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Abstract

When a body is exposed to a flowing fluid, oscillations can occur due to one or
more of several different mechanisms. The resulting large amplitudes of motion and
fatigue are potential sources of structural failure. Furthermore, the drag force on a
structure can be increased due to the effectively larger cross-sectional area presented
to the flow from the oscillation. A complete understanding of the nature of such

vibration is essential in the design of many civil and mechanical engineering systems.

Previous solutions to the vortex-induced vibration problem were primarily based on
modal analysis, using a one- or two-mode approximation. Use of modal analysis
implies a "locked-in" condition: the vortex shedding frequency and a natural
frequency of the system are coincident. Observations made on long cable systems
indicate that the amplitude of response is smaller than is predicted by a conventional
modal analysis. The drag forces on such structures are therefore overestimated by

current design approaches.

In very long structures, typical of those found in ocean applications, modes are
closely spaced, and it is not reasonable to assume total spanwise correlation in the
fluid forces or response. The approach used herein attempts to avoid the limitations
associated with the modal solution of such problems by implementing a solution based
on traveling waves. The technique draws on earlier theoretical and empirical models
for the complex vortex-shedding phenomenon, and incorporates these into a new

method for analyzing the structural response problem.

The traveling wave approach can be used to model effectively spanwise variable

flow environments by summing the calculated responses of adjacent active sections of
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cable. Until this method was developed, there was no suitable method available for
modeling flow characteristics of this type. Modal analysis is effectively limited to

systems with uniform flow over all or part of the system.
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NOTATION

Cylinder or cable amplitude (1/2 peak-to-peak displacement)

Total cable amplitude (1/2 peak-to-peak displacement)

Total cable amplitude at i-th segment

Total cable amplitude for constant force solution at end of active region
Normalized cylinder or cable displacement (=A /D)

Wavespeed in cable (=V'T/u)

Wayvespeed for viscously damped cable

Viscous damping coefficient per unit length

Added mass coefficient of vibrating cylinder, in direction of flow

Drag coefficient of vibrating cylinder, in direction of flow

Drag coeflicient d‘ stationaryrcylinder, in direction of flow

Drag coefficient, component of force in-phase with cylinder velocity
Maximum drag coefficient (above), as function of B

Lift coefficient of vibrating cylinder, in direction of flow

Inertia coefficient of vibrating cylinder, in direction of flow

Inertia coefficient, component of force in-phase with cylinder displacement
Viscous damping coefficient per unit length

Cable or cylinder diameter

Applied force per unit length on cable

Force per unit length acting on cable or cylinder



Fy
G(z.6,t)
G (2,6,t)
I(z)

Iyz)

Spanwise constant force magnitude

Green’s function for taut cable

Green’s function for taut cable (discrete formulation)
Integral term appearing in traveling wave solution
Integral term appearing in traveling wave solution
Stiffness coefficient per unit length (note context)

Viscous damping coefficient per unit length (note context)
Surface roughness parameter

Keuligan-Carpenter Number

Active length of cable (where vortices are assumed to be shedding)
Length of cylinder or cable

Mass of cylinder per unit length

Mass of fluid displaced by cylinder per unit length
Reynolds Number

Oscillatory Reynolds Number (=wD?/v)

Strouhal Number

Strouhal number based on midspan incident flow velocity, U,,, in shear flow
Period of oscillation

Cable tension

Uniform free-stream flow velocity

Midspan incident flow velocity for sheared flow
Magnitude of oscillating flow velocity

Reduced flow velocity (=w,/Sw)
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Vo Parameter appearing in analytical expression for C,

Ve "Reference velocity" for sheared flow, usually midspan velocity
W, (z) n-th eigenfunction for taut cable, length L

¥ Displacement of cylinder or cable

Y Displacement of cylinder or cable

« Decay rate for amplitude in traveling wave solution

o; Value of & corresponding to internal damping for taut cable
B Rate of phase variation in traveling wave solution

8 Ratio of Reynolds number to Keuligan-Carpenter number

B Steepness parameter for linear sheared-flow profile

¢, Damping ratio in r-th mode

n Mass parameter (=pD?/p)

g Arbitrary phase term in applied force

b, Arbitrary phase term in constant spanwise applied force

K Parameter in traveling wave solution (a function of o and A
A Wavelength of traveling wave

X\, n-th eigenvalue for taut cable, length L

T Mass of cable per unit length

v Kinematic viscosity of a fluid

&; i-th modal solution, as a function of time

p Mass density of fluid

Pe Mass density of cable

Py Mass density of cylinder
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Phase angle by which applied force lags velocity in traveling wave solution
Phase angle of total displacement in traveling wave solution

