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Chapter One  

Introduction and Roadmap to the Thesis 

Optical microcavities have now been infused into a variety of scientific arenas and have 

found applications in numerous technologies. The significance of their role in science and 

the abundance of their applications are expanding at a fast pace as higher quality factors 

are being achieved and novel geometries are being developed.  

 Quality factor (Q) is a measure of optical loss in microcavities and determines the 

extent of temporal confinement of optical filed in these structures. Microtoroids, used 

throughout my thesis work, belong to the category of surface-tension-induced-

microcavities that have proved to provide the highest quality factors to date. Highly 

efficient coupling of optical power to these cavities has also been realized by extremely 

low-loss tapered optical fibers. Combination of ultra-high-Q microcavities and tapered 

fibers can hence result in minimizing optical loss in various studies, which is often the 

main obstacle in realizing distinct physical functionalities. The ability to attain high 

efficiency power transfer between two distinct waveguides is an example of the tasks that 

have long been tried to be addressed by optical microcavities. Chapter 2 describes my 

effort in attending to this long-sought goal. A universal model for the resonant-coupling 

efficiency is developed and confirmed by adjusting the coupling between the resonator 

and waveguides. Different regimes of operation are investigated, and as a result, a record 

waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) for extremely 

narrow bandwidth  four-port couplers is achieved (57 MHz at 1550nm wavelengths). The 
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transfer efficiency is predicted to be even higher for narrower bandwidth filters. The 

substantial improvement demonstrated in this chapter, compared to all prior work on 

similar microcavity-type structures, elevates their performance to a level at which they 

could be useful for loss-sensitive quantum optical applications, which until now have not 

been accessible for these devices.    

Chapter 2 demonstrates an almost ideal design that diminishes the optical losses 

to a limit where the intrinsic microcavity losses become the limiting factor in the device 

performance. Transcending these limits demands a precise knowledge of the sources of 

intrinsic optical loss in microcavities. Chapter 3 of this thesis investigates different 

sources of optical loss present in whispering-gallery microcavities. Scattering and 

absorption are generally considered the responsible loss mechanisms in limiting the 

quality factor of optical cavities with large enough diameters that render the whispering-

gallery losses insignificant. Quality factor measurement, however, can only determine the 

total optical loss present in the device or, in other words, the sum of scattering and 

absorption losses. Ability to differentiate these two mechanisms, nevertheless, is 

instrumental in fabrication and also numerous applications of these devices. As a relevant 

example, fabrication of microtoroids for the first time in our laboratory was accompanied 

by the ambiguity as to what process limits the achievable quality factors of these cavities. 

Surface roughness, contaminants on the surface, or impurities in the thermally grown 

oxide on the silicon wafer, among many, were all equally likely to cause this limitation. 

Resolution on this issue could have a great impact on focusing our efforts towards 

efficient optimization of microtorid fabrication.   
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Since the optical mode is located in the periphery of the whispering-gallery 

microcavities, the scattering losses are mainly due to surface roughness of these 

structures. Historically, therefore, the method used to determine the magnitude of 

scattering losses was careful theoretical estimation of the surface irregularities of 

microcaities and determining the surface roughness and the correlation parameters. Given 

the complexity of this task requiring high resolution imaging and detailed mathematical 

analysis of surface roughness of these microstructures, and also the inherent requirement 

of comparison with empirical results, I was prompted to develop an experimental 

technique to isolate absorption losses from those due to scattering. The circulating power 

in microcavities is partially absorbed and partially scattered, but only the absorbed power 

can generate heat and temperature rise in the structure, resulting in a nonlinearity called 

“thermal bistability.” This phenomenon is exploited in chapter 3 as a new tool for 

characterizing the relative importance of absorption and scattering losses in toroidal 

microcavities. An empirical realization was made during this study, of the existence of 

water molecules on the cavity surface, the optical absorption of which is the dominant 

loss mechanism under certain conditions. Based on this result, thermal nonlinearity of 

microtoroids was used to reveal the role of surface contaminants in absorption losses, and 

hence to study the interaction of microtoroids with their ambient environment. Prospects 

of this work could be beneficial in sensing applications, an example of which is 

illustrated in detail in chapter 3.  

Extremely low intrinsic losses in ultra-high-Q optical microcavities (e.g., 

microspheres and microtoroids) make them also ideally suited for observing nonlinear 

optical effects with extremely low (sub-microwatt) threshold powers. The combination of 
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high circulating power made possible by high quality factor and strong confinement of 

this power within mode volumes of the order of hundreds of μ m3 lead to inter-cavity 

circulating intensities, which are sufficient to unveil nonlinear phenomena even in 

materials like silica that are weakly nonlinear. Thermal nonlinearity, for instance, is not 

the only effect contributing to the bistability effect observed in experiments in chapter 3. 

Optical Kerr effect or intensity-dependent refractive index phenomenon leads to optical 

bistabilty in a similar way as do thermal nonlinearities. The observation of this effect, 

however, is problematic as it is accompanied by relatively larger thermal nonlinear 

effects. In an attempt towards observation of this nonlinearity in micro-cavities, evidence 

is found for Kerr bistability by immersing microspheres in a superfluid helium bath at 

2K. This cryogenic setup greatly reduces the sensitivity of WGM resonances to 

temperature and allows the Kerr effect to be dominant and hence observable. In chapter 

4, however, an innovative method for observing the optical Kerr effect in microcavities at 

room temperature and in presence of the dominant thermal nonlinearities is proposed and 

experimentally verified. The technique discriminates against the much larger and 

typically dominant thermal component of nonlinearity by using its relatively slow 

frequency response compared to the almost instantaneous Kerr effect. Measurement of 

the Kerr coefficient ( 2n ), or equivalently third-order nonlinear susceptibility of the cavity 

material ( )3(χ ), is demonstrated for the case of a silica microcavity. With this approach 

useful information about the characteristic thermal response time in microresonators can 

also be acquired. 

 Whispering-gallery microresonators have historically been perceived as structures 

that could efficiently confine optical energies. This is due to their exceedingly low losses 
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at optical frequencies. In the final years of my Ph. D. studies, I had the opportunity to 

explore the quality of these structures in a starkly different frequency range. Optical 

microcavities like any other structure have mechanical eigenmodes or resonant modes of 

vibration. The same way that optical Q factor describes the temporal energy confinement 

in optical frequencies, a quality factor can be associated to each one of these mechanical 

eigenmodes, representing the efficiency of energy storage at mechanical frequencies. The 

micron size of these structures results in vibrations at radio frequencies, about seven 

orders of magnitude apart from the optical frequencies. Mechanical quality factors of 

toroidal microcavities at their eigenfrequencies of vibration (1-100 MHz in devices 

studied in this thesis) are measured in chapter 5. Q factors in excess of 5,000 are reported 

in this chapter, revealing a heretofore unknown potential of these structures in storing 

energy at frequencies remarkably distant from their optical resonant modes. This 

realization stimulates a curiosity as to whether these two resonators, an optical one 

resonating at 100 THz and a mechanical one resonating at tens of MHz frequencies now 

both present in the same device, could  potentially be coupled to each other.       

 Chapter 5 describes how radiation-pressure or the force due to impact of photons 

could result in exceptionally strong coupling between these two resonators. The 

discovered optomechanical coupling present in toroid microcavities is shown to reach 

such a high level that could initiate regenerative mechanical oscillations of the cavity 

structure with only microwatts of optical threshold power. This is the first demonstration 

of radiation-pressure-induced mechanical oscillations in any type of optomechanical 

system. Chapter 5 presents a detailed theoretical and experimental analysis of this effect 

in ultra-high-Q microtoroids. Embodied within a microscale, chip-based device, this 
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mechanism can both benefit research into macroscale quantum mechanical phenomena 

and improve the understanding of the mechanism within the context of Laser 

interferometer gravitational-wave observatory (LIGO). It also suggests that new 

technologies are possible that will leverage the phenomenon within photonics. 

 Chapter 6 provides a brief summary of the presented material in this thesis and its 

significance and prospects for different scientific communities and technological 

applications.  
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Chapter Two 

Ultra-Low-Loss, High-Q, Four-Port Resonant Couplers 

 

2-1 Introduction 

Minimizing optical loss is of crucial importance in various studies, as it is often the main 

obstacle in realizing distinct physical functionalities. This is true in quantum optical 

applications of microcavities where parasitic loss can both inhibit the generation of 

quantum states and interfere with intended coupling to a transport medium such as optical 

fiber [1-8]. Also, in photonic applications of these devices [9-12], the ability to attain 

high-efficiency power transfer between two distinct waveguides is of great interest. The 

ability to attain coupling coefficients between the resonator and waveguides that are 

greater than the intrinsic roundtrip loss of the cavity (usually called the overcoupled 

regime) is fundamental to achieve high waveguide-to-waveguide resonant power-transfer 

efficiency. High waveguide coupling efficiency and high intrinsic quality factor (Q) are 

hence essential in almost all applications of waveguide-coupled resonator systems. Such 

characteristics ensure that overall quality factor of the system can be dominated by the 

intentional control of waveguide loading (coupling into and out-from the resonator) as 

opposed to parasitic mechanisms that include intrinsic losses of the cavity and scattering 

losses at the waveguide-resonator junctions.   

In this chapter an all-optical four-port resonant coupler (add-drop geometry) is 

demonstrated. Ultra-high-Q (>108) toroidal microcavities [13] and tapered optical fibers 
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are the building blocks of this filter configuration. A new realm of performance is 

enabled for operation of these devices, combining the ultra-high-quality-factor (UHQ) 

microresonators (Q>108) [7,8,13] and the ability to provide high efficiency coupling to 

these cavities by use of low-loss tapered fiber waveguides [14].  

A model for the resonant-coupling efficiency and quality factor variation versus 

waveguide loading is developed and confirmed by adjusting the coupling between the 

resonator and waveguides. Different regimes of operation are investigated and, as a 

result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and 

nonresonant insertion loss of 0.02% (<0.001 dB) for narrow bandwidth (57 MHz at 

1550nm wavelengths) four-port couplers are achieved. The transfer efficiency is 

predicted to be even higher for narrower bandwidth filters. This represents a substantial 

improvement compared to all prior work on similar microcavity-type structures, elevating 

their performance to a level at which they could be useful for loss-sensitive quantum 

optical applications that until now have not been accessible for four-port resonant 

couplers. The combination of low loss, fiber compatibility, and wafer-scale design would 

be suitable for a variety of applications ranging from quantum optics to photonic 

networks.  
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2-2 Add-Drop Geometry and Power Transfer Efficiency 

 Figure 2.1 depicts the device geometry including a UHQ microtoroid resonator 

evanescently side-coupled to a pair of tapered optical fibers. In this configuration where a 

whispering-gallery mode enables resonant power transfer between two distinct 

waveguides, the microcavity acts as a frequency selective coupler. Resonant optical 

power ( 2λ  in Figure 2.1) launched into port 1 is transferred to port 4 via the microtoroid, 

while nonresonant waves are largely unaffected upon transmission beyond the resonator-

waveguide junction. This system (symmetric or asymmetric geometry add/drop [15]) can 

be studied using a simple model based on the assumption of weak coupling between the 

resonator and waveguides, which is valid in the current work. Weak coupling allows the 

separation of individual contributions to the cavity field decay time. A quality factor can 

be assigned to each dissipation process where the total quality factor takes the following 

compact form:  

dropbustotal QQQQ
1111

0

++=   (2.1) 

busQ  and dropQ  are quality factors associated with coupling to bus (input) and drop 

(output) waveguides, respectively. The overall quality factor of the system ( totalQ ) 

determines the filter bandwidth and is lower than the intrinsic Q of the cavity ( 0Q ), due to 

the intentionally introduced couplings at the waveguide-resonator junctions.  
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 Figure 2.1: Illustration showing a microtoroid four-port filter (add/drop geometry). 

