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ABSTRACT

The reduction of visibility due to air pollutants in the Los Angeles atmosphere 

can be severe. During summer midday periods, visibility can be reduced to less 

than a few kilometers. A five-site air monitoring network operated during the 

summer of 1984 provided data needed to characterize the summer midday visi­

bility problem in the Los Angeles area. Light scattering and absorption by fine 

aerosol particles was found to account for more than 80% of the light extinction 

at the five sites studied. Carbonaceous aerosols and sulfates were responsible for 

approximately half of that fine aerosol burden. The theories of light scattering and 

absorption, and the data collected describing the physical and chemical charac­

teristics of the suspended particulate matter and gaseous pollutants were used to 

calculate the light scattering coefficient and extinction coefficent present on each 

experiment day. The theoretically computed scattering and extinction coefficients 

are in reasonable agreement with measurements of those quantities.

One method of presenting the results of a visibility model in a readily under­

stood fashion is to produce synthetic photographs that simulate the appearance of 

the scene of interest in the presence of a specified level of air pollution. A proce­

dure for creating such synthetic photographs is developed, and methods for testing 

the accuracy of image processing-based visibility models are explored. The con­

trast reduction observed when objects are viewed through a polluted atmosphere 

is reproduced in the synthetic photographs, and with the inclusion of a radia­

tive transfer code to calculate sky intensities, the appearance of the sky can be 

accurately simulated.

Since carbonaceous aerosol is the largest single contributor to fine particle 

concentrations in the Los Angeles atmosphere, pollutant abatement programs di­

rected at visibility improvement must consider the reduction of primary carbon
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particle concentrations. The effects on visibility of strategies that have been pro­

posed for reducing the emissions of primary carbon particles are examined. It is 

estimated that the mean light extinction coefficient in the Los Angeles area at­

mosphere could be reduced by 8% to 15% by means of carbon particle emission 

controls costing $80.4 × 106 year-1. Controls on other emissions would further 

improve local visibility.
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CHAPTER 1

INTRODUCTION

1.1 Light Scattering and Absorption in the Atmosphere

Many of the phenomena resulting from the interaction of light with gases 

and particles in the atmosphere are familar sights. Some, like rainbows, halos, 

coronas, the colors accompaning sunrises and sunsets, and even the blue of a clear 

day sky are sources of enjoyment. (For a discussion of the causes of a variety of 

these occurrences, see Minnaert, 1954.) However, in polluted atmospheres, light 

scattering and absorption by airborne pollutant particles act to reduce visual range 

and to degrade the appearance of the surrounding scenery.

This work describes an effort to characterize the causes of visibility degradation 

observed in a polluted atmosphere, to model the process of visibility reduction, 

and to consider methods to improve visibility. Methods developed are applied to 

create an understanding of the causes of the summer midday low-visibility events 

that commonly are observed in the Los Angeles area. This introductory chapter 

begins by giving historical background information on the evolution of studies of 

the attenuation of light in the atmosphere, and provides a discussion of the basic 

properties and causes of light extinction. Then an outline of the research objectives 

pursued in Chapters 2 through 5 of this work is presented.

1.2 Historical Background

In 1760, Bouguer formulated a law describing the apparent brightness of an 

object viewed at a distance. He deduced the law from experiments, but mathe­

matically it can be explained as follows.
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Light scattering is a process by which all or a portion of a light beam is 

redirected, but in which total light intensity is conserved. Assume that the light 

intensity reduction, di, in the original direction of propagation due to scattering 

over a differential distance dx through a medium is proportional to the incident 

light intensity, I, and to the length of the path element dx. Then the change in 

light intensity can be written:

di — -bacatIdx (1.1)

where bacat is a proportionality constant called the scattering coefficient, having 

units of inverse length. To determine the light intensity, I, received from an object 

with inherent intensity ∕0 located at a distance x from the observer, Equation (l.l) 

can be integrated to obtain:

I = I0e^b'catx (1.2)

If light is absorbed by the medium rather than scattered, a similar expression 

results:

I = I0e~bab'x (1.3)

where ba{,s is the light absorption coefficient (units are inverse length). If both 

scattering and absorption occur, then

I = IOe~(b neat +⅛otβ)≈

I = I0e bex,x (1.4)

where bext is called the light extinction coefficient (again having units of inverse 

length). Equation 1.4 is known as Bouguer’s law (Middleton, 1968).

In 1789 de Saussure constructed a device to attempt to measure the trans­

parency of the air, and in 1868 Wild made photometric measurements of the 

brightness of screens held at different distances. During the mid 19th century, the
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attenuation of beams of light was studied as an important consideration in the 

performance of lighthouses. But providing an explanation for the blue color of the 

sky was still a challenge for scientists studying the optics of the atmosphere.

In 1908 Nichols summarized the then current “theories of the color of the sky.” 

Clausius (1849) believed that a blue sky was caused by the presence of water 

bubbles in air. Hagenbach (1872) maintained that light reflecting off of moving 

bodies of air caused the color. Lallemand (1872) and Hartley (1889) favored the 

theory that ozone fluoresced at blue wavelengths in the upper atmosphere, and 

Rayleigh (1871a,b) theorized that the amount of light that is scattered by small 

particles in the atmosphere varies inversely with the fourth power of the wavelength 

of light, and that this would give the sky its blue color. Rayleigh concluded in 

1899 that the small particles scattering the sun’s light could be the air molecules 

themselves. Rayleigh scattering became the accepted theory, even though Nichols 

(in 1908) had thought that the sky color “cannot be altogether accounted for by 

the assumption of an atmosphere conforming to Rayleigh’s formula.”

The light scattering process described by Rayleigh is only valid for particles 

having diameters smaller than about one-tenth the wavelength of the incident 

light. In 1908 Mie formulated a theory based on solutions to Maxwell’s equations 

as applied to spheres in an electromagnetic wave in order to describe how light 

interacts with particles in the processes of light scattering and absorption. Mie 

theory reduces to Rayleigh scattering in the limit of small, light scattering parti­

cles, and can be used to calculate the scattering and absorption coefficients due 

to a suspension of particles in the atmosphere (Equations 1.2, 1.3).

The effects of light scattering and absorption by particles suspended in the 

atmosphere were further studied and evolved into considerations of the link be­

tween light extinction, visibility, and pollutant aerosols. In 1924 Koschmieder
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published his “Theorie der horizontalen Sichtweite.” Koschmieder used the term 

“Sichtweite,” or visibility, to describe the greatest distance at which a black ob­

ject could still be distinguished from the background of the horizon sky. Allard 

in 1876 studied visibility in terms of the degree of attenuation of a beam of light 

at night. Middleton (1968) traces the English usage of the term “visibility” to 

Bennett (1930) who used the word, perhaps as a translation of Koschmieder’s 

“Sichtweite”, to describe the clearness with which objects can be seen. The word 

“aerosol” (from the prefix “aero” and the word “solution”, according to the Ameri­

can Heritage Dictionary, 1980) to describe a system of particles suspended in gases 

was used by Winkel and Jander in 1934, and by Schmauss and Wigand in 1929. 

The term “Luftplankton” (Luft = air) used by Weber in 1916 to refer to the 

particles that swim in the air, never entered common scientific usage.

Routine measurements of visual range were made after World War I, and 

much research on visibility was accomplished during World War II. Duntley (1948) 

presented work that was “begun during the war as part of a study of the visibility 

of distant targets; it is presented in the belief that the theory may find peacetime 

uses.” Research into the causes of visibility reduction and methods to improve 

visibility continue today.

1.3 Contributions to Light Extinction

If air molecules were the only scatterers present in the atmosphere, visibil­

ity would be restricted to approximately 300 km, but additional visibility reduc­

ing particles enter the atmosphere from natural and man-made sources. Natural 

sources include soil and rock dust, sea spray, natural fires, condensation of nat­

ural gaseous emissions, and volcanos. These sources cannot always be viewed 

as contributing small amounts of material. For example, in 1883, the eruption 

of Krakatoa “raised clouds of ash to 90,000 feet, and turned day into night at
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Batavia 100 miles away. Within a few weeks the smaller particles, remaining high 

in the stratosphere, had spread across a broad belt of latitudes and completely 

around the globe. For several years this impalpable dust produced spectacular 

lighting effects at sunrise and sunset” (McCartney, 1976). (For another account 

of the Krakatoa eruption see Pêne du Bois, 1947.) Anthropogenic sources of at­

mospheric particles include fuel combustion and industrial processes as well as 

the exhaust from vehicles and a variety of fugitive sources (e.g., road dust and 

tire wear debris). Total annual average anthropogenic particulate emissions in the 

United States are estimated at 125-385 Tg/year (Seinfeld, 1986).

The size of atmospheric particulate matter varies greatly. The size of an air 

molecule is on the order of 10-4 μm, while the size of most airborne particulate 

matter ranges in diameter from 0.01 μm to 50 μιa. The amount of light scattered 

by these particles (and therefore the scattering coefficient) depends on the ratio 

of the particle diameter to the wavelength of incident light. The most effective 

scattering occurs when the particles have a diameter about the same size as the 

wavelength of incident light. The scattering coefficient also depends on the particle 

number concentration and on the index of refraction of the particles. Figures 

1.1-1.5 illustrate the relationship of these particle properties to the scattering 

coefficient for an aerosol with a size distribution like that measured on September 

27, 1984 at Pasadena, California. Mie theory was used to calculate the scattering 

coefficient results given in those figures, by methods that are described in detail 

in Chapters 2 and 3 of this work.

Figure 1.1a shows the volume distribution of the particles measured in an 

ambient aerosol sample at Pasadena, California. The distribution indicates the 

contribution that the particles in each of a series of particle diameter intervals make 

to the total volume of particles measured. Figure 1.1b illustrates the distribution



-6-

of light scattering as a function of particle size for the same aerosol.

The graphs show that even though there is a substantial volume of large par­

ticles present, these large particles contribute little to the amount of light that 

is scattered. For the aerosol size distribution observed on September 27, 1984 

and an assumed refractive index of 1.5-0.0i, the scattering coefficient declines as 

the wavelength of light increases (Figure 1.2). Figure 1.3 shows the variation in 

the scattering coefficient with changes in the real part of the refractive index, 

and Figure 1.4 describes the variation in scattering resulting from a variation in 

the imaginary part of the refractive index. The scattering coefficient increases in 

direct proportion to the total number of particles present (all other factors held 

constant) as illustrated in Figure 1.5. The scale factors used in Figure 1.5, are 

multiplicative factors applied to the number of particles in each diameter range 

of the size distribution in order to examine the effect of particle number on the 

scattering coefficient.

In addition to light scattering by air molecules and by particles, light can 

be absorbed by gases (chiefly NC½) and by particles (chiefly elemental carbon). 

These factors also contribute to the amount of light extinction in the atmosphere.

1.4 Visibility and Air Pollution

In atmospheres containing large concentrations of particles and absorbing 

gases, as is possible in polluted areas, visibility can be reduced to less than a few 

kilometers. While visibility reduction may be the most easily perceived feature of 

a polluted atmosphere, other effects of air pollution include possible damage to 

materials and to plants, and health hazards to animals and to humans. In an ex­

treme example, during a severe air pollution episode which lasted from December 

5-9 in London in 1952 over 4,000 excess deaths were reported (Seinfeld, 1986).

Because of the varied effects of airborne particulate matter, ways to reduce
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suspended particulate matter concentrations are sought. In order to deliberately 

engineer a solution to any air pollution problem, the problem first must be fully 

characterized. Pollutant concentration and chemical composition must be mea­

sured, along with the concomitant effects to be controlled, such as visibility re­

duction. The emission sources that contribute the pollutants of interest must be 

identified. Then mathematical models can be developed that describe the cause 

and effect relationships between pollutant emissions and resulting ambient pol­

lutant concentrations, and between pollutant concentrations and effects such as 

reduction in visual range. These models must be tested against well defined case 

studies in order to demonstrate their accuracy. If a model is known to perform 

well, its predictive capabilities can be used to study the effect of proposed emission 

control strategies on air quality in advance of the actual construction of the con­

trol equipment involved. Controls can then be implemented with confidence that a 

goal can be met, whether the goal is to protect health, limit material damages, or 

control visibility. The use of a visibility model to predict the effect of an emission 

control program is shown schematically in Figure 1.6.

In this research, the sequence of steps from problem characterization, through 

model development and verification, to control strategy evaluation are applied to 

study the summer midday visibility problem in the Los Angeles area. Chapter 2 

describes an experimental program that was conducted during 1984 to characterize 

the Los Angeles visibility problem during summer midday periods and to gain 

an understanding of the factors that contribute to that visibility problem. A 

calculation scheme is presented by which the atmospheric extinction coefficient is 

computed from the chemical and physical properties of the suspended particulate 

matter and from the concentration of light absorbing gases in the atmosphere. 

The calculated extinction coefficients are compared to measured values in order 

to assess the accuracy of the calculation procedure.
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USE OF A VISIBILITY MODEL TO PREDICT 

THE EFFECT OF AN EMISSION CONTROL PROGRAM

υ
IMAGE PROCESSING

VISIBILITY
MODEL

Actual photograph 
of scene taken 
under very clean 

conditions

Simulated photograph 
of scene in the 

presence of 
emission controls

FIGURE 1.6. The use of a visibility model to predict the effect of an emission control program.
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In Chapter 3 a simple image processing-based visibility model is presented, 

in which synthetic photographs are used to illustrate the results of visibility cal­

culations. The simulated photographs illustrate the predicted appearance of a 

scene under specified air pollution conditions. To verify the model, the synthetic 

photographs are compared to actual photographs of the scene taken under the 

conditions modeled. Chapter 4 describes an attempt to improve the performance 

of the model in representing the color of the sky observed in polluted conditions.

The problem of visibility control is considered in Chapter 5, using the results of 

the aerosol carbon emission control strategy study by Gray (1986) which sought 

the most cost-effective controls available to reduce primary aerosol carbon con­

centrations in the Los Angeles area. The effect on visibility that would occur due 

to the reduction in carbon particle concentrations that could accompany Gray’s 

proposed emission controls is predicted and discussed. Chapter 6 contains a sum­

mary of the findings of each chapter and restates the conclusions drawn from the 

work.
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CHAPTER 2

CHARACTERISTICS OF SUMMER 
MIDDAY LOW-VISIBILITY EVENTS

IN THE LOS ANGELES AREA

2.1 Abstract

A five-site air monitoring network provided data during the summer of 1984 

on suspended particulate matter and on gaseous pollutants that contribute to the 

midday visibility problem in the Los Angeles area. Light scattering and absorption 

by fine aerosols caused more than 80% of the light extinction at the five sites 

studied. Carbonaceous aerosols and sulfates were responsible for approximately 

half of that fine aerosol burden.

Data taken at Pasadena were used to test a model for calculating the com­

ponents of the extinction coefficient present on each experiment day. Computed 

scattering coefficient values at Pasadena on average are within 26% of the mea­

sured values. Comparison of the observed and predicted frequency distributions 

of the extinction coefficient values at Pasadena show that the median extinction 

coefficient value is reproduced closely. Agreement is less favorable for the higher 

extinction events. The model and data can be used to study the effect on visibility 

of an emission control program.
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2.2 Introduction

The suspended particulate matter and gaseous pollutants present in the re­

gional haze that frequently occurs in the Los Angeles air basin can act to decrease 

visual range to less than a few kilometers (Cass, 1979, Hidy et al., 1974, White 

and Roberts, 1977). In the Los Angeles area, photochemical smog is heaviest dur­

ing the summer months of July, August, and September, and the midday periods 

during these months are often the times when severe visibility reduction is most 

apparent to the general public.

Light extinction in the atmosphere is caused by the scattering and absorption 

of light by suspended particulate matter and by gases. Thus the extinction coeffi­

cient, a measure of the amount of light scattered and absorbed in the atmosphere, 

can be expressed as a sum of several components: light scattering by particles 

(δscαtp), light absorption by particles (ftafcsp)5 light absorption by gases (δαδs9), and 

light scattering by air molecules (bjtayιeigh)'.

bext — bscatp + bat,sp + 6αδiβ + bRayleigh (2.l)

The value of the extinction coefficient can be obtained in several ways. A 

nephelometer can be used to measure the scattering contribution to the extinction 

coefficient (Charlson et al., 1967). If scattering is the main cause of light extinction 

in a region, then the nephelometer measurement provides an approximate value 

of the extinction coefficient (Harrison, 1979). The extinction coefficient also can 

be measured using telephotometers or teleradiometers (Dzubay and Clubb, 1981; 

Harrison and Mathai, 1981; Malm et al., 1981). Alternatively, visual range values 

obtained by human observers can be inserted into Koschmieder’s formula in order
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to estimate the extinction coefficient (Johnson, 1981; Hoffmann and Kuehnemann, 

1979). Koschmieder’s formula is expressed by:

Vr =
—InA

^ext
(2.2)

where Vr, the visual range, is the distance at which an average observer can just 

barely distinguish a black object silhouetted against the horizon sky (McCartney, 

1976). This meteorological visual range is routinely measured by trained observers 

at controlled airports and is reported in terms of the visual range which prevails 

around at least half of the horizon circle, but not necessarily in continuous sectors 

(Williamson, 1973). Parameter A in Equation 2.2 represents the limiting contrast 

threshold for visual detection by the average human observer. Proposed values 

for the parameter A vary considerably, but values from 0.02 to 0.05 are commonly 

used (Middleton, 1968). The applicability of Koschmieder’s formula depends on 

the accuracy of the value chosen for the threshold contrast, the availability of black 

target objects, and on the uniformity of illumination and atmospheric properties 

between the observer and horizon (Middleton, 1968).

In order to deliberately engineer an improvement in visibility, the specific 

pollutants causing the reduction in visibility must be identified. Several researchers 

(White and Roberts, 1977; Cass, 1979; Trijonis, 1979; Groblicki et al., 1981) 

have employed regression analyses between observed extinction coefficients and 

pollutant concentrations to estimate the level to which certain pollutants affected 

visibility. There are potentially serious disadvantages to this approach, however. 

