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Abstract

This thesis presents a theory for dynamical martensitic phase transitions in strings and
beams. Shape memory alloys that rely on such phase transitions for their unique properties
are often used in slender configurations like beams and rods. Yet most studies of phase
transformations are in one dimension and consider only extension. The theory presented in
this thesis to model these slender structures is based on the general continuum mechanical
framework of thermoelasticity with a non-convex Helmholtz free energy. This non-convexity

allows for the simultaneous existence of several metastable phases in a material; in partic-

-

ular, 1t leads to the formation of phase boundaries. The study of the laws governing the
propagation of phase boundaries is the object of this thesis.

Phase boundaries in strings are studied first. It is demonstrated that the motion of phase
boundaries is not fully described by the usual balance laws of mass, momentum and energy.
Additional constitutive information must be furnished from outside, and this additional
information is referred to as the kinetic relation. While this notion is well-accepted in
continuum theory, there is no definitive experiment or theoretical framework to determine
the kinetic relation. This study of strings proposes a simple experiment to determine the
kinetic relation. It also proposes a numerical method that accurately describes the complex
behaviour of strings with phase boundaries.

The kinetic relation can also be viewed from the atomic scale. Phase transformations
involve a complex rearrangemnet of the atoms the explicit details of which are averaged in
a continuum theory. The kinetic relation may be viewed as an aggregate of those aspects
of the atomistic rearrangement that have a bearing on macroscopic phenomena. This view
is explored using a simple one dimensional model of an atomic chain with non-convex
interaction potentials. A kinetic relation is obtained from dynamic simulations of impact
experiments on the chain.

The latter part of this thesis studies beams made of materials capable of phase transi-
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tions. It develops a conceptual framework that accounts for extension, shear and flexure in
such beams using a non-convex stored energy function. Specific constitutive assumptions
that relate to the underlying crystallography are developed. The theory is applied to de-
sign a simple experiment on single crystals of martensitic materials with the objective of
measuring the kinetic relation.

Finally, propulsion at small scales is discussed as an application of beams made of
phase transforming material. The goal is to mimic the flagellum of a micro-organism by

propagating phase boundaries through a shearbale rod.
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Chapter 1

Introduction

Various crystalline solids undergo a martensitic phase transformation that results in the for-
mation of fascinating microstructures. and there has been much recent effort in understand-
ing this microstructure and its evolution when subjected to thermal and mechanical loads.
A continuum theory in the framework of thermoelasticity has emerged. The Helmholtz
free energy density is non-convex in this theory, and this leads to a change of type in the
governing equations, and this in turn leads to a rich but incompletely understood behaviour
including phase boundaries and microstructure. Apart from this theoretical interest, grow-
ing applications of shape-memory alloys has provided a technological motivation.

It is now well-recognized that the usual balance laws of continuum mechanics do not
completely determine the evolution or propagation of phase boundaries, and that one needs
to provide additional constitutive information. This is usually done in the form of a kinetic
relation: first, a thermodynamic driving force acting on the phase boundary is identified,
and then a constitutive kinetic relation is postulated which gives the velocity of propagation
of the phase boundary as a function of the driving force.

The notion of a driving force was first introduced from a variational point of view as
the ‘force on a defect’ by Eshelby (1956). He subsequently discussed the concept of driving
force in a very general context of field theories (Eshelby, 1975). Abeyaratne and Knowles
(1990) introduced the driving 'force on any’ surface of discontinuity (not necessarily a phase
boundary) associated with a thermo-mechanical process in an arbitrary continuum as the
dynamic conjugate of the velocity of the discontinuity in the entropy inequality. In particu-
lar. they show that the driving force times the velocity divided by the absolute temperature
is the rate of entropy production associated with the motion of the discontinuity. They

also introduced the notion of a kinetic relation in this setting adapting ideas in Materi-
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als Science (Abeyaratne and Knowles, 1991). More recently, Gurtin (1995) has developed
a framework where such forces, referred to as configurational forces, are introduced and
treated on par with the traditional deformational forces. The kinetic relation is then a part
of the constitutive framework.

These works are largely conceptual as they set up the equations in a general setting, but
do not study solutions. The detailed study of solutions has been carried out in the setting
of bars, where Ericksen (1975) pointed out that non-convex energy leads to extreme non-
uniqueness of equilibrium solutions. Abeyaratne and Knowles (1991) showed in a purely
mechanical setting that a simple Riemann problem with initial data containing a phase
boundary admits a one-parameter family of solutions, the parameter being the velocity of
propagation of the phase boundary. They introduce the kinetic relation as an additional con-
stitutive relation, and show that this naturally selects one amongst this family of solutions.
They subsequently extended this framework to the thermoelastic setting and applied it to
various problems (Abeyaratne and Knowles, 1993, 1994, 1997). One may regard the kinetic
relation as the continuum manifestation of the microscopic physics at the phase boundary
that are ignored in the continuuum theory. Slemrod (1983,1984), Truskinovsky (1998), and
Turteltaub (1997) look for travelling wave solutions of an augmented set of governing equa-
tions which includes viscosity, capillarity and heat conduction and attempt to derive kinetic
relations from them. The existence and derivation of kinetic relations from an atomistic
model remains largely open though Puglisi and Truskinovsky (2000), Balk, Cherkaev and
Slepyan (2001a,b) have studied phase boundary propagation in discrete nonlinear chains.

While the concept of kinetic relation as a constitutive degree of freedom has gained wide
acceptance, there has yet to be a definitive experimental validation. A direct experimental
measurement of the kinetic relation has also proved to be a daunting challenge, and is
largely open. There have been some innovative and sophisticated attempts like those of
Escobar and Clifton (1993), but the data collected is very limited.

This thesis studies the dynamics of phase phase transitions in strings and beams. We
formulate a general continuum theory for both of them and then solve some problems using
special constitutive relations. The need for kinetic relations is established for both but
the theory does not furnish any information on the particular form of the kinetic relation.
This has to be done through experiments. Keeping this in mind we suggest experiments to

determine the kinetic relation governing the propapagation of phase boundaries in actual



martensitic materials.

The study of phase transforming strings and beams is also motivated by applications.
Shape-memory alloys are being increasingly used in medical devices (such as stents, guide
wires and dental arch-wires) and thermal actuators (such as thermostats and valves in IC
engines and ventilation systems). In fact, the number of innovative products that exploit
the unique properties of shape-memory materials is steadily increasing. Most of these
devices are constructed from Nickel-Titanium (NiTi) wire, strips or tubes and they rely
on the flexural (as in strips and tubes), torsional (as in wire springs) and extensional (as
in wires and tubes) characteristics of the alloy. Proper design of these devices requires
an understanding of the behaviour of these alloys in these long slender configurations (or
more generally, in the form of lower dimensional structures). However, much of the current
literature on shape-memory alloys, as noted earlier, focusses on uniaxial extension of bars
or wires or full dimensional continua. Also these alloys in the form of wires or strips have
noticeable shear and bending stiffness thereby requiring treatment as a beam or a rod. The
available theories do not take these into account.

The thesis is organised. into five chapters. Chapter 2 studies strings. We develop a
thermomechanical framework for the dynamics of strings and demonstrate the need for a
kinetic relation. We study specific problems analytically and numerically and propose a
simple experiment to measure the kinetic relation.

Chapter 3 deals with atomistic simulations. We view the kinetic relation as an aggregate
of those atomistic phenomena that have a bearing on the macroscopic behaviour. We obtain
a kinetic realtion from dynamic simulations of impact experiments on one dimensioanl chains
with non-convex interaction potentials.

Chapter 4 studies beams. We present a theory that accounts for extension, shear and
flexure and thus goes beyond the one-dimensional framework of strings and bars. We develop
specific constitutive relations that relate to the underlying crystallography. We also apply
the theory to design a simple experiment on single crystals of martensitic materials with
the objective of measuring the kinetic relation.

Finally, chapter 5 deals with a more esoteric application by studying the use of phase-
transforming strings and beams for propulsion at small scales. Various microbes propel
themselves with the use of flagella. This propulsion is generated from the reaction of the

ambient viscous fluid to repeated deformation (beating) of the flagella. We examine if it
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is possible to recreate such propulsion using strings made of phase transforming material.
Since a string has no transverse stiffness, it can generate only longitudinal motions in a
viscous medium. We show that longitudinal motions can not generate propulsion. We
conclude that propulsion necessarily requires transverse deformation modes which in turn-
require beains or rods. The idea is to mimic microorganims and propagate bending waves
through a beam. We propose a mechanism of doing this by propagating a large number of

phase boundaries through a beam.



Chapter 2

Dynamics of strings

2.1 Introduction

In this chapter, we study the behaviour of strings made of a phase-transforming material.
A string is a one-dimensional continuum moving in three dimensions. It can resist stretch,
but not shear or curvature. It thus provides a simple generalization of the bar. The general
thermo-mechanical theory is presented in Section 2.2. Some of this treatment is classical,
especially the field equations for smooth motions, yet included for completeness.

We specialize to the purely mechanical setting in Section 2.3. We consider an up-down-
up tension-stretch relation appropriate for the phase transforming materials with nonconvex
energies. We begin by studying travelling waves and discontinuities. There are two types
of travelling waves: longitudinal as in bars and also transverse (like for example the wave
travelling down a taut rope). There are also two types of discontinuities: those with contin-
uous tangent, and those with discontinuous tangent. The discontinuities with continuous
tangent correspond to the bar discontinuities, and their behaviour in strings is very sim-
ilar. In particular, the jump conditions determine the propagation velocity of the shocks
(discontinuities where both sides are in the same phase), but the jump conditions alone are
wnsufficient to determine the velocity of propagation of phase boundaries (discontinuities
where the two sides are in different phases). The latter is a manifestation of the need for a
kinetic 1'elat4ion.

The tangent discontinuities, however, reveal some surprises. Notably, the jump con-
ditions alone are sufficient to determine the velocity of propagation of phase boundaries
(discontinuities where the two sides are in different phases). Therefore no kinetic relation

is necessary for such phase boundaries. It turns out that the jump conditions associated
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with tangent discontinuities are vector valued, and contain more information than in the
case with the tangent continuous. In fact, the state (stretch) on one side of this tangent
discontinuity uniquely determines the velocity of propagation of this discontinuity as well
as the state on the other. In particular, this gives a direct relation between the driving
force and the velocity, and thus the jump conditions themselves imply a kinetic relation.
We find that this kinetic relation is qualitatively different from those commonly accepted
in the literature.

These phase boundaries with tangent discontinuities yield a definitive test of the notion
of a kinetic relation. Notice that a kinetic relation rules out the existence of phase boundaries
with tangent discontinuities unless the kinetic relation happens to coincide with that implied
by the jump conditions!

To further understand these issues, we turn to some simple problems in Section 2.4. First
we study Riemann problems and then we look at a Goursat-Riemann impact problem. A
Riemann problem studies the evolution of an infinite string with a discontinuity at the origin.
The discontinuity could be a phase boundary with or without a discontinuity in the tangent.
The evolution of such problems is studied in Section 2.4.2. We find a one parameter family
of solutions to this problem. Each solution in this family has the following features: there
are two leading longitudinal shock waves moving in opposite directions followed by shock
waves with tangent discontinuites also moving in opposite directions and a phase boundary
whose velocity can be altered freely from zero (which corresponds to a solution with a
contact discontinuity) to one where it moves faster than one of the tangent discontinuities.
We conclude that we need a kinetic relation to choose from this family of solutions.

In a Goursat-Riemann problem a semi-infinite uniformly stretched string in the low
strain phase is impacted with a constant velocity on one side. We find a one parameter
family of solutions to this problem as well. It has exactly the same features as the Riemann
problem discussed above. The study of these problems yields a simple experiment for
measuring the kinetic relation. As explained in Section 2.4.3, it is possible to set up a
simple experiment and infer the velocity of propagation of the phase boundary as well
as the driving force acting on it by measuring the velocity of a clearly visible tangent
discontinuity.

Section 2.5 builds on the solution of the Riemann and Goursat-Riemann problems to

develop a numerical method for solving general initial and boundary value problems in phase
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Figure 2.1: A string in a three-dimensional space.

transforming strings. This is a modified Godunov method following the work of Zhong, Hou
and LeFloch (1996) which captures shocks, but explicitly tracks phase boundaries. We study
several examples — a plucked string, a whipped string and a string with nucleating phase
boundaries. The interactions between the various shocks bouncing off the ends of the finite

strings and the phase boundaries are quite interesting.

2.2 Thermomechanics of strings

2.2.1 Kinematics

We consider a string as shown in Figure 2.1 that occupies the interval (0, L) in the reference
configuration. The position in the deformed configuration of a particle z at time ¢ is given
by the vector y(z,t). We use a superposed dot to denote material time derivative. So the
particle velocity %?,1 is y(x,1). We denote the stretch tg—’;| by A and the tangent ig—f by t.
In doing so, we have assumed sufficient smoothness on the displacement field of the string.

We are interested in shocks and phase boundaries wh,ich involve discontinuities in stretch,
and hence we must relax some of the assumptions on smoothness. We require y(z,t) to
be continuous in z and ¢, but allow the particle velocity y. the stretch A and the tangent

t to jump across a finite number of points along the string. The points of discontinuity

are allowed to move in the reference configuration. Consider one such discontinuity whose
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position in the reference configuration is # = s(t). We name z > s(t) as the + side
and = < s(t) as the - side in the immediate vicinity of the discontinuity. For any quantity
f(z,t) which is smooth except at z = s(¢), we denote f(z™,t)— f(z™,t) by [| f |]. Therefore,

continuity implies [|y |] = 0. Differentiating this equation with respect to time we find that
A+ 50 =0. (2.1)

We call this the kinematic jump condition.
We also note the following for future use. If f(z,t) is smooth in the interval (z,,z2)

except for a single discontinuity whose position is given by = = s(t). It is easy to see that

fao) = o) = [ Law+ 111 (2:2)

and

%/f dx:/:fdar—snfu- (23

2.2.2 Balance laws

The balance of linear momentum for a portion of the string occupying the interval (z1, z5)

requires

d re 2
— py dx = T(zo.t) — T(zy,t) + / b dz, (2.4)
dt J,, J

where

p denotes the mass per unit length of the string in the reference configuration (assumed

constant),

T = T(xz.t) denotes the force acting at material point z in the deformed configuration at

time ¢, and

b = b(z) denotes a distributed load per unit reference length of the string at material

point z.
If there are no discontinuities in the interval (z),z2), we can localise (2.4) to get

oT

ox

Py +b. (2.5)
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We need a jump condition if there is a discontinuity in the interval (x1,z2). This is obtained

by applying (2.2) and (2.3) to (2.4). We have

/%pydx_s[lpw}Z/M%dﬁ“m'

C1 1

Letting z; — s (t) and 29 — sT(#) we obtain

=sllpy I =[I'T1]- (2.6)

The balance of angular momentum for the same piece of the string requires

»To

d Z9 o
E;(/ y X py d;z:) =y(zo,t) x T(z2,t) — y(x1,1) xT(xl.t)+/ yxbdz. (27)
-~ Jrl e

1

Localizing this relation and using (2.5), we get
xT=0 or T=Tt. (2.8)

where,

T = T(z,t) is the scalar value of the tension at material point z in the string at time ¢,

and
t = t(z,t) is the unit vector along the tangent to the string at material point z at time t.

Therefore, the force at any point in the string is along the tangent to the string at that

point. Hence, we can rewrite (2.5) and (2.6) as
Py = —-(TH) +b, (2.9)

—ill oy || = [| TE ). (2.10)
The jump condition corresponding to the conservation of angular momentum does not

furnish any new information.

We can use (2.9) to derive a statement of the balance of mechanical power for the portion

of the string between (z1,z2). Take the inner (dot) product of (2.9) with y and integrate
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from z1 to z2 to get
x2 T2 a R xTo
/ Py -y dx = / 7——(Tt)-yd:1:+/ by dz.
) Joy Oz 1
Assuming a single discontinuity at z = s(¢), we can use (2.2) and (2.3) to rewrite this as

, @2 1 ST . T Oy x>
G5 [ ok a) v sizoll =Ty [T -7ty - [ ri L aws [Cbyan
2 Ty Jx dl‘ x

T 1 1

Using the identities

. dy .
la-bl]=(a)-[[b[[+(b)-[laf],  t-= =2
where (a) = %(aJr + a”) etc., and by using the jump condition (2.10), we obtain the

statement of the balance of mechanical power for the portion of the string between z; and

I

. r2 z2 ~ ~
"—/ T/\dz+/ by dz+ S[|\t]|]- (Tt). (2.11)
1 J Ty Jx

2 / y) = Té- 3
T

The balance of energy for the portion of the string between x1 and zo requires

I
x

T2

i .,

To N
+Tt-y
1

@

1 . o T2 x2
I x) v T

where
€ = e(x,t) is the internal energy per unit mass at material point z at time ¢,
q = g(xz,t) is the heat flow in the tangential direction at the material point z at time ¢,
0 = 6(x,t) is the temperature at the material point = at time ¢, and

G(6) is the rate of heat lost per unit length from the string to the environment at any

time.

Assuming a single discontinuity at « = s(t). we can use the balance of mechanical power

(2.11) to rewrite this as

S erar= [T (-0 TA) dr ST -] 213)
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Localizing this equation away from x = s(t), we obtain

pé = =51 — G(6) + TA.

Localizing at = = s(t), we have

s(plle) = (@) [1AE]) = [lal).

