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QUEUES OF QUEUES IN COMMUNICATION NETWORKS

Abstract

The concept of a camp-on queueing system is related to the idea of having
systems of multiple hierarchical queues. Customers requesting service at a service
center are duéued at one of different queueing stages Based on the location of the
customer’s intended server within the service hierarchy. In many instances, cus-
tomers in a camp-on model exhibit a dual function customer-server, giving rise to
a system with queues of queues. For this model, we assume Poisson distributed
arrivals with different classes of customers for each queueing level. The service
completion process is regarded as exponentially distributed, a standard assumption

for many communication systems.

Here we discuss a stationary model for such a Markovian camp-on system.
Closed-form solutions are derived for various state occupancy distributions of inter-
est (e.g., joint probability distribution of queue lengths, marginal distributions for
subsystems, accumulated workload, etc.), in systems with finite and infinite storage
capacity and two queueing levels. Most of these results are also extended to mul-
tilevel queueing systems. It is found that this camp-on model is stable whenever
all the distinct queues, in isola.fion, behave as stable systems. The form of the
joint probability distribution of queue lengths is not a product of the independent
contributions from each subsystem, since it must also account for the relative posi-
tion of the queues with respect to the initial service center, the root of the service

hierarchy.
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Two particular applications are discussed in detail: 1) PBX-like communication
services, and 2) broadcast delivery services. Performance statistics such as wait-
ing time distributions, blocking probabilities and mean response time are derived.
These results show that we do not pay too large a penalty for introducing two or
more levels of queueing, and under very extreme conditions (heavy traffic) the delay
in response increases only linearly with the number of queueing stages. Broadcast
service strategies provide even better performance than conventional point-to-point

service, though a broadcast medium is required.
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INTRODUCTION

As the next generation of communication systems unveils, more customer-
oriented services and computer applications are making use of hierarchical strate-
gies to handle their decision-making algorithms and other resource management
problems. .These new tendencies withiﬁ the communications market call for a bet-
ter understanding of hierarchical approaches to queueing distribution problems in
communication systems. The approach to be considered in this work is a tree-based
queueing strategy. New job requests entering a service center can be scheduled and
queued on top of previously queued jobs. Rather than doing so in a single queue,
however, the customers are distributed in an array of queues based on their order of
arrival and class and type of service requested. Such a queueing strategy, borrowed
from the camp-on service in telephony, offers a variety of applications in areas such

as system resource management, networking, scheduling and routing, etc.

So far, current services and applications have been taking advantage of well-
established queueing concepts and sophisticated task management schemes devel-
oped for both single node and multinode queueing systems. The main core of this
research has been aimed at systems with an arbitrary but fixed number of nodes or
service centers. These have been within the general context of networks of queues.
Key issues under consideration have been multiple classes of customers, queueing
and service strategies, routing schemes, distribution of workload, etc. An extensive
survey of the most important results in this area can be found in the specialized
literature(%25:28]. Some of these will be discussed in detail as we review the dif-

ferent techniques used for queueing system analysis in Chapter 1. Our goal here



_9-
is to evaluate some of the queueing issues under a camp-on strategy, where users
are queued at different levels within the queueing system, which are related to
the user’s end-point server. Besides being a natural extension of present queueing
models, camp-on systems can also be seen as a model for queues of queues. Such
representation permits modeling systems with a random number of service nodes
or active queues, which are defined by the queueing schemes adopted. Some of the
multilevel queueing issues can even be interpreted as problems of population size in

a “genealogy tree.”

Most of the specific problems in the area of networks of queues, such as those
mentioned above, seem to stand in need of a general theoretical framework within
which models and questions of system behavior can be appropriately formulatedv
and addressed. However, a great amount of insight can still be gained through
the use of techniques such as continuous time Markov chains, generating function
methods and the use of notions such as balance equations and time reversibility of

Markovian processes.

In this work we introduce the concept of a camp-on system. Specifically, we
focus our attention on the equilibrium behavior of queues in a camp-on model. In
Chapter I we describe the queueing strategy associated with a camp-on systerﬁ and
compare this model with other queueing systems. Chapters II and III are devoted to
the study of two-level camp-on systems. The basic assumptions for the model and
the underlying equilibrium bala.née equation for the joint probability distribution of
queue lengths are derived in Chapter II. These are based on a Markovian model for
the State occupancy problem in a two-level camp-on system. Defecting or reneging
from the camp-on model is also contemplated. Chapter III addresses the problem of

finding joint probability equilibrium distributions, some marginal distributions, and
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the total workload accumulated in the queueing stages. Closed-form solutions for
different state occupancy distributions are provided for non-reneging camp-on sys-
tems. In Chapter IV we extend many of the concepts analyzed in the two-level case
to multilevel camp-on systems. Finally, Chapter V presents analytic performance
results for camp-on systems in two distinct communication applications: i) PBX-
like communication services as in an enhanced office environment, and ii) broadcast
delivery services as in Videotex. Chapter VI summarizes the scope of these results

and suggests some open problems for further studies.



CHAPTER I:

CAMP-ON SYSTEMS

A camp-on system is a multilevel, multiqueue system where waiting lines are
organized in a hierarchical manner. The hierarchy levels represent the number of
queueing stages a customer must visit before his service process is initiated. Each
level is seen as an ordered collection of waiting lines and each waiting line contributes
to the next level with its own set of queues, spanning a tree-like queueing structure.
Service takes place in the system on a level-by-level basis. This chapter introduces
the basic concepts behind the camp-on model. Section 1 presents the queueing
strategy associated with the camp-on model and provides a detailed description of
the customer handling within this multilevel queueing system. Section 2 gives a
historical account of some important results for systems with multiple queues as
they relate to the camp-on model. The most interesting analogies are found within
the context of networks of queues. Emphasis has been place on models that reduce
the statistical behavior of the quéueing system to the independent contributions of

the network nodes.
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I.1. Queueing in a Camp-on System

Consider a traffic stream Sp that is initially offered to some service center,
the origina.ﬁng service facility, from an infinite source of subscribers. If the service
center is busy and buffering space is available, a queue will start to build up as 1nany\
conventional queueing system. For our purposes, this initial queue will be referred \
to as the First-Level Queue . Assume now that every single customer present at the
first-level queue is also offered his own independent, infinite source of subscribers
Si, S2,..., Sn. If buffering space is made available for these traffic streams, queues
associated with these streams will build up, one for each of the n customers at the
first-level queue. Let us refer to them as the Second-Level Queues. Once again,
customers at this second level of queues can also be offered their own independent
traffic streams from infinite pools of subscribers. New queueé, when buffers are
provided, will continue to build up and they will form what will be referred to as
the Third-Level Queues. This process can go on indefinitely as customers join the
system. We define the queueing system resulting from this queueing scheme to be
a camp-on system. This is in analogy with the “call camping” service in telephohy
in which telephone calls to a busy station can be put on hold to be answered later

rather that being immediately rejected by the local switching office.

After a customer commences his service period, we expect him to leave the
service facility only when all of his requested task has been completed. However,
service disciplines that preempt the customer in service in favor of newly arrived
customers and even customers’ defections before service completion will be consid-
ered. Upon his departure, the serviced customer will leave the functioning service
facility, taking with him all of his associated. second and upper-level queues, none of

which have yet begun service. The next first-level customer in the order of service,
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as determined by the queueing discipline, is then serviced. The departing first-level
customer, meanwhile, starts serving his own first-level queue, a second-level queue
in the previous stage of the camp-on system. The associated camp-on depth, that
is, the number of queueing levels in the branch of the service hierarchy for the de-
parting customer, is reduced by one unless this customer were at the bottom of the
hierarchy and were not also a server. In that case, the number of levels remains
zero. The sequence in Figures 1 and 2 illustrate this queueing scheme in a camp-on

system with two queueing stages.

The basic idea behind this camp-on queueing scheme is to allow customers in
a multiservice environment to join one of different waiting lines that are organized
in a hierarchical fashion. This hierarchy is given as a tree representation of the |
various stages of queues that servers and customers must go through during a
communication session with a service node. Inherent is the assumption that users
can not only demand service for their own jobs but can also provide service to
other customers. New job requests entering the camp-on system will then have
their service scheduled with respect to their end-point server, i.e., the actual service
center for that job. But a customer’s real position inside this queueing system
will depend on the relative position of his intended server within the queueing
hierarchy. Hence, customers appear as if they queue up or camp at different levels

of a hierarchical multilevel queueing system.

Thus, the key point in the éa.mp-on strategy is that customers need not be
considered as simple customers in a traditional sense, e.g., ones that merely ask
for their jobs to be done, but rather, they can also exercise control over the ex-
ecution of other job requests being submitted. The way this control process is

exercised determines to a large extent the complexity of the camp-on model. Still,
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every customer-queue pair could be considered, in isolation, as a separate queueing

system, or as a subsystem within the camp-on queueing model.

Ideally, one would like to include all sorts of service and schedule interrelations
among queues, servers and even classes of customers, that can possibly take place
in a communications environment such as in multiplexing or routing nodes, PBX’s,
inquiry-oriented systems, or any other networking application. Of course, this ap-
proach could quickly prove to be intractable and its usefulness therefore argued.
Here, a simplified queueing scheme based on an independent-branch approach is
proposed, which covers various queueing strategies of interest and paves the way to

the study of more complex queueing situations.

We assume that each of the different sources of users is independent. We also
require that job scheduling for upper-level customers does not interfere with the ar-
rival/departure pattern for the lower-level customers, for they belong to subsystems
outside their service path. Such a queueing strategy implies a decoupling between
the different queue levels in the camp-on systems and will allow simpler represen-
tations for various state-occupancy problems of interest. More general schemes for

schedule management await future analysis.

The camp-on system concept arises in enhanced telephone services. Incoming
phone calls to busy telephone premises can be kept on hold by means of the standard
PBX philosophy, while the waiting customers are attended to in the usual ﬁrst-
come-first-served basis. If third pﬁ.rties try to call any of the queued-up customers,
one could also put them on hold instead of using the conventional telephone service
procedure, which would block and clear all incoming calls from the system. By this
means, a queueing system is created wherein any queued customer would eventually

become a functioning service facility. These concepts may apply more realistically
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to computers as the calling and called parties rather than to people, given the

relative “willingness” of computers to stay on hold as compared to people.

1.2. Camp-On Within the Queueing Systems Context

An extensive effort has been put into studying equilibrium distributions for
queueing systems, especially those of the network-of-queues type. We will devote
this section to a review of those queueing models that can be represented as a
continuous time Markov chain with a countable state space. We deal with the issue
of multiqueueing systems to provide further insight into what we should expect

from the camp-on model.

A model for a network of queues was first introduced in a paper by J ackson[m],
widely regarded as the departing point in the theory of multiqueueing systems.
This model is based on a generalization of the classical M/M/s queue: memoryless
customer interarrival time, memoryless or exponential service time, and s servers, to
an arbitrary interconnected open network with exponential servers, Poisson external
input and a first-come-first-served service discipline. In his paper, Jackson proved
that whenever an equilibrium condition exists, each node in the network behaves
as if it were an independent M/M/s queue with Poisson input; i.e., if 7(x, ) is
the equilibrium probability of the network of N nodes’ being in state m(x, ) =
(z1,---,zy), then

7r(x,lv) = '/’(ml)"'w(zzv)’

where 9(z;) is the equilibrium probability of having z; customers in an M/M/s;
queue. This particular form of solution has come to be known as the product form.

The appeal for this form of solution is obvious as it permits us to characterize
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the system behavior through the independent behavior of its nodes and allows a

computationally efficient analysis of large networks.

In contrast to the open network of queues introduced by Ja.ckson[m], Gordon
and Newelll13] considered a closed Markovian network in which a fixed and finite
number of customers, say M, circulate through the network and no external arrivals
or departures are permitted. They proved that the equilibrium distribution has a
product form, though the behavior at the various nodes can no longer be regarded

as independent, since 1 +--- + z,, = M.

Later, Jackson!!"] and Posner and Bernholtng,so}, respectively, introduced gen-
eral open and closed Markovian network models that allow the total external arrival
rate to depend upon the total number of customers in the system (open), the expo-
nential service rate to be a function of the number of customers at the node, and the
travel time between any two nodes in the system to have an arbitrary distribution
(dosed). Once again, it was demonstrated that the equilibrium distribution for the
number of customers at the various nodes (and in transit) is of the product form.
For closed networks, it was even permitted to have different classes of customers,
with a different set of service rates and routing probabilities. These results are
based on solutions to a steady-state balance relation equé.ting the equilibrium rate

of flow out of state x,, with the equilibrium rate of flow into state xy,.

However, the above approaches had one limitation: granting that one could
manage to guess the correct form -of the equilibrium probabilities, verifying that the
probabilities satisfy the balance relation was not still entirely trivial. Fortunately,
the method of parttal balance equations introduced by Whittlel40-41] provided in
many cases simpler means to get around this inconvenience. In this approach, one

attempts to decompose the balance equation into smaller sets of partial balance
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equations and then to show that the steady-state probability distribution 7 (x,, ) sat-
isfies the simpler equations. Usiné this technique, more general equilibrium results
have been obtained as summarized by Baskett et al.[2| and Reiser and Kobayashi[34].
These authors allow a variety of customer classes and different kinds of service nodes
in order to model central processors, data channels, terminals and routing delays
in computer systems. It is important to note that for any given model, one has no
assurance a priors that the set of partial balance equations is consistent. But, it is
clear that any solution one finds for a set of partial balance equations will indeed

satisfy the global balance equation, too.

In an effort to expand product form results for open systems, particularly with
regard to routing behavior, Kelly{lg_m] used a combination of the partial balance
technique with the notion of time reversal or reversibility. Let {C(t), 0 <t < oo}
denote the Markov procesé describing the state of the system, and suppose the
transition rates of {C(t), 0 <t < oo} to be given by q(Xn;¥Ym). Further, suppose we
believe the probability 7(x, ) to be the stationary distribution of {C(t), 0 <t < oo}.
Then the reversed process {C(—t), 0 < t < oo} also forms a Markov process.
Moreover, the two processes, .C(t) and C(-t), -0 < t < 00, must have the same
equilibrium distribution, with the transition rates ¢'(xn; ¥m) for the reversed process
given by

"(xn)Q(xr;; Ym) = W(Ym)ql(}’m; Xn),

and

Z (I(xn;Ym) = Z q'(xn;Ym)-

Ym#EXn Ym#FXn

Hence, external arrivals for the reversed process correspond to external departures

for the original process, and past departures from the system in the original process
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correspond to future external arrivals in the reversed process. This condition guar-
antees that the current state of the system in the original process is independent of
past departures from the system, and this proves to be a powerful tool for analyzing

many complex queueing systems.

Barbour[3] extended these results to nodes with arbitrary distributed service
times through an argument invoking weak convergence methods. However, both
of these works place a lot of constraints on the service discipline that can be im-
plemented at each node. In fact, for the most part, a large sha.ré of the research
undertaken in this direction has been aimed at enlarging the scope of product-form
solutions to very special queueing networks. Chandy et al.l”l did work on the notion
of station balance, which provides a good summary of these trends. But in many

cases, not even the popular FCFS discipline satisfies these constraints.

Lately, some authors have proposed more general approaches to analyze in-
terconnected networks of nodes. Hence, Chandy, Herzog and Wool®l studied the
relationship between queueing networks and electrical networks and introduced the
Norton’s theorem approach to network analysis. Here, a closed network, a system
that has a single node as input and a single node as output, is replaced by an
“equivalent” network in which all queues are replaced by a single composite queue.
Walrand(3°] presented a probabilistic argument to explain the product form, the out-
put theorems, and the Poisson character of the flows in order to provide a more in-
tuitive justification of those properties. Finally, Lazar and Robertazzil26:27] related
the product-form solution for the probability distribution of Markovian queueing
networks to the geometric and algebraic structure of the associated state-transition
diagram. Using the consistency graph, necessary and sufficient conditions for the

equivalence of the global balance equation have been given.
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In perspectivé, a product-form type of solution for the camp-on queueing model
would be ideal, since it would fit nicely within the mainstream of results for locally
balance networks. It would also permit us to take advantage of the many compu-
tationally efficient algorithms already designed for these systems[6’31_34]. However,
there are clear differences between the proposed camp-on model and the models
proposed for networks of queues. First of all, the number of service centers in the
camp-on model is a random variable, whereas it is regarded a fixed parameter in
the study of networks of queues. Secondly, the networks-of-queues models do not
contemplate multiple departures from the systems, whereas such departures are
inherent to the camp-on model. An immediate consequence of the bulk nature of
the effective departure process in a camp-on model is that the transition rate from -
state x, to state y,, may be zero, ¢(Xn;¥m) = 0, while the reverse transition rate
g(¥m;Xn) is not zero. This result prevents us from taking advantage of the use-

fulness of the time reversal notion to tackle occupancy problems in the camp-on

model, and demands rethinking the characteristics of the output flow.