Empirically determined extinction efficiencies that are unrealistically high or low 

can be obtained for some aerosol species, and estimation of the effect on visibility 

of liquid water in the aerosol poses problems. An alternative to purely empirical 

visibility analyses can be constructed in which the physical and chemical nature
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of the suspended particulate matter and of the gaseous pollutants are used to 

calculate on a physical basis the contributions to the extinction coefficient by 

means of Mie theory. Given the size distribution and chemical composition of 

the atmospheric aerosol and NC½ concentration data, the extinction coefficient 

can be calculated directly (Ouimette, 1980; Larson et al., 1987). Such visibility 

models have yet to be used as an integral part of the design process for engineering 

improvements in regional visibility, most probably because the data requirements 

of such models are difficult to satisfy.

The purpose of the present study is to develop an experimental protocol and a 

visibility modeling approach which is based directly on theories of light scattering 

and absorption by which the causes of regional visibility problems can be char­

acterized. Methods developed are tested in the Los Angeles area, and the goal 

of that investigation is to both measure and model the frequency distribution of 

the summer midday low visibility events for which Los Angeles is so well known. 

First, an atmospheric sampling program conducted at five sites in the Los Ange­

les area is described. Measurements made every sixth day during the summer of 

1984 are used to acquire a data base representative of the distribution of visibility 

events occurring in that summer. From the chemical and physical description of 

the aerosol resulting from the sampling program, both scattering coefficient and 

extinction coefficient values are calculated. The calculated results are compared 

to the extinction coefficient values estimated from airport observations of visual 

range. Comparisons are also made between the calculated scattering coefficients 

and the scattering coefficients measured with nephelometers. These results provide 

a baseline description of the cause and effect relationship between the various air 

pollutants and visual range that can serve as a basis for the design of an emission 

control program directed at improving visibility in portions of the Los Angeles air 

basin during summer midday periods.
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2.3 Experimental Program

During the summer months of July, August, and September of 1984, a sam­

pling network consisting of five stations was operated in the Los Angeles air basin. 

Geographically, the site locations spanned a distance of over 95 kilometers, from 

Lennox, California (located eight kilometers from the coast) eastward to San 

Bernardino. The intermediate sites were located at Pasadena, Azusa, and Up­

land, California (Figure 2.1). Atmospheric aerosol samples were collected at each 

station from 1000-1400 hours (PST) every sixth day over the summer, for a total of 

fifteen experiment days. Each of the particulate sampling stations was colocated 

with a South Coast Air Quality Management District (SCAQMD) air monitoring 

station. The SCAQMD data on NO2 concentrations were used to supplement 

the particulate sampling network data. Airport weather (including temperature 

and relative humidity information) and visibility reports were available near the 

Lennox, Pasadena, Upland and San Bernardino sites (Table 2.1). The Pasadena, 

Upland, and Azusa sites were equipped with integrating nephelometers (Meteo­

rology Research, Inc. model 1550) for measurement of the atmospheric scattering 

coefficient.

In order to characterize the chemical composition of the aerosol, 4-hour average 

filter samples were taken for both fine particulate matter (dp ≤ 2.1 μm) and for to­

tal particulate matter. Information on the coarse mode aerosol (dp > 2.1 μm) was 

determined by subtracting fine particulate matter concentrations from total par­

ticulate matter concentrations. Fine particle samples were collected downstream 

of an AIHL-design cyclone separator (John and Reischl, 1980) which removed the 

coarse particulate matter from the air stream. In each size range, a set of three 

parallel filter holders was used for sample collection, each filter holder containing a
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TABLE 2.1. Distance between site location and nearest airport.

Airport Station Distance

Los Angeles Lennox 4.8 km

Ontario Upland 5.6 km

Norton Air Force Base San Bernardino 1.6 km

Burbank Pasadena 16.1 km
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filter substrate that was compatible with a particular chemical or physical analysis. 

A 47 mm diameter Teflon (Membrana) filter, through which air was sampled at 

a rate of 10 lpm, was used to determine the dry mass concentration of suspended 

particulate matter by repeated weighing at low relative humidity before and after 

sampling. The samples collected on the Teflon filters also were analyzed by X-ray 

fluorescence analysis (XRF) to quantify the concentration of 34 trace elements 

(ranging in atomic weight from aluminum to lead) present in the aerosol.

Aerosol samples for ionic species determination were collected on Nuclepore 

filters (47 mm diameter, 0.4 μm pore size) at an air flow rate of 5 lpm. The 

Nuclepore filters then were extracted and information on the concentration of the 

water soluble ions NO^, and SO* was obtained by ion chromatography. These 

samples also were analyzed by atomic absorption for the concentrations of Na+, 

Jf+, Mg+, and Ca+2. Sulfur, potassium and calcium were measured by more than 

one method and a choice between data sets must be made. The concentration of 

these elements obtained by XRF was used for subsequent calculations. Aerosol 

samples collected on quartz fiber filters (Pallflex QAO, 47 mm diameter, air flow 

rate 10 lpm) were analyzed by the method of Johnson et al. (1981) to determine 

the organic and elemental carbon concentrations. These filters were prefired to 

600oC for two hours prior to use in order to reduce their carbon blank.

At Pasadena, this filter-based sampling system was accompanied by a photo­

graphic record of visual conditions and by measurement of the aerosol size distribu­

tion, relative humidity and solar radiation intensity, making the Pasadena site the 

most extensively equipped site on the network. The aerosol size distribution was 

measured with a Thermal Systems Incorporated electrical aerosol analyzer (EAA) 

over the particle diameter range from 0.0075 μm to 1.0 μm and with a Particle 

Measuring Systems model CSASP-100-HV optical particle counter (OPC) in 31
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particle diameter intervals over the range from 0.5 μm to 50 μτa. Measurements of 

total solar radiation intensity were made with an Eppley Laboratory pyranometer 

(model PSP). To document the visual conditions at Pasadena, photographs were 

taken of five standard vistas at noon (PST) during each sampling period. The 

photographs were taken from the roof of the 44-meter-tall Millikan Library on 

the Caltech campus. This vantage point allowed for unobstructed views of several 

scenes which varied in direction and character (same scenes cis in Larson et al., 

1987). Pictures were taken utilizing camera mounts and a tripod to ensure repro­

ducibility of the field of view. A Canon TLb, 35 mm, single-lens-reflex camera 

equipped with an ultraviolet light cutoff-filter was used to take photographs of 

each scene over a range of f-stops to ensure proper exposure. A Kodak color chart 

was incorporated in each series of photographs in order to confirm accurate color 

reproduction. Kodachrome ASA 25 film was used for all of the field photographs.

2.4 Data Analysis

The data set acquired during the 1984 summer experiments will be evaluated 

to address two objectives. First, the data set will be used to provide a description of 

the Los Angeles summer midday low-visibility problem by detailing information on 

both the visual range and corresponding pollutant concentrations and composition. 

Then that data set will be used to test the ability of model calculations to link 

pollutant particle size distribution and composition measurements to visual range 

in a cause and effect manner.

Midday Extinction Coefficient Values. The frequency distribution of sum­

mer extinction coefficient values at Los Angeles area airports averaged over the 

midday period 1000-1400 hours PST is shown in Figure 2.2. These values were 

obtained by conversion of human observer visual range data into extinction co­
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efficient values using Koschmieder’s formula with the contrast threshold (A in 

Equation 2.2) set to 0.02. The solid curve is formed from data for all days of 

record during the months July, August and September, while the triangles mark 

the extinction coefficient values on the 15 days that the aerosol sampling experi­

ments described in this paper were conducted. It is seen that the aerosol sampling 

events are distributed over the range of high and low visibility events that oc­

curred that year. The 50th percentile extinction coefficient value increases from 

2.3 X 10^4 m^1 (corresponding to 17.0 km visual range) at the coast near Los 

Angeles International Airport (LAX) to 3.4 x 10^4 m^1 (11.5 km visual range) 

at the inland site at Ontario. The lowest median visual range (highest median 

bext value) among the airport sites examined is at Ontario. These data are con­

sistent with the spatial distribution of the long term average airport visual range 

data for the Los Angeles area presented by Trijonis (1980) which likewise show 

that the lowest average airport visibilities in this area occur near Ontario. The 

Los Angeles International Airport site, which experienced the lowest median ex­

tinction coefficient value during the summer of 1984, also experienced the highest 

single day worst case extinction coefficient value, as seen in Figure 2.2. Clearly, 

no single statistic adequately conveys the visibility differences between the sites 

studied, illustrating the merit of describing regional visibility problems in terms 

of the frequency distribution of high and low visibility events.

Aerosol Characteristics. Day-to-day changes in the light scattering and ab­

sorption by aerosols are the principal cause of the variations in extinction coef­

ficient and visual range shown in Figure 2.2. In order to provide a description 

of aerosol properties to support scattering and absorption calculations, the data 

from the large number of independent measurements of aerosol properties made 

during the summer of 1984 were used.
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To construct a material balance on the chemical composition of the aerosol, 

the procedure of Larson et al. (1987) was followed. In this procedure, trace met­

als measured were converted to their common oxides (Stelson and Seinfeld, 198l). 

The mass of organic carbonaceous material was taken to be 1.4 times the organic 

carbon mass measured (Gray et al., 1986). An ion balance on the water soluble 

ionic compounds in the aerosol was constructed, and NH‡ ion in the aerosol was 

estimated to be present in the amount needed to close the ion balance. The specia­

tion of ionic material was assigned according to the scheme in Table 2.2. A portion 

of the airborne particulate matter may not be identified by the chemical analyses 

performed. Using the nomenclature of Sloane (1984), this mass of dry material 

that is measured gravimetrically, but not accounted for in the chemical analysis 

is refered to as the “residue”. Following chemical characterization, the aerosol 

water content during each sampling event was estimated using the semi-empirical 

approach formulated by Sloane (1984). In this procedure, data on the ambient 

relative humidity and the particulate matter solubility are used to estimate the 

amount of water present in the aerosol.

The results of the chemical analysis of the filter samples are presented in 

Figures 2.3 and 2.4, where the chemical composition of fine and coarse particulate 

matter for the 1000-1400 hour (PST) period on experiment days for each site are 

shown. Data collected on the experiment days indicate the character of the aerosol 

present during summer midday periods in the Los Angeles area. Table 2.3 lists 

the average chemical composition for each site over the summer for the fine and 

coarse particle modes. Results indicate the presence of sulfate in the fine particle 

mode, with nitrates appearing mostly as coarse suspended particulate matter. 

Elemental carbon and organic material are important contributors to the fine 

aerosol component, and are also present in the coarse particulate matter. Crustal 

material (included in the category of “other identified” material) makes, as would



-29-

TABLE 2.2. Speciation of ionic material.

Na+ was associated with Cl~
nh4+ was associated with SO4~2

nh4+ remaining, if any, was associated with no3~
Na+ remaining, if any, was associated with no3~ remaining, if any
Na+ remaining, if any, was associated with so4~2 remaining, if any
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be expected, a greater contribution to the coarse material. There is noticeably 

more coarse airborne crustal material at the eastern sites (Azusa, Upland, San 

Bernardino) than at the more westerly locations (Lennox and Pasadena). Aerosol 

water is estimated to constitute from 4.4% to 17.0% of the fine aerosol on average 

at midday during the summer. Waggoner et al. (1981) find a 14% increase in 

light scattering between a Pasadena aerosol at 30% relative humidity and the 

same aerosol at 60% relative humidity. This small increase indicates that a small 

amount of water is present in the aerosol at 60% relative humidity. The relative 

humidities at midday during the 1984 summer were observed to average only 45.0% 

(range 14.6% to 67.2%), and the small amount of water estimated to be present 

in Table 2.3 is consistent with Waggoner et al.’s data.

Scattering Coefficient Calculations. At the Pasadena monitoring site, aero­

sol size distribution data were taken in conjunction with the measurements of 

aerosol chemical characteristics. At that site, the atmospheric aerosol scattering 

coefficient and the total light extinction coefficient were computed from aerosol 

properties and other available data using the data reduction procedure of Larson 

et al. (1987). The calculation proceeded as follows.

Using the measured masses of individual chemical constituents, and the den­

sities of these components, the contributions to total aerosol volume were first 

calculated. From the volume contributions, the volume average refractive indices 

for the fine and for the coarse modes of the aerosol size distribution were computed 

based on the refractive indices for each component. These refractive indices were 

used along with the size distributions in a Mie scattering code to calculate the 

aerosol scattering coefficient, bacatp (Wickramasinghe, 1973). A typical example 

of the translation of the particle size distribution into the distribution of light 

scattering as a function of particle size is given in Figure 2.5. Although fine par-
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CHEMICAL COMPOSITION OF FINE PARTICULATE MATTER SUMMER 1984 (1000-1400 PST)

JULY AUGUST SEPTEMBER

FIGURE 2.3. Chemical composition for the fine suspended particulate matter for each site.
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CHEMICAL COMPOSITION OF COARSE PARTICULATE MATTER SUMMER 1984 (1000-1400 PST)
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FIGURE 2.4. Chemical composition for the coarse suspended particulate matter for each site.
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TABLE 2.3. Average chemical composition of aerosol.

Average per cent by mass of fine suspended particulate matter

Lennox Pasadena Azusa Upland San Bernardino

Sulfates 21.3 18.0 13.4 14.8 14.8

Nitrates 3.0 3.4 1.8 2.6 2.9

Elemental Carbon 3.8 4.4 5.3 4.8 4.2

Organics 19.8 32.0 25.3 26.6 36.9

Other Identified 7.4 8.1 7.9 7.5 11.8

Residue 27.7 24.4 38.4 37.6 25.1

Water 17.0 9.7 8.0 6.1 4.4

Fine mass (μg∕m3) 52.0 55.6 78.3 58.1 34.1

Average per cent by mass of coarse suspended particulate matter

Lennox Pasadena Azusa Upland San Bernardino

Sulfates 5.8 3.5 2.8 1.7 4.8

Nitrates 20.1 21.4 20.7 21.5 11.6

Elemental Carbon 1.8 2.5 0.8 1.2 1.3

Organics 13.7 9.1 8.0 13.7 11.2

Other Identified 29.4 45.9 52.0 52.6 38.0

Residue 18.6 12.7 11.4 6.9 29.1

Water 10.7 4.9 4.4 2.4 4.1

Coarse mass (μg∕m3) 63.6 38.8 90.7 52.5 94.8
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ticle and coarse particle modes contribute comparable amounts of material to the 

Pasadena aerosol volume distribution, light scattering is dominated by scattering 

by particles smaller than 1 μm in diameter.

By combining these scattering coefficient predictions with data on aerosol light 

absorption, light absorption by TVO2, and scattering by air molecules, midday val­

ues of the total atmospheric extinction coefficient were computed at Pasadena. 

The particle absorption coefficient, Z>α⅛ip, was obtained by multiplying the mea­

sured total elemental carbon concentration by the light absorption efficiency of 

Los Angeles elemental carbon. The light absorption efficiency of Los Angeles el­

emental carbon was taken to be 11.9 m2g-1, as measured by Conklin and Cass 

(1981). The chief gaseous pollutant which absorbs light is TVO2. The gaseous ab­

sorption coefficient, ba∣,si, was determined from the dependence of the absorption 

of light by TVO2 on NOι concentration (Dixon, 1940; Hodkinson,1966; -Groblicki 

et al., 1981). Tabulated values of the Rayleigh scattering coefficient for the atmo­

spheric gases were taken from Penndorf (1957), and were corrected for ambient 

temperature on each experiment day. Results of the calculated contributions to 

the atmospheric extinction coefficient at Pasadena are presented in the upper right 

hand corner of Figure 2.6.

Model Evaluation. In order to test the validity of the calculations, the mod­

eled extinction coefficients values at Pasadena were compared to the extinction 

coefficients implied by the measured visual ranges acquired at the closest airport. 

Modeled scattering coefficients were also compared to the scattering coefficients 

measured by a nephelometer located at that site. Since the calculated components 

of the extinction coefficient are wavelength dependent, this dependence must be 

taken into account when making comparisons between measured and modeled 

values.
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CONTRIBUTION TO THE EXTINCTION COEFFICIENT
SUMMER 1984 (1000-1400 PST>
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FIGURE 2.6. Average modeled (wavelength=55O nm) contributions to the extinction coefficient (×10-4m-1) for each site.
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The human eye has maximum sensitivity at a wavelength of approximately 550 

nm (Middleton, 1968). This wavelength is the chosen value for defining the stand­

ard visual range which is obtained by using Koschmieder’s formula (Heintzenberg 

and Quenzel, 1973). When comparing the extinction coefficient values inferred 

from human observer reports at the airports against modeled extinction values, 

the calculations were carried out at a wavelength of 550 nm.

However, the light source in the MRI 1550 nephelometer has a broad spectrum 

centered more about the blue wavelengths. In this model nephelometer, the light 

source is a xenon flashtube equipped with an ultraviolet cutoff filter. The model 

1550 has been estimated to have a “peak wavelength” of 480 nm (Harrison, 1979) 

and a “peak sensitivity” of between 460 and 490 nm (Charlson et al., 1967). 

Harrison (1979) reports “effective wavelengths” in the range of 479-488 nm, and 

early instrument calibrations were based on an assumed effective wavelength of 

460 nm (Ahlquist and Charlson, 1967, 1968; Charlson et al., 1967). In this work, 

a wavelength of 460 nm was used in the calculation of the scattering coefficients 

that are compared against nephelometer measurements.

Direct comparisons of the measured and modeled scattering coefficient (wave­

length = 460 nm) at Pasadena and the frequency distribution of the modeled 

extinction coefficients at Pasaderia (wavelength = 550 nm) versus the measured 

extinction coefficient at Burbank Airport (threshold contrast of both 0.02 and 0.05) 

are shown in Figure 2.7. Observed and predicted scattering coefficient values at 

Pasadena are highly correlated (r = 0.83). On average, the predicted scattering 

coefficient values are lower than actual observations by 26%. That degree of agree­

ment between Mie theory calculations and field observations is comparable to that 

obtained by other recent investigations. Ouimette (1981) reported an average ra­

tio of scattering coefficients as calculated by Mie theory to scattering coefficients 

as measured by a nephelometer of 0.85±0.34 for Zilnez Mesa in Arizona. For a
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China Lake, California, site the calculated values overestimated measured values 

by an average of 52%. Agreement to within 7-11% was found by Dzubay and 

Clubb (198l) between telephotometer measurements of the extinction coefficient 

and the sum of nephelometer bscat measurements, opal glass 0α⅛ap determinations, 

and ba∣,sg obtained from NO2 concentrations. Sloane (1983) used Mie theory to 

calculate scattering coefficients with agreement between predicted and measured 

values of 5-36%, depending on whether an internal or external aerosol mixture was 

considered. In that work, the amount of the residue was determined by regression 

between scattering coefficients and aerosol components. In previous work Larson 

et al. (1987) obtained agreement to within 20% between measured and modeled 

scattering coefficient values.

