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ABSTRACT 

An investigation of a class of vert ical  axis wind turbines i s  

carried out with the unsteady effects due to the rotating blade motion 

fully taken into account. The work i s  composed of two parts. 

In par t  one, a hydromechanical theory i s  developed which pro- 

ceeds f rom the point of view of unsteady airfoil theory. A rotor com- 

prised of a single blade i s  used and a two-dimensional analysis is  

applied to a c ros s  section of the rotor in the limiting mode of operation 

wherein U << GR. Use of linearized theory and of the acceleration 

potential allows the problem to be expressed in t e rms  of a Riemann- 

Hilbert boundary value problem. The method of characteristics i s  

used to solve for the remaining unknown function. A uniformly valid 

f i r s t  order solution is  obtained in closed form after some approximation 

based on neglecting the variations in the curvature of the path. 

Explicit expressions of the instantaneous forces and moments acting 

on the blade a r e  given and the total energy lost by the fluid and the 

total power input to the turbine a r e  determined. 
- 

In part  two, the lift acting on a wing crossing a vortex sheet is  

evaluated by application of a reciprocity theorem in reverse  flow. 

This theorem follows f rom Green's integral theorem and relates the 

circulation around a blade having impuls ively crossed a vortex wake 

to the lift acting on a blade continuously crossing a vortex wake. A 

solution is obtained which indicates that the l i f t  i s  composed of two 

parts having different ra tes  of growth, each depending on the apparent 

flow velocity before and after  the crossing. 
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PART I 

EVALUATION O F  THE UNSTEADY EFFECTS FOR A CLASS 

O F  VERTICAL AXIS WIND TURBINES 
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1. Introduction 

Although Wind Energy was one of the f i r  s t  energy resources to 

be harnessed by man, and was extensively used by most of the known 

civilizations for propulsion or  energy extraction up to the beginning of 

the industrial era,  it seems to have been rediscovered only a few 

decades ago. Consequently the development of advanced theories on 

extraction of energy from the wind is only beginning. Horizontal axis 

wind turbines have benefited directly from the extensive investigations 

carried out for airplane propellers, as  illustrated by the works of 

Glauert [I], Theodor sen [2] and Goldstein [3], and f rom the experiments 

on propeller type windmills performed in the past [4], [5]. Vertical 

axis wind turbines have only recently been studied and the theories 

developed for them a r e  quite far from matching the sophisticated 

vortex theories currently used for horizontal axis machines. 

Vertical axis wind turbines offer several advantages over more 

conventional wind turbines : they do not require an initial orientation 

into the wind, can conveniently have the power generator located at the 

ground level and may even eliminate the need for a supporting tower. 

These advantages should make possible the development of a lighter 

and cheaper structure, and thus make the vertical axis wind turbine 

a primary candidate in wind energy technology. 

Among several designs of vertical axis wind turbines currently 

investigated the most promising is the Darrieus rotor (fig. l ) ,  which 

was invented and patented by the independent french inventor Darrieus 

[6] in 193 1. New interest in this design has been aroused by South and 

Rangi [7] at  the National Research Council of Canada in Ottawa. The 
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Aerodynamics of the Darrieus rotor and models for  performance 

prediction have since been formulated by Templin [8], Strickland [9], 

Shankar [lo],  Wilson and Lissaman [1 l], Holme [12] and others. 

Except for the work of Holme , all  these formulations a r e  based on 

variations of the actuator disk theory developed by Betz [13] for the 

horizontal axis windmill. In this theory the momentum flux through 

the s t ream tube enclosing the turbine is  equated to the time averaged 

force on the blade elements. Templin [8] used a single stream tube 

and took the flow velocity a t  the rotor to be the arithmetic mean of the 

velocity far  in front and the velocity far  behind the turbine. Multiple 

stream tubes have been used to account for the variation of the velocity 

across the s t ream tube, [9], [lo], [I I], but only Holme [12] considered 

the variations of flow velocity in both the streamwise and transverse 

directions. Common to a l l  these formulations is the assumption of 

quasi-steady motion in computing the forces acting on the blade 

elementq thereby neglecting the perturbation velocities induced by the 

wake, the added mass of the blades,and more significantly the varia- 

tions of the leading edge suction induced by the unsteady flow. At the 

low values of the reduced frequency usually encountered in studies of 

a Darrieus rotor, variations of the lift due to the unsteady effects a r e  

known to be small; however the leading edge suction variations a r e  

much larger and since a vertical axis wind turbine derives its torque 

from the thrust acting on the blade elements, these variations may 

prove to be of significant importance. Other effects neglected in 

these previous investigations include the stream curvature effects, 

the interaction of the rear  blades with the vortex wake shed from the 

forward blades a s  well a s  the three-dimensional effects. 
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The purpose of the present work is to develop a two-dimension- 

a l  model for a general class of vertical axis wind turbines. The 

investigation proceeds f rom the point of view of unsteady airfoil theory 

and adopts many of the ideas developed by Wu [14], [15], [16] in his 

study of the motion of a heaving and pitching airfoil. The contribution 

of the unsteady effects on the power extraction capability of a turbine 

a r e  fully evaluated, including the kinetic energy imparted to the fluid, 

hence lost, by the blades. This should make feasible the maximization 

of the mechanical efficiency of a turbine by a proper optimization of 

the blade motion. In addition this model could be used with some 

elements of momentum theory to provide a better approximation of the 

maximum power cseffieient of a turbine than is  now available. The 

basic theory is also applicable, with some change of parameters, to a 

large class of cycloidal propellers used in naval architecture 

(Schneider propellers). These propellers a r e  lift oriented devices 

primarly intended for marine vehicles operating in restricted waters 

where their ability to produce thrust in any direction greatly enhances 

ship maneuverability. 
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2. General Formulation 

Ln the present investigation we assume the fluid to be incom- 

pressible and inviscid. The effects of viscosity a r e  only implicitly 

inferred in invoking the Kutta condition and in turn in the formation of 

vortex wakes behind the blades. No fluid s ingularities a r e  allowed 

outside this wake and the flow is irrotational and has a scalar potential. 

The rotor to be investigated consists of a number of high 

aspect-ratio blades, of half chord c ,  symmetrical in shape and of 

constant cross  section along the span (fig. 2).  The blades a re  placed 

at regular intervals along the generators of a cylinder of radius R 

and rotate about the cylindrical axis with angular velocity !2 . The 

rotor is placed in a flow having a constant velocity U at infinity per- 

pendicular to the rotor axis. A cross  section of the rotor is taken at 

mid span and a two-dimensional analysis is applied. Due to the high 

aspect-ratio of the blades this approximation is expected to provide 

good quantitative results. -4 rotor composed of a single blade is 

investigated, but the results can be extended to multi bladed systems if 

the mutual interference between the blades is small. This assumption 

may seem restrictive for the study of a wind energy extracting turbine, 

where the mutual interference between the blades is usually not small. 

However, since we restricted the analysis to lightly loaded turbines 

and a r e  mainly interested in the influence of the unsteady effects on 

the overall performance of a turbine, it is a reasonable assumption. 

The wake crossing effects a r e  neglected in Par t  I of this study, 

since these effects a r e  investigated as  a new problem in Part 11. The 

usual assumptions of linearized wing theory a r e  used, i. e. : 
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i. Any movement of the wing relative to the apparent direc- 

tion of the incident flow is small so that the perturbation velocity 

components a r e  small compared to the apparent velocity of the un- 

disturbed flow ; 

ii. The Kutta condition holds, i. e. , both the pressure and the 

velocity a r e  required to be finite at the trailing edge of the blade; 

... 
111. The perturbation velocity is asymptotically zero at infinity, 

except in the region of the starting vortex and in the vortex wake. 

To satisfy these assumptions, small perturbations super - 
imposed on the "perfect" flow field of a flexible wing sliding on its 

trajectory a r e  assumed. This simplification is applicable to a rigid 

blade if the curvature of the trajectory is s r la l l  coriipared to the blade 

chord, and puts some restrictions on the relative value of S2R and U: 

i. When !2 R = U, the trajectory of the blade (described in 

the fluid f rame of reference fixed with the fluid at infinity) is a common 

cycloid (fig. 3a). This case is excluded since there exist isolated 

regions of large trajectory curvature. 

ii. When il R << U, the trajectory is a curtate cycloid and 

resembles a sinusoidal path (fig. 3b). In this case the trajectory 

curvature is  small, even when the radius of the rotor is of the same 

order a s  the chord of the blade. However, this case is not very 

interesting for energy extraction since a large number of blades would 

be necessary to cover the sweep area,  and each blade allowed to 

rotate a full 360' around its axis if the angle of attack was to be kept 

small. Furthermore, this problem is equivalent to a simple heaving 
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and pitching blade in a flow of approximately constant velocity and has 

been solved by Wu [14]. 

iii. We are  therefore left with the case R R >) U. The trajectory 

in this case is a prolate cycloid (fig. 3c) and looks like a circular path 

being slightly displaced after each revolution. This case is of much 

greater practical interest since the tip speed of the turbine is consid- 

erably higher than the wind velocity, which is a necessary condition 

for a significant amount of energy to be extracted. It is also relevant 

to the experiments done with rotors of fixed geometry where tip speeds 

of the order of 3 times the wind velocity a re  necessary before any 

energy can be extracted [7]. The curvature of the path in this case is 

1 of order - so that we also require R >> e for the curvature to  be R 

small. This is also relevant to the current design of Darrieus rotor, 

C 
where the value of - is usually around 0. 1 or smaller. 

R 

We therefore restrict our investigation to the case 

3 .  Kinematics of the motion 

3. 1 The coordinate systems 

We define three frames of reference. The first one (x Yo)  is 

the structure frame of reference. It is an inertialframe of reference, 

is fixed in space, its origin 0 is taken at the center of the rotor, 
0 

and the xo- axis points in the direction of the undisturbed flow velocity. 

The second frame of reference (x y ) rotates in the counterclock- 
1' 1 

wise sense with an angular velocity 4 l  with respect to the structure 



frame and they share the same origin. The third one (x, y) is the 

body frame of reference, its origin 0 is located along the yl- axis 

a t  a distance R from 0 and the x- axis is taken to be tangential to 
0 

the relative velocity of the undisturbed flow at 0 ,  and points in the 

same direction. The three frames of reference a r e  represented in 

figure 4. 

We introduce 8,  X and 7 as  the relative position angles of the 

three frames of reference, respectively (fig. 4), with al l  the angles 

assuming positive values in the counterclockwise directions. 

6' is the angle between % 
and hl , 

such that 
0 

where % i s  a unit vector directed upward from the plane (xo, yo). 

X is  the angle between e and e 
"x' 

such that 
- 1  

7 is the angle between e and e , such that 
-x rrx 

0 

and 

T, = e t x  . 

The angular velocity of the body frame of reference with respect to the 

structure frame of reference is denoted by o, so that 



and 

where the subscript t denotes the time differentiation executed in the 

structure f rame of reference. We also define the two vectors 

and by 

and 

We call the velocity of the undisturbed fluid in the structure frame 

of reference, and the relative velocity of the undisturbed fluid at 

the center of the body frame of reference. The following relationships 

can then be written 

The components of in (xl, yl) a r e  

V .  e - = V sin 1 = -U sin 8 , 
-y1 
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so that the magnitude of is 

2 2 2  
V = (U + i2 R t 2URQ cos 8 )  1 /2 

9 

and for the angle X we have 

-sin 8 tan X = cos 8 t R R / U  

The body frame of reference was chosen for the convenience 

of describing small  perturbations. In this frame of reference, with 

the variation of X prescribed by (1. 4), the undisturbed flow at  the 

origin 0 is  always parallel to the s a x i s  and thus small movement 

of a blade about this mean position can be considered in the framework 

of linearized wing theory. It must be noted that in the body frame of 

reference, a rotor of fixed geometry with respect to (x y ) would 1' 1 

appear as  having an unsteady motion. For  instance a blade which 

would be centered at 0 with a fixed angle with respect to e would 
-XI 

appear as  having a pure pitching motion. 

3. 2 Trajectory 

The trajectory of the origin of the body frame of reference in 

the fluid can be more easily described with the help of a new frame of 

reference (x y ) which is  translating with the undisturbed fluid at 2' 2 

infinity, and will be referred to as  the fluid frame of reference. Its 

axis a r e  chosen with the same orientation a s  (x y ) and its origin 
0' 0 

O2 is chosen to coincide with O0 at  t = 0 and is translating in the 

positive x direction with speed U (see fig. 4). 
0 
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In the fluid frame of reference the origin 0 appears to be 

moving with the velocity -x( t ) .  We call s ( t )  the position vector of 

0 in the fluid frame of reference and gs(t)  the unit vector tangent to 

the trajectory in the direction of motion (see fig. 5) .  We can then 

write the following relations: 

In the body frame of reference, the trajectory of the' origin 0 in 

space can be described by 

x (t', t )  = ( t ' )  - S ( t )  , - c (1. 8) 

where t is the present time and t1 an arbitrary instant of time 

serving as  a parameter. Differentiating ,Xc(tt , t )  with respect to t '  

and using (1. 7) and (1. 8)  leads to 

a s  c(t', t )  
= -,V (t' ) 

Integrating this relation with respect to t ' ,  we obtain the parametric 

representation of the trajectory in the body frame of reference as 
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We can decompose e ( t ' )  in the body frame of reference, -s 

using (1. 6),  we obtain 

CC 

e ( t ' )  = -e ( t )  . e ( t ' )  = -cos q (t', t )  , 
S1 -x -x 

- 
e ( t ' ) =  - e y ( t ) .  e ( t ' )  = - s i n ?  ( t l , t )  , 

2 -x 

where ';; (t', t )  is defined by 

Then, using (1. 5), (1. 9 )  and (1. l o ) ,  we can decompose X (t',t) into its 
T 

components in the body frame of reference a s  follows 

Finally the curvature of the trajectory can be readily obtained 

from (1. 10) and (1. 11) as  

The curvature of the path simply takes the form of the ratio of the two 

velocities characterizing the motion of the blade with respect to the 

fluid. 
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3 . 3  Boundary conditions 

The velocity expressed in the structure frame of reference of 

a point fixed in the body frame of reference is 

where is the position vector of that point in the body frame of 

reference. The perturbation velocity E and the total velocity 8 , 

expressed in the structure frame of reference, a re  related by 

Q = X t u ,  . - (1. 15) 

Further, in the body frame of reference the velocity of the fluid is 

S = Q - s  . - 
Then, using (1.2), (1. 14) and (1. 15), we can express q as 

hr 

The blade is represented in the body frame of reference by its 

transverse displacement from the x-axis given by 

y = h(x, t )  . 

