
QUEUES OF QUEUES 
IN

COMMUNICATION NETWORKS

Thesis byEnrique José Hernandez Valencia
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California
1988

(Submitted October 2, 1987)



-π-

ACKNOWLEDGEMENTS

I want to express my most sincere appreciation to Dr. E. C. Posner, who acted as my thesis advisor and who suggested the study of multilevel queueing as a way to handle many of the traffic issues in new communication systems. His invaluable advice and useful comments served as a powerful source of motivation that is reflected everywhere in this work. Thanks very much for your encouragement and continuous support.I also want to thank the Consejo Nacional de Investigaciones Cientificas y Tec- nologicas (CONICIT) in Venezuela, who provided me with a fellowship to come to Caltech to pursue graduate studies. To them, I am deeply in debt.Finally, I would like to thank all the members of my examining commitee: Professor E.C. Posner, Professor J.L. Beck, Professor J.N. Franklin, Professor R.J. McEliece, and Professor P.P. Vaidyanathan.This research has been partially funded by the Pacific Telesis Foundation, and I gratefully acknowledge this support.



-ni-

QUEUES OF QUEUES IN COMMUNICATION NETWORKS

AbstractThe concept of a camp-on queueing system is related to the idea of having systems of multiple hierarchical queues. Customers requesting service at a service center are queued at one of different queueing stages based on the location of the customer’s intended server within the service hierarchy. In many instances, cus­tomers in a camp-on model exhibit a dual function customer-server, giving rise to a system with queues of queues. For this model, we assume Poisson distributed arrivals with different classes of customers for each queueing level. The service completion process is regarded as exponentially distributed, a standard assumption for many communication systems.Here we discuss a stationary model for such a Markovian camp-on system. Closed-form solutions are derived for various state occupancy distributions of inter­est (e.g., joint probability distribution of queue lengths, marginal distributions for subsystems, accumulated workload, etc.), in systems with finite and infinite storage capacity and two queueing levels. Most of these results are also extended to mul­tilevel queueing systems. It is found that this camp-on model is stable whenever all the distinct queues, in isolation, behave as stable systems. The form of the joint probability distribution of queue lengths is not a product of the independent contributions from each subsystem, since it must also account for the relative posi­tion of the queues with respect to the initial service center, the root of the service hierarchy.



-IV-Two particular applications are discussed in detail: 1) PBX-like communication services, and 2) broadcast delivery services. Performance statistics such as wait­ing time distributions, blocking probabilities and mean response time are derived. These results show that we do not pay too large a penalty for introducing two or more levels of queueing, and under very extreme conditions (heavy traffic) the delay in response increases only linearly with the number of queueing stages. Broadcast service strategies provide even better performance than conventional point-to-point service, though a broadcast medium is required.
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INTRODUCTION

As the next generation of communication systems unveils, more customer- oriented services and computer applications are making use of hierarchical strate­gies to handle their decision-making algorithms and other resource management problems. These new tendencies within the communications market call for a bet­ter understanding of hierarchical approaches to queueing distribution problems in communication systems. The approach to be considered in this work is a tree-based queueing strategy. New job requests entering a service center can be scheduled and queued on top of previously queued jobs. Rather than doing so in a single queue, however, the customers are distributed in an array of queues based on their order of arrival and class and type of service requested. Such a queueing strategy, borrowed from the camp-on service in telephony, offers a variety of applications in areas such as system resource management, networking, scheduling and routing, etc.So far, current services and applications have been taking advantage of well- established queueing concepts and sophisticated task management schemes devel­oped for both single node and multinode queueing systems. The main core of this research has been aimed at systems with an arbitrary but fixed number of nodes or service centers. These have been within the general context of networks of queues. Key issues under consideration have been multiple classes of customers, queueing and service strategies, routing schemes, distribution of workload, etc. An extensive survey of the most important results in this area can be found in the specialized literaturet9,25’28!. Some of these will be discussed in detail as we review the dif­ferent techniques used for queueing system analysis in Chapter 1. Our goal here



- 2 -is to evaluate some of the queueing issues under a camp-on strategy, where users are queued at different levels within the queueing system, which are related to the user’s end-point server. Besides being a natural extension of present queueing models, camp-on systems can also be seen as a model for queues of queues. Such representation permits modeling systems with a random number of service nodes or active queues, which are defined by the queueing schemes adopted. Some of the multilevel queueing issues can even be interpreted as problems of population size in a “genealogy tree.”Most of the specific problems in the area of networks of queues, such as those mentioned above, seem to stand in need of a general theoretical framework within which models and questions of system behavior can be appropriately formulated and addressed. However, a great amount of insight can still be gained through the use of techniques such as continuous time Markov chains, generating function methods and the use of notions such as balance equations and time reversibility of Markovian processes.In this work we introduce the concept of a camp-on system. Specifically, we focus our attention on the equilibrium behavior of queues in a camp-on model. In Chapter I we describe the queueing strategy associated with a camp-on system and compare this model with other queueing systems. Chapters II and III are devoted to the study of two-level camp-on systems. The basic assumptions for the model and the underlying equilibrium balance equation for the joint probability distribution of queue lengths are derived in Chapter II. These are based on a Markovian model for the state occupancy problem in a two-level camp-on system. Defecting or reneging from the camp-on model is also contemplated. Chapter III addresses the problem of finding joint probability equilibrium distributions, some marginal distributions, and



- 3 -the total workload accumulated in the queueing stages. Closed-form solutions for different state occupancy distributions are provided for non-reneging camp-on sys­tems. In Chapter IV we extend many of the concepts analyzed in the two-level case to multilevel camp-on systems. Finally, Chapter V presents analytic performance results for camp-on systems in two distinct communication applications: i) PBX- like communication services as in an enhanced office environment, and ii) broadcast delivery services as in Videotex. Chapter VI summarizes the scope of these results and suggests some open problems for further studies.
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CHAPTER I:

CAMP-ON SYSTEMS

A camp-on system is a multilevel, multiqueue system where waiting lines are organized in a hierarchical manner. The hierarchy levels represent the number of queueing stages a customer must visit before his service process is initiated. Each level is seen as an ordered collection of waiting lines and each waiting line contributes to the next level with its own set of queues, spanning a tree-like queueing structure. Service takes place in the system on a level-by-level basis. This chapter introduces the basic concepts behind the camp-on model. Section 1 presents the queueing strategy associated with the camp-on model and provides a detailed description of the customer handling within this multilevel queueing system. Section 2 gives a historical account of some important results for systems with multiple queues as they relate to the camp-on model. The most interesting analogies are found within the context of networks of queues. Emphasis has been place on models that reduce the statistical behavior of the queueing system to the independent contributions of the network nodes.
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I.l. Queueing in a Camp-on System

Consider a traffic stream So that is initially offered to some service center, the originating service facility, from an infinite source of subscribers. If the service center is busy and buffering space is available, a queue will start to build up as in any∖ conventional queueing system. For our purposes, this initial queue will be referred to as the First-Level Queue . Assume now that every single customer present at the first-level queue is also offered his own independent, infinite source of subscribers 
Si, S2,..., Sn. If buffering space is made available for these traffic streams, queues associated with these streams will build up, one for each of the n customers at the first-level queue. Let us refer to them as the Second-Level Queues. Once again, customers at this second level of queues can also be offered their own independent traffic streams from infinite pools of subscribers. New queues, when buffers are provided, will continue to build up and they will form what will be referred to as the Third-Level Queues. This process can go on indefinitely as customers join the system. We define the queueing system resulting from this queueing scheme to be a camp-on system. This is in analogy with the “call camping” service in telephony in which telephone calls to a busy station can be put on hold to be answered later rather that being immediately rejected by the local switching office.After a customer commences his service period, we expect him to leave the service facility only when all of his requested task has been completed. However, service disciplines that preempt the customer in service in favor of newly arrived customers and even customers’ defections before service completion will be consid­ered. Upon his departure, the serviced customer will leave the functioning service facility, taking with him all of his associated second and upper-level queues, none of which have yet begun service. The next first-level customer in the order of service,



- 6 -as determined by the queueing discipline, is then serviced. The departing first-level customer, meanwhile, starts serving his own first-level queue, a second-level queue in the previous stage of the camp-on system. The associated camp-on depth, that is, the number of queueing levels in the branch of the service hierarchy for the de­parting customer, is reduced by one unless this customer were at the bottom of the hierarchy and were not also a server. In that case, the number of levels remains zero. The sequence in Figures 1 and 2 illustrate this queueing scheme in a camp-on system with two queueing stages.The basic idea behind this camp-on queueing scheme is to allow customers in a multiservice environment to join one of different waiting lines that are organized in a hierarchical fashion. This hierarchy is given as a tree representation of the various stages of queues that servers and customers must go through during a communication session with a service node. Inherent is the assumption that users can not only demand service for their own jobs but can also provide service to other customers. New job requests entering the camp-on system will then have their service scheduled with respect to their end-point server, i.e., the actual service center for that job. But a customer’s real position inside this queueing system will depend on the relative position of his intended server within the queueing hierarchy. Hence, customers appear as if they queue up or camp at different levels of a hierarchical multilevel queueing system.Thus, the key point in the camp-on strategy is that customers need not be considered as simple customers in a traditional sense, e.g., ones that merely ask for their jobs to be done, but rather, they can also exercise control over the ex­ecution of other job requests being submitted. The way this control process is exercised determines to a large extent the complexity of the camp-on model. Still,
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- 8 -

λ21 λ2β λ22 
I I 1

III

A arrival rate 

μ service rate

Second-Level Queues

First-Level Queue

Service
Facility

Figure 2: First-level customer departure, FCFS service discipline.



- 9 -every customer-queue pair could be considered, in isolation, as a separate queueing system, or as a subsystem within the camp-on queueing model.Ideally, one would like to include all sorts of service and schedule interrelations among queues, servers and even classes of customers, that can possibly take place in a communications environment such as in multiplexing or routing nodes, PBX’s, inquiry-oriented systems, or any other networking application. Of course, this ap­proach could quickly prove to be intractable and its usefulness therefore argued. Here, a simplified queueing scheme based on an independent-branch approach is proposed, which covers various queueing strategies of interest and paves the way to the study of more complex queueing situations.We assume that each of the different sources of users is independent. We also require that job scheduling for upper-level customers does not interfere with the ar- rival/departure pattem for the lower-level customers, for they belong to subsystems outside their service path. Such a queueing strategy implies a decoupling between the different queue levels in the camp-on systems and will allow simpler represen­tations for various state-occupancy problems of interest. More general schemes for schedule management await future analysis.The camp-on system concept arises in enhanced telephone services. Incoming phone calls to busy telephone premises can be kept on hold by means of the standard PBX philosophy, while the waiting customers are attended to in the usual first- come-first-served basis. If third parties try to call any of the queued-up customers, one could also put them on hold instead of using the conventional telephone service procedure, which would block and clear all incoming calls from the system. By this means, a queueing system is created wherein any queued customer would eventually become a functioning service facility. These concepts may apply more realistically



-lo­to computers as the calling and called parties rather than to people, given the relative “willingness” of computers to stay on hold as compared to people.
1.2. Camp-On Within the Queueing Systems Context

An extensive effort has been put into studying equilibrium distributions for queueing systems, especially those of the network-of-queues type. We will devote this section to a review of those queueing models that can be represented as a continuous time Markov chain with a countable state space. We deal with the issue of multiqueueing systems to provide further insight into what we should expect from the camp-on model.A model for a network of queues was first introduced in a paper by Jackson!lβl, widely regarded as the departing point in the theory of multiqueueing systems. This model is based on a generalization of the classical M/M/s queue: memoryless customer interarrival time, memoryless or exponential service time, and s servers, to an arbitrary interconnected open network with exponential servers, Poisson external input and a first-come-first-served service discipline. In his paper, Jackson proved that whenever an equilibrium condition exists, each node in the network behaves as if it were an independent M/M/s queue with Poisson input; i.e., if π(xjv) is the equilibrium probability of the network of N nodes’ being in state ττ(xv) = (x1,∙∙∙,xjv), then
7γ(xjv) = ≠(≈i)∙∙∙≠(^λγ),

where ≠(xi∙) is the equilibrium probability of having a⅛ customers in an M/M/si queue. This particular form of solution has come to be known as the product form. The appeal for this form of solution is obvious as it permits us to characterize



. - 11 -the system behavior through the independent behavior of its nodes and allows a computationally efficient analysis of large networks.In contrast to the open network of queues introduced by Jackson!16!, Gordon and Newell!13! considered a closed Markovian network in which a fixed and finite number of customers, say M, circulate through the network and no external arrivals or departures are permitted. They proved that the equilibrium distribution has a product form, though the behavior at the various nodes can no longer be regarded as independent, since xι H------- H xff = M.Later, Jackson!17! and Posner and Bernholtz!2θ,3θl, respectively, introduced gen­eral open and closed Markovian network models that allow the total external arrival rate to depend upon the total number of customers in the system (open), the expo­nential service rate to be a function of the number of customers at the node, and the travel time between any two nodes in the system to have an arbitrary distribution (closed). Once again, it was demonstrated that the equilibrium distribution for the number of customers at the various nodes (and in transit) is of the product form. For closed networks, it was even permitted to have different classes of customers, with a different set of service rates and routing probabilities. These results are based on solutions to a steady-state balance relation equating the equilibrium rate of flow out of state xn with the equilibrium rate of flow into state xn.However, the above approaches had one limitation: granting that one could manage to guess the correct form of the equilibrium probabilities, verifying that the probabilities satisfy the balance relation was not still entirely trivial. Fortunately, the method of partial balance equations introduced by Whittle!40-41! provided in many cases simpler means to get around this inconvenience. In this approach, one attempts to decompose the balance equation into smaller sets of partial balance



- 12 -equations and then to show that the steady-state probability distribution 7γ(xλγ) sat­isfies the simpler equations. Using this technique, more general equilibrium results have been obtained as summarized by Baskett et alJ2! and Reiser and Kobayashil34l. These authors allow a variety of customer classes and different kinds of service nodes in order to model central processors, data channels, terminals and routing delays in computer systems. It is important to note that for any given model, one has no assurance a priori that the set of partial balance equations is consistent. But, it is clear that any solution one finds for a set of partial balance equations will indeed satisfy the global balance equation, too.In an effort to expand product form results for open systems, particularly with regard to routing behavior, Kellyi19^211 used a combination of the partial balance technique with the notion of time reversal or reversibility. Let {C(t), 0 ≤ t < ∞} denote the Markov process describing the state of the system, and suppose the transition rates of {C(t), 0 <t < ∞} to be given by g(x∏5 ym)∙ Further, suppose we believe the probability 7γ(xn) to be the stationary distribution of {C(t), 0 ≤ t < ∞}. Then the reversed process {C(-f), 0 < t < ∞} also forms a Markov process. Moreover, the two processes, C,(f) and C(—f), 0 ≤ t < ∞, must have the same equilibrium distribution, with the transition rates q'(×n", y,m) for the reversed process given by
π(xn)g(xnjyn,) = π(yrn)q'(ym∙,×n},

and
∑ g(×n!ym) = ∑ q'(×n∙,ym)∙yfn≠Xn ym≠XnHence, external arrivals for the reversed process correspond to external departures for the original process, and past departures from the system in the original process



- 13 -correspond to future external arrivals in the reversed process. This condition guar­antees that the current state of the system in the original process is independent of past departures from the system, and this proves to be a powerful tool for analyzing many complex queueing systems.Barbour(3J extended these results to nodes with arbitrary distributed service times through an argument invoking weak convergence methods. However, both of these works place a lot of constraints on the service discipline that can be im­plemented at each node. In fact, for the most part, a large share of the research undertaken in this direction has been aimed at enlarging the scope of product-form solutions to very special queueing networks. Chandy et al.l7l did work on the notion of station balance, which provides a good summary of these trends. But in many cases, not even the popular FCFS discipline satisfies these constraints.Lately, some authors have proposed more general approaches to analyze in­terconnected networks of nodes. Hence, Chandy, Herzog and Wooi8I studied the relationship between queueing networks and electrical networks and introduced the Norton’s theorem approach to network analysis. Here, a closed network, a system that has a single node as input and a single node as output, is replaced by an “equivalent” network in which all queues are replaced by a single composite queue. Walrandt39l presented a probabilistic argument to explain the product form, the out­put theorems, and the Poisson character of the flows in order to provide a more in­tuitive justification of those properties. Finally, Lazar and Robertazzi'26,27l related the product-form solution for the probability distribution of Markovian queueing networks to the geometric and algebraic structure of the associated state-transition diagram. Using the consistency graph, necessary and sufficient conditions for the equivalence of the global balance equation have been given.



- 14 -In perspective, a product-form type of solution for the camp-on queueing model would be ideal, since it would fit nicely within the mainstream of results for locally balance networks. It would also permit us to take advantage of the many compu­tationally efficient algorithms already designed for these systems!6’31-34!. However, there are clear differences between the proposed camp-on model and the models proposed for networks of queues. First of all, the number of service centers in the camp-on model is a random variable, whereas it is regarded a fixed parameter in the study of networks of queues. Secondly, the networks-of-queues models do not contemplate multiple departures from the systems, whereas such departures are inherent to the camp-on model. An immediate consequence of the bulk nature of the effective departure process in a camp-on model is that the transition rate from state xn to state ym may be zero, 9(×n!y∏ι) = θj while the reverse transition rate i(ym!×n) is not zero. This result prevents us from taking advantage of the use­fulness of the time reversal notion to tackle occupancy problems in the camp-on model, and demands rethinking the characteristics of the output flow.Besides the above considerations, the fact that the upper-level service centers are not always considered active centers also precludes the existence of an independent product-form solution for this camp-on model in the same sense as the one for network of queues. In short, none of the previous results obtained from the theory of networks of queues applies directly to the camp-on model. Even though techniques such as partial balance equations are still convenient tools to get around some of the system complexity issues, their implications do not favor product-form solutions even in the most simple situations. We believe the study presented here will help us understand the behavior of these and other more general multiqueueing models.
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CHAPTER Π:

TWO-LEVEL CAMP-ON SYSTEMS

Although a general camp-on model would permit a queue to be formed at every single queued customer in the system, during the next two chapters we will focus only on two-level camp-on systems; i.e., no queueing will be allowed in the camp-on model beyond the second level of queues. If any such arrivals take place, they will be assumed to be blocked and cleared from the camp-on system. Figure 3 shows a typical distribution of queues in a two-level camp-on system. Two-level camp-on systems are very useful tools in themselves, for they can provide good models (as we will show in Chapter V) for many real-life applications such as inquiry-oriented networks, teleconferencing, Videotex, and other network database management sys­tems.
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Figure 8: Typical distribution of queues in a two-level camp-on system.
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II. 1. Mathematical Model

The mathematical model to be used in this work will be based on a Markovian or quasi-Markovian approach tb queueing systems. Both the customer arrival and the customer departure processes will be chosen such as to ensure a memoryless distribution for the amount of time spent in any of the states of the model. Various service disciplines will be considered, all of them a subset of the work-conserving disciplines!23’25!; i.e., no server is idle if there are still unserviced job requests within the same service center.
1.1. Customer Arrival ProcessesBesides the two levels of queues, we will also consider R classes of customers. Every second-level system will be associated with a particular class-r group of cus­tomers (1 ≤ r ≤ jR), which are drawn from an infinite source of subscribers. The classes can be used to represent the distinct conditions prevailing at each subsys­tems, e.g., the arrival rates to the individual nodes in a network, requests for partic­ular pages of information from a database, traffic intensity at customer’s premises, etc. The queue-class matching for the second-level systems implies a finite stor­age capacity at the first-level system because of the finite number of classes. Even though this matching does not imply any restriction on the storage capacity N for the first-level queue, including in-service and queued customers, we will consider only the case R > N.The customer arrival process to the first-level system will be assumed condition­ally Poisson, conditioned on the size of the first-level queue, with a mean arrival rate λιn (0 ≤ n < N), when the system queue size is n customers (counting the customer in service). Many queueing schemes that encourage/discourage arrivals



- 18 -based on the queue size can be modeled through this variable arrival ratei23-25,37,38L The customer arrival processes to each second-level queue will be assumed as in­dependent Poisson processes with mean arrival rate λ2r for a second-level queue associated with class-r customers.
The arrival process for first-level customers is regarded as independent from the arrival processes for the second-level systems. However, a simple type of interde­pendence between the first-level and the second-level arrival processes can also be introduced. The arrival process for the first-level system can be considered as state- dependent in the sense that it will be conditioned on the arrival processes to the second-level systems. The constraint is that the total arrival rate to the camp-on system is kept constant. That is, if (rι, ∙ ∙ ∙, rn) represents the class assignment for customers to the n second-level systems, then

λln

’ λχn, class-1 systems;
< R n57 λ2r — 57 ^2r > class-2 systems. . r=l t'=l (2.1)

A class-1 camp-on system could be interpreted as a system that effectively has 
R + 1 classes of customers, R for the second-level systems and one for the first- level system. This case corresponds to an increasing external-arrival rate and a random assignment of classes among the second-level systems. Class-2 camp-on systems, however, have only R classes of customers for both the first-level and the second-level systems. But a particular class of customers will be available to the second-level systems only if it is already present at the first-level queue.For each one of these first-level arrival cases, one can derive the effective rate at which new second-level systems incorporate into the camp-on model. This is



- 19 -denoted as ^∕n, the first-level arrival rate for second-level systems as seen by the service center: Ain 
R — n

, class-1 systems;1n+. = j ,t-"> A2rn+lj class-2 systems, where rn indicates the class of the newly arrived customer.
(2∙2)

1.2. Customer Departure ProcessesThe customer service completion process will be regarded as exponential, or memoryless, with a mean service rate μ. It will be considered independent of the associated second-level stage (customer class, size, etc.). This has been a standard assumption in many communication systems. However, some computer applications would be better modeled by a service time distribution with constant holding times, such as for packet-switching applications. Nonetheless, memoryless service processes are always considered to be good reference models even in those cases where they may not exactly apply.Customers will also be allowed to renege or defect from their queues any time prior to the start or completion of their service period. The customer reneging processes from the first-level and second-level queue will be regarded as independent and exponentially distributed, as is the service completion process. For the first- level customers, the reneging rate will be conditioned on the customer position inside the first-level queue for reasons that will soon be explained. The reneging rate will be called i∕t∙ for the customer at the it^, (l ≤ i ≤ n) position in the first- level queue. The customer reneging processes from the second-level queues will be regarded as exponentially and identically distributed with a common mean reneging rate η. One expects that for many applications, customers will not know where they are in the queues, so this is not unreasonable.



- 20 -The position-dependent reneging rate for first-level customers permits more gen­eral service situations to be handled, such as multiserver centers and variable-speed servers, or to discourage long queues in applications, such as public networking. If a first-level customer chooses to renege from his queue, he will take with him his associated second-level system and initiate its service procedure, as in the case of service completion. The customer arrival processes, service completion processes and customer-reneging processes will be regarded as statistically independent pro­cesses.The multiserver center can be readily modeled through a generalization of the reneging parameters. Let s denote the total number of servers available at the first- level service center, and let each of these servers provide service for l∕μt∙ (1 ≤ i ≤ s) units of times per customer, on the average. Then the multiserver center can be covered by considering the generalized departure rate
μ!i — fli + yi for 1 ≤ i ≤ -s,where μ'i represents the effective departure rate from the ith server and ι∕t∙ represents the reneging rate prior to his service completion.We can always choose ι∕t∙ = 0 if customers depart from the camp-on system only after all the requested task has been done (i.e., no reneging is permitted during the service period). This approach is based on the fact that for memory less departures, to someone outside the queueing system, reneging and served customers look alike.

1.3. Service StrategiesThe service strategy for first-level customers plays a decisive role in the evolution of the second-level systems, as it indirectly controls the relative sizes of the second- level queues. We will consider five distinct types of service strategies for the first- level service facility:
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Type 1: The service discipline is first-come-first-served (FCFS); all customers are served in the exact order of arrival. Multiple servers are allowed at such a service center.
Type 8: There is a single server at the service center and the service discipline is last-come-first-served non-preemptive (LCFS-NP); the last customer to join is the next one in turn for service at such a center.
Type 8: There is a single server and the service discipline is last-come-first- served preemptive-resume (LCFS-PR); the last customer to join the system is immediately served while the in-service customer is queued as the next in turn. This is a “push down” stack.
Type 4∙ There are infinitely many servers available at such a center (IS); simul­taneous service for second-level customers is allowed if their service center is of the same type.
Type 5: The service discipline is broadcast delivery (BD); first-level customers and associated second-level customers are served simultaneously, in a broadcast fashion. There is a single server at such a center.All first-level customers are assumed to have the same service distribution. Type 4 and 5 centers are special examples of service strategies in the camp-on model, where second-level customers can receive service while their associate first-level customer is still in the queue.The service-completion processes for the second-level customers can be com­pletely arbitrary, as far as this camp-on system model is concerned. To see this, observe that once the first-level customer is served, his associated second-level queue leaves the camp-on model and becomes a single-level system. The camp-on model



- 22 -merely implies that the initial state for the new single-level system formed after a first-level customer departure will not necessarily be the empty state. However, for an ergodic system, the equilibrium probability distribution of the state of the model is independent of the initial state. The camp-on model does not change the equilibrium probability distribution that any particular second-level system would have shown if it had been considered as an independent and isolated queueing system on its own. Thus, well-established concepts from the classical analysis of queueing systems can be used to derive the pertinent information regarding this single stage. Nonetheless, one would have to account for the extra delays incurred while customers were waiting at the second-level stage. This issue will be further discussed, once we introduce the subject of stability in two-level camp-on systems (Chapter III) and analyze the performance of more concrete systems (Chapter V).
1.4. Other ConsiderationsFinally, once a given customer has joined a particular queue, he will be consid­ered busy for all aspects related to customer handling inside this camp-on model. Because of this restriction, no customer will be allowed to be present in more than one queue at the same time as, for example, waiting for service both as a first-level and as a second-level customer. Also, no service will be provided by any first- level customer to any second-level customers until the first-level customer leaves the system. (This last restriction applies only to type 1-3 centers.)We could have considered a more complex scenario for our camp-on system model, but it will be better to wait until we can fully appreciate the benefits and drawbacks of this simpler model. Further considerations on this topic will be dis­cussed in Chapter VI.
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Π.2. State Occupancy

The camp-on model guarantees that the system stays in a particular state with­out notion of the time elapsed. Thus, once the queueing system reaches equilibrium, the states of the model are represented as vectors («1, ∙ ∙ ∙, xn)ι where xt∙ denotes the condition prevailing at the second-level system in position i with respect to service center, when the first-level size is n. These states can be seen as the states of a continuous mutidimensional Markov chain for the size of the system queues. In this section, we discuss the state occupancy representation for the camp-on model.
2.1. States of the ModelLet n, a non-negative integer, denote the number of customers currently waiting for service at the first-level queue, including the ones in service at the service center. Let Rn = (rι,∙∙∙,rn) represent a particular ordering of n classes of customers, chosen out of possible R,s, such that rt∙ denotes the class of the customers associated with at the itfl second-level system. Also, let Kn = (fcχ, ∙ ∙ ∙, kn) represent the sizes of the second-level systems for that fixed ordering of customer classes Rn among the second-level systems, with ⅛,∙ denoting the size of the system associated with the ith first-level customer, i.e, the length of the ith second-level queue. From the Markovian interpretation of the customer arrival∕departure processes, the states of the camp-on model can then be completely specified by the 2π-tuple (Kn; Rn) (0 ≤ 
n < N). This 2n-tuple contains information about the sizes of the first-level and the second-level systems as well as the particular class ordering among these queues.More precisely, the state xn of the camp-on system is a 2n-dimensional vec­tor with non-negative components kι,...,kn and rχ, ∙ ∙ ∙,rn, or in vectorial form, xn — (Kn;Rn), where the pair (A⅛,rt∙) designates the size and customer class of



- 24 -the second-level system in position i with respect to a size-n first-level system. These states represent a finite-dimensional Markov chain for the queue sizes in the camp-on system model for every permutation Rn of n classes of customers.Note that from the interpretation of the system states in the case of a single service center, the component k^ stands for the length of the second-level queue associated with the first-level customer who is currently receiving service from the functioning service facility. When the system is empty, then n = 0; the null vector Ko represents this empty element in the discrete space of system states.For instance, for the two-level camp-on system shown in Figure 3, we have are five customers in the first-level system, one in service and four queued. The dis­tinct second-level queue sizes k∖,..., kζ consist of 3,2,0,1,2 customers with classes of types 3,5,1,6,2, respectively. Therefore, the corresponding state vector repre­sentation for the camp-on system is xn = (KsjRs), where K5 = (3,2,0,1,2) and R5 = (3,5,1,6,2).The state vectors in the camp-on model do not have a fixed dimension, unlike the models for networks of queues mentioned in Chapter I. The dimension of each state is determined by the total number of customers in the first-level system. In the event of an infinite storage capacity at the first-level center, we will then have an infinite-dimensional Markov chain.
2.2. Neighboring StatesTwo states, xn and yrn, are considered neighbors if there is a one-step transition connecting state yrn to state xn. Clearly, the set of neighboring states is strongly dependent on the service strategy implemented at the service center. The ensuing derivation is compatible for types 1, 4 and 5 service centers. The system behavior



- 25 -under type-2 and type-3 centers will then be derived after we study the equilibrium behavior of the camp-on model for those service centers.Let xn = (KnjRn) represent the present state vector of the queueing system and let ym = (K'rr,jR∕m) denote any of the various state vectors achievable within the camp-on system. Under the above-stated conditions for the camp-on process, only one of the following one-step transitions could take the camp-on system from the state vector ym into the state vector xn:i) an arrival to the first-level system:
ym = ,xn-i = (Kn_i;Rn_i), (2.3)

for the arrival will increase the first-level queue size by one. Such a transition would be possible only if kn = 0 for state xn and the associated customer class is r, since a second-level queue at the nth first-level customer does not yet exist.ii) an arrival to an ith second-level system:
ym = ×n' = (K^tjRn), (2.4)

with Kn = (fcj,. . . , k{ — 1,--- ,fc∏)ithat is, ym is a state vector with one fewer customer at the ith second-level queue than when in the state vector xn . Here, of course, A⅞ ≥ 1.iii) a departure from the service center due to service completion:
Υm = xn+l,l = (^n+l,li R∏+l,l)> (2.5)

with ^n+l,l - (^0? ■ ∙ ∙ > ^n)∙



-26-Here ym is a state vector with n + 1 first-level customers, and the customer whose service period was in progress had a second-level queue of length ⅛* (0 ≤ ⅛θ < ∞) and class tq (rθ ≠ ri∙).iv) a defection from the ith at the first-level queue:
Ym — xn+l,t - ^∙n+l,t)∙ (2∙6)

Here, ^n+l,ι = (^1, ∙ ∙ ∙ >1> ^0» ∙ ∙ ∙ >^n)»= (^*1> ∙ ∙ ∙ >1»^(b⅜> ■ ∙ ∙ >¼*)>where ym is a state vector with n + 1 first-level customers, while the ith first-level customer has an associated second-level queue of length fcq an^ class γq distinct from the other rj’s.v) a defection from the ith second-level queue:
ym = xj, = (K+⅛n), (2.7)

with h‡ = (⅛ι, ∙ ∙ ∙,⅛,∙-(-1,... ,⅛n).
Thus, ym is a state vector with one customer more than the vector state xn has at the ith second-level queue.