Wavelength 2λ  in the bus waveguide is resonant with a whispering gallery mode of the 

resonator and subsequently couples to the drop waveguide. Nonresonant launched power 

( 1λ ) is transmitted past the resonator-waveguide junction. Inset is a top view 

photomicrograph of a microtoroid coupled to two tapered optical fibers. 
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The following relationship exists between the transmitted and dropped power: 

TD
Q

Qdrop −=⎥
⎦

⎤
⎢
⎣

⎡
+ 11

0

  (2.2) 

where T  and D  are the transmitted and coupled (dropped) powers normalized to the 

incident signal power (see Figure 2.1). Assuming a fixed coupling between the resonator 

and the drop waveguide (fixed dropQ ), the dropped power to port 4 and the transmitted 

power to port 2 lie on a straight line, as coupling to the bus waveguide ( busQ ) varies. At 

the critical coupling point (T=0) [16,17], the drop efficiency reaches its maximum value:  

0
max

21
Q
QD total−=   (2.3) 

The important role of high intrinsic Q cavities (high 0Q ) in obtaining high-power 

transfer efficiency is apparent in this expression. The condition of criticality, 

1
0

11 −−− += QQQ dropbus , assures that coupling to the resonator from the input waveguide 

compensates both for the intrinsic loss of the cavity and the power coupling to the drop 

waveguide. It also ensures high transmission extinction of the resonant signal in the input 

waveguide.  

The sources of deviation from unity efficiency include the degree to which the 

resonator is non-critically coupled (T>0), the high, but nonetheless finite intrinsic Q 

factor of the resonator, and the parasitic losses at the resonator-waveguide junction, 

which include both scattering losses and coupling to the undesired modes of the tapered 

fiber [14]. As will be discussed later in the chapter, the latter losses, which can be 

effectively lumped in to the Q0 of the coupled resonator, are negligible in this work. Also, 

throughput extinctions above 30 dB (T< 0.001) are achieved, which rules out the non-
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critical coupling as a significant source of power transfer inefficiency. Therefore in this 

work the efficiency is solely limited by the finite Q of the cavities. 

 

2-3 Experimental Results 

To confirm the theoretical analysis, microtoroids of various sizes and quality factors were 

fabricated according to the previously reported microtoroid fabrication process [13]. Low 

loss (<0.3 dB) fiber-tapers, serving as input and drop waveguides, were simultaneously 

made by the technique of continuous flame-heating and stretching of two standard single-

mode fibers. The device presented in this chapter is a microtoroid of principal diameter 

65 µm and minor diameter of approximately 6 µm. Fiber tapers used in the measurement 

had waist diameters of approximately 1 μm and 1.7 μm, for bus and drop waveguides 

respectively. The chip containing the microtoroid was held on a platform that could be 

manipulated relative to the waveguides using a 10 nm step-resolution piezoelectric stage. 

To fulfill the assumption of constant coupling to the drop channel (fixed dropQ  ), the fiber 

taper used for the drop waveguide was held in contact with the resonator. The other 

waveguide was manipulated using a probe controlled by a high-resolution 

micropositioner. A single mode, tunable, external cavity laser, emitting in the 1550 nm 

band, was used to excite the whispering gallery modes of the microtoroid. Transmission 

and drop powers were simultaneously monitored using two (125 MHz) photodiode 

detectors, as the laser frequency was slowly (<10 Hz) scanned over about 50 GHz using a 

function generator. Before discussing the experimental results it should be noted that in 

the present work the power-transfer efficiency has reached such a high level that 

uncertainties in power measurements associated with losses external to the device such as 
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splice losses are vastly larger than the resonator-based transfer loss itself. In this regard, 

external losses incurred by mode conversion from a single mode fiber to the thin 

waveguides at the resonator coupling region can be excluded in the device efficiency 

measurements. This is done by using port 1 and port 2 as input ports for the device in 

separate measurements and subtracting off the individual losses of the bus and drop fiber 

taper mode converters (about 0.15 dB per converter). Using this technique accuracy in 

transfer loss measurements of about 0.1 dB (~3%) can be achieved. Since precision of 

efficiency measurements is limited to this level, in order to verify our theoretical 

predictions we opt to measure the efficiency in more weakly loaded toroid filters having 

correspondingly higher totalQ  factors and hence lower transfer efficiencies (see equation 

2.3). To this end, waveguides with larger waist diameters can be used to limit the extent 

of the evanescent field and thereby reduce the waveguide-resonator coupling. 

Coupling to the resonator by each fiber taper, acting alone was first examined. 

Resonator line-width measurements using a single waveguide in the highly undercoupled 

regime ( 0QQtotal ≅ ) revealed a 3 dB bandwidth of about 1.9 MHz at the resonant 

wavelength of 1565 nm, which translates to an intrinsic resonator quality factor of 

8101× .  

  Figure 2.2 shows optical transmission vs. air gap using the input (bus) taper. 

Over-coupled transmission as high as 96% was observed demonstrating the high ideality 

of the junction. The efficiency of coupling between the fundamental mode of the tapered 

fiber and the resonant mode of microtoroid can be estimated using the transformation 

introduced in reference 11: 
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T
TK

m1
1±

=    (2.4) 

In this expression, T  is the transmission beyond the taper-resonator junction, and K  is 

the ratio of desired waveguide mode coupling to total parasitic losses of the system 

(intrinsic round-trip loss of the cavity, and parasitic coupling losses at the junction). The 

upper and lower signs are taken for overcoupled and undercoupled regimes, respectively. 

Non-ideality arises from parasitic losses, i.e., coupling of the resonator mode to either the 

radiation modes or the higher-order modes of the fiber-taper-waveguide, which 

subsequently are radiated or coupled to cladding modes upon transition to the single-

mode fiber. Ideality of the coupling junction can be deduced by plotting K  vs. gap 

distances on a logarithmic scale. In cases where the parasitic couplings are masked by the 

intrinsic resonator loss, this plot will be a single slope line and a lower bound on the 

ideality can be inferred by measuring K  values at the smallest possible separations. The 

inset in Figure 2.2 is such a plot for the device under study. K  values well above 100 

place a lower bound on junction ideality of better than 99% in the overcoupled regime 

( 0QQbus < ) meaning that less than 1% of power is coupled to undesired modes of the 

tapered fiber. This clearly demonstrates that parasitic losses at the junction are minimal 

and can be ignored (at least in the presented experiments) compared to the intrinsic losses 

of the cavity.  
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 Figure 2.2: Transmission plotted versus taper-toroid separation. Overcoupling as high as 

96% is measured. The inset is a plot of K versus position and illustrates the quality of 

junction. A lower bound of 99% on Ideality in the overcoupled regime can be inferred 

from this plot. The dotted line marks the critical coupling point at 1.3 μm gap distance. 
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Figure 2.3 shows the drop efficiency D  (the fraction of power at the first 

waveguide redirected to the second waveguide), measured for different loading regimes 

and plotted versus the ratio of the intrinsic Q to the loaded quality factor of the system. 

Data were measured as the gap between input waveguide and resonator was varied. As 

noted earlier, the drop waveguide coupling is fixed during these measurements. As an 

aside, note that the total quality factor is reduced by a factor of 15 (labeled in Figure 2.3) 

upon attachment of the drop waveguide to the resonator. The Q factor at the critical 

coupling point is a factor of 30 lower than the intrinsic Q ( 810= ), corresponding to a 

filter bandwidth of 57 MHz. From equation (2.3), the factor of 30 yields a maximum 

theoretical drop efficiency of 93.3% (0.3 dB loss) in good agreement with the measured 

values in Figure 2.3. The inset in Figure 2.3 is a plot of the measured transmission versus 

the drop power and confirms the predicted linear relationship. This way of plotting the 

data results in a more reliable estimate of the maximum drop efficiency, which 

is )%394( ±  for this device. This is the best efficiency ever reported for a four-port 

microcavity-type resonant coupler. It also agrees well with the expected theoretical value 

of 93.3%. The transmission data are obtained by normalizing the on-resonance 

transmission to its value with the resonator far from the waveguides. The nonresonant 

insertion loss in the bus channel was measured to be less than 0.02% during the 

experiment. This loss, as noted earlier, is due to scattering of the evanescent field at the 

waveguide-resonator junction and is measured by comparing the off-resonance 

transmission in port 2, when the device is working as an add/drop, to the same 

transmission but when the resonator is far from the bus waveguide (infinite gap). As 
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such, the measurement of insertion loss yields a higher level of accuracy and precision 

than is possible for measurement of the drop efficiency. 

The small deviation from the ideal case of infinite intrinsic Q can be observed in 

the inset of Figure 2.3 (see the dashed line). This deviation, a direct consequence of 

energy conservation, is due to the power dissipation in the cavity due to finite intrinsic 

losses. Note that in the theoretical model, all parasitic losses have been lumped into 0Q . 

Therefore the excellent agreement between the measured values for the efficiency and the 

theoretical predictions, which assume all the parasitic losses come from the intrinsic loss 

of the cavity, are further evidence of low loss at the waveguide-resonator junctions. 

Figure 2.3 also shows that the bus waveguide can induce at least a factor of 103 decrease 

in quality factor relative to that of the original resonator ( busQQ 3
0 10= ). Were the drop 

waveguide designed to produce this level of coupling, an exceedingly high drop 

efficiency of 99.9% would result with an overall loaded Q factor of 4105×  or a filter 

bandwidth of about 4 GHz. Higher bandwidths in this range are of interest in 

telecommunication applications of these devices [18-20].   
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Figure 2.3: Transferred power to the drop waveguide (D) versus the inverse-loaded Q of 

the system. The data shows a factor of 15 reduction in Q factor upon attachment of the 

drop taper to the resonator. At the critical coupling point ( 30/0 =totalQQ ), 93% of the 

input power is transferred to the drop port and throughput transmission vanishes. The 

theoretical drop efficiency is given by the solid line. The inset is a plot of T and D 

measured for the same coupling levels in the main Figure and verifying their linear 

relationship. The solid curve is the theoretical curve, and the dashed curve gives the ideal 

case of infinite intrinsic Q. 
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Figure 2.4 shows transmission and drop spectra measured for a device designed to 

operate in the higher bandwidth regime. The filter shape is Lorentzian and the bus 

waveguide extinction is a record 33 dB. Note that the FWHM of the drop and 

transmission spectra almost coincide due to almost negligible amount of loss in power 

transfer process.  
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Figure 2.4: Drop port (triangles) and throughput port (circles) spectra measured for a 

four- port resonant coupler with 4.2 GHz bandwidth. Extinction of 33 dB in input channel 

occurs at the resonant wavelength of 1540 nm.  
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To characterize the performance of this filter for telecommunication purposes, 

using an external Mach-Zehnder modulator, the laser power launched into port one was 

modulated with 1231 −  PRBS data, and the quality of the received signal was monitored 

at the drop port.  Figure 2.5 shows the bit error rate (BER) curves obtained from dropped 

data at 10 Gbit/s. Also plotted is the so-called back-to-back data obtained by removal of 

the filter. The 0.7 dB power penalty, without any sign of error floor, is attributed to the 

finite pass band of the filter response, resulting in cut off of the high frequency 

components of the signal. 
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Figure 2.5: Back-to-back (circles) and through-the-resonator (triangles) BER 

measurements taken using an all-optical four-port coupler device at 10 Gbit/s data rates. 

There is a 0.7 dB power penalty when the add-drop is used owing to its finite bandwidth. 
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2-4 Conclusions 

The results presented in this chapter demonstrate the ability of taper-coupled ultra-high-Q 

toroid microcavities to reach exceedingly high power-transfer efficiencies in add-drop 

filter applications. This can be of great interest in the study of processes requiring very 

low loss. As an example, losses are one of the main impediments in realizing long-

distance quantum communication networks, as they tend to destroy the entanglement of 

quantum states and ultimately decrease the communication fidelity [21]. Also the ability 

to filter out broad-band noise while maintaining the signal amplitude (low insertion loss) 

is highly desirable in radio-frequency photonics [22] or sensitive power detection 

applications (e.g., single photon experiments). The latter application requires high-finesse 

cavities to achieve strong out-of-band noise rejection. A free spectral range of about 8 nm 

and loaded Q of 3.3 million implies a finesse in excess of 104 for the device studied here. 

