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Abstract

The term “hyper-redundant” refers to robotic manipulators and mobile robots with
a very large, possibly infinite, number of actuatable degrees of freedom. These
robots are analogous in morphology and operation to snakes, worms, elephant
trunks, and tentacles. This thesis presents a novel kinematic framework for hyper-
redundant manipulator motion planning and task implementation. The basis of
this formulation is the use of a “backbone reference set” which captures the es-
sential macroscopic geometric features of hyper-redundant robots. In the analyt-
1cal part of this work, the backbone representation is developed and used to solve
problems in obstacle avoidance, locomotion, grasping, and “optimal” end effector
placement. The latter part of this thesis deals with the design and implementation
of a thirty-degree-of-freedom planar hyper-redundant manipulator which is used to
demonstrate these novel kinematic and motion planning techniques. Design issues
such as robustness with respect to mechanical failure, and design for easy assembly
and repair are also addressed. The analytical and design concepts are combined

to ilustrate tasks for which hyper-redundant robotic mechanisms are well suited.
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Chapter 1

Introduction and Motivation

The word redundant is commonly used to mean “exceeding what is necessary or
normal” [Webs83]. Robotic manipulators which have more independent degrees
of freedom than are required to perform a specified task are called kinematically
redundant. A robot can also be referred to as having redundant actuation if more
than the required number of actuators are available to insure task implementation
despite possible actuator failure. A commonly specified task for robotic manipu-
lators is the positioning and orientation of an object at the end-effector, or hand,
relative to the base. The benefits of redundancy with regard to this task are
enumerated in the literature [Bail86,Bur88,DaSS88,KirV86,NakHY87]. The term
hyper-redundant is defined here to describe robotic mechanisms with a relative
degree of kinematic and/or actuator redundancy which is large or infinite. Tasks
which can be performed by nonredundant or mildly redundant robotic mechanisms
will be referred to with the adjective hyper-redundant when performed by hyper-
redundant mechanisms, e.g., hyper-redundant manipulation, hyper-redundant lo-

comotion, etc.

While a wide variety of hyper-redundant mechanism morphologies can be imag-
ined, this work focuses on manipulators which have a macroscopic serial structure,

e.g., those which approximate the shape of snakes, elephants’ trunks, or tentacles.
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Implementations of this class of hyper-redundant manipulators may consist of
truly flexible physical structures, a cascade of modules composed of redundantly

actuated parallel platforms, or a large number of rigid links in series.

As will be shown in the following chapters, applications of hyper-redundant ma-
nipulators include, but are not limited to, inspection in highly constrained envi-
ronments, novel forms of robotic locomotion and grasping, and the manipulation
of objects. While having a large number of redundant degrees of freedom enhances
the ability of manipulators to perform these tasks, it also introduces new problems

which will be addressed in the analytical part of this thesis.

Methods by which redundancy can be used to augment task performance are
referred to as redundancy resolution. The number of computations required by
standard methods of redundancy resolution grows enormously with increasing
redundancy. Thus, in this thesis, standard methods of redundancy resolution are
rejected for hyper-redundant mechanisms, and a new approach is developed. In
this new approach we assume that the geometric features of any hyper-redundant
manipulator without macroscopic branches or closed loops can be captured with a
continuum model. A “backbone reference set” consisting of a backbone curve and
affixed set of reference frames is defined. A general framework for parametrizing
hyper-redundant manipulator backbone reference sets in physically meaningful
ways is developed. Tasks are implemented by specifying the geometry of the

backbone, which in turn serves as the input to the kinematics of the manipulator.

The remainder of this chapter is organized as follows: Section 1.1 reviews previous
efforts at the design and implementation of hyper-redundant mechanisms. Sec-
tion 1.2 reviews how hyper-redundancy is used in biological systems. Section 1.3
examines the limitations of standard redundancy resolution techniques. Section
1.4 reviews previous efforts at hyper-redundant robot motion planning. Section

1.5 outlines the organization of the remaining chapters in this thesis.
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1.1 Past Design Efforts

A plethora of hyper-redundant robot designs have been presented in the litera-
ture over the past quarter century. Hyper-redundant manipulator designs have
varied widely in physical structure and actuation. As a result, no general kine-
matic techniques have been developed previously for this class of robots. This
section examines many previously proposed hyper-redundant robot morphologies,
while Chapters 2-7 develop a unifying analytical framework for the kinematics

and motion planning of all hyper-redundant morphologies.

The Scripps Institute “tensor arm” [AndH67] was one of the first tendon driven
hyper-redundant manipulators. This can be seen in Figure 1.1. Since then, other
tendon driven robotic manipulators have been proposed [He85,Mo87], designed
[BusFMZ91,MaH91,HiMa91], and built [HiKU83,TayLE83]. A tendon driven
snakelike manipulator which is used in Sweden to paint auto chassis is the “Spine”

robot [Dr84].

Figure 1.1: Scripps Institute Tensor-Arm (after [Sha87])

In [HiU76], an “active cord” mechanism was designed, built, and tested. This was
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the first attempt at using a hyper-redundant robotic mechanism for the purpose
of locomotion. Since then, numerous hyper-redundant morphologies have been

developed. See [HiMo090, and references therein).

One of the first attempts at pneumatically actuated hyper-redundant arms was the
Stanford “Orm.” More recently, [WilS88,WilM89] have studied pneumatic bellows
in which variable air pressure provided a means of actuating flexible membranes
to achieve motion. [FuHUB89]| investigated rubber gas actuator driven devices,
in which electricity was used to initiate a chemical reaction to release gas from
within the material structure of a rubber material instead of supplying air pressure.
Figure 1.2 shows a cascade of flexible micro actuators developed in [SuIlT91]. Each
of three chambers in each actuator can be pressurized to implement bending in a

variety of directions.

O Actuator n
s

Figure 1.2: Cascade of Flexible Micro Actuators (after [SuIT91])

Serial chain morphologies consisting of a large number of rigid links have been
studied in [Ch88,Sha87,Pe88]. In a sense, these are the canonical example of
hyper-redundant manipulators, because of their simple kinematic structure and

wide reference as examples of redundant manipulators in the literature [Bar-
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rLL89,5¢S88,HiMa89)].

Another hyper-redundant morphology originated from research in large space
structures [MiuF85,Wad90]. [NacH91,SaleRR88] have investigated the design and
implementation of variable geometry truss manipulators (VGTMs). These usually
consist of a serial chain of truss modules which are themselves parallel structures.
This particular kind of structure is well suited for demonstrating both kinematic
and actuator redundancy. Figure 1.3 shows the VGTM studied in [NacH89]. Each
member is a linear actuator with the ability to radically change length. Design and

implementation of a planar VGTM hyper-redundant manipulator is the subject

of Chapter 8.

Actuated
Member

Joint

Figure 1.3: A Variable Geometry Truss Manipulator (after [NacH89})

Figure 1.4 classifies hyper-redundant morphologies into three categories. In Figure
1.4(a), a discrete morphology manipulator is shown, i.e, one with a large number
of rigid links. This type of mechanical structure can be actuated with tendons,
direct-drive motors, or gearhead motors. In Figure 1.4(b), a continuous mor-
phology manipulator is shown, i.e., one whose actuation is distributed over the

manipulator length. Such actuation could be achieved using shape memory alloy
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[FuHK90], magnetic actuation [ShaKJ86], or pneumatic actuators. Figure 1.4(c)
shows a cascade of modules which are actuated in parallel. Such modules could be
the bays of a variable geometry truss, closed linkages with or without redundant

actuation, or a combination of the two.

Figure 1.4: Classification of Hyper-Redundant Robot Morphologies

In addition to a wide variety of previous designs, “hyper-redundant” manipulators
have been given a wide variety of names such as “swan’s neck” [HaPK90], “tenta-
cle” [IB84], “highly redundant” [NacH89], “snakelike” [TeB89], “elephant trunk”
[Mo87], “tensor arm” [AndH67], “Orm,” “flexible” [He85], “proboscis,” “massively
redundant” [PeS89], “highly articulated,” “serpentine,” “Spine” [D184], and “ac-
tive cord” [HiU76]. Applications of hyper-redundant robots include, but are not
limited to, inspection in highly constrained environments [ChB89-2,CleI90], novel
forms of locomotion and grasping [ChB89-3,PeS89,StuBDR90|, and the fine ma-
nipulation of objects in space [ChB90-4]. As will be seen in Section 1.4, a variety of
hyper-redundant robot motion planning algorithms for each of these morphologies

have been attempted, but without any unified framework. But first we will exam-
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ine how biological systems use hyper-redundancy, and examine standard methods

of redundancy resolution.

1.2 Hyper-Redundancy in Biology

The biology literature is filled with examples of creatures with hyper-redundant
morphologies which allow them to traverse land and water. Common creatures
such as snakes, worms, and slugs have morphologies which can be considered
hyper-redundant. A variety of small aquatic creatures have long narrow bodies
which flex at high frequency for propulsion through fluid media [ClaH76,Web73].
Some parasites use hyper-redundant locomotion to embed themselves in the tissue
of the host [GrL64]. Certain bacteria use hyper-redundant locomotion for propul-
sion by using flagellar bundles [WinK70]. Several works have been devoted to
the movement of earthworms through soil [GrL38,5¢69,Ya56]. Along similar lines
the study of the locomotion of slugs has had a long history [Jo73,V107]. Lastly,
a variety of papers have been devoted to the kinematics and kinetics of snake

locomotion [BenMT74,Gr46,GrL50,Ja85,J286,Ja88,Li50].

AT A

Figure 1.5: Locomotion of a Slug
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Several terrestrial creatures such as inchworms, snakes, slugs, earthworms and
caterpillars use forms of hyper-redundant locomotion. Figure 1.5 shows that sev-
eral locomotory pulses, or pedal waves, travel along the length of the slug’s body
at one time [Ga62,Ga85]. Note that the pulses are not symmetric. This results in

net forward motion due to a difference in propulsive force with the ground [Jo73].

Lateral Undulatory

Concertina

SN

Sidewinding

Figure 1.6: Primary Modes of Snake Locomotion

Snake locomotion can be classified into three primary categories. These are lateral
undulatory, sidewinding, and concertina modes, although snakes are known to use
caterpillaring as well. The three primary modes are illustrated in Figure 1.6, as

observed in [Ja86]. The choice of modes is highly situation dependent.

The focus of this section thus far has been creatures which have slender hyper-
redundant bodies. However, other animals have limbs or tentacles which can
be considered hyper-redundant. Examples are the octopus, squid, and elephant.
The mechanics and morphological structure of such limbs have been considered

in [Kie82,KieS85).

The methods of hyper-redundant locomotion found in nature provide examples

which can be mimicked by hyper-redundant robots. Subsequent chapters will de-
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velop a general kinematic framework for hyper-redundant robot task implemen-
tation. In particular, Chapter 7 will consider hyper-redundant robot locomotion.
But first the next section reviews standard methods for resolving kinematic re-

dundancy.

1.3 Kinematic Redundancy Resolution

The kinematic equations of robotic manipulators are usually formulated by affix-
ing sets of frames to rigid elements in the mechanism. The relationship between
these reference frames and the kinematic attributes of a manipulator, such as joint
angles and link lengths, are generally expressed using the Denavit-Hartenberg no-
tation [Crai86]. In this notation, homogeneous transforms are used to describe the
relative rotation and translation of each reference frame with respect to adjacent

frames.

Figure 1.7: Frames Affixed to a Robot (after [Bur88|)

Figure 1.7 shows an example of this kind of description. The base frame, denoted
by j = 0, provides an initial reference in space. Internal frames, j € [1,n — 1],

describe the relative displacements of internal elements. The end-effector frame,
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j = n, specifies the position and orientation of the final link in the n degree of free-
dom serial-link robot structure. The information contained in the homogeneous
transform relating the end-effector frame to the base frame is often expressed more

compactly as a vector denoted Z...

The forward or direct kinematics of serial chain robotic manipulators is generally

written as:
Tee = F(7), (1.3.1)

where § € R™ is the vector of joint angles and z., € R™ is the vector of end-
effector positions and orientations. For the task of positioning and orienting the
end-effector in space, m = 6. Equation (1.3.1) states that the forward kinematic
function maps the joint angles of the manipulator to the vector describing the
position and orientation of the end-effector. This can be written in differential

form as:

8Tee = J(3)b7 (1.3.2)

where J(g) is the Jacobian matrix of the transformation, which has elements
Jij = g—%’ where f; and g; are elements of the vectors f(-) and g respectively. In
the inverse kinematics problem, we are interested in determining the joint angles,

g, which will yield a desired end-effector position and orientation:

7=f (Tee) (1.3.3)

In the case of nonredundant manipulators, i.e., those for which
dim(q) = n = dim(Zee) = m, (1.3.4)

it has been shown that the inverse kinematics problem can always be solved in
closed, or nearly closed, form [Pie68,DufC80,LeeL87]. However, it is nonethe-
less common to use a rate, or differential, formulation to solve for incremental
displacements [Crai86]:

6 = J71(q)é%ee. (1.3.5)
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There are two limitations with this. First, if the Jacobian matrix is singular, i.e.,
det(J) =0 (1.3.6)

then there are problems inverting. This corresponds physically to an instantaneous
loss of ability of the manipulator to move in one or more generalized directions

(screw displacements).

Second, if the manipulator is redundant, i.e,
n = dim(g) > dim(Ze.) = m, (1.3.7)

alternate methods have been developed, because the Jacobian matrix is no longer
square. For redundant manipulators, two methods are generally used: the Moore-

Penrose Pseudo-Inverse, and the Extended-Jacobian technique.

The Moore-Penrose generalized, or pseudo, inverse can be computed as:
It =w T (gw-13T)-1 (1.3.8)

when J has full rank [RaoM71,K1H83]. For our applications J € R™*® W ¢
R™ ™ and J* € R™*™, Note that J* = J~! when n = m. In the case n > m
most redundancy resolution in the literature (see [BarkM89,LuWP80,5cS587,5cS88,-
SIY87]) is implemented with the equation:

6§ = I 6Fee — (In — ITI)VH (1.3.9)

or similar formulations. In is the identity matrix for R™*™, and (In — JtT) is
an operator which projects n-vectors onto the null space of the Jacobian matrix.
The symmetric positive definite weighting matrix W provides that the solution ég
will instantaneously minimize the cost functional §g7 Wég under the constraint
that the incremental end-effector displacement 8Z.. is adhered to. VH € R™ is
the gradient of an additional scalar function H(g) which we seek to minimize by

projecting onto the null space of the Jacobian.
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While this is the most popular method of redundancy resolution, there are two
problems with this method. First, the algorithm is not necessarily cyclic, i.e., a
closed-loop trajectory of the end-effector will not necessarily mean a closed-loop
trajectory in the joint space of the robot. In other words, with this method, a
manipulator end-effector can track a closed-loop trajectory, but the configuration
of the robot will not return to its initial configuration. This can be quite a
problem when dealing with robots with many degrees of freedom, because the
manipulator can “get tangled.” However, recent work partially alleviates this
problem [ShaY88 Bay92,RobM92]. The second major problem with this method
is that it is computationally inefficient. The computational dependence on the
number of manipulator degrees of freedom for this method is at least 0(n?), and
can be greater depending on the choice of H(g). This becomes computationally

cumbersome as n approaches infinity.

Another method of redundancy resolution is the use of an extended Jacobian.
There are two versions of this method. In the simpler version, additional condi-

tions of the form:

t=79(g) or ‘¢bc=G(g)ég (1.3.10)

are specified where ¢,g(-) € R®* ™ so that the matrix of an augmented system of

equations becomes square:
-1
0FTee | | J | = : S A | 0Tee
[ pad ] = {G] g and so fg= [G] [ pad } (1.3.11)
One particular choice of the vector functions g and € is

9(7) = (In — JTI)VH (1.3.12)

and

t=0 (1.3.13)

which optimize the function H(g) by projecting the gradient on the null-space of

the Jacobian, just as in the pseudo-inverse case. However, there are two major
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differences. First, there is greater opportunity for algorithmic singularities to be
encountered, i.e., G or J may not always be full rank, or the combination of J

and G may not be full rank.

The computational requirements for the extended Jacobian technique are also un-
acceptable for hyper-redundant robots. Inverting the matrix in Equation (1.3.11)
requires O(n?) arithmetic operations. If the augmented system of equations is
based on Equation (1.3.12), additional pseudo-inverse computations must be per-

formed as well.

While the number of computations required to implement Equations (1.3.9) and
(1.3.11) involves the explicit inversion of matrices, it has recently been proposed
to use the theory of sparse matrices to formulate iterative algorithms for the
solution of inverse kinematic and dynamic equations [Alv91]. This method could

potentially reduce the number of computations to O(n) for large n.

The methods developed in this thesis will also involve computations of O(n), but
are fully parallelizable, so that computation ¢ime can be O(1), i.e, independent of

the number of robot degrees of freedom.

1.4 Previous Hyper-Redundant Robot Motion
Planning

As we saw in the previous section, standard kinematic redundancy resolution
techniques are not desirable because they require the computation of a Jacobian
pseudo-inverse or inversion of an augmented Jacobian. To circumvent the prob-
lems inherent in standard redundancy resolution techniques, some authors have
developed motion planning techniques for particular hyper-redundant manipula-

tor morphologies.

For instance, special motion planning algorithms have been developed for Vari-

able Geometry Truss Manipulators (VGTMs) [NacH89,NacH91,5aleRR88]. In
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those works, continuous spline-like curves were used to specify the macroscopic
truss geometry. In [NacH89,NacH91] a resolved rate formulation was used to de-
termine the kinematics of each module, or bay, of the truss in combination with
a spline-like curve used to specify overall configuration. This is not desirable
because use of pseudo-inverses in resolved rate formulations can result in non-
cyclic behavior. While previous analyses were useful in demonstrating the use of
VGTMs for obstacle avoidance and end-effector placement, past work has several
drawbacks. First, for spatial manipulators, a curve alone is not sufficient to de-
scribe manipulator configuration. Second, unless the curve used to describe the
manipulator is parametrized with meaningful physical variables, additional com-
putations are required to specify manipulator shape and extensibility restrictions.
Lastly, while [NacH89,NacH91,SaleRR88] deal exclusively with VGTMs, it is not
clear how they would apply to other types of hyper-redundant manipulators.

Several authors have developed motion planning algorithms for hyper-redundant
manipulators based on forces required to actuate the device. For instance [He85]
uses tendon forces to determine acceptable motions of a “flexible” manipulator.
[HiMo90] augments hyper-redundant mobile robot trajectories based on force feed-
back. [YoKT91] resolves redundancy in a variable geometry truss by minimizing

forces with a Jacobian pseudo-inverse.

A continuum mechanics approach to the motion planning of hyper-redundant ma-
nipulators with distributed pneumatic actuation was introduced in [WilSn88,Wil-
M89]. In [BrocS91}, a similar analysis was used for the optimal shape design
of long, thin elastic rods for implementing desired compliant robot behavior. In
another recent work, [TavD90] defined an optimal shape synthesis problem for
high degree of freedom variable geometry trusses using a differential geometric
approach. The motion planning of a continuous curve manipulator based on in-
trinsic geometry is considered in [HaPK90]. Previous continuum approaches will
be examined in greater detail when they are compared to the more general for-

mulations in Chapters 2-5.



SECTION 1.4: PREVIOUS HYPER-REDUNDANT ROBOT MOTION PLANNING 15

The above discussion provides a sample list of the various hyper-redundancy res-
olution techniques which have been developed for specific hyper-redundant mor-
phologies. This list is however constantly expanding. For instance, neural net-

work based approaches have recently been proposed for redundancy and hyper-

redundancy resolution [At89,BarhGZ88,TanH91].

While previous hyper-redundant robot analyses have dealt with end-effector place-
ment and obstacle avoidance, analytical treatment of problems such as hyper-
redundant locomotion is rare. In fact, the hyper-redundant locomotion literature
has focused primarily on mechanical and system design, rather than analysis, e.g.,
[HiM090,StuBDR90]. This contrasts to the extensive body of literature devoted
to the analysis of static walking [Ku87,McGh70,McGhP72,S0W89], dynamically
stable walking and hopping [VakB90,Li-MR89,McGe90], and the more conven-
tional wheeled vehicles [AM89,MuS90]. While a great quantity of work has been
devoted to the kinematics and dynamics of legged locomotion, and sophisticated
actuator technologies are being developed which can be used for hyper-redundant
robots, little analysis has been performed for hyper-redundant mobile robots. In
Chapter 7, this thesis contributes to the analysis and classification of the kinemat-
ics of hyper-redundant locomotion. While some of the mobile hyper-redundant
robots in the literature are a hybrid between a snake-like vehicle and a tracked
vehicle [HiMo90], the present investigation will be confined to motions caused
strictly by the internally induced bending or twisting of the robot without the aid

of actuatable wheels, tracks, or legs.

Several aspects of the general kinematic and motion planning framework pre-
sented in this thesis have been presented previously by the author in the papers
[ChB89-1,2,3,4,ChB90-1,2,3, ChB91-1,2,3,4,ChB92]. The basic approach in the
aforementioned papers and this thesis is the use of a “backbone curve” and asso-
ciated set of reference frames which have a physically meaningful parametrization.
The backbone curve is used to capture the macroscopic shape of the manipulator,

while the associated frames specify twisting of the physical device about the imag-
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inary backbone. Hyper-redundancy resolution is achieved by restricting backbone

curve geometry and roll about the backbone curve.

In [ChB89-1], the word “hyper-redundant” was first used in reference to manip-
ulators with a large number of actuatable degrees of freedom. In [ChB90-1],
methods to analyze the kinematics and motion planning of planar nonezten-
sible (fixed length) hyper-redundant manipulators were presented. In [ChB89-
1,ChB90-2] modal expansions of the intrinsic curve parameters are used to resolve
redundancy for the end-effector positioning task. In [ChB90-2,3], the methods
in [ChB90-1] were generalized to include the spatial end-effector placement and
obstacle avoidance problems. [ChB91-1,3] extends the work further to include
manipulator extensibility, i.e., actuatable degrees of freedom in the longitudinal
direction. Optimal hyper-redundant manipulator configurations were defined in
[ChB92]. Applications of hyper-redundant manipulators such as grasping and
locomotion were examined in [ChB89-3,ChB91-2,ChB91-4]. In [ChB91-3] a com-
bined modal and traveling wave approach is used for obstacle avoidance with

moving obstacles.

The following section explains the organization of the following chapters in this

thesis.

1.5 Organization of this Work

The remaining chapters of this thesis are partitioned into three main areas: Kine-
matics - Chapters 2-3; Task analysis and simulation - Chapters 4-7; Hardware

development and demonstration - Chapters 8-9.

Chapter 2 reviews and extends classical descriptions of the geometry of curves. A
backbone reference set is defined as a backbone curve and associated set of frames.
The backbone reference set is used to capture the macroscopic geometric features
of hyper-redundant manipulators. Several physically meaningful parametrizations

of the backbone reference set are examined.
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Chapter 3 shows how the physical structure of hyper-redundant manipulators can
be mapped to a backbone reference set. Hyper-redundant manipulator kinematics
is analyzed by partitioning the manipulator into nonredundant segments, each of
which has closed form inverse kinematic solutions. The kinematic constraints for
each segment are specified independently by the backbone reference set. As a

result, a parallel algorithm is developed.

Chapter 4 introduces the “modal approach” to hyper-redundancy resolution. The
shape of the backbone curve is restricted by constraining the geometric functions
developed in Chapter 2 to a sum of weighted mode functions. Criteria which
the mode functions must satisfy and methods for continuously transforming the
backbone curve from one set of modes to another are established. Singularities

introduced with this method are also discussed.

Chapter 5 develops methods for determining the “optimal” configuration of a
hyper-redundant manipulator which satisfies task constraints and minimizes a
user-defined optimality criterion. The calculus of variations is used to develop dif-
ferential equations, whose solution is the optimal backbone curve shape. Also con-
sidered are two other related optimization problems: the optimal reparametriza-
tion of backbone reference sets and the determination of optimal roll distributions

about a spatial backbone curve.

Chapter 6 presents a strictly geometric algorithm for hyper-redundant manipula-
tor obstacle avoidance which relies on the use of “tunnels” in the obstacle-filled
workspace. Methods of the differential geometry of curves are used to formulate
a generalized “follow the leader” approach which guarantees that sections of the
manipulator are confined to the tunnels, and therefore avoid obstacles. A general

formulation is presented with examples to illustrate this approach.

Chapter 7 explains how hyper-redundant robots can make use of their large num-

ber of degrees of freedom in the form of “waves” to manipulate, locomote, and

grasp.
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Chapter 8 gives a detailed description of the 30 degree of freedom variable ge-
ometry truss which was built to demonstrate the usefulness of hyper-redundancy.
The mechanical design and assembly, as well as the electronic and computational

elements, are discussed.

Chapter 9 presents the results of experiments performed to demonstrate and vali-
date the analytical development of this thesis. Experiments in obstacle avoidance
through a cluttered workspace, locomotion over flat terrain, and grasping of ob-

jects are demonstrated.

Chapter 10 is the conclusion. This contains a discussion of future applications of

hyper-redundancy, and further problems which must be resolved.
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Chapter 2.

Parametrization of Curves and Spherical
Motion

This chapter reviews and extends classical methods for describing curves and
associated sets of reference frames in R3. Commonly used techniques from spher-
ical kinematics and continuum mechanics are incorporated to establish a general
framework for defining and parametrizing a backbone reference set. The backbone
reference set consists of a backbone curve and a set of reference frames which evolve
along the curve. Parametrizations of the backbone reference set are developed in
a “natural” way for specifying hyper-redundant manipulator configurations. The
backbone reference set is used in Chapter 3 to provide kinematic inputs for actual

hyper-redundant robotic mechanisms.

