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ABSTRACT

Extended X-ray Absorption Fine Structure ( EXAFS ) méasurements
have been performed on the Ga edge of several La-Ga metallic glasses,
using an in—lab spectrometer. The results obtained are compared with
earlier experiments on the same materials where X-ray diffraction and
isomorphous substitution were used to determine partial pair correla-
tion functions. This is, therefore, a rigorous test of the EXAFS
technique when applied to strongly disordered systems, such as metal-
lic glasses. It is found that the glass LagyGayp has a comparatively
simple local Ga enviromment and that the EXAFS for this glass can be
described very well with a single asymmetric shell of La atoms
surrounding the Ga. As the Ga concentration is increased, however, it
is found that the local Ga enviromment becomes more complicated.
Traditional methods of EXAFS analysis, based on nonlinear least
squares curve fitting, are then unable to distinguish between several
different possible local Ga enviromments. Finally a new, essentially
non-parametric, method of analyzing EXAFS data is discussed and tests
are conducted to demonstrate the circumstances under which this new

method could prove advantageous over the more traditional methods.
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1 INTRODUCTION

1.1 MOTIVATION

From the time that the early hominids first started to fashion
Acheulian tools, mankind has had an abiding interest in the structure
of the materials he uses. With the development of modern science this
interest has gome beyond such practical problems as the construction
of a better hand axe, to more esoteric questions regarding the nature
of the fundamental building blocks of matter and the way that these
are arranged inside various materials. More recently however these
questions, which had been primarily of academic interest, have become
essential to the continued development of so-called '"high technology"
industries, and an increased fundamental understanding of the
properties of materials is once again needed for the continued
improvement of our life style.

The understanding of the material properties of any solid must
start with an understanding of its atomic structure. In crystalline
materials, X-ray or neutron diffraction measurements can provide
exceptionally detailed information about the atomic structure. How-
ever materials of practical interest are rarely, if ever, perfect
crystals, and although diffraction can still provide useful informa-
tion about departures from perfect crystallinity, often simple dif-
fraction experiments fail to provide a complete structural picture.
As a consequence of this, therefore, additional structural probes may
be required in order to obtain the structural information desired.

An important class of materiale for which diffraction experiments
provide incomplete information on the atomic structure are the

metallic glasses, or more generally, amorphous metals, This thesis
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will discuss a particular structural probe which has recently been

used as a technique to compliment diffraction experiments in studies
on a number of materials, metallic glasses among them. The technique
in question is known as Extended X~ray Absorption Fine Structure (or
EXAFS) spectroscopy, and is introduced in chapter 2. The following
sections of this first chapter will introduce the reader to the field
of metallic glasses in order to provide a understanding of the types
of questions which EXAFS might be able to answer, as well as pointing
out why diffraction techniques are inadequate for answering many of

these questions.

1.2 METALLIC GLASSES

Amorphous metals are solids which have the usual metallic proper-
ties, but which possess no long range atomic periodicity, as isfound
in the more common crystalline metals. A sub-class of this type of
material is formed by the so-called metallic glasses, which are
distinguished from the broader class by the fact that they are pro-
duced by rapidly quenching an equilibrium liquid to a temperature at
which the sample becomes configurationally frozen.

The first metallic glass was produced by Duwez and co-workers
almost 25 years ago when a Au-Si alloy was "splat-quenched" on a
copper substrate(l'lx An X-ray diffraction pattern taken on the
resulting flakes of material using a Debye-Scherrer camera showed only
a broad diffuse band, rather than the sharp rings expected for a
crystalline sample. An example of the diffraction pgttern obtained
from such a material is given in figure l.l,

While a diffraction pattern such as that shown in figure 1.1
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clearly 1indicates that the sample contains no significant crystalline
domains, it does not provide a great deal of information about the
structure which is present in the sample. As a result of this lack of
detailed information early attempts to describe the structure of
metallic glasses centred on two quite different pictures. The first
of these considered the glass to be a "failed crystal", which was
composed of an assembly of very small, but well defined, micro-
crystallites. The second view, on the other hand considered the glass
to be a configurationally frozen liquid. Both of these models would
produce a diffraction pattern consistent with the broad band seen 1in
figure 1.1, although the width of the observed band puts an upper
bound on the size ( s ) of any micro-crystallites which might be

present in the sample, through the Scherrer formula(l'z):

0.9 A
1.1 x — e 2 A
( ) s A8 cos?

Using this formula, (with A@B being the measured width of the diffrac-
tion peak), diffraction patterns such as figure 1.1 place an upper
bound of 30 to 50 A on the size of the micro-crystals.

