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ABSTRACT

The Method of Equivalent Nonlinearization, an approach for determining the
approximate steady-state probability density function for the random response of
nonlinear systems, is evaluated based on numerical simulations.

The approach is a natural extensi(:)n of the well-known Method of Equivalent
Linearization, and is based on approximating the original nonlinear system by an
equivalent nonlinear system. As such, the approach relies on the existence of exact
solutions for the steady-state probability density function of nonlinear systems.

The approach is applied to a class of systems with nonlinear damping, for
which there are no exact solutions. The results show an excellent agreement
between simulated and predicted probability density functions for displacement,
velocity and energy-based envelope. Several examples were solved, including the

case of (velocity)™-damping and the Van der Pol equation.
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CHAPTER 1

INTRODUCTION

In the past three decades, a consid:erable body of knowledge has been accumu-
lated on the modeling of the response statistics of nonlinear oscillators to random
excitation. A rather complete formulation can be obtained when the response of
second-order systems, to white noise excitation, is modeled as a continuous Markov
vector process. In this case, one obtains the Fokker-Planck-Komolgorov equation
relating the transition probability density function of the process to the character-
istics of the nonlinear system. Unfortunately, this equation has been solved only

in a very limited number of cases [7].

Naturally, a number of techniques for obtaining approximate response statis-
tics have arisen in this period. The most widely applied technique has been the
Method of Equivalent Linearization, whose application leads to an approximate
steady-state probability density function for the joint response of displacement
and velocity. This'method has been: applied in virtually all areas of structural dy-
namics, ranging from the response of moving structures to a variety of excitation,
to the reponse of civil engineering structures, to earthquake, wind and random

ocean waves excitation [36].
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In spite of this widespread use there are nonlinear systems for which the so-
lutions obtained by the Method of Equivalent Linearization are not adequate or
can be improved. This thesis is concerned with such an improvement, through a
natural extension of the Method of Equivalent Linearization, the so-called Method
of Equivalent Nonlinearization. The latter is applied to a class of nonlinear os-
cillators with nonlinear damping. This class, among others, comprises oscillators
with (velocity)™-damping and self-excited oscillators. To be specific, the accu-
racy of the Method of Equivalent Noniinearization is assessed based on extensive

numerical simulations for a large number of oscillators belonging to this class.

In Chapter II, the modeling of the response of a nonlinear oscillator as a
Markov process is briefly reviewed; the Method of Equivalent Linearization is
discussed and applied to a nonlinear oscillator with (velocity)?-damping and linear
stiffness. The steady-state probability density functions for displacement, velocity
and energy-based envelope are then compared with their counterparts obtained

based on numerical simulations of the response of the same oscillator.

The basic requirement of the Method of Equivalent Nonlinearization is that
there be exact solutions for nonlinear systems. In Chapter III the exact solution
for the steady-state probability density function for a class of nonlinear oscillators
is reviewed. With these solutions, the Method of Equivalent Nonlinearization is
then applied to the class of oscillators with nonlinear damping discussed above,
with both linear and nonlinear stiffness, and approximate solutions are generated

for these systems.
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The numerical simulation approach is discussed in Chapter IV. Because of
the length of the time histories required, the uniform random number generator,
the heart of the white noise process generator that served as the excitation for
the oscillators, had to satisfy rather stringent conditions. These conditions as well
as an eflicient time-step integration scheme are also discussed. As a result of this
effort, the simulation procedure can be used in a variety of computers ranging

from micros to main-frames.

In Chapter V, the approximate solutions generated in Chapter III are com-
pared with solutions based on the simulated results. For each of nine different
oscillators belonging to the aforementioned class, response simulations are per-
formed for a range of practical damping levels and excitation levels. Results are
presented in terms of histograms for displacement, velocity, energy envelope and
expected values for the square of each of these quantities as functions of damping

and excitation level.