Besides the above considerations, the fact that the upper-level service centers are
not always considered active centers also i)recludes the existence of an independent
product-form solution for this camp-on model in the same sense as the one for
network of queues. In short, none of the previous results obtained from the theory of
networks of queues applies directly to the camp-on model. Even though techniques
such as partial balance equations are still convenient tools to get around some of
the system complexity issues, their implications do not favor product-form solutions
even in the most simple situations. We believe the study presented here will help

us understand the behavior of these and other more general multiqueueing models.
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CHAPTER II:

TWO-LEVEL CAMP-ON SYSTEMS

Although a general camp-on model would permit a queue to be formed at every
single queued customer in the system, during the next two chapters we will focus
only on two-level camp-on systems; i.e., no queueing will be allowed in the camp-on
model beyond the second level of queues. If any such arrivals take place, they will
be assumed to be blocked and cleared from the camp-on system. Figure 3 shows
a typical distribution of queues in a two-level camp-on system. Two-level camp-on
systems are very useful tools in themselves, for they can provide good models (as
we will show in Chapter V) for many real-life applications such as inquiry-oriented
networks, teleconferencing, Videotex, and other network database ma.négement Sys-

tems.
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Camp—On Queueing Model  (Two Levels)

Second-Level Queues

n

{

- First-Level Queue
N oo Ay

i

Service
Facility x; = (Ks; Rs)
| K, =(3,2,0,1,2)

R; = (37 5, 1’6’ 2)

Figure 3: Typical distribution of queues in a two-level camp-on system.
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I1.1. Mathematical Model

The mathematical model to be used in this work will be based on a Markovian
or quasi-Markovian approach to queueing systems. Both the customer arrival and
the customer departure processes will be chosen such as to ensure a memoryless
distribution for the amount of time spent in any of the states of the model. Various
service disciplines will be considered, all of them a subset of the work-conserving
disciplines[23’25]; i.e., no server is idle if there are still unserviced job requests within

the same service center.

1.1. Customer Arrival Processes

Besides the two levels of queues, we will also consider R classes of customers.
Every second-level systeﬁ: will be associated with a particular class-r group of cus-
tomers (1 < r < R), which are drawn from an infinite source of subscribers. The
classes can be used to represent the distinct conditions prevailing at each subsys-
tems, e.g., the arrival rates to the individual nodes in a network, requests for partic-
ular pages of information from a database, traffic intensity at customer’s premisés,
etc. The queue-class matching for the second-level systems implies a finite stor-
age capacity at the first-level system because of the finite number of classes. Even
though this matching does not imply any restriction on the storage capacity N for
the first-level queue, including in-service and queued customers, we will consider

only the case R > N.

The customer arrival process to the first-level system will be assumed condition-
ally Poisson, conditioned on the size of the first-level queue, with a mean arrival
rate A\;, (0 < n < N), when the system queue size is n customers (counting the

customer in service). Many queueing schemes that encourage/discourage arrivals
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based on the queue size can be modeled through this variable arrival rate(23—25:37,38]
The customer arrival processes to each second-level queue will be assumed as in-
dependent Poisson processes with mean arrival rate A, for a second-level queue

associated with class-r customers.

The arrival process for first-level customers is regarded as independent from the
arrival processes for the second-level systems. However, a simple type of interde-
pendence between the first-level and the second-level arrival processes can also be
introduced. The arrival process for the first-level system can be considered as state-
dependent in the sense that it will be conditioned on the arrival processes to the
second-level systems. The constraint is that the total arrival rate to the camp-on
system is kept constant. That is, if (ry,---,rn) represents the class assignment for

customers to the n second-level systems, then

Alns class-1 systems;

Aln = (2'1)

R n
> A2r — D Az, class-2 systems.
r=1

=1

A class-1 camp-on system could be interpreted as a system that effectively has
R + 1 classes of customers, R for the second-level‘ systems and one for the first-
level system. This case corresponds to an increasing external-arrival rate and a
random assignment of classes among the second-level systems. Class-2 camp-on
systems, however, have only R classes of customers for both the first-level and the
second-level systems. But a particular class of customers will be available to the

second-level systems only if it is already present at the first-level queue.

For each one of these first-level arrival cases, one can derive the effective rate

at which new second-level systems incorporate into the camp-on model. This is
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denoted as 7y, the first-level arrival rate for second-level systems as seen by the

service center:

A
1n class-1 systems;

In+1 = E—n (2'2)

A2y, T class-2 systems,

where rp, indicates the class of the newly arrived customer.

1.2. Customer Departure Processes

The customer service completion process will be regarded as exponential, or
memoryless, with a mean service rate u. It will be considered independent of the
associated second-level stage (customer class, size, etc.). This has been a standard
assumption in many communication systems. However, some computer applications
would be better modeled by a service time distribution with constant holding times,
such as for packet-switching a.pplica.tions. Nonetheless, memoryless service processes
are always considered to be good reference models even in those cases where they

may not exactly apply.

Customers will also be allowed to renege or defect from their queues any time
prior to the start or completion of their service period. The customer reneging
processes from the first-level and second-level queue will be regarded as independent
and exponentially distributed, as is the service completion process. For the first-
level customers, the reneging rate will be conditioned on the customer position
inside the first-level queue for reasons that will soon be explained. The reneging
rate will be called v; for the customer at the it% (1 < i < n) position in the first-
level queue. The customer reneging processes from the second-level queues will be
regarded as exponentially and identically distributed with a common mean reneging
rate 7. One expects that for many applications, customers will not know where they

are in the queues, so this is not unreasonable.
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The position-dependent reneging rate for first-level customers permits more gen-
eral service situations to be handled, such as multiserver centers and variable-speed
servers, or to discourage long queues in applications, such as public networking. If
a first-level customer chooses to renege from his queue, he will take with him his
associated second-level system and initiate its service procedure, as in the case of
service completion. The customer arrival processes, service completion processes
and customer-reneging processes will be regarded as statistically independent pro-

cesses.

The multiserver center can be readily modeled through a generalization of the
reneging parameters. Let s denote the total number of servers available at the first-
level service center, and let each of these servers provide service for 1/p; (1<i<s)
units of times per customer, on the average. Then the multiserver center can be

covered by considering the generalized departure rate
ui-:u.,—+u,- for1 <:1<s,

where p! represents the effective departure rate from the ith server and V; represents

the reneging rate prior to his service completion.

We can always choose v; = 0 if customers depart from the camp-on system only
after all the requested task has been done (i.e., no reneging is permitted during the
service period). This approach is based on the fact that for memoryless departures,

to someone outside the queueing system, reneging and served customers look alike.

1.3. Service Strategies

The service strategy for first-level customers plays a decisive role in the evolution
of the second-level systems, as it indirectly controls the relative sizes of the second-
level queues. We will consider five distinct types of service strategies for the first-

level service facility:
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Type 1: The service discipline is first-come-first-served (FCFS); all customers
are served in the exact order of arrival. Multiple servers are allowed at such a

service center.

Type 2: There is a single server at the service center and the service discipline
is last-come-first-served non-preemptive (LCFS-NP); the last customer to join

is the next one in turn for service at such a center.

Type 3: There is a single server and the service discipline is last-come-first-
served preemptive-resume (LCFS-PR); the last customer to join the system is
immediately served while the in-service customer is queued as the next in turn.

This is a “push down” stack.

Type 4: There are infinitely many servers available at such a center (IS); simul-
taneous service for second-level customers is allowed if their service center is of

the same type.

Type 5: The service discipline is broadcast delivery (BD); first-level customers
and associated second-level customers are served simultaneously, in a broadcast

fashion. There is a single server at such a center.

All first-level customers are assumed to have the same service distribution. Type 4
and 5 centers are special examples of service strategies in the camp-on model, where
second-level customers can receive service while their associate first-level customer

is still in the queue.

The service-completion processes for the second-level customers can be com-
pletely arbitrary, as far as this camp-on system model is concerned. To see this,
observe that once the first-level customer is served, his associated second-level queue

leaves the camp-on model and becomes a single-level system. The camp-on model
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merely implies that the initial state for the new single-level system formed after
a first-level customer departure will not necessarily be the empty state. However,
for an ergodic system, the equilibrium probability distribution of the state of the
- model is independent of the initial state. The camp-on model does not change the
equilibrium probability distribution that any particular second-level system would
have shown if it had been considered as an independent and isolated queueing
system on its own. Thus, well-established concepts from the classical analysis of
queueing systems can be used to derive the pertinent information regarding this
single stage. Nonetheless, one would have to account for the extra delays incurred
while customers were waiting at the second-level stage. This issue will be further
discussed, once we introduce the subject of stability in two-level camp-on systems

(Chapter III) and analyze the performance of more concrete systems (Chapter V).

1.4. Other Considerations

Finally, once a given customer has joined a particular queue, he will be consid-
ered busy for all aspects related to customer handling inside this camp-on model.
Because of this restriction, no customer will be allowed to be present in more than
one queue at the same time as, for example, waiting for service both as a first-level
and as a second-level customer. Also, no service will be provided by any first-
level customer to any second-level customers until the first-level customer leaves

the system. (This last restriction applies only to type 1-3 centers.)

We could have considered a more complex scenario for our camp-on system
model, but it will be better to wait until we can fully appreciate the benefits and
drawbacks of this simpler model. Further considerations on this topic will be dis-

cussed in Chapter VI.
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I1.2. State Occupancy

The camp-on model guarantees that the system stays in a particular state with-
out notion of the time elapsed. Thus, once the queueing system reaches equilibrium,
the states of the model are represented as vectors (z;,- -, z,), where z; denotes the
condition prevailing at the second-level system in position 7 with respect to service
center, when the first-level size is n. These states can be seen as the states of a
continuous mutidimensional Markov chain for the size of the system queues. In this

section, we discuss the state occupancy representation for the camp-on model.

2.1. States of the Model

Let n, a non-negative integer, denote the number of customers currently waiting
for service at the first-level queue, including the ones in service at the service center.
Let R, = (rq,:-,Tn) represent a particular ordering of n classes of customers,
chosen out of possible R’s, such that r; denotes the class of the customers associated
with at the 1*# second-level system. Also, let K, = (k1,- -, kn) represent the sizes
of the second-level systems for that fixed ordering of customer classes R,, among
the second-level systems, with k; denoting the size of the system associated with
the it# first-level customer, i.e, the length of the it# second-level queue. From the
Markovian interpretation of the customer arrival/departure processes, the states of
the camp-on model can then be completely specified by the 2n-tuple (Kn;Ry) (0 <
n < N). This 2n-tuple contains information about the sizes of the first-level and the

second-level systems as well as the particular class ordering among these queues.

More precisely, the state x, of the camp-on system is a 2n-dimensional vec-
tor with non-negative components ky,...,kn and ry,---,rn, or in vectorial form,

xXn = (Kp;Ry), where the pair (k;,r;) designates the size and customer class of
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the second-level system in position ¢ with respect to a size-n first-level system.
These states represent a finite-dimensional Markov chain for the queue sizes in the

camp-on system model for every permutation R, of n classes of customers.

Note that from the interpretation of the system states in the case of a single
service center, the component k; stands for the length of the second-level queue
associated with the first-level customer who is currently receiving service from the
functioning service facility. When the system is empty, then n = 0; the null vector

K represents this empty element in the discrete space of system states.

For instance, for the two-level camp-on system shown in Figure 3, we have are
five customers in the first-level system, one in service and four queued. The dis-
tinct second-level queue sizes ky,..., ks consist of 3,2,0,1,2 customers with classes
of types 3,5,1,6,2, respectively. Therefore, the corresponding state vector repre-
sentation for the camp-on syétem is xn, = (Ks5;R5), where K5 = (3,2,0,1,2) and
R; = (3,5,1,6,2).

The state vectors in the camp-on model do not have a fixed dimension, unlike
the models for networks of queues mentioned in Chapter I. The dimension of each
state is determined by the total number of customers in the first-level system. In
the event of an infinite storage capacity at the first-level center, we will then have

an infinite-dimensional Markov chain.

2.2. Neighboring States

Two states, x,, and y,, are considered nesghbors if there is a one-step transition
connecting state y,, to state x,. Clearly, the set of neighboring states is strongly
dependent on the service strategy implemented at the service center. The ensuing

derivation is compatible for types 1, 4 and 5 service centers. The system behavior
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under type-2 and type-3 centers will then be derived after we study the equilibrium

behavior of the camp-on model for those service centers.

Let x, = (Kn;Rn) represent the present state vector of the queueing system
and let ym = (K},;R},) denote any of the various state vectors achievable within
the camp-on system. Under the above-stated conditions for the camp-on process,
only one of the following one-step transitions could take the camp-on system from

the state vector y,, into the state vector Xp:

i) an arrival to the first-level system:
ym = Xp-1 = (Knp-15Rn-1), (2.3)

for the arrival will increase the first-level queue size by one. Such a transition would |
be possible only if k, = O for state x» and the associated customer class is r, since

a second-level queue at the n® first-level customer does not yet exist.

th

ii) an arrival to an i*® second-level system:

Ym = xr—ui = (Kr—xi;Rn), (2-4)

with
K;i = (kl,...,k{ _1,--')kn);

that is, ym is a state vector with one fewer customer at the 1*# second-level queue

than when in the state vector x, . Here, of course, k; > 1.
iii) a departure from the service center due to service completion:
Ym = Xn41,1 = (Knv1,15Rn41,1), (2.5)

with
Kn+1,1 = (ko,k1,..., kr).
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Here y,, is a state vector with n + 1 first-level customers, and the customer whose
service period was in progress had a second-level queue of length k¢* (0 < kg < o0)

and class rq (rg # ;).

iv) a defection from the 1** at the first-level queue:
Ym = Xn41i = (Kny1iiRuyr)- (2.6)

Here, .
Kpt1i = (k1y---5ki—1,kos iy -, k),

Rn+1,i = (k]_, ceey ki—l’ ko, k,', ceey kn),
where yy, is a state vector with n + 1 first-level customers, while the t* first-level
customer has an associated second-level queue of length ky and class ry distinct

from the other r;’s.

v) a defection from the *# second-level queue:
Ym = X' = (K;,*";R,,), (2.7)

with
K:‘ = (kyy-«, ki +1,...,kn).
Thus, y,, is a state vector with one customer more than the vector state x,, has at

the i*? second-level queue.

Any other transition from a state y,, to a state x, can be expressed as a
series of one-step transitions linking the end states y,, and x,, through a chain of
intermediate neighboring states, where the transitions are in the forms described

from i) to v).

* In this context, kg is used as a dummy variable indicating the size of the previous

second-level system before its departure from the camp-on system.
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2.3. State Transition Rates

The differential or dynamical interpretation of the customer arrival process is
that if the camp-on model is in state x, at time ¢, then the probability that a
customer from the it# stream source, S; (0 £ ¢ £ n), will arrive between time ¢
and t + h is hAj, + o(h), where ! indicates the queue level and r the customer class.
For the service completion process, the probability that the service of a customer’s
being served at time ¢ will be completed by time ¢ + h is hp + o(h). With respect
to the customer reneging processes, the probability that the ith first-level customer
at time ¢ will have defected from the first-level queue by time ¢ + h is hy; + o(h).
Similarly, the probability that a customer at the i*# second-level queue at time ¢
will have defected from his queue by time t+ & is hn + o(h) as well. The probability

of two or more events in the same time interval of small length & is also o(h).

The state transition rate for this camp-on model ¢g(xn;ym), that is, the equi-
librium rate of flow from the state x, = (Kn;R,) into the state y,, = (K/;; R},),
can be readily derived from the differential interpretation of the various processes
involved as t goes to infinity. These infinitesimal generators for this Markov process

are as follows*:

i) An arrival to the first-level system:
d(Xn;¥ym) = Mn X(kn=0)» fym = Xp-1- (2.8)
ii) An arrival to the ** second-level system:

Q(xn;}'m) = Aoy X(k'.>0)s if ym = x;i- (2'9)

* X stands for the characteristic or indicator function of the event or condition

E. xg equals 1 if the condition holds and 0 otherwise.
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iii) A departure from the service center (service completion):

‘I(xn;}’m) = K X(n<N)> if ym = Xn+1,1- (2'10)
iv) Reneging from the ith position in the first-level queue:

q(Xn;¥m) = ¥ X(n<N)> if ym = Xpi1, (2.11)
v) Reneging from the ith second-level queue:

9(%n;ym) = (ki + 1)1 X(n>0)» if ym = x;*. (2.12)

-Based on this information, we will be able to write down the equilibrium equations

that govern the probabilistic behavior for the camp-on queueing model.