If a far more detailed diffraction pattern is taken, the inter-
ference function ( I(k) ; see section 1.3 and/or reference 1.3 ) for
the scattering event may be computed (if X-rays are used then the
effects of Compton scattering and the k dependance of the atomic form
factor must first be properly accounted for in order to accurately
compute I(k)(l“B)). The measured I(k) can then be used for a more
detailed comparison with a theoretical I(k) calculated for a given

model of the structure. Cargill performed such apn analysis of the
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I1(k) measured for amorphous Ni-P alloys and was thereby able to show
that the micro-crystalline models for the glass structure were
incompatible with the experimental results(l‘A). Additionally, from
fhe measured structure factor he was able to compute the Radial Dis-
tribution Function (or RDF) for the materials by taking the Fourier
transform of the reduced interference function (1.3) (see section 1.3
below). The resulting RDF compared favourably with that computed for
a Dense Random Packing of Hard Spheres ( or DRPHS ) model, originally
proposed for 1liquids by Bernal and his students (1.5) as shown 1in
figure 1.2. As a result of this comparison the DRPHS has been taken
as the canonical first approximation to the atomic structure of
metallic glasses. |

There are, however, several objections to a dense random packing
model for the structure of these materials. In the first place, all
metallic glasses are alloys of at least two atomic species, usually of
considerably disparate radii. This objection has been addressed more
recently by considering packings of spheres of two different sizes
(1'6), bowever certain aspects of the phenomenology of the materials
are still unanswered by such models. An example of this is related to
the wuniversal occurrence of a deep eutectic in the equilibrium alloy
phase diagram near the glass forming region of these systems. This
indicates a negative heat of mixing in the liquid alloy as compared
with the heat of mixing in competing crystalline phases, and 1is
completely ignored by models based on a random packing of hard
spheres, irrespective of the size distribution used. More recently,
the formation of apparently amorphous metallic films by the solid

state reaction of multilayer sandwiches of pure metallic elements
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indicates(1'7) that the local atomic arrangement of these materials
cannot be truly random, but rather must be, under certain circum-
stances, energetically favourable, even with respect to certain crys-
talline morphologies. Thus the chemistry of the constituent atoms in
the glass must also be important, and must be understood for any
general description of the properties of these materials.

In addition to these general objections, random packing models
also fail to predict specific results found in experiments.
Specifically, the experimentally observed density is invariably much
higher than 1is the density of any of the hard sphere packing models
proposed to this date. Also the position and relative heights of
various peaks in experimental RDF s differ somewhat from those found
in the most detailed hard sphere packing models.

The introduction of soft interatomic potentials in order to allow
relaxation of the structure obtained in a hard sphere packing has
resulted in an improvement in the agreement with experiment, although
the agreement is still not entifely satisfactory (1'3). Yet another
alternative to spherical packing models has been the so-called stereo-
chemical models. The two most prominent of these are the trigonal
prismatic model of Gaskell(l‘s) and the icosahedral microcluster model
of Briant and Burton(l‘g). The former of these suggests that the
local arrangement of atoms in the so-called metal-metalloid glasses is
dominated by a trigonal prismatic arrangement of the larger metal
atoms about the smaller metalloid atom. The motivation for this model
is the ubiquitous occurrence of such an arrangement of atoms in the
equilibrium crystal structures of the alloy systems which form this

kind of glass. The icosahedral microcluster model on the other hand
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is suggested by the fact that isolated assemblies of small numbers of
atoms have been found to exhibit an energetic preference for such an
‘arrangement. Furthermore the presence of five-fold symmetry in such a
cluster precludes the formation of a crystal based on such a struc-
tural unit. This latter concept of the frustration of the formation
of a crystalline lattice by the local atomic configuration has been
extended more recently into quite elegant and complex topological
theories of glass structure(l'lox However space does not allow the
discussion of such theories here.

One question regarding the structure of metallic glasses is not
directly addressed by any of the aforementioned topological models
(with the exception of the picture proposed by Gaskell), this being
the question alluded to earlier of how the chemically different atomic
species arrange themselves with respect to each other on whatever
topological network may be present in the material. Given the
affinity the constituent atoms generally have for each other (as
evidenced by the deep eutectics in the phase diagrams), this question
of Chemical Short Range Order ( CSRO ) is just as important as the
Topological Short Range Order ( TSRO ) discussed above in the deter-
mination of the physical properties of the material.

