assignment can be calculated using the Erlang B
formula and this is also plotted in Figure 4.2. (If, in a telephone exchange (or cell),

the arrival process and the holding times are memoryless (as we have assumed), the

* This is for low traffic levels. The optimal fixed channel assignment, i.e., the
one that minimizes the blocking probability, is not necessarily independent of the
offered traffic. Fixed channel assignments that are optimal for small values of p
may not be optimal for large values of p (i.e., for heavy traffic). This phenomenon
requires further investigation.
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Figure 4.1. The cell number is shown within each cell.

Table 4.1. Compatibility matrix
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blocking probability is given by

pN /N
Zfio Pi/i!,

where p is the traffic (measured in Erlangs) and N is the number of trunks (or

Py, =

frequencies) available. This formula is called the Erlang B formula [Ino, pp. 226-
2271.)

It is readily seen that the dynamic channel assignment strategies can be ranked
in decreasing order of performance as follows: Remax2, Remax1l, Maxavail and
Simple, and that all of them outperform fixed channel assignment in minimizing
the blocking probability.

But what about Remax3, Remax4, etc.? To answer this question, we consider
an tdealized DCA strategy that permits everyone to be reassigned in order to ac-
commodate a new call. This is termed the “Maximum Packing” strategy and was
first proposed by Everitt and Macfadyen [EMc] (quoted from [EMn]). (In our ter-
minology, this would be Remaxco, but we will adopt the term Maximum Packing.)
We would like to compare the performance of our DCA strategies with that of the
Maximum Packing strategy. The application of this strategy is equivalent to solv-
ing the fixed channel assignment problem every time an incoming call is blocked.
This would involve a great deal of computation, even if the fast heuristic algorithms
developed in the previous chapter are used. Since, in current analog systems, the
process of reassigning a frequency is not likely to be entirely transparent to the user,
there would be a considerable decrease in service quality if there are a large number
of reassignments during a call. Also, the signalling problem, i.e., the problem of
communicating all the necessary changes to the mobiles involved in the reassign-
ment, could become unmanageable. In contrast, Remax2 reassigns at most 2 calls

to accommodate a new call, and only after attempting to accommodate it without
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Figure 4.2. Homogeneous traffic case.
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reassignments, or with one reassignment only. The natural question to be asked is:
“What is the difference in performance between Remax2 and the Maximum Packing

strategy?”

The evaluation of the Maximum Packing strategy involves a lot of computation,
since the allowed states of the system, i.e., the configurations of calls that can be
carried by the system, are not easy to find, in general. To determine whether a given
state of the system is allowed or not, one has to solve the fixed channel assignment
problem which is, in general, difficult. However we can obtain lower bounds for
the fixed channel assignment problem which are easy to check. In other words, we
can obtain sufficient conditions for a call to be blocked, which are easily checked,
though these conditions are by no means necessary. The lower bounds for the fixed
channel assignment problem we consider are the clique bound and its generalizations
in the presence of arbitrary (not purely co-channel) constraints described in [Gam,
lemma 7]. We use these bounds to simulate the performance of an idealized DCA
strategy, which we call “Bound.” This DCA strategy blocks an incoming call if, and
only if, accommodating this call would mean that one of these lower bounds (on
the number of channels required to handle this configuration of calls) exceeds Ny
(= 96, in this example). This is plotted as “Bound” in Figure 4.2. Note that the
complexity of evaluating this strategy will depend on the complexity of computing
the lower bounds. The lower bounds that we have chosen [Gam, lemma 7] are easy
to compute. However, since we need to resort to simulation in order to evaluate
this strategy, the computing time required is nearly the same as that for the Simple

strategy (see the last section of this chapter).

We were pleasantly surprised to find that, in this case, the performance of
Remax2, in terms of minimizing the average blocking, is close to that achieved by

the Bound strategy.
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Table 4.2. Inhomogeneous spatial distribution
of traffic considered

i pi
1 0.0166
2 0.0520
3 0.0166
4 0.0166
5 0.0166
6 0.0312
7 0.0374
8 0.1081
9 0.1601
10 0.0582
11 0.0270
12 0.0312
13  0.0644
14 0.0312
15  0.0748
16 0.1185
17 0.0582
18 0.0166
19  0.0208
20 0.0270
21  0.0166

Case 2: Inhomogeneous Spatial Traffic Distribution

The p; in this case are obtained by treating the channel requirements specified
in [Gam)] for the example under consideration, as relative traffic densities. These p;

are listed in Table 4.2.