I1.3. Mathematical Formulation

If this queueing system is to have a non-trivial behavior in steady state, the
rate of flow into state x, must be compensated by the rate of flow out of state xy;
otherwise, there is an absorbing state and thus a single-point distribution. From
this steady-state condition, we proceed to derive the equilibrium equations for the
camp-on model as well as the generalized n-dimensional Z-transform for the joint
probability distribution of queue lengths. However, these global balance equations
prove to be insufficient to fully unravel the state occupancy distribution for the
camp-on model. Here we propose a complementary set of partial balance equations

that will help elucidate the distribution of customers among the queues.
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3.1. Equilibrium Equations

It has been rightfully argued[21’23’41] that for an equilibrium probability distri-
bution to exist, a probability flow conservation requirement must be imposed from
every state into the others. Because of the disjoint decomposition of the state prob-
abilities into mutually exclusive and exhaustive transitions through intermediate

states, such flow conservation condition in queueing systems is usually expressed as

Y. p(xn)a(xn;¥ym) = D p(ym)a(YmiXn), (2.13)
yme QO ym€ 1
where
1 = Set of all vector states xy,.

Let p(xn) = p(Kn;Rp) denote the equilibrium joint proba.biiity distribution
of queue lengths in the ca.mp-oh system. From the flow conservation requirement
under stationary conditions in Equation (2.13) and the Markovian interpretation of
transition rates among neighboring states, it follows that the equilibrium equation

for the joint probability distribution of queue lengths is of the form

[ > [/\2r,. +y; + km] X(n>0) T A1nX(n<N) T #X(n>o)] p(xn) =
i=1 |
n X(kn=0) P(Xn-1)

+ Z A2r; X(k;>0) P(X5" )

C+ Y (ki + V)0X(as0) P(XAY) (2.14)

)

|..n

R 00
Z X (ro#r;) Z K X(n<N) P(Xn+1,1)
ko=0

f; n+l oo
Z X(rO;ér‘) Z Z vi X (n<N) p(xn+1 1.)
o=1 1=1 kg=0

(o s n < N),
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where

A
z I"_ for class-1 systerms;
sl = -n (2.15)

Azr,,, for class-2 systems.

In order to ensure that p(xp) is a properly defined probability distribution, we must

add the normalizing probability relation

> »plxn) = 1. | (2.16)

Xnen

For class-1 systems, Equa.tién (2.15) shows that a transition from state x, to
state X, 41 occurs with probability 1/(R — n), since there are R — n choices for
the customer class in the second-level system, and these are independent from the
first-level processes. For class-2 systems, Equation (2.15) shéws that the same
transition is possible only if an arrival from the specific customer class has occurred

as indicated by the class assignment Rj,.

For such a camp-on model with stationary transitions, which corresponds to
an ergodic Markov chain, it can be shown(5:10:11,22] that 5 positive solution exists
for all state vector probabilities p(x,). The converse of this statement is equally
true. We are going to establish later under what conditions this queueing system
represents an ergodic Markov chain; basically, we must find the point when a stable

solution exists for this set of equilibrium equations.

The set of difference equa.tibns in (2.14) could also be thought of as coming
from a state-transition-rate diagram describing the flow rates into and out of any
particular state vector x,. Under equilibrium conditions, it is intuitively clear that
the total flow between neighboring states in the diagram must be conserved in such

a form that the input flow to any given state vector must equal exactly the output
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flow; otherwise, the probability of finding the camp-on system in such a state will
tend to zero or one as t goes to infinity. A pictorial representation of the total
probability flow into a typical state x,, the left side of Equation (2.14), is shown in

Figure 4.

3.2. Global and Partial Balance Equations

Equation (2.14) represents what is usually called the global balance equation
for the queueing system. In some cases, it is possible to define special equilibrium
relations, or partial balance relations, among groups of neighboring states. One
instance of these special equilibrium relations is the local balance equations, which

state the equilibrium conservation of flow among every pair of neighboring states:

P(Xn)q(Xn;¥Ym) = p(¥Ym)a(ymiXn)-

Summed up together, these partial balance equations must yield the global balance
equation for the queueing system. In general, we cannot foresee whether an arbi-
trary decomposition of the global balance equation into partial balance equations
will provide a consistent description of the system behavior unless they happen to

satisfy Kolgomorov’s criterion(21:31] for reversibility and local balance.

Unfortunately, one cannot rely on the existence of local balance equations for
this camp-on model. This is suggested by the asymmetry displayed in the state-
transition-rate diagram for the system. For example, one may be able to go in a
one-step transition from state x,, into state y,, but not from state y,, into state
X,. This is a consequence of the effective bulk departure processes associated with
this model. The total number of customers departing the camp-on model is also

a random variable because of the random size of the second-level queues. Thus,
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Equation (2.14), even though it synthesizes the occupancy behavior of the camp-on

model, still remains hopelessly inextricable.

However, because of the homogeneity of the processes for the customers at the
second-level systems and the homogeneity of the departure processes from the first-
level system, one should expect to find some other forms of independent balance
equations in equilibrium by invoking complementary conditions for conservation of
flow among some of the neighboring states. In fact, think of any arbitrary sequence
of customer arrivals/departures from the second-level systems for any fixed first-
level queue size. Because of the decoupling between first-level and second-level
processes, the service center cannot tell whether the entire sequence of events takes -
place when the first-level queue size is n or when it is n + 1. Hence, the service
center has no knowledge of how potential new arrivers or renegers behave inside the

second-level queues, regardless of the size of its own queue.

The above observation suggests that a partial balance relation must exist be-
tween the flow out of the first queueing stage and the flow into the first queueing
stage. These general ideas can be summarized in a set of independent balance

equations for the homogeneous camp-on model:

2

13

‘ [’\2"& Tyt ki”] X(n>0) + I‘X(n>0)] p(xn) =

Tn X(kn=0) P(Xn-1) (2.17)

n .
+ 3 Ao X(k;>0) P(X7")

1=1
n .
+ 22 (ki + 1)1 X(n>0) P(X3"),
1=1

(0 <n < N).
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and

Atn p(xn) = Z X(ro#r;) Z P(Xn+1,1)

ro—
n+1 00

+ Z X(ro#r;) Z Z L p(xn+1,z) (2.18)

1‘0— 1=1 0—0
(0<n<N).

The interpretation of this independent balance equation is that under stationary
conditions, the conservation of flow among neighboring states works in such a way
that the rate of growth for the first-level queue must be compensated just by its

rate of decrease, for a fixed distribution of the second-level systems.

Equations (2.17) and (2.18) are equivalent to balance equations found in the
classical theory of queueing systems. There, as here, the customer arrival processes
and the service completion processes are memoryless. Basically, the total flow
between each pair of state vectors involving adjacent first-level customers must be
preserved. Figures 5.a and 5.b show state-transition-rate diagrams depicting the

independent balance equations in the camp-on model.

As a consequence of these homogeneous processes, a very simple coupling arises
between the probabilistic behavior of the camp-on model when the first-level queue
size is n and its behavior when the queue size is n—1. Given a particular state vector
Xn, the camp-on system has no memory as to whether it visited other state vectors
Ym with m > n before arriving at its current state. From a purely combinatorial
viewpoint, given a system state vector xy, it suffices for this homogeneous case to
count all the possible sequences of events by which such a particular set of second-

level queue lengths k; (1 < ¢ < n), can be achieved for a fixed first-level queue

size.



:

Figure 5: State-transition-rate diagrams for the independent balance equa-

vm- 1

b.

tions in the two-level camp-on model.
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3.3. Generating Function for the Size of the Second-Level Systems

The computafion of the equilibrium or steady-state response for the homoge-
'neous camp-on model directly from Equations (2.17) and (2.18) can result in a
cumbersome task even if we want to estimate only the first few terms of the joint
probability distribution of queue lengths. Instead of solving that set of difference
equations, it will be more convenient to resort to transform methods. Let P(Zn;Ry)
denote thg n-dimensional Z-transform or probabilistic generating function of the

equilibrium state probability distribution of the second-level queue lengths:

P(Zp;R,) = P(z1,...,2n;Ry),
o0 v n Ic‘-
= ' Z p(Kn;Rn) H z" . (2.19)
ky,...,kn=0 1=1

This transform is certainly well defined within the n-dimensional hypersphere
0 < || <1 (1 <1< n). This is because each state probability p(Kn;Rn) is
strictly bounded by 1. Therefore, applying this transformation to Equations (2.17)
and (2.18), i.e., multiplying these equations by [T, zf " and summing over each of
the indices k; from zero to infinity, one can obtain equivalent conditions for this set

of equations to represent an ergodic Markov chain (see Appendix I). The result is

n
[0+ 3 v | P(Zn;Rn) = n P(Zn_1;Rn_1) + (2.20a)
=
1] n a
Z(zi -1) [WTP(ZMRY&) - A2r,'P(Zn.;R-n.)] )
i=1 <

and

' n+1
UP(Zpi1,1iRnt1,1) + D v P(Zn+1,i;Rn+1,i)} )

1=1

R
Mn P(ZniRa) = Y X(ro#r)
r0=1

(2.200)
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forall0< |z| <1and 1<n < N. Here, P(Z,,1,;Rpy1;) stands for
P(Zn+1,i; Rn+1,i) = P(zl, ceey 251, 1, ZyyeesBny TlyeeeyTi_157T0s 7501 rn),

and rg #7; (1 <1 <n).

Observe that Equations (2.20) provide us with a set of linear, first-order inho-
mogeneous partial differential equations on the n independent variables 2; and the
n dependent variables P(Zn;R,) (1 < ¢ < n). This set of partial differential equa-
tions, combined with the normalizing probability relation in Equation (2.16),de-
scribes completely the equilibrium probabilistic behavior of the camp-on system
from the state occupancy viewpoint, because of the uniqueness of the genera.lized}
n-dimensional Z-transform. Once we solve the transformed equilibrium equations
(2.20a) and (2.20b), the problem of the equilibrium joint probability distribution of
the queue lengths for this camp-on model is therefore essentially solved, too. If we
wish to compute the probability of any ,pa.rt’icula.r state vector X, one need only
resort to the general inverse transform relation:
ok
8zf i

P(ZniRn)|, . (2.21)

L |
P(Kn;Rn) = II k"
- =11

The effect of the existence of a set of independent balance equations rather than
only a set of global balance equations for the camp-on system is fully reflected in
the transformed version of the independent balance equation. Instead of solving
a set of first-order partial differential equations on n independent variables 2; and
n dependent variables P(Z;;R;) (1 < ¢ < n), one need only solve a set of first-
order partial differential equations one at a time with only one dependent variable

P(Zn;R,).
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CHAPTER III:

EQUILIBRIUM DISTRIBUTIONS IN TWO-LEVEL
CAMP-ON SYSTEMS

In Chapter II we developed the basic mathematical framework necessary to an-
alyze various state-occupancy problems of interest in two-level camp-on systems. In
this chapter we exploit this mathematical representation to derive important closed-
form expressions that describe the probabilistic behavior queues and the overall
workload for this two-stage camp-on model. First, we present the general solu-
tion for the transformed equilibrium joint probability distribution of queue lengths.

_From these, other joint probability distributions for specific queueing environments
as well as some marginal distributions for first-level and second-level systems are
derived. The stability of the two-stage model is studied and is found to be closely
controlled by the stability of the system at the first-level stage. Even though an
infinite-state Markov chain is assumed for this analysis, many of these results are

also extended to the finite-state camp-on model.
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II1.1. Joint Distributions for Queue Lengths

Section 1 deals with the problem of the equilibrium joint probability distribution
6f queue lengths in the camp-on queueing model. Two theorems are presented in
this section.‘ One of them relates to the transformed equilibrium state distribution
P(Zn;Ry), while the other one relates to the actual steady-state probability dis-
tribution p(xn) for the most important single case in Theorem 1: the non-reneging
two-level camp-on system. Five different service disciplines are considered: first-
come-first-served (FCFS), last-come-first-served non-preemptive (LCFS-NP), last-
come-first-served preemptive-resume (LCFS-PR), infinite servers (IS) and broadcast
delivery (BD). The ergodicity of the camp-on model is found to be tied to the sta- '
bility of the first-level system. We view the queue levels as cyclical processes with
respect to customer position in the service hierarchy. Here, first-level customers and
associated subsystems migrate down the service path in the queueing hierarchy as
in-service customers complete their jobs and second-level systems become first-level
systems. Thus, the stability of the first-level system also implies the stability of

each subsystem as an isolated queueing system.

1.1. Transformed Joint Probability Distribution for the Second-Level

Queue Lengths

The mathematical model that we have considered allows for either infinite
(An # 0, ¥ > 0) or finite (A1, =0, V n > some finite N) queue sizes at the first-
level queue. Denote by PN(Zn;Rn) the family of state probability distributions in
a camp-on system with at most N customers at the first-level queue. Suppose we
have another similar system but with a finite-storage capacity M and corresponding

transformed state probability distribution PM(Zn; R,). From the interpretation of
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the independent balance equation in (2.20), if such decomposition is plausible, then
both Py(Zn;Ry) and P, (Zn;Ryp) must satisfy the same set of partial differen-
tial equations for all first-level queue sizes n in the range 1 < n < min(M, N).
By uniqueness of the solution of partial differential equations, Py (Zn;Ry) and
P,;(Zn;Rpn) must be identical within this queue length range except for a multi-
plicative factor. In this instance, the factor can be found to be a quotient of the
corresponding pg’s, the probability of an empty queueing system, a function of the
available storage capacities N and M at each of the respective first-level stages. 4This
proportionality of the transformed state distributions Py (Zn;Rn) and P, (Zn; Ry)
implies that of the state probability distributions p, (x») and p,,(xn), because of
the one-to-one relationship between the transform pairs. Thus, as one might expect,
the camp-on model has no recollection of whether the queued customers visited any
of the system states tied to first-level queues larger than n customers before reaching
its current state. All the current state knows is that the first-level queue capacity

must be at least n. This motivates the following result.

Theorem 1 : For a two-level camp-on system with a type-i service center (¢ =
1,4,5), unconstrained queue sizes at the second queueing stage and finite-storage
capacity N at the first queueing stage, the general solution for the transformed

equilibrium joint probability distribution of queue lengths is of the form
P(Zs;Ry) = po [ %:(Zi5R;), 0<n<N, (3.1)

where

(3.2)
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Here, the parameters Y, and «y are given by

_ i ’\27',' L
Yo = 2, (z; — 1), (3.3)
an = @+n§li, (3.4)
-
Un = ll:+zn:l/,', (3'5)
1=1
(a)n = I‘_(i‘c_xu-:_)n)- (3.6)

If we use the notation P;(Zn;Rp) to indicate the transformed state probability

distribution for a type-s service center, then

R(Zn;Rn) = P(Zn;Rn), 1= 1,4,5.

To arrive at Equation (3.1), one could recursively compute P(Zn;Ry) from
P(Z,_1;Rp,—1) by solving the set of partial differential equations in (2.20a) through
the use of analytical considerations for the solution of the transformed state prob-
ability distribution inside the hypersphere |z;| < 1, and the use of known series

[414], Special attention must be paid in this pro-

expansions for gamma function
cedure to the verification of the consistency of the state-distribution solution with
the independent balance Equation (2.20b). -One could also verify the validity of
Equation (3.1) directly through the algebraic reduction of P(Z,;R,) by means of

the set of independent balance Equations (2.20), as shown in Appendix II.
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1.2. Two-Level Camp-on and Stability

It can be argued that if the camp-on model represents a stable queueing sys-
tem, then every single subsystem in the camp-on model in isolation, that is, the
first-level system and each of the second-level systems, must behave as an ergodic
queueing system. In such a situation, every second-level system, after becoming
an independent queueing system functioning as a queueing system on its own, rep-
resents an ergodic Markov chain, where the first state in the chain has a random
ﬁumber of customers in its queue. In general, this queue size need not be zero, so
the initial state in the chain is not always the empty state. However, for ergodic
Markov chains, the equilibrium probability distribution is independent of the initial
state of the system. Consequently, after departure from the camp-on model, each
second-level subsystem is guaranteed, in the long run, to behave as if the camp-on

stage was never there.