On the other hand, due to the extremely low intrinsic loss of cavities in these devices, the 

quality factor of the system is almost entirely determined by coupling to waveguides. 

Therefore, a remarkable operational dynamical range (both bandwidth and power-transfer 

ratio) is attainable by controlling the coupling between resonator and individual 

waveguides. Finally, the excellent agreement of the experimental results with theoretical 

predictions suggests that this method allows the realization of resonant couplers with 

negligible losses. Indeed, the selection of filter design in the present study was intended 

to produce a measurable loss within the accuracy of our experimental equipment for 

purposes of comparison to the model.  
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Chapter Three 

Loss Characterization in Microcavities Using the 

Thermal Bistability Effect  

 

3-1 Introduction 

At sufficiently high quality factors (Q), whispering gallery mode microresonators can 

enter a regime where minute injected optical powers can result in large thermal 

nonlinearities [1-2]. The circulating intensity in these cavities, greatly enhanced due to 

their high quality factors and small mode volumes, is partially absorbed, and the 

generated heat can produce thermal bistability [3]. In this chapter we exploit this 

phenomenon as a new tool for characterizing distinct optical loss mechanisms responsible 

for limiting the quality factor of high-Q microresonators [4]. A powerful method is 

demonstrated, based on the thermal bistability effect, to characterize the relative 

importance of absorption and scattering losses in toroidal microcavities. Empirical results 

on thermal nonlinearity of these structures have been used to study the interaction of 

microtoroids with their ambient environment. 

The results, applicable to any other type of microresonator, provide insight into 

the relative importance of surface scattering and absorption centers in these cavities as 

well as the role of surface contaminants in altering the quality factor and thermal 

nonlinearities of these structures.  
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3-2 Thermal Bistability Effect 

Thermal broadening/compression of the resonance line shape is frequently encountered in 

ultra-high-Q (UHQ) microcavities (Q>108) [5]. As the laser frequency is swept across the 

cavity resonance, optical power coupled into the resonator is partially absorbed and 

converted to heat, hence altering the optical properties of the bulk medium and shifting 

the resonant frequency either along or opposite to the direction of laser scanning. In 

silica, the dominant effect is due to the temperature-dependent refractive index of the 

cavity material, which results in a negative frequency shift of the resonance with 

increased temperature: 

T
dT
dn

Δ−=− 00 )( ννν    (3.1) 

where )( 0νν − is the resonant frequency shift due to temperature change of TΔ , 0ν  is the 

initial resonant frequency, and dTdn / is the thermo optic coefficient of the cavity bulk 

material (i.e., the rate of refractive index change as a function of temperature). As a 

result, the resonance line-shape is distorted from its original Lorentzian profile, becoming 

broader when scanned towards lower frequencies and narrower when scanned in the 

opposite direction.  

The characteristic equation for the optical power transmission spectrum in the 

presence of nonlinearity is given by the following equation: 
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where T is the transmission beyond the resonator-waveguide coupling region and C  is 

the criticality factor that determines the degree to which the resonator is coupled to the 
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waveguide ( )10 ≤≤ C [6,7]. C  starts at zero when the resonator is far from the 

waveguide (no coupling), reaches unity at the critical coupling point (T =0), and then 

declines toward zero as the resonator-waveguide coupling increases further and 

transmission recovers in the overcoupled regime. x is the normalized frequency defined 

as the deviation from the initial resonant frequency in units of resonator linewidth, i.e., 

( ) ( )ννν Δ−= /0x . The characteristic power in this equation, referred to as threshold 

power ( thP ), is the required input power to shift a resonance by its linewidth.  

Figure 3.1 shows how the resonant line-shape is modified from its original 

Lorentzian profile (achievable at thin PP << ). The transmission spectrum appears as the 

ABC curve when the input laser is tuned towards lower frequencies and as the CDEA 

curve when scanned in the opposite direction. The minimum transmission ( CT −= 1 ) 

occurs at thin PCPx /−= , which shows that monitoring the thermal broadening as a 

function of launched power provides a tool for accurate measurement of threshold power 

for thermal bistability. 
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Figure 3.1: Thermal shift of the resonant frequency and distortion of resonant line-shape 

for different input powers. When thin PP <<  the familiar Lorentzian profile is achieved; 

however for higher values of input power the typical thermal hysteretic behavior can be 

observed. The ABC curve is the transmission spectrum of the resonator when the input 

laser is scanned towards lower frequencies and the CDEA curve shows its response in the 

reverse direction. The BD part of the curve is unstable.  
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For the thermal nonlinearity, threshold power is related to the resonator properties 

by the following form:  

dTdnQ
Cn

P
thermal

p
th /

10

ατ
ν

∝   (3.3) 

peffp cVC ρ=  is the heat capacity of the effective volume ( effV ) in the bulk medium where 

the heating occurs, ρ  and pc  are the density and special heat capacity of the medium, 

respectively, and α is the absorption fraction of lost power (i.e., power lost to absorption 

relative to total power lost through all mechanisms contributing to intrinsic Q). From 

equation (3.3) thP  is inversely proportional to the quality factor (Q ) and the thermal 

response time ( thermalτ ), which determines how fast the temperature of the optical mode 

volume rises.  

 

3-3 Experimental Results 

In order to excite the whispering gallery modes of microtoroids, fiber tapers were used to 

couple light into and out of the resonators [8]. Single-mode, tunable external-cavity lasers 

emitting in the 1550 nm, 1300 nm, and 980 nm bands were used as light sources. 

Transmission power through the fiber taper was monitored using fast photodiode 

detectors as the laser frequency was slowly (<10Hz) scanned over 10 GHz using a 

function generator.  

Figure 3.2 shows the measured thermal shift of the resonant frequency vs. input power 

for a high Q ( 8109.0 ×≈Q ) whispering gallery mode of a toroid microresonator at two 

different wavelengths. Although Q values at these wavelengths are about the same, the 

threshold power at 970 nm is a factor of 20 higher than that at 1545 nm.  
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Figure 3.2: Shows thermal shift of the resonant frequency of a whispering gallery mode 

in a toroid microcavity as a function of coupled power to the resonator. The squares 

(blue) are the data at wavelength 1545.4 nm and the circles (red) are for the same 

fundamental transverse mode at 969.4 nm. The bistability threshold power is higher by a 

factor of 20 at 969.4 nm and is believed to be due to lower absorption of water at this 

wavelength. 

 

 

 

 



  
33

From equation (3.3), the above difference suggests a higher absorption loss 

(higher α  value) at 1545 nm compared to 970 nm. Such a difference in absorption 

cannot be explained in terms of silica absorption as fused silica is about 4 times more 

absorptive at 970 nm [9]. Absorption losses at 1550 nm, however, can be higher if there 

is a monolayer of water molecules on the resonator surface [10,11]. Figure 3.3 contains 

the calculated quality factor versus wavelength of a 60 μm diameter sphere (comparable 

to the microtoroids under study for the case of large toroidal minor diameters) that is 

limited by the combination of absorption due to a monolayer of surface water and the 

intrinsic absorption of fused silica. From this plot, a difference in threshold power of 

about 25 can be predicted using the calculated Q values alone (inversely related to 

absorption losses) at the measured wavelengths indicated in the Figure. The close 

agreement between the predicted and measured ratio of threshold powers at these 

wavelengths is thus consistent with the assumption of a water monolayer on the surface 

and suggests a highly efficient heat-transfer mechanism from the surface water layer to 

the bulk glass where the optical mode is mainly located.  
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Figure 3.3: Calculated absorption limited quality factor of TE and TM fundamental 

WGM modes of a 60 μm diameter sphere. Absorption losses include the intrinsic bulk 

absorption of fused silica and that of a monolayer of water on the cavity surface. 

Predicted values for quality factor at 980 nm, 1300 nm, and 1550 nm wavelengths are 

marked in the figure. 
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From equation (3.3), threshold power is inversely proportional to the quality 

factor and the absorption fraction of lost power (α ). In cases of exceptionally-smooth 

whispering-gallery surfaces (i.e., low scattering loss) and large diameter resonators (not 

whispering-gallery or bending-loss limited) the absorption fraction can approach unity 

(i.e., all the injected power converts to heat) and a Q-1 behavior of threshold power is 

expected. On the other hand, if non-thermal losses (scattering or bending losses) are the 

dominant loss mechanism, they determine the quality factor, and therefore the absorption 

fraction (here the ratio of thermal to non-thermal losses) would be proportional to Q. In 

such cases a Q-2 dependence in threshold power should be observable in modes belonging 

to the same resonator, but having different quality factors. In a regime where both losses 

are relatively important an intermediate behavior is expected.  

Figure 3.4(a) shows the threshold powers measured for different modes of a 

scattering limited resonator. These WGM modes have Q’s ranging from 105 to 108 and 

they all lie within one free spectral range (9 nm) of the cavity. The data show a clear 

polynomial behavior with a slope of about -1.8 (close to inverse quadratic) in the 1550 

nm band (circles). The data also show an exceptionally low threshold power (~ 10 nW) at 

1550 nm. The same measurement on this resonator repeated in the 980 nm and 1300 nm 

bands reveals a similar behavior indicating that the quality factors in these cases are 

dominated by either surface roughness or scattering centers in the bulk material. The 

deviation from inverse quadratic behavior in these data can be due to the fact that distinct 

optical modes of the microtoroid have different extensions outside the cavity surface and 

hence experience differing water-absorption losses. This would in turn alter the 
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assumption of a Q-1 dependence of absorption fraction on quality factor in scattering 

limited resonators.  

Figure 3.4(b) illustrates a resonator of similar size and quality factor but which 

exhibits absorption-limited behavior in the 1550 nm band (slope -1.1), scattering limited 

behavior in the 980 nm band (slope -1.9), and an intermediate behavior at 1300 nm (slope 

-1.6). By examination of Figure 3.2, this can be understood as resulting from variation in 

water absorption losses at theses wavelengths. 
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Figure 3.4: Thermal bistability threshold power as a function of quality factor for 

different WGM modes of a toroidal microresonator. (a) Shows a scattering limited case 

obtained in resonator 1. (b) Illustrates the data from a similar experiment on resonator 2. 