Indeed, it has been suggested that a number of the observed
phenomena involving the relaxation behaviour of metallic glasses could
be explained in terms of changes in the CSRO of the material(l‘llx
Specific observations are the changes in resistivity of many metallic
glasses upon annealing at temperatures below that required for spon-
taneous crystalization and the change in the lifetime observed in

positron annihilation experiments upon similar annealing treatments.
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The reversible behaviour of the Curie temperature of certain
ferromagnetic metallic glasses with various annealing treatments(ldz)
has also been suggested as evidence for changes in the local short
range order in these materials. In order to determine whether or not
these observations are in fact due to changes in the CSRO it is
necessary to have a method for measuring the degree of such order in a
given sample.

Another set of observations which appear to require some know-
ledge of the CSRO in the material for their understanding are some of
the changes seen in material properties when the composition of the
glass is varied. Specific examples of this type of effect are seen in
the resistivity of Pd-Ni-P as a function of phosphorus concentration
and the small, but abrupt, change seen in the Debye temperature of La-
Ga glasses near 24% Ga. As with the relaxation phenomena discussed
earlier it would be most advantageous to have a structural probe which
is capable of detecting and describing any changes in the local struc-
ture which might accompany these changes in material properties.

Keeping in mind that the question of whether the above described
changes are related to changes in\the chemical or topological
structure of the material, the next section addresses the problem of

how the chemical short range order may be measured.

1,3 MEASUREMENT OF CSRO
As indicated in the previous section, one of the questions which
first presents itself when a metallic glass is considered is the

presence or absence of chemical short range order in the material, and

the question of how this order may change as a function of annealing
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treatment or variation in composition of the glass. In order to
understand why it is difficult to obtain this kiﬁd of information from
diffraction experiments it is wuseful to consider the general
expression for the interference function for diffraction of X-rays by
a non-crystalline, multi-component assembly of atoms. This expression

is given in reference 1.3 as:

o]

1 . ) ,
(1.2) I(k) =1+ X Zwij (k) fq,.R (Qij (R)/Cj DO)Sln kR dR

ij o

In the above formula the quantities Dij(R) give the atomic density
of atoms of type j at a distance R from an atom of type i, and the
factors wij describe the effective contribution of pairs of type i-j
to the observed diffraction. The other variables in the expression
are the wave vector of the momentum transfer in the scattering event
( k ), the average atomic density of the sample ( Py )» and the

concentration of species j (cj). For the specific case of X-ray

diffraction the factors wij are given by the expression:

*
£ (k) £.(k)
(1.3) W (k) = c.C, e
J |<f(k)> 2

Here £,(k) is the atomic form factor for the species i.
The form given for the interference function (equation 1.2) was
chosen because the wij are approximately independent of k. For

neutron scattering an analogous expression may be given but in that

case the approximation of constant wij is much more exact.
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In order to address the question of CSRO, the quantities needed
from equation (1.2) are the pij(R)' Often it is more convenient to

introduce the so-called reduced partial pair correlation functions,

defined by the relation:

(1.4) cij (R) = 47mR (pij (R)/Cj - oo)

In analogy to these quantities, the partial reduced interference
function may be introduced in order to write the key equations in a

more compact form.

(1.5) I(k) = 1+ Zwijm 50
1]
where:

o]

fG..(R) sin kR dR
ij

o]

=

(1.6) iij(k) =

This equation makes it obvious that a single experiment is able
to provide only a complicated linear combinationm of the various par-
tial pair correlation functions, not the individual functions them-
selves. However, the same equation indicates how the individual
correlation functions may be obtained by performing several different
diffraction experiments, such that the wij vary from one experiment to
the next, while the iij(k) remain the same. Considering a binary
alloy for the moment, if three different scattering experiments are

performed then three different I(k) functions will be found. Each of

these will be given by a linear combination of the same three
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functions iij(k) ( iij(k) and iji(k) are simply related to each other
and therefore are not independent) with different weights in each
case. Provided the matrix relating these three different total inter-
ference functions to the three independent partial interference
functions is sufficiently well conditioned, this matrix may be
inverted and the iij(k) may be determined for each k. From these the
individual Gij(R)'s may be found using equation (1.6).