CHAPTER II

THEORETICAL BACKGROUND

Consider the general class of noniinear single degree-of-freedom (SDOF) os-

cillators characterized by the following differential equation,

#+ g(z, &) = w(t), (2.1)

with initial conditions given by

z(0) = zo and £(0) = o, (2.2)

where g(z, &) is a nonlinear function of the displacement = and the velocity z,
and the forcing function w(t) is the formal derivative of a Wiener process, W(t),

having the following characteristics [5,7]:

(a) w(t;), 7=1,2,...,n are mutually independent,

(b) w(t) is Gaussian distributed with

Elw(t)] = 0,
(2.3)
Elw(t)w(t + 7)) = 2Dé(7),
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where §(*) is the Dirac delta function and E[+] is the expectation operator.

In searching for the joint probability density function of displacement and
velocity, p(z,z), for all times, the vector of random displacement and random

velocity {z,z} can be modeled as a Markov process [7,27].

A continuous vector process x(t) is said to be Markovian if and only if for

t1 <tya <+ <tp<- o <tnyi,

P(Xn41,tnt1|X1, 115X, 8250 5 Xny tn) = P(Xnt1, tnt1[Xn, tn). (2.4)

The conditional probability density function p(Xit1,%i+1|Xi,¢:i) is called the
transition probability density function and henceforth in this work will be repre-
sented by pir(Xit1,ti+1/Xi,t:). It gives the density of probability of a transition
from one point in phase space at a certain time to another point in phase space at a
greater time. The Markov process is completely defined if its transition probability

is known and if the state vector at ¢ = 0 is known with probability one.

The transition probability density function, p;-(z, &, t|zo, Zo), for the vector
Markov process for {z,2} of Eq. (2.1), is the solution of the associated Fokker-

Plank—Komolgoro{r equation given by

0ptr
oz?’

B - 3Py 2y, 2)pur] + DI

ot 31' (2:5)

with pir(z,2,0|z0,20) = 6(z — 20)6(Z — Zo).
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Although the problem of obtaining the transition probability, p:(z, ), for
a general nonlinear second-order system (Eq. (2.1)) can be formulated, to the
author’s knowledge, up to this date, there are still no known solutions to the
complete equation. Even solutions for the steady-state joint probability density

function, p(z, &), given by

p(:l:,:i) = tl_illgoptr(xv‘i’tlzoaio) (26)

and obtained as solution of

—ik %— (g(z,3)p] + D=L =0 (2.7)

are very few, and they are all cases of the solution obtained by Caughey for a par-
ticular class of oscillators (7,8,9]. Clearly, the interest in approximate techniques

for the solution of Egs. (2.5) and (2.7) is greatly justified.

The various methods for obtaining approximate solutions for Eq. (2.5) can
be loosely classified in two general categories (7,17,33,36]. The first is comprised
of methods that deal directly with the Fokker-Planck-Kolmogorov equation (Eq.
(2.5)), and the second is comprised of methods that deal directly with the stochas-
tic differential equation (Eq. (2.1)). Examples of the first are the iterative solution
of the Fokker-Planck-Kolmogorov equation (7], eigenfunction expansion techniques
[22,23,33], perturbation techniques applied to the eigenvalues and asymptotic ex-

pansions [6,33]. Examples of the second class are perturbdtion methods [13,14],
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Gausssian and non-Gaussian closure techniques [16,18,32], the method of equiv-
alent linearization [4,35,36], and the method of equivalent nonlinearization [28].
By far the most widely used approximate method in the past 30 years has been
the method of equivalent linearization. This is due primarily to the simplicity and
relative accuracy of the method. Even though some of the other methods (e.g.,
eigenfunction expansions) are potentially more accurate, the trade-off to accuracy
is an enormous increase in the analytical and numerical work involved. The result
is that only first-order solutions are n:ormally obtained t [33]. Because the first-
order solutions obtained with the various methods are essentially as accurate as
the solutions obtained by the method of equivalent linearization, the simplicity of

the method is the overwhelming reason for its widespread use.

2.1 The Method of Equivalent Linearization

The method of equivalent linearization is a statistical extension [4] of the de-
terministic method of equivalent linearization of Krylov and Bogolibov [30]. As
introduced by Caughey [4,7], the basis of the method is to replace an originally
nonlinear equation by an equivalent linear equation whose parameters are deter-
mined by minimizing the expected value of the mean- square deficiency, defined

as the difference between the linear and nonlinear equations.