Phase of total displacement of i-th segment in traveling wave solution
Phase of total displacement at end of active region for constant applied force
Phase angle for r-th modal solution

Phase angle

Phase angle

Angular oscillation frequency (rad/sec)

Angular natural frequency of system (rad/sec)

r-th angular natural frequency (rad/sec)

Angular Strouhal frequency (rad/sec)

Angular vortex-shedding frequency (rad/sec)



CHAPTER 1

Introduction

When exposed to a flowing fluid, a structure may oscillate due to interaction
between the body and fluid. Large amplitudes of motion and fatigue are potenti.al
sources of structural failure. A complete understanding of the nature of these
vibrations is essential in the design of many civil and mechanical engineering

components.

The nature of the motion of a structure in a flow depends on many factors,
including the geometry of the body, the characteristics of the flow and fluid, and so on.
Several quite distinct behaviors can be observed, and the methods of analysis for each

vary accordingly. A brief introduction is given below.

1.1 Flow-Induced Vibration
Flow-induced vibrations can occur with both bluff and streamlined bodies in any
fluid. Broadly speaking, the different types of behavior may be classified into the

following groups.
o Vortex Shedding:

As fluid passes a bluff body, the flow separates from the body and rolls up into
distinct vortices, which detach from the body and produce both in-line and transverse
forces on the body at the frequency of the vortex shedding. This dissertation uses a
vortex-shedding model, and a more detailed description of the phenomenon will be

given later.



o Galloping:

Galloping is observed in some structures with certain cross-sectional shapes, such
as "D" or rectangular sections. A commonly observed example is ice-coated power
lines, where the modified cross section due to ice buildup is well shaped for this type of
aeroelastic instability (see, for example, [11], pp.366-373.) The main characteristics of
this type of response are large amplitude oscillations transverse to the flow, at
frequencies much lower than the vortex-shedding frequencies for the same cross
section. Unlike vortex shedding, there is no characteristic frequency associated with

the flow. Motion of the structure in a natural mode produces the instability.

The basic driving force of galloping is the variation of the lift coefficient with the
angle of attack of the flowing fluid. As the body moves, the relative velocity changes
due to the structure velocity component. If, for a given section, the lift force increases
as the body moves from its equilibrium position, then that body is potentially

unstable.

As mentioned above, the galloping of power lines in cold climates has been
commonly observed. There is not much literature on this phenomenon occurring in
water, but this is probably due to the use of members which do not have an unstable
cross section (for example, circular cylinders). The galloping conductor problem is due

to modification of an otherwise stable shape by ice accretion.
e Flutter:

The term flutter has been used, with qualification, to describe a number of different
types of flow-induced oscillation. References on the subject are extensive. [14], [64],

and [66] give good introductions and point to more complete lists of references.



The term "classical flutter” refers to an unstable oscillation produced by the
coupling of two degrees of freedom of the structure (torsional rotation and
translation). Classical flutter is observed even if the body is streamlined and no flow

separation occurs. The phenomenon was, in fact, first observed in airfoils.

Flutter in a single-degree-of-freedom is also observed. "Stall flutter” describes a
torsional mode of airfoil vibration produced by the nonlinear characteristics of the lift
force near a stall condition. Structures in strongly separated flows may also undergo
torsional vibration, but this is usually associated with non-streamlined bodies, such as

bridge decks. This latter case is not a stall flutter, per se.

Flow along a structure can also excite a condition called panel flutter. While
mainly observed in supersonic flows, phenomena such as flag or tent flapping are

related examples.

The above described fluid-induced vibrations can occur for structures in a
reasonably undisturbed uniform or oscillating flow. The presence of structures
upstream in a flow can cause changes in the incident flow which also may excite a
body into motion. Examples of this are buffeting, due to turbulence in the flow, and
wake galloping, where the variation of the lateral pressure across the wake of one

body can produce large motions in another downstream.

More complete descriptions of the above phenomena may be found in the

references listed, and [66] gives useful introductions to the analysis of each.

1.2 Vortez-Induced Vibration
The work outlined in this dissertation concentrates on the structural aspects of
the flow-induced vibration problem. While the approach developed could be applied

to any of the above types of behavior, vortex shedding was used as the mechanism of



the exciting force.

The motivation for this choice is the susceptibility of many "long" structures in the
marine environment to vortex shedding. Mooring cables, towed arrays and drilling
risers are all subjected to sometimes large cross-flows which lead to vortex-induced

forces.