The organization of this chapter is as follows: Section 2.1 reviews classical meth-
ods for parametrizing curves. The theory of curves and spherical motions is then
combined with the fundamental idea of a referential description from continuum
mechanics. The result is a general method for parametrizing curves and sets of
frames, which together define the backbone reference set. Section 2.2 reviews a
variety of specific parametrizations of spherical motion which are useful in this
context. These parametrizations include Euler-Angles, unit quaternions, and ma-

trix exponentials. Section 2.3 considers the degenerate case of planar curves.
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2.1 Parametrization of Time Varying Curves

Time varying curves in R3 can be represented in the parametric form:
z = z(s,1t) (2.1.1)

where s is called the curve parameter, which specifies a particular point in space
at time ¢. Throughout this work, the curve parameter is normalized to the closed
unit interval s € [0, 1] because we are dealing strictly with curve segments of finite
length. Much of the computer science literature concerning the parametrization of
curves in R3 [Fa90,Sul.89,RogA76] is based on the specific algebraic structure of
the vector valued function Z(s,t). Throughout this work parametrizations which

are purely algebraic in nature are referred to as direct parametrizations.

A well known direct parametrization from the computer graphics literature [SuL89]

is the polynomial spline :
N

(s,t) = Y s'Ti(t) (2.1.2)

=1
where {v;(t)} is a set of time varying vectors. Another example is the class of

spline-like curves which have been used in [RogA76], and which have the form:

N
z(s,t) = Y _ wi(s)wi(t) (2.1.3)
1=1

where the weights {w;} form a partition of unity:

N
> wi(s) = 1. (2.1.4)
1=1

For more information on other common curves, see [Kr79,MilP77,Str61].

The following sections will introduce indirect parametrizations in which integrals
or differential equations must be solved in order to explicitly represent Z(s,t).
We resort to indirect parametrizations because direct parametrizations do not
explicitly provide important geometric features of curves. These features will play

a key role in Chapter 3 when actual mechanisms are considered.
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For instance, Equations (2.1.2) or (2.1.3-4) do not explicitly state the length of the
curve between two arbitrary points s = 0 and s = 0. An additional computation

of the form
LR |
L(a,t):/ (z-7)7ds (2.1.5)
0

would be required to find the arc length, where a " represents differentiation with
respect to s. Thus, length constraints on a time varying curve can become compli-
cated when using direct parametrizations. Other physically meaningful quantities
such as how a curve bends and twists are also not explicit in direct parametriza-
tions, and must be computed with additional equations. These issues are ad-

dressed in the following subsection.

2.1.1 Classical Parametrization of Curves

In the classical differential geometry of curves, curves are parametrized by arc-
length: L(s,t) = s, which means that -z = 1. The Frenet-Serret Apparatus
[MilP77,5tr61] can be used to define how a curve locally bends and twists. The
Frenet-Serret apparatus also defines a unique set of frames at each point on the
curve. For each s, there is an associated frame consisting of the three orthonormal
vectors: #(s,t), Ai(s,t), and b(s,t), which are respectively termed the tangent,

normal, and binormal vectors (see Figure 2.1):

T=7. (2.1.6)

N

n=—u (2.1.7)
b=uxm (2.1.8)

where
K(s, ) = (s, 1) - i(s, 1)) ? (2.1.9)

is called the curvature function. Note that for nonzero curvature, @-% = 1 implies

-7 = 0, and for zero curvature the definitions no longer hold.
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Figure 2.1: Frenet Frames

From the above definitions, the following relationships can be derived:
T = KT, n=Tb— KT; b= —77, (2.1.10)
where 7(s,t) is an additional intrinsic parameter of the curve, termed torsion:

T = %ﬂ. (T x w). (2.1.11)
k(s,t) can be physically interpreted as the bending of the curve in the plane
spanned by %u(s, t) and 7i(s, t), while 7(s, t) measures the rate of change of orienta-
tion of that plane (whose normal is b(s, t)). Let Qrs(s,t) = [u(s,t) (s, t) b(s, t)]
be the set of Frenet-Serret frames for a given curve. From Equation (2.1.10), it

can be seen that the rate of change of QFg is governed by the equation:

Qrs = QrsArs (2.1.12)
where
0 —x O
Aps=|xk 0 -7 (2.1.13)
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The extension of this scheme to cases where s is no longer the arc length parameter

is straightforward. If L(s,t) # s, then every d/ds operation performed in Equa-
tions (2.1.6-2.1.11) would be replaced with an operator of the form: 1/(z-z)d/ds.

A

(s, t)

Rpsﬁs’ﬂ

a(st)

Figure 2.2: Modified Frenet Frames

An extension to the Frenet-Serret Apparatus which is relevant to hyper-redundant
manipulator kinematics is to include a relative roll distribution, Rrs(s,t), as seen
in Figure 2.2. Rpg(s,t) is a measure of twist about the backbone curve tangent
vector at each s measured in the Frenet Frames. While the macroscopic shape
of hyper-redundant manipulators can be captured using a curve, incorporating
the roll distribution allows the backbone reference set to specify how an actual

mechanism twists about the curve. The modified Frenet-Serret Frame :

Qu = ROT[w, Rrs]Qrs = QrsROT[e1, Rrs] (2.1.14)

can be used as a backbone reference set, where the symbol ROT|[7, a] represents

a counter-clockwise rotation about the vector ¥ by an angle a. €; represents the

i** natural basis vector of R3. The rate of change of the modified Frenet Frame

is then :

Qu = QuAnu (2.1.15)
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where
0 —kcos Rps ksinRpgs
Av = | kcosRps 0 —(1t+p) (2.1.16)
—ksin Rpg T+p 0

and p = Rps is the rate of relative roll distribution with respect to s. In Chapter

5, the norm of Ay will be used to define an absolute roll distribution.

It is possible to represent spatial curves directly in terms of the curvature and tor-

sion. This can be achieved by manipulating Equations (2.1.6-11) to yield [Str61]:

. . - +\92 .. . . . .
5(4)___(2%_}_2)5’(3)_{_(n2+T2_f.i__2_(_.,€_)_+EI)§+/g2 <E_:>§=0

K2 KT K T
(2.1.17)
With specified curvature and torsion functions, and appropriate base conditions,
such as
#(0,t)=0; =(0,t)=#&
and

#(0,t) = (0, t)gg;  z()(0,t) = —k2(0,t)e; + £(0, t)es + (0, £)r(0, t)es,

Equation (2.1.17) can be integrated numerically to yield the backbone curve
Z(s,t). Similarly, a set of frames which smoothly evolve along the curve can
be defined by integrating Equation (2.1.15) for a choice of k, 7, p with initial

conditions such as Qu(0,t) = Is = [e1, €2, €3]

Equation (2.1.17) provides an indirect parametrization of Z(s, t) in terms of x(s, t)
and 7(s,t), and Equation (2.1.15) provides an indirect parametrization of an as-
sociated set of frames. While this is an elegant and physically meaningful indirect
parametrization of curves, it has some drawbacks. For instance, when « is close to
zero, Equation (2.1.17) becomes singular. Because Equation (2.1.17) has no gen-
eral closed form analytical solution, it would have to be solved numerically. These
are substantial computational drawbacks when compared to direct parametriza-
tions. In order to formulate a parametrization with physical meaning but without

these drawbacks, the following sections introduce alternate parametrizations.
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2.1.2 Alternate Parametrization of Backbone Curves

Both planar and spatial curves can be parametrized in the general form:

Z(s,t) = /0, (o, t)Ho, t)do (2.1.18)

where again s € [0,1] is the curve parameter which represents a particular point
on the curve at time . %(s,t) is the unit tangent vector to the curve at s which,
as a matter of convention, is taken here to be the second column of a rotation

matrix:

u(s,t) = Q(s, t)es. (2.1.19)

The columns of Q(s,t) define the axes of the set of backbone reference frames
attached to the curve. The matrix Q(s,t) will sometimes be written in terms of

its columns as

Q(s,8) = [Ta(s, t) Ta(s, t) Ts(s, 1], (2.1.20)

where u(s, t) = Uy(s, t).

The general curve parametrization in Equation (2.1.18) has the following interpre-
tation. The backbone curve is “grown” from the base by propagating the curve
forward along the tangent vector, which is varying direction according to (s, t)

and varying its magnitude (or “growth-rate”) according to I(s, ).
g g g g

I(s,t) is termed the rate of arc length function because it is the rate of change of
arc length with respect to the curve parameter. It controls the length of the curve

tangent and can be written in the form:
I(s,t)=1+4+¢€(s,t) >0 (2.1.21)

where €(s,t) is the rate of eztensibility of the curve at point s and time t. The
length of the backbone curve between points s; and s3 is simply L(s3,t) — L(s1, 1),

where

L(s,t) = s+ E(s,t) = /0’ (o, t)do. (2.1.22)
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L(s,t) is the true, or classical, arc length measure (where 8z(L,t)/0L = 1) and
OL(s,t)/8s = L(s,t) = I(s,1). E(s,t) is the eztenstbility of the curve, which
measures how the curve parameter deviates from arc length. In the nonextensible
case, L = 1, E = 0, and s becomes the classical arc length parameter, as in
Section 2.1.1. Thus, a positive value of €(s,t) indicates a local extension at s,
while a negative value corresponds to a local contraction at s. Integrating all the
local extensions and contractions of the curve over the interval [0, s] yields the
extensibility of the curve segment over that interval. Because €(s,t) is a local
property, some sections of an extensible curve may be extending while others are

simultaneously contracting.

Let us assume that at time ¢t = to: I(s,t0) = 1 (or equivalently L(s,t) = s),
and Uy(s,tp) = & for : = 1,2,3. These conditions dictate that the curve segment
is straight, parametrized by arc length, and pointing along the zs-axis at time
to. In addition, all backbone reference frames differ only by translation along the
zz-axis. The geometry and parametrization of the backbone reference set at time
t = tg are referred to as the nominal reference state. Deviations from the nominal
reference state are dictated by relative degrees of bending, twisting, rolling, and

extensibility, which are all reflected in {i(s,t), Q(s, 1)}

The backbone reference set is completely specified by the homogeneous transfor-

mation matrix:

Q(s,t) z(s, 1)

ot 1

H(s, t) = (2.1.23)
Backbone reference set parametrizations can be induced by any parametrization of
spherical motion. Common parametrizations of Q(s, ¢) from spherical kinematics

are reviewed in the following section.
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2.2 Parametrization of Spherical Motion

This section reviews parametrizations of spherical kinematics and their applica-
tions to backbone reference set analysis. Spherical kinematics plays a central
role in defining the backbone reference set used throughout this work. Both the
backbone curve shape and set of frames evolving about the curve depend on the

rotation matrix Q(s,t).

2.2.1 An Euler-Angle Representation

Euler-Angles are perhaps the most widely used set of parameters for representing
spatial rotations. The Euler-Angle description of spatial rotations consists of three
consecutive rotations about three coordinate axes. There are many different ways
of representing Euler-Angles depending on which axes are rotated about, and in

what order the rotations are performed. One common choice is

Q= ROT[?{;,a1]ROT[€1,a2]ROT['€3,a3]. (2.2.1)

Throughout this work, an uncommon choice of
Qe = ROT[e3, —K]ROT[e1, T]ROT[ez, R] (2.2.2)

is chosen, because it is consistent with the convention introduced in Section 2.1.2,
and it results in a simple expression for the backbone curve position vector. A
subscript “E” is used in this section to denote Euler-Angle parametrization of a

rotation matrix. The resulting rotation matrix is given explicitly as:

—sinKcosR+cosKsinTsinR cosK cosT —(cosKsinR+cosKsinTcosR) | .

cos KcosR+sinKsinTsinR sinKcosT cos Ksin R—sin KsinTcos R
Qe =
—~cosTsinR sinT cosT cos R

(2.2.3)

The position of points on a spatial backbone curve using this parametrization of

S0O(3) can be represented by the equations:
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fO’ (o,t)sinK(o,t) cos T(o,t)do
z(s,t)= | [y l(o,t)cos K(o,t)cosT(o,t)do | . (2.2.4)
fs Uo,t)sinT (o, t)do
K(s,t) and T'(s,t) have the physical interpretation of angles which fix the direction

of the tangent for each value of s, while I(s, t) specifies the length of the tangent

vector, as shown in Figure 2.3.

I

Figure 2.3: Physical Interpretation of K(s,t), T(s,t), and 1(s,t)

By convention, K(0,t) = T'(0,t) = 0. By abuse of language, the derivatives of K
and T with respect to L are referred to here as quasi-curvature and quasi-torsion

respectively. In other words,
3
K(s,t)= / (s, t)K(0,t)do (2.2.5)
0
T(s,t) = / [(5,0)T (o, t)do (2.2.6)
0
where K and 7 are respectively the quasi-curvature and quasi-torsion.

A set of parametrization induced reference frames is defined as

Qpi(s,t) = ROT[es, —K]ROT[&1, T. (2.2.7)
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The column vectors of Qpy are denoted Z;(s, t) and are given explicitly as:

sin KcosT —sin KsinT _ cos K
Z2=| cosKcosT |;Z3=| —cosKsinT |;=Z;=| —sinK |. (2.2.8)
sinT cos T 0

These are respectively called the tangent, complementary vector, and planar-
normal. In this system, =Z; always lies in a plane parallel to the z-y plane of
the base frame. This frame will be useful in the next chapter when we merge
real mechanisms to the backbone curve. The intrinsic parameters of the classical

Frenet-Serret parametrization and this alternate parametrization can be related

as follows:
K2 =T2+K%cos® T (2.2.9)
T=—-KsinT — E?L—[Atan2(’1—, K cosT)] (2.2.10)

where Atan2(y,z) is the two argument arc tangent function [Crai86]. Note also
that
Qrs = ROT[z, Atan2(T, K cos T)|Qpr (2.2.11)

where
Qpr = [E2235]
is a permuted version of Qpy. This is necessary because the classical formulation

defines the first column of QFs to be the tangent, whereas it is defined as the

second column in this thesis.

The induced roll distribution R(s,t), which was used in Equations (2.2.2-3), is
defined with respect to the parametrization induced reference frames as follows:
The backbone reference frame {Fg(s,t)} is assumed to be coincident with the
parametrization induced reference frame for all s at time ¢t = ty. {Fg(s,t)} is
then allowed to rotate about the =3 axis by angle R(s,t). The unit basis vectors
of {Fr(s,t)} are given by: {¥y(s,t), Ua(s,t), Ts(s,t)}, where Ty(s,t) = Za(s, t).
The roll distribution is the angle defined by

R=cos7}(5;-Ty), (2.2.12)
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and measures how much the body fixed frame twists along the manipulator back-
bone curve with respect to the parametrization induced reference frame. The
restriction R(0,t) = 0 is imposed because the orientation of the manipulator base
is fixed. The rate of induced roll with respect to arc length, R, is defined such
that

R(s,t) = /0 " U(s, YR(o, £)do. (2.2.13)

As indicated by Equation (2.2.11), the roll distribution defined with respect to
the Frenet Frames and the parametrization induced reference frames differs by
Atan2(T,K cosT). In Chapter 5, an “absolute” reference frame is defined as the
reference frame of least twisting about the backbone curve. The absolute reference

frame provides a means by which all others can be compared quantitatively.

The complete backbone reference set can thus be completely specified with the

set of parameters: {L, K, T, R}, or their rate versions: {[,KX,7,R}.

While the Euler-Angle representation of spatial rotations is convenient and phys-
ically meaningful, it is often necessary to use 4-parameter descriptions. For in-
stance, in Chapter 5, use of Euler-Angles will be restricted because of algorith-
mic singularities which can result. The next two sections review two common

4-parameter descriptions which avoid this problem.

2.2.2 Matrix Exponential Representation

Every rotation in SO(3) can be represented in terms of its axis of rotation, defined

by a unit vector z = [23, z3, za]T, and angle of rotation a.

The corresponding matrix representation is

Q = exp[aS] = I +sinaS + (1 — cos @)S? (2.2.14)
where
0 —z3(s,t)  z2(s,t)
S(s,t) = | =z3(s,t) 0 —z1(s,t) | . (2.2.15)

—2z3(s,t)  z1(s, ) 0
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In matrix exponential form, a curve in R® can be written according to the frame-

work in Equations (2.1.18) and (2.1.19) as
Z(s, 1) = /: (s, t)exp[a(c, t)S(o, t)|eado. (2.2.16)
It should be noted that the tangent is not the vector Z, but rather:
u(s,t) = expla(s, t)S(s, t)]es. (2.2.17)

In a more explicit computational form:

Jo Wo, t)[z1(o, t)za(a, t)(1 — cos afo, t)) — z3(0, t) sina(o, t)]do
z(s,t) = Jo Uo, t)[22(a, t)(1 — cos a(o, t)) + cos oo, t)|do

Js (o, t)[z1(0, t)z2(0, t)(1 — cos a(o, t)) + 21(0, t) sine(o, t)|do
(2.2.18)
A backbone reference set can thus be parametrized with the set {I, a,z} under

the constraint z-z = 1.

2.2.3 Parametrization via Unit Quaternions

Unit quaternions are another 4-parameter set commonly used for describing spatial
rotations. While the Euler-Angle parametrization defined in Section 2.2.1 will be
used extensively, that description of spatial rotations becomes singular in some
situations. As will be seen in Chapter 5, quaternions are particularly useful for
formulating dynamical problems because the quaternion description of rotation

does not become singular.

With this parametrization, the matrix describing the orientation of the backbone

reference frame at any point is:

/\% + /\% - A% - Ag 2()\1A2 - Ao)\;;) 2(A1/\3 + AoAz)
Qy= 2(/\1)\2 + /\2)\3) )\(2) — )\% + )\g — /\% 2(A2A3 - /\0)\1) (2.2.19)
2(A1 A3 — on\z) 2()\2A3 + Aoz\l) )\3 — /\i‘2 - /\% + )\%

with the constraint :
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where ); = A;(s,1), and X = [Aq, Ag, A3, A4l

In this instance, the backbone curve is given by

Jo Wa, 1)(M(o, 1) — A3(a, 1) + A3(0, t) — A3)(o, t)do

( 2 f; o, t)(Aa(o, t)As(a, t) — Ai(0, t)Aa(0, t))do )
(s, 1) = (2.2.21)
2 f; o, t)(As(o, t)Aa(o, t) + Ai(o, t)Ae(o, t))do

The backbone reference set is fully described with {I, X} and the constraint X\ =
1.

2.3 Parametrization of Planar Curves

The parametrization of spatial curves discussed previously in this chapter simpli-

fies in the planar case. A planar curve is the locus of points which have position

defined by Z(s, t) = [z1(s, 1), z2(s,t)]T, where

z1(s,t) = /: l(o,t)sinb(o,t)do (2.3.1)

za(s,t) = /: (o, t)cos (o, t)do. (2.3.2)

6(s,t) is the clockwise measured angle which the tangent to the curve at point
s makes with the zz—axis at time ¢. Henceforth, the restriction 8(0,t) = 0 is
observed to indicate that the base of the curve has fixed orientation. Figure
2.4 illustrates the physical meaning of I(s,t),6(s,t). A simple relationship exists

between the curvature function of the curve and the functions 8, and I:

86 106
0L ~ 10s

K=

(2.3.3)
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Figure 2.4: Physical Interpretation of § and |
Throughout this thesis Equations (2.3.1) and (2.3.2) are interchangeable with:

z1(s,t) = /0 " l(o, t)sin ( /0 " lw, t)n(v, t)du) do (2.3.4)

za(s,t) = / (o,t) cos (/ (v, t)k(v, t)du) do. (2.3.5)
0 0
Note that Equations (2.3.1-2) and (2.3.4-5) correspond to the Euler Angle para-
metrization with T'(s, t) = R(s,t) = 0,K(s,t) = 6(s,t), and x(s,t) = K(s, t).

In the case of nonextensible curves, [ = 1, L = s, and « is simply the derivative
of § with respect to s. Note that strictly speaking « is defined as a magnitude in
Equation (2.1.9). A positive sense has been assigned to curvatures which cause

the curve to bend clockwise, and a negative sense to counterclockwise bending.

Complex number representation of rotations can also be used. Using complex

number representation of points in the plane, we have
2(s,t) = z1(s,t) + jza(s, t) (2.3.6)

with the real and imaginary parts corresponding to the natural basis vectors for

R2. Counterclockwise rotation of an arbitrary vector 7 = [v1,v2]T in the plane by
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an angle « is achieved by representing the vector as a complex number v; + jvs,

and multiplying by the complex exponential:
exp[ja] = cosa + jsina. (2.3.7)
Equations (3.3.1-2), which can be written as:
2(s, £) = /0 " l(o, )ROT[es, —8(c, t)jEado, (2.3.8)
can thus be rewritten as:

(o) = | " (o, t)expl—i6(c, 1))ds, (2.3.9)

where in complex notation j represents the unit vector &;.

2.4 Discussion

This chapter reviewed and extended classical methods for describing curves and
associated sets of frames in space. The classical geometry of curves is concerned
almost exclusively with intrinsic curve shape. The analysis in this chapter added
several new features to the old theory. These new features include the ability
to specify an arbitrary roll distribution about a curve, and the ability to extend
and contract curve segments in a controlled manner. The following chapters will
show how this formulation is natural for specifying hyper-redundant manipulator

configurations, and incorporating physical constraints.
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Chapter 3

Fitting Manipulators to Backbone
Reference Sets

Two issues are resolved in this chapter. First, methods for “fitting” hyper-
redundant robots to backbone reference sets are developed. Second, relationships
between the parameters {L, K, T, R} and joint limits are examined. In Section
3.1, a fully parallelizable algorithm is formulated for hyper-redundant manipula-
tor inverse kinematics. In this algorithm, the backbone reference set is used to
provide the kinematic inputs for each non-redundant section, or “module,” of a
hyper-redundant manipulator. Using the Euler-Angle parametrization of Section
2.2.2, the curves can easily be partitioned into sections corresponding to physical
manipulator modules. As a result, the mechanism kinematics problem completely
decouples once the backbone reference set is specified. The relationship between
mechanism joint limits and backbone reference set geometry is described within
this framework. The presentation in Section 3.1 is appropriate for general modular
hyper-redundant morphologies. Sections 3.2-3.5 present several examples of par-
ticular mechanisms which illustrate the theory developed in Section 3.1. Section
3.6 presents a fitting procedure tailored to a serial hyper-redundant manipulator
composed of revolute joints in order to illustrate how alternatives to the general

parallel algorithm can be developed.
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3.1 Inverse Kinematics in Parallel

A parallel algorithm based on the formulation of Chapter 2 is introduced here. For
the sake of simplicity, manipulators with a modular architecture are considered.
For example, the modules of an extensible spatial hyper-redundant manipulator
might be Stewart platforms. It is assumed for simplicity that the modules are

uniform in structure and size.

{Fr(3,1)}

[y

|

{Fr(*ZH 9}

Figure 3.1: Backbone Reference Set and Mechanism Modules

The backbone reference set can be used to generate inverse kinematic solutions
for modular manipulators as follows. Consider the i** module in the manipula-
tor chain consisting of n modules (see Figure 3.1). Attach a time-varying frame,
{F;_1(t)}, to the “input,” or base, of the module, and a frame, {Fi(t)}, to the
“output,” or top, of the module. For the discretely segmented modular manip-
ulator configuration to conform to the continuous curve geometry, the frames
{Fi-1(¢)} and {Fi(t)} are chosen to coincide with the backbone reference frames
at points given by s = (4 —1)/n and s = i/n respectively. That is, equate {F}(¢)}
to { Fr(¢/n,t)}, which was defined in Section 2.2.1. Recall that equal partitioning

of the curve parameter need not imply equal spacing along the curve, because
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L(s,t) can be chosen from a broad class of functions.

The 4 x 4 homogeneous transform relating {Fi} to {Fi_1} is denoted by H!_,
This consists of the relative translation, "_'::—1: and rotation, R::_l, of {F;} with

respect to {Fi_1}, i.e.,
P Ri (@) 7i.(g")
B, = . (3..1)
0 1
g™ € R™ is the vector of joint displacements which determine the geometry of
the 5** module. In the plane, m = 3, while in space m = 6. It is assumed that

the inverse kinematics of the module, which relate {F;} to {Fi_;}, can be solved

in a closed or efficient form.

The manipulator configuration will conform to the backbone reference set if:

H: (M) =nH"1 (2 ; L ) H (i—t) (3.1.2)

where H(s, t) is defined in Equation (2.1.23). Equation (3.1.2) can be rewritten

R;_1(7") = QT((i - 1)/n,1)Q(i/n, t) = P_y(¥) (3.1.3q)

and

7i1(@) = QT(( - 1)/n, 1)[3(5/n, t) — 2(( - 1)/m, 1)) = Py (t)  (3.1.3D)
Q(s,t) is the rotation matrix relating the orientation of the backbone reference
frame at point s to the base frame at s = 0. In other words, Q(s,t) describes
the orientation of the frame {Fg(s,t)} with respect to the base frame. P?_,(¢)
and P:_,(t) represent the orientation and position of the frame {FR(%,t)} with
respect to the frame {FR(i"Tl,t)}. Equations (3.1.2-3) specify that the frames
fixed in the manipulator, {F;(t)}, coincide with the backbone reference frames,
{Fr(i/n,t)}, at the discrete points s = i/n for all 2 € [0,n]. In the planar case
T(s,t) = R(s,t) =0 for all s,t and the above equations reduce to:

f I(s,t)sin[f(s, t) — 6(=L, ¢))ds

Bi1 = 3.1.4
Pt f I(s, £) cos[8(s, £) — 6(A=L, t)]ds (3.1.4)
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and

i __ [ cos 9}‘% sin ij
Pia(t) = (— sinf}, cos 9}‘4) ’ (3.1.5)

t(t) =9 (;‘;, t)— 46 (%l,t) is the relative rotation of the frame at s = % with

_ i—1
respect to the one at s = *==.