We finally turn to the entropy inequality. For (zy,z9), this requires

d Ty T o
— 4™ —/ g_(_@l dz .
dt J,, z1 o 0

pnds > —=
Localizing this away from any discontinuities, we get

e

.0 /q G(6 — 6y)
-+ =)+ ——— > ().
P 81'(9) 0 20

Multiplying the equation above by € and using (2.14), we get

. e
p(07) — &) + TA — %g— > 0.

X

Introducing the Helmholtz free energy v = ¢ — 65, we can finally write

) ) ) 0
o+ pbn — T+ QQ_ <0.
0 Oz

Localizing to a discontinuity at z = s(t), we get

-ps0[in{l+[lql] = 0.

Using (2.15) above, we obtain

s(pllwl] = () - [12E)]) > 0.

Notice that this is of the form f$ > 0 where

S8 =pll g |] = (Tt) - [| ]

(2.14)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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The quantity f is the dynamic conjugate of the velocity of the discontinuity and is therefore
called the driving force on the discontinuity. This derivation of the driving force follows the
work of Abeyaratne and Knowles (1990) who introduced it on a surface of discontinuity (not
necessarily a phase boundary) associated with a thermomechanical process in an arbitrary
continuum. They show that f3/6 is the entropy production rate associated with the motion
of a discontinuity. The origins of the concept of the driving force, however, are more ancient.
It was introduced (from a variational point of view) as the ‘force on a defect’ by Eshelby
(1956). Eshelby (1975) has also discussed the concept of driving force in a very general
context of field theories. More recently, Gurtin (2000) has developed a framework where
such forces, referred to as configurational forces, are introduced and treated on par with
the traditional deformational forces.

We conclude by looking at the dissipation inequality in three settings. First, thermody-
namic or local equilibrium. Here we set f = 0 so that

pstlln i =[lq]). (2.22)

L

Trivially then fs = 0. Second, we have the adiabatic setting where [|¢|] = 0 so that jump

conditions (2.15) and (2.19) will now read

$(pll g+ 0[] = (TH) - [ AE]]) =0, (2.23)

psflin|) <0. (2.24)

Remembering the definition of the driving force from (2.21), we can rewrite the above

equations more conveniently as

fs=—psdlin|] > 0. (2.25)

Finally, we have the isothermal case § = const which means that —gg = 0 everywhere.

Equations (2.15) and (2.19) merely tell us that

f5>0. (2.26)
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/ .
T =)

Figure 2.2: The A — 8 plane.

2.2.3 Constitutive assumptions

We assume that T, and 5 are constitutive functions of A and 6, and that ¢ = —k%’; where

Q

k is a material constant. The entropy inequality (2.18) now becomes _

2

<0.

(3 =)+ o(55 1) ~ 3l

Arguing in the spirit of Coleman and Noll (1963), we conclude

0y _ W s

T:p-a—A_‘ 77“ 897 =

Therefore we only have to specify a constitutive relation for .

We now provide a simple example of a constitutive law suitable for a phase transforming
material with two stable phases: a low strain phase with a stress-free stretch equal to 1
and a high strain phase with a stress-free stretch equal to (1 + ) where vy > 0 is the
transformation stretch. The two phases are linear with elastic modulus £ > 0 which is
assumed to be constant and equal in both phases. We assume that the low strain phase is
preferred at high temperatures (so that the free energy is lower at A = 1 than at A = (1+~7)
at high temperatures), while the high strain phase is preferred at low temperatures, with
the exchange of stability occurring at the transformation temperature #r. Abeyaratne and

Knowles (1997) have proposed a constitutive relation with similar properties for bars. We
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adapt this to strings and we have

(£ -1)" —chlog & if A < A (6),
) A= (]2 .
Env—1)? = B Rl hlog - if Apr(6) < A < A(0),
P(A.0) =
ZO = (L +91)° + BEDn(0) + A (6) = (2 + 1))
| —cBlog & + A it if A > An(0),

(2.27)
where ¢ is the specific heat at constant stretch (assumed to be constant and equal in both
phases),

Am(0) = Ac +m(6 —6¢). (2.28)
/\A[(f)) = Ao+ M(H - 90) (2.29)

for materials constants A¢, 8¢, M and m (M > m).

At any given temperature 6, 1 is piecewise quadratic in A. It is convex on (0, Aps(6))
which corresponds to the region of stability of the low strain phase and on (A, (8), o) which
corresponds to the region of stability of the high strain phase, but concave on (A7 (0), A, (6))
which corresponds to the unstable region that separates the two phases. This is shown in
Figure 2.2 . Note that the unstable branch shrinks linearly with increasing temperature and
vanishes at the critical temperature # = 6. This model breaks down at this and higher
temperatures.

For this choice of 1,

E()\‘l) ifA<)\,\[(9),
TA0) =< T,()0) if Aar(0) <A< (), (2.30)
EA=1-nq7) if A> A(0),

c(1+1log 7-) if A < Aar(6),
n(A0) =< nu(\.0) i A (8) < X< An(0), (2.31)
c(1+log =) — 3% if A > An(6),

where we have not displayed the formulae for the middle (unstable) branch.



2.2.4 Summary

Tt is useful to collect the governing equations and jump conditions.

Governing equations

o, -
py = %(Tt) +b
) 020
oy oY
T=rgy "%

where

(2.32)

(2.33)

(2.34)

y = y(z,1) is the position vector at time ¢ of a point on the string with reference position

€,

A= [%fﬂ is the stretch at a point on the string with position vector y,

t = 31(%% is the tangent at a point on the string with position vector y,

f = 6(x,t) is the temperature at time ¢ of a point on the string with reference position z,

1 = 14(A, 6) is the Helmholtz free energy density of the material of the string,
b = b(x) is the body force density as a function of the reference position,

G = G(0) is the rate of heat lost from the string per unit reference length,

and the density p as well as the thermal conductivity k are positive constants.

Jump conditions
SO+ 19 =o0.
llpy 1+ (T[] = 0.
(ol + 00 1) — (78 [ 06]) = lal) = 4] 02 .

P80l nil < llall-

(2.35)
(2.36)
(2.37)

(2.38)
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(a)

Figure 2.3: (a) The general phase transforming material. (b) The trilinear material.

2.3 Purely mechanical string

Suppose we fix the temperature at some given temperature 6 (< 6c) and consider the
isothermal situation. We obtain a purely mechanical string, where the only equation we
need to solve is the momentum equation (2.32), the jump conditions (2.35) and (2.36),
in addition to suitable initial and boundary values. We shall also assume for simplic-
ity that the body force b = Q. This section studies some basic properties of travelling
waves and discontinuities in this setting. Sections 2.3.1 and 2.3.2 use a generic up-down-up
material (Figure 2.3(a), while the rest of the chapter specializes to the frilinear material

(Figure 2.3(b) and equation (2.30)).

2.3.1 Travelling waves and sound waves

It is useful to start by looking at travelling waves i.e., solutions of the form y(z,t) = y(z—ct)

for (2.32). For solutions of this form, (2.32) reduces to

pty" = (—-—~y'>l (2.39)

where the prime denotes differentiation with respect to £ = = — ¢t. We can rewrite this

equation as

pc’y" = Ay" (2.40)



where the matrix A is defined by

T(\ 1 /dT(N) TN, .,
A:"(T)”ﬁ(“a%")“j‘*))wf

Matrix A turns out to have the following two eigenvalues,

4T ith eio Y o _i
oy with eigenvector i t.

% with eigenvector being any vector perpendicular to t (repeated).

The first system corresponds to the familiar longitudinal waves in bars and strings. The
second corresponds to transverse travelling waves where the displacement is perpendicular
to the tangent to the string at any point. Also note that for the system to be hyperbolic
both these eigenvalues should be positive. Thus, hyperbolicity is lost when the material is
in the unstable branch of the stress-strain curve or when the string is compressed. We shall

assume henceforth that 7" > 0.

2.3.2 Study of discontinuities

Two kinds of strain discontinuities occur in strings. There are shocks, both sides of which
are in the same phase and there are phase boundaries, the two sides of which are in different
phases. We now make some general observations about both shocks and phase boundaries.
We also make a further classification - continuous tangent and discontinuous tangent, since
it will be seen that there is a marked difference in their behaviour.

Before we begin, it is useful to eliminate [| y || between the jump conditions (2.35) and

(2.36) to obtain
(| TE]) = ps[| At ] (2.41)

This of course holds for all discontinuities.

Continuous tangent: We begin by looking at discontinuities with continuous tangent,

i.e., the situation [|t|] = 0. Equation (2.41) simplifies under this assumption to

[Tt =ps’[| A}t
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. Since t # 0, we obtain

32 = H_,‘-[:ﬂ
7 EYh (2.42)

This relation tell us that speed of a discontinuity is proportional to the ratio of the jump

in tension to the jump in stretch.

Discontinuous tangent: We now assume that [|t|] # 0. Taking the inner product of

(2.41) with < t >, we obtain
(TN =ps?[ANA+E)=0

where k = tT-t~. We note that k£ # —1 since that would mean that t* and t~ are
antiparallel and that in turn implies that either the mapping y = y(z,t) is not globally

one-to-one or that the string has a cusp. We conclude that

»

%

1l
)
N
W
S——

This is the same information as we obtained in the case of continuous tangent.

Now taking the inner product of (2.41) with [|t]],

(T = T8) - (= £7) = ps(HEF — A7) - (B — ).
We can rewrite this as

(<T>—ps? <A>)(1-k)=0.
We note that k # 1 since [|t|] # 0. and conclude that

o <T>
57 = . 2.44
ps <A> ( )

This is more information than we had in the case of a continuous tangent.

Equations (2.44) and (2.43) together imply that

T T~
-2
§° = — = —— 2.45

Therefore, if we have a discontinuity in a string with a discontinuous tangent, then the end
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Figure 2.4: Kinetic relation obatined from the string. This assumes that the phase boundary
coincides with a tangent discontinuity.

states (A\~,77) and (A*,T7T) must lie on a straight line with slope ps® that goes through
the origin in the A — T plane. This is shown in Figure 2.4. It is important to note that
we did not use any specific constitutive relation to obtain this result and it holds for all
materials. phase transforming or not.

It has important implications, in particular, for phase transforming materials. Assume
as shown in Figure 2.4 that any straight line going through the origin in the A — T plane
intersects each stable (up) branches at most once. Then, (2.45) states that the shocks
with discontinuous tangent have the same stretch (and tension) on both sides. In other
words, either the tangent or the stretch, but not both can jump across a shock in these
materials. Now turning to a phase boundary with a discontinuous tangent, (2.45) gives a
complete link between each end state and the phase boundary velocity. Therefore, if we
choose one end state, the other end state as well as the phase boundary velocity is uniquely
determined. Alternately, if we choose the phase boundary velocity, both end states are
completely determined. Recall that the driving force on an interface is determined by the
end states. Thus (2.45) gives us an unique relation between the driving force and the phase
boundary velocity. Such a relation is called a kinetic relation. Therefore, we see that in
strings. the jump conditions give us a kinetic relation when the tangent is discontinuous
across a phase boundary. This is in remarkable variance with our experience in bars, where
this information can not be obtained from the jump conditions, and has to be prescribed

externally as a constitutive relation.
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2.3.3 Discontinuities in the trilinear material

We examine these issues closely by specializing to a trilinear material whose tension-stretch
relation is given in (2.30) and shown in Figure 2.3(b) . The temperature 6 is a constant

and we suppress it from our notation.

2.3.3.1 Shocks

Continuous tangent: For shocks with continuous tangent in strings made of trilinear

materials, equation (2.42) specializes to

o EAT—=X7) _ E

2 2 2

p§ = — or, §f == =c". (2.46
At —A ) )

o . .
2 = ¢? for a discontinuity

We now show that the converse of this statement is also true, i.e., $
implies that [|t|] = 0. To see this subsitute for T given by (2.30) in the combined jump

condition (2.41)

After some algebra we get,
(=) ]+t =0. (2.47)

Thus, §? = ¢? implies [| t|] = 0, and the tangent is continuous. Notably. such shocks have
particle displacements parallel to the tangent to the string and hence they are nothing but

the longitudinal waves as in bars.

Discontinuous tangent: The more unusual shocks are the ones where the tangent is

allowed to have a jump discontinuity. For such shocks (2.45) dictates that either

if material is in the low strain phase, or

2 _ EQT —1—9r)  EQX” -1-11)
/)' )\+ )\.,
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if material is in the high strain phase. This is possible if and only if AT = A~ = A, i.e., if

and only if the stretch is continuous across the shock. Further,

E(\-1) 52 1
22 . —_
pst = 5 o1 = 1— 3 (2.48)
if material is in the low strain phase, and
o E\—1—77) 52 1+9p
2 _ -
ps” = 3 or 3= 1- 5 (2.49)

if material is in the high strain phase. Once again, we note that these shocks are essentially
the same as transverse travelling waves. They propagate with velocity smaller than the
stretch discontinuity.

Combining the results of the continuous and discontinuous shocks. we note that for

shocks in our trilinear material,

t]=0 o  [A]Jk-1)=0 (2.50)

as we discussed in Section 2.3.2.

2.3.3.2 Phase boundaries

Continuous tangent: For phase boundaries with continuous tangent, we only have (2.42)

which reduces to

psT =

oo Al = 2L (2.51)

Thus when the + side is in the high strain phase and the — side is in the low strain
phase we have one equation to determine both the jump in stretch as well as the phase
boundary velocity. Therefore, we need some additional information — from outside the
balance laws — to determine the phase boundary velocity. This can in fact be demonstrated
using Riemann problems. The situation is similar to that of a bar, where one specifies this

additional information as a kinetic relation.
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Discontinuous tangent: For definiteness, let us assume that the material on the + side

is in the high strain phase and that on the — side is in the low strain phase. Then, we can

write (2.45) as
2 BQf-1-91)  BO -1
p‘ - )\+ A_
It follows
1 1
A= —Jﬂz V= (2.52)
-

o

Clearly, knowledge of any one among A", A~ and 5 determines the rest.
We need to ensure that A" lies in the high strain phase and that A~ lies in the low strain

phase. So, we require
X2 A= do+ AL

yr

AT < A=A — 1

“;’\“ is the stretch corresponding to the Maxwell stress. These two inequali-

where \g = 2w
ties together imply 5
A—1-2F 52 KJp-1-XL
1 : 4
2 < —= < 2.53
Ag + —W—f T A+ ’YTT ( )
Recall that T cannot be compressive, and hence
+ 14+~ §°
AT = = > 147 or, — >0
1—-% e
=
1 §*
>1 or, >0
c

Putting everything together, we assert that the phase boundary velocity $ in strings made

of our special trilinear material must be bounded such that

52 aT
5” 2 - s Ao—1-1F
<= §’a <1 where a” = o 771 (2.54)

A summary of the behaviour of different types of discontinuities can be found in Ta-

ble 2.1.
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Continuous Discontinuous
tangent tangent
Shock § = +c d=+./L

pPA
Phase boundary | Indeterminate | § = :t\/ p—j;} = i\/ ,3:\—:

Table 2.1: Behaviour of discontinuities.

2.3.3.3 Driving force on shocks and phase boundaries

Let us now calculate the driving force (2.21) for various discontinuities in an isothermal
string. We can expand (2.21) and write

1

k
2(T+,\+ ~T7A7)+

F=olvl] STTAT—THA) (2.55)

where k =t -t~ as before. For a continuous tangent, k = 1, and therefore this reduces to
. 1 - _
F=pll$l - ST+ T =), (2:56)

We will now show that this is true even for a discontinuous tangent. In such a situation, we
have from (2.45) that T~AT — TTA™ = 0. Therefore, we can add S1—k)(T-AT =T*)\7)
to the right -hand side of (2.55) and obtain (2.56).

We now specialize to the trilinear material. Going through a lengthy calculation which

is omitted for brevity, we find that the driving force on a shock is given by

o~

c—1
fit)y = B[] (————) for material in low strain phase,

k
ft) = E[N] <~——~—) (1 +~7) for material in high strain phase. (2.57)

TN
-

Combining this with (2.50), we see that the driving force on a shock is always zero. Turning
now to the phase boundary, and assuming that the high strain phase is on the + side, we

obtain from (2.56) again after a lengthy calculation that

f=Evr(Ao— <A >). (2.58)

We observe that the driving force is determined by the average value of stretch across a

phase boundary regardless of whether or not the tangent is continuous.
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2.3.4 Kinetics of phase boundaries

We saw above that the speed of a phase boundary with continuous tangent can not be
determined from the jump conditions alone. This is also true of phase boundaries in bars.
In fact, in bars, Abeyaratne and Knowles (1990) have shown that the field equations and
jump conditions give a one parameter family (parameter $) of solutions to Riemann problems
that involve a phase boundary. In other words, we have a severe lack of uniqueness and
Abeyaratne and Knowles remedy it by introducing a constitutive assumption called a kinetic
relation which states that the phase boundary velocity is a given constitutive function of

the driving force:

s=V(f). (2.59)

The entropy inequality (2.26) provides a restriction on this function V:

fv(f)z0. (2.60)

This formalism of relating the rate of progression of a local microstructural rearrange-
ment within the material to the corresponding thermodynamic force conjugate to the extent
of that rearrangement is again rather old and has been prevalent in material science for long.
For instance, in metal plasticity this principle boils down to the conventional notion that
the velocity of a given segment of a dislocation line is stress-state dependent only through
the glide force per unit length of that line. In Rice (1971) microstructural details such as
these are described by internal variables and the above formalism is used to conveniently
incorporate them into a continuum theory for plasticity. Abeyaratne and Knowles adopt
a similar point of view when they regard the position of the phase boundary as an inter-
nal variable and postulate that its rate of change (i.e., its speed) should be related to the
corresponding conjugate thermodynamic force (or the driving force) through a function V
which they regard as a given.