A blade of chord 2 is  chosen, extending from x = - 1 to x = t 1, and 

the thickness of the blade i s  neglected (fig. 6).  

The normal velocity of the flow on the blade must always be 

equal to the normal component of the blade velocity 
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where Q is the unit vector normal to the blade. In the body frame of 

reference we can express Q as  

and v as  --B 

Therefore the kinematic boundary condition (1, 18) can be expressed as  

- ah t q ( h - y )  = 0 , at - 

We finally define u and v to be the x-component and y-component of 

the perturbation velocity , 

Then, using (1. 17) and (1. 2 )  in (1. 19) we obtain 

3 . 4  The osculating case 

Lf we consider the motion of a flexible blade sliding entirely on 

the trajectory left by its leading edge, then the blade will not disturb 

the inviscid fluid, because every point of the blade moves only tangen- 

tially to the boundary of the fluid with which the blade makes contact. 
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This conclusion follows from the absence of a mechanism by which the 

shear s t ress  can be transmitted to the fluid in potential flow. Let's 

consider the trajectory of the leading edge 0 which is  followed in 

osculation by the motion of a flexible blade. The blade displacement 

from the x-axis is then 

The boundary condition (1. 20) can be written as  

Using the relation 

and the expression for X ( t ' ,  t )  and Y (t ' ,  t )  given by ( 1 .  12), the 
C C 

kinematic boundary condition reduces to 

v - - = tan 7 ( t i ,  t )  . 
u 

This relation implies that the flow is  everywhere tangential to the 

blade surface, a fact which can also be expressed as  



. where 4p is the velocity potential such that = '7 cp. 

If we assume that the fluid is initially at res t  and that any 

subsequent disturbance vanishes a t  infinity, then on all  the flow 

boundaries, including the vortex sheet, the following relationship is 

satisfied. 

2 
The unique solution of the Laplace equation, V cp = 0, satisfying 

this boundary condition is cp =const; consequently 2 = - 0 everywhere 

in the fluid and the proof is complete. 

To ensure that only small disturbances a r e  generated and 

imparted to the fluid, we must restr ict  the blade to small  displace- 

ments from the trajectory of the origin 0 ;  namely we require that 

The function h (x, t )  defined in section 3 .  4 depends directly on the 
C 

value of the curvature of the path relative to the chord of the blade. 

For  a blade of unit half chord, hc(x, t )  can be kept small by taking 

As stated earl ier ,  these two conditions a r e  not really restrictive 

since they correlate well with the practical design and operating 

conditions of a Darrieus rotor. The only additional condition needed 

is 



which puts a limitation on the relative movements of the blade in the 

body frame of reference. 

3 . 5  Linearized boundary conditions 

We now restr ict  our analysis to the case of small perturbations. 

In addition to the afore mentioned restrictions, we also assume the 

perturbation velocity to be small, a s  well as  the derivatives of the 

blade displacement. The complete set of assumptions, with the half 

chord normalized to unity, is then 

Recalling equation (1. 2 0 )  and neglecting the quadratic and higher order 

terms,  we obtain the linearized boundary condition 

We can see f rom this equation that the fluid disturbance ar ises  from 

three sources: 

ah which represents the disturbance induced by the rate 
L- at 

of change in lateral motion of the blade in the body frame of reference; 
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ii. V(t) which is the disturbance induced by the displace- 

ment of the blade from its zero "effective incidence" position; 

iii. o (t)x which is the disturbance due to the rotation of the 

body coordinates with respect to the fixed system and the rigidity of 

the blade. 

4. Dynamics 

4. 1 The Bernoulli equation 

For  the flow of an incompressible and inviscid fluid in the 

absence of external forces, the Euler equation of motion is 

where the subscript o denotes the derivatives taken in an inertial 

frame of reference. Assuming the flow to be irrotational in the 

inertial frame of reference, a f i r s t  integral of this equation can be 

obtained, the result of which is the Bernoulli equation which can be 

expressed in the present case by 

where cp represents the potential of the perturbation velocity g, i. e., 

and p is the hydrodynamic pressure in the fluid at infinity. We can 

express equation (1. 24) in the body frame of reference by 



1 2 P , - P  
t Z (Vq) t v_ ( t )  . vq  - (2 x 5 ) .  Vq = at P 

(1. 26) 

In deriving this expression, use has been made of (1. 2 ) ,  (1. 4)  and the 

following relationships 

Linearizing (1. 26) by neglecting ( ~ p ) '  and developing it yields 

This is our required linearized Bernoulli equation expressed 

in the body f rame of reference. This equation shows that variations 

of pressure a r i se  from three types of blade motion: 

, which represents the class of motion of the blade that 1. - at 

appears to be unsteady in the body frame of reference; 

a ii.. V - which depends on the rectilinear motion of the body 
ax 

frame of reference ; 

a40 a" - x -) , which ar ises  from the angular motion of iii. o(y ax 
ay 

the body frame of reference. 

The equation of continuity for an incompressible fluid is 

Vo Q = 0 . As usual in incompressible potential flow, this equation - 
together with (1. 25) leads to the Laplace equation 

Equations (1. 28) and (1. 29) therefore provide the equations of 

rno t ion. 



4. 2 The acceleration potential 

A different expression of the Euler equation of motion can be 

found by defining a new function 

which allow (1.23 ) to be expressed a s  

dQ 
Y where % is  the acceleration vector of the local field, 2 = - 

dto 
G is accordingly called the acceleration potential, and has the main 

advantage of being continuous everywhere in the fluid, except across 

the blade itself. Especially noteworthy is its being continuous across 

the vortex sheet shed from the blade trailing edge, due to the continuity 

of the pressure across the wake. 

Unlike the velocity potential 9, which is always a harmonic 

function for irrotational motion of an incompressible fluid, (i. e . ,  

2 
Po 9 = 0). the acceleration potential is generally not harmonic. In 

fact, taking the divergence of (1. 3 l ) ,  using (1. 2 4 )  and (1. 29) ,  we 

easily find 3 

However, within the framework of our linearized theory, we can 

neglect the second order terms,  and consider cP to be a harmonic 

function, i. e. , 



4. 3 Formulation in the complex plane 

Since both the velocity and the acceleration potential a r e  har-  

monic functions, the complex variable theory will be used in the 

subsequent analysis. We therefore recast  the problem in complex 

form. F i r s t ,  we define J1 and 9 to be the functions conjugate to 40 

and iP respectively, such that the Cauchy-Riernann equations a r e  

satisfied 

We further define '5 to be the complex accleration potential and f 

to be the complex velocity potential so that 

and 

where z = x + iy, and i = fi is the imaginary unit. Finally we 

define W(z, t )  to be the complex velocity 

d 
W(z, t )  = - dz f ( z , t )  = u - i v  . 

The Bernoulli equation (1. 2 8 )  can be written a s  

or, in complex form 



As usual in complex theory, only the real  part of equation (1. 3 6 )  re -  

presents the original Bernoulli equation. Differentiating (1. 3 6 )  with 

respect to z yields 

aT - aw - - -  aw 
a z at 

t (V - iwz) - - iw W a~ 

1% is convenient at this point to change the time variable from the 

absolute time t in the body frame to a new one reflecting the a r c  

length traversed along the trajectory in time t. 

As we may notice, r ( t )  is directly a measure of the a r c  length along 

the blade trajectory. Performing this change of variables on (1. 3 7)  

leads to 

We can further simplify this relation by defining two new functions 

and 
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where F (z ,  7) is analytic and K (7) represents  the curvature of the 

trajectory. This allows us to express  the complex equation of motion 

(1. 3 9 )  a s  

In the sequel, we will use the new t ime variable 7(t) instead 

of t ,  so that, for  instance, W(z, t )  can be written a s  

However, we will keep our old notation W for  simplicity. 

4 . 4  A Riernann-Hilbert problem 

So far we have defined an analytic function F(z ,  t )  continuous 

everywhere in the fluid except ac ross  the blade, and subject to the 

following conditions. 

i. F ( z , r )  + 0 a s  z + m . 
ii. F(z ,  7) and W(z, 7)  a r e  related by 

iii. W(z, 7 )  - 0 a s  z * co , except in the region of the 

vortex wake. 



These conditions allow us to define a Riemann-Hilbert problem for 

- . However, it is more  convenient to work with F(z,  7)  itself, which 

we can obtain by integrating (1. 41) with respect to z. Taking the 

integration along the trajectory f rom upstream infinity (5 = - co) to 

the blade (5 = z )  yields 

(1. 44) 

Performing the integration f rom upst ream infinity and neglecting the 

effects due to the crossing of the wake, we find that both W(z ,  7) and 

F(z ,  7) tend asymptotically to zero  a s  z goes to -a. Furthermore,  

the Kelvin's circulation theor e m  states  that the total circulation around 

the wing-wake system is always zero; this in turn implies that in the 

far-field a t  upstream iafinity W(z, 7) decays a t  least  a s  O (  1 z 1 -L). 
Making use of these c anditions in (1. 44) we obtain 

where p(z, 7 )  is a new function defined by 

The problem described above can now be formulated a s  a 

Riemann-Hilbert problem for  F(z,  7). We seek a solution for F (z ,  T ) ,  

required to be holomorphic in the region D defined by C and Cd 
0 

where Co encloses the blade and its wake and C is a closed contour 
00 



circumventing the point of infinity (fig. 7 ) ,  and subject to the 

following boundary conditions on and C : 

i. on Cco F ( z , T )  -, 0 ; 

ii. on C o y  for  1x1 > 1 , 

where Ft and F- refer to the value of F a s  z approaches the 

boundary f rom above and from below, respectively ; 

iii. on Co , for Ix / < 1 , 

now, the  symmetry of the flow and the Cauchy-Riemann equations 

(1. 25) imply that v* is even in y and u* odd in y; therefore 

W+ t W- = -2ivt on the blade and the boundary condition for F can 

be written f rom (1. 45) as  

where f l(x,  7) and Ao(r) a r e  defined by 

and 
- 1 
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~t i s  apparent f r o m  these expressions that f (x, T )  i s  completely 

defined by the motion of the blade h(x, t )  and the kinematic boundary 

condition (1. 22), and that A0(r)  i s  an  unknown function of t ime only. 

It now remains  to  solve the Riemann-Hilbert problem fo r  F(z ,  7). 

4. 5 Solution of the Riemann-Hilbert problem 

In o rde r  to  solve this  problem, we introduce two analytic 

functions H(z)  and Q(z, T )  such that  

H+ t H- = o for  l x l < l o n  co , 

Ht - H- = o for  1x1 >ion co , 

and 

The boundary conditions on C f o r  Q(z, T )  can then be written a s  
0 

The solution to this problem i s  readily available ( see  ref. [17], 55);  

it consists of a part icular  solution and a complementary solution 

appropriate to  the corresponding homogeneous problem. The part ic-  

ular  solution can be expressed  a s  
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which provides us with a particular solution for F(z ,  T)  

in which H(z), a solution of the homogeneous boundary-value problem, 

(1. 51), can assume the form 

where R(z) is a rational function of z and H(z) is defined to be 

one-valued in the cut z-plane with a branch cut from z = - 1 to 

z = t l  along the real  z-axis, so that H(z) - R(z) as  l z  1 - m for 

al l  arg z. In addition, the function H(z) can also serve as  a comple- 

mentary solution of F(z, T )  if the rational function R(z) is purely 

imaginary on the real  z-axis since then the boundary conditions 

(1.47) and (1.48) automatically remain fulfilled. The uniqueness of 

the solution then depends on the required properties of F (2, T )  : 

i. F(z,  7) must be regular everywhere in D and must 

vanish at infinity ; 

ii. F(z, T) is expected to have a leading edge singularity of 

order (z + 1)- I ,  as  shown by Wu [ 15 ]  ; 

iii. F(z,  7 )  must be finite (actually vanishes) at the trailing 

edge to satisfy the Kutta condition. 

For the particular solution of F(z, T), these properties 

imply that R(z) cannot have a pole or a zero at finite z and 

R(z) = O(1) near z = ~t 1. The unique function satisfying these 

conditions is 



R(z) = constant . 