The performance of these algorithms is plotted in Figure 4.3. Once again, of
the channel assignment strategies considered, Remax2 is the best; but Remax1 is
almost as good. But unlike Case 1, the performance of Remax2 is not extremely
close to that of Bound. This difference in performance may be because Remax2 is

not a good strategy when the traffic is inhomogeneous. On the other hand, in this
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case, the performance of no realizable strategy, may come close to that of Bound,
which is not realizable, even in principle, since the lower bounds used are not always
sharp. To shed further light on this question, we need a few preliminaries.

The process of call arrivals and departures is a discrete-state, continuous-time,
Markov process, because of the assumption of memoryless arrivals and holding
times. The state of the system is specified by the N-dimensional vector 7i = (n;)
whose components are the number of calls in progress in the NV cells in the system.
In particular, the Markov process is a birth-death process since only transitions
to neighbouring states (in N-dimensional space) are permitted, i.e., the probabil-
ity of multiple arrivals, or departures, or an arrival and a departure, in a small
time interval At, is negligible, compared to the probability of a single arrival or
departure [Fel, pp. 454-457, Sch, pp. 47-49] (one-dimensional case). The allowed
states of the system are all the states i = (n;), which can possibly exist, with
the given number of channels and the constraints on their assignments. Let A de-
note the set of all allowed states of the system. From these assumptions it can be
shown (by a straightforward generalization of the method in [Sch, pp.47-49] for the
one-dimensional case) that the equilibrium probability that the system is in state
i = (n}),1 <¢ < N, is given by

! 7 !
LS e N fond 1onl !
p1ipat - pa [niingl. . only!
ny _n nN .
E ﬁENp11p22"‘pN /nl'ng'nN'

Pa =

Now consider the following cellular system consisting of two cells with the

separation matrix C = (¢;;) given by:

2 1
C= (1 2).
Let Ny = 3. The allowed states of the system A are (0,0), (1,0), (0,1), (2,0), (1,1),
(0,2), (2,1) and (1,2). It can be shown, by a straightforward calculation using the
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expression for the equilibrium probabilities for the system states mentioned above
that, the probability that an incoming call is blocked under the Maximum Packing

strategy is

PMaximumPacking — P2(1 - 3291132) +p1p2,03
’ 2+42p+p* + p1p2p®

(This is because a call is blocked under the Maximum Packing strategy if, and only
if, accepting that call would result in the system being in a disallowed state.) The
two cells in this system constitute a clique and hence, the total number of calls in
the system is a lower bound on the number of frequencies required. If we implement
the Bound DCA strategy using only this lower bound, this strategy will block an
incoming call if, and only if, 3 calls are already present in this system. The blocking

probability is easily calculated using the Erlang B formula to be

T 14 p+p2/204p3/3)

Pl?ound P3 /3'

Let p = p;. Then, pip2 = p(1 — p), is a function only of p, and p serves as
a measure of the degree of nonuniformity of the traffic. The above expressions are
plotted in Figure 4.4 as a function of the traffic for various degrees of nonunifor-
mity, i.e., for various values of p. (PP°""¢ is independent of p, in this example.)
The widening of the difference in performance between the two strategies, as the
nonuniformity in the traffic increases, is evident from this plot.

Intuitively, one may expect the performance of the Maximum Packing strategy
to serve as a lower bound on the performance of any channel assignment strategy
since, if the Maximum Packing strategy blocks a call, so must any other channel
assignment strategy. Similarly, one may also expect the performance of Bound to
serve as a lower bound on the performance of Maximum Packing. Indeed, this is the

idea behind the consideration of these idealized strategies. Therefore, the fact that
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the performance of the Maximum Packing strategy diverges from that of the Bound
strategy as the traffic becomes more inhomogeneous is encouraging; it suggests that
the performance of no realizable strategy may come close to that of Bound and
hence, Remax2 may actually be an excellent strategy, in the case of inhomogeneous

traffic too.

However, in a remarkable paper Kelly [Kel] showed that under certain condi-
tions, e.g., heavy traffic, the performance of the Maximum Packing strategy may
actually be worse than that of FCA. This is because the Maximum Packing strategy
is a greedy strategy while FCA is not, i.e., under certain circumstances, blocking a

call deliberately enables more calls to be accommodated later.