T Recently, Johnson and Scott [22,23] have extended the work by Payne [33], obtaining higher
order solutions with the eigenfunction expansion approach.



_ 8-

To illustrate the application of the method, consider the following nonlinear

SDOF system,

&+ Bz +wiz +ef(z,z) = w(?). (2.8)

Following the idea of the method, replace Eq. (2.8) by

&+ Begd + wl iz = w(t), (2.9)

where ¢4 and w,,, the equivalent damping and natural frequency terms, are found

by minimizing the expected value of the mean-square deficiency. The deficiency,

D(z, z), defined as the difference between Eqgs. (2.8) and (2.9), is given by

D(x,z) = fi +wie + ef(z, &) — Begd — w? T (2.10)

The minimization of E [D?(z, )], which is obtained by setting OF [D?(z, )] /0Beq
and OF [D*(z, ¢)] /Ow?, to zero, yields

[rvf(w )|
) (2.11)
W2 = w2 +6E[37f($>33)]
eq n E[:II2] ’

where use has been made of the fact that E[zz] = 0 for a differentiable stationary

random process.
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The joint probability density function of displacement and velocity, p(z, £),
for Eq. (2.9), which is a linear equation excited by a random Gaussian white noise
process, is well known, and now it is an approximate solution for Eq. (2.8). Using
this approximate solution, which is a function of S, and we, in Eq. (2.11), yields
a set of nonlinear algebraic equations in these parameters. The solutions of this

set of algebraic equations will be f.; and we,.

As Caughey pointed out [7], if the exact joint probability density function of
displacement and velocity, p(z, ), for Eq. (2.8) is known, then it can be used
in Eq. (2.11). Unfortunately, this is rarely the situation, and the approximate

solution i1s what is almost always used.
2.1.1 A Limited Accuracy Assessment

The method of equivalent linearization has been extended to handle the re-
sponse of a nonlinear system exhibiting hysteretic behavior [3], to multidegree-
of-freedom systems [4,40], and has been extensively applied in virtually all fields
of structural dynamics [17,35,36]. However, of course, it has its limitations, and
results of its application to a certain class of problems, or the use of the resulting

joint probability density to obtain certain statistics may not be satisfactory.

To illustrate this point, the method of equivalent linearization is applied to
an SDOF system with (velocity)?-damping. The approximate steady-state joint
probability function is obtained for two examples and is compared with numerically

obtained solutions.
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Consider the nonlinear SDOF system with (velocity)z-damping given by

&+ b 2%sgn(z) + = = w(?). (2.12)

Application of Eq. (2.11), considering that the joint probability density func-
tion i1s given by

p(z, &) = Aexp [— (%) (22 +w§qx2)] , (2.13)

= w? = 1and f., = 2D(b/\/xD)*/3.

where A is the normalizing constant, yields w?,

Figs. 2.1 and 2.2 present the comparison, in terms of histograms, between
theoretical (solid lines) and simulated (dots) results for the distribution of dis-
placement, velocity and energy-based envelope, for b = 0.02 and b = 0.20. It is
clear from these comparisons that for at least this type of damping, even for small
values of the coefficient b, the results obtained from the method of equivalent lin-
earization are not satisfactory. The fact that any moment of the distribution from
the theoretical solution may be in good agreement with the exact distribution

seems to be merely fortuitous.

It has been known for some time that even for other types of the nonlin-
ear functions f(z,2), improvements could be achieved by using the method of
equivalent nonlinearization. Lutes [28] has applied the method in connection with
hysteretic systems, and Caughey [10], in connection with a class of nonlinear sys-

tems.
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In the next chapters the method of equivalent nonlinearization is formally in-

troduced and its accuracy assessed for a class of oscillators with nonlinear damping.
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(Velocity)?-Damping: bopz? sgn(z)
bo2 = 0.02, D = 0.05
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CHAPTER III

THE METHOD OF EQUIVALENT NONLINEARIZATION

The basic idea behind the Metho:d of Equivalent Nonlinearization, as in the
Method of Equivalent Linearization [10], is to replace a nonlinear equation for
which the solution is sought by another equation for which the solution is known.
In the Method of Equivalent Linearization, the original nonlinear equation is re-
placed by an equivalent linear equation, whereas in the Method of Equivalent
Nonlinearization, the original nonlinear equatioﬁ is replaced by an equivalent non-
linear equation. The difference between the two equations is then minimized in
mean square, yielding the parameters of the approximate solution for the original

nonlinear equation.

