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Abstract

Nonlinear behavior in plane Poiseuille flow has attracted theoretical in­terest over the last decade, both because of its tractability and because it is believed that some of the results may be applicable to phenomena oc­curring in the boundary layer. We have investigated the existence of three- dimensional finite amplitude waves in plane Poiseuille flow, in the hope of finding candidates for a class of simple flows which might provide insight into the nature of turbulence. These so-called vortical states would exist as attractors for the turbulent flow and mimic many of its properties.One of the requisite properties of these simple flows is existence at the low Reynolds numbers observed in experimental studies of transition to tur­bulence in plane Poiseuille flow. Although no such three-dimensional solu­tions were found in our study, a number of new insights have been made into the structure and stability of two- and three-dimensional steady wave solutions in plane Poiseuille flow. These in turn suggest new areas of inves­tigation for finding vortical states.
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CHAPTER 1

INTRODUCTION

1.1 Background

A major thrust of research in fluid mechanics is the attempt to understand tur­bulence in fluid flow and the nature of the transition process by which the motion of a viscous fluid changes from laminar to turbulent flow. In recent years attention has turned to theoretical attempts to solve the fully nonlinear Navier-Stokes equa­tions in various simple flow geometries. In particular, plane Poiseuille flow (PPF) has emerged as a tractable problem to consider. This is the viscous, incompressible flow between two infinite parallel surfaces, driven by a constant streamwise pressure gradient. The fully-developed laminar flow has a parabolic velocity profile between the two surfaces.Originally considered as a simple prototype for more complicated shear flows (such as boundary layer flow over a flat plate), PPF is now of interest in its own right. In part this is because it has become possible to construct experiments which produce the high aspect ratios and low turbulence levels necessary for accurate comparison with the theoretical models of infinite parallel surfaces. It is ironic that while PPF seems difficult to produce experimentally, its theoretical analysis is straightforward, while for boundary layer flow the converse is true.1.2 Review of experiments

For many years experimenters were unable to observe the theoretically predicted periodic disturbances in PPF because of the difficulty in producing laminar flow close to the critical Reynolds number. In a physical experiment one has to have a
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large aspect ratio (width to height) and a long enough channel for fully-developed laminar flow to form, and yet avoid contamination from the side walls. Some of these requirements are contradictory; for instance with the requisite narrow channel height, the effect of wall imperfections is enhanced. Despite these obstacles, some carefully controlled experiments meeting the requirements have been performed in recent years. We summarize below Herbert’s (1983a) review of these, and those experiments which have been done since then.Karnitz, Potter and Smith (1974) kept the flow laminar to Re = 5000 and observed that natural sinusoidal velocity fluctuations preceded turbulent bursts.Nishioka, Iida and Ichikawa (1975) achieved an effective turbulence level as low as 0.01%. Fully-developed laminar PPF was maintained up to Re = 8000- 9000. They maintained fully 2D flow up to Re = 3500 and mildly 3D above that, attributed to warping of the upper wall. Amplitude distributions, phase velocities and amplification rates of controlled small disturbances agreed well with theory. There was reasonable agreement with predictions of Herbert (1976,1977) for steadywaves.Nishioka, Iida and Kanbayashi (1978) concentrated on the condition for first occurrence of 3D effects. They observed the instability of 2D disturbances to 3D effects and 3D “peak-valley splitting” when spanwise dependence of the disturbance appears, indicating formation of a spanwise, periodic longitudinal vortex system. Onset of three-dimensionality depended on the threshold amplitude of the pertur­bation, implying a secondary instability of the 2D perturbed flow. They observed formation of a high-shear layer and appearance of high frequency “spikes” in the velocity perturbation.Nishioka, Asai and Iida (1981) detailed the appearance of the high-shear layer and the formation of spikes in the flow, indicating formation of a viscous sublayer
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and horse-shoe vortices.Kozlov and Ramazanov (1980) achieved a turbulence level of 0.1%, maintaining laminar flow up to Re = 7000. They possibly did not achieve fully-developed flow for Re > 4000.Kozlov and Ramazanov (1983) investigated 3D development of controlled 2D disturbances, finding Λ-vortices similar to those observed in flat-plate boundary layer experiments. The spanwise spacing appeared to be independent of Reynolds number or disturbance frequency.Carlson, Widnall and Peeters (1982) conducted a flow visualization of artificially triggered transition using mica particles in a water channel. Natural and artificial transition occurred at Re=1000, initiated by the formation of turbulent spots.Nishioka and Asai (1985) introduced three different types of disturbances into fully-developed PPF and concluded transition occurred above Re = 1000, with a threshold amplitude the same as the amplitude of disturbances in full turbulent flow.Alavyoon, Henningson and Alfresson (1986) studied the formation and evolu­tion of turbulent spots for 1100 < Re < 2200, finding laminar flow was always maintained for Re < 1100.These last three experiments confirm the relatively crude experiments of Davies and White (1928) and Patel and Head (1969), who disturbed the flow using right- angled corners and found a transition Reynolds number of about Re = 1000.

1.3 Time-dependent numerical simulations

The uniform flow solution (with a constant parabolic velocity profile) is an exact solution of the viscous, incompressible Navier-Stokes equations. It is of interest to consider what type of non-uniform solutions might exist besides this uniform solu­
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tion. Approaches to the numerical solution of the Navier-Stokes equations for PPF have generally been of two types. In the first, the full time-dependent problem is solved, starting from some generally arbitrary initial condition (such as the uniform flow with a random two- or three-dimensional perturbation). This method has the characteristic of simulating the actual flow development in experiments and of find­ing only stable solutions if it converges to an equilibrium state. Recent work along these lines (e.g., Kleiser 1982, Kim 1983, Biringen 1984, Biringen and Maestrello, 1984, Krist and Zang, 1987) demonstrates that numerical simulations can success­fully mimic experimental behavior and indicates also that true PPF is obtained in the experiments.More importantly, perhaps, high resolution numerical simulations allow access to internal flow variables that would be prohibitively difficult and time consuming to measure in a physical experiment. Thus it becomes practical to examine the data for characteristic flow structures (such as hairpin vortices and high-shear regions) that have been observed or proposed before. Identification and examination of the time-evolution of such structures may lead to a better understanding of their role in the production of turbulence. However, even with the powerful computers available nowadays, resolution of the fine-scale in turbulence is still impossible. There also is little control over the flow development (particularly if several mechanisms are equally viable) and it is tedious to trace equilibrium solutions and stability charac­teristics in the multi-dimensional parameter space.
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1.4 Vortical states

An alternative approach to the solution of the Navier-Stokes equation is to find steady equilibrium solutions and compute their stability. This method has the advantage of allowing greater control over the solutions discovered and has the further value of adding to the number of known steady solutions of the Navier-Stokes equations. It is relatively straightforward and intuitive to classify steady solutions in the form of a curve or surface in the relevant parameter space. Furthermore, the power of bifurcation theory can be brought to bear on the problem, perhaps suggesting further areas of investigation. As an example of the success of this approach, in Chapter 3, 2d STABILITY, we demonstrate the existence of at least two new families of unsteady but quasi-periodic solutions to the Navier-Stokes equations, discovered as bifurcations from a surface of 2D steady solutions.
Any attempt to understand transition and turbulence relies upon proposing and testing intuitively understandable models that explain the observed behav­ior. Time-dependent simulations are valuable in that they suggest or at least allow searching for coherent structures that might be part of such a model. In this spirit, Saffman (1983) has proposed the existence of so-called vortical states - simple solu­tions of the Navier-Stokes equations which would act as “attractors” for the turbu­lent flow in such a way that the existence of turbulence depends on the existence of these vortical states and that these states would display some of the properties of the turbulent flow.
The testing of such an intrinsically vague hypothesis necessitates finding such states with the desired turbulent properties before investigating how the turbulent flow might arise from them. The simplest class of vortical states are steady, finite- amplitude travelling waves in a viscous, incompressible flow and it is the search and
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study of such waves in PPF which motivates the research reported on in this thesis. We look for steady, travelling wave solutions, either periodic in the streamwise direction and uniform in the spanwise direction (2D waves) or periodic in both directions (3D waves). In both cases we look only for wave propagation in the streamwise direction. The primary objective is to find such solutions which exist at Reynolds numbers of the same order as the transition Reynolds number observed in PPF experiments. We map out solutions of these forms in the appropriate solution space and also consider their linear stability and, where possible, compare these results with experimental observations. We briefly summarize below the previous work done and the new material that is our contribution to this research.
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1.5 2D steady waves

The first step in considering the non-uniform behavior of PPF is to examine its linear stability to streamwise wavelike disturbances. Rayleigh’s criterion shows that inviscid PPF is stable. Heisenberg (1924) developed an asymptotic method that cor­rectly dealt with the viscous “critical layer” in the flow and he computed a stability diagram. Lin (1944) refined the asymptotic expansions to obtain a critical Reynolds number (Recr), the maximum Reynolds number for which the flow is uncondition­ally stable. He found Recr=5300 at a = 1, where a is the streamwise wave-number of the disturbance. The Orr-Sommerfeld equations, which describe the linear sta­bility of PPF, were solved numerically by Thomas (1953), who obtained Recr=5780 at a = 1.02. The difficulty in the numerical solution arises in correctly resolving the sharp boundary layers near the channel walls at y = ±Λ. Orszag (1971) solved this problem by using an expansion in Chebyshev polynomials. All our calculations use the essentially equivalent method of spectral tau collocation for solving the governing ODEs. Using his method, Orszag obtained Recr=5772.22 at a = 1.02056.There is considerable discrepancy between this value and the transition Reynolds number observed experimentally (Re ≈ 1000). Furthermore, Nishioka et al. (1975) observed that using a very low turbulence level facility, uniform PPF could be main­tained up to Recr and above. Both these facts suggest that the observed transition at low Reynolds numbers is due to instability to finite amplitude disturbances.
Finite amplitude waves. In an effort to find finite amplitude disturbances, one investigates the effect of higher streamwise harmonics on neutral Orr-Sommerfeld disturbances, i.e., expands the streamwise dependence in N Fourier modes. Meksyn and Stuart (1951) used asymptotic methods to solve the equations formulated by Noether (1921). They obtained Recr=2510 at a = 1.22. Zahn et al. (1974) solved
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the nonlinear equations numerically for N — 1 and N = 2 and found a neutral sur­face in (Re, a, A) space. Herbert (1976,1977) used the spectral collocation technique to obtain a minimum of Recr=2935 at a = 1.323 for N = 4. He also found good agreement with characteristics of steady waves observed in Nishioka’s experiments.In Chapter 2 we address ourselves to tidying up some aspects of the 2D cal­culations. We develop the governing equations and introduce the relevant dimen­sionless parameters. In particular we note there are at least two ways of defining the Reynolds number, each with different relevance when comparing theoretical re­sults with experiments. To confirm the convergence results we compare results with 
N = 1,2,4 and 8 modes and also demonstrate the exponential decay of the modal energies for two calculations with N = 13 modes. Qualitatively good results are obtained with just N = 1 modes, and this fact is used as support for drawing conclusions from the low-resolution 3D calculations presented in Chapter 5.We should note here another, semi-numerical, method of searching for waves of permanent form which might also be candidates for vortical states. Stewartson and Stuart (1971) developed the so-called Ginzburg-Landau equation to describe the weakly nonlinear evolution of 2D disturbances in PPF near Recr. Landman (1987) has studied this equation and found a variety of solutions, including not only the periodic, travelling waves mentioned above, but also other spatially periodic and quasi-periodic solutions and various types of solitary wave solutions. Although strictly these solutions are applicable only in the low amplitude regime, they suggest other classes of solutions for which to search in the fully nonlinear Navier-Stokes equations.1.6 2D superharmonic stability of 2D secondary flows

In recent work on shear flow instability, the tacit assumption has been made that the two-dimensional stability of finite amplitude waves in plane Poiseuille flow
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follows a simple and well-understood pattern, namely one with a stability transition at the limit point in Reynolds number. Using numerical stability calculations we show that the application of heuristic arguments in support of this assumption has been in error, and that a much richer picture of bifurcations to quasi-periodic flows can arise from considering the two-dimensional superharmonic stability of such a shear flow.
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Ι.7 3D stability
Since the experiments of Klebanoff et al. (1962) in the boundary layer first gave evidence of 3D instability of the 2D small-amplitude oscillations (Tollmien- Schlichting, or TS waves), various attempts have been made to explain the phe­nomena. Williams et al. (1984) summarized the observed behavior as involving ten stages, from the appearance of TS waves, their growth into the nonlinear regime, through the appearance of transverse periodic three-dimensionality, the formation of a high-shear layer and hairpin eddies, to local breakdown, the appearance of tur­bulent spots and finally full turbulence. This behavior has also been observed in PPF by Nishioka et al. (1975,1980,1981) which supports the contention that PPF models boundary layer phenomena.Herbert (1983a) has summarized the various models used to explain the observed behavior, and for convenience we include here a summary based on his report, plus the work that has been done since his review article. Most of these models involve the linear or weakly nonlinear interaction of TS waves (Orr-Sommerfeld eigenfunctions) with 3D linear modes. Following Herbert’s notation, we denote a general waveform as A(a, β,ω) where ω is the frequency of the wave, and α, β are the streamwise and spanwise wave-numbers respectively of the disturbance.

Analytical models. Benney and Lin (1960) deduced the existence of a lon­gitudinal vortex system after peak-valley splitting from the model A(α, 0,ωχ) + 
B(a, β,ug). Synchronization (ωj4 = u⅛) and thus resonance can apparently occur if the third-order governing equations are accounted for, and there is some experi­mental evidence for the phase difference ω⅛ — ωg existing prior to the formation of longitudinal vortices in the flow.Craik (1971) proposed a resonant triad between TS wave and a subharmonic
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3D wave: A(α, O,t<4) + B(θi∣2, β,ωB)∙ Resonance occurs for a specific value of the spanwise wavenumber β. This resonance has been observed by Saric et al. (1980,1983,1984) in the boundary layer, but is inoperative for reasons of symmetry in PPF (Herbert and Morkovin, 1980).Herbert and Morkovin (1980) considered the interaction of TS wave with longi­tudinal vortices, A(α, 0, ω) + B(0, β, 0), at finite A. The TS wave destabilizes vortices with β = O(l) with resulting dramatic growth of B for A greater than some small threshold amplitude. Although this agrees qualitatively with experiments, Herbert notes that the small region of validity of the expansions used in weakly-nonlinear models makes quantitative comparison with experiments difficult.
Numerical methods. Such analytical problems can be overcome by direct nu­merical computation of stability, either using Floquet theory or time-dependent simulations. In this case the temporal stability problem is solved (rather than the more experimentally comparable spatial stability problem) because of the infinite computational box (in principle) required for the latter case. On the other hand, in numerical computations it is no longer necessary to restrict oneself to small distur­bances.Orszag and Kells (1980) conducted a time dependent simulation for 500 ≤ Re ≤ 3500 for PPF. They noted (fortuitously) that PPF seemed explosively unstable to 3D perturbations at subcritical Reynolds numbers. Kleiser (1982) found similar behavior: 2D and 3D modes interact to give numerical/physical breakdown in situ­ations where each mode would decay in isolation.Orszag and Patera (1981) computed the stability of true equilibrium states (for 
Re > 2900) and quasi-equilibria (via direct numerical simulation) down to Re = 1000 for initial conditions A0(α, 0,ω) + Cb(0, β, 0) - longitudinal vortices with small 
Co. Strong growth of C{i} was found down to Re = 1000 provided Ao is sufficiently
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large and its 2D decay sufficiently small. It is the latter condition that fails for 
Re < 1000. Typical growth rates were 10-100 times those of the viscous primary instability.