In this case, a monotonic increase in the slope of graphs from 1500 nm (circles) to 1300 

nm (triangles) and 980 nm (stars) wavelengths shows the transition from absorption-

limited to scattering-limited regime. Also the threshold powers increase as the input 

frequencies move to a more transparent part of the water absorption spectrum. 
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As further evidence that surface water layers play a major role in absorption 

losses of the microtoroids under consideration, we investigated the thermal bistability 

effect in humid environments. Figure 3.5 shows how the bistability threshold power at 

1550 nm wavelength decreases as the environment becomes more humid. Significantly, 

the quality factor of the resonator in this measurement does not change noticeably as 

humidity is varied, which indicates that scattering is the dominant loss mechanism in this 

microtoroid. The change in threshold power therefore arises entirely from the change in 

absorption fraction parameter that can be directly related to the number of water 

molecules on the surface of the cavity. 
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Figure 3.5: Thermal bistability threshold power as a function of humidity for a scattering-

limited microtoroid. Although the quality factor of the resonator remains the same, the 

threshold power at 80% humidity drops to about a quarter of its value at humidity levels 

below 45%. The water molecules increase the absorption coefficient (α ) as they adsorb 

onto the cavity surface, demonstrating the role of the surface water layers as the main 

source of absorption loss in the 1550 nm wavelength band.    
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3-4 Conclusions 

Our findings in this chapter demonstrate that measurement of nonlinear thermal effects in 

microresonators is an effective method to characterize different loss mechanisms in these 

structures. In particular, the degree to which resonators are absorption limited or 

scattering limited can be inferred from measurement of threshold power versus Q. In 

cases where there is a strong spectral dependence of absorption centers (such as the case 

of water adsorbed onto silica), it is also possible to make this determination through a 

combination of spectral measurements of threshold power and Q. In the measurements 

presented, information was obtained about the surface chemistry of the cavity, which 

revealed the presence of mono-layers of water on the surface. Generalization of this 

method to other surface contaminants that could advertently be deposited on the surface 

of these structures can be potentially useful in sensing applications and surface chemistry 

studies. Furthermore, real time monitoring of thermal properties and quality factor can be 

beneficial in studying the dynamics of interaction between the resonator surface and its 

environment.  
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Chapter Four 

Observation of Kerr Nonlinearity in Microcavities at 

Room Temperature 

4-1 Introduction 

Ultra-high quality factor (high Q) optical microcavities (e.g., microspheres and 

microtoroids) are ideally suited for observing nonlinear optical effects with extremely 

low (sub-microwatt) threshold powers [1-5]. The combination of high circulating power, 

made possible by high quality and strong confinement of this power within mode 

volumes of the order of hundreds of μm3, leads to inter-cavity circulating intensities in 

excess of 1 GW/cm2 with only 1 mW of input power (assuming Q values of 

approximately 100 million in microtoroid resonators having principal diameters of about 

50 microns.) This level of intensity is sufficient to unveil nonlinear phenomena even in 

materials like silica that are weakly nonlinear. The optical Kerr effect arises from the 

third-order susceptibility of the optical material, which results in intensity-dependent 

refractive index. This effect and a variety of its applications have been the subject of 

numerous research activities around the world [6]. The observation of this phenomenon 

in microcavities however is problematic as it is accompanied by relatively larger thermal 

nonlinear effects [4,5,7]. As studied in chapter 3, the refractive index of silica, which is 

also a function of temperature, varies as the circulating power is partially absorbed in the 

medium and the cavity temperature subsequently increases. This larger effect (thermo-

optic effect) masks the Kerr-driven variations in the refractive index. F. Treussart et al. in 
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reference 5 have found evidence for Kerr bistability in microresonators by immersing 

microspheres in a superfluid helium bath at 2K. This cryogenic setup greatly reduces the 

sensitivity of WGM resonances to temperature and allows the Kerr effect to be dominant 

and hence observable. In terms of parameters introduced in chapter 3, the cryogenic setup 

reduces the thermal response time ( thermalτ ) by rapid extraction of heat from the resonator 

structure. This consequently increases the thermal bistability threshold power (see 

equation 3.3) suppressing the thermal nonlinearities.  

In this chapter we propose and experimentally verify a method for observing the 

optical Kerr effect in microcavities at room temperature. The technique discriminates 

against the much larger and typically dominant thermal component of nonlinearity by 

using its relatively slow frequency response compared to the almost instantaneous Kerr 

effect. Measurement of the Kerr coefficient ( 2n ), or equivalently third-order nonlinear 

susceptibility of the cavity material ( )3(χ ), is demonstrated for the case of a silica 

microcavity. With this approach useful information about the characteristic thermal 

response time in microresonators can also be acquired. 
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4-2 Kerr-Nonlinearity Measurement-Approach  

 In order to manipulate the time response distinction in favor of Kerr effect, we use two 

beams (pump and probe) individually resonant with two WGM resonances of an optical 

microcavity. Modulation of the pump power results in the modulation of the cavity 

refractive index and consequently modulation of the resonant frequency of the WGM 

with which the probe beam is in resonance. The probe beam power transmission beyond 

the resonator waveguide junction therefore acquires a strong Fourier component at the 

modulation frequency of the pump beam. This component can be measured using a lock-

in amplifier. When the pump modulation frequency becomes sufficiently faster than the 

thermal effects, the signal detected by the lock-in amplifier is purely due to the Kerr 

effect.   

The modulated probe power (frequency Ω ) is given by the following equation: 
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probeP is the probe power coupled into the resonator and Ω
pumpP is the fraction of the pump 

power coupled into the cavity and carrying the modulation frequency Ω .The modulated 

probe power ( ΩΔ probeP ) depends on the refractive index change in the cavity as a result of 

the modulated pump power ( Ω
pumpP ), which is proportional to the quality factor of the 

cavity at pump wavelength ( eff
pumpQ ), 2n  coefficient, and the cross section of the optical 

mode. The changes in refractive index of the cavity cause variation of the probe power 

transmission, which greatly depends on the quality factor of the WGM coupled to the 

probe signal. Total quality factor of the optical mode at the probe frequency ( probeν ) is 
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given by total
probeQ , which includes both intrinsic losses of the cavity and loading by the 

optical waveguide and can be obtained from linewidth measurements in the desired 

coupling regime. The transfer of modulation from pump to probe beam also depends on 

detuning of the cavity resonant frequency from that of the probe beam, which measured 

in units of linewidth of the cavity is denoted by x . The dependence   21/2)( xxxC +=  is 

a number between one and zero depending on x  (the deviation of the resonant frequency 

of the optical mode from the probe frequency in units of its linewidth). eff
pumpQ is the 

effective quality factor (defined below) of the resonator at the pump wavelength ( pumpλ ) 

and determines the enhancement of the pump power in the cavity [8]:  

nR
Q

P
P eff

pumppump

pump

cavity
pump

2π
λ

=    (4.2) 

where R  and n  denote the radius and refractive index of the cavity, respectively. 

Equation (4.3) below shows how eff
pumpQ can be obtained from the coupling parameter 

K defined as extQQK /0= , where 0Q  is the intrinsic quality factor of the optical mode 

and extQ  is the quality factor associated with coupling to the optical waveguide.  

20 )1( K
KQQeff

pump +
=   (4.3) 

Finally, note in equation (4.1) that for a certain change in the refractive index of 

the cavity, higher Q modes experience larger transmission variations and hence the 

dependence of ΩΔ probeP  on total
probeQ . Also observe the role of small mode volumes ( effV ) in 

reducing the required optical power for observation of nonlinear effects.  
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4-3 Experimental Results 

The experimental set up used to observe and measure the Kerr nonlinearity of silica 

microcavities is shown in Figure 4.1. Two tunable external cavity diode lasers were used 

to generate the pump and probe beams in the 1550 nm and 1480 nm bands, respectively. 

The pump and probe laser frequencies are simultaneously tuned to two optical WGM 

resonances of a toroidal microcavity [9] and launched into a tapered optical fiber using a 

WDM coupler. Tapered optical fibers with waist diameters of 1-3 mμ  were fabricated by 

the traditional technique of simultaneous flame heating and pulling standard single mode 

(SMF-28) fibers [10]. Efficient and high ideality coupling to the optical modes of 

microtoroid cavities is possible using these waveguides [11]. A top view optical 

micrograph of a microtoroid evanescently side coupled to a tapered optical fiber is shown 

in Figure 4.1. The output of the 1550 nm laser is modulated using a Mach-Zehnder 

modulator (bandwidth 20 GHz) driven by an RF function generator that generates 

sinusoidal waves with frequencies up to 80 MHz. The detected signal due to residual 

transmitted modulated pump power in the probe channel could potentially mask the 

relatively small modulation in the probe power, and therefore two cascaded wavelength-

selective couplers are used to ensure high extinction (above 38 dB) of the pump power in 

the probe channel. The pump and probe laser frequencies are adjusted while the detected 

pump and probe transmissions are monitored by an oscilloscope to ensure that both 

frequencies are tuned to the resonant frequencies of the cavity. A high precision PZT 

stage (10 nm steps) was used to position the microtoroid relative to the tapered fiber and 

thereby control the coupling to the resonator. With the laser frequencies tuned to 

proximity of the desired WGM resonances and with the pump power modulated, the 
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probe power is detected, and the photocurrent is processed by the lock-in amplifier using 

the output of the function generator as its reference signal. The lock-in was operated in 

the ( θ,r ) setting where r  (in Volts) and θ  (in degrees) are the amplitude and the relative 

phase of the detected signal at the reference frequency (Ω ). 
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Figure 4.1: The experimental setup used for characterizing the Kerr nonlinearity of 

microcavities. The picture is a top-view optical micrograph of a toroid microresonator 

evanescently side coupled to a tapered optical fiber. 
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The output of the lock-in amplifier ( r ) in Vμ  is plotted vs. the modulation 

frequency in Figure 4.2. This plot is normalized to the frequency response of the entire 

system with the microtoroid decoupled from the fiber taper. Therefore the plot shown in 

Figure 4.2 is the pure response resulting from the cross modulation of the probe beam by 

the pump beam. The power levels coupled to the resonator to generate the graph in Figure 

2 were about 15 Wμ  and 10 Wμ for pump and probe beams, respectively. Thermal effects 

can follow the modulation of the pump power up to about KHz10=Ω , and hence a flat 

response is observed prior to this frequency. At higher frequencies however a decline in 

the amplitude response is observed with a 3 dB corner frequency of about 25 KHz 

suggesting a thermal response time in the order of 6 sμ . As mentioned in reference 4, the 

fastest thermal response time is associated with the conduction of heat generated in the 

optical mode volume to the cavity bulk material and can be put in the following compact 

form: 
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 where Rδ  is the effective thickness of the optical mode localized near the surface of the 

cavity and D  is the temperature conductivity of glass ( scm /108 23−× ). For the 

microtoroid under study here with major radius of 36 mμ  and minor diameter or thickness 

of about 8 mμ , the toroid geometry becomes similar to a sphere with respect to thermal 

effects within the modal volume. Applying the above expression to this sample predicts a 

thermal time constant of 5 sμ , which is in close agreement with the value derived from 

Figure 4.2.  
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Figure 4.2: Measured amplitude modulation of the probe beam as a function of the 

modulation frequency of the pump power. The dotted lines show a 3 dB corner frequency 

of about 25 KHz where the modulation of the pump power becomes comparable to or 

faster than the thermal response time of the resonator. The second roll-off is due to 

limited bandwidth of the cavity that does not allow the pump power in the resonator to 

build up instantaneously. The flat response in the middle shows the “fast” Kerr effect.  
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Returning to Figure 4.2, the decline in the amplitude response continues until it 

reaches a second plateau from around 600 KHz to 10 MHz, which is far beyond the 

modulation speeds that thermal effects can follow. To ensure that this flat response was 

not due to the noise level arising from residual pump power in the 1480 nm channel or 

from RF crosstalk, the probe power was switched off during data acquisition in the flat 

portion of the spectrum. This resulted in the lock-in response decreasing by a factor of 

40, thereby confirming that the measured response is associated with modulation of the 

probe wave. Furthermore, by calibrating the lock-in amplifier, the modulated probe 

power could be inferred (i.e., ΩΔ probeP ). Plugging this inferred power into equation 4.1, we 

obtain an 2n  value of Wcm /10)46( 216−×± , which agrees well with measured 2n  values 

for fused silica ( Wcmn /103 216
2

−×= ). We therefore attribute the flattened response 

region in Figure 4.2 to the Kerr nonlinearity. 

Equation (4.1) shows that the signal level at frequency Ω can be preserved for 

lower Q optical modes at the cost of higher optical input powers. We confirmed this by 

repeating the same measurement for different quality factor WGM resonances both 

within the same cavity and other microtoroids. By doing this, the flat Kerr response has 

been observed and the inferred 2n  coefficient has been obtained in numerous test 

samples. The flat Kerr response in the plot ultimately falls off due to the limited 

bandwidth of the optical mode. The optical field in the cavity is built up in a finite period, 

which is roughly equal to the inverse of the optical mode linewidth. At modulation 

frequencies higher than the cavity linewidth, the modulation of the pump power cannot 

fully build up within the cavity and be transferred to the probe beam. The WGM excited 

in the sample studied in Figure 4.2 had a loaded Q of about 107, which translates to a 
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linewidth of about 20 MHz at 1550 nm. Using lower Q optical modes on the other hand, 

we could extend the Kerr plateau to higher frequencies.   