It is also worth noting that, for the same traflic, the average blocking in this
inhomogeneous system is considerably more than that in the homogeneous system.
This seems to confirm the widely held belief among cellular system designers that,

“

the traffic in the system should be as homogeneous as possible. (“... matching the

spatial density of available channels to the spatial density of demand for channels

..., V. H. MacDonald in [Mac, p. 19]).

4.4. Heavy Traffic and Robustness

In the example in Kelly’s paper [Kel] where he demonstrates that the Maximum
Packing strategy can actually be worse than FCA, this occurs under heavy traffic
conditions. Also, quoted from [EMn, p. 1173]: “... the existing dynamic channel
assignment algorithms make the network overload performance no better than that
with fixed channel assignment, and can make it worse, depending on the particular
algorithm used. ... Much more work is needed to produce dynamic channel assign-
ment algorithms that do work well under overload.” How do our algorithms perform

under overload (heavy traffic conditions)? We simulated their performance, in the
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case of homogeneous traffic, for the same system as in Figure 4.1, with Ny = 96
and the same compatibility matrix as in Table 4.1, under heavy traffic conditions.

The results are shown in Table 4.3.

Table 4.3.

(Pf is the blocking probability when strategy S is used.)

Traffic PbFCA PbSimple Pg\/laxa,va.il PI}{emaxl P{}iemaxZ PI;Bound
(Erlangs) (%) (%) (%) (%) (%) (%)
360 48.6 53.0 51.8 47.9 46.6 44.2
720 72.2 74.5 74.0 72.5 71.8 69.9

It can be seen that Remax2 continues to be better than FCA even when the
blocking probability gets up to over 70% and that Remaxl is quite good too, al-

though Simple and Maxavail are worse than FCA.

What happens, if for some reason all (or most of ) the traffic is in only one cell,
and for a single cell, this traffic is heavy? (This is a case where we have both heavy
and extreme inhomogeneity of traffic.) Because of the co-site constraint of 5, since
Ny = 96, the maximum number of calls that can be in progress in a single cell is 20.
All of our algorithms, from Simple to Remax2, make 20 channels available in the

one cell with all the traffic. Therefore, these algorithms can be said to be robust.

However, we have only investigated the performance of our algorithms, when
the traffic in the system is steady. How do these algorithms perform when the traffic
i8 increasing or when all the traffic is becoming concentrated in a single cell? More
generally, what is the performance of these algorithms in the case of time-varying

traffic? We have not investigated this problem but the design of algorithms that do
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well in the case of time-varying traffic also, is one of several open problems in this

area. Some more are listed in the next section.

4.5. Conclusions and Open Problems

Can we implement these strategies in current cellular systems? First, note that the
implementation of these strategies would require no changes to the mobile phones.
The only changes needed would be at the base stations, which would have to be
made frequency-agile, i.e., capable of transmitting on all frequencies allocated to
cellular operation. (The mobile is already capable of doing this, but the design of
frequency-agile base stations is more difficult since base stations transmit at a much
higher power than the mobiles. But the author has learned from informed sources
that frequency-agile base stations will be possible in the near future.) Reassigning
a call to a different frequency is not a problem, since even current systems have
to reassign a call to a different frequency during a hand-off, i.e., when the mobile
moves from one cell to another. Then, the only question is that of computation.
For the examples considered, the running time for Simple is about 10 minutes,
while Maxavail, Remax1 and Remax2 take between 20 and 25 minutes, on a MIPS
M/120 RISComputer. Considering that the performance of these algorithms is
simulated for a period of 3 hours of simulated time, these algorithms can be said
to run in “real” time. A cellular system, consisting of 21 cells, is not atypical
of existing systems. The number of channels available is typically about 3 to 4
times what had been assumed above. But the running time of these algorithms
only increases linearly with increase in the number of cells and quadratically with
increase in the number of available channels. Therefore, the deployment of these
channel assignment strategies, in current cellular systems, seems well within the

scope of today’s technology.
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Table 4.4. Blocking probabilities for FCA and DCA strategies
when Ny = 400, and p = 720.

FCA Simple Maxavail Remax1 Remax?2 Bound

10.6 10.1 7.7 3.6 3.4 3.4

On comparing the performance of these algorithms with that of fixed channel
assignment, it is found that, in the interesting range of blocking probabilities, viz.
2-4%, an increase in carried traffic of about 70% can be obtained. This can be seen
from Figure 4.2 for the uniform traffic case, where the performance of the best fixed
channel assignment is also plotted. A similar increase is obtained in the nonuniform
traffic case also, where the best fixed channel assignment obtained with the help of
the algorithms in the previous chapter was used.