Any other transition from a state ym to a state xn can be expressed as a series of one-step transitions linking the end states ym and xn through a chain of intermediate neighboring states, where the transitions are in the forms described from i) to v).* In this context, kβ is used as a dummy variable indicating the size of the previous second-level system before its departure from the camp-on system.
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2.3. State Transition RatesThe differential or dynamical interpretation of the customer arrival process is that if the camp-on model is in state xn at time t, then the probability that a customer from the ith stream source, St∙ (0 ≤ i ≤ n), will arrive between time t and t + h is hλιr + o(∕ι), where I indicates the queue level and r the customer class. For the service completion process, the probability that the service of a customer’s being served at time t will be completed by time t + h is hμ + o(h). With respect to the customer reneging processes, the probability that the tiλ first-level customer at time t will have defected from the first-level queue by time t + h is Aι⅞ + o(∕⅛). Similarly, the probability that a customer at the itfl second-level queue at time t will have defected from his queue by time t + h is hη + o(h) as well. The probability of two or more events in the same time interval of small length h is also o(h}.The state transition rate for this camp-on model q(xn',ym)> that is, the equi­librium rate of flow from the state xn = (Kn;Rn) into the state ym — (KjnjR^n), can be readily derived from the differential interpretation of the various processes involved as t goes to infinity. These infinitesimal generators for this Markov process are as follows*:i) An arrival to the first-level system:

g{×n,ym) = ^tn X(⅛n=0)> ifym = ×n-l∙ (2.8)

ii) An arrival to the ith second-level system:
g(×n,Υm) = λ2r X(fc,∙>0)> ifym = xn*∙ (2∙9)

* χβ stands for the characteristic or indicator function of the event or condition
E∙ XE equals 1 if the condition holds and 0 otherwise.



- 28 -iii) A departure from the service center (service completion) :
<l(*n,ym) = MX(n<Λψ if Ym = ×n+l,l∙ (2∙lθ)

iv) Reneging from the ith position in the first-level queue:
g(×niym) = ¼ X(n<A)> ifym= ×n+l,,∙ (2∙ll)

v) Reneging from the tth second-level queue:
g(×n,Υm) = (A⅛ + l)f7 X(n>o), if Υm = ×⅛'- (2-12)

Based on this information, we will be able to write down the equilibrium equations that govern the probabilistic behavior for the camp-on queueing model.
II.3. Mathematical Formulation

If this queueing system is to have a non-trivial behavior in steady state, the rate of flow into state xn must be compensated by the rate of flow out of state xn; otherwise, there is an absorbing state and thus a single-point distribution. From this steady-state condition, we proceed to derive the equilibrium equations for the camp-on model as well as the generalized π-dimensional Z-transform for the joint probability distribution of queue lengths. However, these global balance equations prove to be insufficient to fully unravel the state occupancy distribution for the camp-on model. Here we propose a complementary set of partial balance equations that will help elucidate the distribution of customers among the queues.
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3.1. Equilibrium EquationsIt has been rightfully arguedt21,23,41] that for an equilibrium probability distri­bution to exist, a probability flow conservation requirement must be imposed from every state into the others. Because of the disjoint decomposition of the state prob­abilities into mutually exclusive and exhaustive transitions through intermediate states, such flow conservation condition in queueing systems is usually expressed as

∑ p(×M×nWm) = ∑ P(ym)g(ym5χn), (2.13)
ym∈ Ω ym∈ Ωwhere Ω = Set of all vector states xn.

Let p(xn) = p(Kn;Rn) denote the equilibrium joint probability distribution of queue lengths in the camp-on system. From the flow conservation requirement under stationary conditions in Equation (2.13) and the Markovian interpretation of transition rates among neighboring states, it follows that the equilibrium equation for the joint probability distribution of queue lengths is of the form
t=l

n∑ [λ2r,∙ + ¼' + ⅛η} X(n>0) + λιnχ(n<jy) + PX(n>0) p(χn) =
7n X(fcn=0) P(xn-l) n+ ∑ λ2r. X(ki>0) p(x^t)t=l

+ ∑(*⅛ + l)∏X(n>0) P(xn *) (2∙14)t=l
R ∞

+ Σ ×(r0≠ri) Σ M X(n<N) P(xn+l,l) 
r0=l ⅛0=θ

R n+1 ∞
+ ∑ X(ro≠rt∙) Σ Σ yi X(n<N} P(xn+l,i)) 

r0=l i=l fco=O(0 ≤ n ≤ TV),



30 -where
7n+l

'ln
— _i_1R — n

for class-1 systems; (2.15)for class-2 systems.In order to ensure that p(xn) is a properly defined probability distribution, we must add the normalizing probability relation
∑ P(×n) = I- (2.16)χn ∈ ∏

For class-1 systems, Equation (2.15) shows that a transition from state xn to state x∏-)-ι occurs with probability l∕(2? — n), since there are R — n choices for the customer class in the second-level system, and these are independent from the first-level processes. For class-2 systems, Equation (2.15) shows that the same transition is possible only if an arrival from the specific customer class has occurred as indicated by the class assignment Rn.For such a camp-on model with stationary transitions, which corresponds to an ergodic Markov chain, it can be shown!5’10’11’22! that a positive solution exists for all state vector probabilities p(xn). The converse of this statement is equally true. We are going to establish later under what conditions this queueing system represents an ergodic Markov chain; basically, we must find the point when a stable solution exists for this set of equilibrium equations.The set of difference equations in (2.14) could also be thought of as coming from a state-transition-rate diagram describing the flow rates into and out of any particular state vector xn. Under equilibrium conditions, it is intuitively clear that the total flow between neighboring states in the diagram must be conserved in such a form that the input flow to any given state vector must equal exactly the output



- 31 -flow; otherwise, the probability of finding the camp-on system in such a state will tend to zero or one as t goes to infinity. A pictorial representation of the total probability flow into a typical state xn, the left side of Equation (2.14), is shown in Figure 4.
3.2. Global and Partial Balance EquationsEquation (2.14) represents what is usually called the global balance equation 
for the queueing system. In some cases, it is possible to define special equilibrium relations, or partial balance relations, among groups of neighboring states. One instance of these special equilibrium relations is the local balance equations, which state the equilibrium conservation of flow among every pair of neighboring states:

p(xn)?(Xn;ym) = P(ym)g(ym!X∏)∙
Summed up together, these partial balance equations must yield the global balance equation for the queueing system. In general, we cannot foresee whether an arbi­trary decomposition of the global balance equation into partial balance equations will provide a consistent description of the system behavior unless they happen to satisfy Kolgomorov’s criterion!21,31) for reversibility and local balance.

Unfortunately, one cannot rely on the existence of local balance equations for this camp-on model. This is suggested by the asymmetry displayed in the state- transition-rate diagram for the system. For example, one may be able to go in a one-step transition from state xn into state γm but not from state ym into state xn. This is a consequence of the effective bulk departure processes associated with this model. The total number of customers departing the camp-on model is also a random variable because of the random size of the second-level queues. Thus,
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- 33 -Equation (2.14), even though it synthesizes the occupancy behavior of the camp-on model, still remains hopelessly inextricable.
However, because of the homogeneity of the processes for the customers at the second-level systems and the homogeneity of the departure processes from the first- level system, one should expect to find some other forms of independent balance equations in equilibrium by invoking complementary conditions for conservation of flow among some of the neighboring states. In fact, think of any arbitrary sequence of customer arrivals/departures from the second-level systems for any fixed first- level queue size. Because of the decoupling between first-level and second-level processes, the service center cannot tell whether the entire sequence of events takes place when the first-level queue size is n or when it is n + 1. Hence, the service center has no knowledge of how potential new arrivera or renegers behave inside the second-level queues, regardless of the size of its own queue.
The above observation suggests that a partial balance relation must exist be­tween the flow out of the first queueing stage and the flow into the first queueing stage. These general ideas can be summarized in a set of independent balance equations for the homogeneous camp-on model:

7tΣ [λ2r,∙ + ¼∙ + ⅛η] X(n>0) + MX(n>0)J P(x∏) =
Ιn X{kn=Q) P(xn-l) n+ ∑ λ2r,. X(⅛t.>o) p(×^)t=l n+ ∑ft + l)'ZX(n>o)P(×J').

i=l (2.17)

i=l(0 <n < N).



- 34 -and
R ∞λln p(xn) = M ∑ *{r0≠ri) ∑ P(×n+l,l) r0=l ⅛=OA η+1 ∞

+ Σ *(r0≠r,∙) Σ Σ ¼∙ P(*n+l,i), (2∙18)γq=1 t'=l ⅛θ=O
(Ο < η < Ν).

The interpretation of this independent balance equation is that under stationary conditions, the conservation of flow among neighboring states works in such a way that the rate of growth for the first-level queue must be compensated just by its rate of decrease, for a fixed distribution of the second-level systems.Equations (2.17) and (2.18) are equivalent to balance equations found in the classical theory of queueing systems. There, as here, the customer arrival processes and the service completion processes are memoryless. Basically, the total flow between each pair of state vectors involving adjacent first-level customers must be preserved. Figures 5.a and 5.b show state-transition-rate diagrams depicting the independent balance equations in the camp-on model.As a consequence of these homogeneous processes, a very simple coupling arises between the probabilistic behavior of the camp-on model when the first-level queue size is n and its behavior when the queue size is n — 1. Given a particular state vector xn, the camp-on system has no memory as to whether it visited other state vectors 
ym with m > n before arriving at its current state. From a purely combinatorial viewpoint, given a system state vector xn, it suffices for this homogeneous case to count all the possible sequences of events by which such a particular set of second- level queue lengths fct∙ (1 ≤ i ≤ n), can be achieved for a fixed first-level queue size.
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b.
Figure 5: State-transition-rate diagrams for the independent balance equa­tions in the two-level camp-on model.
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3.3. Generating Function for the Size of the Second-Level SystemsThe computation of the equilibrium or steady-state response for the homoge­neous camp-on model directly from Equations (2.17) and (2.18) can result in a cumbersome task even if we want to estimate only the first few terms of the joint probability distribution of queue lengths. Instead of solving that set of difference equations, it will be more convenient to resort to transform methods. Let P(Zn-, Rn) denote the n-dimensional Z-transform or probabilistic generating function of the equilibrium state probability distribution of the second-level queue lengths:

P(ZnjRn) = P(zι,--∙,Zn,'Rn),

= ∑ p(κnian) ∏¾'fcχ,...,⅛n=0 t'=l (2.19)
This transform is certainly well defined within the n-dimensional hypersphere 0 ≤ ∣¾∣ ≤ 1 (1 ≤ 1 ≤ n). This is because each state probability p(KnjRn) is strictly bounded by 1. Therefore, applying this transformation to Equations (2.17) and (2.18), i.e., multiplying these equations by ∏{l=ι2,∙, and summing over each of the indices fct∙ from zero to infinity, one can obtain equivalent conditions for this set of equations to represent an ergodic Markov chain (see Appendix I). The result is
μ+∑<⅛]∏¾⅛)t=l z7n P(Z∏-ljR∏-l) ÷ (2.20α)

and
Mn P(Z∏)Rn)

ΣX¾ -1) 2—1 iZ^^yP(Zn5 Rn) — λ2rt.P(Znj Rn)
R
Σ χ(r0≠ri) 

r0=l

n+1μP(Zn+1,ι5Rn+ι,ι) + J3 pi ^(Zn+l,»'i®-n+l,t) ’t=l (2.20ά)



- 37 -for all 0 ≤ ∣¾∣ ≤ 1 and 1 ≤ n ≤ N. Here, P(Zft+ι,∙jRn+jιt∙) stands for
-^(^n+l,x∙ ^,n+l,ι) Λ*l j ∙ ■ ∙ » ¾-lι1» ziι ∙ ∙ ■ > zn ! ^1j ∙ ∙ ∙ » l"i-1, *"0> riι ∙ ∙ ∙ > ,*n)?

and γq ≠ rt∙ (1 ≤ i ≤ »).Observe that Equations (2.20) provide us with a set of linear, first-order inho­mogeneous partial differential equations on the n independent variables z± and the n dependent variables P(Zn;Rn) (1 ≤ i ≤ n). This set of partial differential equa­tions, combined with the normalizing probability relation in Equation (2.16),de­scribes completely the equilibrium probabilistic behavior of the camp-on system from the state occupancy viewpoint, because of the uniqueness of the generalized n-dimensional Z-transform. Once we solve the transformed equilibrium equations (2.20a) and (2.20b), the problem of the equilibrium joint probability distribution of the queue lengths for this camp-on model is therefore essentially solved, too. If we wish to compute the probability of any particular state vector xn, one need only resort to the general inverse transform relation:
p(Kn; R∏) n 1π1⅛ -⅞7P(ZnjRn)

dzi Zn—0 (2.21)
The effect of the existence of a set of independent balance equations rather than only a set of global balance equations for the camp-on system is fully reflected in the transformed version of the independent balance equation. Instead of solving a set of first-order partial differential equations on n independent variables ¾ and 

n dependent variables P(Zt;Rj (1 ≤ i ≤ n), one need only solve a set of first- order partial differential equations one at a time with only one dependent variable P(Zn; Rn).
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CHAPTER III:

EQUILIBRIUM DISTRIBUTIONS IN TWO-LEVEL 
CAMP-ON SYSTEMS

In Chapter II we developed the basic mathematical framework necessary to an­alyze various state-occupancy problems of interest in two-level camp-on systems. In this chapter we exploit this mathematical representation to derive important closed- form expressions that describe the probabilistic behavior queues and the overall workload for this two-stage camp-on model. First, we present the general solu­tion for the transformed equilibrium joint probability distribution of queue lengths. From these, other joint probability distributions for specific queueing environments as well as some marginal distributions for first-level and second-level systems are derived. The stability of the two-stage model is studied and is found to be closely controlled by the stability of the system at the first-level stage. Even though an infinite-state Markov chain is assumed for this analysis, many of these results are also extended to the finite-state camp-on model.
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IH.1. Joint Distributions for Queue Lengths

Section 1 deals with the problem of the equilibrium joint probability distribution of queue lengths in the camp-on queueing model. Two theorems are presented in this section. One of them relates to the transformed equilibrium state distribution P(Zn;Rn), while the other one relates to the actual steady-state probability dis­tribution p(xn) for the most important single case in Theorem 1: the non-reneging two-level camp-on system. Five different service disciplines are considered: first- come-first-served (FCFS), last-come-first-served non-preemptive (LCFS-NP), last- come-first-served preemptive-resume (LCFS-PR), infinite servers (IS) and broadcast delivery (BD). The ergodicity of the camp-on model is found to be tied to the sta­bility of the first-level system. We view the queue levels as cyclical processes with respect to customer position in the service hierarchy. Here, first-level customers and associated subsystems migrate down the service path in the queueing hierarchy as in-service customers complete their jobs and second-level systems become first-level systems. Thus, the stability of the first-level system also implies the stability of each subsystem as an isolated queueing system.
1.1. Transformed Joint Probability Distribution for the Second-Level 

Queue LengthsThe mathematical model that we have considered allows for either infinite (λχn ≠ 0, V n ≥ 0) or finite (λχn = 0, V n > some finite N) queue sizes at the first- level queue. Denote by Pv(ZnjRn) the family of state probability distributions in a camp-on system with at most N customers at the first-level queue. Suppose we have another similar system but with a finite-storage capacity M and corresponding transformed state probability distribution PM(Zn;Rn). From the interpretation of



- 40 -the independent balance equation in (2.20), if such decomposition is plausible, then both Pv(Zn5R∏) and PM(Zn;Rn) must satisfy the same set of partial differen­tial equations for all first-level queue sizes n in the range 1 ≤ n ≤ min(M,N). By uniqueness of the solution of partial differential equations, Pv(ZnjRn) and PM(Zn;Rn) must be identical within this queue length range except for a multi­plicative factor. In this instance, the factor can be found to be a quotient of the corresponding po’s> the probability of an empty queueing system, a function of the available storage capacities N and M at each of the respective first-level stages. This proportionality of the transformed state distributions Plf(Zn∙, Rn) and PM(Zn;Rn) implies that of the state probability distributions pjv(xn) and pM (xn), because of the one-to-one relationship between the transform pairs. Thus, as one might expect, the camp-on model has no recollection of whether the queued customers visited any of the system states tied to first-level queues larger than n customers before reaching its current state. All the current state knows is that the first-level queue capacity must be at least n. This motivates the following result.
Theorem 1 : For a two-level camp-on system with a type-» service center (i = 1,4,5), unconstrained queue sizes at the second queueing stage and finite-storage capacity N at the first queueing stage, the general solution for the transformed equilibrium joint probability distribution of queue lengths is of the form

nP(Zn;Rn) = pq JJ Ψj(ZjjRt∙), 0 ≤ n ≤ N,
t=l

(3.1)
where Rj) ∞ y AJ⅛ Y" i

Ί ⅛⅛(<⅛)l,+l' (3-2)
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Yn =

Σ⅛(s-1),
i=l ”

n-1
an =

r}
+ ∑ k,ι=l

βn

(a)n

μ + ∑"i,t=lΓ(α + n)Γ(o) '

(3-3)
(3.4)
(3-5)
(3∙β)

If we use the notation Pt(Zn;Rn) to indicate the transformed state probability distribution for a type-» service center, then
Pt(Z∏)Rn) = P(Z∏jR∏), t = 1,4,5.

To arrive at Equation (3.1), one could recursively compute P(Zn;Rn) from P(Zn_i;Rn_i) by solving the set of partial differential equations in (2.20a) through the use of analytical considerations for the solution of the transformed state prob­ability distribution inside the hypersphere ∣¾∣ ≤ 1, and the use of known series expansions for gamma functiont4,14l. Special attention must be paid in this pro­cedure to the verification of the consistency of the state-distribution solution with the independent balance Equation (2.20b). One could also verify the validity of Equation (3.1) directly through the algebraic reduction of P(Zn;Rn) by means of the set of independent balance Equations (2.20), as shown in Appendix II.
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1.2. Two-Level Camp-on and StabilityIt can be argued that if the camp-on model represents a stable queueing sys­tem, then every single subsystem in the camp-on model in isolation, that is, the first-level system and each of the second-level systems, must behave as an ergodic queueing system. In such a situation, every second-level system, after becoming an independent queueing system functioning as a queueing system on its own, rep­resents an ergodic Markov chain, where the first state in the chain has a random number of customers in its queue. In general, this queue size need not be zero, so the initial state in the chain is not always the empty state. However, for ergodic Markov chains, the equilibrium probability distribution is independent of the initial state of the system. Consequently, after departure from the camp-on model, each second-level subsystem is guaranteed, in the long run, to behave as if the camp-on stage was never there.So far, there has not been any restriction imposed on P(ZnjRn) that affects the stability of this queueing model. But we still need to prove that p(xn) is a properly defined probability distribution and satisfies the normalizing condition for the state probability distribution in Equation (2.16). This normalizing condition can be expressed in terms of the transformed state probability distribution P(Zn) as

N∑ p(KniRn) = ∑ ∑ P(Z„;R„)
×n ∈ Ω n=0 ∏n z∏-ι = ι, (3∙7)where Ωn = set of all states ×n with dimension n.

Evaluating P(Zn) at the vector Zn = 1 with all components ¾ = 1 follows directly from the transformed state probability in Equation
ΙiP(Zn; R∏) z^-i S ∕i + ∑Ul uk

(1 ≤ i ≤ n), it (3.1) that
(3∙8)



- 43 -We define as inßnite storage capacity those instances of the camp-on system wherein the model provides for infinite-size buffers in all the subsystems to allocate and handle the incoming traffic demand for the different queues. We define as 
semi-inßnite storage capacity those instances wherein only the second-level queues have infinite-size buffers, but not the first-level queue. For a camp-on system with homogeneous second-level transitions and infinite storage capacity at the first-level queue, one can assert from Equations (3.7) and (3.8) that a necessary and sufficient condition for ergodicity of the queueing system and the existence of the probability distributions P(ZnjRn) and p(xn) are

∑∑π⅛<∞∙n=0 ∩nk=iμk

00 (3∙9)
For class-1 systems (refer to Section 1, Chapter II), this last condition turns out to be equivalent to the simpler relation

∞ n

∑ πn=l⅛=1 M⅛-lMfc < ∞. (3.10)
This result is not surprising. Each second-level system, in isolation, can be thought as an M∕Λf∕oo queueing system with arrival rate λ2r-i and departure rate η, and hence is stable for all finite state transition-rates. Even more, since second-level systems leave the camp-on model at the same instant as their associated first-level customer departs from its queue, we expect that second-level queues have a negligi­ble chance of growing unbounded and becoming a bottleneck issue in the camp-on queueing model. Therefore, the stability of the overall camp-on system rests on the stability of the first-level system. Equation (3.10) is merely the equivalent condition for ergodicity of the embedded birth-death process at the first-level service center.



- 44 -For all the queueing disciplines mentioned in Chapter II, the camp-on model can be viewed as a cyclical process with respect to the customer’s position in the service hierarchy. This is particularly true because every second-level system even­tually becomes a first-level system as its associated first-level customer leaves the camp-on stage. Thus, each second-level system must also satisfy Equation (3.10); otherwise, it will not be a stable queueing system when operating alone. In this case, 
μ∣c must correspond to the departure rate of the isolated second-level system. As time evolves, customers are promoted from the second-level stage into the first-level stage, and the conditions imposed on a first-level system are progressively trans­ferred to the second-level systems, depending on the'particular queueing scheme implemented.

If we have a camp-on system with semi-infinite storage capacity (i.e., finite queue sizes only at the first-level queue), the condition for ergodicity in Equation (3.9) boils down to the requirement of finite state-transition rates, as must be for anyfinite-state Markov chain.
For an ergodic camp-on system, it also follows from Equations (3.7) and (3.8) that the empty-system probability po is given by

P0 ∑∑π⅛,n=0 ∩n⅛=lμ⅛J
Ί ’I (3.11)∞

There will be two distinct formulas for the empty-state probability, depending on whether one refers to a class-1 or a class-2 camp-on system. For each of these cases, it is easy to verify, considering all possible class assignments Rn for second-level
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Po

N n ∖ -11+Σ ∏ ⅛i)

n=l jfc=l μk
for class-1 systems;

TV R ∕ i ∖Σ "'∑∏ f
. Ln=0 Ωn r=l V μn ∕

z'∙-,-ι , for class-2 systems. (3.12)
Here, one has chosen the index ∕t∙ from Ωn and the second-level class assignment 
Rn such that

!1, if r∣c = t for some t; (3.13)( 0, otherwise.Thus, ∕i + ∙ ∙ ∙ + lR = n. This result is consistent with the decoupling assumption between the first-level and the second-level processes, for the first-level facility is transparent in this model to the second-level subsystems.As an extreme case of the class-1 camp-on system, if the arrival rate to the service center is Poisson and the storage capacity is unlimited, we have from Equa­tion (3.12) is 1 — pi, for type-1,2,3,5 centers;
P0 <

e~pι, for type-4 centers.
1.3. Transformed Distributions for Non-Reneging Camp-on SystemsHere we want to focus on a camp-on system in which customers do not defect from their queues but rather they wait in line until a free server is available and their service requests are completed. This situation arises in many communication systems involving computers or computer processes and other enhanced services where “customers” (people, machine jobs, processes, peripherals, etc.) can be pro­grammed to stay on hold for any required period of time (or until told to disconnect



-46 -to avoid deadlock). Without loss of generality, we can assume that the common reneging rate η for second-level customers is zero and that the reneging rate ¼∙ for first-level customers refers only to the individual service rates of the itfi server in a multiserver environment.Accordingly, let the common reneging rate from the second-level stage η go to zero. Thus, we see that as η → 0, the camp-on parameters in Equations (3.3) to (3.6) tend to «.% → ⅛)",
(Kχ)n f⅛V(<*,)n U√ ’where we have defined Yn as
yn= ∑λ2r,.(¾-l). (3.14)t=l

Thus, the function Φt∙(Zt∙jRt∙) in Equation (3.1) becomes independent of Φy(ZyjRy) for i ≠ j, since o⅛∙ is no longer related to the summation index lj for 1 ≤ j < i. Therefore, in the limit as η tends to zero, the transformed state-probability dis­tribution P(ZnjRn) has an independent product-form solution given recursively by
« ∞ (γ. 'P(ZniRn)= W ∏ - ∑ , ‘

,∙=ι *⅛ ι1~o v*,i.= « I⅛i=l ∕iτ Ιn

μ∏ ~ Yn
P(Zn~ι5 Rn-i). (3.15)

Here μn is regarded as defined in Equation (3.3). The region of convergence for the transformed state probability distribution in this non-reneging camp-on system
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∑ λ2r,∙(¾ - 1) ≤ t*n, ∀ xn ∈ Ω∙ι=lThe form of Equation (3.15) calls for an explanation. The interpretation of the above equation for the transformed joint distribution of queue lengths is as fol­lows. Let P(Z„;Rn) = G(Zn;Rn)P(Zn_i;Rn_i) be defined as in Equation (3.15). Then the state probability distribution p(KnjRn) can be found as the (n — 1)- fold convolution of the joint probability distribution for the first n — 1 second-level queues p(-Kn-1 ; Rn-ι) with S>f∣}9 the probability of the arrival vector K∏ tothe second-level stage in between the arrivals of the nt^ and (n + l)iA customers to the first-level queue. Here, g(KnjRn) is the inverse /-transform of G(Zn;Rn). Even more, <?(Kn;Rn) can also be thought of as a function representing the prob­ability of moving from the state vector yn_i = (Jn_i;Rn_i) to the state vector xn = (KnjRn) with ji < fc1∙ (1 ≤ i < n). In this case, it is not too difficult to prove from Equation (3.15) that

s(Kni Rn) Ιn ττ (ki + -- + kn∖ λ2r. fcMn + ∑‰ι λ2ry t⅛ ∖ ki ∕lμn + Σ<L1λ2√
- We mentioned in Section 1, Chapter II, about the possibility of implementing service disciplines different from FCFS (type 1) and its extensions for infinite servers, IS (type 4) and broadcast delivery BD (type 5). In order to do so, we start with a more general version of the global balance equation for the non-reneging camp-on model:

∑μiP(Zn-,Rn) = ιnj P(Zjn,1⅛1)
z=l + ∑2(1 - ¾)λ2rf∙^(Zn5Rn), 

i—1
(3.16α)
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R n+1,^ln -f,(ZniR∙n) = X(r0≠ri} Pi ^(^n+l,tι^Λ+l,i)∣ (3.166)

γq=1 i=lwith
Ιnj

^ln
N — n + 1 if a class-1 system; (3.16c)λ2r^., if a class-2 system.This is a natural extension of independent balance Equations (2.20a) and (2.20b). However, we now have customer arrivals to any arbitrary position in the first- level queue P(Z^-1,∙ R^-1), and customer departures from any of the multiple servers P(Zn+ιjt∙j Rn+ι1). This condition allows for more general service disci­plines than plain FCFS or IS. However, we do not intend to solve Equation (3.16) but only to study two special cases: i) single-server last-come-first-served non- preemptive resume (type 2), and ii) single-server last-come-first-served preemptive- resume (type 3). We will need to redefine the neighboring state associated with the transition from the first-level to the second-level stage gy(xn_i;xn) and the trans­formed probability P(Z^-1j R^-1) for each type of service center. These results are presented in the following two Corollaries.