Assume that functions {L(s,t),T(s,t), K(s,t), R(s,t)} have been specified. Each
R::_l and 7"::_1 can be computed in parallel as a function of the backbone reference

set geometry. For example, in the plane let 6(s, t) = a(t)s and I(s,t) = {(t). Thus:

.lz ? [1 — cosa(t)s] cosa(t)s sina(t)s
2(s,t) = Qs, ) = (3.1.6)
%% sina(t)s —sina(t)s cosa(t)s
and so
. %% [1 — Cco8 %ﬂ] . cos ﬂnﬁ sin E%”l
Pal={ " Pii(t) = , (3.1.7)
a(t Sinﬂn'l —SinﬂnEz cosggl

which provide the kinematic inputs for each module in Equation (3.1.3). The in-
verse kinematics of each module can be performed in parallel, and so this method
can in theory be applied to manipulators with an arbitrary number of degrees of
freedom with the same computation time, provided each module has an associated
processor. This method is applicable to a wide variety of morphologies. The com-
putation of these quantities could be performed with a microprocessor dedicated

to module kinematics, or analog circuitry designed specifically for this task.

Actuator limits can be accounted for using the backbone curve approach by estab-
lishing bounds on the parametric functions which define the curve bending and
extension/contraction. The kinematics of the 5** module of a hyper-redundant
manipulator consisting of n modules is mapped, or “fitted,” to the backbone
curve with Equations (3.1.2) and (3.1.3). These equations can be rewritten as

follows:

Xi(t) = 743" (1)) (3.1.8)
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fi(+) is a vector function containing the same information as the homogeneous
transformation H!_;. X;(t) contains the same information as H~! i—;l, t)'H(;‘;—, t).

In the planar case X;, g™, f;(-) € R3, and in the spatial case X;, 7%, 7,(-) € RS.

Examples of this will be seen in the following sections.

Within this framework, the module forward kinematic function can be inverted (at
least in concept) to solve for the joint angles as a function of the curve parametriza-
tion:

—M; _ 7l

g = fi (Xq) (3.1.9)
Joint limits can then be related to curve parameters through the module inverse
kinematics as:

M
q;"" < ¢ < ¢, (3.1.10)

where 7 € [1, 3] in the planar case and j € [1, 6] in the spatial case. g™

maz
7" and ¢;

are respectively the minimum and maximum allowable joint displacements.

3.2 A Planar Serial Chain Manipulator

This section demonstrates the general parallel computational algorithm intro-
duced in the previous sections for the specific example of a planar revolute 3n-link
manipulator, where n > 1. The manipulator is broken down into n sets of three
link modules. The 3R module was chosen because within its workspace it can
arbitrarily position and orient the frame attached to the 37¢ link with respect to

the base. The forward kinematics of the manipulator is given by

3n 1 3n i
Tee = Z L;sin Z G |l;  Yee= Z L;cos Z q; (3.2.1)
1=1 i=1 j=1

j=1
where z., and y. are the end-effector position coordinates. Unless otherwise
stated, it will be assumed that L; = 3—17; for all i« € [1,3n], so that the total

manipulator length is normalized to unity. g; is the angle of the j th joint, i.e., the

angle between the j — 1** and j** links measured clockwise. Figure 3.2(a) shows
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how the inverse kinematics of each triad is determined by matching it to a section

of the backbone reference set.

The vector ?::_1 in Figure 3.2 is the relative position vector defined in Equation

(3.1.1). For this example:

3i+3 . k )
D k—3i41 SiD (Zj:ai-H qJ)

- 1
Pr_y = =— 3i+3 : 3.2.2a
17 3n Ek:&i+1 cos (Z;’=3i+1 qi) ( )
0
R:_; = ROT[—é3,q3i+1 + g3i+2 + q3i+3] (3.2.2b)

which are equated to Equations (3.1.4) and (3.1.5) respectively. Solving the inverse
kinematics of each triad determines the joint angles g3i+1, g3i+2, ¢3i+3 as a function
of curve geometry and the spacing of modules along the curve. The relationship
between manipulator length and length of the curve segments can be specified to
insure that each curve segment is in the reachable workspace of each triad of the

actual manipulator.

qued

Q' ’)"

qard -~ <

(a) (b)

1

Figure 3.2: Five Sets of 3R Modules Affixed to a Backbone

The inverse kinematics for the 3-link segment can be simply computed via the



SECTION 3.3 : A MANIPULATOR WITH CLOSED LOOP MODULES 42

0y =6 (%) -y (’ ; 1) (3.2.3a)

following sequence:

i = (pio1)r — sin(63)/3n (3.2.3b)

ty = (pi_1)2 — cos(fi)/3n (3.2.3¢)

ey = (9n2|T2 —2)/2 sz =£(1—cd)1 (3.2.3d)
@3i+1 = T/2 — Atan2(th, t1) + Atan2(sz, 1 + c3) (3.2.3¢)
@itz = —Atan2(sz, c2) (3.2.3f)

gaivs = 05, — g3it1 — 3it2 (3.2.39)

where (p!_,); and (p}_,)2 are the first and second components of the vector B_;-
The up or down elbow solutions can be chosen so as to cause the manipulator to
adhere to the curve segment as closely as possible, as long as this does not cause

instantaneous changes in module pose.

Figure 3.2(b) shows how the 3n-link manipulator considered in this section appears
when n = 5. In this case, the backbone curve is a circular arc with (s, t) = a(t)s
and I(s,t) = I(t) for a(t) = 0.8, and I(¢) = 0.8. With the backbone curve confined
to this form, Equations (3.1.5-7) provide the kinematic inputs required in Equation

(3.2.3).

In this case, it is fortunate that a closed form relationship exists between the
backbone curve geometric factors {I(t),a(t)} and the mechanism joint angles.
Joint limits are related to the backbone curve geometry by substituting Equations
(3.1.5-7) into Equation (3.2.3) and observing the constraints in Equation (3.1.10),
where in this case qﬁ-u" = q3i4; for 1 € [0,4] and 7 € [1, 3].

3.3 A Manipulator with Closed Loop Modules

The module design presented in this section has three actuatable degrees of free-

dom. For the i** module, the actuatable degrees of freedom are denoted 0341,
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03it2, and 83;43 (see Figure 3.3(a)). This design can be viewed as two coupled
3-link planar manipulator triads. Figure 3.3(b) shows that the triad on the left is

in an “up-elbow” pose, while the triad on the right is in a “down-elbow” pose.

2

1

Figure 3.3: Closed Loop Modular Design

The inverse kinematics is trivially specified by using the solution from the previous
section. In this case, however, the scaling of the link-lengths in relation to the
curve segment length is different. In this case, the nondimensional link lengths are
L;= 7;—; where 7 is the number of modules. Figure 3.3(c) shows a cascade of five
modules with the same backbone curve as the example in the previous section.
Because the inverse kinematics is similar, determining joint limits as a function

of the time dependence of the curve is also similar.

3.4 A Planar Truss Manipulator

This section demonstrates the methods of Sections 3.1 and 3.2 with a planar truss

manipulator. Figure 3.4(a) shows one module of the planar truss manipulator.
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In this case, one segment of the truss is composed of side members and a cross
element. The position vectors connecting like vertices in the truss are denoted 7}
on the left and 7} on the right. ¢ denotes the cross element. These vectors can
be determined from the continuous curve model as follows:

7% =iy — s ' + ROT(—#&s, 04 )75 j=1,2

’ (3.4.1)

¢ =p}_, — 7! + ROT(—e3, 03 )75
where 8%, = 8(i/n,t) — 6(( — 1)/n,t) and 1‘7,“; are the vectors to the j** vertex of

the i** platform in the frame affixed to that platform. For this specific example,

i = [~wi/2,0]T; i = [wi/2,0]T

where w; 1s the width of each horizontal face of the truss, as denoted in Figure

3.4.

ith face

e wis1 N—
i— 1% face

(a) ()

Figure 3.4: A Planar Variable Geometry Truss Manipulator

The controlled degrees of freedom are the lengths

L = |9l
T (3.4.2)
L3 = |[2]
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forv=1,....,n,and j = 1,2. Thus, Equations (3.4.1) and (3.4.2) provide the in-
verse kinematics solution for this module geometry. The backbone curve example
from Equations (3.1.6) and (3.1.7) is used again, resulting in the configurations
shown in Figure 3.4(b). Joint limits are of the form given in Equation (3.1.10),
where now q}"f‘ = L_';- for j € [1,3] and ¢ € [1,10]. Joint limits are related to the
backbone curve geometry by observing Equations (3.1.5-7) and (3.4.1-2).

3.5 A Spatial VGTM

This section applies the methodology to a highly articulated spatial truss struc-
ture. Figure 3.5 shows the geometry of one possible type of highly articulated
truss structure, which has been examined in [NacH89,5alRR88]. Here the geom-
etry of the base and top faces of each truss segment is fixed, and the vertical and

diagonal elements can expand and contract to change the truss geometry.

node (1.1)

node (3,1) \—‘kﬂ\x—/ node (2,1) 7

i

\\ /

. /
node (3,i— 1) ]\/V\node (2,i—1)

node (1,i—1)

(a) (b)

Figure 3.5: A Highly Articulated Spatial VGTM

The inverse kinematics problem reduces to the determination of the lengths of the
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truss elements which cause the manipulator to conform as closely as possible to
the continuous solution. The lengths of the truss elements required to generate a
position and orientation of the i*# face relative to the i —1°¢ face can be determined
as follows. Denote the position vector from node (7,7 — 1) to node (7,1) by 'T;; for
J =1,2,3. These vectors are defined in the body fixed frame {F;_1}, and can be
computed as:

vt =7y + (Pi; — Is)mj. (3.5.1)
7i; are the vectors to the vertices in the frame affixed to the center of each face,

which is defined by the unit vectors {=;}. For the particular example given, these

vectors are:
m = w1, 0, 0]

Mg = w[—sin7/6, 0, —cos /6] (3.5.2)
73 = w[—sin7/6, 0, cosw/6]T

where w determines the width of the truss.

The three cross elements are each denoted by E; for y = 1,2,3. They have the

explicit form:

E’i = 7"—::—1 — 71+ P::_lﬁz (3.5.3a)
& =7_,—m+ Pl A (3.5.3b)
=7, —m+P_m. (3.5.3¢c)

The actuatable degrees of freedom are the magnitudes of each of these vectors.

These are denoted by the symbol )\j-, where

X5 = (153
] j
; , (3.5.4)
Mivs = |[E5]]-
The forward problem of determining the relative position and orientation of the

top face with respect to the bottom one for each module is more difficult but need

not be solved for this method to be applied.

Figure 3.5 shows a VGTM with 10 bays, adhering to the same backbone curve
defined in Section 3.1.
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3.6 Morphology-Specific Fitting Procedures

Previously in this chapter, a parallelizable algorithm for fitting modular hyper-
redundant manipulators to backbone curves was developed and demonstrated.
This section illustrates an alternate approach for a particular manipulator mor-
phology: a planar n-link serial-chain manipulator. The purpose of this example is
to illustrate that alternatives to the general fitting procedure exist. In some cases,
it may even be desirable to use morphology-specific fitting procedures instead of

the general procedure developed earlier in this chapter.

In this example, the joint angles {g;} of the discrete manipulator are computed

directly from the backbone curve as:

27 +1 25 -1
gj+1 :9( Jzn )—9( Jzn )+€j+1. (361)

In other words, the angles of the discrete case are taken to be approximately

the change in angle over a corresponding section of the backbone curve (from
s =(2j—1)/ntos=(2j +1)/n) whose length corresponds to an individual link
length. This approximation will lead to errors, and to account for these errors, n

free “fitting” parameters, {¢;}, are introduced.

The {¢;} are computed to minimize a function which is the sum of squared distance

between points on the backbone curve located at s = % (fori = 1,...,n) and points

on the discrete manipulator:

k k i 2
G:%Z /0 sineds—%z;sin;qj

=

) (3.6.2)

k k 1
» 1
fds — — E E ;
+ /(; cos fds — — 2. cos 2 q;

Assuming each ¢; is small, Equation (3.6.2) can be linearized to provide n linear
equations in the n unknown {¢;} (see [ChB89-1,2] for details). If the computed

values of {¢;} are small, the linearization assumptions are justified. If the {e;}
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are not sufficiently small, iteration of the above procedure or a nonlinear fitting
technique can be used. This will generally only be the case when there are points
on the backbone curve with large curvature magnitude. Such cases can be avoided
by restricting the maximum curvature magnitude, possibly at the expense of re-
ducing the volume of the workspace associated with a particular set of modes. For
other methods of fitting discrete manipulators to backbone curves, see [ChB89-

1,ChB91-3].

3.7 Discussion

This chapter introduced a general parallel computational algorithm for fitting
robotic mechanisms to the backbone reference set developed in the previous chap-
ter. The method was demonstrated with three planar and one spatial hyper-
redundant manipulators. A variety of other candidate modules which could be
cascaded to form spatial hyper-redundant manipulators can be found in the lit-
erature [Wu86,TeB89,PiFD91]. Chapters 4-7 will use the kinematic framework
developed in Chapters 2 and 3 for the motion planning of hyper-redundant ma-

nipulators and mobile robots.
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Chapter 4

A Modal Approach to
Hyper-Redundancy Resolution

In a broad sense, “modes” describe fundamental characteristics of any complex
system, e.g., modes of operation of organized systems, or natural modes of linear
systems. This chapter presents a “modal approach” to “hyper-redundancy reso-
lution.” Hyper-redundancy resolution is a means by which the numerous excess
degrees of freedom of a hyper-redundant system can be specified to perform use-
ful tasks. Desirable characteristics of any hyper-redundancy resolution technique
are computational efficiency, and cyclicity, i.e., a closed path motion of the end-
effector causes a closed path in the joint space of the robot. The modal approach

possesses both of these characteristics.

Using the modal approach, hyper-redundancy is resolved by confining the func-
tions {L(s,t), K(s,t),T(s,t),R(s,t)} to a weighted sum of shape functions (or
operating modes) which are sufficient to perform a specified task. As the task
requirements change, the set of modes may be changed. The manipulator is
artificially confined to modes via the backbone reference set. Several types of
modes can be defined including bending (in two orthogonal planes), rolling, and
extending. The task which is performed by hyper-redundant manipulators in this

chapter is end-effector placement in a workspace without obstacles. As will be seen
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in later chapters, the modal approach plays a central role in obstacle avoidance,

locomotion, and grasping algorithms.

This chapter begins by motivating the choice of the set of parametric functions
{K,T,R,L} defined in Section 2.2.1 to describe the geometry of the backbone
reference set. In Sections 4.2-4.4 planar bending, extension, and mixed modes
are defined and used to resolve hyper-redundancy. Section 4.5 examines the spa-
tial problem. In Section 4.6, a modal Jacobian is defined and used in a manner
analogous to the Jacobians of standard manipulators. In Section 4.7, methods for
switching between sets of modes are discussed, and drawbacks of the modal ap-
proach are analyzed. One such drawback is the existence of “modal singularities,”
which can be analogous to the singularities of mechanical systems. Alternate ap-
proaches to hyper-redundancy resolution, which are based on optimality criteria,

are investigated in the next chapter.

4.1 Motivation for Choice of Parametrization

There are several compelling reasons to use Euler-Angle parametrizations of curves
and their associated frames. The first is that all the parameters are physically
meaningful. Second, unlike four parameter descriptions of spherical displace-
ments (such as quaternions), Euler-Angles need no constraint equations. Lastly,
the Euler-Angle description can be expressed as coupled planar problems. Some
methods developed for planar problems are therefore automatically applicable to

spatial problems.

The similarity in mathematical form between spatial and planar curves, as parame-
trized in Sections 2.2.1 and 2.3 respectively, can be seen from the trigonometric

relationships:

sin K cosT = %[

% (cos(K + T') + cos(K — TY].

sin(K + T') + sin(K — T)]

cos KcosT =
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The equations for the position of the end point of a spatial curve, which corre-
sponds to the end-effector of a hyper-redundant manipulator, can then be written

as

/1 I(s,t)sin 87 (s,t)ds + /1 (s, t)sin0 (s, t)ds = 2z1(1,t) = 2z.e(t) (4.1.1)
0 0
1 1
/ I(s,t)cos 8% (s,t)ds + / I(s,t)cos 07 (s,t)ds = 2z3(1, t) = 2yee(t) (4.1.2)
0 0

/01 I(s,t)sin —;—(0+(3, t) — 07 (s,t))ds = z3(1,1) = zee(t) (4.1.3)
where

0% (s, t) = K(s,t) + T(s,t); 87 (s,t) = K(s,t) — T(s,1).

Thus the geometry of space curves can be represented as “coupled” planar prob-

lems with this parametrization.

Furthermore, using this parametrization, it is easy to solve the inverse kinematics
problem for orientation. If the end-effector orientation is specified by a vector
of direction cosines F(t) = [y1(t), v2(t),v3(¢)]T and a roll Re.(t) measured with
respect to the parametrization induced frame {¥;}, the conditions which must be

satisfied are

sind¥(1,t) +sin87(1,t) = 271 (t)

(4.1.4)

cos 0%(1,t) + cos 87(1, ) = 2v2(2)
sin %(e+(1, £) = 6(1, ) = 7a(2) (4.1.5)
R(1,1) = Reo(t) (4.1.6)

Note that Equations (4.1.4) are equivalent to the forward kinematics equations
of a two link revolute-jointed planar manipulator with unit length links, and the

solution to that problem can be used to calculate two solutions:

67(1, 1) = Atan2(1,12) — Atan2(13(1 — 12)%,1 — 43) i
6+ (1,1) = 6-(1,£) + Atan2(2y3(1 —12)E, 1 — 292). -

67(1,t) = Atan2(71,72) — Atan2(—ys(1 — 43)F,1 — 42)

. (4.1.8)
6%(1,t) = 67(1,t) + Atan2(—2y3(1 — ¥3)7,1 — 293).
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It can also be shown that Equation (4.1.5) is automatically satisfied by the solu-
tions of Equations (4.1.4). Equation (4.1.6) is solved independently of the other
equations. Equations (4.1.7) or (4.1.8) are used to provide the end-effector orien-

tation constraints K(1,t), T(1,t), and R(1,1).

The inverse kinematics problem of finding K, T', R, and L to achieve a partic-
ular end-effector position is not as easily accomplished. The “modal approach”

presented in the next sections is one method to make this problem tractable.

4.2 End-Effector Placement Using Bending
Modes

The forward kinematics of a planar backbone curve can be computed by exact
or numerical integration of Equations (4.1.1-3). However, the inverse kinematic
problem can have an infinite number of solutions. The inverse kinematic prob-
lem for planar nonextensible hyper-redundant manipulators can be simplified by

constraining §(s, t) to the modal form:

Ny

6(s,t) = ai(t)®i(s), (4.2.1a)
=1

I(s, 1) =1 (4.2.1b)

where ®; is a mode function, and a; is a modal participation factor. A hyper-
redundant manipulator with nonextensible backbone curve is said to be confined
to pure bending modes if Equations (4.2.1) hold, and T'(s, t) = R(s,t) = 0. Under
these conditions, (s,t) = 06(s,t)/s is also of a modal form, with curvature
modes ¢; = $;. Ny is the number of bending modes, which depends upon the
number of end-effector or other task constraints. In this way, the end-effector
coordinates become a function of {a;}. The {®;} are specified functions, and thus
the inverse kinematics problem reduces to finding the {a;} which satisfy task con-
straints. When Ny equals the number of constraints, inverse kinematic solutions
based on Equation (4.2.1) serve as a means of hyper-redundancy resolution for

nonextensible planar manipulators.
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For some choices of modes, exact closed form inverse kinematic solutions can be

found. For example, consider the following choice of modes for Ny = 2:
®1(s) =sin2ws;  P3(s) =1 — cos2ws (4.2.2)

Substituting Equation (4.2.2) into Equations (4.2.1), (2.3.1), and (2.3.2), and
evaluating at s = 1, it can be shown using identities in [Bow58,Dw61] that the

forward kinematics equations reduce to
: 2, -2\3 2, - 2\i
Tee = sin(az)Jo {(al + az)f] Yee = cos(az)Jo [(a1 + az)T] (4.2.3)

where Jj is the zerot* order Bessel function.

T2
z2

N

(a) (d)

Figure 4.1: Continuous Bending Modes

The “inverse kinematics” (evaluation of modal participation factors) in this case

can be computed as:

1

a1 = 8E(Tee) _ s ([Jo“l [(2:33 + yze)%]]z _ [Atan2(mee,yee)]2) T (424)
az = a3(Tee) = Atan2 (Zee, Yee) - (4.2.5)

J;! is the “restricted inverse Bessel function of zero order,” and is defined as the

inverse of Jy(z) for 0 < z < p where p = 3.832 is the first local minimum of
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Jo. The plus and minus sign distinguishes two possible poses. Other poses would
exist if other intervals of the argument were permitted in computing the inverse of
Jo(z). In general, inverse kinematic computations using the modal approach are
analogous to the inverse kinematic computations of nonredundant manipulators,
with modal participation factors serving as generalized joint displacements. How-
ever, one significant difference is that the modal approach can generate an infinite
number of poses. In this case, there are two poses corresponding to each interval
of the zeroth order Bessel function bounded by local minima and maxima, though
not for all points in the workspace. Nonredundant manipulators only have a finite
number of poses for a given end-effector position and/or orientation. Figure 4.1
shows a manipulator confined to the bending modes in Equation (4.2.2). The
end-effector position and modal participation factors in Figures 4.1(a) and 4.1(b)
are respectively (zee, Yee, a1, a2) = (0.10,0.50,1.50, 0.20), (0.30,0.30, 1.46,0.80). A
VGTM has been fit to the curve using the method described in Section 3.4.

Other closed form modal solutions are easily found when smoothness constraints
are relaxed. For instance, a revolute joint is mimicked with a Dirac delta function
in curvature, 8(s — s¢), which integrates to a Heaviside unit step function in the

tangent angle, H(s — sg). Consider the following set of modes:
®1(s) =sin(27s);  Pa(s) = H(s —0T). (4.2.6)
The corresponding forward kinematics is written as:
Tee = Jo(a1)sin ay; Yee = Jo(a1) cos as, (4.2.7)
with inverse kinematics:
ay = J; [(wge + yfe)%] . ap = Atan2(ee, Yee). (4.2.8)

Similarly, if
®1(s) =1 —cos(2mws);  B2(s) = H(s—0") (4.2.9)

are chosen, the forward kinematics becomes

Tee = Jo(a1)sin(a1 + a2); Yee = Jo(a1) cos(ay + az), (4.2.10)
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and the inverse kinematics is
1
ar=J;t (@2 + 920 ] @ = Atan2(zee,vee) — ar. (4.2.11)

In both of the above examples, $3(s) = H(s—01) indicates a finite clockwise rota-
tion about the base of the manipulator by an angle az. Configurations correspond-
ing to the modes in Equations (4.2.6) and (4.2.9) are shown in Figures 4.2(a) and
4.2(b) respectively. The end-effector positions relative to the manipulator bases
and participation factors are (Zee, Yee, a1, a2) = (0.10,0.50,1.52, 0.20), (0.10, 0.50,
1.50,—1.28) for Figures 4.2(a) and 4.2(b) respectively.

2

2

T 1

(a) ()

Figure 4.2: Mixed Continuous/Discontinuous Bending Modes

Using discontinuous modes exclusively, standard mechanism kinematics can be
mimicked. In fact, the kinematics of many machines and mechanisms can be
viewed as specific cases of the modal approach. An example of nonsmooth bending

modes for Ny = 3 is

®1(s) = H(s — L1); ®3(s) = H(s — L3); ®3(s) = H(s — L3) (4.2.12)

where again H(-) is a unit step function, and 0 < L; < Ly < L3 < 1 are constants.

Substituting these modes into Equations (2.3.1) and (2.3.2) and evaluating at
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s = 1, the forward kinematics equations reduce to
Tee = L1sinaj + Lasin(ay + a2) + L3 sin(ay + az + a3) (4.2.13a)

Yee = L1 + L1 cosay + L3 cos(a; + az) + L3 cos(ai + a2 + a3) (4.2.13b)
Bee = a1 + ag + a3 (4.2.13¢)

where L3 = Ly — L1, L3 = L3 — La, and L3 = 1 — L3. This is nothing more
than the forward kinematics of a three-link planar revolute manipulator which
is translated along the y-axis by L;, and with joint angles {a;,as,a3} and link
lengths {Ly — L1, L3 — L3,1— L3}. The “inverse kinematics” (evaluation of modal
participation factors) in this particular case can then be computed in the usual

way:

a1 = 323 — Atan2(Yee — l C08 e, Toe — 2 5in B ) + Atan2(ly sz, lo + l1¢3)

(4.2.14a)
az = —Atan2(sy, c3) (4.2.14b)
a3 = Oee — a1 — az (4.2.14c)
where
¢ = (Tee — l25inBee)? + (Yoo — locOs bee)? — 13 — 12 52 = (1 — c%)%

204

Figure 4.3 shows three different sets of modes of the form given by Equation
(4.2.12) (corresponding to different “link lengths”) for the same end-effector lo-
cation. The lengths in the figure are {L1, Ly, L3} = {0.1,0.3,0.9},{0.1,0.5, 0.8},
and {0.2,0.5,0.7} and the end-effector position is (zee,¥ee) = (0.3,0.9).