Going back to strings, we saw that the velocity of the phase boundary with a discontin-
uous tangent is determined by the jump conditions alone. In fact, (2.58) and (2.52) define

a kinetic relation for phase boundaries with tangent discontinuities. When we substitute



fﬂ

Non—monoto<k Linear

Sticky

-y

Figure 2.5: Various kinetic relations. The non-monotone kinetic relation is obtained from
the balance laws for phase boundaries with discontinuous tangent. The vectorial nature
of the jump conditions implies such a relation. The linear and sticky kinetic relations are
more conventional and have traditionally been given as constitutive information.

for < XA > in (2.58) using (2.52) we get

(2.61)

This is plotted in Figure 2.5 as the non-monotone kinetic relation. The restriction (2.60)
states that we need to consider only those parts that are in the first and the third quadrant.
It is also interesting that the portion in the first quadrant has a negative slope. Such kinetic
relations were shown by Rosakis and Knowles (1997) to be unstable in the sense that some
phase boundaries propagating under such a law could display stick-slip behaviour.

It is significant that the kinetic relation (2.61) depends only on the material proper-
ties. and is independent of the angle between the tangents as long as it is non-zero. One
may argue then, that by extension, this kinetic relation should also hold for the case of
a continuous tangent. This presumes that the phase boundaries with continuous tangent
are identical to those with discontinuous ones in some more fundamental mathematical or
physical sense. This remains an open question.

Also plotted in Figure 2.5 are two other kinetic relations. The linear kinetic relation
explores only the first and third quadrants of the f — & plane. It has been used in the
past principally because it facilitates easy computation and helps in building intuition. The
sticky kinetics, on the other hand, is motivated from experimental observations. It has been

found that phase boundaries tend to move in a jerky fashion - something very characteristic
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of sticky kinetics similar to what is seen in frictional contact problems. A little later in this
chapter we set up a boundary value problem that brings out the qualitative differences in

these kinetic relations.

2.4 Riemann problems

We study Riemann problems for the trilinear material in this section to further investigate
the need for a kinetic relation in strings. We consider an infinite string and prescribe a
piecewise constant initial data (stretch A, tangent t and particle velocity y). We show that
the solution to the Riemann problem is uniquely determined by the balance laws and a
kinetic relation.

Consider an infinite string made of a trilinear material subject to the following initial

conditions:

Mz,0) = Mg, t(z,0) = t;,y(2.0) = v, for z <0,

Mz,0) = A, t{(z,0) = tr,y(z,0) =vip forz >0 (2.62)

where A, Ag, vp, Vg, t7 and tg are given constants. We assume \;, and Ap to be such that
the string is not in compression. We also assume that A; and Ap are not in the unstable

region of the trilinear stress-strain curve. In other words, we assume that
1 <AL, AR <Ay or Ap,Ag > 1+ 7.

We seek solutions A(z,1),t(x,t),y(x,t) to (2.32),(2.35),(2.36) subject to initial conditions
(2.62). It is natural to look for solutions where \,t and v are piecewise constant in the
z.t-plane. These satisfy (2.32) trivially and we are left with the two jump conditions (2.35)
and (2.36) at each discontinuity.

There are two useful results that one can prove for this Riemann problem. First, if the
unstable phase is absent initially, as we have assumed, then it is absent for all subsequent
times. Second. the number N of phase boundaries in any solution is necessarily either 0,1
or 2. These results can be proved by adapting the arguments of Abeyaratne and Knowles

(1991) who proved them for bars. Their arguments use only equations (2.51), (2.56) and

the dissipation inequality; as these equations hold in identical form for bars and strings, the
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Figure 2.6: Possible solutions to the low-high Riemann problem. (a) Phase boundary
moving faster than kink. (b) Phase boundary sandwiched between kinks.

argument of Abeyaratne and Knowles also hold for strings.

Depending on the prescribed values for Az, Ag, we have three cases - low-low, low-high,
high-high. We discuss only the first and the second since the third is very similar to the
first. We also assume that t; # tg since the case t; = tp reduces to the Riemann problem

in bars which has been studied by Abeyaratne and Knowles (1991).

2.4.1 Low-high problem

Suppose that the prescribed initial data is such that Ay is in the low strain phase and Ap
is in the high strain phase. In other words. we already have a phase boundary in the initial

data. We look for solutions of the form shown in Figure (2.6). There are five discontinuities:
Two shocks with continuous tangent necessarily propagating with velocity =c.

Two shocks with discontinuous tangent, one propagating to the right with velocity $; and
another to the left with velocity —$s (we assume §1, é2 > 0). We know that the stretch

has to be continuous across each of these shocks.

One phase boundary with continuous tangent with velocity $ which could either be positive

or negative.
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Let us assume for now that the phase boundary moves slower than the tangent disconti-
nuities so that 2 < min{s?,s3}. The x — ¢ plane in such a situation looks as shown in
Figure 2.6(b). We assume that the solution is constant in each of the six sectors of the z —t¢
plane. This trivially satisfies the field equations, and we need to worry about the jump

conditions only. The jump conditions at each of the five discontinuities can be written as

ctr(Ap — Atr) + VR —vir = O, (2.63)
$1Arr(br =) + Vi —vEr = 0, (2.64)
$(AtR = AiL)t+vEr—ver = 0, (2.65)

—sohp{t —tp) + v —vie = 0, (2.66)
—ctp (AL —AL)+vip—vyp = 0. (2.67)

In addition we have the following from (2.48), (2.49) and (2.51).

1 AY 1 + ey £AON
AL = = MRF Z; . (2.68)
1-5 1-4
T
M= A= (2.69)
2

Adding equations (2.63) to (2.67) and substituting from (2.68) and (2.69), we obtain the

following two equations in the three unknowns z = 2, z; = 2L and 29 = 2.

14+~

14+vr. 1 . R
- tr — t; = - ( 2) —5 )¢, 2.70
Q I+2 K 1+22L (=1 Z>l—-zf+(z+22)1——z§) ( )
1+ 1
T T (2.71)

-2 1-2 1-22

where Q = Aptr + Apt; + Y&—YL is determined completely from the initial conditions. We

C

can eliminate t by squaring both sides of (2.70) and noticing that [t| = 1. We obtain

2 2
1 - . 1+ 7 - 1. 1+ vr
Q - 2(1 ~Zl)tR — 72 (1 —ZQ)tL = | 2(21 —Z) + —«ZZ—(Z - ZQ) (272)
1- 27 1 -2 1 -2z I~z

(2.71) and (2.72) are not sufficient to solve for all the three unknowns. Clearly, these
equations have a one parameter (parameter §) family of solutions much like we see in bars.

We demonstrate this by showing how a solution can be obtained if § (or z) is given.
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Solution Procedure for a given z.

1. Solve equations (2.71) and (2.72) simultaneously for 21,22 € [0,1]. Note that these

roots will only depend on the initial data.

2. We can now obtain Ajg, A;z, from (2.68) and (2.69). and t from (2.70).

3. We can now obtain v;g, Vgr, vpr and vz from (2.63) through (2.67).

The main difficulty, of course, is step 1 which calls for solving simultaneously an eighth

and a fourth order polynomial. These equations have to be solved numerically. It is difficult

to prove existence (or lack thereof) of roots. However, experience with numerical solutions

suggests that one does indeed find unique roots in the interval [0, 1].

If the phase boundary moves faster than one of the tangent discontinuities, then the

z — 1 plane and jump conditions look slightly different. Figure 2.6(a) depicts the situation

when the phase boundary moves faster than the right tangent discontinuity. The jump

conditions in this case may be summarized as follows

ctr(Ar — Mr) + VR —Vig = O,

$Atr = ArL)tr+viR—vEr = 0,

$idip(tr—t) +vpr—v = 0,

—él)\IL(f’,—fA:L)ﬁ-V—V[L = 0,

—ctr(Arp —Ap) +vip—vy, = 0.

Also from (2.48), (2.49) and (2.51), we have
1
AL = 5, AIR — AIL = VT;,z .

Once again. adding equations (2.73) to (2.77), using (2.78) we get

f:R“{‘{?L _ ”YT{"R _ 2Z1f‘,

Q-
Squaring both sides to eliminate t, we get

. . A2
_tptt, rtpl . 4z

1+ 2 T4+z  1-22

Q l+2 14z  (1-2z

(2.78)

(2.79)

(2.80)
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The unknowns in the above equation are z and z; and just as in the previous case one can
determine z; if z is given. We thus obtain a one-parameter (parametrized by § or z) family
of solutions to the Riemann problem. In order to choose a unique solution among these we
now prescribe a kinetic relation. The driving force (2.58) on the phase boundary can be

written as

E
f=Eyr(A— <A>) = —%(”\0 — AR + A1p)-

The kinetic relations in Figure 2.4 give the velocity as a function of the driving force. Thus,

we may regard the kinetic relation as an equation of the form
z = G(A R, A1L)
or invoking (2.68), (2.69),
2z =g(z1.29). (2.81)

Once again, we outline the method for solving the equations.

Solution Procedure with a Kinetic relation.

1. Solve equations (2.71), (2.72) and (2.81) or (2.80) and (2.81) as appropriate, simul-
taneously for z,z;,2z9 € [0,1]. Note that these roots will only depend on the initial

data.

2. We can now obtain Arg, A7z, from (2.68) and (2.69) or (2.78), and t from (2.70) or
(2.79).

3. An then we can obtain vyg, vgg, vpr and vy from (2.63) through (2.67) or (2.73)

through (2.77).

Note in the above that we do not preclude the possibility of the phase boundary being a
contact discontinuity. (Contact discontinuities can occur, for instance, when we use ‘sticky’
kinetic relations.) Neither does it preclude the phase boundary coinciding with the tangent

discontinuity if it is consistent with the kinetic relation.
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2.4.2 Low-low problem

Suppose that the prescribed initial data is such that both Ap and Ap are in the low-strain
phase. We then have two classes of solutions. Solutions in class 1 have the form shown in

figure 2.7(a). We have

Two shocks with continuous tangent moving at velocities =c.

Two tangent discontinuities moving at velocities £§ where || < c.

Recall from Section 2.3.3 that shocks with continuous tangent necessarily travel with ve-
locity +c. Again from Section 2.3.3, recall that the stretch on one side of a shock with
discontinuous tangent determines the velocity of the shock (upto sign). We can conclude,
therefore, that if one tangent discontinuity travels at a velocity $, then the other necessarily
travels at a velocity —s. Note that this solution of the low-low problem does not involve
phase boundaries.

The four discontinuities of figure 2.7(a) divide the (z.t) plane into five sectors; the
stretch, the tangent and the particle velocity is constant in each sector with values as
marked in the figure. We ilave to solve for the unknowns Arg, Az, A, t, vig, vy and §

from the jump conditions.

ctr(Ar — A\fR) + VR —vig = O, (2.82)
s(A\ptp = M) +vig—v = 0, (2.83)
—§(Xt = AjptL) +v—vy, = 0, (2.84)
—ctp(A\rip = AL)+vip—vy = 0. (2.85)

For future use, we add equations (2.82) through (2.85) and then divide through by ¢ to

obtain

&

<§——1) (/\IRf}H-{—)\]LtA‘,L)-f-Q———Q)\:z—:{: (2.86)

where
VR — V[

Q= )\Rf}? + >\L£L +
is a quantity determined entirely from the initial conditions.
We have assumed that the tangent discontinuities are both shocks so that A. A7, and

Arr are all in the low strain phase. Then, (2.50) implies that the stretch is coutinuous
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Figure 2.7: Possible solutions to the low-low Riemann problem.(a) A solution without
nucleation of the high strain phase is the simplest Riemann solution involving only four
shocks. (b) Nucleation in a low-low problem. This solution involves six discontinuities, two
of which are phase boundaries. The phase boundaries can move faster or slower than the

tangent discontinuities.
across these tangent discontinuities. We therefore have from (2.48) that

1

AMr=A= A = 7 (2.87)
-5
We substitute this into (2.86), and rewrite it as
1 5 - - 1 5.
(f - 1) (bp+8.) +Q=2—"%. (2.88)
1-— i__ c — ;25 c

We eliminate t by taking the inner product of the above equation with itself and using the

fact |t] = 1. After some algebra we get the following equation for z = %
IQIP(1—2%)2—2Q- (tr+tL) (1 —2) (1 - 22) + 21+ k)1 - 2)? =422 =0 (2.89)

where k& = ty - t;. This is a quartic equation in z, whose coefficients are completely
determined by the initial data. We seek a root of this equation between 0 and « (defined
in 2.54). This root determines the velocity of the tangent discontinuity $. We can then

determine the other unknowns from (2.82) through (2.85).
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It can be shown that this equation has one and only one root in the interval [0, 1]. For
some initial data this root is also in [0, @], but it is not for others. When the root is not
in [0, o] we must explore the possibility of nucleation of the high strain phase at z = 0 and

this is class 2. As shown in Figure 2.7(b) this class of solutions has six discontinuities:
Two shocks with continuous tangent propagating with velocity +c.
Two shocks with discontinuous tangent propagating with velocities +4;.
Two phase boundaries with continuous tangent propagating with velocity =£s.

The methods to solve this problem are exactly the same as before — write the kinematic
jump condition for each discontinuity, add all the equations, eliminate t, invoke a kinetic
relation for each of the phase boundaries and solve for the speeds of the phase boundaries
and tangent discontinuities numerically.

We have found that a low-low problem, in general, could have two solutions, one with no
nucleation and one with nucleation of the high strain phase. The phase boundary velocity
for the solution with nucleation is uniquely determined. There are some initial data for
which we have one of these solutions, and some for which we have both. We should note
here that we have been unable to prove that for any given (reasonable) initial data we
always have at least one of these solutions. However, our numerical investigations suggest
that this is so.

It remains to choose a solution when both are possible. We do so using a nucleation
criterion. Following Abeyaratne and Knowles (1991), we propose the following: we pick
the one with nucleation if the driving force exceeds a critical amount and the one without

nucleation if it does not.

2.4.3 Goursat-Riemann problem

We conclude this section by looking at the Goursat-Riemann initial-boundary value prob-
lem. This is a special case of an impact problem where we consider a semi-infinite string with
constant initial and boundary data. In particular, we seek a solution (A(z, 1), t(z,t), y(z.1))

of the field equation (2.32) and jump conditions (2.35) and (2.36) in the first quadrant of
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Figure 2.8: The Goursat-Riemann problem.

the z — ¢ plane subject to the following initial and boundary conditions:

Mz,0) = Ag,y(z,0) = vg, forz >0,
t(z,0) = tg, for z > 0, (2.90)
v(0,1) = vg for ¢ > 0.

We assume that the string is initially in the low strain phase, so that 1 < Ap < A\p;. We

seek a solution with three discontinuities.

One shock with continuous tangent. This necessarily propagates with velocity c.
One shock with discontinuous tangent propagating with the velocity §; (0 < 51 < ¢).
One phase boundary with continuous tangent propagating with the velocity § > 0.

The phase boundary could be moving faster or slower than the tangent discontinuity, but

for the present we assume that it moves faster.

We know from (2.48) and (2.51) that

1
A= T (2.91)
1— 2
1+
ATk T T (2.92)

—1—212 1— 22

Above, we have introduced the notation

(2.93)
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We have to satisfy only one jump condition for each discontinuity. Writing the kinematic

jump condition (2.35) at each discontinuity,

ctr(AgR — A\1g) + VR —vig = 0. (2.94)
cztr(Arr — A) +Vig —vEr = 0, (2.95)
caMtr—t)+vEp—vs = 0. (2.96)

It can be easily shown that given z (i.e., given §), we can solve (2.91) through (2.96) for
our unknowns:

21, AR, M 6, VIR, VER.

To this end, add equations (2.94) through (2.96) and divide by ¢ to obtain

q— Arptr(l — 2) + Mgz — 2) = zXt (2.97)

~ VR — Vg

is a quantity determined from the initial and boundary conditions. We eliminate t by
squaring both sides of (2.97) and noticing that |t| = 1, and substitute from (2.92), (2.91)

to obtain

__1+"YTA yr b
142z R 14z R

2
= l——————(l o)z (2.98)

1—22

Given a kinetic relation (which will be of the form g(z, 21) = 0) this equation can be solved in
exactly the same manner as we saw for the Riemann problem with a single phase boundary.
We can also go about the whole exercise assuming that the phase boundary moves slower
than the tangent discontinuity. In this case a phase boundary velocity equal to zero would

simply mean that the high strain phase did not nucleate.

2.4.4 Experimental determination of kinetic relation

The presence of a tangent discontinuity in the solution to this problem can be exploited in
experiments to determine the kinetic relation. The tangent discontinuity is easily visible
and can be accurately tracked to determine its velocity. This information can be used to

deduce the velocity and driving force on the phase boundary as we saw above. Of course,



36
the solution above is valid only at the very early stages when the reflected shocks from the
other end of the string have not arrived. We can ensure that this time is long enough by

using a sufficiently long string. The experiment can then be performed as follows:

1. Set up an impact with given q,tz, and measure the velocity of the tangent disconti-

nuity zi.
2. Solve (2.98) for phase boundary velocity z.
3. Use (2.92) and (2.91) to calculate A\;g and .
4. Calculate the driving force from the result

A+ A
= B (g 200,

2.5 Numerical method and examples

In this section we introduce a numerical method used for solving initial-boundary value
problems following Zhong, Hou and LeFloch (1996). Godunov-type schemes (which is the
basis of their scheme) have been used for solving hyperbolic problems and they follow as
natural extensions to the solutions of the Riemann problems that we found in the previous
section. They, however, need to be modified to deal with problems in phase boundary
propagation where one has a change in type. We describe the modified method and present

some examples.