 

4-4 Conclusions 

This chapter demonstrates a powerful approach to observe Kerr nonlinearity in 

microcavities with extremely low optical powers. The simple experimental setup and 

room temperature operation of these measurements are attractive for studying nonlinear 

phenomena in microcavity structures. The discussed method is capable of measuring the 

nonlinear susceptibility of the cavity material and can be used to characterize the 2n  

coefficient for different materials packaged in a microcavity-type structure. 
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Chapter Five 

Radiation-Pressure-Induced Mechanical Oscillations 

(Parametric Instability) in Optical Microcavities  

 
 
5-1 Introduction  
 
Radiation pressure can couple the mechanical modes of an optical cavity structure to its 

optical modes, leading to parametric oscillation instability. This regime is characterized 

by regenerative oscillation of the mechanical cavity eigenmodes. In this chapter, we 

present the first observation of this effect with a detailed theoretical and experimental 

analysis of these oscillations in ultra-high-Q microtoroids. Embodied within a microscale, 

chip-based device, this mechanism can benefit both research into macroscale quantum 

mechanical phenomena and improve the understanding of the mechanism within the 

context of Laser interferometer gravitational-wave observatory (LIGO). It also suggests 

that new technologies are possible that will leverage the phenomenon within photonics. 
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5-2 Parametric Instability 
 

As circulating power is boosted in optical resonant systems there will be a natural 

tendency for these systems to experience a radiation-pressure induced instability. The 

instability is manifested as regenerative oscillations of the mechanical modes of the 

cavity structure due to coupling of optical and mechanical degrees-of-freedom caused by 

radiation pressure. This has been recognized theoretically by V. Braginsky [1,2] and is 

termed “parametric oscillation instability.” At a simplistic level, this excitation process 

can be understood as follows. Each circulating photon in the cavity changes its 

propagation direction twice every roundtrip. Therefore, a photon transfers 4 times its 

linear momentum to the cavity walls every time it completes a round trip. If the cavity is 

not infinitely rigid, the walls will deform in response to the resulting pressure. Hence, the 

pressure of circulating radiation induces a mechanical expansion of the cavity structure. 

This motion, in return, takes the optical cavity out of resonance with the input pump 

wave, thereby lowering the magnitude of radiation force. Upon restoration of the 

mechanical deformation, the process resumes, leading to a periodic motion of the cavity 

as well as the circulating power. It should be emphasized that this oscillation is 

regenerative, exhibiting classic threshold behavior and requiring no external modulation 

of the pump wave (see Figure 5.1)  

 

 

 

 

 



  
58

 

 

 
 
 
Figure 5.1: Illustration of the radiation-pressure induced optomechanical coupling 

mechanism. ω
inB , the input optical field (at frequencyω close to a resonant frequency of 

the cavity 0ω ) to the Fabry-Perot, causes large circulating field ωA as a result of resonant 

power-buildup in the cavity. The pressure caused by this power moves the free-to-move 

cavity wall by x , modeled as a damped harmonic oscillator at frequencyΩ . Motion of the 

end mirror on the other hand causes frequency change of the Fabry-Perot resonant optical 

mode. This interaction at sufficient optical powers results in regenerative oscillations of 

the end mirror and consequently the modulation of the output optical power ω
outB .   
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More precisely, if one assumes the optical pump-wave frequency (ω ) is nearly 

resonant (but not exactly resonant) with the optical mode, radiation-pressure induced 

deformation of the cavity structure either lowers or raises the coupled optical pump 

power, depending upon the sign of detuning of the pump frequency relative to the cavity 

resonant frequency. It will be shown that when the  pump laser is detuned to the high-

frequency tail of the optical mode, the phase relationship between optical pressure and 

optical cavity deformation results in net power transfer from the optical pump to the 

mechanical mode. This transfer manifests itself mathematically as a gain for the 

mechanical oscillations, with a corresponding threshold optical pump-power.  

Numerous theoretical studies have been devoted to ramifications of this effect in 

the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO) [3.4]. It 

was predicted during the past few years [1-6] that the parametric instability could limit 

the maximum stored energy in Fabry-Perot cavities (FP) used in the LIGO project and 

hence the sensitivity of the gravitational wave detector. Although never observed, 

recently a bench top experimental setup was proposed to verify these theoretical concerns 

on a smaller scale [7].  

As will be discussed in detail in the next sections, the mutual coupling of optical 

and mechanical modes is significantly enhanced in smaller size cavities. Whereas in 

macroscopic resonators the influence of radiation pressure is weak and only appreciable 

at high power levels [8], it is significant in optical microcavities (such as silica 

microspheres [9], microdisks, or microtoroids [10]), which simultaneously exhibit ultra-

high-Q optical modes and small mechanical mass. As discussed in previous chapters, 

when coupled to a waveguide, the high quality factor of whispering-gallery microcavities 
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(~108) results in optical power build-up that can exceed 100 Watts of circulating power 

for only 1 mWatt of waveguide input power. The resulting radiation pressure due to 

confinement of these high optical powers in micron-scale volumes can expand the cavity 

structure such that the optical resonant frequency shifts by hundreds of the resonance 

linewidths. Therefore the combination of high optical quality factor and small mechanical 

mass and dissipation can lead to threshold levels in the microwatt regime for regenerative 

mechanical oscillations (i.e., parametric oscillation instability) in whispering-gallery 

microcavities.  

Radiation-pressure-induced optomechanical interaction has similar properties to 

cavities containing a Kerr medium [11] (see chapter 4), including hysteretic wavelength 

response caused by radiation pressure [8]. In particular, both radiation pressure and the 

Kerr effect induce a coupling between optical path length and light intensity, one through 

cavity strain and the other through the index of refraction. It is therefore not surprising 

that radiation pressure has been proposed as an alternative path for observation of 

quantum effects such as squeezing [11]. Radiation pressure acting on a movable cavity 

can transfer information between two systems initially in semiclassical states, which, in 

turn, become entangled. Using this entanglement it is possible to perform Einstein-

Podolsky-Rosen (EPR) tests [12]. Also, the possibility of teleporting and storing the 

quantum information carried by the radiation field in the vibrational state of a 

macroscopic cavity through ponderomotive entanglement is proposed recently [13,14]. 

Moreover, the nature of radiation pressure to act on a macroscopic object suggests that it 

is a promising mechanism for entangling macroscopic mechanical oscillators [13], 

creating a Schrödinger cat state of a macroscopic mirror [15] and teleportation of a 
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macroscopic mechanical resonator state [16]. Standard quantum-limited measurements of 

position [17] are other exciting areas where this interaction can become useful. 
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5-3 Transmission Oscillations and Mechanical Eigenmodes of 

Microtoroids 

In this chapter we will focus on the radiation-pressure-induced parametric instability in 

whispering-gallery microtoroid resonators [10]. However, all the aspects of this work 

may apply in principle to any type of optical cavities.  

This section reports the observation of transmission oscillations in the radio-frequency 

(RF) range when optical power is coupled to sufficiently high quality factor optical 

modes ( 710≈Q  or 10 ns photon lifetime at infra-red wavelengths) of toroidal 

microcavities [18,19,20] (see Figure 5.2.) 
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Figure 5.2: The schematics of the simple experimental setup used for observation of 

transmission oscillations in toroid microcavities. The DC optical power of a laser source 

is coupled to a microtoroid through a tapered optical fiber. The transmitted optical power 

shows high amplitude modulations in the radio frequency range upon detection by a 

photodetector.  
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 Spectral analysis of the detected transmitted optical power using a high-

resolution electrical spectrum analyzer (ESA) revealed extremely narrow peaks (sub-

Hertz linewidths) at a frequency typically in the range of 10-100 MHz as well as at 

harmonics of this fundamental frequency (see Figure 5.3). As can be seen in Figure 5.3, 

typically two distinct fundamental oscillation frequencies (and their harmonics [21]) were 

observed: a low frequency mode (~ 2-20 MHz) usually in the under-coupled regime and a 

high frequency mode (~ 40-100 MHz) in the over-coupled regime (see reference [22] and 

references therein for definition of under-, critical-, and over-coupled regimes).  
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 Figure 5.3: The measured, spectral content of pump-power (at 1550 nm) transmission as 

observed on an electrical spectrum analyzer (bandwidth set at 100kHz). Two families of 

frequencies are observed along with their harmonics. Those at lower frequency range are 

observed generally in the undercoupled regime and the higher frequency oscillations 

mostly in the overcoupled regime.  
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Our further studies of this phenomenon revealed that in addition to their excellent 

optical properties, microtoroid resonators also exhibit high-Q micromechanical modes, 

which are flexural or radial in character and exhibit experimentally observed Q-factors as 

high as 5000. We numerically investigated the mechanical eigenmodes of a toroidal 

structure. The right panel of Figure 5.4 shows the strain and stress of the first three 

rotationally symmetric eigenmodes of a toroid microcavity obtained by finite-element 

modeling. The left panel of Figure 5.4 shows the experimentally observed oscillation 

frequencies plotted versus length L (see right panel for definition of L) as inferred by 

scanning electron microscopy (SEM) imaging. As is evident, the frequencies increase 

with decreasing membrane length (L). Close agreement of the measured RF oscillation 

frequencies with the results of the numerical modeling (less than 5% discrepancy) 

confirms that the first- (n=1) and third- (n=3) order flexural modes are responsible for 

generating the observed low- and high-frequency families of oscillations, respectively 

(see Figure 5.3). It will be explained later in the chapter why n=2 mode is extremely hard 

to observe in our experiments. 
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Figure 5.4: Right Panel: Finite element modeling of the micromechanical modes of a 

silica toroid microcavity. The radial and azimuthal mode order are denoted with n and m 

(where m = 0 corresponds to rotationally symmetric modes). Shown are the first three 

rotationally symmetric radial modes (n = 1, 2, 3, m = 0) in cross section with the 

amplitude of motion greatly exaggerated for clarity. In addition, the stress field is 

indicated using color. Note that the mechanical motion modulates the cavity path length 

due to a change in the cavity radius. Left Panel: Mechanical oscillation frequencies of the 

(m=0,n=1) and (m=0,n=3) modes versus the cantilever length L (defined in the right 

panel). Dots are experimentally measured frequencies and the solid lines are predictions 

of the numerical modeling. Inset shows the agreement between the numerical predictions 

of mechanical frequencies and measured frequencies of oscillations. 
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The mechanical origin of these oscillations was also confirmed by lowering a 

metallic microprobe into proximity with the plane of the silica disk connecting the toroid 

to the silicon pillar (i.e., not the toroid itself, where the optical mode lies). Since the 

probe is far removed from the toroidal whispering gallery, it affects only the mechanical 

and not the optical properties of the structure. The optical power oscillations were 

observed to fully quench upon probe contact.  

As evident in Figure 5.4, the n=3 mechanical mode has a strong radial component 

to its motion and hence understanding of its excitation by way of radiation pressure 

(which itself is primarily radial in direction) is straightforward.  In contrast, the n=1 mode 

motion is transverse, requiring a different method of force transduction (see Figure 5.5). 