Orszag and Patera (1983) proposed that the secondary instability of 2D sec­ondary flows to 3D disturbances is a prototype of transitional instability in many wall-bounded shear flows. They computed the growth rates of many of these flows and found convective rates in qualitative agreement with those observed experimen­tally. Analysis of the energy transfer showed that the 2D wave mediates the transfer of energy from the mean flow to the 3D perturbation. The instability mechanism is basically inviscid, involving vortex stretching and tilting.
In Herbert (1983b) and other recent papers (1983c,1984), Herbert has empha­sized the significance of subharmonic instabilities. Experiments in the boundary layer (Saric et al., 1980,1983) revealed alternative routes to transition other than the peak-valley splitting observed by Klebanoff and characteristic of superharmonic instability. Herbert also reports an experiment by Kozlov (1982) in which subhar­monic transition was observed in PPF. Numerical calculations show that subhar­monic instability is active at lower threshold amplitudes than superharmonic, but with weaker growth rates. In some 2D amplitude range, both types of instabil­ity are viable ones for the breakdown of a 2D secondary flow and which appears naturally will depend on the nature of the background noise. Herbert has also ex­tended the analysis to the Blasius boundary layer by use of the shape assumption, whereby the fundamental is assumed to be the principal mode eigenfunction of the Orr-Sommerfeld problem at the Reynolds number and a of interest. The computed velocity distributions from this method are in good agreement with experiment.
As Herbert (1983a) noted, little is known about the most dangerous cases (σmax in terms of a, β and Re) and hence about general criteria for the most dangerous
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β or for threshold amplitudes of the 2D secondary flow, at which the flow becomes unstable to 3D disturbances. In Chapter 4, 3d STABILITY OF 2d SECONDARY 
FLOWS we attempt to rectify this lack of knowledge for the superharmonic and subharmonic (p = 1/2) linear stability of 2D secondary flows. Because we use a Floquet approach, requiring a 2D equilibrium state, we do not consider cases with Re < 2600. In doing so we extend the results of Orszag and Patera (1983) who reported superharmonic data for Re = 4000, a = 1.25 and Herbert (1983a) who shows calculations for various amplitudes at a = 1. Subharmonic stability calculations have been reported for a = 1.02 at β = 2 (Herbert, 1983b,c) and for isolated points on the 2D secondary flow solution surface.
Temporal vs. spatial stability. All the numerical studies considered above of necessity consider temporal stability, since spatial stability would involve (in princi­ple) an infinite computational box. The relevance of applying such temporal stability results to the spatial stability measures in experiments has been often disputed and in this regard it is worth noting the work of Kleiser (1982). He numerically computed the time evolution of 2D flows for parameters as close as possible to the experimental conditions of Nishioka et al. (1978). Kleiser found not only the qualitative features of initial linear growth of the 3D disturbance, the formation of a high-shear layer and instantaneous inflexional velocity profiles, but also astonishing quantitative agree­ment of the instantaneous velocity profile with the experimental measurements up to the early stages of breakdown. Such agreement seems to support the contention that temporal stability computations are applicable to experiments.
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Ι.8 3D steady waves

Given the known three-dimensionality of transition and turbulent PPF, and the success in reducing the Reynolds number to about Re=2400 by considering 2D finite amplitude disturbances, it is logical to consider whether three-dimensional steady waves (secondary flows) might exist at even lower Reynolds numbers.Investigations of stability indicate the 2D secondary flows are unstable to both super- and subharmonic (with wavelength doubling) 3D disturbances. Points of neutral stability can be used to provide a bifurcation point onto the surface of 3D solutions. There is no evidence as yet, either experimentally or numerically, that such 3D secondary flows can be obtained (for instance with the growth of the 3D instability from the 2D secondary flow solution).To our knowledge there have been no published reports of 3D superharmonic wave calculations. In Chapter 5, 3D STEADY WAVES, we compute the solution surfaces for some representative parameter values.Subharmonic waves have been computed by Goldshtik et al. (1983) who used a low-resolution finite-difference method to compute steady solutions and reported they existed down to a Reynolds number of 1000, in agreement with the experi­mentally observed transition value. We have also performed this calculation and find low Reynolds number solutions when using low resolution. However at higher resolution there is a dramatic change in the qualitative behavior of the solutions.
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1.9 Plane Poiseuille-Couette flow

Finally, in Chapter 6 we take a detour into the calculation of finite-amplitude solutions in Poiseuille-Couette flow. Although plane Couette flow is believed to be linearly stable for all Reynolds numbers (see Drazin and Reid, 1981 for a sum­mary of the evidence), experiments by Reichardt (1956) suggest transition occurs at 
Re 750. It has been proposed that this disagreement would be explained by the existence of finite amplitude solutions in plane Couette flow, existing either as isolas or as bifurcations from infinity. One approach to finding such solutions is to compute finite amplitude solutions in PPF and then continue these into Poiseuille-Couette flow by increasing the wall velocity from zero. One can then investigate reducing the pressure gradient to zero while maintaining a finite wall velocity. The corre­sponding flow would be a finite amplitude solution in plane Couette flow. Toplosky and Akylas (1987) have recently attempted (and failed) to find finite amplitude states in non-rotating pipe flow using a similar technique. They used finite ampli­tude states in rotating pipe flow as a starting point for their calculations but could not continue these down to zero rotation rate. In Chapter 6 we report on the results of such an investigation using the 3D superharmonic flows as a starting point for Poiseuille-Couette flow.
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CHAPTER 2

2D STEADY WAVES

2.1 Problem formulation

Consider the incompressible Navier-Stokes equations written in stream-function formulation:
∂V2Ψ + ΦyV2Φr = ΦiV2Φ2, + z∕V4Φ. (2.1)We look for steady, periodic travelling waves moving down the channel shown in Figure 2.1 with wave speed c in the streamwise direction x.

With the transformation Φ(τ,τ∕,t) = Φ(τ,y) (where x = x — ct) and Φ(i,j∕) = Φppf(∑∕) + ψ(x, y) (where Φppf = Uo(y — y3∕3h2) is the stream-function of the uni­form PPF, and ψ is the perturbation of the disturbed flow away from this basic flow), and also nondimensionalizing by the channel half-width h and the character­istic velocity Uo, we have the perturbation equation- Av4≠ + (Uppp - c)V2≠1 - Upppψx + ≠yV2ψ1 - ≠χV2≠j, = 0, (2.2)
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where Re = HUq/v^ t⅛PF — Φppf,jz and for convenience we now write x for x. We solve this by spectrally decomposing (2.2) in the æ-direction, writing+∞≠(z,J∕) = 52 ^n(y)eιanx. (2.3)π=-∞Note that ψ0 is a perturbation to the uniform PPF. For reality oι ψ(x,y) we require
≠-√2∕) = ½(i∕) (2∙4)

which allows us to solve only for the non-negative modes, n > 0.The modal equations corresponding to (2.2) for mode n are
~Re + 2Sχ^fyι + ^dy^) + ^ppp - c) (^x + ⅛χΨn ~ UpppSxψn

+ ⅛ * ( ⅛ + i⅞ I s≈≠ - (⅛≠) * (⅛ + d2 ∖ dψ (2∙5)0,dy2J~*'r γ~x'r' ∖~x ' dy2J dy where Sxfn = icmfn and the convolution f * g for mode n is defined as f * g = 
f∏-q9q∙ The corresponding modal boundary conditions deduced from no­slip at the channel walls are

n > 0 ≠n,j,(±l) = 0 (un(±l) = 0)≠n(±l) = 0 (un(±l) = 0) (2∙6)
n = 0 ≠o,3z(il) = 0 (u0(±l) = θ)∙

The boundary condition on v0 is automatically satisfied (since v0 — (zα0)≠o = θ everywhere). ≠0 is arbitrary to within a constant so we set
≠o(-l) = 0. (2∙7)

This leaves one boundary condition undetermined. This corresponds to having not yet chosen the nondimensionalizing velocity Uq, and to a resulting indeterminacy
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in ≠0∙ Thus the last boundary condition may be regarded as fixing the parametriza­tion of the problem. Two reasonable choices would be either to fix the flux (Q), i.e., put Φppf ÷ ≠o (2.8a)or to fix the pressure gradient (P), i.e., put
ΦpPF,j∕i, + 'Φθ,yy

+ ∕l-Λ 2Ph (2.8b)
where equations (2.8) should be read as relating dimensional quantities for the mo­ment. With (2.8a) as the last boundary condition, we set Uo ≡ Uq where Uq is the centerline velocity of the uniform PPF having the same flux Q as our disturbed flow. Thus Φppf = Uq(i∣ — y3∕3h2) and, after nondimensionalizing by Uq and h and using (2.7), (2.8a) becomes

Flux boundary condition: ≠o(+l) = 0. (2.9a)
Similarly, using (2.8b) and setting Uq≡Up, where Up is the centerline velocity of the uniform PPF having the same pressure gradient P as our disturbed flow, (2.8b) becomes Pressure boundary condition: yy

+ι-ι 0. (2.9b)Boundary conditions (2.9a) and (2.9b) represent the extremes of a continuous range. Solutions satisfying (2.9a) will have zero flux perturbation but finite pressure per­turbation; as the flux perturbation ≠0(+l) is increased the pressure perturbation [≠o,w]il decreases to zero where (2.9b) holds.Equations (2.4)-(2.7) and (2.9) constitute a nonlinear eigenvalue problem for the unknown phase speed c. There is a phase indeterminacy in the solution ψn(n > 0) because if ψn is a solution, so is ψneιnc,s (for arbitrary δ). This corresponds to a —6 shift of the origin in the re-direction. Thus for a given eigenvalue c of the equations,
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there corresponds a one-dimensional space of eigensolutions ∙ψneιnas. To remove this indeterminacy we impose a phase condition of the formf + 1 A
I I ,ΨAy)dy = 0, (2.10)

where I denotes the imaginary part of a complex number. This may be regarded as the extra equation required to determine the unknown eigenvalue c in the equations.
Flux and pressure Reynolds numbers. Corresponding to the two different nondimensionalizing velocities are two different Reynolds numbers, Req and Rep. Their explicit dependence on the flux Q and pressure gradient P is easily determinedas +A∙Q = [ΨppfL⅛

Re∩ =
hU,

WQh 3 ’_ 3Q = 4ι∕ (2.11a)and
p _ y Γ√n ι+⅛ 2vUp 
r ~ 2h Lψppf'wJ-λ -Rep = hUp

h2 
-h3P 

2z∕2
(2.lib)

Q

It is important to note that the differing boundary conditions alter only the scaling of the problem, not the the physics. For a given disturbed flow, there are unique perturbation stream-functions ≠qo and ≠po which differ by a multiple of the base PPF and the scaling factor Uq/Up. The dimensional representation of the total mean flow is
Φppf + ψ0 = Uq (y - ~Λ + ψq0 =z Up y∑

3h2 + ψy 'PO∙

Nondimensionalizing by h and Uq,Up respectively:
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⅜o = Reo Rep - 1 Reg
Rep (2.12)3 +This can be used to determine the relationship between the two Reynolds numbers by substituting (2.12) into the boundary condition (2.9b)Rep = Reg Çl - - ψ0Q,yy . (2.13)

These are only the same for the uniform (PPF) flow and generally Rep = /(Reg, a) with Rep > Reg (Saffman 1983, Rozhdestvensky and Simakin, 1984) for the 2D secondary flows we are considering. It seems that in experiments it is generally easier to compute the flux and thus Reg. On the other hand, most computational results have been presented in terms of the pressure Reynolds number Rep. In this work, unless otherwise noted, all quantities are nondimensionalized by Uq and results presented in terms of Reg.
2.2 Numerical solution methodEquations (2.4)-(2.10) constitute a set of nonlinear ODEs for the disturbancestream-function ≠n(y) and two of the three parameters (Reg,α,c) (the other onebeing fixed). To solve these ODEs, we truncate the system at some N, and keepmodes n = 0,..., N. No aliasing from higher Fourier modes is introduced by thistruncation because the original spectral decomposition was exact. To solve thistruncated set of ODEs, we use the method of spectral tau collocation (See Orszagand Gottlieb, 1977 for the theoretical details of this method). Here the unknownfunction ψn(y) is represented as a sum of known functions in y; to accurately resolvethe boundary layers in PPF we choose an expansion in Chebyshev modes: 

κ
ΨM = ∑aMy),

k=0
(2.14)



-21-

where 7⅛(y) = cos ⅛(cos~1 y). To compute derivatives, we differentiate the Cheby­shev modes: e.g., d,ψn∣dy = ∑ankTk(y). After substituting this representation into (2.5), the resulting algebraic equations (in ank, n = 0,..., N; k = Q,... ,K) are evaluated at the maxima (θj = jπ∕K, yj = cosθj∙, j = 0, ...,I<) of the ∕<th Chebyshev mode Tχ(θ) = cosKΘ. This choice minimizes the aliasing in y for linear equations and is suggested by Orszag and Gottlieb (1977) for nonlinear equations also.Evaluating (2.5) at the K — 1 interior points (θj = jπ∣K∙, j = 1... ,K — 1), and the four boundary conditions (2.6),(2.7) and (2.9) at their limits, provides K + 3 equations (for each Fourier mode n) for the K + 1 Chebyshev coefficients ank. To correct this deficiency we introduce the so-called tau factors τntκ+ι, τnjκ+2 into the interior equations and solve instead
(2.5) + τnji+-iTκ+ι(y) + τnjκ+2Tκ+2(y) = 0 (2.15)

These tau factors are the first two terms in an infinite series ∑l∞-κ+1 τnkTk(y) which measures the discretization error of the approximation (2.14) in solving the equa­tions.
Euler-Newton continuation. Newton’s Method was used locally to solve the nonlinear algebraic system of equations Ft∙(a, Rθq, a, c) = 0. To find an initial guess to the solution we used an Euler estimate from a previous solution. The mathematical basis for this method is given in Keller (1977). Our implementation is illustrated in Figure 2.2a, where some characteristic norm of the solution is plotted against the continuation parameter (in this case Rcq). We find the tangent vector (⅛a) to the solution curve at A and compute the Euler guess aßuier = aA ÷ ΔaA, where Δ is some appropriate step size. Using this as the first estimate for Newton’s Method, we iterate into the solution curve at Z, subject to the additional constraint
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that the Newton iterates B,C,... lie on a perpendicular to the tangent vector hχ∙ This method automatically follows the solution curve round a fold such as that at A'. If a specific value of Rθq is desired, the “simple” continuation method shown in Figure 2.2b is used, where we set aEuier = aA (but change the value of the parameter
Req).