2.5.1 Godunov methods

We begin by discretizing our reference configuration into a series of cells. On each of
these cells we specify the stretch A, the tangent t, and the velocity v. We also specify the
boundary data which consists of the stretch and tangent (if it is a force boundary condition)
or the velocity (if it is a displacement boundary condition). Assuming that we begin our
computation at time #,, we have a series of Riemann problems at each of the cell interfaces.
We can solve the Riemann problems and propagate the discontinuities to a time ¢, + At
such that the discontinuities emerging from two adjacent cell-interfaces do not intersect.

This has been illustrated in the Figure 2.9 below. We now have another series of Riemann
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Figure 2.9: The principle of a Riemann solver.

problems at time ¢, +At. However, we have produced much snialler cells and hence the next
time-step we take will have to be much smaller. To circumvent this problem we average the
data over each cell at time ¢, + At and then repeat the whole process as we march ahead
in time. By averaging over a cell we smear out the discontinuities and this introduces some
numerical dissipation. In other words, we are ‘capturing’ the discontinuities as opposed
to ‘tracking’ them. The dissipation associated with smearing of the discontinuities can be
reduced by using a fine grid. We demonstrate this through the example of the vibrating
string made of a linearly elastic material. In its initial configuration the string is stretched
between the two fixed ends. At time ¢ = 0 it is plucked at the centre and let go. Figure 2.10
shows its deformed configuration at a later time. The exact profile is shown along with one
obtained from a computation with grid-size of 1.25 x 107>. A blow-up of the profiles near
the kink (boxed region in Figure 2.10) obtained from several computations (with different
grid-sizes) can be seen in the inset. It is evident that as the mesh is refined the tangent
discontinuity at the kink is less smeared out. In other words the error decreases as we refine

the mesh. The convergence is to first order as expected for ‘shock-capturing’ methods.
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Figure 2.10: Exact and computed shapes of a vibrating elastic string. The inset shows
the deformed shapes with different grid sizes. The grid size decreases from 5.0 x 1073 to
6.25 x 10™* as we go from the bottom right to the top left.

However, the Godunov method in this form cannot be used for problems involving
changes of phase. The reason is that averaging over a cell with multiple phases can lead to
values of the stretch X in the unstable region of the stress-strain curve rendering the system
non-hyperbolic. We therefore have to avoid averaging over multiple phases. Following
Zhong, Hou and LeFloch (1996) we accomplish this by individually tracking the phase
boundaries as they move in the reference configuration. The shocks are captured in the

conventional manner.

2.5.2 Propagation, nucleation and interaction

In order to track a phase boundary, we discretize the reference configuration in such a way
that each phase boundary lies on grid-point or a cell interface. We start our computation
at time %, by solving Riemann problems at each of the interfaces. By solving the Riemann
problems we know the phase boundary velocity and we can determine its position at time
ty + At. So at the next time step we shift the grid-point so that the phase boundary still
coincides with it. We thus have a locally non-uniform grid. There are certain subtleties

associated with such non-uniform moving grids that we shall address below.
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Figure 2.11: Modified Riemann solver. We always have a grid point moving with the phase
boundary.

If we have a moving grid then it is possible that two grid-points come very close causing
some of the cells to shrink. This would lead to a small time-step and will also result in a
disproportionately large contribution to the error from the small cells. We therefore have to
avoid the situation of having very small cells. In our computations we do this by enforcing
ion that %i < % By doing so we have restricted the minimum cell size to h/2.
To see how this is implemented, consider a uniform grid (cell-size h) at time ¢, as shown
in figure. The phase boundary sitting on point 3 has been labelled PB. At time %, the
phase boundary has moved to the left and the distance between it and point 3 is less than
h/2. So, while averaging over the reference configuration we place a grid point on PB and
leave out point 3. When we go to time ¢, 15 we find that PB is too close to point 2. So, we
remove point 2 and reinsert point 3 while calculating the averages. At time ¢,.3 PB has
moved to the left of point 2 but it is still too close. So, we do not reinsert point 2. At time
tn+4 when the phase boundary has reached point 1 we reinsert point 2 and remove point 1.
The calculation carries on in this manner.

Interaction and nucleation of phase boundaries is handled in a similar manner. If the
distance between two phase bounadries is less than h/2 then we let them coalesce and
have only one grid point replacing them. When we know that nucleation is to occur at a
given grid point we replace the grid point with two phase boundaries moving in opposite

directions separated by h/2 in the reference configuration.
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Figure 2.12: (a) Snapshots of a plucked string with a phase boundary calculated using two
different kinetic relations. The circle shows the location of the phase boundary. (a) Non-
monotone strign kinetic relation. The phase boundary follows the kink until the reflected
shock interferes with it. (b) Sticky kinetic relation. Phase boundary moves independently
of the kink.

2.5.3 Examples
2.5.3.1 Plucked string

Our first example is again a plucked string. This time, however, we have a phase boundary
sitting exactly on top of the kink at time ¢ = 0. At time ¢ = 0% we let go of the string and
observe how the phase boundary moves under the influence of the kinks and the shocks. We
choose this example as a means to contrast the qualitative features of the kinetic relations
that we discussed earlier. Figure 2.12(a) shows snapshots of the deformed shape of the
string under the non-monotone kinetic relation. We saw earlier that this kinetic relation
1s obtained from the balance laws under the assumption that a phase boundary coincides
with a tangent discontinuity. In fact, it can be shown that the following is also true — if the
initial data in a Riemann problem is such that we have a tangent discontinuity coinciding
with a phase boundary then the non-monotone kinetic relation forces the phase boundary to
remain with the tangent discontinuity as the system evolves. It is clear from Figure 2.12(a)
that this is the case at least in the initial stages (before the interaction with the shocks).

In Figure 2.12(b), on the other hand, the phase boundary moves independently of (in this
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Figure 2.13: The trajectories of the phase boundary in a snapped string for different kinetic
relations. The light dotted lines are the shocks. Interaction with shocks results in changes
in the speed of the phase boundary.

case faster than) the tangent discontinuity. Here we assume that the phase boundary obeys
a sticky kinetic relation. The results from the linear kinetic relation are very similar.

The figures above illustrate the beahviour of the phase boundary before it collides with
the shocks that reflect off the fixed ends of the string. Figure 2.13 shows the trajectory of the
‘phase boundary in the reference configuration over a time period of four shock reflections.
We notice that significant changes in the speed of the phase boundary occur as a result
of interaction with shocks. The phase boundary with the sticky kinetic relation shows a
tendency to become a stationary contact discontinuity. The linear kinetic relation does not
have a sticky region, so although we see a change in the speed of the phase boundary it
never becomes a contact discontinuity. The non-monotone kinetic relation also results in
‘stick-slip” motion of the phase boundary but this behaviour is quite different from that

obtained from the sticky kinetic relation.
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2.5.3.2 Whipped string

Our next example is a stretched string with a single phase boundary that is ‘whipped’ at

the left end at ¢t = 0. In other words we apply the following boundary condition at z = 0.

yp = 0.0, 32 = 100.0m/s 0<t<1.6x1074,
41 = 0.0, 4o = —100.0m/s 1.6 x 107 <t <32x107%,
11 = 0.0, 4o = 0.0 32x1071 <t <1.2x1073,

The deformed configuration of the string has been plotted in Figure 2.14. The travelling
wave propagating through the length of the string is clearly discernible. The wave gets
smeared out by a small amount as it passes through. This is an effect of numerical dissipation
associated with shock capturing methods. The trajectory of the phase boundary and the
shocks have been plotted in Figure 2.15. We have used the sticky kinetic relation for this
calculation. We find as a result that the phase boundary remains stationary for most of the
time. Interaction with the shocks causes it to move by a small amount. From the figure we
observe that abrupt changes in the mobility of the phase boundary do not coincide exactly
with the arrival of the shocks. The reason again is that the shocks are spread out as opposed

to being sharp discontinuities.

2.5.3.3 Nucleating string

This last example is a little artificial but we have chosen it to show how the deformed
shape of a string can become so non-trivial in the presence of nucleation. The example
also demonstrates annihilation of phase boundaries as the simulation is carried until a long
enough time to let the entire string change phase. The problem is set up as follows. Initially
there is a tangent discontinuity at the centre of the string. There are two phase boundaries
flanking the tangent discontinuity on either side. The portion of the string between these
phase boundaries is in the high strain phase and the rest of it is in the low strain phase.
The string is initially held taut but at time ¢ = 0 the ten'sion applied at the ends is suddenly
changed. This results in nucleation of the high strain phase at both ends and the resulting
phase boundaries eat into the rest of the string. Eventually, the entire string changes into the

high strain phase. The deformation of the string as this happens is depicted in Figure 2.16.
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Figure 2.14: Travelling wave on a whipped string with a phase boundary. For this calcula-
tion the grid size is 1.25 x 1073,
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Figure 2.15: Trajectory of the phase boundary in the whipped string with a sticky kinetic
relation. The heavy line gives the location of the phase boundary whereas the dotted lines
determine the position of the shocks.
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The trajectory of the four phase boundaries can be found in Figure 2.17. Once again we
find that significant changes in the speed of the phase boundaries occur when they collide

with shocks.
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Figure 2.16: Deformed shape of a string with several phase boundaries. The shapes are
quite non-intuitive.
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Figure 2.17: Trajectories of the phase boundaries in the nucleating string. After a short
time the phase boundaries coalesce and the entire string is in the high strain phase.
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Chapter 3

Atomistics

3.1 Introduction

We have seen that kinetic relations are needed to determine the mobility of phase boundaries
in strings and bars. This is true in quasistatic as well as dynamic problems. The need for
kinetic relations has also been demonstrated for phase boundaries in three-dimensional
continua (see Abeyaratne and Knowles (1990) and Gurtin (1995)). While this has now
become a generally accepted point of view there is no systematic understanding regarding
specific kinetic relations that govern phase boundaries in actual materials. We examine the
issue from the atomistic point of view in this chapter. By doing so we hope to unravel the
processes that occur at the atomic level but affect the mechanics at the macroscopic level.
The details of these processes are ignored in a continuum theory but their collective effect
is embodied in the kinetic relation.

Atomistic studies of phase transitions are not new. Krumhansl and Schrieffer (1975)
considered a one-dimensional model of masses interacting through quartic double well po-
tentials and studied travelling wave solutions to the governing equations in a continuum
approximation. They demonstrated that one could have thermal oscillations (just like
those observed with harmonic potentials) and also moving domain walls as a result of the
non-convex potential. More recent examples of atomistic studies can be found in Puglisi
and Truskinovsky (2000) and Balk et al. (2001). Puglisi and Truskinovsky (2000) explore
the energy landscape of a chain with cubic and tri-linear elastic springs. The unstable
(or spinodal) region is given special attention. The authors consider quasi-static evolution

paths and analyze the effect of the shape of the spinodal region on the hysteresis associ-

ated with the force-displacement curve. While Puglisi and Truskinovsky focus on the static
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and quasi-static characteristics of discrete chains Balk et al. (2001) concentrate on their
dynamic behaviour. They perform numerical experiments on a chain with piecewise linear
elements and find analytical solutions describing the frequency, kinetic energy and speed of
the waves of phase transition. A significant finding in their numerical experiments is that
a part of the energy stays in the form of high frequency oscillations. This motion becomes
‘invisible’ in the continuum limit and one can say that the corresponding kinetic energy is
transferred into heat. Such high frequency oscillations cause an energy cascade towards the
smaller scales and are highly dissipative. None of these studies, however, yield a specific
kinetic relation. That is the goal of our work. We construct a simple one-dimensional model
mass and spring model with a bistable potential as in the papers above and perform several
numerical experiments involving dynamically propagating phase boundaries. We find that
the results of these computations can be collected in a single kinetic relation that depends
only on the macroscopic material properties of the chain, such as the elastic modulus, the
transformation strain, and the Maxwell strain and is apparently independent of the extent

of the second neighbour interaction and temperature (at least for moderate temperatures).

3.2 Equilibrium

Consider a series of N masses as shown in Figure 3.1. The masses interact with each other
through non-linear springs whose potential energy is described by a quartic expression.

© o o o o o o
8 3 8 (1+vy1)a, (1+ yr)a,

8 (1+yp)a, 2a, 2(1+ y)a,
Figure 3.1: One-dimensional chain of interacting masses. The graphs below show the inter-

action potentials with the first and second nearest neighbours. Second neighbour interac-
tions are used to crudely account for the effects of interfacial energy.

The interactions are limited to the first and second nearest neighbours so that the potential
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energy of the springs can be written as

—1 N2
o= ¢ @)+ > ¢y (3.1)
i=1 g=1

where
#(@) = (z=a) (@~ (1+3m)a)” (3.2)
$°(y) = (y—2a0)*(y —2(1 + vr)ao)’, (3.3)

and

T = Uigl — Uy, Yj = Ui — Uy, (3.4)

where

u; 18 the position of mass i at any time,

ap 1s the equlibrium separation between two adjacent masses in the low strain phase,
(1 + ~yr)ag is the equlibrium separation between them in the high strain phase, and
Cy and Oy are certain moduli satisfying Cy < (7.

When forces f; are applied to the masses, the potential energy 4 is given by

N
p=¢- fiu (3.5)
i=1

and equilibrium requires

g{% =fi, i=1,...,N, (3.6)
which is a set of N non-linear equations. We wish to determine the force vs. displacement
characteristics of a one —dimensidnal chain. To this end we assume N = 20 and then apply
a displacement ugy to mass 20 holding mass 1 fixed so that u; = 0. No external forces
are applied to the other masses. This corresponds to a hard loading device. The problem
reduces to a solution of 20 non-linear equations (3.6) in the 20 variables u;,i = 2,...,19,

f1 and fag. We solve this using a Newton-Raphson method and plot the force foy vs.

the displacement uzq — 19ag. We start with ugg = (19 — 1.6yr)ag and an initial guess
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Figure 3.2: Hard and soft loading on a chain of 20 masses. The hysterisis is evident.

u; = [t—l"-ﬂ ug9,t¢ = 1,...,20. We iterate holding wugg fixed. The method is guaranteed

to give the correct solution with this initial guess because there is only a unique set of
displacements that will satisfy (3.6) for this boundary condition. Once we have obtained
this solution we increase ugg by a small amount and redo the calculation. The initial guess
for the Newton-Raphson method is the previous equilibrium state. The method converges
since our initial guess is very close to the solution. We continue in this manner even after
the force rises above point B, that is, after we have entered the region of multiple equilibria.
We find that the calculation proceeds smoothly with the springs staying in the low strain
phase till we reach C. Beyond this, there is no stable equilibrium in the low strain phase.
The calculation becomes unstable and the results follow the curve CG crossing the zero
force line several times. The calculations become extremely unstable beyond that and the
results are not shown. We restart the calculation by applying a very large usg so that there
Is a unique equilibrium solution in the high strain phase. This is shown as point D. We
proceed as before, but by decreasing ugg in small decrements. The results are stable along
DEF in the high strain phase and becomes unstable beyond and proceed as shown in FH.
One can also load the chain in a ‘soft’ device by applying a force instead of a displacement
at mass 20. The results of doing so are plotted in Figure 3.2 as the solid line. It is evident

that the solid line coincides with the dotted line everywhere except the region BCEF.
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As one loads the chain upto point C, it suddenly changes phase and jumps to point E.
Similarly, as one unloads it upto point F, it suddenly jumps to point B. This shows that
the force-displacement curve of the chain is hysteretic — something characteristic of materials
with multi-well energies. Similar curves can be obtained by starting with a chain that is
entirely in the high strain phase in the beginning or with several phase boundares located
at different positions. These results are consistent with the detailed analysis of Puglisi and

Truskinovsky (2000) for smaller chains.

3.3 Dynamics with the chain

We now study the dynamics to understand the kinetic relations for moving phase bound-
aries. In particular, we simulate impact experiments on the chain and compare the results
obtained with those in the continuum theory. Impact problems on atom chains are easy to
simulate owing to the uncomplicated nature of the boundary conditions. Moreover, con-
tinuum solutions of impact problems on bars and strings are already available for ready
comparison. The presence of propagating discontinuities in the solution to these problems
provides a benchmark test for the correctness of the algorithm. Also, in a few cases one can
actually obtain analytical solutions for the waves in the chain. Considerations such as these
prompted us to perform numerical studies of impacts on atom chains. In order to facilitate
quantitative comparison of the continuum and atomic descriptions, we switch to different
potentials ¢! and ¢? such that the resulting force-displacement (or stress-strain) relation is

trilinear as in Figure 2.3(b). So

%62 1f1+€<>\()—:az“
P =14 B B(14e— A +20)° ifhdg— L <l4e<A+2ZE. (3.7
E 2 E777' . YT
'5(6-’}/7’) +T[2/\0-(2+’YT)] 1f1+€>)\0+‘3“.‘
where
gi:w_l (38)

ap
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will be called the strain and

Ly2 14y < Xo— 2,
=9 5 - EQ+y - do+ ) ifho -4 <l+y< X+, (39)

| SO =)’ + B2 - 24+ 97)] i L4y > o+ FF

where

Uj+1 — Uy
pm et ], 3.10
Yy 2a0 ( )

In other words, the force-displacement relation is characterised by the transformation strain
~r and the Maxwell stretch Ag. Hence, the potential is still a double-well potential but it is
piecewise parabolic. This is true of the potentials describing the first neighbour interaction
as well as the second neighbour interaction.
The dynamics of the chain is governed by the following system of ordinary differential
equations.
oY

miiii = -, i=1..N, (3.11)
1

where m; is the mass of particle 7. We assume for simplicity that m; = m. The problem
is to determine the evolution in time of the variables u;(f) given certain initial conditions
u;(0) = uY,i = 1,..., N and boundary conditions ug = u¥(t) and uy = v’ (t). This is done
using a Newmark explicit time-stepping algorithm.