In the usual fitting procedure for this mechanism morphology presented in Chap-
ter 3, the fixed truss elements are chosen to be normal to the backbone curve.
However, when the backbone curve is not continuously differentiable, the normal
is not well defined, and smoothing is used to define alternate orientations for the

transverse truss elements. The function 6(s,t) = S33_, a;(t)H(s— L;) in the above
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example was smoothed to form a new distribution of angle along the backbone
curve denoted O,m(s,t). 8sm(s,1) is equal to 8(s,t) everywhere on the backbone
curve except on the intervals L; — e < s < Li+ eforz = 1,2,3. On these intervals
a polynomial spline replaces the value of the function so that a smooth transition
over these intervals is achieved. The boundary conditions for the spline are pro-
vided by the function (s, t) evaluated at s = L; + € for = = 1,2,3. In this way,
a smooth transition results across the singularities while matching the original
function outside an € neighborhood of the singularities. € is small compared to
the smallest link length. While (s, t) is used in all backbone curve computations,
such as Equations (2.3.1-2), 0,m(s,t) is used for the fitting procedure. For the

configurations in Figure 4.3, € = 0.02.

Figure 4.3: Discontinuous Bending Modes

4.3 End-Effector Placement Using Extension
Modes

In contrast to the pure bending modes selected in the previous section, this section

demonstrates how pure extension modes can be used to position the end-effector.
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In this scenario,

8(s,t) = 8e(s) (4.3.1)
is independent of time, i.e., the angle of the tangent to the backbone curve at
each value of s does not change over time, while the rate of length function of the

backbone curve is specified in modal form as:
N

Us,t) = > ai(t)®i(s). (4.3.2)

=1

Inequality constraints 0 < Imin(s) < I(s,t) < lmaz(38) are usually observed. The
functions lmin and lymez are derived from the mechanism’s ability to extend and
contract with specified 8,(s). It is important to note that because 6, is not a func-

tion of time, the end-effector orientation remains constant during pure extensions.

In this way, there is a linear dependence of the end-effector position on the par-
ticipation factors given by:

N; 1
ree(t) = 3 (1) /0 Bi(s) sinb.(s)ds (4.3.3)

=1

N
Yee(t) = Z ai(t) /: ®i(3s) cos Be(s)ds. (4.3.4)

This can be written in the forrtn1
Tee(t) = Talt), (4.3.5)
where J is a modal Jacobian matrix with constant elements which depend on
the choice of modes but not the participation factors. Modal Jacobians will be
dealt with in greater detail in Sections 4.6 and 4.7. In the case where N; = 2,
Equation (4.3.5) can be inverted to yield the “inverse kinematics” which provides
the appropriate participation factors. It should also be noted that the integrals
fol ®;sinf.ds and fol ®; cos f.ds need only be computed one time (and possibly
off-line) because they are invariant with respect to participation factors and end-
effector position. Figure 4.4 shows two configurations for a manipulator confined

to the extension modes

®1(s) =sin27rs  Py(s) =1 (4.3.6)
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with 8e(8) = 0ees. Bee is a constant end-effector orientation, which in this case
is /2 radians. If 6., were a function of time, this would constitute a set of
mixed modes, which is the subject of the next section. The end-effector posi-

tions and participation factor values for Figures 4.4(a) and 4.4(b) are respectively

(Zee, Yee, a1, az) = (1.00,1.00,0.00, 1.56), (0.50,0.70,0.59, 0.94).

z2

2

(a) 1 (b) 1

Figure 4.4: Pure Extension Modes

4.4 Combined Bending and Extension Modes

The effective number of degrees of freedom of a planar hyper-redundant manipu-

lator confined to both bending and extension modes is N = Ny + N; where:

Ny N;
os,t) =D ai()Bils)  Usit) =D apmy(Depamy(s)  (441)
i=1 =1

A class of manipulator configurations with closed form forward and inverse kine-

matic solutions which uses extension and bending modes can be defined as follows.

Consider for Ny = N; = 1, the bending and extension modes:

di(s) =v(s) Dy(s) =v'(s), (4.4.2)
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where v(s) is a strictly increasing function ('u'(s) > 0 for all s € [0,1]) with
v(0) = 0 and v(1) = 1. The forward kinematics for this class of hyper-redundant

manipulator configurations is:

1
Tee = / a2®Pa(s)sin(a1®1(s))ds = :—2(1 — cosay) (4.4.3a)
0 1

1
Yee =/ az®3(s) cos(a1®1(s))ds = gz—sin ai. (4.4.3b)
0 1

The inverse kinematics is:

a1 = 2Atan2(zee, Yee) (4.4.40)
ag = e (4.4.4b)
sinay

\™

Figure 4.5: Bending and Extension Modes

Two examples of this class of modes are shown in Figure 4.5. In Figure 4.5(a),
v(s) = s, and in Figure 4.5(b) v(s) = 2(}s% + s). In both cases, the end-
effector and modal participation factor values are the same: (zee,¥ee, a1,a2) =

(0.5,0.8,1.12,0.99). For all choices of v(s) chosen as mentioned above, the shape
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of the backbone curve will be a circular arc. The distribution of actuator exten-
sions will however depend on the particular choice of v(s). Note that the curve

used in Chapter 3, and defined in Equation (3.1.6), is a member of this class.

It should also be noted that there are other physically meaningful ways in which

modes can be defined. Instead of restricting the function (s, t) to modal form,

the curvature function x(s,t) = 3[-‘5% could have been restricted to modes. In

the nonextensible case, I = 1, the two definitions of modes are the same but
in the nonextensible case there is choice in specifying what quantities should be

represented as a sum of weighted modes.

4.5 Spatial Modes

The modal method can be used to formulate spatial hyper-redundant manipulator
kinematic algorithms by constraining {R(s, t), K(s,t),T(s,t),(s,t)} to have the

modal forms:
Ng

K(s,t) =) ai(t)®i(s) (4.5.1)

1=1
Ng+Nr

T(s,t)= Y ai(t)®i(s) (4.5.2)

1=Ng+1

Ng+Nr+Ngr

Ris,)= Y ai(t)®(s) (4.5.3)

t=Ng+Np+1

Ng+Nr+Np+N;
I(s, ) = > ai(t)®i(s). (4.5.4)

i=Ng+Np+Np+l
Solution techniques for the inverse kinematics of a spatial backbone curve are
essentially the same as for the planar case, although it is somewhat more difficult

to find closed form continuous mode solutions.

However, as stated in Section 4.1, closed form planar kinematics solutions can be

used to find closed form spatial forward kinematic equations. For instance, by
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restricting the functions K and 7 to the form:

K(s,t) = 2ma; cos 2ws + 2mwag sin 27s; T(s,t) = 2mas cos2ws + 2way sin 27s,
(4.5.5)
with I(s,t) = 1, Equations (4.1.1-3) and (4.2.3) can be used to generate forward
kinematic functions similar to the planar case. The forward kinematic equations

corresponding to the modes in Equations (4.5.5) are:

Zee = =Jol((a1 + a3)* + (a2 + a)®)F] sin(as + as)

2
+ ‘;‘JO[((GI —a3)? + (az — a4)2)%] sin(az — a4)
Yee = %JO[((G] + a3)2 -+ (a2 + a4)2)%] cos(a2 + a4) (456)

+ 30l((a1 — a3)” + (a2 — as)))F] cos(az — as)
Zee = Jo[(al + ai)%]sina‘;
which constrains the manipulator to four degrees of freedom. If a uniform ex-
tensibility and roll distribution are included, this would provide the six degrees
of freedom needed to position and orient an object in space. Closed form in-
verse kinematic solutions for Equations (4.5.6) have not been found. Nonetheless,
the existence of closed form forward kinematic solutions makes resolved rate for-
mulations using the participation factors as generalized coordinates more efficient.
Section 4.6 considers such numerical solutions, but first we examine several spatial

modal configurations which do have closed form solutions.
For instance, we can take
K(s,t) = W(s,0,b)[a1(t)¢1(s) + az(t)p2(s)] (4.5.7a)

and

T(s,t) = as(t)ds(s)W (s, b, 1) (4.5.7b)

where b € (0,1) is a constant, and

W (s, s0,51) = H(s — s0) — H(s — s1) (4.5.8)
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is a window function which is equal to unity on the interval s € [sg, s1) and zero
otherwise. By imposing the condition K (b,t) = 0, the effects of K on the backbone
reference frame at s = b are limited to translation in the z; — z5 plane. The effect
of T as defined in Equation (4.5.7b) is limited to the z3 — z3 plane. The forward

kinematic equations will take the form:
Tee = 1(a1,82,D),  Yee = za(a1,a2,0) + y1(as,d),  zee = ya(as,d) (4.5.9)

the inverse of which are easily solvable for ai, a3, a3 as functions of Zee,Yee,2ee, and
b if the modes in the two orthogonal planes have closed form inverse kinematic

solutions.

For example, if

$1(s) = z—l;_—sin %TS $a(s) = %cos 2—752 #3(s) =1 (4.5.10)

then the resulting forward kinematic equations are:

Tee = bJp [(af + a%)é] sinay (4.5.11a)
9 2\ 1 1-b .,

Yee = bJy [(‘11 + az)f] cosag + sinags (4.5.11b)

1-b
Zee = ——(1 — cosaz) = (1 — b)F(as3). (4.5.11c)

as
The function F(-) is defined for convenience. Equations (4.5.11) can be inverted
to yield
_ =1 Zee
a3 =F (1 — b) (4.5.12a)
az = Atan2(z.., y;e) (4.5.12b)
2 T

o =% ([ e2+ ] - 3) (45.120)

where y;, = Yee — % sinas, and F~1(-) can be defined over any part of the range
of F(-) for which F(-) is monotonically increasing or decreasing. This example
is simply the pure bending mode solution from Equations (4.2.2-4.2.5) with a

circular arc bending in the z3 — z3 plane.
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Combined bending and extension modes can be used in the spatial case just as

they were in the planar case. For instance, choosing
1
K(s,t) = msW(s,0, =) + “W(s, =,1)
27 2 2
1
T(s,1) = 2a1(s — )W(s, % 1) (4.5.13)
1
U(s,8) = a2W(s,0, ) +asW(s, 3, 1),
and substituting Equations (4.5.13) into the forward kinematic equations results

in:
a2 a3 o3
- + m sin aj

I
LI

(4.5.14)
2%3?(1 —cosai)
The corresponding inverse kinematics for this example have the closed form:
a = 2Ata-n2(zee; Tee — yee)

a2 = TMYee (4.5.15)

_ 2az($ee - yee)
sin as

as
where 2. = z3(1).

Another class of closed form spatial solutions is those which mimic standard nonre-

dundant manipulators. For instance, if

K(s,t)= TH(s — 3) (4.5.16)
T 2
T(s,t)= ZH(s - 3) (4.5.17)
l(s,8) = ax(OW (5,0, 3) + aa()W (s, 5, 2) + s (5, 2,1)  (45.18)

the resulting curve mimics a three degree-of-freedom Cartesian manipulator, which

has the simple kinematic equations:
a1 = 3Yee; as = 3Tee; a3 = 3Zee- (4.5.19)

This choice of modes is shown in Figure 4.6 with a variable geometry truss.
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\

Figure 4.6: Modes which Mimic a Cartesian Manipulator

If we choose

K(s,1)= TW(s, % 1) (4.5.20)
T(s,1) = a1 (t)W (s, % g) + az()W (s, g 1) (4.5.21)
I(s,t) = as(t)W(s,0, ;—’) + W (s, %, 1) (4.5.22)

a SCARA-like manipulator is mimicked (see Figure 4.7). Likewise, a variety of
other common manipulator morphologies can be mimicked while using the modal

approach to hyper-redundancy resolution.
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Figure 4.7: Modes which Mimic a SCARA Manipulator

4.6 Algorithms for Modal Inverse Kinematics

It is not necessary to have closed form inverse kinematic solutions to use the modal
method. Look-up tables (or neural networks) can store the mapping between
participation factors and end-effector coordinates for a given set of manipulator
modes. Interpolation (or neural network generalization) can be used to interpolate
the data. Thus the speed associated with closed form inverse kinematic solutions

can be attained for a wide variety of modes.

Alternatively, an approach analogous to the “resolved rate” method reviewed in
Chapter 1 can be used. The derivative of the forward kinematic map for a back-

bone curve restricted to modes is of the form:
0Tee = Tba (4.6.1)

where J is the modal Jacobian:

(4.6.2)
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which is analogous to traditional manipulator Jacobians, only now participation

factors are used instead of joint angles.

For a given initial set of modal participation factors, @y, Equation (4.6.1) can
be solved to find incremental changes in modal participation factors to follow a
desired end-effector trajectory. The following equation can be used to find the

incremental changes in the modal participation factors:

68 = T (@) 8T ee- (4.6.3)
These incremental changes can be used in an iterative procedure to modify the
participation factors, i.e, a(t + 6t) = a(t) + da, starting with a(0) = @. For

example, consider the two mode example of Equations (4.2.2-4.2.5). The modal

Jacobian matrix is:

32:;; azu
J = [8’;;1; 8;3;} (4.6.4)
Jaq Gaz
where:
O e al . 1
= — J 2 + 2 3
Bay (a§+ag)§ sin(az)J1[(a] + a3)?]
axee :
S = cos(aa)o(af + a3)7] — — " sin(aa)1[(a} + a3)7]
2 (ai +a3)7 (4.6.5)
Oee _ ___ 81 o(an)di(a? + ad)}]
Oa (o} +ah)t
5 ee .
ay = —sin(as)Jo[(a? + a2)7] — —2—_ cos(az)/1[(a? + a2)7]
ay (a +4a3)2

where Jy and J; are Bessel functions of the zeroth and first kind, and dJy(2)/dz =
—Jl(z).

If a closed form forward kinematics equation cannot be derived, the modal Jaco-
bian matrix elements can also be computed numerically. For the case of nonex-
tensible planar manipulators, the Jacobian elements can be numerically computed

as:
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1
Jij=F—= / ®;(o)cos(d(o, t)]do
Ooj o (4.6.6)
a'!/e:e 1 . o
Joj = 5 = -—/ ®;(0)sin[f(o, t)|do
7 0

Figure 4.8 shows two examples of manipulator configurations confined to modes
which do not have closed form inverse kinematic solutions. The rate formulation
expressed in Equation (4.6.3) was used to solve for the participation factors as
a function of end-effector position. In these cases, Equation (4.6.6) was used.

Figures 4.8(a)-(b) show a manipulator confined to the two modes:
®1(s) =1 —cos2rs Pa(s)=s (4.6.7a)

for (Zee, Yee, a1, a2) = (0.10,0.50,1.22, —2.65), (0.30,0.30, 1.54, —1.98) respectively.
In Figures 4.8(c)-(d),
®i(s) =sin27s  Pa(s) =3 (4.6.7b)

and (Zee, Yee, a1,a2) = (0.10,0.50, 1.64, 0.38), (0.30,0.30,2.12,1.53) respectively.

F (a) A (b)

(¢) (d)

S

Figure 4.8: Modes Without Closed-Form Inverse Kinematics
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4.7 Singularities, Degeneracy, and Switching

While the introduction of modes reduces computational needs for robots with
large numbers of degrees of freedom, it also introduces additional considerations.
For example, “modal” singularities will arise. We will also see that modes cannot
be chosen arbitrarily, i.e., it is possible to choose “degenerate” modes where N

modes may not map to N end-effector degrees of freedom.

4.7.1 Modal Singularities

Modal singularities are analogous to the kinematic singularities of standard ma-
nipulators. In a kinematic singularity, an instantaneous motion of the joints is
unable to provide an instantaneous twist of the end-effector about one or more
screw axes in the workspace. For modal singularities, the loss of end-effector free-
dom is measured with respect to instantaneous changes in modal participation
factors, and can be observed as a loss of rank of the modal Jacobian matrix,
J(@). In the case when the number of modes is equal to the number of task

constraints, modal singularities are identified by
det(J) = 0. (4.7.1)

It should be noted that in most cases, the singularities of the physical manipulator

must be accounted for separately.

4.7.2 Singularities of Bending Modes

To illustrate modal singularities Equation (4.6.1) is evaluated with the choice
of modes given by Equations (4.2.2-4.2.5). Since two participation factors are
involved, and we are only interested in end-effector position in the plane, loss of

rank can be determined by setting

0Zoe 0Yee  OTee OYee =0 (4.7 2)

det(7) = _ -
M) = Ga P~ Fay Ba.
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Substituting Equation (4.2.3) into Equation (4.7.2), the modal singularities of this
manipulator occur when:

al
(af + o)1
Equation (4.7.3) will be satisfied for any one of the following conditions: a; = 0,

Jo [(a,:l" +a§)§'] =0, or /1 [(a,% +a§)ﬂ = 0. The case of a; = 0 corresponds

A [(ad + a3)] Jo [(al + a3)t| =o. (4.7.3)

to the workspace boundary, and physically means that for this set of modes the
manipulator cannot extend further in a direction normal to the boundary imposed
by these modes. The other conditions occur when (a? + a%ﬁ is a zero of either
of the Bessel functions Jy or J;. Since the inverse kinematics solution uses a
restricted Bessel function, the only time this happens is when (a? + a%)% = u

where p1 =~ 2.405 is the first zero of Jy.

Loci of Modal
" Singuianties ~

ay

Z1

(a) (5)

-

Figure 4.9: An Example of Bending Mode Singularities

Figure (4.9)(a) shows the a;-a2 modal participation factor space for this choice of
modes and the loci of ay and as values which lead to modal singularities. Figure

(4.9)(b) shows the loci of end-effector positions where modal singularities occur.
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4.7.3 Singularities of Extension Modes

Unlike the pure bending case, modal singularities do not result from pure exten-
sions (provided the modes are not degenerate, see Section 4.7.4) because of the
linearity of the mapping between participation factors and end-effector positions.
In other words, J in Equation (4.3.5) either has full rank all the time, or none
of the time. The workspace boundary in this case is manipulator dependent, but

not mode dependent.

4.7.4 Degenerate Modes

Care must be exercised in choosing mode functions to avoid degenerate choices.

The following defines degeneracy of modes:

Definition: A choice of modes is degenerate if 7 loses rank for all values
of modal participation factors. A set of modes can be tested for degen-
eracy by simply evaluating the rank of the modal Jacobian for a random
selection of {a;}. If the modal Jacobian is full rank for any set of {a;},

the modes are nondegenerate.

In other words, while modal singularities can occur for any choice of modes for
particular values of the participation factors, the modes are degenerate only if all
values of the participation factors result in modal singularities. This is illustrated

in the following example.

An Example of Degenerate Bending Modes

In this section it is assumed that the manipulator is limited to pure bending in
the plane. One choice of bending modes, {®;}, which is degenerate is the set of
modes which are odd, or anti-symmetric, about the point s = % This oddness
implies:

Bi(s)=—8;(1—s) for iel[l,N]. (4.7.4)
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It follows immediately that

6(s,t) = —0(1 — s,1). (4.7.5)

The integral .
/ sinf(s, t)ds (4.7.6)
0

can then be evaluated over two half integrals as follows:
1

1
‘/7 sinf(s,t)ds +[ sin 6(s, t)ds, (4.7.7)
0

3
which can be written as

1 1
ﬁ sinf(s,t)ds = /1 sin —6(1 — s, t)ds. (4.7.8)
7 7
Making the change of variables o = 1 — s, and recognizing the oddness of the sine

function, and linearity of integration,
1

1 0 i
/1 sin —0(1 — s,t)ds = [ sinf(a, t)do = —/ sin (o, t)do. (4.7.9)
s 7 0
Therefore,

1
/ sinf(s,t)ds = 0. (4.7.10)
0

Note that what has been shown are sufficient, but not necessary, conditions for
degeneracy of modes. This represents a loss in the freedom of the end-effector
independent of the value of the participation factors, so this choice of modes is
degenerate, i.e., even an infinite number of modes of the form given in Equation

(4.7.4) will not allow the end-effector to depart from the zj-axis.

An Example of Degenerate Extension Modes

Any choice of extension modes will be degenerate if §.(s) is taken to be zero. In
this case, the end-effector will be constrained to move along the z3-axis. It is
easy to determine if a choice of extension modes is degenerate by simply checking
the rank of the matrix 7. If it is not full rank then the modes are degenerate,
otherwise the extension modes are nondegenerate and the modal approach does

not introduce new singularities.
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4.7.5 Switching Among Sets of Modes

The introduction of modes may restrict the manipulator to operate in a workspace
which is smaller than dictated by physical limitations on the manipulator. How-
ever, the potential to switch among several sets of modes allows this approach to
cover the workspace of the manipulator. Figure 4.10 shows a schematic picture
of a manipulator’s physical workspace which is “covered” by different overlapping

modal regions.

Ly

\Workspace
Boundary

*Mode Boundarv

!

Figure 4.10: Covering the Workspace

An easy way to switch from a set of modes and participation factors {‘I’;’ ,@'} to
the set {®9,3°} is to specify a function f(t) such that f(to) = 0 and f(#;) =1
where the times ¢ = #¢ and ¢ = ¢; represent the beginning and end of the switching

process respectively. In the planar case, the switching process is given by:

Ny Ny
6(s,t) = [1— F(£)] D _af®] + £(2) D aP2?, (4.7.11)
i=1 =1

with generalizations to the spatial case made by restricting {K, T, R, L} to similar

forms. If however the end-effector must remain stationary during the procedure,
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the following relation can be used to control the mode switching:
7@ ,a°)s + 7°@",3%)° = o. (4.7.12)

I and 79 are the Jacobians associated with the original and new participation

factors, which are written in component form as

I_@a:,' o __ 3:1:,'

J 7

One of the two Jacobians needs to be full rank for Equation (4.7.12) to be useful.
By defining a© such that a© - a% is an increasing function of time, and inverting
gl EI can be found. Conversely, by defining @l such that @l - &l is a decreasing
function of time, and inverting J9, EO can be found. If both Jacobians are
singular, the constraint of constant end-effector position as a function of time

must be relaxed, or “transitional” modes can be introduced as an intermediate

step to avoid these algorithmic singularities.

4.8 Discussion

This chapter has presented methods for resolving hyper-redundancy in both nonex-
tensible and extensible manipulators. Hyper-redundant robots have failed to
achieve wide-spread applicability due to inefficiency and ineffectiveness of pre-
vious kinematic modeling and motion planning techniques, complex mechanical
design, and complexity in the programming of these devices arising from their non-
anthropomorphic geometry. The algorithms developed in this chapter are a step
toward efficient kinematic control of hyper-redundant robots. The next chap-
ter presents a method for “optimal” hyper-redundancy resolution. Subsequent
chapters then develop motion planning algorithms for particular hyper-redundant
robot applications. In Chapter 8 these applications are demonstrated with one

particular hardware implementation: a planar variable geometry truss.
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Chapter 5

Optimal Manipulator Configurations

This chapter formulates a method of hyper-redundancy resolution based on the
calculus of variations and optimality criteria. An “optimal” configuration is de-
fined as one for which the set of backbone reference frames varies as little as
possible between any two values of the curve parameter for given end-effector
conditions. In other words, the backbone reference sets which satisfy task con-
straints while minimizing a measure of bending, twisting, rolling, and local exten-
sion/contraction will be referred to as optimal. While standard techniques can be
used to optimize the configurations of particular hyper-redundant morphologies,
the approach presented here is generally applicable, and becomes computationally

more attractive with increasing degree of redundancy.

Section 5.1 considers the nonextensible case. Section 5.2 formulates the optimiza-
tion of extensible backbone reference sets. Section 5.3 uses the parametrizations
of Chapter 2 to generate explicit differential equations, via the calculus of varia-
tions, which are solved to find optimal planar configurations. Sections 5.4 and 5.5
generate systems of differential equations for optimal spatial backbone reference
sets. Section 5.6 uses the optimality criteria to reparametrize existing curves in
an optimal way. The rationale for this is straightforward: backbone reference sets

consisting of frames which vary as little as possible along the backbone curve will



CHAPTER 5 : OPTIMAL MANIPULATOR CONFIGURATIONS 77

result in manipulator configurations which require smaller joint displacements.
Section 5.7 compares the optimal configuration based hyper-redundancy resolu-

tion techniques presented here with the modal approach of Chapter 4.

5.1 Defining Configurations of Least Bending

As in Chapter 2, Q(s,t) denotes the orientation matrix of the backbone reference
frames which evolve along the backbone curve. Q(s,t) denotes the derivative of
Q(s, t) with respect to s. The optimality criterion in this case is the minimization

of the integral of the weighted norm of Q(s,t) over the backbone curve:

I= % /0 Cr (Q(s,t)W:;(s)QT(s,t)) ds. (5.1.1)

tr(A) denotes the trace of matrix A. W3(s) is a 3 X 3 symmetric positive definite
weighting matrix. It is assumed that there is no preferred direction of bending,
and hereafter W3(s) is restricted to the isotropic form W3(s) = o(s)I3, where I3
is the 3 x 3 identity matrix. The physical interpretation of Equation (5.1.1) is a

measure of total bending and twisting of the backbone reference set.

At s = 0, the backbone reference frame must coincide with the base frame. At
s = 1, the backbone reference frame must correspond to the desired end-effector

orientation, Q.(t). Thus, the boundary conditions:

Q(0,)=1Is;  Q(1,%) = Qee(?) (5.1.2)
are imposed.

Using the convention established in Chapter 2, u(s,t) = Q(s,t)ez is the tangent
to the curve. Recall that the position to any point on a nonextensible backbone
curve is given by:

Z(s,t) = /0-' u(o, t)do. (5.1.3)
The minimum bending problem can be stated as the minimization of Equation
(5.1.1) subject to the isoperimetric constraints Z(1,t) = Te(t) (the desired end-

effector position) with boundary conditions of Equation (5.1.2). The classical
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calculus of variations provides a means for solving this kind of problem. The ap-
pendix contains background information on variational calculus and terminology

used throughout this chapter.

For the problem at hand, the associated Lagrangian is

£(s,1) = zals)ir (Qs, QT (s, 1)) + 7ult) - T, 1) (5.1.4)

where T,(t) is a vector of undetermined Lagrange multipliers arising from the
isoperimetric end-effector constraint z(1,t) = Z.e(t). Note that z(0,t) = 0 is

automatic from Equation (5.1.3).