FIGURE 2.2. Continuation methods used, (a) Euler-Newton, (b) “Simple”

The most “expensive” computational parts of the algorithm are the calculation of the Jacobian = [∂Fi∕∂aj] and its LU decomposition (each of which takes about the same time). To save time, the Jacobian was reused from one Newton iter­ation to the next if the error norms (see below) were smaller than certain tolerances. In addition, because of the form of the continuation methods shown in Figure 2.2, the Jacobian computed for the final Newton step to Z could be used to compute the tangent vector at Z for the next Euler estimate. This can not be done generally
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with other forms of Euler-Newton continuation.
Convergence criteria. Two norms were used to judge convergence of Newton’s Method. The first measures the error in the equations and the second the error in the solution vector. It was assumed the Newton iterates were converged when both the criteria

< tθlt II2 (2.16a)and £a,, , , , ≤ 1 (2.16b)^0∙abs T relict I χwere satisfied. Generally we took fo∕abs = tolreι = tol = 10-θ. The condition (2.16b) ensures that the change (0α,) in each component of the solution vector a satisfies a relative error criterion ∣0cq∕αil ≤ tolerance when a, is large, and an absolute error criterion ∣0αt∙∣ ≤ tolerance when α,- is small.
Amplitude and energy. It is sometimes convenient to continue in some charac­teristic amplitude of the disturbance. A natural definition is related to the energy flux of the disturbance:

+jv z
Ag =

n=-N
= 77 Σ ∕ "j'∕)li + ∣l⅛fo)l¾16n⅛i J-l1 5 ∕*+ι «= Ϊ6 Σ J 1 l≠nM∣2 + l≈αn≠-fa)∣2<⅛∙ (2.17)

Note that this does not include the n = 0 mode energy, because that would involve a contribution from the basic flow (Φppf(2∕)) as well as the perturbation to the basic flow (≠0(y))∙ The 15/16 factor results from the nondimensionalization, and makes
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the basic flow energy Σppp = 1. The integral in (2.17) is transformed to an integral in θ (where y = cos 0) and computed using the trapezoidal rule at the collocation points θj = jπ∕K∙, j = 0,..., K. This is spectrally accurate; i.e., the quadrature does not introduce any additional truncation error.
Ae is an inconvenient quantity to compute at every Newton iteration if continu­ation in amplitude is desired. For this purpose we define a characteristic amplitude equal to the Z2^nθrm of the n > 0 Chebyshev coefficients

+N ' K-42= Σ ∑∣-∣2. (2∙18>
n=-N k=0which is much easier to compute and seems to scale directly with the energy ampli­tude Ae', see Figure 2.3 which shows the amplitudes for numerically computed 2D secondary flows for a representative wave number.

FIGURE 2.3. Comparison of energy amplitude Ae and characteristic amplitude A.

ae
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tatιve behavior (particularly the minimum in Rep) is present at N = 1. In contrast to these excellent results of the spectral method, the pseudo-spectral method (Mili- nazzo and Saffman, 1985) does not recover this minimum until N ≈ 4. In Figure 2.4,we compare the E-a cross-section at Re 8, with that of Herbert (1976).
Present work

= 4000, computed with N = 1,2,4 and

Herbert (1976)

FIGURE 2.4. Comparison of E-a cross-section at Rep = 4000.
Energies of present work have been scaled to Up nondimensionalization used 

by Herbert (1976). Symbols (φ) show positions of N = 13 calculations.

Finally in Table 2.2 we show the modal energies En computed with N = 13 Fourier modes at Rep = 4000 for both high and low energies (symbols on Fig­ure 2.4). The energies decay exponentially as expected, and the drop-off in modal energies from E-i to E2 (E2∕Eχ ≈ 10~3) suggests that meaningful results can be obtained with N = 1. This point will become more important when we consider 3D steady waves where the size of the system precludes computations with more than
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TABLE 2.2. Modal energies computed with ΛΓ = 13 modes

Mode High energy Low energy

0 0.99916216 1.0068871

1 3.71613957×10-2 4.28038059× 10~3

2 1.06207962× 10~4 3.34394083×10~6

3 2.38598938 ×10~5 1.88078445×10^6

4 8.24742857×10~7 4.95660020×10~8

5 1.76731292×10-δ 3.20950278x10-8

6 5.61103956×10-7 4.66200370x10"9

7 2.10982201x10-7 8.24330839×10^ l̂θ

8 1.95767996× 10"7 3.05190843×10~1°

9 7.40410062 × IO“8 5.79105117xl0~u

10 5.76822387×10-s 1.86701174×10~11

11 3.39377293 ×10"8 4.29953707xl0-12

12 2.38647464×10~8 1.18960406×10-12

13 2.41571204×10-8 4.84792340×10-13

N = 1 or N = 2.In Appendix I, we plot cross-sections of the 2D secondary flow surface for various values of a, as computed with N = 1 and N = 2 Fourier modes. These may be used to compute the Reynolds numbers (RβQ,Rep) and characteristic amplitudes 
(A,Ae) given, for instance, the parameters used by other authors.
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CHAPTER 3

2D STABILITY OF 2D SECONDARY FLOWS

3.1 Introduction

We are concerned with the 2D stability of 2D steady waves (secondary flows) in plane Poiseuille flow (PPF), to infinitesimal perturbations of the same wavelength as the secondary flow (i.e., superharmonic disturbances). The secondary flows have been computed by a number of authors in recent years (e.g., Zahn et al., 1974, Her­bert, 1976, Milinazzo and Saffman, 1985) and stability analyses of them have focused on the 3D stability problem. One reason is because three-dimensional perturbations grow on a convective time-scale as opposed to the slower growth of two-dimensional disturbances (Orszag and Patera, 1983).
Nevertheless, the 2D superharmonic stability problem is not without interest. In Figure 3.1 we sketch a cross-section (at a representative streamwise wavenumber α) of the 2D secondary flow surface, with a characteristic amplitude plotted against a characteristic Reynolds number for the flow. Orszag and Patera (1981) have used a one-dimensional phase representation of the energy† to predict that the lower branch of the 2D solution curve is unstable and the upper branch is stable to 2D superharmonic disturbances. This stability transition (by which we mean where max Rσ = 0) at the “nose” or limit point in Reynolds number is illustrated in

σFigure 3.1. They admitted that their argument in support of this prediction is over­simplified and we shall demonstrate by numerical examples that it is not in general correct. In §3.2 we formulate the 2D stability problem for the 2D secondary flows
† Details are not given in their paper, and we have been unable to reproduce the argument in 

any rigorous fashion.
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mentioned above. There exist neutrally stable eigenmodes (i.e., with σ = 0) at the nose, whose existence will be proved in §3.3, but as shown by the numerical results presented in §3.4 these coexist with unstable modes. Further, we will demonstrate that there are bifurcations to quasi-periodic flows on the upper branch of the solution curve of Figure 3.1.The picture of stability transition in Figure 3.1 is complicated by the lack of uniqueness in the parametrization of the 2D flows. As explained in §2.1, two possible choices are a flux Reynolds number (Req) and a pressure Reynolds number (Rep). In Figure 3.2 we have plotted both RβQ and Rep curves for a representative a; it is to be understood that only horizontal Unes (same amplitude) correspond to the same flow (e.g., at A = 0.05, Req = 2850 and Rep = 3650).

Reynolds number

figure 3.1. Naive prediction of stability transition on 2D secondary flow solution curve.

The figure is sketched for a wave-number for which PPF is linearly unstable.
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Reynolds number

FIGURE 3.2. Comparison of pressure (Rep) and flux (Rθcj) Reynold numbers (for a = 1.1).A contradiction is reached if the Orszag and Patera energy argument is applied to the linear stability of the 2D secondary flows. If a stability transition is expected at the nose of the Recj curve (as the argument suggests) then it would occur on the upper branch of the Rep curve; if expected at the nose of the Rep curve then the corresponding point would be on the lower branch of the Rθq curve.If, moreover, the argument is applied to individual eigenmodes another question arises. At minimum amplitude on the 2D solution curve one can expect one unstable eigenvalue. The existence of a zero growth-rate eigenvalue (Rσ = 0, where R denotes the real part of a complex number), at the nose could then correspond to three situations as the amplitude is increased:
(i) The unstable eigenvalue becomes stable at the nose.(ii) Another (previously stable) eigenvalue becomes unstable at the nose.
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(iii) Another (previously stable) eigenvalue becomes unstable on the lower branch and then one of the unstable eigenvalues goes stable at the nose.
Note that only in case (i) does one expect a stability transition.Thus there are two problems to be considered: To which Reynolds number parametrization does the Orszag and Patera argument apply (if any)? Is the nose a stability transition (max Rσ = 0), a zero growth-rate point for an individual

σeigenvalue (Rσ = 0) or a point of neutral stability (σ = 0)?
3.2 Problem formulation

The dimensionless form of the 2D Navier-Stokes equations (2.1), for a stream- function perturbation in a moving reference frame (speed c) isΛV2√> 1
~∂t ~ ‰vv + ^ψy ' c^x ^ v,"v2≠jz = 0∙ (3∙i)

We look for solutions of the form
≠(x, y, i) = Φppf(j∕) + ≠2d(z, 2∕) + eζ(x, y, t), (3.2)

where ι∕>2D describes the 2D secondary flows discussed in the previous section. Equa­tion (3.1) is separable in time, so applying the normal mode concept we write
+∞

i(x,y,t') = e^ ∑ Cfa)<≈i"", (3.3)
n=—∞where Rσ is the growth rate of the (superharmonic) disturbance and a is the stream- wise (x-direction) wavenumber of the 2D secondary flow. Substituting (3.3) and the similar spectral representation (with basis functions Φ2D) for Φ2D = Φppf ÷ ≠2D into (3.1), and linearizing about the basic state (e = 0), we obtain the 2D stability equations for the nth Fourier mode-⅛-(S½ + 2S&,„ + + S1((U - c)(S2ζn + - U"ζn)
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+ψv * (Sx(S2ζ + Cto)) + ζy * (S,(^Ψ + ‰))-(SrΨ) * (S2ζy + ζyyy) - (βxζ) * (S⅛ + ‰) = -σ(S2ζn + ζn,yy) (3.4)
where U(y) = 1 — y2, y ∈ (—1,+1). We now fix the characteristic velocity as 
Uo = Uq (and thus Re ≡ Recj); this also affects the form of the 2D flow Φ2d∙ It is straightforward to show that the eigenvalues are either real or occur in complex conjugate pairs. The accompanying boundary conditions are

n ≠ 0 C,,(±l) = 0 (un(±l) = 0)<n(±l) = 0 (υn(±l) = 0)
∏ = 0 ¼(÷1) = 0 (uo(±l) = 0). (3.5)

The boundary condition on v0 is again automatically satisfied, ζ0 is arbitrary to within a constant so we set <o(-l) = 0∙ (3∙6)
Equations (3.4)-(3.6) describe an infinite set of 2D disturbances, the form of which is specified by the final boundary condition. Two reasonable choices might be

ζ0(+l) — Co( —1) = θ (Constant flux) (3.7a)or (o,j∕y(+l) - ζo,yy(-1) = θ (Constant pressure). (3.7b)
Equations (3.7a) and (3.7b) are only two of many possibilities for boundary con­ditions. One can look for solutions of a particular ?/-symmetry; both antisymmetric
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(Cn(-y) = (-l)"+1Cn(+y)) and symmetric (ζn(-y) = (-l)"C∏(+2∕)) disturbances satisfy the equations. In fact all computed eigensolutions appear to be of one of these two forms for constant flux disturbances. Note that (3.7a) and (3.7b) are both satisfied identically for symmetric disturbances.To solve the set of ODEs and boundary conditions in (3.4)-(3.7) we applied the technique of spectral collocation and wrote ζn(y) = ∑2⅛=o whθre Tk(y) isthe Hh Chebyshev polynomial. Evaluating the resulting equations at the maxima of the Kth Chebyshev polynomial (as suggested in Orszag and Gottlieb, 1977) yielded a (discrete) generalized eigenvalue problem of the form Ga = σBa for the complex eigenvalue σ and the associated eigenvector a. This was solved using standard numerical methods.
3.3 Eigensolutions with σ = 0

Phase-shift solution. If we substitute ≠ = Φ2d (as defined in §3.2) into (3.1) the nonlinear equation for the 2D secondary flow can be written
-⅛v4⅛ + (φ2D,, - c)V2Φ2d,i - Φ2d,V2Φ2d,s = 0 (3.8)

which is of the form
7V(Φ2D(≈,J∕),Re,α,c) = 0 (3.9)

and we can derive the 2D stability equations (3.4) in a formal manner. A general unsteady solution Φ2d(≈,2∕) ÷ eeσiζ(τ, τ∕) satisfies
W(*, 2∕) + eeσiφ, y∖ Re, a, c) = (3.10)

d_
∂e

whence
6N
7φ ζ = σV2ζ. (3.11)
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Also, differentiating (3.9) in the ^-direction
δN ∂Φ 6Φ‰ (3.12)and comparing (3.11) and (3.12) shows that the eigenvalue σ = 0 is always a solution of the stability equations, with associated eigenfunction ζps = ∂^∕∂x. (We note that this also satisfies the boundary conditions on ζ, regardless of the choice of boundary condition for mode n = 0). We can call this the phase-shift solution, since it represents the trivial 2D “disturbance” caused by shifting a known 2D secondary flow along the z-axis.

Neutral stability at the “nose”. We want to show now that there is an addi­tional zero eigenvalue at the nose of the appropriate Re curve; on the Rep curve for constant pressure (P) disturbances and on the RβQ curve for constant flux (Q) disturbances. Furthermore, the eigenfunction corresponding to this zero eigenvalue is also the phase-shift eigenfunction; that is, at the nose there is a zero eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1 (which we will denote for brevity as AM 2, GM 1).Consider (3.9), at some fixed a, parametrized by some arclength s:Λr(Φ, Re, c; s) = 0,where Φ ≡ Φ2d for convenience. Differentiating this along the solution curve
dN = dΦ dN_dRe ∂N dc 
ds <5Φ ds + <9Re ds + ∂c ds

= AψΦ + ΛrpeRe + Ncè = 0. (3.13)At the limit point (“nose”) in Re, Re = 0, whenceAφΦ = -cNc. (3.14)
If c = 0, then σ = 0 is a second eigenvalue of the stability problem (3.11), with associated eigenfunction ζ = Φ (the “tangent vector”), where Φ satisfies appropriate
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boundary conditions. In this case we have AM 2 and GM 2 (i.e., index one). But in general c ≠ 0, and then Φ is a generalized eigenfunction for the phase-shift eigenfunction ζps ≡ <9Φ∕∂x.