Examination of Figure 2.7b shows that median extinction coefficient values 

predicted from pollutant data at Pasadena and observed at Burbank Airport are 

in close agreement. The highest extinction coefficient event at Burbank is un­

derpredicted by data taken at Pasadena. Exact agreement is not expected in this 

case. Burbank and Pasadena are separated by a distance of 16 km, which is greater 

than the distance to extinction on a very smoggy day. The pollutant properties at 

these two sites could easily differ by enough to account for the differences shown 

in Figure 2.7b.

Light Extinction Estimates at Other Sites. At monitoring sites other than 

Pasadena, all of the aerosol and other data needed to use the light scattering 

model are available except for the requisite aerosol size distribution measurements. 

In previous studies (Gray et al., 1986), it has been noted that the long-term 

average fine aerosol chemical composition (e.g., percentage of sulfates, elemental 

and organic carbon) is similar at most sites in the western portion of the Los 

Angeles basin, while the fine aerosol concentration (fine mass in μg∕m3) varies
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from site to site. If relative fine aerosol properties were similar from site to site, 

but the sites differed mainly in the total number concentration of particles present, 

then the relative aerosol size distribution measured at Pasadena over a particular 

midday period might be used to approximate the relative aerosol size distribution 

at other monitoring sites on that day.

To test that hypothesis, the aerosol size distributions for the fine particle mode 

and the coarse particle mode measured at Pasadena were rescaled separately to 

match the fine aerosol and coarse aerosol volumes implied by the filter-based mea­

surements made at Lennox, Azusa, Upland and San Bernardino on the same ex­

periment day. The volume-average refractive index for fine and coarse aerosol 

was computed on a site-by-site basis by the method described previously. Then 

predicted midday light scattering coefficient and extinction coefficient values were 

calculated as before for Lennox, Azusa, Upland and San Bernardino for the sum­

mer of 1984. Average contributions to the extinction coefficient at all sites are 

shown in Table 2.4, and the differences between individual days are shown in Fig­

ure 2.6. Scattering coefficient predictions were compared to measured values at 

sites equipped with nephelometers as shown in Figure 2.8, and the distributions 

of predicted extinction coefficient values were compared to extinction coefficients 

estimated from airport observer data at those sites near airports, as shown in 

Figure 2.9.

The observed and predicted extinction coefficient frequency distributions (Fig­

ure 2.9) match as well for the Lennox-LAX site as they did for the Pasadena- 

Burbank site at which all model inputs were obtained by direct measurements at 

Pasadena. Lennox is located directly upwind of Pasadena on average during sum­

mer afternoons (De Marrais, Holzworth, and Hosier, 1967), and the two sites may 

see aerosol constituents that have some characteristics in common, including a 

similar fine particle mode size distribution. The agreement is less favorable for the
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TABLE 2.4. Contributions to the modeled extinction coefficient.

Average per cent of total extinction coefficient (wavelength=550nm)

Lennox Pasadena Azusa Upland San Bernardino

Fine particle scattering 67.0 70.0 70.0 71.1 60.0

Coarse particle scattering 4.7 2.6 4.6 3.5 9.2

Particulate absorption 16.3 15.1 16.6 14.6 16.1

NO2 absorption 5.6 6.4 4.4 4.7 6.1

Rayleigh scattering 6.4 6.0 4.2 5.8 8.7

bext (zlθ~4m-1) 2.23 2.33 3.21 2.37 1.66
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Upland-Ontario site and for the San Bernardino-Norton Air Force Base location. 

At these sites, the higher extinction events are not reproduced well. The scaled 

Pasadena aerosol size distribution may not accurately reflect the actual particle 

size distribution at these two locations, perhaps due to aerosol aging and growth 

or because those sites are downwind of a different set of pollutant emission sources.
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2.5 Conclusions

Summer midday (1000-1400 hours average) extinction coefficient values in the 

Los Angeles area range from less than 0.5 x 10~4 m~1 (corresponding to a visual 

range of more than 78 km) to more than 9 x 10^4 m^1 (corresponding to a visual 

range of less than 4.3 km). By sampling at five sites at six day intervals over the 

summer of 1984, it has been possible to identify the pollutants that are responsible 

for this distribution of midday visual range values. Light extinction calculations 

show that most of the light attenuation is due to fine particle scattering. Fine 

particle scattering and absorption make up 83% of the total light extinction av­

eraged over the five sites studied. Examination of the chemical composition of 

the summer midday fine aerosol shows that carbonaceous aerosols and sulfates 

together account for 49% of the fine aerosol averaged over the sites studied. Emis­

sion control strategies aimed at midday visibility improvement in the Los Angeles 

area must be focused on the abatement of aerosol carbon and sulfates.

The frequency distribution of summer midday extinction coefficient values at 

Pasadena, California, can be modeled with reasonable accuracy by a procedure 

which combines on-site aerosol size distribution and chemical composition mea­

surements with a calculation procedure based on theories of light scattering and 

absorption. Since that procedure is based on fundamental aerosol and gaseous 

pollutant properties, the new distribution of visual ranges could be computed 

that would prevail if specific changes were made in the composition or size of the 

Pasadena aerosol as the result of emission controls.
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CHAPTER 3

VERIFICATION OF IMAGE 
PROCESSING-BASED VISIBILITY MODELS

3.1 Abstract

Methods are presented for testing visibility models that use simulated pho­

tographs to display results of model calculations. An experimental protocol is 

developed and used to obtain input data including standard photographs of cho­

sen scenes on a clear day and during a smog event at Pasadena, CA. Using the clear 

day photograph as a substrate, pollutant properties measured on the smoggy day 

are introduced into the visibility model, and results of the model calculations are 

displayed as a synthetic photograph of the expected appearance of the smog event. 

Quantitative comparisons are made between the predicted and actual appearance 

of the smog event.

Diagnostic techniques developed are illustrated using the visibility modeling 

procedure proposed by Malm et al. (1983). That model is shown to reproduce the 

contrast reduction characteristic of urban air pollution, but produces synthetic 

photographs with sky elements that differ substantially from a real photograph of 

the actual smog event.
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3.2 Introduction

The reduction of visibility is one of the most easily perceived features of a pol­

luted atmosphere. Particulate matter and gaseous pollutants can act to decrease 

visual range, lower contrast, and even alter the observed color of objects. Since 

the amendment of the Clean Air Act in 1977 to encourage the prevention and 

control of visibility impairment in national parks and wilderness areas, visibility 

reduction in relatively pristine locations has received considerable attention (Her­

ing et al., 1981, Macias et al., 1981, Trijonis, 1979). Visual range values reported 

in some sparsely populated portions of the western United States average greater 

than 180 km (Malm and Molenar, 1984), but other regions with many pollution 

sources and unfavorable meteorology have been shown to exhibit severe visibility 

problems. Husar et al. (1981) discuss trends in haziness in the eastern United 

States using data accumulated between 1910 and the present. They find the high­

est turbidities in major metropolitan areas. Denver is noted for its “brown cloud” 

(Sloane and Groblicki, 1981; Groblicki, et al., 1981), and the smog problem in 

the Los Angeles area has been studied extensively (Hidy et al., 1974; White and 

Roberts, 1977; Cass, 1979).

The atmospheric extinction coefficient, a measure of the amount of light scat­

tered and absorbed in the atmosphere, can be measured or be calculated from 

the size distribution and chemical composition of atmospheric particulate matter 

and the concentration of gaseous pollutants. Often the extinction coefficient, bext, 

is used to predict the visual range (distance to extinction) using Koschmieder’s 

formula:

Vr =
—ln0.02 

bezt
(3.1)

where Vr is the predicted distance at which an average observer can just barely
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distinguish a black object silhouetted against the horizon sky (McCartney, 1976). 

A visibility model based on Koschmieder’s formula does not convey any informa­

tion about the degraded appearance of objects in the mid-field or the near-field of 

view, and does not describe the discoloration, if any, of the scene.

Recently, visibility models have been proposed that utilize simulated pho­

tographs as a means to display the results of visibility calculations (Malm et al., 

1983, Williams et al., 1980). Such models show promise as a tool for communi­

cating a great deal of information on how air pollutants can affect the perceived 

visual quality of a scene, and could be employed to evaluate the visual conse­

quences of proposed air pollution abatement programs. Existing models of this 

type, though, have not been tested extensively to confirm their ability to represent 

the appearance of heavy urban photochemical smog conditions.

The objective of the present study is to examine methods for verifying the 

accuracy of synthetic photograph-based visibility models. Procedures developed 

will be applied to assess the image processing-based visibility model proposed 

by Malm et al. (1983) and its ability to account for regional haze conditions. 

Examples will be illustrated using air pollutant measurements and photographs 

taken in Pasadena, California, under clear day and under heavy smog conditions.

A description of the design for this study is shown in Figure 3.1. Measurements 

of the aerosol size distribution and pollutant chemical composition made under 

heavy smog conditions are used to compute the extinction coefficient. The value 

of the extinction coefficient is introduced into the visibility model along with a 

digital representation of a “base photograph” of the scene of interest that was 

taken on a very clear day. Using the visibility model, the brightness and color 

balance of the picture elements in the digitized base photograph are recomputed. 

A new synthetic digital image of the scene is created with the brightness and



-54-

contrast expected for the conditions measured on the heavily polluted day. The 

accuracy of the visibility model can be tested by comparing the synthetic smog 

event image to a digitized actual photograph taken on the heavy smog day being 

modeled. Color photographic prints of the synthetic smog event image also can 

be created.
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DESIGN FOR VISIBILITY MODELING STUDY

FIGURE 3.1. Visibility model verification procedure.
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3.3 Experimental Program

On fifteen days during the period October 1982-August 1983, an experimental 

program was conducted to acquire observations on the size distribution and chem­

ical composition of airborne particulate matter as well as on gaseous pollutant 

concentrations in the Los Angeles area. Photographs of chosen vistas were taken 

simultaneously with the pollutant measurements in order to document the appear­

ance of the air basin under different pollutant loading conditions. The campus of 

the California Institute of Technology in Pasadena was chosen as the sampling 

site. Pasadena frequently suffers severe smog episodes during which visibility is 

reduced to a few kilometers.

Photographs were taken from the roof of the 44-meter-tall Millikan Library 

on the Caltech campus which afforded unobstructed views of five standard scenes. 

Photographs of each scene were taken at 1000, 1200, and 1400 hours Pacific Stan­

dard Time (PST) on each day of the experiment utilizing camera mounts and 

a tripod to ensure reproducibility of the field of view. Each time a scene was 

photographed, a series of three pictures was taken using a Canon TLb, 35 mm, 

single-lens-reflex camera equipped with an ultraviolet light cutoff filter. Two of 

these pictures were taken at different f-stops to ensure proper exposure, and the 

third photograph incorporated a Kodak color chart for use in confirming accurate 

color reproduction during photographic processing. Kodachrome ASA 25 film was 

used for all the field photographs.

From 1000 hours to 1400 hours PST on the day of each photographic session, 

an air pollutant sampling program was conducted on the roof of Caltech’s Keck 

Laboratory building. Atmospheric aerosol size distribution measurements were
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made over the fine particle size range from 0.0075 μτa to 1.0 μm using a Ther­

mal Systems Incorporated electrical aerosol analyzer (EAA), and over the coarse 

particle size range from 0.5 μm to 50 μra using a Particle Measurement Systems 

model CSASP-100-HV optical particle counter (OPC).

Information on the chemical composition of the atmospheric particulate matter 

was obtained from analysis of filter samples. Fine particle samples (dp < 2.1 μm} 

were collected for the four hour duration of each experiment using three parallel 

filter holders located downstream of an AIHL-design cyclone separator (John and 

Reischl, 1980). Each of these filter assemblies contained a filter substrate that 

was compatible with a particular chemical or physical analysis. Aerosol samples 

collected at a flow rate of 10 1pm on a 47 mm diameter Teflon filter (Membrana) 

were used to determine dry fine aerosol mass concentration by repeated weighing at 

low relative humidity before and after use. The concentrations of 34 trace elements 

ranging in atomic weight from aluminum to lead were determined from the Teflon 

filter samples by X-ray fluorescence analysis (XRF). Fine aerosol samples for the 

determination of the light absorption coefficient and for ion chromatography were 

collected at a flow rate of 5 1pm on 47 mm diameter Nuclepore filters (0.4 μm 

diameter pore size). The aerosol light absorption coefficient, bat,sp, was measured 

on these filter samples by the opal glass integrating plate technique (Lin et al., 

1973, as modified by Ouimette, 1980). Ion chromatography provided information 

on the water soluble ions Na+, NH‡, K+, F~, Cl~, S(IV), NO%, and SO*2 

extracted from the Nuclepore filters. Quartz fiber filters (Pallflex 2500 QAO) 

operated at a flow rate of 10 1pm were used to collect samples for determination of 

organic and elemental carbon concentration. These filters were prefired to 600oC 

for 2 hours prior to use in order to reduce their carbon blank. The carbon analysis 

was carried out by the method of Johnson et al. (1981).
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A comparable set of open-faced filters was used to collect total suspended 

particulate matter samples. The total aerosol Teflon, Nuclepore, and quartz fiber 

filters were analyzed in the same manner as the fine aerosol filters. Information 

on the atmospheric coarse particle fraction then was determined as the difference 

between the total and fine particle concentration data.

From these experiments, two days were chosen for further analysis. A very 

clear day event occurred on April 7, 1983, when winds from the desert prevailed 

in the Los Angeles basin, resulting in a visual range of approximately 82 km. 

The measured extinction coefficient averaged approximately 0.48 × 10^4 m^1 over 

the sampling period on that day. The Rayleigh limit for light scattering by air 

molecules in the absence of any air pollution is approximately 0.11 × 10~4 m^^1 

at a wavelength of 550 nm, indicating that the April 7, 1983, samples are an 

appropriate representation of a very clean day for the Pasadena area.

Samples collected on August 25, 1983, also were chosen for further analysis. 

The average extinction coefficient measured was approximately 5.5 × 10-4 m-1. 

The visual range was about 7.1 km. The April 7th and the August 25th days are 

almost symmetrically spaced on either side of the summer solstice, and thus the 

shadow patterns in the photographs taken on these two days are nearly identical.

Photographs of two vistas taken at 1200 hrs PST on each of these two days 

were chosen for testing the image processing-based visibility model. The April 

7 clear day digitized image of these two scenes is shown in Figures 3.2ab, and 

the photographs taken during the actual August 25, 1983, smog event are repro­

duced in Figures 3.3ab. Figures 3.2b and 3.3b will be referred to as the downtown 

Pasadena scene. The view in this direction is to the northwest overlooking down­

town Pasadena. The dome of Pasadena City Hall is in the center of the picture 

at a distance of 2 km. The San Rafael hills at a distance of 5 km are along the
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horizon. Office buildings form much of the center of the field of view. The fore­

ground consists of a tree-shaded parking lot. The vista shown in Figure 3.2a and 

3.3a will be referred to as the San Gabriel Mountains scene. That view is to the 

north. The San Gabriel Mountains at a distance of 9 km make up the background 

for this scene. The midground is primarily residential. The Beckman Auditorium 

of the Caltech campus is in the foreground.

3.4 Data Analysis

The volume distributions of the atmospheric aerosol on the clear day (April 7, 

1983) and on the heavy smog day (August 25, 1983) are shown in Figure 3.4. The 

usual bimodal nature of the volume distribution is evident. Particles in the fine 

mode (dp < 2.1 μm) are much more efficient light scatterers than are the coarse 

particles, and the appreciable difference in the fine modes on the two days is the 

main cause for the large difference in the extinction coefficient, and therefore in 

the visual range, on the two days shown.

To construct a material balance on the chemical composition of the aerosol, 

trace metals measured were converted to their common oxides (Stelson and Sein­

feld, 1981). The mass of organic carbonaceous material was taken to be 1.2 times 

the organic carbon mass measured (Countess et al., 1980). The ionic material was 

assumed to be distributed as follows:

Na+ was associated with Cl~.

NH‡ was associated with SO±2.

NH+ remaining, if any, was associated with NOi .

Na+ remaining, if any, was associated with remaining NO% , if any.

Na+ remaining, if any, was associated with remaining SO*2, if any.

It is assumed that the unidentified aerosol mass is due to unmeasured chemical 

species. Following the nomenclature proposed by Sloane (1984), the mass of dry
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FIGURE 3.2. Digitized photograph of clear day (April 7, 1983) 

(a) San Gabriel Mountains view

FIGURE 3.2. Digitized photograph of clear day (April 7, 1983) 

(b) Downtown Pasadena view.
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FIGURE 3.3. Digitized actual smog event photograph (August 25, 1983) 

(a) San Gabriel Mountains view

FIGURE 3.3. Digitized actual smog event photograph (August 25, 1983) (b) Downtown Pasadena view.
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ΔEROSOL VOLUME DISTRIBUTION OBSERVED AT 
PASADENA, CΔ. ON APRIL 7 AND ON AUGUST 25,19B3
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FIGURE 3.4. Aerosol volume distribution observed at Pasadena, CA, on April 7 and on August 25, 1983.
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material that is measured gravimetrically but not accounted for in the chemical 

analysis will be referred to as the “residue”.

A balance on the chemical species contribution to fine and coarse aerosol vol­

ume is shown in Table 3.1. Densities for individual chemical species are assigned 

as shown in Table 3.2 (Handbook of Chemistry and Physics, 1975; Sloane, 1983). 