For the Frenet-Serret frames of Section 2.1,

2t (Qrs(s, )QFs(s,1)) = #2(s,8) + 7%(s,1). (5.1.5)

Since curvature and torsion tell us how a curve and its intrinsic frames bend
and twist, this result meets with intuition, and reinforces confidence in Equation

(5.1.1) as a measure of how frames vary along the backbone curve.

5.2 Defining Optimal Extensible Configurations

The optimality criterion in the extensible case will include contributions from
bending, twisting, roll, and extension/contraction. For this case, the Lagrangian

is defined as:

1 . ) 1 . .
£s,8) = gaa)tn (QUs,0QT(5,1)) + B()(E(s, ) = 1) + (o, O7(8) - 5(s,),
(5.2.1)
where a(s) weights the relative cost of rotational change such as bending, twisting,

and roll, while 3(s) weights translational change such as extension and contraction.

Note that Equation (5.2.1) can also be viewed as a variant on the form:

(s, 1) = %tr (7o, YW alsYHT(5,1)) + Us, (1) - (s, ) (5.2.2)
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where H(s, t) is the homogeneous transform defined in Equation (2.1.23), and

a(s)Is 0
Wy(s) = ( r ) (5.2.3)
0" B(s)

Equation (5.2.1) can be physically motivated in the planar case as follows. Let

1s a weighting matrix.

Z(s, t) denote the backbone curve (or centerline) of a planar tube in its distorted
shape. Let Z; and Z_ denote the respective sides of the planar tube, e.g. the

curves parallel to the backbone curve. Z; and Z_ are defined as:

T4 (s, t) = Z(s, t) + r7l(s, t)
(5.2.4)

Z_(s,t) = z(s,t) — ra(s,t)
where 7(s, t) is the planar unit normal vector of Z(s,t) at s and r is the radius
of the tube. A reasonable measure of the local deviation of the tube at a point

s from its nominal configuration is the sum of the squared difference in length

between the tube tangents and the length of the nominal reference tangent:

£s,8) = 5 (Ul = 17 + (el - 1?)

- %((Ilr‘c+rﬁn -1’ +(ll& = ral| - 1)?)
_ % (Or —rloem =1 4 (ko - 1)

= L (k= rm)lall - 1+ ((E + rEmlil] — 1)7)
= (L —1)%+ (rix)?

=(1—-1)? + (rh)

Thus, a measure of the total deviation of the planar tube from its nominal con-

figuration is:

1
1) = /0 £(s, t)ds. (5.2.6)
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Incorporating the isoperimetric end-effector constraints, the planar Lagrangian

corresponding to Equation (5.2.6) is:
1 s 1, . .
L= E(l -1+ §(r0) + p1lcos 8 + polsind, (5.2.7)

which is a specific case of Equation (5.2.1). The tube radius, r, is physically mo-
tivated by the width of the physical manipulator, and provides for a cost function
which is dimensionally homogeneous. Comparing Equations (5.2.1) and (5.2.5),

o= %rz, and 8 =1.

The next section formulates equations for the planar case in detail.

5.3 Optimal Shape Equations for the Planar Case

This section presents examples of the generalized theory developed in the previous
sections for planar configurations. Sections 5.4 and 5.5 present analogous examples

for the spatial case.

In the planar case, Q(s,t) consists of a rotation, by angle §(s, t), about the axis

normal to the plane. In this case:

%tr (@, Q7 (s,8)) = 82(s, ). (5.3.1)

Recall that 6(s, t) is the clockwise measured angle between the backbone tangent

and the zj-axis.

In the nonextensible case, §2 = k2, and thus we seek to minimize:
1 1
I=_ / ak?ds. (5.3.2)
2Jo

Minimizing a weighted integral of squared curvature is a problem which has been
considered in detail in the mathematics, mechanics, and computer science lit-
erature [WilS88,5SuLi90]. However, viewing the problem as a hyper-redundancy

resolution technique is novel.
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The forward kinematic constraint for a nonextensible planar manipulator is:

1 1
Tee = / sin fds; Yee = / cos 8ds, (5.3.3)
0 0

which is a degenerate form of the spatial Euler-Angle parametrization with T'(s, t) =

0 and K(s,t) = 6(s,t). Thus, the Euler-Lagrange equation is:
b + & — py cos§ + pgsinf = 0. (5.3.4)

The solution of this equation can be computed numerically, subject to constraints
of Equation (5.3.3), and the boundary conditions 6(0,t) = 0 and 6(1,t) = f.

Numerical solutions for this type of problem can be found in [GruS80].

Let’s first consider the case a(s) = 1; i.e., curvature is uniformly weighted along

the manipulator length. In this case Equation (5.3.4) becomes

9 — pqcosf + pgsind = 0. (5.3.5)

Configurations which are a solution to Equation (5.3.5) are shown in Figure
5.1 with a variable geometry truss which has been superimposed, or “fit,” to
the backbone curve. In Figures 5.1 (a)-(c), 9(0,t) = 0 and (Zee, Yee, 41, p2) =
(0.50, -0.25,22.80,1.87), (0.77,0.22,23.87,14.07), (0.45,0.51,2.53, —13.13).

(b)

Figure 5.1: Uniformly Weighted Planar Nonextensible Configurations
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In many practical cases, a(s) should be defined as a decreasing function, so as to
minimize bending at the manipulator base, and allow the distal end to perform a
larger range of motion. For instance, the manipulator inertial properties can be

approximately incorporated in our optimization by defining

a(s) =ap + a1/ p(o)do (5.3.6)

where p(s) is the normalized mass density of the manipulator per unit length
measured in the nominal reference configuration. fal pdo is the normalized mass
of the manipulator from point s to the distal end. ap and a; weight the relative
importance of uniform bending versus inertially weighted bending. This choice of
weighting produces configurations as shown in Figure 5.2, for ag = 0.2, a; = 1,
and p(s,t) = 1 (uniformly distributed mass). In Figures 5.2 (a)-(c), 6(0,t) = 0 and
(Zee, Yees 11, p2) = (0.55,0.03,21.67,7.07), (0.52,0.58,23.73,23.13), (0.29, 0.32, 4.47,
—3.07).

Figure 5.2: Nonuniformly Weighted Planar Nonextensible Configurations

In the extensible case, Equation (5.2.7) is the Lagrangian, i.e., a(s) = 12, 8(s) =

1. The Euler-Lagrange equations for this case are:
7% — pyLcosf + pgLsind =0 (5.3.7)

ai(L —1+4 p1sinéd + pacosd) = 0. (5.3.8)
s
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Equation (5.3.8) has the exact first integral:
L(s,t) + p1(t)sin8(s, t) + pa(t) cos 6(s, t) = L(0,t) + pi(t) (5.3.9)

The boundary conditions for Equations (5.3.7) and (5.3.8) are: 6(0,t) = 0,
0(1,t) = 6Bee(t), L(0,t) = 0, L(1,¢) = Lo(t). In addition to these bound-
ary conditions, 6(0,%), L(0,t), p1(t), and p2(t) specify the end-effector posi-
tion. Note that optimal configurations for the nonextensible case will gener-
ally be different from optimal configurations for the extensible case with the
same length and the same boundary conditions. This is because extensible back-
bone curves can internally reconfigure themeselves by redistributing extensibility
along the manipulator. The resulting configurations will be different from the
nonextensible case where zero extensibility is allowed. Figure 5.3 shows con-
figurations generated by Equations (5.3.7) and (5.3.8) with (r, (0, ¢), 8(0, t)) =
(0.1,1.0,0.0) and (zee, Yee, fee, Lo, p1, p2) = (0.47,—0.13,0.05,1.24,0.38, —0.04),
(0.69,0.26,2.31,1.26,0.64,0.15), (0.61,0.51, 1.72,1.0,0.63, 0.48).

7
_— L V\]\ 7
| D

(5) (<)

Figure 5.3: Uniformly Weighted Planar Extensible Configurations

5.4 Equations for the Spatial Nonextensible Case

This section examines the problem of generating equations which describe optimal

nonextensible spatial backbone reference sets. Two different sets of parameters
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are used: Euler-Angles and unit quaternions. As will be shown in Section 5.5, the
results for the extensible case are similar, with an additional equation using the

arc length function L(s,t) as the generalized coordinate.

5.4.1. Parametrization via K, T, and R

Using the Euler-Angle description of spatial rotations to parametrize the backbone
reference set defined in Equation (2.2.10), the norm defined in Section 5.1 is

explicitly computed as:

5at(QQT) = a (K2 + T2+ R? — 2K Rsin T) . (5.4.1)
Consequently, with weighting a(s) = %, the constrained Euler-Lagrange equations
are: .
G(T)| T | +S(T,K,T,R)+ C(T,K)g, =0, (5.4.2)
R

where &, = 7,(t) € R3 is the vector of undetermined Lagrange multipliers used

to account for the end-effector position constraints, and

1 0 —sinT

GT)=| o 1 o
—sinT 0 1
Rt
S(T,K,T,R)=| KRcosT (5.4.3)
—KTcosT
—cosKcosT sinKcosT 0
C(T)=| sinKsinT cosKsinT —cosT
0 0 0

These equations are solved with initial conditions K(0,t) = T'(0,t) = R(0,t) = 0.
The final boundary conditions can be determined by equating Q(1,t) to the de-
sired end-effector orientation, Qc.(t). One way to satisfy the orientation boundary

conditions is:

T(1,t) = sin ™" (gee,32(t))

Qee,12(t)  Gee,22(2)
K(1,t)= ! 2
(1,2) = atan2 (cos T(1,t) cos T(1,1)

Jee 31(t) Gee 33(t) )
R(1,t) = — . -
(1,2) = atan2 ( cosT(1,t) cos T(1,¢t) )’

(5.4.4)
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where gee,ij(t) is the i-j element of Q.e(t), which is the desired end-effector orien-

tation matrix at time t.

However, note that G(T') (which must be inverted in numerical solutions of Equa-
tion (5.4.2)) will become singular when sin7T = 1. The next section considers a

4-parameter description of orientation which avoids these singularities.

5.4.2. Parametrization via Unit Quaternions

Dynamical equations analogous to those of Section 5.4.1 can be generated with
the quaternion representation presented in Section 2.2.3. With a(s) = %, the

Euler-Lagrange equations are
G(N)X +S(X, %) + COVE, + 20X = 0. (5.4.5)

G(X) is the 4 X 4 matrix with matrix elements:

T
Gij = tr (BR OR

-B—X:a—)‘]) = 4(25,']' + AiAj). (5.4.6)

S(A,X) is a 4 x 1 vector whose 1** component is:

4
Si= Y ) Siikdid, (5.4.7)
=1 j=1
where
OR 0°RT
Sijk = 1ir ((—9—5‘:6)\]—6)%) = 2Aijk2ijk (no sum)

Aijk = Aigjk + )xj&,‘k(l - 5jlc)(1 - 5,‘]') + )\k&‘j(l - 5jk)(l - 5:'1:) (5'4'8)
Yijk = —&jk + 26i5 + 26 — i85k — 261851 + 36456 %61k

C(X) is the 4 x 3 matrix:

—-A4 /\1 Az
A3 =AM
20 o N (5.4.9)

—A1 =X A3
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L.(t) is again a 3 x 1 vector of Lagrange multipliers for the end-effector position
constraint, while yy(s,t) is a Lagrange multiplier with functional dependence on

the curve parameter required for the constraint X - X = 1.

The Euler-Lagrange equations are solved with six free parameters: three La-
grange multipliers for end-effector position f,, and three arbitrary base condi-
tions {A3(0, 1), A3(0,%), A4(0,2)}. The restriction that Q(0,t) = I3 requires that:
A1(0,2) = 1, and A2(0,t) = A3(0,t) = A4(0,t) = 0. Thus, in order to be con-
sistent with the constraint X - X = 1, A;(0,t) = 0. Spatial configurations gen-
erated from the solution to Equation (5.4.5) are shown in Figures 5.4 (a)-(c)
for (p1, pa, 13, A2(0, 1), A3(0, 1), A4(0,t)) = (0.04,0.00,0.00,0.00,0.00,0.00), (0.00,
—0.34,0.07, —0.01, —0.03,0.02), (0.00, —0.34,0.07, —0.23, —0.03, 0.02). Here again,

a variable geometry truss was “fitted” to the optimal backbone curve for clarity.

Figure 5.4: Optimal Nonextensible Spatial Configurations

5.5 Equations for the Spatial Extensible Case

Using the planar case as motivation, the weighting functions a(s) = 7r? and

B(s) = 1 are again chosen. The Euler-Lagrange equations corresponding to the
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Lagrangian in Equation (5.2.1) expressed in terms of Euler-Angles are:

K .
G(T) <T) +S(T,K,T,R) + T%C(T,K)p‘c =0 (5.5.1a)
R
8 /., N\ _
e (b+m. @) =0. (5.5.16)

These equations are solved with initial conditions K(0,t) = T(0,t) = R(0,t) =
L(s,t) = 0. The final boundary conditions are: Q(1,t) = Qe(t) (or equivalently,
Equation (5.4.4)), Z(1,t) = Zee(t), and L(1,t) = Lo(2).

Figure 5.5: Optimal Extensible Spatial Configurations

Similarly, the unit quaternion parametrization is used to yield the set of five

equations: _
GOVX+5(5, %) + ZCE, + 2223 = 0 (5.5.2a)
0 (., _ _\_
= (L tm,- u) =0 (5.5.20)

Just as in Section 5.4, u(¢) is a 3 x 1 vector of Lagrange multipliers for the
end-effector position constraint, while py(s,t) is a Lagrange multiplier required

for the constraint A - X = 1. The boundary conditions are the same for this
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problem as for the nonextensible case, with the one additional constraint on
manipulator length L(1,t) = Lo(t). Figures 5.5(a)-(c) show optimal extensible
configurations for » = 10 (which is exaggerated to illustrate the effects of ex-
tensibility), (A2(0,£), A3(0, t), Aa(0, 1)) = (0.0,0.0,0.7), and (p1, pa2, u3, (0, 1)) =
(0.2,-1.2,0.6,1.0), (0.6,0.6,0.6,0,0.5), (0.2,1.6,0.6,0.8).

5.6. Optimal Backbone Reparametrization

This section considers several related problems regarding the reparametrization of
existing backbone reference sets in an “optimal” way. The motivation for optimal
reparametrization is as follows. Often nonoptimal backbone curve shapes can be
defined to perform useful tasks. The modal approach is an example of this. It
is then easy to modify the parametrization of the original curve, and the roll
distribution about the curve, so as to make the backbone reference set evolve as

uniformly as possible for a given backbone curve.

In this section, the reparametrization of planar backbone curves is first considered.
Next, the optimal roll distribution for spatial configurations is determined so that
the backbone reference frames are twisting as little as possible about a given
backbone curve for specified end-effector roll. Finally, it will be shown how optimal
reparametrization of spatial backbone reference sets is expressed as first integrals
in the length function L(s,t), and roll distribution R(s,t). In all of these cases,
the distribution of backbone reference frames will vary as little as possible from

one value of s to another according to the particular cost function.

5.6.1. Optimal Planar Curve Reparametrization

Let 7*(¢, t) be a time-dependent planar curve segment with curve parameter ¢ €
[0, #o]. We wish to find an alternate parameter, s, such that 7(s, t) = 7*(é(s, t), t)
has the same shape as 7*(4,t), but that the distribution of frames along the

curve vary as little as possible from one value of s to another. In other words,
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we wish to find a new parametrization which minimizes Equation (5.2.6). This

reparametrization can be achieved as follows.

/
Define the angle which the tangent vector 7* (where a ' indicates differentiation

with respect to ¢) makes with the z3 coordinate axis as:

6°(4,1) = Atan2(y} 3 ), (5.6.1)

where y} for 1 € [1,2] are the components of §*. Equate the parametrizations in

¢ and s:
0(s,t) = 0*(4(s,t),1). (5.6.2)

Similarly, the rate of length function in the new parameter s must be:

i(s,t) = (7" -7* )84, (5.6.3)

The goal is to find a new parametrization which minimizes Equation (5.2.6), which

in this case is equivalent to minimizing

1 [t 1t .
-—/ f(s,t)ds = —/ (r26% + 1%)ds.
2Jo 2 /o

Written in terms of the initial parametrization,

o) = (G + (- i) (5.6.4)

which can be expressed in component form as

ron
¢2 2 4 (412 4 42 Y1¥s — V1Y 12
fs,8) = 5 [(wn)? + (g)? + 2 22 =902 | _ 2004 ), (5.6.5)
(v2)2 + (v2)?
The superscript * has been temporarily suppressed.

The Euler-Lagrange equations are simply:

249 + 432 55 = (5.6.6a)

Multiplying Equation (5.6.6a) by ¢ yields the exact differential:

aﬁs(g,zg) ~ 0. (5.6.60)
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Integrating with respect to s, dividing by g(#,t), and taking the square root of

what results,
. 0
¢ = B_f = cl(t)g_%(d), t) (5.6.7a)

where c1(t) is an arbitrary function of time. Solving for s as a function of ¢ and

t

)

1 $
s(¢,t) = Cl(ﬂ,/; g7(o,t)do + ca(t). (5.6.7b)

Since both parametrizations are defined such that s = 0 when ¢ = 0 for all ¢

(which means that both parametrizations begin at the origin of the manipulator
base frame) then c; = 0. Likewise, end-effector conditions are matched recognizing
that at the point on the curve where ¢ = ¢g, s = 1. Using this condition with
Equation (5.6.7b), ¢1 = f0¢°(t) g%(a, t)dt, and so

¢ 1
s(p,t) = fgogf(l/,t)d’/

(5.6.8
0 g%(u, t)dv )

where

s( 1) = ¢7(, ). (5.6.9)

When r = 0, the optimal reparametrization is the classical arc-length parametriza-

tion.

This is easily seen by considering a planar arc-length parametrized curve y(L, t).

The optimal reparametrization based on minimizing Equation (5.2.6) is:

fOL(l + r2k%(v, t))%du
LLO(I + r2x2(v, t))’i‘du.

s(L,t) = (5.6.10)
For example, assume a nonextensible backbone curve shape which satisfies task
constraints has been found using bending modes as in Chapter 4. For fitting
purposes, the backbone curve can be reparametrized with a rate of length function

of the form:

e (R
o t) = Lovt) = I/B—E - (01 +r2k2(L(s, 1), 1))

(5.6.11)
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This procedure is illustrated in Figure 5.6 with curves whose shape was specified
using the modes in Equation (4.2.2). A variable geometry truss is fitted to the
backbone curve using the spacing between truss modules defined by Equation
(5.6.11). While the backbone curve was initially assumed to be nonextendible,
the variable geometry truss is extendible, and thus the truss modules can locally
extend. With r = 0, the truss modules are uniformly spaced along the backbone
curve. As r increases, the spacing of the truss modules becomes increasingly
nonuniform for high curvature backbone curve segments. In effect, this spacing
compresses modules to high curvature segments, and stretches modules over low
curvature segments. A value of » = 0.03 (half the truss width) would be chosen
based on the deformed tube model discussed in Section 5.2. In general, the effect
of reparametrization is rather minor in the case of slender manipulators with

backbone curves initially parametrized by arc length.

N

r = 0.00 r=0.08 r=10.16 r=0. r=0.32

Q]
W

Figure 5.6: Optimal Reparametrization of Planar Curves

5.6.2. Optimal Roll Distribution (Nonextensible Case)

This section considers the problem: given a backbone curve with L(s, t) = s, find
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the roll distribution which provides the smallest “twist” about the backbone per

unit curve parameter (which in this case is arc length).

Here the backbone reference set parametrization { K, T, R, L} is used, with L(s, t) =
s. K = K*(L,t) and T = T*(L,t) are given functions. The goal is to determine
R(L,t) which minimizes the integral in Equation (5.1.1) for given K and T. The

bending criterion is:

1, -.p (OK*\® [(8T*\* ., _.8K*  _.
Etr(QQ )~—(3L) +<BL) + R* - 2R 5L sin T™*. (5.6.12)

The Euler-Lagrange equation for this problem is trivial, with R as the only gen-

eralized coordinate:

gg (R(s, t) — K*(s,t)sin T*(s,t)) = 0. (5.6.13)

This equation has the solution:
R(s,t) = R(0,t)s + / K*(0,t)sinT*(o, t)do (5.6.14)
0
where R(0, 1) is selected so that the constraint on R(1,t) is satisfied, i.e.,
- 1 .
R(0,%) = Ree(t) — / K*(s,t)sinT*(s, t)ds. (5.6.15)
0

This problem could also be solved using the modified Frenet-Serret Apparatus
from Chapter 1. Since the trace of a matrix is invariant with respect to coordinate

transformations:
tr(QmQY) = tr(QuAM(QMAM)T) = —tr(QMAMAMQY,)

(5.6.16)
= —tr(AMmAM) = 2(T + p)? + 2&2.

Using the Euler-Lagrange equations with Rpg as the generalized coordinate, the

optimal roll distribution is

Rrs(s,t) = Rrs(0,t) + Rps(0,t)s — /0 (o) = 1(0,)]do. (5.6.17)
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Independent of the parametrization used, the end result is the same: a backbone

reference set of minimal roll distribution is generated.

Figure 5.7 shows configurations with K*(s,t) = a1(t)sin2nrs, T*(s,t) = as(¢)(1 -
cos 2ms), and Ree(t) = 0. In both figures (a;,a2) = (0.6, —0.4). In Figure 5.7(a),
R(s,t) = 0, whereas in Figure 5.7(b), R(s,t) is defined optimally, as in Equations
(5.6.14-15).

Figure 5.7: Specified Backbone Curve with Optimal Roll Distribution

5.6.3 Optimal Spatial Curve Reparametrization

This section addresses the problem of defining the function L = L(s, ) such that
the backbone reference frames vary as little as possible from one value of s to
another for specified functions K*(L,t), T*(L,t), and R*(L,t), and appropriate

end-effector constraints.



SECTION 5.6 : OPTIMAL BACKBONE REPARAMETRIZATION 94

This is achieved in the same way as the planar case. The goal is to minimize
1 ' 1 2 AT r2
> [ {5 (QQ ) + i%}ds. (5.6.18)
0
When parametrizing with the Euler-Angles:

1, .. (OK*\?., (0T*\’., [(OR*\’., .OR*OK*., . .
é-tr(QQ)—(aL) L+ riA L® 4+ 5 L ——26LE—L sin T™.
(5.6.19)

A function denoted A(L,t) can then be defined so that the integrand of Equation

(5.6.18) assumes the form:
%rztr(QQT) + 12 = h(L,1)L2. (5.6.20)

This is the same form as Equation (5.6.5), and so the Euler-Lagrange equations

have a solution of the same form as Equation (5.6.8), with A(-) replacing g(-).

5.6.4 Optimal Roll and Length Distributions

This section considers the problem: given a backbone curve, what is the combined
roll distribution, (s, t), and length distribution, L(s,t), which provide the least
varying backbone reference set for given curve geometry. Again, K*(L,t) and
T*(L,t) are specified functions. The goal is to determine R(s,t), and L(s,t)

which minimizes the integral
1! . :
5 / {%—rztr (QQT) + L?}ds. (5.6.21)
0

Again using the Euler-Angle parametrization,

1 oo (BK*\?., (8T*\*., ., _.OK*. .
Etr(QQ )= ( (9L> L+ A L*+ R*—2R 5L LsinT*.  (5.6.22)
This problem must be solved with two Euler-Lagrange equations with R and L
as generalized coordinates. The solution to the “R”- equation is essentially the

same as Equation (5.6.14):

R(s,t) = R(0,t)s + /0 3 Bi*(L(s,t),t)L(a, t)sinT*(L(o, t),t)dc  (5.6.23)
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but now L(s,t) # s. Substituting this result back into Equation (5.2.22), and
solving the Euler-Lagrange equation with “L” as the generalized coordinate,

R+ (v, 0) Ry
(L4 72R2(L(s,t),0))F

L(s, 1) (5.6.24)

which is the same as Equation (5.6.11) with

8T\ 2 OK*\?
2 — 2 %
k“(L,t) = <—6L ) + (—OL ) cos T*. (5.6.25)

Recall that this is the definition of curvature in Equation (2.2.16). Thus, the cri-
teria for combined optimal roll distribution and extensibility have a similar form
to the two problems considered separately. Figure 5.8 shows the same configura-
tions as Figure 5.7, but now optimal extensibility has been included. The value

r = 1.0 was chosen in Figure 5.8(b) to exaggerate the effects of the redistribution

of frames along the backbone curve.

Figure 5.8: Optimal Roll and Extensibility for a Given Backbone Reference Set
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5.7 Comparisons with the Modal Approach

In the previous chapter, the modal approach was used to compute backbone ref-
erence set inverse kinematic solutions which satisfy task constraints. Recall that
in the modal approach, the physically meaningful functions T,K,R, and L are
constrained to the modal form given by Equations (4.5.1-4). The mode functions
are chosen by the user, and their number will depend upon the number of end-
effector or other task constraints which are specified. With the restriction of the
parameters {K,T, R, L} to a modal form, the backbone reference set geometry
becomes strictly a function of the modal participation factors. Inverse kinemat-
ics reduces to the search for the proper values of the modal participation factors

which satisfy task constraints.

This approach has the useful engineering property that it often leads to closed
form or nearly closed form inverse kinematic solutions which can be computed with
great efficiency. However, the resulting backbone curve shapes are not necessarily
optimal in any sense. In this section, the relationship between the modal approach
presented in the previous chapter and the calculus of variations approach presented

in the preceding sections of this chapter are examined.