So far, there has not been any restriction imposed on P(Z,;Ry) that affects
the stability of this queueing model. But we still need to prove that p(xn) is a
properly defined probability distribution and satisfies the normalizing condition for
the state probability distribution in Equation (2.16). This normalizing condition

can be expressed in terms of the transformed state probability distribution P(Zy)

as
N
> p(KniRyp) = Z Z P(Z.;R,) = 1, (3.7)
Xn € 0 n=0 nn Zn=l
where
Q, = set of all states x,, with dimension n.

Evaluating P(Z,,) at the vector Z, = 1 with all components z; =1 (1 <7< n),it

follows directly from the transformed state probability in Equation (3.1) that

= po ﬁ — (3.8)
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We define as infinite storage capacity those instances of the camp-on system
wherein the model provides for infinite-size buffers in all the subsystems to allocate
and handle the incoming traffic demand for the different queues. We define as
semi-infinite storage capacity those instances wherein only the second-level queues
have infinite-size buffers, but not the first-level queue. For a camp-on system with
homogeneous second-level transitions and infinite storage capacity at the first-level
queue, one can assert from Equations (3.7) and (3.8) that a necessary and sufficient
condition for ergodicity of the queueing system and the existence of the probability

distributions P(Z,;R,) and p(x,) are

& o Yk
Y53 II = < oo (3.9)
n=0 Qn k=1"k

For class-1 systems (refer to Section 1, Chapter II), this last condition turns out

to be equivalent to the simpler relation

n

& A
I 2L < . (3.10)
n=1k=1 Hk .

This result is not surprising. Each second-level system, in isolation, can be thought
as an M/M/oo queueing system with arrival rate A2y, and departure rate 7, and
hence is stable for all finite state transition-rates. Even more, since second-level
systems leave the camp-on model at the same instant as their associated first-level
customer departs from its queue, we expect that second-level queues have a negligi-
ble chance of growing unbounded and becoming a bottleneck issue in the camp-on
queueing model. Therefore, the stability of the overall camp-on system rests on the
stability of the first-level system. Equation (3.10) is merely the equivalent condition

for ergodicity of the embedded birth-death process at the first-level service center.
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For all the queueing disciplines mentioned in Chapter II, the camp-on model
can be viewed as a cyclical process with respect to the customer’s position in the
service hierarchy. This is particularly true because every second-level system even-
tually becoines a first-level system as its associated first-level customer leaves the
camp-on stage. Thus, each second-level system must also satisfy Equation (3.10);
otherwise, it will not be a stable queueing system when operating alone. In this case,
p) must correspond to the departure rate of the isolated second-level system. As
time evolves, customers are promoted from the second-level stage into the first-level
stage, and the conditions imposed on a first-level system are progressively trans-
ferred to the second-level systems, depending on the'particular queueing scheme

implemented.

If we have a camp-on system with semi-infinite storage capacity (i.e., finite queue
sizes only at the first-level queue), the condition for ergodicity in Equation (3.9)
boils down to the requirement of finite state-transition rates, as must be for any

finite-state Markov chain.

For an ergodic camp-on system, it also follows from Equations (3.7) and (3.8)

that the empty-system probability pg is given by

2

Py = [i > ﬁ _k}—l, (3.11)

n=0 O, k=1Hk

There will be two distinct formulas for the empty-state probability, depending on
whether one refers to a class-1 or a class-2 camp-on system. For each of these cases,

it is easy to verify, considering all possible class assignments R, for second-level
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systems in Equation (3.8), that
r N n )y -1
1+ >[I (Lk_—l-)] , for class-1 systems;
©

n=1k=1 k
po = | (3.12)

- N R A lr -1
>oa Y ] (—25) ] , for class-2 systems.
n=0

Qn r=1 Hn

\

Here, one has chosen the index /; from (2, and the second-level class assignment
R, such that
1, if rp =1¢ for some 1;
I; = (3.13)
0, otherwise.

Thus, l; + -+ + 5 = n. This result is consistent with the decoupling assumption
between the first-level and the second-level processes, for the first-level facility is

transparent in this model to the second-level subsystems.

As an extreme case of the class-1 camp-on system, if the arrival rate to the
service center is Poisson and the storage capacity is unlimited, we have from Equa-

tion (3.12) is
1— py, for type-1,2,3,5 centers;

e P,  for type-4 centers.

1.3. Transformed Distributions for Non-Reneging Camp-on Systems

Here we want to focus on a camp-on system in which customers do not defect
from their queues but rather théy wait in line until a free server is available and
their service requests are completed. This situation arises in many communication
systems involving computers or computer processes and other enhanced services
where “customers” (people, machine jobs, processes, peripherals, etc.) can be pro-

grammed to stay on hold for any required period of time (or until told to disconnect
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to avoid deadlock). Without loss of generality, we can assume that the common
reneging rate 7 for second-level customers is zero and that the reneging rate v; for
first-level customers refers only to the individual service rates of the i*? server in a

multiserver environment.

Accordingly, let the common reneging rate from the second-level stage n go to
zero. Thus, we see that as n — 0, the camp-on parameters in Equations (3.3) to

(3.6) tend to

() — (ﬁ)n

n

-~

e (z)

(e5)n B

where we have defined f’n as

= > oy, (s - 1). (3.14)

1=1

Thus, the function ¥;(Z;; R;) in Equation (3.1) becomes independent of ¥,(Z;;R;)
for ¢ # 7, since o is no longer related to the summation index ljfor1 < j <
Therefore, in the limit as  tends to zero, the transformed state-probability dis-

tribution P(Z,;R,) has an independent product-form solution given recursively

by
n "% o) ]"/ I
P(zn;Rn) = Po H —l Z ("}‘)

i=1 Hi—o \Hi

n

N In
= po = = ———— P(Z,_;R -1). (3.15)
iznl i —Y; P

Here pn is regarded as defined in Equation (3.3). The region of convergence for

the transformed state probability distribution in this non-reneging camp-on system
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turns out to be the intersection of the regions indexed by n for which
n
Z A2r'.(2i - 1) S Hn, V Xn € ﬂ.
=1

The form of Equation (3.15) calls for an explanation. The interpretation of
the above equation for the transformed joint distribution of queue lengths is as fol-
lows. Let P(Zyn;Rp) = G(Zn;Rn)P(Zy-1;Rp—1) be defined as in Equation (3.15).
Then the state probability distribution p(Kn;Rp) can be found as the (n — 1)-
fold convolution of the joint probability distribution for the first n — 1 second-level
queues p(K,_1;R,_1) with g(Kn;Rp), the probability of the arrival vector Ky, to
the second-level stage in between the arrivals of the nt# and (n + 1)th customers
to the first-level queue. Here, g(Kn;Ry) is the inverse Z-transform of G(Zn;R,). -
Even more, g(Kn;Ry) can also be thought of as a function representing the prob-
ability of moving from the state vector y,_; = (Jp_1;Rp,—1) to the state vector
xn = (Kn; Ry) with 5; < k; (1 <4 < n). In this case, it is not too difficult to prove

from Equation (3.15) that

g(Kn§ Rn) =

n & (k,-+---+kn)( Azr, Vi,
pn+ X0 Aor; iy ks Bn+ 27 Az,

- We mentioned in Section 1, Chapter II, about the possibility of implementing
service disciplines different from FCFS (type 1) and its extensions for infinite servers,
IS (type 4) and broadcast delivery BD (type 5). In order to do so, we start with a
more general version of the global balance equation for the non-reneging camp-on

model:

n . .
> #i P(Zn;Rn) =  m; P(Z]_yiR7_y) (3.160)
1=1

+ (1 - zi)’\2r,'P(Zn;Rn),

1

n
1=
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R n+1
Mn P(ZniRn) = 3 X(rozr;) 2o Hi P(Znt1iiRny1s), (3.160)
r0=1 1=1
with
ﬁ, if a class-1 system;
Yy = N+l (3.16¢)
/\2,j, if a class-2 system.

This is a natural extension of independent balance Equations (2.20a) and (2.20b).
However, we now have customer arrivals to any arbitrary position in the first-
level queue P(Z'Z;—13R'Z;—1)’ and customer departures from any of the multiple
servers P(Z,1;; Rnt1;). This condition allows for more general service disci-
plines than plain FCFS or IS. However, we do not intend to solve Equation (3.16)
but only to study two special cases: i) single-server last-come-first-served non-

preemptive resume (type 2), and ii) single-server lést-come-ﬁrst-served preemptive-
resume (type 3). We will need to redefine the neighboring state associated with the
transition from the first-level to the second-level stage q; (Xy—1;%n) and the trans-

formed probability P(Z{l_l; Ri_l) for each type of service center. These results are

presented in the following two Corollaries.

Corollary 1.1: For a non-reneging camp-on system with one single server and a

LCFS-NP service discipline (type 2):

P2(zn;Rn) = P(zlazn,"'aZZ; rlarna"'aTZ)-

Proof : For a type 2 center, the newly arrived first-level customer is placed next
in turn for service in the 2"% position in the LCFS-NP queue, since the in-service
customer is not pre-empted until his job is done. Therefore, we have j = 2, Ynj =

Yn2, and the server-dependent parameters in Equation (3.16) are given by

2
Pz(ng—l;Rn—l) = P2(21,23‘,"',2n;T1,1’3,"',Tn),
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u, ifr=1,
wi(Rn) =
0, otherwise.

Hence, by recursion on Equation (3.16a),

. Tn2 '
Py(Zn;Rp) = Py(21,23, 2 F1,750 -
2( n n) ’l, E:;=1A2r'(1_zi) 2(21 23 Zn rl r3 rn)

n

Tn

Comparing this last result with Equation (3.15), we notice that the above distri-
bution is of the same form as the distribution for P(Zn;Ry) in Equation (3.14),
except that the locations of the second-level systems associated with the classes
r9,--,rn have been reversed to ry,,---,rs. Thus, the conclusion in Corollary 1.1

follows immediately.

Corollary 1.2: For a non-reneging camp-on system with one single server and a

LCFS-PR service discipline (type 3):

P3(.zn;Rn) = P(zm"‘szl; rn,"',rl)-

Proof : For a type 3 center, the newly arrived first-level customer is served immedi-
ately, for he is the last customer to join the service center. The previously in-service
customer is placed next in turn for service, that is, the gnd position in the LCFS-PR
queue, since he is pre-empted and placed in the first-level waiting line as the new
customer arrives. Therefore, we are back to a similar situation as in Corollary 1.1,

except that j =1, v,; = n1 and

P3(Z71L—I;erz-—1) = P3(22,z3,---,2n;r2,r3,---,rn).
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By recursion on Equation (3.16a),
n

P3(Zn;Ryp) 1‘[

Tn
ﬂ'+ Zk— —i+1 ’\Zrk(l )

Again, this distribution is similar to the distribution P(Z,;R,), except that the
location of the second-level subsystems associated with the classes ry,---,rn has

been reversed to ry,---,r;. The conclusion in Corollary 1.2 follows immediately

from this last result.

1.4. Stationary Distributions for Non-Reneging Camp-On Systems

Using the definition of ¥; in Equation (3.14) and the inverse transform relation
in Equation (2.21), one could try to derive the joint probability distribution for
queue lengths p(xy) for this non-reneging model. However, such an antitransform
procedure will prove not to be an easy task. Using a less orthodox procedure, one

can prove (see Appendix III) the following theorem:

Theorem 2: In a stationary camp-on system with no reneging allowed from the
second-level stage (n = 0) and type-s service centers (i = 1,4,5), the equilibrium

joint probability distribution of queue lengths is given by

Pi(xn) = po ¥1(x1)--¥n(Xn),  ¢=1,4,5, (3.17)
where . . :
) = B (’%“ﬁ) [*_2_] [Q}
¥i(x) = 3 l,{:o L 3 e | (3.18)
and
€n = En(Xn) = pn+ D Ao (3.19)

=1
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Notice that Equation (3.17) is not an independent product solution, since %;(x;) is

still linked to ;_;(x;_1) through the parameter {;_;.

Equation (3.9) holds only if v < un for all n > M, finite; otherwise, the
system is unstable (non-ergodic). The condition for convergence in Equation (3.15)
suggests that 37 ; |Agr,| < pn for all xn, € (1. However, it is shown in Appendix III
that the requirement in Equation (3.9) is a necessary and sufficient condition for

stability.

In a general sense, Equation (3.17) can be interpreted as the collection of all
possible combinations of events that, starting from the empty state xg, would yield
as a final result a state vector x,. Though this camp-on system model presents
some similarities with the problem of networks of queues (the presence of multiple
queues, different types of customers, etc.), this queueing model does not present the
typical product form-solution found in this multinode model. This difference can be
attributed to an effective bulk departure process for second-level customers, which
results in a lack of reversibility between the arrival and the departure processes. It
also results from the random character of the size and number of queues within the
second-level system as opposed to the fixed character of these parameters in the

case of a network of queues.

The following two corollaries are immediate extensions of Corollaries 1.1 and

1.2 to type 2-3 service centers.

Corollary 2.1: For a non-reneging camp-on system with one single server and a

LCFS-NP service discipline (type 2):

pZ(Kn;Rn) = pl(klakn7"'ak2;rlarns""rZ)°
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Corollary 2.2: For a non-reneging camp-on system with one single server and a

LCFS-PR service discipline (type 3):

P3(Kn;Rn) = Pl(km“"kl;"m""rl)'

Both of these results follow as a direct consequence of Theorem 2 after reordering

the position of the second-level systems with respect to the first-level center.

1.5. Systems with Finite Storage Capacity

The systems previously discussed fall within the category of infinite or semi-
infinite camp-on systems, for all the second-level queues can grow infinitely long.
However, most of the queueing systems found in real life applications are finite-size
queueing systems, typically because of buffer limitations in any practical implemen-

tation. The following results apply only to non-reneging camp-on systems.

Let N denote the storage capacity at the first-level queue and let Ny, denote the
storage capacity for the second-level system in position ¢ with class-r; custémers. Let
us proceed as in the infinite storage case, but now considering that when k; = N,,,
any incoming customers to the ith second-level system will be blocked and cleared
from this hierarchical queueing system. After making the necessary modifications
to the state-transition rates in Equations (2.8) to (2.12) to accommodate the limited
buffer sizes, it is clear that the equilibrium joint probability distribution of queue
lengths for the finite-state camp-on model p*(x,) must satisfy the following set
of difference equations. This set of equations closely resembles Equations (2.8) to

(2.12) except for the finite number of system states and the boundary conditions at
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the boundary states:

[ > (A2r; X(k, <N, ) T4+ Ain X(n< V) + BX(n>0)| P (Xn) =
1=1
Tn X(kn=0) P" (Xn-1)

+ Z M2r; X(k;>0) P" (X'

No
+ Z X(ro#r;) Z HX(n<N) P *(%Xn+1,1) (3.20)
7'0—-
n+1 NO
* Z X(ror;) Z Z Vi X(n<N) P P’ (Xnt1,i)
r‘o—
0 < k; < Ny, 0<t<n<N

The next theorem, which applies to camp-on systems with finite storage capacity
and no defections from the second-level queues, shows how to compute p*(xy) from
p(Xn), the equilibrium state probability distribution for a camp-on system with

infinite storage capacity given by Equation (3.17).

Theorem 3 : Let p*(Kn;Rp) designate the equilibrium joint probability distri-
bution of queue lengths in a non-reneging camp-on system with storage capacity of
N customers at the first-level queue, Nrj class-r; customers at the 7tk second-level
queue and type-i (¢ = 1,4,5) service center. Let (;,---,l;) be indices denoting the

set of second-level systems whose queues are already full, k; = Ny,. Then,

P(Kn;Ry) if k; < Ny,, (0<n<N);
P‘(Kn;Rn) = 9 00 . ,
Z e Z p(Jn’Rn) ifk‘i:pr (]-Sssn),
\ jll:erl '7‘[3=N"ls
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while

po = p(x0)-

Here p(Kn;Ry) is the equilibrium joint probability distribution of queue lengths
in a camp-on system with infinite or semi-infinite storage capacity with the same

traffic parameters, and (Jn,Ry) is a state vector with j; = k; if k; # Ny,.