For the complementary solution for F(z, T), these same 

properties ( i)  - (iii) required of F clearly leave no other possibilities 

for R(z) but R(z) = 0, and hence a trivial complementary solution 

for F.  

Consequently, the unique solution for F(z, 7) is 

The only unknown remaining in this equation is the function 

Ao( 7). This function is affected by the unsteadiness of the motion and 

is related to the strength of the leading edge singularity, as  will be 

shown later. It appears in (1. 50)  in the form of a definite integral of 

the complex velocity. 

In the derivation of (1. 53 ), the Euler equation of motion (1. 41 ) 

was used for the sole purpose of providing the boundary conditions for 

F(z,  7). Making use of our solution for F(z, T)  in equation (1. 41 ) will 

enable us to obtain an integral equation for W(z, T) ,  or equivalently 

for  A0(7). TO this end we need an expression of W(z, 7) in terms of 

F(z, T), which we can obtain by integrating (1. 41 ) using the method of 

characteristics. 

4. 6 Integration of the Euler equation along its characteristics 

We recall the expression of the Euler equation of motion (1. 41 ) 
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Using (1. 46) we can rewrite this expression a s  

The characteristics of this equation a r e  given by 

along which the following relationship is  satisfied 

Using (1. 55) in (1. 54) then yields 

dz 
along 5 = P(z, 7) . 

d7 It may be noted that we could have used - for the character- dz 
dz 

istics instead of - 
d7 ' The two formulations a r e  equivalent and we 

can exchange variables by using 

4. 6. 1 The characteristic lines 

Recalling the definition of p(z, 7) given by (1. 46), we 

can write (1. 55) as  

- dz + ~ K ( T ) Z  = 1 . d'r 
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By inspection, we can rewri te  this equation a s  

provided that 

Equation (1.60) can of course be integrated directly, but a s impler  

resul t  can be found by recalling f r o m  (1.40b) and (1. 1 )  that 

and 

Us ing these two relations, we have 

hence (1. 60) can be readily integrated to obtain 

b(7) = eiq(') . 

Replacing this resul t  in (1. 59) yields 

d i q ( ~ ) ]  = e i q ( ~ )  - d r  [ze , 

which can be easi ly integrated to obtain 



'C 

where q(7, 7') is defined similarly to q (t', t ) (  eq. 1. 11) by 

~ ( 7 ,  = q(7) - q(7') . (1. 63) 

This result can be expressed in a more elegant form by using the 

Bquation of the trajectory, as  defined in (1. 12) by 

t ' 
'C + 

yc( t t ,  t )  = - v(T) sin '1 i t ,  t )  ciF . 
t 

Expressing the equation of the trajectory in complex form yields 

and since 

we obtain the general expression for the characteristic lines as 

4. 6. 2 Integration along the characteristics 

By analogy with (1. 62), we can rewrite equation (1. 57)  
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Using (1. 56) and integrating (1. 66 )  f rom 0 to 7, with W(z, 0) = 0, 

yields 

Finally, integrating the f i rs t  integral by parts,  we obtain 

.v 

where z t (z ,  T, T )  is given by (1. 65). 

This equation and the equation of the characteristic lines (1. 65) 

provide the general relationship between W(z, 7) and F(z,  7). 

Substitution of the solution (1. 53) found for F(z ,  7) into (1!67) results 

in an integral equation for W(z, 7) and the problem is therefore re-  

duced to solving a single integral equation involving only one variable. 

A closed form solution cannot be obtained at this point, but the 

integral equation (1. 67) can be solved by numerical methods. 

Some further simplifications can be made since we restricted 

ourself to the case OR >> U, the trajectory is a prolate cycloid (fig. 

3 c )  and the path curvature is nearly constant and of order ( 1 ) .  An 

explicit evaluation to leading order of the terms in the Euler equation 

(1. 57) is given in Appendix A. This evaluation suggests that it should 

be a good approximation to neglect the variation of the path curvature. 



Simplified expression of the characteristic 

equation 

Taking the derivative of P(z, r)W(z, 7) along the charac- 

teristics, using (1.46) and (1. 58), we obtain 

d~ (7) where stands for - 
d7 

. It is  shown in Appendix A that, within . 
Z K  

the framework of our linearized theory, the te rm - 
PK 

is at least of 

2 
order ( l /R) ,  and is of order (1/R ) for z of order unity. This 

suggests that we may neglect it in comparison with unity in (1. 68), 

which is equivalent to neglecting the variation of the curvature of the 

path and should lead to a uniformly valid approximation of the solution 

a t  f i rs t  order. Performing this simplification and using (1. 58), we 

can express (1. 68) a s  

Replacing (1. 57)  in (1. 69), we obtain the approximate expression for 

the Euler equation of motion in terms of the characteristics 

Integrating this expression from 0 to 7, using the initial condition 

Wfz, 0) = 0, yields 



- 
where z l (z ,  7, T )  is given by (1. 65). Finally, integrating this expres- 

sion by parts ,  using (1. 56), (1. 65) and the initial condition F(z,  0) = 0, 

leads to 
7 

- 
where z l (z ,  T, T )  is given by (1. 65). 

As can be seen easily, this expression is much simpler than 

(1'. 67) while s t i l l  accurate to f i r s t  order.  It expresses the depen- 

dence of the local velocity of the fluid a t  any point on the instantaneous 

pressure  a t  this point together with the retarded p ressure  which was 

present along the character istic line emanating f rom this point. 

Substitution of the solution (1. 53) for F(z ,  7) into this simplified 

expression resul ts  again in an integral equation for W(z, 7) or equiv- 

alently an integral equation for  AO(r).  

4. 7 Development of the integral equation for Ao(7) 

By comparing the two integral forms of the Euler equation (1. 45 ) 

' and (1. 71 ) we deduce the following relationship 

where z1(z ,7 ,? )  is  given by (1.65). Using ( 2 . 5 0 )  and (1. 72), we can 

then express Ao(r)  a s  
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It is convenient at  this point to rewrite the solution (1. 5 3 )  for  

F(z,  7) in a form which isolates the contribution of the singularity at 

the leading edge. Using the identity 

1 1te  ) 
112 - l I 2  l t z  

5 - . ' ~  = (1 - g 2 )  [-+ 11 9 

we can rewrite (1. 53 ) a s  

where a (z)  is defined by 
0 

We can simplify this further by using the identity 

which holds valid for arbitrary z, not lying on the branch cut extending 

from z = -1 to z = t l  along the rea l  z axis, 

i 2-1 112 z -1 
F(z ,  7) = iAO(r) - Z  aO( r )  (-1 z t l  d6 - 

- 1 
5 - 2  

It may be noted that the only t e rm of this equation which is singular at 

the leading edge is ao(r) (z  - 1 )' l2 (z+ 1 ) -  . We can therefore consider 
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a (7) a s  representing the strength of the leading edge singularity. 
0 

Making use of this express ion for F(z, T)  in (1. 73 ), we obtain 

7 7 
1 / 2  

i~ 0 ( r ) = j  ~ [ i ~ ~ ( ; ) ] d ~ - $ ~  a 7  +(cl) ao(;jd; 
a ?  z ' t  1 

0 0 

Finally, integrating the f i rs t  integral t e rm in this expression, using 

Ao(0) = 0, leads to 

where the integrations a re  to be performed along the characteristic 

line emanating from z = - 1. 

This expression provides us with an integral equation for aO(T) 

which, if solved exactaly, would lead to a uniformly valid solution of 

F (z, T). Unfortunately this equation, though cons iderably simpler than 

the original integral equation for A0(7), still needs to be solved 

numerically due to the complicated shape of the characteristic lines. 

A closed form solution for aO( r )  can only be obtained by performing 

the integration along some simplified characteristic lines. 

4. 8 Approximated characteristic lines 

The exact expression of the characteristic lines was given in 

(1. 65) by 



in which Z ( T I ,  7) represents the trajectory 
C 

Noting that 

we see that the characteristic lines look like "reversedH trajectories 

further distorted by the addition of a cyclic perturbation z e h ( 7 ,  

( fig. 8). 

An approximation of these lines can be made by the same 

simplification adopted in the development of equation (1. 71)  which 

amounts to neglecting the variation of the curvature of the path, which 

may be regarded as  small  in the present case. From Appendix A, 

K ( T )  can be expressed as  

1 2 
~ ( 7 )  = - [I  - 2 ~ '  C O S  6 f  O ( E 1  )I , R 

where by definition E '  = U / n R ,  here  taken to be small, E '  << 1. 

From this expression, we see that K (7) can be approximated 

to the leading order by a constant representing the curvature of the 

path traversed in the inertial frame of reference: 

1 
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Using this approximation in (1. 61) and integrating f rom 0 to 7, 

using (1. 63), we obtain 

The expression of the approximated characteristic lines can then be 

found by using (1. 78) in (1. 64), integrating (1. 64),and replacing it in 

which can also be expressed by simple inversion a s  

where E << 1 is defined by 

1 These curves approximate the character istic s a t  order O(x)  

for z '  of O(1) and a r e  still accurate at leading order for higher 

values of z ' .  They only diverge slowly f rom the true characteristics 

as  the retarded time increases, since the true characteristics drift 

away from the airfoil after each revolution, while the approximated 

curves a r e  periodic and close on themselves a t  z = -1 (as shown 

in fig. 8). This periodic behavior is indeed the major problem 

associated with this approximation, which should only be used with 

caution. In the case of a blade starting from rest ,  the .curves can be 

used directly during most of the f i rs t  revolution. If we a r e  interested 

in the flow field a long time after the s tar t  of the motion, then we must 
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restr ict  ourselves to some limited portion of these lines in order to 

avoid coming back in the a rea  of strong disturbances around the 

leading edge. In doing so, we obviously neglect the portion of the 

characteristics associated with a large retarded time. The physical 

reasoning behind this simplification lies in the influence of the retarded 

pressure upon the instantaneous velocity field. Intuitively it is logical 

that the retarded pressures  having the most influence a re  those 

occurring in the immediate past history. This assumption is further 

supported by the relative influence of the wake vorticity, which re-  

presents the link between the past history of the motion and the present 

state of the flow. Von  armi in and Sears have shown that the effect of 

the wake vorticity on the induced vorticity distribution on a blade is 

very much dependent on the distance from the wake vortex to the blade 

(see figure 2 and reference 2 of part 11), and becomes practically 

negligible when the vortex is a few chords away from the blade. It is 

therefore quite clear that a small  portion of the wake is really 

responsible for the local velocity field in the vicinity of the blade. 

Obviously, the more general flow field around the complete turbine is 

induced by the total wake vorticity, but this induced velocity appears 

as  a constant in the immediate vicinity of the blade and therefore 

merely changes the apparent f ree  flow velocity of the fluid around the 

blade. Similarly, the retarded pressures occurring at large values of 

the retarded time reflect the state of the general flow field around the 

turbine and have little influence on the instantaneous flow field in the 

vicinity of the blade. If we recall that the present theory can be con- 

sidered a s  a correction of the quasi steady momentum theory, with 
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the purpose of evaluating the effect of the unsteadiness on the blade 

loading, the above simplification can be seen as a way to provide a 

leading order  approximation of this correction. 

The eas ies t  way to practically avoid par t  of the approximated 

characteris t ic  is  to take an expansion in 6 of (1. 79), o r  (1. 80), and 

only keep the lower order  te rms.  An approximation a t  leading order  

leads to a straight line while a f i r s t  order  approximation includes the 

curvature and approximates the characteris t ic  up to z '  of order  R. 

In any case the approximate curve would diverge f rom (1. 79) before 

this line comes back in the region of higher disturbance, and there- 

fo re  avoids the aforementioned problem. 

4. 9 Solution for a O ( r )  

The integral equation for a (7) was given in (1. 76) a s  
0 

where the integration is  meant to be performed along z l ( -1 ,  T, T I ) .  

Using (1. 58) and approximating p(z, T)  by 

we can change the integration variable and express (1. 76) a s  

- 112 -1 - t l  
d g  2 a 

a o ( r f ,  
= ---5 + j ~5 112 5(5. 7 1 )  &J IT a 7  (p2) - 

z t l  
dE 7 

-00 P(z) -CO P(z) -1 1-5 5 - 2  



in which we have chosen the initial position to be z +-co and the 
0 - 

integration path i s  along 7' (7, - 1, z). Using (1. 80), the approximated 

characteristic ~ ' ( 7 ,  -1, z ' )  can be expressed a s  

( T - 1 ,  = 7 - 4- LE log [*I 
e I ~ L C  

Expanding this expression for smal l  c yields 

which can be expressed, after neglecting the higher order  te rms,  a s  

7'17, -1, Z ' )  = T t B(z ' )  , 

B(z l )  = ( l t z ' )  - 2 (1 -z t2 , )  . 

With this approximation equation (1.82 ) becomes 

This equation can now be solved by the method of Laplace transform. 

Defining the Laplace transform by 

and since R ~ [ B ( z ) ]  < 0, a s  the integration of (1.84) is performed f rom 

z = -co to z = t 1 ,  we can use the shift property of this transformation 

to express the functions depending on [T t B(z)]: 



and 

Taking the Laplace transform of (1. 84) then leads to 

As is readily apparent, the two integrals a r e  completely defined and - 
therefore. a ( s )  can be expressed in closed form from this equation. 