Corollary 1.1: For a non-reneging camp-on system with one single server and a LCFS-NP service discipline (type 2):
P2(Z„;R„) = P(z1,zn,∙∙∙ ,z2∖ rι,rn,∙∙∙,r2).

Proof : For a type 2 center, the newly arrived first-level customer is placed next in turn for service in the 2nd position in the LCFS-NP queue, since the in-service customer is not pre-empted until his job is done. Therefore, we have j = 2, -γny = -7n2, and the server-dependent parameters in Equation (3.16) are given by
-p2(Z^15R2-1) = p2(z1,z3,'-∙,zn∙,r1,r3,∙--,rn},
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P,i (®·η) ' μ, if i — 1;< Ο, otherwise.Hence, by recursion on Equation (3.16a),

______________Ιn2Ai + ∑Γ=1 λ2ri(l-f⅛(Zn! B∙n) —τ P2(zl1 z3∙> " ^ ^ zn î rι,r3,∙∙∙,rn) 
zi)

n= πt=l _________________________ 22_________________________
ß + λ2r1(l - zl) + Σfc=n-i+2 λ2rfc(l ~ ¾)

Comparing this last result with Equation (3.15), we notice that the above distri­bution is of the same form as the distribution for P(Zn;Rn) in Equation (3.14), except that the locations of the second-level systems associated with the classes r2, ' * ∙ > r∏ have been reversed to r∏√ * ' > r2∙ Thus, the conclusion in Corollary 1.1 follows immediately.
Corollary 1.2: For a non-reneging camp-on system with one single server and a LCFS-PR service discipline (type 3):

⅞(Zn5Rn) = P(zn,∙∙∙,zΓ, rn,∙∙∙,r1).

Proof : For a type 3 center, the newly arrived first-level customer is served immedi­ately, for he is the last customer to join the service center. The previously in-service customer is placed next in turn for service, that is, the 2nd position in the LCFS-PR queue, since he is pre-empted and placed in the first-level waiting line as the new customer arrives. Therefore, we are back to a similar situation as in Corollary 1.1, except that j’ = 1, 7ny = -γnι and
p3(Z⅛-ijRi-i) = P3(z2,z3,∙∙-,zn-, r2,r3,∙∙∙,rn).
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Λ(Ζ„;Ηη) = ∏-∙=5------- ^," . .

i=l fi+ Σ'⅛=n-i+l ^2r⅛(l zk)

Again, this distribution is similar to the distribution P(ZnjRn), except that the location of the second-level subsystems associated with the classes ∏, ∙∙∙,rn has been reversed to rn, ∙∙∙,rχ. The conclusion in Corollary 1.2 follows immediately from this last result.
1.4. Stationary Distributions for Non-Reneging Camp-On SystemsUsing the definition of fζ∙ in Equation (3.14) and the inverse transform relation in Equation (2.21), one could try to derive the joint probability distribution for queue lengths p(xn) for this non-reneging model. However, such an antitransform procedure will prove not to be an easy task. Using a less orthodox procedure, one can prove (see Appendix III) the following theorem:

Theorem 2: In a stationary camp-on system with no reneging allowed from the second-level stage (η = 0) and type-» service centers (i = 1,4,5), the equilibrium joint probability distribution of queue lengths is given by
pt∙(xn) = p0 ≠i(xi)∙∙∙≠∏(Xn), î = 1,4,5, (3.17)

where ≠t(xt) = ⅜ ∑
ς* li=0

^2ri ki [ei-ιl
I ⅛ J ι & (3.18)

and
n

ζn = 6n(Xn) = Pn ÷ ^2r,∙∙
i=l

(3.19)



- 51 -Notice that Equation (3.17) is not an independent product solution, since ≠j∙(xt) is still linked to ≠i-i(×i-i) through the parameter ζ_ι·Equation (3.9) holds only if yγn < μn for all n > M, finite; otherwise, the system is unstable (non-ergodic). The condition for convergence in Equation (3.15) suggests that ∑7=l l^2r,∙∣ ≤ Atn for all xn∈∏. However, it is shown in Appendix III that the requirement in Equation (3.9) is a necessary and sufficient condition for stability.
In a general sense, Equation (3.17) can be interpreted as the collection of all possible combinations of events that, starting from the empty state ×o, would yield as a final result a state vector xn. Though this camp-on system model presents some similarities with the problem of networks of queues (the presence of multiple queues, different types of customers, etc.), this queueing model does not present the typical product form-solution found in this multinode model. This difference can be attributed to an effective bulk departure process for second-level customers, which results in a lack of reversibility between the arrival and the departure processes. It also results from the random character of the size and number of queues within the second-level system as opposed to the fixed character of these parameters in the case of a network of queues.
The following two corollaries are immediate extensions of Corollaries 1.1 and 1.2 to type 2-3 service centers.
Corollary 2.1: For a non-reneging camp-on system with one single server and a LCFS-NP service discipline (type 2):

p2(Kn;Rn) = Pι(kl,kn,∙∙∙ ,k2∙, r1,rn,∙∙∙ ,r2).



- 52 -Corollary 2.2: For a non-reneging camp-on system with one single server and a LCFS-PR service discipline (type 3):
p3(KnjRn) = pι(fcn,∙∙∙ ,⅛ι ; rn,∙∙∙,r1).

Both of these results follow as a direct consequence of Theorem 2 after reordering the position of the second-level systems with respect to the first-level center.
1.5. Systems with Finite Storage Capacity

The systems previously discussed fall within the category of infinite or semi­infinite camp-on systems, for all the second-level queues can grow infinitely long. However, most of the queueing systems found in real life applications are finite-size queueing systems, typically because of buffer limitations in any practical implemen­tation. The following results apply only to non-reneging camp-on systems.
Let N denote the storage capacity at the first-level queue and let Nr-i denote the storage capacity for the second-level system in position i with class-rt∙ customers. Let us proceed as in the infinite storage case, but now considering that when kl = Nr., any incoming customers to the itfl second-level system will be blocked and cleared from this hierarchical queueing system. After making the necessary modifications to the state-transition rates in Equations (2.8) to (2.12) to accommodate the limited buffer sizes, it is clear that the equilibrium joint probability distribution of queue lengths for the finite-state camp-on model p*(xn) must satisfy the following set of difference equations. This set of equations closely resembles Equations (2.8) to (2.12) except for the finite number of system states and the boundary conditions at



- 53 -the boundary states:Γ n∑(λ2ri ×{ki<NrΛ + lzt) + λln ×(n<N) + PX(n>0) l i=l P*(×n) =

Ιn X(fcn=0) P*(×n-l) 
n

+ Σ λ2r,∙ X(⅛,∙>0) P*(×n*) 
i=l

R ⅞
+ Σ X(r0≠rt∙) Σ PX(n<JV) P*(×n+l,l) 

γq=1 Aq=O
(3.20)

R n+1 Nq
d^ Σ2 X(ro≠r,∙) ΣL Σ2 vi X(n<N) P (Xn+l,i)j 

r0=l t=l ⅛o=O

0 ≤ ki < Nri, 0<i<n<N.

The next theorem, which applies to camp-on systems with finite storage capacity and no defections from the second-level queues, shows how to compute p* (xn) from p(xn), the equilibrium state probability distribution for a camp-on system with infinite storage capacity given by Equation (3.17).
Theorem 3 : Let p*(Kn; Rr,) designate the equilibrium joint probability distri­bution of queue lengths in a non-reneging camp-on system with storage capacity of 

N customers at the first-level queue, Nr^ class-ry customers at the jth second-level queue and type-» (t = 1,4,5) service center. Let (Zt∙, ∙ ∙ ∙ ,l3) be indices denoting the set of second-level systems whose queues are already full, k[ = Nrι. Then,
p(Kn;Rn) iιki<Nr., (0 ≤ n ≤ TV);

P*(K»;Rn) ∞ ∞∑ "∙ ∑ P‰Rn) iiki = Nr., (l≤s≤n),
Λi=λγΙi Λ,=⅜, (3.21)
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PO = p(χo)∙

Here p(KnjRn) is the equilibrium joint probability distribution of queue lengths in a camp-on system with infinite or semi-infinite storage capacity with the same traffic parameters, and (Jn,Rn) is a state vector with ⅛ = kx if ⅛⅛ ≠ Nr..

To prove this statement, start with the global balance equation for an infinite- storage camp-on system in Equation (2.14) and let η = 0. Define p(xn) as proposed in Equation (3.21), by summing the ⅛fs in the equation for p(xn) for the uncon­strained system, from ∕c∕ = Nr-l to infinity. After some straightforward algebraic reduction (see Appendix V), it is easy to prove that the set of difference equations satisfied by p(xn) represents the same queueing system as the one described by Equation (3.20). It therefore follows that p(xn) = p*(xn)∙Accordingly, each time we increase the buffer capacity of any second-level sys­tem, we split the “old” state vector xn with fct∙ = Nt-i into two new state vectors 
×n and χ2, one with k‡ = Nri and the other with k? = Nr∙i + 1, in such a way that the sum of their probabilities equals the probability of the old state vector: p(x⅛) + p(x£) = p(xn). Moreover, this redefinition of the state space has left un­changed the probability of the off-boundary states.

Tables 1 and 2 give closed-form expressions for the state probability distribution p(xn) in some small-size systems, obtained from Theorem 3 with Nr = 1 and Nr = 2 for class-1 camp-on systems with single-class second-level customers and λj = λ2r.These results can be used to design enhanced customer services for many practical communication systems, as we will show in Chapter V.



-55-

TABLE 1State Probabilities for Some Finite-Storage Camp-on Systems (Nr = 1)
N

Nri

p(Kn)

N = 1AΓ1 - 1 P0 = Λ⅛p(°) “ ⅛P° P(!) = i{T⅛W

N = 2
N1 - 1
N2 = 1

p0 = [1 + λ∕μ + λ2∕μ2]~1 p(0) = a⅛P0 p(1) = ⅛⅛P0P(°> °) = (A+,⅛+y)P0 P(θ∙ 1) = (λ+μ)2(2λ+μ) ™
J,<1' 0> = i(λ+i⅛⅛Ipo P<1-1) = μi(U)i⅛+μ)p°

σj ,-∣ r-∣ r-<
H 

II 
II 

II
⅛

 
½

 
£

 
⅛

Pθ = [l + λ∕μ + λ2∕μ2 + λ3∕ μ.3] 1 p(0) = χ⅛Pθ p(l) = z7⅛jP0
P(°' °) = (⅜+μ⅛A+μ)Pθ P(θ, 1) = (A+μ)⅞(2A+μ) Mp(1 > °) = μ(A+μ⅞A+μ)P0 p(1∙ 1) = μ^+μγ<‰μjPa

p(θ,θ,θ) - (Λ+μ) (2λ+μ) (3Λ+μ) pθ P(θ,θΙ) - (λ+μ)(2λ+μ)2(3Λ+μ)pθ
p(0, 1,0) - (λ+μ)2(2λ+μ)(3λ+μ)pθ Pl1’0’0) - μ(λ+μ)(2λ+μ)(3λ + μ)pθp(°, 1,1) - (λ+μ)3(2λ+μ)2 (3λ+μ) P° P(1'°’1) “ μ(λ+μ)^(2λ+μ)i(3A+μ) P°

p(l,1,°) - μ2(λ+μ)2(2A+μ)(3Λ+μ)P°∕1 1 1> 12λ3+40λ2μ+45λμ2 + 15μ3pli, -*·’ i' ^^ μ3 (λ+μ)3 (2λ+μ)2 (,3λ+μ) P°
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TABLE 2State Probabilities for Some Finite-Storage Camp-on Systems (Nr = 2)

N

*ri

p(kπ)

r-lIl 
h

pθ= ⅛

p(°) - λ+μPo P(1) = i⅛iro

p<2> = μ(Λ+μ)2P°

N = 2

7V1 = 2

N2 = 2

P0 = [1 + λ∕μ + λ2∕μ2]~1

P(θ) - Ä+7ZPO P(l) = -^χ+μ)P0
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IΠ.2. Other Special DistributionsIn this section, we study some special cases of the probability distributions 
P(zn;Rn) and p(xn). First, we study two particular situations in the two-level camp-on model. One of them corresponds to single-class non-reneging systems. This is useful when the service center has no knowledge about the second-level system classes. The other corresponds to class-1 camp-on systems under heavy traffic conditions for the first-level queue, where λχ » μ. The marginal distributions for the size of the second-level system in position i with respect to the first-level center and the total workload accumulated at each queueing stage are then derived also for non-reneging systems.
2.1. Single-Class SystemsThe state vector representation for the camp-on model, xn, provides explicit information about the second-level class assignment, besides just the information about the queue sizes. Even if the number of classes R is small, computing xn from Equation! (3.17) is tedious because of all possible permutations of customer classes among the second-level systems. In other instances, the central node of the network (first-level center) may not know beforehand the traffic statistics of all the nodes (second-level systems), and a routing decision has to be taken based only on the occupancy probabilities for the system. A great deal of simplicity and a corresponding reduction in computation can be achieved by looking at only single­class camp-on systems. That is, we assume λ2r = λ2 for all second-level systems. Then any information about the customer class is redundant, and it is just enough to specify the total number of customers in each of the second-level queues. Let xn = Kn = (⅛ι, ∙ ∙ ∙, kn} be the reduced state-vector representation for such a system



- 58 -and let p(xn) = p(Kn) be the corresponding state-probability distribution for queue lengths. It follows from Equation (3.17) that
p(Kn) = ∑ p(KnjRn). (3.22)

RnFrom this definition it can be seen that for the single-class camp-on system, the equilibrium joint probability distribution of queue lengths reduces to the simpler expression
p(K∏) = p(KnjRn), (3.23)

with p(xn;Rn) as in Equation (3.17) but with a common arrival rate λ2 for all the second-level systems. Here p(×o) in (3.11) reduces to
p(×o) 1 - (Al∕μ)jf+11 - λl∕p (3-24)

There is quite a straightforward interpretation for p(Kn). Given that the size of the first-level system is n customers, we could have chosen only n classes of second- level customers out of the R available, but they could also have been chosen in any arbitrary order. This explain the form of Equation (3.23).Figures 6 and 7 show the state probabilities for the first few terms of the state probability distribution p(Kn) in a single-class non-reneging camp-on system with infinite storage capacity as a function of the traffic intensity at the first-level service facility (pi = λχ∕μ) for state vectors with n = 1 and n = 2. In this example, the system parameters were chosen such that λχn = λχ = λ2r and Pt∙ = 0 (1 ≤ » ≤ 
n < ∞). Notice how p(Kn) increases and then decreases as the traffic intensity increases, as one should expect. This behavior exhibited by p(Kn) clearly indicates that for light traffic, those state vectors with small queue sizes mostly prevail, while
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Figure. 6: Equilibrium probabilities for some states xn with n = 1 as a function of the traffic intensity at the first-level service center in a single­class non-reneging camp-on system with λχ = λ2r.
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Figure 7: Equilibrium probabilities for some states xn with n = 2 as a function of the traffic intensity at the first-level service center in a single­class non-reneging camp-on system with λj = λ2r.



- 61 -for heavy traffic, those states with large queue sizes become much more significant. This traffic-dependent behavior is manifested by the progressive fan to the right of the curves for p(Kn) as a function of the total workload, 5(Kn) = n + kγ H-------H kn.

Figures 8 and 9 also show how the state probability p(l, 1) changes as a function of the traffic intensity at the first-level facility for a fixed traffic intensity at a second-level system (p2 = 0.2, 0.4 0.6, 0.8, 1.0), and as a function of the traffic intensity at a second-level system for a fixed traffic-intensity at the first-level system (pi = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8). In Figure 8, we observe essentially the same type of behavior for the state probability p(l, 1) as in Figure 7. Basically, p(l, 1) is depicted as a shifted version of the state probability π(2) in Figure 6. It also shows that the distribution of the size of the second-level queues changes very little for second-level traffic intensities in the range p2 ~ 0.3 — 1.0. This is because of the strong influence of the first-level system on the initial structure of the second-level systems. Figure 9 shows that the state probability p(Kn) is relatively insensitive to changes in the traffic demand at the first-level center for medium traffic intensities (p1 ~ 0.4-0.7).
2.2. Heavy Traffic at the First-Level Service Center

Another very interesting situation in a camp-on model is a class-1 system, where the arrival rate at the first-level systems is much larger than the service rate. Clearly, the queueing system can have either a finite storage capacity at the first-level queue or as many first-level servers as customers; otherwise, it will be unstable. Since λχ » μχ, it follows from Equation (3.1) that for any distribution of the second-level queue sizes, Ρη_ι(Ζη_χ;Rn-i) <C Pn+i(Zn+i;Rn+i). Therefore, we can rewrite
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Figure 8: Equilibrium probability p(l, 1) as a function of the traffic intensity at the first-level service center in a single-class non-reneging camp-on system with ∖%r as a parameter.
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Figure 9: Equilibrium probability p(l, 1) as a function of the traffic intensity at the second-level service center in a single-class non-reneging camp-on system with λι as a parameter.



-64 -the transformed balance equation for a camp-on system under heavy traffic condi­tions at the first-level service center as:
∑(¾-ι)z=l rlri^∂^-P(Zn', R∏) ^∙2ri -P(ZnjRn) + ^lnX(n<N) P(ZnjR-n) —

n+1 n+1
∑ X(r0≠ri} Σ√ uiX(n<N) P(%n+l,i'> ^n+l,i)∙ γq=1 t=l

Here we also chose the reneging rate from the second-level subsystems as dependent on the class assignment Rn.

In this case, we could think of the reneging rates from the second-level systems 
μr-i as corresponding to an actual service being provided by the second-level sub­systems rather than just to impatient second-level customers quitting the camp-on system. This represents an extension of the type-5 service center to the service centers for customers in the second-level stage of a non-reneging camp-on system. This is because of the similarity of the reneging and service in an infinite-server environment. In this case, a second-level customer could be serviced at the same instant as its associated first-level customer is being serviced or queued at the first- level waiting line. Assume that the second-level system behavior is that of a truly IS service center. Then the solution for the above partial balance equation wouldbe

P(Zn5Rn) = λ>∏W, l, (3.25)*=1 μithe product of the distributions for the size of the first-level system as a single-level system and the transformed distribution for the IS service centers at the second queueing stage.



-65 -This claim can be immediately verified since in this case the first term on the right side of the transformed balance equation cancels out, and the resulting bal­ance equation is that of the one-level queueing system. One can now prove from Equation (3.25) that
np(xn) = p0 ∏ z=l 2» (^2rj∕∏rt∙) g-λ2rt.∕rjr1∙ Mi fct∙ ! (3.26)

Thus, each of the queues in the camp-on model behaves as an independent queue­ing system, and a product-form solution can be given to the state probability dis­tribution. This is regardless of the bulk departure processes for the second-level customers, resulting from a service completion at a first-level service center. No­tice that under these conditions, the second-level system reaches equilibrium before its associated first-level server can change his position with respect to the first- level queue. Hence, second-level customers perceive the first-level queue as a static collection of n servers rather than as a changing waiting line.
2.3. Marginal Distribution for the Size of the ith Second-Level SystemFrom the performance analysis viewpoint, the system description given by the state-vector probability p(×n) may provide more information than one needs to know. In many cases, the marginal distribution for the size of the second-level systems more than suffices as a relevant description of the state of the camp-on system. For example, the probability that the second-level system in position i will have ⅛j∙ class-r1 customers awaiting service, when the first-level system size is n, can be extracted from the transformed joint probability distribution of queue lengths by selecting only according to the size of that sole second-level system rather than on the whole joint distribution of the multiple subsystems in Equation (3.1).



- 66 -Let (∕χ, ∙ ∙ ∙ ,l3) designate a subset of the second-level systems. For the fixed class assignment Rn of the customers queued at the second-level systems, the generating function P(zι1, ∙ ∙ ∙, ⅛R∏) for the size of the ith second-level system is found by evaluating the transformed state distribution P(ZnjRn) in Equation (3.l) at the vector Zn = z, with ¾ = 1 if i = l∣c and ¾ = 1, otherwise:
∙f(2Z1>' * ’ ’ ¾!^∏) -P(l)-, ' ) ' " ) ¾ι " ' ! l∙i ^,n)∙

An extreme case of this distribution results when we assume z∣c = ί for all k except for k = t. This case corresponds to the marginal distribution for the size of the second-level system which is in position i with respect to the first-level facility. Then,
P(2t∙jRn) = p(i,i,∙∙∙j¾>∙ ··>!;&»)

λ2r.∙i—1
= Pθ

(¾ 1)ττ 2⅛ fr 2i y .
k=l ‰ J=i ⅜ lj=0 (αJ¼+l

(3.27)∞
If we look a the particular example of a single-server non-reneging camp-on system (ι∕t∙ = η — 0), it follows that the transformed marginal distribution for the size of the itfl second-level system, conditioned on the class assignment Rn, reduces to

P(2jRn) P0
»-1 ~. nπ⅞1π
k=l μ j=i

^∣3μ + λ2r,∙(ι - ∙z)
n—t+lPθ λ2r,∙+ λ2,∙t. μ + λ2f∙t. -(n-i+l) n

π-∙iι " (3.28)
This expression for P(z; Rn) can be easily antitransformed, using conventional Z- transform techniques. Through the straightforward computation of Equation (2.21)



- 67 -or by the use of an antitransform table!18), we see that the marginal distribution for the second-level systems in position i when the first-level queue has size n is of the form p(⅛Rn) = ^l~tk + k^βri~i+1 ⅛π(Rn). (3.29)
Here

n 'yπ(Rn) = p0 ∏ — (3.30)A=l μis the probability that the first-level customers have class assignment Rn for its associated second-level waiting lines. The parameters αΓ|. and βr∙i stand for
λ2r,“r< μ + λ2ri,

βr∙ = ------,---- ∙’ At + λ2r,
(3.31)(3.32)

The interpretation of the parameters ari and βri is that they represent the average arrival rate at the ttfl second-level system and the average departure rate from position i to position i — 1 in the second-level stage, respectively. A customer arrives at the ith second-level system with probability αΓ|. before a customer depar­ture from the first-level occurs. Hence, stems from the probability of exactly kl class-rt∙ arrivals to the itfl second-level system between the itfl and the ntfl arrivals to the first-level queue. Similarly, is the probability of exactly n — i depar­tures from the first-level system. Since the size of the first-level system is n, it is clear that an ith second-level system will still exist at the second-level stage. Then, p(fc^;Rn) is the probability of exactly k1 arrivals at an ith second-level system be­fore this subsystem leaves the camp-on model. This explains the negative binomial distribution.



-68 -Based on the definition of (∕j, ∙ ∙ ∙, lR) from fln and Rn in Equation (3.13), it is convenient to rewrite π(Rn) as:
π(Rn) = for class-1 systems;

for class-2 systems, (3.33)
which is equivalent to the probability distribution of an M∣M∣1 queueing system with multiple classes of customers. From this, τr(n), the unconstrained probability distribution for the size of the first-level system, is merely

7r(n) = ∑ π(Rn). (3.34)
Rn

If we insist on the ith second-level system’s being of class r, then the probability that its size is λt∙r regardless of the composition of the first-level system is given by
Pn(^t'r) ~ Σ X(r,∙=r)P(^t> ®·η)· (3.35)

Ωn

We notice that for the special case of single-class class-1 camp-on systems, Equa­tion (3.35) boils down to
J⅛(*i) = (n-'ι+t,)i3n-∙+1α,⅛(n), (3.36)

with a = λ∕(λ + μ) and a + β = 1.
The interpretation of Equation (3.31) is that pn(A⅛) is the probability of fc2 arrivals at the second-level system between arrivals i and n + 1 at the first-level



-69-system. Figure 10 shows pn(A⅛) as a function of the traffic intensity at the first-level system, with λχ = λ2r for the case n = 3 and A⅛ = 0,1.We will return to this expression for the marginal distribution of the ith second- level system as we study multilevel camp-on systems in Chapter IV.
2.4. Workload Distribution Among the Queueing StagesWe already have a very complete description for the state occupancy problem in two-level camp-on systems through the transformed joint probability distribution of queue sizes P(Zn;Rn) in Equation (3.1) or the antitransformed form p(xn) for non-reneging systems in Equation (3.17). We shall now exploit this description to derive the distribution of the total workload accumulated in the two queueing stages.Let P(z} Rn) denote the generating function for the size of the second-level stage and let p(k∙, Rn) denote the joint probability distribution of the sizes of the system stages for a fixed class assignment Rn. We obtain P(z', Rn) from Equation (3.1) by evaluating P(ZnjRn) at the vector Zn = z, which components zx = z. To prove this statement, notice that

P(Zn; Rn)
Zn=z

∞ ∞∑ ∙ ∑ p(Kn5Rn)Λ+-+**
fcχ=0 ⅛n=0

52 p(κnjRn)Λ+→*".
⅛ι∏-----h⅛n>0

Here, p{k∖ Rn) stands for the joint probability distribution of the accumulated work­load in both system stages. Hence,
p(k∙,^Rn) = ∑ p(κnjRn).⅛1∏----∖-kn=k
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Figure 10: Marginal distribution for the size of the second-level system pn(A⅛) vs. the traffic intensity at the first-level system in a single-class camp­on system (λ2r = λι).



-71 -It follows from the above equation that
P(2jRn) = ∑p(k∙,Rn}zk 

k>0

— -P(Z∏jRn)
Zn=z

Accordingly, if we follow the above argument and evaluate P(z; Rn) from Equa­tion (3.16) , we conclude that the generating function for the distribution of the size of the second-level stage in a non-reneging camp-on system, conditioned on class assignment Rn for the second-level systems, is
P(s;Rn) = p0 ∏ Ιi

i=l μ + ∑5=1 λ2rj∙(l - z)
(3.37)

For convenience, let us define the parameters o⅛∙ and ∕¾ (they are not to be confused with ar-i and βr∙i in the previous section) as:
λt'

ai =

ßi =

μ + λt∙ 
μ

A <

μ + λt∙
(3.38)(3.39)

Here, o⅛∙ and ∕31∙ represent the average rate of arrival and departure into and out of the second-level stage, conditioned on a first-level system size of n customers.After antitransforming Equation (3.37) (see Appendix VI), it can be shown that for a non-reneging camp-on system, the workload distribution among the two queueing stages is of the form
βj'0ιip(fc;R„) = ∑⅛⅛⅛(Rn)∏7√^.

i=l j≠i I“» aj>
n ≥ 0, k > 0. (3.40)n



- 72 -If we sum the above expression over all possible class assignments Rn for the second- level systems, we find that the distribution of total workload accumulated by the camp-on system at each stage pw(∏,k), is
pιy(n,fc) = P(Ä;Rn)·R∏

In particular, for class-1 systems, when λ2r = λ2 for all r, we are back to the single-class camp-on system The above expression for pw (n, fc) thus reduces to
p^(n,fc) = ∑⅞⅜(*y 1)yt, ' *∙(w). (3.41)

As a further check of Equation (3.41), let us compute the probability distribution for the size of the first-level stage, regardless of the size of the second-level stage. We have
p(n) ∞= ∑J>M ⅛=o (-l)n-,tnn! τr(n).

But recall the combinatorial identity!35!
Σ(-l)"-t⅛=0 0n! if r < n; if r = n. (3.42)

Consequently, the probability distribution for the size of the first-level system ends up being p(n) -- -τ[n! π(n)] = π(n), 
nιwhich is consistent with the interpretation of π(n) in Equation (3.34).