The details will be presented in section 5.7 where it is shown that minute offsets of the 

optical mode from the equatorial plane provide a moment arm for action of radiation 

pressure. The resulting torque induces the transverse motion associated with the n=1 

mode. Modelling and SEM measurement of the offset, via focused ion beam preparation, 

confirms this mechanism (also see Figure 5.13). 
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Figure 5.5: Left panel shows the cross section and excitation mechanism of the 

fundamental (n=1) flexural mode. The offset (Δ ) between the optical mode location and 

the disk equatorial plane creates a lever arm for the radial optical force ( radF ) and, 

subsequently, a torque. Right panel shows the side-view image of a toroidal microcavity 

pumped by CW laser at 1550 nm. Green luminescence is the result of Erbium up-

conversion (from 1.5 to 0.5 μm) which is intentionally doped in the microtoroid to 

illustrate the location of the optical mode. Note that the optical mode (green) is higher 

than the “cantilever beam” holding the microtoroid attesting the existence of the offset 

(Δ ) in the left panel. 
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5-4 Equations of Motion for Optical and Mechanical Resonators and 

Adiabatic Approximation 

The system described above can be modeled using a set of coupled differential equations: 

one, governing the harmonic motion of the flexing toroid and a second governing the 

resonant optical field. The equation of motion for deformation (more precisely, the 

displacement of the whispering gallery in the radial direction ( x )) is that of a damped, 

harmonic oscillator driven by radiation pressure (generated by the circulating optical field 

at the periphery of the microtoroid):  
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where effm  is the effective vibrating mass of the mechanical structure in the radial 

direction (the direction that alters the optical resonant frequencies of the cavity), Ω  is the 

mechanical frequency of the oscillation (one of the eigenfrequencies of the structure), 

and 0γ is the intrinsic mechanical damping coefficient determining the mechanical quality 

factor 0/ γΩ=mQ . f(t) is the radial force applied by radiation pressure of the slowly 

varying field amplitude, )(tA (normalized so that 2|)(| tA  is the circulating optical 

power). nc /  is the velocity of light in the cavity. As the optical resonance shifts with 

structure expansion, the frequency difference between the input field and the moving-

cavity resonance changes as:  

)()/()( 00 txRt ωωω −Δ=Δ   (5.2) 

Here R  represents the radius of the microcavity (or more precisely, of the optical 

whispering-gallery mode). The mechanically induced displacement of the optical cavity 
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resonant frequency contains, in general, a contribution from spatial and refractive index 

changes (stress optical effect) [23,24]. The optical field in the cavity on the other hand 

obeys the following equation [25]: 

exttot TQ
Biti

Q
tAtA ωωω

=Δ−+ )](
2

)[(
.

)(  (5.3) 

B is the input pump field (normalized such that |B|2 is optical power launched in the 

waveguide.) totalQ  is the total quality factor of the optical mode, made up of an intrinsic 

contribution 0Q  and a waveguide-loading contribution extQ : 1/ totalQ =1/ 0Q +1/ extQ  (see 

ref. [22]). T is the photon round-trip time in the cavity.  

In this section we will solve the above system of equations assuming what we will 

call the “adiabatic approximation.” This approximation holds when totQ/ω<<Ω  (i.e., 

mechanical frequency is much smaller than the optical cavity bandwidth). The adiabatic 

picture provides a clear and intuitive understanding of the described optomechanical 

interaction. In section 5.6 we will solve the system with a more general approach, 

revealing the details of this interaction.  

In the adiabatic regime, equations 5.1-5.3 can be solved self consistently, leading 

to a mechanical gain term that is a linear function of the circulating optical power and 

that offsets intrinsic sources of mechanical damping as given below. This leads to a 

threshold optical pump power for onset of mechanical oscillations as follows:  
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where the intrinsic mechanical damping coefficient 0γ  is modified to γ  in presence of 

the optical power in the waveguide ( P ) and where thresholdP  denotes the incident threshold 

power (power in the waveguide, not the power coupled into the resonator).  

At strong coupling regimes ( 0QQext << ) the overall quality factor is dominated by 

waveguide loading (i.e., exttot QQ ≈ ), and hence equation (5.4) predicts that in this 

regime, the threshold power scales approximately with 3/1 totalQ  emphasizing the 

importance of high optical Q. Also apparent from equation 5.4 is the rapid scaling of the 

threshold power with cavity dimensions. Taking into account the scaling of the effective 

vibrating mass and its frequency, threshold power scales approximately 

with 4RPthreshold ∝ . This explains why this effect, not yet observed in the context of the 

LIGO project, is more likely to occur in microcavities with high Q factors and small 

dimensions. 

In equation 5.4, d is the detuning factor, giving the normalized detuning of the 

optical frequency from the resonant optical pump frequency of the cavity ( 0ω ) in units of 

its linewidth (i.e., 
totalQ

d
/2 0

0

ω
ωω −

≡ )  and, )(df = dd /)1( 32+  is a factor that is positive for 

blue-detuning of the pump (and negative for red detuning). This factor, emerging from 

the analysis, reflects the intuitive picture described earlier, requiring a particular phase 

relation between variation in coupled radiation pressure and cavity deformation in order 

that power is transferred from the optical mode to the mechanical mode and not in the 

opposite direction [26].  

Analyzing the above system in time domain, by numerically solving the coupled 

differential equations 5.1-5.3, offers a clear picture of the energy flow between 
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mechanical and optical fields and the of interaction between the mechanical and optical 

resonators both present in the same device. Applying the predictor-corrector Adams’ 

method on equations 5.1-5.3 reveals the system dynamical behavior ( )(tA , )(tx ). Having 

)(tA  one can calculate the output power, 2|)(/)2/1(| tAQTiBQT tottot ωω +−  [25]. 

Mechanical oscillations typically evolve to their full extent (starting from mechanical 

rest) within 5 time-constants of the mechanical structure ( γ/10 ). For small oscillation 

amplitudes ( totQRx /<< ) a nearly linear amplitude relation exists between mechanical 

motion and output power modulation. For larger oscillations, however, the system 

response becomes nonlinear as the microstructure vibrates faster than the optical power 

can build up in or discharge from the cavity (see Figure 5.6). Interference of the 

stationary pump wave and the field discharged from the cavity results in a train of 

decaying peaks reflecting the fact that light discharged from the cavity is decaying 

exponentially with time and is frequency shifted due to cavity vibrations. This behavior 

of output power is depicted in Figure 6a,b. At even larger oscillation amplitudes, we have 

also observed regimes where the system becomes sensitive to infinitesimal noise in the 

initial conditions when a specific threshold power is exceeded, resembling the chaotic 

behavior of the damped, driven pendulum. 

Figure 5.6 shows the numerically solved cavity deformation, optical power in the 

cavity, and their interaction during a few mechanical time cycles. Cavity motion, )(tr  (not 

to be confused with radial part of it, )(tx ), exhibits a flex of a few 
o
A  corresponding to a 

resonance shift of few cavity bandwidths (Figure 5.6c). Cavity velocity ( )(trt∂ ) is about 

0.9 mm/s when the cavity resonance crosses the pump laser wavelength (Figure 5.6d). 
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The cavity is then charged to a circulating power ( 2|)(| tA ) that approaches 50 W (Figure 

5.6e) causing a centrifugal radiation force ( f ) that approaches 1.4 Nμ . Upon cavity 

expansion, the power ( )()( trtf tμ∂ ) applied by radiation on the moving structure 

approaches 0.2 nW (Figure 5.6f). The resulting transference of energy is manifested as a 

red Doppler shift in the circulating photons. Upon the cavity shrinkage, power flows back 

to the optical mode from the mechanical potential energy; the circulating photons then 

experience a blue Doppler shift. A significant point is again the need for the pump wave 

to be blue detuned with respect to the microcavity resonance (d>0 in equation 5.4) in 

order to induce oscillations. Because of this detuning, the pump wave spends a little more 

time to one side of the microcavity resonant frequency (Figure 5.6c) explaining why 

energy ( ')'()'(
0 ' dttrtf
t

t∫ ∂ μ ) flows on average from the optical mode to the mechanical 

mode (Figure 5.6g) and generates gain for mechanical vibrations as predicted by equation 

(5.4.) In this example, for each acoustical cycle, 18109 −× Joules of energy are given to 

the optical mode upon shrinking, but then 181010 −× Joules are taken from the optical 

mode upon expansion (Figure 5.6g). This energy difference drives the mechanical 

vibrations. The sign of the energy flow will be reversed if the pump detuning changes 

sign. It is interesting, and the reader can verify that the net energy transferred to the 

mechanical mode in every cycle ( 1810− Joules) is equal to the dissipated mechanical 

energy (stored mechanical energy divided by the mechanical quality 

factor,
m

m
dissipated Q

E
E

π2
= ).  
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Figure 5.6: Plots versus time of (a) measured and (b) calculated transmitted optical 

power; (c) cavity displacement (d); velocity; (e) optical power circulating in cavity (left 

ordinate), which is proportional to the total radial force (right ordinate) applied by 

radiation on the cavity; (f) power flow to mechanical mode; and (g) energy transferred to 

mechanical mode from radiation. Here, the toroid radius is R = 29 μm, the mass was 

calculated (from SEM imaging) to be Kg11105 −× , the intrinsic mechanical quality factor 

was measured to be 1200, and the mechanical oscillation frequency occurs at 5.4 MHz. 

The pump power frequency is fixed at detuning of 0.55 FWHM away from the cavity 

optical resonance ( nm14610 =λ ), and the optical quality factor was measured to be 

7105×=oQ . 
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5-5 Experimental Study of Below and Above Threshold Behavior 

In order to verify the predictions of the above findings in the sub-threshold regime, the 

mechanical damping rate was measured as a function of optical pump power. In this 

regime, damping of mechanical oscillations can be decreased by injecting optical power 

into the microtoroid, yet the induced mechanical gain is not sufficient to initiate the 

regenerative vibrations. To measure the damping rate, an optical pump and probe 

approach was used (similar to Kerr-nonlinearity measurement in chapter 4) with two laser 

beams (a strong pump and a weak probe) individually resonant with two whispering 

gallery mode optical resonances. The experimental setup is depicted in Figure 5.7.  
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Figure 5.7: The experimental setup used for characterizing the mechanical oscillations of 

microtoroids in the subthreshold regime. Two wavelength couplers are used to ensure 

high extinction of the pump power in the probe channel. The picture is a top-view optical 

micrograph of a toroid microresonator evanescently side coupled to a tapered optical 

fiber. 
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Two, external-cavity diode lasers with 300 kHz linewidth were used as laser 

sources. The pump laser in the 1550 nm band and probe laser in the 1480 nm band were 

coupled to the microcavity using a tapered optical [27]. The output of the 1550 nm laser 

was weakly modulated using a Mach-Zehnder modulator. In this way the “DC” 

component of the pump power creates gain for the mechanical modes while the 

alternating component creates a harmonically-varying radiation-pressure that acts as a 

forcing function on the sub-threshold vibrational modes. Since the response motion also 

causes frequency shifts of the optical mode that is resonant with the probe signal, the 

mechanical response as a function of forcing-function frequency can be measured using 

the optical probe wave. The resulting modulation of the probe power can be measured 

using a lock-in amplifier, and it can be related to the amplitude of vibrations by 

measuring the quality factor of the optical mode coupled to the probe wave and its 

detuning from probe signal (for these experiments the weak probe beam was coupled to a 

low Q (~106) whispering gallery resonance to ensure that probe power would not induce 

a competing oscillation effect). In this way, “vibrational spectroscopy” can be performed 

by sweeping the modulation frequency through the vibrational resonances. This 

spectroscopy reveals the lineshape of the mechanical resonance and hence its linewidth 

(and damping rate or equivalently the mechanical Q factor). Figure 5.8 gives sample 

spectroscopic scans over an n=1 vibrational mode with a resonant frequency of 7.67 

MHz. The solid lines are the theoretical fits using a damped harmonic oscillator model 

for the mechanical motion. The inset in Figure 5.8 gives measured damping rates 

(extracted from the theoretical fits like that shown in the main Figure) plotted versus 

optical pump power using the pump/probe spectroscopy measurements. A linear decrease 
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in damping with increasing pump power is evident in the data (in agreement with 

equation 5.4). Also apparent is the threshold power, which in this case is expected to 

occur at an optical pump power of 11 micro Watts. The intrinsic Q factor of the 

mechanical mode (i.e., Q factor at zero input pump power) is inferred to be 630 in this 

data. 
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 Figure 5.8: Measured amplitude response (points) of the mechanical vibrations of an n=1 

mechanical mode as a function of driving-force frequency (modulation frequency of the 

pump power). Circles (green), triangles (red), and stars (blue) represent the data for 2 Wμ , 

5 Wμ , and 9 Wμ  of average pump power. The inset shows the effect of the optical power 

on the linewidth of the mechanical oscillator inferred from the theoretical fits (such as the 

solid lines in the main Figure). A linear fit shows a threshold of 11 Wμ for the mechanical 

oscillations and an intrinsic quality factor of 630 for the measured mechanical mode of 

the toroidal structure. 
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To characterize the mechanical modes in the above-threshold regime, the weak 

modulation of the pump power was terminated (i.e., steady pump wave) and the spectral 

content of the transmitted probe power was analyzed to monitor regenerative mechanical 

oscillations. The Fourier component of the transmitted probe power at the mechanical 

resonant frequency (Ω ) was monitored by the electrical spectrum analyzer. The intensity 

of this signal, proportional to the amplitude of the vibrations caused by the pump wave, 

was measured as a function of pump power. Figure 9 contains a typical result of these 

measurements for one of the studied devices and shows a clear threshold for the 

vibrational oscillations. Since the oscillator behaves as an optical power modulator [21] 

the electrical spectrum analyzer data can be transformed to compute the actual amplitude 

of mechanical motion. More precisely, modulation depth in the optical power can be 

transformed into frequency variation caused by the mechanical motion using the 

measured linewidth of the optical mode. This frequency variation, however, is directly 

proportional to the ratio of amplitude of the mechanical motion to the radius of the 

microtoroid. This transformation has been used to calibrate the vertical axis in Figure 9. 