The residue is assigned a density of 2.3 g∕cm3 (Sloane, 1984). Using the individ­

ual densities and the measured masses of individual chemical constituents, a dry 

volume is calculated. The sum of volumes for each species gives the total volume 

that the aerosol would occupy if no water were present in the aerosol. When this 

dry aerosol volume is subtracted from the total aerosol volume computed from the 

size distribution measurements of the EAA and OPC, one estimate of the volume 

of water present in the aerosol is obtained. For comparison, the semi-empirical 

procedure for estimating aerosol water content formulated by Sloane (1984) was 

applied to the Pasadena fine aerosol measurements. In this approach, data on am­

bient relative humidity and the aerosol solubility are used to estimate the amount 

of water present in the fine aerosol. Sloane’s method predicts that 0.26 μ⅛∣τnz wa­

ter is present in the fine suspended particulate matter for the April 7 day, and that 

11.86 μg∣τai water is present in the fine particles on August 25. This compares 

to 0.0 μg∕m3 and 9.53 μg∕m3 water predicted by the volume difference method 

for April 7 and August 25, respectively. These two approaches to estimating the 

amount of water present provide similar answers for the fine aerosol fractions. The 

semiempirical calculation is not well suited to estimate the water content of coarse 

particle material, and it is also possible that the OPC measurements overestimate 

coarse particle volume. The uncertainties associated with determining the coarse 

particle volume are unimportant to subsequent visibility calculations: coarse par­

ticles by virtue of their size contribute only a small fraction to total aerosol light 

scattering.
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TABLE 3.1. Chemical Species Contribution to the Aerosol Volume Concentration.

Date April 7, 1983 August 25, 1983
Particle
Fraction Fine Coarse Fine Coarse

Species
volume

cone.
cm.3—

volume
cone. ⅛ 

_______ cm3

volume
cone.

cm3

volume
cone. *⅛ 

_______ cm3

elemental carbon 0.295

organic carbon 3.993

(NH4)2SO4 1.853

NaNO3 —

NH4NO3 0.419

Na2SO4 —

other ions 0.095

A12O3 0.131

SiO2 0.296

K20 0.027

CaO 0.023

Fe2O3 0.027

PbO 0.007

other metals 0.113

Total Dry Volume 
of Identified
Chemical Species 7.279

Volume of
Residue 0.00

(2) Total
Dry Volume 7.279

(1) Volume From
Size Distribution 2.333

Volume H2O 
[by (l)-(2)]

0.00

0.200 3.985 0

0.850 20.10 3.286

0.147 6.734 1.672

— 1.434 4.230

0.297 — 1.041

— 1.164 —

1.087 0.965 0.552

0.580 0.444 1.914

1.674 0.843 5.913

0.128 0.194 0.431

0.115 0.071 0.492

0.147 0.134 0.740

2.5×10~4 0.078 0.013

— 0.396 0.230

5.220 36.54 20.515

0.130 10.45 6.76

5.350 46.99 27.28

23.534 56.52 82.43

18.18 9.53 55.15
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TABLE 3.2. Density and Refractive Index Values for Selected Chemical Species.

species
density
(g∕cm3)

refractive
index reference

elemental carbon 2.0 1.90-0.6i 2

organic carbon 1.40 1.55 2

(NH4)2SO4 1.77 1.52 1

NaNO3 2.26 1.59 1

NH4NO3 1.72 1.55 1.2

Na2SO4 2.68 1.48 1

other ions 2.30 1.53-O.OO5i 2

A12O3 3.96 1.76 1

SiO2 2.30 1.48 1

K2O 2.32 1.50 1

CaO 3.25 1.84 1

Fe2O3 5.24 3.01 1

PbO 8.00 2.61 1

other materials 2.30 1.53-O.OO5i 2

water 1.00 1.33 1

1. Handbook of Chemistry and Physics, 1975.

2. Sloane, C.S., 1983.
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Once the contributions to the aerosol volume from individual pollutants and 

from associated liquid water have been determined, it is possible to determine the 

volume average refractive index for the aerosol based on the refractive indices for 

each component as listed in Table 3.2. For the April 7 aerosol, the volume average 

refractive index is calculated to be 1.56-0.024i for the fine particle fraction and 

1.39-0.005i for the coarse particle fraction. Refractive indices for the August 25 

aerosol are 1.54-0.043i for the fine particle fraction and 1.42-0.004i for the coarse 

particle mode. Kerker (1969) discusses the validity of calculations based on the 

volume average refractive index. He finds the volume average index to be within 

approximately 20% of the exact refractive index for a typical internally mixed 

aerosol particle.

The extinction coefficient (5eιi), can be expressed as a sum of several compo­

nents: light scattering by particles (bscatp), light absorption by particles (babsp), 

light absorption by gases (ba∣,sg), and light scattering by air molecules (bRayieigh):

belt --  bsca(p -)- babsp ÷ babsg -)- b]tayleigh (3.2)

Data from the sampling experiments were used to calculate each of these contri­

butions to the extinction coefficient.

Using the aerosol size distribution and the volume average refractive indices 

for the coarse particle and fine particle modes, it is possible to compute the scat­

tering coefficient for the aerosol, bscaip. The computer algorithm used is a Mie 

scattering code as outlined by Wickramasinghe (1973). Mie’s solution describes 

light scattered by a homogenous sphere in an infinite medium, determining the 

scattering efficiency factor, Qscat∙ Qscat depends on particle size, refractive index, 

and the wavelength of light. For a polydisperse aerosol, bscatp can be expressed as

f π
Qecatp λ d∙pii(dp)di'dp]j3catt (3-3)
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where n(dp)d(dp} is the number of particles per unit air volume with diameter 

between dp and dp + d(dp) (McCartney, 1976). For a measured aerosol size distri­

bution, in histogram form, the integral is approximated by a sum:
m

b3catp = Qscatp~dp.N(dp.) (3∙4)
«=1

where the dpi represent the central points of successive diameter intervals, dpι is the 

smallest diameter interval, dPm is the largest diameter interval for which number 

concentration information is available, and N(dpi) is the number concentration of 

particles in the size interval surrounding size dpi (McCartney, 1976).

Equation 3.4 was applied to calculate the scattering coefficient of the aerosol 

observed on April 7 and on August 25, 1983. Separate refractive index values 

were used for coarse particle and for fine particle modes of the aerosol volume 

distribution. The refractive index is assumed constant over the visible spectrum 

(Nicholls, 1984).

Color photographic slides can be separated into three different color planes: 

red, green, and blue. The superposition of these planes creates a full color im­

age. The Kodachrome ASA 25 film used to produce the slides taken in the field 

has a wavelength sensitivity profile that is given in Kodak publication E-77, “Ko­

dak Color Film” (1980). The yellow-forming layer is blue-sensitive; the magenta­

forming layer is green-sensitive; and the cyan-forming layer is red-sensitive. To 

incorporate the color sensitivity of the slide film into the visibility model, the 

scattering coefficient was calculated at each of 13 different wavelengths within the 

visible spectrum, and these values were weighted according to the film sensitivity 

curves. This results in three values of a weighted average scattering coefficient, 

one corresponding to each color plane of the film. The weighted green value should 

most closely match the scattering coefficient value measured by the nephelometer 

during the field experiments. The measured and computed scattering coefficient
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values agree to within about 20% (Table 3.3).

Equation 3.2 shows that light absorption by aerosols and gases, plus light 

scattering by air molecules, must be added to the aerosol scattering coefficient 

in order to estimate the total atmospheric extinction coefficient. The particle 

absorption coefficient, ba(,sp, (due to elemental carbon) was measured using the 

opal glass integrating plate technique. The principal light absorbing gas in urban 

atmospheres is NOi. The wavelength dependence of this absorption is discussed 

by Dixon (1940). The results of his study were put in a more practical form 

by R.J. Hodkinson (1966) (Groblicki et al., 1981). Using this dependence, the 

weighted average gaseous absorption coefficients 6α⅛siz, (for the red, blue, and green 

wavelength bands) were determined.

Light scattering by air molecules, Rayleigh scattering, has been studied exten­

sively. Penndorf (1957) presents tables of the Rayleigh scattering coefficient for 

standard air over a wide band of wavelengths, including the visible. He points out 

that Rayleigh scattering is temperature-dependent and that this dependence can­

not be ignored. These tables and Penndorf ,s temperature correction formula were 

used to determine the weighted averages for the Rayleigh scattering coefficients in 

the red, green, and blue.

The individual components of the extinction coefficient and their sum are 

shown for the two days of interest in Table 3.4.

For use in modeling calculations, the clear day and heavy smog day photo­

graphic slides were converted into a numerical representation of each picture. In 

this process of digitization, the 35 mm slides were gridded into a 1800 X 1200 

sample pattern, for a total of 2.16 × 106 picture elements (pixels) per picture, 

each pixel being 25 μm on a side. The density of the film at the location of each 

pixel was scanned by a microdensitometer through three color separation filters 

(Wratten 92, 93, 94). This produces digital images in each of three color planes -
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TABLE 3.3. Comparison of Measured Scattering Coefficient to 
Computed Scattering Coefficient at λ ≈ 550 nm (units are 10~4 m~1).

Clear Day Aerosol 
(April 7, 1983)

Heavy Smog Aerosol 
(August 25, 1983)

bscAτp'CalcuIated 0.259 4.08

bRay∣eigh -Calculated 0.111 0.107
≈=≈=-= = =

bscAτ^Calculated 0.369 4.19

bscAT Measured 0.29 5.1

percent difference 24% 20%
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TABLE 3.4. Components of the Extinction Coefficient (units are 10 4 m 1).

DATE COLOR PLANE ^SCATp ^ABSp *>ABSβ ⅛RAY bext

April 7 blue 0.305 0.0930 0.0541 0.281 0.733
green 0.259 0.0930 0.0118 0.111 0.475
red 0.231 0.0930 0.00278 0.0659 0.393

Aug. 25 blue 5.56 0.787 0.136 0.273 6.76
green 4.08 0.787 0.0299 0.107 5.00
red 3.52 0.787 0.00694 0.0639 4.38
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red, green, and blue, which when superimposed result in a full color image. The 

density of each pixel was recorded in each color plane in terms of a numerical 

density (DN) scale which ranged from zero (dark) to 255 (light). At the end of 

the digitization process, each pixel of each color plane has an assigned numerical 

density, for a total of 6.48 × 106 numerical values used to describe each color slide.

The correspondence between film density and exposure is given in the “D 

vs. E” characteristic curves provided by the film manufacturer. Given this rela­

tionship, and by relating exposure to radiance, the film can be used as a light- 

measuring device, and the color slide can be described by arrays (one array for 

each color plane) of radiance values, each value of an array representing one pixel 

in the corresponding color plane of the slide.

3.5 Visibility Model Description and Application

A relatively uncomplicated visibility model for use with synthetic image pro­

cessing techniques has been proposed by Malm et al. (1983). In that model, the 

radiance, 7V(s), of an object at a distance s from that object is represented by:

V(s) = N(0)e~b~ta + Ntky(l - e~b'*'s) (3.5)

where 7V(0) is the “inherent radiance,” the radiance of an object at the object. 

Naky is the radiance of the sky in the direction viewed. The first term on the 

right side of Equation 3.5 accounts for light from the object that is attenuated 

by the intervening atmosphere. The second term, called the path radiance, is a 

representation of the light from all directions that is scattered into the line of sight.

To create a synthetic smog photograph according to the model tested, a num­

ber of separate images are needed:

[l] A distance image. In this study, highly resolved distance images were 

created to accompany the downtown Pasadena and San Gabriel Mountains scenes.
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The downtown Pasadena scene in particular is quite complex. Using walking 

surveys, maps and aerial photographs, the distances from the camera mount to 

approximately 400 objects were measured for the downtown Pasadena scene. A 

less detailed distance map for the San Gabriel Mountains scene was created based 

on 250 surveyed points. The rehιainder of each distance map was created by 

interpolation between measured points. Since an object and its background could 

be separated by a great distance but still occupy neighboring pixels in a digitized 

picture, care must be taken during the distance interpolation process to outline 

individual buildings and geographic features using the distances assigned to the 

edges of those objects.

[2] A sky radiance, Nlky, map for the red, green and blue. The horizon sky 

radiance, Nsky, according to Malm et al.’s procedure (1983), is obtained by evalu­

ating the film densities at locations along the horizon on the clear day image. For 

objects below the horizon, the approximation of horizon viewing is still assumed 

to be valid, and Ns∣cy values are determined using an extrapolation of sky bright­

ness trends to below the horizon. In this study, the trends were extrapolated for 

approximately two degrees below the horizon and then held constant for objects 

lower than this.

[3] The inherent radiance, 2V(0), map for each of the red, green, and blue 

planes. Malm, in his image processing procedure, back-calculates the inherent ra­

diance of the objects at each point in the clear day picture by rearranging Equation 

3.5, giving

7V(0) = N(s)ebex,s + JV,⅛(l - e6",s) (3.6)

To apply this equation to the clear day photo, since the sky radiance and distance 

images are determined, the only unknown is an array of 7V(s) values. To obtain 

an array of N(s) values corresponding to each object in the field of view, Malm et
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al.’s modeling procedure (1983) uses the clear day photographic slide of the scene 

of interest and calculates the N (<s) values from the measured densities of the clear 

day slide and the relationships between density, exposure and radiance. With the 

extinction coefficient value for the clear day, the distance image, the sky radiance 

image, and the array of 7V(s) values from the clear day, the clear day inherent 

radiance values, 2V(0), are obtained from Equation 3.6. According to Malm et 

al.’s model (1983), the assumption is made that the inherent radiance, N(0), and 

the sky radiance values, Na∣cy, are independent of atmospheric pollutant loading. 

Therefore, 7V(0) and Ns∣ev for every object in any pollution condition are constant, 

and can be determined from the clear day photograph.

With the distance from object to observer determined, in order to simulate a 

smoggy day, one must only set bext in Equation 3.5 at the proper level and then 

determine a new radiance for each object. This produces an array of new 7V(s) 

values that corresponds to the smog event to be simulated. That new array of Ar(s) 

values is translated into a new array of numerical film density values which in turn 

are used to create a new image. The calculation is done for each picture element 

in each of the three color planes. Superimposing these planes results in a synthetic 

image that can be played back onto photographic film using a film-writing device. 

A color negative results, from which color prints can be made.

Using this procedure, synthetic images were produced which predict the ap­

pearance of the August 25 heavy smog event from the April 7 clear day image plus 

the extinction coefficient values computed for those days. The procedure was car­

ried out for both the downtown Pasadena and the San Gabriel Mountains scenes. 

The playbacks of these synthetic images are shown in Figures 3.5ab.

Production of a synthetic image requires a large number of photographic steps. 

The original slide must be: [l] taken during the field experiments; [2] developed; [3]
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FIGURE 3.5. Synthetic image of smog event (August 25, 1983) 

(a) San Gabriel Mountains view

FIGURE 3-5. Synthetic image of smog event (August 25, 1983) 

(b) Downtown Pasadena view.
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digitized; [4] processed by computer to render a synthetic photograph; [5] played 

back onto negative film; and [6] printed onto color photographic paper. In this 

work, deliberate steps are taken to prevent any subjective enhancements of the 

actual photographs taken. When the slides used in this study were digitized, a 

standard Kodak #2 steptable gray wedge with 21 steps representing the range 

of gray levels also was digitized. To correct for any possible distortion of the 

digital image, the digitized gray wedge was examined, and the correction factors 

needed to exactly restore the Kodak gray scale were determined. This “gray wedge 

correction” is then applied to the entire digitized image. This standardizes and 

corrects the digital images for any distortion created while scanning the slides. 

These gray-wedge-corrected data are used in the production of the synthetic smog 

images. After processing, the gray-wedge-corrected data are played back along 

with a copy of the actual gray wedge which is embedded in the image. The photo 

lab then printed the photographs exactly to the gray wedge specification contained 

on each negative. This ensures color control of all images processed and ensures 

the validity of any comparison between photographs.

3.6 Comparison of Predicted and Observed Images

Synthetic images of the August 25, 1983 smog event produced by the visibility 

model, Figures 3.5ab, are compared to digitized photographs taken of the actual 

August 25, 1983 smog episode in Figures 3.3ab. The general impression is that the 

visual range and contrast in both synthetic images appear to be approximately 

correct. The synthetic smoggy day photographs, however, have a blue cast to them 

when compared to the actual photographs of the smog event, and in particular 

the upper reaches of the sky in the synthetic smog images are far too blue.

In order to quantitatively compare the synthetic and actual photographs, nu­

merical density distributions are plotted for each color plane in the San'Gabriel
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Mountains scene in Figure 3.6. The numerical density scale ranges from 0 (least 

bright) to 255 (brightest) and Figure 3.6 shows the frequency of occurrence of pic­

ture elements with a given numerical density level. It is evident that the synthetic 

smog day photograph is fairly close to actual observations in the red plane but 

has higher numerical density values than the actual smog event in the blue. To 

the extent that the model result for the synthetic smoggy day is brighter than the 

actual smog event at all wavelengths, the combined effect would be to add white 

light to the picture, making it appear “washed out”. The excess brightness shift, 

however, is most pronounced in the blue plane and is of greater magnitude in the 

downtown Pasadena view than in the San Gabriel Mountains scene. To the extent 

that more blue than red or green light is added, the synthetic photographs appear 

both brighter and too blue.

The numerical density distributions are a means of comparing the overall 

brightness levels of one photograph to the overall brightness levels of another 

photograph. A point-to-point comparison of the photographs can be made, pro­

vided that the photographs are registered, that is, if any point A in one digitized 

photograph has the pixel coordinates (x,y), then the same point A in another 

digitized photograph will be assigned the same (x,y) coordinates. Then specify­

ing coordinates (x,y) allows a direct comparison of brightness levels for any single 

point A in the two images.

The synthetic and actual smoggy day photographs of downtown Pasadena were 

registered and a point-to-point comparison made. This comparison is illustrated in 

Figure 3.7, where the average absolute difference in brightness levels is presented 

as a function of distance. The highest differences are in the blue plane, and for 

shorter observer-object distances. For reference, recall that numerical density is 

represented on a scale from 0 to 255, so that a difference of 25 DN units is equal 

to only 10% of full scale.
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FIGURE 3.7. Average numerical density difference between actual smog event 
and synthetic image as a function of distance for the downtown Pasadena view.