-73 -From Equation (3.39), we could also derive an expression for the distribution of the total number of customers in the camp-on system. This is the overall system size, counting both first-level and second-level customers. Let pr(n) denote this probability distribution. It follows that
pr(ra) ∑p(fc,n-⅛)

k=l∑ Σ ΛAn^fcπ(Rfc)fc==lt=l ¾βj,⅞(⅝-¾), n > 1. (3.43)kπ
For a single-class non-reneging camp-on system, Equation (3.43) reduces to 

n k ~ ∕k∖ t-∣∖k-ijc
Pτ(n) = ∑∑βi*i (.∙)------p------7r(*)∙ (3∙44)

Figure 11 shows how the workload distribution pw (n, fc) behaves as a function of the incoming traffic to the first-level service center for a single-class non-reneging camp-on system with λj = λ2r and n,k = 1,2,3. Figure 12 shows the distribution of the total number of customers as a function of the traffic intensity at the first-level service center in a single-class non-reneging camp-on system with λχ = λ2r.



- 74 -
orkloa

0.0 0.2 0.4 0.6 0.8 1.0
PlTraffic Intensity

Figure 11: Workload probability distribution among the queueing stages 
pw {n, k) vs. the traffic intensity at the first-level service center in a single­class camp-on system with λχ = λ2r and n, k = 1,2,3.
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- 76 -

CHAPTER IV:

MULTILEVEL CAMP-ON SYSTEMS

In. Chapter ΓV, we extend the basic results found for two-level camp-on systems to systems with multiple levels of queues. We will concentrate mainly on the equi­librium distribution of queues in a non-reneging environment. Instead of trying to provide a description of the system that accounts for all queues in progress within the service hierarchy at a given point in time, we develop an alternative approach that looks only at some key subsystems of relevance. This approach provides a sizable reduction in computation. This is because it would require something in the neighborhood of an JVn-dimensional vector just to represent all the possible states in a camp-on system with n queueing stages and common storage capacity N for every subsystem. In Section 1, we first provide a detailed description of this queue­ing camp-on system. Then we propose an alternative reduced-state representation and derive an equivalent set of equilibrium balance equations for the reduced-state model. In Section 2, we find closed-form solutions for the reduced-state probabil­ity distribution. Both infinite and finite-state systems, that is, those with limited storage capacity, are considered.
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IV.1. System Description

In the multilevel camp-on model, every queued customer is associated with two waiting lines, no matter the queueing stage. One is the waiting line where the customer is currently enrolled as a simple user. The other is the waiting line where the customer is being perceived as a service center for others. The main difference with respect to the two-level camp-on model studied in Chapters II and III is that these two queues are allowed to exist without any concern as to the total number of stages customers have to go through in order finally to be serviced by their intended service center. In the two-level camp-on model on the other hand, we allowed only two queueing stages, i.e., the first-level and the second-level queues. This multilevel queueing system is depicted in Figure 13.Conventional computer services, such as job scheduling in batch processing, file printing, etc., or telephone services provided through PBX’s are typical examples of one-level camp-on systems. However, current data communication services for job scheduling and management with a growing emphasis on networking and systems integration already display, at the very least, two levels of queueing. One example is shared peripherals in a network environment. Here, the first-level queue is located at the peripheral device itself; this queue consists of all the work requested by the different network nodes that can feed it. The second queueing stage includes the peripheral service requests made by individual users at the node level; the requests must first go to the local service node, which will later relay the request to the peripheral, when transmission facilities become available. Another simple example of a two-level camp-on system comprises enhanced telephone services such as call-waiting and teleconferencing, where three or more simultaneous, but not intermixed, calls can be placed at any given time. In the call camping example, the
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- 79 -first queueing stage is composed of the calls being received by the called party. The second queueing stage is composed of the calls being received by the calling party. The teleconferencing example is just an extension of call camping with multiple calling and called parties.Finally, with the advent of concurrent and parallel processing and of networks of LANs and other highly hierarchical systems, as well as with the increasing inte­gration of voice, data and video, applications for multilevel queueing systems are certainly oh the rise. For instance, we can envision LANs connected through an­other LAN in order to share very expensive peripherals or a common database. Concurrent processes will have to queue and wait if they are to exchange data with other processes already engaged in a data exchange. The motivation for this work is to better understand queueing in these hierarchical systems.Many highly complex queueing systems can also be thought of as n-level “ge­nealogical trees.” For example, we can think of a data network built on a tree topology, where customers at the bottom of the network have to go through the different node levels to get to the central node. The number of levels, n, merely indicates the number of generations in the family tree. Hence, it is possible to es­tablish a one-to-one correspondence between the size of a particular subsystem in the camp-on service hierarchy and the size of the branch in its tree representation in which the particular subsystem of interest is sitting. From this tree viewpoint, the size of subsystem x in the multilevel camp-on model is equivalent to the size of the progeny of descendant x in the family genealogy. Figure 13 shows a pictorial representation of a mutilevel camp-on system in the form of a tree.The set of assumptions for the multilevel queueing model is basically an ex­tension of the earlier assumptions for the two-level camp-on model. The customer



- 80 -arrival and departure processes are statistically independent. Customers come from an infinite pool of subscribers, and every queueing system in the camp-on model provides unlimited storage capacity. The arrival process at each subsystem is re­garded as Poisson with mean arrival rate λt∙ for any queueing subsystem at the ith queueing stage of the camp-on model. The service completion process at the service center, the one serving first-level customers, is assumed memoryless, i.e., a negative exponential distribution with a mean service time μl∙. No renegings (defections) will be permitted from any of the system queues, and customers will be served with a FCFS policy. As before, these assumptions imply a decoupling among customers at different stages in the multilevel camp-on system, and even among customers located at the same stage, as long as they traverse distinct service paths in the service hierarchy. This is a direct consequence of the independence of the arrival and departure processes.Finding the joint probability distribution of queue lengths for all possible queue configurations in the multilevel camp-on model, nonetheless, amounts to giving the family size distribution for every single descendant in the family tree. This is not a trivial task even if we have only a finite storage capacity of N customers per subsystem. If the number of queueing stages is n, it will require a vector of dimension on the order of Nn just to account for all the state vectors in such a sample space.Because of the decoupling between the customer arrival processes in different paths of the service hierarchy along the queueing stages and the FCFS service strategy, we observe that if we pick any queued customer at random, he has only to be concerned with the amount of queueing he has to do before reaching his intended service facility. All other service paths outside its own do not affect his



- 81 -service expectations. From the family tree approach, this decoupling effect has a simple interpretation: to get to the family root, one need only look at the direct ancestors of a given generation, not to all the members of the family. Thus, we propose to choose as state representation a vector that includes the sizes of all subsystems in the path from the first-level service center to the last subsystem at the (n + l)3i queueing stage. This reduced representation of the system’s state is equivalent to a “depth-first” search along the family tree. In this, we search for the sizes of all subsystems along a root-to-leaf path of the servicé hierarchy. This interpretation of the multilevel camp-on system states is equivalent to giving the family sizes for all the ancestors of a family member up to the family root, starting from a member of the current generation.Suppose the size of the first-level system, counting both queued and in-service customers, is i customers. Then the size of the first generation is i descendants. The distribution for the size of this first generation is well known to be π(t) = (1 — pι}p∖ with pi = λι∕μj, the probability distribution for the size of an M/M/l queueing system, as in Equation (3.34). Similarly, let jι, an index, denote one of the children of this first generation and let kι denote the size of his progeny. Then pt∙(ju⅛ι) is the joint distribution for the size of the family’s first generation and the size of the first generation of descendant ∕j. From our two-level camp-on system standpoint, Pi(jl!^l) also represents the marginal distribution for the j∣t second-level system in the two-level camp-on model. Therefore, using our earlier notation developed for two-level camp-on systems: pt(jιJ⅛ι) = pt(⅛y1 = fcj).Let jι, ∙ ∙ ∙ ,jn and ⅛ι, ∙ ∙ ∙ ,kn be two sets of non-negative integers. Assume that we start with an i-member family, that is, a queueing system with i customers in the first-level queue. Extending the preceding reasoning to the next generation,



- 82 -that is, the next queueing stage in the multilevel model, let jι be a “child” from the family’s first generation, that is, the customer at position j∖ in the first-level queue, and let kχ denote the size of his, ji’s, progeny. In general, let jt∙ be a child from the first generation of j⅛-χ, the customer in position jt∙ at the itfl queueing stage, and let fct∙ denote the size of his progeny. Then the (2n + l)-tuple (t, Jn,Kn) provides all the information required to know how much work is accumulated in any path of the service hierarchy, from the first-level service center to last subsystem at the (n + l)st queueing stage. But, because of the memoryless state transitions, this reduced-state representation suffices as well as a complete description of the current state, in equilibrium, of the multilevel camp-on system. In fact, these (2n+l)-tuples can be interpreted as the states of a homogeneous, irreducible and aperiodic Markov chain giving the “depth-first” search of the sizes of the subsystem’s queues along a path of n + 1 queueing stages in the multilevel camp-on model. Clearly, unless the last subsystem in a given service path is empty, ⅛t∙ ≥ jj∙-1, or else we would be talking about (ro +1) queueing stages rather than (n +1) queueing stages {m < ra). This representation as (n+ l)-level search is illustrated in Figure 14.In the next section, we derive an equivalent equilibrium balance equation for this reduced-state space. We find closed-form solutions for the equilibrium joint probability distribution of the queue sizes at each of the queueing stages.
ΓV.2. Stationary Multilevel Camp-on Model

Suppose that the current state in the multilevel camp-on system is given by the vector xn = (i,Jn∖ Kn) and let yrn = (∕, J,mjK'm) be any other permissible state in this queueing system. Also, let pM(xn) denote the joint probability distribution for
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- 84 -the sizes of the subsystems along a service path with (n + 1) levels in the camp-on service hierarchy. If an equilibrium distribution exists for this queueing system, it must satisfy the global balance equation in (2.13):
pλ∕x*) ΣZ 9(χniym) = ∑ (4.ι)y∏⅛∈Ω ym∈∏

where q(ym'1×n} gives the transition rate from state ym into state xπ and Ω is the set of all permissible states.In order to make the notation simpler, from now on we will consider Kn as an (n + 1)-dimensional vector of the form Kn = (⅛o, ⅛ι,∙ ■ ■ ,kn). Here, the ⅛t∙,s (0 ≤ I ≤ n) are non-negative integers with fc∕ designating the size of the first generation of the customer in position j∕ at the level-/ subsystem, and kς> = i designating the size of the first-level subsystem.Looking at the state-transition rates in the global balance equation, one recog­nizes ∑ym∈∏ q(×n5y,rn) as the total rate of departure from state xn. This rate is given by n∑ ?(xn;ym) = μι + ∑λt∙, (4.2)
ym∈Ω t=0the sum of the arrival rates at each of the subsystems in state xn, plus the service rate at the first-level subsystem.If the system enters state xn because of a customer arrival, this state transition could have taken place only when the initial state yrn is a neighbor of state xn; i.e., state ym has the same composition as state xn except that one of its subsystem’s queue is shorter by one customer. The customer arrival processes guarantee that no more than one single arrival can occur at any time. There are two distinct types of neighboring states with this property:



- 85 -i) The subsystem at the (i + l)si queueing stage in state ym is shorter by one customer than the same subsystem for the next state xn. However, the index 
ji+l that identifies the customer in the level-(» + 1) queue and the service path towards the next queueing stage does not designate this last customer joining the camp-on system, for we would have jt∙+ι = fcj and fcl+1 = 0, so we would be back to i + 1 queueing stages only. Here, ym = x^* (0 ≤ » ≤ n), where x^* stands for the neighboring state with one fewer customer at the (t + l)si queueing stage:

x√ = (Jn5K→),K∏, = (⅛0,∙∙∙,A⅛-l,∙∙∙,⅛n)∙
This state transition occurs with rate λl+1, the arrival rate at the subsystem in the (ι + l)ai queueing stage. Hence,

^(⅛) = λ⅛ι‰<⅛). (4∙3)
ii) The subsystem at the nth queueing stage in state ym is shorter by one customer than the same subsystem for the next state xn, but the index jn identifying the customer at position jn in the level-n subsystem does correspond to this last customer joining the camp-on system. Then ym = x~2^1> since the upper-level queue associated with this customer must be empty (he just joined the camp-on system). In this case, the state-transition rate is given by

g(x^J^1iXn) = λn X(jn=kn-ι, kn=0)- (4∙4)
Notice that we have ruled out the possibility that fct∙ = 0 for 0 ≤ i < n. This condition will demand that the number of queueing stages along this service path is



-86-less than n, not n, as we originally demanded for the reduced-state representation
×n∙ There is only one single type of non-neighboring state transition allowed in multilevel camp-on systems, and this corresponds to the departure of a first-level customer by virtue of service completion. In this case, the previous system state must have been ym = (J‡^K‡0), where

J∏1 = C?1 ÷ 1>∙72> ” , ,Jn), κ+θ = (fc0 + ι,fcι√∙∙,Mi
i.e., the customer at position j∖ has been shifted one place closer to his service facility. This state transition occurs with rate μγ, the service rate for customers in the first-level subsystem; hence,

9(ym>χn) — Ml· (4.5)
Based on Equation (4.1) and the state-transition rates from Equations (4.2) to (4.5), we can write down the following global balance equation for the sizes of the subsystems in a given path of the service hierarchy of this reduced-state multilevel camp-on model:

n
Ml + ∑ ∖'+l 

i=0
Kn) nΣ ∖"+l ^(¾-t-ι<⅛,∙) i,Λf(Jn>Kn ) 

i=0+ λ-> X⅛≈J⅛1, t„=0) PM(jn-liκiil^1) (4∙β) + Pl pm(J+1ik+0).

The next theorem is an extension of Theorem 2 to multilevel camp-on systems:



- 87 -Theorem 4: Let pM(Jn;Kn) denote the equilibrium joint probability distribu­tion of queue sizes for the subsystems along a service path with (n + l) levels in a multilevel camp-on system. Then
pM(Jn;K„) = ∏*j(JΛ∙),

i=0
(4.7)

where the function Ψ1(J1sKj) is of the form π(fco),
1,

if i = 0;if ki = 0, 0 < i < n;
Φt(J*5Kt∙) =

yΛ (Mi + ki jijrγ Zt∙∖⅛Λ fc>--,-+ι )
(4.8)if ki >0, 0 < i < n;l+*0-Λ-∑7=l1 li

Π ainki~3i+l if 0 < i = n.t=lHere, the parameters Mt∙, /?,·, o⅛ and αt∙n stand for: 
i

Mi = [⅛m-l ~ Jm ~^ Zrzι], ki ≥ jι+ι,
m=l μ

βi =

ai =

ain

∣j-l + ∑fc=2 λfc ∖+l∕χι + ∑t12λ√ ⅛+l
m + ∑S21V

(4.9)
(4.10)
(4.11)
(4.12)

n
×

Of course, in this equation it is implicit that ki ≠ 0 (0 ≤ i < n); otherwise, it would then be a service path with (i +1) levels instead of a service path with (n +1) levels in the service hierarchy of this multilevel camp-on system.



- 88 -Notice that represents the average departure rate from the (i + l)si queueing stage into the queueing stage, while o⅛ and o⅛n are the average arrival rates into the level-(i + l) subsystem when the numbers of stages in the service path is i and 
n, respectively. Thus, αt∙ = o⅛∙t∙.Accordingly, from Equations (4.7) and (4.8), we can verify that for a single-level camp-on system,

p(J0;K0) = π(fc0)= π(ι),
which is the marginal distribution for the first-level size, an M/M/l queueing sys­tem, as it must be. Similarly, for n = 1 we observe that

p(JliK1) = Φ0(x0) Φι(×ι)

.∙-Λ + *ι)^ι+ιπ0γ
This is again the marginal distribution for the jft second-level system when the size of the first-level system is i customers, a two-level camp-on system as in (3.36). These provide a further check of the results obtained in Chapter III.As for the case of a finite-state multilevel camp-on system, a result equivalent to the one presented in Theorem 3 for finite-state two-level camp-on systems can also be derived. Let 7V^i∙ (l ≤ i ≤ n+ 1) designate the storage capacity of the subsystem located at the itfl queueing stage of the service hierarchy and let ∕χ, ∙ ∙ ∙, l3 designate those subsystems with fcτ+1 = 7Vt∙. We then have the following theorem relating the distribution with the storage constraint to the distribution obtained in Theorem 4 without storage constraint.
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⅛⅛⅛) =

Theorem 5 : Let p(i(Kn∙,Rn) denote the equilibrium joint probability distribu­tion of queue sizes along a service path with (n + 1) levels in a multilevel camp-on system with storage capacity of 7Vi∙ customers at the subsystem in the ith queueing stage. Let (ζ∙, ∙ ∙ ∙ ,Z<,) denote the set of subsystems with fc∕ = 7Vj-1. ThenPM(xn), if ki < M-l,
∞ ∞ (a is)
∑ ■·· Σ J>m‰‰). ifki = JVi-1, '∙ ,

kll=Nli-land
Pm(×o) = P(χθ)> (1 ≤ s ≤ n ≤ N},

where pM(Jn; Rn) is the state probability distribution for the same camp-on system without storage constraints.
The proof of Theorem 5 follows the same lines as the one for Theorem 3, ex­cept that we work with the equilibrium global balance equation for the finite-state multilevel camp-on system:

r n
Ml + ∑ λi+l X(ki<Ni+1} 

l i=0
Pj⅛∕(J∏i Kn) —

+
nΣZ ∖+l ^(j,+ ι<⅛t) )

i=0
X(jn=kn1, ⅛∏=0) PM (J∏-1> ^n-l )+ μ1p√J+⅛+θ). (4.16)

Notice that the interpretation of Theorem 5 is compatible to Theorem 3 in the sense that the boundary states behave as absorbing states for the out-of-space states. They absorb the probabilities of all those states in the unconstrained model left out because of the finite buffering space.
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IV.3. Multilevel Systems: Camp-On and Stability

As in the two-level camp-on system case, the ergodicity of the multilevel camp­on system is tied to the ergodicity of the first-level subsystem. However, every departing first-level customer leaves a camp-on system with n + 1 queueing stages and forms its own camp-on system with n queueing stages, which is a subset of the initial multilevel system. This last statement implies that customers are promoted from the (« + l)si stage to the itfl stage, until they eventually reach their intended service facility. Since all the queueing subsystems in the service hierarchy are served with a FCFS discipline, the ergodicity of every subsystem as an isolated queueing system must be required. Otherwise, we cannot guarantee stability of every single subsystem after departing from the n-level camp-on model. Thus, most of the comments made in Section 1, Chapter IH, about the stability behavior of two-level camp-on systems carry over to the multilevel model. The ergodicity condition then boils down to the condition in Equation (3.9):∞∑ι⅛n=lfc=l μk
< ∞,

where we use λ⅛ instead of ∩f⅛. In particular, we will be required to have λn < μ∏ for a system with infinite storage capacity in its queue. Here, μn is the mean service rate for the subsystem at the ntfl queueing stage, once it is ready to serve its own waiting line.One interpretation of the stability condition in multilevel camp-on systems is that upper-level subsystems are promoted to the next queueing level before they can grow out of bounds. This behavior repeats as the subsystem progress towards its intended service center in the service hierarchy and reaches the first queueing



- 91 -stage. At this point, the customers in its waiting line start service. From the server standpoint, this is an Af/Ai/1 queueing system with a non-empty-queue initial state. We conclude that its behavior in the long run must be that of an M∕M∕λ queueing system.
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CHAPTER V:

COMMUNICATION APPLICATIONS

In Chapter 5, we study the performance of the two-level camp-on model in two different communication applications. The first example corresponds to a queueing system where both first-level and second-level customers are served in a FCFS basis. This can be interpreted as an extension of the PBX concept to hierarchical queueing systems. Subscribers calling premises attended by this PBX-like facility are even­tually transferred to their end-point service centers. Here, the service requests are processed in an orderly manner, after they have been sorted with respect to some pre-established service criterion. This type of service is typical of inquiry-based communication systems.The second example corresponds to a queueing system with broadcast delivery service. For this system, incoming customers are likewise presorted with respect to the class of job they request from the service center. Here the first-level queue stands for the different types of jobs submitted to the system’s facility, while the second- level queues stand for the numbers of requests for every single type of job. The service philosophy here is to service all those jobs of the same class simultaneously, as in a broadcast system. In a sense, second-level customers can be regarded as outstanding job requests. These are job orders already taken, but not yet processed, by the first-level service center.In these examples, performance statistics such as waiting time distribution, mean waiting time, and blocking probability, when defined, are derived. In both



- 93 -cases, it is found that the global system performance does not depart too much from that of the underlying M/M/l queueing system, showing the expected dominance of the first-level system on the global behavior of the camp-on model.
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V.l. PBX-like Communication Services

When we refer to a PBX-like communication service within the scope of the camp-on model, we mean a two-level, or perhaps multilevel, queueing system, where all service centers are type-1 centers, i.e., the service discipline implemented for all the subsystems is FCFS, no matter what their queueing stages. Essentially, this model can be used to represent any communication system where customers enrolled in a waiting line, the first-level queue, are not precluded form taking job orders from other users, the second-level customers, and they will eventually proceed to service those orders, once their engagement with the initial service center is through. The motivation for this type of services stems from the natural extension of the FCFS strategy to hierarchical multilevel queueing systems and its connection to the camp on concept in telephony as previously mentioned in Chapter II.This service model can be extended to many inquiry-oriented communication services, in particular, those where some sort of clearance or preprocessing has to be completed before proceeding with a new batch of service orders. For example, a network for credit card inquiries from convenience stores is an extreme case of the finite-storage two-level camp-on model, where the number of second-level classes stands for the the number of stores in the network and the customer handling ca­pacity is usually Nr = 1 for all r. Here, the credit card company’s database plays the role of the first-level service center. Stores honoring the company’s card consti­tute the source of first-level “customers,” while shoppers buying merchandise and paying them with credit cards act as the system’s second-level customers. We can more generally envision the inquiries made by a node to the central database as the first queueing stage of the camp-on model. These inquiries may deal with the authorization of certain customers to access application programs or other services
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- 96 -required by the node, e.g., maintenance information, special printing facilities, cus­tomer authentication, etc. Figure 15 depicts this PBX-like communication service in data network environment.Typically, when we talk about the performance of a queueing system, we refer to statistics such as the amount of time a newly arrived customer must wait before starting his service period, either the waiting time density W(f) or its cumulative distribution W(> i). We may also be interested in the probability of being denied access to the queues because they are already full, i.e., the blocking probability. There are, of course, many other statistics of interest. For PBX-like communication services in infinite or finite storage-capacity systems, we are mainly concerned with the time customers spend waiting to be serviced, especially for those customers in the second-level stage. We will assume that the transmission time is neglegible compared to the queueing and processing time in the system.
1.1. Infinite Storage SystemsLet us first consider a non-reneging camp-on queueing system with infinite stor­age capacity. Blocking is not an issue, since the storage space is infinite. If we look at the two queueing stages of the camp-on model, we realize that the standard theory for Λi∕Λf∕l queueing systemsf15,23,24J tells what the waiting time density Wι(i), the cumulative distribution Wχ(> £), or the mean waiting time probability 
W1 are for first-level customers when the newly arrived customer must wait:

IV1(i) = Z*lPl(l - Pι)e-"1<1-',1l,tt'l(> i) = p1e-**><1-',l>,
ÎV, = _____H_____ .

μι(ι - Pi)
(5∙l)(5.2)(5-3)



- 97 -Here μι and λχ are the traffic parameters for the first-level queueing system; that is, μι is the mean service rate at the first-level center and λj the center’s mean arrival rate.We want to answer these same questions for those customers that must also wait at the second queueing stage. Let denote the probability that anincoming class-r second-level customer arriving at the subsystem in position j of a size-n first-level system will have to wait for t units of time before its service period begins. If the jth second-level system has kj∙ customers in his waiting line when the new customer arrives, the newly incoming customer will have a probability density function b(j,kj-,t) for his waiting time. This accounts for the time period he will spend as a second-level customer, b2(kj,t), plus the time he will spend as a first- level customer &i(j,i). The time spent in each of the queueing stages is given by an n-phase Erlang distribution^5’23], En(t), because of the negative exponential distribution for the service time period in each of the queueing subsystems. That is, &M = ⅛τ⅛'*e^μt' f5∙4f
where n is the effective queue length seen by the newly arrived customer at each of the queueing stages. With mean service rates for the first-level and second-level systems being μι and μ2r, we have

b(j,kj∙,t) b1(t) *b2(t}¾⅛)*J¾W
(μι),(κri)ki rt i-ι, 

(j -1,!(⅛∙ -1)! Λ> l r)^⅛-⅛.
The service time distributions at each service center are, as usual, assumed statis­tically independent.



-98 -Let pn(kjr) denote the probability that the jtfl second-level system has kj∙ class- r customers in its waiting line when the size of the first-level system is n customers. This is the marginal distribution for the size of the jth subsystem found in Chap­ter III. Then Wz2*r(jj t) will be given by the sum of the probabilities over all possible sizes for the jth subsystem pn(kjr) times their corresponding waiting time distribu­tion for the waiting time period for the next incoming user:
wTCii) = Σ Pn(kjr} b(j∖kj↑t}. (5.5)fci∙=O

We consider here the special case of a balanced camp-on system, i.e., a queueing system where all service centers present the same traffic handling capacity (μχ = 
P2 = μ). In this case, we can greatly simplify the computation of the communication system’s performance, since — ¾'(0 * ¾i∙(0 = ⅛fcj(i),
a (j + fcy)-phase Erlang distribution in Equation (5.4). In this special case, the arriving second-level customer does not perceive the queueing system as composed of two queueing stages but rather as a single-server center with a waiting line of 
j + kj customers.We can now compute PF^Z), using the expression for the marginal distribution for the size of the jth subsystem pn(kjr} derived in Chapter III, Equation (3.36):Pn(⅛r) = (n-^ + tW→1α*pi(l-p1). (5.6)

Considering the above expression for pn(kjr} together with the waiting time function for the new second-level customers, one can write down the complete ex­pression for the waiting time distribution of the class-r second-level customers in



- 99 -the jth subsystem, when the first-level queue size is n customers:
w2nra-,t) = ∑ (n^ζ+ ⅛y<+w-',ι)',"(7τr=⅛*,e'''ι' <5∙7>

where
αr = (l + p2r) 1P2r,

βr = (1 + P2r} 1>λχ λ2r
Pl = —, P2r = —-μ μ

(5∙8)
These four parameters correspond respectively to the average arrival rate to a second-level subsystem, the average departure rate from the second-level stage into the first-level stage and the traffic intensities to the first-level system , and to the class-r second-level system.The distribution for the waiting time period, Wr2r(*)> f°r a class-r second-level customer is just the weighed contribution of his waiting time period at each of the subsystems where the newly arrived customer may have to camp on. We see that Wz2r(i) is obtained as a sum over all first-level queue sizes and all queue sizes and locations for the second-level subsystem. That is, we sum the waiting time probability for second-level customers at the jth subsystem, times theprobability that the new incoming customer arrives to his subsystem when it is located at the j position with respect to the size n first-level queue. We will now find these terms.The probability that an incoming second-level customer will request service when his second-level subsystem is in the jth position and the first-level system size has n customers is

Prob [jth subsystem/ n second-level systems] = l∕n,



- 100-for second-level customers have no a priori knowledge of the state of the first-level system. Therefore,
∞ 00∙*⅛-M = ∑ ∑

J=l ∏=j n
After an algebraic reduction of this expression for Wz2r(^) (see Appendix VIII), we find that the probability distribution for the waiting time period of a class-r second-level customers in a camp-on queueing system with PBX-like communication service and infinite storage capacity is

*V2r(i) = μ(l - pι)e μt fofil x) lxefilt ~ 'yr(x)eμ'7r^t] dx, (5.9)
with

Ιr(x) ar
l-βrx'This expression for the waiting time distribution of the second-level customers is not as convenient to use as the one for the first-level customers in Equation (5.1). Nonetheless, other interesting statistics can be derived from this result. Among the most important is the probability of a second-level customer’s having to wait for more than a certain period of time t before his service period begins. This cumulative distribution is given by (see also Appendix VIII)∕∙∞

W,r2(>t) = Jt W2r(τ}dτ

= (1-Pl) Γ'∙Wl÷ ,-μ(l-x⅛ _

where
'Ιr(x) e-μ(l~Ιr(x))tdχ 

l~7r(*)
(5.10)
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f f ∖ _ _______ βr_______
rX (βrx - ar)(l - x)'

Even though neither W2r(i) nor Wλ2γ(> i) is easy to compute, we still can obtain them through standard numerical techniques. Figure 16 shows W2r(t) as a function of time t in a balanced non-reneging camp-on system with λ2r = λj.Another important design parameter in the camp-on system performance is the mean waiting time for a class-r second-level customer. We compute from Equa­tion (5.9) that in a PBX-like environment, the mean waiting time for an incoming second-level user is
‰ = f∞τW2r(τ)dτ_ 2 - pi

2βrμ(l-pl)pi-

For the derivation of this expression, refer to Appendix VIΠ.If we are more interested in the overall system performance because of all the distinct classes of second-level customers, we can compute this mean wait of an arriving customer to the second queueing stage as the weighted contribution from the different classes, e.g.,
W2 = ∑ ⅛I W2,, (5.12)r=l ^2

A 9∙where λ2 = ∑r=l ^2n R is the number of second-level classes and W2r refers to any of the distributions and probabilities in equations from (5.9) to (5.11).Figure 17 shows plots of W∖ and W2r versus the traffic intensity at the first-level system in a balanced non-reneging camp-on system for the cases when λj = λ2r and when P2r = 0.2, 0.4, 0.6, 0.8. Notice that W2r follows very closely the curve for 
W↑, showing that the second-level systems behave rather like an M∣M∣1 queueing
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tTime

Figure 16: Waiting time distribution for a class-r second-level customer W2r(i) vs. time for different traffic intensities at the first-level service center in a balanced non-reneging camp-on system with λ2r = λj.
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piTraffic Intensity

Figure 17: Mean waiting time for class-r second-level customers W2r and for first-level customers Wχ vs. the traffic intensity at the first-level service center in a balanced non-reneging camp-on system for the cases when λ2r = λι and when p2r = 0.2, 0.4, 0.6, 0.8.