0 

The remaining problem is in the evaluation of the two integrals and in 

* 
the inverse transformation of a (s) .  This evaluation is  carried out 

0 

in Appendix B up to order E and the result is 

where 

and Ko(s) and Kl ( s )  a r e  modified Bessel 's functions of the second 

kind. 
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Performing the inverse transformation of this relation leads to 

where H(T) is defined by the Mellin inversion integral as  

a tico 
ST- 

e H(s)ds  , (a > 0) , (1. 89) 

CW- ico 

where the integration path is the Bromwich contour. Finally, we can 

express A (7) f rom the definition of ao(7) given in (1. 74); the result 
0 

where f l ($ ,  7) is given by (1. 49). 

5. Forces 

As is  usual in potential flow, the only forces exerted on the 

blade by the fluid a r e  due to the pressure. They consist of the 

pressure force, which a r i ses  f rom the difference in the pressure 

acting on both sides of the blade, and the leading edge suction, which 

ar ises  from the singularity of the pressure a t  the nose of the airfoil. 

5. 1 The pressure force 

This force is always normal to the blade for a flat plate blade 

and can be obtained directly from the integration of the pressure jump 

across the blade. 
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t where Ap = ( p -  - p ). The pressure jump across  the blade can be 

expressed f rom (1.30) a s  

and from equations (1. 53), (1. 40a) and (1. 34a) we obtain 

where f (6, t )  and Ao(t) a r e  the functions f (5, 7) and A0(r)  

expressed with the regular t ime t, and ~ e [  ] stands for the real  

part  of a complex expression. 

5. 2 The leading edge suction 

The leading edge suction ar ises  f rom the singular pressure on 

the nose of the blade. It can be evaluated by applying the Blasius 

theorem on a contour enclosing a small neighborhood around the 

leading edge. The behavior of F(z, 7) as  z + -1 can be obtained 

from (1. 53), or from (1. 75) where the singularity is already singled 

out. 

At this point it must be noted that in the linearized Bernoulli 

equation (1. 28) the quadratic perturbation velocity t e rm was neglected. 

This simplification is not valid in the neighborhood of the leading edge, 

where a singularity in exists, and therefore the solution obtained 

for F(z ,  7) does not reflect the true pressure field in this area.  

However, the behavior of W(z, 7) can still  be obtained from (1. 75) a s  

the particular solution of F(z, 7) was chosen, following Wu [15], so 

a s  to provide an integrable singularity in W(z, 7) at the leading edge. 
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Then, f rom equation (1. 45), we obtain 

The general form of the Blasius Theorem is 

where Xs and Ys  represent the components of the singular force - 
along ax and e respectively and W is the total complex flow 

-Y 

velocity composed of both the perturbation velocity W and the velocity 

induced by the nose of the blade in the immediate vicinity of the leading 

edge. The only t e rm  in the equation whose contribution does not 

vanish in the limit is the quadratic perturbation velocity term. 

Equation (1. 94) therefore reduces to 

which, when applied to (1. 93 ), yields 



As is readily apparent from these relations, the singular force is 

composed in the present case of both a tangential and a normal compo- 

nent. The presence of a normal component to the leading edge suction 

is a new phenomenon directly related to the curvature of the trajectory. 

Both the imaginary part of P(-1, T), expressing the angular velocity 

o of the body frame of reference, and the imaginary part of a (T),  
0 

reflecting the integration of the Euler equation of motion (1. 71 ) over a 

curved characteristic line, a re  at the origin of Ys. Since both terms 

are  linear in K ( T ) ,  and are  therefore of order E , the Y component 

itself is linear in K (7) and of order E . 
5 . 3  The total force 

The total force is composed of F , Xs and Ys. From (1. 95a), 
P 

we see that Xs is negative and therefore represents a local thrust. 

The direction of F depeilds on the position of the blade in the body 
P 

frame of reference, and can induce either a thrust or a drag. The 

total force can be expressed by its components in the body frame of 

reference. 

F = X g , C Y e y  , cc. 

where 

X = Xs - F  s i n k t  , 
P 

Y = Ys t F cos A t  , 
P 

and A '  represents the angle of the blade in the body frame of refer - 
ence such that 



The force in the -e direction, whose product with R (the moment 
-1 

a r m )  gives the final torque of the turbine, can be easily calculated 

T1 = -X  cos 1 t Y sin h . (1.99) 

Finally, the force in the -% direction is given by 
0 

To = -X  cos q t Y sin q . 

5. 4 Moments 

The moment of the total force about the origin of the body 

frame of reference is given by 

where (A p)cos X t  represents the component of the pressure force in 

the e direction. 
"Y 

The moment of the total force about the center of the turbine, 

representing the torque applied on the turbine axis by the blade, can 

be readily obtained from (1. 99) as  

6. Power and energy 

6. 1 Kinetic energy 

The rate at which kinetic energy is imparted to the fluid by the 

blade can be easily obtained in the fluid frame of reference, in which 

the apparent velocity of the flow vanishes at infinity, by 



where D represents the complete fluid region. Using ( 1 . 3  1 ) and the 

divergence f ree  nature of 2 , it is  possible to convert this volume 

integral into the following surface integral 

. where Co and CW were defined in section 4. 4 (fig. 7 )  and n is the 

unit vector normal to the surface, pointing away from the fluid. 

Noting that (2 . is  continuous across the surfaces, that if, is 

continuous everyw-here except across  the blade and that 9(~. 5) is of 

order O( I z I -' ) in the far  field, we obtain for k 
+1 - 

v(x, t )  9 p  cos X' p G ( z - s ) d s  . (1.103) 

- 1 LE 

- 
In this equation, the velocity represent the total fluid velocity with 

respect to the fluid frame of reference in the neighborhood of the 

leading edge. Using the kinematic boundary condition 

where XLE represents the velocity of the nose of the blade, we 

obtain the relation 



Noting that the integral on the right hand side of the equation repre- 

sents the leading edge suction, we can express (1. 103)  as  

where _VLE is given in the body frame of reference by 

Finally, using (1. 105), (1. 101), (1. 98) and (1. 91)  in (1. 1041, we 

obtain 

6. 2 Power output 

The power input to the turbine, defined to be negative if energy 

is extracted from the fluid, consists of the energy necessar i  to sustain 

the rotational motion of the blade around the axis of the turbine, the 

energy necessary to maintain the rotational motion of the blade with 

respect to its mid chord and the energy necessary to overcome the 

hydrodynamic reaction to the blade motion in the body frame of 

reference. Hence the total power input is 



49 

The power output of the turbine is then simply 

6.3 Energy balance 

By comparison between (1. 106) and (1. 107), using (1. 97a), we 

can immediately write 

Combining then this expression with (1. 102), (1. 99) and (1. 100) and 

using the following geometric relationships 

CZR sin X = - U  sin , 

OR cos X = V(t) - U cos , 

we obtain 

This relation expresses the principle of conservation of energy, by 

which the power input to the turbine must be equal to the rate of work 

done by the thrust, T U, plus the kinetic energy imparted to the fluid 
0 

in unit time. 
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7. Conclusion 

h this work, a hydromechanical theory was developed which 

proceeds f rom the point of view of unsteady airfoil theory. While 

primarily intended for energy extraction devices, such a s  the Darrieus 

rotor, this theory is  applicable to a large class of vertical axis turbines, 

including cycloidal propellers of the Schneider type. The study was 

originally intended for the case of a fast rotating turbine in a slow 

stream, but since no limitation was applied to the range of the r e  - 
duced frequency oc/U, the theory is  inherently valid for  other cases. 

Of particular interest, for instance, is the high speed propulsion mode 

of the Schneider propeller to which this theory can be applied with only 

minor changes. A uniformly valid f i rs t  order solution has been 

obtained in closed form after making an approximation, which is  based 

on neglecting the variation of the curvature of the path, thus approxi- 

mating a prolate cycloid by a circle. Such an approximation should be 

physically sound since the retarded pressure having the strongest 

influence upon the velocity field is that occurring in the immediate past 

history. F rom the resulting value for ao(7), we find that the leading 

edge suction is  composed in the present case of both tangential and a 

normal (to the blade chord) component. The normal component is 

linear in K ( T )  and reveals the first-order effects of the asymmetry of 

the flow field in the neighborhood of the leading edge due to the curva- 

ture of the flow. Unfortunately, no data a r e  available to show the 

composition of this singular force acting on a blade in cycloidal motion 

and the existence of such a normal component has therefore never been 

observed. However, the existence of a normal force acting on a 
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cylinder in cycloidal motion tends to support the possibility that such a 

component of the leading edge suction can occur. Finally, the contri- 

butions of the unsteady effects to the instantaneous force and moment 

acting on the blade, the total power output of the turbine and the total 

energy lost to the fluid have been fully evaluated. It is seen that the 

total power output i s  equal to the rate of work done by the thrust plus 

the kinetic energy imparted to the fluid. Contrary to the quasi-steady 

approach, where no energy is lost to the fluid, the unsteady approach 

allows a hydromechanical efficiency to be defined a s  the ratio of the 

useful power output to the total work done by the thrust (P/UTo). This 

allows more flexibility in the design of a turbine by leaving the choice 

to the designer of maximizing either the hydr omechanical efficiency, 

thus imparting the least disturbance to the fluid, or  the mechanical 

efficiency (defined a s  the ratio of the power output to the power avail- 

able in the stream),  thus maximizing the total power output of the 

turbine. At the present time, no experimental. data a r e  available re -  

garding the contribution of the curvature and of the unsteady effects on 

the total power output of a turbine and on the instantaneous blade 

loading. However, the inclusion of these effects i s  necessary for an 

accurate solution to be obtained for the entire range of the dynamic 

parameters involved in practical application; it i s  on this basis that the 

present theory is  developed, which we hope will prove to be a useful 

tool in the engineering design of vertical axis wind turbines. 
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APPENDIX A 

As the present  study i s  l imited to the c a s e  

S2R >> U ,  R > > c ,  

we can define E ' and E such that, with the half chord normalized to  unity, 

E '  = U/QR << 1 ,  E = 1 / R  << 1. 

We fur thermore  a s sume  a, R, and U to be constant. In o rde r  to c a r r y  

out our  evaluation, we need to  r eca l l  the following relationships : 

t an  X - - sin 8 
- c o s 8  t f2R/U 

We can then evaluate the following t e r m s  up to o rde r  E (o r  e I ) :  

2)  X = Arctan[ 
-s in  8 

a R  ] = ~ r c t a n [ - E  ' sin 8(1 - E I cos 8)] , 
cos 8t- u 

= Arctan (-E ' sin 8 )  



3 )  - - 1 
[ - € I  cos en] = -2 n cos 8 

ht 1 t  (-E s in  8) 

- - 1 
5 )  K ( T )  = - a(1 - .I cOs @ )  = - (1 - cos 8) , V QR(1 + cos 8) R 

= E (1 - 261 C O S  6) . 

K * 
6 )  

t 1 251~'  s in  8 K - " - =  - 2 
- V R SlR(1 t E '  cos 8 )  

= ~ E ' E  (1 - E '  cos @)s in  8 . 

(1 - COS e )  
(1 - 2.1 cos 6 )  

F o r v a l u e s  of z o f o r d e r  unity, i . e . , c l o s e t o  theblade ,  w e h a v e  . 

z 2 K 1 
(ij)'z and ( -  = O ( . ~ I )  = o(-~) . PK R 

F o r  large values of z, we have 

1 Z Z K  1 
($ - - and (-) -- O ( e l )  = O(E) . 

K PK 

. 
As is readily apparent f r o m  this equation, the value of - zK a t  any point on 

PK 
the character is t ic  line i s  always at leas t  of order  ( l / R ) .  Fur thermore  for 

the region near  the blade, which corresponds to la rge  contributions to the 

2 unsteady effect, i t  i s  of o r d e r  ( 1 / ~  ). 

It may be noted that the case  6 = 0, o r  ~ K Z  = 1, correspond to 

z = 5 = -iR which i s  the center  of the turbine, and that the 
K 
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characteristic lines do not go through this point, a t  least  up to a very large 

retarded time. I£ this does happen for 7' << 7 ,  the effect of the retarded 

p ressure  is small  enough for the simplification not to be needed in the f i r s t  

place. 
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APPENDIX B 

Laplace transform solution of a0(7) 

We recal l  (1. 70)  

where 
ie 2 B(z) = (1 + Z )  - z (1 - z ) , 

and p(z) = 1 -if2 . We can rewri te  this equation a s  

where 

and 

1. Evaluation of El  (s  ) 

Taking an expansion in smal l  e of the expression in the bracket of 

(B-2), and neglecting the second and higher order  te rms,  we can express 

E1(s) a s  

-1 - 1 - 1 
sz 2 z-1 lR sz z - l l B  sz  E ~ ( S ) = S  (s) e d ~ t g J ( z - l ) ( ~ )  2 e dz t ie 5 Z L ~ )  e dz. 
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The second integral in this expression can be integrated by part. Denoting 

it by E3 (s), we obtain 

which can be expressed a s  

Replacing this expression in (B-4) leads to 

Finally, using the identity (derived in Appendix C )  

we obtain 

E l @ )  = [Ko(s) + K1(s)l(l - +) ? 

where Ko(s) and Kl ( s )  a r e  the modified Bessel functions of the second 

kind. 