The numerical density difference is the absolute value of the difference between the predicted 
and observed DN values. The distances are the distances from the camera position to the picture 
elements.
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These absolute differences between all of the objects in the synthetic and ac­

tual smog event images also can be presented in contour drawings that overlay 

the scene photographed. Contour diagrams showing a point-to-point comparison 

of the difference in numerical density between the three different color planes are 

given for the downtown Pasadena scene in Figure 3.8. In the upper half of each 

contour diagram, which depicts the bulk of the cityscape, the mountains and the 

sky, large areas of the synthetic and actual smog photos differ in density by only 

a small, nearly constant value. Despite the enormous complexity of the scene 

and the sometimes great distances between particular buildings and the objects or 

mountains behind them, individual buildings and the mountains within the simu­

lated photo blend into the haze just as smoothly as in the actual smog events (i.e., 

contrast reduction appears to be simulated fairly well for objects in the far field of 

view). Overall differences between observed and predicted images in the upper half 

of each contour diagram are in general fairly smooth functions of distance above 

or below the horizon. Isolated high difference areas in the foreground of the pic­

ture probably result from comparing photographs “taken” essentially on different 

days. The actual smog photograph was taken on August 25. The synthetic smog 

photograph is made from a clear day base photo taken on April 7. Differences 

in vegetation, cars in the foreground parking lot, and other similar factors cause 

these isolated high contours in the foreground of the picture. (Note, however, 

that these differences in foreground clutter are smaller than might otherwise be 

expected because shadow patterns in the two photographs are very similar. The 

sun position on those two days was in essentially the same place and little error 

is introduced from shadow pattern variation.)

Use of CIE chromaticity coordinates provides an alternative method to com­

pare and to test color agreement between synthetic and actual smog event pho­

tographs. Billmeyer and Saltzman (1981) detail several methods of describing color
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and color differences. The CIE System (Commission International de l’Eclairage 

or International Commission on Illumination) standardizes the source of illumi­

nation and the observer, and incorporates a procedure to numerically describe a 

color viewed under a standard light source by a standard observer. The color 

measurement procedure yields the chromaticity coordinates x and y and allows 

the calculation of a quantity, ΔEl, which describes the color difference beween two 

colors. In order to determine chromaticity values, diffuse reflectance spectra were 

measured at a large number of paired locations on color photographic prints of the 

digitized clear day, the digitized actual smoggy day and the synthetic smoggy day 

using a Diano Matchscan II reflectance spectrophotometer. Chromaticity coordi­

nates and color difference between paired points (Δ-E,, using the CIE 1976 L*a*b* 

formula), were computed for CIE Illuminant C from these reflectance spectra.

Interpretation of the results of these colorimetric measurements of model per­

formance is illustrated in Figure 3.9. Figure 3.9a shows CIE color space, with a 

rectangular box that outlines the domain of the data taken from measurements 

made on the photographic prints. In Figure 3.9b, an expanded view of that rectan­

gular area is depicted. Measurement point 19 referred to in Figure 3.9b represents 

a point on the front face of the San Gabriel Mountains. In the digitized clear 

day photograph, that location is greenish-blue in color, while on the digitized 

heavy smog photograph that point falls much closer to the location of Illuminant 

C (which would be essentially white). The visibility model calculation takes as in­

put the digitized clear day mountain point 19 and from it produces a prediction of 

the appearance during the smog event which is fairly close to the actual digitized 

smog event photograph.

In Figure 3.10a this color comparison is made for a number of locations along 

the mountainsides and foothills shown in Figure 3.2a, 3.3a, 3.5a. The comparison 

is quite favorable; the points examined in the synthetic smog photo (Figure 3.10a)
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differ from corresponding points in the digitized actual smog photograph by an 

average of 7.8 ΔE units, while the digitized clear day base photograph differed 

from the digitized actual smog event photo by an average of 22.2 ΔE units over 

those points. In Figure 3.10b, it is seen that the visibility model fails dramatically 

in its treatment of the sky. The simulated smog event retains the appearance of 

the clear day blue sky while the digitized actual smog event sky is much closer to 

the Illuminant C location in color space (i.e., closer to being white).
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SXFIGURE 3.10. Corresponding points from photographs plotted on the CIE chromaticity diagram.Points are from prints of the San Gabriel Mountains view for the digitized clear day, synthetic smog event, and digitized actual smog event, (a) Mountains and foothills; (b) Sky. Dominant wavelength values in nanometers are noted along lines radiating from Illuminant C. Measurements made using the actual (not digitized) smog event photograph indicate that smoggy sky chromaticity values fall in the vicinity of (sx = 0.31, εy = 0.33).
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3.7 Discussion

The comparison of the synthetic and actual photographs indicates that the 

model tested could be improved. Although contrast and visual range seem to 

be fairly well reproduced, excess blueness is introduced into the synthetic smog 

images. This is due to a feature inherent in the mathematical model used, which 

causes too much blue skylight to be added to the line of sight. In Equation 3.5, 

the path radiance term, Ns∣cy(l — e~b'zts), dominates the object radiance term, 

N(0)e~b",s, at large distance, s. Picture elements located within the sky portion 

of the photographs are assigned a very large value of s, and as a result the blue 

clear day sky is reproduced in the synthetic smoggy day image even though the 

actual smog event sky is closer to being white. If the value of Nsky is sufficiently 

large, the path radiance term can cause a significant amount of light to be added to 

the appearance of objects located below the horizon only a relatively short distance 

from the camera. Analysis of the input data shows that for the red and green color 

planes the path radiance makes a signifiant contribution to the total radiance at 

large distances but that at short distances the inherent radiance of the objects 

viewed dominates. In the blue color plane, however, the path radiance term in 

Malm et al.’s model (1983) dominates even for short distances. The assumption 

that the clear day horizon sky radiance is the appropriate factor in the path 

radiance term of Equation 3.5 to use to model all points in the smoggy day is not 

valid. In addition, the model assumes horizon viewing for objects below the horizon 

and obtains Ns∣ey for these points by extrapolating the sky brightness values below 

the horizon. This extrapolation means that 7Vs⅛y is higher for points below the 

horizon, and this further increases the value of the path radiance term. Malm et 

al.’s procedure (1983) for extrapolation below the horizon should be abandoned 

in favor of a procedure that more accurately represents the path radiance term in
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the model.

An improved visibility model would more accurately represent the object in­

herent radiance and the path radiance terms. Multiple scattering, the aerosol 

phase function, ground reflection, object reflectivity, and atmospheric variations 

should be considered. Image processing procedures could also be streamlined. 

The present procedure for handcrafting distance images is very labor intensive. 

An automated procedure for creating the distance image based on stereoscopic 

photography is feasible, and should be developed. The data base and methods 

developed in the present paper can then be used to verify the accuracy of these 

improvements.
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CHAPTER 4

IMPROVEMENT OF IMAGE 
PROCESSING-BASED VISIBILITY MODELS

4.1 Abstract

A two-stream approximate solution to the radiative transfer equation is incor­

porated within a simple image processing-based visibility model. The two-stream 

solution gives fairly accurate results without the great computational effort re­

quired of more exact radiative transfer codes. The resulting synthetic photographs 

show a predicted sky color that is much closer to the color of the sky recorded 

in actual smoggy day photographs than has been the case for the simple visi­

bility models proposed previously. Objects below the horizon in the synthetic 

photographs are brighter than actually observed, indicating a need to improve the 

model performance for objects below the horizon.
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4.2 Introduction

Synthetic photographs are a powerful means of displaying the results of a 

visibility modeling calculation (Malm et al.,1983; Williams et al., 1980, 1981; 

Larson et al., 1987). Such synthetic photographs simulate the appearance of a 

scene under specified air pollution conditions, and can include a vast amount of 

information on how the apparent contrast and apparent color of each object in the 

field of view are altered within a polluted atmosphere.

Verification tests performed on a simple image processing-based visibility mod­

el (Larson et al., 1987) indicate that it may be possible to drastically improve the 

performance of the model that was tested in that study by including a more exact 

treatment of the appearance of the sky and by calculating the contribution of 

skylight to the perceived intensities of objects in the field of view more accurately. 

This work concentrates on improving the appearance of the sky in the synthetic 

photographs. To investigate the possibility for improvement in sky appearance, 

a light scattering code is employed to produce synthetic photographs such that 

the intensity of singly scattered skylight is computed exactly and a two-stream 

approximation is used to obtain the intensity of light that is multiply scattered.

The resulting synthetic photographs can be compared to actual photographs 

of the same scene taken under the conditions modeled. The degree of improvement 

in the model’s representation of the sky then can be assessed.

4.3 Image Processing-Based Visibility Models

The light reaching an observer from an object consists of two components: the 

light from the object that is attenuated by the scattering and absorbing properties 

of particles and gases in the atmosphere, and the skylight which is scattered toward
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the observer along the line of sight. This second contribution is called the path 

radiance. The apparent intensity, I, of an object as seen by an observer then can 

be written as:

I = I0e~b'ztx + Isky(l - e~b'ztx) (4.1)

for a horizontal line of sight (Duntley, 1948; Middleton, 1950; Duntley et al., 1957; 

Masaki, 1960; Middleton, 1968). To is the inherent intensity of the object viewed. 

This is the intensity of light from an object received by an observer who is at the 

location of the object. The term, δeιt, is the atmospheric extinction coefficient, a 

quantity which describes the amount of light that is scattered or absorbed in the 

atmosphere. The distance between the observer and the object is x, and Isky is the 

intensity of the horizon sky in the direction of the line of sight. Equation 4.1 is 

central to the image processing-based visibility model that was proposed by Malm 

et al. (1983) and was tested against field observations by Larson et al. (1987).

In the simplest image processing-based visibility model, a photographic slide of 

a scene taken under very clean conditions is used as a base photograph. The base 

photograph is employed to create a synthetic photograph of how the same scene 

would appear under specified air pollution conditions. For each of several million 

points in the base photograph, for each of the three color planes (red, green, and 

blue) that make up the slide, the film density is measured by a microdensitometer. 

Film density is then related to the light intensity value that exposed the film 

through the film characteristic curves given by the film manufacturer. These 

intensity values, T, are used to determine the values of To for each point in the 

clear day picture in each color plane by rearranging Equation 4.1 to solve for To:

Io = Ieb'z'x + Isky(l - eb<ztx} (4.2)

where the value of bext is the extinction coefficient from the clear day. By definition,
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the value of bext for a clear day is very small, so inaccuracies in this procedure 

for obtaining Jo are not particularly important when the model at hand is to 

be used to depict very heavily polluted urban areas. The resulting array of Jo 

values are assumed to be independent of pollutant loading. In order to create 

a synthetic photograph of the same scene under heavily polluted conditions, a 

distance image, which is a matrix of values assigning a distance, x, to each point in 

the photograph, and a sky radiance image, which gives a value of Is∣ev to each point 

in the photograph, are needed along with the value of the extinction coefficient, 

bext, for the condition to be modeled. Using these values in Equation 4.1, a new 

array of intensity values, I, are produced. The new intensity array is converted 

back to an array of film density values. Then through a film writing device, a 

photograph is produced representing the film densities calculated for the heavy 

smog event.

In the procedure proposed by Malm et al. (1983), the sky radiance image (the 

array of Iaky values) was determined from the sky in the clear day photograph, and 

values of Isιey needed for calculating skylight addition to the appearance of objects 

located below the horizon were obtained by extrapolating trends in Is∣cy values to 

below the horizon. The field of inherent intensities, Io, in Malm et al.’s model 

was also assumed to be independent of pollutant loading and thus was determined 

from the clear day photo, as described by Equation 4.2 above. In reality, both Js⅛y 

and Jo arθ dependent on the extinction coefficient. Using the sky radiance image 

and the inherent intensity image derived from the clear day photograph to create 

a synthetic image produces a synthetic photograph that is too bτight and too blue 

(Larson et al., 1987).

Using the clear day photograph to determine the sky radiance image results 

in the sky of every synthetic photograph being modeled as the clear day sky. This
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occurs because if the distance to the target viewed is allowed to go to infinity 

in Equation 4.1 (as for the sky), the target intensity is equal to the intensity of 

the clear day blue sky, even though the actual smog event sky is closer to being 

white. In addition, the path radiance values for objects below the horizon would 

have a greater blue component than is realistic. The appearance of the synthetic 

photograph is fairly sensitive to the sky radiance image used in its production. 

At very small object to observer distances, the contribution of the path radiance 

term should be small, since at close range, most of an object’s apparent radiance 

is due to light coming directly from the object. If the clear day sky radiance 

image is used in the production of a photograph which simulates a smoggy day, 

the value of Is∣cy can be large enough to make a significant contribution to an 

object’s apparent radiance even at small object to observer distances. This effect 

is especially prominent for the blue color plane in those cases where the clear day 

sky is used to define the skylight intensities.

In an alternative image processing-based procedure, Williams et al. (1980, 

1981) attempted to depict the appearance of regional haze and distinct power 

plant plumes as a function of object color, object distance from the observer, 

and the level of air pollution in the atmosphere. In that model, Williams et al. 

incorporated a radiative transfer code based on the numerical technique of Braslau 

and Dave (1972). To test the results of the model, the resulting plume images were 

compared to actual plume photographs, but, at best, only reasonable agreement 

was found. Williams et al. also tested the results of the radiative transfer code 

by comparing the implemented code (that used three Fourier coefficients in the 

expansion to determine radiance) to the results of the code when six coefficients 

were used. Results agreed to within 20% depending on sun and viewing angles. 

Radiative transfer simulations were also compared to measured radiance on a
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moderately hazy day. These agreed to within an average of 24%. Williams et al. 

concluded that more validation work was needed to fully test the model.

4.4 Radiative Transfer

In order to predict the visual appearance of light within the earth’s atmo­

sphere, Dave (1980) states that descriptions of the following are necessary: the 

solar spectrum in the range of 365 nm to 784 nm, the scattering properties of 

air molecules and of suspended particulate matter in the atmosphere, the absorp­

tion properties of gases and of suspended particulate matter, the spectral and 

directional reflectances of surfaces, the atmospheric composition, and “a complete 

psychophysical specification of color.” Fortunately, the last requirement is not 

necessary to solve the radiative transfer equation which describes how light is 

propagated through the atmosphere. In solving the radiative transfer equation, 

horizontal inhomogeneities in the atmosphere are very difficult to treat. Solutions 

to the equation generally assume that a plane parallel atmosphere is present which 

is homogenous in character in the horizontal direction and infinite in extent. Inho­

mogeneities can be incorporated in the vertical direction, which is finite in extent. 

Vertical gradients in aerosol properties, gas concentration, pressure and tempera­

ture can be included in the calculations. The light intensity calculated is a function 

of the wavelength of light considered, the elevation of the observer relative to the 

ground, the angle of the sun, the viewing direction, and the specification of the 

solar spectrum.

The equation of radiative transfer is given by Isaacs (1981):

d,I∖{T) μ, φ} τ l j,∖ τ ∕ j,∖ ί λ oλ
μ----- -------- = Iλ(τ,μ,φ) - Jλ(τ,μ,φ) (4.3)

with:
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2% +12% +1

P{μ,φ}μ,φ')Iχ(τ,μ,φ'}dμldφl (4∙4)
ο -1

where

λ is the wavelength of light considered.

Iχ is the wavelength dependent radiance.

Jχ is the source function.

πFχ is the incident solar irradiance.

ω0 is the single scattering albedo (the ratio of the scattering coefficient to the 

extinction coefficient).

τ is the optical depth, τ — f* bextdx'.

μ is the cosine of the zenith angle of the observer’s line of sight.

μo is the cosine of the zenith angle of the sun.

φ is the azimuth angle of the observer’s line of sight.

φo is the azimuth angle of the sun.

P(μ, φ', μ', φ') is the angular scattering function which describes the probability 

that light from the direction (μ',φ') will be scattered in the direction (μ,φ}-

The first term on the right-hand side of Equation 4.3 describes the loss of 

intensity as light is scattered and absorbed as the light travels through the at­

mosphere. The second term on the right side of Equation 4.3 accounts for the 

gain of intensity as light is scattered into the line of sight. This term, called the 

source function, Jχ(τ, μ, φ), consists of singly scattered light (the first term on the
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right-hand side of Equation 4.4) and of multiply scattered light (the second term 

on the right-hand side of Equation 4.4). Equations 4.3 and 4.4 are subject to 

boundary conditions both at the top and at the bottom of the atmosphere. There 

are several classes of approaches to solving a radiative transfer problem. Three of 

these are numerical, exact analytical, and approximate analytical solutions.

Many numerical techniques exist to solve this equation subject to its boundary 

conditions. (Hansen and Travis, 1974, have reviewed a number of these.) Nu­

merical techniques have the advantage of being very exact, but require extensive 

computing time. Although some numerical solutions have been used to calculate 

predicted light intensities in clean and polluted atmospheres (Williams et al., 1979, 

1980; Dave, 1975, 1978, 1981), for the application of radiative transfer calculations 

to visibility modeling, less exact, more computationally manageable approaches 

are preferred. The numerical methods serve as standards against which to compare 

approximate solutions. For a few cases exact analytical solutions exist, but the 

approximate analytical techniques can be applied to many more general situations.

In an approximate analytical solution, assumptions are made in order to sim­

plify the radiative transfer equation. If the single scattering approximation is 

made, the second term on the right-hand side of Equation 4.4, which describes 

multiple scattering, is set to zero. This simplification is only valid in the limit of 

clean atmospheric conditions. When the solutions for the single scattering case 

are compared to numerical solutions that involve multiple scattering, errors of up 

to 15% even for clean atmospheric conditions for the single scattering approxima­

tion are reported (Isaacs, 1981). The error increases with pollutant loading. Dave 

(1964) reports that sky intensities are underestimated by 15% when higher orders 

of scattering are not included in a light scattering calculation, and that errors up 

to factors of two to four are possible if the single scattering approximation is used



-99-

to model polluted conditions. Single scattering results that were 20% to 50% lower 

than the results of multiple scattering calculations were found by Bergstrom et al. 