An introduction to some of the important characteristics of vortex shedding as a

basis to the following work is given below.

1.2.1 Vortex Shedding from a Bluff Body
Figure 1.2.1 shows the basic flow regimes around a stationary cylinder in a

flow. The Reynolds Number, Re, for the flow is defined as

Re = — (1.2.1)

where U is the free stream fluid velocity, D is the diameter of the cylinder, and v is

the kinematic viscosity of the fluid.

At very low Reynolds Numbers, the streamlines follow the shape of the body, and
the flow does not separate. As the Reynolds Number increases, a pair of fixed Foppl
vortices is formed in the wake; then for Re greater than about 40, vortices are shed
periodically from alternating sides of the body. Vortex shedding occurs throughout the
range of Reynolds Numbers from 40 to about 3x10% being laminar in the lower range,
then becoming turbulent in the latter part. Throughout the transcritical range,

regular shedding disappears, but re-establishes itself in the supercritical Re range.

When the body is fixed, the vortex-shedding frequency, w, equals the Strouhal

frequency, w, defined by



— — Re < 5 REGIME OF UNSEPARATED FLOW

5§T015 < Re < 40 A FIXED PAIR OF FOPPL
VORTICES IN WAKE

40 < Re < 90 AND 90 < Re < 150
TWO REGIMES IN WHICH VORTEX
STREET IS LAMINAR

150 < Re < 300 TRANSITION RANGE TO TURBU-
LENCE IN VORTEX

R e ot
N/ 30 < Re X 3x105 VORTEX STREET IS FULLY
TURBULENT
ﬁ 3x105 X Re < 35x 108
@ LAMINAR BOUNDARY LAYER HAS UNDERGONE

TURBULENT TRANSITION AND WAKE IS
NARROWER AND DISORGANIZED

35 x 108 < Re
RE-ESTABLISHMENT OF TURBU-
LENT VORTEX STREET

Figure 1.2.1. Regimes of Fluid Flow Around a Circular Cylinder [8]

wy = 2,75%. (1.2.2)

S, the Strouhal Number, depends on the Reynolds number and the geometry of the
body. The variation of S with Re for a cylinder is shown in Figure 1.2.2. The
Strouhal Number is well defined for all but the transcritical range of Reynolds

Numbers. For simplicity, unless the exact Reynolds Number is known, the value of S

is taken as 0.2 for a cylinder.
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1.2.2 Effect of Motion of the Body

The shedding of vortices from alternate sides of the body results in a periodic
transverse force on the body. If the body is flexible, or flexibly mounted, it will move

when subjected to this force. This motion of the body has several effects on the flow:

The strength of the shed vortices is increased [16].

The spanwise correlation of the wake is increased {72].

The frequency of vortex shedding is locked on to the cylinder vibration frequency if

the two frequencies are close [5].

The drag force is increased [5].

The body motion results in a more structured wake than in the stationary case.
The moving body is able to feed energy into the fluid, increasing the circulation of the
vortices, thereby increasing the force applied to the body. This increase in the "order”
of the wake is also manifested in the spanwise direction, as evidenced by the increase
in the correlation of the vortex shedding along the span with increasing vibration

amplitude.



When a system with a natural frequency w, is exposed to a flowing fluid, the
frequency of oscillation, w, is not necessarily equal to the Strouhal frequency, w, as
defined above. A phenomenon known as frequency entrainment, or lock-in, oceurs,
whereby the frequency of vortex shedding becomes very close to the natural frequency
of the structure. This occurs when the amplitude of vibration becomes large enough
to enable the body motion to take control of the shedding process. These large

amplitudes occur when a structure is excited at, or near, a natural frequency.

When the body vibrates transversely to the flow, the effective cross-sectional area
projected to the flow is increased. The in-line drag force depends on the projected
area, and therefore, tranverse vibration can increase the drag force depending on the

amplitude of the vibration.

1.2.83 Vortez-Induced Vibration of Long Structures

Field observations [1], confirmed recently by experiment [36,37], have indicated
that the lock-in phenomenon, as described in the previous section, does not occur for
cable systems where the length-to-diameter ratio is very large (greater than 10%).

There are several reasons for this behavior.

First, as the length of a cable is increased, the difference between consecutive
natural frequencies becomes smaller. For large length to diameter ratios, the

frequencies are so close that the assumption of lock-in to a single mode is not valid.