2.  Evaluation of E2 (s ) 

f l  (x, T )  was defined in (1. 49) by 



Using the notation 

- 
and approximating p(x, 7) up to f i r s t  order, we can express f (5, S )  as 

Replacing this expression in (B-3 ), taking the expansion in E of (B-3 ) and 

neglecting the second and higher order terms yields 

This can be rewritten as 

where 



and 

(B- 10) 

z  -1 -t 
(E, S )  - z v (S 

6 - z  s ) ] d $  . 
-03 -1 1-5 (B-11) 

a. Evaluation of E4(s) 

We can rewrite (B-8) qs 

Denoting the last term of this expression by E (s) ,  we can integrate it by 8 

part in z .  This leads to 

Using the identity 

(B- 13 ) 

and the following relation which can be derived from (B-6a), 



we can integrate (B-13) by parts in 6 to obtain 

Replacing this expression in (B- 12) and using the identity 

we obtain 

We can rewrite this expression as  

and, noting that (see Appendix C), 



we finally obtain 

b. Evaluation of E5 ( s )  and E ( s )  
6 

(B- 14) 

As we did for  E4(s), we can rewri te  (B-9) a s  

(B- 15) 

Denoting the second part  of this expression by E js), we can integrate it 
9 

by parts  in z and obtain 

We can develop the part ial  derivative in z a s  

so that 

- 1 + I -  2 1/2 

G"dS c -z -5 eSz(z2-1)dzT .-%-&2&[s) 
-03 - 1 -00 - 1 - 5  ) 

By recalling (B-lo),  we note that the f i r s t  par t  of this expression is  equal 

2 
to - - E6(s). The second par t  can be treated in a way similar to (B-13 ). s 
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Integrating it by parts in f ,  using the same identities and combining E ( s )  9 
back in (B-15) leads to 

This expression can be rewritten as  

and, using the integral representations (see Appendix C) 

00 CO 
K1 (s! 

e-sz(z2-l)1'2dz - -  - and S z e  -sz ( z - 1 )  2 1 / 2  d z = -  
K 2 W  

S S ' 
1 1 

we finally obtain 

c. Evaluationof E7(s) 

We can directly rewrite (B- 11 ) as  

and noting that (see Appendix C ) 

(B- 17) 



we obtain 

4.1 

d. Evaluation of E2 ( s )  

Using (B - 14), !B- 17) and (B-18) in (B-7) leads to 

and using the recurrence  formula 

2I$(s) = sW2(5) -Ko(s , l  1 

we finally obtain 

CV 

3 .  Evaluation of a. ( s  ) 

Using (B-5) and (B-19) in (B-1) leads to 

f rom which we have 



Expanding the above integrand for small E and neglecting the second 

and higher order terms, we obtain 

which is easily simplified to 

As we can see, the first  order correction turns out to be quite simple. 

Using the notation 

yes, ' (') = K0(s) t Y( s )  f 

h. 

We can finally express a o ( s )  as 
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Evaluation of the integral relations used in Par t  I 

1. General integral relation 

If we call C a contour enclosing a branch cut extending from 

z = - 1 to z = t 1 along the r ea l  z - axis and we choose z not lying on 

the branch cut, we can write 

Furthermore, the following relationship is also verified 

where r is  the contour at infinity and r is a small contour enclosing 
cO 

the point z. Since the function possesses a double pole a t  irrfinity, the 

integral over r does not contribute and, evaluating the integral over E 
cO 

by the method of residue, we readily obtain 

2. Integral formulas involving Bes se l  functions 

From reference [ 181, equation ( 3 . 3 8 7 - 3  ), we have 



for jarg (p) j  < and Re(v) > 0, where Kv - , ( a r e  the modified 

Bessel functions of the second kind. From this relation, we can 

readily find 
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APPENDIX D 

1. Summary of the fundamental equations 

This Appendix is  a summary of the equations required for per- 

forming a numerical analysis in practical applications. The initial 

data consist of the flow velocity U , the rotor angular velocity n and 

the blade motion characterized by its position in the body frame of 

reference y = h(x, t). The kinematic description of the motion can 

then be characterized from equations (1. I ) ,  (1.3 ) and (1. 4)  as  

v 2 2 2  = (U + Cl R t 2Un cos 8) 1 /2  
9 

tan X = - sin 8/(cos 8 t CZR/U) 8 

The linearized boundary condition on the blade is given by equation 

(1.22) as  

The linearized expression for the function P(x, t )  is obtained from 

(1. 46) and (1. 77) a s  

The function fl(x, t )  is  obtained from equation (1. 45) and expressed 

in terms of the real  time t as  



t l  
t 1 

fl(x. t )  = -v (x. t)@(x) - - a 1 vt(5.t)d5 * V(t) at 

The function Ao(t) is then obtained f rom equation (1. 90 )  and expressed 

in terms of the real  time t a s  

The pressure jump across  the blade is obtained from equation (1.92) a s  

Finally the pressure force F and the singular force Fs a re  obtained 
P 

f rom equation (1. 91) and (1. 95) as  

The only remaining unknown is  the function ao(t). It can be determined 

from equation (1. 88) in te rms  of T 



where 

The problem of the evaluation of a (7) is obtaining a uniformly 
0 

valid simple expression for  the Theodor sen function H(7). However, 

H(T) can be expressed in t e rms  of the Wagner function @(T) for which 

numerical approximation a r e  directly available (reference [6] of part 

11). 

2. Note on the inverse Laplace transform of the Theodorsen function 

It i s  well known that the steady-state response of any linear 

system to a periodic excitation of the form e 
iwt 

can be found from 

the Laplace transform of its response to a unit step function input by 

replacing in the latter response the Laplace variable s by iw, dividing 

it by io and multiplying the result by the input function. Applying this 

relation between the lift acting on an airfoil in oscillatory motion and 

the lift acting on an airfoil following an impulsive start ,  we obtain the 

relation 
& 

H ( s )  = s z ( s )  , 

'C 

where H(s) is the Theodor sen functi.on in the Laplace variable s, 

and a ( s )  is the Laplace transforms of the Wagner function @ ( T ) .  

The inverse Laplace transform of + (c, s ) g ( s )  can therefore 

be obtained, using the differentiation rule, a s  



-1 --+ 
- l [ ~ ( s )  ~ ' ( i ,  s)] = 2 [ s v  (6, s ) Z  (s)] , 

. t where v ( 5 , ~ )  - a f ( 5 ,  t).  This allows us to express ao(t) as - at 

3.  Example, a rigid blade 

The case of a rotor with a rigid blade is treated here as  an 

example. The blade is assumed to be fixed in (xl, yl), attached at 

right angle to E, to  have its center coinciding with 0. The blade 

therefore appears in the body frames of reference as  having a pure 

pitching motion with an angle of attack a such that a = A . We then 

have 

h(x, t )  = -x tan X , 
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which yields the boundary condition that on the blade 

t v (x, t )  = -V(t) tan X(t) + Qx . 
b 

Defining D(t) and D(t) by 

D(t) = V(t) tan X(t) , 

and 

and assuming that the rotor started from rest, i. e. V(o) = o, we 

obtain, after some manipulation, the following expre s s ions 

i 
@ ( - I )  = 1 t ? 

b I3 Re[fl(x,t)]  = ( D t  T ) t  ~ ( 7 - a )  , , 

0 

The pressure force can then be expressed as 

and the singular force can be obtained from Re[ao(t)], 1m[a (t)] and 
0 

P ( -  1.) by simple complex function operations. 
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Figure  1. Initial design of the Darr ieus rotor.  



Figure 2. Simplified model of the Darrieus rotor used in the 
present investigation. 



a )  n R = U, common cycloid 

b) O R  << U, curtate  cycloid 

c )  SIR >> U, prolate cycloid 

Figure 3 .  Trajec tor ies  of the blade in the fluid f r a m e  of reference 
fo r  different values of the tip speed to wind speed ratio. 
Only c a s e  ( c )  i s  of interest  for  energy extraction purpose 
and i s  therefore investigated. 



Figure 4. The coordinate sys tems comprising the s t ruc ture  f r a m e  
of reference (xO, yo) fixed with the s t ruc ture  of the 
turbine, the body f r a m e  of reference (x, y )  moving with 
the blade and defined with zx always para l le l  to the 
apparent flow velocity x, and the fluid f r a m e  of r e fe r -  
ence (xZ, y2) moving with the undisturbed fluid a t  infinity. 



Figure  5. Descr ipt ion of the t r a j ec to ry  of the  or igin  0 in the fluid 
f r a m e  of r e f e r ence  (x2, y2). 



Figure 6. Description of the blade in the body f r a m e  of reference. 
The blade is  represented by its t r ansve r se  displacement 
f r o m  the x axis h(x, t )  and the half chord is  normalized 
to  unity, with the blade extending f r o m  x = -1 to x = t l  
along the x axis.  

Figure 7. Representation of the contours Co and Cm defining the 

region D. Co encloses the blade and its wake and C 
00 

is  a closed contour circumventing the point a t  infinity. 



Figure 8. Representation of the exact characteristic lines (1. 65) for 
two values of z: - z = o  

Figure 9. Representation of the approximate character istic lines 
(1. 79). An expansion a t  f i rs t  order in c of (1. 79) is 
actually used to avoid coming back in the a rea  of strong 
disturbance around the leading edge. 

- - -  Approximate characteristic line (1. 79) - Real characteristic lines (1. 65)  . 



PART I1 

AN APPROACH TO THE PROBLEM 

O F  WAKE CROSSING 
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1. Introduction 

This part  of the thesis investigates variations of the lift experi- 

enced by a wing crossing a vortex wake. In the general theory devel- 

oped in Par t  I, the effect of the wake crossing was neglected. This 

simplification is reasonable for a performance prediction model since 

this effect is expected to have a minimal influence on the average 

power output of a turbine. However, the periodic loading of the blades 

caused by successive crossings of vortex wakes can be important in 

the structural design of turbines. Furthermore, the problem of wake 

crossing is of basic importance, i s  not limited to wind turbines and a 

solution to this problem will be very useful in constructing a general 

solution for wings operating in shear flows. 

The problem is directly related to that of a wing entering a 
s. / 

sharp-edged vertical gust a s  investigated by Kussner [I], von  arma an 
[2], Sears [3], Miles [4], and Jones [5], among others. Its solution is 

also related to that for impulsive changes in the angle of attack of a 

wing, which was f i r s t  investigated by Wagner [6]. Wagner used the 

method of conformal transformation to calculate the growth of circu- 

lation in the initial stage of motion. The results for oscillatory motion 

of a wing obtained by Theodorsen [7], along with the relationship 

between impulsive and oscillatory motion through the Laplace trans - 
formation, can also be used. This fundamental result and the principle 

of superposition facilitate the calculation of the l i f t  for arbitrary motion 

of the wing, with the assumption of constant downwash on the blade. 

The sharp-edged gust case cannot be solved directly using the 

Wagner function, since the downwash on the wing is not a constant, but 
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rather a step function. The wing can be considered a s  being bent, with 

the bend moving along the chord. The solution for  the lift of a bent 

airfoil  is known [7], [8], [9] and the progress of the bend can be sepa- 

rated into two effects: the f i rs t  appears a s  a change of the equivalent 

angle of attack, and can therefore be solved by superposition of the 

Wagner function, the second is the reaction caused by the acceleration 

of the non-circulatory par t  of the flow, and must be treated separately. 

The final solution was f i r s t  worked out by ~ i i s s n e r  [ l]  and corrected 

later by Sears [ lo ]  and von Kirrngn [2]. 

The major difference between the sharp-edged gust case and the 

one investigated here  is the change of forward velocity a s  seen by the 

blade, in addition to the change of angle of attack, upon entering of the 

vortex sheet. This makes the direct application of the "gust" solution 

to the wake problem difficult. A breaking of the problem into one 

involving the accelerated mass  of the fluid and another due to the change 

of angle of attack, a s  was done for the gust problem, is possible but 

would involve tedious calculations of the distribution of lift along the 

airfoil during the crossing, a s  well a s  complicated boundary conditions 

at  the intersection of the wing and the wake. 

A more elegant method has been developed here, based on the 

solution for the impulsive case (which can be reduced to a change of 

angle of attack or,  a s  will be shown here, of quasi-steady circulation) 

and a reciprocity relation in reverse flow which links the circulation of 

the impulsive case with the l i f t  of the continuous case. The solution to 

the impulsive crossing is  found following von K&m<nts approach [2]. 

This approach uses the change of momentum of the vortices representing 
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the wing-wake system to find the forces acting on the wing. The pres-  

ent calculation along this approach is based on general momentum 

consideration for the system of moving vortices and the corresponding 

change of circulation around the wing. It does not differentiate whether 

this change is induced by a change of angle of attack or a change of 

velocity. Furthermore, the lift is obtained f rom a momentum balance, 

rather than by integration of the pressure  on the blade, and therefore 

includes the leading edge suction. 

It must be noted that the flow pattern in both cases is  not 

completely i r  rotational due to the presence of the vortex sheet. 

However, we will assume that the methods of thin airfoil theory a r e  

still applicable. This in effect implies adoption of the assumption that 

the superposition principle is applicable, a s  tlik boundary conditions on 

the airfoil during the crossing of a given vortex a r e  taken similar to 

that on a bent airfoil in a regular flow. Strictly speaking, the principle 

of superposition is only t rue  for linear problems, but provided that a11 

the additional velocities a r e  small and that the deformation of the vor- 

tex sheet is neglected, the method yields results which a r e  probably 

sufficiently accurate for the present problem. 