(1981), and Isaacs and Ozkaynak (1980) calculated singly scattered intensities that 

were 30% to 40% lower than intensities calculated with more accurate techniques.

In order to account for multiple scattering while still maintaining computa­

tional efficiency, the multiple scattering term in Equation 4.4 can be approximated. 

In the diffuse field method, this approximation is accomplished by assuming that 

the skylight radiance field is isotropic (independent of angle) and that flux conser­

vation holds (Latimer et al., 1978; Ozkaynak et al., 1979). The errors associated 

with the diffuse field approximation can be large. It is possible to have up to a 

30% difference when results from the diffuse field approximation are compared to 

results from a numerical calculation (Isaacs, 1981), and this error increases when 

more polluted conditions are modeled. Bergstrom et al. found that when the dif­

fuse field approximation was used to calculate horizon sky intensities, the results 

were within 10% to 20% of values obtained from numerical solutions to the full 

radiative transfer equation.

Another class of approximate analytical solutions are the finite stream approx­

imations. Analytical two-stream (Chu and Churchill, 1955; Coakley and Chylek, 

1975) and four-stream (Liou, 1974) approximations exist. The two-stream formu­

lations are useful since they are computationally efficient and are fairly accurate. 

In the two-stream approximation, the term representing multiple scattering is es­

timated by asuming that the intensity, I(τ,μ, φ), can be written as the sum of an 

upward and downward component, ∕+(r) and ∕-(r), where I+ (r) is an averaged 

intensity over the upper hemisphere:
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2π 1
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and I~(τ) is the averaged intensity over the lower hemisphere:

2jγ 0

f f I(τ,μ,φ}μdμdφ
= --------------- (4.6)

∕ f μdμdφ 
o -ι

This approximation reduces the equation of radiative transfer to a set of equa­

tions that can be solved analytically. It does not require the assumption of flux 

conservation, as in the diffuse field case, and results in a better treatment of 

multiple scattering and a more accurate description of the angular distribution 

of scattered light. In comparison of the results of two-stream approximations 

against the calculations done using numerical techniques, Isaacs (1981) reported 

agreement within 5% to 13%, and Coakley and Chylek (1975) reported agreement 

to within 12% for sky intensities.

Other methods exist to determine sky intensity. Monte Carlo simulations, em­

ploying techniques based on the theories of probability, have been applied to light 

scattering problems. Such simulations rely on the principle that if the probability 

of occurrence of each event in a series of events is known, it is possible to predict 

an estimate of the final outcome. As light travels through the atmosphere and en­

counters a particle, there is a chance that the light will be scattered or absorbed. 

If the light is scattered, the phase function of the particle gives the probability of 

the light being scattered at a certain angle. If the light reaches the ground, there 

is a chance that it will be absorbed or reflected. By simulating a number of inter­

actions between light and particles and atmospheric boundaries using the methods
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of probability, it is possible to compute the predicted light intensities reaching an 

observer. The Monte Carlo methods for simulating light scattering are generally 

applied to difficult cases, such as non-plane parallel atmospheres, or cloud prob­

lems, since other methods provide much more efficient means of modeling a plane 

parallel atmosphere with no horizontal variation.

When considering the appearance of the sky under clean conditions, it is pos­

sible that sky radiances may be determined by consulting measured data on the 

distribution of clear sky radiance (Steven, 1977). To determine the clear sky ra­

diance distributions, many actinometer measurements are made of points in the 

sky. These individual radiance measurements are normalized by the total amount 

of horizontal diffuse irradiance. The normalized distributions are reported to be 

independent of turbidity, in the range of fairly clean conditions.
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4.5 Calculation of Sky Intensities

The problem addressed in this study is to select and test a method for calcu­

lating skylight intensities within the context of a simple image processing-based 

visibility model. The method selected must meet two criteria: (l) skylight in­

tensity predictions must be made that avoid the previously mentioned problems 

with calculations based solely on clear day sky photographs, and (2) the method 

must be computationally quick, as intensities at many points in the sky must be 

computed to define the sky shown in an arbitrarily chosen scene.

Because of its computational efficiency and accuracy, a two-stream approxi­

mation was chosen as a promising approach to the prediction of sky intensities for 

use in an image processing-based visibility model. A test of this approach then 

proceeds in two steps. First, a specific method for calculating skylight intensities 

was adopted. Then the skylight intensity results were merged with the remainder 

of the present image processing model.

The two-stream calculation of skylight intensities was based on the approach 

of Coakley and Chylek (1975) and on the analytical solution reported by Kaufman 

(1979). The light scattering computer code used to implement this scheme was 

written by Dr. Christine Sloane of General Motors Research Laboratories (Sloane, 

1987). That code corrects for minor errors in Kaufmann’s solution.

Input parameters to the skylight intensity model include the concentration of 

NO∙2 (a light absorbing gas), information on the aerosol size distribution, data on 

the aerosol refractive index, the elevation of the observer relative to the ground, 

the sun angle, the viewing angles, the reflectivity of the ground, and the height 

of the atmospheric mixing layer below which the pollutants are trapped. The 

light source characteristics must also be specified. The code used allowed for six
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different descriptions of the incoming solar radiation. The following results are 

based on the use of the standard daylight illuminant D65 as the source. The 

reflectivity of the ground was taken to be 0.15.

The first section of that program calculates the extinction coefficient given 

the concentration and properties of the gases and suspended particulate matter 

present. The gaseous absorption coefficient is calculated from the concentration 

of NOi and the relationship given by Hodkinson (1966). The Rayleigh scattering 

coefficient is taken to be 0.15 × 10^4 m~1 at a wavelength of 550 nm and to have 

an inverse fourth power dependence on the wavelength. The aerosol scattering 

and absorption coefficients are calculated from Mie theory. The radiative transfer 

equation is then solved with the two-stream approximation, and the resulting 

output gives values of the calculated intensities due to singly scattered light and 

intensities including both singly scattered and multiply scattered light for each 

viewing angle over a number of wavelengths. The visual range and chromaticity 

coordinates of the sky in the direction viewed also are given.

The chosen procedure for computing skylight intensities was inserted into the 

structure of the image processing-based visibility model previously proposed by 

Malm et al. (1983). This modification to Malm’s model was accomplished by 

replacing Malm’s sky radiance image that was based on the clear day photograph 

by a sky radiance image defined by the results of the two-stream radiative transfer 

calculation. The improved treatment of the sky then was tested by appliction to 

the clear day and smoggy day data sets collected at Pasadena, CA, by Larson et 

al. (1987). Of the two sets of digitized photographs present in that data base, the 

data for the view of downtown Pasadena were chosen for study.

To create the necessary sky radiance image for use with the downtown Pasade­

na data set, skylight intensity values were computed for the 27 viewing angles
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leading to the sky points shown in Figure 4.1. Sky intensities were calculated 

for conditions present on both the clear day (April 7, 1983) and on the smoggy 

day (August 25, 1983). For this northwest facing scene of downtown Pasadena, 

intensities for viewing angles from 1° elevation above the horizon to 15° above the 

horizon in one degree increments were computed for a central vertical transect of 

the portion of the sky included in the photograph, as shown in Figure 4.1. Sky 

intensities for view angles of 1°, 6°, and 12° from the horizon were calculated for 

a vertical transect in the far left, far right, mid-left and mid-right sections of the 

photographs. For the area of the sky chosen, it was found that the computed 

intensities varied little in the horizontal direction. Therefore, the intensities cal­

culated for the central postion of the sky were taken to apply for all sky positions 

at the same elevation. The remaining points in the sky image were filled in by 

interpolation in the vertical dimension between the elevations for which values 

were calculated.

The calculated skylight values are in the form of intensities, and the data 

needed for the production of the synthetic photographs must be in numerical den­

sity units, so a conversion is needed to relate the intensities to the densities. The 

clear day slide, which serves as the substrate upon which the visibility model cal­

culations are performed, was used to construct a calibration curve that relates 

the calculated intensities to the densities at the corresponding points in the pho­

tograph of the sky. Densities in the red, green and blue planes of the slide were 

determined for each angle for which intensity calculations were performed. A 

linear regression analysis was carried out for each color plane to determine the 

relationship between the measured densities of those points studied in the sky and 

the logarithm of the corresponding intensities calculated for those points. The 

correlation coefficient in the red and green plane was 0.98. The correlation for
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FIGURE 4.1. Dots illustrate points of the downtown Pasadena photograph for which sky intensities were calculated.
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the blue plane was lower, r=0.67. Using the calibration curves resulting from this 

regression analysis, the sky intensities calculated using the two-stream model for 

the smoggy day of August 25, 1983 were converted into densities and a new sky 

radiance image was formed. Intensities were held constant below the horizon. This 

sky radiance image was used in Equation 4.1 with the same procedure as described 

in Larson et al. (1987) to produce a synthetic photograph.

4.6 Results and Discussion

The synthetic photograph produced from the August 25, 1983 air pollution 

data and from the sky radiance image calculated for August 25, 1983 using a 

two-stream approximate solution to the radiative transfer equation is presented in 

Figure 4.2. The photograph is noticeably brighter than the synthetic photograph 

that resulted from application of a simple visibility model (Larson, et al., 1987), 

and the appearance of the sky is more accurately represented by the improved 

model than by the simple model. The sky in the new photograph is not predomi­

nately blue, as is the case with the synthetic photographs produced previously.

Graphs showing the average difference in numerical densities (DN) between 

a digitized version of an actual photograph of the August 25 smog event versus 

the synthetic photographs of that smog event as a function of observer to object 

distance are given in Figures 4.3 and 4.4. Both graphs are for the downtown 

Pasadena scene described by Larson et al. (1987). Figure 4.3 depicts the results 

for the old model, in which the clear day sky photograph provides the skylight 

intensity map, and Figure 4.4 illustrates the results of the new model in which 

sky color is determined from radiative transfer calculations. The differences in 

numerical densities can range from 0 to 255, so a difference of 30 DN units is a 

12% difference relative to full scale, and a difference of 45 density units is only an 

18% difference in full scale. Therefore in considering an observer’s reaction to the



-107-

FIGURE 4.2. Synthetic image of smog event resulting from new image processing-based visibility model.The appearance of downtown Pasadena on August 25, 1983 is modeled in this synthetic photograph. The photograph results from a new image processing-based visibility model which incorporates a sky radiance image derived from radiative transfer calculations.
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photographs produced, it is more important to look at the relative differences in 

the red, green, and blue color planes to evaluate color balance, than to consider 

the differences as an indication of absolute error. In the old model, differences 

between the actual and synthetic smog photographs for objects below the horizon, 

were larger in the blue color plane than in the green and especially in the red color 

plane. This meant than the synthetic photograph had a blue cast to it, relative to 

the actual smoggy day photograph. In the old model, average absolute differences 

in the sky for the red and blue were comparable, with lower differences in the 

green. This resulted in a sky color much closer to the clear day sky than to the 

color of the sky on a smoggy day. In the new model, the sky differences in the 

red, green and blue planes are similar, which points out that the sky is closer to 

the white color expected in a smoggy day photograph.

The new model predicts that the brightness levels of objects below the horizon 

are greater than the brightness levels which are observed in the actual smoggy day 

photograph for those objects. In the new model, the ∕3⅛y values are held constant 

below the horizon. However, since the sky intensities predicted for the new model 

are brighter than the sky intensities used in the old model (as is appropriate for 

the whitish sky of a smoggy day), when these values are held constant below the 

horizon, the contribution of the path radiance term to the apparent intensity of 

objects below the horizon is large. This contribution is large even for objects 

located at a short distance from the observer, in which case most of an object’s 

apparent radiance comes from light coming directly from the object. A more 

accurate sky intensity array would have ∕<,⅛y values dropping off below the horizon.

The sky portions of the photographs also can be compared by plotting points 

from the photographs in color space on the C.I.E. chromaticity diagram (Figure 

4.5). In the old model, the synthetic smoggy day photographs had a sky that was
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not substantially different from the sky in the clear day photograph, as would be 

expected since the clear day sky image was used in the old model. Chromatic- 

ity coordinates calculated from the spectrum of clear day sky intensities resulting 

from the two-stream solution to the radiative transfer equation, fall close to the 

chromaticity coordinates for the clear day sky measured from the clear day pho­

tograph using a Diano Matchscan II reflectance spectrophotmeter. This indicates 

that calculated clear day intensities are a good representation of the intensities 

which originally exposed the photographic film. Points calculated from the ra­

diative transfer code for the smoggy day sky, points measured from the synthetic 

smoggy day photograph resulting from the new model, and points measured from 

the undigitized actual smoggy day photographic print are virtually identical when 

plotted on the C.I.E. chromaticity diagram. This shows good agreement in mod­

eling the smoggy day sky and good photographic control during image processing.
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C.I.E. CHROMATICITY DIAGRAM ACCORDING TO THE 

1931 C.I.E. STANDARD OBSERVER AND COORDINATE SYSTEM
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FIGURE 4.5. Comparison of sky color using the C.I.E. chromaticity diagram.
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4.7 Conclusions

Synthetic photographs resulting from the visibility model proposed by Malm 

et al. (1983) can reproduce the contrast degradation present in polluted urban 

conditions, but do not closely reproduce the sky color observed on smoggy days. To 

improve the representation of sky color, a new sky radiance image was calculated 

using a two-stream approximate solution to the radiative transfer equation. The 

skylight intensity solutions from the two-stream approach are reported to agree 

with solutions calculated by more accurate numerical techniques to within 13%, 

while requiring much less computational effort than the numerical approaches 

(Isaacs, 1981). The synthetic photographs resulting from the improved model 

give a good representation of the actual smoggy day sky, but objects below the 

horizon in the new synthetic photographs are brighter than in the actual smoggy 

day photograph. This points out the need for improving the performance of the 

model in predicting intensities for objects below the horizon.
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CHAPTER 5

CONTROL OF ATMOSPHERIC PRIMARY 
CARBON PARTICLE CONCENTRATIONS 

AND EFFECTS ON λTSIBILITY 
IN THE LOS ANGELES AREA

5.1 Abstract

The control of atmospheric primary carbonaceous particles is central to pro­

tecting visibility. In the Los Angeles area, fine particulate carbon accounts for 40% 

of fine particulate mass concentration on an annual average basis and 33% of the 

fine aerosol mass during summer midday periods. Visibility modeling shows that 

aerosol carbon contributes up to 39% of the total scattering coefficient and up to 

44% of the extinction coefficient in the Los Angeles area during summer midday 

periods. Fine primary aerosol carbon is estimated to contribute 24% of the ex­

tinction coefficient, and 14% of the scattering coefficient during summer midday 

periods in Pasadena. Using the results of the primary aerosol carbon emission 

control strategy study by Gray (1986), which determined the least costly set of 

controls necessary to achieve reduced levels of primary carbonaceous aerosol in the 

Los Angeles area atmosphere, it is estimated that an 8% to a 14% decrease in the 

average 1984 summer midday extinction coefficient could be achieved at Pasadena 

if primary aerosol carbon emission controls costing $80.4 ×106 year-1 (1982 dol­

lars) had been in place at that time. An 11% to a 19% decrease in the extinction 

coefficient is estimated to result from controls costing $423.5 ×106 year-1 (1982 

dollars).
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5.2 Introduction

Light scattering and absorption by airborne particles leads to visibility reduc­

tion. In cities like Los Angeles, visual range often is reduced to less than 5 km 

(Larson and Cass, 1987). In more remote areas, including national parks, even 

small amounts of pollutant-induced light extinction may obscure the vistas for 

which those parks are famous (Macias, et al., 1981; Malm and Molenar, 1984).

Governmental regulations set air quality goals for particulate air pollutants 

and protect visibility in national parks and wilderness areas. In order to meet 

these standards, emission controls, sometimes costly, must be implemented. It is 

therefore important that methods be developed for identifying the least expensive 

air pollution control strategy needed to reach a desired level of air quality. While 

considerable attention has been paid to the design of cost-effective strategies for 

meeting ambient pollutant concentration standards (Cass and McRae, 1981), little 

research has been pursued into identifying the least expensive way to improve 

regional visibility.

This work will consider the connection between cost-optimized emission con­

trol strategies and their resulting effects on visibility. Methods developed will be 

illustrated for the example of primary aerosol carbon particle control in the Los 

Angeles area. First an overview of the character of the aerosol carbon air pollution 

problem in the South Coast Air Basin that surrounds Los Angeles is given. Then 

the least-cost strategies for aerosol carbon control in that area developed by Gray 

(1986) are summarized. The estimated effect of these controls on visibility will be 

simulated through application of a visibility model, and the predicted changes in 

visibility will be discussed.

The fine airborne particulate matter in the South Coast Air Basin has been
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found to consist mainly of sulfates, nitrates, and carbonaceous material (Hidy 

et al., 1974). Gray et al. (1986) reported that in 24-hour average samples of 

suspended particulate matter in the Los Angeles area, 40% of the fine particle mass 

is aerosol carbon. As the most abundant fine aerosol species in the Los Angeles 

atmosphere in recent years, aerosol carbon control will clearly be an important 

feature of any program designed to make a major improvement in local visual 

range.

Carbonaceous material in the aerosol that has been emitted directly to the 

atmosphere originates from combustion, industrial processes, and fugitive sources 

(Wagner, 1978; Siegla and Smith, 1981; Muhlbaier and Williams, 1982; Cass et 

al., 1982) and consists of elemental carbon (EC) and organic carbon (OC). Ele­

mental carbon is a black soot-like material with a chemical structure similar to 

impure graphite (Rosen et al., 1978). Elemental carbon is a primary aerosol com­

ponent, i.e., it is emitted from sources as elemental carbon and is not formed in 

the atmosphere by any physical or chemical process. Elemental carbon particles 

both scatter and absorb light (Waggoner and Charlson, 1977; Pierson and Russel, 

1979; Conklin et al., 1981; Groblicki et al., 1981; Rosen et al., 1982; Wolff et al., 

1982) and thus contribute to the reduction of visibility. Organic carbon aerosol 

may be due to either primary emissions from sources or to secondary formation 

in the atmosphere. In the latter case, organic aerosol is formed in the atmosphere 

by condensation of the low vapor pressure products of gas phase reactions involv­

ing hydrocarbon vapors (Grosjean and Friedländer, 1975; Schuetzle et al., 1975; 

Cronn et al., 1977; Grosjean, 1977; Appel et al., 1979). Methods implemented 

to control primary aerosol carbon emissions would affect elemental carbon con­

centrations and that fraction of the organic carbon concentrations that is due to 

primary aerosol emissions. The present analysis is limited to control of primary
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aerosol carbon sources only. To the extent that some control measures evaluated 

may also reduce hydrocarbon vapors or other pollutant species, the improvements 

in visibility would be greater than shown here. In that sense the present analysis 

is a conservative one. Visual range improvement will be greater than or equal to 

the amounts shown.