3.1 The Exact Solution for a Class of Nonlinear SDOF Systems

Consider the class of nonlinear, single degree-of-freedom (SDOF') systems of
the form
Hy,

i+ (HyF(H) - H—y) Di + —% = w(t), (3.1)
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with initial conditions given by

z(0)=zo and  &(0) = o, (3.2)

where & and # are velocity and acceleration, respectively, y = #2/2, and a sin-
gle and a double subscripted H indicate the first and second partial derivatives,

respectively, of H(y, z), the Hamiltonian, with respect to the subscript variable.

Formally, the forcing function w(t) is the derivative of a Wiener process, w(t),

and has the following characteristics [7}:

(a) w(t;), ©¢=1,2,...,n are mutually independent,
(b) w(?) is Gaussian distributed with
Elw(t)] = 0,

(3.3)
Elw(t)w(t + 7)) = 2Dé(7),

where 6(x) is the Dirac delta function and E[#] is the expectation operator. The
one-sided power spectral density function of w(t) is constant over the entire range

of frequencies and is given by

G(f) =4D for 0<f<oo otherwise zero. (3.4)

In practice, this process, also called random stationary zero-mean Gaussian
white-noise process, has a power spectral density function that can be considered

constant only over a range of frequencies. This range, however, as will be seen
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in Chapter IV, can be chosen wide enough to span all frequencies of interest.

Henceforth in this work, this process will be referred to as white noise.

When the vector of displacement and velocity, {z, £}, is treated as a Markov
process, the corresponding transition probability density function p¢r(x, Z,t|zo, Zo)
is the solution of the Fokker-Planck-Komolgorov equation associated with Eq.

(3.1) and given by [7,27],

Oper _ .Opir O Hyy\ ., Hs 0% per
ot = "oz +a§c{[<H”F(H)_ m, )it g, | Pyt P (39)

with pi(z,,0|z0,Z0) = 6(z — 70)6(2 — o).
The steady-state joint probability density function of displacement and veloc-
ity, p(z, z), independent of z¢, &y and the time ¢, is obtained by finding the limit

for t — oo of p¢r(z, T, t|xe, Zo), yielding

op 0 Hy\psy 2= &p _
5. 1 5; {[(HyF(H)— Hy)Dx+ H_,,]p} +D8:‘c2 = 0. (3.6)

For completeness, an exact solution for Eq. (3.6) is herein derived following
the approach developed in [7] and used in [8,9]. In this approach, Eq. (3.6) is

separated into the following two partial differential equations

(3.7)
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for which a solution can be constructed, noting that this solution is also a solution

of Eq. (3.6).

By assuming that p(z,z) = p(&,z)Hy, and that & # 0, the first of Eq. (3.7)

yields

—H,Z= + H, = = 0. (3.8)

Eq. (3.8) can now be solved by the method of characteristics yielding

oz, z) = V(H) and p(z,z) = V(H)H,, (3.9) |

where ¥ is an arbitrary function.
Because the solution p(z, ), being sought, and its first partial derivatives

with respect to x and &, vanish as |z| — oo and |£| — oo, the second of Eq. (3.7)

becomes
v H Op
F _ vy J =0. .
Substituting Eq. (3.9) into (3.10) and integrating the resulting equation yields

H
p(z,) = AH, exp (— / F(ods) , (3.11)
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where A is the normalization constant such that fj;o fj;o p(z,z)dzdz = 1.

It can be seen that Eq. (3.11) satisfies all the requirements for a probability
density, and that it also satisfies Eq.(3.6). Because of its exponential nature, the
above solution belongs to a class of well-behaved stationary solutions and for that

reason it is the unique steady-state solution of Eq. (3.6) [8,9].