- 104 -system despite the initial delay at the first-level queue. This is a reflection of the fact that the second-level systems move into the first-level stage before their queues can grow very much. Hence, the second-level systems never become a bottleneck in the camp-on model. The result also shows that we need not pay too large a penalty for introducing a second-level of queueing, contrary to what may have been our first impression.
1.2. Finite Storage SystemsSo far we have been dealing with non-blocking queueing models. However, most queueing systems encountered in real life applications will have only a finite amount of memory space to handle the incoming traffic. Thus, we must extend the previous results to limited-storage systems. Recalling our notation from Section 3.1, Chapter III, for camp-on systems with finite storage capacity, let N be the maximum storage capacity for the first-level system, including both in-service and queued customers, and let JVr∙j. (1 < J ≤ N) be the storage capacity for the subsystem located in position j of the second-level stage associated with class-ry customers. Following the same reasoning as in the above derivation for infinite-capacity systems, we see the waiting time distribution for a newly arrived class-r second-level customer to be of the form

N n Nr E.+k.(t)
w2r(t) = ∑ ∑ ∑ ------ Z7----Pn(kjr)- (5.13)n=l j=l kj=0 n

Here, p⅛(fcyr) stands for the marginal distribution for the size of the jth subsystem at the second-level stage in the finite-storage case. Similarly, the mean waiting time for this size-constrained system will be given byΛ Λ 0 + kj) *

n-0j≈l
2r ∑ Σ '.' ~ Σ Pn(M’

μn
(5.14)fcj∙=0W



- 105 -where we have assumed again the conditions of a balanced non-reneging camp-on system (μι = M2r = M∙)From the analysis of the occupancy problem in camp-on systems with finite storage capacity, we can also recall that the probability that an incoming class-r customer will find his second-level system in position j of a size n first-level system when its waiting line is already full is
Pn(Nrj) ∑ Pn(kjr) 

kj=Nr
Nr-1

*(») “ ∑ Pn(kjr) 
kj=0

(5.15)
Here as before, 7r(n) is the equilibrium probability distribution for the size of the first-level system and pn(fcjr) is the marginal distribution for the size of jth subsys­tem with respect to a size-n first-level service center in the infinite storage case, as in Equation (5.6).

Also, notice that the total arrival rate to the system increases as the size of the first-level queue increases because of the new service centers’ being incorporated into the queue. Thus, this PBX-like system has the structure of a class-1 camp-on system as described in Section 3, Chapter II. Therefore, from Equation (3.12), it follows that
π(π) = p↑ p0with

P0 =
l-pf+1 -11 - Pi



- 106 -From Equations (5.15) and (5.16), we now find that the waiting time distribution and mean waiting time for a class-r second-level customer in the finite-storage camp­on model given in Equations (5.13) and (5.14) reduce to
"'-,∙ι ■ (μ<)j+t +

N η nJW∑∑^-
n⅛¾ n 

N n Nr
ΣΣΣι=0j=l⅛=(

N η n
Po∑ ∑^U + Nr) 

n=0⅛W

_ yΛ (n j + k*¾Λ k )⅛n^i+1αf r-1(μt)j+-y,(j + 2Vr-1)! , (5.16)
TV n 2Vr Λη ∕-λ λ∙ i ‰∖^2r = P0∑ ∑ ∑ ‰σ+√ ,k+k}tf->+l°i

n=0j=lk=0nμ ∖ κ ∕~ Σ (n~j
k=Λ k

+*L*-y+ια* (5.17)
+

From this equation we can obtain similar plots as before of W2r(O an^ ^z2r fθr a finite storage class-r camp-on system. The top and bottom lines in the expressions for Wz2r(i) and Wz2r represent respectively the contribution to the waiting time due to a non-full and a full class-r second-level system. Hλ2γ a∙nd Wzi are plotted in Figure 18.Another very important parameter for blocking systems is, of course, its block­ing probability, since a customer may face a reasonably small waiting time once he has been admitted into the system but there is also a small probability of his being accepted into his second-level system.An incoming second-level customer will be blocked, and so cleared from the camp-on system, whenever the second-level subsystem from which the incoming customer is demanding service has no further storage space to allocate new service requests. Let B^r denote the probability that an incoming class-r second-level customer will be blocked and cleared from the second-level stage. This is given by



- 107-the sum of the probabilities that the newly arrived class-r customer finds his waiting line in the second-level stage already full, averaged over all possible positions of this subsystem with respect to the first-level service center:
&2r =

Λ £ ⅛(⅝ι)y=in=y rj=r
(5.18)

n

Using the relation in Equation (5.13) for the marginal distribution for jth second- level system in a size n first-level system, we get
N N n 

Bir = P0∑∑⅛j=ln=j (5.19)
which is compatible with the interpretation of the bottom line of Equations (5.16) and (5.17).Again, if we are concerned about tħe overall system performance, we can go back to Equation (5.12) and replace Wz2r by any of the above expressions for the finite-storage system in Equations (5.16), (5.17) and (5.19) in order to to obtain the weighted contributions from the different classes of customers.Figures 18 and 19 show curves for the mean waiting time and blocking probabil­ity for first-level and second-level customers as a function of the traffic intensity at the first-level service center in the cases when λj = Λ2r and when P2r — 2, 4, 6, 8 in a balanced non-reneging camp-on system with N = Nr = R = 10 waiting spaces. These parameters have been chosen to reflect the behavior of a PBX-like commu­nication system rather than to represent any real life system, where the number of different classes may be quite large. For example, a medium-sized department store might have around ~ 25 — 40 outlets (N}, while the number of departments within the store Nr might vary from a couple to a few tens. From Figures 18 and
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Traffic Intensity

Figure 18: Mean waiting time W2r vs. the traffic intensity at the first-level service center in the cases when λι = ∖2r and when p2r = 2, 4, 6, 8 in a finite-storage non-reneging camp-on system with N = Nr = R = 10 waitingspaces.
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PlTraffic Intensity

Figure 19: Blocking probability J?2r vs∙ the traffic intensity at the first-level service center in the cases when λj = X2r an when P2r = 2, 4, 6, 8 in a finite-storage non-reneging camp-on system with N = Nr = R — 10 waitingspaces.



- 110 -19 we observed that even under heavy traffic conditions the mean waiting time for second-level customers is no more than twice that of the first-level customers. This factor of two is an extreme situation of the heavy traffic condition, where the sub­systems at the first-level and second-level stages have the same amount of customers in their waiting lines, i.e., N = Nr. Being a balanced system (μι = μ2r)> customers experience about the same amount of queueing at each level, but second-level cus­tomers must visit two queueing stages. In fact, under heavy traffic conditions for both first-level and second-level systems, we have from Equation (5.17) that
lta = ⅛ = N + 1+Nr.

Pi-P2r→∞ Nμ 2μ μ
This corresponds to W2r = 15.4 for the camp-on system in Figure 18. The factor 
(N +1) /2 stems from the observation that the subsystem associated with the arriv­ing second-level customer could be located in any one of the N queueing positions at the first-level queue.
V.2. Broadcast Delivery Services

In many communication systems, different customers may request the same type of service from a common service center. Serving these requests unwisely may induce overload in the communication system, providing poor utilization of the system resources. Through the use of a broadcast delivery scheme, we can satisfy the communication needs of several users simultaneously and thus improve the performance of the queueing system for everyone.The relationship between broadcast delivery services such as multiple-addressee electronic mail facilities or Videoteχl12l and the two-level camp-on model is fairly



- Ill -straightforward. In a Videotex or multiple-addressee electronic mail system, re­quests submitted by terminal users are processed by a central computer, resulting in the retrieval of the desired piece of information from the system database, e.g., pages of a menu program, pictures, catalog information, manuals, etc. If the sys­tem is fairly large, it is likely that users will request the same piece of information within a short time interval, resulting in multiple message requests for the same work simultaneously.Let us take a closer look at a typical electronic mail system. A message request from a terminal user arrives at the central computer, which is the first-level service center with respect to the camp-on model. The central host checks to see whether other requests for the same message are already in progress, e.g., being retrieved from the database to be transmitted over the network, or are about to be processed, which can mean, for example, being sent to queue in a waiting line. First, the service facility checks its first-level waiting line, where all pending messages are stored. If no other similar message is scheduled to be broadcasted in this queue, then the system is dealing with a new work order and the message request is placed on the system’s first-level queue. If the message is already scheduled for broadcast, then the system is dealing with an outstanding message request and the new work order is placed in a second-level queue.Thus, a second-level queue contains all the outstanding service requests for the same type of work. This explains the camp-on feature of the queueing model. Since the original message request in the first-level queue and the outstanding message requests in the associated second-level queue are all for the same work, i.e., re­trieve and mail file X from the central host’s database, we can service all of them simultaneously by broadcasting file X to all interested second-level customers when
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- 114 -the service facility services the first-level message request. This is similar to the broadcast philosophy in radio transmission, which explains the broadcast aspect of the model. Figure 20 illustrates the basic concepts behind this broadcast delivery service. A Videotex or electronic mail system with a broadcast delivery strategy is provided in Figure 21. Here, a central host’s database is made available through a broadcast channel to customers requesting pieces of information from nearby LANs or PBXs.The main statistic of interest for broadcast delivery services is the response time of the broadcast delivery system: the time required to provide service simultane­ously to all camp-on users. We do not consider the possibility here of deliberately delaying a broadcast in the hope that more requests for the same message will arrive.
In a Videotex system, message requests for pages of information are submitted to the host computer that fetch the file from the system’s database. Hence, the system’s response time refers to the time required by the host computer to fetch the information from the system database and broadcast it to the terminal users. Here we assume that first-level customers in a Videotex systems are served with a FCFS service discipline.

2.1. Response Time DistributionBecause of the broadcast nature of the system, only new message requests should matter, from the service center viewpoint, when computing the response time distri­bution. All outstanding message requests will be taken care of through the response to the initial demand, since service is parallel for all customers in the same second- level queue. Also, since the traffic demand to the central host is not expected to



- 115 -change because of the presence of outstanding requests, we will think of this broad­cast system as a class-2 camp-on system as described in Section 1, Chapter II, where
Rλl = ∑2 λ2r, r=land λ2r is the arrival rate for a class-r request.Let us assume that the delays in the transmission part of the network are negli­gible. Let Sr(t) denote the response time distribution for a class-r message in such a broadcast delivery system. From the two-level camp-on model for systems with finite storage capacity, we notice that there are two possible queueing situations: 1) there are n message requests submitted but none of them is a class-r message, and 2) there are n message requests submitted, and the jtfl request is a class-r message.If there are no class-r requests yet submitted, then the contribution to the response time distribution due to an incoming class-r request amounts to

N-l
S⅛) = £ £ π(Kn) 2⅛+lW∙ (5.20)n=0 ΩnrHere, as in Equation (5.4), En+ι(t) is the waiting time probability for an incomingrequest when the first-level queue size is n. Also, Ωnr, a subset of Ωn, is the set ofall class assignments for the n first-level customers that do not include a messageof class r. Finally, π(Rn) is the probability that messages of classes rj, ∙ ∙ ∙ ,rn arequeued in that precise order in the first-level queue. For a class-2 camp-on system,we must choose the ∕∕s for the definition of π (Rn) in Equation (3.33) such that0, if i = r; that is,no class-r request has yet been submitted;

I _ t 1» if rj = i f°r some j; that is,z a class-i request has been submitted to the system;0, otherwise, that is,no class-i request has been submitted to the system.



- 116-0n the other hand, if the incoming class-r request is an outstanding message request, then Sr2(<) = ∑ ∑ ∑ ⅛⅛½W. (5.21)
n=0y=l⅛j∙≈0 n

This is because a previous request may have been already scheduled in position j of the first-level queue. Here Ej (t} is its corresponding waiting time function for that request. The marginal distribution for the size of the jth second-level system, p^(fcyr), is taken from Equation (3.35).Notice that in S% (i), only P∏(⅛yr) is dependent on the number of outstanding requests already received by the broadcast delivery system. However, if we use Theorem 3 for this class-2 camp-on system, we find that
Nr ∞
∑ Pn(kjr) = ∑ Pn(kjr} 

kj=O kj=Q≈ Zx(rJ=r)’r(Rn)·Ω∏This shows that only the total number of non-outstanding requests, or first-level customers, must be accounted for when computing the response time for the broad­cast delivery system.Define the functions g(Rn) and s(δ∙n)", as
Rff(Rn) = ∑ Jr(Rn) = ∑ ∏ qlrr, (5.22)∕χ+∙∙∙+⅛=n Zχ-I H⅛=nr=l<'(Rr,) = ∑ π(Rn)= ∑ ∏<⅛, (5.23)

∕χd l-∣22=n ∕χH ∣-Z∫j=n r=li,∙=0 zi=o
where qr = λ2r∕λ1 is the probability of a class-r request. The two functions rep­resent, respectively, the probability of a size-n first-level queue regardless of the



- 117 -request classes, and the probability of a size-n first-level queue without a class-r request. It follows directly from Equations (5.20) and (5.21) that the response time for a class-r request in the broadcast delivery system is given by
Sr(f) Sr1(i) + S?(t)ΓΛr-i

Poμe~μt 52 (PMi)nσ-r(Rn) + 
n=0

∑} (π - iy.pnqr9 r(E-n-l) ∑2 
n=l j=l

(5.24)(μ>)y-10' -1)!
Using the fact that Jθ0 xne~x∕(n — l)!dx = n, we also obtain from Equa­tion (5.24) that the mean response time for a class-r request in a broadcast delivery system is

— Γo°
Sr = Jq tSr{t}dt

= - ∑(n+l)⅛>V(Rn) + (5.25)
" Ln≈O

N52 l∕2(n + l)!pnρrg~(Rn,ι) . 
n=l

If we are interested in the overall broadcast system performance for all classes of requests, we must average the above distribution over all r. The mean response time S averaged over request class is given by
_ R _
s = 52 Qr sr.r=l

Figures 22, 23 and 24 show the response time distribution S{t) and the mean response time S as a function of the traffic intensity in a broadcast delivery system.



- 118 -These examples are based in a camp-on system with R = N = 30, μ = 1.0 and a Zipf’s lawl43l distribution for the class-r requests (gr = c∕r).
In Figures 22 and 23 we show the overall response time S(t) as a function of time for traffic intensities p ≤ 1 and p > 1, respectively. We notice that S,(f) is a weighted sum of the Erlang distributions 2¾(i) of requests being broadcast in position i in the Videotex system. For light traffic, the higher weights correspond to lower phase Et(t). This accounts for the almost exponential shape of S(t) in Figure 22. As the traffic increases, higher phases 2¾(i) dominate, accounting for the peak seen in Figure 23.Figure 24 shows the mean response time behavior as a function of traffic inten­sity as well as the behavior of the class-1 and class-30 message requests, the two most extreme cases of delay for this broadcast delivery model. Here, we see that for heavy traffic the mean waiting time reaches a plateau. To understand this behavior we notice that as p increases, the probability that we find N requests in the system goes to one. A new request must, of course, wait for at most N/μ units of time on the average to be serviced. It is not hard to see from Equation (5.25) that, in fact,

N 1 7lim Sr = £ ⅛(⅛ = 
p→θ0 ÷-, Nyμ'

7 = 1

N + l 
2μ

This is because the new message request can be broadcast in any of N broadcasting time slots, not necessarily the last one, since a previous request for the same message may already be in the system. For the above values we have S = 15.5, as in Figure 24.The response time distribution of a Videotex system using broadcast delivery systems has also been studied by Ammar and Wongt1,42l. There, a product-form ap­proach was used to deal with the problem of the size of the demand for every class of
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Figure 22: Response time distribution S(f) vs. time in a camp-on system with R = N = 30, μ = 1.0 and a Zipf’s law distribution for the class-r request (qr = c∕r) for p ≤ 1.
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Figure 23: Response time distribution S(i) vs. time in a camp-on system with R = N = 30, μ = 1.0 and a Zipf’s law distribution for the class-r request (qr — c∕r) for p > 1.
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Figure 2^: Mean response time S vs. the traffic intensity at the first-level service center in a camp-on system with R = N = 30, μ = 1.0 and a Zipf’s law distribution for the class-r request {qr = c∣r}.



- 122 -work. In order to model the queueing system from the product-form standpoint, the idea of superfluous broadcasting, that is, broadcasting the requested message more than once, was proposed. The idea here is to anticipate future service demand by broadcasting some of the outstanding message requests. When non-superfluous broadcast is used, Ammar and Wong’s approach reduces to the response time dis­tribution we found in Equation (5.24). We were able to derive this distribution from the actual state occupancy distribution of the classes of messages received by the service center with a broadcast delivery service. We expect a more general camp-on approach to the queueing and service strategy that takes advantage of the class and current size of the scheduled service to yield still better performance than the one obtained through superfluous broadcast delivery.
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CHAPTER VI:

SUMMARY AND CONCLUSIONS

In the present work, a model for a stationary, multilevel camp-on system with reneging allowed from any of the system queues has been proposed. For the two- level camp-on model, customers were assumed to be drawn from an infinite pool of subscribers. The associated arrival processes were considered to be independent processes with mean arrival rate λιn for the first-level service facility when the queue size is n, and mean arrival rate λ2r,∙ for the subsystem located at the ith posi­tion in the second-level stage associated with class-rt∙ customers. For the multilevel camp-on model, the same assumptions hold, but now λt∙ represents the arrival rate to the systems located at the itfl queueing stage. The service completion processes were considered to be independent and exponentially distributed with mean service rates μt∙. Similarly, the customer reneging processes from the main system queue and the second-level queues were also assumed to be independent and exponentially distributed with mean reneging rates ⅛⅞ (1 ≤ » ≤ n) and η, respectively. Five ser­vice discipline were studied for the two-level camp-on model: first-come-first-served (FCFS), last-come-first-served non-preemptive (LCFS-NP), last-come-first-served preemptive-resume (LCFS-PR), infinite servers (IS) and broadcast delivery (BD). Only a first-come-first-served service discipline was considered for the multilevelcase.Closed-form solutions for the probabilistic generating function of the equilib­rium joint probability distribution of the queue lengths, i.e., the generalized n- dimensional Z-transform of the second-level queue sizes conditioned on the size of



- 124-the first-level system, were found for two-level camp-on systems with finite and semi-infinite storage capacity. In the special case of non-reneging queueing sys­tems, closed-form solutions for the equilibrium joint probability distribution of the queue lengths were also given for both finite-storage and infinite-storage camp-on systems. For a multilevel camp-on system, closed-form solutions were found for the joint distributions of queue sizes along any service path with n queueing levels in the service hierarchy. This reduced representation of the system states is equivalent to a “depth-first” search of the queue sizes in the service tree.The stability of the camp-on model was shown to depend primarily on the stability of the first queueing stage. This ergodicity condition for the first-level stage translates into a requirement for stability for all the subsystems as isolated queueing systems in the camp-on model. Such a requirement for stability is a consequence of the hierarchical structure of the camp-on model, since customers are continuously promoted to the next queueing stage. Other special distributions, such as the marginal distribution for the size of a subsystem in the second-level stage and the total workload accumulated in the queueing stages, were also derived from the more general distribution for the queue sizes.The joint distribution of queue sizes in the camp-on model was found not to be of the product-form type, as would be typical of some other queueing systems with multiple queues, classes of customers and similar traffic parameters, except for very special traffic conditions such as heavy traffic at the first-level service center. However, the effect of the first-level stage on the second-level system is simple enough to provide ease of computation. This ease of computation is one of the best assets of this model. This result also suggests that more general interrelations between the first and second queueing stages may be proposed without losing too



- 125 -much in the simplicity of the camp-on system representation or in its computational tractability.Two communication applications were discussed in details. One was for PBX- like communication services, such as inquiry-oriented networks, and the other for broadcast delivery services such as in Videotex or electronic mail systems. Per­formance statistics such as waiting-time distribution, response time distribution, mean waiting times and blocking probabilities were given for such services. From this work we can conclude that it is possible to implement two-level queueing sys­tems in an infinite state space, without necessarily running into a deadlock problem, if the traffic parameters are adequately chosen. Moreover, if the reneging rates from the first-level and second-level systems are all positive, the camp-on systems are in­herently stable. This is, however, obvious for finite-state camp-on systems with non-negative transition rates because they represent finite Markov chains.In the case of non-reneging camp-on systems, those results provide a simple way to compute the equilibrium joint probability distribution of queue lengths that can be readily used for systems designs. The examples in Chapter V show that it is possible to achieve system performance close to the performance of a conven­tional queueing system for moderate traffic intensities, though this requires extra hardware and memory capacities. Applications of these results range from typical telephone networks and PBX systems and computer networking to task distribution and management in general multiqueueing systems.The results presented in this work constitute only the first steps towards the understanding the statistical behavior of hierarchical queueing systems. There are two main areas wherein new alternatives can be explored for the two-level camp­on model. One corresponds to more general policies for queueing and service at



- 126 —the queueing stages, especially those that require a deeper coupling between the second-level composition and the type of service provided by the first-level service center. The other alternative corresponds to the study of the sensitivity of the present model to the service strategy implemented at the first-level stage, as well as to the other parameters of the system (traffic demands, storage capacity, etc.).Priority service schemes based on the size of the second-level systems and/or customer classes are of great interest, since they better represent how service and routing are provided in many commercial systems. Simultaneous service at the multiple queueing stages is also attractive, since some of the jobs queued at the second-level stage could be completed without the participation of the first-level service center. This is particularly true in computer-related applications.For PBX-like services, we found in Section 1, Chapter V, that even under heavy traffic conditions we increase the delay in service experienced by the second-level customers by a factor of only 2. This is definitely the worst-case scenario. We should expect that improved service strategies perform better than FCFS, producing even smaller service delays. For an electronic mail system using broadcast delivery, service strategies based on the actual probability distribution of queue lengths rather than on approximations from the product-form approach should also be used to deal with the problem of the size of the demand for every class of work. We expect a more general camp-on approach to the queueing and service strategy that takes advantage of the class and current size of the service scheduled to yield better performance than the one obtained through strategies such as superfluous broadcast delivery.The above systems are just examples of the many potential applications of the camp-on model. We anticipate many more to surface in the next few years. This thesis is expected to help model their performance and even to suggest new useful service concepts.
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APPENDIX I:

Transformed Equilibrium Equations: Derivation

In Chapter II, it was found that the equilibrium probability distribution of queue lengths in the camp-on model satisfies the equation7∙
Σ [λ2r,∙ + ¼∙ + ⅛η∖ X(n>0) + ^lnX(n<N} + ti×(n>0) P(x∏) = 

i=l
Ιn X(kn=Q} P(xn-l) 

n
+ Σ λ2r,∙ X(⅛,∙>0) i,(xnt)

t=l+ ∑(*t + 1)*7 X(n>0) Ρ(χίΊ (7∙1)t=l
R ∞

"1" zE2 X(ro≠rl) tiX(n<N) P(xn+l,l) 
r0=l ko=O

R n+1 ∞
+ ∑ X(rQ≠ι∙j) Σ Σ ui X(n<N} P(xn+1,*)>

r0=l i=l ko=O

(0 <∏<N).

We now wish to express this equilibrium equation in terms of the transformed function P(Z∏', B∙n)1 the generating function for the sizes of the second-level systems, conditioned on the size of the first-level queue. Here,
P(Zn∙,Rn) = P(zγ, Z2ι ∙.., zn', Rn)

∞ ∏ , ∑ P(xn) ∏√∙⅛ι,...,An=0 i=l (7.2)



- 128 -Let us start with the left side of Equation (∕.l). In using the transform def­inition, we can distinguish two distinct type of terms: i) the transformed form of p(xn) times a constant C, merely CP(Zn;Rn), and ii) the transformed form of p(xn) times fct∙. From simple well-known results or a table of Z-transform pairsf18l, we note that: n ∕(n) <—► z -½-F(z).

If one takes into account that P(Zn;Rn) is the n-dimensional Z-transform of the multivariable function p(KnjRn), then one finds that the corresponding transform pair is
QΛ∙p(×n) <→ 2,—P(Z„;Rn).

In the right side of Equation (∕.1), we have to consider three distinct transform types: i) the transformed form for p(x^,), ii) the transform form corresponding to (fct∙ + l)p(x+t), and iii) the transformed form for ∑^=0p(xn+ι,»)·Here again, one can trace a parallelism between the multidimensional P(Zn∙,Rn) and the one-dimensional ^-transform. In the first place, it is clear as above that
∕(n-l) «—> zf(z).

The transform pair corresponding to (n + l)∕(n + l) is not different from the one corresponding to n∕(ra) after a suitable change of variable. Similarly, we note that∞∑∕(n) = f(z) 1∙ n=0 2=1Accordingly, the multidimensional transform pairs for the three cases under consideration for the right side of Equation (∕.1) are:
¾P(Znj Rn),P(×ni)
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(fci + l)p(x+l) <—> z~P(Zn∙,Rn),∞∑ P(xn+l,t) * * J‰ι+l,i)∙⅛0=0Therefore, by direct inspection of Equation (∕.1) and from the transform pairs herederived, one recognizes that the transformed equilibrium probability equation forthe camp-on model comes down to

n n Q∑ [λ2r,∙ +⅜∙] + λlnX(n<Λ) + μ*(n>0) P(Zn;Rn) + ∑ Ziη — P(ZnjRn) = t=l t=l ,Tn -P(Zn-iJ Rn-l)
n+ ∑ λ2r,. X(n>o) ztP(Zn5Rn) t=lη λ

+ ∑ rl X(n>O) ziι=l
R+ Σ X(r0≠r,∙) P X(n<N} p(2∙n+l,Γ, R∙n+l,l) r0=l
R n

+ ∑ X(ro≠ri} ∑ ¼' X(n<2V)-^(Zfi+l,tiH-∏+l,ι)∙ r0=l t'=lAfter grouping together common terms, we get the more compact form:
∑(¾ - 1) z=l ,7Ιχ^-P(ZniR-n) - λ2ri P(Z∏>Rn) +

AinX(n>o) + ∑ ⅛' + λlnX(n<A) P(Zn;Rn) —i=l 7n X(n>O) ^(Zn-i; ®·η-ΐ)∞+ Σ X(r0≠r,∙) Mn+1 X(n<N) -p(zn+l,l5 Rn+l,l) r0=l
oo n+1^h ΣL X(rQτ^Γj) Σ2 ¼ X(n<N) p(%n+l,i> ^n+l,i) r0=l i=lfor all 0 ≤ ∣2t∙∣ ≤ 1. This completes the derivation of the transformed global balance equation for the camp-on system.
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APPENDIX II:

Proof of Theorem 1

In Chapter 3, Theorem 1, we claimed that the general form of the generalized Z-transform for the equilibrium joint probability distribution of queue lengths in a camp-on system with infinite or semi-infinite storage capacity is given byP(Zn;Rn) - Po ∏ t=l= P0 ∏ ⅞ ∑ Λ
where il ” i⅛, (<⅛)%+ι, 

K. = ∑ ⅛(⅛ - i),
iZ. r∣ η—1= -- + £/,·, ' ι=l nPn = P + ∑ ¼S z=l

(û)n
Γ(α + n)

(7/.1)
(Î/.2)
(ΙΙΛ)

(7∕.4)
(/Î.5)Γ(a) ·Here, we show by algebraic reduction that this proposed transformed state- probability distribution P(Zn)* is a solution to the set of transformed independent balance equations for the camp-on model:∑ (⅞ -1)

k~l
~ λ2rtP(Zn) ^i MrP(Z∏) — 7nP(Zn-χ), (∕J.6)

1 < n < N

* In this appendix we will use the shorthand form P(Zn) instead of the complete form P(Zn;Rn) for the transformed state-probability distribution of queue sizes.