5.3 Aerosol Carbon Concentrations in the Los Angeles Area

In 1982, a year long study of fine aerosol carbon levels in the South Coast Air 

Basin was undertaken (Gray et al., 1986). An air monitoring network was operated 

at six day intervals to obtain 24-hour average samples of fine (dp < 2.1 μm) 

particulate matter at 10 sites in the air basin. The monitoring sites used during 

the 1982 study are shown in Figure 5.1. The Lennox, Pasadena, Upland and 

Azusa sites also were included in a 1984 study of summer midday fine particle 

and coarse particle pollutant concentrations along with a new sampling site at 

San Bernardino (Larson and Cass, 1987). The samples from both studies were 

analyzed for elemental and organic carbon (by the method of Johnson et al., 

1981), trace metals (by X-ray fluorescence), SO^2, NO^1 (by ion chromatography) 

and NH^1 (by the phenolhypochlorite method, described by Solorzano, 1969). 

These experiments provided data which describe an annual cycle of fine particulate 

carbon air quality in the Los Angeles air basin during 1982, as well as the details 

of the pollutant loadings during summer midday periods when visibility reduction 

is most apparent to the general public.

The results from the year long study of 24-hour average samples can be com­

pared to summer midday concentrations observed during 1984 (Larson and Cass, 

1987). The 1982 study found that annual average dry fine suspended particulate 

matter concentrations varied from 23 μg∕m3 to 42 μg∕m3 over the sites in the 

Los Angeles area. Summer midday average fine dry mass concentrations ranged
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from 32 μg∕m3 to 72 μg∕m3 over the sites studied in 1984 confirming the human 

observer’s impression that light scattering and fine aerosol levels are higher than 

average during summer midday periods. Average fine dry mass concentrations in 

the 1982 study were between 32% and 39% of the annual average total suspended 

particulate matter concentrations, which varied from a low of 63.6 μ⅛∣τεP at West 

Los Angeles to a high of 126.7 μg∕m3 at Rubidoux. The percentage of the total 

dry suspended particulate mass that was fine dry mass ranged from 28% (at San 

Bernardino) to 64% (at Pasadena) for summer midday samples. Average summer 

midday total suspended particulate matter concentrations ranged from a low of

77.8 μg∕m3 at Pasadena to a high of 146.2 μg∕m3 at Azusa. Carbonaceous aerosol 

accounted for 40% of fine mass loading in the 1982 study averaged over the 10 sites, 

and for 33% of the fine mass concentrations in the 1984 summer study averaged 

over the five sampling sites.

The highest annual average concentration of fine total carbon (TC = OC + 

EC) was found in the most heavily trafficked areas of the city in the 1982 study, 

such as at central Los Angeles (12.2 μg∕m3) and Burbank (13.7 μg∕m3 ). This 

is due to stagnant atmospheric transport conditions in the winter that lead to 

very high aerosol carbon levels in the winter at those sites. In the summer, aerosol 

carbon emitted from traffic in central Los Angeles is blown inland by winds that are 

stronger than in the winter (Gray, 1986). Azusa, which is often directly downwind 

of Los Angeles in the summer showed the highest summer 1984 midday average 

fine total carbon levels (17.6 μg∕m3). A comparison of aerosol carbon data taken 

during these two studies is given in Table 5.1.

The ratio of total carbon to elemental carbon concentrations measured at a site 

can be used as an indication of the amount of secondary organic aerosol formation 

that has occurred since the air mass has moved from the emission sources to the
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TABLE 5.1. Fine aerosol carbon concentrations at sites included 

in both the 1982 and 1984 Los Angeles area experiments.

1982

24-hour samples

annual mean

(μj∕m3)

1984

4-hour samples

summer midday mean

(μg∕m3}

EC TC EC TC

Lennox 4.51 10.69 1.70 7.97

Pasadena 3.95 10.73 2.50 14.64

Azusa 3.30 9.03 4.11 17.63

Upland 3.14 8.51 2.76 13.52
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sampling location (Cass, Boone, and Macias, 1982; Gray et al., 1986). A total 

carbon to elemental carbon ratio of 3.39 : 1 is estimated for fine primary aerosol 

emissions in the Los Angeles area in 1982 (Gray, 1986). A ratio higher than this 

suggests that some secondary organic aerosol is present. The 1982 study showed 

little increase above the source ratio of total to elemental carbon as measured in 

the ambient air at the sites in the study on an annual average basis (the annual 

average being dominated by high primary aerosol concentrations that occur during 

morning and evening traffic peaks). There was little seasonal dependence in the 

TC to EC ratio, although the TC to EC ratio did increase as one moves from 

near coastal sites like Lennox to inland sites like Azusa. It was concluded that for 

1982, secondary formation of organic carbon aerosol constituted no more than 16% 

of total aerosol carbon on an annual average basis at an inland site like Azusa. 

It could be expected that more secondary organic aerosol enrichment would be 

seen in summer during midday conditions favorable for photochemical reactions, 

with secondary organics formation increasing with distance inland as the air mass 

has had more time for secondary aerosol formation to occur. The 1984 summer 

midday study showed some evidence of enrichment with distance inland. Average 

fine particle total carbon to elemental carbon ratios ranged from 5.08 ± 1.59 : 1 

at the Lennox coastal site to 8.35 ± 3.47 : 1 at the farthest inland site at San

Bernardino.

For the purposes of modeling the effect of emission controls on the concentra­

tions of carbonaceous particles in the atmosphere, it is important to be able to es­

timate the amounts of primary and secondary carbon in the ambient aerosol, since 

controls aimed at reducing the direct emissions of carbon particles from sources 

can only be guaranteed to affect primary carbon concentrations. The breakdown 

between primary and secondary organic carbon in the ambient aerosol can be 

estimated by comparing the TC:EC ratio for the ambient aerosol to the TC:EC
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ratio expected for a primary aerosol. Table 5.2 shows the average contributions 

of primary, secondary and background elemental and organic carbon estimated 

for fine aerosol carbon measured at three sites used during the 1984 study for 

two different sets of primary TC:EC ratios. In the first data set, non-background 

organic carbon present above a TC:EC rato of 3.39 : 1 is assumed to be secondary 

in origin. That TC:EC ratio for primary aerosol of 3.39 : 1 is derived from the 

emissions inventory constructed by Gray, 1986. The second set of estimates of 

primary and secondary contributions results from predictions of the summer 1982 

average ambient TC and EC concentrations for each site as computed by Gray’s 

(1986) transport model. Since this model only tracks the transport from the pri­

mary aerosol carbon sources in the Los Angeles area, the model predictions can be 

used to determine a TC:EC ratio appropriate for the primary aerosol at each site. 

Subdivision of each daily summer 1984 fine elemental carbon and organic aerosol 

sample into background, primary and secondary fractions was accomplished by a 

method analogous to that shown in Table 5.2. Coarse particle aerosol carbon was 

assumed to be primary in origin.

5.4 Aerosol Carbon Contributions to Visibility

Investigations to estimate the contribution of aerosol carbon to the reduction 

of visibility have been carried out by a number of researchers. Regression analysis 

by White and Roberts (1977) estimated that organic components made a 9.4% 

contribution to the light scattering coefficient in the Los Angeles air basin. Con­

klin et al. (1981) determined that light absorption by elemental carbon could be 

responsible for up to 17% of the total extinction coefficient observed at down­

town Los Angeles. Groblicki et al. (1981) report that for Denver, 31% of light 

extinction is due to fine particle absorption by elemental carbon. Since elemental 

carbon also scatters light, the total contribution to light extinction in Denver by
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TABLE 5.2. Estimated origin of fine aerosol carbon concentrations - summer 1984 (μg∕m3).

SITE BEC <1 2 3 4> BOC G) EC & poc(4) SOC(5) Primary TC:EC

Lennox 0.16 1.40 1.58 3.78 1.58 3.39:1

Pasadena 0.16 1.40 2.34 5.59 5.15 3.39:1 <6>

Azusa 0.16 1.40 3.95 9.45 2.81 3.39:1 (6)

Lennox 0.16 1.40 1.58 2.44 2.57 2.54:1 W

Pasadena 0.16 1.40 2.34 5.50 5.24 3.35:1 <7>

Azusa 0.16 1.40 3.95 9.41 2.84 3.38:1 W

(1) Background elemental carbon determined from the average summer fine particle elemental 

carbon concentration as measured at San Nicholas Island in 1982 (Gray et al., 1986).

(2) Background organic carbon determined from the average summer fine particle organic carbon 

concentration as measured at San Nicholas Island in 1982 (Gray et al., 1986).

(3) Measured EC minus background EC.

(4) Primary organic carbon estimated from (primary TC:EC enrichment ratio minus 1) times 

non-background ambient EC concentration.

(5) Secondary organic carbon estimated from total organic carbon less POC and less BOC.

(6) TC:EC ratio in primary emissions from sources estimated from emissions inventory (Gray et 

al., 1986).

(7) TC:EC ratio in primary aerosol estimated from model predictions of primary TC and EC 

summer average concentrations at each site (Gray et al., 1986).
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elemental carbon was higher, 38%. Fine particle organic carbon contributed 13% 

to the fine particle scattering coefficient in Denver.

The major light absorbing species in the Los Angeles aerosol is elemental car­

bon (Rosen et al., 1979). The amount of light extinction due to absorption by 

elemental carbon can be determined by direct measurement, using, for example, 

the opal glass technique (Lin et al., 1973) or can be estimated by utilizing a rela­

tionship between elemental carbon mass concentration, and the light absorption 

efficiency for elemental carbon, (Conklin et al., 1981). The contribution of ele­

mental and organic carbon to the scattering coefficient may be more difficult to 

ascertain. The contribution can be estimated using regression analysis, or be cal­

culated by Mie theory. In the case of Mie theory calculations, one must know 

whether the aerosol is an external mixture (each particle consists of only one 

substance, and a multi- component aerosol is achieved by suspending particles of 

different composition in the same air volume) or is an internal mixture (each par­

ticle contains a blend of all species found in particles of a certain size (Ouimette 

and Flagan, 1982)). If the aerosol exists as an external mixture, the scattering 

coefficient could be calculated for each chemical component separately. The sum 

of the individual scattering coefficients for each aerosol type would be the scat­

tering coefficient for the entire aerosol suspension containing many different types 

of organic and inorganic particles. Comparing the contributions of elemental and 

organic carbon particles to the total scattering coefficient would allow the deter­

mination of the percent of the light scattering level that is due to carbon particles. 

If an internal mixture is hypothesized, the value of the scattering coefficient could 

be computed both with and without the carbonaceous aerosols in the internal 

mixture, and by difference the contribution of aerosol carbon to the total aerosol 

scattering coefficient could be deduced.

Figure 5.2 presents a comparison of the scattering coefficients calculated by
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Mie theory, assuming an internal and external mixture for the Pasadena aerosol 

observed during the 1984 summer midday study. For all sites, the values result­

ing from the two methods of calculation are within 5% to 10% of one another 

and are well correlated (correlation coefficient, r=0.985 to r= 0.998). Assuming 

that the 1984 samples consisted of an external mixture, calculations indicate an 

average estimated ratio of the scattering coefficient due to carbonaceous aerosol 

to the total scattering coefficient of 0.39 and a value of 0.44 for the ratio of the 

extinction coefficient due to aerosol carbon to the total extinction coefficient. The 

internal mixture calculation yields a contribution from carbonaceous aerosol to 

the the scattering coefficients of 31% and to the extinction coefficient of 39%. 

Using estimates of primary and secondary aerosol carbon levels for Pasadena, it 

is calculated that primary aerosol carbon contributes an average of 24% of the 

summer midday extinction coefficient and 14% of the summer midday scattering 

coefficient at Pasadena. These calculations indicate that if the concentration of 

carbonaceous particles in the atmosphere were significantly reduced by means of 

emission controls, then visibility would be noticeably improved.

5.5 Control of Fine Primary Carbon Particle Concentrations

Gray (1986) combined an emission inventory for fine particle carbon, a La- 

grangian air quality model, emission control information and the method of linear 

programming to identify the least expensive control strategy that would reduce 

the loadings of primary carbon aerosol in the Los Angeles air basin. Air quality 

modeling methods used in that study were verified by comparison to data taken 

during the 1982 Los Angeles field experiments discussed previously.

The air quality model was based on a Lagrangian particle-in-cell technique and 

incorporated the hourly sequence of wind speed and direction during 1982 to track 

air parcel transport within the 80 X 80 km grid shown in Figure 5.3. That grid
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SCATTERING COEFFICIENT COMPARISON 
EXTERNAL MIXTURE VS. VOLUME AVERAGE INDEX 
c⅞UMMER 1984 AT PASADENA C1000-1400 PST)

4.β
EXTERNAL
MIXTURE
BSCAT
(X10*M^S

WAVELEHGTH=460nm

2.e_

B.B 2.B 4.β

VOLUME AVERAGED BSCAT 
CX10^4M ^1 > VAVELENGTH=460nm

β.a
6.B

FIGURE 5.2. Comparison of the scattering coefficient calculated at 
460 nm assuming an external mixture and assuming an internal mixture.Scattering coefficients are calculated for summer midday periods in Pasadena, 1984.
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system represents the western part of the South Coast Air Basin and is centered 

over downtown Los Angeles. Pollutant inputs from more than 70 types of mobile 

and stationary emission sources were included in those calculations. Seasonal and 

diurnal variation in source outputs were accounted for in the emissions inventory. 

Concentrations of pollutants were affected by the processes of advection, diffusion 

and dry deposition. The data required by the model included information on the 

emission sources, meteorological data, atmospheric dispersion parameters, depo­

sition rates, background aerosol carbon levels, the definition of the receptor grid, 

the cell size, and time step for the calculations.

The model computed the contribution from each source to the ambient pollu­

tant concentrations of elemental and primary particulate total carbon at each site 

of interest within the grid. All of the individual source contributions at a location 

were added to obtain the predicted air quality for that location. The model was 

used to predict the monthly average concentrations of fine primary carbonaceous 

aerosol for each month of 1982 for the seven monitoring sites located within the 

grid. The model was verified by comparing calculated monthly average concentra­

tion predictions to the monthly average concentrations observed at the seven sites 

by Gray et al. (1986). The model is shown to be a good predictor of annual and 

monthly average elemental and total carbon concentrations. Comparison of the 

predicted and observed monthly average total carbon and elemental carbon con­

centrations at the Pasadena site is shown in Figure 5.4. Figure 5.4 also illustrates 

the source class contributions to primary fine particle carbon concentrations at 

Pasadena.

The contribution to primary aerosol EC and OC concentrations at any lo­

cation from any one source is predicted by the model. That contribution varies 

between monitoring sites because the spatial distributions of emissions differ be-
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MONTHLY MEAN TOTAL CARBON CONCENTRATION AT PASADENA

SOURCE CLASS CONTRIBUTIONS TO TOTAL CARBON CONCENTRATIONS 

at Pasadena

MONTHLY MEAN ELEMENTAL CARBON CONCENTRATION AT PASADENA

SOURCE CLASS CONTRIBUTIONS TO ELEMENTAL CARBON CONCENTRATIONS

AT PASADENA

o>3* «
Goso∣ine Powered Vehicles 
D∣ese∣' H∣ghwoy Vehicles 
Diesel: Ships, Roils, Off-H∣ghwoy 
Aircrofl a Olher Mobile 
Stαħo∏ory Sources Fuel 
Industrial Processes 
Tire 8 Broke Weor; Rood Dust 
Fugitive Combustion 
Background

(b) Goso∣∣∩e Powered Vehicles 
D∣eseI∙ Highway Vehicles 
D∣eseH Ships, Ro∣∣s, Off-Highwoy 
∆∣rcroft 8 Other Mobile 
Stot∣onory Sources Fuel 
Industriel Processes 
Tire 8 Broke Weor; Rood Dust 
Fugitive Combustion 
Background

(d) ∙

FIGURE 5.4. Observed versus predicted fine particle carbon concentrations and source class contributions to fine particle carbon concentrations.(a) Air quality model results versus observed values for the monthly mean fine particle total carbon concentration at Pasadena, (b) Source class contributions to fine particle total carbon concentrations at Pasadena, (c) Air quality model results versus observed values for the monthly mean fine particle elemental carbon concentration at Pasadena, (d) Source class contributions to fine particle elemental carbon concentrations at Pasadena. From Gray (1986).
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tween source types. Variation is also caused by changes in such parameters as 

stack height and in diurnal emission patterns. For example, aircraft emissions are 

an important contributor to the aerosol carbon levels observed at Lennox (located 

near the Los Angeles International Airport), but not at other monitoring sites 

in the basin. Therefore, if controls were implemented on aircraft emissions, the 

largest change in ambient carbon levels would be at the Lennox site. At all the 

stations studied, the largest contributors to fine primary elemental carbon con­

centrations are diesel highway vechicles, which contributed 40% to 50% of fine 

elemental concentrations at most sites. Three classes of mobile sources: diesel 

highway vehicles, gasoline powered vehicles, and non-highway diesel sources were 

responsible for the majority of the elemental carbon concentrations observed at 

most sites. These mobile sources are also important contributors to total primary 

aerosol carbon concentrations. This implies that controls on these sources would 

be critical to controlling the levels of these pollutants.