Second, the frequency of excitation due to vortex shedding is proportional to the
flow velocity. Excitation of the system in one mode requires a reasonably uniform
velocity profile. In reality, the flow profile is somewhat nonuniform and the disruption

to the shedding process hinders the formation of locked-in response.



The term "lock-in" means that vortices are shed at a frequency corresponding to a
particular structural mode of the system. A mode is a standing wave produced by the
summation of traveling waves which have been reflected and transmitted by the
appropriate boundaries of the system. For example, consider the taut string in Figure

1.2.3.

y(O,t)=Asinwt wavespeed=c

' ’
V

v

.

Figure 1.2.3. Example of Long, Damped String

The string is fixed at the right-hand end, and forced at the left-hand end with a
sinusoidal excitation equal to one of the undamped natural frequencies. Assume that
there is damping present proportional to the string velobity. Initially, a wave is
produced which travels from left to right down the string. When this wave reaches the
right-hand end, it is reflected from the fixed boundary, and returns along the string in
the opposite direction. Upon reaching the left end again, it is reflected once more in
such a way as to satisfy the force or displacement boundary condition imposed there.
Due to the damping in the system, a steady state will be reached consisting of a left
and right traveling Wave. The string exhibits a standing wave pattern produced by

the interaction of these traveling waves.



If the string is very long and the damping sufficient, waves produced at one end of
the string will be of negligible amplitude by the time they reach the other end. It is
unlikely that a mode will be produced, as a steady-state condition may never be
reached. For the above example, the string is better treated as a semi-infinite string.
A traveling wave solution may be sought to the problem, rather than a modal

solution.

1.3 The Focus of This Investigation

In the current investigation, a new approach to the vortex-induced vibration
problem is presented. In a deviation from the customary modal solution to such
problems, a method based on traveling waves is used. This approach is found to be

particularly suited to the long cable problem outlined above.

Existing fluid models are adapted to the traveling wave solution for the cable. In
particular, the model developed by Iwan and Bothelo [32], based on the experimental
results of Sarpkaya' [60] is used. The wake oscillator model first proposed by Iwan and
Blevins [28], then later modified by Hall and Iwan [26], could also be adapted, although

this is considered a topic for future work.

For simplicity, the cable is considered to behave as a taut string. This
approximation avoids the inclusion at this stage of additional nonlinear terms in the
equation for a slack cable due to the geometry. For many real systems, the
curvatures and displacements are sufficiently small that the above assumption is quite
accurate. Both linear and nonlinear damping forces on the cable are considered. The

fluid model used for the vortex-shedding force is, of course, nonlinear in nature.

The fluid forces acting on the inactive part of the cable (i.e., a region where vortex

shedding is not exciting the cable) are modeled using Morison’s equation [43]. This
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gives a more realistic treatment of the cable damping than a viscous damping

approximation.

An approach to the problem of nonuniform flows by the use of the traveling wave
method is presented. The response at a point on the string is described in terms of

the maximum expected or root-mean-square amplitude of the motion.

1.4 Structure of This Thesis

In Chapter 2, a brief historical review of the subjects pertinent to this research is
given. This includes the vortex-induced vibration model developed by Bothelo and the
use of the Morison equation for the fluid force on oscillating bodies. Problems
associated with existing analysis methods are addressed, and the motivation behind

the new approach is outlined.

Chapter 3 presents the basic formulation of the model, including the specialization
of Bothelo’s work to this approach, the derivation of the basic traveling wave
solutions, and the combination of the two into a fluid-structure model for long cables.
The techniques for the summation of the traveling wave solutions are outlined. The
use of Morison’s equation for the inactive regions of the cable is illustrated using the

new algorithm.

Based on the analysis in Chapter 3, an approximate technique is developed in
Chapter 4 to handle nonuniform flow profiles. In most marine environments, the
current profiles are not uniform, so the approach developed in this chapter is

necessary for the analysis of such systems.

In Chapter 5, results derived from the analyses of the preceding two chapters are

presented and discussed. Comparisons with traditional modal approaches are given
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and discussed in the context of the amplitude and frequency response.

A summary, conclusions, and ideas for future work are given in Chapter 6.
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CHAPTER 2

Background Material and Previous Work

2.1 Historical Introduction

For many centuries, the effects of flow-induced vibration have been used to
generate musical tones, predominantly in wind instruments. The design of these
instruments was essentially empirical as there was little understanding of the physics

of the generating process.

