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Abstract

When a body is exposed to a flowing fluid, oscillations can occur due to one or
more of several different mechanisms. The resulting large amplitudes of motion and
fatigue are potential sources of structural failure. Furthermore, the drag force on a
structure can be increased due to the effectively larger cross-sectional area presented
to the flow from the oscillation. A complete understanding of the nature of such

vibration is essential in the design of many civil and mechanical engineering systems.

Previous solutions to the vortex-induced vibration problem were primarily based on
modal analysis, using a one- or two-mode approximation. Use of modal analysis
implies a "locked-in" condition: the vortex shedding frequency and a natural
frequency of the system are coincident. Observations made on long cable systems
indicate that the amplitude of response is smaller than is predicted by a conventional
modal analysis. The drag forces on such structures are therefore overestimated by

current design approaches.

In very long structures, typical of those found in ocean applications, modes are
closely spaced, and it is not reasonable to assume total spanwise correlation in the
fluid forces or response. The approach used herein attempts to avoid the limitations
associated with the modal solution of such problems by implementing a solution based
on traveling waves. The technique draws on earlier theoretical and empirical models
for the complex vortex-shedding phenomenon, and incorporates these into a new

method for analyzing the structural response problem.

The traveling wave approach can be used to model effectively spanwise variable

flow environments by summing the calculated responses of adjacent active sections of
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cable. Until this method was developed, there was no suitable method available for
modeling flow characteristics of this type. Modal analysis is effectively limited to

systems with uniform flow over all or part of the system.
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NOTATION

Cylinder or cable amplitude (1/2 peak-to-peak displacement)

Total cable amplitude (1/2 peak-to-peak displacement)

Total cable amplitude at i-th segment

Total cable amplitude for constant force solution at end of active region
Normalized cylinder or cable displacement (=A /D)

Wavespeed in cable (=V'T/u)

Wayvespeed for viscously damped cable

Viscous damping coefficient per unit length

Added mass coefficient of vibrating cylinder, in direction of flow

Drag coefficient of vibrating cylinder, in direction of flow

Drag coeflicient d‘ stationaryrcylinder, in direction of flow

Drag coefficient, component of force in-phase with cylinder velocity
Maximum drag coefficient (above), as function of B

Lift coefficient of vibrating cylinder, in direction of flow

Inertia coefficient of vibrating cylinder, in direction of flow

Inertia coefficient, component of force in-phase with cylinder displacement
Viscous damping coefficient per unit length

Cable or cylinder diameter

Applied force per unit length on cable

Force per unit length acting on cable or cylinder



Fy
G(z.6,t)
G (2,6,t)
I(z)

Iyz)

Spanwise constant force magnitude

Green’s function for taut cable

Green’s function for taut cable (discrete formulation)
Integral term appearing in traveling wave solution
Integral term appearing in traveling wave solution
Stiffness coefficient per unit length (note context)

Viscous damping coefficient per unit length (note context)
Surface roughness parameter

Keuligan-Carpenter Number

Active length of cable (where vortices are assumed to be shedding)
Length of cylinder or cable

Mass of cylinder per unit length

Mass of fluid displaced by cylinder per unit length
Reynolds Number

Oscillatory Reynolds Number (=wD?/v)

Strouhal Number

Strouhal number based on midspan incident flow velocity, U,,, in shear flow
Period of oscillation

Cable tension

Uniform free-stream flow velocity

Midspan incident flow velocity for sheared flow
Magnitude of oscillating flow velocity

Reduced flow velocity (=w,/Sw)
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Vo Parameter appearing in analytical expression for C,

Ve "Reference velocity" for sheared flow, usually midspan velocity
W, (z) n-th eigenfunction for taut cable, length L

¥ Displacement of cylinder or cable

Y Displacement of cylinder or cable

« Decay rate for amplitude in traveling wave solution

o; Value of & corresponding to internal damping for taut cable
B Rate of phase variation in traveling wave solution

8 Ratio of Reynolds number to Keuligan-Carpenter number

B Steepness parameter for linear sheared-flow profile

¢, Damping ratio in r-th mode

n Mass parameter (=pD?/p)

g Arbitrary phase term in applied force

b, Arbitrary phase term in constant spanwise applied force

K Parameter in traveling wave solution (a function of o and A
A Wavelength of traveling wave

X\, n-th eigenvalue for taut cable, length L

T Mass of cable per unit length

v Kinematic viscosity of a fluid

&; i-th modal solution, as a function of time

p Mass density of fluid

Pe Mass density of cable

Py Mass density of cylinder
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Phase angle by which applied force lags velocity in traveling wave solution
Phase angle of total displacement in traveling wave solution

Phase of total displacement of i-th segment in traveling wave solution
Phase of total displacement at end of active region for constant applied force
Phase angle for r-th modal solution

Phase angle

Phase angle

Angular oscillation frequency (rad/sec)

Angular natural frequency of system (rad/sec)

r-th angular natural frequency (rad/sec)

Angular Strouhal frequency (rad/sec)

Angular vortex-shedding frequency (rad/sec)



CHAPTER 1

Introduction

When exposed to a flowing fluid, a structure may oscillate due to interaction
between the body and fluid. Large amplitudes of motion and fatigue are potenti.al
sources of structural failure. A complete understanding of the nature of these
vibrations is essential in the design of many civil and mechanical engineering

components.

The nature of the motion of a structure in a flow depends on many factors,
including the geometry of the body, the characteristics of the flow and fluid, and so on.
Several quite distinct behaviors can be observed, and the methods of analysis for each

vary accordingly. A brief introduction is given below.

1.1 Flow-Induced Vibration
Flow-induced vibrations can occur with both bluff and streamlined bodies in any
fluid. Broadly speaking, the different types of behavior may be classified into the

following groups.
o Vortex Shedding:

As fluid passes a bluff body, the flow separates from the body and rolls up into
distinct vortices, which detach from the body and produce both in-line and transverse
forces on the body at the frequency of the vortex shedding. This dissertation uses a
vortex-shedding model, and a more detailed description of the phenomenon will be

given later.



o Galloping:

Galloping is observed in some structures with certain cross-sectional shapes, such
as "D" or rectangular sections. A commonly observed example is ice-coated power
lines, where the modified cross section due to ice buildup is well shaped for this type of
aeroelastic instability (see, for example, [11], pp.366-373.) The main characteristics of
this type of response are large amplitude oscillations transverse to the flow, at
frequencies much lower than the vortex-shedding frequencies for the same cross
section. Unlike vortex shedding, there is no characteristic frequency associated with

the flow. Motion of the structure in a natural mode produces the instability.

The basic driving force of galloping is the variation of the lift coefficient with the
angle of attack of the flowing fluid. As the body moves, the relative velocity changes
due to the structure velocity component. If, for a given section, the lift force increases
as the body moves from its equilibrium position, then that body is potentially

unstable.

As mentioned above, the galloping of power lines in cold climates has been
commonly observed. There is not much literature on this phenomenon occurring in
water, but this is probably due to the use of members which do not have an unstable
cross section (for example, circular cylinders). The galloping conductor problem is due

to modification of an otherwise stable shape by ice accretion.
e Flutter:

The term flutter has been used, with qualification, to describe a number of different
types of flow-induced oscillation. References on the subject are extensive. [14], [64],

and [66] give good introductions and point to more complete lists of references.



The term "classical flutter” refers to an unstable oscillation produced by the
coupling of two degrees of freedom of the structure (torsional rotation and
translation). Classical flutter is observed even if the body is streamlined and no flow

separation occurs. The phenomenon was, in fact, first observed in airfoils.

Flutter in a single-degree-of-freedom is also observed. "Stall flutter” describes a
torsional mode of airfoil vibration produced by the nonlinear characteristics of the lift
force near a stall condition. Structures in strongly separated flows may also undergo
torsional vibration, but this is usually associated with non-streamlined bodies, such as

bridge decks. This latter case is not a stall flutter, per se.

Flow along a structure can also excite a condition called panel flutter. While
mainly observed in supersonic flows, phenomena such as flag or tent flapping are

related examples.

The above described fluid-induced vibrations can occur for structures in a
reasonably undisturbed uniform or oscillating flow. The presence of structures
upstream in a flow can cause changes in the incident flow which also may excite a
body into motion. Examples of this are buffeting, due to turbulence in the flow, and
wake galloping, where the variation of the lateral pressure across the wake of one

body can produce large motions in another downstream.

More complete descriptions of the above phenomena may be found in the

references listed, and [66] gives useful introductions to the analysis of each.

1.2 Vortez-Induced Vibration
The work outlined in this dissertation concentrates on the structural aspects of
the flow-induced vibration problem. While the approach developed could be applied

to any of the above types of behavior, vortex shedding was used as the mechanism of



the exciting force.

The motivation for this choice is the susceptibility of many "long" structures in the
marine environment to vortex shedding. Mooring cables, towed arrays and drilling
risers are all subjected to sometimes large cross-flows which lead to vortex-induced

forces.

An introduction to some of the important characteristics of vortex shedding as a

basis to the following work is given below.

1.2.1 Vortex Shedding from a Bluff Body
Figure 1.2.1 shows the basic flow regimes around a stationary cylinder in a

flow. The Reynolds Number, Re, for the flow is defined as

Re = — (1.2.1)

where U is the free stream fluid velocity, D is the diameter of the cylinder, and v is

the kinematic viscosity of the fluid.

At very low Reynolds Numbers, the streamlines follow the shape of the body, and
the flow does not separate. As the Reynolds Number increases, a pair of fixed Foppl
vortices is formed in the wake; then for Re greater than about 40, vortices are shed
periodically from alternating sides of the body. Vortex shedding occurs throughout the
range of Reynolds Numbers from 40 to about 3x10% being laminar in the lower range,
then becoming turbulent in the latter part. Throughout the transcritical range,

regular shedding disappears, but re-establishes itself in the supercritical Re range.

When the body is fixed, the vortex-shedding frequency, w, equals the Strouhal

frequency, w, defined by



— — Re < 5 REGIME OF UNSEPARATED FLOW

5§T015 < Re < 40 A FIXED PAIR OF FOPPL
VORTICES IN WAKE

40 < Re < 90 AND 90 < Re < 150
TWO REGIMES IN WHICH VORTEX
STREET IS LAMINAR

150 < Re < 300 TRANSITION RANGE TO TURBU-
LENCE IN VORTEX

R e ot
N/ 30 < Re X 3x105 VORTEX STREET IS FULLY
TURBULENT
ﬁ 3x105 X Re < 35x 108
@ LAMINAR BOUNDARY LAYER HAS UNDERGONE

TURBULENT TRANSITION AND WAKE IS
NARROWER AND DISORGANIZED

35 x 108 < Re
RE-ESTABLISHMENT OF TURBU-
LENT VORTEX STREET

Figure 1.2.1. Regimes of Fluid Flow Around a Circular Cylinder [8]

wy = 2,75%. (1.2.2)

S, the Strouhal Number, depends on the Reynolds number and the geometry of the
body. The variation of S with Re for a cylinder is shown in Figure 1.2.2. The
Strouhal Number is well defined for all but the transcritical range of Reynolds

Numbers. For simplicity, unless the exact Reynolds Number is known, the value of S

is taken as 0.2 for a cylinder.
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1.2.2 Effect of Motion of the Body

The shedding of vortices from alternate sides of the body results in a periodic
transverse force on the body. If the body is flexible, or flexibly mounted, it will move

when subjected to this force. This motion of the body has several effects on the flow:

The strength of the shed vortices is increased [16].

The spanwise correlation of the wake is increased {72].

The frequency of vortex shedding is locked on to the cylinder vibration frequency if

the two frequencies are close [5].

The drag force is increased [5].

The body motion results in a more structured wake than in the stationary case.
The moving body is able to feed energy into the fluid, increasing the circulation of the
vortices, thereby increasing the force applied to the body. This increase in the "order”
of the wake is also manifested in the spanwise direction, as evidenced by the increase
in the correlation of the vortex shedding along the span with increasing vibration

amplitude.



When a system with a natural frequency w, is exposed to a flowing fluid, the
frequency of oscillation, w, is not necessarily equal to the Strouhal frequency, w, as
defined above. A phenomenon known as frequency entrainment, or lock-in, oceurs,
whereby the frequency of vortex shedding becomes very close to the natural frequency
of the structure. This occurs when the amplitude of vibration becomes large enough
to enable the body motion to take control of the shedding process. These large

amplitudes occur when a structure is excited at, or near, a natural frequency.

When the body vibrates transversely to the flow, the effective cross-sectional area
projected to the flow is increased. The in-line drag force depends on the projected
area, and therefore, tranverse vibration can increase the drag force depending on the

amplitude of the vibration.

1.2.83 Vortez-Induced Vibration of Long Structures

Field observations [1], confirmed recently by experiment [36,37], have indicated
that the lock-in phenomenon, as described in the previous section, does not occur for
cable systems where the length-to-diameter ratio is very large (greater than 10%).

There are several reasons for this behavior.

First, as the length of a cable is increased, the difference between consecutive
natural frequencies becomes smaller. For large length to diameter ratios, the

frequencies are so close that the assumption of lock-in to a single mode is not valid.

Second, the frequency of excitation due to vortex shedding is proportional to the
flow velocity. Excitation of the system in one mode requires a reasonably uniform
velocity profile. In reality, the flow profile is somewhat nonuniform and the disruption

to the shedding process hinders the formation of locked-in response.



The term "lock-in" means that vortices are shed at a frequency corresponding to a
particular structural mode of the system. A mode is a standing wave produced by the
summation of traveling waves which have been reflected and transmitted by the
appropriate boundaries of the system. For example, consider the taut string in Figure

1.2.3.

y(O,t)=Asinwt wavespeed=c

' ’
V

v

.

Figure 1.2.3. Example of Long, Damped String

The string is fixed at the right-hand end, and forced at the left-hand end with a
sinusoidal excitation equal to one of the undamped natural frequencies. Assume that
there is damping present proportional to the string velobity. Initially, a wave is
produced which travels from left to right down the string. When this wave reaches the
right-hand end, it is reflected from the fixed boundary, and returns along the string in
the opposite direction. Upon reaching the left end again, it is reflected once more in
such a way as to satisfy the force or displacement boundary condition imposed there.
Due to the damping in the system, a steady state will be reached consisting of a left
and right traveling Wave. The string exhibits a standing wave pattern produced by

the interaction of these traveling waves.



If the string is very long and the damping sufficient, waves produced at one end of
the string will be of negligible amplitude by the time they reach the other end. It is
unlikely that a mode will be produced, as a steady-state condition may never be
reached. For the above example, the string is better treated as a semi-infinite string.
A traveling wave solution may be sought to the problem, rather than a modal

solution.

1.3 The Focus of This Investigation

In the current investigation, a new approach to the vortex-induced vibration
problem is presented. In a deviation from the customary modal solution to such
problems, a method based on traveling waves is used. This approach is found to be

particularly suited to the long cable problem outlined above.