The air quality model constructed by Gray has been linked with an analy­

sis of available emission controls in order to evaluate alternative emission control 

strategies. Since the model is linear in emissions (i.e., a change in the atmospheric 

concentration due to any single source type is proportional to the incremental 

change in basin-wide emissions from that source type), a linear programming al­

gorithm can be used to identify the least costly emission control strategy needed 

to gain a desired level of primary aerosol carbon air quality. A linear programming 

problem consists of an objective function to be optimized (here, to minimize the 

sum of control costs) and a set of constraints in the form of inequalities (here, 

that the pollutant concentration be below a certain limit at each site; that scarce 

resources such as natural gas not be used beyond their availability; that only com­

patible controls are implemented, and that a specific control not be applied to 

more than the number of sources present within the modeling region).
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The linear programming problem for primary aerosol carbon control in the 

Los Angeles area was formulated for seven sites, 74 source types (summarized in 

Table 5.3) and 33 possible emission control measures (Table 5.4). The problem 

was solved by the simplex method (Gale, 1960; Franklin, 1980) using a modified 

version of a computer code provided by Sandia National Laboratories (1979). The 

program was solved repeatedly for progressively more stringent levels of aerosol 

carbon control, the results varying slightly depending on whether primary total 

or elemental carbon control was optimized. The results of the optimization cal­

culations indicate that for a cost of $481 ×106 year-1 (1982 dollars), a reduction 

of 24.86 tons/day of fine particle total carbon emissions (48% of 1982 daily to­

tal carbon emissions), could be obtained. At about the same cost, a reduction 

of fine elemental carbon concentrations by 9.83 tons/day (68% of 1982 daily ele­

mental carbon emissions) could be achieved. For $102 ×106 year-1 (1982 dollars) 

the maximum annual average concentration of fine primary total carbon could be 

reduced from greater that 14 μg∕m3 to 9.2 μg∕m3, and elemental carbon concen­

trations could be reduced from greater than 5 μg∕m3 to 2.4 μg∕m3 for $80 ×106 

year-1. The optimal strategy and cost to achieve control over annual average and 

over monthly average primary aerosol carbon concentrations are approximately 

the same. Graphs of control measures needed to obtain a certain level of control 

λrersus the cost of that control strategy are presented in Figures 5.5 and 5.6. As 

the figures indicate, many of the controls involve the reduction of emissions by 

controlling the emissions from diesel fuel combustion.

5.6 Estimated Effect on Visibility

The study by Gray (1986) described above, provides information on the frac­

tion reduction in total carbon and elemental carbon concentrations at each of 

seven sites in the Los Angeles area that could be expected if specific controls had
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TABLE 5.3. 1982 annual average fine particulate
carbon emission summary within the 50×50-mile grid.

Major Source Category

Fine Total

Carbon (kg∕day)

Fine Elemental

Carbon (kg∕day)

Gasoline powered highway vehicles 5242.3 1261.1

Diesel: highway vehicles 7396.5 5665.7

Diesel: ships, rail, off-highway 2654.9 2033.7

Aircraft and other mobile 571.2 338.6

Highway fugitive

(tire and brake wear; road dust) 8094.3 829.9

Other fugitive

(fugitive combustion; livestock feedlots) 9247.9 537.9

Stationary source fuel combustion 1678.2 402.0

Industrial processes 4154.0 437.9

TOTAL 39039.3 11506.8

(From Gray, 1986)
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OPTIMAL STRATEGY FOR CONTROL OF 
FINE TOTAL CARBON CONCENTRATIONS
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FIGURE 5.5. Annual mean of fine total carbon concentrations versus the annual cost 
of emission controls for the optimal strategy to control fine total carbon emissions.

From Gray (1986).
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FIGURE 5.6. Annual mean of fine elemental carbon concentrations versus cost of emission controls for the optimal strategy to control fine elemental carbon emissions.
From Gray (1986).
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been placed on primary aerosol carbon emission sources in 1982. To estimate the 

improvement in visibility that could occur in the presence of such controls, the 

visibility model of Larson et al. (1987) was applied to the 1984 summer mid­

day air quality data set (Larson and Cass, 1987) before and after a reduction in 

primary aerosol organic and elemental carbon concentrations by the percentages 

predicted by the carbon particle control study (Gray, 1986). Three air monitoring 

sites were studied both in the 1982 control study and in the 1984 ambient sam­

pling study: Azusa, Lennox and Pasadena. The estimation procedure employed 

when coordinating the data from these two studies assumes that the fractional 

reduction in ambient EC and primary OC concentrations predicted to result from 

a set of control measures as determined from the 1982 study, when 24-hour aver­

age samples were taken over a year’s time, holds for 1984, when summer midday 

samples were obtained. The validity of the estimation procedure also depends on 

similar emission and weather patterns for 1982 and 1984 and on Gray’s (1986) 

observation that control strategies that are optimal for the annual mean primary 

EC and OC air quality are also very close to the optimal strategy for a single 

month. Although the air pollution controls considered, which are aimed at reduc­

ing the concentration of fine primary carbonaceous aerosol, could also decrease 

the concentrations of other primary particulate matter species, it is worth noting 

that the major sources controlled (e.g.,diesel engines) emit aerosol that is princi­

pally carbonaceous. But because some sulfate aerosol, for example, would also be 

controlled by these measures, the estimate of the visibility improvement obtained 

due to carbon particle reduction alone is a lower bound on the improvement in 

visibility that could be achieved with carefully planned emissions controls.

In order to simulate the controlled conditions, the aerosol was assumed to be an 

internal mixture. Figure 5.2 shows that similar results would have been obtained 

had an external mixture been assumed. Four cases were considered: a high cost



-140-

control strategy that was optimized for a high level of elemental carbon control, 

an intermediate cost control plan optimized for efficient elemental carbon control, 

plus high and intermediate cost control strategies that were for optimized for total 

primary aerosol carbon control. Three cases of the breakdown between primary 

and secondary carbonaceous material were considered: no secondary organic car­

bon formation (all of the measured aerosol carbon is primary), a split between 

primary and secondary organic carbon as predicted from the emissions inventory 

prepared by Gray (1986), and amounts of primary and secondary organic carbon 

estimated from TC:EC ratios predicted for each site using Gray’s (1986) transport 

model. (See Table 5.2.) Primary organic carbon concentrations were multiplied 

by a factor of 1.4 to convert them to an estimate of primary organic compound 

concentrations before the visibility analysis was conducted. Background levels of 

TC and EC were obtained from the summer average concentrations of TC and EC 

measured during the 1982 study at San Nicholas Island, a remote offshore site. 

The emission controls considered and the cost of the controls for each case are 

presented in Table 5.5.

Visibility modeling calculations show that if all aerosol carbon were primary 

in origin, then a strategy selected to minimize the cost of elemental carbon control 

would produce an average 19% improvement in the mean summer midday 1984 ex­

tinction coefficient at Pasadena at a cost of $423.5 ×10θ year-1 (1982 dollars). For 

the same controls, an 11.3% and 11.4% decrease in the Pasadena average summer 

midday extinction coefficient was computed for the case where secondary organic 

carbon levels were estimated from the transport model predictions of TC:EC ratio 

for a primary aerosol and for the case where the emissions inventory was used 

to determine a primary aerosol TC:EC ratio, respectively. The intermediate cost 

control strategy optimized for elemental carbon control yielded an estimated de­

crease in the average Pasadena summer midday extinction coefficient of 14% at a
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cost of $80.4 ×10θ year-1 (1982 dollars), assuming no secondary organic aerosol 

formation, and approximately an 8% decrease if estimates of secondary organic 

formation are used. Results optimized for total primary aerosol carbon concentra­

tion control indicated a slightly lower percentage improvement in the extinction 

coefficient per dollar spent than in the case where elemental carbon control is op­

timized. Estimates of the mean summer midday extinction coefficient values that 

could be obtained at the Lennox, Pasadena, and Azusa sites, if the controls con­

sidered were in place in the summer of 1984 are given in Figure 5.7 as a function of 

the cost of those controls. The data presented in Figure 5.7 is for the case where 

the split between the primary and secondary organic carbon is estimated from a 

primary aerosol TC:EC ratio derived from transport model predictions.

Another means of illustrating the changes in visibility that could be achieved 

with varying levels of primary aerosol carbon control is to consider the shifts in the 

frequency of occurrence of high and low visibility events that would accompany 

such a control program. The frequency diagrams show the percentage of days 

with an extinction coefficient less than a specified amount. Such plots indicate 

how a range of different conditions, from lightly polluted to heavily polluted, 

would be affected by air pollution controls. Frequency diagrams showing how the 

distribution of midday summer events in 1984 might be altered had the specified 

control devices been in place are given in Figure 5.8 for the Pasadena, Lennox, 

and Azusa sites. Figure 5.8 presents results for the case of secondary organic 

carbon aerosol levels as predicted from the primary TC:EC ratio calculated from 

the transport model predictions for each site. Figure 5.9 presents the results for 

the case where all aerosol carbon is assumed to be primary. The controls affect 

the high extinction events more than the low extinction events and the median 

extinction events, especially at Pasadena. Controls on primary aerosol carbon 

sources only slightly alter the frequency distribution of visibility events at Lennox.
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This indicates that species other than primary aerosol carbon are more important 

in reducing summer midday visibility at the Lennox site. Figure 5.8 shows that 

the 52nd percentile extinction coefficient (×10-4m-1) at Pasadena changes from 

2.53 with no controls to 2.27 with an intermediate cost emission control plan to 

2.15 with the implementation of a high cost emission control plan. If all the 

ambient aerosol carbon is assumed to be primary (Figure 5.9) the 52nd percentile 

extinction coefficient at Pasadena changes from 2.53 to 2.15 to 2.00, for no control, 

for intermediate cost controls and for high cost controls, respectively.

The results of the primary aerosol carbon control study and its effect on vis­

ibility can be illustrated through the use of synthetic photographs (Larson et al., 

1987). Assuming no secondary aerosol formation, had the high cost levels of pri­

mary aerosol carbon control considered here been in place on August 25,1983, the 

day is predicted to appear as shown in Figure 5.10. This figure can be compared 

to Figure 4.2 which simulates the appearance of the same day and scene had no 

primary aerosol carbon controls been in place. Although a considerable amount 

of air pollution is still apparent in the controlled case synthetic photograph, the 

effect of the carbon control strategy is to cause the San Rafael hills behind the 

city of Pasadena to reappear in the scene of interest. Graphs of the extinction 

coefficient on August 25, 1983 as a function of the cost of aerosol primary carbon 

control for the case of optimal elemental carbon control are shown in Figure 5.11.



-143-

TABLE 5.5. Strategies optimized for elemental and for total aerosol carbon control.

A STRATEGY OPTIMIZED FOR 

ELEMENTAL CARBON CONTROL

Level of

Control Controls*

Cost Fraction Reduction

(×106 year-1') Site Primary TC Primary EC

Intermediate 4,9,H,13, $80.45 Azusa 0.254 0.485

15,31,32,33 Pasadena 0.298 0.514

Lennox 0.319 0.541

High 2,5,7,9,10, $423.50 Azusa 0.367 0.570

11,13,15,26, Pasadena 0.433 0.608

31,32,33 Lennox 0.473 0.629

A STRATEGY OPTIMIZED FOR 

TOTAL AEROSOL CARBON CONTROL

Level of

Control Controls*

Cost Fraction Reduction

(×106 year 1 ) Site Primary TC Primary EC

Intermediate 4,9,11,31, $68.96 Azusa 0.240 0.422 ∙

32,33 Pasadena 0.289 0.458

Lennox 0.324 0.515

High 2,4,7,9,11, $388.10 Azusa 0.361 0.561

13,15,31,32, Pasadena 0.426 0.597

33 Lennox 0.465 0.619

* see Table 5.4.
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SUMMER 1984 EXTINCTION COEFFICIENT AT PASADENA 
FREQUENCY DISTRIBUTION (1000-1400 PST) (MODEL)
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FIGURE 5.8. Frequency diagrams for no cost (uncontrolled), intermediate cost, and high cost control strategies to control elemental carbon emissions. (I)Amounts of secondary organic carbon aerosol are estimated from the primary TC:EC ratio pre dieted for each site using a primary aerosol transport model (Gray, 1986).
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FIGURE 5.10. Synthetic photograph of downtown Pasadena illustrating the effect of carbon reduction on visibility.Photograph predicts the appearance of the scene on August 25, 1983 had high cost levels of primary aerosol carbon been in place. All aerosol carbon is assumed to be primary.
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FIGURE 5.11. Midday extinction coefficients versus annual cost of controls for the optimal strategy to control elemental carbon for Pasadena for August 25, 1983.
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5.7 Conclusions

The control of carbonaceous aerosol is important from the standpont of im­

proving visibility. Carbonaceous aerosol makes up 40% of fine particulate mass on 

a 24-hour average basis and 33% of the fine aerosol mass during summer midday 

periods in the Los Angeles area. Although little secondary organic aerosol enrich­

ment is seen in annual average data, some secondary organic aerosol enrichment 

is evident in samples taken during summer midday periods. Aerosol carbon is 

calculated to account for as much as 39% of the total aerosol scattering coefficient 

and for as much as 44% of the extinction coefficient in the Los Angeles air basin 

during summer midday periods.

A Lagrangian air quality model was used by Gray (1986) along with 1982 

emissions data, air quality data, wind data, and control costs to construct linear 

programming solutions to the optimal primary carbonaceous aerosol control strat­

egy problem in the Los Angeles area. The emission control analysis predicts that 

a 68% decrease in fine elemental carbon emissions could be achieved at a cost of 

near $500 ×106 year-1 (1982 dollars) and that a 48% decrease in elemental car­

bon concentrations could be achieved at a cost of $80 ×106 year-1 (1982 dollars). 

Using the percentage reduction in primary aerosol carbon obtained in the study 

by Gray (1986), the improvement in summer midday extinction coefficient values 

for three sites in the Los Angeles basin was estimated. Approximately an 8% to 

a 14% decrease in the average extinction coefficient is predicted to be achieved 

at Pasadena (depending on the level of secondary organic aerosol formation) at a 

cost of $80.4 ×106 year-1 (1982 dollars). An 11% to a 19% decrease (depending 

on the level of secondary organic aerosol formation) in the extinction coefficient 

could be obtained at Pasadena at a cost of $423.5 ×106 year-1 (1982 dollars). The 

predicted frequency distributions of summer midday extinction coefficient values
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before and after implementation of this emission control program were presented 

for the three sites studied. The influence of primary carbonaceous aerosol controls 

on visibility was also modeled for August 25, 1983, and a synthetic photograph is 

presented of how that day is computed to appear had the controls studied here 

been in place and if the carbonaceous aerosol on that day had been primary in 

origin. Comparison of that photograph to a photograph of the pre-control con­

dition illustrates the change in appearance that a 25% decrease in the extinction 

coefficient (obtained at a cost of $423.5 ×106 year-1; 1982 dollars) would have on 

a typical view.
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CHAPTER 6

CONCLUSION

6.1 Summary

The reduction of visibility can be a severe problem in the Los Angeles area, 

especially during summer midday periods. In order to engineer a deliberate solu­

tion to this problem of visibility reduction, the pollutants that cause the visibility 

problem must be fully characterized. Mathematical models describing the link be­

tween emission sources, ambient pollutant concentrations, and visibility then can 

be used to evaluate the effect of proposed emission control strategies on visibility 

improvement.

During the summer of 1984, an air monitoring network was operated at five 

sites in the Los Angeles area in order to identify the pollutants causing the observed 

midday visibility reduction. Midday extinction coefficient values observed that 

summer ranged from less than 0.5 × 10~4 m~1 (corresponding to a visual range of 

more than 78 km) to more than 9.0 × 10^4 m^1 (corresponding to a visual range of 

less than 4.3 km). Measurements of the atmospheric aerosol size distribution were 

combined with refractive index values estimated from measurements of aerosol 

chemical composition in order to calculate the light scattering coefficient present 

on each experiment day by means of Mie theory. Light absorption coefficient values 

were computed from measurements of the concentration of airborne elemental 

carbon particles and NO%.

The frequency distribution of summer midday extinction coefficient values con­

structed from the predicted scattering and absorption coefficient estimates was
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compared to extinction coefficient data inferred from airport visual range observa­

tions. It was found that the frequency distribution of summer midday extinction 

coefficient values at Pasadena, California, can be modeled with reasonable accu­

racy by this procedure. Calculations show that most of the light attenuation in 

the Los Angeles atmosphere is due to scattering by fine particles. Fine particle 

scattering and absorption account for 83% of the total light extinction averaged 

over the five sites studied. Carbonaceous aerosol and sulfates together account for 

49% of the fine aerosol averaged over the five sites studied.

The extinction coefficient is an important parameter in any visibility model 

which predicts the visual range, the contrast between objects in a scene, or the 

apparent intensity of light from an object as it reaches an observer. One pow­

erful way of showing the results of a visibility modeling calculation in a readily 

understood fashion is to generate synthetic photographs that indicate how a scene 

would appear under specified air pollution conditions. In this work, methods were 

developed to test the accuracy of image processing-based visibility models. The 

results of these tests indicate that simple image processing-based visibility mod­

els can reproduce the contrast degradation observed on smoggy days. Radiative 

transfer calculations can be incorporated into these models in order to produce an 

accurate representation of the appearance of the sky under heavy smog conditions.

Aerosol carbon is one of the most abundant pollutant species found in the Los 

Angeles atmosphere. Carbonaceous aerosol makes up 33% of the fine particulate 

mass in the Los Angeles atmosphere during summer midday periods. During these 

periods, as much as 39% of the total scattering coefficient and as much as 44% of 

the total extinction coefficient in the South Coast Air Basin is due to carbonaceous 

aerosol. Emission control technologies have been identified that would reduce the 

emission of carbon particles by controlling the sources of the particles, resulting
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in an 8% to a 15% decrease in the average summer midday extinction coefficient 

at a cost of $80.4xl06 year-1. If controls on additional pollutant species were 

implemented, visibility in the Los Angeles area could be further improved.
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(tux seconds)

© Eastman Kodak Company, 1980. Reprinted courtesy of Eastman Kodak Co

FIGURE A.l Characteristic curves for Kodachrome 25 slide film.
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FIGURE A.2 Spectral sensitivity curves for Kodachrome 25 slide film.