However, it must be noted that the gain in carried traffic over FCA achieved
by these DCA algorithms is a function of the number of channels available per
cell in FCA (and hence of the total number of channels available in the system).
Since the actual number of frequencies available in current cellular sytems in the
U.S. is about 400, we compiled the data in Table 4.4 to evaluate the increase that
may be achieved in this case. This is again the 21-cell system of Figure 4.1, with
homogeneous traffic and the compatibility matrix of Table 4.1.

FCA results in a blocking probability of nearly 3.4% at a traffic of 27.75 Er-
langs/cell or 583.75 Erlangs in the system. Therefore, we get an increase of about
22.8% in the carried traffic in going from FCA to DCA with Remax2, when the
number of channels per cell is 33-34*. In the earlier case, when the number of

channels per cell was 8, and the total number of channels available in the system

* We consider the number of channels in the cells in the center of the system, as
we will usually be able to assign more channels to cells at the edge of the system
due to fewer compatibility constraints on these cells.
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was 96, at a blocking probability of 2.9%, we got an increase of 68% in going from
FCA to DCA with Remax2. The actual number of channels per cell (or sector, in
the case of sectored cells) will be somewhere between these two cases and so will the
increase in carried traffic (or revenue!) in going from FCA to DCA with Remax2.

One of the important open problems in this area is to compute a sharp lower
bound on the performance of any channel assignment strategy. In the light of the
available evidence, this appears to be a difficult problem. (However, the reader is
urged to read the next chapter before attacking this problem.)

Furthermore, blocked calls were assumed to be cleared from the system. The
‘carried traffic could be increased further by queuing the blocked calls.

In all of the above, the computation is centralized. It remains to be investigated
as to how this may be distributed among the individual cell-sites, or the mobiles,

or both.
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Chapter 5

Interference Probabilities and Hypergraphs

Abstract

In this chapter, we discuss various methods of computing interference probabilities
and the formulation of compatibility constraints on channel assignment based on
these calculations. We also formulate the channel assignment problem as one of
coloring hypergraphs, instead of graphs, and show that, in the case of dynamic
channel assignment, this leads to a considerable increase in the carried traffic for

the same blocking probability and the same maximum probability of interference.

5.1. Introduction

The primary objective in the design and operation of any cellular telephone system
is to maximize the carried traffic while maintaining acceptable call quality. The call
quality is usually measured by two parameters, the blocking probability (P) and the
interference probability (F;), and is considered acceptable if P, < P** (typically
5%) and P; < P (typically 10%). Though the number of frequencies available in
practice is fixed, it is useful to formulate the problem as one of minimizing the total
number of frequencies needed when the number of frequencies required in each cell is
specified, especially in the case of fixed channel assignment. As seen in the previous
chapters, the frequency (channel) assignment problem in cellular radio is usually
formulated as a graph coloring problem with the interference constraints specified
by a compatibility matriz. In the simplest case, the compatibility matrix specifies,
for every pair of cells, whether co-channel use is permissible, or not. The entries

in the compatibility matrix are (or should be) determined on the basis of worst-



56

case interference probability calculations so that P; < P™**. If a graph is drawn,
where each vertex represents a cell, and pairs of cells which are forbidden from
using the same frequency are connected by an edge, the fixed channel assignment
problem is equivalent to assigning as many distinct colors to every vertex of this
graph as the number of frequencies required to be assigned to the cell which that
vertex represents, while minimizing the total number of colors used. Frequencies
(or colors) are represented by the positive integers so that, equivalently, the largest
integer used may be minimized.

This formulation is convenient since it enables us to use well-developed graph-
theoretical techniques. We presented several results for this formulation of the
problem in the previous chapters.

However, a more general, and better, formulation of the channel assignment
problem is to forbid all members of certain subsets of cells (not necessarily pairs)
from simultaneously using the same channel*. (In the graph-theoretical case de-
scribed above, these subsets are restricted to be pairs of cells.) As we will demon-
strate, this general approach enables us to obtain better results for the same value
of P;"®*. These constraints can be represented in the form of a hypergraph where
the vertices of the hypergraph represent the cells and the set of cells which are
forbidden from using the same frequency are said to be adjacent, i.e., constitute a
(hyper)edge of the hypergraph. We will refer to this formulation of the frequency

assignment problem as the hypergraph formulation.

5.2. Interference Probability Calculations

The previous chapters assumed that the restrictions arising out of interference prob-

ability considerations could be summarized in the form of a compatibility matrix.