Existing fluid models are adapted to the traveling wave solution for the cable. In
particular, the model developed by Iwan and Bothelo [32], based on the experimental
results of Sarpkaya' [60] is used. The wake oscillator model first proposed by Iwan and
Blevins [28], then later modified by Hall and Iwan [26], could also be adapted, although

this is considered a topic for future work.

For simplicity, the cable is considered to behave as a taut string. This
approximation avoids the inclusion at this stage of additional nonlinear terms in the
equation for a slack cable due to the geometry. For many real systems, the
curvatures and displacements are sufficiently small that the above assumption is quite
accurate. Both linear and nonlinear damping forces on the cable are considered. The

fluid model used for the vortex-shedding force is, of course, nonlinear in nature.

The fluid forces acting on the inactive part of the cable (i.e., a region where vortex

shedding is not exciting the cable) are modeled using Morison’s equation [43]. This
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gives a more realistic treatment of the cable damping than a viscous damping

approximation.

An approach to the problem of nonuniform flows by the use of the traveling wave
method is presented. The response at a point on the string is described in terms of

the maximum expected or root-mean-square amplitude of the motion.

1.4 Structure of This Thesis

In Chapter 2, a brief historical review of the subjects pertinent to this research is
given. This includes the vortex-induced vibration model developed by Bothelo and the
use of the Morison equation for the fluid force on oscillating bodies. Problems
associated with existing analysis methods are addressed, and the motivation behind

the new approach is outlined.

Chapter 3 presents the basic formulation of the model, including the specialization
of Bothelo’s work to this approach, the derivation of the basic traveling wave
solutions, and the combination of the two into a fluid-structure model for long cables.
The techniques for the summation of the traveling wave solutions are outlined. The
use of Morison’s equation for the inactive regions of the cable is illustrated using the

new algorithm.

Based on the analysis in Chapter 3, an approximate technique is developed in
Chapter 4 to handle nonuniform flow profiles. In most marine environments, the
current profiles are not uniform, so the approach developed in this chapter is

necessary for the analysis of such systems.

In Chapter 5, results derived from the analyses of the preceding two chapters are

presented and discussed. Comparisons with traditional modal approaches are given
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and discussed in the context of the amplitude and frequency response.

A summary, conclusions, and ideas for future work are given in Chapter 6.
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CHAPTER 2

Background Material and Previous Work

2.1 Historical Introduction

For many centuries, the effects of flow-induced vibration have been used to
generate musical tones, predominantly in wind instruments. The design of these
instruments was essentially empirical as there was little understanding of the physics

of the generating process.

While da Vinci, in the fifteenth century, had sketched vortices in a flow behind
various bluff bodies, it was not until 1858 that the first systematic investigation of
vortex-induced vibration was attempted by Strouhal [71]. Through a simple
experimental setup (recently reproduced by Hall [25],) Strouhal was able to show that
the t;)nes produced by a taut wire in an air stream were proportional to the relative
air velocity divided by the diameter of the wire. He also observed that the intensity of
the sound produced increased greatly when the vortex-shedding frequency coincided

with the natural frequencies of the wire.

Despite Strouhal’s discoveries of modal interaction and frequency entrainment, he
did not appear to understand the latter phenomenon, and also was under the
impression that the wire oscillated parallel to the flow. Rayleigh, in 1879, recognized
vortex sheet instability as the source of the vibration and demonstrated
experimentally that the wire actually vibrates predominantly perpendicular to the

flow [50, Vol. II, pp. 412-413].
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The mechanism of vortex shedding and the structure of wakes were investigated by
von Karman (73|, who was able to show theoretically why the vortices are shed
asymmetrically, and to predict the ratio of the longitudinal to lateral spacing of the
vortex centers. Von Karman’s pioneering analysis has been followed by numerous
studies of vortex wakes and the lift and drag forces on bodies in separating flows. The
early 1940’s brought observations on the response of bodies allowed to vibrate under
the influence of the vortex forces. It was not until 1964, however, that the existence of
a nonlinear fluid oscillator was hypothesized, first by Bishop and Hassan [5] and later
the same year by Marris [40]. Marris’ work first outlined the use of the Van der Pol-
type equation for the fluid force, based on potential flow considerations for a rotating

body in a cross-flow.

Many investigations have followed, experimental [4, 5, 13, 15, 33, 38, 44, 45, 47, 48,
51, 56, 58, 59, 72, 74], theoretical [6, 7, 18-22, 25-31, 34, 41, 54, 60, 62, 65, 67, 68, 69],
and theoretical-experimental [9, 17, 32, 39, 49, 53, 70]. The recent increase in the
availability of computing resources has led to the development of codes for finite
element analysis of the vortex flows and forces associated with fixed bodies. These
codes in general are very computation-intensive and have not as yet been applied to
moving bodies, precluding their use from the vortex-induced vibration problem. It is

anticipated that future work in this area will enable a greater understanding of the

problem.

A number of review or "state of the art” publications [3, 8, 23, 40, 61] outline the
recent advances in the field at the time of writing and present extensive reference

lists.
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2.2 Experimental Observations of Vortez-Induced Response

2.2.1 Vortex Shedding from Oscillating Cylinders

Of the investigations referred to above, the work of Sarpkaya [59, 60] was
chosen as the basis for this work because of its completeness and use in the modeling
approach of Bothelo [9, 32]. Bothelo fitted Sarpkaya’s data with interpolation curves
which are used to model the vortex-induced forces on the systems considered. The

work of Bothelo is discussed more fully later.

Sarpkaya forced a circular cylinder of diameter D to oscillate transversely in a
flow channel containing a fluid of density p traveling with a fixed velocity, U. The
amplitude, A, and frequency, w, were fixed for a given run, and the force required to
impose the displacement on the cylinder was measured as a function of time.
Observation of the time histories of the force (Figure 2.2.1) indicates the contribution
of components at frequencies other than the exciting frequency when the Strouhal
frequency and exciting frequency are not close. A Fourier decomposition was made of
the measured in-phase and out-of-phase components of the force in terms of the
exciting frequency. It should be recognized that this Fourier analysis will in general
not retain the components at the Strouhal frequency, and so the beating phenomenon

sometimes observed [59, 70] cannot be modeled.

For a displacement given by

Y = A Sinwt (2.2.1)

the force is written by Sarpkaya as

F(t) = %pDU2[O

m.
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C,

s 18 the inertia coefficient, and Oy the drag coefficient. Both coefficients are

functions of the normalized amplitude, B(=A /D) and the reduced velocity, V, defined

as
1
V, = o (2.2.3)
S—w—s—'
That is,
Crp = th(BrVr) (2'2'4)

Figures 2.2.2 and 2.2.3 show C,,; and Cy versus V, for various values of the

normalized amplitude.

Recent analysis of Sarpkaya’s results by Bothelo [9] suggests that there are some
inconsistencies in the inertia and drag coefficient data. The data points corresponding
to what is presumably one test run do not line up on the reduced velocity axis. Based
on the results from an analytical investigation, Bothelo suggests that the C,; are
indeed shifted to the right, and uses for his work an assumed zero crossing of
V.o = 5.0, rather than 5.15 as is indicated by Figure 2.2.3. Consequently, the maximum
negative value of Oy occurs when C,;, =0. This correction is assumed in the

remainder of this dissertation.

2.2.2 Response of Long Cable Systems
Until quite recently, investigations of vortex-induced vibrations of structures
were primarily conducted in a laboratory environment. Observations and

measurements were made on both rigid and flexible cylinders vibrating transversely in
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uniform cross-flows. Emphasis was based on the characteristics of the shedding
process, particularly in the region of lock-in. Forced rigid cylinders enabled the study
of the drag and inertia forces as the frequency of oscillation was varied near the
Strouhal shedding frequency. For flexible models, the relatively short test cylinders or
cables used resulted in well-separated modal frequencies, reducing the effects of modal

interaction, and enabling single-mode lock-in to be studied in some detail.

In the field, excitation of real structures near a structural natural frequency has
also demonstrated the effects of lock-in. Large amplitudes of transverse motion have
been observed, as the synchronization of the vortex shedding and the structural

vibration results in a large energy input to the structure.

Drag coefficients in the direction of the flow are increased by the transverse
oscillation of a structure. For a cylinder vibrating transversely to a uniform incident
flow, the drag amplification at lock-in has been approximated by Skop, Griffin and

Ramberg [69] as

0.65
—— = 14 1.16 [2——] (2.2.6)

where A is the amplitude of oscillation, C; the effective drag coefficient for the
vibrating cylinder, and Oy, the drag coefficient of the cylinder at rest. Subsequent
experimental work [42] confirmed the validity of Equation (2.2.6) as a means of
estimating the effective drag coefficients. Average values of C; greater thanr3.0 were

recorded for short cables vibrating in a locked-in condition.

The large increase in the drag coefficient results in large forces on the structure
parallel to the flow. These large design loads often create problems for the designer in

long cable systems.
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Based on field observations, Alexander [1] concluded that a locked-in condition and
standing wave profile apparently did not occur in a series of tests on long wires towed
in the ocean. Amplitudes of vibration generally were substantially lower than what
would be predicted by a conventional modal analysis, assuming a locked-in state. It
was noted that the shedding appeared to be progressive, producing waves which

traveled along the cable and were damped relatively quickly by the fluid.

A significant consequence of this observation is that the drag coeflicients generally
used for this type of system were probably grossly overestimated. If more reasonable
bounds on the expected amplitudes were found, the design loads for long cables could

be reduced, and a more efficient structure produced.

More recently, Kim, Vandiver and Holler [37] conducted a series of experiments on
long cables subjected to various ocean currents. This work confirmed the traveling
wave behavior and absence of lock-in for systems of this type, first observed by
Alexander. Freque;lcy spectra recorded at a number of points along the cable
indicated the contributions of excitation at many frequencies, not a single-mode lock-
in behavior. Consideration of root-mean-square responses over particular frequency
intervals also confirmed the importance of hydrodynamic damping in "localizing” the
effects of vortex shedding (i.e., vortex shedding at one point on a long cable has little

effect on the cable motion at relatively large distances from the excitation).

Kim [36] proposed the use of an infinite string formulation, and presented some
analysis based on modeling the vortex-induced forces using a random spanwise lift
coefficient. The extension of this approach to a useful design tool was not performed,
and the interaction of "active" regions (i.e., parts of the cable where vortex shedding is

forcing the cable) and "inactive" regions (where the fluid is passively resisting the
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cable motion) was not considered.

2.2.8 Effects of Sheared Flow on Vortez-Shedding Characteristics

Many investigators have studied the effects of uniform flows on cables and other
structures. Based on this work, a number of models, both empirical and theoretical,
have been proposed for the analysis of the vortex-induced vibration problem. Some of
these models are discussed in the next section. Virtually all of these models are two-
dimensional in nature, assuming a completely in-phase, monofrequency shedding of

vortices along the span.

The case of nonuniform, or, more specifically, sheared flows has not been
investigated to the same extent as the uniform flow case. In the last 15 years, a
number of studies have looked at the characteristics of the vortex shedding, and the
response of cylinders and cables in sheared flows. A comprehensive review is given in

[24].
Sheared flows are often approximated as linearly varying velocity profiles. A
"steepness parameter,” B, is defined for the incident velocity gradient as

_ _D 4dv
>

r

(2.2.7)
ef dz

where % is the velocity gradient and D is the cylinder diameter. The reference
z

velocity, V,

vef» 15 usually taken as the mean (midspan) or, sometimes, the maximum

velocity of the incident flow. In practice, for ocean or atmospheric environments, B is

small, say less than 0.03 [24].

A number of quite detailed studies of the effects of sheared flows on flexible cables

have been performed (for example, [46, 75]). For both fixed and oscillating cables, finite
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length "cells" of vortex shedding were observed to occur along the span for low enough
values of the shear parameter, . Figures 2.2.4 and 2.2.5 show examples of the cellular
structure of the vortex shedding. In both cases, # = 0.0053 and the Reynolds Number,
based on the midspan flow velocity was, Re,, = 2.96x10%. Figure 2.2.4 shows the results
for a stationary cable, and Figure 2.2.5 the results for the same cable forced to
oscillate in its first mode with an amplitude of 0.29 diameters. The parameter St,, is

the Strouhal number based on the midspan incident fluid velocity, U,,; i.e.,

Y D
St = 32T (2.2.8)

where w, is the observed frequency of vortex shedding at a particular location on the

cable. Regions of constant St,, indicate cells of shedding at a constant frequency.

The cellular structure in the stationary case is fairly uniformly distributed along
the cable span. When vibrated in its first mode, a significant region of lock-in is

apparent over the central portion of the span.

Clearly, both the vibration amplitude and the steepness of the incident velocity
profile affect the coherence of the vortex shedding along the span. This is illustrated in
Figure 2.2.6. The frequency difference which can be sustained in a shear flow clearly
increases to a maximum as the amplitude of vibration increases. Therefore, increasing

the amplitude tends to increase the coherence length.

As discussed in the preceding section, the amplitudes of vibration of long cables
have generally been observed to be lower than the single frequency, locked-in response
of shorter systems. Figure 2.2.6 suggests that, for low amplitudes, a coherence length
corresponding to a frequency difference of about 0.2 is probably a reasonable

approximation. This is discussed further in Chapter 4.
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Unfortunately, virtually all of the studies of sheared flow have been performed in
laboratories, where space limitations restrict the size of the models which can be used.
Reference to "long" cables in the context of laboratory experimentation generally
means that the models are long enough to minimize "end effects” in the expériments.
"Long,” as discussed Section 2.2.2, refers to systems with length-to-diameter ratios of
order 10* or more. While more work is clearly needed to understand the effects of
sheared flows on cable systems with these high length-to-diameter ratios, the

observations briefly outlined above give some guidance in the modeling techniques
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employed in Chapter 4.
2.8 Modeling Vortez-Induced Vibration

2.8.1 Analytical Models

Based on a series of experiments in which a cylinder was oscillated transversely
in a flow, Bishop and Hassan [4] observed that the response could be qualitatively
described by means of a nonlinear, self-excited fluid oscillator. This idea was later
developed by Hartlen and Currie [27], who proposed the lift-oscillator model. This
model assumed that the lift coefficient, describing the force transverse to the flow,
could be represented by the Van der Pol equation. By performing a curve fit of
observed data with response diagrams for the Van der Pol oscillator, they were able to
confirm that Bishop and Hassan’s idea was indeed a valid way to approach the
problem. The lift-oscillator model has been more recently extended by Skop and

Griffin [67, 68], who refined the method of parameter selection.

A major drawback of the above described approaches is that the fluid model is
somewhat arbitrarily derived, based ‘on qualitative observations, then made to
produce a "best fit" of the available data. Marris [40] made the first attempt to
motivate the use of the Van der Pol equation based on a potential flow analysis of an
analogous case: a rotating cylinder in a constant flow. In 1974, Iwan and Blevins [28]
developed the wake-oscillator model, which derived a fluid oscillator representation
based on first principles. From consideration of the average transverse momentum in
a control volume around a cylinder in a constant flow, it was shown that the fluid
could be approximately represented by a hidden flow variable, z, which satisfied the
Van der Pol equation. Parameters for the model were extracted from experimental

data by considering special cases of the solution (for example, fixed or forced cylinders
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in a flow).