2 ∂To see this, note that from (3.8), Nc ≡ —V implies Φ
= V2ζps,

V2ζps whence (3.14)
(3.15)

where ≠ = Φ∣c satisfies the same boundary conditions as φ (because Φ = Φppf+≠ = ≠). That is, on the Rθq curve
≠n(±l) =⅛(±l) = 0 (3.16a)

and on the Rep curve∏ > 0 φn(±l) = <^(l(±l) = 0n = 0 ≠0(-l)=[⅛+ι = <⅛(±1) = 0, (3.16b)
where φn(y) = ψn∕c.Suppose now we have a generalized eigenvalue problem, Sξ = σΓξ, with σ = 0 an eigenvalue of GM 1 and AM 2 and associated eigenfunction ξ = η. Then the resolvent (S' — σT)~1 has a double pole at σ = 0 (Kato, 1966). If

(S-σT)~1= ^A + Δ + λ0+...)
then (S-σT) (i + ^+X0 + ...), = ,.
Equating powers of σ:

Sη =0 (3.17)
σ

SA1η — Τη — 0 (3.18)
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With S ≡ Λrφ, T ≡ V2 and η ≡ ζps, (3.12) satisfies (3.17) and (3.15) satisfies (3.18), where φ ≡ A1ζps. Thus there is an eigenvalue σ = 0 of GM 1 and at least AM 2 at the nose Re = 0†.To which Re this corresponds depends on the particular stability problem being solved. On the Rθq curve, ≠ satisfies (2.6), (2.7) and (2.9a), and thus (3.16a) is satisfied. By (3.7a), these are just the conditions for the Q-stability problem. A similar argument applies to the Rep curve. In summary we find constant flux disturbances have a zero eigenvalue (with algebraic multiplicity 2 and geometric multiplicity 1) at the nose of the Req curve, and constant pressure disturbances have a zero eigenvalue (i.e., neutral stability) at the nose of the Rep curve. The associated eigenfunction is the phase-shift solution ζps.The contradictory conclusions reached by applying the Orszag and Patera energy argument can thus be reconciled if one accounts for a non-uniqueness in the form of the 2D disturbance considered in the stability problem; it has to be of a form appropriate to the particular Reynolds number parametrization.3.4 Numerical results

The above results are illustrated for 2D stability at various points along the solution curve for a = 1.1. The curve appears to bifurcate from infinity for this wavenumber. Calculations show that the behavior at a = 1 (where the curve bi­furcates from Req ≈ 5800) is similar to that shown here. The 2D secondary flows were computed with N = 1 Fourier modes in the ^-direction and K = 50 Chebyshev modes in the y-direction. The 2D stability was computed with N = 1, K = 32 and 
N = l,K = 50 (at high Reynolds numbers). The resolution in x is insufficient to give more than qualitative results. A number of calculations with N = 2 (for both secondary flow and stability) indicate that although the positions of the bifurcation

† We are grateful to Tim Minzoni for showing us this improvement upon our previous proof.
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points change from N = 1 to N = 2, the nature of the bifurcation and Iσ at the bifurcation point remain the same. The secondary flows and stability calculations were performed on a VAX-11/750; calculation of all the eigenvalues of the stability problem for one secondary flow took about 10 minutes CPU time for N = 1,K = 32 and 40 minutes for N = 2, K = 32. The secondary flows themselves took 1-5 min­utes and 5-30 minutes for N = 1, K = 50 and N = 2, K = 50 respectively, the exact time depending on the number of Newton iterations necessary.
We first consider constant flux disturbances (“Q-stability”) (boundary condition (3.7a)) and plot the maximum growth rate (max Rσ) in Figure 3.3. The maximum eigenvalue is purely real in the Reynolds number range shown. At the nose of the ReQ curve this eigenvalue passes through zero and consequently there is a stability transition. However on the Rep curve this stability transition occurs on the “upper branch”, after the nose is reached. Of course the actual flow where this stability transition occurs (and the amplitude of that flow) is the same. Although a stability transition occurs at the Rθq nose, the upper branch does not remain stable. As is shown in Figure 3.4, a different eigenvalue becomes unstable at Req = 6300. Because this eigenvalue has Iσ ≠ 0 at the zero growth-rate point {Rσ = 0), a Hopf bifurcation to a family of travelling wave solutions occurs. Combined with the underlying steady travelling wave, this is a bifurcation to a spatially periodic flow with two frequencies (quasi-periodic) in time. Jimenez (private communication, 1986) has used an unsteady code for a = 1 to follow this bifurcation and has found quasi-periodic flows, period-doublings and evidence of chaos. The Reynolds number increases along the stable branch of quasi-periodic solutions, as is expected for a supercritical Hopf bifurcation.
Turning now to constant pressure disturbances (“P-stability”) (boundary con­dition (3.7b)), we might expect a similar behavior; a stability transition at the Rep
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The most unstable eigenvalue is always purely real (∕σ = 0) in this case.
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FIGURE 3.4. Stability transition for Q-disturbances, on upper branch, for a = 1.1.

This is a continuation of Figure 3.3; the most unstable (real) eigenvalue at RβQ = 4530 
(+ in both figures) is overtaken by another (complex) eigenvalue (*) at Re<j = 5920.
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nose and at some point on the lower branch of the ReQ curve (because the nose of the Req curve occurs at higher amplitude than that of the Rep curve). At least at a = 1.1 this does not occur. As Figure 3.5 illustrates, the maximum eigenvalue remains unstable on the lower branch and part of the upper branch of the Rep curve. Thus no stability transition occurs at the Rep nose.As expected from §3.3, however, there is a neutrally stable eigenvalue at the nose of the Rep curve. Figure 3.6 shows the three most unstable eigenvalues. At low amplitude there is only one (real) unstable eigenvalue. At the nose there is a zero eigenvalue as predicted, but it is that of another mode becoming unstable. On the upper branch these two unstable real modes coalesce to form a complex conjugate pair with Rσ → 0 at A = 0.047, where Rep = 3500 (the nose occurs at A = 0.028, Rep = 3041). Since Iσ ∕ 0 at this point, this is a bifurcation to a quasi-periodic flow, but at a significantly lower Reynolds number (RβQ = 2800 at the bifurcation point) than for constant flux disturbances. Thus the upper branch becomes stable to P-disturbances with increasing Reynolds number. Since the theory of Hopf bifurcations (Marsden and McCracken, 1976) predicts that a supercritical bifurcation from this point would be stable, this raises the possibility of this bifurcation leading to stable quasi-periodic flows at lower Reynolds numbers (possibly smaller than the minimum for 2D secondary flows).Note that the principal eigenvalues plotted in Figures 3.3-3.6 are associated with asymmetric or antisymmetric eigensolutions. If, on the other hand, the maxi­mum eigenvalues corresponded to symmetric eigensolutions, satisfying both flux and pressure boundary conditions identically (§3.2), there would be no difference in the stability behavior of constant flux and constant pressure disturbances.
3.5 Summary

We have examined the 2D superharmonic stability of 2D secondary flows in
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plane Poiseuille flow. Previously simplistic energy arguments have been used to predict (incorrectly) a stability transition at the “nose” of the 2D solution curve. A neutrally stable eigenvalue (σ = 0) does occur at the “nose” of the 2D curve, at least if one considers 2D disturbances of a form appropriate to the particular curve Reynolds number. However, this does not necessarily correspond to a change from unstable to stable for this eigenvalue as the amplitude increases. Furthermore, a stability transition will not occur at the nose if other eigenvalues remain unstable at this point.It was found that the neutrally stable eigenvalue at the nose is of algebraic multiplicity 2 and geometric multiplicity 1, with the corresponding eigenfunction just the phase-shift solution. The proof of this is general, and should apply to other systems where the stability of travelling waves to travelling disturbances of the form (3.3) is considered. Numerical evidence of the above assertions is given for a streamwise wavenumber of a = 1.1. Eigenvalues with zero growth-rate (Rσ = 0) were found on the upper branch of the 2D secondary flow curve for both constant flux and constant pressure disturbances; because Iσ ≠ 0 when Rσ = 0, these are bifurcations to quasi-periodic flows.We have not investigated the stability behavior at higher Reynolds numbers to ascertain whether the upper branch restabilizes to Q-disturbances or destabilizes to P-disturbances, and we have not followed the quasi-periodic flows shed at the bifurcation points. Nevertheless, the stability behavior of the 2D secondary flows and the nature of the Hopf bifurcations give a much richer picture of possible instabilities instead of the accepted one of a simple stability transition at the nose of the 2D secondary flow curve.
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CHAPTER 4

3D STABILITY OF 2D SECONDARY FLOWS

4.1 Introduction

As discussed in §1.7, experimental studies of the evolution of TS waves in bound­ary layer flows and PPF indicate that they are explosively unstable to 3D distur­bances. This instability acts on a convective time scale, with growth rates 10-100 times as large as those of the primary instability (which controls the growth of the TS waves).Orszag and Patera (1981,1983) investigated the 3D stability of both true equi­librium states (2D secondary flows) and also of so-called quasi-equilibria which exist for Re < 2700. Herbert (1983c) noted the importance of subharmonic stability in both the boundary layer and PPF and computed some stability results. However, the size of the parameter space (with, for instance, variable α, Re and β) makes it difficult to conduct any exhaustive search. By restricting ourselves to the considera­tion of 2D secondary flows, we have computed their superharmonic and subharmonic stability flows for a range of parameters and are thus able to draw out the trends in the instability growth rate with the above parameters.This work is also a prerequisite for finding neutral stability points (where σ ≡ 0) and thus bifurcations to 3D steady flows, which forms the subject of Chapter 5.
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4.2 3D superharmonic stability: Problem formulation

The 2D stability problem can be formulated in terms of a stream-function per­turbation; in the 3D case a primitive-variable formulation must be used. We consider disturbances of the form
u(x, y, z, t) = (t⅞>PF - c)i + U2D + eeσtu3o(τ, y1 z}, (4.1)

where x is in the moving frame of reference (speed c) and the phase speed (∕σ) of the disturbance is thus measured relative to the travelling wave, t⅜PF = 1 — y2, and U2d is the previously computed 2D secondary flow. The 3D incompressible Navier-Stokes equations are, in their vorticity formulation
∂ω 1 2— + (u ∙ V)u> - (tu ∙ V)u - —V2ω = 0, (4.2)

where ω = ςi + 77j + ζk = V × u.We substitute (4.1) in (4.2), linearize about the basic state (e — 0) and choose 
Uo — Uq (and thus Re ≡ Reci). Combining the x and z vorticity equations and using continuity of the basic flow Ux + Vy = 0 yields the 3D stability equations:1 ( ∂2 ∣92 ∖__V4u - + — J {Uvx + uVx + Vvy + vVy)

∂^"H -H Ullχy “H V^lyy “b &yVy -l- yy}

Q
+ ^(UyWχ + UWχy + VyWy + VWyy) = (4.3)

r⅛v2<u* - ωj + ^vw∙+ vw'i
- ^(Uux + uUx+Vuy + vUy) = σ(uz-wx), (4.4)

Uχ + Vy + Wz = 0, (4∙5)
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with boundary conditions u(±l) = υ(±l) = w(±l) = 0. For convenience, we have written U — Lγ2d ÷ (t⅜PF — c).The stability equations are separable in z, so we look for a spectral decomposi­tion of the form
+∞u3D(x,y,z) = et^ ∑ ιiMeianx. (4.6)

n=—∞Substituting in the equations (4.3)-(4.5), with a spectral representation for 
(U, V) : (C7n, tζl) = (≠(,iαn≠n) (where ≠ is the streamfunction for the total 2D secondary flow of Chapter 2), and zeroing termwise (by modes) we obtain the sta­bility equations for mode n

(⅛ + S1 2z)2 + 2(S2 + S2)- + —) vn

— {S2 + S2z}{U *vx + u*Vx + V *υ3, + υ* Vy)

+ Sx{{u * Uy}x +U * Uxy + V * Uyy + Uy * Vy + V * Uyy)

+ Sz{Uy *Wχ + U * Wχy + Vy * Wy + V * W yy) = σ ψ S* ψ U„, (4.7)

1 d2^-(S,2 + S2 + -}(Szun - Sxwn} + Sx(U *Wx + V *Wy)

- Sz{U *ux + u*Ux + V *uy + v*Uy} = σ(Szιιn - Sxwn), (4.8)
Continuity: Sxun + vn<y + Szwn = 0, (4.9)Boundary conditions: un(±l) = un(±l) = wn(±l) = 0, (4.10)where Sxfn = icmfn,Szfn = iβf∏, but for brevity we have written fx in the convo­lutions to indicate the product fx = ianfn. Once again, the convolution f * g for mode n is defined as f*g = fn-qgq. In addition the hats have been dropped.We use the continuity equation (4.9) to eliminate wn from the equations (4.7), (4.8) and (4.10), leaving fourth-order and second-order equations for un,vn. The



-47-

fourth-order equation may be regarded as a finite amplitude Orr-Sommerfeld equa­tion (where the basic flow is now the previously computed 2D secondary flows). To solve the set of ODEs and boundary conditions in (4.7)-(4.10) we apply the technique of spectral collocation and write un(y) = αnfcTfc(y) (with a similarrepresentation for υn(i∕)), where T∣i(y) is the Hh Chebyshev polynomial. Evaluat­ing the resulting equations at the maxima of the ∕<th Chebyshev polynomial yields a (discrete) generalized eigenvalue problem of the form Ga = σBa for the com­plex eigenvalue σ and the associated eigenvector a. This was solved using standard numerical methods.4.3 Numerical results and discussion

We have solved the full stability problem, without assuming any symmetries, for a range of points on the 2D secondary flow solution surface. The 2D flows were computed with N = 1 Fourier modes and K = 50 Chebyshev modes. The stability problem was then solved with N = 1 and K = 32 and K = 50. It was found that K = 32 was adequate to resolve the stability eigenfunction. In Table 4.1 we demonstrate the agreement of our computed eigenvalues with those computed by Herbert (1983c) at an arbitrary point.As mentioned in §1.7, it is of interest to compute the threshold amplitude of the 2D secondary flows, and the dependence of this threshold on the 2D parameters 
Req, a and the 3D spanwise wavenumber β. To do this we examine the low ampli­tude stability behavior. In Figure 4.1 we have plotted the most unstable eigenvalue for a = 1 and Ae < 0.05 (where Ae is defined in (2.17)).At Ae = 0 the 3D disturbances (plotted for different spanwise wavenumbers, 
β) are all stable (with Rσ ≈ —1.3 × 10~3) while the 2D disturbance is unstable 
(Rσ ≈2x 10-3). As the 2D wave amplitude is increased, the 2D instability remains approximately constant, but the 3D growth rates increase linearly with amplitude.
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TABLE 4.1. Comparison of computed superharmonic eigenvalues with Herbert (1983c)

Eigenvalue Herbert (1983c) Present

σ, 0.0487

0.0211±i0.1050

0.0462

0.0172±i0.1053

0.0489

0.0210±i0.1050

0.0462

0.0172±i0.1053

Superharmonic stability computed at Rep = 5000, Re<j = 4954.29, a = 1.12, β = 2, A = 
5.848 X 10-3 with TV = 1,K = 32. σ3,σa are for symmetric and antisymmetric modes 
respectively. Eigenvalues of present work have been scaled to Up nondimensionalization 
of Herbert.