* The first such formulation is due to A. Gamst [Gpc].
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How would we actually go about constructing the compatibility matrix? In this sec-
tion we will provide an answer to this question, and in the process, we will develop
an alternative to the compatibility matrix which will give rise to more efficient chan-
nel assignments viz., the hypergraph formulation of the problem briefly described

above.

The power of the received radio signal in the cellular environment undergoes
both random, rapid fading, which is usually modelled by a Rayleigh distribution,
and a random, slower variation termed shadowing, which is usually modelled by
a log-normal distribution. The rapid fading is due to the multipath nature of the
propagation, i.e., because the signal is the result of the addition of a number of
components of differing amplitudes and phases. The slower variation is due to the
effect of objects like buildings and trees in the propagation path, which results in the
signal being attenuated by, essentially, a random amount. By averaging the power
of the signal over the rapid fading, i.e., by taking the short-term or “local” average,
we obtain what is termed the local mean power. The net random attenuation, or
variation, of the local mean power is the product of a fairly large number of inde-
pendent, random attenuations, since every time the signal is reflected or diffracted
by an object in its path, it is attenuated by a random amount. Therefore, the loga-
rithm of the local mean power is the sum of independent, random variables and by
the central limit theorem, its distribution tends to a normal distribution, when the
number of random attenuators becomes large. Hence, the local mean power itself
must tend to be log-normally distributed. (If X is log-normal, log X is normal.)
That the distribution of the local mean power is well modelled by the log-normal

distribution has been verified by a number of experiments ([VT], p. 46).
We make the following assumptions (as do Nagata and Akaiwa [NA]):

1. The local mean power is log-normally distributed with shadowing parameter



58

o. (This is the standard deviation of the logarithm of the local mean power.)

2. The area mean power (mean of the local mean power) is proportional to the
inverse fourth power of the distance from the source.

3. Only co-channel interference is significant.

4. The probability of interference is the probability that the ratio of the local
mean power of the desired signal and the local mean power of the net interfering
signal, which is the sum of all the interfering signals, is less than the specified
protection ratio .

5. If the probability of interference (P;) for a given call is satisfactory at the base
station (i.e., P; < P/?*), it is satisfactory at the mobile.

6. The cellular system is an infinite tiling of the plane by regular, hexagonal cells.

7. The desired mobile is located at the corner of the cell and the interfering mobiles

are located at the centers of the cells.

To be able to calculate the probability of interference, we must find the distri-
bution of a sum of (independent) log-normal variables. Consider the case where six
interferers are symmetrically located at the six cells which are at distance v/13 from
the cell at the base station of which the interference probability is to be calculated.
(This corresponds to calculating the interference probability for the six closest in-
terferers when the number of reuse groups is 13.) For this case we compute the
probability of interference for several values of ¢ and S using three methods:

1. By approximating the sum of log-normal variables by a log-normal variable
with the same mean and variance, known as Fenton’s method [Fe]. This is
computationally the simplest.

2. By the method of Schwartz and Yeh [SY] which is, essentially, approximating

the logarithm of a sum of log-normal variables by a normal variable with the
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same mean and variance* (except that this approximation is done recursively).
We refer to [SY] for the details. This method is computationally more difficult
than Fenton’s method.

3. Directly. We will briefly describe this method here. This is computationally
the most difficult but is useful in determining the accuracy of the above ap-

proximate methods.

Let S} denote the local mean power of the ith (¢ = 1,...,6) interfering (unde-
sired) signal and S¢ that of the desired signal. Let the probability density function
of S} be

fsr(e) = 21 ene=mi*/2e" 450, 1<i<6
ToXx

and that of S¢ be

fsd(x) — 1 e—(ln x—md)2/20'2, z > 0.
2row

(In all the equations, o and f are not in dB but in natural units.) Let X; = P S,

Since m{ = m" for all z, let

1 u
Fx(z) = fx,(z) = e~Unz=m*=p)*/2e* .50, 1<i<6.

Vorozx

Then, the probability of interference is

P,=Pr(S*< X;+ - +Xg)=Pr(§4—X; —--- — X4 < 0).