The best way to accomplish this deconvolution of the partial
interference functions is by performing neutron scattering experiments
on several different samples which have been identically prepared,
with the exception that the isotopic distributions of the constituent
elements used varies from sample to sample. As a result of this iso-
topic variation from one sample to the next, the various partial
correlation functions will be weighted differently in the various
samples. This type of experiment can be very expensive however, since
it requires the purchase of rather substantial amounts of isotopically
pure elements. In addition not all elements have an appropriate
selection of isoiopes with sufficiently different scattering lengths.

As an alternative to the the above mentioned technique of iso-
topic substitution it is also possible to combine neutron and X-ray
scattering experiments (although it is not possible to combine either
of these with electron diffraction (I'IZ)L. More recently the intro-
duction of synchrotron radiation sources has allowed the small changes
in X-ray form factors for photons whose energy is near that of one of
the absorption edges of the scattering atom to provide independent
diffraction experiments simply by tuning the radiation taken from the

intense synchrotron source to appropriately selected energies(ld3).
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This technique is still inm its infancy, however it holds great promise
for being quite powerful in the future, particularly as the sources
become more intense. This alternative has the distinct advantage of
being applicable to a very wide variety of materials, although its
ability to determine the enviromment of very light metalloid atoms
such as B and Si is quite limited.

A final alternative, and one that has been employed in one
series of experiments performed in this lab, is to select a number
(two or three) of atoms which are very similar chemically, but differ
quite markedly in their atomic number (and therefore in their X-ray
form factors){1+3),  This technique is called "isomorphous substitu=-
tion" and was applied to La based metallic glasses, where Au, Ga or Al
was used as the alloying element. It will be recalled from the dis~-
cussion of the previous section that one of these three alloys (La-Ga)
exhibits a marked change in the Debye temperature as the compositibn
varies around 24% Ga. The results obtained in this earlier study
which are most important for the current discussion are summarized in
table 1l.l. The relevant parameters are the composition ( x ), the
number of La atoms about each Ga ( NLa)’ and the postition and full
width at half maximum of the first peak in the Ga-La distribution

function ( Ry, and AR;, respectively ).
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TABLE 1.1

Selected results from isomorphous substitution X-ray

diffraction experiments on La based metallic glasses.

X Nia Ria LRpq

20 7.8+ 0.9  3.27 + 0.05 0.13 + 0.0l
24 9.7 + 0.9 3.22 + 0.05 0.14 + 0.01
28 9.6 + 0.9 3.25 £ 0,05 0.15 + 0,01

In all cases the values given in this table refer to quantities
seen for the local environment of the M atoms in the material, where M
is Al, Au or Ga. The full width at half maximum of the measured peak
in the partial pair distribution function is denoted by Ry, in this
table. It should be noted that in this experiment no evidence was
seen for any M-M nearest neighbours at any of the three compositions
studied ( the experiment puts an upper bound on the coordination
number of M atoms around other M atoms at 1), However, due to the
small atomic number of Ga and Al with respect to La, the information
regarding M~M coordinations comes almost exclusively from the La-Au
glasses and so it is possible that a slightly different picture pre-
vails in the other two systems.

In addition to the above noted evidence for strong chemical short
range order in these La-M glasses, table 1.1 also presents evidence
for a structural change near the composition where the anomaly in the

Debye temperature was seen., This then demonstrates that this kind of

detailed structural study can indeed provide information of the type
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which the previous section indicated might be useful for the under-
standing of various phenomena associated with metallic glasses.
HBowever, it is clear that a large amount of work is needed in order to
obtain this kind of information using diffraction techniques. The
performance of several time consuming experiments at a national
facility on numerous samples with slightly different compositions or
thermal history is a very laborious task.

As mentioned previously the technique of EXAFS spectroscopy holds
some promise for being able to provide information similar to that
obtained from multiple diffraction experiments, but hopefully
requiring somewhat less involved experimental work. The remainder of
this thesis presents a test of this technique's ability to provide
such information through the analysis of spectra collected for samples
in the La-Ga glass system. In chapter 4 the results obtained using
the EXAFS technique are compared with those given in table 1.1, How-
ever first the necessary background theory and experimental details

are outlined in the following two chapters.
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2 THEORETICAL BACKGROUND

2.1 HISTORY

The appearance of "edges" in X-ray absorption spectra has been
known at least since 1908 when Barkla and Sadler conducted experiments
using fluorescence radiation from various metals to measure the
absorption of "homogeneous X-rays" of various penetrating power (with

(2.1)

respect to Al) by certain substances These early experiments

were truly remarkable, occuring as they did some 4 years before the

discovery of X-ray diffraction in crystals by von Laue(z‘z).