In the foregoing, H(y,z) can be iﬁterpreted as the system Hamiltonian from
which the energy-based envelope process, a(t), is defined [8,9,12,27] by H(0, a) =

H(y, z), having the following probability density function,

5 [« (2(H(0,a)~H(0,2))]3
Pe(a) = 48*(1/(; A p(:lf,x)dx d

(3.12)
H(0,a)
= AH,(0,a)T(a)exp (—/ F(ﬁ)d{) ,
0
where
« d
T(a) =4 / z , (3.13)
TR p@HE,0 - HO, )
is the period of the deterministic oscillator
., Hs
T+ H_y =0. (3.14)

The above results are further particularized in order to develop some addi-

tional results that will be used in the application of the Method of Equivalent
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Nonlinearization. Consider a case of Eq. (3.1) of practical interest having nonlin-

ear damping and nonlinear stiffness of the form

E+ f(H)z + g(z) = w(). (3.15)

By comparison with Eq. (3.1), find H, = 1, H, = g(z) and F(H) = f(H)/D.
Substituting these values into Eq. (3.11) yields the joint probability density func-

tion of displacement and velocity as
1 [H
o) = dexp - [ F©), (3.16)
0
where H is given by

H(y,z)=y+ /OI g(m)dn. (3.17)

Further consider the case in which g(z) = w2z, that is, a system with linear
stiffness. For this case the joint probability density function of displacement and
velocity is still given by Eq. (3.16) but now H is given by

2

H(y,z)=y+ %&xz. (3.18)

In addition, the probability density function of the energy-based envelope is
obtained from Egs. (3.12) and (3.13) as
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w2a?/2
pe(a) = 2w Aw,a exp (—%/{; f(f)dﬁ) , (3.19)

where a is defined by

a=4[z?+ —. | (3.20)

The Method of Equivalent Nonlinearization is next applied to nonlinear SDOF
systems for which there are no exact solutions. The approximate joint probability
density function of displacement and velocity and the (corresponding) probability
density function of the encrgy-based envelope are obtained based on the known

solutions for the class of nonlinear systems just presented.
3.2 The Approximate Solution for a Class of SDOF Systems with Nonlinear
Damping and Linear Stiffness

Consider the class of nonlinear SDOF systems of the form

L E+ Zzbij ,xi.’bjl sgn(z) + = = w(t), (3.21)

=0 j=0

where sgn(z) is the sign function, taking the value of either +1 or —1 according

to the sign of the argument z.
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This is a class of SDOF systems that, among others, encompasses systems with
(velocity)™ damping, m = 0,1,2,..., that are obtained by making by; = b, j =
0,1,2,..., b;j = 0 otherwise. For m = 0, the system has Coulomb damping; for
m = 1, the system has viscous damping (linear system); for m = 2, the system
has velocity-squared damping; etc. In addition, the Van der Pol and the Van
der Rayleigh equations are part of this class of SDOF systems, the first being
obtained by making by = —b, ba1 = b, b;; = 0 otherwise, while the second, by

making bor = —b, bay = b, bos = b, bi; = 0 otherwise.

Except for the linear damping and the Van der Rayleigh equation, this class
of SDOF systems does not possess a closed form solution for the joint probability
density function of displacement and velocity, in which case one can resort to the

Method of Equivalent Nonlinearization in order to obtain an approximate solution.

An approximate solution for Eq. (3.21) can be obtained by replacing it by

z+ Zn: i cijf,'j(H)) T+ z = w(t), (3.22)

=0 j=0 y

for which there is a theoretical solution, and by selecting c;; so as to minimize the

mean-square deficiency E [D%(z, £)| with an appropriate choice of f;;(H) [10].

The deficiency, defined as the difference between Eqgs. (3.21) and (3.22), is

given by

Diz,) = 3. 3" by o' |sgnld) = eosfis(B)e,  (3.29)

i=0 j=0
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where for this class of problems, H = H(y, z) = (y + 22/2), with y = z2/2.
A natural choice for fi;(H) is

() =D for  4j=0,1,2,...,n, (3.24)

because it will correctly render Eq. (3.22) linear when ¢ = 0 and j = 1, and will

always contain terms that will resemble the corresponding terms in Eq. (3.21).