Later applications of the wake-oscillator model included spanwise flexible
structures [29], and nonuniform systems (attached masses) [30]. In 1981, Hall and
Iwan [26] corrected the omission of a buoyancy term from Blevins’ derivation,
corresponding to a uniform acceleration of the body and the fluid. In addition, Hall
studied the effects of modal interference (two modes) by comnsidering four coupled
nonlinear differential equations instead of the normal two, and was able to predict

lock-in behavior successfully.

The inertia and drag coeflicients, C,,; and Cy, as defined in Section 2.2.1, can be
derived from the models described above. Figure 2.3.1 shows these coefficients for the
model and parameters in [28] (based on experiments performed in air and water),
while Figure 2.3.2 shows the corresponding curves from [26] (model parameters based
on experiments in air only). While the details of the two sets of coefficients are
different, the general trends are the same. They may be compared with the
corresponding curves in Section 2.2.1 and the interpolation curves discussed in the

next section.

2.8.2 Empirical Models

In a new approach to the analysis of the vortex-induced vibration problem,
Iwan and Bothelo [32] proposed an analytical-empirical model using the data of
Sarpkaya as described in Section 2.2.1. Rather than formulating the problem in terms
of two coupled differential equations of motion, one linear representing the structure,
and one a nonlinear self-excited oscillator modeling the fluid, Bothelo assumed the
force to be given as in Equation 2.2.2 and the displacement to be sinusoidal at the

Strouhal frequency or the exciting frequency, depending on the model. This results in a
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pair of nonlinear algebraic equations, rather than differential equations.

Bothelo proposed two distinct models: a lock-in model and a non-lock-in model. A

synopsis of each is given below.

2.8.2.1 The Lock-in Model

Consider the spring-mounted cylinder shown in Figure 2.3.3.

Spanwise Rigid

Displacement
Y(t)

Figure 2.3.3. Spring-Mounted Rigid Cylinder (from [9])
Assume a displacement of
Y = A Sinwt; (2.3.1)

then, the differential equation of motion may be written in terms of structural

parameters per unit length as



- 929 -

2
2y, iy

m SS kY = F(1) (2.3.2)

where m is the mass per unit length, ¢ a viscous damping coefficient per unit length,

and k a stiffness per unit length. The applied force may be written
F(t) = %pDU?(Cpy Sinwt — Cgy Coswt] (2.3.3)

Solution of (2.3.2) and (2.3.3), assuming (2.3.1), yields a pair of nonlinear algebraic
equations which must be solved for the amplitude and frequency of response. Note

that the drag and inertia coefficients are functions of both amplitude and frequency.

To implement a solution, the drag and inertia coefficients presented by Sarpkaya
(Figures 2.2.2 and 2.2.3) were fitted with a series of interpolation curves which were
functions of both the normalized amplitude, and the reduced velocity. These curves

are shown in Figure 2.3.4.

2.3.2.2 Non-Lock-}n Model

In the previous model, the frequency of oscillation was an unknown, found
from the solution of a pair of nonlinear algebraic equations. In cases where the
Strouhal frequency is far removed from a natural frequency of the system, a different
formulation is necessary. In the absence of lock-in, the frequency of oscillation may be
taken as equal to the Strouhal frequency, w,. However, the phase of the vibration is
an unknown in this case. In the lock-in model, the relative phasing of the force and
the displacement are given by the variation of the magnitudes of the drag and inertia
coeflicients with frequency. In the non-lock-in formulation, the frequency is known, so
to enable a force balance, the displacement must shift by a constant phase relative to
the force. The phase depends on the inertia and drag coefficients corresponding to

w =w,, and the natural frequency and damping of the system. Note that Oy and
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C

h aTe still functions of the amplitude of oscillation, which is an unknown.

Proceeding in a similar way to the lock-in model, the differential equation of

motion is written as

m ‘ZZ + 72l = R (2.3.4)
where
F(t) = %pDU? Gy Sinwo,t — Cgy Cosa, (2.3.5)
with
Y = A Sin(w,t — §). (2.3.6)

The non-lock-in problem is much simpler to solve than the lock-in problem, as the
amplitude can be solved for independent of the phase, and the phase calculated

subsequently [9].

2.8.8 The Discrete-Vortex Model

The discrete-vortex model, first presented by Rosenhead in 1931 [52], is a
potentiali flow representation of the shear layers produced by flow separation from a
bluff body in a flow. Sarpkaya and Schoaff [62], presented a comprehensive study
based on the discrete-vortex model for the prediction of the flow characteristics, fluid

forces and response of a circular cylinder subjected to a uniform flow.

At sufficiently high Reynolds Number, the shear layers present in the wake of a
bluff body are quite thin, and the vorticity is confined to spiraled vortex sheets. The
discrete-vortex model subdivides the shear layer into a number of small segments, and

concentrates the vorticity into line vortices, located at the center of each segment.
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Complex function theory may then be used to analyze the flow.

Complex function analysis of potential flow enables the calculation of the vortex
velocity due to the influence of all the other vortices and the mean flow. The vortices
are convected for a finite time interval using an appropriate convection scheme, and
the next set of velocities calculated. New vorticity is introduced to the flow at the
separation points in a manner consistent with the boundary layer hydrodynamics.

The decay of vortices and interaction of opposite signed vorticity must be considered.

Sarpkaya performed two sets of numerical studies in the investigation. The first
considered the modeling of flow past a stationary cylinder in a uniform incident fow.
Excellent conformity with experimental results were obtained, provided a reduction of

circulation was included in the model.

The second half of the study investigated the response of a cylinder free to move
under the applied fluid forces. Comparison of the discrete-vortex model with
experimental results indicates that the approach does give a good representation of

the cylinder response.

The discrete-vortex model gives good insight into the behavior of a cylinder subject
to flow-induced vibration. While there are some unexplained discrepancies between
these numerical results and observed experimental data, the model clearly
demonstrates the overall nature of the fluid-structure interaction and should be an

important tool in the future.

2.8.4 Finite Element Models
While finite element methods have been used successfully for structural
mechanics for many years, their application to unsteady fluid mechanical problems is

relatively new. To the author’s knowledge, a finite element formulation for the
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vortex-induced vibration problem has not yet been implemented. A major reason for
this is the massive computational effort required to model even the case of a fixed
cylinder in a steady flow. However, as new fluid-structure elements and techniques are
developed, and as computing power becomes more readily accessible, a more complete

understanding of the problem may become possible using this approach.

A recent work by Brooks and Hughes [10] illustrates the power of the finite element
method for accurately predicting flow patterns and pressure distributions around a
fixed body in an incompressible flow. The growth and detachment of vortices is
accurately modeled, and the pressure distribution and net fluid force on the cylinder
can be easily obtained. While the moving body problem is significantly more complex
and computationally intensive, this is certainly a step in the right direction and

presents possibilities for future work.
2.4 Modeling Fluid Resistance Forces

2.4.1 Forces on Oscillating Bodies

The fluid forces on a body in a flow may be decomposed into components
parallel and perpendicular to the flow. The component parallel to the flow is generally
referred to as an "in-line" force, and the perpendicular component as a "transverse"

force. For a fixed body, the in-line force is called the drag force.

The above sections address the problem of transverse forces on oscillgting and
fixed bodies subject to uniform fluid flows. As in the case of transverse force, the in-
line force has components proportional to both the velocity (drag) and acceleration
(inertia or added mass effect). This force will now be discussed as a resistance force
acting on parts of a cable which are not shedding vortices. In the active region, the

cross-flow produces quasi-static drag in the direction of the flow, which is a function of
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the amplitude of vibration. While this is an important design consideration, it is not
addressed here. Many theoretical and experimental studies have investigated the

nature of these fluid forces.

The exact solution for the flow around a cylinder is not possible by using existing
analytical techniques, except for a few special cases. Batchelor [2] presents a solution
for the force on a cylinder undergoing harmonic oscillation of very small amplitude
(A/D<0.05). The force is approximately viscous, i.e., proportional to the cylinder
velocity, and is given by

d
= 2L A.
F L (2.4.1)

where y is the harmonic cylinder displacement, and k, the viscous damping coefficient,

is given by

_3_8\/5

k = pw . 2.4.2
R (2.4.2)

p is the fluid density, p, the density of the cylinder, and w the frequency of vibration.

Re, is called the oscillatory Reynolds Number, given by

2
Re, = “2-. (2.4.3)

v is the kinematic viscosity of the fluid. This viscous fluid damping is important for

the type of problem considered in this thesis.

While an approximate solution for low amplitudes of vibration exists, no equivalent
solution for larger displacements has been found, due to the complexity of the Navier-
Stokes equations for higher Reynolds Number flows. The nature of the fluid forces is

determined experimentally [55, 58], and the results combined with Equations (2.4.1)-
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(2.4.3) to yield an approximate solution for the ranges of amplitude and Reynolds

Number encountered in practice.

An early work by Morison and his co-workers [43] has been the basis for many
subsequent experimental studies of fluid forces on fixed and oscillating bodies. While
originally motivated for the problem of forces on piles due to ocean waves, it has been

widely used for oscillating flows in general.

Morison divided the force acting on a stationary body in a moving fluid into two
components: one due to the drag, as in the case of constant velocity, and the other
due to the acceleration of the fluid. The force per unit length on a cylinder is written
in the form:

rD? dU

y— (2.4.4)

F(t) = %CypDU|U|+ C,p

4y

o e the instantaneous fluid velocity and acceleration, respectively,

where U and

D is the diameter of the cylinder, and p is the density of the fluid. Equation (2.4.4) is

generally referred to as the Morison Equation.

C; and C,, are called the drag and inertia coefficients, respectively. Later
investigations [35, 56, 60] showed C; and C,, to be functions of the amplitude of the
motion, the Reynolds Number of the oscillating low and the surface roughness. That

is,

C; = C4(K,Rek/D) (2.4.5)
Cn = C,(K,Rek/D) (2.4.6)



- 36 -

where
U,T
K = =% (2.4.7)
U,D
Re = ——. (2.4.8)
14
U, is the magnitude of the velocity, T the period of the oscillation, and k/D is a

measure of the relative surface roughness. The parameter K is called the Keuligan-

Carpenter Number. For sinusoidal velocities, K may be written as

A
K = 2r % (2.4.9)

where A is the amplitude of the oscillation.

Cy; and C, will generally vary with time also, as their values depend on the
instantaneous pressure distribution around the body. Due to the difficulty of
measuring the values of these coefficients continuously throughout the cycle, the

average values over one period of the oscillation are usually employed.

To specify C; and C,,, it has been found useful to introduce a new dimensionless

group, B, defined by

Re D?
B = X - T (2.4.10)

Notice that 8 is related to the oscillatory Reynolds Number defined in Equation

(2.4.3). Both 8 and Re, are used in the literature, so it is important that their

equivalence be understood. The two are related by

B = LRe,. (2.4.11)
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Both Keuligan and Carpenter, and Sarpkaya performed a series of experiments to
measure O; and C,, as functions of K and g for cylinders in oscillatory flows. Keuligan
and Carpenter [35] measured the force on plates and cylinders placed in the node of a
standing wave. At this location, the vertical water particle velocity is zero, and the
horizontal water particle velocity is uniform over the depth. Sarpkaya [58] used a
fixed cylinder in a large U-tube, in which the fluid was oscillated very nearly uniformly

across the cross-section.

It is apparent now that the dependence on Re or g was overlooked by the initial
investigators [35, 55| as they considered only a small range of K values. It was
thought that apparent scatter of the points was due to experimental error, rather
than to the overlooking of a fundamental parameter (Re or 8.) This omission was
investigated by Sarpkaya in a more recent work [57, 58, 60]. Summaries of the data

obtained are shown in Figure 2.4.1.

The data collected in the initial investigations are, however, still of use for the
types of systems considered herein. For values of Re, less than 10* (3 < 1600), and K
< 10 (A/D < 1.6), the data for C; and C,, shown in Figure 2.4.1 tend to become
independent of 8 and are functions purely of K. These ranges of parameters encompass
those found in vortex-induced vibration problems of long structures. Assuming this
independence of 8, data for the drag and inertia coefficients are shown in Figure 2.4.2
(from [55]). For the ranges of parameters considered, the drag and inertia coefficients

are approximated as:

C; ~ 1255 (2.4.12)

C, ~ 23—067%. (2.4.13)
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Equations (2.4.12) and (2.4.13), in the linearized form of (2.4.4), may be combined with
the low amplitude solution (Equation (2.4.1)) to yield an expression for the total fluid
force on a cylinder under the full range of amplitudes and Reynolds Numbers

encountered.

2.4.2 Forces on Accelerating Bodies in an Accelerating Flow (General Case)

The representation of forces acting on a body in a fluid has often been a source
of confusion. The derivation given below presents the dynamics of the problem and
the solution to the most general case. The solutions for still fluid or a fixed body are

special cases of this general case.

Consider the system shown in Figure 2.4.3.

Figure 2.4.3. Accelerating Body in an Accelerating Fluid

The container, A, is filled with fluid of density p and a body, B, is immersed in the

fluid. The motion of the container is described by z, and the motion of the body
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relative to the container, by y.

The container and body are given arbitrary motions in y and z. The fluid force on

the body due to the acceleration of the body and the fluid will be

flyz) = m 2z - Cm' y. (2.4.14)

m' is the mass of fluid displaced by the body, and O, is the coefficient of added mass.

Now, let

T = y+z. (2.4.15)

The force may be therefore expressed as
f(Z,2) = m 7 - C,nm(Z - 7). (2.4.16)

The first term on the right-hand side represents the buoyancy force due to the
acceleration of the fluid alone. For an accelerating fluid ¢, may be generally taken to

be 1 for a cylinder, and 0.5 for a sphere. O, is related to C,, by

-1 (2.4.17)

These values may be derived theoretically from potential flow, and have been

experimentally verified.

For nonuniform flows (for example, oscillating flows) and bodies which generate
strongly separated flows, the parameter C, is not constant, but a function of the

acceleration, the instantaneous flow velocity, and the surface roughness.

For a fixed fluid, and a harmonically oscillating cylinder, C, is again taken to be 1
for a cylinder and 0.5 for a sphere, as in the uniformly accelerating fluid case. The
value for a cylinder clearly follows from the asymptotes of Figure 2.4.1 as K becomes

near zero.
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CHAPTER 3

The Traveling Wave Model

3.1 Introduction

One of the more interesting features of vortex shedding is the phenomenon of
lock-in. As this refers to locking on to a particular structural frequency, it is not
surprising that modal analysis was a natural way to approach the problem of vortex-
induced oscillation. Engineers are accustomed to the use of modal analysis for short
cables and other structures, where a good representation of the motion can be
obtained using the first few modes. Many flow-induced vibration problems have been
successfully solved using modal analysis, but there are some cases where it is not
appropriate. The response of long cables to vortex shedding is not well suited to a

modal analysis approach.