The threshold amplitude (the point where τnaxRσ > 0) is Ae ≈ 0.007 for β ≈ 1. However note the broadband behavior in β means that all 3D disturbances with 0.5 < β < 3 have about the same growth rates near this point.Turning now to Figure 4.2, we show the comparable low amplitude behavior for a = 1.1 superharmonic disturbances. We note that the maximum a on the Orr-Sommerfeld neutral curve is αcr ≈ 1.097 and that 2D secondary flows computed for a > αcr do not bifurcate from the Orr-Sommerfeld curve at Ae = 0. Thus for 
a — 1.1, true equilibrium flows exist only down to an amplitude of about Ae = 0.0035. In this case all disturbances become unstable at about 0.004 < Ae < 0.005 and grow linearly with amplitude. As is confirmed by examining the similar low amplitude plots for a = 1.15,1.25,1.3, the growth rate Rσ at given Ae increases with α, suggesting that the threshold amplitude is lowest at higher oe. This effect is counter-balanced by the increase in the minimum amplitude for existence of a 2D secondary flow. Hence, in considering superharmonic stability of true 2D equilibrium solutions, the threshold amplitude is about Ae = 0.004 for 0.5 < β < 3 at a = 1.1.For larger α, the minimum 2D flow amplitude is greater than the threshold
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FIGURE 4.1. Growth rate of principal eigenvalue at a = 1.0 (N = I, K = 32,50).

Most unstable eigenvalue of the superharmonic stability problem for 2D (+) and 3D
disturbances β = 0.5 (*), 1.0 (o), 2.0 (×), 3.0 (□) vs. the amplitude of the 2D secondary
flow, for low amplitude.
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figure 4.2. Growth rates for a = 1.1,1.15,1.25,1.3 (N = 1, ∕i = 32,50).

Most unstable eigenvalue of the superharmonic stability problem for 2D (+) and 3D
disturbances β = 0.5 (*), 1.0 (o), 2.0 (×), 3.0 (□) vs. the amplitude of the 2D secondary
flow, for low amplitude.
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amplitude, so 3D disturbances are always most unstable. At higher amplitudes on both these figures, there is a peaking in the Rσ vs. β dependence.The behavior at minimum amplitude, visible especially in Figure 4.2 for a = 1.3, shows the growth rate increasing quickly with small increases in amplitude. This is because as the Reynolds number increases on the lower branch, the amplitude changes slowly, so in fact the growth rate Rσ increases slowly with Re.Turning now to the high amplitude behavior, in Figures 4.3-4.5 we have plotted the growth rate (Rσ) of the most unstable eigenmode for streamwise wavenumbers 1 < a < 1.4. Without exception, in the parameter range considered, the most unstable eigenvalues are purely real, although a number of complex eigenvalues have comparable growth rates.To demonstrate that N = 1 is sufficient ^-resolution, in Figure 4.6 we plot the most unstable eigenvalue for the same conditions as Figure 4.3 (e.g., a = 1) computed with N = 2,∕< = 50 for the secondary flow and N = 2, K = 32 for the stability problem. Apart from a slight shift to higher growth rates and a narrowing of the peak in σ, there is no significant change. The highest 2D amplitude plotted in Figure 4.6 (Ag ≈ 0.3) corresponds to a point on the upper “branch” of the 2D secondary flow at RβQ = 7598, Rep = 13741.As Figures 4.3-4.5 show, the increase in Rσ with 2D amplitude levels off to reach a maximum growth rate of about Rσ = 0.1 — 0.2 for β = 2. There is a general shift towards higher growth rates at larger a. Orszag and Patera (1983) examined the energetics of some of their direct simulations and concluded that the secondary flow mediates the transfer of energy from the basic flow to the 3D disturbance. Our results support that conclusion since the growth rate does not continue to grow with the amplitude of the 2D secondary flow, as might be expected if energy transfer occurred directly from the 2D secondary flow.
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FIGURE 4.3. Growth rate of principal eigenvalue at a = 1.0 (N = 1,K = 32,50)

Most unstable eigenvalue of the superharmonic stability problem for 2D (+) and 3D
disturbances β ≈ 0.5 (*), 1.0 (o), 2.0 (×), 3.0 (□) vs. the amplitude of the 2D secondary
flow.
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figure 4.4. Growth rates for a = 1.1,1.15,1.25,1.3 (N = 1,∕< = 32,50).

Most unstable eigenvalue of the superharmonic stability problem for 2D (+) and 3D
disturbances β = 0.5 (*), 1.0 (o), 2.0 (×), 3.0 (□) vs. the amplitude of the 2D secondary
flow.
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FIGURE 4.5. Growth rates for α = 1.35,1.4 (TV = l,K = 32,50).

Most unstable eigenvalue of the superharmonic stability problem for 2D (+) and 3D 
disturbances β = 0.5 (*), 1.0 (o), 2.0 (×), 3.0 (□) vs. the amplitude of the 2D secondary 
flow

The dependence on spanwise wavenumber (β} is more clearly shown in Figure 4.7 at a = 1, for various different amplitudes of the 2D secondary flow. In this case, the eigenvalues for symmetric and antisymmetric disturbances, which are also the most unstable, are plotted. These disturbances are of the form:
un(~y) = (—l)n+1un(y) (antisymmetric) (4.11a)
un(-y) = (-l)nιzn(y) (symmetric) (4.1 lb)

The broad-band dependence on β is clear, particularly at high amplitude. In general, 
β ≈ 2 is the most unstable wavenumber, but significant growth rates are observed for 1 < β < 3.
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FIGURE 4.6. Growth rate of principal eigenvalue at a = 1 (N = 2,K = 32,50).

Most unstable eigenvalue of the superharmonic stability problem for 2D (+) and 3D
disturbances β = 0.5 (*), 1.0 (o), 2.0 (×), 3.0 (□) vs. the amplitude of the 2D secondary
flow.
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FIGURE 4.7. Dependence of instability growth rate (∙ffσ) on spanwise wavenumber /?, at a — 1.

Principal eigenvalues for both symmetric (+) and antisymmetric (□) 
disturbances are plotted at various 2D secondary flow amplitudes.
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4.4 Instability mechanism for 2D secondary flows

Although we include this discussion here, to allow convenient comparison with superharmonic stability results, the conclusions are applicable to subharmonic sta­bility also since the mechanism being considered is local and independent of the computational domain outside a small region of the flow (the ellipse mentioned below).Pierrehumbert (1986) numerically found a short-wave, scale-independent insta­bility of the Euler equations applied to a locally elliptical flow. He proposed that this mechanism is responsible for the 3D instability of shear flows containing 2D co­herent structures. Landman and Saffman (1987) have used the work of Bayly (1986) and Craik and Criminale (1986) to compute the Floquet problem for a locally ellip­tical flow, including the effects of viscosity. They found that the inviscid instability mechanism persists when viscosity is introduced, leading to a stability boundary in Ekman number (a measure of the ratio of viscous dissipation to vorticity in the basic flow) versus a streamline eccentricity parameter (reproduced in Figure 4.8). Thus, if this mechanism is operative, we would expect convective, rather than viscous growth rates with a short wavelength cutoff caused by the action of viscosity.In Figure 4.9 we have plotted the streamlines of the flow in the moving reference frame at the amplitudes of Figure 4.7, and in Figure 4.10 the corresponding vor­ticity contours. Although at high amplitudes the closed streamline region is more pear-shaped than elliptical, there is a significant region where the assumption of elliptical flow is reasonable, with constant contained vorticity. We note the increase in streamline eccentricity with decreasing 2D amplitude.As Landman and Saffman (1987) pointed out, their results can be used as a linear stability theory and thus compared with our exact linear stability calculations. The
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e

FIGURE 4.8. Stability boundary in the e (streamline eccentricity 
parameter) - Ekman number plane. From Landman and Saffman (1987).

Here e = ((α∕⅛)2 — l)∕((α∕i>)2 + 1), with a,b the major and minor axes of the ellipse, 
and E-f = 27r⅛2∕(γRe). Note that they used β to denote the streamline eccentricity 
parameter, and the growth rates shown should be halved to compare with our results 
(because of a different parametrization). 2γ is the (constant) vorticity in the elliptical 
region and kx the wave-number of the instability.
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Ae = 0.0133 Ae = 0.0244

Ae = 0.0516 Ae = 0.1711

FIGURE 4.9. Streamlines of the 2D secondary flows of Figure 4.7.
Note that the x and y axes are not to scale: the length of the z-domain 
is 2π and of the j∕-domain 2, in units scaled by h, the channel half-width.
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Ae = 0.0133 Ae = 0.0244

Ae = 0.0516 Ae = 0.1711

FIGURE 4.10. Vorticity contours of the 2D secondary flows of Figure 4.7.
Note that the x and y axes are not to scale: the length of the ar-domain
is 2π and of the y-domain 2, in units scaled by h, the channel half-width.
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qualitative agreement is clear; at large spanwise wavenumber β (where the elliptical model predicts that β oc kx, the wavenumber of the instability), there is a cutoff due to viscosity. As β decreases, the Ekman number (Ey) decreases and σ increases up to a maximum, σmax, where the minimum wavelength of the elliptical instability exceeds the dimension of the ellipse and the mechanism will no longer operate. This implies a sharp cutoff for β < βσmix, as is observed in Figure 4.7. The behavior for
< βσm3,χ is not predicted by the theory, but the observed sharp drop in growth rate suggests that the elliptical instability is the dominant mechanism in the flow. Furthermore, as the 2D flow amplitude (A#) decreases and the ellipse eccentricity e → 1, the model predicts a decrease in both βσ=o and σmax in agreement with the actual behavior.

Landman and Saffman (1987) computed the asymptotic growth rate in the invis- cid limit, assuming the form of the flow remained essentially unchanged and found reasonable agreement with the numerical results of Orszag and Patera (1983).
At the small wavelength limit of the instability (large wavenumber), the quan­titative agreement between the elliptical model and our numerical results is good. This is an important test because it requires no assumption about the size of the relevant elliptical region. The long wavelength cutoff presumably depends on where the assumption of local ellipticity breaks down and is much more subjective; we thus compare σmax at the observed βσmax- For a = 1, Ae = 0.1711, we find 

βσ=o ≈ ^-0,βσmax = 2 and σmax = 0.12 from Figure 4.7 which is in good agree­ment with βσ=o = 12 and σmax = 0.12 (at β = 2), computed from the model following Landman and Saffman’s procedure. At an amplitude of Ae = 0.0516, we find (with actual values in parentheses): βσ-o = 8.1 (8.9) and σmax = 0.08(0.07) at β ≈ 2. Below this amplitude the high eccentricity of the closed streamline re­gion makes accurate computation of e and E∙y difficult. The long wavelength cutoff
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is at lmax ≈ 4.4 in x (for both cases) which is well outside the elliptical region shown in Figure 4.9, indicative of the robustness of the elliptical instability theory, as Pierrehumbert originally hypothesized.
In Figure 4.11, we plot the perturbation 2-vorticity (i.e., of the 3D stability eigensolution) for the various spanwise wavenumbers shown for Ae = 0.1711, a = 1 in Figure 4.7. The vorticity is plotted on the half-domain — 1 < y < 0 and is for the symmetric solution. Vorticity contours for the anti-symmetric solution are sim­ilar. Because of the indeterminacy in the eigensolution to the extent of an arbitrary constant, neither the absolute magnitude nor the sign of the vorticity can be deter­mined. However, using the zero vorticity contour as a delineator, we note that for 

β > 2 the instability is confined to the elliptical region discussed above and shown in Figure 4.9 for this amplitude, and agrees well with the vorticity contours shown by Pierrehumbert for high strain rate (corresponding to the high ellipse eccentricity observed in all the 2D secondary flows) in Figure 2 of his paper. Furthermore, the instability appears to be confined within an O(β~1) of the vortex center, as was noted by Orszag and Patera (1983) and in agreement with Pierrehumbert,s results.
As noted above, there is a long wavelength cutoff to the theory’s applicability when the instability wavelength is larger than the vortex itself and the assumption of local ellipticity breaks down. As the plots for β = 0.2,1.1 in Figure 4.11 show, the instability does indeed “break out” of the vortex region, corresponding to the drop-off in instability growth rate shown in Figure 4.7 at low β.

As was noted above, there is a general trend of growth in the instability growth rate Rσ with increasing a at fixed 2D secondary flow amplitude Ae- As we show below, the elliptical instability model predicts this behavior also. In Figure 4.12 we show the streamlines for three different streamwise wavenumbers (α = 1,1.15,1.3) at the same amplitude (Ae ≈ 0.32), with the vorticity contours in Figure 4.13.
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β = 2.0 β = 2.9

FIGURE 4.11. Perturbation z-vorticity contours (of the 
3D stability eigensolution) for Ab = 0.1711, a = 1.

The domain of each sub-plot is 0 < x < 2π, —1 < y < 0. 
Contours shown for the β values plotted in Figure 4.7.
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a = 1.15a = 1.00

a = 1.30

FIGURE 4.12. Streamlines of 2D secondary flows for different a.
Flows computed with N = 2,K = 50 at Ae ≈ 0.32, and a = 1,1.15 and 
1.3. The domains of each sub-plot are 0 < x < 2τr∕a and — 1 < y < +1.
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a = 1.00 α = 1.15

a = 1.30

FIGURE 4.13. Vorticity contours of 2D secondary flows in Figure 4.11.
Flows computed with N = 2,/i = 50 at Ae ≈ 0.32, and a = 1,1.15 and
1.3. The domains of each sub-plot are 0 < x < 2π∕a and -1 < y < +1.
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Because of the high amplitude it was necessary to compute both the 2D sec­ondary flows and the stability with N = 2. The similarity of the three flows is clear. Although the unsealed ellipticity of the closed streamline region is the same in each, the τ-scale (being 2π∕oβ means that the ellipse eccentricity a/b and the eccentricity parameter e = ((α∕δ)2-l)∕((α∕δ)2 + l) decrease with increasing a. From Figure 4.8, this implies a shift towards higher growth rates (provided e > 0.8 and Eι is small). In Table 4.2, we list the growth rates computed using the elliptical instability model 
(σ in the table) and the actual values (σ0⅛3) at a reference spanwise wavenumber of β = 2 (at which point we take kx ≈ 2.8). At this long wavelength, we took as our “elliptical” approximation the largest smooth closed streamline; with such a subjective choice the comparison should be viewed as qualitative only. As Table 4.2 shows, the trend in a is approximately correct and the predicted growth rates are reasonably close to those computed using Floquet theory.