The mean-square deficiency, which is a function of ¢;; only, can now be min-
imized by equating its partial derivatives with respect to ¢;; to zero, yielding the

following set of equations in the coefficients ¢;;:

5
Ocki

E [D*(z,2)] = E [21)(:1:,9':) e,

+oo +o0 .
N 2/ D, ;,';)a_%(cf’_sflp(x, z)dzdi =0 (3.25)
ki

—0o0o —00

for k,1=0,1,2,...,n,

where p(z, z) is given by Eq. (3.16) with f(£) given by

&) =D cijfii(€). (3.26)

1=0 j=0

The coefficients ¢;;, solutions for the set of equations given by Eq. (3.25), mini-

mize the mean-square deficiency between the original nonlinear equation (Eq. (3.21))
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and its equivalent nonlinear equation (Eq. (3.22)). The solution of the equivalent
nonlinear equation with these coefficients will then be an approximate solution for
the original nonlinear equation. The remainder of this section will be dedicated
to obtaining the solution to the set of equations given by Eq. (3.25) and con-
sequently, to obtaining the solution for the joint probability density function for
displacement and velocity and the corresponding probability density function for

the energy-based envelope for Eq. (3.22).

The joint probability density function of displacement and velocity is obtained
by substituting Eq. (3.24) into Eq. (3.26) and then into Eq. (3.16) and evaluating

the integral yielding

+J +1

p(z,z) = Aexp ——ZZ N +1)(z +;,;2) : (3.27)

and the probability density function of the energy-based envelope is obtained by
substituting Eq. (3.24) into Eq. (3.26) and then into Eq. (3.19) and evaluating

the integral yielding

e(a) =2rAaexp | —— (541} 3.28
pe(@) (5L e 329
By substituting Eq. (3.24) into (3.23), evaluating its partial derivative with
respect to cij, and substituting both into Eq. (3.25), the set of equations in the

coefficients ¢;; becomes
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+oo  ptoo L . iti—1

[ b e sama) — eia® + ) |
oo JToo =0 j=0

L (3.29)

(22 + 225 ip(z, $)dzdi = 0

for k,1=0,1,2,...,n,
where use has been made of the fact tila.t 2H = 32 4 22,

Substituting Eq. (3.27) into (3.29), applying the following change of variables

T = acosé,
(3.30)
z = asinb,

to the resulting equation and simplifying, recalling that the absolute value of the

Jacobian of the transformation is |J| = a, yields

n

2m co N
i e ) i+j+k+0D) dadf = 0
/0 /0 Z Z (bij lcos 6 sin? 1! 0' — ¢ij sin? 6) o't Aa)da (3.31)

=0 j=0

for k,1:0,1,2,---,n,

where A(a) is a function of a only, given by

_ I~ cij D | (3.32)
A(a) = aexp _Dzz(i+j+1) |

i=0 j=0

Evaluating the integral in the variable 6 in Eq. (3.31) finally yields
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S DEEOED) [ i
Z Z (”Cij — 2bj; Frz i+21‘+3; /0 a0 ) (a)da = 0

for k,1=0,1,2,...,n.

(3.33)

Given a nonlinear SDOF system belonging to the class of systems represented
by Eq. (3.21), Eq. (3.33) is the set of: equations that will determine the param-
eters c;; of the approximate solution for its joint probability density function of
displacement and velocity, p(z, z), given by Eq. (3.28) and its probability density
function of the energy-based envelope, p.(a), given by Eq. (3.29). These densities
will be the exact solution for the equivalent nonlinear SDOF system represented

by Eq. (3.22) with the same coefficients.

A number of examples within this class of SDOF systems will be explicitly
solved in Chapter V with the purpose of illustrating and assessing the accuracy of

the Method of Equivalent Nonlinearization.

3.3 The Approximate Solution for a Class of SDOF Systems with Nonlinear

Damping and Nonlinear Stiffness

In the increasing scale of complexity, consider the class of nonlinear SDOF

systems of the form

B4 | DD bij|aid?] | sen(d) + g(z) = w(?), (3.34)

i=0 j=0
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which is similar to Eq. (3.21) except for the stiffness term that is now also non-

linear.

