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Abstract 

Optical microcavities are indispensable from numerous scientific studies and have also 

found applications in a vast array of technologies. Ultra-high-Q microtoroids, used 

throughout this thesis, belong to the category of surface-tension-induced-microcavities 

that have proved to provide the highest quality factors to date. High efficiency coupling 

of optical power to these cavities has also been realized by extremely low-loss tapered 

optical fibers. Combination of ultra-high-Q microcavities and tapered fibers can hence 

result in minimizing optical loss in various studies, which is often the main obstacle in 

realizing distinct physical functionalities. Using these tools, an almost ideal design is 

developed for optical power transfer between two distinct waveguides where efficiency is 

solely limited by intrinsic losses of the optical resonator. These intrinsic loss mechanisms 

are experimentally studied and differentiated by a powerful technique based on thermal 

nonlinearities of the microcavity material. Important information about the interaction 

between cavity surface and the ambient environment has been obtained through this 

study.  

Enormous power buildup in microcavities, due to their negligible optical loss, 

makes them suitable for studying various nonlinear phenomena with extremely low 

optical powers typically in the range of a few micro-Watts. Optical Kerr nonlinearity 

usually masked by dominant thermal effects is studied in this thesis. Taking advantage of 

slow response times of thermal effects, an innovative pump and probe technique is 

developed to unveil and measure the Kerr nonlinearity in microcavities, for the first time, 

at room temperature. The technique also enables accurate measurements of thermal 

response times in microcavity structures.   
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Whispering-gallery microresonators have historically been perceived as structures 

that could efficiently confine optical energies. This is due to their exceedingly low losses 

at optical frequencies. This thesis has, for the first time, explored these structures in a 

starkly different frequency range. Optical microcavities like any other structure have 

mechanical eigenmodes or resonant modes of vibration with quality factors representing 

the efficiency of energy storage at mechanical frequencies. It is shown here that micron 

size of these structures results in vibrations at radio frequencies (~1-100 MH), about 

seven orders of magnitude apart from the optical frequencies (~100 THz). Mechanical 

quality factors in excess of 5,000 are measured for toroidal microcavities at their 

eigenfrequencies of vibration, revealing a heretofore unknown potential of these 

structures in storing energy at frequencies remarkably distant from their optical resonant 

modes.  

This thesis describes how radiation-pressure or the force due to impact of photons 

could result in exceptionally strong coupling between the mechanical and optical 

resonators collocated within the same device. The discovered optomechanical coupling 

present in toroid microcavities is shown to reach such a high level that regenerative 

mechanical oscillations of the cavity structure are initiated with only micro-Watts of 

optical power. This is the first demonstration of radiation-pressure-induced mechanical 

oscillations in any type of optomechanical system. Embodied within a microscale, chip-

based device, this mechanism can benefit both research into macroscale quantum 

mechanical phenomena and improve the understanding of the mechanism within the 

context of Laser interferometer gravitational-wave observatory (LIGO). It also suggests 

that new technologies are possible that will leverage the phenomenon within photonics.  
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