For long structures, such as those found in many ocean engineering applications,
modal analysis ceases to be a satisfactory approach due to the existence of \}ery
closely spaced modes. Lock-in is generally not observed for these types of structures.
Nonuniform flow profiles may also not be amenable to solution by modal analysis,

although some approximate techniques have been developed.

In this chapter, a new approach to the problem of vortex-induced vibration of long
structures based on traveling waves is presented. The approach avoids difficulties with
the close spacing of structural modes, as modal frequencies are not used in the

solution. Lock-in is therefore not considered. In a later chapter, lock-in is discussed in
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the context of nonuniform flow, but this refers to "cells” of finite length which are

excited at a constant frequency.

8.2 Comparison of Modal and Traveling Wave Solutions

There are a number of methods available for solving boundary value problems.
Probably the most common is the eigenfunction expansion or modal analysis method,
whereby the solution is obtained as the sum of responses in the structure modes.
Another approach, which can be used to find the steady-state response to a periodic
force, is to assume a motion which is periodic at the frequency of excitation. The
solution in the spatial domain can then be found by solving an ordinary differential
equation subject to the prescribed boundary conditions. A third method is to use a
characteristics approach or traveling wave solution. While usually best suited to
problems involving infinite or semi-infinite spatial domains, it is also possible to solve

boundary value problems by this method.

The use of both modal analysis and traveling wave analysis is illustrated in the
following section. It is shown that modal solutions are not particularly well suited to
long structures. A method for summing the traveling wave response of a number of

segments is presented, which forms the basis of the approach developed in this thesis.

8.2.1 Modal Solution
Consider the system illustrated in Figure 3.2.1. The string is fixed at # = L and

1s excited by the displacement boundary condition at z = 0

y(0,t) = Asinwt (3.2.1)
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y(O,1) = Asinwt T, u, d
4 /

. ;

|
L T

Figure 3.2.1. String with Displacement Boundary Condition

The equation of motion for transverse oscillation of the string is given by

Py Oy _ %
nostdg = T4 (3.2.2)

where T is the tension in the string, 4 is the mass per unit length, and d an assumed
viscous damping per unit length. T, g, and 4 are assumed constant along the span,

and the transverse displacement is assumed to be small.

To solve the problem by modal analysis, a change of variables is performed to

produce homogeneous boundary conditions. Let

y(z,t) = w(z,t)+(1 - %) sinwt . (3.2.3)

The equation of motion and boundary conditions are then transformed to

1/2

2
2w 1 8%w d dw w? z d .
o~ er T or = T3 (1- L) 1+ [pw] sin(wt —9) (3.2.4)
T
2 = = 3.2.5
p (3.2.5)

P = tan™! [iJ (3.2.6)
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w(0,t) = 0, w(L,t) = 0. (3.2.7)

The change of variables has the effect of transforming the applied end displacement to

a linearly varying spanwise force, but with zero displacement boundary conditions.

The homogeneous problem associated with (3.2.4) is

Pw 1 w  d dw

—_— === =9

922 NPT T o (3.2.8)

~ subject to the boundary conditions (3.2.7). By the use of standard techniques, the

eigenvalues and eigenfunctions for the above system can be easily shown to be

W,(z) = Agsinh,z, N\, = %E n = 123... (3.2.9)

The forced problem, (3.2.4), can be solved by expanding the solution in terms of the

eigenfunctions given in (3.2.9). Assume

w(z,t) = 3 €¢) sin 2% (3.2.10)

i=1

Substitution of (3.2.10) into (3.2.4) yields

272 1 e -d-- . ﬂ
El .z §i(8) — czfi(t)— TEi(t)] sin—
. ) /2
w I3 .
- - (1- L) 1+ pw] sm(wt—gb). (3.2.11)

Making use of the orthogonality of the eigenfunctions, the "r-th" modal equation may

be written as

1/2

2
. d; r2g2c2 2 d_ . _
£.(t) + #5,(1‘) + BTE £.(t) = WL+ IWJ sin{wt —¢). (3.2.12)
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Solving this equation for ¢,(t) yields

/2
2 d w? .
() = 24 |4 t—y—o. (3213
HO = [ﬂw] (07— o + (25, it (=¥ 0n) (32.15)
w, = I ¢ = %W‘j (3.2.14)
’ r
26 ww
$, = —I— (3.2.15)

(w2 - w?)

and ¢ is given by (3.2.6). The complete solution for w(z,t) is given by (3.2.10), and

(3.2.3) gives the solution for y(z,t).

A few comments may be made about the nature of the modal solution. As the
length, L, becomes large, the difference between consecutive natural frequencies of the
system becomes smaller. For systems encountered in some ocean engineering
applications, the length is often very large compared to the wavelength corresponding
to the vortex-shedding frequency of the cable. The small difference between the

frequencies makes classical lock-in to one mode virtually impossible.

Due to the high modal density, the contributions from many modes must be
summed to get a meaningful solution from modal analysis. This very rapidly becomes

computationally intensive for the type of systems in question.

The nature of the solution is not apparent from the individual terms in the
summation. The engineer is interested principally in the amplitude of the cable as a

function of z, and this is not easily obtained from the above expression.

3.2.2 Traveling Wave Solution
The system shown in Figure 3.2.1 can also be solved using a traveling wave

approach. If the cable is very long and the damping is moderate, the waves produced
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by the condition at z=0 will be effectively damped out before they reach the right-
hand end of the cable. If not, reflections of the waves from the fixed boundary will
have to be considered. It is assumed for the remainder of this dissertation that the
systems considered are sufficiently long that negligible reflected energy is present,
unless specifically stated. The consequence of this assumption is that the string may
be treated as semi-infinite. The boundary condition at z=L need not be considered,
and an initial value problem consisting of the differential equation (Equation (3.2.2))
and the initial condition (Equation (3.2.1)), need to be solved, rather than the

boundary value problem dealt with in the preceding section.

The traveling wave solution to this initial value problem can be shown to be ([50],

Vol. 1, pp. 232-233)

y(z,t) = Ae™** sin(wt — Bz) (3.2.16)

where o and @ are determined from
2
Q- = Y gnp o 9 (3.2.17)

Solving (3.2.17) for o and g gives

21/2 1/2
a = _1_2_ % 1+ ;i’;] —1 (3.2.18)
1/2 —1/2
1 w d d
B = 72' : w 1+ ”wJ -1 . (3.2.19)

For small values of the dimensionless parameter ;d(;— (i.e., low values of viscous

damping, or high frequencies of excitation) Equations (3.2.18) and (3.2.19) reduce to
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a o~ %i
w/e P (3.2.20)
i N
w/e 1 (3.2.21)
Plots of —%— and B are shown in Figure 3.2.2 as functions of —
w/e wie
2.5
@ T/
(Asymptote for small _d_) /
Hwy
2.0

©
s LeX oo S
/ &
/ 8 (Asymptote for small 4,
/ He
/
0.5 /
0.0
o 5 10
Damping Parameter, d

Muw

Figure 3.2.2. -%- and - versus 4
w/e wfe

The force required to produce the displacement at z = 0 (Equation (3.2.1)) is given
from force balance as

= 9y
t) = — . 2.

f(t) 1 oz, _, (3.2.22)

Using (3.2.16), this may be written as
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f(t) = TA(e® + B2)/2 cos(wt —¢) (3.2.23)

where the phase angle, ¢, is given by

tan ¥ = (3.2.24)

&
5

Compared with the modal solution presented in the preceding section, the traveling
wave solution given by Equation (3.2.15) is clearly more appropriate. Excitation of
one mode, particularly a higher one as assumed by the modal approach, is not a
realistic assumption. Written in this form, the solution describes a traveling wave,

exponentially decaying in amplitude with distance, and with a modified wave velocity

of

¢ =

w d
— (= ¢ for small —). 3.2.25
A <) (3.2.25)

For long cables, this form of solution is significantly more meaningful physically than

the corresponding modal solution. There are no natural frequency terms entering the

solution directly. Problems of lock-in to particular modes are therefore avoided.

3.8 General Formulation of the Traveling Wave Solution

In the preceding section, the response of a taut string to an applied end
displacement was found. The solution obtained may be used to formulate a Green’s
function, and the response of an arbitrarily loaded cable expressed in terms of an
integral equation. In some special cases, the integral equation may be solved exactly,

but the general solution to a vortex-excited system must be found numerically.

3.3.1 Green’s Function Approach for a Generalized Force
The development in Section 3.2.2 showed that for an applied force given by

Equation (3.2.22), the resulting displacement was described by (3.2.16). Generalizing
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this argument, consider the case of a harmonic force given by

f(z,t) = F(z) sin(wt—0(z)) (3.3.1)

applied to an nfinite string, where 6(z) gives the phase of the force at z. The Green’s

function for the system may be obtained by letting

F(z) = §(z—¢) (3.3.2)

where §(z —€) is a Dirac delta function at z = €. Then,

G(z,8,t) = c‘o‘l”"elcos(wt—,@lz—§|+¢—0(f)) (3.3.3)

£
T
where ¢ is defined in (3.2.24) and « is given by

ko= —— (3.3.4)

2(0{2 + ﬂ2)1/2
o and B are given by (3.2.18) and (3.2.19), respectively. The factor of 2 in the
denominator of (3.3.4) is a consequence of considering an infinite, rather than a semi-
infinite, string. Equation (3.3.3) gives the response at z due to the applied force at ¢.
The solution for any arbitrary force, f(&,t), applied to the string along its span is then
given by

(o]

y(z,t) = [ Gzg0)F(§)dE. (3.3.5)

Assume that the total displacement, y(z,t), may be written as

y(z,t) = A(z) cos(wt —¢(z)) (3.3.6)

where A(z) and 4(z) are the amplitude and phase of the total displacement along the

cable. In many cases, the applied force may be written as a function of these



-51-

amplitude and phase variables. In particular, for the types of forces considered in this

dissertation, it is assumed that the force can be written

f(z,t) = F(A(z)) sin(wt —6(z)) (3.3.7)
where 6(z) is in general a function of both A(z) and §(z).

As an example, consider the application of an external force proportional to the

local total velocity of the cable. In this case,

- 9
Hat) = kS (3.3.8)

where k is a constant. Clearly, this type of force represents an externally applied
viscous damping. By the use of the solution form for displacement given in (3.3.6), the

force described by Equation (3.3.8) may be written in the form of (3.3.7) with

F(A(z)) = —kwA(z) (3.3.9)

and
0(z) = &(z). (3.3.10)

Substitution of (3.3.3) and (3.3.7) into (3.3.5), and using (3.3.6) yields

o0

A(z) cos(wt =B(z)) = [ 5 FIA(E) e~ =¥l cos(wt ~plz — €|+ v~ ()¢ (3.3.11)
Expanding and collecting the terms in sinwt and coswt result in the pair of equations
A(z) sind(z) = —’7%11(1) (3.3.12)

I(z) (3.3.13)

A(z) cosp(z) =

where I,(z) and Iy(z) are given by



- 59 -

o

I(z) = [ F(A) e~*ls =&l sin(Blz — |- p+0(€))d€

—00

Ifz) = [ FQE) 1=l cos(Blz — €] -y +0(e)) e

The amplitude and phase may be then found from

A(e) = (=) + B(=)
Ii(=)
tang(z) = Tfz)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

The solution presented in (3.3.14)-(3.3.17) clearly requires solution of the integral

equations, in general coupled in A(z) and ¢(z). While an iterative numerical scheme is

generally required in the case of nonlinear F(A(2)), there are some cases where the set

of equations may be solved exactly. An example is presented below.

3.8.2 Integration of Integral Equation for Constant Spanwise Force

To illustrate the implementation of the solution presented above, the system

shown in Figure 3.3.1 is considered. A spanwise constant harmonic force is applied

over an "active” region —a < z < a to a string with internal damping represented by

a. Outside the active region, the applied force is zero.
f(€,1)= Fgsinwt

tYvvvev ey

Figure 3.3.1. Spanwise Constant Force over an Active Region

Equation (3.3.7) may be written
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f(z,t) = Fysinfwt—0p), —a<z<ea
. (3.3.18)
= 0 z][> a.
In this case,
F(A(z)) = Fy = constant (3.3.19)
and
0(z) = 6, (3.3.20)

where 6, is an arbitrary constant phase. Equations (3.3.14) and (3.3.15) become

I(z) = Fy [* emele=¢lsin(8]z — €]y +0,)de (3.3.21)

-a

a
Ifz) = Fo [ e ®la=Eleos(8lz —€|—p+05)de. (3.3.22)

—a
These equations may be integrated directly, taking care to preserve the signs under
the absolute value signs. For example, for z > a, all the arriving waves are all

traveling to the right, while in the active region, both left and right traveling waves

must be considered.

The solution to the right of the active region, + > @, may be shown to be

A(z) = Apeelz—a) (3.3.23)
1 Fy —4aa —~2aa
= m —f;'— (1 + e des _ 9,2 cos(2,6a))‘/2 (3.3.24)

where A; is the amplitude at z = a. Similarly, the phase is given by

#(z) = B0+ Pz (3.3.25)

_ _ atanfa — Btanhaa
%o = —¥+0 Btanfa — atanhoa (3'3'26)
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where @, is the phase at z = a. The solution to the left of the active region is similar,

with a replaced by —a.

In the active region, the solution becomes more complex, due to the contribution of

waves traveling in both directions. The amplitude and phase in this region is given by

R S _F_(l[ —2aa (2 - inh2
A(z) = w17 T 1+e (sin*(Ba — ¥) + sinh%az)

1/2
+ 2¢7%%(cos(Ba — ¥)sinhaz cos(fz + ¥) + sin(fa — ¥) coshaz sin(fz + V)

..... (3.3.27)
tand(z) = cos¥ + e~*% (sinhaz cosaz cos(fa — V) + coshazsinBzsin(fa — ¥))
sin¥ + ¢~ *® (coshaz cosazsin(fa — V) + sinhaz sinfz cos(fa — V)
..... (3.3.28)
where
Vo= 29 — 6, (3.3.29)

The solution for a load which is antisymmetric about z =0, producing a zero
displacement condition at z = 0, can be derived in a similar manner. The results are

not presented here.

3.4 A Discrete Approach to the Traveling Wave Formulation

The solution for an arbitrarily forced string presented in the previous section
(Equation 3.3.5) may be solved in closed form for only a limited number of special
cases. The nonlinear nature of the fluid forces in the flow induced vibration problem
precludes the exact integration of Equation (3.3.5) as was possible for the example in

Section 3.3.2.

To generate a solution to problems with more general applied forces, the results of

the preceding section are used to derive an approximate solution for a spanwise
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constant force applied to a "small" active length. The whole cable can then be
subdivided into many small segments, and the forces on each segment calculated. The
contributions of the waves produced by all the segments can then be summed to yield
the total amplitude and phase at a particular location. Note that although the
applied forces may be nonlinear functions of amplitude, the cable system itself is

linear, so superposition of the responses of individual segments is valid.