The modal and optimal configuration approaches can be combined. For example,
one could define a set of basis modes, ¢; for 7 € [1,n] and use standard numerical
methods to find the modal participation factors which best satisfy a given opti-
mality criterion. This type of approach is common in the solution of variational
problems in mechanics, and it is called the Rayleigh-Ritz method [HouV83]. One
would expect that as the number of modes chosen becomes large, the configuration
would approach the solution which can be found from the calculus of variations.
For instance, optimal pure bending configurations could be approximated using a

large number of orthonormal modes as

n

K(s,t) = > ai(t)éils). (5.7.1)

=1
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In this case, the modes would be chosen to be orthogonal with respect to the

weighting of the optimality criterion a(s), so that

1
/0 o(s)di(s)d5(s)ds = 6 (5.7.2a)

where §;; is the Kronecker delta function. In this case, Equation (5.3.2) becomes

1/1an2ds-—1ia2—1"-“ (5.7.2b)
2 J, —zi_lthaa. T

A constrained optimization problem of the form
f(E, p'-c) =a-a+ [—"f(l’ E) - E8"3] ) /Tc (5730')

can be written. The constrained optimization problem involves solving the equa-
tions 8f/0a; = 0 and 8f/0u;j for (3,j) € [L,n] x [1,m], where n is the number of
modes, and m is the number of end-effector coordinates. This is written as the

n 4+ m equations:

a+J7T@pE, =0 and 7. =z(1,3) (5.7.3b)

The modal participation factors can be found using standard numerical optimiza-
tion techniques [GIMWS81]. One method would be to take the time derivative
of Equations (5.7.3b) and use a resolved rate technique similar to the extended

Jacobian technique discussed in Section 1.2.

Similar ideas have been used in other investigations. In [Tav90] the case of a planar
variable geometry truss manipulators was considered. They chose a particular
set of curvature modes and found the set of participation factors which yielded
“optimal” configurations according to a criterion they defined (although the terms

“mode” and “participation factor” were not used).

Another connection between the modal and optimality condition based approaches
arises when particular optimality criteria are used. Let 6(s,t) denote the angle

f(s,t) and its first N — 1 derivatives:

g=1[6,601} ... ¢t¥-1} (5.7.4)
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One can find an optimal configuration for cost functions of the form:

1
I= % fo 7" (s,t)W(s)8(s, t)ds (5.7.5)

for a symmetric positive semi-definite matrix W(s) € RN, by using the Euler-
Lagrange equations. In this case, the Euler-Lagrange equations will be linear
differential equations of order 2N — 2 whose solutions can be superposed. That
is, any solution can be represented as a sum of modes weighted by participation

factors. These solutions can be loosely called “optimal modes.”
As an example, let the integral which is to be minimized take the form:
1 1. .
I= .2./ (6% + w?6?)ds. (5.7.6)
0
The associated Euler-Lagrange equation is:

g1t — 2912} = o, (5.7.7)

A solution to Equation (5.7.7) is

0(s,t) = ai1(t)s + az(t)(e”® — 1) + a3(t)(e™“* — 1), (5.7.8)

where the convention 6(0, t) = 0 has been incorporated. The participation factors,
{ai}, can be determined as in Chapter 4 to satisfy the end-effector constraints on
position and orientation. Thus, solutions which use the modal approach and the

three modes:

@1 =38
By = ¥ _ 1 (5.7.9)
by =e -1

result in planar backbone configurations which minimize Equation (5.7.6) and sat-

isfy position and orientation constraints. Figure 5.9 shows configurations defined
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by Equation (5.7.8) with a; = 0, and (Zee, Yee) = (0.1, 0.5). In Figures 5.9(a)-(c),

w =1,2,3, respectively.
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Figure 5.9: Configurations Defined by Optimal Modes

5.8 Discussion

This chapter presented methods for determining “optimal” configurations of hyper-
redundant manipulators operating in unconstrained environments. These meth-
ods were based on the use of a continuous backbone reference set to capture
essential macroscopic geometric properties of hyper-redundant manipulators in
combination with the calculus of variations to compute the optimal backbone

geometry.

This chapter focused on an optimality criterion which minimized a weighted sum of
backbone curve bending and extension. However, other optimality criteria can be
developed and treated in an analogous manner. In addition to shape optimization,
means were developed to optimally reparametrize backbone curves and optimally
distribute the backbone reference frame roll about a spatial backbone curve. These
problems arise when fitting discretely segmented or modular hyper-redundant

mechanisms to continuous backbone curves. Initial backbone curve shapes might
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arise from optimal, modal, or spline-based inverse kinematic solution algorithms.

The relationship between the modal and optimal approaches was briefly consid-
ered. The advantage of the modal approach lies in the greater user control over
manipulator shape through the choice of mode, or shape, functions. The “opti-
mal” approach requires intuition in defining an appropriate cost function. The
inverse kinematic solutions in both cases are cyclic when a particular branch of
the solution is specified because manipulator configurations are determined by
a reduced set of variables with the same dimension as the workspace. In the
modal approach, the reduced set is the set of participation factors. In the opti-
mal configuration approach, the Lagrange multipliers and initial conditions form
the reduced set. These methods are desirable computationally because a look-up
table or neural networks can be used to store the mapping between the reduced
set and end-effector boundary conditions. Both approaches avoid computations

whose complexity scales as the number of manipulator degrees of freedom.



101

Chapter 6
Hyper-Redundant Obstacle Avoidance

The hyper-redundant robot obstacle avoidance problem can be stated as follows:
Given a field of obstacles which clutter the workspace, specify robot motions to
avoid obstacles and perform useful tasks. Such tasks may include inspection,

retrieval, or placement of objects in highly constrained environments.

The methods presented in this chapter are applicable to both stationary and mov-
ing obstacle fields. It is assumed that the layout and motion of obstacles in the
workspace are well known, such as in an industrial setting, or that a sufficiently
accurate sensing system is available, e.g., vision or proximity sensors. Executing a
task in a field of obstacles is equated to defining a path around obstacles to which
the robot must adhere. Such a path, as illustrated in Figure 6.1, provides a tra-
jectory or “tunnel” in which a hyper-redundant robot can “slither” to circumvent

the obstacles.

In the past, a variety of obstacle avoidance algorithms have been developed for
robotic manipulators and mobile robots [Bail86,Kha86,BarrLL89]. Computational
requirements for standard obstacle avoidance methods developed for manipulators
grow dramatically with the number of manipulator degrees of freedom, and are
therefore undesirable for practical use with hyper-redundant manipulators. In

practice, an automatic means for selecting one or more feasible tunnels which
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allow hyper-redundant manipulators to successfully negotiate obstacle fields could
be generated using previously published methods developed for mobile robots.
For instance, free-space methods [Broo83] based on generalized cones could be
used to identify free path segments which could be assembled together to form
the tunnels required by the algorithm presented here. Once the end-effector has
passed through the obstacle field, the portion of a manipulator in the obstacle
field can remain stationary while the unconstrained portion of the manipulator
performs useful work. The methods presented in Chapters 4 and 5 can be used
to control the geometry of the unconstrained manipulator segment outside of the
obstacle field. Computational dependence on the number of manipulator degrees
of freedom is limited to the fitting procedure used. This is a result of the fact that
hyper-redundant manipulators have the ability to conform to prespecified curves,
i.e., trajectories generated by algorithms designed for mobile robots can be used

as the backbone curves for hyper-redundant manipulators.

In this chapter, two problems are solved to implement this obstacle avoidance
scheme. First the proper geometrical constraints on the manipulator are deter-
mined so that it statically conforms to the tunnel constraints. This is accomplished
by determining the appropriate functions {L, T, K, R} for those sections confined
to tunnels, and defining compatibility equations for the free sections. Second the
proper time rate of change of the manipulator configuration is computed. In this
way the manipulator can “slither” through the tunnels from its starting config-
uration to its final configuration while obeying all of the geometric constraints.
Several compelling reasons exist to investigate the rate problem. First, it is not
always possible to find closed form inverse kinematic solutions for the positions
of free manipulator sections. Second, the motions of some obstacles may be non-
holonomic, e.g., the obstacle field could be on a moving truck with nonholonomic
wheel constraints while the manipulator is on another moving platform. A third
reason for formulating the velocity problem is to better deal with control algo-

rithms which require rate information. No particular actuation scheme is assumed
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or precluded. Because both position and rate information is computed, the current

formulation is compatible with most actuator servo control algorithms.

This chapter is organized as follows. Section 6.1 develops an obstacle avoidance
algorithm for nonextensible hyper-redundant manipulators. Section 6.2 general-
izes this to the extensible case. Section 6.3 demonstrates these algorithms with a
detailed example. Section 6.4 illustrates a method in which a human operator can
specify obstacle avoiding paths in the planar case. Section 6.5 discusses future

applications.

6.1 Nonextensible Backbone Tunnel Constraints

Figure 6.1: A Backbone Curve Constrained to a System of Tunnels

Figure 6.1 shows a hyper-redundant manipulator backbone curve in which certain
segments of its length are constrained to pass through tunnel segments in order
to avoid obstacles. Let the segments which are constrained to fit inside a tunnel

be termed interior segments, while the unconstrained segments are termed ezte-
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rior segments. Number the segments sequentially starting from the base of the
manipulator, assuming that the first segment is always an exterior segment. The
interior and exterior segments will respectively have even and odd indices. The
following subsections develop constraint equations on backbone curves to ensure

that the tunnels are adhered to. The planar case is considered first.

6.1.1 Planar Tunnel Constraints

To begin the analysis the planar nonextensible case is examined. The next section
generalizes these results to the spatial case. Curvature functions which will satisfy
the section by section constraints have the form:

2n

k(s,t) = Z ki(s, )W (s, 3i-1, $i) (6.1.1)

=1
where 39 = 0 and s; = s;(t) for ¢+ > 0, and 7 indexes the manipulator segments.

ki(s,t) is a local curvature function. Recall the definition of a window function:
Wi(s,si-1,8i) = H(s — 8i—1) — H(s — s;), (6.1.2)

where H is the Heaviside, or unit, step function. The curvature function defined in
Equation (6.1.1) is therefore a piecewise continuous function, where each segment
of the manipulator is assigned a different curvature function to satisfy its local
constraints. For interior segments the curvature function, termed an interior local

curvature function, must take the form of a traveling wave:
Kog = K.2i(3 — Sgi_l(t)), (6.1.3)

where kg;(-) is the curvature function for the it* tunnel. This can be explained
as follows: As sections of the backbone enter tunnels, the shape of the entering
sections of the backbone curve will assume the same shape as the tunnels. Like-
wise, as sections of the backbone exit tunnels, the shape of the exiting sections
of the backbone curve will be free to change shape. Thus the shape of the tunnel

propagates along the manipulator as it moves through the tunnel.
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The curvature function describing exterior segments (an ezterior local curvature

function) can have the more general form:
K2i+1 = K2i+1 (3) t) . (614)

However, the exterior segments have kinematic restrictions on their relative posi-
tion and orientation so as to connect the exit of the itk tunnel to the entrance of

the 72 + 1st tunnel:

82i41 9in1
/ Koit+1ds = 92;"' , (6.1.5)
82
82i41 .
/ sin6(s, t)ds = z3t+1 (6.1.6a)
82
and
82541 .
/ cos (s, t)ds = y2itt, (6.1.6b)
82i
9%::“ and ‘:z‘:‘%f'*’l = (mgiﬂ,y%H) are the orientation and position of the frame at

the entrance of the 7 + 1°! tunnel with respect to the frame at the exit of the 5th
tunnel, measured in the base frame. That is, 8527 (¢) = 8(s2i4+1,t) — 0(s2i,t) and
‘:i:‘g::“(t) = Z(s2i41,t) — Z(s2i,t). In this way, the manipulator backbone curve
is at least a once continuously differentiable curve along its whole length. The

constraint in Equation (6.1.5) can be relaxed if nonsmooth backbone curves are

allowed.

The velocity constraints on the endpoints of the free sections of the manipula-
tor are found by simply taking the time derivative of the position constraints

represented by Equations (6.1.5) and (6.1.6) to yield:

d 82i41 d92§'+1
7 K2i+1ds = ;; , (6.1.7)
82i
82i41 dr2itl
d sinf(s,t)ds = Tai (6.1.8a)

dt 82i
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and
d 82i41 dy21.+1

7 cos 0(s,t)ds = g
Since s = si(t), Leibnitz’s rule can be used to write the velocity constraints of

Equations (6.1.7) and (6.1.8) explicitly as:

(6.1.8b)

86(v,t) | dv L g2t
ANl =2 1.9
T Gn) - (5.19)
82i+1 06(s, 1) dv 82i+1 3 da:%f*’l
/32,- 5, O 6(s,t)ds + IZE sin 6(v, t)] =0 (6.1.10)

v=a83;

and

2i+1 9h(s. ¢ 82i41 d 2i+1
—/m 9 (Bi )s1n9(s t)ds + [%— cos §(v, t)} ydt (6.1.11)

where the following notation has been used: [f(v,dv/dt,t)]%_, = f(b,db/dt,t) —
f(a,da/dt, t) for arbitrary functions a = a(t) and b = b(t). Note that for the parts

V=282{

of the nonextensible backbone which fully occupy a tunnel, sgiy1 — S2; = const;,
which means that

$2i41 = dai. (6.1.12)

The velocity of every point of the backbone curve is of the form:

( foa%%cos fdo )
o(s,t) = . (6.1.13)

- fo' %%sin 8do
6.1.2 Spatial Tunnel Constraints

Equations very similar in nature to those defined for the planar obstacle avoidance
problem are now defined for the spatial case. Figure 6.1 is still applicable, and

the same indexing system is used.
The functions K and 7 are taken to be of the form:

K(s,t) = ZIC (s, )W (s, 8i—1, 3i)
i=1 (6.1.14)
T(s,t) = Z Ti(s, )W (s, 8i-1, 5i)

=1
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where
Kai = Kai(s ~ s2i-1(t)),  Tai = T2i(s — s2i-1(1)) (6.1.15)

are of the form of traveling waves, and

Kait1 = Kait1(s,t),  Tait1 = Taita(s, t) (6.1.16)
are of a more general form, but must obey the constraint equations
82i41 32i4-1
/ ]C2i+1ds = AK,‘, / 7'2,‘+1d3 = AT, (6117)
52 LI
and
5(32,‘_*_1, t) - 5(325, t) = d; (6.1.18)

where AK; and AT; are the difference in the angles K(s,t) and T'(s,t) which
specify the orientation of the 2+ 1** tunnel entrance with respect to the 7** tunnel
exit. d; is the constant vector measuring the difference in position of the entrance
of the 7 4+ 1%t tunnel with respect to the exit of the 4** tunnel as measured in the

base frame.

Rate equations corresponding to Equation (6.1.16) are of the same form as Equa-
tion (6.1.9). The explicit rate form of Equation (6.1.18) is a complicated expres-
sion when written in terms of the quasi-curvature and quasi-torsion, and can be

written symbolically as
= g
T dt

v=83;
where the velocity vector (s, t) of every point on the manipulator can be written

dv _ _
Et—u(u, t) + v(v, t) (6.1.19)

as

- 0’ %%sinKsianO' + fO’ %%(—cochosTda

(s, t)=| — J) %% cos K sinTdo — [ %Itisianos Tdo (6.1.20)

Jy % cos Tdo
by taking the time derivative of Equation (2.2.11) (with I(s,t) = 1).

Equations (6.1.9-11) and (6.1.19) hold for generally defined exterior segments.
Simplifications can be made if the exterior segments are restricted to a “quasi-
modal” form. The next subsection defines and illustrates the use of this quasi-

modal form.
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6.1.3 A Quasi-Modal Form for Exterior Segment Con-

straints

Previously in this section, position and velocity constraints for the exterior seg-
ments of nonextensible hyper-redundant manipulator backbone curves were for-
mulated. This section shows how the modal approach of Chapter 4 can be used
to satisfy these constraints. Recall the definition of the modal form represented
in Equations (4.5.1-4). A modified “quasi-modal” form is defined for exterior
backbone segments as follows:

Nk )
Kaiv1(s,t) = . (1) Z aj(t)d; ( s — oai({) )

s2i+1(t) — s2i s2i+1(t) — s2:(t)

J=1
1 Ng+Nr s 32-(t) (6121)
Taita 37t)= a't¢'( : )
@2 @ ., M D - e
This can be written equivalently as
ox s — s2:(t)
Kait1(s,t) = ) a;(t)®; L )
2 +1( ) ; J( ) J (32i+1(t) _ 32i(t)
(6.1.22)

Ng+Np )
Toini(s,t)= 3 aj(t)@j( s — s3i(2) )

=N s2i+1(t) — s2i(t)

In the planar case, T3i41 = T'(s,t) = 0, and K2i41(s,t) = k2i4+1(s,t), and the

quasi-modal form is also applicable.

In this way, if we choose bending modes, {®;}, which yielded closed form solutions
for the end-effector problem in Chapter 4, they will yield closed form solutions for
the exterior segment constraints expressed in Equations (6.1.5) and (6.1.6) in the
planar case, or Equation (6.1.18) in the spatial case. This is observed by a simple

change of variables:
8 — s2i(2)
 s2ip1(t) — s2i(2)
which transforms all the exterior segment constraints into exactly the same prob-

(6.1.23)

lem as the end-effector placement problem:

/3”‘“ v ( sl t) ds = (s2i41() — s2i(t)) /01 u(o,t)do.  (6.1.24)

2 s2i+1(t) — s2i(t)’
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The quasi-modal form also ensures that the rate formulation of exterior segment
constraints will mimic the rate problem for the modal end-effector case:

. d d; )
Ji@)g= —| ————— ). 6.1.25

@) dt (32i+1 — $2i ( )

Thus, we have a natural choice for implementing rate constraints for nonextensible

exterior segments. Using the method depicted in Equation (6.1.25), a modified

resolved rate modal approach results. Examples of this approach will be given in

Section 6.3. But first the next section shows how extensible manipulator obstacle

avoidance can be treated naturally using the nonextensible formulation of this

section.

6.2 Extensible Manipulator Obstacle Avoidance

The methods developed in Section 6.1 for nonextensible planar and spatial hyper-
redundant manipulators generalize quite easily for extensible manipulators. Fea-
tures of extensible hyper-redundant manipulators can be exploited to make them

adhere to a specified obstacle avoiding trajectory in a variety of useful ways.

Assume an arc length parametrized time-varying set of obstacle-avoiding backbone

curves:
2(s,t) = Tau(L,t)  for  (L,t) € [Lmin, Lmaz] X [to, t1], (6.2.1)

where Lin > 0 and Lymqz > Lmin are respectively the shortest and longest length
attainable by the hyper-redundant manipulator for configurations defined by the
given backbone curve. Extensible manipulators can be fit to this set of time-
varying configurations in several ways. For instance, L(s,t) = s could be chosen.
This results in fitting the manipulator to this set of curves as if it were nonex-
tensible, as was done in the previous section. Alternately, L(s,t) can be chosen
arbitrarily from the set of strictly increasing functions with boundary conditions

L(0,t) = 0 and L(1,t) = Lo € [Lmin, Lmaz]- Possible choices are the optimal
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reparametrization of Equation (5.6.11) or a uniform extension L(s,t) = Lo(t)s.
In either of these cases, the backbone curve Z(s,t) = Zgy(L(s,1),t) will avoid

obstacles, because Zoy(L, t) does.

Extensible hyper-redundant manipulator motions can be viewed as combinations
of extensibility and bending. In Chapter 4, pure bending and extension modes
were defined in a way which simplified the end-effector placement problem. Pure
longitudinal motions are defined below to simplify the analysis of extensible ma-

nipulator obstacle avoidance.

Recall that pure bending motions result if L = L(s, t;) for some constant ¢;, so that
Z(s,t) = ZTav(L(s, ti), t). In this case, changes in manipulator configuration are de-
termined solely due to bending because the length function is independent of time,
and so extensibility cannot be varied. On the other extreme, obstacle avoidance
for extensible manipulators in static environments can be implemented without
any bending by using pure longitudinal motions. Pure longitudinal motions are
defined by restricting the hyper-redundant manipulator to the time-varying curve
Z(s,t) = Taw(L(s,t),t;). The curve shape does not change in the case of pure
longitudinal motion, but the amount of curve covered by a given manipulator
changes as a function of time. Note that this is different from the definition of
pure extensible modes in Chapter 4. In practice, extensible manipulator obsta-
cle avoidance can be implemented as a combination of bending and longitudinal
modes. An example of this mode of obstacle avoidance is demonstrated as part

of a comprehensive example in the next section.

6.3 A Specific Example

Figures 6.2 and 6.3 illustrate a specific example of the planar formulation presented
in Section 6.1.1. The hyper-redundant manipulator must pass through a single
maze-like tunnel and reach a goal on the other side. In the first unconstrained

exterior section, i.e., 0 < s < 8j, the curvature function is restricted to a form
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which ensures that the backbone curve is free of the maze. For this example,

2ma(t) cos 27s
O ) (6.3.1)

is chosen, where a(t) will be determined such that the point Z(s1(t),t) on the

"‘51(57 t) =

moving, or slithering, manipulator is always coincident with the tunnel entrance.
The form for the curvature function was chosen to yield a closed form inverse
kinematic solution for the exterior manipulator segment, i.e., the point s = s1(¢)

moves along the backbone curve, but remains stationary in space. Integrating

Equations (2.3.4) and (2.3.5) for the case {(s,t) = 1,

51
z1(s1,t) = / sin (a sin 3713) ds =10 (6.3.2)
0

31

and

31

81
za(s1,t) = / cos (asin 22) ds = Jo(a) s1, (6.3.3)
0

where Jy is the zeroth order Bessel function.

Let h > 0 be the distance from the base of the manipulator to the entrance of the

tunnel (Figure 6.2). Since & is a constant, the following must be true:
h = Jo(a)si. (6.3.4)
For h to be positive, it is necessary that
O<a<
where pu1 =~ 2.405 is the first zero of Jy.

The condition for stationarity of Z(s1,t) at the entrance of the tunnel, while s;

varies, is A (ﬁ) (6.3.5)

and so

2r  __ h 2ms
k1(s,t) = e J5! (sl(t)> cos o) (6.3.6)



CHAPTER 6 : HYPER-REDUNDANT OBSTACLE AVOIDANCE 112

where Jy~ 1 is a restricted inverse Bessel function, defined in Chapter 4. Other

closed form inverse kinematic solutions can be found using the modal approach.

The obstacle environment is illustrated in Figure 6.2. With Z(s;,¢) = d1 = [0, A]T
fixed, an appropriate curvature function for the section of manipulator confined
to the tunnel can be determined. This curvature function is denoted as x2(s, t).

For this particular obstacle field k3 can be defined as follows:

x ,
52(3) t) = =5 [W(S,Sl, s1+ Lc) - W(S, 81+ LC) s1 + 2Lc)

L. (6.3.7)

+W(s,s1 + 2L¢, 51 + 3L.)].

This choice of k3 corresponds to three consecutive semi-circular arcs. The mag-
nitude of the curvature over each of the three sections, each arc with length L.,
is m/L., corresponding to semicircles of radius 7. = L./7. The window func-
tions take the value of unity over each of the semicircles, and the sign indicates
the sense in which the arc turns. A positive sign indicates clockwise bending,

and a negative sign indicates counterclockwise bending of the manipulator. The

fact that x3(s,t) is a traveling wave in curvature is evident from the equality

Wi(s,s1+a,s1+b)=W(s—s1,a,b),foralla < beR.
The composite curvature function for this example is then

k(s,t) = k1(s,t)W(s,0,351) + ra(s, t)W (s, s1,1). (6.3.8)
Integrating Equation (6.3.8) in the variable s,

0(s,t) = Jyt (%) sin (%E) - —g—(s — s1)W (s, s1,81 + L)

31

+ [Llc(s —s1— L) — m|W(s,s1 + Le¢, 51 + 2L¢) (6.3.9)

- {—c(s — 81 — 2L )W (s,s1+ 2L¢, 51 + 3Lc)

—7W(s,s1+ 3L, 1).
A time history of this nonextensible tunneling obstacle avoidance maneuver is
shown in Figure 6.3, corresponding to the obstacle with dimensions shown in

Figure 6.2. The configurations shown correspond to A = 0.4, L, = 0.2, and
s1 = 1.00,0.83,0.68.
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Figure 6.2: Dimensions of the Obstacle Field

Figure 6.3: An Obstacle Avoiding Backbone Curve

The procedure used for the stationary obstacle is easily generalized to the case of

a moving obstacle field. The backbone curve is partitioned into two sections as in
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Equation (6.3.8), but now:

nl(s, t) =

&+ (@1(8)/s1(2)) cos 2’(”) (t)ag(dl(t)/sl(t))sm

(t) (t)

(6.3.10)
where 4]7(-) and @3(-) are the inverse kinematic solutions in Equations (4.2.4) and
(4.2.5). k1 now assures that a point on the manipulator backbone at s = s;(t)
has fixed position with respect to the obstacle field entrance (independent of how
the obstacle translates in the plane) provided the entrance is within reach. That
is, k1 assures that Z(s1(t),t) = di(t), which is the position vector of the entrance
to the obstacle field in the base frame. Note that this is an example of the quasi-
modal form introduced in Section 6.1.3. k2 again has the form of a traveling
wave (composed of three semicircular arcs) for the section of the manipulator
which is inside the tunnel given by Equation (6.3.7). Figures 6.4(a)-(d) show
this solution for d; € [(—0.3,0.0),(0.2,0.46),(—0.17,0.19),(0.0,0.57)], and s; €
{0.65,0.65,0.69,0.61}.