* If the sum of independent log-normals were truly log-normal, this should yield
the same result as Fenton’s method. However, the sum of log-normals is not truly
log-normal, and as we will see, this yields a better approximation to the true
distribution.
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Let
bx(s) = /_ Fx(2)ei*® da

denote the characteristic function of the random variable X and
Fx(s) = / fx(z)dz

its cumulative probability distribution function. Let Z = S%~ X; —---— X¢. Then,

bo0)= ([ = x dx)6 [ émssiay

and
P; = Fz(0)

= /—Ooo fz(s)ds

1 0 o0 .
:g/_oods/_ooqsz(z)e dz

1 *® ® m¥“+8 ¢ oxn oze —(2} 4 423) /2
ZW —oo'-- —ooFSd(e (e”** +---+e ))e dzy - - - dzs.

(Some intermediate steps have been omitted.) If

£ 2
P(z) = \/2_71' ©I2 gt

(the cumulative normal distribution function),

Fsi(s) = P ((lns —m?) /o).

Therefore,

1 o0 oo
Pi= [ [Pt omt 4B e g )

2 2
e“(z1+'"+ze)/2 le e dZ(j.
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Since the area mean power is assumed to vary inversely as the fourth power of the
distance from the source, it is easily shown that m* — m?¢ = In(R*/D*) where R
is the distance of the desired mobile from the base station (the radius of the cell)
and D is the distance of the undesired mobile from the base station. D%/3R? is the
reuse ratio, which equals 13, in this case. Therefore, P; can be calculated for given
values of o and 8. The numerical computation is carried out using Gauss-Hermite

integration [AS]. The computation of each value of P;, with an error less than 0.0001,

requires about 30 seconds of CPU time on a MIPS M /120 RISComputer.

Table 5.1 lists the interference probabilities calculated by the three methods
for several values of o and . Prasad and Arnbak published a table of interference
probabilities calculated using the two approximate methods for o = 6 dB, under
the same assumptions [PA]. However, the values tabulated there are incorrect in
the case of Fenton’s method. Though the conclusion of Prasad and Arnbak in that
Fenton’s method yields optimistic values for the interference probability is correct
for 0 > 8 dB, from our table we deduce that Fenton’s method is quite accurate for

o < 6 dB.

To determine a set of compatibility constraints that will ensure that P; < P/™**
one can determine the smallest distance dmin such that, if six interfering mobiles
are located symmetrically at distance dmin from the center of a given cell v, with
the desired mobile being located at the farthest point in the cell v, P; < P2,
Then all cells within distance d from v are forbidden from using the same frequency
as v. If the cellular system is not regular (cells have different sizes), one can make
this computation for each cell. One can even make this computation if the prop-
agation exponent (which was assumed to be 4 in the above discussion) and the
shadowing parameter o are different in different regions of the cellular system. In

short, these calculations may be carried out with any suitable propagation model
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Table 5.1
Probabilities of Interference
(computed by various methods)

o(dB) B(dB) Direct  Fenton’s Schwartz and
Method  Method  Yeh’s Method

12.0000  12.0000 0.4147 0.3045 0.4171
12.0000  10.0000 0.3597 0.2621 0.3614
12.0000 8.0000 0.3076 0.2230 0.3086
12.0000 6.0000 0.2593 0.1874 0.2594
12.0000 4.0000 0.2153 0.1555 0.2146
10.0000  12.0000 0.3264 0.2626 0.3275
10.0000  10.0000 0.2666 0.2147 0.2669
10.0000 8.0000 0.2131 0.1723 0.2125
10.0000 6.0000 0.1666 0.1356 0.1652
10.0000 4.0000 0.1273 0.1047 0.1253
8.0000  12.0000 0.2141 0.1946 0.2136
8.0000  10.0000 0.1563 0.1437 0.1550
8.0000 8.0000 0.1099 0.1026 0.1081
8.0000 6.0000 0.0745 0.0708 0.0724
8.0000 4.0000 0.0487 0.0472 0.0465
6.0000  12.0000 0.0897 0.0900 0.0883
6.0000  10.0000 0.0509 0.0518 0.0495
6.0000 8.0000 0.0269 0.0278 0.0257
6.0000 6.0000 0.0133 0.0139 0.0123
6.0000 4.0000 0.0061 0.0064 0.0055
4.0000  12.0000 0.0083 0.0084 0.0080
4.0000  10.0000 0.0023 0.0023 0.0021
4.0000 8.0000 0.0005 0.0005 0.0005
4.0000 6.0000 0.0001 0.0001 0.0001

4.0000 4.0000 0.0000 0.0000 0.0000
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and the co-channel restrictions determined. In practice, one needs to introduce ad-
jacent channel and co-site restrictions as well. It will probably be both necessary
and sufficient to introduce adjacent channel restrictions on adjacent cells. In current
cellular systems, co-site restrictions are determined mainly by the frequency separa-
tions required by the combiners and not by interference considerations. Therefore,

the entire compatibility matrix may be determined.