In general, the force at a point is a function of the total amplitude, which is an
unknown quantity. A solution must be therefore be generated in an iterative manner,
using the most current value of the amplitude to estimate the applied force. A brief

description of the algorithm and programming considerations is presented in

Appendix 1.

3.4.1 Constant Force over a Small Finite Length Element

Consider the taut, infinite, string as shown in Figure 3.4.1.

f(x,t)=Fy sin(wt-6,)
tieee?

y(x,t1) T, p, d
- T ¥/ //////F / -

]
Ll

Ax

Figure 3.4.1. Force on a Finite Length Segment

The string is excited by a constant force over a finite length, Az, symmetrically
located about z =0. It is assumed that the length, Az, is small compared to the

wavelength associated with the forcing frequency; i.e.,
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—‘i—“ < 1. (3.4.1)

X is the wavelength of the traveling wave produced at a point, defined by

A= 2r %, 4.
T ‘ (3.4.2)
The string is assumed to be damped with an internal viscous damping force which is

proportional to the string velocity. While a better approximation for internal

3

9%y it
dtdz2’ !

damping is a force proportional to the rate of change of curvature, i.e.,
can be shown that the Green’s function obtained has the same form. The equations
defining o and g differ from Equations 3.2.18 and 3.2.19, however. Since the assumed
internal damping is represented by «, rather than by a coefficient in the equation of

motion, and as this value is generally much smaller than that due to the viscous fluid

effects discussed later, the assumption above is used for simplicity in analysis.

Recall the example presented in Section 3.2.2. For a constant spanwise force over
the region —a < z < ¢ as given by Equation 3.3.18, the solution outside the active

region, > ¢, was given by Equations (3.3.23)-(3.3.26).

Consider the case when the active length (Az = 2a) becomes small, such that
aa << 1 and Ba << 1. Expansion of (3.3.24) in a power series, and retaining the lowest

order terms in a, yields

-1 B 2
Ay = @is ) T 2a + o(a?) (3.4.3)
or,
S W | ) 2
= 2o 1 P Az + o(A2?). (3.4.4)

The phase term, ¢, becomes
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$o = —9 + 0+ o(As?). (3.4.5)
Based on the above analysis, and using the results of Section 3.3, a Green’s

function, G"(z,,t), corresponding to a force of

f(z,t) = F(z)sin(wt—0(z)) (3.4.6)
with
F(z) = §(z—¢€)Az (3.4.7)
can be defined by
G'(z,6,t) = —’Tg;e—al”'flcos(wt—ﬂlx—§|+1/z-—0(§)). (3.4.8)

Note that this function corresponds to a spanwise constant force applied to an
element of length Az centered at z = £. As before, 6(¢) represents the spatial variation

of the phase of the applied force.

Notice that G'(z,,t), as defined by (3.4.8) and G(z,£,¢t) in Equation (3.3.3), are of
exactly the same form, although the definitions (based on a point load or load over a

small finite length) differ slightly.

3.4.2 Summation of Infinitesimal Response Functions
Consider the finite length active region shown in Figure 3.4.2. The region is

subdivided into n "small" segments such that
Az (3.4.9)

In Section 3.3.1, the total response of the cable, y(z,t), was written in terms of a

convolution of the Green’s Function and the spanwise force (Equation 3.3.5). In



- 58-

) 1 1 1 T T T >
I 2 3 n2 n-l n
Ax
Figure 3.4.2. Discretization of the Active Region
discrete form, Equation 3.3.5 may be written
* *
y(zg,t) = Y, G (zy,,3,t) F(z;) Oz (3.4.10)

i=1

where the integral has been replaced by a summation over all the discrete cable
segments. For practical purposes, the cable is divided into a finite number of

segments, say n, so Equation 3.4.10 is written

y(z,t) = 3 G'(e,00t) Fz;) As. (3.4.11)

i=1
Consistent with the development of Section 3.3.1, assume that the externally applied
spanwise force may be written as
f(z;,t) = F(A;) sin(wt —0;) (3.4.12)

and that the total displacement of the ith segment is given by

y(z;,t) = A; cos(wt—3;). (3.4.13)

Note that as in the continuous case, 4; is in general a function of both A; and §,.
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The total displacement at station m, assuming no reflections (a cable of infinite
extent), is obtained by summing the right traveling waves emanating from segments 1
to m-1, the wave produced at station m itself, and the left traveling waves from

stations m+1 to n. Hence,

m—1 —alz_ — 1.
Womt) = 5 EFE) T cosfwt — e, - ) +9—0)
i=1
+ —';,—F(A’m) cos(wt +¢p—10,) (3.4.14)

b B LR T ot e )+ 9-0).

i=m+

Equation (3.4.14) may be simplified to yield

n - -z,
y(zp,,t) = 20 —I-;;F(K,-) e alzm Z’Icos(wt—ﬂlxm—xi|+¢—9i)

i=]

n - —z.
b %F(Ki) € eley, =l [coswtcos(,@lzm—zi|—-1/}+0i)

i=1

+ sinwtsin(B|z,, — z;|— ¥ +6;) (3.4.15)

Equating (3.4.15) to the total displacement of segment m generated by Equation

3.4.13), the amplitudes A, and the phases, §, may be expressed as
m m

n —alz, —Z. 2
An = —Kf 3 F(A) e o x’lcos(ﬁ|zm—zi|'—'/)+0i)]
i=1
¥ I ! /2
+ | S F@E) e T i in(Bl e, — ;|- p+0)) (3.4.16)
i=1
i F(4;) c—alzm_zil cos(B|z,, — z;|— v +6;)
tand,, = = e r— (3.4.17)
2 F(Kz) 4 " Sln(ﬂlzm—zil—'p'f‘oi)

..
]
-
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A, and @, can be determined utilizing a simple iterative numerical scheme. Initial
values of A, and ¢, may be chosen arbitrarily. The forces on each segment
corresponding to these initial values are calculated, and then new values of Z,, and
$,, are found from (3.4.14) and (3.4.15). The new forces are calculated, and the process

repeated until convergence is attained.

3.5 Modeling Active Cable Forces

The fluid forces acting on the cable systems under consideration fall under two
basic classifications. In the first are active forces, produced by the shedding of
vortices from a segment and by driving the cable at a particular frequency. In the
second are passive forces, which comprise resistive forces on the cable due to its
motion in the fluid. Both types of forces can be included in the preceding analysis.
Whether they are active or passive will be indicated by the sign of the forcing term.
In general, a cable will have both active and passive regions, and the combination of

the two gives the required solution.

38.5.1 Constant Spanwise Force

The simplest force to be considered applied to the cable is a spanwise constant
force. This case has already been considered in Section 3.3, as it is one of the few
types of applied loads for which an exact solution can be obtained. By our also
solving this problem with the discrete formulation, the effects of discretization errors
can be investigated and the results used to assist in choosing appropriate

discretization intervals for more complex force types.

Proceeding as in Section 3.3.2, assume an applied force of the form

f(%;,t) = Fysinwt. (3.5.1)
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This is equivalent to the generalized force given in (3.4.25), with

F(A;) = Fy = constant (3.5.2)

and

6, = 0. (3.5.3)

3.5.2 Vortex-Induced Forces

The empirical model of Bothelo [32], based on Sarpkaya’s measured data [59],
will be used to represent the vortex-induced force on the active section of the cable.
Sarpkaya measured the force on circular cylinders in a uniform flow with a transverse
displacement given by Equation (2.1.1). The force measurements were resolved into
components 90° and 180° out of phase with the displacement, called inertia and drag

coefficients, respectively (see Section 2.2).

For an assumed displacement given by Equation (3.4.8), the force can be

represented as

f(z;,t) = %pDU? [Cm,,cos(wt—aii) + Cypsin(wt —?ﬁ,-)). (3.5.4)

The coeflicients C,,; and Cy are the inertia and drag coefficients, respectively. Recall
that these coefficients are both functions of the reduced velocity and the normalized

amplitude, as discussed in Section 2.2,

The frequency of excitation will be near the shedding frequency, as there are no
modes to produce a lock-in effect. In this region, C,,; is small, and Cy, will be near its

maximum negative value. The main assumptions of this development are, therefore:

1. The frequency of vibration is approximately equal to the Strouhal shedding
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frequency,

2. The force on the active element is a function of the total amplitude at the

element location,

3. The significant force on the element is 90° out of phase with the displacement at

the element location.

The fluid forces on an infinitesimal segment of length Az excited by vortex

shedding may therefore be written in the form of (3.4.25) with

F(A;) = %pDU? Cyy(mar) (3.5.5)

and

0, = 3,. (3.5.6)

From Bothelo’s curve-fitting [32], the term Cih(maz) 1S approximated by

Cih(maz) = —1.375BF + 1.483B; + 0.2 (3.5.7)

where B; is the amplitude, A;, normalized by the diameter D. The above curve was

obtained by fitting data of Sarpkaya and Blevins, as shown in Figure 3.5.1.

3.6 Modeling Fluid Resistance Forces

Two commonly used models for the damping of a structure in a fluid are viscous
damping, and Morison’s equation (see Section 2.4). Both are considered here. Viscous
damping is used to test the algorithm presented in the previous sections, and may be
used to simplify the solution in the more complex flow cases considered later.
Morison’s equation is also used, as this gives a more realistic treatment of the fluid

resistance. There are some marked differences in the response between viscous and
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Figure 3.5.1. Drag Coefficient at Peak Amplitude Response (from [32])
Morison damping.
3.6.1 Viscous Damping
Linear viscous damping is considered first due to its simplicity. Suppose the
cable is damped with an external force proportional to the cable velocity. Then the
force on the cable segment per unit length may be written as

dy
Hant) = —kSH (3.6.1)
]

where k is the coefficient of external viscous damping. This force is 90° out of phase
with the displacement and opposes the velocity. Assuming the total displacement of

segment i to be given by (3.4.13), the viscous force is written as
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f(:t'-,t) = k(lJZi sin(wt—@). (362)

Again, the force in (3.6.2) may be written in the form of (3.4.12) with

F() = ki, (3.6.3)

and

0, = 3. (3.6.4)

8.6.2 Morison or Velocity-Squared Damping
The use of Morison’s equation (2.4.4) to represent the in-line fluid forces on an
oscillating body was discussed in Section 2.4. The incorporation of this resistance

force into the traveling wave model will now be discussed.

As before, assume that the total displacement of the ith segment is given by
(3.4.13). This represents a segment velocity of

9y

Y = —wA; sin(wt—9;). (3.6.5)

z=I.
t

The lowest harmonic of the total force acting on the segment (from (2.4.4)) is given by

F(z;,t) = Ypw? AD [-58; Cysin(wt —8;) + —;L(Om—~1)Z£cos(wt—$i) . (8.6.6)

)

Expressing Equation (3.6.6) in the form of (3.4.12)

f(&) = %pu?A DO, (3.6.7)
where
2 2 2 1/2
o, = [5; i+ | T —D? (C,, —1)? (3.6.8)
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and
(3.6.9)

The variation of ¢; and C,, with amplitude and frequency has been discussed in
Chapter 2. To implement solutions when Morison type damping is used, it must be

remembered that

Cy = Cy(4;w) (3.6.10)
and
C, = O (A;w). (3.6.11)

This dependence becomes most important for low amplitude regions of response, when
the drag has a large viscous component, reflected by large increases in the coefficient

c,.
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CHAPTER 4

Application to Nonuniform Flow

4.1 Introduction

In the preceding chapter, a method was developed to solve the vortex-induced
vibration problem for a long cable system, when the current was uniform over a
certain length of the cable (the active length). In practice, ocean currents are highly
nonuniform, so the technique is not applicable as it stands. Some modification is
necessary to apply the method to the type of currents expected in the real ocean

environment.

An approximation made for many nonuniform flow profiles is that of a linearly
varying shear flow (see Chapter 2). While this is obviously a rather crude
approximation to the real case, it is nonetheless a good starting point for the analysis
of general nonuniform flows. A number of assumptions are necessary to adapt the
traveling wave approach to the sheared flow situation. While these assumptions may
appear to oversimplify a complex situation, there is little other recourse, due to the

paucity of both analytical and experimental results in this area.
The assumptions for the modeling are outlined below:

e Vortex shedding occurs in finite length "cells" along the span. The shedding
frequency at each of these cells is determined by the local flow velocity and the

Strouhal Number, according to the Strouhal relationship, as discussed in Chapter 1.
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The length of each cell is a function of the shear parameter, B, for the particular flow
situation under consideration. An approximate relationship will be derived shortly for
this dependence, based on experimental data on vibrating flexible cables in a shear

flow.

o A cell does not "see" the amplitude and frequency of the waves produced by adjacent
cells; ie., the shedding characteristics and forces at one cell are independent of
neighboring cells. This implies that the effect of each cell on the total solution for the
cable may be calculated as a separate problem, and these are then superposed in an
appropriate way to obtain the complete solution. This assumption may be justified
physically in that if one cell "saw"” the frequency of an adjacent cell, it would lock on
to that frequency, and the two cells would coalesce into one. There has been no

experimental work done, to the author’s knowledge, on this aspect.

e The damping of the fluid in the system has a localizing effect on the solution. That
is, the response at a point a few cells away from a given location due to the force at
that location is negligible. This assumption is used to simplify the superposition of the

individual solutions, and is discussed more fully later.

e The cable itself is a linear system. The applied external forces are nonlinear in
nature. However, by the first assumption, these forces have been essentially decoupled
from one another, so the force at one cell is affected only by the amplitude and
frequency of that cell - the force is unaffected by neighboring cells. This, éombined
with the linearity of the cable, implies that superposition of the individual solutions is
valid. The assumed independence of the response also suggests that a root-mean-
square summation of the amplitude is an appropriate superposition scheme, although

an upper bound solution may be found by a straight amplitude summation. In view of
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the unsteady nature of the real forces, the former method is preferred for design

purposes.

Based on the above assumptions, a suggested procedure for the analysis of sheared

flow profiles is presented below.

4.2 Cell Length

Before discussing the calculation of appropriate cell lengths, it is necessary to
consider the range of values of the shear flow parameter, B. As outlined in Chapter 2,
B is usually less than 0.03. Consider, as an example, the case of a long cable, 1" in
diameter, with a linear sheared flow varying from 17 feet per second to zero in 100 ft.
This could represent the incident normal velocity on a long towed cable, for example,
where the tow speed was 10 knots. If B is calculated for this system, using the midspan
velocity as the reference velocity, a value of B = 0.0017 is obtained. While this is quite
an extreme variation in flow profile, the value of B is quite small, and certainly at the

low end of the values used in the laboratory experiments mentioned earlier.

Griffin [24] presents an approximate technique for the prediction of cell length
given the shear parameter and making use of the data of Woo, et al [75].
Unfortunately, this development is based on a modal solution, and is not directly
applicable to this work. For the solution technique used in this dissertation, an even

simpler technique is possible, and is presented below.