2. General formulation 

As we did in Par t  I, we assume the fluid to be incompressible 

and inviscid. The effect of viscosity is inferred only in the formation 

of a vortex sheet wake behind the blade, and no fluid singularities a r e  

allowed outside the wake. We assume the blade to have an infinite 

aspect ratio and consider the two-dimensional flow about a cross  

section of the blade. 
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The impulse of the flow field generated f rom res t  by a system 

of vortices is derived in Appendix I and can be expressed a s  

where VB is a volume containing al l  the vorticity so that the flow does 

not contain any singularities outside V and 2 is the local vorticity B ' 
vector 

w = V X z  . 
CY 

We consider the vortex system composed of a distribution of 

bound vortices representing the blade, and a trailing free vortex sheet 

forming its wake. The airfoil extends along the x-axis from - 1  to tl 

(fig. 1 ), and the wake is  assumed to be represented by a plane vortex 

sheet extending from x = t 1. The blade moves a t  a velocity U(t) in 

the -e direction and the wake is stationary with respect to the fluid 
-x 

at infinity. The usual assumptions of linearized two-dimensional air  - 
foil theory a r e  made, i. e.,: 

i. The lateral  movement of any part of the blade is small so 

that we may consider the airfoil and its wake to lie on the x-axis and 

neglect the second order terms; 

ii. The Kutta condition holds, so that neither the velocity of the 

fluid, nor the pressure  can be infinite a t  the trailing edge of the blade; 

... 
111. The perturbation velocity is asymptotically zero at infinity 

except in the region of the starting vortex and in the vortex wake. 
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The motion is assumed to start  at time t = 0 from a state of 

rest. We define two frames of reference: 

i. (X, Y )  is an inertial frame of reference and is stationary 

with respect to the fluid at infinity. Its origin is chosen to coincide 

with the blade center at t = 0. 

ii. (x, y )  is the body frame of reference. Its axes are  chosen 

with the same orientation as  (X, Y )  and its origin is centered on the 

blade and moves with a velocity U in the -zx direction. Within this 

frame we denote the bound vortex associated with the blade by y (x, t )  

and the wake vortex by y ( c ,  t ) ,  where y is  taken positive when its 

induced velocity has a clockwise sense of rotation. We can convert 

from one system of reference to the other by the formulas: 

where 

We denote by r (t)  the circulation around the blade, 
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where the second equality follows f rom the Kelvin's circulation theorem, 

according to which the total circulation around the blade and its vortex 

wake vanishes at a l l  t ime since it vanishes initially. The vorticity 

distribution on the blade can be decomposed into two parts: 

where y (x, t )  is the quasi- steady vorticity distribution on the blade 
0 

(i. e., the steady-state distribution for U( t )  without vortex shedding) 

and y (x, t )  is the wake induced vorticity distribution. Their respec- 

tive circulation r (t) and r (t) a r e  defined as  in (2. 2a) with 
0 1 

From reference 9 the vorticity distribution on a wing due to a 

point vortex y (e )d$ placed on the x-axis a t  a distance c, 5 > 1, 

from the center of the blade is 

By integrating of this expression over the wake, we obtain 

The total impulse of the wing-wake system is  given in (2. 1 ) by 



and the lift acting on the blade is 

By decomposition of y (x, t),  we can express the lift as 

In order to differentiate the part due to the wake with respect to time t, 

we recall that y (g, t )  is not time dependent with respect to the fluid 

frame. This is due to the assumption that the wake vortex sheet re- 

mains stationary with the fluid. Performing this differentiation in the 
A 

fluid frame of reference, using y(5, t )  = y (X), leads to 

0 

and since S (t) = U(t), we obtain in (x, y )  



Then, using (2. 2b) and 

we can express the lift a s  

The integral t e r m  in this expression can be further developed by 

decomposing y(x, t )  into yo(x. t )  and y 1 (x, t )  . The contribution of 

y (x, t )  can then be evaluated. Using (2.4). we have 

and using the identity 

we obtain 

Differentiating this expression with respect to time, following the 

method outlined above, yields 



and combining this expression with ( 2 .  6 ) ,  using ( 2 .  2  b) and ( 2 .  5 )  we can 

express the lift as  

We can further simplify the last integral in the above equation. ~ r o m  

(2 .4 )  we can express Tl ( t)  as 

Then, using the identity 

we obtain 

which can be expressed as  



Combining this expression with (2. 7)  and using (2.3b) we obtain our 

final expression for the lift a s  

where y (x, t )  is  the quasi-steady vorticity on the airfoil, (5, t )  is 
0 

the wake vorticity, and r ( t)  is  the quasi-steady circulation around the o 

airfoil. As was to be expected, this expression reduces to the Kutta 

Joukowsky theorem (L = pU I? ) in the special case of steady state 
0 ,o 

motion. The three parts of the contribution to the lift given in (2. 9)  

have the following significance.' 

i. The f i r s t  part represents the reaction of the fluid to the 

acceleration of the virtual mass of the airfoil, a s  shown by von ~ i r r n g n  

and Sears [2]. 

ii. The second part  is the lift due to the circulation which would 

exist in the absence of the wake. 

iii. The third part is the contribution of the wake. 

It can be seen that for arbitrary motion of this class y (x, t )  and 
0 

To(t) can be readily found f rom the solution of the corresponding 

stationary problem by the usual methods. Thus only the wake contribu- 

tion is  unknown. This contribution can be calculated by several 
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methods. The f i r s t  is to assume some convenient distribution of 

vorticity in the wake and integrate it over the wake. This is  essentially 

the method used by Wagner [6] to solve the impulsive starting of a wing 

and by Theodorsen [7] for the periodic motion of a wing. Another 

method is  to find the response to an impulsive change in the quasi-steady 

circulation and then use the principle of superposition to find the r e  - 
sponse for the general motion of a wing. To see the importance of the 

wake, the distribution of vorticity y l  (x) induced on a wing by a single 

vortex I?' a t  various distances f rom its trailing edge is shown in figure 

2 (from [2]). It can be seen that the influence of the wake i s  very strong 

for the parts near the airfoil, but diminishes rapidly a s  the distance 

increases. 

We may also note, for  later  use, that the equation (2. 8 ) yields, 

by making use of (2. Za), (2. 2b) and (2.3b) 

which we can rewrite a s  

3. Impulsive crossing of a vortex sheet 

We consider a wing in steady translational motion a t  velocity 

-U2 zx, with an angle of attack a l ,  and assume that it impulsively 

crosses an inclined vortex sheet a t  time t = 0. The vortex sheet is  

assumed to have a constant strength 7 and i s  inclined with an angle 6 
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f rom the X- axis. We shall neglect in this section the transient un- 

steady motion during the crossing by approximating the crossing of the 

vortex sheet a s  being instantaneous. Unsteady effects prior to the 

crossing can be added later by superposition. The wake of the wing 

thus starts  at the vortex sheet a t  time t (fig. 3 ) .  The quasi-steady 

circulation around the airfoil undergoes a sudden change at t = 0. 

Pr ior  to the crossing we have 

Using the subscript 2 for the quantities after the crossing, the new 

velocity and angle of attack a r e  

- I - 

u2 - cos a' 9 

where sin 8 a' = Arctan 

Since the blade does not change its position or its velocity after the 

crossing, the new quasi- steady circulation is constant and equal to 

5 = 2aU2aZ . 

The lift acting on the blade can be obtained from (2. 9 )  a s  



where S(t)  = U 2 t  F r o m  re fe rence  [ 9 ] ,  the vorticity distribution on 

a flat  wing in steady s tate  motion has  the following expression 

Integrating this equation over  the wing and using the identity 

tl 

R l x d E d x = - i - ,  Itx - 
-1 

we obtain 

Since To undergoes a s tep f r o m  T1 to T2 a t  t = 0, i ts  derivative is  

an impulse function of value 

where 6 (t) is  the Dirac function, i. e.,: 

f o r  t f 0 y 



The 1 s t  can therefore be expressed a s  

In order to evaluate the wake contribution, we recal l  equation (2. 10) 

Since this equation was obtained f r o m  the law of conservation of 

vorticity, we must  in the present case replace r by (r2 - rl ). 0 

Expressing then (2. 10) in the inertial  f r ame  of reference, and recalling 

that the wake is  assumed stationary with the fluid a t  infinity, we can r e -  

write this equation a s  

Using then the new variable x = 1 -X = 1 t U  t-c , we finally obtain 2 

where y:::(x) = y (x) = y ( g ,  t )  . 

This integral equation fo r  y-:'(x) was solved by Wagner [6] for 

the unit step (i. e., (r2 - TI) = 1). The solution y:k(x), a s  well a s  the two 

follpwing integrals 



and 

a re  available in tabulated form. 

The function @(Ut) is called the Wagner function and is given in 

Table I and shown in figure 4. The function &(Ut) is needed for our 

expression of the lift and is  called the l i f t  deficiency function in the 

terminology of von KArmAn [2]. The function @(Ut) represents the 

total circulation around the airfoil and is given in Table 11 and shown in 

figure 5. Both a r e  expressed in terms of the distance f rom the start  of 

motion, T = Ut, and both represent the response to a unit-step. 

In the present case, scaling them with (r2 - I' ) and combining 1 

(2. 12) and (2. l l ) ,  we obtain the final expression of the lift 

or,  in terms of the Wagner function 

~ ~ ( t )  = e 2 (r 2 - r , ) a ( t ) +  pu2r2m(u2t)+ p ~ 2 r l [ 1  - m(u2t)] . 

(2. 14) 

The circulation around the airfoil can similarly be expressed, using 

(2. 13), as  
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4. Continuous crossing of a vortex sheet  

The approach chosen to solve this problem i s  based on a rec i -  

procity relation in r eve r se  flow which can be proved by application of 

Green's theorem. This relation shows the equivalence between the lift 

of an airfoi l  entering a vortex sheet and the circulation of the s a m e  a i r -  

foil impulsively crossing the same vortex sheet. This equivalence was 

f i r s t  noted by Sea r s  [3] fo r  the c a s e  of a sharp-edged gust, but no proof 

was given a s  this  relation was established by comparison. 

Reciprocity relations in r e v e r s e  flows have been known for  a 

long t ime [12], [13]. However, they have been mainly used for  super-  

sonic steady flows, fo r  which they a r e  par t icular ly well  suited. These 

relations a r e  based on the s a m e  general  concepts involved in many 

reciprocity theorems in physical sciences.  They provide an  indication 

of c lose connection between rec iproca l  theorems based on the principle 

of least  action and the symmetr ic  charac ter  of Green 's  theorem (see  

[12]). Von Kbrmin was the f i r s t  t o  draw attention to  such problems in 

aerodynamics when he proved the invariance of drag  with forward or  

r eve r se  direction of flight for  a nonlifting symmetr ica l  airfoil  a t  super-  

sonic speed [14]. Numerous publications have since appeared on the 

subject, a review of which can be found in [12]. Fur ther  examples of 

reciprocal  theorems appear in the theories  of electricity,  magnetism, 

and optics. 

4. 1 Greenf s Integral Theorem 

We consider the l inear  differential  equation in a region of a 

m-dimens ional Euclidian space (x I >  XZ, . ., X m 



L(I) ,  = X 1: A . .  (Wij + B I  = 0 , 
i=1 j=1 1J 

where A. .  and B a r e  constant and 
13 

Two arbitrary functions * and 4 can then be related by the integral 

formula (Green' s theor em) 

where the integral on the left hand side is prescribed over a m- 

dimensional region, the integral on the right hand side is  prescribed 

over the hyperspace S enclosing the given region and D stands for n 

the directional derivative defined as  

with 

In this expression is the normal to the hyperspace S, directed into 

the region and is called the conormal. Now, if both Q and 4 a r e  

solutions of (2. 16), i. e., 
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the foregoing integral reduces to 

This relation expresses the functional dependence between any two 

solutions of the differential equation (2.  16). 

4. 2 Reciprocity relation for unsteady incompressible potential 

flow - 
The continuity equation in this case reduces to the Laplace 

equation 

where cp is the velocity potential cp(x,y, z, t).  Since = V q, the 

three velocity components also satisfy the Laplace equation, and so 

does the acceleration potential in the linearized case. In this case the 

directional derivative of equation (2. 17) is simply 

and equation (2. 17) becomes 

where can be any solution of the Laplace equation (i. e., the velocity 

components or  the acceleration potential for the linearized case). 

4.3 Two-dimensional case 

We now consider the application of (2. 18) to a two-dimensional 

lifting surface in unsteady flow for both direct and reverse motions. 



We choose (x,y, t )  as  our frame of reference where z x i s  opposite to 

the direction of flight and the frame of reference is fixed with the fluid 

a t  infinity. The visualization of the time and geometrical relation is 

relatively easy in this case (fig. 6). The origin of our frame of 

reference is taken to coincide with the leading edge of the airfoil at 

time t = 0. An airfoil of chord 2 starts  at time t = 0 and moves to the 

left a t  a constant velocity Uo, so that the traces of the leading and 

trailing edges in the (x, t )  plane a r e  respectively 

In order to establish a reciprocity relation between direct and 

reverse flows, a reverse flow is generated by a second wing, starting 

f rom the final position of the f i rs t  wing and moving to the right, a t  

velocity Uo, to the starting point of the fir s t  wing. The plane form 

swept by the wings in the (x, t )  plane will be called P. It must be 

noted that the t e r m  "reversetf  applies to both the physical direction of 

flight and the time t, i. e.,: the second wing starts  from the final 
P 

position of the f i rs t  wing in both space and time and proceeds back in 

"negative tirnerf to the initial position of the f ir  st wing. The two wings 

a r e  therefore superposed a t  a l l  time instants, with the leading edge of 

the f i rs t  wing on top of the trailing edge of the second wing and vice 

versa. 