5.3. Hypergraphs and Dynamic Channel Assignment

But as the astute reader will have observed at the end of the previous section, it
may be possible to reuse a frequency at a distance d < dmin, provided that six
interferers are not located at distance d. Specifying co-channel restrictions using
a compatibility matrix is equivalent to specifying for every pair of cells, whether
co-channel use is permitted or not and from the previous section, if two cells are
distance d apart, they are forbidden from using the same frequency if and only if
d < dpmin. To determine whether all the cells of any given subset, V', of the cells —
not necessarily a pair of cells — may simultaneously use the same frequency while

ensuring that P; < P for all calls, one proceeds as follows:

1. Assuming that all the cells in V' use the same frequency, and these cells are
the only cells in the system that use this frequency, calculate the interference
probabilities for each of these cells. (By the interference probability for a cell,
we mean the interference probability for a call in that cell.)

2. If the interference probability of at least one of the cells is > P/™**  the sub-
set of cells V' is forbidden from using the same frequency, and will be called
a forbidden subset; otherwise, these cells may simultaneously use the same
frequency.

The determination of all the forbidden subsets of a cellular system seems to
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be a forbidding task at this time. Examining all the possible subsets of cells is
clearly impossible even for small cellular systems. However, it may be possible to
determine all the forbidden subsets of size < k for moderate values of k. If all
the forbidden subsets of a cellular system are determined, one can then attempt to

solve the fixed channel assignment problem with these constraints, instead of the

compatibility matrix, and achieve greater spectrum efficiency for the same P/**
(and P"*%).

The forbidden subsets can be represented by a hypergraph: each vertex of the
hypergraph represents a cell and the forbidden subsets are the edges of this hyper-
graph. While it has not yet been possible to apply the theory of hypergraphs to
the frequency assignment problem with this kind of compatibility restrictions — in
a manner similar to the application of graph theory in the case of the compatibility
matrix formulation — we hope that we will be able to do so in the future. In antic-
ipation of this, we will refer to this formulation of the problem as the hypergraph

formulation.

Even without a knowledge of all the forbidden subsets of a cellular system,
one can develop dynamic channel assignment schemes based on the hypergraph
formulation. In dynamic channel assignment, all the channels are available in all the
cells. Calls are to be assigned frequencies in real time, subject to the compatibility
restrictions (e.g., subject to the frequency separations specified by a compatibility
matrix). For a more detailed description of dynamic channel assignment, the reader
is referred to the previous chapter. To determine whether a particular frequency
f' 1s available for assignment to a call in cell v' on arrival, find all the cells in the
system that are currently using frequency f'. Let this subset of the cells be denoted
by Vi, Let V! = Vi U o', Frequency f' cannot be assigned to the new call in v’

if and only if V' is a forbidden subset. Compared with the compatibility matrix
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approach, we have to calculate an interference probability instead of looking up an
entry in the compatibility matrix. However, we have found that if Fenton’s method
of approximating the interference probability is used, this approach has almost the
same complexity as that of the compatibility matrix approach; the running times
for the simulation of both the schemes for a given cellular system and offered traffic
are nearly the same.

In a dynamic channel assignment scheme, it is possible to use one of several
dynamic channel assignment strategies to assign a frequency to a new call while
observing the compatibility constraints. A frequency is said to be available in a
cell, if it may be assigned to a call in that cell without violating the compatibility
constraints. There are two kinds of strategies: those that do not permit reassign-
ment of calls in progress to different frequencies and those that do. We consider the
performance of the following three strategies:

Simple: An incoming call in a cell is assigned the least available frequency in

that cell. (Recall that frequencies are identified with the positive integers.)

Mazavail: An incoming call is assigned that frequency which maximizes the

total number of channels available in all the cells in the system.

Remazl: An attempt is made to assign a frequency to an incoming call using the

Maxavail strategy. If no frequency is available, one other call that is currently

in progress, is permitted to be reassigned to a different frequency, if it enables

the new call to be accommodated.

For more details regarding these strategies, the reader is referred to the previous
chapter.

If no channel is available for assignment to an incoming call, the call is said to
be blocked. The following assumptions are made.

1. Blocked calls are cleared.
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2. Call arrivals in a cell are independent of call arrivals in all other cells and obey
a Poisson distribution.