To prove this statement, start with the global balance equation for an infinite-
storage calﬁp-on system in Equation (2.14) and let n = 0. Define §(xp) as proposed
in Equation (3.21), by summing the k;’s in the equation for p(xn) for the uncon-
strained system, from k; = Ny, to infinity. After some straightforward algebraic
reduction (see Appendix V), it is easy to prove that the set of difference equations
satisfied by p(xy) represents the same queueing system as the one described by

Equation (3.20). It therefore follows that p(x,) = p*(xp).

Accordingly, each time we increase the buffer capacity of any second-level sys-
tem, we split the “old” state vector x,, with k; = Ny, into two new state vectors
x,ll and xi, one with k} = Ny; and the other with k? = Ny; + 1, in such a way
that the sum of their probabilities equals the probability of the old state vector:
p(x}L) + p(x2) = p(xs). Moreover, this redefinition of the state space has left un-

changed the probability of the off-boundary states.

Tables 1 and 2 give closed-form expressions for the state probability distribution
p(xp) in some small-size systems, obtained from Theorem 3 with N, = 1 and N, = 2

for class-1 camp-on systems with single-class second-level customers and A; = Ao,.

These results can be used to design enhanced customer services for many practical

communication systems, as we will show in Chapter V.
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TABLE 1

State Probabilities for Some Finite-Storage Camp-on Systems (N, = 1)

N p(Kn)
Ny,
N = po = xﬁ—,;
Ny =1 p(0) = 3zpo p(1) = 2o
po = [1+X/u+2%/u)7 |
N = p(0) = M,‘po p(1) = ﬁi—,ﬁpo
Ny =1 p(0,0) = (mﬂmpo p(0,1) = (,W)fz\fz,\—wpo
Ny =1 p(10) = w21 = kb
po =1+ A/p+ A2 /u? + A3 /u8)71
p(0) = x25po p(1) = HA{TV’O
N =3 p(0,0) = mﬁ%@jpo p(0,1) = (—,\T}L)’z\%mﬂpo
Ni=1 P(L0) = e P ) = P
Na=1 | p(0.0.0) = rymiamgre #0.01) = e e
N3 =1 P(0:1,0) = oy (2?\>:u)(3/\+p)p0 p(1,0,0) = /‘(/\+#)(23:\§M)(3/\+#)p0
p(0,1,1) = (H#)g?j’-\jjB Z(3A+u) PO p(1,0,1) = #(/\+u2)(23éﬁi)){2\;3/\+#) Po
p(1,1,0) = ﬁ(HL()“(;;ﬁBEBHu) Po

_ 12X% 44002 u+45Au2+ 153
(LL1) = S rra s ea) T3 A 4] PO
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TABLE 2

State Probabilities for Some Finite-Storage Camp-on Systems (N, = 2)

N p(Kn)
Ny,
2
Ny =2 p(0) = x35Po0 p(1) = ZrigayPo
2) = A
p(2) = ﬂ(,\ﬂ,)zpo
po=[1+A/n+A2/u?~t
A 2
N=2 p(0) = xzpo p(1) = ;(x'\mpo
D
p(2) = ZOrp)zPo
_ A2 _ A3
M=2 1 »0.0 = prjmamre PO = Gy Po
_ A4 _ 223
Me=2 1 2(00.2) = pgyirapro  P(LO) = Iy P
(22 +3u)2 _ 2(3a+pu)A®
p(1,1) = AosataamPre PL2) = D+ (22+u)3 PO
_ (ar+3p)2t _ 2(4x+3p)A°
p(2,0) = M(I\‘FP«)Z(Z/\'{'M)ZPO p(2,1) = “()‘+“)2(2/\+“)3PO
_ 2(422 4102 u+5u2) A5
p(2,2) = n(A+u)>(22+u)3
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II1.2. Other Special Distributions

In this sectioh, we study some special cases of the probability distributions
P(Z,;R,) and p(x,). First, we study two particular situations in the two-level
camp-on model. One of them corresponds to single-class non-reneging systems.
This is useful when the service center has no knowledge about the second-level
system classes. The other corresponds to class-1 camp-on systems under heavy
traffic conditions for the first-level queue, where A\; > u. The marginal distributions
for the size of the second-level system in position ¢ with respect to the first-level
center and the total workload accumulated at each queueing stage are then derived

also for non-reneging systems.

2.1. Single-Class Systems

The state vector representation for the camp-on model, x,,, provides explicit
information about the second-level class assignment, besides just the information
about the queue sizes. Even if the number of classes R is small, computing x,
from Equationi (3.17) is tedious because of all possible permutations of customer
classes among the second-level systems. In other instances, the central node of the
network (first-level center) may not know beforehand the tra.fﬁcvsta.tistics of all the
nodes (second-level systems), and a routing decision has to be taken based only
on the occupancy probabilities for the system. A great deal of simplicity and a
corresponding reduction in computation can be achieved by looking at only single-
class camp-on systems. That is, we assume Ay, = Ao for all second-level systems.
Then any information about the customer class is redundant, and it is just enough
to specify the total number of customers in each of the second-level queues. Let

xn = Ky = (k1,- -, kn) be the reduced state-vector representation for such a system



- 58 -
and let p(xn) = p(Kp,) be the corresponding state-probability distribution for queue

lengths. It follows from Equation (3.17) that

p(Kn) = f:: p(Kn;Ry). (3.22)

From this definition it can be seen that for the single-class camp-on system, the
equilibrium joint probability distribution of queue lengths reduces to the simpler

expression

) = (1) plEniR), (5.23)

with p(xn; Rp) as in Equation (3.17) but with a commeon arrival rate Az for all the

second-level systems. Here p(xg) in (3.11) reduces to

_ N+1771
1 l(ilif/)# ] . (3.24)

p(xg) = [

There is quite a straightforward interpretation for p(K,). Given that the size of
the first-level system is n customers, we could have chosen only n classes of second-
level customers out of the R available, but they could also have been chosen in any

arbitrary order. This explain the form of Equation (3.23).

Figures 6 and 7 show the state probabilities for the first few terms of the state
probability distribution p(Ky,) in a single-class non-reneging camp-on system with
infinite storage capacity as a function of the traffic intensity at the first-level service
facility (p1 = A1/p) for state vectors with n = 1 and n = 2. In this example, the
system parameters were chosen such that A\j, = A\; = A9, and v; =0 (1 <7 <
n < o0o). Notice how p(K,) increases and then decreases as the traffic intensity
increases, as one should expect. This behavior exhibited by p(Kp) clearly indicates

that for light traffic, those state vectors with small queue sizes mostly prevail, while
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Figure 6: Equilibrium probabilities for some states x, with n = 1 as a

- function of the traffic intensity at the first-level service center in a single-

class non-reneging camp-on system with A; = Ag,.



State Probability p(ky, k2)

- 60—

p(0,0) p(0,1)
~u

P,1

Traffic Intensity

Figure 7: Equilibrium probabilities for some states x, with n = 2 as a

function of the traffic intensity at the first-level service center in a single-

class non-reneging camp-on system with A1 = Ao,.
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for heavy traffic, those states with large queue sizes become much more significant.
This traffic-dependent behavior is manifested by the progressive fan to the right of

the curves for p(Ky,) as a function of the total workload, S(Kn) = n+ky+-- -+ kn.

Figures 8 and 9 also show how the state probability p(1, 1) changes as a function
of the traffic intensity at the first-level facility for a fixed traffic intensity at a
second-level system (p; = 0.2, 0.4 0.6, 0.8, 1.0), and as a function of the traffic
intensity at a second-level system for a fixed traffic-intensity at the first-level system
(p1 = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8). In Figure 8, we observe essentially the same
type of behavior for the state probability p(1,1) as in Figure 7. Basically, p(1,1) is
depicted as a shifted version of the state probability 7 (2) in Figure 6. It also shows
that the distribution of the size of the second-level queues changes very little for
second-level traffic intensities in the range po ~ 0.3 — 1.0. This is because of the
strong influence of the first-level system on the initial structure of the second-level
systems. Figure 9 shows that the state probability p(Kj,) is relatively insensitive to
changes in the traffic demand at the first-level center for medium traffic intensities

(pl ~04— 0.7).

2.2. Heavy Traffic at the First-Level Service Center

Another very interesting situation in a camp-on model is a class-1 system, where
the arrival rate at the first-level systems is much larger than the service rate. Cléarly,
the queueing system can have either a finite storage capacity at the first-level queue
or as many first-level servers as customers; otherwise, it will be unstable. Since
A1 > py, it follows from Equation (3.1) that for any distribution of the second-level

queue sizes, P,_1(Z,_1;Ry-1) € Ppi1(Zp+1;Rp+1). Therefore, we can rewrite
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Figure 8: Equilibrium probability p(1,1) as a function of the traffic intensity
at the first-level service center in a single-class non-reneging camp-on system

with Ao, as a parameter.
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Figure 9: Equilibrium probability p(1,1) as a function of the traffic intensity

at the second-level service center in a single-class non-reneging camp-on

system with A; as a parameter.
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the transformed balance equation for a camp-on system under heavy traffic condi-

tions at the first-level service center as:

..n a
Z(zi - 1) l}’"{‘azp(zn;Rn) - ’\2r; P(Zn;Rn) + /\lnX(n<N) P(Zn;Rn) =
1=1 1
n+1 n+1
Z X(ro#r;) Z ViX(n<N) P(zn+1,i;Rn+1,i)-
ro=1 1=1

Here we also chose the reneging rate from the second-level subsystems as dependent

on the class assignment R,,.

In this case, we could think of the reneging rates from the second-level systems
kr; as corresponding to an actual service being provided by the second-level sub-
systems rather than just to impatient second-level customers quitting the camp-on
system. This represents an exfension of the type-5 service center to the service
centers for customers in the second-level stage of a non-reneging camp-on system.
This is because of the similarity of the reneging and service in an infinite-server
environment. In this case, a second-level customer could be serviced at the same
instant as its associated first-level customer is being serviced or queued at the first-
level waiting line. Assume that the second-level system behavior is that of a truly
IS service center. Then the solution for the above partial balance equation would
be

T Y% %’.i(z.‘—l)
)

P(Zn;Rn) = po [ e

=1

(3.25)

the product of the distributions for the size of the first-level system as a single-level
system and the transformed distribution for the IS service centers at the second

queueing stage.
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This claim can be immediately verified since in this case the first term on the
right side of the transformed balance equation cancels out, and the resulting bal-
ance equation is that of the one-level queueing system. One can now prove from

Equation (3.25) that

k;
p(xn) IE'I Z_...(ﬁﬁ’i_ _’\21’,'/’7’;'. (3.26)

1

Thus, each of the queues in the camp-on model behaves as an independent queue-
ing system, and a product-form solution can be given to the state probability dis-
tribution. This is regardless of the bulk departure processes for the second-level
customers, resulting from a service completion at a first-level service center. No-
tice that under these conditions, the second-level system reaches equilibrium before |
its associated first-level server can change his position with respect to the first-
level queue. Hence, second-level customers perceive the first-level queue as a static

collection of n servers rather than as a changing waiting line.

2.3. Marginal Distribution for the Size of the it? Second-Level System

From the performance analysis viewpoint, the system description given by the
state-vector probability p(xn) may provide more information than one needs to
know. In many cases, the marginal distribution for the size of the second-level
systems more than suffices as a relevant description of the state of the camp-on
system. For example, the probability that the second-level system in position z will
have k; class-r; customers awaiting service, when the first-level system size is n, can
be extracted from the transformed joint probability distribution of queue lengths
by selecting only according to the size of that sole second-level system rather than

on the whole joint distribution of the multiple subsystems in Equation (3.1).
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Let (I1,---,ls) designate a subset of the second-level systems. For the fixed class
assignment R,, of the customers queued at the second-level systems, the generating
function P(z,,---, z;,;Ry) for the size of the ith second-level system is found by
evaluating the transformed state distribution P(Zy,;Ry) in Equation (3.1) at the

vector Z,, = z, with z; =1 if ¢ =l and z; = 1, otherwise:
P(zll,...,zl‘;Rn) = P(l’...’zll,...’zla,...’l;Rn)_

An extreme case of this distribution results when we assume z; = 1 for all k except
for kK = 1. This case corresponds to the marginal distribution for the size of the

second-level system which is in position ¢ with respect to the first-level facility.

Then,
P(z;Rp) = P(l,l,---,z,-,---,l;Rn)
Sy By 2 S5 - 1)
= Tk gi] _’7____—_ 3.27
w Il 2 19 D o (821

If we look a the particular example of a single-server non-reneging camp-on
system (v; = n = 0), it follows that the transformed marginal distribution for the

size of the i*» second-level system, conditioned on the class assignment R, reduces

to

Tk-1
P(z;Ry,) =
(z:Rn) = po kHI n JI];#+’\2r(1—z)

n—-i+1 —(n—t+1) g
i A2y, ) Tk
= - 1—-— 2 —. 3.28
Po (u - /\2”) ( II (3.28)

M + ’\2r,~ k=1 124

This expression for P(z;Ry) can be easily antitransformed, using conventional Z-

transform techniques. Through the straightforward computation of Equation (2.21)
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or by the use of an antitransform table[lsl, we see that the marginal distribution

for the second-level systems in position ¢+ when the first-level queue has size n is of

the form
n—1+k; i, k:
p(ki;Rp) = ( & ‘)ﬂ:; 1 apd 1(Ry). (3.29)
1
Here
T Yk
m(Rn) = po [[ = (3.30)
k=1 #

is the probability that the first-level customers have class assignment R, for its

associated second-level waiting lines. The parameters ayr; and fy; stand for

Azr.

R 3.31
arl #+A2r’ ( ) R
By = —H . (3.32)

' ”’+A27"

The interpretation of the parameters ar, and By, is that they represent the
average arrival ratela,t the it second-level system and the average departure rate
from position ¢ to position ¢ — 1 in the second-level stage, respectively. A customer
arrives at the i# second-level system with probability ay; before a customer depar-
ture from the first-level occurs. Hence, a,’i." stems from the probability of exactly k;
class-r; arrivals to the i*# second-level system between the ith and the nt* arrivals
to the first-level queue. Similarly, ,'.:,‘i is the probability of exactly n — ¢ depar-
tures from the first-level system. Since the size of the first-level system is n, it is
clear that an *# second-level system will still exist at the second-level stage. Then,

th second-level system be-

p(k;;Ry) is the probability of exactly k; arrivals at an ¢
fore this subsystem leaves the camp-on model. This explains the negative binomial

distribution.
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Based on the definition of (Iy,---, l,) from Qp and Ry, in Equation (3.13), it is

convenient to rewrite 7(R,) as:

( n
Avs
Po ¢I=I1 (R_—Tli-—_f)_y._’ for class-1 systems;
m(Rn) = . , (3.33)
po [] (2‘&) , for class-2 systems,
L r=1 B

which is equivalent to the probability distribution of an M/M/1 queueing system
with multiple classes of customers. From this, 7(n), the unconstrained probability

distribution for the size of the first-level system, is merely

m(n) = > m(Rp). (3.34)

Rn

If we insist on the *? second-level system’s being of class r, then the probability

that its size is k;, regardless of the composition of the first-level system is given by
pnlkir) = X X(r,=r)P(ki; Rn). (3.35)
{In

We notice that for the special case of single-class class-1 camp-on systems, Equa-

tion (3.35) boils down to

n—i+ki

k) = ("7

)ﬂ"'i+lak‘7r(n), (3.36)

witha =A/(A+p)and a+ 8 =1.

The interpretation of Equation (3.31) is that pp(k;) is the probability of k;

arrivals at the second-level system between arrivals : and n + 1 at the first-level
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system. Figure 10 shows pn(k;) as a function of the traffic intensity at the first-level

system, with A; = A9, for the case n = 3 and k; =0, 1.

We will return to this expression for the marginal distribution of the ith second-

level system as we study multilevel camp-on systems in Chapter IV.

2.4. Workload Distribution Among the Queueing Stages

We already have a very complete description for the state occupancy problem in
two-level camp-on systems through the transformed joint probability distribution
of queue sizes P(Z,;Ry) in Equation (3.1) or the antitransformed form p(x,) for
non-reneging systems in Equation (3.17). We shall now exploit this description
to derive the distribution of the total workload accumulated in the two queueing

stages.