- 131 -n+1Al„ P(Zn) = μ P(Zn+ι,ι) + ∑ ". *‰l,i). 0 ≤ n ≤ N - 1. (∕∕.7)£=1These are the equations that state the detailed conditions for flow balance among neighboring states in the camp-on model.Before proceeding with our exposition, we want to mention a common algebraic transformation that will be used quite often in this appendix and in subsequent appendices. For any two sequences {αt∙} and {δt∙}
NN N i+l
Σ Σ ai b,- = ∑ ∑ ai bj. (ILS)
j—k i=j-l i=0 y=o

We start our proof with the transformed state Equation (∕∕.6). We observe that the partial derivative of P(Zn) with respect to z∣c yields 
⅛p<z"> = ⅞∕<z">^

i=kλ2r n liΣ p(z")⅛. ±r*
i=kfor Φt∙(Zt∙) is independent of z∣ς for k > i.

After taking the partial derivative of the transformed state probability distri­bution -P(Zn) with respect to z∣c in Equation (∕.1), Equation (∕∕.6) becomes
∑¼⅛-l)P(Zn)
k=i

n I-Σ⅛ ~ 1

i=k 1i
+ MnP(Z∏) — 7nP(Zn-1)∙ C^∙θ)

Observe also that from Equation (11.2), ∖2rk∣,∏(zk ~ 1) can be written in terms of yfc as ~t(¾ -1) = ^t(¾ -1) + (γk-ι - y⅛-1)
= n - ¾-ι∙



- 132 -Thus, using the above relation, the first term on the right side of Equation (∕∕.9) reduces to
∑ ⅛rt(¾ - 1) P(Zn)fc=l

= ΣΛΖ») ∑⅜ι⅛ ~y⅛-lι - ∏(κfc-rfc-1)
A=l L*=A t

= £ ηP(Zn)[βk ~ ⅛b (∏∙10)

A=l

-.i=k yt

Here, β∣c and δ∣c stand for
βk = ∑,li

i=k

(Yk - ⅞-ι)y;⅝ = (ifc-¾-ι),respectively.Through simple manipulations of the above expressions, we first recognize that the summation of the δk,s yields
∑δk = (κn-r0)fc=l

= Yn.

In the same way, using also the algebraic relationship in Equation (Ji.8), the sum­mation of the βk,s yieldsn∑ftA=l k~ 1 i=A inΣ'.
i=l

Pi - Yo)

Yi

n
∑ r∣li∙2=1In both cases, it is clear from the definition in Equation (77.2) that Yq = 0. In­serting the above results in Equation (77.10) and recalling the definition of an in



- 133 -

(∕711)

Equation (71.3), we find that Equation (77.10) reduces to
7n P(Zn) = P(Zn) n

μ∏ + ∑ηli + ηYn i=l
— P(Z∏) [θ≈n + r](ln ÷ ^n)] ∙

On one hand, observe that the coefficient aj∙ in Equation (77.3) is independent of the summation index Z,∙, if j ≤ t; it is a linear function of Zt∙ if j > i. Define the change of variable Zt∙ = ml + 1. Based on the above relationship between αy and Zt∙, the function (cκy)∕ --∣-ι can be reformulated to accommodate this change of variableas
(o⅛)zj∙+l = -

'(αy)mj∙+2 = (αy)mj.+ι(αy + rny + l),f , 1x ∕ λ (α,∙+m,∙+l)(αy ÷ l)mj∙+l — (α∕)rnj∙+l 3 a3 j
if 3 ≤ i∙,if j > i.

(∕712)
Define the change of variable Zn = mn + l on the left side of Equation (77.11). Using the relationship given in Equation (77.12), it follows that

P(Zn) ln P(Zn)
mn + l αn + mn + 1 ’

where it is understood that we are also using mn rather than ln as the summa­tion index for Φn(Zn) on the right-hand side of the expression for P(Zn). From Equation (77.11), it follows that
P(Zre) [ln-Yn} - P(Zn) Yn

- P(Zn}

mn + 1
.an + mn + 1 αn

an + mn + 1

- 1



- 134-If we look carefully into the definition of (αy)π,j.+ι from Equations (∕J.5) and (∕∕.12), we notice that the above relation is no more than«ηP(Zn)[ln-Yn} = - P(Zn,1)Ψn(Zn) an+mn Y I
Yn

∞ γmn+l= - ΛZ⅛-l) Σ ⅛ 7⅛-------- ≈n∙
mnXo rl (an}mn+2

Reversing the change of variable mn = ln — 1 and keeping in mind the relationship between the an and ln in Equation (∕∕.12), we get
P(Zn)[ln-Yn] αnP(Zn-i) ∞ ~ γln _ j∙ ra∕n=l (α∏)ιn+l

The above expression is almost equivalent to αnP(Zn) except for the missing term 
ln = 0. Adding and subtracting this missing term into the above equation, we find 

P(zn)[∣n - y„] = - «,ΡΙΜ ∑ ⅛- 7-*— + αnP(zn-1) 2» —∕n=0 r∣ (αnhn+l rl 0in

= - anP(Zn} + 2» P(Z„_i). 
r1

Substituting this expression for P(Zn)[Zn+yn] back into Equation (7∕.11), we finally obtain — P(Zn.1) = αnP(Zn) - anP(Zn) + ¾>(Zn.1). 
η ηWe see that the first two terms on the right side of the above equation cancel out and the desired equality for Equation (∕∕.4) is achieved, as we asserted. This proves that the transformed equilibrium Equation (∕∕.6) is satisfied by P(Zn) in Equation (∕Jr.l).



- 135 -We now need to verify the consistency of Equation (∕∕.l) for P(Zn) with respect to the transformed independent balance equation. First, we will rewrite the general term p⅛P(Zn+1⅛) in Equation (II.7) in a more convenient way for this computation. In order to do so, we observe that
iΙcI*(%n+l,∣c) ~ iz⅛-f,(2lj ■, > ¾-1? 1> ¾> ’ ’ ‘ 5 ^n)

γlk-l+lk
rk-l= ½fcP(zfc-2) oo oo

Σ Σ —
⅛-ι=oifc=o (αfc-1¼-ι+ι(α*⅛+ι

⅛2⅛ ∏ ¾∙(Zy-ι).
η j=k+l

(∕∕.13)
where the function Φy(Zy-1) stands for J,∙

~ . ∞ Y11*i(zi-ι) = ÷ Σ -1-^- (11.13)
η lj=0 (aj)lj+l

or, what is equivalent,

The notation Φy(Zy-ι) is used to reflect the fact that there is a first-level customer about to quit the the camp-on system at position i < j. Hence, all the second-level systems at positions j > i must be shifted one place up with respect to the servicecenter.
Define a temporary changes of variables l,k = Ik + ∕⅛-χ and /'· = ∕y if j ≠ k. Also, for ease of notation, define a^~1 as n—1<4^1 = μ∏+ ∑ li, ∏> k, (I∕.14)t=l'fc-l=°

fc—1 I«η = <⅛ ÷ lk-l∙



- 136-Here we are taking advantage of the fact that l'∣c is just a dummy variable that can be renamed l∣z. Thus, Equation (77.13) becomes
rlk

lykp(zn+l,k) ~ μkp(zk-2) k— 1V y __________⅛-ι=θ lk=lk-ι (αfc-l⅛-ι+1(αfc⅛-*⅛-ι+l
n+1¾P ∏ *i(zj∙∑i).

77 j=k+l
(77.15)

Here, Ψy(Zy-j) reflects the effect that ∕⅛-1 = 0 for those an with n> k.From the algebraic relationship in Equation (77.8), the order of summation with respect to the indices ∕⅛ and lk-i can be interchanged. Taking into account the cor­rect upper bounds for this change, we conclude that the general term ι∕⅛75(Zn+ι⅛) in Equation (77.15) can also be expressed as*⅛P(Z,,+ι,t) = ∙P(Zfc-2) £ ⅛⅛⅛k=0 77 (77.16)
n+1πj=fc+lΣ ∏ φj(z,+11).∕t-1=0 (αk-l)⅛-ι+l(α⅛)∣fc-⅛-l+l

Let S∣c denote the accumulated sum up to the fci7t step on the right side of Equation (11.7):
k

Sk = ∑vi i,(Zn+l1i), 1 < fc ≤ n + 1. (77.17)7 = 1Without loss of generality, assume ι×χ to include both the service and the reneging rate for the customer in service. In order to prove Equation (77.7), we want to show that Sn+ι = zγn+ι P(Zn). We will show this by induction on 5⅛. First, from Equation (77.16), we see that for k = 2, μ± = ι∕χ, and so S2 reduces to Ml 71 n+152 = Stir p° ∏ φy(zi-ι) + 
αι τ∣ l=27172 Po 00 ½

∑ η2 ∑ V2,z2=0 ∕1=o Oιhι+102)z2-z1+1 n+1∏ *j(z}-1),y=3
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S2 Ί172 oo

» ∑ r1⅛⅛=0 l2 
+ Σ 1/2

(α2)z2+1 l^0 Mι1+ι(a2)lr∣1+1
×

n+l∏ *y(z}-ι)∙y=3 (//.18)
At this point, it is convenient to generalize the expression inside the brackets in Equation (∕∕.18). This will be an important step in the inductive argument. We will call this expression R(lk)∙ We begin by denoting L⅛(∕⅛) as

Lk(he) ____________n____________(αfe)ijfc(αfc+l)ifc+1-ιfc+l'Let s(∕⅛-ι) be defined bysG⅛-i) ⅞-iG⅛-i) + _______________ __________________(0⅛-l)zfc-1+l(αfc)ifc-ifc.1+l
= ______________ V______________ + _________________ ^k_______________

(α⅛-l)∕fc-1(θi⅛)zjfc-zfc.1+l (αfc-l)zfc-1+l(α⅛)zjfc-∕jb.1÷l,

Notice that for k = 2, sfo = 0) corresponds to the expression inside brackets in Equation (∕∕.18), since ∕j = 0. Recalling the definitions of (tty)∕.+ι in Equa­tions (∕∕.3) to (∕∕∙5) and factorizing common terms in Equation (∕∕.18), we findthat
s(lk-l) Lk-l(lk-l) 1 + fr,⅛

ak-l + lk-l.

(αfc-l + *⅛-l) + t,klr∣
ak-l + ⅛-l

z'fe-lGfc-l)∙
Also, from Equations (∕∕.3) and (∕∕.5), we notice that

(αfc-l + lk-l) + “7 ~ ak∙>*7
(ak + lkHak)lk = (ak)lk+l,

and
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ak

(ak)lk-lk~l+l (α⅛ + 1)lk~lk.1 ' 
Therefore, the expression for s(∕⅛-χ) boils down to

s(lk-1) = ⅞-lG⅛-l) αA
ak-l +lk-l ⅞-iGa-i + ι)∙ (i∕.19)

From this recursion on L⅛-χ(∕⅛-∣), we note that the generalized summation 
R(l∣e) is of the form

«('*) = ⅛-ι(0) + ∑ θ Qt 1⅛-ι⅛-1)
- ⅛1H + ,t∑mαt + w-li*-*⅛-*)
- ¼-iGa)∙Therefore, evaluating 7(∕⅛-1) at ∕⅛~1 = Z⅛, we conclude that

R(lk) = (αλ-l)∕t+l(o⅛-Jjt
r} (77.20)

(^⅛-ι)z⅛+ιGoing back to Equation (7718) and applying that equation with k = 2, we now have that R{I2) = r7∕(o=l)∕2+l so that S2 reduces to
S2

7172T2~ Po n+l«. ∞∏ ⅞ ∑ 73V yz2 η ,Z2=0 (αl)∕2+l y=3 η lj=0 (aj)lj+l

Renaming indices such that ⅛ = l'ι and ∕χ = l'2, αj becomes aj, and S2 turns out to be
∞ ∕71 γlι n+1 -γ ■ ∞ Ylj 1¾ = » ∑⅜i7-1≈ ∏⅜ ∑ 1~÷

l1=0 r∣ (α1)f1+1 j⅛ r∣ ιj=o (aj)lj+ι 
n+l -, . ∞ γli 1poΦi(z1)72 ∏ i ∑ >l-.
j=3 η lj=Q (aj)lj+l
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(//.21)
We claim that, in general, S⅛ is of the form

n+1 z7.
Sk = -P(zfc-1) -ft ∏ a 

y=fc+ι η

00

Σ
lj=0

We will prove this claim by induction on k. If this expression for S⅛ is true, then from Equations (77.17) and (77.21) it must be that
Sk - sk-l + ^⅛-p(zn+l,⅛)

= P(Z*-2)2⅛a ∑ ⅛1×
zt=o 

lk
+ Σ(αfc )l⅛+l nt-l~θ (αA-l)⅛-j+l(αft )∕⅛-ifc-ι+l n+1 ∞ γl∖π ⅜ ∑ —z'1 -

× (77.22)
j=fc+l η (αj 1)zy+l

"k

Again, we recognize the expression inside brackets in Equation (II.22) as R(l∣c). Thus, it follows from the relation in (77.20) that
sk = ∙P(Zlfc-2)⅛± ∑ z⅛rfc-l n+1

l,=0
(ak-ιhl Ιk

j=k+l

γli

lj=0 (αk—1∖
J 'lj+1

∞π ⅞ ∑
Finally, interchanging the name of the summation indices l∣ς and l∣c-i, <⅛y 1 becomes «y, and the expression for S⅛ transforms into

n+1 zγ.
sk = P(zi,1)7i ∏ i

i=k+ι "

∞
Σzj∙=o

γli
r3-l

This is the same expression as in Equation (77.21), as promised. This proves the claim on S∣c.



- 140-It now follows immediately that for k = n + 1,
n ~■ ∞ -S,n+1 = P0 ∏ -7 ∑ Y z7nLi ” ⅛⅛ <α>>⅛+ι

= Ιn P^n)-

This proves the consistency of P(Zn) with the transformed independent balance Equation (∕∕.7). By uniqueness of the solution of the first-order partial differential equation, P(Zn) as proposed in Equation (i∕.l) is indeed the unique solution of the transformed equilibrium joint probability distribution of the queue lengths for the camp-on queueing model.
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APPENDIX ΠΙ:

Proof of Theorem 2

In this appendix we prove the statement made in Theorem 2, Chapter 3, that the joint probability distribution of queue lengths in a non-reneging camp-on system with infinite or semi-infinite storage capacity is given by
!>(×n) = P0 ≠l(xι)∙∙∙⅛(×n), (m.ι)

where
Ψi(×i) =

n
ζn = fn(xn) = fin ÷ ^2rl∙∙τ=l

fλ2ril ⅛t∙ it-ι
& J 1--- (∕∕∕.2)

and (771.3)
Essentially, we want to show that the state-probability distribution proposed in Equation {III.l} is a solution to the independent balance equations for the non­reneging camp-on system:

- n∑(λl + zzt') + ∕iX(n>O) x=l P(×n) Ιn X(kn=0} P(xn-l)
+ ∑ λ2r,. X(fct.>0) P(x√)> (1 ≤ n ≤ N)

2=1and
-^ln P(χn) — R ∞Σ' ^∙(r0≠ri) Σ ^iP(x∏+l,l)r0=l ⅛o=O

R 72~hl oo
+ Σ X(r0≠r,) ∑ ∑ ¼∙ P(xn+l,t)> (θ ≤ n < NY γq=O i=l ⅛0=0

(m.5)



- 142 -As in Appendix II, we start with the independent balance equation (IIIA). For n ≥ 1, this balance equation (III.2} could also have been written asn λP(×n) = ∑ ≠- X(ki>O) P(×n3)∙ 
j=l ζn

Let St∙ be the accumulated sum of the first i terms in Equation (11.6):
¾ = Σ ⅛⅛,i∙,∙=1 ⅞n

We want first to show that
Si =

∕,A⅞+∕tΛ
λ2rt∙ ∕ -Λ ∖ lj )£„ p( " ’ (⅛-*+⅛)

= ⅛a pfoi)i⅛tiζn κi

(∕∕∕.6)

(irι.7)

Clearly, this statement is true for i = 1, since Iq = Zχ — 0 in Φι(Zι). Using induction, assume that Eqιiation (∕∕J.7) also holds for some i > 1. We must then have
Si = Si.1 + ½L p(√) 

ζn= ⅛≤ p(χ-∙+l)⅛i±A=l + ‡. p(χ-∙).
⅛n κi-1 ⅛nReplace p(xrι2) and p(x~t+1) by its corresponding expression based on Equa­tion (IIIΛ). Then, S,l∙ can be expressed as

Si = P(×t-2) ≠i-l(×t7-tι^1) Ψi(×Γ+1}kt~k + l'~1 fn(i + 1)
ζn κι-l

+ ⅛ri P(×t-l) ⅛i(xΓ) ≠i+l(xi+l) ∕w(t + 2) 

ζn

= p(xi-1) ¾ ∕n(∙ + 2), (ii∕,8)



- 143 -where the functions ¾ and fn(i) are of the form:
= ⅛⅛(3√+1) ≠i+l(×t∙+l) + ⅛⅛(x∕) ⅛+l(xl+ι)> (777.9) ζra ζn∕∏(j) = ∏≠y(×y)∙

i=j
(777.10)

Here we have used the fact that
λ2r,∙≠i(xt∙ *) = ξ*≠,∙(x,∙)∙ (III.11)

Let us concentrate on the term S{ in Equation (777.8). Inserting ≠,∙(x*') fr°m Equation (777.2) into Equation (777.9), it follows that
si = ⅞zi ≠i(xl~l+1)√⅛+1(xi+ι) + ≠l(×t"M+ι(xi+1)ζn ζn

£t£»'+l t,"1∑i,^1 ∑' (^ + ,∙)(*⅛'+j + Mx⅛ a⅛γ ⅛ i,⅛1'½zl 
ιi=o li+ι=o V ∕ V zt+ι ∕"∑"lii∑'1 (λ ^,1 + ,∙) (t∙+J + i∙+l)xJ* x⅛i> ⅛ v⅛11∣.∕.=∩ z..,=∩ ∖ ⅛ ∕ V ιi+l >

+
⅛,∙-i-t-⅛-1 A⅛+i,∙∙ 

ΙjΙj+ι ∑ ∑

&&+1 ζ.=0 z,∙+1=o

Define the change of variable j = ∕t∙ + 1 for the first term of st∙ above. The factor £i_l cancels out and in turn gets replaced by ξj. If we also define the change of variable Zt∙ = j for the second term of st∙, then
Si

'Ιi'Ιi+l ki 1 ki∑ 1 fki + 3 - 1 
&&+1 j=l ζ.+1=0 ∖ 7 - 1 .

ki ~fc«+l 
Xl Î+1

ki+1 + ⅛+l 
li+l

Vt+1 c + 
ζn

ΙiΙi+lCîCi+1 ⅛i-l+ζ-l A⅝+j'-lΣ ΣJ=0 Zt∙+ι=0 ki + j - 1 .ki+l⅛'+l y, y..
ii+lt'+l kζn



- 144 -We observe that both terms in sl∙ above are almost identical except for the combinatorial coefficient involving the summation index j. Using the combinatorial identity
n-1 ∖ n-V
k-l) + ∖ k " (77/. 12)

this allows us to write st∙ as a single expression of the form
„ _ ,Vfc+l * y** 1 A» + <ΛA∣+1 + f*+Λj⅝ xfc*'+ι √ Jl'+1 ⅞-, ^ ‰ ,⅛ Λo∖ i A ⅛+ι ri i∙÷> i'∙s∙÷ιξ√(Jii.13)

Moreover, after renaming j as l± and recognizing the terms Ψi(×i) and ≠t∙+ι(x÷^1) and then using the relationship in Equation (777.11), it is found that the expression for Sj is equivalent to n ⅛-x+⅛-, ∕fc,+_ 1x k,+
τ ∑
ζι li=0Υ¾-⅜-ι ‘ γi' At+ι ^*^ ^'+ι∖ Λ+1 J*∙+ι &I.·

£t+i ζ∙+ι-0 it+l

ιrx' ytχ

)4,1- ¾⅛-6,
∙^2rt∙ , t -1∖ ; t —i λ ki + ∕t-

= —÷ ψi(χi ) A+ι(χt∙+ι)-r—∙ζn κz
(777.14)

Substituting the above result for si∙ back into Equation (777.8), we get
si = γri P(χt-ι) ≠ι(xft) ≠f+ι(xΓ+ι) -iT-1M + 2). ζn κι

Note that this expression for S,t∙ is identical to the first term of Equation (777.8) if we use i instead of i — 1 as the index. Therefore,
¾ = > P⅛-i)⅛i∙ 

ζn fςi



- 145 -But this is the same expression as given for Si in Equation (III.7). We conclude that the inductive hypothesis in Equation (111.7) is true for all i > 1.In particular, for i = n, it follows from this last result that

From the definitions of the state probability p(xnn) and ≠n(x∏),
n

= p(xn)∙

¾i--1 «ί

This proves that p(xn) satisfies the independent balance equation in (III A) for fct∙ > 0. However, we still have to show that Equation (111.1) holds, if fct∙ = 0 for some i. We will have to distinguish between two possible situations: i) ⅛l = 0, but 
i ≠ n, and ii) A⅛ = kn = 0.

i) For kι = 0, Equation (IIIA) reduces trivially to the one shown in Equa­tion (III.7) for li = I2 = 0. So we need only to consider those cases where fcl∙ = 0 and i > 1. Using similar arguments as those used in the derivation of Equa­tion (III.7), we note that S,l∙ will now be of the form p(×i-2)sifn(i + 2), and in Equation (III.S), where

We have omitted the contribution from the term p(xn*+1), since we have assumed 
ki~ι = 0 (z' > 1).



- 146 -Now replace ≠l-i(xt∙-i, V∖(×2) and ≠t+ι(xi∙+ι) by their corresponding expres­sions according to Equation (∕ 11.2). Then st∙ turns out to be of the form sγ = 7,∙-i7∏,∙+ι fc‘-2^+/‘-2 ig kÿ fki + Ζή ffct∙+1 + Zt∙+1^ χ
ζi- l£i£»+l

Ιj-lΙjΙj+l

£i—i£»£»+i
z,∙.1=o ιi=oιi+1=o ∖ ∕ ∖ ⅛+1

xi' z√ι yi-ι yτ' ⅛ -r
ζn

t,-⅛'i-2⅛!fci≠+'i (ki-l+ li∖{ki+1 + li 
ιi-1=o ti=o ιj+1=o ∖ ,∙ ∕ V i∙+*A σΛ∙+ι .Λ-ι ..h .Λ+ι

L L· +

V a⅛γ 2Zt_i yit ΐ/,+ί r.Define the changes of variables j = Zt∙-1 + 1 and rn = Zt∙ + 1 for the first term of st∙. Then the factor ξ;_2 cancels out and in turn is replaced by ξt∙.If we now define the changes of variables j = Zt∙-1 and m = ∕1- for the second term of si∙, it follows that∩⅛-n⅛τ⅛+ι Λ fc∙^-1 ∕fc, + m _ 1∖ ∕fc,+1 + ∕.+1∖i ξi-iξt∙ξi∙+ι j⅛ ιi~=o V m — 1 )∖ li+1 J

xki ki+1 J rn Z,∙+1
xi xi+l "t yι+l t⅛n +

7x-l7∏t+l
⅛,∙-2+i,∙-l j A⅛+m-l ∕, 1∖ ∕, ,, '∙ς-⅛ ∕ λ⅛ ~Γ 772 1 ∖ I n⅛-j-l + il-(-lΛ Λ Λ Σ Σ Σ

ςι-ιςt⅛i+ι y=0 r∏=o ιi+1=o m li+l
×

ki ki+i ] m Z,∙∣ι ζjχi a⅛+ι y3i.1 yi yi⅛ ~r-
ζnAs before, both terms in st∙ are almost identical except for the combinatorial coef­ficient involving the variable m.Using the combinatorial identity of Equation (///.12), we find that 

_______ Ιi-ΠiΙi+l ki~^~2 fc>-g^1 (ki + n√) (fci+ι + ζ+ι^
ζi-lCi £i+l 7=0 m=0 Z,∙+1=0 m ix+l

ki ^«+1 3 m ^j+ι μxi' ⅛ y3i.1 yi yi+1 -∑-∙ζn



- 147 -Reversing the changes of variables by taking ∕i∙ — J and ∕i∙+1 — m, we obtain2 ⅛-1 ⅛+li— 1
Σ Σ Σ/,·_!—0 ⅛-0 i,∙+χ-0Ι⅛-ΓY√T⅛+1

£i—i£»£i+i ki + li ⅞+l + li+ltt'+l
ki ki+l li-∖ li 

xi 1*+l yι-1 yt υi+1⅜+l jL
ξnWe recognize ≠t-ι(xt-i), ≠i(x,∙ *) and ≠t+ι(xι^1) in the above expressions for si. Recalling the relationship in Equation (III.1Ï), we have«» = ⅛¼-ι(×t-ι) ≠t(x, t) ≠t+ι(x,+ι) ⅛-^-∙ ζn tt (777.15)

This expression is an obvious generalization of st∙ in Equation (777.14) for the special case A⅛-1 = 0. If more than one of the fct∙,s are zero, this procedure can be trivially generalized as a recursive application of this latest case.
ii) For kn = 0, there is no contribution from p(x~n) but the second term in the expression for Sn is now replaced by p(xrl-χ). Consequently, sn now turns out to be

5n — „ kn-2÷1∏-2 kn-l+7n-χ 1 z, _i_ 7 ∖ ∣ . £Ιn-∏n ∣⅝-l+⅛-l∣ ⅛l>-ι ln-ι ln ξn-le .C Z-* I I lxn-l yn-l yn t
<n-l<n ln~χ=Q ιn=0 ∖ ln-l ) ξn

Ίη-l n 2 An-1 + ^n-lλ kn-l ,.ln-l Ιn
£ ι I I 1 ∕xn-l yn-l t 'ζn-l in-1=0 V ln~1 I ζn

+

However, we observe that the second term of sn can be thought as an extension of the summation with respect to ∕n, if we allow ln to take the value —1. That is,
√, ∕χ ∩ — n γ'n 2 An-l + ^n-Λ ⅛n-ι ln-l Ιn≠n-l(xn-l) - 7—- L· 1 , lxn-l yn-l ~Γζn-l ∕n-1=o ∖ tn-1 ∕ ζn

Ιn-1 fkn-l + ^n-l∖ k∏-ι ln-l -1£ 2-r I I ∣xn-l yn-l yn ∙
ζn~1 ln-1=0 V n~1 ∕



- 148 -It follows from the above result that sn reduces to ⅛n-2+⅛-2 ⅛n-l+^n-l-l∙sn — Vι+in-η Λ-ι in-ι in
t £ t—t ι ∕ l^n-l &η-1 Vn £
Çn-iÇn ln~1=Q ln--l ∖ ln-l J Sn

7n-∏n Σ Σ

If we define the change of variable j = ln + 1, make the corresponding transfor­mation on sn, and then rename j as in, we obtain
λ, ⅛n-2+in-2 ^n-l+^n-l ft. ∣ ∕ ∖ , , t C⅛ = ∑ ∑ H+⅛⅛piΛ⅛1ζn-lζ∏ in-1=0 y=o V <n_1 '

λj λ, ⅛n-2+in-2 λn-l+⅛ι-l /j. , ∕ ∖ 1
Ίη-ΐΊη γ- p-l + ⅛-l∣ ^⅛-ι Λ-l J»
t 2—t 2-*∣ I » , ∣∏-1 y∏~ι yn ∙
Zn-lζn in_1=0 ln=0 × ln~1 '

Finally, recognizing V,n-l(xn-l) and V'n(×n) in the above expression for sn , we conclude that
Sn = ≠n-l(xn-l) V'n(χn)∙

This is again in obvious agreement with the definition of sn according to Equa­tion (III.15) for ≠n+χ ≡ 0. This completes the proof that the state probability distribution p(xn) proposed in Equation (III.1) is a solution to the independent balance equation in (IIIA).

Equation (111.5), as mentioned before, deals with the effect that departing first-level customers have on the camp-on model. In order to prove the consistency of the proposed state-probability distribution p(xn) with the independent balance equation in (111.5), we have to redefine some of the camp-on parameters in Equa­tion (III.1) to accommodate the prevailing conditions at the second-level systems when a first-level customer is about to quit the camp-on system because of service completion or defection.