While da Vinci, in the fifteenth century, had sketched vortices in a flow behind
various bluff bodies, it was not until 1858 that the first systematic investigation of
vortex-induced vibration was attempted by Strouhal [71]. Through a simple
experimental setup (recently reproduced by Hall [25],) Strouhal was able to show that
the t;)nes produced by a taut wire in an air stream were proportional to the relative
air velocity divided by the diameter of the wire. He also observed that the intensity of
the sound produced increased greatly when the vortex-shedding frequency coincided

with the natural frequencies of the wire.

Despite Strouhal’s discoveries of modal interaction and frequency entrainment, he
did not appear to understand the latter phenomenon, and also was under the
impression that the wire oscillated parallel to the flow. Rayleigh, in 1879, recognized
vortex sheet instability as the source of the vibration and demonstrated
experimentally that the wire actually vibrates predominantly perpendicular to the

flow [50, Vol. II, pp. 412-413].
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The mechanism of vortex shedding and the structure of wakes were investigated by
von Karman (73|, who was able to show theoretically why the vortices are shed
asymmetrically, and to predict the ratio of the longitudinal to lateral spacing of the
vortex centers. Von Karman’s pioneering analysis has been followed by numerous
studies of vortex wakes and the lift and drag forces on bodies in separating flows. The
early 1940’s brought observations on the response of bodies allowed to vibrate under
the influence of the vortex forces. It was not until 1964, however, that the existence of
a nonlinear fluid oscillator was hypothesized, first by Bishop and Hassan [5] and later
the same year by Marris [40]. Marris’ work first outlined the use of the Van der Pol-
type equation for the fluid force, based on potential flow considerations for a rotating

body in a cross-flow.

Many investigations have followed, experimental [4, 5, 13, 15, 33, 38, 44, 45, 47, 48,
51, 56, 58, 59, 72, 74], theoretical [6, 7, 18-22, 25-31, 34, 41, 54, 60, 62, 65, 67, 68, 69],
and theoretical-experimental [9, 17, 32, 39, 49, 53, 70]. The recent increase in the
availability of computing resources has led to the development of codes for finite
element analysis of the vortex flows and forces associated with fixed bodies. These
codes in general are very computation-intensive and have not as yet been applied to
moving bodies, precluding their use from the vortex-induced vibration problem. It is

anticipated that future work in this area will enable a greater understanding of the

problem.

A number of review or "state of the art” publications [3, 8, 23, 40, 61] outline the
recent advances in the field at the time of writing and present extensive reference

lists.
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2.2 Experimental Observations of Vortez-Induced Response

2.2.1 Vortex Shedding from Oscillating Cylinders

Of the investigations referred to above, the work of Sarpkaya [59, 60] was
chosen as the basis for this work because of its completeness and use in the modeling
approach of Bothelo [9, 32]. Bothelo fitted Sarpkaya’s data with interpolation curves
which are used to model the vortex-induced forces on the systems considered. The

work of Bothelo is discussed more fully later.

Sarpkaya forced a circular cylinder of diameter D to oscillate transversely in a
flow channel containing a fluid of density p traveling with a fixed velocity, U. The
amplitude, A, and frequency, w, were fixed for a given run, and the force required to
impose the displacement on the cylinder was measured as a function of time.
Observation of the time histories of the force (Figure 2.2.1) indicates the contribution
of components at frequencies other than the exciting frequency when the Strouhal
frequency and exciting frequency are not close. A Fourier decomposition was made of
the measured in-phase and out-of-phase components of the force in terms of the
exciting frequency. It should be recognized that this Fourier analysis will in general
not retain the components at the Strouhal frequency, and so the beating phenomenon

sometimes observed [59, 70] cannot be modeled.

For a displacement given by

Y = A Sinwt (2.2.1)

the force is written by Sarpkaya as

F(t) = %pDU2[O

m.



- 15-

"HRWIL JHZITYWION

*R3TOO0TOA IOPUTTAD j
*9010d IITT POILTNOTRD e

*90x04 31JIT poaInsesy .

Vv

/[

A

88%°S = Q/IA

A
a/v

*09s/34 0870
¥8°0

‘XLIDOTHEA THZITVWION

“HO¥0d LJdIT
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C,

s 18 the inertia coefficient, and Oy the drag coefficient. Both coefficients are

functions of the normalized amplitude, B(=A /D) and the reduced velocity, V, defined

as
1
V, = o (2.2.3)
S—w—s—'
That is,
Crp = th(BrVr) (2'2'4)

Figures 2.2.2 and 2.2.3 show C,,; and Cy versus V, for various values of the

normalized amplitude.