Figure 6.4: Obstacle-Avoiding Configurations for Moving Obstacles
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Incorporating extensibility into this example is rather straightforward. Only now,

o 271'L(37 t)
G ()] L(sx(8),2)) cos o=y

27 L(s,t)
L(s1(t), 1)

2w
8 = e
+ m—lz—(%még(gl(t)/L(sl(t), £)) sin

(6.3.11)

and

ka(s,t) = =T [W(L(s,8) = L(s1(2),8),0, Le) = W(L(s, ) = L(s1(2), ), Le, 2Le)

+ WC'(L(S, t) — L(s1(t),t),2L¢, 3Lc)].
(6.3.12)

Equations (6.3.11) and (6.3.12) are simply generalizations of Equations (6.3.10)
and (6.3.7) with L(s,t) replacing s. L(s,t) is chosen within the constraints
L(s,t) = I(s,t) > 0, L(0,2) = 0, Lyin < L(1,%) < Lyae, and whatever con-
straints are introduced by the actual mechanism joint limits. In Figure 6.5, the

same backbone curve as in Figure 6.4 is used, only now L(s, t) # 1, but is rather

defined as in Equation (5.6.11) with (Lg,r) = (1.0,0.1).

TS

(a

()

Figure 6.5: Optimally Reparametrized Obstacle-Avoiding Configurations

If the obstacle is stationary, then d; is constant, and purely longitudinal obstacle
avoidance can be implemented. Recall that pure longitudinal locomotion can

be implemented only when the backbone curve shape has no time dependence.
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For this example, fixing the time dependence of the obstacle avoidance curve is
achieved by fixing s1(t) for constant d;. The behavior of the function L(s,t)

can be chosen in a variety of ways. In Figure 6.6, d; = [0.3,0]T, s; = 0.5, and

L(s,t) = Lo(t)s for Lo € {0.75,1.0,1.25}.

Figure 6.6: Avoiding Obstacles with Purely Longitudinal Motion

6.4 Operator Specification of Obstacle Avoiding
Paths

Often obstacle avoidance problems will only require a single tunnel to be defined.
This section introduces a user-interactive obstacle avoidance algorithm for the pla-
nar single tunnel case. Using this approach, the operator of the hyper-redundant
robot chooses paths graphically to avoid obstacles. The basis of this approach is
straightforward. The interior segment curvature function is restricted to a class
which has closed form forward kinematics. In particular, the following form will

be used:
N; H
ra(s,t) = > 08 | s = Lj|, (6.4.1)
i=1 j=1

which yields a path divided into Ns connected line segments each with correspond-
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ing length L;, and angle between the + — 1st and :th segments denoted by 6; for
1 € [1, Ng]. A computer interface allows the user to alter the variables L; and 6;

so as to achieve a particular desired obstacle avoiding path.

In effect Equation (6.4.1) results in a kinematic structure which mimics the rev-
olute manipulator studied in Section 3.3. Only now the user is specifying link
lengths and joint angles to shape an obstacle avoiding path. Once the operator of
the hyper-redundant robot is satisfied with the path chosen, the interior segment
curvature function is matched to an exterior segment, just as in the example of the
previous section. In this section, the same exterior segment curvature function as
the previous example is used, i.e., that given by Equation (6.3.11). The compos-
ite curvature function is again of the form of Equation (6.3.8), with x1(s,t) given
by Equation (6.3.7). Fitting of the actual hyper-redundant manipulator to this
nonsmooth trajectory is achieved in the same way as for the nonsmooth modal

example in Equation (4.2.12).

0 kv

(a) (b)
Figure 6.7: An Arbitrary Obstacle Field with User Defined Interior Segment

As an example, consider the arbitrarily defined obstacle field shown in Figure
6.7(a). The discretely segmented straight-line path shown in Figure 6.7(b) was
defined by the user to form a tunnel through the obstacle field. A collection
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of circles surrounds the path, the envelope of which forms a tube in which the
manipulator can enter or exit. By ensuring that this tube does not intersect
obstacles, the manipulator is guaranteed not to intersect obstacles. Figures 6.8
and 6.9 show hyper-redundant manipulators penetrating an obstacle field with

pure bending and purely longitudinal motions respectively.

(a) (b) }

Figure 6.8: Pure Bending Obstacle Avoidance

D I

Figure 6.9: Purely Longitudinal Obstacle Avoidance

Previously developed automatic methods for generating obstacle avoiding paths

for mobile robots can be used in place of operator input to generate obstacle-
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avoiding backbone curves of hyper-redundant manipulators. One such trajec-
tory generation technique developed by [AnA90] automatically generates obstacle-
avoiding paths consisting of straight-line segments. If this automatic method were
chosen, the interior segment curvature function would still be of the form of Equa-
tion (6.4.1), only the parameters L;, and 6; would be generated automatically

instead of by a human operator.

6.5 Discussion

This chapter presented a novel obstacle avoidance concept, based on “tunneling,”
for hyper-redundant manipulators of constant and variable length through station-
ary and moving obstacle fields. A general formulation was given which allows a
manipulator to maneuver through a complicated sequence of interior and exterior
segments. Computer simulations were presented for a particular obstacle field. In
principle, connecting circular arcs (or more complicated blending curves) and line
segments can be used to construct a system of tunnels for maneuvering in arbitrar-
ily complex obstacle fields. The benefit of this method over existing potential field
and optimal methods for application to hyper-redundant manipulators is that a
comparatively eflicient set of kinematic equations based on differential geometry
is computed, allowing much faster solutions. However, the present formulation
does not preclude the use of other methods to define the trajectory to which the
hyper-redundant manipulator is to adhere. The methods of Chapter 3 are used to
fit the actual hyper-redundant manipulators to the backbone curve, independent
of how that curve is generated. While the applicability of the present model di-
minishes with diminishing degree of redundancy, it works quite well in situations
such as the “infinitely redundant” manipulator case, where conventional methods

of analysis clearly do not apply.
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Chapter 7

Hyper-Redundant Locomotion
and Grasping

In Chapters 2-6, a kinematics and motion planning framework was developed
for robots with fixed bases. In this chapter, the analysis presented earlier is
extended to the locomotion of mobile hyper-redundant robots. Hyper-redundant
locomotion is defined here to mean motions resulting in net displacements of
hyper-redundant robots due to the internally induced bending and twisting of the
mechanism. Actuatable wheels, tracks, or legs are not necessary. It will also be
shown that hyper-redundant robot locomotion has applications to the grasping
and manipulation of objects. The analysis performed in this chapter will be for

planar problems, but the ideas are generalizable to the spatial case.

The position vector to all points on a moving hyper-redundant robot backbone

curve relative to a fixed inertial frame are written as:
7(s,8) = R(t)a(s,8) + o(2).

R(t) is a 3 X 3 rotation matrix which describes the orientation of the backbone
curve base frame relative to the inertial frame, and ¢(¢) is the 3 X 1 vector from the
origin of a fixed frame to the origin of the backbone curve base frame. Because

of the invariance of the intrinsic description of backbone curves with respect to
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rigid body motion, all geometric features of mobile hyper-redundant robots are
still captured by (s, t) and I(s,t) in the planar case. In this chapter several types
of locomotion and grasping schemes will be classified and demonstrated using

intrinsic geometry.

This chapter is organized as follows. Section 7.1 introduces two categories of
nonextensible (bending mode) hyper-redundant locomotion: stationary and trav-
eling wave. Section 7.2 illustrates analogous forms of extensible (longitudinal
mode) locomotion. Section 7.3 shows how the intrinsically defined locomotion
methods developed in Sections 7.1 and 7.2 can be used for locomotion over arbi-
trary terrain. Section 7.4 develops an alternate approach to the intrinsic formula-
tion: describing locomotion with respect to the geometry of the terrain. Section
7.5 shows how ideas developed for hyper-redundant locomotion apply to the grasp-
ing and manipulation of objects. Section 7.6 discusses potential applications for

the locomotion and grasping techniques developed in this chapter.

7.1 Classification of Nonextensible Locomotion

This section presents two classes of gaits which are highly idealized forms of bio-
logical locomotion. In this context, a “gait” is a repetitive sequence of mechanism
deformations which cause net motion of the robot. The term “wave” will often
be used to describe the mechanism deformations associated with these hyper-
redundant locomotion gaits. The two categories presented here are by no means
the only possible modes of locomotion, but were chosen for their simplicity and

wide range of applicability.

The first class of gaits uses an amplitude varying wave which remains station-
ary with respect to body coordinates, and is thus referred to as stationary wave
locomotion. For instance, roughly speaking, an inchworm extends and contracts
its body in a manner in which the “hump” remains in approximately the same

location of the body. A second category of gaits which mimics the pedal waves of
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t he slug (see Figure 1.5) or the locomotion of a caterpillar is also considered, and
is referred to as traveling wave locomotion. In this category of gaits, the ampli-
tude of the wave remains relatively constant, but travels the length of the body.
Complicated forms of locomotion may not fit into either of these categories. Ex-
amples of these are the whirling and flagellar movements used by some creatures

for swimming, and the sidewinding and concertina modes of snake locomotion.

The next two subsections consider nonextensible stationary and traveling wave
gaits separately. Examples illustrate suitable curvature functions for implement-
ing locomotion. In these subsections, it is assumed that the robot locomotes over a
level surface. Section 7.3 shows how this formulation can be applied to locomotion

over uneven terrain.

7.1.1 Stationary-Wave-Amplitude-Varying Locomotion

As stated in Section 2.3, the kinematics of planar hyper-redundant robot backbone
reference sets can be reduced to the determination of the spatial and temporal be-
havior of the backbone curvature function, x(s,t), and the rate of length function,
I(s,t). Nonextensible stationary-wave-amplitude-varying (SWAV) locomotion over
Hat terrain can be represented with curvature and rate of length functions of the

form:
Ks(s,t) = as(t)ds(s) (7.1.1a)
I(s,t) =1 (7.1.1b)

where @,(s) is a curvature mode function and a,(t) is the associated modal par-
ticipation factor. Figures 7.1 and 7.2 show computer-generated time-varying se-
quences of variable geometry trusses demonstrating SWAV locomotion over flat
terrain. In SWAYV locomotion, forward travel is achieved by varying the amplitude
of the robot’s curvature function. This is achieved via the time dependence of the
participation factors, i.e., a,(t) is taken to be a periodic function. SWAV locomo-

tion implicitly assumes that the bottom of the mechanism has greater resistance
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to motion in the forward direction than in the reverse direction. In practice, this
can be achieved with passive racheting wheels which only turn in one direction,
or scales which slide during forward motion and exert traction on the ground pre-

venting retrograde motion (see Chapters 8 and 9 for an actual implementation).

One possible curvature function appropriate to model SWAV locomotion is
ks(8,t) = a, (t) cos 2wms, (7.1.2q)
for some integer m, where a,(t) is chosen to be of the form

as (t) = 2rm(ap + a1 cos wt). (7.1.2b)

B AN AN A A SR AR

Figure 7.1: Nonextensible SWAV Locomotion: Example 1

Figure 7.1 shows a variable geometry truss which has been fit to a backbone curve
with curvature defined in Equations (7.1.2) for m = 5. In practice, choosing
m >> 1 lowers the robot center of gravity. ap and a; in Equation (7.1.2b) must
obey @maz > ap > |ai| > 0, where specifying omq. limits the allowable curvature
at any point in the robot. Bounds on the curvature may be imposed by constraints

which arise in the physical implementation of the robot, or may be imposed to
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prevent self-intersection. The constraint ap > |a1| > 0 is necessary to prevent a
violation of the kinematic terrain constraints. That is, these constraints prevent

the “humps” from penetrating the terrain surface.

Substituting Equation (7.1.2) into Equations (2.3.4) and (2.3.5), the location of
the front of the robot relative to the back is:

z1(1,8) =0;  @3(1,t) = Jo (a0 + a1 coswt) (7.1.3)

where Jo(-) again is the Bessel function of zeroth order. z3(1,t) will be referred to
as the nominal body length. The stride length, Lsy, which is normally defined as
the distance traveled by a legged animal or robot over one complete cycle of foot
placements, is modified to mean the distance traveled over one temporal period

of the curvature function, which in this case is
Ls; = Jo (ao “al)“JO (ao +a1). (7.1.4)

Note that the stride length is the difference between the maximum and minimum
nominal body length. Other gait analytic terms such as stepping sequence and
duty factor [SoW89] have little useful meaning here, primarily because there are

no foot placements.

The previous choice of curvature is not by any means unique for SWAV locomotion.
As a second example, a curvature function is defined as a piecewise continuous
function composed of constant sections:

m

K(s,t) = [a3,-(t)W (s - ’-;—3 0, &%ﬁ) — azip1()W <s - i:nl ,1/4m, 3/4m>

1=1

1

+azip2 ()W <s - 1,3/4m, 1/m)}

m
(7.1.5)

where the window function W(s, so, s1) is defined as in Equation (4.5.8), i.e., it

is unity on the interval so < s < s; and zero otherwise. The resulting wave is a

combination of 3m circular arcs, as shown in Figure 7.2 for the case m = 1. The
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kinematic constraint that no point of the robot should penetrate the terrain is
satisfied by setting:

a3i(t) = azit1(t) = azit2(t) = a,(t) >0 for 1€ [l,m] (7.1.6)
for a chosen oscillatory a,(t). As a,(t) varies, Equation (7.1.6) also ensures that

the backbone curve is tangent to the flat terrain at all points of contact.

Figure 7.2: Nonextensible SWAV Locomotion: Example 2

7.1.2 Traveling-Wave-Amplitude-Constant Locomotion

Many terrestrial creatures with hyper-redundant morphologies are capable of send-
ing waves along their bodies for propulsion. In this section, we idealize this form of
locomotion as a traveling body wave which has constant amplitude. This traveling-
wave-amplitude-constant (TWAC) form of nonextensible locomotion can be im-

plemented with a curvature function of the form:

ki(s,t) = di(s — au(t)). (7.1.7)
For example, let

ky(s,t) = eW(s — as(t),0,1/m) cos 2rm(s — as(t)) (7.1.8)
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where m is any integer such that m > 2 and € is the maximum curvature of the
wave. The integer m is chosen so that the wave constitutes 1/m®* of the total arc

length of the robot.

One possible choice for the time dependence of the curvature function is

aslt) = w [t _1 (t, mmzl)} —1/m. (7.1.9)

The function I(t,?,), which will be used extensively in this chapter, is defined as

I(t,t,) = t, (int) (}) (7.1.10)

P
where (int) is the greatest integer function, and ¢, > 0 is the period of the lo-
comotion cycle. w is the instantaneous wave speed when the wave is traveling
along a robot of unit length. However, the average wave speed dictated by Equa-
m

tion (7.1.9) is 2% because there is an interval of time when no complete wave is

present in the robot during each cycle.

The time varying curvature function in Equation (7.1.8) causes a “hump” of con-
stant magnitude (with the same shape as the first example of Subsection 7.1.1)
to travel from one end of the robot to the other. With each additional increase in
time of %i} the process is repeated, and the robot advances by one stride length,

Lsy,, which for this example is given by:

2mm

Lsg = nil 1= o (5 )] (7.1.11)

As a second example of TWAC locomotion, a wave with the same shape as in the

second SWAV example is chosen, but with temporal behavior:

ki(s,t) = a1 W (s — ay(t),0,1/4m) — aaW (s — au(t),1/4m, 3/4m)
(7.1.12)
+ a2W(s - at(t), 3/4m, l/m)

ay(t) is the same as Equation (7.1.9) and the {a;} are constants which obey
the constraints of Equation (7.1.6). The resulting robot shape for this choice of

curvature is shown in Figure 7.3 for m = 3.
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Figure 7.3: Nonextensible TWAC Locomotion

7.2 Classification of Extensible Locomotion
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Figure 7.4: Extensible SWAV Locomotion

The two modes of nonextensible hyper-redundant locomotion classified in the

previous section have extensible counterparts. For flat terrain, SWAV locomotion
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can be defined as

K(s,t) =0 (7.2.1a)
I(s,8) = 1+ ca(t)s(s) (7.2.1b)

where a,(t) is an oscillatory function, which will generally be chosen as in Equation
(7.1.2b). There is great freedom in the choice of ¢,(s), but a uniform extension

and contraction of the form
Ps(s) =1 (7.2.2)
is chosen here. This is shown in Figure 7.4 for m = 1, ap = 0, and a1 = % in

Equation (7.1.2b). The stride length in this case is Lgr = 2c;.

NN ANANANY NN NN
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Figure 7.5: Extensible TWAC Locomotion

For a purely longitudinal traveling wave over flat terrain, we define
k(s,t) =0 (7.2.3a)

I(s,t) =14+ Egdi(s — au(t)). (7.2.3b)

This is shown in Figure 7.5 for ¢;(-) = W(-,0,1/5) and Ey = —. Note that this
is a contraction wave. If Ey > 0, the locomotion wave would be an expansion

wave which must travel in the direction opposite to the direction of robot travel.
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In practice, traveling waves are required not to contact the terrain so that strides
can be achieved without relying on differential friction. This is achieved for the

case of flat terrain with a composite bending and longitudinal traveling wave so

that Equations (7.2.3b) and (7.1.7) hold simultaneously.

7.3 Locomotion over Uneven Terrain

The formulation in Sections 7.1 and 7.2 is naturally extended to locomotion over
curved terrain. The following subsections formulate the locomotion problem for

arbitrary terrain.

7.3.1 Nonextensible Locomotion over Curved Terrain

The curvature functions given in Equation (7.1.5) or (7.1.12) can be used for a wide
variety of terrain shapes when the constraints in Equation (7.1.6) are modified.
The waves which result from the curvature function in Equation (7.1.12) have
three degrees of freedom (much like a 3 mode inverse kinematic solution) when
not constrained by Equation (7.1.6). The free degrees of freedom correspond to
free choices for aj, a3, as. Equation (7.1.6) was a constraint imposed by the flat
terrain which could be expressed in closed form. While a variety of three degree
of freedom waves can be imagined, those defined in Equations (7.1.5) and (7.1.12)
are used in the following examples. Nonetheless, the results generalize to other

waveforms.

Assume the terrain is described by an arc length parametrized time-varying curve,
written as T(p,t) = [T1(x,t), To(p, t)], where p is the terrain arc length. T(g,t)
is defined so that 87(0,¢)/0u = [0,1]7 = &. Also assume that at ¢ = 0, the base
frame of the backbone curve coincides with {&1,e2}. After N,y traveling waves,
the base frame of the robot is at T(NgyeLsr,t). Terrain constraints will generally
not be expressible in closed form. In fact, T(g,t) may not even have a closed form

description.
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In order to gain insight into the nonextensible locomotion problem over curved
terrain, the intrinsic functions used to define the shape of the locomotion wave

are written in the explicit form:

/c(s, t) = KT(S + NcycLSL) t)W(S, 0, So(t))

+ &*(s,a(t), t)W{(s, so(t), s1(%)) (7.3.1)
+ &1(s + (Neye — 1) Lsr, YW (s, s1(2),1)
where s = s; and s = sg denote the front and back of the wave (stationary

or traveling) measured along the backbone curve from its base, and xp(p,t) =
|02T' /8% | is terrain curvature. This notation illustrates explicit dependence of
the wave shape upon the variables {a;}. Strictly speaking, this is not of the modal
form defined in Chapter 4.

The vector X (@, t) = [X1(g, t), Xa(a, ), Ab(a, t)]7T is defined as the relative position
and orientation of a frame attached to the robot at s = 51 with respect to a frame
attached to the robot at s = s¢. In the case of TWAC locomotion, s8¢ = a:(t) and
51(t) — s0(t) = Ly, which is the wave length. In the case of SWAV locomotion

so = 0 and s; = 1. In either case, the components of X (@, t) are given explicitly

as:
8
X (a,t) = / sin0*(s,a,t)ds (7.3.2a)
20
5
Xo(a, t) =/ cos §*(s, @, t)ds (7.3.2b)
50
Ab(a,t) = 6*(s1,a,t) — 6%(so,a,t) (7.3.2¢)
where

8*(s,a, t) = /8 k(o,t)do = 0p(t) + /a k*(o,a,t)do (7.3.3)

—NcycLSL 80

where O7(t) is the difference in angle between the vectors tangent to the terrain
at 4 =0 and p = so + NgycLsp. In this way, {X1, Xo} are defined relative to the
frame {1, 22 }.

We seek to determine the variables @ = [a1, a3, a3]” such that

X(a,t) = X (¢) (7.3.4a)
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where
xges(t) = Ti(s1(t) + (Nege — 1)Lz, t) — Ti(so() + NegeLsz, t) (7.3.4b)
dee"(t) = Ta(s1(t) + (Ncyc —1)Lsg, t) — To(so(t) + NeyeLsy, t) (7.3.4¢)

X%*(t) = cos™? g—f(sl(t) + (Neye — 1)Lsr,t) - %—rg(so(t) + NeyeLsi, t)}

(7.3.4d)
is the desired trajectory (position and orientation) of the front of the wave with
respect to the back of the wave such that the (possibly moving) terrain constraints
are observed. The length Lgy is not only the stride length, but also the slack, i.e.,
the difference in length measured along the robot’s backbone curve, and measured
along the terrain. After each cycle of locomotion, the robot progresses along the
terrain curve by the amount Lgp. Ncye = (int)(¢/tp) is the number of cycles of
locomotion which have been performed up until the current time. ¢, is the period

of each locomotion cycle (which was mm"'l in Equation (7.1.9)).

Unfortunately, unlike the flat terrain case, it is generally difficult to solve Equation
(7.3.4a) for @ in closed form. However, a method analogous to the resolved rate
scheme used for end-effector placement in Section 4.6 can be used. The time

rate-of-change of Equation (7.3.4a) is expressed as

- des . ba
X =J@a+ %—f (7.3.5)

which can be solved for the {a;}. By assuming the robot originates on flat ground
at possibly fictitious initial time 2, the initial conditions {ai(¢¢)} can be specified
by Equation (7.1.6). Solving Equation (7.3.5) for @ and integrating yields a set of

{ai} which defines a wave that tracks the terrain.

This method will not work for all terrains because there is no guarantee that
the specified wave shapes will not intersect the terrain, and/or that the Jacobian
in Equation (7.3.5) will not become singular. Algorithms using this technique

must check for both of these situations. This procedure will be illustrated with a
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specific example in Section 7.5.1 in the context of a grasping and fine manipulation

algorithm.

7.3.2 Extensible Locomotion over Curved Terrain

The analytical description of purely longitudinal locomotion over arbitrary ter-
rain follows naturally from the purely longitudinal obstacle avoidance algorithm

presented in Chapter 6.

Suppose again that the terrain curve is parametrized by arc-length, T = T(y, t).
Purely longitudinal locomotion will be implemented when the backbone curve is

parametrized as follows:
z(s,t) = T(L(s,t) + d(t),t) (7.3.6)

for appropriate choice of the functions L(s,t) and d(t). These functions respec-
tively describe how the backbone curve stretches along the terrain relative to its
base, and how that base moves. By choosing I(s,t) as in Equation (7.2.1b) or
(7.2.3b), L(s,t) can generate purely longitudinal stationary or traveling wave lo-
comotion. d(t) is defined so that the progression of the robot along the given curve
is consistent with the type of locomotion. The only difference between purely lon-
gitudinal locomotion and obstacle avoidance is the fact that d(t) = 0 in the case

of obstacle avoidance because the base is fixed.

Figure 7.6 shows purely longitudinal stationary wave locomotion over a wall. The
terrain curve in this case is piecewise linear, including three line segments: an
initial horizontal line, a “ramp” line, and a final horizontal line. In this example,

[(s,t) is defined as in Equation (7.2.1b) with
as(t) = 1 — a + 2asin’(nt/ty), (7.3.7a)

and
Neye
. ) Lt
d(t) = 2 Z [H(t — itp) + cos®(mt/tp) W (t — itp, L )], (7.3.7b)

1=0
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where a = 0.2 and ¢, = 1.

Figure 7.6: Pure Longitudinal Locomotion over a Wall

7.4 Extrinsic Formulation for Extensible Mech-
anisms

Sections 7.1-7.3 established an intrinsic kinematic formulation for the locomotion
of hyper-redundant mobile robots over flat and uneven terrain. While the intrinsic
formulation of the previous sections is applicable to both nonextensible and ex-
tensible morphologies, in some situations it is easier to formulate extensible robot
locomotion eztrinsically. Curves describing the mechanism geometry need not be
parametrized intrinsically if the nonextensibility constraint is not imposed. In-
stead, it is natural to describe the kinematics of extensible mobile robots relative

to the terrain.

Consider a curve which represents a time dependent terrain with planar profile.
The terrain profile is again parametrized in an z;-z3 coordinate system by its
arc length, x, and every point on this terrain curve is represented by T(p,t) =

[Ty(p,t), Ta(p, t)]T for the interval g € [#—co, ftoo). T(H,t) is defined such that
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as p increases, the area to the left of the curve is solid ground, and the robot is on
the right side of the curve, where forward is defined as the direction of the terrain
curve tangent. With this parametrization, the outward (upward) unit normal is
always of the form:

g, t) = [ %:ﬂ_;(“ 2 } . (7.4.1)

~Ta \H t)

The robot backbone curve is parametrized with respect to the terrain by equating
the backbone curve parameter to the terrain arc length: s = p. The backbone

curve of the robot is defined relative to the terrain as:

z(s,t) = T(s — sp(t), t) + p(s — s5(t), h(t), £)W (s — sp(2), s0(t), s1(2))7(s — s3(2), 1),

(7.4.2)
for s € [84(t), s¢(t)], where s¢(¢t) and s;(¢) respectively denote the front and back
of the backbone curve with respect to a reference value of arc length on the terrain
curve. The function p(s, k(t), t) is defined over the domain (s, &, t) € [s0(t), s1(2)] %
[Amin, Pmaz] X [tinit, t fina1], and determines the shape of the locomotion wave. so(t)
is the distance measured along the terrain to the back of the wave, and s;(¢) is

the distance to the front of the wave (see Figure 7.7). Note that s # L(s,t).