Let P(2;R,) denote the genérating function for the size of the second-level stage
and let p(k;R,) denote the joint probability distribution of the sizes of the system
stages for a fixed class assignment R,,. We obtain P(z; Ry) from Equation (3.1) by
evaluating P(Z,;Ry) at the vector Z,, = z, which components z; = z. To prove
this statement, notice that

[o.¢] o0
= Z “oe Z p(Kn;Rn)zkl++kn

P(Zn; Rn)
Zn=% £ _0 kn=0

= Z p(Kn;Rn)zkl+'“+kn.
kytotkn20

Here, p(k;Ry) stands for the joint probability distribution of the accumulated work-

load in both system stages. Hence,

P(k; Rn) = Z P(Kn; Ry).
ki+-+kn=k
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Figure 10: Marginal distribution for the size of the ith second-level system

pn(k;) vs. the traffic intensity at the first-level system in a single-class camp-

on system (A, = Aj).
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It follows from the above equation that

P(z;R,) = E:p(k:;Rn)zlc
k>0

= P(zn§Rn)

n=

Accordingly, if we follow the above argument and evaluate P(z;R,) from Equa-
tion (3.16), we conclude that the generating function for the distribution of the size
of the second-level stage in a non-reneging camp-on system, conditioned on class
assignment R, for the second-level systems, is

n

N
P(zRn) = po [] . . (3.37)

For convenience, let us define the parameters &; and f3; (they are not to be confused

with ar; and By, in the previous section) as

. X

a = —, 3.38
Py (3.38)

G = L. (3.39)
B+ A

Here, &; and [},- represent the average rate of arrival and departure into and out of

the second-level stage, conditioned on a first-level system size of n customers.

After antitransforming Equation (3.37) (see Appendix VI), it can be shown
that for a non-reneging camp-on system, the workload distribution among the two
queueing stages is of the form

n ~.".
p(k;Ryp) Z &t (Ry) H—,ﬂ?‘i——, n>0, k>0. (3.40)
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If we sum the above expression over all possible class assignments R,, for the second-
level systems, we find that the distribution of total workload accumulated by the
camp-on system at each stage py, (n, k), is

Pw(n’k) = Z p(k;Ryp).
Rn

In particular, for class-1 systems, when Ay, = Ay for all r, we are back to the
 single-class camp-on system The above expression for py, (r, k) thus reduces to

(—1)"'i£"

— n(n). (3.41)

pwnit) = 3 Aick(7)
1=1

As a further check of Equation (3.41), let us compute the probability distribution -
for the size of the first-level stage, regardless of the size of the second-level stage.

We have

pn) = 3 pn.k)
k=0

-3 (),

!
i=1 4 n:

But recall the combinatorial identity[35]

z":(_l)n-k(z)kr _ {o if r <n; (3.4

k=0 n! if r =n.

Consequently, the probability distribution for the size of the first-level system ends
up being

p(n) = —lnta(n)] = 7(n),

which is consistent with the interpretation of m(n) in Equation (3.34).
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From Equation (3.39), we could also derive an expression for the distribution
of the total number of customers in the camp-on system. This is the overall system
size, counting both first-level and second-level customers. Let p,(n) denote this

probability distribution. It follows that

pr(n) = Z p(k,n — k)
k=1 |
n k k 5B
= > > Bl n(Ry) 1 ;—‘E%, n>1. (3.43)
k=1i=1 s (&= &) |

For a single-class non-reneging camp-on system, Equation (3.43) reduces to

n k _ _ k—iik
pr(n) = > Eﬂ;&;'-"('f) Ll%—n(k). (3.44)
k=13:=1 :

]

Figure 11 shows how the workload distribution py, (n,k) behaves as a function
of the incoming traffic to the first-level service center for a single-class non-reneging
camp-on system with A\; = A9, and n,k = 1,2,3. Figure 12 shows the distribution
of the total number of customers as a function of the traffic intensity at the first-level

service center in a single-class non-reneging camp-on system with A; = Ag,.
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Figure 11: Workload probability distribution among the queueing stages

Pw (n, k) vs. the traffic intensity at the first-level service center in a single-

class camp-on system with Ay = A9, and n,k =1,2,3.
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Figure 12: Probability distribution of the total number of customers p.(n)

vs. the traffic intensity at the first-level service center in a single-class camp-

on system with A\; = Ao, andn =1,---,6.
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CHAPTER IV:

MULTILEVEL CAMP-ON SYSTEMS

In Chapter IV, we extend the basic results found for two-level camp-on systems
to systems with multiple levels of queues. We will concentrate mainly on the equi-
librium distribution of queues in a non-reneging environment. Instead of trying to
provide a description of the system that accounts for all queues in progress within
the service hierarchy at a given point in time, we develop an alternative approach
that looks only at some key subsystems of relevance. This approach provides a
sizable reduction in computation. This is because it would require something in the
neighborhood of an N™-dimensional vector just to represent all the possible states
in a camp-on system with n queueing stages and common storage capacity N for
every subsystem. In Section 1, we first provide a detailed description of this queue-
ing camp-on system. Then we propose an ra.lterna,tive reduced-state representation
and derive an equivalent set of equilibrium balance equations for the reduced-state
model. In Section 2, we find closed-form solutions for the reduced—sta.té probabil-
ity distribution. Both infinite and finite-state systems, that is, those with limited

storage capacity, are considered.
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IV.1. System Description

In the multilevel camp-on model, every queued customer is associated with two
waiting lines, no matter the queueing stage. One is the waiting line where the
customer is currently enrolled as a simple user. The other is the waiting line where
the customer is being perceived as a service center for others. The main difference
with respect to the two-level camp-on model studied in Chapters II and III is that
these two queues are allowed to exist without any concern as to the total number of
stages customers have to go through in order finally to be serviced by their intended
service center. In the two-level camp-on model on the other hand, we allowed only
two queueing stages, i.e., the first-level and the second-level queues. This multilevel

queueing system is depicted in Figure 13.

Conventional computer services, such as job scheduling in batch processing, file
printing, etc., or telephone services provided through PBX’s are typical examples of
one-level camp-on systems. However, current data communication services for job
scheduling and management with a growing emphasis on networking and systems
integration already display, at the very least, two levels of queueing. One example is
shared peripherals in a network environment. Here, the first-level queue is located
at the peripheral device itself; this queue consists of all the Work requested by
the different network nodes that can feed it. The second queueing stage includes
the peripheral service requests made by individual users at the node level; the
requests must first go to the local service node, which will later relay the request
to the beripheral, when transmission facilities become available. Another simple
example of a two-level camp-on system comprises enhanced telephone services such
as call-waiting and teleconferencing, where three or more simultaneous, but not

intermixed, calls can be placed at any given time. In the call camping example, the
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first queueing stage is composed of the calls being received by the called party. The
second queueing stage is composed of the calls being received by the calling party.
The teleconferencing example is just an extension of call camping with multiple

calling and 'ca.lled parties.

Finally, with the advent of concurrent a.ndvpa.ra.llel processing and of networks
of LANs and other highly hierarchical systems, as well as with the increasing inte-
gration of voice, data and video, applications for multilevel queueing systems are
certainly on the rise. For instance, we can envision LANs connected through an-
other LAN in order to share very expensive peripherals or a common database.
Concurrent processes will have to queue and wait if they are to exchange data with
other processes already engagéd in a data exchange. The motivation for this work

is to better understand queueing in these hierarchical systems.

Many highly complex queueing systems can also be thought of as n-level “ge-
nealogical trees.” For example, we can think of a data network built on a tree
topology, where customers at the bottom of the network have to go through the
different node levels to get to the central node. The number of levels, n, merely
indicates the number of generations in the family tree. Hence, it is possible to es-
tablish a one-to-one correspondence between the size of a particular subsystem in
the camp-on service hierarchy and the size of the branch in its tree representation
in which the particular subsystem of interest is sitting. From this tree viewpoint,
the size of subsystem x in the multilevel camp-on model is equivalent to the size of
the progeny of descendant x in the family genealogy. Figure 13 shows a pictorial

representation of a mutilevel camp-on system in the form of a tree.

The set of assumptions for the multilevel queueing model is basically an ex-

tension of the earlier assumptions for the two-level camp-on model. The customer
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arrival and departure processes are statistically independent. Customers come from
an infinite pool of subscribers, and every queueing system in the camp-on model
provides unlimited storage capacity. The arrival process at each subsystem is re-
garded as Poisson with mean arrival rate A; for any queueing subsystem at the ith
queueing stage of the camp-on model. The service completion process at the service
center, the one serving first-level customers, is assumed memoryless, i.e., a negative
exponential distribution with a mean service time u;. No renegings (defections) will
be permitted from any of the system queues, and customers will be served with a
FCFS policy. As before, these assumptions imply a decoupling among customers
at different stages in the multilevel camp-on system, and even among customers
located at the same stage, as long as they traverse distinct service paths in the
service hierarchy. This is a direct consequence of the independence of the arrival

and departure processes.

Finding the joint probability distribution of queue lengths for all possible queue
configurations in the multilevel camp-on model, nonetheless, amounts to giving
the family size distribution for every single descendant in the family tree. This is
not a trivial task even if we have only a finite storage capacity of N customers
per subsystem. If the number of queueing stages is n, it will require a vector of
dimension on the order of N™ just to account for all the state vectors in such a

sample space.

Because of the decoupling between the customer arrival processes in different
paths of the service hierarchy along the queueing stages and the FCFS service
strategy, we observe that if we pick any queued customer at random, he has only
to be concerned with the amount of queueing he has to do before reaching his

intended service facility. All other service paths outside its own do not affect his
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service expectations. From the family tree approach, this decoupling effect has a
simple interpretation: to get to the family root, one need only look at the direct
ancestors of a given generation, not to all the members of the family. Thus, we
propose to choose as state representation a vector that includes the sizes of all
subsystems in the path from the first-level service center to the last subsystem at
the (n + 1)* queueing stage. This reduced representation of the system’s state is
equivalent to a “depth-first” search along the family tree. In this, we search for
the sizes of all subsystems along a root-to-leaf path of the servicé hierarchy. This
interpretation of the multilevel camp-on system states is equivalent to giving the
family sizes for all the ancestors of a family member up to the family root, starting

from a member of the current generation.

Suppose the size of the first-level system, counting both queued and in-service
customers, is ¢ customers. Then the size of the first generation is ¢+ descendants. The
distribution for the size of this first generation is well known to be 7(z) = (1 - py) p‘i
with p; = A;/u1, the probability distribution for the size of an M/M/1 queueing
system, as in Equation (3.34). Similarly, let j;, an index, denote one of the children
of this first generation and let k; denote the size of his progeny. Then p;(j1;4;) is
the joint distribution for the size of the family’s first generation and the size of the
first generation of descendant j;. From our two-level camp-on system standpoint,
p;(j1; k1) also represents the marginal distribution for the ji¢ second-level system
in the two-level camp-on model. Therefore, using our earlier notation developed for

two-level camp-on systems: p;(51; k1) = p;(k;, = k1).

Let 71, ,Jn and ky,---,k, be two sets of non-negative integers. Assume that
/
we start with an :-member family, that is, a queueing system with ¢ customers in

the first-level queue. Extending the preceding reasoning to the next generation,
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that is, the next queueing stage in the multilevel model, let j; be a “child” from
the family’s first generation, that is, the customer at position j; in the first-level
queue, and let k; denote the size of his, j;’s, progeny. In general, let j; be a child
from the first generation of j;_;, the customer in position j; at the ith queueing
stage, and let k; denote the size of his progeny. Then the (2n + 1)-tuple (:,J,,Kp,)
provides all the information required to know how much work is accumulated in any
path of the service hierarchy, from the first-level service center to last subsystem at
the (n + 1)“’t queueing stage. But, because of the memoryless state transitions, this
reduced-state representation suffices as well as a complete description of the current
state, in equilibrium, of the multilevel camp-on system. In fact, these (2n+1)-tuples
can be interpreted as the states of a homogeneous, irreducible and aperiodic Markov
chain giving the “depth-first” search of the sizes of the subsystem’s queues along
a path of n + 1 queueing stages in thé multilevel camp-on model. Clearly, unless
the last subsystem in a given service path is empty, k; > 5;_;, or else we would be
talking about (m + 1) queueing stages rather than (n+ 1) queueing stages (m < n).

This representation as (n + 1)-level search is illustrated in Figure 14.

In the next section, we derive an equivalent equilibrium balance equation for
this reduced-state space. We find closed-form solutions for the equilibrium joint

probability distribution of the queue sizes at each of the queueing stages.

IV.2. Stationary Multilevel Camp-on Model

Suppose that the current state in the multilevel camp-on system is given by the
vector X, = (,Jn;K,) and let y,, = ({,J},; K},) be any other permissible state in

this queueing system. Also, let p, (x,) denote the joint probability distribution for
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the sizes of the subsystems along a service path with (n + 1) levels in the camp-on
service hierarchy. If an equilibrium distribution exists for this queueing system, it
must satisfy the global balance equation in (2.13):

P (Xn) D a(Xn;¥m) = Y Pp(Ym)a(Ymixn), (4.1)
ym€eQ ymefl

where g(ym;Xy) gives the transition rate from state y,, into state x,, and Q is the

set of all permissible states.

In order to make the notation simpler, from now on we will consider K,, as
an (n + 1)-dimensional vector of the form K, = (kg,k1,---,kn). Here, the k;’s
(0 £ 7 < n) are non-negative integers with k; designating the size of the first
generation of the customer in position j at the level-l subsystem, and kg = ¢

designating the size of the first-level subsystem.

Looking at the state-transition rates in the global balance equation, one recog-
nizes Yy, <0 q(Xn;¥Ym) as the total rate of departure from state x,. This rate is

given by

n
ST axniym) = w1 + XA, (4.2)
ymefl 1=0

the sum of the arrival rates at each of the subsystems in state x,,, plus the service

rate at the first-level subsystem.

If the system enters state X, because of a customer arrival, this state transition
could have taken place only when the initial state y,, is a neighbor of state x,; i.e.,
state y,, has the same composition as state x,, except that one of its subsystem’s
queue is shorter by one customer. The customer arrival processes guarantee that
no more than one single arrival can occur at any time. There are two distinct types

of neighboring states with this property:
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i) The subsystem at the (¢ + 1)® queueing stage in state y,, is shorter by one
customer than the same subsystem for the next state x,. However, the index
Ji+1 that identifies the customer in the level-(z + 1) queue and the service path
towards the next queueing stage does not designate this last customer joining
the camp-on system, for we would have j;; = k; and k;,, = 0, so we would
be back to ¢+ + 1 queueing stages only. Here, y;, = x,‘,i (0 < ¢t < n), where
x;;* stands for the neighboring state with one fewer customer at the (i + 1)

queueing stage:

x;" = (Jn;Kr_ai)’

K;i = (ko,"'aki_l,"'akn)-

This state transition occurs with rate A, 1, the arrival rate at the subsystem in

the (i + 1)* queueing stage. Hence,
a(xz'%xn) = A1 X(fip1<k) (4.3)

ii) The subsystem at the nth queueing stage in state y, is shorter by one customer
than the same subsystem for the next state x,,, but the index j,, identifying the
customer at position j, in the level-n subsystem does correspond to this last
customer joining the camp-on system. Then y,, = x;f‘fl, since the upper-level

queue associated with this customer must be empty (he just joined the camp-on

system). In this case, the state-transition rate is given by

—n+l., y _
9(x;"T 15 %n) = An X(ju=kn_y, kn=0)" (4.4)

Notice that we have ruled out the possibility that k; = 0 for 0 < 7 < n. This

condition will demand that the number of queueing stages along this service path is
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less than n, not n, as wevorigina.lly demanded for the reduced-state representation
Xp-

There is only one single type of non-neighboring state transition allowed in
multilevel camp-on systems, and this corresponds to the departure of a first-level
customer by virtue of service completion. In this case, the previous system state

must have been yp, = (J11;K/0), where

JII = (j1+1,j2"",jn),

KO = (ko+1,k1, -, kn);

i.e., the customer at position j; has been shifted one place closer to his service -
facility. This state transition occurs with rate uq, the service rate for customers in

the first-level subsystem; hence,
q(Ymixn) = u1. (4.5)

Based on Equation (4.1) and the state-transition rates from Equations (4.2) to
(4.5), we can write down the following global balance equation for the sizes of the
subsystems in a given path of the service hierarchy of this reduced-state multilevel
camp-on model:

n

n
[/v"l + Z ’\i+1 ] pM(Jn;Kn) =

A1:+]. X(J.i+1<k£) pM(Jn;Kr_zz)
1=0 0

1=

+ An X(ju=mkny, kn=0) Prr(Tn-1:K;711)  (4.6)

+ u1 P (TFLKSLO).