TABLE 4.2. Comparison of actual instability growth rates with those predicted 
by elliptical model, showing change with increasing a at similar amplitudes.

a Ae Req a/b € 7 Ey σ G^obs

1.00 0.33 10280 3.34 0.84 0.7 0.007 0.172 0.169

1.15 0.32 6230 3.29 0.83 0.6 0.013 0.171 0.163

1.30 0.32 5065 2.91 0.79 0.6 0.016 0.176 0.164

In summary, the elliptical instability proposed by Pierrehumbert, as modified for viscosity by Landman and Saffman, does give quantitative agreement with σ vs. 
β results computed with a full stability code. In addition, it qualitatively explains many of the stability features of the 2D secondary flows and indicates that only the 
local flow field is important for stability considerations.
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4.5 3D bifurcations to 3D steady waves

We note that solutions to (4.7)-(4.10) occur in complex conjugate pairs. For if σ is an eigenvalue with associated eigenvector (un,υn,wn), then taking the com­plex conjugate of (4.7)-(4.10) shows that σ = σ* is also an eigenvalue with as­sociated eigenvector (un,vn, wn) = (u*n, υln, —wln). This also suggests looking for purely real eigenvalues (∕σ = 0) with associated eigenvector (un,υn,wn) = (uln,υln, —wln). Such a 3D disturbance is phase-locked with the 2D steady wave. As noted above, the most unstable eigenvalues are generally of this form. When look­ing for bifurcations from the 2D secondary flows into 3D secondary flows (steady waves), we are interested in σ = 0 stability solutions (neutrally stable, phase-locked solutions) and so can restrict ourselves to the purely real eigenvalue stability problem for each 2D secondary flow (RθQ,α), and then search for a β such that Iσ = 0.As is suggested by Figure 4.7, zeroes in σ exist for both antisymmetric and symmetric solutions. By adding appropriate amplitude and phase conditions to equations (4.7)-(4.10) we have solved for these zeroes using Euler-Newton continu­ation. Of course, other zeroes (from less unstable modes) are possible and to each zero there corresponds a different family of 3D steady waves which bifurcate off a point on the 2D solution surface at (RβQ, α) with some β and can be continued into the 3D space (RβQ,α, β). We have followed several of these families into 3D space and their behavior is described in detail in Chapter 5, 3d STEADY WAVES.
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4.6 3D subharmonic stability: Problem formulation

Instead of seeking the superharmonic stability of 2D secondary flows in the form of (4.6), we can also examine 3D subharmonic instability. In the general subharmonic case, we look for a modal decomposition involving exponents of the form iapnx. If we look for period-doubling {p = 1 /2), the disturbance can be written
+∞u≈D⅛S,i) = i* ∑ fln⅛)ei"i*

n=—oo
+∞

= et^z un{y)eianx (superharmonic) (4.12)
n=—∞

+∞
+ e*i3z un(y)ew,(n+^x. (subharmonic)

π=-oo

Substituting into the 3D stability equations (4.3)-(4.5), we find that the su­perharmonic and subharmonic terms uncouple (because the basic flow ([7, V, 0) is purely superharmonic). Consequently, equations (4.7)-(4.10) hold with n = ±1/2, ±3/2,..., where now the subharmonic disturbance is
U3D(ι,9.i) = ei',' 52 ⅛,(y)eto"*. (4.13)

n=±∣,±∣,...The resulting equations were solved in an identical fashion to the superharmoniccase.4.7 Numerical results and discussion

In Table 4.3, we compare the most unstable subharmonic eigenvalues with those of Herbert (1983c) for the same conditions as those in Table 4.1.
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TABLE 4.3. Comparison of computed subharmonic eigenvalues with Herbert (1983c).

Eigenvalue Herbert (1983c) Present

&9Ub 0.0465±z'0.0020

0.0209±z0.1014

0.0142±z0.1044

0.0465±z'0.0020

0.0209±z0.1014

0.0142±z'0.1044

Subharmonic stability computed at Rep = 5000, Rθq = 4954.29, a = 1.12, β = 2, A = 5.848 × 10~3 with N = 1,K = 32. Eigenvalues of present work have been 
scaled to Up nondimensionalization of Herbert.

In Figure 4.14, we show the most unstable eigenvalue for various different span- wise and streamwise wavenumber (f5, α) plotted at low secondary flow amplitude in the same way as the superharmonic stability plot, Figure 4.1. In the a = 1 plot we find the threshold amplitude (where the 3D disturbances first become unstable for some β) is at Ae ≈ 0.004 for β = 1. Note that unlike the superharmonic thresh­old amplitude at a — 1 (plotted in Figure 4.3) there is much greater variation in threshold amplitude with β (i.e., the σ vs. β curve is much more peaked at this point).
For a = 1.1, shown with a = 1.15 and a = 1.3 in Figure 4.15, the 3D distur­bances are unstable for the minimum amplitude 2D secondary flow at Ae ≈ 0.0035 (because αcr < 1.1 the secondary flow curve does not intersect Ae = 0). As for the superharmonic stability case there is an increase in the growth rate with in­creasing a at fixed amplitude, as well as an increase in the minimum 2D secondary flow amplitude. The balance of these effects means that the threshold amplitude for subharmonic disturbances occurs approximately at a = 1.1, Ae — 0.004 for 0.5 < β < 3. This is no different from the superharmonic threshold amplitude, suggesting that the “window” that Herbert (1983c) proposed between subharmonic
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Amplitudβ (Aε)

FIGURE 4.14. Growth rate of principal eigenvalue at a = 1.0 (N = 1,K = 32,50).

Most unstable eigenvalue of the subharmonic stability problem for 2D (∙) and 3D dis­
turbances β =0.25 (+), 0.5 (×), l∙0 (o), 2.0 (×),3.0 (□) vs. the amplitude of the 2D
secondary flow, for low amplitude.
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and superharmonic threshold amplitudes may be small or non-existent for PPF. Nevertheless, at this low amplitude the subharmonic instability is stronger, suggest­ing that it is initially dominant. At slightly higher amplitudes, the growth rates are comparable, so that in this regime both subharmonic and superharmonic instability mechanisms are viable ones for breakdown of PPF.At higher amplitudes (A# > 0.05), we found that N = 1 was insufficient reso­lution (unlike the superharmonic stability calculations), so in Figures 4.16 and 4.17 we show the instability growth rate for a = 1 and a = 1.1,1.15 and 1.3 respectively, computed with N = 2,K = 50 for the 2D secondary flows and N = 2, K — 32,40 for the 3D subharmonic stability. The low amplitude data (which were computed with N = 1) are not included in these figures. As discussed in §4.3, the most un­stable superharmonic instability is always one of the symmetric or antisymmetric eigenmodes, leading to the smooth envelopes shown in Figures 4.3. In the subhar­monic stability problem, there are many unstable (generally complex) eigenvalues of similar magnitude, giving an envelope with the dips and peaks of Figures 4.16 and 4.17. Also there appears to be no drop-off in growth rate to a constant value as the 2D amplitude is increased as there is in the superharmonic stability case. The variation with β is much more pronounced than for superharmonic disturbances.Consequently, although at intermediate amplitudes the superharmonic growth rates are greater than the subharmonic, there are indications that at high amplitudes 
(A& > 0.3) this may not remain true.
4.8 Bifurcations to subharmonic wavesUnlike the 3D superharmonic stability case, there are no purely real eigenvalues 
Iσ = 0 with symmetry. If one assumes that all eigensolutions satisfy y symmetry (as seems to be the case) then

un(-y) = (-l)⅛n(+i∕) (4.14a)
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««1.1 α=1.15

Aε Ae

£

α=1.3

0.04 0.06 0.08

⅜

figure 4.15. Growth rates for a = 1.1,1.15,1.3 (N = I, K ≈ 32,50).

Most unstable eigenvalue of the subharmonic stability problem for 2D (∙) and 3D dis­
turbances β =0.25 (+), 0.5 (×), 1.0 (o), 2.0 (×),3.0 (□) vs. the amplitude of the 2D
secondary flow, for low amplitude.
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sro 
ιό 

so’o 
o 

so*o-

FIGURE 4.16. Growth rate of principal eigenvalue at a = 1 (N = 2, K = 32).

Most unstable eigenvalue of the subharmonic stability problem for 2D (∙) and 3D dis­
turbances β =0.25 (+), 0.5 (×), l∙0 (o), 2.0 (×),3.0 (□) vs. the amplitude of the 2D
secondary flow.
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α=1.1 a=1.15

ae ⅜

α=1.3

ae

FIGURE 4.17. Growth rates for a = 1.1,1.15,1.3 (N = 2,K = 32).

Most unstable eigenvalue of the subharmonic stability problem for 2D (∙) and 3D dis­
turbances β =0.25 (+), 0.5 (×), l∙0 (o), 2.0 (×),3.0 (□) vs. the amplitude of the 2D
secondary flow.
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or ‰(~2∕) = (-l)n+*Un(+J∕) (4.14b)
(where η = ±1/2, ±3/2,...), and an additional relation of the form

(zz-n, n_„, w_n) = (η*, υ*, -w*) (4.15)
is not possible. If it did hold:

Ui(+y) = u*_i_(+y) by (4.15)= (-l)0∙wli(-t∕) by (4.14a) for n = -1/2 2= iti(-ÿ) by (4.15)
which contradicts (4.14a) for n = 1/2.Since (4.15) does not hold, then there are no purely real eigenvalues. It follows that, in general, for each point (ReQ,a) on the 2D secondary flow solution surface there is a spanwise wavenumber β which gives Rσ = 0,Iσ ∕ 0 or maybe Rσ ‡ 0, Iσ = 0 but not σ ≡ 0. However, by keeping Rσ = 0 and varying one of the 2D parameters, we can find a point (RβQ,α) with a certain β which gives σ ≡ 0. Thus for subharmonic stability there exists a curve of bifurcation points on the 2D solution surface, as opposed to superharmonic stability where every point on the 2D surface is a bifurcation point.It is not easy to continue in β and Req (say), because the basic 2D steady flow changes for each stability problem. It is tedious, although possible, to fix α, compute the stability problem over a range of Rθq and find the β which gives Iσ = 0 (by continuation in β) at each RβQ. Then one can use bisection to refine the Req value to eventually find σ = 0.This process can be improved by starting near the Orr-Sommerfeld curve, for which the appropriate (Rθq, a, β) bifurcation point is easy to compute. The form
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of the 2D neutrally stable (σ = 0 + zσ,∙) Orr-Sommerfeld curve in (RβQ, α, 0) can be computed. The intersection point of the 3D subharmonic bifurcation curve with the Orr-Sommerfeld curve is that point where the 3D subharmonic disturbance (α∕2, β) has the same phase speed c = σt as the 2D superharmonic disturbance (α,0). This point is easily found using Squire’s transformation, which for any 3D disturbance (ReQ, a∕2, β) gives a 2D disturbance (RβQ,d,0) with the same stability σ — σ, where
52=(^)2 + i92, (4.16)

Refj<'t = (—) Re,i. (4.17)
The problem is thus reduced to finding two points on the 2D Orr-Sommerfeld curve (RβQ,a) and (RβQ,d), related by (4.17), with the same phase speed c = c. This is true for only one point (RβQ*, α*). The 3D subharmonic disturbance is then (RβQ*, α*∕2, ∕3*) with β* given by (4.16). This bifurcation point was found to be approximately Rθq* = 11664, a* = 1.0881, β* = 0.709 with c* = 0.2391. Although it was not possible to continue directly from here onto 3D waves, a nearby point on the 2D secondary flow surface gave the necessary starting point. The resulting solutions are presented in Chapter 5, 3d STEADY WAVES.
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CHAPTER 5

3D STEADY WAVES

5.1 Problem formulation

We take the 3D incompressible Navier-Stokes equations in their vorticity formu­lation:
∂ijJ
— + (u ∙ V)ω = (ω ∙ V)u + z∕V2ω, (5.1)

V∙u = 0, (5.2)where ω = ξi + τ∕j + ζk = V × u. Nondimensionalizing by the channel half­width h and some characteristic velocity Uo, looking for steady travelling waves 
u(x,y,z,t) = u(z — ct,y,z) (but putting x for x — ct for convenience) and then writing u(τ, y, z) = (U — c)i + u3d(z, y, z) (with Ω = —dU/dy, the z-vorticity of the PPF), (5.1) becomes,-Lv⅛+((t∕-c)A + (11.v)) ,<,k + ω,

(w ∙ V) + Ω I ((ι∕ _ c)i + u) = 0,

where the 3D subscript has been dropped. After expansion, (5.3) becomes
dU.

(5∙3)

(5∙4)
1 π2 ∕rr <βω _<9u dΩ.·—-V2w + (U - c — - Ω—- + V—k 

Re ∂x ∂z dy

+ (u ∙ V)ω — (ω ■ V)u = 0.

Combining the x and z vorticity equations by subtracting the x derivative of the z equation from the z derivative of the x equation gives
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-ς-V4u - (U 
Re ⅛v° dΩ ∂v 

dy ∂xr∖
+ —((u ■ V)ξ - (u, ■ V)u) d_

∂x
((u ∙ V)< - (ω . V)w) = 0, (5.5)

1
Re

V2t7 + {U - c)
∂η
∂x

~∂vΩ- + (u V)77 — (u> ∙ V)υ = 0, (5.6)

V∙u = 0. (5.7)

We now look for solutions periodic in x and z (with wavenumbers a and βrespectively): -t-∞ +∞
u(τ,t∕,^)= ∑ eiβmz 52 eiαn‰n(j∕)∙ (5.8)

m= —00 n=—00Substituting in (5.5)-(5.7) and zeroing termwise, the modal equations for mode (m,n) are— ((Sa, + S2) +2(5x + 52)- + — ) vmn 
-(U- c)Sx (s2 + S2z + vmn - ^Sxvmn

γλ f f j- dζ . , f. du ..+ Sz{{u *ξx + v*- + w * ξz) - (ξ * ux + η * — + ζ * uz))
dy dy

- Sx((u * ζx + V * + w * ζz) - (ξ * wx + η * + ζ * wz) = 0, (5.9)
dy dy

1
Re

s2x + s2 + _cP_
dy2

rjmn ÷ (i^ C,}S xT∣mn ^SzVmn

t ^ι1 ∖ ∕ λ du+ (li * ηx + V * — + w * ηz) - (ξ * vx + η * — + ς * vz) = 0,
dy dy

(5.10)
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(5.11SxUmn + —+ SzWmn = Ο,
dy(having dropped the hats on umn), where the convolution f * g for mode (m,n) is defined as f * g = ∑^°~ιχ Σ ∕m-p,n-g‰∙ Also, Sx = ianx and Sz = iβmz but for convenience we have used fx in the convolutions to denote ianfmrι. The applicable no-slip boundary conditions at the channel walls are

umn(±l) = υmn(±l) = wmn(±l) = 0. (5.12)
We restrict our search to solutions with the reflectional symmetry

(u(-z),v(-z),w(-z}) = (φ),υ(z),-w(z)),
which corresponds to a modal symmetry of the form