In the case of two-dimensional flows, the integral terms of 

equation (2. 18) reduce to line integrals. The path of integration that 

we consider consists of two semi-circles of large radius and two 
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straight lines lying above and below the x- axis. The two lines will be 

later brought to coincide with the x- axis, but must f i r s t  be considered 

displaced because the region of integration must be f ree  of possible 

singularities. Among the different solutions of the Laplace equation 

that will be used in equation (2. 18), the one with the lowest order a t  

infinity is the velocity potential c p .  Since we initially assumed cp to be 

regular a t  infinity, its far  field representation is a t  least that of a doublet 

acp and ,g a r e  a t  least of (i. e., of order l / r )  and the products -3 - an an 
2 

order 1 / r  . The contribution from the two semi-circles therefore 

vanishes in the limit and* it only remains to evaluate the integral over 

the two straight lines y = - t E . Consequently, integrating over the time 

t the two-dimensional form of equation (2. 181, we obtain 

where the prime denotes the reverse flow and the integral is valid for 

both the upper (y = +C ) and lower (y = -e ) planes. 

4. 4 Pressure  and velocity relations 

a' a r e  solutions of the Laplace equation, a )  Since both cp and - 
at 

we can replace 9' by in (2. 19). which yields 

Denoting the velocity components in x and y by u and v respec- 

acp tively, i. e., = (u, v), and using the relations = V ,g and - = v, a Y 

this expression becomes 



Integrating the left hand side of this equation by parts  yields 

t= too 

l J v E d x d t  at ,X - ~ ~ ~ ~ i i ~ d t  , 

t= -ot, 

and *since we have both direct  and reverse flows 

t = tor, L.3 t 
= o ,  

kene e ,  

b) Replacing now \kt by u' in (2. 19), we obtain 

~ u I  Since the flow is irrotational, - = - av '  and we can express this 
ay ax '  

relation a s  

Integrating the left hand side of the equation by part  yields 

x= t o o  

av'dx dt = J[~V'] dt - u v  dx dt , 
x= -00 



and since 

for both the direct  and reverse  flows a r e  considered, we obtain 

uv' dx dt = -u u'v dx dt . 

c )  The Bernoulli equation can be expressed with respect to our 

inertial  f r ame  of reference a s  

which yields after linearization 

Replacing this relation in (2. 201, we obtain 

The primary principal advantage of equation (2. 22) lies in the 

fact that both p and v a r e  continuous ac ross  the wake in linearized 

theory, while 40 and u experience a jump ac ross  the wake. Since 

equation (2.22 ) i s  valid for  both the upper and the lower planes y = - + c , 

taking the difference between the integrals evaluated on these two planes 

eliminates the contributions of the wake. We a r e  then only left with the 

plan fo rm P in the (x, t )  plane and the singularities at both trailing 
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and leading edges. In the case of a lifting surface, square-root singu- 

larities in both p and v can occur at the leading edge. But since we 

assume the Kutta condition to hold for both the direct and reverse 

motions, and since at al l  time the leading edge of each wing is super- 

posed on the trailing edge of the other wing, no combination of singu- 

larities occurs. Furthermore, since Ap = 0 everywhere outside the 

wing, we can res t r ic t  the integration surface to the plan form. We 

then obtain 

where ( P p )  denote the pres sure jump on P, i, e.,: 

*P ' Pupper 
- 

Plower ' 

So far  the two sides of the equation a r e  expressed in the same 

coordinates systems. For  clarity, we now introduce two different 

systems corresponding to the two directions of motion. We will use 

the subscripts 1 and 2 with the following correspondence between the 

two systems: 

with 5 and T fixing the relative origins. If we choose t l  = 0 a t  the 

start  of the direct motion and t2 = 0 at  the s tar t  of the reverse 

motion, then 



T = T and 6 =2-UoT , 

where T is defined a s  the total time of the motion. Noticing that with 

this new notation dxl = -dx2, dtl = -dt we can rewrite (2. 23 ) as  2' 

This equation is valid for any unsteady motion satisfying the prescribed 

conditions. It can be used, for instance, to derive Munk' s formula for 

the lift on an airfoil of arbi t rary  shape, using the known solution for a 

flat plate. In this case vl and Apl a r e  known, and the shape of the 

airfoil provides us with the value of v2 which in turn allow L2 to be 

evaluated. 

4. 5 Application to the crossing of a wake by a wing 

Before proceeding with the analysis, some cons ideration re -  

garding the validity of equation (2. 24) is  necessary. This equation was 

derived using the Gr eenl s integral theorem, which explicitely requires 

the flow field to be f ree  of singularities. In the presence of a vortex 

sheet, this equation cannot be used if the velocity potential includes the 

velocity jump of the vortex sheet. We therefore have to consider i,c~ a s  

the potential of the perturbation velocity alone. This necessitates two 

additional assumptions. F i r s t  we assume that the perturbation potential 

does not contain any singularities outside the airfoil and its wake and 

tha; this perturbation can be linearly superposed with the initial flow 



field, including the vortex sheet. Second, we assume that the initial 

flow field is not changed by the additional perturbation, which means 

that we assume no deformation or displacement of the vortex sheet. 

It is  well known from the work of Kelvin and Helmholtz that a 

vortex sheet is unstable, and that any perturbation applied to a vortex 

sheet grows exponentially. However, the time scale involved in the 

process is of order c/Uy and therefore large compared to c/U We 
0' 

can thus assume that when a blade crosses the newly formed wake of 

the preceding blade, it  does so before any such instability would have 

had the time to develop. The assumption of fully potential flow for the 
P 

perturbation velocity is more difficult to establish since it seems to 

violate the kinematic boundary conditions across the vortex sheet. 

Since we assume the pressure to be continuous across  the vortex sheet, 

the kinematic boundary condition implies a motion of the vortex sheet 

in a direction normal to itself, which apparently contradicts our initial 

assumption that the vortex sheet is stationary in space. It must be 

pointed out however that the kinematic boundary condition has not been 

used in any of the publications known to the author regarding flows with 

localized vorticity. This includes the work of Helmholtz, which used a 

similar assumption to derive the induced motion of a vortex sheet, as  

well as  publications by ~ u s s n e r ,  von ~ g r m a n ,  Sears, Jones, Miles and 

others regarding airfoils flying in gusts. Similar limitations also apply 

in the study of airfoils in unsteady motion, since the kinematic boundary 

condition is  similarly not satisfied. The validity of this assumption has 

been known through comparison with experiments and we thus expect 



the present analysis to provide a good estimation of the lift acting on 

an airfoil crossing a vortex sheet. 

To apply equation (2. 24) to the wake crossing case, we define 

two wings, one traveling in the direct and the other in the reverse 

direction. We choose the f i r s t  wing traveling in the -e direction 
-X1 

and entering an inclined vortex sheet a t  time t l  = 0. The vortex 

sheet is assumed to have a constant strength y and is inclined with 1 

an angle el f rom the x axis. Fo r  simplicity we assume that the 1 

angle of attack of the wing prior to the crossing is  zero. The velocity 

dX1 of the f i rs t  wing is  taken a s  - = 
dtl 

-Uo. The second wing is traveling 

in the reverse direction and uIrnpulsivelyu crosses an inclined vortex 

sheet at time t2 = 0. The vortex sheet is  assumed to have a constant - 
strength y 2  and is  inclined with an angle e2 from the x axis. We 2 

also assume the angle of attack of the second wing to be zero prior to 

dx2 the crossing and its velocity to be - - - -Uo (fig. 7). In order to 
dt, 

L. - - 
keep both angles of attack small, we assume both y and y to be 

small compared to Uo. We call al the angle of attack and U1 the 

new flow velocity a s  seen by the f i rs t  wing after the crossing of the - 
vortex sheet y l .  Similarly, a2 and U2 a r e  the new angle of attack 

and apparent flow velocity of the second wing after the impulsive - 
crossing of the vortex sheet y2 .  All these parameters a r e  dependent 

on the strength and direction of the vortex sheets and Uo. They a re  

constant and their values were given in chapter 3 .  The boundary 

conditions on the two wings can then be expressed a s  follows: 



a )  for  the f i r s t  wing 

The airfoi l  s t a r t s  to  c r o s s  the vortex sheet a t  t ime t l  = 0 with 

a constant velocity - U o  The vortex sheet i s  placed a t  x l  = 0 so  that 

only the portion of the wing with x < 0 experiences its presence. 1 

T h e  normal  component of the flow velocity on the blade i s  therefore: 

for  - U t  < x l <  0 
0 1 

and 0 < t l  < 2/Uo , 

and for  -U t 4 xl  < 2-U t 
0 1 and 2/Uo < t l  6 T , 

0 1 

for  0 < x l  6 2-Uotl and 0 < t l <  2 / U o .  

This provides the boundary conditions for  vl everywhere on the plan 

f o r m  P. As a l ready stated Ap2 = 0 everywhere outside P so  that 

v1 i s  not needed outside P. 

bl fo r  the second wine - 
The a i r fo i l  c r o s s e s  "impulsively" the vortex sheet y a t  t ime 2 

t = 0 with a constant velocity 2 - U o  The normal  component of the 

flow velocity on the blade is  therefore 

VZ = -01 u 2 2 for  -U t S x2 < 2 -U t 
0 2 0 2 and 0 < t2 6 T , 

which provides the boundary condition fo r  v2 on P. Since k p  - 0 1 - 

outside P ,  the value of v2 i s  not needed in this region. 

We can  now apply these boundary conditions in equation (2.24) 

which we reca l l  for  c lar i ty  



We also recall  that T represent the total time of the motion, and that 

x1 = 2 - Uotl is equivalent to x = -Uot2. The f irst  integral in equa- 

tion (2.24) can then be expressed a s  

and since we defined Ap = (p upper - Plower)' we can write 

and we obtain 

T 

The second integral t e rm  in equation (2.24) can be more easily 

treated by expressing it in t e rms  of the initial equation (2. 2 0 )  

Applying the boundary condition to this expression then yields 

where A represents the part of region P that has been traversed by 

the f i rs t  wing past the vortex sheet (fig. 7) .  Calling the strength 
Yz 



- 
of the vortex sheet y 2 '  

and since the second blade has already 

aq2 crossed the vortex sheet, - can be expressed in linearized form as  
at, 

which allows us to express equation (2.26) a s  

The second par t  of equation (2. 27) can be integrated by noting that 

where y2  (x2, t2) represents the local vorticity on the blade. Then 

and since U2 is the velocity of the flow as  seen by the airfoil, we have 

after linearization 

It follows that 

and equation (2. 27) becomes 



In order to integrate this equation we must distinguish between 

two cases, the f i rs t  being when the airfoil is crossing the vortex sheet, 

and the second when the blade has completed passing across the vortex 

sheet (fig. 7a and 7b respectively). In the f i r s t  case (fig. 7a) the f irst  

t e rm on the righihand side of equation (2.28) yields 

In the second case (fig. 7b), it yields 



Since the jump in potential is zero at the leading edge and a t  t2 = 0, 

both cases lead to the same result 

The second part  of equation (2. 28) can be integrated in the following way 

jl ~ ~ ( ~ ~ 9 t ~ ) ~ x ~ d t ~  = jl Y2(x29t2)dx2dt2 -5l y2(x2t2)dx2dt2, 
A P P-A 

and since 

it remains to evaluate the integration over (P-A). 

Again we have to distinguish the two cases of figure (7a) and (7b). 

In the f i rs t  case  (fig. 7a) 

In the second case (fig. 7b) 

- 

P-A 
2 

T- - - U  t 
uo o 2 (2.30) 

In both cases the integrals a r e  functions of T only and can be evaluated 



f rom the known distribution of vorticity y (x t ) on a blade following 2 2' 2 

an impulsive crossing of a vortex sheet. For the time being we will 

call O(T) the value of this integral, i. e.,: 

55 y2(x2, t2)dx2dt2 = Q(T) , 
P-A 

so that equation (2. 28) can be written as  

Substituting (2.3 1 ) and (2. 25) in (2. 24) and differentiating with 

respect to T leads to 

Since 49 is evaluated a t  the trailing edge of the airfoil at  time T, it 2 

is equal to the circulation T2(T) around the airfoil a t  time T, thus we 

obtain 

- - 
We now need to specify the two vortex sheets y and y2 .  The - 

f i rs t  one, 
Y1' 

is arbitrari ly chosen since it corresponds to the case - 
under the present investigation. The second one, y2, i s  taken identical - 
in strength to y l  but is displaced to the starting position of the second 

wing and oriented in the opposite direction. Therefore O1 = O2 and 
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u = - u  (fig. 8). With this definition of 7 , the following linear- 
"Y1 -y2 2 
ized relationships a r e  satisfied: 

The lift can therefore be expressed a s  

L1 (T)  = PU1T2(T) + p(Uo - U1 )@'(T) 9 

where it only remains to evaluate Of (T).  