P(S, h(t)v t)

Figure 7.7: Parameters Describing Extrinsic Extensible Robot Locomotion

The interval [Amin, Amez] is defined such that hAmin < A(t) < Amaer where the
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function A(t) is a measure of the amplitude of the locomotion wave. The conditions
0 < (s, Amin, t) (7.4.3a)

and

1
p(8, Amaz,t)| << min (7.4.3b)

s€[s0,81] KT (5, 1)
are imposed to satisfy the constraint of solid terrain, and prevent self intersections

P2 .
of the wave. skr(s,t) = !%;1,1- is the terrain curvature for s € [sp, s¢].
p=s

Appropriate choices for the functions s3(t), so(t), s1(t), and sg(t) further deter-
mine the character of the locomotion; e.g., a wave which travels along the robot,

one which is stationary with respect to the body, or a combination of the two.

Written intrinsically, extrinsically defined locomotion can be defined as

I(s,t) = (1 — p&r]® + pz)% (7.4.4a)

k(s,t) = kr(s,t) [1 — W(s — sp(t), s0(2), 51(2))]

+ W (s — s3(2), s0(t), 51(2)) (P(ZPNT — piT) + (1 — pnT)(nza — prd + ;,)) |
([1 — por]? + p2)7

(7.4.4b)
which represents a particular kind of combined bending and extensibility wave.
Equation (7.4.4) follows from the general definitions of the curvature and rate of

length functions applied to Equation (7.4.2).

The conditions
0 Is}
p(so, h,t) = p(s1,h,t) = B—Z(SO’ h,t) = —C;)é(sl, h,t) =0, (7.4.5)

and that p(s, %,t) must be continuously differentiable for all (s, A,t) € [sg, s1] X
[Amin, Bmaz] X [tinit, t finai], are needed so that the curve representing the robot is

continuously differentiable.



SECTION 7.4 : EXTRINSIC FORMULATION FOR EXTENSIBLE MECHANISMS 136

Figure 7.8 demonstrates a two phase gait in which the locomotion wave is sta-
tionary in the body. The first phase has a duration of ¢;, while the second phase
has duration 23 —¢;. For this form of locomotion, so(t) = s3(t) and s1(2) = s4(t).
In the first phase, the wave contracts, i.e. dso/dt > 0 and ds;/dt = 0. Fig-
ure 7.8(a) shows p(s, h, t) increasing in amplitude. In the nonextensible case this
would be necessary to preserve the constraint of constant length, but here it is
chosen arbitrarily. The second phase is defined by the conditions ds;/dt > 0 and
dso/dt = 0, while p(s, h, t) returns to its original value as shown in Figure 7.8(b).
After the completion of the second phase, the cycle repeats. Any point in time
can be classified as being in either a contraction or expansion phase, i.e., either
t € [I(t,t2), 81+ I(2,t2)] or t € [t1 4+ I(2,t2),t2 + I(t,t2)]. In the example shown in
Figure 7.8, T(y,t) = [—u,0)T, which represents flat terrain, though this method
will work for any arc length parametrized terrain such that Equation (7.4.3) holds.

A A A A vy
A

A

AT

Figure 7.8: Extrinsically Defined Stationary Wave Locomotion

Figure 7.8 shows configurations of a robot for one choice of the functions so(t),
s1(t), h(t), and p(s, k,t). A wide variety of choices for these functions is possible,

as long as the aforementioned guidelines are observed. In this particular example,
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the functions so(t), s1(t), and p(s, k, t) are:
So(t) = I(t, tz)Lo/tQ + LoW(t — I(t, tz), i1, tz)

+ L sin® g (t—-—_—é—?ﬂ) W(t—I(t,12),0,t1) (7:4.8a)
sl(t) = I(t, tz)Lg/tz + LoW(t — I(t, tz), t1, tz) + Ly
— Lo coszg- (t — t;:i(lt’tz)) W(t — I(t,t3), 1, 2) (7.4.65)
and
p(s, b(t), 1) = h(t)sin® 7 (ﬁ%) (7.4.7)
where
h(t) = hO/(Sl — 30). (7.4.8)

Ly is the length of a single forward stride measured along the terrain, L; deter-
mines the maximum nominal body length measured along the terrain, and hg is a
constant which specifies the size of the “hump.” Note how the window functions

are used here in the time domain instead of the arc length domain.

@Z‘/

Figure 7.9: Extrinsically Defined Traveling Wave Locomotion

Figure 7.9 demonstrates the three phases of extrinsically defined traveling wave

gaits. By definition, the first, second, and third phases of locomotion respectively
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have durations #;, t3 — ¢1, and t3 —t5. In the first phase, which occurs during each
time interval ¢ € [I(¢,¢3), t1+ I(2, t3)], the wave starts to traverse the length of the
robot, but the whole wave is not yet in the robot, i.e., so(t) < sp(¢) < s1(¢). This
phase lifts the rear of the robot to initiate a traveling wave. In the second phase,
which occurs when ¢ € [t; + I(t,t3), t2 + I(2, t3)], the wave is fully contained in the
robot, i.e., s3(t) < so(t) < s1(¢) < sf(t). In the third phase, the wave exits the
front of the robot. The time interval of this phase is ¢ € [ta + I(2, t3), t3 + I(2, t3)]
and so(t) < s¢(t) < s1(¢).

Letting w denote wave-speed, the wave is defined such that s; —sg = L1, and the
distance the robot progresses with each wave is Lo. Thus, 1 = L /w, t3 = 1/w,

and t3 = (1 + L;)/w. Expressions for the other relevant variables are:

s1(t) = (1 + Lo)[(t — I(t, 83)lw + LoI(t, t3)/ts, (7.4.9)
so(t) = s1(t) — Ly, (7.4.10)

and
p(s, h, t) = hsin? (M) (7.4.11)

where h = hg is again a constant which specifies the height of the “hump.” Again,
the wave shape, determined by p(s, h,t), is arbitrary up to the constraints of
Equations (7.4.3) and (7.4.5). so and s; are defined so that the wave travels with
constant speed from back to front of the robot, with the process repeating with a
period t3. The positions of both ends of the robot, denoted by values of the curve
parameter s and sy, do not coincide with the front and back ends of the wave in

this case. They are defined by

sp(t) = (Lo/t;;)](t, t3) + (Lo/t1)[t — I(t, t3)|W(t — I(t,t3),0, t1)

(7.4.12)
+ LQW(t — I(t, t3), t1, t3)

and
sf(t) = 1+ (Lo/t3)I(t, ts)

L
+ °t [t — ta — I(t, ta)]W (¢ — I(t, t3), ta, ts).
3 = L2

(7.4.13)
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This choice for s and sy causes the robot to locally stretch and contract as the
wave passes. However, no residual stretching or contracting of the robot is passed
on between cycles, i.e., the length of the robot is the same at the times ¢t = nts

for all integers n.

The above choices of the functions a, p, s¢, 51, 53, sy constitute one possible gait of
the category of extrinsically defined traveling wave gaits. One can imagine other
gaits which use different wave shapes, combine stationary and traveling waves, or

incorporate multiple simultaneous waves.

7.5 Applications to Grasping

This section applies some of the locomotion ideas to grasping and object reori-
entation with hyper-redundant manipulators. The hyper-redundant robot, which
in this case is fixed to a stationary base, wraps around the solid object to be
grasped. In previous work, [Pe88,PeS89], “massively redundant” tentacle grasp-
ing of objects has been considered. Here, we consider the novel combination of a
hyper-redundant grasp with a locomotion wave used to reorient the object. This
form of grasping is hyper-redundant in two senses. First, the robot used in the
grasping procedure is hyper-redundant. Second, the grasp has many more contact
points than are necessary to maintain stable force closure grasps. In this presenta-
tion, only the kinematic aspect of grasping and object reorientation is considered.

That is, internal grasp forces required for wrench closure are not computed.

The proposed grasping wave method for manipulating objects consists of the fol-

lowing phases.

¢ Shape Initialization: The hyper-redundant mechanism wraps around the
object. This is considered the zeroth phase. The section of the manipulator in
contact with the object is termed the grasp contact segment, and is specified by
the backbone curve segment s € [sg, 1]. The remainder is termed the noncontact

segment, and is specified by s € [0, s4).
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o First Phase: A section of the mechanism, s € [sg,s1], in the noncontact
segment distorts to a wave form. This could be a bending, longitudinal, or
combined wave. As a result, the object may be displaced by a small amount.

This phase is shown in Figure 7.10(a).

e Second Phase: The wave generated in the first phase travels along the mech-
anism toward the distal end without changing the position or orientation of
the object over which it passes. This phase is shown in Figure 7.10(b), and is
similar to traveling wave locomotion where in this case the grasped object is
the terrain. When the wave has traveled to the distal end of the manipulator,

the grasp contact segment will be longer by an amount Lgy.

e Third Phase: The manipulator “unwraps” part of the grasp contact segment
from the object by an amount Lgy by straightening the mechanism in the
section of the grasp contact segment which is closest to the noncontact segment:
8 € [sg,85+sL], where sy, is defined such that Lgy = L(sg +sg,t) — L(sg, 1) (in
the nonextensible case s = Lgrp). This results in a rotation and displacement
of the object, and restores the length of the grasp contact segment to its original

value.

In the case where the object to be manipulated is a cylinder, the displacements
resulting from the first and third phases cancel, leaving only a net rotation. When
the third phase is complete, the cycle repeats, starting with the first phase. This
repetition results in repeated object rotations, the magnitude of which depends on
the value of Lgy, and the size and shape of the grasped object. The cycle shown
in Figure 7.10 can be used as depicted to cause counter-clockwise rotations. Al-
ternately, the cycle can be reversed to yield clockwise rotations. For arbitrary
objects, net translations can also occur from cycle to cycle. These can be com-
pensated for with the methods developed earlier in this thesis for hyper-redundant
manipulator end-effector placement such as the modal approach or configuration

based optimal hyper-redundancy resolution.
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Figure 7.10: Hyper-Redundant Grasping of a Cylinder

The details involved in performing the grasping cycle discussed above are best
illustrated with examples. The next subsections consider several examples of the
grasping wave with differently shaped wave-forms and a variety of bending and

extension waves.

7.5.1 A Continuous Nonextensible Example

A continuous bending wave for the reorientation of a disc within the grasp of
a hyper-redundant mechanism is discussed in this section. The wave for this

example has curvature defined in Equation (7.1.12).

The center of the disc is denoted by the Cartesian coordinates (7., k) measured
in the z;-z3 frame at the base of the manipulator. r. is the constant radius of the
disc and h. = h.(t) is the height of the center of the disc which is variable in the

first and third phases of the grasping cycle, but constant in the second phase.

The distance from the base of the manipulator to the rear of the waveis denoted by

s0(t). The constant arc length of this nonextensible traveling waveis s1(t)—so(t) =
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L., the first section having length L,,/4, the middle section having length L,,/2,

and the last section having length L,,/4, just as in Equation (7.1.12) (in that case
Ly =1/m).

The arc length measured along the manipulator to a point on the manipulator
whose height (z2 value) in the z1-z2 frame is h.(t) is denoted by hm(t). In other
words, hc(t) = z2(hm(t),t). If part of the wave is in the interval 0 < s < hp,, then

he < hm, otherwise they are equal.

It is assumed that at time ¢ = 0, the shape initialization phase has already
occurred. The time intervals of the remaining three grasping phases are: ¢ €
[I(2,t3), t1+1(t, ta)], t € [t1+1(2,t3),ta+1(E,t3)], and t € [t2+I(2,t3), t3+I(¢,13)].
so(t) is constant during the first phase. During the second phase, so(%) is strictly
increasing, causing the wave to propagate from the manipulator base to the end-

effector with period t3:
S0 =[t—1t1 — I(t, t3)]W(t - I(t, t3), t1, tz)/(tz - t1). (7.5.1)

During the grasping wave cycle, the backbone curve curvature function, (s, 1),

takes the form:

k(s,t) = k1(s,t)W(t — I(t,13),0,11)
+ ka(s, t)W(t — I(t,13),t1,t2) (7.5.2)
+ "‘"3(31 t)W(t - I(t7 t3); ta, t3)

where the window functions are used to “section-off” the time intervals in which
the curvature functions for each of the three phases are used. In the first and

second phases, the curvature function is of the form
ki(s,t) = W(s, hm,1)[1 — W(s, 0,50 + Lw)]/T + kW (s, 50,80 + L) (7.5.3)
for 1 = 1,2, where

kw(s,t) = — a1(t)W (s, s0, 50 + Luw/4) + a2($)W (s, s0 + Lw/4, 50 + 3Lw/4)

—a3(t)W(s,s0 + 3Lw/4, 50 + L)
(7.5.4)
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is the curvature of the wave. Note the signs of the coefficients of this curvature
function are opposite to those in Equation (7.1.2) because the wave travels in the

opposite sense.

s0(t) and {ai(t)} assume different forms in phases 1 and 2. In phase 1, sq = 0,

and

ai(t) = Z?ltl.[t _I(4, 1) Wt — I(2, £),0, 1) (7.5.5)

for 1+ = 1,2,3. This causes the segment of the backbone curve in the range
50 < 8 < 81 to form a wave. In the second phase,
des an
ai(t) = W(t—1I(t, 13), t1, t2) —-+ qu - =0t | . (7.5.6)
This form for {a;(t)} causes the traveling wave to “track” the terrain, which in
this case is the surface of the grasped object. J;; = 0X;/0ay, where the elements
of X(a,t) are given in Equation (7.3.2).

The terrain curve varies with time since the grasped object translates and rotates.

For this particular example,
T(”) t) = W(:u’a 0: hc(t))[()) #]T + W(.u'; hc(t)J l)X
T
— he —h
[ (1) + sin (H-—(t)) yhe(t) + 1 (1 — cos (E’—c(t)>)}

Tec Te Te Te
(7.5.7)
which consists of a straight section for 0 < p < k., and a circular arc for h, < g <
1. The vector X in Equation (7.5.6) is defined as in Equation (7.3.4) where
the value of Lsy remains constant at Lgy = (1 — 2/ 7))Ly throughout the second

grasping phase.

In the third phase, the wave has exited the end of the manipulator, and the

curvature function assumes the simpler form:
k3(s,t) = W(s,hm,1)/r, (7.5.8)

where hm(t) = he(t) throughout this phase. This curvature function implements

the “unwrapping” of the object as h.(t) increases.
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This example has shown how a particular type of wave can be generated and
applied to locomotion and the grasping-manipulation of objects. It is possible
to use similar formulations with different waveforms, or more than one wave at
a time for grasping. The next subsection illustrates this notion with another
bending wave. In this case, there exists a closed form inverse kinematic solution,

thus eliminating the need for Equation (7.5.6) and the associated computations.

7.5.2 A Nonsmooth Pure Bending Wave Example

The grasping/manipulation scheme is again illustrated with a planar VGT manip-
ulator that manipulates a disc. The backbone curve is chosen to be nonextensible,
and thus a pure bending wave is used. For simplicity, a triangular grasping wave is
selected, employing the nondifferentiable three mode example used for end-effector
positioning in Equations (4.2.12)-(4.2.14). This wave will travel along the back-
bone curve and must track the boundary of the disc. The distance from the base
of the manipulator to the rear of the wave as measured along the backbone curve is
denoted by so(t). The arc length of the traveling wave is again s1(%) — 50(2) = Lu.

The triangle wave has the curvature function:

Kw(S,t) = a16 (s — s0) + az6 (s - %(30 + 31)) + a3b (s — s1) (7.5.9)
where §(-) is the Dirac delta function. {ai,as,a3} provide sufficient kinematic
freedom for the grasping wave to track the disc boundary. s = so(t) specifies the

grasping wave progression. Closed form inverse kinematics result from this choice

of curvature function, thereby reducing the computational cost.

In the first grasping phase (see Figure 7.11(a)), a portion of the non-contact
segment contracts to form a wave while tracking a line segment directed from the
base to the grasped object. During this phase, a1 = a3 = &, ag = —2&, where
& = a(t) specifies the slope of the wave. At the beginning of the wave formation,
&(to) = 0, and at the end, &(¢1) = . For this wave shape, Lz = (1 — cos a)Ly,.
Because the resulting backbone curve is nonsmooth, the modified fitting procedure

used for nonsmooth backbone curves discussed in Chapter 4 is used here.
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The above procedure can be altered so that no translation occurs. This is achieved
by combining the first and third phases discussed at the beginning of Section 7.5
so that the translations of the object which occurred between phases cancel. This

is shown in Figure 7.11.

Figure 7.11: Turning an Object Fixed to an Axle

7.5.3 Extensible Wave Examples

In this subsection, longitudinal motions are used to define expansion and com-
pression waves which have the same effect on the grasping/manipulation problem
as the bending waves presented earlier. Longitudinal waves are analytically easier
to manipulate than bending waves. Assume that the preshaping phase has been
completed and the “terrain” curve, T = T(u,t), is known. A pure longitudinal

pulse wave is represented by
I(s,t) =1+ eW(s,s0(t), 51(t)). (7.5.10)
When ¢y < 0 this is a compression wave. When €y > 0 this is an expansion wave.

In order for the manipulator not to rub against the grasped objects while longitu-
dinal waves pass, a small amount of bending is always included with longitudinal

traveling waves. This is most easily accomplished by using the extrinsic approach
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of Section 7.4. For the following examples, Equation (7.5.10) holds approzimately

with an infinitesimal extrinsically defined wave of the form:

p(s,v,t) = iL‘i:—:g—_i_—ﬁlwf(s,so — Se,80) + VW (s, s0,51)
e
(o4 — ) (7.5.11)
+ . W (s, s1, 51 + se).
e

This is a symmetric trapezoidal waveform with base width s; — so + 2s., top
width s; — sg, and height 0 < v << 1. The value of s, determines how gradually
or abruptly a traveling wave will separate from a grasped object for fixed wave
speed. The smoothness constraints in Equation (7.4.5) have been relaxed in this

example.

Introducing an extrinsically defined wave alters the functional relationship be-
tween the curve parameter s and arc length L(s,t). Therefore Equation (7.5.10)
will deviate from the actual I(s,¢). The dependence of this deviation on p is
given by Equation (7.4.4a). However, by choosing v in Equation (7.5.11) to be
infinitesimal, the extrinsic effects on the backbone curve parametrization become
negligible, while still implementing the desired effect of preventing the traveling

wave from contacting the object being grasped.

Figure 7.12: Compression Wave Grasping of a Cylinder
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Figure 7.13: Expansion Wave Grasping of a Cylinder

Note that unlike bending and compression waves, expansion waves turn objects in
the direction that the waves travel. In other words, waves originate at the distal
end of the manipulator and travel towards the base to achieve the same effect as
bending or compression waves traveling in the opposite direction. Both types of

object manipulation schemes are shown in Figures 7.12 and 7.13.

7.5.4 Dual Arm Grasping

7

Figure 7.14: Dual Arm Grasping of a Cylinder
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Symmetries of the grasping process can be exploited for dual arm hyper-redundant
grasping and manipulation of objects as seen in Figure 7.14. While bending waves
are shown, any of the waveforms used in this section is acceptable for dual arm
grasping as well. In practice, dual arm grasping may be more useful because the

preshaping phase of the grasp cycle is less problematical.

7.6 Gaits Derived from Linkage Kinematics

As illustrated in Chapter 4, the kinematics of many linkages can be mimicked
with nonsmooth backbone reference sets. In this section, locomotion gaits based
on the kinematics of planar linkages are developed. These gaits are defined by

curvature functions of the form:
- i
K(s,t) = Zqi(t)a(s - ). (7.6.1)
=1
The functions {gi(t)} are derived using the kinematics of four and five-bar linkages.

Figures 7.15 and 7.16 show a 10-link revolute-jointed hyper-redundant robot pas-
sively assuming the shape of the ground, except for a wave made up of a small
number of robot links. In this idealized model, the robot configuration is stable
because of gravitational and frictional effects. For this example, the traveling wave
is restricted to groups of adjacent links which form a four or five-bar linkage, with
the ground forming one of the links. In general, the traveling wave may consist
of six or more links, though gaits with a large number of links are not necessarily
advantageous. Two gait parameters are used to describe this type of locomotion:
the number of links which define the wave, and a measure of the wave shape. In
this analysis, wave shapes are a function of the steepness of the angle which the
back of the wave makes with the ground. This angle is denoted by « in Figures
7.15 and 7.16.
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Figure 7.15: Serial Chain Robot Locomotion: Four Bar
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Figure 7.16: Serial Chain Robot Locomotion: Five Bar
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In the examples considered here, the ground is flat, and so all the joint angles are

zero except those involved in the traveling “mechanical wave.” These angles are

derived from appropriate linkage kinematics. This locomotion scheme consists of
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three phases for both the four and five bar gaits:

e In the first phase, the back of the robot curls to form a wave. This is similar in

nature to the SWAV locomotion of Section 7.1.1.

e In the second phase, the wave generated in the first phase travels along the

mechanism from back to front.

e In the third phase, the wave exits the front of the robot, leaving the robot with

its initial shape, but having traversed a small distance.

7.6.1 A Four-Bar Linkage Gait

The gait shown in Figure 7.15 is now described quantitatively. In the first phase,
0 < t—I(t,t3) < t1, only the first three links are used to form a wave at the back

of the robot. The joint angles of these links are given by:
q1 = a[t—I(t, t3)]/t1; qe = ——Qa[t——I(t, t3)]/t1; q3 = a[t——I(t, t3)]/t1. (762)

This first phase determines the initial conditions for the shape of the wave. The
second phase, denoted by the interval t; < t — I(¢,%3) < t2, is broken down into
n—2 subphases. In the i subphase the wave is treated as three bars of a four bar
linkage specified by the joint angles ¢i,¢i+1,9i+2,9i+3, with the fourth bar being
the terrain. All other joint angles for this example are zero, although this could be
generalized so that the robot passively assumes the shape of an arbitrary terrain.

=l <t—1I(t,t3) <

n

The 5th subphase is confined to the time interval ¢; + (23 — t1)

t1+ (t2 — tl)nis' In the first subphase of the second phase, denoted by z = 1, the
initial configuration of the wave is specified by the first phase of the locomotion
evaluated at ¢ = ¢1. The kinematics of four-bar linkages is then used to transform
the configuration of this wave so that the “hump” which is initially on the right
side of the four-bar linkage is moved to the left side. This is shown in Figure
7.15. Because of symmetry, the final configuration in the variables g1, g2, g3, 94

provides an initial configuration for the joint angles g2, g3, g4, with gs = 0, which

is the same as the initial configuration established by the first phase for the joint
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[ " 35,2(5),8(s), -+, 7(s))ds = o, (4.12)

0

where g(-),% € RM, and ¢, is independent of s. For the problems in this thesis,
constraints of the form of Equation (A.1.2) arise from end-effector position con-
straints. Some optimization formulations may also have finite constraints of the
form:

h(s,q(s),3(s),...,g%(s)) = 0. (A.1.3)
The calculus of variations provides a means for finding a g(s) which yields sta-
tionary, or extremal, values of the integral in Equation (A.1.1) with constraints
of Equations (A.1.2) and/or (A.1.3). To solve such problems, define a function

which will be referred to as the Lagrangian:
L=f4+0  -§+F, h (A.1.4)
The Lagrange multipliers fi, and 7, are respectively independent and dependent

on the parameter s, as required for constraint satisfaction.

The vector function g(s) € RN which extremizes Equation (A.1.1) with con-
straints of Equation (A.1.2) or (A.1.3) can be found as the solutions to the Euler-

Lagrange equations:
d
—1) . ) =1,--- N Alb
S (%) =0 senee (4.15)

which together with constraint Equation (A.1.2) or (A.1.3) and boundary condi-
tions g*(s0) = g} and g(s1) = ¢ can generally be solved to find the extremizing
functions, g, and Lagrange multipliers i, and f,(s). Sufficient conditions, which
guarantee that g(s) minimize Equation (A.1.1) can be found in [E69,GruS80).
For most physically motivated problems, f(:) is a positive definite quadratic form

which means g(s) will minimize Equation (A.1.1) if it solves Equation (A.1.5).

As will be seen in Section A.2, with some backbone curve parametrizations and
some optimality criteria, the Euler-Lagrange equations assume a fairly simple

form.
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A.2 Explicit Form of the Euler-Lagrange Equa-
tions

Note that in the following derivation, the following notation is used:
A-B=tr (ABT) (4.2.1)

where A, B € R?**3. The backbone reference set frames, Q(s), are often expressed

as a function of other parametric functions, g(s) € RN such as Euler angles:

Q(s) = R(g(s)) (4.2.2)

To write the Euler-Lagrange equations in a compact form, the chain rule is used:

N
: : . OR
Q=R=) 4 = (A.2.3)
=1 t
Thus, .
/R OR
e A24
0q;  Og; ( )

The contribution of f = %tr(RRT) in the first term in the Euler-Lagrange equa-

tions can be rewritten as:

of of = '6R
(aq,) oe N Ba (A.2.5)

Using the chain rule twice relates R to partial derivatives as follows:

N N

i = Z e+ DIFS i i (4.2.6)

Thus, the i of N equations which must be solved in the nonextensible case with

unity weighting are of the form:

OR OR. Y 5R  &°R T
Z 8gi Oax DI . 0, (A.2.7)
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which can be expressed in terms of a particular parametrization, as in Chapter 5.

In the extensible case, the analogous equations are:

aR 0R aR 62R Bu
viae — L, =0 A28

and the one additional equation:
. N ou
L Jift, - =— = 0. A2.
Bo (s)+;q e (4.2.9)

The boundary conditions on the variables g(s) which parametrize the rotation

matrix must be such that
R(g(0)) =1 (A.2.10)

and

R(7(1)) = Ree, (A.2.11)

and the vector of Lagrange multipliers, f,, must be determined such that z(1) =
Tee- In the extensible case, the boundary conditions for Equation (A.2.9) are
L(0) = 0, L(1) = Lo, whereas in the nonextensible case, L(s) = s, and we are not

free to choose the length.
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