(^-mm V—mm W—mn) — (,V"mnι ^mn)∙ (5.13)
Such a symmetry is consistent with periodic pairs of counter-rotating longitudi­nal vortices, aligned in the z-direction (as observed by Nishioka et al., 1978). In addition, we impose a reality condition u_mn = u^_n which, with (5.13), implies
um-nι vm-nι wm-n) = (umni vmni ~wmn)∙The use of these symmetries means we can solve for only modes m ≥ 0, n ≥ 0.Some further simplifications are possible, depending on the particular modes. If 

m > 0,n ≥ 0, we solve for (umn,umn) and use the continuity equation (5.11) to compute wmn. If m = 0,n > 0 then (5.13) implies that w0n = -w0n = θ∙ Since(5.10) is satisfied identically in this case, we use (5.9) only, solve for vo∏ an^ use(5.11) to compute uqti.
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Finally, if m = n = 0, in addition to (5.13) implying that w00 = 0, the con­tinuity equation (5.11) shows that dvιt0∣dy ≡ 0, which with (5.12) shows v00 ≡ 0. Furthermore, in this case (5.9) and (5.10) are identically zero and we must return to the z-vorticity equation which in modal form appears1 d3u00 . dC „ x ,i, dw i z
Re dy3 + (u * ζx + V * + w * ζz) - (ξ * wx + η * — + C * wz) = 0, (5.14)

with boundary condition uθo(±l) = 0. This leaves one boundary condition undeter­mined. As in the 2D case, this corresponds to fixing the parametrization (the nondi- mensionalization velocity Uo). We used a flux boundary condition (corresponding to Uo ≡ Uq, Re ≡ Req) which here is writtenf+1
J uoo(y)dy = 0. (5.15)

In practice, the above scheme proved to be exceedingly ill-conditioned and con­vergence was not possible, even to existing 2D secondary flow solutions. However, by defining a stream-function such that u00 = dψ00∣dy in (5.14), with boundary conditions
≠00(±1) = 0 (5.16a)⅛0(±l) = 0 (5.16b)

the condition number in a typical case improved from 1018 to 108 and convergence to both 2D and 3D solutions was obtained. This redefinition of the m = n = 0 modes does not change the counting, so it is not immediately clear why there is an improve­ment in the conditioning. However, the highest order term in the stream-function formulation of (5.14) is the viscous 4th-order term. In the discretized equations, these 4th-order terms appear in the diagonal and close off-diagonal elements of the coefficient matrix, along with the 4th- and 2nd-order terms from the remaining
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primitive variable equations, (5.9) and (5.10). The particular coefficients appearing are derivatives of the Chebyshev modes, T^p∖y). Because T^p∖y) ~ k2p (Orszag and Gottlieb, 1977), it is plausible that the stream-function formulation of (5.14) (with p = 4 for the viscous terms) tends to be more diagonally dominant than the primitive variable formulation (with p = 3), with a consequent improvement in the conditioning of the equations (Strang, 1980).
Auxiliary equations. As described in Chapter 2, 2d STEADY WAVES, a phase condition is necessary to remove the x-origin degeneracy. In the primitive variable case (2.10) becomes

y+1
J v01(y)dy = 0.

Normally a similar phase condition would be necessary to fix the ^-origin. How­ever, the assumption of the symmetry (5.13) precludes any phase shift in the so­lution (since if umn is a solution satisfying (5.13), the shifted solution iβmδ

U-mndi^ m',s unless δ = 0).Flux and pressure Reynolds numbers are related by (2.13). Both a 2D and 3D amplitude can be defined using energy or T2∙nθrm methods:
A2λE,2O

+N '
∑ E0n

n=-N

A2zlE,3D

1516 +N ,
∑ ∕ ∣u0nG∕)l2 + l‰(y)l2⅜

n=-A 

+M ' +NΣ Σ ^mn
(5.17a)

1516
—M n=-N 

+M ' +N .+1tivλ -rjv f+*Σ Σ ∕, ∣Umn(v)∣2 + lυmn(2∕)∣2 + ∖wmn(,y)∖2dy (5.17b)τ=-Λ∕ n=-N∙'~l
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and
+V ' κ∕⅛ = Σ Σ‰fc∣2 (5-18a)

n=-N k—0 

+M ' +N KA‰ = 5Z Σ√ Σ√ l0mnfc∣2 + I^,mnfc∣2∙ (5.18t>)
m=—M ∏=-~N ⅛=0

5.2 Numerical solution

Having truncated the systems of ODEs (5.9)-(5.12), (5.15) and (5.16) to some 
m = 0,..., M; n = 0,..., N, we used the same technique of spectral tau collocation as was described in Chapter 2, 2d STEADY WAVES. In the general m > 0,n > 0 case we used a Chebyshev expansion for both u and v, umn(y) = )C⅛=o amnkTk(y) and υmn(ι∕) = 52⅛S0 bmnkTk(y) and solved the resulting nonlinear algebraic system Ft∙(a, b, RβQ,c,α,∕3) = 0 (with three fixed parameters) using Euler-Newton contin­uation.5.3 Numerical results

As described in Chapter 4, 3D SUPERHARMONIC STABILITY, we used the 3D eigensolution from the linear stability problem as a starting guess for bifurcations into the space of 3D steady waves. As noted there, it is possible to start from sev­eral different bifurcation points, corresponding to different families in 3D space. We followed two antisymmetric families (A1,A2) (corresponding to the symme­try «io(—y) = —Mιo(÷i∕)) and θne symmetric family (5i) (of the form u10(-y) = «io(+?/))· Although the calculations were performed on a Cray-XMP, they are ex­ceedingly time-consuming, so we had to be selective with the range of parameters considered. In Figures 5.1-5.3 we have plotted the 3D waves in (Rθq, β, Aei3d) space for the Si family at a = 1, computed with M = N = 1 and K = 50. Figures 5.4- 5.6 show the A1 family for similar parameters.
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¼30-° 0-0.0695

¼2DR∙q

0-0.0560 0-0.3532

^Γ,W⅜

Rsq-3229 Rβo-4O46

figure 5.1. Si family at a — 1 (ΛΓ = N = 1,K = 50): ^4b,2D^^e,3D plots.

Intersection with Rgq-Λe,2D plane (dashed lines show projections onto Λ^,3D = 0 
plane) and cross-sections in 3D space. The constant β plots are projections onto the 
^B,2D-^E,3D plane.
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FIGURE 5.2. Si family at a = 1 (Af = N = 1,∕< = 50): 
Perspective sketch in (Rθq,^4.e,2D,>lfi,3D) space.
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Rβ0
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Rββ

figure 5.3. Si family at a = 1 (M = N = 1,K = 50): constant β plots.

Intersection with Req-/? plane (dashed lines show projections onto 
j4^,3D = 0 plane) and cross-sections (at constant β) in 3D space.
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0—0.3895

0-0.3895

Rβ0-3981

FIGURE 5.4. Ai family at a = 1 (M = N = 1, K = 50): j4b,2D-∙4b13D plots.

Intersection with RβQ-Λ^2D plane (dashed lines show projections onto Λ^i3d = 0
plane) and cross-sections in 3D space. The constant β plots are projections onto the
Ae,2O-Ae,3Γ> plane.
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FIGURE 5.5. -A1 family at a = 1 (Λf = N = 1, K = 50): 
Perspective sketch in (RβQ, ^4b,3d) space.
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FIGURE 5.6. Aγ family at a = 1 (M = N = 1, K = 50): constant β plots.

Intersection with RβQ-∕3 plane (dashed lines show projections onto
^s,3D = 0 plane) and cross-sections (at constant β) in 3D space.
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In Figures 5.7-5.9 we show the effect on the A1-family of increasing the resolution in the x-direction. Although there are quantitative changes from Figures 5.4-5.6, the qualitative behavior is similar, in the same way as was observed for the 2D steady flows with increasing N. Finally, in Figures 5.10-5.12, we plot the A2 family computed at a = 1.3 with M = 1, N = 2 and K = 40,50.
Data for these families were computed at other α,s, but not in any detail. Nev­ertheless, they do support the behavior shown in the figures here. To cross-check the 3D calculations, we followed some families into 3D space (at higher amplitude) and back onto the 2D solutions again at a different point. The 2D parameters agreed with those calculated from the 2D steady waves code, and β at the bifurcation point from the 2D solutions (i.e., at Ae,sd = θ) with the neutral stability point calculated with the 3D superharmonic stability code.
Comparing Figures 5.4-5.6 and 5.7-5.9, we see that the similarity of the A1 family curves for N = 1 and N = 2 suggests that accurate conclusions can be drawn from these data in terms of the qualitative behavior for M = 1. The constant Rθq cross-sections display the same sharp increase in A#,30 vs. Ae,2D with a relatively slower decrease back to Ae,3D = 0 on the upper branch of the 2D solution curve. There is no decrease in As,2d below the 2D value here and no decrease in Req along the constant β curves.
Having noted that the qualitative behavior of the 3D solutions appears to be maintained for the A1-family when the x-resolution is increased, we assume that the behavior shown in Figure 5.10 for a — 1.3, A2 family, is correct. Although the form of the β dependence with Reynolds number differs for the three families investigated (51, A1, A2), the amplitude vs. Reynolds number dependence shown for 

A2 appears to be typical for all families. The 3D solutions show a sharp increase in As,3D with increasing As,2d and there is no reduction of Rθq from the 2D value
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FXGURE 5.7. Al family at a = 1 (M = 1,N = 2, K = 40,50): √lβ12D--^B13D plots.

Intersection with Rθq-Abj2D plane (dashed lines show projections onto Λ^13D = 0
plane) and cross-sections in 3D space. The constant β plots are projections onto the
^E,2D--'4jE,3D plane.
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figure 5.8. ½1 family at a = 1 (Λf = l,N = 2, K = 40,50): 
Perspective sketch in (ΓtθQ, ^4β,2D,-4b,3d) space.
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¼3D-° 0-0.3617

ReQ

0-0.2597

Rβg

ReQ

0-0.4057

FIGURE 5.9. Αχ family at a = 1 (Λf = 1, N = 2, K = 40,50): constant β plots. 

Intersection with RβQ-∕3 plane (dashed lines show projections onto 
-4λ,,3D = 0 plane) and cross-sections (at constant β) in 3D space.
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0-0.3506 0-0.3395

Rβ0 ¼ΛD Ap,⅞n

0-0.2994

Ag∙j¾n

0-0.2673 0-0.2416

figure 5.10. Λ2 family at a = 1.3 {M = 1, N = 2,K = 40,50): Ab,2D-Λs,3D plots.

Intersection with RθQ-Aβι2D plane (dashed lines show projections onto √4e,3D = θ 
plane) and cross-sections in 3D space. The constant β plots are projections onto the 
^B,2D-^K,3D plane.
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FiGURE 5.11. Λ2 family at or = 1.3 (Λ1 = 1,N = 2, K = 40,50): 
Perspective sketch in (Req,Ab,2dMb,3d) space.
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¼jo “ 0 0-0.2416

Rβg

0-0.2673

Rβ0

0-0.2994

Rβg

0-0.3395

R∙q

0-0.3506

R∙q

figure 5.12. √42 family at a = 1.3 (Λi = 1, N = 2,K = 40,50): constant β plots. 

Intersection with Req-∕J plane (dashed lines show projections onto 
^4j5,3D = 0 plane) and cross-sections (at constant /?) in 3D space.
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so that the 2D solution curve is the envelope of the 3D solutions in the Rcq-Ae^d plane. We did not compute any solutions with increased 2-resolution but suspect that the important effects occur in the streamwise direction and that the spanwise behavior is adequately resolved for qualitative conclusions to be made, particularly regarding the Reynolds number behavior.
Form of the 3D superharmonic flow. In Figure 5.13 we show the perturbation to the mean flow (uθo(v)) plotted for various 3D amplitudes along the constant 
β = 0.2994 cross-section shown in Figure 5.10, going from large to smaller 2D amplitude (upper to lower branch of the 2D solution curve). Noting that for the 2D solution curve, the energy in the mean flow increases monotonically as one moves from the lower to the upper branch (corresponding to a transfer of energy into the 2D perturbation), we see that this process is modified for the 3D waves. Examination of the profile and of the energies shown for each subplot shows that the 3D flow perturbation draws energy primarily from the mean flow (so that the mean flow energy decreases as the 3D amplitude increases, even as we move towards the lower branch of the 2D solution curve). This observation for these 3D secondary flows is consistent with the analysis of Orszag and Patera (1983) who observed that in time-dependent 3D flows the 2D flow mediated the transfer of energy from the mean flow to the 3D disturbance.Examination of the velocity vectors of the 3D flows on this β = 0.2994 cross- section reveals that the flow remains essentially two-dimensional, with the τy-plane flow similar to that shown in Figure 4.9 for all z positions. In Figure 5.14 we show the wv velocity field in the zy-plane, at various x locations. Note that the velocity scale in each subplot is different. With this pattern at each cross-section, particle paths will tend to be helices (because they are swept down the channel from one cross-section to the next). The observed symmetry in the flow, and the
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FIGURE 5.13. Mean flow perturbation along β = 0.2994 cross-section in Figure 5.10.
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consequent suggestion of counter-rotating vortices, are results of the symmetry as sumption (5.13).
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Mα×. velocity: 9.273E—03 Max. velocity: 8.378E—02

Max. velocity: 8.378E-02

z z

z z

figure 5.14. Velocity vectors in the j∕2-plane for the 
point β = 0.2994, ½b,3d = 7.74 × 10-4,a = 1.3.

Cross-sections plotted at 2τr∕(4α) intervals in the z-direction. The 
distance scale on each subplot is Q-2π∕β in z, and —1 to +1 in y.
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5.4 3D subharmonic waves

Starting from the curve of bifurcation points off the 2D secondary flow solutions, we have continued these solutions into the 3D space of subharmonic steady waves. The equations are as before, except that now we expand the m > 0 modes in both sub- and superharmonic components:
u(z,y,z)

+∞ +∞ , +∞
$3 ⅛√y)efa"* + ∑ 52 <⅛π⅛)ei' (5.19)

Note that a complete expansion does involve both types of modes for m > 0. However, for simplicity we assume that m > 0 superharmonic modes are zero and look for solutions in which the 3D components are purely subharmonic and the 2D components purely superharmonic:
+∞ +∞ , +∞u(1.!,.z)= 52 fl0n⅛)eim≈+ £ 52 ttm√!,)e'≈<"+i>' (5.20)

n=—∞ ra=-∞ n=--∞We assume that the symmetry (5.13) still applies for the superharmonic modes 
m = 0. The equations and auxiliary relationships are the same as for the 3D su­perharmonic solutions. However, the reduction in the number of degrees of freedom means that of the parameters (RβQ, α, β, Ae,2D, Ae,3o) we can fix two and determine the others (unlike the 3D superharmonic solutions).
5.5 Numerical results

The most computational effort, involving much trial and error, involved the reduction of ReQ down to the Rθq ≈ 2500 regime. In Figure 5.15 we present amplitude-Reynolds numbers plots (analagous to those for 2D secondary flows) for a range of α, computed with M = N = l,K = 50. The behavior in these plots
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is somewhat similar to that for 2D secondary flows; a surface of solutions with a “nose” in (RβQ , α,Λβι3θ) space. As Figure 5.15 shows, the minimum occurs at 
Req ≈ 1600 for a ≈ 1.