4. 6 Evaluation of Of (T)  

O (T)  i s  defined for the two cases  of figure 7a and figure 7b by 

equations (2.29) and (2.3 0 )  respectively. Differentiating these equations 

with respect  to T yields: 

i. In the f i r s t  case (fig. 7a) 



and since 

we obtain 

ii. In the second case (fig. 7b) 

which reduces to 

Defining a new function 6(U T) by changing the variable t2 to 
0 

T = Uot2 and using the notation 
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we can express O'(T) a s  

where $(UoT) is  defined by 

U T 
0 

y"(2-U T , T ) ~ T  for 0 6  UoT \< 2 ,  
2 0 

0 

(2.35) 

UoT 
w 0 T )  =i  y"(2-UoT,r)dr  for UOT > 2. 

2 
UoT-2 

As we can see, 6(0) = 0 and 8(UoT) tend to r2 when T tends to 

infinity, with T2 being the final value of the circulation around the a i r -  

foil in the impulsive case. The lift can now be expressed, using 

equation (2. 23 ), as  

As a further generalization of this expression, it remains to 

consider the general case for  B(U0T). We  already know that 8(UoT) 

is a function of the distance between the blade and its instantaneous 

position held in the steady part  of the fluid at  the s tar t  of the crossing 

(i. e. , just before the vortex sheet is reached). This indicates that 

$(UoT) can be expressed in indicia1 form by an appropriate scaling, 
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thus allowing the lift formula to  be used fo r  any s t rength of the vortex 

sheet, Performing this  t ransformation i s  easi ly  done s ince we have 

already found that the l imit  of 6(UoT) a s  T tends to infinity i s  the 

steady- s ta te  circulation around the airfoil. We therefore define a new 

function A(UoT) by 

UoT 

y2*(2-UoT, T ) ~ T  f o r  0 6 UoT 4 2 ,  

0 

(2.36) 

y2*(2-UOT,r)d7 for UoT > 2 , 
UoT-2 

where y:::(x, U T )  is  the vorticity distribution on the blade following a 
0 

unit s tep change in quasi-steady circulation. A(UoT) can  be computed 

using the resu l t s  of Wagner [6], and (2.35) can now be expressed a s  

Substituting then (2.37) in (2.34), we obtain our  final expression for  

O1(T)  a s  

O1(T)  = T2(T) - r2A(UoT) , (2.38) 

where 40) = 0 and A(UoT) tends to  1 a s  T tends to  infinity . 
4. 7 Solution for  the lift 

Substituting (2.38) in (2. 32), we obtain 
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Recalling (2.15), we can express T2(T) in the present case as 

which gives us the final expression for the lift a s  

L1 (T) = P I ' 2 [ ~ o ~ ( ~ l  T) + (U1 - uo)n(uo~)] .  

This expression shows that the rate of growth of the lift acting 

during the crossing of a vortex sheet is  composed of two terms.  The 

f i rs t  and most important contribution to the lift has a rate of growth 

determined by the apparent flow velocity experienced by the airfoil 

past the vortex sheet. The second t e rm of equation (2. 40) is a new 

result. It has a rate of growth determined by the velocity of flight of 

the airfoil and depends linearly on the difference between the two 

velocities U1 and Uo. In the special case of a vertical vortex sheet, 

or  "sharp-edged gust, Uo = U1 and (2.40) reduces to the equivalence 

relationship found by Sears [3], namely L (T)  = pUoTi(T), where the 
g 

subscripts g and i stand for "gust" and "impulsive start"  respec- 

<tively. Furthermore, the lift Ll(T)  tends to a steady state value 

L1 = pU1T2, which was to be expected since both the impulsive crossing 

and the continuous crossing tend to the same steady state. 

It must be noted that equation (2. 40) is only applicable to a wing 

devoid of initial circulation. Furthermore the superposition principle 

cannot be used in this instance to find the variation of lift for a wing 

having an initial circulation because of the quadratic nature of the lift 

in terms of the velocity. Unfortunately, the method used in this 

analysis breaks down if any initial circulation around the wing exists 
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since the region of integration in this case consists of an infinite plane- 

form, with both integrals diverging. A general solution for the lift 

cannot therefore be obtained a t  this point, nor can a superposable 

indicia1 solution for the lift be obtained in general in the case of vari- 

able velocity. 

4.8 Evaluation of A (UoT) 
- 

The evaluation of n(UoT) has been carried out numerically, 

using the approximation of Wagner [ 6 ]  fo r  the distribution of vorticity 

in the wake. The vorticity distribution on a wing following an impul- 

sive s tar t  was f i rs t  computed using von ~ g r m s n ' s  approach, i. e. , 

where y (x) is the quasi-steady vorticity distribution on the blade 
0 

given b) 

and y l(x, t )  is the vorticity distribution on the blade induced by the 

vortex wake 

b+S 

The calculation was carr ied  out for a unit jump in quasi-steady circu- 

lation (To = 1 ) and for a blade of unit half chord. The resulting values 

of yl(x, t )  were then used to calculate 4 U  T). The function was 
0 

evaluated in terms of the distance f rom the impulsive s tar t  UoT, 
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expressed in half chord. The results a r e  given in Table IPI and shown 

in figure 9. 'The negative part  of the curve corresponds to the high 

negative values of the vorticity present near the trailing edge a t  the 

beginning of the motion. 

5. Conclusion 

In this part of the thesis, the variation of lift acting on a wing 

during and following its entrance into a vortex sheet has been evaluated. 

The initial angle of attack of the wing prior to the crossing was 

assumed to be zero and the solution was obtained by application of a 

reciprocity theorem in reverse. flow relating the desired lift to the 

circulation around a wing which has impulsively crossed a vortex wake. 

From the resulting solution we find that the lift is  composed of 

two terms with different rates of growth. The f i rs t  component can be 

expressed in t e rms  of Sear 's  function Q(U1 T) and has a rate of 

growth determined by the apparent flow velocity after the crossing. 

The second component can be expressed in terms of a new function 

A(UoT); it depends linearly on the difference between the velocities 

Uo and U1, and has a rate of growth determined by the velocity of 

flight of the airfoil. The physical significance of these two terms can 

be explained a s  follows. F rom the original integral forms of these two 

terms,  we see  that the first,  also the more important t e r m  is  related 

to the part of the blade's own wake that has already passed the vortex 

sheet while the second t e rm is related to the part of the blade's wake 

left behind the vortex sheet. The different rates of growth of these 

two terms then follow logically from the two different transport rates 

of the two parts of the wake. Furthermore, the numerical values 



obtained for A (UT) show that this function is  a t  al l  t imes smaller 

than Sear 's  function Q(UT). I£ we assume U1 > Uo, this indicates 

that the total l i f t  L1 (T)  i s  a t  a l l  times smaller  than the lift L3 (T)  

which would act  on the wing if the complete wake had passed the vortex 

sheet. This can easily be seen since the lift L3 can be expressed a s  

PU1T2P(U1 T) and thus the difference (L3 - L1 ) is given by 

This fact is physically meaningful since the part of the wake left behind 

the vortex sheet stays closer to the airfoil, and therefore has a 

stronger influence on the lift, than the equivalent part of the wake 

moving with the vortex velocity. 

It has been noted earl ier  that the lift acting on a wing experi- 

encing variations in its apparent flow velocity cannot be obtained by 

superposition of the indicia1 solution. While the superposition principle 

can be applied to obtain the velocity field for the modes of motion in- 

volved, the quadratic nature of the transfer function for the lift corres  - 
ponding to the combined motion rule out this possibility. The existence 

of various rates of growth for the lift, a s  exemplified by the solution 

obtained here, only adds to the complexity of the problem. It i s  hoped 

that the solution obtained in this work for a wing without initial circu- 

lation will provide a good starting point toward a general solution of the 

very difficult problem of wings operating unsteadily in sheared flows of 

finite thickness. 
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APPENDIX A 

Evaluation of the impulse of a vortical system 

We consider an unbounded fluid with vorticity distributed within 
'21 

aboundedregion V and the  impulsiveforcefield L(x, t )  necessary BY 

to generate this given motion f rom rest. We define (x) by 

and P(5) by 

where p(5, t )  is the impulsive pressure field generated by the impulsive 

force field 2 (z, t). 

The Euler equation of motion for an inviscid, incompressible 

fluid can be expressed a s  

where u-&, t )  is the velocity, o h  t )  the vorticity vector, p(g,  t )  the 

pressure and A&, t )  any external force field acting on the fluid. Taking 

the integral of this expression over a time period 7, and letting 7 

2 tends to zero, both the contributions of (TIE ) and (% xz) disappear 

since these terms a r e  bounded, and we obtain 

u - u - - - 1 - - l im 
t -  

Vp(5, t)dt t limTdo 
P t=o t=o 
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Lf we assume the fluid to be initially a t  res t  and the only external force 

field acting on the fluid to be the impulsive force field (x, t ) ,  this 

equation becomes 

which we can express a s  

where 4 is defined by 

This equation expresses the fact that any potential motion can be 

generated by an impulsive pressure acting on the fluid, but that vortical 

motions can only be generated by a system of non-conservative force 

field. Ln the presence of such a force field, an impulsive pressure 

field is generated whose characteristics a r e  dependent on 3. 
However, any potential motion can subsequently be superposed by 

addition of their own impulsive pressure field to P. 

In the present case, we assume the vorticity to be restricted to 

the region V We can therefore limit the force field to the same B ' 

region. The velocity field outside V can be expressed a s  B 

u = V40 , -0 

and inside V a s  
B 
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The condition of continuous p ressure  and velocity ac ross  the boundary 

SB of VB gives us, on SB 

Combining these relations with (A-4) and (A-5), we obtain 

Then, using the continuity of 4 across  
S ~ '  

we can express  the 

boundary condition for a s  

where 3 is the vector normal  to S 
B ' 

The ra te  a t  which momentum is  communicated to the fluid out- 

side VB by the region VB is 

We can therefore express the fluid impulse outside Vg' using (A-2) 

and (A-3) a s  
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The momentum of the fluid within VB is 

which can be expressed, using (A-5) and the divergence theorem, as  

The total impulse of the fluid is therefore, noticing that n = -n and 
-0 -i 

using (A-8) and (A-9) 

I ( t )  = I ( t)  t L ( t )  = - -0 Pzdv 

Using the identity 

we can express (A-10) a s  

and since 

we finally obtain, using (A-7) 



APPENDIX B 

Evaluation of the integrals used in Par t  11 

t l  +I  t l  4-1 

1 -x dx = { xdx 

-1 \I= -1 

' 

From Appendix C of P a r t  I, equation (2 ), we have 

for 



Using this identity we obtain, for 1 1 > 1 ,  

which is valid when 15 / > 1 .  
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TABLE I 

Wagner's function (Qr ( U t ) )  

The function is  given in t e rms  of the distance from the 

impulsive s tar t  U t  , expre s sed in half chord. 



TABLE I1 

Sear 's  function (q(Ut))  

The function is  given in t e rms  of the distance from the 

impulsive s tar t  U T  , expressed in half chord. 



TABLE I11 

Lambda function A ( U t )  

The function is  given in t e rms  of the distance from the 

s ta r t  of the motion U t  , expressed in half chord. 



Figure 1. Description of the blade and the coordinate sys tems 
comprising the iner t ia l  f r a m e  of reference (X, Y), 
stationary with the fluid, and the body f r a m e  of r e fe r -  
ence (x, y) ,  translating along the X-axis with velocity 
-Uo. The blade extends f r o m  x = -1 to x = +1 along 
the x-axis and the wake extends f r o m  x = f 1 to X = 0. 



Figure 2. -Vorticity distribution on a wing induced by a point vortex 
placed a t  various distances f rom the trailing edge on the 
wake. 
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(before the c ross ing)  

(af ter  the c ross ing)  

Figure 3. Description of the vortex sheet in the case  of impulsive 
crossing of a vortex sheet by a wing. The vortex sheet 
c r o s s e s  the X-axis a t  X = 0 and is  inclined with an angle 6' 
f r o m  the X-axis. The wing is translating along the 
X-axis with velocity -U and has an angle of attack a1 
pr ior  to the crossing and af ter  the crossing. u2 
represents  the apparent flow velocity after the crossmg.  



Figure 4. Wagner' s function ( iP  (Ut ) ) .  

Figure 5. Sear ' s  function (\E(Ut)). 



Figure 6. Description of the reference sys tem used in the derivation 
of the r e v e r s e  flow relations.  The plan f o r m  P rep re -  
sents  the space occupied by the blade in the (x, t )  plane. 

v o r t e x  
s h e e t  

CC 

a )  during the crossing of y l  by the f i r s t  wing 

Figure 7. Description of the coordinate sys tems in the (x, t )  plane 
fo r  both the d i rec t  and r e v e r s e  motion. ( x l , t l )  is  
associated with the d i rec t  motion and- (x2, t i )  with the 
r e v e r s e  motion. The vortex sheet  y i s  placed a t  xl = 0. 
Two cases  a r e  represented. 

1 



- 
Figure 7. b) af ter  completion of the crossing of y l  by the f irst  

wing. 



v o r t e x  

7" 

v o r t e x  
sheet 

- - - 
Figure 8. Description of the two vortex sheets y and y2. y Z  is 

1 
chosen with u = -U and = - y2  -y1 62' 



Figure  9 .  Lambda function A(Ut ) .  