Our model consists of 300 atoms, all of them in the energy well corresponding to the
low-strain phase. For now we assume that the atoms are static; in other words they are at
zero temperature. At time ¢ = 07 we apply a velocity vy to atom 300 at the extreme right.
Atom 1 at the extreme left is held fixed. A small impact velocity results in the propagation
of a sonic wave into the medium. Since the stress-strain curve corresponding to the material
is trilinear, the speed of this sonic wave is constant. The profile of this wave is depicted
in Figure 3.3. The solution to this problem is explicitly known (Chin (1975)) and we find
good agreement between this and our numerical results.

This is the case. however, only for small impact velocities. If the impact velocity vy is
large enough, we nucleate a phase boundary at the point of impact. The phase boundary

then moves into the medium at a speed lower than the sonic wave. Two snapshots of the
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Figure 3.3: Sonic wave moving through an atom chain.

strain profile with a moving phase boundary is depicted in Figure 3.4. As can be easily seen,
the phase boundary manifests itself as a sharp strain discontinuity. The sonic wave, on the
other hand is spread over several atoms. There are some marked differences between sonic
waves and phase boundaries that come to light from this plot. Sonic waves are relatively
long wave-length waves. Phase boundaries on the other hand have short wavelength waves
associated with them. It can also be seen that the passage of the phase boundary causes
the atoms to go over the hump in the energy curve (causing one of the springs to become
unstable) and leaves them vibrating more vigorously. This becomes clear in Figure 3.5
which depicts the strain histories at two of the atoms at the extreme right. Also note that
the difference in arrival times of the sonic wave is smaller than the difference in arrival times
of the phase boundary. This is expected since the sonic wave travels faster than the phase

boundary.

3.3.1 Determining the kinetic relation

An examination of the strain profiles in the reference coordinate and the time coordinate
reveals that one can approximate it as being piecewise constant with superimposed thermal
oscillations. This is exactly what we get from a continuum theory of bars. Once we know

the strains ahead and behind the phase boundary, we can calculate the driving force on it
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Figure 3.4: Snapshots of the strain profile with a moving phase boundary.
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Figure 3.5: Strain histories at atoms 260 and 280.
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Figure 3.6: Results of simulations at high impact velocities. The phase boundary velocity
tends to asymptote towards the sonic speed.

using the following expression from continuum theory
E
f= —%(2&) T oA, (3.12)

where A™ and A~ are the stretches ahead and behind the phase boundary respectively. In
fact we can determine the entire z —¢ plane once we know the velocity of the phase boundary.
We can determine this velocity from plots like Figure 3.5 which give us the time elapsed
between the arrival of the waves at two fixed locations. We need to do this for several
different phase boundary velocities in order to determine the underlying kinetic relation.
The phase boundary velocity can be varied by changing the impact velocity. We went
through this exercise for several combinations of first and second neighbour spring stiffness.
The results have been plotted in Figure 3.6. The figure plots the non-dimensionalized phase
boundary velocity v/c against the non-dimensionalized impact velocity vy /c (where ¢ is the
sonic speed) for different ratios of second neighbour to first neighbour interaction. It is
quite remarkable that all the data collapses into a single master curve that is independent
of the details of nearest neighbour interaction. We also see from this plot that for each
of the materials the phase boundary velocity tends to asymptote towards the sonic speed

as we increase the impact velocity. Continuum theory gives similar predictions for phase
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Figure 3.7: Kinetic relation obtained from computations.

boundaries in bars with a trilinear stress-strain law, but the specific curve depends on the
assumed kinetic relation.

We calculated the driving force on the phase boundary using the data from our numerical
experiments. Figure 3.7 shows plots of the non-dimensionalized driving force as a function of
the non-dimesionalized phase boundary velocity. It is to be expected (in view of Figure 3.6)
that the relation between f/E~yr and v/c is quite independent of the amount of interaction
with the second nearest neighbour. However, the most remarkable fact about this data
is that the following curve is an excellent fit to the points obtained from the atomistic

simulations.

J Yr/2
Lo —-1)+ 22
Evr (o =1) 1-4%

C

(3.13)

[

9

This has been plotted as the heavy line in Figure 3.7.

3.3.2 Effects of finite temperature

The results above were obtained for 7' = 0. We have made an attempt to incorporate the
effects of temperature in our simulations. The temperature T' of our system is interpreted

as being proportional to the mean kinetic energy of the masses in the system. In other
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Given a certain initial temperature T the initial velocities of the masses have to be assigned

(3.14)

randomly while also making sure that the chain has no net momentum. In other words, the
initial velocities must have a zero mean. Once we have such a set of initial velocities, say
vg, we calculate the corresponding temperature Ty. This is done as follows.

M
KTy = 2 Z miva, (3.15)

g=1

where k is some constant. Finally, we scale up the velocities vg; by the amount \/;L; to
obtain a velocity distribution consistent with the temperature 7.

We have performed some preliminary simulations with such thermalized chains. The
results from one of them has been plotted in Figure 3.8. It is an impact experiment with a
phase boundary moving in. We see that while the phase boundary is clearly discernible as
a big strain discontinuity the leading shock wave has been completely overwhelmed by the
thermal oscillations. In order to eliminate the thermal oscillations we take an ensemble av-

erage of several experiments with the same boundary conditions but different initial velocity
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Figure 3.9: Ensemble averaged strain profile from 100 experiments on a thermalized chain.

distributions. All the initial velocity distributions are consistent with a given temperature.
In Figure 3.9 we have plotted the ensemble average corresponding to the experiment of
Figure 3.8. The leading shock wave is now clearly visible. We have found that the kinetic

relation is not affected by moderate temperatues.
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Chapter 4

Mechanics of beams

4.1 Introduction

In this chapter, we study the mechanics of beams made of a single crystal of a shape-memory
alloy. Of particular interest are the laws that govern the propagation and evolution of phase
boundaries. We have extensively studied this issue in strings (without bending and shear)
and have found that the kinetic relation plays a central role in determining the dynamics.
While this theoretical framework has gained wide acceptance, it has proved to be difficult
to measure it experimentally (see for example Escobar and Clifton (1993)). We find that
the notion of kinetic relation is relevant even in beams, and propose a simple experiment
to measure this kinetic relation.

The basic theory — the kinematics, the balance laws, dissipation inequality and the
constitutive assumptions — are presented in detail in Section 4.2. We allow our beams
to stretch, shear and bend, and assume following Bhattacharya (2001) that the energy
18 non-convex In stretch and shear, but convex in the moment. The kinematics which
follow a one director or one Cosserat vector formulation and the balance laws are classical
(we refer the reader to Antman (1995) for background and detailed bibliographic notes).
The constitutive relations are not. Therefore a detailed discussion of the motivation and
relation of the constitutive constants to crystallographically measurable quantities is given.
Anticipating the role of phase boundaries, the treatment of the dissipation inequality is
more general, and leads to a notion of driving force on interfaces.

The equilibria of such beams are studied in Section 4.3. We show that equilibria which in-
volve phase boundaries are characterized by discontinuities in tangent as well sharp changes

in curvature of the centerline of the beam. The role of the kinetic relation in quasistatic
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evolution of phase boundaries is discussed, and a simple experiment based on a cantilever
to measure the kinetic relation is described. We turn to dynamics in Section 4.4, and show
that the jump conditions do not uniquely determine the velocity of the phase boundaries
and that there is indeed room for a kinetic relation.

It would be desirable to confirm the need for a kinetic realtion through the solution of
simple initial-boundary value problems like Riemann or impact problems. For example, in
bars Abeyaratne and Knowles (1991) have shown that these problems admit a one parameter
family of solutions, and the kinetic relation provides a selection criterion. We saw in chapter
2 that strings behave in exactly the same manner. Unfortunately, even Riemann and impact
problems are too complicated to solve explicitly in beams. In particular, in contrast to bars
and strings, the solutions are not piecewise constant in strain, etc. since the coupling
between the linear and angular momentum equations does not allow us to reduce them to
wave equations. We have been able to identify some special boundary conditions in impact
problems when this coupling vanishes, and one is able to write a one-parameter family of
solutions. Unfortunately, these boundary conditions are physically difficult to achieve, and

hence the calculations are not very illuminating. We therefore do not include these here.

4.2 Basic Equations

4.2.1 Kinematics

Cousider a beam of length L and constant cross-sectional area A in the reference configu-
ration. Let x be a typical point on the centerline (0, L) of the reference configuration and
¢ denote an instant of time. We assume that the diameter of the cross-section is much
smaller than the length of the beam. Therefore, we assume that during any deformation of
the beam. planar cross-sections of the beam remain planar (but not necessarily normal to
the centerline). We further assume in this chapter that the deformation of the center-line
1s planar. Therefore, we use a one-director Cosserat description where the deformation is

described by two vector fields:

y(z.t) which describes the deformation of the centerline of the beam and

b(z.1), |b[ = 1 which describes the orientation of the cross-section.
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Above, both y and b are two-vectors. This is illustrated in Figure 4.1 . We note that the
assumption |b| = 1 does not mean that the cross-sectional area of the beam is assumed to
be constant as it deforms. Instead, it is assumed that the cross-sectional area is completely
determined by the axial stretch and shear and thus no independent kinematic variable is-
necessary to describe it. Since b is a planar unit-vector, it can be described uniquely by

the angle 8 it makes with the horizontal:

b(z,t) = cos(6(z, t))i + sin(f(z, t))].

We will use the notations b and 6 interchangeably.

Il\J(x,t)

y(x,t)

]
I

(0] ____%____+ _____
i

R —

Figure 4.1: Reference (bottom right) and deformed (top left) configuration of the beam.

A super-posed dot will denote material time derivative, i.e., partial derivative with
respect to ¢ holding x fixed. Therefore, the velocity of a particle on the center-line is y(z, )
while the rate of rotation of the director is H(Tt) We shall denote the stretch and the
tangent to the centerline respectively as
dy
ox

.10 0 -
l. t:——y' SO —z:/\t.

A= :
A0z ox

It is useful to write this with respect to the orthonormal basis {f)l, B}

M= abt + ’yB.
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Clearly A = \/a? + 4?2 is the stretch and v is the shear. We also introduce the angle 3 as
the angle between b and t (cos 8 = t - f)) We have

a=Acosfl, v=Asmp.

Finally we define x = —gg to be the curvature of the beam. The primary measures of strain
in the beam are «, v and &.

We are interested in studying shocks and phase boundaries. We will therefore consider
deformations y(z,t) and 6(z,t) that are not smooth, but only continuous in z and ¢ with
possible discontinuities in the velocities y and 6, the stretch A, the tangent t and the
curvature x at a finite number of points. Continuity of y(z.¢) and 6(z, t) implies that these
jumps can not be arbitrary but satisfy the some jump conditions. If we have discontinuities

in the quantities listed above at the point s(¢) in the reference configuration, then

=St =[] (4.1)

ikl = 1161 (4.2)

K

where $ is the velocity of the discontinuity in the reference configuration.

4.2.2 Conservation laws

The balance of linear momentum for a part of the beam occupying the interval (z1,z9)

requires

d gt i) 2
7 pAy dr = T(x9,t) — T(x1,1) +/ f dz, (4.3)
' J T

where

p is the density of the beam in the reference configuration,

A is its crqss—sectional area in the reference configuration,

T(x.1) is the force acting at material point 2 at time ¢, and

f(x) is the body force per unit reference length at material point z.

For future use. we will denote 7', = T -b* and T, = T - b to be the components of T with

respect to the orthonormal basis {b*, b}.



62

If there are no discontinuities in the interval (z;,z9) then (4.3) can be localized to

. oT
pAy = . +f. (4.4)

If there is a discontinuity in the interval (x;,29), then we also need a jump condition. If
we have a discontinuity at z = s(t) in the reference configuration, then the required jump
condition may be easily derived by dividing each integral in (4.3) into two: one from z; to

s(t) and the other from s(t) to 2. We obtain
=sllpAy Il =1IT].

We assume henceforth that p and A are constant and therefore we conclude that
—spAlly [ =[IT[]. (4.5)

Similarly, the balance of angular momentum for the part of the beam in the interval

(21, xy) requires

d [* d [ . -
— yprde:—i———/ b x pIb dz = M(z9,t) — M(x1,t)
dt J,, dt [,
T2 T2
+y(z2,t) X T(x2,t) —y(x1,t) X T(xy(,1) +/ y X fdw—i—/ [ dz,
Ty T

where

I is the second moment of area of the cross-section of the beam about an axis that causes

the first moment to vanish,
M (x,t)is the moment acting at material point x at time ¢, and
I{x) is the body moment per unit reference length of the beam at material point x.

Note in the above expression that we write the cross-product as a scalar since we are working
in two dimensions. We will use this convention throughout this chapter. The statement

above can be localized in the absence of discontinuities to

<

. > M 0
dr Oz
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Recalling the definition of @ and using (4.4), this can be simplified to obtain

- OM Oy
= — + = xT+/
plo 8x+acnx T
. oM A
or, pI(J:%——--}—)\tXT+Z. (4.6)
x

When we have a discontinuity at z = s(t), we also obtain the following jump condition,
=50 = [ M ). (4.7)

In summary, the equations (4.4), (4.6) along with the jump conditions (4.5), (4.7) de-

scribe the balance of linear and angular momentum in the beam.

We now turn to the dissipation inequality. Since we are considering a purely mechanical
theory, we can not write a balance of energy. but can write a dissipation inequality: rate of
work being done by external forces (and moments) on any part of the body is greater than
or equal to the rate of change of kinetic and potential energy in the same part of the body.
Consider a portion of the beam in the interval (z;,z2). The rate of work being done by

external forces (and moments) on this part of the body is

Pt = /l) {y-f+1(bx 15)} dz + y(x2,t) - T(z2,t) — y(21,1) - T(z1,1)

M (29, 0)b(x2,1) % b(z2,t) — M(z1,)b(z1,1) x b(z1,8).  (4.8)

Similarly, the rate of change of kinetic and potential energy in the same part of the body is

given by
. d T2 .. p_[ N )
Pt = — VP4 S xbP+ 0 dr 4.
[ {Ge e cbe ) (4.9)
where @ = ®(z,t) is the energy stored in the beam per unit reference length. We define

the power dissipated as

piiss — peat _ pint; (4.10)

The dissipation inequality states that

p¥* >0  or  pert> pint (4.11)
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For smooth motions,

. T2 N PN N .
pint :/ {399+ (b x B)(b x plb) + b} dz.
z

1

Therefore,

piiss /“{y-(f—-pyw(l?- x b)( b x pIb) ~ &} da
Ty

+y(z2,t) - T(x2.1) — y(1,t) - T(z1,1)

M (29, )b (9, £) X B(9, 1) — M(z1, )b (21,1) x b(21,1).

Using the balance of momenta, (4.4) and (4.6), this can be rewritten as

pdiss = —/_{%g_—-y-k(%M——%—)\tXT)(BXB)—%-@} dx
Jxy ’

+ y(z2,t)  T(w2.t) — y(z1,t) - T(z1,1)

+ Mo, )b (2, 1) X b(xa, 1) — M(z1,8)b(z1, 1) x b2y, 1).
We can now integrate by parts to obtain

pdiss = / {T 9y + M—a—(b X b) (At x T)(b x f)) - <i>} dz;
. Toks Ox

or

iss [ oy 0
pe _/m {T ( (bxb)AtL)—&M

o 8(bxb) }dn:

since T x At = —T - At+ for A+ = —ybl + ab. Further, since b x b = 6, and therefore

the above expression can be rewritten as

pliss — / ? {T (91 - BAH) + Mi— <i>} dz. (4.12)
; ozx

1

We now show that
dy

P — OAtE = 4b + abt. (4.13)

First,
+M-b=At-bt —x-bt = At bt — b

-2
fl
pog
)
o
fl
=l
o>
T
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Similarly,
&= Xt-b + 97.

Therefore,
4b + abt = (At - b)b + (At - bL)bL — §(ab — vb) = At — 8(ab — 7b)

which is (4.13).

Using (4.13), we can rewrite (4.12) as

T .
pdiss — / {Tm +T &+ Mk — @} de. (4.14)
x

Therefore, the dissipation inequality for smooth motions after localiization says

Ty + Tico+ Mk — & > 0. (4.15)

We now consider a deformation with a discontinuity at s(¢). Starting from (4.11), we

obtain the following condition in addition to (4.15).