This minimum does not agree with the results of Goldshtik et al. (1983), who found a minimum Reynolds number of Req = 1017 for a = 1.166 using a finite difference code with (so far as we can ascertain from their paper) M = N = 1 and 101 Chebyshev-spaced collocation points. They used second-order differencing in the y-direction. Milinazzo and Saffman (1985) used a finite-difference scheme with up to fifth-order differencing and found that up to 200 points in y were needed to achieve convergence on a stretched grid when solving the 2D equations. This leads us to believe that Goldshtik’s resolution might be inadequate. We tried to simulate the effects of such reduced y-resolution by reducing the number of modes from K = 40 to 
K = 32 at this minimum point. With the spectral collocation method, no significant change occurred. This does not, of course, rule out the possibility of inaccuracies in a finite difference formulation. When we used inadequate resolution in some of our test computations we found completely erroneous branches of solutions which disappeared when the mesh size was reduced in y. Such a check may not have been possible for Goldshtik because of computational limitations.

Nevertheless, this is a considerable reduction in Reynolds number from the sec­ondary flow minimum of RβQ = 2600 (for a = 1.32, N = 4) and is much closer to the experimentally determined transition value of Req = 1000. Given the quantitative changes in the 2D minimum with increasing N, this certainly raised the possibility that increasing the z-resolution here would reduce the minimum of Req = 1600 down closer to the transition value.
We were unsuccessful in converging directly from M = N = 1, K = 50 to the 

M = 1,N = 2,K = 50 solution surface. The only alternative was to start again
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Cross-sections at different a for solution surface near minimum Re∣

FIGURE 5.15. 3D subharmonic steady waves (M = N = 1, K = 50).

Ci-
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at the bifurcation point at RβQ = 11664 and attempt to repeat the continuation process to low Reynolds number. However, no reduction in Reynolds number was possible. At a given a the bifurcation was either super-critical, or sub-critical with a small Req decrease to a limit point in Rθq and subsequent increase in Rθq. Such a drastic qualitative change in behavior from the M = TV = 1,7V = 5Q solution surface is astounding and was not observed in the superharmonic waves calculations. It has to be attributed to some interaction between Fourier modes that were not present in the N = 1 approximation, but it is not clear what modes these would be.In Figure 5.16 we show the behavior of the 3D secondary flow surface computed with M — 1, N = 2, K = 50. There is no longer any reduction in Reynolds number from the bifurcation point at Rθq = 11664 on the Orr-Sommerfeld curve (marked with the symbol on Figure 5.16). Instead the behavior is much more like that for 3D superharmonic waves except that at high Reynolds numbers the amplitude does increase beyond the 2D value. The y dependence of the solution is surprisingly difficult to resolve and we found K = 69 Chebyshev modes necessary.
Evidence of convergence. It is natural to ask whether the curves in Figure 5.16 are accurate representations of the converged solution or whether further changes occur as N or K is increased, similar to the significant change from TV = 1 to 
N = 2. In Figure 5.17 we show the Rθq = 13365 cross-section computed with 
N — l,K = 69, N = 2, K = 49, N = 2,K = 69 and various points (symbols in the figure) with TV = 3, ∕< = 49 (TV = 3,K = 69 was not possible because of memory limitations). The largest qualitative change occurs from TV = 1 to TV = 2, but the behavior is then reasonably resolved with TV = 2,K = 49. In Figure 5.18 we plot the decay of the Chebyshev coefficients (plotted on a linear-log scale) for some of the Fourier modes, for the maximum ¾3d point for Req = 13365, computed with TV = 2,K = 69. The modes which are identically zero (by symmetry) are
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α

FIGURE 5.16. 3D subharmonic steady waves {M = 1,N = 2,K = 69). 
Cross-sections at different Req for solution surface near the 
bifurcation point (symbol φ) at Req = 11664, a = 1.0881
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not plotted. Although there is some evidence of aliasing in the highest modes, exponential decay (indicative of convergence of the expansion) appears to have been achieved.
In Table 5.1 we show the modal energies for the largest A^i3d point on the Rθq = 13365 cross-section, computed with N = 3, K = 49. The energies decay in N in the expected exponential fashion. It appears from this table, and from Figure 5.1, that both the Fourier and the Chebyshev expansions are converged.

TABLE 5.1. Modal energies for point at Req = 13365, Ajbi3d = 1.283 × 10~2. 
Computed at highest Ae,sd point with N = ⅛,K = 49.

τn n Energy

0 0 1.0021384

0 1 9.78158253 × 10~6

0 2 1.07774084 × 10^8

0 3 4.50330280 × 10~11

1 5
2 2.89416350 x 10~1°

1 3
2 1.28737547 × 10~7

1 1
2 9.30757503 × 10~5

1 + ⅛ 7.13819881 × 10~5

1 + 2 1.46914290 × 10~7

1 + 2 2.94577771 × 10~1°

As discussed in §4.8, a curve of bifurcation points exists on the 2D secondary flow solution surface, from which the 3D subharmonic waves emanate. This curve intersects the Orr-Sommerfeld curve at Req = 11664, a = 1.0881 and our calcula­tions suggest that it then increases in Reynolds number as it is followed on the 2D
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figure 5.17. Comparison of Req = 13365 cross-section at different resolution.

Chebyshev mode (fc)

FIGURE 5.18. Decay of Chebyshev modes for the point 
Req = 13365, Λβ,3D = 1-617 × 10^2 (M = 1,N = 2,K = 69). 

The superharmonic modes (solid lines) and n < 0 subharmonic 
modes (dashed lines) are plotted for the maximum √4β,3D point.
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solution surface. The agreement between the 3D subharmonic waves parameters, when → 0, and the 2D solution at the bifurcation point for Rθq = 13364.832was found to be (with 2D values in parentheses): Rep = 13366.661(13366.615), a = 1.075(1.081), β = 2.01(1.97), £2D = 3.623 × 10~6(3.637 × 10~θ). The difference in resolution (N = 2,K = 69 for the subharmonic waves and N = 1,X = 50 for the 2D solution and the subharmonic stability) is not important since at these low 3D amplitudes N = l,K = 50 is sufficient for all calculations. In considering the poor agreement, one must take into account the fact that both calculations are subject to error. The subharmonic bifurcation point must be found, to some extent, by trial and error (as described in §4.8). Furthermore, the low 3D amplitude behavior of the subharmonic waves is uncertain at best because the problem becomes ill-conditioned as the bifurcation point is approached. This is because with fixed a (say), = θcorresponds to a single point on the subharmonic curve, but to the whole curve of 2D secondary solutions (at this a). This difficulty stems from the absence of purely real eigenvalues for the 3D subharmonic stability problem.
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5.6 Conclusions and recommendations

We have solved the viscous, incompressible 3D Navier-Stokes equations to find steady periodic travelling wave solutions, starting from previously computed 2D secondary flow solutions. Although the size of the systems being solved necessitated making certain symmetry assumptions and computing at relatively low resolution, we believe that the qualitative behavior of the 3D waves found is accurate.
In the superharmonic case several families were investigated (corresponding to different bifurcation points from the 2D secondary flow solution surface). In all cases these solutions “connected” points on the 2D surface with no reduction of the Reynolds number from the minimum computed for the 2D secondary flows.
In the subharmonic case we found that although minimum resolution (TV = 1 Fourier mode in x) results agreed with those of Goldshtik in giving 3D secondary flows at low Reynolds numbers, the behavior was found to change drastically when 

N was increased to N = 2 (and was maintained for N = 3). In this case a single surface of solutions exists, bifurcating from a curve on the 2D solution surface. Once again, however, there is no decrease from the minimum Reynolds number point (in this case on the Orr-Sommerfeld curve) of Req = 11664.As noted in §4.8, finding bifurcations to 3D subharmonic waves generally re­quires altering both β and Rθq at a fixed a (say). The easiest bifurcation point to compute is that on the Orr-Sommerfeld curve. The possibility exists, however, of other 3D bifurcation points on the 2D secondary flow surface, ones which lie on a curve of bifurcation points not intersecting the Orr-Sommerfeld curve but with 
Rθq → ∞ with decreasing √⅛13D. We found what appeared to be such a point at Req = 4880, a = 1. However, closer examination revealed this to be a local minimum of the eigenvalue, where σ≈0±∩0~θ but does not pass through zero.
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In §1.4 we stated that our primary interest in investigating 3D secondary flows was to find candidate vortical states with low Reynolds numbers typical of transi­tion and turbulent flows. It is disappointing that this has not been realized with the 3D superharmonic and subharmonic secondary flows considered in this dissertation. Although it is possible that increased ^-resolution, or relaxation of the various sym­metry assumptions may yield more productive results, we feel that investigation of families of quasi-periodic flows would be more fruitful. In this respect we note the results of Chapter 3 which indicate that stable, 2D quasi-periodic flows may exist at lower Reynolds numbers than the minimum for 2D secondary flows. The rela­tively simple structure of these flows may make them amenable to easy numerical investigation.
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CHAPTER 6

POISEUILLE-COUETTE FLOW

6.1 Problem formulation

We define Poiseuille-Couette flow (PCF) as PPF with the addition of an upper wall velocity V, with the lower wall remaining fixed in this frame of reference. The stream-function and mean flow velocity for the uniform PCF are just the sums of the component flows: φpcp = t,° (≈z “ ⅛) + 7 O'+ ’
‰f = (∕.(i-⅛)+⅞(i + ^.

The governing equations for the 3D perturbation in PPF follow through to PCF except that the base flow is changed and there is some reinterpretation necessary for the Reynolds numbers. Nondimensionalizing by the underlying PPF velocity Uo and choosing to apply the flux boundary condition (2.9a) sets Uo ≡ Uq, where Uq is the Poiseuille component velocity of the PCF having the same flux as our perturbed flow. Similarly, if we apply the pressure boundary condition (2.9b), then Uq ≡ Up, where Up is the Poiseuille component of the PCF having the same pressure gradient as our perturbed flow.
Flux and pressure Reynolds numbers. The physical flux is altered by the Couette component of the base flow, now being

Q = [ΦpcF]tfc = —+ Vh,
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whereas the pressure gradient is unaltered from
p = ïh iφpcf"J-J

-ilvUpΛ2
Some choice is now possible in the definition of the flux Reynolds number Rθq. We choose to define it in the same relationship to the flux as in (2.11a):

„ 3Q h fττ 3V ReQ= 4Γ = r(^+τ

However, this is not a convenient quantity for the equations, since after nondimen- sionalizing by Uo ≡ Uq and h in the perturbation equations, the natural quantity appearing depends only on Uq, so we define
Reo =

hUQ = 3(Q-Vh) 
v 4z∕ (6.la)

while the pressure Reynolds number is unchanged from its previous definition of 
hUp -h3P

Reι 2ι∕2 (6.1b)
The dimensional representation of the total mean flow is

½Φpcf + ≠o = Uq ∖y — 
= Up(y-

y
3h2

yL
3h2

y+2h^ +^q°

where Vq, Vp denote the different nondimensionalized Couette velocities in the two cases. Nondimensionalizing by h and Uq,Up respectively and substituting into the boundary condition (2.9b) gives
Rep = Req ≠o<2,yy

+ι-ι (6∙2)

+

14

Q

as before, because there is no pressure contribution from the Couette flow. In our calculations we have used Rθq, and then a posteriori computed the flux Reynolds
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number Rθq using
Req — Reo ( 1 + 3Vq

6.2 Numerical results

Using the 3D superharmonic waves computed in Chapter 5 as a starting point, we have computed the corresponding Poiseuille-Couette waves for various wall ve­locities V. In Figure 6.1 we plot the results for a = 1.3. The first subplot shows the Rep-RβQ dependence of the 3D flows with AB)3D ≈ 0 for 0 < V < 0.21. The second subplot shows the same data in the ReQ-Λjeι2D plane. These plots show that at constant flux (constant Rθq), as the wall velocity V is increased there is an initial small decrease in the pressure gradient (proportional to Rep) required to drive the flow. This effect is soon out-weighed by the increase in the amplitude of the nonuniform flow, which requires a greater pressure gradient at the same flux. This is more clearly shown in the third subplot of Figure 6.1, where Rep is given as a function of V for several different values of Rθq.In general, the solution curve shifts to higher Reynolds numbers, even though at a given Rθq there is a reduction in Rep. This indicates that, at least for 2D PCF, the minimum pressure gradient (proportional to Rep) increases with increasing wall velocity V. This behavior is confirmed in Figures 6.2 and 6.3. Furthermore, the positions of the V = 0.21 cross-section in Figure 6.1 and of V — 0.20 in Figure 6.2 suggest that the minimum Req in (Rθq, Aei2∏, α) space moves towards lower a as
V is increased.In the remaining subplots of Figures 6.1 and 6.2 we show the 3D behavior for constant Reynolds number and for constant β. These should be compared with the behavior shown in Figure 5.10 and Figure 5.7 respectively for similar parameters (but
V = 0). Other than the shift to higher Reynolds numbers, there is no significant
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change in the form of the cross-sections.
6.3 Summary

We conclude that as the Couette wall velocity is increased the 2D solution surface shifts to higher Reynolds number and to lower wavenumber a. Although at given 
Req there is an initial decrease in the corresponding Rep , the overall behavior is for the minimum Rep (and thus pressure gradient) to increase with increasing wall velocity V.Sample cross-sections of 3D PCF suggest that there is little qualitative change from the behavior observed for 3D superharmonic waves in PPF (i.e., PCF with 
V = 0). It seems unlikely, therefore, that following these solutions in PCF space will lead to the discovery of finite amplitude flows in Plane Couette flow.This does not rule out the possibility of continuation of known finite amplitude flows into Plane Couette flow, but suggests that success will depend on finding some artificial parameter in which to continue. The extreme values of such a parameter would reproduce (for instance) PPF and Plane Couette flow, but continuation would be through a region of physically unrealizable flows.
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figure 6.1. Poiseuille-Couette flow for a — 1.3,
(Λf = i,N = 2,K = 50). 3D flows computed for A2 family.

Non-uniform PCF curves for V = 0.05,0.1,0.21 lie at higher Recι (curve labels omitted for clarity)
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v∞-°¼30 “ 0

V-0.1, Rββ-5306

FIGURE 6.2. Poiseuille-Couette flow for a = 1,
(M = l,N = 2,K — 50). 3D flows computed for Aι family.

Non-uniform PCF curves for V = 0.1 and 0.2 lie at higher Req (curve labels omitted for clarity)
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¼3D “ 0

figure 6.3. Poiseuille-Couette flow for a = 1.1375, (M = I, N = 2,K = 50). 

Non-uniform PCF curve for V = 0.1 lies at higher 
Reynolds numbers (curve labels omitted for clarity).
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APPENDIX I

2D SOLUTION SURFACE

In Figures I.l-l.3 we show plots of the relationship of the flux and pressure Reynolds numbers (RβQ,Rep) and the two amplitudes (A, Ajs) as defined in (2.18) and (2.17). As noted in §2.1, it has been usual to present numerical results for this work in terms of Rep, even though there are good reasons for using ReQ instead. These figures allow calculation of all quantities from ones given in the text.
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FIGURE l.l. Reynolds numbers and amplitudes for 1 < a < 1.15 (N = 1, K = 50)
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FIGURE 1.3. Reynolds numbers and amplitudes for 1 < a < 1.3 (N = 2, K = 50)
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