The next theorem is an extension of Theorem 2 to multilevel camp-on systems:
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Theorem 4: Let pM(Jn;Kn) denote the equilibrium joint probability distribu-
tion of queue sizes for the subsystems along a service path with (n + 1) levels in a
multilevel camp-on system. Then
n
Py (IniKn) = [ %(3;5K,), (4.7)
1=0

where the function ¥;(J;; K;) is of the form

( 7(ko), if i =0;
1, if k; =0, 0<1t<n;
M; .
(Mi + ki —Jit1— ’:‘) o
1;=0 ki — Jiv1
(I K) = J (j"“ -1+ l") gli i+ (4.8)
li T ’
if k; >0, 0<1<n;
(Mn +kn J1+ko—i- X0
k n %
" n k{" . :
Hain Jit1 if0<i=n.
\ =1
Here, the parameters M;, §;, o; and «;, stand for:
i
M; = ) [km-1—Jm—Im|s ki >Jis1 (4.9)
m=1
m
B; = - ; (4.10)
Lom+ I N
Ait1
a; = - ; (4.11)
Yo+ DALPY
/\.
A = e+l (4.12)

p1+ SN

Of course, in this equation it is implicit that k; # 0 (0 < i < n); otherwise, it would
then be a service path with (Z+ 1) levels instead of a service path with (n+1) levels

in the service hierarchy of this multilevel camp-on system.
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Notice that 3; represents the average departure rate from the (¢ + 1)°* queueing
stage into the i? queueing stage, while o; and a,, are the average arrival rates into
the level-(z + 1) subsystem when the numbers of stages in the service path is 7 and

n, respectively. Thus, o; = a;;.

Accordingly, from Equations (4.7) and (4.8), we can verify that for a single-level

camp-on system,

p(Jo; Ko) = m(ko)

= m(z),

which is the marginal distribution for the first-level size, an M/M/1 queueing sys-

tem, as it must be. Similarly, for n = 1 we observe that

p(J1;K1) = Po(xo) ¥1(x1)

1= g1tk e+l
( k1 ) A,
This is again the marginal distribution for the jft second-level system when the

size of the first-level system is # customers, a two-level camp-on system as in (3.36).

These provide a further check of the results obtained in Chapter III.

As for the case of a finite-state multilevel camp-on system, a result equivalent to
the one presented in Theorem 3 for finite-state two-level camp-on systems can also
be derived. Let N; (1 <i<n+ 1) designate the storage capacity of the subsystem
located at the ** queueing stage of the service hierarchy and let /1,---,ls designate
those subsystems with k;,; = N,;. We then have the following theorem relating the

distribution with the storage constraint to the distribution obtained in Theorem 4

without storage constraint.
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Theorem 5 : Let p]*u (Kn;Ry) denote the equilibrium joint probability distribu-
tion of queue sizes along a service path with (n + 1) levels in a multilevel camp-on
system with storage capacity of N; customers at the subsystem in the ith queueing

stage. Let (I;,---,ls) denote the set of subsystems with k; = N;_;. Then

Ppe(%n), if k; < N;_y,

* (I K — 00 o) 4.15
pM( ni Kn) DRI Z Pr(In;Kn), if k; = N;_yq, 415
ki, =Ny, 1 k=N,

and

Py (%0) = p(x0), (1<s<n<N),

where p, . (Jn;Rp) is the state probability distribution for the same camp-on system

without storage constraints.

The proof of Theorem 5 follows the same lines as the one for Theorem 3, ex-
cept that we work with the equilibrium global balance equation for the finite-state

multilevel camp-on system:

n n .

[“1 + 2 A X(k€<Ni+1)] PrniKn) = 3 N1 X(jipy<k) Prr(Ini K7’
+ An X(jn=kny, kn=0) PM(Jn—l;K,—,ffl)
+ p1 Py (IE LK) (4.16)

Notice that the interpretation of Theorem 5 is compatible to Theorem 3 in
the sense that the boundary states behave as absorbing states for the out-of-space
states. They absorb the probabilities of all those states in the unconstrained model

left out because of the finite buffering space.
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IV.3. Multilevel Systems: Camp-On and Stability

As in the two-level camp-on system case, the ergodicity of the multilevel camp-
on system is tied to the ergodicity of the first-level subsystem. However, every
departing first-level customer leaves a camp-on system with n + 1 queueing stages
and forms its own camp-on system with n queueing stages, which is a subset of the
initial multilevel system. This last statement implies that customers are promoted
from the (& + 1)” stage to the i*# stage, until they eventua.lly reach their intended
service facility. Since all the queueing subsystems in the service hierarchy are served
with a FCFS discipline, the ergodicity of every subsystem as an isolated queueing
system must be required. Otherwise, we cannot guarantee stability of every single
subsystem after departing from the n-level camp-on model. Thus, most of the
comments made in Section 1, Chapter III, about the stability behavior of two-level
camp-on systems carry over to the multilevel model. The ergodicity condition then

boils down to the condition in Equation (3.9):

where we use A instead of <. In particular, we will be requiréd to have A\, < un
for a system with infinite storage capacity in its queue. Here, u,, is the mean service
rate for the subsystem at the nth queueing stage, once it is ready to serve its own

waiting line.

One interpretation of the stability condition in multilevel camp-on systems is
that upper-level subsystems are promoted to the next queueing level before they
can grow out of bounds. This behavior repeats as the subsystem progress towards

its intended service center in the service hierarchy and reaches the first queueing
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stage. At this point, the customers in its waiting line start service. From the server
standpoint, this is.an M/M/1 queueing system with a non-empty-queue initial state.
We conclude that its behavior in the long run must be that of an M/M/1 queueing

system.
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CHAPTER V:

. COMMUNICATION APPLICATIONS

In Chapter 5, we study the performance of the two-level camp-on model in two
different communication applications. The first example corresponds to a queueing
system where both first-level and second-level customers are served in a FCF'S basis.
This can be interpreted as an extension of the PBX concept to hierarchical queueing
systems. Subscribers calling premises attended by this PBX-like facility are even-
tually transferred to their end-point service centers. Here, the service requests are
processed in an orderly manner, after they have been sorted with respect to some
pre-established service criterion. This type of service is typical of inquiry-based

communication systems.

The second example corresponds to a queueing system with broadcast delivery
service. For this system, incoming customers are likewise presorted with respect to
the class of job they request from the service center. Here the first-level queue stands
for the different types of jobs submitted to the system’s facility, while the second-
level queues stand for the numbers of requests for every single type of job. The
service philosophy here is to service all those jobs of the same class simultaneously,
as in a broadcast system. In a sense, second-level customers can be regarded as
outstanding job requests. These are job orders already taken, but not yet processed,

by the first-level service center.

In these examples, performance statistics such as waiting time distribution,

mean waiting time, and blocking probability, when defined, are derived. In both
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cases, it is found that the global system performance does not depart too much from
that of the underlying M/M/1 queueing system, showing the expected dominance

of the first-level system on the global behavior of the camp-on model.
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V.1l. PBX-like Communication Services

When we refer to a PBX-like communication service within the scope of the
camp-on model, we mean a two-level, or perhaps multilevel, queueing system, where
all service centers are type-1 centers, i.e., the service discipline implemented for all
the subsystems is FCFS, no matter what their queueing stages. Essentially, this
model can be used to represent any communication system where customers enrolled
in a waiting line, the first-level queue, are not precluded form taking job orders from
other users, the second-level customers, and they will eventually proceed to service
those orders, once their engagement with the initial service center is through. The
motivation for this type of services stems from the natural extension of the FCFS
strategy to hierarchical multilevel queueing systems and its connection to the camp

on concept in telephony as previously mentioned in Chapter II.

This service model can be extended to many inquiry-oriented communication
services, in particular, those where some sort of clearence or preprocessing has to
be completed before proceeding with a new batch of service orders. For example, a
network for credit card inquiries from convenience stores is an extreme case of the
finite-storage two-level camp-on model, where the number of second-level classes
stands for the the number of stores in the network and the customer handling ca-
pacity is usually Ny =1 for all r. Here, the credit card company’s database plays
the role of the first-level service center. Stores honoring the company’s card consti-
tute the source of first-level “customers,” while shoppers buying merchandise and
paying them with credit cards act as the system’s second-level customers. We can
more generally envision the inquiries made by a node to the central database as
the first queueing stage of the camp-on model. These inquiries may deal with the

authorization of certain customers to access application programs or other services



~ 95 -

*}I0M}3U BJRp B Ul SIIIAIIS UOIJRIIUNWIWOD IYI[-XHd GT 4nbif

[®13ue)

JOM}ON

eleq



- 96 -
required by the node, e.g., maintenance information, special printing facilities, cus-
tomer authentication, etc. Figure 15 depicts this PBX-like communication service

in data network environment.

Typically, when we talk about the performance of a queueing system, we refer
to statistics such as the amount of time a newly arrived customer must wait before
starting his service period, either the waiting time density W (t) or its cumulative
distribution W (> t). We may also be interested in the probability of being denied
access to the queues because they are already full, i.e., the blocking probability.
There are, of course, many other statistics of interest. For PBX-like communication
services in infinite or finite storage-capacity systems, we are mainly concerned with
the time customers spend waiting to be serviced, especially for those customers
in the second-level stage. We will assume that the transmission time is neglegible

compared to the queueing and processing time in the system.

1.1. Infinite Storage Systems

Let us first consider a non-reneging camp-on queueing system with infinite stor-
age capacity. Blocking is not an issue, since the storage space is infinite. If we
look at the two queueing stages of the camp-on mbdel, we realize that the standard
theory for M/M/1 queueing systems[15’23’24] tells what the waiting time density
W1(t), the cumulative distribution Wy (> t), or the mean waiting time probability

W are for first-level customers when the newly arrived customer must wait:

Wi(t) = wip1(1 — pr)e#1(l-Pi)t (5.1)
W1(> t) = ple—ﬂl(l_pl)t (5.2)
W, = —2+ (5.3)

p1(l— Pll)
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Here py and A are the traffic parameters for the first-level queueing system; that
is, u1 is the mean service rate at the first-level center and A; the center’s mean

arrival rate.

We want to answer these same questions for those customers that must also
wait at the second queueing stage. Let W3'(7;t) denote the probability that an
incoming class-r second-level customer arriving at the subsystem in position j of a
size-n first-level system will have to wait for ¢ units of time before its service period
begins. If the 3 th second-level system has k; customers in his waiting.line when the
new customer arrives, the newly incoming customer will have a probability density
function b(j, k;;t) for his waiting time. This accounts for the time period he will
spend as a second-level customer, by(k;,t), plus the time he will spend as a first-
level customer b;(7,t). The time spent in each of the queueing stages is given by
an n-phase Erlang distributioﬁ[15’23], En(t), because of the negative exponential
distribution for the service time period in each of the queueing subsystems. That
is,

En(t) = %ue_“t, (5.4)

where n is the effective queue length seen by the newly arrived customer at each
of the queueing stages. With mean service rates for the ﬁrst-levél and second-level
systems being x1 and ug,, we have
b(s, kj3t) = by(t) * ba(t)
= EMNt)+ BL (1)
: K

(#I)J(I‘er) ¢ _
= o e

The service time distributions at each service center are, as usual, assumed statis-

tically independent.
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Let pn(kj,) denote the probability that the jth second-level system has k; class-
r customers in its waiting line when the size of the first-level system is n customers.
This is the marginal distribution for the size of the jth subsystem found in Chap-
ter III. Then W3} (5;t) will be given by the sum of the probabilities over all possible
sizes for the jt* subsystem pn(kj,.) times their corresponding ‘waiting time distribu-
tion for the waiting time period for the next incoming user:

Wpise) = kiopn(kjr) b, k552). (5.5)

We consider here the special case of a balanced camp-on system, i.e., a queueing
system where all service centers present the same traffic handling capacity (z; =
p2 = u). In this case, we can greatly simplify the computation of the communication

system’s performance, since

b(]a kj;t) = Ej(t) * Ekj (t)
= Ej-l-kj (t)’

a (j + k;)-phase Erlang distribution in Equation (5.4). In this special case, the
arriving second-level customer does not perceive the queueing system as composed
of two queueing stages but rather as a single-server center with a waiting line of

J + k; customers.
We can now compute W3(t), using the expression for the marginal distribution
for the size of the j* subsystem pn(k;r) derived in Chapter III, Equation (3.36):

pn(kjr) = (n ) /]C ' k) ﬂ;‘-ﬂ-laf pT(1 — p1). (5.6)

Considering the above expression for pn(k;,) together with the waiting time
function for the new second-level customers, one can write down the complete ex-

pression for the waiting time distribution of the class-r second-level customers in
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the jth subsystem, when the first-level queue size is n customers:

. & (n—F+k\ n; pt)itk-1
Wh(ist) = > ( 9y J)a" ’+1ﬁk(1—01)ﬂ?(§—+k—_Tyﬂe o (8)
k=0 : !

where

ar = (1+1’2r)—lp2r,

Br = (L+p2,)7 ", (5.8)

p1 M p2=§3'-
p' 7 "

These four parameters correspond respectively to the average arrival rate to a
second-level subsystem, the average departure rate from the second-level stage into
the first-level stage and the traffic intensities to the first-level system , and to the

class-r second-level system.

The distribution for the waiting time period, W, (t), for a class-r second-level
customer is just the weighed contribution of his waiting time period at each of
the subsystems where the newly arrived customer may have to camp on. We see
that Wy, (t) is obtained as a sum over all ﬁrst-ievel queue sizes and all queue sizes
and locations for the second-level subsystem. That is, we sum the waiting time
probability for second-level customers at the 7% subsystem, W3 (7;t), times the
probability that the new incoming customer arrives to his subsystem when it is
located at the j position with respect to the size n first-level queue. We will now

find these terms.

The probability that an incoming second-level customer will request service
when his second-level subsystem is in the jth position and the first-level system size

has n customers is

Prob [jth subsystem/ n second-level systems] = 1/n,
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for second-level customers have no a prior: knowledge of the state of the first-level

system. Therefore,
XX Wh(s;t
Wa(t) = 3 3 Wi (5it)

j=1ney n
After an algebraic reduction of this expression for Wy, (t) (see Appendix VIII),
we find that the probability distribution for the waiting time period of a class-r

second-level customers in a camp-on queueing system with PBX-like communication

service and infinite storage capacity is

Warlt) = wl1—p)e [ Gz f:)(l — [ = (@) da, (5.9

with
ay -
1-8,z

(z) =

This expression for the waiting time distribution of the second-level customers
is not as convenient to use as the one for the first-level customers in Equation (5.1).
Nonetheless, other interesting statistics can be derived from this result. Among
the most important is the probability of a second-level customer’s having to wait
for more than a certain period of time ¢ before his service period begins. This

cumulative distribution is given by (see also Appendix VIII)

Wa(>t) = [ Warlr)dr

z

(1-p1) [ /0“ fr(@) etz ~

I

rer o (T) (- (o))t
D——-—l_%(z)e K dz|, (5.10)

where



- 101 -

_ Br
7@ = e o

Even though neither Wy, (t) nor Wa,(> t) is easy to compute, we still can obtain
them through standard numerical techniques. Figure 16 shows W;,(t) as a function

of time ¢ in a balanced non-reneging camp-on system with Ay, = A;.

Another important design parameter in the camp-on system performance is the
mean waiting time for a class-r second-level customer. We compute from Equa-
tion (5.9) that in a PBX-like environment, the mean waiting time for an incoming

second-level user is

. 0o
Wi, = /(; 7 Wap(r) dr

2—-p;

2Bl - o)’ (5-1)

For the derivation of this expression, refer to Appendix VIII.

If we are more interested in the overall system performance because of all the
distinct classes of second-level customers, we can compute this mean wait of an
arriving customer to the second queueing stage as the weighted contribution from

the different classes, e.g.,
R

— A
Wy =S /\iz’ Woa,, | (5.12)

r=1
where :\2 = Y7—1 A2y, R is the number of second-level classes and Wy, refers to any

of the distributions and probabilities in equations from (5.9) to (5.11).