—3[| @)~ pAS[|F |- <y > —pIs[|0)] <> > [T <y>+<T>yl

+HIM] < 0>+ <M>][6].
Using the jump conditions (4.5) and (4.7), we get
—3 @] =< T > [yll+<M>[0]. (4.16)
Finally using the kinematic conditions (4.1) and (4.2) we get
s(ucpu— <T > [IM[]-<M>] H,u) > 0. (4.17)

We thus notice that the term in parentheses is the force conjugate to the velocity of the
discontinuity. Therefore, following Abeyaratne and Knowles (1990) (and Eshelby (1956,

1975)), we define it to be the thermodynamic driving force:

f=[2]-<T>[M]-<M>]x]|. (4.18)
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Therefore, the dissipation inequality becomes
fs>=0. (4.19)

4.2.3 Constitutive assumptions
We now make the following consitutitve assumptions.
¢ = ¥a,7,58)

T = T(a,7v,k)
M = Ma,v,kK)

Substiting these into (4.15), we write it as

0P o0d oo
— = —— 5 —— )i>0.
(n 8a)a+(n 87)7+(M 8H)h_o

Following Coleman and Noll (1963), we can argue that this inequality has to be true for

s,
—
Fret

all smooth motions (since ‘we can arbitrarily choose the body forces and moments). In
particular, we can choose a class of motions where (v, a, k) are the same, but (¥, &, ) take
arbitrary values. The above inequality has to hold for each of these motions. Therefore, we

conclude that

0P TZ()CD M:dq)

T, =22 el .
LT 0 T oy Ok

(4.20)

Therefore, we only need to specify a constitutive relation for ®. We note that this also
implies that the dissipation is zero for any smooth motion, and that the only possible
source of dissipation in these beams is at the discontinuities.

We now specialize to a specific constitutive relation, appropriate for beams made of
single crystals of materials undergoing martensitic phase transformation. We will argue
shortly that it is appropriate in such situations to assume that the energy is a non-convex
function of the stretch and the shear, but a convex function of the curvature. We assume

that there are two natural or stress-free states for the beam:
low strain state oa=¢q, ~v=7, k=0,

high strain state o =ay, vy=-,, r=0.
Above, «; and «; are the axial transformation stretches, stress-free stretches or eigen-

stretches in the two phases and -, and -y, are the transformation strains, stress-free strains
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or eigen-strains in shear. The free energy ® has local minima at these states and grows
away from it. In order to keep things simple, we shall assume that ® is quadratic near these

states. We assume therefore that

SEA(e — o) + SpA(y — v)? + S EIR? in the low strain phase,
®=1q ®,(y.a)+ 3EIx? in the unstable phase, (4.21)
sEA(0 — ap)? + SWA(y —w)? + $EIR? + @ in the high strain phase,

for a suitable ®,. Above, F is the Young’s modulus, i the shear modulus and @ the differ-
ence in the ground state energies of the two phases. Note that we have assumed that both
phases have the same moduli. This is not true in actual materials, but it simplifies many
subsequent calculations. @y determines which phase would be more stable in a completely
stress-free situation. We have not explicitly specified the regions of validity of the expres-
sions for the low strain phase and high strain phase, neither have we given any explicit
expression for the unstable phase ®,. We note that it is possible to specify these in such a
manner that @ is smooth and has no additional local minima. The details are cumbersome
and omitted.

The expressions for the force T and the moment M follow immediately from (4.20).

Omitting the expressions in the unstable phase, we can write

T = EA(M - bt — o*)bt + pA(M - b — )b, (4.22)
where
. a; low strain phase,
o =
ay,  high strain phase;
. v;  low strain phase,
’y ==
vy high strain phase;
and

M = EIx. (4.23)

We now discuss the justification for choosing an energy that is nonconvex in stretch
and shear but convex in the curvature. This follows from the work of Bhattacharya (2001),

where a theory for rods made of martensitic material has been derived starting from a fully
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three-dimensional theory without the use of any apriori ansatz about the deformation. This
derivation is in a variational setting appropriate for the study of equilibria, and follows the
methods of Bhattacharya and James (1999).

In martensitic materials, we have a high temperature austenite phase, and a low tem-
perature martensite phase. Typically, the symmetry of the austenite is greater than that
of the martensite and this gives rise to multiple variants of martensite. There is now a
well-developed continuum framework for modeling such materials (see for example, Ball
and James (1992), Bhattacharya (1991)), where one describes different configurations of
the crystal as deformations of some fixed reference configuration. It is conventional to
choose the austenite phase as the reference, so the identity corresponds to the austenite.
Each variant of martensite can be obtained by an affine deformation of the austenite, and
therefore we can describe the variants through fixed transformation stretch U; which takes
the austenite lattice to the martensite lattice. We assume that these are positive-definite
and symmetric.
martensite in a material undergoing cubic to

tetragonal transformation, with

7 0 0 m 0 0 m 0 0
U= 0 mn 0] U=} 0 nn 0|, Us=] 0 7 0
0 0 nm 0 0 m 0 0

where the measured values in NiAl are 7, = 0.9392,7, = 1.1302. Similarly there are six

variants of martensite in a material undergoing cubic to orthorhombic transformation. with

m-n3 M3 nm+ns n3—m
2 2 0 2 2 0

— MmNy nitus P 3= mtns
Uy 5 5 0 N U 5 0
0 0 12 0 0 72

and the rest obtained by symmetry where the measured values in CuAINiare n; = 1.0619, 7, =
0.9178, 793 = 1.0231.

Suppose we make a beam of the material in the austenite phase, and pick an orthonor-
mal basis {&;,é9.&3} with &, the axis of the beam and &, the transverse direction. Now

suppose the beam goes through a phase transformation (say due to cooling) and transforms
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completely to a variant whose stress-free configuration is described by an affine deformation
with gradient U;. The directions {&;} now are deformed to {U;&;}. Suppose further that
U, and the directions {&;} were chosen such that this deformation is planar except for a

uniform stretch in the &; direction, i.e.,
6 -Usey =8, Uses =0. (4.24)

We can treat this now as a beam in the U;&; — U;é, plane. The stress-free configuration

is described by

A=|Ujé&|, B & Ujer
= U;8é;|, = arc oS | weme—d
7o [U;&:]|U é;|

or equivalently )
1 & - UZe,
Y=
{U el U &2

Note that rigid body rotations of this beam U; — QU; do not change these quantities.
Finally the moment-free curvature of this beam is zero.

Suppose we have a beam where only the austenite and the first variant of martensite
are active, then we have to choose {&;} such that (4.24) holds for j = 1. We now have two

phases with
) 1 0 & - Ule
a =1, oap= Ty =0 Y= e
U} Ui 78| | l [U;és
and ¢, depends on temperature. Similarly, if we have a beam where only the first two
variants are active. Then, we have to choose {&;} such that (4.24) holds for both 5 = 1 and

7 = 2. We now have two phases with

o] = =g, ap

1 1 8, - U, & - U2,
T~ 3 = T A Y= ~ s Yh = =
U e U, ey’ U, &y U28,| ’

and g is zero. In either case, we have two distinct values for the stress-free values of a and
v. At the same time, the moment-free curvature is zero in each of these states. Therefore,
it is natural to assume non-convexity of the energy in stretch and shear, but convexity in
curvature.

We conclude by noting that even in one given material, one can freely change the stress-
free values of « and -y by simply changing the crystallographic orientation of the beam {é;}.

Consider for example the material undergoing cubic to orthorhombic transformation as in
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CuAlINi. Note that the following choice of {&;} satisfies (4.24) for both variants 1 and 2:

cos & —siné 0
€= 1| sin¢ |, & = cos & ; €&=10
0 0 1

It is easy to verify that

V2mn3 V2n1m3

Q) = - - ) ap = - = ———
\/77? + n‘é + 2sm§cos§(77]2 - n%) \/17;2 + 77§ + 2siné cos§(7]§ — nf)
and
4+/2n3 sin € cos & 44/2n? sin € cos &
M Yh =

Vit +nZ +2(nF = n2)sin€cos £’ VI + 1+ 2(n2 — n?) sin€ cos €

4.2.4 Kinetic relations

In addition to the constitutive assumptions above, we need to prescibe a kinetic relation
that governs the propagation of phase boundaries (discontinuities in which the two end
states are in different phases). This is necessary in quasistatic situations since the velocity
of the phase boundary is indeterminate from the balance laws or equilibrium conditions as
we will presently see in Section 4.3. This is exactly analogous to the situation in bars as
pointed out by Ericksen (1975). Similarly in dynamics we shall soon see in Section 4.4 that
unlike classical shocks, the jump conditions alone are not sufficient to uniquely determine
the propagation velocity of phase boundaries. This information has to be provided from
outside. We do so in the form of a kinetic relation: we assume that the propagation velocity

of the phase boundary is a constitutive function of the driving force:

§=V ().

This notion of a kinetic relation was introduced by Abeyaratne and Knowles (see Abeyaratne
and Knowles (1990.1991)) in their study of bars. We see that the dissipation inequality

(4.19) imposes a restriction on the function V:

V() = 0.
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For future use, we calculate the driving force for our two-phase material. Substituting
(4.21) and (4.22) in (4.18), a long but straightforward calculation shows that the driving

force on a phase boundary with the high strain phase on the right is given by

f=EAlle” [[((e") = () + pAll7" [ ({(v") = (7)) + Po. (4.25)

Note that we have contributions from the stretch and shear, but none from the curvature.

4.3 Quasistatics

We now explore the behaviour of these beams by studying their equilibrium shapes. We find
that the equilibrium shapes are characterized by sharp discontinuities in the tangent and
Jumps in curvature of the centerline at phase boundaries. We also find that the equilibrium
conditions are insufficient to determine the position of the phase boundary, and this provides
room for a kinetic relation. We propose a very simple experiment to verify this theory and
determine the kinetic relation.

To obtain the equilibrium or quasistatic equations, we drop terms associated with inertia

in equations (4.4), (4.6) and jump conditions (4.5), (4.7). We obtain

T+f=0, M+XMxT+[=0, (4.26)

IT]=0, [M|=0 (4.27)

where ' denotes partial differentiation with respect to x. We, however, allow the phase
boundaries to propagate and therefore the kinematic jump conditions (4.1) and (4.2) hold

unchanged.

4.3.1 Beam subjected to pure moments

Consider a beam subjected to a moment M at its two ends. We assume that there are
no forces applied at the ends, and that the body force as well the body moment are zero.
Then we see that T = 0 satisfies (4.26), and (4.27); automatically. Invoking the moment-

curvature relation (4.23), we see that (4.2),(4.26)2 and (4.27)2 reduce to

0" =0, [|6'1=0. [#]]=0
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irrespective of whether the beam is entirely in the low strain phase or in the high strain
phase, or whether the beam contains a phase boundary at some point s. Clearly the solution
is

M

9=—ETIJ7+C

for some constant ¢. Therefore, the (inherent) curvature in x = 6’ is constant throughout
the beam.

If this beam is entirely in the low strain phase, then we infer from T = 0 and (4.22)
that
i ‘

A=A = df—}—’y[Q, 8 = fB; = arc tan—
(27}

Since § is the angle between the tangent and the director, we see that the angle ¢ between

the tangent and the horizontal is given by ( = %JJ + ¢ — B;. Recalling that y' = At, we see

ElI /. (M . M .
y—/\lM (sm(Em—{—c—ﬂl)1—Cos<ﬁm+c—ﬁl>3>+d

for some constant d. Clearly, the centerline is deformed into a circular arc of radius 5; 1[ AL

that

Similarly if the beam is entirely in the high strain phase, we can follow the arguments

above to see that

EI M M
- A : . P, , _ .
y h (sm <EI£E + ¢ 6h> 1— cos (EI:r—i—c ﬁh) _]) +d

for some constant d. Clearly, the centerline is deformed into a circular arc of radius %)\h.
Now assume that we have a phase boundary at s so that the left part (0, s) of the beam
is in the low strain phase while the right part (s. L) of the beam is in the high strain phase.

Then arguing as above, we see

M BT ET

y= bi .
/\;,,% (sin (%x +c— /3;,,) i-— cos (%T +c— ,B,L) J) +d” s<xz <L

for some constants d~.d™ chosen to satisfy [|y|] = 0 at s. Clearly, the centerline of the

EI M , M
AN — (sin (-———:I:+ c— /5,) i— cos <—-—;U+c—— ﬁl>j> +d” O<x <s

left portion of the beam deforms to circular arc of radius %A; while the centerline of the
right portion deforms to a circular arc of radius %)\h. This is shown in Figure 4.2. While

the inherent curvature is uniform, the centerline of the beam - which is the experimentally
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Phase boundary

Figure 4.2: A beam with a phase boundary subjected to a constant moment.

observable quantity — has two distinct curvatures.

Further, notice that the tangent is discontinuous across the interface (with an angle of
Br — P between them). In fact, this angle is independent of the applied moment and is
present even at zero moment. Thus, we always expect a kink at the phase boundary.

Finally, we can verify from (4.25) that the driving force across this interface is exactly
equal to @, and thus independent of the applied moment. This means that the propagation
of the phase boundary, if any, would be independent of the applied moment.

Berg (1994,1995) designed a clever device to subject polycrystalline wires of NiTi to a
pure moment. He observed that the deformed shape of the wire was very much like the
predictions above with two distinct curvatures, and modelled it using the Euler-Bernoulli
beam theory (which is based on an ansatz of zero stretch and shear) with a non-monotone
moment-curvature relation. In other words, he assumed that the energy was convex with
infinite modulus in the stretch and shear, while it is non-convex in curvature. This is
exactly the opposite of what we have done here. We wonder whether the observations of
different curvatures were mediated by different stretch as we have proposed here, or that
the polycrystalline wires truly have a non-monotone moment curvature relation.

There is evidence for the latter in Berg’s experiments. First there is no pronounced
tangent discontinuity. Second, he could drive the phase boundary by increasing the applied
moment in variance with the conclusions above. We note, however, that the phase boundary
could have a non-zero driving force even if the moment-curvature relation were convex if the

moduli of the two phases were different as in actual materials. It would be very interesting
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to repeat Berg’s experiments with single crystal wires so that these issues can be probed
in detail. It also remains an interesting and open question, whether non-convexity in shear
and stretch in single crystals can give rise to non-convexity in bending in a polycrystal made

of multiple grains.

4.3.2 Cantilever with end load

Consider a cantilever with the end z = 0 fixed and with a dead load —Fj applied to the end

z = L as shown in Figure 4.3 (inset). We assume that there are no body forces or moments.

0.04

1

0.02r- El

J

T

-0.02
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-0.06r

_0.08 i 1 H H 1
0 0.1 0.2 0.3 0.4 0.5

Figure 4.3: Typical deformed centerline of a cantilever with a phase boundary subjected to
an end load.

The balance of forces ((4.26); and (4.27);) then requires that T is constant. Therefore, we

conclude from the constitutive relation (4.22) that

EA(a — «")sinf + pA(y —v")cos§ = 0, (4.28)

—FA(a — o) cos O+ pA(y —v")sinf = -—F. (4.29)



Solving these simultaneously, we obtain

F F
a=a" + A cos ¥, =5 - A sinf. (4.30)

In preparation for writing the balance of moments, we use the above to see that

AMxT = (—ybt +ab): (-Fj)
F
-F ((a* + E%cos@) sinf + <’y* - Hsin@) cos@) .

We use this in the balance of moments (4.26), and obtain

F F ,
EI§" — F <<a* + £ Cos 0) sin @ + (7* T A sin 9) cos 9) =0. (4.31)

We have to solve this ordinary differential equation subject to the following boundary con-

ditions if the beam is entirely in one phase:
6(0) =6y, &'(L) = 0;
and the following boundary and jump conditions if the beam is in two phases:
0(0) =6, 6'(L)=0, [l0]]=0. [#&']]=0.

Above, 6y # 0 depends on the experimental setup and is fixed for a given setup. In either
case (one phase or two phases), this equation can be easily solved numerically by a shooting
method. Figure 4.3 shows the deformed shape of a beam (centerline) with the following
parameters: E = 200.0GPa, p = 80.0GPa, oy = 1.0, o, = 1.043, vy, = 0.0, v, = —0.28,

= 0.5m, A = 0.01m?, I = 8.333 x 1075m* and F = —50.0N with a phase boundary
at s = (0.3 separating the low strain phase on the left from the high strain phase on the
right. Furthermore, unlike the case of pure moments. we find that the phase boundary is
subjected to a driving force that is linear in F'. It also depends on the position of the phase
boundary but only slightly (as shown in Figure 4.4).

This cantilever then provides a simple experiment to determine the kinetic relation. The

phase boundary is characterised by a kink and is thus clearly visible. Thus the measurement
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Figure 4.4: Driving force on the phase boundary.

of the propagation velocity is relatively easy. At the same time we can easliy control the
driving force through the applied load F. Further «y.p,7,,y can be controlled through
sample preparation and 8y by the clamping condition. This could enable detailed parametric
studies.

We now discuss a few limiting cases. If the beam is very slender (i.e., I/L? << A),
then we see that (4.31) is meaningful if and only if F = O(EIJL?), or if F << EA, uA.

‘Therefore, @ = o, v =", and (4.31) reduces to
EI0" — F (a*sinf + v* cos §) = 0.

We have to solve this subject to the same boundary and jump conditions above.

If, on the other hand, the beam is stubby (i.e., if I/L? >> A), then «,v become too
large to be meaningful unless F' = O(FA) = O(uA). Then, (4.31) with the appropriate
boundary and jump conditions reduces to 6 = 6. Therefore, (4.30) yields

4 r f * sin 6
o= — cos fg, =~" — —sin#f.
A 0 Y= LA 0

Suppose, now, that this beam has a phase boundary at point z = s with the low strain

phase on the left and the high strain phase on the right. The driving force on this interface
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is given by (4.25) as
f=F(—(ap —a;)cosby + (v — ) sinby) + @y.