Recent analysis of Sarpkaya’s results by Bothelo [9] suggests that there are some
inconsistencies in the inertia and drag coefficient data. The data points corresponding
to what is presumably one test run do not line up on the reduced velocity axis. Based
on the results from an analytical investigation, Bothelo suggests that the C,; are
indeed shifted to the right, and uses for his work an assumed zero crossing of
V.o = 5.0, rather than 5.15 as is indicated by Figure 2.2.3. Consequently, the maximum
negative value of Oy occurs when C,;, =0. This correction is assumed in the

remainder of this dissertation.

2.2.2 Response of Long Cable Systems
Until quite recently, investigations of vortex-induced vibrations of structures
were primarily conducted in a laboratory environment. Observations and

measurements were made on both rigid and flexible cylinders vibrating transversely in
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uniform cross-flows. Emphasis was based on the characteristics of the shedding
process, particularly in the region of lock-in. Forced rigid cylinders enabled the study
of the drag and inertia forces as the frequency of oscillation was varied near the
Strouhal shedding frequency. For flexible models, the relatively short test cylinders or
cables used resulted in well-separated modal frequencies, reducing the effects of modal

interaction, and enabling single-mode lock-in to be studied in some detail.

In the field, excitation of real structures near a structural natural frequency has
also demonstrated the effects of lock-in. Large amplitudes of transverse motion have
been observed, as the synchronization of the vortex shedding and the structural

vibration results in a large energy input to the structure.

Drag coefficients in the direction of the flow are increased by the transverse
oscillation of a structure. For a cylinder vibrating transversely to a uniform incident
flow, the drag amplification at lock-in has been approximated by Skop, Griffin and

Ramberg [69] as

0.65
—— = 14 1.16 [2——] (2.2.6)

where A is the amplitude of oscillation, C; the effective drag coefficient for the
vibrating cylinder, and Oy, the drag coefficient of the cylinder at rest. Subsequent
experimental work [42] confirmed the validity of Equation (2.2.6) as a means of
estimating the effective drag coefficients. Average values of C; greater thanr3.0 were

recorded for short cables vibrating in a locked-in condition.

The large increase in the drag coefficient results in large forces on the structure
parallel to the flow. These large design loads often create problems for the designer in

long cable systems.
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Based on field observations, Alexander [1] concluded that a locked-in condition and
standing wave profile apparently did not occur in a series of tests on long wires towed
in the ocean. Amplitudes of vibration generally were substantially lower than what
would be predicted by a conventional modal analysis, assuming a locked-in state. It
was noted that the shedding appeared to be progressive, producing waves which

traveled along the cable and were damped relatively quickly by the fluid.

A significant consequence of this observation is that the drag coeflicients generally
used for this type of system were probably grossly overestimated. If more reasonable
bounds on the expected amplitudes were found, the design loads for long cables could

be reduced, and a more efficient structure produced.

More recently, Kim, Vandiver and Holler [37] conducted a series of experiments on
long cables subjected to various ocean currents. This work confirmed the traveling
wave behavior and absence of lock-in for systems of this type, first observed by
Alexander. Freque;lcy spectra recorded at a number of points along the cable
indicated the contributions of excitation at many frequencies, not a single-mode lock-
in behavior. Consideration of root-mean-square responses over particular frequency
intervals also confirmed the importance of hydrodynamic damping in "localizing” the
effects of vortex shedding (i.e., vortex shedding at one point on a long cable has little

effect on the cable motion at relatively large distances from the excitation).

Kim [36] proposed the use of an infinite string formulation, and presented some
analysis based on modeling the vortex-induced forces using a random spanwise lift
coefficient. The extension of this approach to a useful design tool was not performed,
and the interaction of "active" regions (i.e., parts of the cable where vortex shedding is

forcing the cable) and "inactive" regions (where the fluid is passively resisting the
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cable motion) was not considered.

2.2.8 Effects of Sheared Flow on Vortez-Shedding Characteristics

Many investigators have studied the effects of uniform flows on cables and other
structures. Based on this work, a number of models, both empirical and theoretical,
have been proposed for the analysis of the vortex-induced vibration problem. Some of
these models are discussed in the next section. Virtually all of these models are two-
dimensional in nature, assuming a completely in-phase, monofrequency shedding of

vortices along the span.