As in the case of Eq. (3.21), in general, this class of SDOF systems does not
possess a closed form solution for the joint probability density function of displace-
ment and velocity. Again, at least conceptually, one can consider the Method of
Equivalent Nonlinearization as a possible means to obtain an approximate solu-

tion.

An approximate solution for Eq. (3.34) would be obtained by replacing it by

(DD ciifii(H) | & +g(z) = w(?), (3.35)

=0 j=0

for which there is a theoretical solution, and selecting c;; so as to minimize the

mean-square deficiency E [D?(z,4)] with an appropriate choice of f;;(H).

The deficiency, defined as the difference between Egs. (3.34) and (3.35), is
identical to the case studied in the previous section, in which the stiffness was
linear, and is given by Eq. (3.23). The difference between the two cases resides in

the definition of H, which now is

H=Hy,a)=y+ / " g(n)dn, (3.36)

where y = 22 /2.
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Once again, f;; can be chosen as before as

(i+i—1)
2

fii(H) = (2H) for 4,j7=0,1,2,...,n, (3.37)

and the mean-square deficiency can be minimized by equating its partial deriva-
tives with respect to ¢;j to zero, yielding the set of Egs. (3.25) also reproduced

here:
+oco +oo
/ ’D(:c ) 8D(1’, )p(:c,i)d:rdx' =0 for k,01=0,1,2,...,n, (3.38)

where

Dz, &) = ZZb,J |2i49| sgn(z) — cij(2H) T & (3.39)

1=0 3=0

and

p(z, &) = Aexp —-—ZZ (2+j +1) (2H) . (3.40)

=0 j=0

This is as far as one can get in general terms. Even with the selection of a
specific function g(z), the fact that H is now a much more complex function of £
and z will limit and even preclude the development of general formulas. Solutions
of Eq. (3.38), for each specific function g(z), seem to be practical only if obtained

numerically as illustrated in the next section.
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3.3.1 Nonlinear Stiffness of the Duffing-Type

To illustrate the application of the approach in which the solution of the
system of equations given by Eq. (3.38) has to be obtained numerically, consider

the case in which the nonlinear stiffness is of Duffing-type given by

g(z) = eoz + e12°. (3.41)
In this case,
1
H(i,z) = 2a% + ?2—"# n %x‘*, | (3.42)

and therefore the deficiency is given by

. & i . .2 2 €1 4 ﬁi%l) .
D(:t, :I}) = Z Z b,’j I:I} :I:Jl sgn(x) - C,‘j({l} + eoz” + ECB ) z, (343)

=0 5j=0
and the joint probability density function of displacement and velocity, by

45 +1
2

. 1 G Cij .9 2, €1 4
p(z,2) = Aexp _—D_ZZ(Z'—I-]'—I—I)(:E + egz +—2-:c)

1=0 j=0

(3.44)

The probability density function of the energy-based envelope is obtained by
substitution of Egs. (3.42) and (3.44) into Eqs. (3.12) and (3.13) and evaluating

the resulting integrals, yielding
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441

3 1y Cij 2 61 4y 2
pe(a) = A(eoa + e1a” )T (a) exp ) Z Z m(eoa + —a*) ,
1=0 j=0

2
(3.45)
where after some manipulation [12,27], T(«) is obtained as
T(a) =4 =4 [ t2);% 1o (a9 e 7 (3.46)
(o) = 4(eo + e1a”) ; ( Seg 4 Tora? - S

In this case, « is given by

By substituting Eq. (3.43) and its partial derivative with respect to cx; into

Eq. (3.38), the set of equations in the coefficients c;; becomes

+o00 ptoo n n o .
/ / ZZ bij |z'3?| sgn(2) — eij(2* + eoz® + €—1x4)£—+%‘ﬁj: X
=0 3=0
(.’iz + epx? + 221‘11,'4) EH=l) ip(z,i)dzdi = 0
for k,1=0,1,2,...,n,
(3.48)

where use has been made of the equality 2H = 2 + egz? + 521:1:4
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Unlike the linear stiffness case, in which the solution of Eq. (3.29) was ob-
tained through a simple change of variables, there is not a change of variables
that will attain the same results for Eq. (3.48). The only<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>