Figure 17 shows plots of W and W, versus the traffic intensity at the first-level
system in a balanced non-reneging camp-on system for the cases when Ay = A9, and
when po, = 0.2, 0.4, 0.6, 0.8. Notice that W5, follows very closely the curve for

W 1, showing that the second-level systems behave rather like an M/M/1 queueing
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Time

Figure 16: Waiting time distribution for a class-r second-level customer
W, (t) vs. time for different traffic intensities at the first-level service center

in a balanced non-reneging camp-on system with Ao, = Aj.
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Figure 17: Mean waiting time for class-r second-level customers Wy, and
for first-level customers W, vs. the traffic intensity at the first-level service
center in a balanced non-reneging camp-on system for the cases when Ay, =

A1 and when pg, = 0.2, 0.4, 0.6, 0.8.
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system despite the initial delay at the first-level queue. This is a reflection of the
fact that the second-level systems move into the first-level stage before their queues
can grow very much. Hence, the second-level systems never become a bottleneck in
the camp-on model. The result also shows that we need not pay too large a penalty
for introducing a second-level of queueing, contrary to what may have been our first

impression.

1.2. Finite Storage Systems

So far we have been dealing with non-blocking queueing models. However,
most quéueing systems encountered in real life applications will have only a finite
amount of memory space to handle the incoming traffic. Thus, we must extend the
previous results to limited-storage systems. Recalling our notation from Section 3.1,
Chapter III, for camp-on systems with finite storage capacity, let N be the maximum
storage capacity for the first-level system, including both in-service and queued
customers, and let Ny, (1 < j < N) be the storage capacity for the subsystem
located in position j of the second-level stage associated with class-r; customers.
Following the same reasoning as in the above derivation for infinite-capacity systems,
we see the waiting time distribution for a newly arrived class-r second-level customer
to be of the form |
J-Hc ( )

W2r(t) - Z Z Z

n=17=1k;=0

Pn Jr) (5'13)

Here, p},(k;,) stands for the marginal distribution for the size of the 7t subsystem
at the second-level stage in the finite-storage case. Similarly, the mean waiting time

for this size-constrained system will be given by

Nr
- UK S5 e k), (5.14)

un -
k=
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where we have assumed again the conditions of a balanced non-reneging camp-on
system (41 = poy = p.)
From the analysis of the occupancy problem in camp-on systems with finite
storage capacity, we can also recall that the probability that an incoming class-r
customer will find his second-level system in position j of a size n first-level system

when its waiting line is already full is

)| = Y palkyy)
rj=r kj—Nr
Ne-1
= W(n) - Z pn(kjr)- (5'15)
’ k;=0

Here as before, m(n) is the equilibrium probability distribution for the size of the
first-level system and pp(k;,) is the marginal distribution for the size of 7# subsys-
tem with respect to a size-n first-level service center in the infinite storage case, as

in Equation (5.6).

Also, notice that the total arrival rate to the system increases as the size of the
first-level queue increases because of the new service cent-ers”being incorporated
into the queue. Thus, this PBX-like system has the structure of a class-1 camp-on
system as described in Section 3, Chapter II. Therefore, from Equation (3.12), it

follows that

m(n) = ot po

-1
B [l_p{V+l]
Ppo= |—7//—— .

with



~ 106 -
From Equations (5.15) and (5.16), we now find that the waiting time distribution
and mean waiting time for a class-r second-level customer in the finite-storage camp-

on model given in Equations (5.13) and (5.14) reduce to

n Ny : k-1
_ P (n—3 + kY pnjr1 i (1t)!
W) = pou 3 30 3% 22 (7 gt BT
’ n=lj=1k=0 " k i Tk
N n N, '+ Nr—1
P1 n—j+k —]+1 k ( )J
L0 Y ) (5.16
pounglgln[ kzzo( ] )ﬂ, N 619

N n .
7 —i+k .
2r—PoZZZ 1(+k(n i+ );‘"+la’,°+

n=0j5=1 k=0

Po év: Zni at (J + Ny) [1 - % (n —IJ; +k)ﬂl"j+1afJ . (5.17)
n=0;=1" k=0

From this ‘equa.tion we can obtain similar plots as before of W, (t) and W, for a

finite storage class-r camp-on system. The top and bottom lines in the expressions

for Wy, (t) and Wy, represent respectively the contribution to the waiting time due

to a non-full and a full class-r second-level system. W,, and W are plotted in

Figure 18.

Another very important parameter for blocking systems is, of course, its block-
ing probability, since a customer may face a reasonably small waiting time once he
has been admitted into the system but there is also a small probability of his being

accepted into his second-level system.

An incoming second-level customer will be blocked, and so cleared from the
camp-on system, whenever the second-level subsystem from which the incoming
customer is demanding service has no further storage space to allocate new service
requests. Let Bs, denote the probability that an incoming class-r second-level

customer will be blocked and cleared from the second-level stage. This is given by
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the sum of the probabilities that the newly arrived class-r customer finds his waiting
line in the second-level stage already full, averaged over all possible positions of this

subsystem with respect to the first-level service center:

(5.18)

- Sy B

Jj=1ln=j J

Using the relation in Equation (5.13) for the marginal distribution for 7th second-

level system in a size n first-level system, we get

n Ne—-1 .
r n—j)+k i
By = my 54 [ z;( / )¢J+la¢], (5.19)
1= ln—J k=0

which is compatible with the interpretation of the bottom line of Equations (5.16)
and (5.17).

Again, if we are concerned about the overall system performance, we can go
back to Equation (5.12) and replace Wy, by any of the above expressions for the
finite-storage system in Equations (5.16), (5.17) and (5.19) in order to to obtain the

weighted contributions from the different classes of customers.

Figures 18 and 19 show curves for the mean waiting time and blocking probabil-
ity for first-level and second-level customers as a function of the traffic intensity at
the first-level service center in the cases when A = A9, and when p, = 2, 4, 6, 8
in a balanced non-reneging camp-on system with N = N, = R = 10 waiting spaces.
These parameters have been chosen to reflect the behavior of a PBX-like commu-
nication system rather than to represent any real life system, where the number
of different classes may be quite large. For example, a medium-sized department
store might have around ~ 25 — 40 outlets (IV), while the number of departments

within the store N, might vary from a couple to a few tens. From Figures 18 and
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Figure 18: Mean waiting time Wy, vs. the traffic intensity at the first-level
service center in the cases when A; = Ay, and when py, =2, 4, 6, 8 in a
finite-storage non-reneging camp-on system with N = N, = R = 10 waiting

spaces.



- 109 -

Blocking Probability Bs,

P1

Traffic Intensity

Figure 19: Blocking probability Bs, vs. the traffic intensity at the first-level
service center in the cases when A\; = A9, an when p3, = 2, 4, 6, 8 in a
finite-storage non-reneging camp-on system with N = N, = R = 10 waiting

spaces.
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19 we observed that even under heavy traffic conditions the mean waiting time for
second-level customers is no more than twice that of the first-level customers. This
factor of two is an extreme situation of the heavy traffic condition, where the sub-
systems at the first-level and second-level stages have the same amount of customers
in their waiting lines, i.e., N = N,. Being a balanced system (pj = pgr), customers
experience about the same amount of queueing at each level, but second-level cus-
tomers must visit two queueing stages. In fact, under heavy traffic conditions for
both ﬁfst-leveI and second-level systemQ, we have from Equation (5.17) that

N /-
i =EM=M+&_

im
P1=Pp2r—0 =1 Nu 2u b

This corresponds to W, = 15.4 for the camp-on system in Figure 18. The factor
(N +1)/2 stems from the observation that the subsystem associated with the arriv-
ing second-level customer could be located in any one of the N queueing positions

at the first-level queue.
V.2. Broadcast Delivery Services

In many communication systems, different customers may request the same
type of service from a common service center. Serving these requests unwisely
may induce overload in the communication system, providing poor utilization of
the system resources. Through. the use of a broadcast delivery scheme, we can
satisfy the communication needs of several users simultaneously and thus improve

the performance of the queueing system for everyone.

The relationship between broadcast delivery services such as multiple-addressee

electronic mail facilities or Videotex!1?! and the two-level camp-on model is fairly
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straightforward. In a Videotex or multiple-addressee electronic mail system, re-
quests submitted by terminal users are processed by a central computer, resulting
in the retrieval of the desired piece of information from the system database, e.g.,
pages of a menu program, pictures, catalog information, manuals, etc. If the sys-
tem is fairly large, it is likely that users will request the same piece of information
within a short time interval, resulting in multiple message requests for the same

work simultaneously.

Let us take a closer look at a typical electronic mail system. A message request
from a terminal user arrives at the central computer, which is the first-level service
center with respect to the camp-on model. The central host checks to see whether
other requests for the same message are already in progress, e.g., being retrieved
from the database to be transmitted over the network, or are about to be processed,
which can mean, for example, being sent to queue in a waiting line. First, the service
facility checks its first-level waiting line, where all pending messages are stored. If
no other similar message is scheduled to be broadcasted in this queue, then the
system is dealing with a new work order and the message request is placed on the
system’s first-level queue. If the message is already scheduled for broadcast, then
the system is dealing with an outstanding message request and the new work order

is placed in a second-level queue.

Thus, a second-level queue contains all the outstanding service requests for the
same type of work. This explains the camp-on feature of the queueing model. Since
the original message request in the first-level queue and the outstanding message
requests in the associated second-level queue are all for the same work, i.e., re-
trieve and mail file X from the central host’s database, we can service all of them

simultaneously by broadcasting file X to all interested second-level customers when
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the service facility services the first-level message request. This is similar to the
broadcast philosophy in radio transmission, which explains the broadcast aspect of
the model. Figure 20 illustrates the basic concepts behind this broadcast delivery
service. A Videotex or electronic mail system with a broadcast delivery strategy is
provided in Figure 21. Here, a central host’s database is made available through a
broadcast channel to customers requesting pieces of information from nearby LANs

or PBXs.

The main statistic of interest for broadcast delivery services is the response time
of the broadcast delivery system: the time required to provide service simultane-
ously.to z}ll camp-on users. We do not consider the possibility here of deliberately
delaying a broadcast in the hope that more requests for the same message will

arrive.

In a Videotex system, message requests for pages of information are submitted
to the host computer that fetch the file from the system’s database. Hence, the
system’s response time refers to the time required by the host computer to fetch
the information from the system database and broadcast it to the terminal users.
Here we assume that first-level customers in a Videotex systems are served with a

FCF'S service discipline.

2.1. Response Time Distribution

Because of the broadcast nature of the system, only new message requests should
matter, from the service center viewpoint, when computing the response time distri-
bution. All outstanding message requests will be taken care of through the response
to the initial demand, since service is parallel for all customers in the same second-

level queue. Also, since the traffic demand to the central host is not expected to
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change because of the presence of outstanding requests, we will think of this broad-
cast system as a class-2 camp-on system as described in Section 1, Chapter II,

where

R
’\1 = Z AZH
r=1
and g, is the arrival rate for a class-r request.

Let us assume that the delays in the transmission part of the network are negli-
gible. Let S,(t) denote the response time distribution for a class-r message in such
a broadcast delivery system. From the two-level camp-on model for systems with
finite storage capacity, we notice that there are two possible queueing situations: 1)
there are n message requests submitted but none of them is a class-r message, and

2) there are n message requests submitted, and the j th request is a class-r message.

If there are no class-r requests yet submitted, then the contribution to the

response time distribution due to an incoming class-r request amounts to

N-1

Sit) = 3 X m(Rn) Enga(t). (5.20)

n=0 {ln,

Here, as in Equation (5.4), Ey,+1(t) is the waiting time probability for an incoming
request when the first-level queue size is n. Also, Q,,, a subset of (1, is the set of
all class assignments for the n first-level customers that do not include a message
of class r. Finally, 7(Ry,) is the probability that messages of classes ry,---,ry, are
queued in that precise order in the first-level queue. For a class-2 camp-on system,
we must choose the /;’s for the definition of 7(Ry) in Equation (3.33) such that

(0, if + = r; that is,
no class-r request has yet been submitted;

L = 1, if ry = t for some 7; that is,
t a class-7 request has been submitted to the system;
0, otherwise, that is,

no class-1 request has been submitted to the system.
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On the other hand, if the incoming class-r request is an outstanding message

request, then

Pr(kjr) 5 (%) (5.21)

S PP
n=0 )= llc'-—O
This is because a previous request may have been already scheduled in position j
of the first-level queue. Here E;(t) is its corresponding waiting time function for

that request. The marginal distribution for the size of the j th second-level system,

Py (k;,), is taken from Equation (3.35).

Notice that in S2(t), only pn(k;,) is dependent on the number of outstanding
requests already received by the broadcast delivery system. However, if we use

Theorem 3 for this class-2 camp-on system, we find that

Nr [o,°]

*
E pn(kjr) = Z pn(kjr)
kj=0 kj=0
= ZX(TJ=’.)W(R")-
Qin

This shows that only the total number of non-outstanding requests, or first-level

customers, must be accounted for when computing the response time for the broad-

cast delivery system.

Define the functions g(R,) and g(Rn)_i as

R
9(Rn) = > 7(Rn) = > I, (5.22)

ll++lR=fl Il++lR=n r=1
. R
¢"Rn) = X mRa)= ¥ Ila, (5:23)
[1+...+1R=n ll+'"+lR=n r=1

where ¢, = Ag,/); is the probability of a class-r request. The two functions rep-

resent, respectively, the probability of a size-n first-level queue regardless of the
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request classes, and the probability of a size-n first-level queue without a class-r
request. It follows directly from Equations (5.20) and (5.21) that the response time

for a class-r request in the broadcast delivery system is given by

S5 = S + S2()
N-1
= poue | 3" (put)"g " (Rn) + (5.24)
n=0
N n t j—l
Z (n - 1)!Pn‘1r9—r(Rn—1) = ((;‘2 1)! :

n=1

Using the fact that [g° z"e¢™%/(n — 1)!dz = n, we also obtain from Equa-
tion (5.24) that the mean response time for a class-r request in a broadcast delivery

system is

W
<

= /0°°ts,(t)dt

® |3

N-1
[Z (n+1)1p"g7"(Rn) + (5.25)

n=0

N
Z 1/2(n +1)!p"¢rg” (Rp—1) -

n=1

If we are interested in the overall broadcast system performance for all classes
of requests, we must average the above distribution over all r. The mean response

time S averaged over request class is given by

Figures 22, 23 and 24 show the response time distribution S(t) and the mean

response time S as a function of the traffic intensity in a broadcast delivery system.
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These examples are based in a camp-on system with R = N =30, u = 1.0 and a

Zipf’s lawl43] distribution for the class-r requests (gr = ¢/7).

In Figures 22 and 23 we show the errall response time S(t) as a function of
time for traffic intensities p < 1 and p > 1, respectively. We notice that S(t) is
a weighted sum of the Erlang distributions E;(t) of requests being broadcast in
position ¢ in the Videotex system. For light traffic, the higher weights correspond
to lower phase E;(t). This accounts for the almost exponential shape of S(t) in
Figure 22. As the traffic increases, higher phases E;(t) dominate, accounting for

the peak seen in Figure 23.

Figure 24 shows the mean response time behavior as a function of traffic inten-
sity as well as the behavior of the class-1 and class-30 message requests, the two
most extreme cases of delay for this broadcast delivery model. Here, we see that for
heavy traffic the mean waiting time reaches a plateau. To understand this behavior
we notice that as p increases, the probability that we find N requests in the system
goes to one. A new request must, of course, wait for at most N/u units of time on

the average to be serviced. It is not hard to see from Equation (5.25) that, in fact,

— N1

lim S, = —(=) = .
p—co T ]gl N (u) 2u
This is because the new message request can be broadcast in any of N broadcasting
time slots, not necessarily the last one, since a previous request for the same message

may already be in the system. For the above values we have S = 15.5, as in

Figure 24.

The response time distribﬁtion of a Videotex system using broadcast delivery
systems has also been studied by Ammar and Wong[11421. There, a product-form ap-

proach was used to deal with the problem of the size of the demand for every class of
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Time

Figure 22: Response time distribution S(¢) vs. time in a camp-on system

with R = N = 30, 4 = 1.0 and a Zipf’s law distribution for the class-r

request (¢r = ¢/r) for p < 1.
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Figure 23: Response time distribution S(t) vs. time in a camp-on system

with R = N = 30, 4 = 1.0 and a Zipf’s law distribution for the class-r

request (¢ = c/r) for p > 1.
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Figure 24: Mean response time S vs. the traffic intensity at the first-level
service center in a camp-on system with R = N = 30, u = 1.0 and a Zipf’s

law distribution for the class-r request (¢, = ¢/r).
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work. In order to model the queueing system from the product-form standpoint, the
idea of superfluous broadcasting, that is, broadcasting the requested message more
'than once, was proposed. The idea here is to anticipate future service demand
by broadcasting some of the outstanding message requests. When non-superfluous
broadcast is used, Ammar and Wong’s approach reduces to the response time dis-
tribution we found in E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>