The expression for B (Equation 2.2.7) when the nonuniform flow is linear may be

simplified to

B = AV (4.2.1)
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where V. is generally taken as the midspan velocity, and AV, the difference in
velocity between the ends of the linear sheared flow region. Rearranging this

equation, the cell length, %x-, may be written

Az AV 1
D Vef B

r

(4.2.2)

3 represents the variation in the flow velocity from the midspan flow velocity in
ref

the cell. Making use of the Strouhal relationship, (4.2.2) may be written

1
D » %" . (4.2.3)

The first term on the right-hand side of (4.2.3) represents what is termed the lock-in
bandwidth. Various investigators have studied the range of this parameter. An

example has been already presented in Figure 2.2.6. Additional data were generated

by Koopmann [38] and are presented in Figure 4.2.1 below.

While these data were obtained in uniform flows, by changing the flow velocity and
hence natural shedding frequency while the structure was vibrating at a natural
frequency, they are still applicable here. Consider a segment of the cable which is
oscillating at a given frequency due to waves traveling down the cable from a nearby
active cable region. Suppose a transverse flow velocity is now "turned on" at that
point with a natural Strouhal frequency which differs from the vibration frequency.
Depending on the frequency difference and the vibration amplitude, the shedding will
either lock-in to the existing frequency, or cause an oscillation of its own, at the
Strouhal frequency. The required frequency, difference can be determined from Figures

2.2.6 and 4.2.1.
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Clearly, the frequency difference depends on the amplitude of vibration, which is

unknown a priori. As a reasonable estimate, it is sufficient to assume that the

vibration amplitude at a given frequency will be small, even though the total
amplitude may be large. Therefore, the lower asymptote of the frequency difference
presented in the figures may be assumed, and taken as approximately +0.1. While

this appears a somewhat crude method of selection, the lack of appropriate
experimental data for the cases under consideration precludes a more detailed analysis

at this stage.
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Returning to Equation 4.2.3, the term may now be taken as 0.2, so the

equation simplifies to

1
— =~ 0.2 —. 424
3 (4.2.9)

Given a value of B, the cell length may now be estimated for a particular case. Note

that for a B of order 0.0017, the cell length becomes approximately 120 diameters.

4.8 Combination of Cell Responses

From the development in the preceding section, the length of a cell for a
particular flow profile may be determined. The system may be divided into a series of
cells of this length; then, based on the analysis in the preceding chapter, the response
in amplitude and phase of each cell may be determined, assuming a constant shedding
frequency. Each of the cells will vibrate at a slightly different frequency, so the

amplitude and phase response will vary slightly from one cell to the next.

The individual cell responses now must be "added" to produce the total response of
the system. With the use of the assumptions outlined at the beginning of the chapter,
the various responses are taken as independent, and may therefore be combined by a
root-sum-square or direct addition. Keeping in mind the observation that the change
in frequencies between adjacent cells is small (20%), and that the computed amplitude
response difference is also small, the response of a segment can easily be shown to
exhibit a beating type behavior, with a low beat frequency due to the small frequency
difference. For this reason, it is felt that a direct addition of responses would give a
good estimate of the mazimum response of the system at any point. However, from a

design viewpoint, there is a reasonable chance that the phasing of the response in
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adjacent cells is such that the amplitude is small for a long time, due again to the low
beat frequency. For this reason, it is deemed valuable to also present a root-sum-
square combination of the individual responses which represent an "expected value" of
the amplitude of response. This approach will be of more significance if a random
vibration approach is used in the individual response calculation. This is a subject for

future work, and is not discussed further here.

4.4 Simplification of Approach for Observed Response

It has been observed, and reported by Griffin [24 p. 26|, that for many real flows,
the sheared nature of the flow had virtually no effect on the response of the structure
for moderate values of the shear parameter. For these cases, the response predicted
by.the assumption of uniformm flows was quite accurate. This is attributable to the
fact that for the relatively short members under consideration, the natural frequencies
were widely spaced and that the large amplitudes produced enable lock-in for wide

frequency ranges. This range easily encompassed the entire length of the structure.

It is believed, for long systems, that the effects of the sheared nature of the flow
- can also be further simplified. Several test runs performed indicated that the change
in amplitude response is relatively insensitive to the frequency. This was observed
when the responses of a number of cells with equal lengths at different frequencies,

consistent with a sheared profile, were computed.

As a simplification, therefore, it is suggested that the response is computed for a
frequency based on the midspan flow velocity, using the estimated cell length. The
total amplitude response of the system for this case may then be found by summing
this one response curve, shifted as appropriate to the various cell locations. This

reduces significantly the computation involved. Examples of the application of this
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approach are presented in the following chapter.

4.5 Application to General Nonuniform Flows

The preceding sections describe application of the traveling wave solution to a
sheared flow profile. The procedure was to calculate a cell length based on the shear
parameter and a frequency difference, solve the corresponding system for amplitude
and phase response, then combine the amplitude functions in an appropriate way to

find the total response.

For the general nonuniform flow, where a linear profile is not an accurate
representation, the above method may still be applied. Rather than calculate a cell
length based on the shear parameter, B, it is necessary to use a more general

definition. Consider the arbitrary example flow profile in Figure 4.5.1.

\‘:}rious {;II h/e‘ng'rhs/

Figure 4.5.1. Example of Arbitrary Nonuniform Flow Profile

Using the frequency difference of 0.2 as before, we find it possible to approximately
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divide the system into a number of now unequal length cells as shown. The response

of each cell may be computed as before, and the results added.

With further work, the approach described may be modified to include the
modeling of the effects of nonuniformity in the flow. Clearly, a constant or linearly
varying flow velocity are idealizations of real flows. Even in a flow assumed uniform,
disturbances due to turbulence will affect the cell length, in general reducing it from
what is assumed in this chapter. A thorough understanding of these effects, probably
best approached from a random vibration viewpoint, is necessary before a truly
accurate representation of nonuniform systems is possible. This is beyond the scope of
this work, and will require much experimental work, in addition to the development of

new theoretical models.
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CHAPTER 5

Results and Discussion

The following Chapter presents the results obtained from the developments in the
two preceding chapters. Various combinations of the active and resistance forces are
illustrated. The constant active force with viscous damping passive force examples
are important as a check on the solution algorithm. Exact analytical solutions are
possible for this case, and through comparison with the computed values, some

guidelines for discretization interval and "convergence damping” are possible.

Convergence damping, as mentioned above, refers to an artificial increase in
internal damping used to improve the convergence of the algorithm. Optimal values
may be chosen to obtain the best performance of the iteration scheme. More details

on convergence damping may be found under "Programming Considerations” in

Appendix 1.

The significant results for this thesis appear in Section 5.3.2. These examples
illustrate the results for applied vortex-induced forces over the active region (ie.,
where the shedding of vortices is feeding energy into the cable), and for Morison-type
fluid resistance over the inactive region (i.e., where the fluid is extracting energy from
the cable motion). Some very interesting phenomena are observed, and linked to field

observations described in Chapter 2.

Section 5.4 presents results and discussion for the application of the above results

to nonuniform flow profiles. While there is little experfmental data available to
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appraise the results critically, it is felt that the solutions presented are physically

reasonable, and the approach applicable to problems of this sort.

5.1 Choice of Parameters

Due to the many parameters involved in describing the solutions, it has not been
possible, nor deemed particularly valuable at this stage, to perform extensive
parameter studies. The results presented use data from what is believed to be
physically realistic problems thereby, giving an overall feel for the type of solution

which may be expected.

While the analysis outlined is clearly applicable for a wide range of parameters, it
is convenient to choose values which exemplify the range likely to be encountered in
practice. Typical values of the various parameters chosen are outlined below, with a

brief description of the reasons for the choice.

5.1.1 Cable System Parameters

e Mass Parameter, n: The mass parameter is defined as:
LA & (5.2.1)
T p,

where p is the mass of the cable per unit length, p, the mass density of the cable,
and p the fluid density. As the work in this dissertation concentrates systems
where the assumed fluid damping is relatively large (i.e., water as opposed to air),
1t 1s assumed that a representative value for p is the density of water (i.e.,

approximately 1000 _kgg_) The cable density is assumed to be at either of two
m

extremes. Light cables of material such as Kevlar have a specific gravity of about
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1(ie, ;{L ~ 1). One of the cables used in the experiments of Kim et al. [37] was

4

chosen as representative, and a value of 5 of 1.144 was chosen. The other extreme
is that of a heavy cable in water (such as steel, with a specific gravity of about 6-

7). For this case, n was taken to be 0.2.

It should be noted that the added mass of the cable, and therefore total
effective mass of the cable (cable plus added mass), can be expressed in terms of 7
if the cable density (or, alternatively, wavespeed for traveling waves in the cable)

is known.

Frequency of Exciting Force: A convenient way to represent this quantity is as the
wavelength of the exciting force, \. Recalling that the wavelength normalized by
the diameter may be written as:

% - w5 (5.2.2)
and using the expression for vortex shedding frequency from the Strouhal
relationship (Equation 1.2.2), we may write the wavelength corresponding to a
vortex-induced force

% -3 (5.2.3)
where S is the Strouhal Number, U the incident fluid velocity, and ¢ the wavespeed
associated with the cable (in air). While U, representing a current veiocity, is
limited for most practical problems to less than about 10-20 ft/sec, the wavespeed
in the cable can vary greatly, depending on the tension and mass per unit length of

the cable (Equation 3.2.5). A representative value for %— is taken as 1000. For

the cable mentioned above used in [37], the value was calculated to be
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approximately —1)‘—)—::720. Keeping in mind that the cable was light, and the

tension low, we estimate that for heavier cables, for example, steel wire, sustaining

higher tensions, the ratio may be similar.

o Internal Damping, «;: The internal damping for a cable of the type considered in
this dissertation is in general very low. Kim [36] estimates a modal damping of
about 0.16% in the first mode for one of the cables tested. This translates to a
value of o of approximately 2 x 10~ in Equation (3.2.18). What is important,
however, is that the internal damping is much lower than the externally applied
fluid damping. The value choseln, therefore, is not critical to the overall solution
because it is overshadowed by the external damping. Thus the value stated above

was assumed to be suitable for most of the test cases run herein.
5.1.2 Flow Case Parameters

o Active Length, I/D: This refers to the length of the cable that is being actively
excited by the applied force. This varies according to the particular example, and
may be anything from a few diameters to several thousand diameters. The active
length is one of the parameters that is varied in the presented examples to

illustrate features of the various solutions.

It should be noted that for many real flow situations, active lengths of several
hundred or more diameters are not physically realizable. This implies a steadiness
in the flow which is not generally found. This problem is addressed in more detail
in Section 5.4. It has also been observed that long active lengths result in solutions
which are slow to converge. For both these reasons, few long active length cases

are included.
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5.1.8 External Force Parameters

o Constant Applied Force Magnitude, FoD/T: This parameter corresponds to the
cases involving a constant force (in magnitude and phase) over the active region.
As stated above, any value of force could be chosen, and the results would be valid.
It was convenient for testing purposes to use values which produced solution
amplitudes of the same order of magnitude as would be expected in the vortex-
induced oscillation case. The dimensionlgss values used as input to the program

F
(#‘D) may appear small, but for low internal dampings, the amplitudes

produced can become large.

o Coefficient of Viscous Damping, k: This value represents the value of & in
Equation 3.6.1. A typical value chosen was that corresponding to the small
amplitude viscous damping coefficient asymptote for the fluid resistance given by

Equation 2.4.2.

o Viscosity Parameter, Dc/v: To calculate the oscillatory Reynolds Number, Re,
(Equation 2.4.3), it is necessary to consider the kinematic viscosity of the fluid. A

. . . . De . .
convenient dimensionless group is ==. A representative value of v for water is
v

1.5 x 1075, The product Dec varies with the problem, but again using the data from
[36], we found the dimensionless group to be approximately 1.5 x 105. Again, some
variation can be expected, but this was chosen as a good value for example

purposes.

5.1.4 Numerical Parameters
These parameters affect the convergence of the program for a given system and
loading case. The length of cable beyond the active length, the number of segments

per wavelength, or discretization interval, and the convergence damping already
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mentioned are the three parameters to be discussed. Selection of these values was
made in such a way as to speed the convergence and increase the accuracy, with the
constraint of minimizing the computation time. The method for choosing these is

outlined in Appendix I.

Table 5.2.1 lists the various values of the parameters used for the examples

described in the following sections.

5.2 Results for Constant Force

5.2.1 Constant Force, Viscous Damping

As mentioned in the introduction to the chapter, this set of results is useful for
checking the solution algorithm for convergence and accuracy. In addition to the
program for implementing the traveling wave solution, the exact solution for this case

was calculated using Equations 3.3.23 - 3.3.29.

Figures 5.2.1 - 5.2.3 show the solutions for cases 5.2.1(a) - 5.2.1(c), respectively.
Superimposed on these figures are the results from the exact solution as outlined
above. The two solutions are indistinguishable. For this problem, 100 segments per
wavelength were used as the discretization interval, and iteration continued until the

average change in amplitude from one iteration to the next was less than 0.01%.

It will be noted from Table 5.2.1 that all the viscous damping was assumed to be
internal for these cases. It was found by running many iteration checks that the best
convergence for all load combinations was obtained by minimizing the externally
applied force in the inactive region of the cable. If it was desired to apply an external
viscous damping in the inactive region in addition to the internal damping, the

method adopted was to apply this to the system as all internal damping. A
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TABLE 5.1.1. Parameters for Example Cases

Case ID n /D o; /D F, k Dc v
5.2.1(a) 1.144 1000 .0015 500 .00001 0.0 -
5.2.1(b) 1.144 1000 .0015 2500 .00001 0.0 -
5.2.1(c) 1.144 1000 .0015 10000 | .00001 0.0 -
5.2.2(a) 1.144 1000  .00002 500 .00001 - 150000
5.2.2(b) 1.144 1000  .00002 1125 .00001 - 150000
5.2.2(c) 1.144 1000  .00002 2500 .00001 - 150000
5.3.1(a) 1.144 1000 .0015 500 - 0.0 -
5.3.1(b) 1.144 1000 .0015 2500 - 0.0 -
5.3.1(c) 1.144 1000 .0015 10000 - 0.0 -
5.3.2(a) 1.144 1000  .00002 500 - - 150000
5.3.2(b) 1.144 1000  .00002 1125 - - 150000
5.3.2(c) 1.144 1000 .00002 2500 - - 156000
5.3.2(d) 0.2 1000  .00002 500 - - 500000
5.3.2(e) 0.2 1000 .00002 1125 - - 500000
5.3.2(f) 0.2 1000  .00002 2500 - - 500600
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compensating forcing term, or negative damping in the active region, was then added
to the active region with the constant or vortex-induced force already present. This

idea is discussed in more detail when Morison damping is considered.

In all the following sections, the abscissa on each plot represents the distance along
the cable, normalized by the cable diameter. The amplitudes also are normalized by
cable diameter, and the phase given in radians. The sawtooth nature of the phase
plots is simply due to the evaluation of the tan™ function, which is defined between —x
and x. All the cases considered are symmetric, with the active region located
centrally about the "0" position on the abscissa. The length of the active region is

given in Table 5.1.1.