The data in Figure 9 also seem to suggest that the amplitude of the vibrations saturates at 

high pump powers. Numerical modeling shows that this behavior can be attributed to the 

induced frequency shifts of the cavity that, for higher pump power levels, exceed the 

cavity linewidth. This, in turn, reduces the efficacy of the pumping mechanism as the 

pump wave spends a progressively smaller fraction of time on resonance during each 

mechanical cycle [28]. 
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Figure 5.9: Measured mechanical oscillator displacement as a function of the optical 

pump power showing threshold behavior. Oscillations initiate at about 20 Wμ  of input 

power and start to saturate for higher values of pump power. This saturation is associated 

with the lower optical-mechanical coupling at displacements large enough to shift the 

resonant frequency of the optical mode by greater than its linewidth. 
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5-6 Beyond Adiabatic Approximation: Coupled Mode Theory of 

Parametric Instability  

In the theoretical work of Braginsky [1,2] it was shown that the interaction of the 

vibrating resonator (at frequencyΩ ) with photons inside the cavity results in the creation 

of photons down-shifted (Stokes sideband, Ω−ω ) or up-shifted (anti-Stokes sideband, 

Ω+ω ) in energy from the original photons by the frequency of the vibrations. If the 

Stokes field coincides with an adjacent optical resonance (Figure 5.10a), beating of the 

pump and Stokes-sideband provides mechanical gain for regenerative mechanical 

oscillations, thereby causing the parametric oscillation instability. 

It is important to note that optical resonances with Q-factors in the 106-108 range 

have resonant linewidths in the range of ca. 2-200 MHZ in the infra-red frequencies, 

which is indeed the range of the first three fundamental flexural modes for typical 

toroidal geometries employed in this work. This insight suggests that in addition to the 

Braginsky’s theory [1], where the Stokes mode must coincide with an adjacent optical 

mode, mechanical oscillations can also occur when the mechanical resonance frequencies 

(Ω ) fall within the same cavity bandwidth ( totQ/ω ) [29] of the pump mode (i.e., 

totQ/ω≈Ω ), heretofore called the “in-band” case (Figure 5.10b). 
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Figure 5.10: Panel A: represents Braginsky’s view of parametric instability in the 

frequency domain, where the Stokes side band coincides with an adjacent optical mode. 

Panel B: shows the scenario we have encountered in our observations where the Stokes 

and anti-Stokes side bands both fall almost within the bandwidth of the same optical 

mode. Panel C: the experimental demonstration of the panel B scenario. Optical power 

out-coupled from a toroid microcavity oscillating at about 5 MHz frequency is measured 

by a 1MHz-resolution spectrum analyzer (high finesse Fabry-Perot). Higher optical side 

bands exist due to interaction of the Stokes and anti Stokes side bands with the 

mechanical mode. Theoretical predictions are also given. 
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The adiabatic regime, for example, totQ/ω<<Ω  (see section 5.4), is in fact a 

special case of the in-band parametric instability ( totQ/ω≈Ω ), where Braginsky’s “out 

of band” picture does not hold. The adiabatic approach has to be modified, however, to 

predict correct threshold powers where the mechanical frequency is comparable to or 

even larger than the optical resonant linewidths (which are also observed in our studies), 

but is still too small to generate side-bands coinciding with an adjacent optical mode (see 

Figure 5.10a,b). To arrive at an analytical expression for the threshold power in these 

cases we have extended the theory of Braginsky for a Fabry-Perot cavity [1]. Using the 

slowly varying envelope approximation and the formalism of H. Haus, the mutual 

coupling of mechanical and optical modes can be described by: 
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These equations are identical to equations (5.1-5.3). The first equation describes 

the mechanical eigenmode with an effective mass effm , where mx (as opposed to x , 

which represents the radial motion of the cavity used in equations 5.1-5.3) is normalized 

to mechanical energy, i.e., ∑∫=
= θ

σε
,,

2

zri
iim dVx , ( iσ  and iε  are the diagonal components of 

the stress and strain tensor) which decays with the lifetime 
Ω

mQ
. )(ΓC  is a correction 

factor [1…2] due to the reduction of circulating power in the presence of modal coupling 

[30]. Correspondingly 2a is the energy in the optical WGM mode (as opposed to 2)(tA  
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used earlier to denote the optical power in the cavity), which is excited with a pump laser 

(with power 2B ) detuned by the amount ωΔ  from line-center, oωωω −=Δ .  

Assuming the optical filed in the cavity is composed of the pump and the 

generated Stokes and anti-Stokes fields with corresponding detunings ωΔ , 

Ω−Δ=Δ ωωS  and Ω+Δ=Δ ωωAS  from cavity line-center 0ω  (i.e., 

ti
AS

ti
S

ti
p

ti ASS eaeaeaae ωωωω ΔΔΔΔ ++= ), equation 5.5 results in four coupled mode 

equations: 
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Solving these equations in steady state yields the threshold for radiation pressure 

induced mechanical oscillation: 
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The threshold equation reveals that in order to arrive at oscillation, the mechanical 

loss has to be overcome (i.e., the expected mQ/1 dependence). Dependence of radiation 

pressure upon circulating optical power, however, leads to the 0/1 Q  dependence as well 

as the presence of a weighting factor describing the effect of waveguide coupling, 
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ex

o

Q
Q

K = [30]. The last term results from the interplay of the Stokes and anti-Stokes 

photons, which provide mechanical gain and loss, respectively. Figure 5.11 shows a plot 

of the mechanical gain (inverse of equation 5.7) as a function of both coupling (K) and 

detuning frequency ( ωΔ ) for the n=1 and n=3 mechanical modes, which will be 

predominantly analyzed in the experiments. It is noted, that the mechanical gain is only 

positive for a blue detuned pump with respect to the cavity resonance ωΔ >0. This 

situation leads to more Stokes than anti-Stokes photons (the ratio 

being 22
0
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0
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)(4)/(
)(4)/(
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Q

a
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Δ+
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= ) and causes a net mechanical gain. The converse is 

true for red-detuned pump, which causes the mechanical resonance to experience 

negative gain (i.e., damping). For the special case of ωΔ =0, the gain vanishes. These are 

all in agreement with our findings in the adiabatic regime (see equation 5.4 and definition 

of d factor).   

Furthermore, it is interesting to investigate the exact Q-factor dependence of 

threshold power shown in the inset of Figure 5.11. As expected, in the adiabatic regime, 

totQ/ω<<Ω , the mechanical oscillation threshold power scales as 
3

0

11
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∝

QQ
P

m
thresh  

in agreement with our previous expression for this regime (the reader can verify that in 

this regime the expression for threshold power reduces exactly to equation 5.4). In 

contrast, if the mechanical eigenfrequencies lie outside the cavity band-width, i.e., 

totQ/ω>Ω , the threshold scales as
0

2

1
ω
ωΔ

⋅
Ω

∝
m

thresh Q
P , causing a roll-off of the 

optical Q dependence. In fact, analysis of equation 5.7 shows that the minimum threshold 
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( 0=
Δ∂∂

∂
ωK

Pthresh ) for higher optical Q factors, approaches asymptotically a limiting value, 

which can only be achieved for progressively stronger over-coupling (and 

correspondingly increasing the cavity bandwidth until the condition Ω≈totQ/ω  is met). 

The roll-over from inverse-cubic behavior occurs when Ω∝
0

0

Q
ω

, i.e., 
Ω

≅− 0
0

ωoverrollQ as 

observed in the inset of Figure 5.11. 
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Figure 5.11: Mechanical gain (from equation 5.7) as a function of detuning (negative 

detuning corresponds to a redshift) and taper-waveguide-cavity coupling (simulation 

parameters υ1=4.4 MHz, υ3=49.8 MHz, Q0=5x107). Maximum gain for the n=1 mode 

occurs in the under-coupled regime (log(K)<0), whereas for the n=3 mode it occurs 

overcoupled (log(K)>0). Inset: Double logarithmic plot of the minimum oscillation 

threshold power for the n=1 and n=3 mode (equation 5.7) versus the intrinsic optical 

quality factor.  
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5-7 Experimental Investigation of Parametric Instability Threshold 

Power  

In order to confirm the threshold dependence (as given by equation 5.7) on both optical 

and mechanical Q-factors we have carried out numerous experiments and simulations on 

a single toroid microresonator. The microtoroid under consideration had principal, pillar, 

and toroid diameter of 72 μm, 36 μm, and 6.8 μm and possessed mechanical resonance 

frequencies at (4.4 MHz, 25.6 MHz, and 49.8 MHz) for the first three modes (n=1,2,3 

and m=0). Minimum threshold power was measured by optimizing the detuning and 

coupling (compare Figure 5.11). The result of this measurement is shown in Figure 5.12. 

A double logarithmic plot is used to infer the critical exponent, which shows excellent 

agreement with the prediction (1/Q3) for adiabatic regime. For progressively higher Q 

values, the theoretically predicted roll-over of the 1/Q3 threshold dependence is observed. 

The roll-over point occurs at a Q of ca. 107, which agrees well with the prediction 

Ω
=− 0

0
ωoverrollQ  for the first-order flexural mode. The solid line is the minimum threshold 

as given by equation (5.7), which is minimized with respect to detuning (Δω) and 

coupling (K) to reflect the experiments, i.e., 0=
Δ∂∂

∂
ωK

Pthresh . The effective mass was the only 

fit parameter used and was inferred to be ( Kgmeff
8)1( 103.3 −×≈ ).  

The threshold for the 3rd order flexural mode was also recorded. This mode has a 

resonance frequency of 49.8 MHz with 25003 ≈=n
mQ . Consequently for optical Q factors 

in the range of 107 this mode is in the beyond-cavity-bandwidth regime, 

since 60
0 104×=

Ω
=− ωoverrollQ . In the experiments, oscillation on this high frequency mode 
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was only observed by adjusting the taper-resonator coupling junction into the over-

coupled regime, in agreement with theory. In this regime the low frequency flexural 

mode could not be excited any more, and a transition from n=1 to n=3 occurred. This 

transition is in excellent agreement with the theoretical prediction of equation 5.7, as 

plotted in Figure 5.11. The inset of Figure 5.12 shows the measured threshold for the n=3 

resonance in comparison with the n=1 mode. The single parameter fit yields an effective 

mass for the n = 3 mode, which is significantly lower than for n=1, by a factor of 660, 

i.e., Kgmeff
11)3( 105 −×≈ . Note, that the reason for yet lower threshold values of the n=1 

mode, lies in the fact that the n=3 mode is in the beyond-cavity-bandwidth regime for the 

Q-values >107 (where the roll-over behavior happens in the optical Q dependence). 