Therefore, the experiment proposed above would be much simpler in this limit.
Finally, if the beam is stubby, and if the force is small, i.e., if I/L? >> A, F/EA << o*

and F/uA << +*, then we have piecewise rigid deformation,
Iz Y g

This deformation would be trivial in case the beam was made of a single phase. For
example, if the beam was made of the low strain phase, the centerline is straight with an
angle ¢ = 0y — f; from the horizontal. The deformation is non-trivial in case the beam has
a phase boundary at point = s with the low strain phase on the left and the high strain
phase on the right. The centerline would then have a kink at x = s with the left side making
an angle { = 6y — f5; from the horizontal and the right an angle ¢ = 6y — 8. Further, there
18 a non-trivial driving force on the phase boundary. The formula (4.25) can not be applied

here; instead we have to go back to the more fundamental (4.18). We obtain

f=2—(=F3)- ([lo* Ib* + (7" []b) = @ — F[| " [Jcos by + Fl|»"

] sin 6.

We see that there is a non-trivial driving force on the interface and that this depends on
the applied load. James and Rizonni (2001) and James (2002) have discussed the use of the

plecewise rigid approximation in the modelling of active materials.

4.4 Shocks and phase boundaries

We now turn to dynamics and study the restrictions imposed by the jump conditions on
the propagation of discontinuities in a two phase material. We call a discontinuity a shock
if there is no phase change across it and a phase boundary if there is. We show again that
there is room for a kinetic relation.

We begin by combining the kinematic and momentum jump conditions. Eliminating
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[l¥|] between (4.1) and (4.5), we obtain
[T ] = pAS]| A& ).
Substituting for T from (4.22), we can expand this to be
EA(b* @ b™)[|Mt[] - EA[lo" []b™ + pA(b @ b)[| At ] ~ pA[|v" [Ib = pAS[| Xt [).
Dividing by pA yields
(8* —eib @ bH)[| A ] = f[|a” [[b* + (b ®b)[| At [] - c3[| v [Ib, (4.32)

where
c] = \/% is the bar wave speed and
o = ‘V/g is the shear wave speed.

We deal similarly with the terms involving curvature and moment. Eliminating [|6|]

between (4.2) and (4.7), we obtain
[ M|} = pIs*[|¢']].
Substituting for M from (4.23), and dividing by pI, we obtain
(52 =[] 6] =0. (4.33)

This clearly implies that discontinuities in the curvature ' necessarily travel at the bar wave
speed. This is true irrespective of whether the discontinuity is a shock (in either phase) or
a phase boundary. Conversely, a discontinuity travelling at any other speed does not allow
the curvature to jump.

There is a far richer class of discontinuities allowed by (4.32), as we presently see.
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4.4.1 Shocks

We first look at discontinuities where both states are in the same phase so that [|a*|] =

[l7*|] = 0. Substituting these in (4.32) reduces it to
[ At]] = ci(bt @bh)[|At]] + (b @ b)[| At ]] (4.34)

in both the low strain and the high strain phase. Since we may assume without loss of
generality that [[At|] # 0 (else, we would have no discontinuity), we can obtain §2 and

[| At |] as the eigenvalue and eigenvector of

We have two possible solutions,
§2 = ¢ with [|At]]][bt and &> = with [|Aé]]]|b. (4.36)

We can thus have shocks which propagate at either the bar or the shear wave speeds, but
with constraints in the jump on %i'—, = At.

To understand these a little more, let us specialize to the case when the tangent is
continuous. Then, the first solutions tells us that arbitrary jumps in the stretch \ with no
change of phase necessarily have no shear (since the tangent is necessarily perpendicular to
the director b) and travel at the bar wave speed. These are exactly the shock waves that
one has in bars. The second solution requires the tangent to be parallel to the director
and thus requires an unphysically large amount of shear. Therefore. we believe that this
solution is unphysical when the tangent is continuous.

It is interesting to compare these with the case of strings. There, shocks with discon-
tinuous tangent necessarily have no discontinuity in stretch A, and propagate at a velocity
equal to \/T(\)/X (see chapter 2). There appears to be no direct analog of these in beams.
We wonder if such solutions would appear as limits of certain travelling waves when the

bending modulus goes to zero, or if such solutions are dispersive in beams.
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4.4.2 Phase boundaries

We now consider discontinuities in which the two end states are in two different phases.
We now have to study (4.32) in all generality. We can rewrite it as two scalar equations

(components with respect to b+ and b):

(32— e[| At )] - B+ —cifla” ], (4.37)

(82 =IA]-b = &y |- (4.38)

Clearly these equations do not uniquely determine the velocity of the phase boundary. In
fact, it can take a range of values depending on [|A|] and [|t|]. It therefore appears that
the jump conditions alone are insufficient to determine the phase boundary velocity and
that we need to invoke a kinetic relation.

There is an interesting exception, when we apriori know that the tangent is continuous.

Then (4.37) and (4.38) reduce to

(=)D = —dla" ], (4.39)
b

(F—a)IAJt-b = =3[y (4.40)

We can solve these simultaneously for 42 and [| A|]. In particular,

cos B|~" [] — sin B[] o |]

Gcos 7 ||~ Fsm Bl a* ||

14
i =dc

[N NS

The formulas for [| A|] are omitted for brevity. Thus, the velocity of a phase boundary would
be completely determined by the jump conditions if we knew a priori that the tangent is
continuous. This appears to be in contradiction to the behaviour of bars, where the jump
conditions do not determine the velocity of the phase boundary. However, a bar is a beam
with zero transformation strain in shear [|v*|] = 0 and infinite shear modulus pu = oc.
Taking the limits [|v*|] — 0. g — oo in (4.40), we see that it reduces to the equation
t-b = 0. and we are now required to find both 52 and [l A]] from the equation (4.39) which

reduces to

(82 =DM = =cflle" .

This is exactly the situation in bars. Thus we see that the additional degree of freedom in



81
shear that beams possess breaks the degeneracy in bars and provides exactly the additional
information to determine the phase boundary velocity.
Another noteworthy point here is that when the transformation shear strain v* = 0,

2 o 2

we obtain 5 ~ c¢5. This means that phase boundaries with continuous tangent in such-

materials would travel at nearly the shear wave speed.
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Chapter 5

Propulsion

5.1 Introduction

Various micro-organisms propel through viscous media by beating flagella or cilia. In par-
ticular, a flagellum in eucaryotic cells is a slender structure (tens of microns long and tenths
of microns wide) that achieves propulsion by actively deforming in a bending wave propa-

P

(see for example, Bray, 1992). This deformation is resisted

gating from one end to the other (see fo
by the viscous fluid, and this in turn propels the organism. We wish to explore if it is pos-
sible to generate such propulsion by the propagation of phase boundaries through a string
or a beam. A possible arrangement is to subject such a string in a viscous fluid to repeated
thermal pulses (through the use of a laser for example), each pulse heating the string to
nucleate and propagate some phase boundaries which then revert as the string is cooled by
ambient environment. Since the phase change causes a change in the transformation strain,
the string deforms back and forth as these phase boundaries are nucleated and propagated.
We examine if we can arrange this in such a manner as to generate motion.

We first examine a one-dimensional bar with a single phase boundary and show that it
cannot propel through a viscous medium. We then show that even multiple phase bound-
aries in a one-dimensional rod do not alter this conclusion. This leads us to the study of a
shearble rod with two phase boundaries capable of moving on a plane, the idea being that
we have to fnove away from one-dimensional motions. In this case again we find very little
linear motion but significant rotational motion or ‘tumbling’. Finally, we consider a beam
with several phase boundaries and show how one can avoid tumbling by having them move

in a certain way.
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5.1.1 Motion of flagella

We begin by examining the force per unit length b that the fluid exerts on the string.
Consider a flow past a long rigid rod of length L and radius a (L >> a). The Reynold’s
number of this flow is determined by the radius of the rod, and is thus very small for very
thin rods. Therefore, we can consider the flow to be laminar. It is then known that the

force exerted by the flowing fluid on the rod per unit length is given by
b=d(v-t)t +d,(I-t@t)v (5.1)

where v is the far-field velocity of the fluid and the coefficients d; and d,, are given by

4
[log(L/2a) + p]

dn =~ 2dt o~

where p1 is the viscosity of the fluid and p is a constant of order 1 (see, for instance, Brennen
and Winet (1977)).

Therefore, for a flagella moving with velocity y, we take the force i)er unit length to be

b=—d(y-t)t—d,I-txt)y

for some constants d; and d,,. The equation for the balance of momentum (2.9) now takes

the form

. 0T Lo S
Py:Eg—dt(}"t)t—dn(l“t@t))’-

We now show that it is possible to neglect the inertial term. To see this, non-dimensionalize
y by the length of the string L and ¢ against (L/c) where ¢* = %. Denoting y/L by y, the

inertia and viscous terms respectively are

. 3502 = o o

Inertia term = L—Lﬂiy = L?pc?y.
< _ 4 L& 4mpc I
Viscous term = e ey 17eY llog(L/2a)+5]Y

Therefore. the ratio of the inertia to the drag forces is

L?pc
= 1 , .
R = T llos(L/20) + )
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Consider some typical numbers for a bacterial flagella: L = 5pm, a = 0.3pm, ¢ = 1000m/s,
p=1, p =891 x 107" Pa.s. We assume that the density of the flagellar material is about
1000K g/m? and find R = 19.7x 10716, Clearly, the inertial forces are negligible. Therefore,

we drop it and write the balance of momentum as

?9: Ayt -da (I -ty =0. (5.2)

We are clearly in a quasistatic setting.
In this quasistatic setting, the kinematic jump condition (2.35) holds unaltered, but the

momentum jump condition (2.36) simplifies to
[Tt =0.

This rules out tangent discontinuities (unless T = 0), and therefore the tension must be
continuous and

[Tt=0.

For the trilinear material with no temperature jump this reduces to

(A =7

We notice from (5.2) and the fact that there are no tangent discontinuities that if a
string is initially straight, it remains straight for all subsequent times. Therefore, we shall
confine ourselves to one-dimensional motions or to bars in what follows.

But before we do so, let us note that heat transfer is very rapid at small sizes, and
consequently we may regard our string to be at a uniform temperature at any give time.
Successive heating and cooling then uniformly change the temperature of the string, and
thus alter the relative stability of the two phases. Therefore, simply by heating and cooling,
one can freely ‘change the driving force on phase boundary. Further, if we assume that
our kinetic relation is invertible, then we can change £he position of the phase boundary
as desired by simply controlling the temperature of our string. Therefore, we regard the

position of the phase boundaries to be prescribed functions of time in what follows.



5.1.2 Propulsion in bars

The deformation of a bar is axial so that y(z,t) = y(z,t)é where & is the axis of the bar
and 1y is scalar. It is conventional to work with the displacement u = y — z. The tension is

clearly then of the form T = T'é. The momentum equation (5.2) then reduces to

T — dis =0 (5.3)

where we use ’ to denote differentiation with respect to z. At discontinuities the jump

conditions are

lu]] = —$[lv']] (kinematic), (5.4)

N7r)] = 0, (equilibrium). (5.5)

We now assume that our bar is made of the trilinear material described above, but
with zero coefficient of thermal expansion (this is reasonable since the strains due thermal
expansion is so much smaller than the transformation strain). The stress-strain relation is

then

Ee low strain phase,
T= (5.6)
E(e — 1) high strain phase.

where € = u' is the strain.
Consider now a bar of length L with stress free ends, with a phase boundary at the
point s(t) in (0, L) separating the high strain phase to the left from the low strain phase to

the right. From (5.3) and (5.6) governing equation is

diy — BEu" =0 (5.

(&3]
~1
~—

with boundary conditions

' (0.t) =vp, u(L,t)=0

and jump conditions at s(t)

o' ==y [l =évr
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Figure 5.1: Phase boundary in a computational cell.

We consider the bar to be initially stationary and impose a s(¢) which sweeps back and
forth through the specimen: s(¢) monotonically increases from Ly to Ly for 0 < ¢t < ¢4,
decreases monomotonically from L; to Ly for £; <t <ty and then is repeated periodically.
The problem of propulsion is to find the net movement u(z.t + t2) — u(x,t) at long times,
and then to find s(¢) that maximizes it.

This problem is difficult to solve analytically, and therefore we solve it numerically. The
problem above is to solve a heat equation with a moving sourse at the phase boundary s(t).
We do so by an explicit time stepping scheme based on finite differences. We have to be
careful about the moving phase boundary since it leads to small cell-sizes and thus large
errors. We do so as follows.

Figure 5.1 shows four cells with a phase boundary between grid-points 3 and 4. The
variable u is evaluated at the grid points at each time step. Let us denote the value of u at

n-+1 -

grid-point k at the n'* time step by uy. Then u; ™" is determined using

n-+1 b ) _ n n
u, " — uy :Euk+l 2ul +

At Az

dlA.’L‘

where Az is the cell size and At is the time step. Both of them are chosen as constants.

*1 g valid only for points like 1, 2, 5, etc., that are not

The above method for evaluating u)
neighbours of a phase boundary. Points like 3 and 4 that have a phase boundary between
them need special treatment. Consider 3 for instance. Assuming that the left side of the

phase boundary is in the high strain phase, we can write

Ty u'h — uf —ul + ul
A A3 S:E(f 3 )—E( 2 3 )
f At sp e Az e
where u}, denotes the displacement at the phase boundary at the n" time step. The

difficulty with using this scheme for w3 is that we have to divide by sp which may become

a very small quantity at some time. This problem is circumvented by making use of the
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Figure 5.2: Displacement histories of points on the bar.

jump condition [| T[] = 0. In the above case where the high strain phase is on the left, we

have

k13 y23 n n
uy —u UL — u!
4 Py o= P 3 7
SF SB
sp+sg = Az
Combining these,
u'p — uy ul _uy | YTSE
SB Az Az Az
Using this we can rewrite the equation for u?7! as
g q 3
n+l _  n (L) Py R :
A A3 us _ gt Uz + Uy +YTSF
YA = .
At Az

Note that we are no longer dividing by sp, thus avoiding errors coming from division by

small numbers. A similar equation can be written for ug“. We have
ut Tt yn ul — 2ull +ul + yrs
4 4 _ 5 4 3 T ITSB
diAx =F .
At Ax

Figure 5.2 shows the results of a calculation of a bar with 300 nodes where the phase

boundary is swept back and forth between nodes 120 to 180. It is easily seen that after
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Figure 5.3: Strain profiles of the bar with the phase boundary.

a brief transient various points on the bar just oscillate about a mean position with no
propulsion. During the transient the bar gets stretched to the equilibrium length. There-
after, it oscillates about this equilibrium and it does not propel itself. Two typical strain
profiles during this oscillation are shown in Figure 5.3. We find very similar results for var-
ious different trajectories of the phase boundary. In fact, we have found in our numerical
explorations that the result (of no propulsion) remains unchanged even if we have two or

more phase boundaries instead of one.

5.1.3 Piecewise rigid body dynamics

In order to understand the results above, we study the motion of a piecewise rigid bar which
one would obtain in the limit £ — 0. Here the bar is divided into segments by the moving
phase boundaries, and the particle velocity as well as the strain is uniform in each segment.
Furthermore. the strain can only take the values 0 and 7 depending on the phase.

Let us begin with a single phase boundary with a given trajectory s(t). Then, the

particle velocity and strain are given by

ut(t) 0 <z < s(t),

™ () 5(t) <z < L,
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0 <z <s(t),
(o 1) = yr (t)
0 s(t) <z < L.

The field equation is then meaningless, and therefore we have to consider the integral version

of the balance law,
xTro

T(as) — T(zy) = dy / " uds, (5.8)

Z

from which we conclude that
T(s7)=dwuts, T(s7)=—~diu (L —s).
Applying the jump conditions (which remain the same), we obtain
diin" s = —dys (L — s), ot — a7 = Syr (5.9)
which we can solve for the unknowns 4 to obtain
$yr +_ ST

_:TS. u = L(L—é)

For a given pulse s(¢). we can now find the displacement

oty
ug = / at (t)dt

J O
_ _ZZZ/Ol (0L = s(a))ae - 2 tj?su)(L— S(8))dt
B 7 B “s(t1) ‘ ~ B s(tz2)
= -7 {(L(q(tl) - 5(0)) /6(0) sd5> + <L(s(1‘2) s(t1)) /s(n) 5dq>}
= —%{L(Ll —Lo)~ = (L1 = L§) + L (Lo~ L1) — = (L} —Lf)}

where we have only used the facts s(0) = s(f2) = L. s(t;) = Li. Thus, it is impossible to
produce a net displacement: the bar moves in one direction as the phase boundary sweeps
across the bar. but moves an equal amount in the opposite direction as the phase boundary
sweeps back. Indeed, we could have predicted this from the governing equations (5.9): they

are invariant under time reversal.
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Now consider n phase boundaries at s;(t), ¢+ = 1,...n separating the high and low
strain phases (with the high strain phase at the extreme left). From the momentum jump

condition (5.5) at each phase boundary, we obtain

' ' i-1 .
up —uj = (=17, i=1..n

Combining these with the kinematic jump condition (5.4) at each phase boundary, we obtain
Ui — Gis1 = (—1)'spyr,  i=1,...n. (5.10)

We now apply (5.8) to the entire bar and recall that T(0) = T'(L) = 0. We obtain

~L
0= T(L) —T(O) = C/ udxr = 1},181 +’l'1/_)(.92 —81)+. . "L.Ln(Sn —Sn_1)+7ln+1(L—Syl) (511)
0

since the velocity is piecewise constant. Equations (5.10) and (5.11) constitute a system
of n + 1 linear equations for the n + 1 variables @}, %2, ......,ipr1. The solution of these

equations is

n
u =K+nr Z(~1)Zén‘i (p=1,2,....,n)
—

QI/’TH-I - K‘,

where
1

K= —L—(51$1 — 5982 + e + (=) s,8,). (5.12)

We can now find the propulsion from the displacement of the particle z = L. We have

1 t s(t)
u(L,t) :/ Upiq dt = / a-sdt:/ a-ds
0 J0 s(0)

where a = [s1, —$9.53,...,(—1)"s,]T and s = [s1,89,...,8,]7. We assume that s(¢) is
periodic with period T, so that we can find «(L.T) from the above by integrating over a

closed loop in the n-dimensional s-space. However, notice that

n

1 .
a= V¢ where ¢ = -2—(5%—32+...+(—1)”"152).
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Therefore,

u(L,T)zj(a-ds:]{Vsqﬁ-ds:O.