The case of nonuniform, or, more specifically, sheared flows has not been
investigated to the same extent as the uniform flow case. In the last 15 years, a
number of studies have looked at the characteristics of the vortex shedding, and the
response of cylinders and cables in sheared flows. A comprehensive review is given in

[24].
Sheared flows are often approximated as linearly varying velocity profiles. A
"steepness parameter,” B, is defined for the incident velocity gradient as

_ _D 4dv
>

r

(2.2.7)
ef dz

where % is the velocity gradient and D is the cylinder diameter. The reference
z

velocity, V,

vef» 15 usually taken as the mean (midspan) or, sometimes, the maximum

velocity of the incident flow. In practice, for ocean or atmospheric environments, B is

small, say less than 0.03 [24].

A number of quite detailed studies of the effects of sheared flows on flexible cables

have been performed (for example, [46, 75]). For both fixed and oscillating cables, finite
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length "cells" of vortex shedding were observed to occur along the span for low enough
values of the shear parameter, . Figures 2.2.4 and 2.2.5 show examples of the cellular
structure of the vortex shedding. In both cases, # = 0.0053 and the Reynolds Number,
based on the midspan flow velocity was, Re,, = 2.96x10%. Figure 2.2.4 shows the results
for a stationary cable, and Figure 2.2.5 the results for the same cable forced to
oscillate in its first mode with an amplitude of 0.29 diameters. The parameter St,, is

the Strouhal number based on the midspan incident fluid velocity, U,,; i.e.,

Y D
St = 32T (2.2.8)

where w, is the observed frequency of vortex shedding at a particular location on the

cable. Regions of constant St,, indicate cells of shedding at a constant frequency.

The cellular structure in the stationary case is fairly uniformly distributed along
the cable span. When vibrated in its first mode, a significant region of lock-in is

apparent over the central portion of the span.

Clearly, both the vibration amplitude and the steepness of the incident velocity
profile affect the coherence of the vortex shedding along the span. This is illustrated in
Figure 2.2.6. The frequency difference which can be sustained in a shear flow clearly
increases to a maximum as the amplitude of vibration increases. Therefore, increasing

the amplitude tends to increase the coherence length.

As discussed in the preceding section, the amplitudes of vibration of long cables
have generally been observed to be lower than the single frequency, locked-in response
of shorter systems. Figure 2.2.6 suggests that, for low amplitudes, a coherence length
corresponding to a frequency difference of about 0.2 is probably a reasonable

approximation. This is discussed further in Chapter 4.
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Unfortunately, virtually all of the studies of sheared flow have been performed in
laboratories, where space limitations restrict the size of the models which can be used.
Reference to "long" cables in the context of laboratory experimentation generally
means that the models are long enough to minimize "end effects” in the expériments.
"Long,” as discussed Section 2.2.2, refers to systems with length-to-diameter ratios of
order 10* or more. While more work is clearly needed to understand the effects of
sheared flows on cable systems with these high length-to-diameter ratios, the

observations briefly outlined above give some guidance in the modeling techniques
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employed in Chapter 4.
2.8 Modeling Vortez-Induced Vibration

2.8.1 Analytical Models

Based on a series of experiments in which a cylinder was oscillated transversely
in a flow, Bishop and Hassan [4] observed that the response could be qualitatively
described by means of a nonlinear, self-excited fluid oscillator. This idea was later
developed by Hartlen and Currie [27], who proposed the lift-oscillator model. This
model assumed that the lift coefficient, describing the force transverse to the flow,
could be represented by the Van der Pol equation. By performing a curve fit of
observed data with response diagrams for the Van der Pol oscillator, they were able to
confirm that Bishop and Hassan’s idea was indeed a valid way to approach the
problem. The lift-oscillator model has been more recently extended by Skop and

Griffin [67, 68], who refined the method of parameter selection.

A major drawback of the above described approaches is that the fluid model is
somewhat arbitrarily derived, based ‘on qualitative observations, then made to
produce a "best fit" of the available data. Marris [40] made the first attempt to
motivate the use of the Van der Pol equation based on a potential flow analysis of an
analogous case: a rotating cylinder in a constant flow. In 1974, Iwan and Blevins [28]
developed the wake-oscillator model, which derived a fluid oscillator representation
based on first principles. From consideration of the average transverse momentum in
a control volume around a cylinder in a constant flow, it was shown that the fluid
could be approximately represented by a hidden flow variable, z, which satisfied the
Van der Pol equation. Parameters for the model were extracted from experimental

data by considering special cases of the solution (for example, fixed or forced cylinders
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in a flow).

Later applications of the wake-oscillator model included spanwise flexible
structures [29], and nonuniform systems (attached masses) [30]. In 1981, Hall and
Iwan [26] corrected the omission of a buoyancy term from Blevins’ derivation,
corresponding to a uniform acceleration of the body and the fluid. In addition, Hall
studied the effects of modal interference (two modes) by comnsidering four coupled
nonlinear differential equations instead of the normal two, and was able to predict

lock-in behavior successfully.