However, for lower Q, the n=3 mode has indeed lower threshold, and the crossing of n = 

1 and n = 3 has indeed been observed in experiments (compare with the inset of Figure 

5.10). 
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Figure 5.12: Main panel: The measured mechanical oscillation threshold (inμ Watts) 

plotted versus the optical quality factor for the fundamental flexural mode 

( 3500,4.42/,1 ==Ω= mQMHzn π ) on a double logarithmic scale. The solid line is a 

one-parameter theoretical fit obtained from the minimum threshold equation by first 

performing a minimization with respect to coupling and pump wave detuning, and then 

fitting by adjustment of the effective mass ( Kgmeff
8)1( 103.3 −×≈ ). Inset shows the 

measured threshold for the 3rd order mode ( 2500,8.492/,3 ==Ω= mQMHzn π ) plotted 

versus optical Q. The solid line gives again the theoretical prediction 

with Kgmeff
11)3( 105 −×≈ . The n=1 mode data from the main Figure is superimposed for 

comparison.  
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The mechanical eigenmodes of microtoroids can be considered as a combination 

of two harmonic oscillators: within-plane oscillator (radial amplitude x, which modulates 

the cavity path length) and out-of-plane oscillator (amplitude z, which does not affect the 

optical path length). Note that the mechanical energy mE  is also associated with both a 

radial motion ( 22 xmeff Ω ) and a transverse motion. Since only the radial direction 

modulates the cavity path-length (with amplitude x), the effective mass effm  for the radial 

motion is given by: 

)(1
,,

2222 ∑∫
=Ω

=
Ω

≡
θ

σε
zxi

ii
m

eff dV
xx

E
m   (5.8) 

and can be evaluated by finite element simulation. The effective mass in the radial 

direction will always be higher than the total mass of the structure, since not all motion is 

occurring in the radial direction.  

For the n = 3 mode, the predicted effective mass from our numerical models 

associated with the radial motion was Kgmeff
11)3( 105 −×≈ , which is in very good 

agreement with the experimental fit in Figure 5.12. Furthermore, this value is 

exceptionally close to the actual mass of the vibrating structure. This can be intuitively 

expected as the n=3 motion is primarily radial (see Figure 5.4) and therefore the out-of-

plane motion and its contribution to the mechanical energy is negligible.  

For the n=1, 2 modes, however, the calculated effective mass is a strong function 

of the offset of the toroidal ring with respect to the equatorial plane of the disk [31]. As 

explained in section 5-3, excitation of the n=1 mode by radiation pressure can only be 

explained by existence of this offset. To both validate and quantify this offset, a cross 

section of the toroid microcavity used in the study was obtained with focused-ion beam 
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slicing. SEM imaging included in Figure 5.13 reveals the presence of the above 

postulated equatorial offset, which amounts to an offset of 1.3 mμ . Incorporation of this 

offset to the numerical mass calculations yields Kgmeff
8)1( 106.2 −×≈  and 

Kgmeff
9)2( 102 −×≈ . This value agrees very well with the experimental values from Figure 

5.12. Finally, the numerical model also explains why the n=2 mode is observed only 

subthreshold in the experiments. The low mechanical Q value (~200), in conjunction with 

its high effective mass and frequency, predicts threshold powers greater than 2mW.      
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Figure 5.13: Scanning-electron micrograph of a cross section of the toroid microcavity 

used in this study. The cross section was revealed by focused-ion beam (FIB) technology, 

which allowed removal of a 2 micron wide section. The slicing clearly reveals the 

presence of an offset of the 7-micron-diameter toroid with respect to the 2-micron thick 

silica support disk (in this case an offset of ca 1.3 micron, dotted lines). Inset: side view 

of the toroid microcavity inferred from the FIB method.  
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We next proceeded to verify the dependence of threshold power on the 

mechanical quality factor. As both optical and mechanical Q affect threshold, a method 

was needed that could reduce the mechanical Q factor while leaving the optical Q factor 

unchanged. To this end, we used a silica-microprobe fabricated by heating and stretching 

a single-mode-fiber using a CO2 laser. An optical micrograph is shown in the inset of 

Figure 5.14 where the mechanical probe is mounted on a 3-axis piezoelectric stack and 

positioned above the fiber-taper coupled microtoroid. When the probe was brought into 

contact with parts of the microstructure exhibiting high-amplitude mechanical 

oscillations (compare the mode profiles in Figure 5.4) a reduction of the mechanical Q-

factor was observed, while leaving the optical Q-factor unaffected. The change in 

mechanical Q-factor was measured by fitting the ESA-measured resonances in the sub-

threshold regime with Lorentzian profiles. Without contact the mechanical Q was 

measured to be ~5000 for the n=1 mode, and upon progressive increase in tip pressure 

(controlled via piezo-electric distance) the mechanical Q could be continuously decreased 

by nearly two orders of magnitude, down to a value of 50. Upon retrieving the probe the 

original Q-factor was recovered. The microprobe method thus allowed changing the 

mechanical Q, while leaving the optical modes unperturbed. For each mechanical Q the 

minimum threshold for the n=1 flexural mode (by optimizing both Δω and K) was 

measured. Figure 5.14 shows the measured minimum threshold for oscillation of n=1 

mode as a function of mechanical Q-factor, clearly revealing the 1/Qm dependence of the 

oscillation threshold, in agreement with equations 5.4 and 5.7, as well as theoretical 

predictions of Braginsky [32,33]. This method also provides a technique to prevent 

parametric oscillation instability for cases where this effect is not desirable. 
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Figure 5.14: The mechanical threshold power (in micro Watts) versus the mechanical 

quality factor of the n=1 mode. The solid line is the theoretical prediction 

( mthresh QP /1∝ ). Inset: Optical micrograph of the side view of the experimental setup, 

consisting of a silica microprobe in proximity of a fiber-coupled microtoroid of 72-

micron-principal diameter.   
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5-8 Conclusions 

The work presented in this chapter is the first demonstration of the radiation-pressure-

induced parametric instability in optical resonators of any kind. This work demonstrates 

how vibrational and optical modes of the same cavity structure can act as parametrically 

coupled oscillators despite their very different frequencies ( 710~ against Hz1410~ ). 

Realization of this effect in microscale can be utilized as a platform for studying the 

parametric-instability limitations for LIGO project.   

It should be noted that mechanical oscillations in microstructures can be 

generated using alternative methods. For example, references [34,35] describe thermally 

actuated mechanical vibrations of a silicon disk and a silicon cantilever, respectively. In 

contrast, the long thermal time constant of the toroidal structures in the present work 

( thermalτ  is in the order of sμ5  [36,37]) precludes initiation of RF rate oscillations such as 

those observed here. Also significant is the expected threshold dependence on optical Q 

for thermally driven instabilities. Because resonator deformation for a thermally driven 

process (as opposed to radiation pressure) depends on coupled optical power (not 

circulating power) one expects an inverse quadratic scaling of the threshold power with 

optical Q ( 2−∝QPthreshold ) for thermally induced oscillations as opposed to inverse cubic 

( 3−∝QPthreshold ) for radiation pressure-induced-oscillations verified in this study. 

Excellent agreement of the threshold functional dependence on optical and mechanical Q 

factors, and precise numerical predictions of the threshold power, provides confirmation 

that radiation pressure is the excitation mechanism of the observed oscillations.  

In small microtoroids (we were also able to observe similar oscillations in silica 

microspheres), occurrence of these oscillations has been observed with threshold powers 
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well below those of other nonlinear effects such as Raman [38,39], Kerr parametric 

oscillation [40], and lasing due to intentional doping of rare-earth elements into the 

microcavities [41]. This clearly suggests that radiation-pressure-induced effects can 

establish a practical limit for miniaturization of optical microcavities. This 

miniaturization limit can be extended by adding a mechanical damper (or displacement 

limiter as in Figure 5.14) to the cavity structure. Yet, the fundamental nature of 

circulating light to apply pressure and the general nature of structural stiffness to reduce 

with miniaturization [42] suggest that it is likely that all optical cavities are susceptible to 

these oscillations at various optical powers. The inverse cubic dependence of threshold 

power suggests that current efforts directed towards realization of higher Q optical 

microcavities will only tend to accelerate the observation of these oscillations in other 

microcavity systems either as a limiting floor in miniaturization, or as a useful new 

optomechanical nonlinearity. 

Beyond limitations caused by radiation-pressure-induced optomechanical 

coupling, the parametric instability demonstrates a new class of hybrid oscillators where 

a continuous source of pump-laser power (without any type of external feedback system) 

can generate radio frequency mechanical vibrations of a micromechanical structure (a 

rendering of the oscillation process for the n=3 mode is shown in Figure 5.15). These 

oscillations imprint onto the optical pump, now an optical carrier for RF frequencies. 

Realization of this effect undoubtedly benefits applications in RF micromechanical 

oscillators [43] on a chip and all-optical frequency reference devices.  
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Figure 5.15: Panel A illustrates the “below threshold” behavior where the optical pump 

wave at frequencyω  is not strong enough to induce mechanical oscillations of the 

microtoroid. Panel B illustrates the “above threshold” case for the n=3 vibrational mode. 

Mechanical oscillation at frequency Ω  creates optical stokes ( Ω−ω ) and anti-stoked 

sidebands ( Ω+ω ) in the transmitted pump wave. Inset of panel B shows the 

exaggerated cross-section of the third-order eigenmode and variation of the toriod radius 

as a result of these oscillations.  
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Besides the fundamental aspects of this work, the observed coupling of 

mechanical and optical modes by radiation pressure can find applications in 

micromechanical and nanomechanical systems [44] for ultra-high sensitivity 

measurements of charge [45], displacement, mass, force [46], or biological entities [47]. 

Equally important, radiation pressure as observed here can be used to achieve cooling of 

mechanical resonator modes [35].  

We believe the promising consequences of our recent research results will pave 

the way for further practical applications of UHQ microcavities and introduce them to an 

exciting and drastically novel realm of science. 
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Chapter Six 

Summary 

This thesis has investigated different optical and optomechanical systems based on 

whispering-gallery microcavities. An almost ideal design is developed for optical power 

transfer between two waveguides where efficiency is solely limited by intrinsic losses of 

the intermediate optical resonator.  These intrinsic loss mechanisms are experimentally 

studied and differentiated by a powerful technique based on thermal nonlinearities of the 

microcavity material. Important information about the interaction between cavity surface 

and the ambient environment has been obtained through this study. Taking advantage of 

slow response time of thermal effects, a clever pump and probe technique is developed to 

unveil Kerr nonlinearities of the microcavity material in presence of dominant thermal 

effects. Kerr nonlinearity in microcavities is observed and measured for the first time at 

room temperatures. The technique also enables accurate measurements of thermal 

response times in microcavity structures. A journey is also embarked on in an almost 

untouched territory in the field of optical microcavities. A novel type of nonlinearity 

generated by mutual coupling of optical and mechanical modes of a microcavity structure 

is discovered and analyzed theoretically and experimentally. The ramifications of the 

optomechanical interaction and applications of the so-called “radiation-pressure-driven 

micromechanical oscillator” are discussed in diverse fields of science ranging from 

quantum mechanics to LIGO project to all-optical clocks on a chip.  
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Around The Rim: elegy to a photonic clock 
 
PUMP POWER vibrates steadily, pumped 
80 million times per second 
when its rim probed 
steadily above threshold 
exceeds vibrations, saturates at high pump powers 
sensitive power detection 
 exerts radiation pressure 
 pressure in much the same way 
 fully quench upon probe contact 
 
the disk itself swells 
manipulated 
a probe-controlled 
micropositioner---insertion---loss 
communication fidelity 
 
signal amplitude around the rim 
rim swells, inflated then deflates 
cycle repeats, repeats, repetition continues 
forcing function frequency 
pumped into 
into the disk, thermally actuated 
harmonics were observed 
shift in the whispering gallery 
 
repetitive processes---cavities susceptible to these oscillations 
integrate interactions of motion 
 
motion a t a quantum level, entanglement proposed 
continuous flame hating 
up/down shifted and stretching 
an overall loaded factor 
high-finesse cavities 
loaded 
 
sensitivity is boosted 
circuits integrated 
could be of help, coupling allows 
separation 
always exciting---stress field 
around the rim 
a mechanism to investigate such interactions 
a mechanism that needs to be understood better 
                                       Robin Diamond 
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