Therefore. there can be no propulsion with bars undergoing piecewise rigid motion. There-
fore, one can have no significant propulsion in bars with a finite but large elastic modulus.
In fact, we believe that there is no propulsion for any finite elastic modulus as suggested by

the numerical study in the previous sub-section but have been unable to prove it.

5.2 Beam with piecewise rigid body dynamics

One-dimensional motions do not generate propulsion. So, in this section we consider planar
motions of a beam with phase boundaries. We saw in chapter 4 that there is large shear
associated with these phase boundaries. We intend to exploit this feature to generate
propulsion. We assume that the deformation of the beam is piecewise rigid so that € is
uniform (i.e., #(z,t) = 6(¢)). Consequently, the angle that the tangent to the centerline
makes with the horizontal is ((¢) + (p in the high strain phase and ((¢) — {y in the low
strain phase. The stretch is A, in the high strain phase and A; in the low strain phase. We
assume that the position and evolution of the phase boundaries is a given input, and try to
determine the overall motion of the beam. We do not discuss how one may generate such
phase boundaries. Finally, we only consider quasistatics.

Suppose we have a beam with two phase boundaries moving periodically in a prescribed
manner. Let s1(¢) and s2(t) denote the positions of the phase boundaries in the reference
configuration, and let the leftmost part of the beam be in the low strain phase. Then given
the position y(t) of the leftmost point z = 0, and ((¢). we can use the piecewise rigid

assumption to write down the position of the centerline as

yo(t) + Nzt~ 0<z<s,
y(z.t) = ¢ yo(t) + Ns1 £ + Ap(z —5) tF 51 <@ < sy, (5.13)
Cyo(t) 4+ Nst b A Ap(s2 —s) tT+ Nz —so)tT so <z <L

where t= = cos(¢ = ()i + sin(¢ — ¢o)j and t7 = cos(¢ + Co)i + sin(C + (o) respectively.
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Differentiating with respect to ¢, we obtain the particle velocity

( yo(t)+g:)\ga: n- 0<z< s,
S(o.) = Vo(t) + Ns1 7 + sy b — Mpst €1 + C(z — 51) AT s1 < < 89,
Yo(t) + Ais1 7 + (st B + Ap(s2 — 51) 85 + (52 — s1) A7
{ —NSa t7 4+ Nz — sp) AT s9g <z <L.
(5.14)
where i~ = — sin(¢—(g)i+cos(¢—Co)j and At = — sin(C+(g)i+cos(C+(o)j are perpendicular

tot~ and t* respectively. We seek to obtain the unknowns yo(t) and § (t) using the balance

of forces and moments,
L “~ ~ ~ ~
0= [ty D+ iy - G D) (5.15)
Jo

and

L
0= /O (y(z) = y(0)) x {du(y - t)t + dn(y — (¥ - £)t)} daz. (5.16)

A long and cumbersome but unenlightening calculation then yields

where A(s) is a 3 x 3 matrix, s = {s1,s2}7, R(C) is a 3 x 3 rotation matrix of angle ¢
about the axis perpendicular to the plane of the beam, v = {4;(0,1), 12(0, ¢), é(t)}T, B(s)
is a 3 x 2 matrix and § = {41, $o}7. Assuming that A is invertible ! this equation can be
solved to obtain

v=RTA'Bs (5.18)

Since the phase boundary motion is periodic with period T, we integrate this from time 0
to T to see if there is any propulsion. This integration becomes a contour integration on
the (s1,s9)-plane. The presence of R makes it impossible to do the integrations explicitly.
The integrations are therefore performed numerically over contours that avoid the singular
curve of A. It is possible to integrate the equations even if one chooses a trajectory that
crosses (non-tangentially) the singular curve at a finite number of points by requiring the

continuity of y and ¢. The results from one of these calculations are shown in Figure 5.4.

! A is invertible except on a certain curve in the (s1, s2)-plane. We will call this curve the singulor curve
of A.
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Figure 5.4: Positions in space of a beam with two phase boundaries. There is a lot of
tumbling and very little linear motion.

We see that we have significant tumbling, but very little linear motion. While we have not
made any systematic attempt to optimize the propulsion by proper choice of trajectory, our
numerical experiments suggest that this behaviour is typical. The relatively short length of
the beam makes it easy to tumble unless the phase boundaries are perfectly symmetric; and
any propulsive gains made in one part of the period are reversed in the other part as the
phase boundaries reset. It will be interesting to study this in greater detail, perhaps using
the framework of geometric phases developed by Kelly and Murray (1998) and Marsden
and Ostrowski (1995).

We now propose a strategy to overcome the difficulties above. We show that it is possible



Figure 5.5: Beam with multiple phase boundaries.

to generate linear propulsion with little tumbling by having multiple phase boundaries
moving from one end of the beam to the other. Suppose we have a long beam, and we
periodically nucleate a phase boundary on the left (z = 0), and have them propagate to the
right with a propagation velocity v till they traverse through the entire beam and exit at
the right (z = L). Clearly we have to alternately nucleate a low/high and a high/low phase
boundary. Then at any instance of time ¢, the beam is composed of alternating segments of
the low and high strain phase separated by phase boundaries which have a uniform spacing.
This is shown in Figure 5.5. Suppose at the instant ¢ the beam has N phase boundaries at

the positions $1(t), s9(t),...,sn(t) with
S5 — 841 :d, i=2,...,N.

We refer to the segment of the beam (0, s1) the first segment, and the segment (s;_1,s;) to
be the ith segment for i = 2,... N.
Let us first assume that the first segment is in the high strain phase; subsequent segments

alternate between the low and high strain phases. Therefore,
)\(‘I“f) = /\it C(.’IT.Z‘) = Ci 8i—1 <x <8
where

A i odd, . Ch=C+Go i odd,
G=

Al 1 even, G=C(-{ i even.
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The tangent and the normal to the centerline of the beam are
t = cos ¢l +sin(;j, i = —sin Cii + cos (ij

in the sth segment. Note that t; = C fi;. For future use, we set

P, . 1 1+ j even,
o =t - t; =0, -0y =
—s8in 2¢ ¢+ 7 odd,
L L 0 1+ J even,
ﬁijzti-nj:ni-tjz

sin 2y 1+ 7 odd.

The position of the centerline of the beam is given by

k
y(z1) = yolt) + Asibr+ D Nilsi — sim1)bi + Mega (7 — sp)bar (5.19)
i=2

k
= yolt) + A1sit; + L..J: Aidti 4+ Mgl — sp)tean
1=2

for sy < 2 < sp11. Therefore, the velocity of a point on the centerline is given by

k

}"(:Z?,t) = y'()(t)—Fé (/\131ﬁ1 + Z Adiy; + /\k+1(:23 - Sk)ﬁk+1> +v ()\1{31 - )\k+1£k+1) (5‘20)
te=2

for s <z < 841
We shall first use the balance of angular momentum to show that if NV is large, then

¢ =0, or that the tumbling is eliminated by putting a large number of interfaces. To that

end, we calculate

lf(wvt) = (Y(lf) - y()(t» x f

k
= dp (M,S]Ln k1t Z Aida gy + Appr (7 — 3k))

=1

kx
<}" “fgg1 + ¢ (/\151(¥1k+1 + Z Aida 1 + Mg (o — Sk)) + v 8y k+1)

gzl
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k»
—dy <>\181/31 k+1 T Z )\idﬁik+1>

i=1

k
(S’ “tg1 + ¢ (/\181/31k+1 +Y NdB; k+1) +v(Arar g1 — /\k+1>)

1=1

k 2 k
= (d* | d, (Z /\iaz’k+1) —dy (Z Mﬁikﬂ)
=1 =1
k
dy (Z Aidoy k+1> g1 + bpy1 (2 — 51)) (Z Ai dﬁzkﬂ) Ch+1
=1

2=l

2

tepr1 + frr1(@ = sk) + grgr(z — sp)?

for s < x < sg+1. Therefore,

k 2 -k
k41 .o
/ lydr = (d° | dn (Z /\iaik—i-l) — d <Z )\iﬁik—H)
5 - e

J S

2

+dp, (Z Ai da7k—§—1\ (Gk-Hd + bpy1 d—) —did (Z AidB; 1«+1> Cht 1

2 1
. d? a3
+degy + fk+1—2— + gk+1§. (5.21)
Now note that
AR t1odd &£+ 1 odd

—Aps8in2y todd k41 even
AiQ k1 =
—N\sin2¢p teven k41 odd

Al jeven k+1 even

so that
Z A pr1 & /\h(l —sin2¢y) + A(1 — sin2¢p))

for k large enough and averaged over k£ odd and even. Similarly,

Z AiBik+1 = /\h sin 2y + A;sin 2¢p)

for k large enough and averaged over k odd and even. Substituting these in (5.21), we see
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that

Skl Sa3 7y A
pde = Mkz’ dn(1 — 2sin 2o + sin® 2¢p) — dy sin? 2(g) + O(k).
/ 16

PACHY

Therefore, if the number of phase boundaries IV is large enough,

N g :

L Spoa1 d3N3 2* . . .
/ lydz ~ Z/ lpdr = 374—8—&—) (dn(1 = 2s8in2¢y + sin® 2(p) — dy sin® 2¢y) + O(N?).
0 k=1 Sk .

Therefore, we see that if N is large enough, the balance of angular momentum,
L
/ lydr =0
0

(=0.

implies that

Now, according to (5.1) and (5.20), the body force per unit length,

f = di(yo the1)brar + dn(Yo - figsy)fipsy

+0 (di (Ar01pst = Ags1) Spg1 + dp A B g1 fipsn)

for s <z < sg41. Therefore, for N large enough,

L
/fda;:
Jo

N Sk4+1
Z/ fdr ~ Ay — vay

k=175

where

A = 4(t®t)+d,(h®h),

1 . . . .
a;, = 5 (dt(/\h, sin2(y + A\t — dp Ay sm?g’onl) .
Therefore, the balance of forces gives us
y = vA_lah.

This gives the velocity as long as the first segment is in the high strain phase.
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We can do a similar calculation when the first segment is in the low strain phase. We
obtain

vy =vA la.

where

(di(Arsin2g + Ap)ty — dp A sin2{ohy,) .

DO |

a =

Therefore, we obtain a propulsion with overall velocity
v
§A"1(ah, + ay).

Two aspects were crucial above. First, that the beam was long with a large number of
interfaces. This seems important for preventing tumbling. Second, all the phase boundaries

moved in one direction. This is consistent with the behavior observed in flagella.



99

Bibliography

[

Abeyaratne, R. and Knowles, J.K.; 1990. On the driving traction on a surface of a

strain discontinuity in a continuum. J. Mech. Phys. Solids, 38, 345.

Abeyaratne, R. and Knowles, J.K., 1991. Kinetic realtions and the propagation of
phase boundaries in solids Arch. Rational Mech. Anal., 114, 119.

Abeyaratne, R. and Knowles, J.K., 1993. A continuum model of a thermoelastic solid

capable of undergoing phase transitions. J. Mech. Phys. Solids, 41, 541.

beyaratne, R. and Knowles, J.K., 1994. Dynamics of propagating phase boundaries:

thermoelastic solids with heat conduction. Arch. Rational Mech. Anal., 126, 203-230.

Abeyaratne, R. and Knowles, J.K., 1997. Impact-induced phase transitions in ther-

moelastic solids. Phil. Trans. R. Soc. Lond. A, 855, 843.
Antman, S.S., 1995. Non-linear problems of elasticity, Springer-Verlag, New York.

Ball. J.M. and James, R.D., 1992. Proposed experimental tests of a theory of fine
microstructure and the two-well problem, Phil. Trans. Royal Soc. London A 338, 389-
450.

Balk, A.M., Cherkaev, A.V. and Slepyan, L.I., 2001a. Dynamics of chains with non-
monotone stress-strain relations - I, Model and numerical experiments. .J. Mech. Phys.

Solids, 49, 131.

Balk, A.M., Cherkaev, A.V. and Slepyan, L.I., 2001b. Dynamics of chains with non-
monotone stress-strain relations - II. Nonlinear waves and waves of phase transition.

J. Mech. Phys. Solids. 49, 149.

Berg, B.T., 1994. Thermomechanics of shape memory alloy rods, Ph.D. Thesis, Uni-

versity of Minnesota.



1]

[12]

100

Berg, B.T., 1995. Bending of superelastic wires 1 - Experimental aspects, J. Appl.
Mech. 62(2), 459-465.

Bhattacharya, K. 1991. Wedge-like micro-structure in martensites, Acta Metall. Mater.
39, 2431-2444.

Bhattacharya, K. 2001. A direct derivation of a theroy of rods with application to

shape-memory alloys, In preparation.

Bhattacharya, K. and James, R.D., 1999. A theory of thin films of martensitic materials
with applications to microactuators, J. Mech. Phys. Solids. 47, 531-576.

Bray, D. 1992. Cell Movements, Garland Publishing, New York.

Brennen, C. and Winet, H., 1977. Fluid mechanics of propulsion by cilia and flagella.
Ann. Rev. Fluid Mech. 9, 339-398.

Chin, R.C.Y., 1975. Dispersion and Gibbs phenomenon associated with difference ap-
proximations to initial-boundary value problems for hyperbolic equations. Journal of

Computational Physics 18, 233-247.

Coleman, B.D. and Noll, W., 1963. The thermodynamics of elastic materials with heat

conduction and viscosity. Arch. Rational Mech. Anal., 13, 167-178.
Ericksen, J.L., 1975. Equilibrium of bars. Journal of Elasticity, 5, 191.

Escobar, J. and Clifton, R., 1993. On pressure-shear plate impact for studying the

kinetics of stress-induces phase transitions. Mater. Sci. Engng. A 170, 125-142.

Eshelby, J.D.. 1956. Solid state physics, Vol. 3, pages 17-144. Academic press, New
York.

Eshelby, J.D., 1975. The elastic energy-momentum tensoir. Journal of Elasticity, 5,
321.

Gurtin, M.E., 1995. The nature of configurational forces. Arch. Rational Mech. Anal.,
131, 67-100.

Gurtin, ML.E., 2000. Configurational forces as basic concepts of continuum physics,

Springer-Verlag, New York.



[25]

101
James, R.D., 2002. 1. Real and configurational forces in magnetism, and II. Analysis
of a microscale cantilever. To appear in Continuum Mech. and Thermodynamics (issue

in honor of Ingo Miiller).
James, R.D. and Rizzoni, R., 2001. Piecewise rigid body mechanics. In preparation.

Kelly, S.D. and Murray, R.M., 1995. Geometric phases and robotic locomotion. J. of
Robotic Systems., 12(6), 417-431.

Krumhansl, J.A. and Schrieffer, J.R., 1975. Dynamics and statistical mechanics of a
one-dimensional model Hamiltonian for structural phase transitions. Phys. Rev. Let-

ters-B, 11, 3535-3545.

Marsden, J.E. and Ostrowski, J., 1998. Symmetries in motion: Geometric foundations

of motion control, Nonlinear Sci. Today.

Ngan, S. and Truskinovsky, L., 1998. Thermal trapping and kinetics of martensitic
phase boundaries. J. Mech. Phys. Solids, 47, 141.

Puglisi, G. and Truskinovsky, L., 2000. Mechanics of a discrete chain with bi-stable
elastic elements. J. Mech. Phys. Solids, 48. 1.

Rice, J.R., 1971. An internal variable theory and its application to metal plasticity. .J.
Mech. Phys. Solids, 19, 433.

Rosakis, P. and Knowles, J.K., 1997. Unstable kinetic relations and the dynamics of
solid-solid phase transitions. J. Mech. Phys. Solids, 45, 1055.

Simha, N.K. and Bhattacharya, K., 1998. Kinetics of phase boundaries with edges and
junctions. J. Mech. Phys. Solids, 46, 2323.

Simha, N.K. and Bhattacharya, K., 2000. Kinetics of phase boundaries with edges and
junctions in a three-dimensional multiphase body. J. Mech. Phys. Solids, 48, 2619-2641.

Slemrod, M., 1983. Admissibility criteria for propagating phase boundaries in a Van
der Waals fluid. Arch. Rational Mech. Anal., 81, 301.

Slemrod, M., 1984. Dynamic phase transitions in a Van der Waals fluid. J. Diff. Egs.,
52, 1.



102
[38] Truskinovsky, L., 1987. Dynamics of nonequilibrium phase boundaries in a heat con-

ducting non-linear elastic medium. J. Appl. Math and Mech.(PMM) 51, 777-784.

[39] Turteltaub, S. 1997. Viscosity and strain gradient effects on the kinetics of propagating

phase boundaries. Journal of Elasticity, 46, 53.

[40] Wegner, J., Haddow, J.B. and Tait, R.J., 1989. Elastic wave propagation, pages 161-
166. Elsevier Science Publishers B.V. (North Holland).

[41] Zhong, X., Hou, T.Y. and LeFloch, P. 1996. Computational methods for propagating
phase boundaries. Journal of Computational Physics, 124, 192.