The inertia and drag coeflicients, C,,; and Cy, as defined in Section 2.2.1, can be
derived from the models described above. Figure 2.3.1 shows these coefficients for the
model and parameters in [28] (based on experiments performed in air and water),
while Figure 2.3.2 shows the corresponding curves from [26] (model parameters based
on experiments in air only). While the details of the two sets of coefficients are
different, the general trends are the same. They may be compared with the
corresponding curves in Section 2.2.1 and the interpolation curves discussed in the

next section.

2.8.2 Empirical Models

In a new approach to the analysis of the vortex-induced vibration problem,
Iwan and Bothelo [32] proposed an analytical-empirical model using the data of
Sarpkaya as described in Section 2.2.1. Rather than formulating the problem in terms
of two coupled differential equations of motion, one linear representing the structure,
and one a nonlinear self-excited oscillator modeling the fluid, Bothelo assumed the
force to be given as in Equation 2.2.2 and the displacement to be sinusoidal at the

Strouhal frequency or the exciting frequency, depending on the model. This results in a
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pair of nonlinear algebraic equations, rather than differential equations.

Bothelo proposed two distinct models: a lock-in model and a non-lock-in model. A

synopsis of each is given below.

2.8.2.1 The Lock-in Model

Consider the spring-mounted cylinder shown in Figure 2.3.3.

Spanwise Rigid

Displacement
Y(t)

Figure 2.3.3. Spring-Mounted Rigid Cylinder (from [9])
Assume a displacement of
Y = A Sinwt; (2.3.1)

then, the differential equation of motion may be written in terms of structural

parameters per unit length as
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2
2y, iy

m SS kY = F(1) (2.3.2)

where m is the mass per unit length, ¢ a viscous damping coefficient per unit length,

and k a stiffness per unit length. The applied force may be written
F(t) = %pDU?(Cpy Sinwt — Cgy Coswt] (2.3.3)

Solution of (2.3.2) and (2.3.3), assuming (2.3.1), yields a pair of nonlinear algebraic
equations which must be solved for the amplitude and frequency of response. Note

that the drag and inertia coefficients are functions of both amplitude and frequency.

To implement a solution, the drag and inertia coefficients presented by Sarpkaya
(Figures 2.2.2 and 2.2.3) were fitted with a series of interpolation curves which were
functions of both the normalized amplitude, and the reduced velocity. These curves

are shown in Figure 2.3.4.

2.3.2.2 Non-Lock-}n Model

In the previous model, the frequency of oscillation was an unknown, found
from the solution of a pair of nonlinear algebraic equations. In cases where the
Strouhal frequency is far removed from a natural frequency of the system, a different
formulation is necessary. In the absence of lock-in, the frequency of oscillation may be
taken as equal to the Strouhal frequency, w,. However, the phase of the vibration is
an unknown in this case. In the lock-in model, the relative phasing of the force and
the displacement are given by the variation of the magnitudes of the drag and inertia
coeflicients with frequency. In the non-lock-in formulation, the frequency is known, so
to enable a force balance, the displacement must shift by a constant phase relative to
the force. The phase depends on the inertia and drag coefficients corresponding to

w =w,, and the natural frequency and damping of the system. Note that Oy and
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C

h aTe still functions of the amplitude of oscillation, which is an unknown.

Proceeding in a similar way to the lock-in model, the differential equation of

motion is written as

m ‘ZZ + 72l = R (2.3.4)
where
F(t) = %pDU? Gy Sinwo,t — Cgy Cosa, (2.3.5)
with
Y = A Sin(w,t — §). (2.3.6)

The non-lock-in problem is much simpler to solve than the lock-in problem, as the
amplitude can be solved for independent of the phase, and the phase calculated

subsequently [9].

2.8.8 The Discrete-Vortex Model

The discrete-vortex model, first presented by Rosenhead in 1931 [52], is a
potentiali flow representation of the shear layers produced by flow separation from a
bluff body in a flow. Sarpkaya and Schoaff [62], presented a comprehensive study
based on the discrete-vortex model for the prediction of the flow characteristics, fluid

forces and response of a circular cylinder subjected to a uniform flow.

At sufficiently high Reynolds Number, the shear layers present in the wake of a
bluff body are quite thin, and the vorticity is confined to spiraled vortex sheets. The
discrete-vortex model subdivides the shear layer into a number of small segments, and

concentrates the vorticity into line vortice