- 149-Let λ2r0 denote the arrival rate to the second-level system associated with the departing first-level customer at position i of the queue (λ2rθ ≠ λ2r,∙, 1 ≤ t ≤ n). Define
Hoi

»cn
θi

λ2r,--1
c0t∙ ’

Cot—1 
Cot ’ i—1Mi + ΣZ ^2rp ⅛=0 t—1M*' + ∑2 ^2rp ⅛=1

(∕∕∕.16)
(111.17)

(277.18)
(777.19)

These parameters are the equivalents to x±, y*, and ξt∙ in Equations (3.3) and (3.5). As a consequence of inserting an arbitrary first-level customer and its associated second-level system with queue length Icq at position i in the first-level queue, all the second-level systems above position i — 1 are shifted one place up with respect to their distance from the service center. So we have to use kj-∖ instead of kj for all 
j > i to indicate the proper queueing condition prevailing at the second-level queues when we refer to the function ≠t∙ in Equation (III.1). Here,we will write ≠i∙(xt∙-1) instead of ≠l∙(xJ to indicate the presence of a first-level customer at position j < i that is about to leave this queueing system.Define st∙ as the ith contribution to the right side of the independent balance Equation (III.5). Then, from the definitions from (III.1Q) to (III.19) for a de­parting customer, we have ∞5* = ¼∙ ∑l p(xn+l,i)⅛0=0∞ n+1= ¼ ∑ p(×t∙-ι) ∏ ≠y(xy-ι), (∕∕∕.20)

kn=0 J=∙*,∙-ι=*0with the function ≠i(xt-i) given by
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≠t(xt∙-l) (∕J∕.21)

and = zγo for 3 — *· Without lost of generality, 14 is assumed to include both the service and reneging rates for the customer in service.First, we want to express st∙ in terms of the state probability distribution p(xn). For i = 1, we observe from Equation (∕∕∕.19) that pχ = μχ = 0χ. The above expression for sχ reduces to00«1 = 01PO ∑
ko=O ζ°1

n+1
∏ ≠*(χ,∙-ι)z=2∞

= θ1p0 52
⅛o=O

¾⅛f„l 0l n+1 ki-2+it-1π ∑
i=2 li=Q

ki_i +li

. h
ki-l

xoi-l yι

Clearly, the summation index ∕χ inside ≠χ is always zero, since k_i = Iq = 0. Thus, ∙sχ could also have been written as
51 . ’i9? ⅛+iι 71 *γi1 f*l + ⅛∖ il 12 "τ⅛1 ! I 1- eιp°⅛-i ∑0⅛ ⅛ ig, U+⅛W ⅛ ∏ ≠i'x∙∙-ι>∙

If we interchange the order of the summations with respect to the indices k$ and I2 according to the algebraic relationship in (∕J.8), it follows that
si = 01po 7071 

ξolζo2

(ki + l2∖ k0+l1 k1 l2 nγτ1 I f yΣ Σ L + Z, Ni X°2 Vo2 ∏ ≠i(×*-l)∙
2=Qk0=l2-l1'''κi+ll' i=3

However, the summation with respect to ∕cq ⅛ nθ more than a geometric series with ratio x0ι < 1, so the above expression yields
5ι = θ1p0 7θ7l

ζolζo2

» 4 (kl+∕2∖ il ⅛ γrι ,¾r^h1+ιJ^^∏∕∙'x-')∙



- 151 -Moreover, from the definition of ξcn in Equation (III. 18), we find that 1 _ ⅛½ = μ-i + ∑U1l λ2r⅛
^oi μi + Σ⅛l10 λ2r⅛

= ½-. (III.22}
⅛oi

Therefore, after evaluating 1 — xoι in sχ and canceling out common factors, we get
•si P0-√7θ7l

to2

klfλ2r ■ "÷1
*o2(τl2)i2 ∏ ≠t(×t-l)∙

ζo2
(III.23)i=3

Before going through with the rest of the reformulation of sχ as well as the other st∙,s, it will be appropriate to carry out a side computation that will help simplify the upcoming exposition. For this, consider the relation
i n+1

Ri(m) = 70 ∏ Φj(×j)ri+1 ∏ ≠y(xy-i),
y=m+l j=i+2

where the functions Φi(^×i) and rt∙ are defined as ⅞-ι+⅛-ι
~ — T¾-l V-' ( ⅞-l ÷ h ∖ ^i-ι <,^2r0 J,. , ∕ ∖
ri ~ c . ∣i∙. ∣∕. ) Xoi ( t . ' ^i+l(xi)∙⅛ot ζ.==0 ∖λ,i- 1 iι-1/ ⅛oi

(JJ∕.24)
(∕∕∕.25)

Observe that for m = i = 1, we have -Rχ(l) = r2 ∏≠t∙(×t∙-ι), so that s1 = po-ffχ(l) from Equation (III.23). In Appendix IV we will show that for 1 ≤ i ≤ n,

Ri(m) = Rn(m)

= Ίο ∏ ≠i(xi)y(⅛ii(∕v-),i
"n+1 "n+1 "n+1 i=m+l °i ^+1 ¾+l⅛t-l

Ιi
θn+l

fn(m) = Rn(m), (∕J∕.26)70
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(∕∕∕.27)

with the function ∕n(m) given by
aw = (Λ)ti+'< π ⅜⅛)⅜ιA)t,(,7*i⅞ )ι∙'-"»+1 i=m÷l “i+1 1

The Equation (III.26) and the fact that ∕χ ≡ 0 giveiι = ',ι>Al⅛tι∏≠∙lx∙4(Λ>ti<r^7-)'i
ffn+l V2 i=2 t>i 0i+ι 0i+lζt-l

= 70 θ∏+l
fn(l)- (III.28)

For 2 ≤ i ≤ n, we must generalize the expression found in Equation (177.26) for i = 1. From Equation (III.20), we haveoo ⅛*-l÷⅛-lζ°t fco=O Z,∙=0 ∖ b ∕ ⅛ot ⅛ot ×
⅛o+Z,∙7» ∑ Λ∙+'-+>)⅛+1⅛+∙1 ∏ ≠.(χ,.1).ζot+1 zi+1=o ∖ t*+1 ∕ y=t+2

First, we take care of the coefficient ko that apppears with the combinatorial coefficient associated with the summation index ∕t∙. If we interchange the order of the summations with respect to the indices ko and ζ∙+ι as in (11.8) and then define a temporary change of variable fcθ = ⅛θ — ζ+1 + Zt∙, it follows that
⅜ = ⅝p⅛-ι), .f , ∑ Σ I , ⅛(τ-),×ζo*⅛ot+l ii=Q Zi+1=0 ' t*+l ' ^σι

Σ (4° + '<)(⅛)S⅛1 ff ⅛(xλi)

k0=li+1-li v t , ζ°i i=i+2

= ¼p(×i-ιb-y, Σ Σ ,. 1 l‰ι(γ-),×ζoι⅛oι+l ζ=θ I1∙+1=0 × ii+1 ' ζ°l'⅛⅛A⅛)⅛⅛1-4t⅛ ff ≠i(χ3..1). (∕J7.29)
< li ) Zoi j=i+2

Σ⅛0=0



- 153 -At this point it is convenient to recall some useful combinatorial identitiesi35J. First, a common series expansion for combinatorial coefficients is
(∕Π.30)

Taking I ≈ ∕t∙+1, k = ko and j = ⅛, we find that the second combinatorial coefficient in Equation (J∕J.29) becomesAθ + ⅛+i V h

} - ⅛.(t.∙,)(l,*∙.) (∕∕∕.3l)
Secondly, another common the combinatorial identity that will come handy at thispoint is (J∕1.32)k + n 

n
k + l 
k + nThus, if we take k = fct∙+1, I = ζ+ι and n = n, the first combinatorial coefficient in Equations (∕∕∕.29) and (∕Jr∕.31) transform into

∣ei ^b ⅛+l j A+Λ _ At + n j At ^h ^t+l
*t+i J∖nJ~ ∖ n )∖ ki + n (∕LΓ.33)

Therefore, substituting both of the results in Equations (III.31) and (∕J∕.33) back into Equation (∕ 11.39) and regrouping common factors, we have( ∖ '7θT⅛ ’ ∖p* 1 ν' A» ÷ n∖ fc,∙ Λi-l∖l-
Si = ¼∙p(χt∙-ι) ■ ‰ I xoi+Λ-r~)tχsot⅛ot+l ιi-Q n=0 ∖ n ∕ ζotΣ Σ il++⅛1)(ιΛ0J(7a)i0+,i+,^⅛⅛1 ∏ ≠y⅛-ι)fco≈Oii+1=O V ft* +n ∕ Vt nJ Sot j=i+2

= ¼p(×t-ι) 707i £ot£ot+l fc,∙-ι+ζ∙-ι liΣZ1=0 n=0 ∖ n ∕ ζotΣ il++⅛1)<7a,ι,'+1^',⅛+÷1 ∑ Π ⅛⅛-1>∙Z,∙+1=0 ∖ zet + n ∕ Sot fcθ=O V* π∕ ζ°t j=i+2



- 154 -By definition, (jj = 0 for all j < k and j < 0. Summing with respect to ⅛θ on the line above, we notice that the contribution from the first ∕t∙ — n terms in (,j-n) is null; i.e., 0 ≤ ⅛ ≤ ⅛ ~ n ~ I- Thus, the expression for st∙ reduces tov∑"' Σ (i'n+n)⅛+ι(yi),'×Z,∙=0 n=0 V n ∕ ζ°*Ι0^ti 
CoiCoi+l

5t∙ = Ui p{×i.1)

i,,⅛(V÷∙*')⅛,,'∙rt∙-i-,∙ ×
⅛o=o V '⅛ "')(⅛>)⅛+⅛-- "∏ v,j.(xλi). 

k0 ) ζ0t y=i+2

From the binomial theorem, we know that!35]∞Σfc=0 *i = (ι-i)-(i+1). (∕∕∕.34)
Hence, taking I = — n in the above expression, we haveA,∙-ι+Z,∙-ι Z,∙

si = ¼∙p(xt-ι) ∙ ∑ ∙∑p+n)xX1⅛Λ)'.χ
ζotζ∞÷l ζ=ο n==o ∖ n ∕ ζjcnΣ (1++n1) (7a)',÷1^,'≈'⅛ι(7a)'i^"

I. —Q ∖ ^t ' rl ∕ ⅛oz ⅛oτ ×
∖ n+l(1-⅛a)i<-"+1 ∏ ≠,(xλi).
ζ°t j=i+2

Using the equality in equation (III.22} and regrouping those factors associated with the summation indices l±, n and ζ+1, we get∕ λ ΙθΙi * 1 γ' iki + n∖ ki , ‰-ij.¾ = Σ L· n ⅛ι(τ-),χζot⅛ot+l ζ.=o n=0 ∖ n ∕ ζot∑ il+'^1)(⅜a>'i+1",'≈'"+1ιtτa>i''^"<r-l'i"',+1 "π ≠><5⅛-ι>Z,∙+1=0 V Ki + n ' ζ°l ζ°l ζ<n j=i+2
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= ",i>(x,-ι)τjp-v∑'1∑ (∖nW)l-(¾aΓ',×

⅛oi⅛oi+l i.—Q n-Q ∖ n J “i “i∑ (l++⅛1)^+ιl⅛+, ∏ ψ>tx>-j∙⅛+1=o ∖ κ* + n ∕ ζ<*+ι y=t∙+2We now want to relate ∙st to Rn(i). Interchanging the order of summation with respect to the indices ∕t∙ and n as in (77.8), we have⅛,∙-ι+Z,∙-ι ∕, 1 ∖ ⅛ *,-ι+⅛-x⅛"(*.*∙)⅜r∙ 'X'⅛>,70Ι⅛
#i£oi+l

st∙ = ι∕t∙ p(xt,1)
Σ (∖⅛⅜+1(⅛),'+' ∏ ⅛∙(¼ι)∙li4.,=θ'. ki+nt>+l=υ ' " , — , jl j=i+2In the above expression for st∙ we recognize both 72n(t) and a truncated geometric series with ratio ξt-ι∕0t∙ < 1. Summing with respect to Zt∙ in the above expression for st∙, we have ⅛⅛T('")⅛,*∙

λ 1 _ ('iijΞl)fc.-ι+ζ-ι-n+l n+1⅛Γ ■ 1 ξ,,,------------ ∏ ⅛(xy-1)∙0,∙ 1 - j=i+2But, from the definitions of ξt∙ and 0t∙ in Equations (777.18) and (777.19), it follows that
-. __ ζj-l __

^ θi'Thus, after renaming nas ∕, and grouping common factors with respect to the index ∕t∙, ¾ becomes
ki-l+li-l= P(xi-ι) Σ ^t^ ∕ £i—

ιi=o ⅛ ∕ ∙^2γq 1 _ jfe.∙-i+^.-i-ζ∙+l
θ.

×
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70 7j£oï+l ∞

ΣIi+ι=o K + ⅛+l 
⅛i ^+^ ⅛

xot+l( ⅛,)<i+l£ot+i n+l
Π

j=t+2
≠y(xy-1), (///.35)

where the bottom line of Equation (∕∕∕.35) is merely Rn(i) = ∏+ι∏<⅛t(x^1)∙ It then follows from the expression for 72n(*) in Equation (∕∕∕.26) that
si

■ "'-'1∖δ'(*'it)⅛>'
70-

1 _ (⅛LΞl)fct-ι+ii-ι-it+1
$ir½-⅛ti(½a)'∙' ∏ ⅛⅛)l(Λ)ii(57⅜-),i∙'n+l σt+l 7+1 j=t+l *t+l 0»+lft-l'

×

Expressing st∙ as a fuction of p(xn) and recalling ∕n(l) from Equation (III.27), we obtain
¾ = 70 P(×n)

ξi

βn+l
fn(i)

&-1^n+l fn(i ~ 1) (∕∕∕.36)
The above result covers the cases 2 ≤ i < n. For i = n + 1, we must evaluate sn+ι directly from Equation (∕∕∕.23). In this case, we have

f ∖ 70 y-' fko + I∏+l∖ ∕ ^2r0 y∣cnf ζ∏, \l„«n+l = MlP(xn)7------  L L· » 1(7——) θ(7----- )”ζon+l ⅛θ=0Zn+1=0 × <n+l ' ⅛on+l ⅛n+l ‘n+l

From the binomial theorem in Equation (∕∕∕.34) and the fact that
1 ^2γq∕ζon+l ~ ^n+l∣£on+l>

we have
5n+l - ^n+l Pfen) 70 ⅛n+Λιj2 (^ow+l)^-t-ι+1( ■ ζw )l£n

= "n+l P(×n)

^on+1 ιn+1=0 θn+1 £on+l n+l

70n+l i

kn~j"ln
Σ (

n+l—0

√n+l 

*n+l 'θ



- 157 -Again, this last summation is a truncated geometric series with ratio ξn∕0n+j. Since 
1 - (ξn∕^n+l) = izn+l∕0n+υ the expression for ∙sn+1 becomes

,sn+l — lzn+l P(χn) 700∏+1 _ )⅛n+U+l¼ι=l∕0∏+l
= 70 p(×n) 1 - “n+1 ∖ ⅛n+in+1
= 70 P(×n) [1 - /«(»)]· (∕∕∕.37)

Putting together the results in Equations (III.28), (III. 36) and (111.37), we conclude that
n÷l
∑3,' = 
i=l

70 P(xn)v^-∕n(l) + 70P(×n)[l - ∕n(n)] + 
"n+1n∑ 70 P(χn) t=2 .vn+l

fn(i)
ζj-l

θn+l
fn(i ~ 1)

All the terms inside the brackets cancel out except for ∕n(l) and ∕n(n). Then, it follows that
rc+l λ
∑ Si = 70 P(*n)-^~fn(l} + 70 P(×n) [l ~ fn(∏)∖ + 
i=l 0n+l

70 p(*n) [∕n(n) ~ ∕n(l)]

= 70 p(χn)∙

This shows that p(xn) as proposed in Equation (III.17) also satisfies the inde­pendent balance equation (111.5). Therefore, we conclude that the state probability distribution p(xn) proposed in (III.l) is indeed a solution to the set of independent balance equations for the camp-on system. This at last proves Theorem 2.
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APPENDIX IV:

Proof of Ri(m) = Rn(m)

In Appendix III we claimed that the following recursion holds for R,∙(m), (l ≤ t ≤ n):
i n÷l7ζ(m) =7o ∏ ≠y(xy)rt∙+1 ∏ ≠y(×y-i) = -Rn(m), (∕V.1)

j'=m+l j=t+2

where the functions Φi(×i) and were defined as≠i(×i) = ⅜ifc,"j∑"1(λii↑,i)(⅛∙),ti-1(⅜)'i-1",'∙ (/K2)
⅜d ∑ (Λ++Λ W1<τa>i' ≠i+ι<xil∙sot ii=Q ∖'ct-1 τ∙ tt-1/ ζot

{IV,3)

In order to prove this claim, we focus on Equation (IV.3). This can be expressed
ELS

ki f ki + li+Λ ki ιi+l
ιi+ι Jxoi+ιyot++vri =

yi Σ (∕' 1̂++∕i )⅛^1(τa),∙√h- Σ ’ (
sot ii=Q ∖,tt-l I tt-l∕ Sot sot+1 Zi+1=0 ×

We start by interchaging the order of the summations with respect to the indices ∕j∙+1 and ∕j in the above expression for r1, using the algebraic relationship in (/J.8): 
φ,. _ T⅛-l Ji+1

»ot; zi+1=o V b+ιz... ,xoi^y^+ιx

Ιi

iθt + l l.=l. , , _L·. , ∖Λj it lt+l 'ct-l

a'7*+1,* )⅛+1(7a)i''∙ <iκ4)
,z-1 I n—1/ senΣ



- 159 -Define the change of variable m = ll — ∕l+1 + ⅛i-ι∙ Substituting for ∕1∙ by m in Equation (∕Vr.4) and using the simple combinatorial relation
k

k-n∣, {IV.5)

we can rewrite the last expression for rt∙ in Equation (IVA) as
ri =

Ιi-i At + 4+Λ J⅞-ι J, 
^0* 4+ι=θ × i*+1 oι

vZtι×

⅛(C⅛>"÷>⅛m+'i+l^,∙ (IV-6)Ιi
Cot+1

Recalling the combinatorial expansion in (II1.30), this time taking j = kτ^l + 
/,·_!, I = ζ+ι, and k = m, we find that the second combinatorial coefficient in Equation (IV.6) becomes:

™ + 4+l ∖ = fci-yii^1 A+lV m ∖¼-l + 4-l∕ y=0 ∖ j ∕U-l+ii-l-J∕
Similarly, recalling the combinatorial identity in (∕∕∕.32) with I = ∕t+ι, ∏ = j, and 
k = fct∙, for the first combinatorial coefficients in Equation (IV.6) and (IV.7), we have the identity

ki + 4+Λ i 4+ι I _ At + j I At + 4+ι 4+1 J ∖ J J ∖ J J∖ ki+J (IV.8)

Substituting both (IV.7) and (ΓV.8) back into Equation (IV.6) and regrouping com­mon factors, we end up with the following relation for rl^.^fci"∑Υ,7j)⅛-ι g (γ⅛÷>b⅛
⅛Ot j=Q ∖ J I ζ+l=0 ∖ fti + J

ι∕,+ι X ot+1 yot+lA7tCθt+1 m=0 At —1 +4-ι J∕ C∣

m V⅛^Ιrn+it+ι-fci-ι

ot
Σ



- 160-7i-l ki γi 1 i⅛ + A χkirl _Ji 
£oz j=Q ∖ j ) °i £oi+l ζ+1=0 V + Jy' (ki+li+Λxki υli+1 X 

L·, 1 i,. l √ jxoi+l yoi+lx-

(^2r° )⅛+1~⅛t-ι 
£oi

V i m }f⅛r0xm
,=0 V⅞-l + li-l ~ j) £oi (IVβ}

mLet s denote the term inside brackets in Equation (∕V.9). Since (kj} = 0 for all 
j > k and j < 0, the first fct∙-1 + lt_i — j terms in the summation with respect to 
m are all zero, and they therefore offer no contribution to s. It follows that

s = Y'' f m Vλ2r0xm 
m=0 'A'-1 ÷ ^*'-l - J,∕ ^oi

= V ( m V2f0]wm=fc,∙+Z,∙-1-y V⅛-l + i*'-l - ·?/ ^oi

After the temporery change of variable m' = m — ⅛t∙ — Zt_i — j and using the combinatorial identity in Equation (TV. 5), we have
= ∞ im + fet∙.1 + ∕t∙.1 - A f Λ2r0vm+⅛,,1+f.,1-yn⅛Λ ki-l + li-l-j

= £ fm + ki~1 + li~1 ~ jΙ (Ä2r0)™+k-i+t-i-\
m=0 ∖ m ∕ ^oi

Also, from the extension of the binomial expansion in {III.34), taking k = fcl∙-1 + 
li_l — j, the above series expansion for s reduces to the following simple expression:

■ -(⅛t-l+ζ-l-J + l)1 - λ2 roe,ot £oi

But we have already found in Equation {III.22) that [l — A2r0∕ξoJ So the final expression for s is given bys = {-)~( ki-1+f<-1 -j+1) {^2ro ) ki-1+z, -1 -y - 
ζoi ζoi

= oτ■



- 161 -Substituting this expression for s back into Equation (7V.9), we obtain
(',7i-l ’ J2* * f⅛ + J ^2r0y-+1 +Z,∙-1 -y.£lio» y=o ot -ι-y+ι

If we rename the summation index j as i j, interchange the order of summation with respect to ∕t∙+1, and then regroup common factors, we find that rt∙ becomes_ T⅝-l * 1 iki + ζÀ ⅛t-1 ∕ iot λ⅛,-1 ( ⅛r0 X/,·_ 1 -ζ
1 θi ⅛ ∖ li J oi {θi j ( θi j⅛7 ∑ (V+⅛1)a‰1 ^÷ιi⅛)i,+li⅜ifc,''1+i,'^1^i,'∙ (jκι°)⅛+l-^θComparing this result with the initial expressions for rt∙ and ≠t∙(xt∙) in Equa­tions (IV.2} and (7V.3), we immediately recognize the first term in Equation (7V.10) as ≠j(xj, while the second term is almost identical to r^+1 except for the missing factor ≠j(Xj). Therefore, it follows that

i n+1jfi⅛(m) = 70 ∏ Φj(×j)ri+1 ∏ ≠y(xy-i) 
j=m+1 ∕=t+2

i n+1
= Ί0 ∏ Φj(×j')Φi+l(×i+l)ri+2 ∏ ≠y(xy-ι) 

j=m+l j=i+3= -¾+l(^)∙
Applying this recursion n — i consecutive times to itself, we end up with -¾(m) = 72n(m). This proves the first part of the claim.We then compute Rn(m} from rn+χ in Equation (∕V.l). In this case, ≠n+2 = 1, so

R∏{rn}
n ∞70 ∏ Φi(×i)γ^- Σ

i=m+l ζ°n+1 ∕rt+ι=0 kn +In+1 
kn -t^

kn ( on+lv -⅛^)z∏+ι. (∕F.11)⅛on÷lX



- 162 -Again, the contribution of the first ln terms to the summation with respect to the index ∕n+χ is null. Hence, from the combinatorial expansion in Equation (III.34) with k = kn + ln, we get n
Än(ra) = ΊΟ ∏ Φi(×i)t=TO+l Ίη τkn ∕ ^2r0 √λ, fon+l∖An+∕n+lU+l "∙+1‰√ lin+√

η= 70 ∏ ≠i(×i)t=m+l 7n ∕λ2r0unz λw kn ^n+l #η+1 &η+1

Shifting the factors (λ2rt∙-1∕^*')*,-1 and (λ2ro∕0t)i,--1 to the next lower term in the product form of 72n(m) and canceling out common terms, we obtain
D !__ ∖ — ~. ^∣i ! ^2rm ∖km(⅛R - 70------ (------- )

“n+1 wm+l ffm+l
)⅛tn( ,'^r0 'jlm J^Ji=m+l 7i+l Ϊ+1

If we compare this expression with Equation (Ilf.2) and add the missing terms in order to write Rn(m) as a function of ≠t∙(x,∙), we have⅛(m) = -,0-H-(⅛⅛)*"∙(2⅛.)i"> ∏ ≠i(χ,.)∣i(A-)⅛( «£_)<<.
θn+l ffm+l t,m+l i=m+l °i t,t+l

This completes the derivation of Rn(m).
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APPENDIX V:

Proof of Theorem 3

In this appendix we prove the statement made in Theorem 3, Chapter 3, relat­ing the joint probability distribution of queue lengths for a size-constrained non- reneging camp-on system with the state probability distribution p(xn) for the un­constrained model. In the non-reneging camp-on model with unconstrained queue sizes, we found that the equilibrium equation for the queueing systems reduced to
nΣ⅛+ lzt) + ^ln X(n<2V) ^t^ ^iX(n>0) L t=l p(×n) =X(An=0) p(xn-l) n+ ∑ λ2r,. X(⅛∙>0) P(×n') 

i=l
R ∞

+ Σ ×{r0≠ri) Σ PX(n<N) P(xn+l,l) γq=1 ⅛q=0 (V.l)
R n+1 ∞"f" Σ2 X(ro≠r,∙) Σ√ Σ√ lyi X(n<N) P(xn+l,t)j γq=1 i=l ∣cq-0

O<n<N.

Let (lγ,∙ ∙ ∙ ,Zs) be an ordered s-tuple, with 1 ≤ lγ < ∙ ∙ ■ < ls ≤ n. Let the ∕j,s identify the second-level systems with a full waiting line; e.g., the ltih second-level system size is ty. = Nτ∙l., where NT[ is the storage capacity for class-r; customers associated with the ltih second-level system. Denote by p*(xn) the joint probabil­ity distribution of queue lengths for the finite-storage camp-on model defined in



- 164 -Theorem 3; that is, p(K∙nι R∏), if ki < Nr., (0 < n < N);

p*(Kn5Rn) = Σ Σ p(Jn! R∏), if — Nr∙l, (l≤5≤n)._ Λi=⅜ι Λ*=⅜, (K2)Adding on both sides of Equation (Kl) from fc∕ = Nrι to Jfci = oo for each one of the ∕t∙, Equation (F.l) becomes
r n

∑(λ2r,∙ + ¼) + λln X(n<N) + (i×(n>0} P*(^×n) -τ=l
∑ ∙ ∙ ∙ ∑ Ιn X(kn=Q) P(xn-l)λj1≥Arjι kla>Nrla

+ Σ

⅛1>jv

+ Σ⅛1>Λ
+ Σ

Σ Σ λ2r,- *⅛>0) P(xn")fc∕1≥Aηι kιl>Nrlg t=l
R oo

Σ Σ '5t∙(r07tr∙') Σ μ,X(n<N) P(xn+l,l) (^∙θ)fcι1≥Arjι kla>Nrla ro=l fco=O
R n+1 ∞

• ∙ Σ Σ X(r0≠ri) Σ ∑ ¼ X(n<2V) P(xn+l,t)>
kll>Nrlι kla>Nrlaro=O i=l ⅛θ=00 < n < N.

We take a closer look at the different terms on the right side of Equation (Vr.3). First, in the term involving p(xn-i), we note that either ls < n and the last second- level system is not full, or else ls = n and so X(⅛n=θj = 0. Thus, we can write
∑ ∙∙∙ ∑ 7n X(⅛n=0)P(xn-l) = 7n X(⅛n=0)P* (xn-l)∙ (V.4)

k[1≥Nrll kll>Nrla

With respect to the second term on the right side of (V^.3) involving p(x~1), we notice that either fy. ≠ i and so the itfl second-level system is not one of the full
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i∑fci.>
3~

P(×n)
∑ P(xn*) = 

kl^Nrij

subsystems, or else kι — i. If in the latter case we introduce the temporary change of variable fc'∙ = fct∙ — 1, it follows that
Nr, P(xn*) if i ≠ b'ib'. λγ 1+∑fcl.≥hΓrι.P(χn) if*=∕y. 
kl.=Nr, -1 ‘i lj 

3 li

Consequently, it follows from from the above result that the contribution from the newly arriving second-level customers reduces to
∑ ∙∙∙ Σ P(xn*) = P*(xn*) + Xt=∕j∙P*(χn)∙⅛∕1≥hΓrj1 kla>Nrlg

With respect to the third and fourth terms in (V.l), which involve the contribution from the departing customers p(×n+ιιt), we notice that
ΛΓr0-l∑ P(xn+l,i) = ∑ P(xn+l,t)

ko>O kβ= 0
+ P(xn+l,t)

k0=N,ro

Therefore, it also follows that this contribution can be expressed as
*r0~l∑ ■·· ∑ ∑ P(xn+l,τ) = ∑ P*(xn+l,i)

kι1≥Nrlι kla>Nrla ⅛o≥O ko=O

Nr0= ∑ P*(xn+ l,t)∙
ko=0

+ P*(xn+l,d ∙^ΓQ
(V.6)

Here, Nro is the storage capacity for the class of second-level customers currently in position i that are about to leave the camp-on system.Inserting the findings from Equations (F.4) to (F.6) into Equation (K3), the equilibrium equation satisfied by p*(xn) reduces to
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Σ (λ2r,∙ + ¼) + λιn X(n<jy) + PX(n>0) P*(χn) =

Ίη X(⅛n=0) P*(xn-l)+ ∑ λ2r,∙ X(fc,∙>0) P*(xn*) + X(i=∕j∙)P*(χn)]
i=l

i=l
R N,ro

+ Σ X(r0≠r,∙) Σ PX(n<Λ) P*(xn+l,l) 

r0=l ⅛0=0n+1 ^r0R
÷ ∑} X(ro≠r,∙) ∑ ∑ vi X(n<N) P (xn+l,*)ι γq=1 ï=1 fco=O0 ≤ ki < Nri 0<n< N.