3. The call duration is exponentially distributed with a mean call duration of 3
minutes.

4. The traffic is uniform, i.e., the rate of call arrivals is the same for all the cells
in the system.

5. Hand-offs can be neglected.
The first three assumptions are standard in wireline telephony. The cellular

system we consider is the same one as in Figure 4.1 and is reproduced in Figure 5.1.

Figure 5.1. The cell number is shown within each cell.

We choose P[*** = (.108, 0 = 6 dB and # = 12 dB. With these parameters,
dmin = V12 so that, with adjacent channel restrictions on adjacent cells and a
co-site separation (c;;) of 5, we have the same compatibility matrix, for the graph-
theoretical formulation, as in the previous chapter (Table 4.1). The number of
channels available in the system is 96. The estimated blocking probability (the
ratio of the number of blocked calls to the total number of call attempts) is plotted

for both the compatibility matrix and the hypergraph form (indicated by (H)) of the
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compatibility constraints, in Figure 5.2. It is easily seen that for the same strategy,
for blocking probabilities in the range 2-6%, an increase in traffic of 10-15% may

be obtained.

If the conventional, fixed channel, regular reuse scheme (which is optimal in
the case of an infinite, regular hexagonal system with uniform channel requirements
in each cell) is used, since the number of reuse groups is 12 and a total of 96
channels are available, each cell will be assigned 8 channels. However, because there
are fewer compatibility restrictions on the cells at the edges of a cellular system,
some of these cells can be assigned more channels. The best that we can due to
minimize the blocking probability in this example, using fixed channel assignment,
is to assign 16 channels to each of cells 5, 6, 12, 13 and 14, and 8 channels each
to the other cells (see Figure 5.1). A calculation of blocking probabilities, using
the Erlang B formula, shows that an offered traffic of 85.7 erlangs will result in a
blocking probability of 2.5%. But from the graph on the following page, we see that
our best dynamic channel assignment scheme viz., Remax1(H), handles an offered

traffic of 150 erlangs at the same blocking probability.

5.4. Conclusions and the Future

Fenton’s method of computing the interference probability is fast but is not accurate
for o > 8 dB. In order to make channel assignment feasible for the hypergraph
formulation of the problem, it is necessary to develop approximation techniques for
computing the interference probability which are as fast as Fenton’s method while
being accurate.

In the case of dynamic channel assignment, we have assumed that the traffic
is uniform. Nonuniform traffic does not pose any more difficulties in the implemen-

tation of the strategies considered. But it is our experience, in the compatibility
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matrix formulation, that the divergence of the performance of these strategies from
that of certain idealized strategies is more in the case of nonuniform traffic. It is
likely that the performance of no realizable strategy comes close to that of these
idealized strategies in the case of nonuniform traffic; on the other hand, it may
be that new channel assignment strategies have to be developed to handle nonuni-
form traffic in both the compatibility matrix and hypergraph formulations. The
effects of hand-offs and time-varying traffic on channel assignment also needs to be
investigated.

It is our opinion that the single most important open problem in this area is
that of computing the “capacity” of a cellular system analogous to the Shannon
capacity of a communication channel. (The word “channel” is not used here in the
same sense as it has been used so far in this thesis.) Note that one has to exercise
considerable care not to work with a model for the frequency assignment problem,
e.g., graph coloring, that does not capture all the features of the actual problem.
(Any result on the capacity of a cellular system obtained using the graph coloring
model, would most likely be invalid for the hypergraph coloring model.) We leave
the reader* with the question:

What are the ultimate limits of spectrum efficiency?
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Epilogue

The work described in this thesis has been principally aimed at improving the spec-
trum efficieny of current cellular systems which use analog FM frequency channels.
If future digital systems use either Frequency Division Multiple Access (FDMA) or
Time Division Multiple Access (TDMA) — or a combination of both, which is one
of the proposed schemes — the work of this thesis would be directly applicable to
them. (If TDMA is used, each time slot is to be treated as a frequency channel.)
Recently, Code Division Multiple Access (CDMA) has also been proposed for future
digital cellular systems. Since frequency spectrum is scarce (and becoming scarcer)
the choice between an FDMA /TDMA system and a CDMA system must be based
almost entirely on spectrum efficiency. We hope that this thesis, by enabling the
spectrum efficiency of FDMA/TDMA systems to be more accurately ascertained,

will contribute significantly to the development of future digital cellular systems.