A few points may be noted about the nature of the solution. The phase variation
is as would be expected. In the inactive region, there is no external force, so the
solution is in the form of a traveling wave of exponentially decaying amplitude (see
Equations 3.3.23 - 3.3.26). The phase variation is linear with distance, consistent with

a traveling wave.

In the active region, the constant spanwise force takes control of the phase,
resulting in a distribution which tends to become constant with increasing active
length. Some oscillation is apparent at the ends of the active region due to the

discontinuity in applied force.

The peak amplitude4 for this system is approximately constant for the active
lengths considered, and always occurs towards the ends of the active region. For
longer active regions, the central constant amplitude and phase section increase in
size, leaving the ends of the active region unchanged. As the active region is

decreased below 500 diameters, the peak amplitude of response clearly becomes
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smaller.

It should be noted that this is a well-behaved, linear system. Doubling the force
doubles the amplitude. Decreasing the damping, or increasing the frequency of the
force also increases the amplitude, although not linearly due to nonlinear dependence

on « and B.

The solution algorithm always converges in one iteration for these problems. Since
neither the active nor inactive forces depend on the unknown amplitude or phase of
the cable, the solution obtained after one pass is the exact solution. The cases that

follow do not behave in this way, however.

5.2.2 Constant Force, Morison Damping
The results for applying a constant force with Morison-type fluid damping in the
inactive region are shown in Figures 5.2.4 - 5.2.6, corresponding to cases 5.2.2(a) -

5.2.2(c) in Table 5.2.1.

It was noted in the preceding section that the best convergence results were
obtained by minimizing the extent of the forée that was applied externally. The
Morison-type damping includes two terms - one proportional to velocity (drag term)
and one proportional to acceleration (inertia term). The above comment was still
found to apply, except that in this case both components of the fluid resistance needed
to be comsidered, in addition to the fact that the "drag” term is not purely a viscous

damping.

For problems involving Morison-type fluid resistance, the following approach was
adopted. While the "drag" term is nonlinear in amplitude, the small amplitude

asymptote is viscous in nature. This asymptotic value was added to the internal
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damping value to obtain a total viscous damping, which was then applied internally.
Therefore, only the terms in amplitude to the second power were added externally for
the drag component. A similar approach was used for the inertia terms. It was
observed in Chapters 2 and 3 that the inertia coefficient is a function of amplitude,
frequency and roughness factor. For the ranges of motion considered in this
dissertation, estimating the inertia coefficient as a constant of 2.0 was considered a
reasonable approximation. This enabled the inertia effects due to the fluid to be
added "internally” also, by increasing the effective mass of the cable per unit length.
To compensate, this added mass term was removed from the force term in the active

region.

The increase in the cable mass is reflected in the phase plots in the figures. The
constant of proportionality for the linear phase variation tends to 8 at the ends of the
nactive regions, where the fluid damping is purely viscous. For small damping, 8 is
inversely proportional to the wave speed of the cable (see Equation 3.2.21). The
wavespeed decreases with increasing mass, so one expects to see a more rapid phase

variation, which is indeed observed.

It is also noticed that the amplitude is greater for this series of tests than for the
preceding one, despite the fact that the internal damping, formed with the true
internal damping and the asymptotic fluid viscous damping, is actually greater. This
is due to the fact that the additional mass of the cable outside the active region
effectively creates a more "fixed" boundary at the end of the active region, reflecting

more of the supplied energy into the center region.

While the overall behavior with increasing active length is similar to the preceding

examples, the algorithm becomes unstable for long active lengths, due to the presence
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of the amplitude-dependent inertia term. The iteration scheme diverges and no

solution is found. Section 5.5 discusses this aspect in more detail.

5.2.3 Effect of Convergence Damping

Before continuing here it is appropriate to comment on the convergence
damping mentioned earlier, and in Appendix I. Clearly, the conversion of the external
viscous damping, or fluid drag viscous asymptote, is an application of convergence
damping. That is, the internal damping of the cable is assumed to be larger than the
real value, and this is compensated by an adjustment of the external applied force.
Conveniently, the above choice of convergence damping was found to give the best
results for the reasons outlined above; i.e., the spanwise extent of the externally

applied forces is minimized.

Many test cases were run with higher values of convergence damping to see if the
convergence rate could be improved. It was found that increased convergence
damping often led to poor convergence, due to the fact that the spanwise extent of the
externally applied force was no longer minimized. Very high values of convergence
damping will lead to convergence, but unless the discretization interval is decreased to
an impractically small value, the high artificial internal damping totally dominates

the solution, and convergence to an incorrect solution is obtained.

Rather than present a number of examples of these effects, it is considered
sufficient to make the observation that the best convergence was obtained with the

method outlined above, and to proceed with the results for vortex-induced forces.
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5.8 Results for Vortez-Induced Forces

The following results were obtained by considering the application of a force
representing that due to vortex shedding from a cable. The form of the applied force
is given in Equations 3.5.5 - 3.5.7. These solutions assume that the cable is subjected

to a spanwise uniform flow over the entire active region.

5.8.1 Vortex-Induced Force, Viscous Damping

To test the representation of vortex-induced forces in the form shown, a series
of cases was run with linear viscous damping in the inactive region. These were used
to eliminate any problems with the solution technique before proceeding with the more
complex case of vortex-induced active forces and Morison-type fluid damping in the
inactive region. The results for cases 5.3.1(a) - 5.3.1(c) are shown in Figures 5.3.1 -

5.3.3, respectively.

These results ‘indicate some very interesting phenomena. While the most
interesting cases are those in the following section, it is important to make a few

observations here.

The peak amplitude of oscillation increases with increasing active length at a
greater rate than for the constant spanwise force. This is a direct result of the force
magnitude’s being a quadratic function of amplitude. The actual value reached for a

given active length is a function of the total damping in the system.

The amplitude variation with distance behaves in a curious way. For small active
lengths, the behavior is qualitatively similar to that of the constant force case.
However, as the active length increases, the amplitude at the center remains

approximately constant, while the amplitude towards the ends of the active region
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increases. This behavior is also observed with Morison damping. As the active length
increases, the solution tends to a low central region, of approximately constant width,
growing symmetrically on either side to two regions of constant amplitude, then to an

oscillating amplitude near the boundaries of the active region.

This behavior may be explained by the nature of the vortex-induced force. Unlike
the constant force case, which has a given phase as a function of distance, the vortex
force is proportional to the local cable velocity, an unknown during the iteration
process. As iteration proceeds, the solution approaches an almost linear phase
variation from near the center of the active region, representing a flow of energy
toward the inactive regions. Away from the center, the shedding force "sees" a local
cable velocity and exerts a force in phase with this motion. Thus, moving away from
the center, each segmént adds incrementally to a total wave that is effectively

traveling away from the center of the active region.

While the extreme, long active length cases produce interesting amplitude
behavior, it should be emphasized that this implies a uniform current velocity for a
very large number of diameters. This is not usually found in practice, and is the

motivation for the analysis of Chapter 4.

5.8.2 Vortexz-Induced Forée, Morison Damping

This section presents results which are of the most practical significance. Cases
5.3.2(a)-5.3.2(c) use similar parameters to those used in the preceding sections, and the
results are presented in Figures 5.3.4 - 53.6. For cases 5.3.2(d) - 5.3.2(f), the
parameters were varied to represent a taut steel cable, with a correspondingly higher
value for the viscosity parameter, and a lower value of 7. These are shown in Figures

5.3.7 - 5.3.9.
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The results obtained are qualitatively similar to those in Sections 5.2.2 and 5.3.1
where vortex-induced forcing and Morison damping were used. Notice that the
magnitude of the oscillations in amplitude for longer active lengths is larger than for
viscous damping. This is again believed due to the effective reflection of energy back

into the active region from the now more "massive"” inactive regions of the cable.

Notice also that the wavelength of the amplitude oscillations is shorter than for
the viscous cases, even though the added fluid mass components have been made zero
in the active region, consistent with Equatioﬁ 3.5.5. Each of the inactive cable regions
can actually be modeled as a spring-dashpot system, with appropriate choice of the
stiffness and damping values. These parameters are easily shown to be linear
functions of o and B/w, respectively, where w is the frequency of vibration. The
system can then be represen‘ted as an active region, supported on a frequency and
damping-dependent spring-dashpot system. The active region can then be thought of
as having "modes,” although the frequency-dependent boundary conditions make the
calculation more complex than for constant stiffness/damping values. For example, as
the damping in the inactive region is increased, the system sees a boundary condition
that becomes more and more "fixed;" i.e., the system becomes stiffer, and the "natural
frequencies” become higher. A similar effect occurs with increased mass in the inactive
region - the stiffness parameter can be shown to increase, resulting in an overall stiffer
system, with an associated higher "natural frequency.”" This is the effect that is

observed in the figures.

Unfortunately, this question of modes raises some problems for the longer active
length solutions. As the active length is increased, the solutions obtained become

more and more unstable in nature, until finally, convergence is not obtained. This is
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believed to be due to the fact that the true solution sought becomes more mode-like in
nature, so a solution of linearly varying phase is not compatible. A pure mode would
exhibit phase changes of = radians between adjacent peaks in amplitude. This is not
possible for the type of solution generated from this algorithm. For long active
regions, it is better to use existing modal techniques, assuming the ends of the active

region to be fixed.

Note that this problem was not observed for the constant spanwise force examples.
This is because the phase of the solution is controlled by the constant phase of the
applied force. In the vortex-induced vibration case, the phase is free to vary, so the
solution generated reflects the phase generated by the algorithm, which is not

physically realizable.

The amplitudes of vibration in Figures 5.3.7 - 5.3.9 are much lower than in the
preceding cases. This is a result of the increased cable mass. Much more energy is
required to move the cable by the same amount. The higher value of Dec/nu also
results in a lower damping for small amplitudes, so the decay of response outside the
active region is slower. Note that for the last case, the algorithm was halted after 25
iterations. It is expected that a longer inactive region would enable a more rapid

convergence.

A similar behavior of the amplitude with increasing active length is observed as in
the viscously damped case. Again, these long active lengths are not of practical
significance. The following section addresses the more commonly encountered design

problem of nonuniform flow.
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5.4 Results for Sheared Flows

In Chapter 4, an approximate method was presented for the ahalysis of
nonuniform flows. This section uses that approach to analyze the cable deployed by
Kim et al. [37] at the St. Croix location. The current profile as measured in this test
i1s reproduced in Figure 5.4.1. Clearly, the spanwise velocity distribution is highly
nonuniform. It was also noted that there was some uncertainty in the performance of
the expendable current probe used to measure the profile. Based on this data, an
approximate flow profile was estimated for analysis purposes. This is shown in Figure
5.4.2. The chosen curve attempts to capture some of the characteristics implied by
both current measuring devices, by assuming a triangular distribution with a peak
velocity of 1.5 ft/sec at the midpoint. At this stage, the low velocity regions were

neglected.

For analysis, the wave velocity in the cable was calculated to be about 150 ft/sec.
Using Equation 4.2.1, we estimated the shear parameter, B, for the assumed profile as
5.4 x 107* and the corresponding correlation length, from Equation 4.2.4 as 370
diameters. The 100ft. active region was broken into 20 cells, each of 370 diameters,
and the mid-cell velocity was calculated from Figure 5.4.2. The solution for each cell
was then computed, yielding a series of curves all qualitatively similar to Figure 5.3.4.
Note that the minimum wavelength of the shedding force, calculated from a flow
velocity of 1.425 ft/sec, was 526 diameters. The active region was, therefore, at most
70% of the shedding frequency wavelength - well within the range of "well-behaved"

solutions for these cable parameters.

The response amplitudes from the individual cells were combined as described in

Chapter 4. The results are presented in Figure 5.4.3. Two sets of curves are given.
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Figure 5.4.2. Idealized Current Profile - St. Croix Cable

The first, or "exact,” approach is obtained by computing cell responses using
frequencies corresponding to each mid-cell velocity. Thus, the responses of 20 cells (in
fact, only 10 are needed, due to the symmetrical nature of the profile) need to be
computed. The second, or "approximate"” set is obtained by the approach outlined in
Section 4.4, wherel?y the total amplitude is derived from the response computed for
one cell at the mean velocity of the active region, 0.75 ft /sec. In fact, a velocity of

0.625 ft/sec was used, corresponding to one of the cells computed in the "exact" case.

In general, the predicted curves are consistent with the observations of Kim et al.
Figure 5.4.4 shows recorded RMS amplitudes measured along the cable versus the
local current velocity. Also plotted are points representing the peak amplitude
computed in each cell. The two data sets are very consistent. For the central part of
the active region, the predicted value of response is about 0.35 diameters. This, again,
is consistent with the data in Figure 5.4.4. While overestimating the amplitude
response at the ends of the cable, the approximate method predicts very well the

amplitude in the central part of the active region.
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A few comments need to be made about the computed amplitude. First, the
amplitude is nonzero at the right end of the cable. This, of course, means that some
reflection will occur, so the solution as presented is not quite accurate. However, the
magnitude of the amplitudes is small at that section of cable, so the errors introduced
are considered small in light of the other assumptions made in the modeling. The
effect of the reflections will be somewhat localized also, so the amplitudes at the
center of the active region are unlikely to be affected. Second, the small "bumps" that
occur in the amplitude curves are simply due to the truncation of the individual cell
responses when the amplitude is a small, but finite value. This effect is not significant
in the computation of the peak amplitudes, and the effect is clearly diminished when

RMS values are considered.

The approximate technique clearly gives excellent results, considering that one
tenth of the computing power was required to generate them. While overestimating
the response at the ends of the cable, the overall response is well captured. The fact
that the RMS amplitude, as calculated above, and the peak amplitude for an
individual cell (by definition an RMS value) are similar tends to confirm the
assumption of the localization of the individual cell responses; i.e., the effect of one cell

on adjacent cells decreases rapidly with distance.