(V.η

Regrouping common terms with respect to p*(xn) in Equation (V.7), and recalling
1 X(i=lj) X(i≠lj},

we conclude that
∑(λ2rt∙ X{i≠jl) + ¼) + λln X(n<N) + PX(n>0) P*(x∏) -

z7n X(⅛n=0) P (xn-l) n
+ ∑ λ2r,∙ X(⅛i>0) P(xn*)

2 = 1
£=1

R N,ro
+ Σ X(r0≠rt∙) Σ PX(n<N) P*(xn+l,l) ro=l ⅛O=θ

R n+1 n'o t
+ Σ X(r0≠ri) Σ Σ ⅛ X(n<N) P (xn+l,J,r,o=l i=l fcθ=0

(K8)

O<ki<Nri, a<n<N.



- 167 -This equilibrium equation for p*(x∏) is seen to be identical to the equilibrium equation derived for the camp-on model with finite storage capacity given in Sec­tion 1, Chapter III, i.e., Equation (3.20), since clearly, X(tγ∕j.) = X(ki<Nr )∙ This proves Theorem 3.
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APPENDIX VI:

Workload Distribution Among the Queueing Stages

Here we proceed to carry out the intermediate steps in the derivation of the equi­librium workload distribution in each of the two stages of queues given in Chapter 3, Section IL From Equation (3.27) we know that
= P(Z„;R„)f,(⅛)

Zn≈Z
n

= P0 ∏ 
2=1

______________ Ιi_______________μ + ∑5=ι⅛i(ι-i), (7∕.ι)
where z is a vector with all components zt∙ = z.First, observe that P(z∙,^Rn) is an all-pole function. All the poles ¾ of P(z∙,^Rn) are distinct and given by

λι (K∕.2)
where we have written λl∙ = ∑y=ι λ2rj∙ as the total arrival rate to the second-level stage for the particular class assigment Rn.

Since all the poles are distinct, P(z∙,^Rn) can be expressed as a sum of single­pole functions through the method of partial-fraction expansion!23). It follows from (VJr.l) that
P(z’, Rn)

n
= Σ 

2=1

____________¾____________M + ∑j=l ^2rj∙(l - z} π(Rn)∙ (V∕.3)



- 169 -From (K∕.2), we see that all the poles of P(Zn) are located outside the unit circle. From a table of Z-transform pairs!18), we find that the distribution of the total workload among the two queueing stages is of the form
p(k∙,^Rn)

n
= Σ

τ=l μ + λt∙ π(Rn). (V∕.4)μ + λt∙,The coefficients ot∙,...,αn in the method of partial-fraction expansion are found from P(2jRn) by canceling the pole at z = ¾ and then evaluating the resulting function at z = z^1 i.e.
<⅞ P(g;Rw)

π(Rn)
(l~zi ⅛

Z=Zi
(VI,i)

Evaluating αt∙ from P(zjRn) in Equation (K2) and ¾ in Equation (F∕.2), we have
μfa ^b λt-λy — μλy — λt-λyAλ,∙

αt∙ = μ∏
3≠i 

n
= μ Π. . A ∙ — λ ∙ J≠t ^ι λ]

(r∕.6)
For convenience, in Section 3, Chapter III, we defined the parameters o⅛∙ and Z¾ (they are not to be confused with ari and βr∙i in Section 2, Chapter III) as:λ,-

ßi

μ + ^i 
μ

μ +fa

(VI.7)

(VI.8)

where ¾ gives the average rate of arrival to the second-level stage when the customer class assignment for the second-level systems is Rn while fa gives the average rate of departure from the second-level stage under the same conditions. Observe that
μ(fa - λy)o⅛ — α√ = ------- ^— ------ —-.

(tj- + λt)(μ + λy)



- 170 -Writing the right side of this expression as a function of d⅛∙ and β{, we haveΛ Aμ(∖' ~ λj)∏(δ⅛∙-αj∙) = ∏
n ∖ ∙ — λ ∙J≠l Λ»

y≠t∙ (μ + λl∙)(μ + λy) 
0∙i,βj∖

we find that n î . n x.λ .πr⅛= π-^
y≠t' λi λj 3≠* t 3

(VI.9)

Replacing this last expression into the expression for ot in Equation (V∕.6), wehave π ⅛β 
αt = ∕i 11 ξ.,. ai — a.· J≠ι * 3

(r∕.ιo)

Finally, using the expression for αt∙ in Equation (Pr∕.4), and recalling from (F∕.8) that μ∕(μ + λj = βl, we conclude that the joint probability distribution of the size of the first-level and second-level queues when the class assignment for the second-level systems is Rn has the form
p(A:;Rn) = ∑∕¾⅛τr(Rn) ∏ <⅛β

i=l j≠i (°⅛ ây)
n ≥ 1, k > 0,

as we claimed in Equation (3.40). This completes the derivation of p(&;Rn).
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APPENDIX VII:

Proof of Theorem 4

In this appendix, we prove the statement made in Theorem 4, Chapter IV, that the joint probability distribution of queue sizes along a service path with (n + 1) levels in a multilevel camp-on system is given by
pM(J„;K„) = ∏Φ,∙(J,⅛t=0 (VII.7)

where the function Φt∙(Jt∙jKj is of the form τr(⅛),
1,

if i = 0if ki =0, 0 < î < n;
li=0

{Mi + ⅛ Λ'+l Vj χ⅛ Λ+lΦl(Jl∙5Kz) = if ki >0, 0 < i < n;+ β1+fco-h-∑7=il l*
∏ ¾Γ,i+'.t=l if 0 < i = n. (V∕∕.2)Here the parameters Mi, ßi, o⅛∙ and o⅛n stand for

Mi — [fcm-l 3mTO=1 ki ≥ Ji+l> (V∕∕.3)
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ßi

a.in

μw+∑ι⅛λ√∖'+lM+∑i½λ√∖+lMl + Σfci2 λ∣c

{viiλ}

(y∕∕.5)
(VII.6)

Before proceeding to derive Equation {VII.l), it will be useful to introduce some new notation that will help in simplifying the upcoming exposition:i) In any relation involving state vectors such as Φt∙(Jj5Kt), define*,-,(jiiκj) = tj(⅛ι√)
to mean decreasing the size of the level-(Z + 1) queue by one. We will make use of a similar notation every time we need to increase (+Z) by one, or decrease (—Z) by one, the size of the Z-component of a given vector.ii) For 0 ≤ i ≤ n and fct- > 0, we will write the function Φt∙(Jt∙jKt∙) as:

*,(⅛κi) = ∑i⅛)Oift)‰(⅛ ifθ≤.<ni ⅞=0
. -Z'n(θ) -ff∏n(θ)>where F,t(Zt∙), <⅞(Zt∙) and ift∙n(Zt∙) are defined as if i = n,

Fi(li)
fMi + ki - ji+1 -li' 
< ~ Ji+1 )

∏in(M =

(r∕∕.7)

(727.8)
Gt∙Gi) = π(⅞),

0t+ι -1 + Zj I z,∙ (777.9)
⅛α-'+1, if i = 0;if i < n;aL+⅛-j,-∑E∙1 li ∩ a⅛-Λ+1,ι=l if i = n.

(777.10)



- 173 -Also, whenever the meaning is clear, we will drop the explicit reference to the summation index in any of the above expressions; e.g., Fl = F,t(Zt∙).iii) From the definition of Λft∙ in Equation (F7∕.3), one can derive the following relationship between Λ7t∙ and A7t∙+p
Λft∙ + k{ Ji+ι Zt∙ — (F7J.11)Therefore, one could also have expressed Ft∙(Zt∙) asAf‡ + fcj Λ'+ι Zt∙ ⅛ ~ Λ'+l (F77.12)

We will use the former notation, Equation (VI1.8), whenever an explicit reference to the relation between Zj and Fj(Zj∙) is in order.Now that the notation is clear, we will proceed with the proof of Theorem 4. First, observe that in the distribution for pM(xn), the first-level queue size, ko, and the first-level customer identifier, j1, appear together in the form ko — j±, except for 7r(fco) = (1 — pι)pι°. Thus, if ko and j∖ axe simultaneously increased by one, pAf(xn) changes only by the multiplicative factor pχ = λj∕μ. That is, the increase in the size of the first-level system is compensated by a departure of a first-level customer.From the above observation, it follows thatpM(J+l;K+°) = pM(J„;K„). (F77.13)MlThis is, in fact, a partial balance equation for the multilevel camp-on system. FromEquation (F77.1), it is clear that a second partial balance equation holds for themultilevel camp-on system. This equation is η n
Ml + ∑3 ⅛+l ~ ΣS ∖'+l *(λ+i<⅛,) Z,λ∕(xw )2=1 + λ" X⅛=⅛-1, fe.=o) Pu(xn-l'i- (l,"∙M)2=0



- 174 -Both partial balance equations together are equivalent to the equilibrium global balance Equation (4.6).In order to verify that the proposed state probability distribution for the global balance equation in Equation (VII.l) satisfies the above partial balance equation, we must consider three different situations arising in multilevel camp-on systems: Case I: All jl+ι ≠ fct∙ and fct∙ > 0 (0 ≤ i ≤ n).This case corresponds to a situation wherein none of the n + 1 queues is empty and the state vector does not refer to a service path including one of the last customers in any subsystem. Hence, we can decrease the size of any queueing subsystem without going below jζ∙, the path index at the ith queueing stage for the next subsystem.Since jζ∙+ι < fct∙ for all queues, the second part of the right side of Equa­tion (VJI.15) does not contribute to Pm{×∏}∙ In fact, we have the simpler relation
n

Ρμ(Χλ) = Σ amn Pjtf(xn ) 
m=0

= Σ ⅛n∏Φt(x∏∙ (V∕7.15)m=0 i=0Because of the decreased size of the level-(m ÷ 1) queue, the summation with respect to the index Zi∙ in Φt(χ7^m) with m > i will have Λ7l∙ — 1 as its upper limit rather than Λft∙. This comes from the observation that Aft∙ is directly proportional to the sum of those fcy’s with j < i, as indicated in Equation (VJ7.3). However, we can actually extend all these summations in Φi(x^rn), m ≥ i, to include Λ7t∙. In doing so, we note that as one evaluates 7^-rn(∕j), m > i, at Zl∙ = Ml∙, then ∙Λ7t 1 ÷ ⅛j
ki ~ Λ+ι 

ki ~ Λ'+l ~ fλ∖ 
ki ~ Ji+1 )0.

F~m(Mt) = (



- 175 -Therefore, if all summations are extended up to Aft∙, neither Φt∙(Jt∙jK1∙) nor pM(xn) is altered by this change.Moreover, the two functions in Φi∙(Jt5 Kt∙), that is F,(Zt∙) and Ht∙ra(Zt∙), depend only on the subsystem sizes kj with j < i, e.g.,
F-m

i FX I?
r-m 

. *i ’

if i < m;if i > m.Knowing this, and using the notation for Φl(J,5Kt) in Equation (Vr∕∕.7) and the above observation on F~m, we can now rewrite Equation (VΙ∕.15) as
n m— 1 ∙Λ∕,∙Pm(×-) = Σ ⅛" H Σ FiβiHin

m=0 i=≈0 li=0

n Mi
∏ ∑ F7"'GiH^ 

i=mli=Qsince the function Gt∙(Z,∙) depends only on the subsystem index j'1, not on the sub­system sizes. Also, without loss of generality and for simplicity of notation, we have assumed ln = 0 and Gn(0) = 1.From the definition of Htn(Zt∙) in Equation (VII.1Q}, the following relationship can now be derived between H,n and HZ,rn'*7∙ 1Λ
HinPi1> if i = m = 0;
Hinßn if i = n, m = 0;
Η ο-1 xftnumn* if 0 < i = m = notherwise.

(Vr∕∕.16)
However, from Equations (VII.14} and (V∕1.16), we note that ρ↑βn = αθn . There­fore, Equation (V∕∕.15) for pM (xn) boils down to

m—1 Λf,∙
⅛M = Σ arnn ∏ ∑ FiGiHina-1

mn
m=0 i=Q ∕=0 n MiΠ Σ F~mGiH,

i=m li=0

5

n m- 1 ∙Wl∙= Σ Π Σ FiaiH,
m=0 z=Q l-=Q

n MiΠ Σ FΓnGΛ
i=m lj=0

in (F∕∕.17)



- 176 -If we look closely at Equation (VILΓ7), we realize that, essentially, we have been left with the task of computing the expression
J m— 1 n

‘j = Σ ∏ Fi ∏ F~m.
m==Q i=0 i—mFor the case j = 1, Equation (V∕∕.18) gives

'1 = ∏ F-° + Fo ∏ F-1.

2=0 2=1But from Equations (VI1.3) and (VII.8}, we note that Ft~θ = F∑1 for t > 1, while 
Fq = 1. Hence, recalling the definitions of Ft∙(∕t) in Equation (VI1.8) or (VII. 12),», = fb[jτ0+λ^1i Π V

τ=2

= ⅞Λ ∏ Fi~1,
i=2where we have used the combinatorial identity for the sum of combinatorial coeffi­cients in (111.12).At this point, a reasonable conjecture for sy, based on the form of sj, is
si = ∏ Fi ∏ Fty . (VIIΛ9)

i=Q i=j+lIt turns out that this conjecture for sj∙ can be proven. By using induction from the already proven case of j = 1, we find that
<,∙+l = ⅛ + ∏ Fi ∏ F-^2=0 2=J + 1

= ∏ F, ft f-1+ ∏ Fi ∏ fς<>+1>.2=0 i=j+l 2=0 m=j+l
(VII.20)



- 177 -Again, from Equations (VII.3) and (VII.8), we note that F- j = for
i > j + 1. On the other hand, for ι■ = j + 1,

■J+l p~(∙7 + 1) J + l+ ¼+2-lλ∕ ¼∙+2-l ∖Λ∕+l - 3j+2J 'Λy+l - Jj+2 - V
= f m>÷2 1∖fcy+ι - Jy+2∕

Therefore, substituting this last result into Equation (Vr∕∕.20) for sj∙+1, it fol­lows that
'i+ι = ∏ Wι + V+i+llι ∏ iΓ0^11i=0 i=j+2= ∏ii⅛ ∏ <,j'^1't=o i=y+2 J+1 n ∕∙,n= πo <b+”,t=0 t'=j+2

as in Equation (F∕∕.19) with j replaced by j + 1. This proves the conjecture for
In particular, evaluating sy at j — n, we find

*» = π ι∙r.ι=0 t=n+l 
n= ∏ii

i=0

Thus, substituting this result back into the expression for pM(xn) in Equa-



- 178 -tion (VII.17), we finally obtain
n Mi

PM^n) = ∏ ∑ FiGiHin 
i=oιi=o

= ∏Φi(Ji⅛
i=0the proposed state probability distribution in equilibrium for the multilevel camp­on system. This proves that pM (xn) in Equation {VII.1} satifies the partial balance Equation (K∕∕.14), when fct∙ > ⅛∙+1.

Case II: km = jm+∙i and fcm+χ ≠ 0, 0 ≤ m < n.Since the level-(m + 2) subsystem is not empty, the contribution to pAf(xn) because of (x^m) is zero. For, if we were to decrease the size of the subsystem at the (m + l)si queueing stage by one customer, a bulk arrival of km+± +1 customers would be required to get back to state xn, and such a transition is forbidden. Also, since km = jτn+l> we will have Fm — 1 and F^ — 1(0 ≤ i ≤ n). Hence, even though the term pM(x~m)s missing in Equation (Vr∕∕.14), the result presented in Equation (V∕7.19) remains true for F^nm = Fm = 1. The same conclusion holds if there is more than one A⅛ with A⅛ = j⅛∙+1. Thus, Case II reduces, in fact, to a special instance of Case I.
Case III: fcn-i = jn and krl = 0.In this situation, the customer in position jn has just joined the level-n queue.For him, the multilevel camp-on system looks like a system with (n — l) queueingstages rather than like a system with n queueing stages. This condition is indicatedby the second term on the right side of the equilibrium balance Equation (4.6) orin the partial balance equation in (VII. 14). Therefore, in this situation, 

n—2∕,Λ∕(χn) = Σ2 ain ^b an-l,n Pj∖i(xn-1 )’i'=0 (K∕∕.21)



- 179-Consider the contributions to pM(xn) from the pM (xni),s in the above equation.This equation has the same form as that given in Equation (F∕∕.15) for Case I. There, we were able to extend the summation inside Φ1(x2) up to Ml∙ because Ft(Λft) = 0. In this instance, however, we cannot extend the upper limit of the summation involving the function Φη_ι(χη_ι) up to Λfn~1 without altering pM (xn), since Fn_i = li, not 0. Nonetheless, Equation (V77.19) will still apply if we account for the correct upper limit of Φη_ι(χη_ι). Doing this, Equation (VII.21) reduces to
Pm(x") = ⅛-2 + “n-U Pw(xn-i1)

∏ ∑ FiGiHin × (VII.22}

Σ Λ-l‰-l) Gn-l‰-l) ff∏-ln‰-l) ‰(0)

Here we have chosen to note the explicit dependence on the summation index ∕n-i> e.g., Gn_i = Gn-i(∕n-i), and the fact that Fn(0) = 1.Let us focus on the contribution from Pjvi(χn2ι'1) Pλ∕(xλ)∙ From Equa­tions (FJI8) and (VII.9), this contribution could also have been written as
Mn-i + Jn — 1 Mn_!pmK-71) = Π Σ Λ<λ¾i,n— 1 ×

√n-l 5ι+⅛-y1-∑trL12 ιi'n—1 >j n— 1n-l A>n-i



- 180 -But from Equations (VIIA) to (VII.6), we notice that αη_1η/αη_ι - ßn/ßn_r. Similarly, from Equation (V∕∕.10), the following relationship can be derived be­tween Hrn,n-i(lm) and Hmn(lrn) for m < n: if 0 ≤ m < n — 1;
H∙m,n-l(lm)

Hmm

if 0 ≤ m ≤ n — 1.
Thus, completing the expression for ZΓnn(O) as indicated by the above relation, the expression for in Equation (V∕∕.19) becomes

PΛf(xn-i1) = n—2
∏ ∑ FiGiH,
i=Q i,.=0

iMn^ι + jn lλ in

<⅛"a1⅛)⅛t~Λ'+ι n-2 ,π 4^*+,∙
However, o⅛n-l∕o⅛'n ~ ßn-l/ßn from Equation (VII A). Accordingly, the above expression for Pjvf(xn2ι^1) reduces to

■»n—1/
n-2 Mi
Π Σ FiβiB,

i=0 li=Q
tn

f Λfn-1 + Jn - r 1 Mn-i j∣<⅛"-ι×
1 ∏ ⅛^*+1t=lFrom Equation (VII.3), one recognizes the exponent of βn-i as Mn-i∙ In the same way, if we rewrite the exponent for βn as Σ^Ξ11(⅞-i — Ji) = Λ∕n-1 + ∑X⅛then 

Pm (xn-]hl) boils down to
PΛf(xn-i1) = n—2 Mi

∏ ∑ FlG.H
i=0 li=0

^Mn-l + jn jn nMn
tn Mn.1

∖<n-iβn-ι ×
z,l+⅛0-Λ-Σ?=12 li~Mn.ι 7tγ ki-ji+1 
Pn 11 ain

i=l



- 181 -At this point, it is convenient to relate the top line of the above expression PΛi(xn-i1) to terms in Pm(x^∙ F°γ this, we observe that
Gn-i(Mn.1) Zπ-ι=Λfn-1 1 Mn—i )

H∏-l,n(^n-1)
^n-l—^n-l

In aMn-l 
an-lfyn-l ’

‰>(0) = ⅛+*÷≈i⅛π,l>-*H,∏<<
t'=l

in

Hence, PΛi(xn2ι^1) is equal to the missing term in pM (x~^j^1), resulting from eval­uating the first summand on the right side of Equation (V 11.22) at ln-i = Afn_j. This means that Λfn.1-1
∑ Gn.1(ln.1) Hn-i,n(n - 1) Hnn[Q)∕n-l=0n-2 Mi

⅛(χ->) = Π Σ ∙fι¾∙s,,
t=0 li=0

fi~2 ⅛f,+ 0⅛ι-ln ∏ ∑ iiGi¾n-l
i=0 li=Oσn.1(Λ∕n.1) κn-ι,n-1(Mn-ι) ‰(o)

n—2
Π Σ Wt=o ∕i=o tn

Mn-1∑ Gn-1(∕n-1)^n-llnGn-1)‰(0)in-l=0
= ∏Φi(Jliκi).

i=0This is the desired result at last. The state probability distribution proposed in Equation (VII.1) is indeed the solution of the global balance equation for multilevel camp-on systems. The proof of Theorem 4 is complete.
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APPENDIX VIII:

Performance Derivations for PBX-like Communication Services

In Chapter V, Section 1, we stated that the waiting time distribution for class-r customers in the second-level stage of a two-level camp-on system with PBX-like communication service and infinite storage capacity is given by
‰(t) = μ(l-p1)e->11∕o',1 dx, tyill.ï)

with
ιΛχ) = r⅞7 (viii.i)

1 - PrXThe general assumptions were that the queueing system is balanced; i.e., the service processes for first-level and second-level customers are independent and identically distributed, and no defections are allowed from any of the camp-on queues. In this appendix, we carry out the intermediate steps needed to obtain this result.The probability Wz2r(i) that a new class-r customer arriving at the second queue­ing stage at time t∩ will have to wait for t units of time, before his service period starts, can be expressed as the sum of products of various independent events. The first probability is that the new customer arrives at his second-level system when it is located at position j in the second-level stage, its current queue size is kj customers, and the size of the first-level system is n customers. This is given by 
pn{kjr) in Equation (3.36). Then we must multiply by the probability that such an arrival takes place at that second-level stage when the first-level system size is n.



- 183 -The third factor is the correponding waiting time function for the newly incoming customer given the last two events. This is a (j + kj)- phase Erlang distribution, for the service time has a negative exponential distribution with mean μ. This product has to be evaluated for all possible sizes n and kj for the first-level and second-level systems and summed. Thus,
W⅛W = ∑ ∑

j=l n=j n

= ∞ ∞ ∞ pn(kjr) Ej+k.(t) j~1 ~'j∙ j~0 n
(VIIIΛ}

Here, Prob(ji^l∕n) = 1/n is the probability that this incoming class-r customer finds his second-level system in position j with respect to the service center when the first-level system is composed of n users. This is because no priority scheme is being implemented, just a plain FCFS service strategy.From the expression for pn(kjr} in Equation (3.36) and Equation (VIII.4), it follows that
'n~j + kA ⅛n→1a>(l-p1)gf (μi),+⅛'-100 00 00lt"2rw = ,ξn¾⅛⅞l *,· T (j+k1-- ι)!μc-μt

(VIII.5)Defining the temporary changes of variable n' = n — j and j, — j — 1 in Equa­tion (VIII.5), we find
W2r(t) = ∑∑∑Γ∑Ι~ ------- f⅛μe-∕rf. (F1∕∕.6)°° °° °° rn + ⅛∖ ff÷1<⅛ (1 - p1)p"+i+l (μι)y+t -, ∖ k J n + j + 1 (j + ^)∙j=0 ∏=0 fc=0

In deriving the last expression, we dropped the subscript j from kj, it being unnec­essary for this computation.



- 184 -Since pγ∕n = Jq1 xn 1 dx for all n > 1, we can rewrite this last equation for the waiting time distribution Wz2r(^) as an integral of the form
(VIII.7)where we have interchanged the order of summation and integration. This is permis­sible because β, a, pi, and En(t) are probabilities, and so each of the summations in Equation (VIII.6) is bounded by a convergent sequence fort36) Pi < 1.

Using the the binomial expansion in Equation (III.34) on the series expansion with respect to the index n, we have
W2r(t)

rp. ∞ ∞ A(l-P1)e--"Γ∑∑
υ j=0k=0

βr<⅛xi (μtγ+k 
(1 - ⅛∙x)*+1 (j' + *)!

dx.

Exchange the order of summation between the sequences on the indices k and j (both sequences in the above equation being convergent), and consider the change of variables j = n — k. The resulting expression for Uλ2γ(^) will then involve two summations as in the left side of the algebraic relationship in Equation (II.⅜). Thus, after reversing the summation order, the waiting time distribution for class-r second-level customers ends up being
.p. ∞ ∏W⅛(t) = i√l-z>ι)e-"i∕ ∑∑,zυ n=0fc=0 βrakχn~k (μt)n 

(1 - ∕3γx)a+1 n!
dx. (VIII⅛)

Here the summation over the index k is finite.Using the formula for a truncated geometric series, Equation (VIII.⅛) yields
Uλ2γ

1 ar
n÷l

βrxn (μt)nl x(l-βrx)
ar

x(l-βrx)
dx.n=0



- 185 -Reordering common terms and noting that x(l — βrx} — ar — (βrx ~ αr)(l - χ)> it follows that ∕*Pι 0θW2r(t) = μ(l - Pι)e~μt h ∑ βxn+1f⅛ x(l - βrx} - ar n!
βr (μt)n

(μi)n 1 ar
n+ΓX x(l - βrx}

dx

(VIII.9)= μ(l - Pl)e~μtf‘ ∑ --------⅛-Æ k+l - '"M"+'] <fa'
Jo ^0(βrx- αr)(l- X) n! L jwhere we have used the expression for 'yr(x} given by Equation (VI11.2).If we now sum over the index n in Equation (VIII.9) and use the series ex­pansion for e1, we finally get that the probability distribution for the waiting time period of class-r second-level customers in a camp-on queueing system with PBX- like communication services and infinite storage capacity isW'2rW - m(X - gl)^t Z/' _ ‡)(1 _ x} R*1 - >(s)^(*>t] dx.

(VIII.10)From this waiting time distribution Wr2r(i), we can also compute the cumulative probability distribution Hz2r(> i), that an incoming class-r customer will have to wait for more than t units of times before his service period begins:Λ∞Wf2r(> t) = ∕ W2(τ}dτ.
J t

and X and integrating with respect 
W2r(> t) is given by
-e-∕√1-⅛ - 
X

Exchanging the order of integration between τ to r, it follows that the cumulative distribution
rPiΓa≈)γ÷PΓ2r(>ι) = (l-p1)

(VIIIA1)

rPι , ' 'T'rW-e-μ(l-7√.))<dl 1 - 7r(*)where 5
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fr(χ)

ßr
(βrx- ar)(l -x)' (VIII.12)

Similarly, consider the mean waiting time for this class-r second-level customer in a PBX-like communication system. If we compute this from Equation (VI11.10) and using the fact that ∫θo xe~axdx = l∕α2 for a > 0, we get___ ∕∙∞
W2r = ∕ τW2r(τ)dτ (VI11.13)

J 0
= (1 — Pl) fPl βr

μ Jo (βrx — αr)(l - x)
7r(x)

dx.(l-x)2 (l-7r(x))2
Finally, recalling again the definition of Ιr(x) in Equation (VIII.2) and evalu­ating the expression inside brackets in Equation (VIII.13), we find that the mean waiting time Wλ2γ i≈3 given by

Wr2r (1-Pl) [Pl-pi) rp 
μ Jθ

ßr αr(l - βrx)
(βrx - αr)(l - x) [(1 - x)2 β2(l - x))2

(1 — Pl) [Pi 1∕
Joβrμ Jθ (1 - x)3 (2-Pl)

2βrμ(l-p1) P1'

dx

dx

(VIII.14)

This concludes the derivation of the waiting-time distributions for class-r second-level customers in a two-level camp-on system with infinite storage capa­bility and with PBX-like communication services (FCFS overall service discipline.)
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