Note that the general performance, in comparison with a modal solution (for
example [31]), is much improved. A modal solution, even assuming active shedding
over only the 100 ft. span as done here, predicts an amplitude which is approximately
constant along the cable, of 0.22 diameters. This is quite incorrect, as the observed

data, and the prediction method used herein, confirm.
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5.5 Some Observations on the Performance of the Solution Algorithm

At this stage it is considered appropriate to make some general observations on
the performance of the solution algorithm. While the performance of the algorithm
was satisfactory in most of the examples tested, there were a number obvious cases
where the scheme diverged, and a solution was not found. In most instances, this
occurred for long active lengths, generally at least twice as long as the wavelength
corresponding to the shedding frequency. As stated earlier, these long active length
solutions are not of much practical interest due to the unsteady nature of most flows
in the marine or atmospheric environment. The causes of this instability and the
general robustness of the algorithm are, however, of general interest, and should be
investigated in some detail. A few ideas on this aspect are presented below, but the
detailed analysis, and establishment of the boundaries of stability for the algorithm,
are left as a topic for future work. Some of the points have been outlined already, but

are reiterated here.

o The algorithm, as used to compute the results in the preceding sections, has been
tested extensively during the course of this investigation. It is considered that the
choices of initial conditions, convergence damping, and the details of the
application of the loads to the system have been optimized to give a very efficient

algorithm.

e The solution scheme either converges to an accurate solution, or diverges, and no
solution is found. For a definition of "convergence” and "accuracy,” refer to
Appendix I. The source of the convergence difficulties lies with the force term in
the kernel of the integral equation, Equation 3.3.11. In the constant force cases

with viscous damping, no problems are observed. The same is true for vortex-
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induced forces with viscous damping. In these cases, the force term is bounded in
amplitude, the former in an unconditional sense, and the latter, if the amplitude
remains less than about 1.2 diameters. However, when an inertia term is
introduced, as in the modeling of Morison resistance, this force is linear in
amplitude, and is therefore clearly unbounded. Depending on the size of the
inertia force relative to the constant or vortex-induced force, instabilities in the
algorithm may result. It is noted that these problems arise in two main cases.
The first is long active lengths, where the amplitude is made large initially by the
large amount of energy fed into the system, then driven unstable by the unbounded
inertia term. The second case is for light cables. When the specific gravity of the
cable is low, say around 1, the inertia due to the fluid is of the same magnitude as
the inertia of the cable. This results in relatively large external inertia forces?
which have a significant effect on the active cable segment. It is noted that
convergence difficulties were not so common when higher density cables were
modeled. Establishment of boundaries of stability for the scheme need to be
established, as a function of the various forces and input parameters, but this is

considered a topic for future work.

As was outlined earlier, it appears that modal solutions may be more appropriate
for long active length systems. Rather than using the whole system for a modal
analysis, however, it is suggested that just the active region be considered,
modeling the end points as either fixed, or with a spring boundary condition. This
contrasts the conventional approach in which the whole cable is treated as the

system, yielding inappropriate results for long systems.
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CHAPTER 6

General Conclusions

6.1 Summary and Conclusions

In this thesis, a new treatment of the flow-induced vibration problem for long
structures has been developed. In a departure from the standard modal analysis
approach, a new method was attempted, based on a traveling wave or Green’s
function formulation. Many real structures, particularly in the ocean environment,
are so long that the assumption of a modal response is quite unrealistic. The
approach described herein models such systems as initial value problems, rather than
the conventional boundary value problem, for which eigenfunction expansion, or modal
analysis is generally used. The new method is applicable to nonuniform flow profiles in

a more realistic way than previously possible.

Chapter 1 outlines some of the basic. types of flow-induced vibration phenomena.
The method developed in this dissertation is applicable to many types of flow-induced
vibration problems, so some introduction to the various types of behaviors is useful.
Vortex-induced vibration was used as the specific exciting mechanism in this work, so

a brief introduction to some of the basic concepts of this phenomenon are described.

Various approaches have been used to model vortex-induced forces on structures.
Chapter 2 outlines some of these models, both theoretical and empirical in nature, and
also reviews a number of observations made on the response of long cable systems and

of nonuniform flows. The empirical model of Iwan and Bothelo [32], based on the
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experimental results of Sarpkaya [59,60] was chosen as the basis for this work. As the
modeling approach used also enabled the application of nonlinear fluid resistance
forces, the nature of these forces is also discussed in this chapter. In particular, the
use of the Morison equation [43], and small oscillation asymptotic viscous fluid
damping [2] are outlined. These latter representations are used to give an overall
better representation of the fluid-structure behavior in regions of the cable where

vortex shedding is not occurring.

In Chapter 3, the new model for predicting the vortex-induced response of long
systems is developed. Beginning with a Green’s function solution for a uniform cable,
the exact solution for a spanwise constant force is derived by solving a linear integral
equation. The cable system is discretized into a number of small segments, and the
force over each segment is assumed to be approximately constant, but of unknown
amplitude - the magnitude of the applied force is a function of the total amplitude of
response of the system at a point. The total response of the whole system is obtained
by summing the contributions of all the segments in an iterative manner. Iteration

continues, using updated values of amplitude and phase, until convergence is attained.

Representation of various types of force are investigated. Linear viscous damping,
constant spanwise force, vortex-induced forces, and Morison fluid resistance are all

cast in a form that allows processing by the solution algorithm.

While the results obtained from the analysis in Chapter 4 -are significant for
uniform flow, in the field, most flow profiles are not uniform. As outlined in Chapter 2,
linear sheared flow is a commonly assumption made for ocean current profiles. The
results of Chapter 3 are used in Chapter 4, along with some simplifying assumptions,

to tackle the problem of sheared velocity profiles on long cable systems.
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Chapter 5 presents the results of the analysis in the preceding two chapters.
Initially, an evaluation of accuracy and convergence through the modeling of a
constant spanwise force is performed, making use of the exact solution already derived
for this case. Next, various combinations of the active and inactive forces are made,

and the results obtained by implementing the solution algorithm are discussed.

Some problems encountered with convergence are discussed, and techniques to
avoid them, outlined. Care must be taken with the solution scheme presented. Poor
choices of certain convergence parameters can lead to incorrect solutions or to

complete lack of convergence.

Some very interesting results are obtained for the vortex-induced vibration case.
The form of solution obtained indicated that shedding was progressive in nature, as
evidenced by the linear variation of phase in the active and inactive regions. This
prediction confirms the field observations of Alexander [1], who commented that
exactly this type of behavior was recorded. The amplitude of oscillation was observed

to increase for increasing active length, but it reached a maximum, as evidenced by

the formation of a plateau of constant amplitude for very long active regions.

The combination of small active regions responding at different frequencies was
made in the latter part of the chapter, implementing the solution technique outlined
in Chapter 4. While there is a critical lack of experimental data in this area, the
results obtained compared favorably to the data recorded by Kim et al. [37]. Clearly,

more data are needed in this area to verify the modeling approach adopted.

6.2 Recommendations for Future Work

While the work presented herein successfully implements a new technique for the
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solution of flow-induced vibration problems, there are many areas where it is thought

that future work could be done. A number of these are listed below.

* A reasonable amount of work remains to be done on the solution algorithm utilized.
While reasonable results were obtained in most cases, the amount of computation
required for very long systems was significant, and convergence difficulties were
sometimes experienced. A number of improvements to the code could be considered.
A more efficient solution algorithm could be developed for integral equations of this
type. Some initial work was done in this regard, but is not reported here. A finite
element formulation of the system may yield better convergence, and more accurate
results. Also, extension to semi-infinite systems (i.e., with one end of the active region
of the cable system fixed) would be a useful enhancement. Again, some work towards

this end was started, but is not reported here.

Once the efficiency of the solution algorithm is maximized, a useful and natural
extension to the work would be the creation of a comprehensive package to handle
nonuniform flow profiles, in general. This would be of most use to the design engineer,
faced with a nonuniform current on a long cable system. The required breakdown of
the system into independent active segments, analysis of each, and the combination

for an overall solution could all be performed by one program.

Extension of the program to include other vortex-induced force models, such as the
wake-oscillator and lift-oscillator models, would be of value, and would enable
comparison of the different approaches. Comprehensive parameter studies of all

models could be run, and compared with experimental data.

o It is considered an important extension to this work to apply one of the existing

analytical models for vortex-induced vibration (for example, the lift-oscillator or
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wake-oscillator model) to the traveling wave approach. This will serve to confirm the
results reported herein, obtained using an empirical model, and will also enable
extension of the method to incorporate a random vibration approach to the vortex-

induced vibration of long systems.

e Due to the lack of recorded data, experimental verification (on both a large and a
small scale) of the results are necessary. Although it would be difficult to model long
systems in a laboratory in an efficient way, simple tests could be conducted to verify
some of the results of the analysis. In the field, more comprehensive experimenting

along the lines of Kim and Vandiver’s work would be valuable.

« Clearly, the modeling of nonuniform ocean current and wind velocities as sheared
flows is a very crude approximation at best. The construction of a new model, based
on a random vibration approach, which could take into account the spanwise
variation of the flow and the response, would be of definite value. Hand-in-hand with
this development wguld be the need to conduct extensive experimental investigations
into the random nature of these quantities, studying, for example, the correlation of

shedding along the span under such a random flow field.

» The assumptions made in Chapter 4 about the superposition of the solutions for the
various active regions, while physically argued in a reasonable way, have not been
verified either analytically or experimentally. Most of Sarpkaya’s work involved the
monofrequency study of cylinder motion, and did not address the problem of a
multifrequency response at all. Is the assumed independence, or lack of interaction
between the two frequency components, observed in practice? How about three or
more {requency contributions, or a random noise frequency content? These important

questions need to be addressed before the modeling approach can be used with
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confidence.

o The traveling wave solution adopted in this work could be adapted to slack cable
systems. Once the Green’s function for the slack system was derived, incorporation
into the code would be a relatively simple matter. Obvious applications for such a
system are the response of the mooring lines for guyed towers and vessels in deep

water.

The accurate prediction of the response of long systems to flow-induced vibration is
an important area for the engineer. While still at an early stage of development, it is
believed that the approach used in this thesis will enable a much better understanding
of the response of this type of system, and will open the door to more realistic

modeling of the fluid-structure response through more sophisticated techniques.
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APPENDIX I

Programming Considerations

To implement the traveling wave solution, a FORTRAN-77 program was
developed. The structure and details of the program are discussed below. The basic

approach used in the program was introduced in Section 3.4.2.

1.1 Program Structure

After input of the required dimensionless parameters for the program, initial
values of the amplitude and phase of the total displacement are chosen. While initial
values of zero for both A; and §; throughout will produce a solution, it was found
better to choose values which approximate more realistically the final solution. The
rate of convergence was generally improved by this choice of initial values, and some

difficulties in convergence were overcome.

The forces corresponding to the initial amplitudes and phases are calculated and
the waves generated summed over the required region. The new set of amplitudes and

phases are calculated using Equations (3.4.16) and (3.4.17).

A test of convergence is performed and iteration continues until a predetermined
condition is satisfied. The relative changes from one iteration to the next can be
weighted to minimize the effect of changes in the low response amplitude regions of

the cable.

The program computes amplitudes and phases of the total response along the
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cable. Also written, although mainly useful for debugging purposes, are the force

amplitude and relative phase corresponding to the motion described above.

1.2 Boundary Conditions

For many applications, the assumption of a symmetric doubly infinite string for
modeling a structure with a large length-to-diameter ratio can be made. However,
there are many cases when it is useful to include a fixed boundary in the traveling
wave formulation. For example, an instrument suspended vertically in the ocean is
essentially fixed at the suspension point, and has a free end with an attached mass at

the other (Figure 4.1.1).

For most environments, the current profile decreases toward the bottom of a long
cable. The relatively large fluid damping in this region, combined with the low energy
input means that the lower boundary condition does not affect the modeling of the

system as a semi-infinite string.

However, the fixity at the top of the cable can have a significant effect on the
response. Upward traveling waves produced in the upper section of the cable are

reflected from the fixed boundary and produce partial standing waves in that region.

A fixed boundary may be included in the formulation by simply generating an
asymmetric solution, and considering only one-half of the system. The effect of the

fixed boundary is to:
e Change the direction of travel of the wave
o Change the phase by 180° (or invert the incoming wave).

Equivalently, this effect can be produced by generating a wave at z=—a that is 180°

out of phase with the wave being produced at z=a. Summation of these pairs of
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waves will produce the required fixed boundary condition at z=0.

1.3 Convergence and Accuracy

As with all numerical schemes, the areas of convergence and accuracy require
some consideration. To clarify the difference between the two, it should be realized
that it is possible for a solution scheme to converge to the wrong solution. Thus the
two topics should be treated separately. While there are obvious sources of error from
the modeling of the various forces involved in the systems considered, this section

concentrates on the numerical errors produced by the solution technique.

The most significant source of error is the discretization of the system into finite
length segments. The solutions presented are piecewise constant (discontinuous).
Future work may concentrate on a smoother solution, continuous in the zeroth or first

derivatives. This could be implemented, using a finite element formulation.

To minimize the discretization errors, the size of the finite length elements must be
viewed in relation to both the wavelength corresponding to the forcing frequency and
the diameter of the cable. The first requirement is that the length of a segment is
much smaller than the wavelength of the forcing frequency (Equation 3.4.1). This
condition ensures that the change in amplitude from one segment to the next is small.
In practice, it was found that less than 10 diameters per segment produces reasonable

results; i.e., the solution converges to the correct solution.

Discretization also affects the exponential amplitude modulation term in the basic
traveling wave expression (Equation 3.4.8). If the o term in the exponent is too large,
then little information is transmitted from one segment to the next, and the

assumption of a constant force and displacement across the segment becomes a poor
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approximation. Care should be taken not to use too high a value of convergence

damping.

Another source of error is the use of insufficient length of cable beyond the active
length to allow the amplitude of response to decay to zero. While this error is usually
reflected in convergence difficulties, it is actually an accuracy problem, and care
should be taken in using results in which the amplitudes at the end of the cable are

non-zero.

Convergence difficulties with the approach also arise from a number of sources.

Several methods were used to improve the convergence, and are discussed below.

As already mentioned, insufficient inactive cable length causes problems with
convergence. If the amplitude is finite at the ends of the system, then clearly,
insufficient damping forces have been applied, and the inactive length should be
increased. Without sufficient length, the amplitudes begin to grow at the ends, and

the solution scheme becomes unstable.

Another somewhat related difficulty is due to the fact that very low values of
internal damping produce very small values of the parameter o in Equation 3.4.8. In
the solution process, this results in a change being generated by an applied force at
one segment affecting many other segments. In the worst case, if zero internal
damping is assumed, a change at one location affects all the other segments by the
same amount, depending on the phase at each location. This change then affects the
applied forces at all the other segments, and very soon, the terms involved become
unmanageable. The solution sought generally becomes the sum of a large number of

large terms, and accuracy becomes a problem.
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Physically, however, it is known that the fluid applies quite a large external
damping to the structure. To overcome the above problem, it is necessary to assume
that some of these external damping forces are applied internally, increasing the

parameter o to a value that produces more reasonable convergence characteristics.

Application of this scheme essentially applies a damping force to both sides of
Equation (3.2.2). On the left-hand side, the increased damping produces an increase in
the value of «, while on the right-hand side, the applied force is increased by a
corresponding amount. Note that on the left-hand side, the damping is being added in
a continuous manner, while on the right it is approximated as a constant force over a
segment. Care should be exercised in applying values of "convergence damping” which

are too large, therefore, as the discretization errors will begin to have large effects.

The convergence rate is not necessarily increased by higher values of convergence
damping. Addition of the compensating force to the right-hand side of Equation
(3.2.2) increases the amplitude of the local peaks. These may require a moderate
number of iterations to smooth out. The advantage of using the convergence damping
" comes from the fact that without it, there are many lightly internally damped systems

which would not be able to be solved by this method.