Thanks largely to the simple explanation given by Bragg (2.3) for
von Laue”s discovery, the diffraction phenomenon was soon used to

perforn X-ray spectroscopy(?-4).

Naturally an early application was
to the detailed study of the energy dependence of the absorption of X~
rays. It was immediately discovered that the "absorption edges" could
be quite complicated when viewed on a fine enough scale. In particu-
lar, "secondary edges" were observed on the short wavelength (i.e.
high energy) side of the edge. Early explanations of this discovery
centred on the excitation of one or more electrons to unoccupied
"optical 1levels" as a result of the absorption event(2:5,2:6) oo
ever later experiments on Ar showed that such explanations did not

tell the whole story(2‘7).

In these experiments, as well as later
ones on metallic vapours it was discovered that the secondary struc~
ture existed only for a few tens of eV's beyond the edge at most. In
contrast to this, the secondary structure seen in some metallic solids
was known to persist up to several hundred eV from the edge. Kronig

first proposed an explanation of this more extended structure seen in

the solid state in terms of forbidden bands of electron propagation
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which would be expected along certain symmetry directions in a

crystal(z’S).

The observation of extended structure in the absorption coeffi~-
cient of molecular species, however, led a number of authors (starting
with Kronig himself in 1932(2'9)) to consider theories which would not
rely on the long range order of a crystal. These so-called short
range order (SRO) theories differ in a fundamental way from the ear-
lier explanations in that they attribute the fine structure to varia-
tions in the transition probabilities, whereas the earlier work con-
centrated on the effect of variations in the final density of states.
These SRO theories consider the final state wave function of the
photo-electron and how the presence of the coordination shell
surrounding the absorbing atom modifies this state from what it would
be for absorption by an atom isolated in free space. Until 1970 the
most detailed of the SRO theories was given by Kozlenkov(z'lo). He
considered the final state to be one which is scattered off of a
spherically averaged potential of the neighbouring atoms. This scat-
tered wave will interfere with the outgoing wave function in the
region of the initial core state, and this interference is the source
of the observed oscillations. Using this picture Kozlenkov was able

to derive the following expression for the oscillatioms.

NS
(2.1) x(k) = -Z — sin [ZkRS + 2511
]

R
s

Here the sum is over the various shells of neighbours, which
contain Ns atoms at a distance of Rs, k is the wave vector of the

photo-electron and 28 is the phase shift imposed on the photo-
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electron wave function by the potential of the absorbing atom. Using
an expression such as this Kozlenkov was able to reproduce the posi-
tion of the peaks and valleys of the fine structure measured for Cu

<metal(2’ll).

The agreement obtained for the peak positions was rea-
sonably good, however the overall shape of the calculated spectrum was
significantly different from the experimental observation.

The reason for the deficiencies of Kozlenkov's treatment lies
primarily 1in the way it deals with the scattering of the photo-elec-
tron. However more sophisticated treatments were not presented until
after 1971. In that year Sayers, Stern and Lytle had the insight to
realize that the phase shift imposed by the scattering of the photo-
electron by the atoms in the solid was nearly linear in k, and there-
fore the Fourier transform of the "EXAFS" oscillations might provide
useful information about the atomic arrangements in the solid.
Indeed, they noted that the various peaks observed in the transform
corresponded to the various shells of neighbours surrounding the
absorbing atom. With this realization, that the observation of the
phenomenon might provide useful information, came renewed interest in
the explanation of the fundamental physics involved in the absorption
event. As a result several elaborate treatments of the problem
appeared in the mid-19707s. The more salient features of these more

sophisticated treatments will be discussed in the following section.

2.2 MODERN THEORETICAL DESCRIPTION
For all cases of relevance to current experimental work in the

field of X-ray absorption, the absorption event itself may be treated
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in the dipole approximation.(z'lz) This fails to be valid only when
the binding energy of the electron being excited is so grest that
relativistic corrections are needed. At such high energies the
experiments become very difficult due to a lack of resolution and
pbhoton flux. Therefore, for the purposes of the current work it will
be assumed here that the cross section for absorption at a deep lying

shell is given by:(2'13)

(2.2) o=4m’ aw |< i| &R |f >[2 N(w)

When the absorbing atom is isolated the final state will simply be an
outgoing spherical wave lk°>, and the cross—section will be & smooth
function of k (the final state wave vector). If the absorbing atom
has one or more neighbours however, then the final state will be
modified in a manner which can be thought of as a scattering event
much as envisioned by Kozlenkov. A more rigorous treatment is to note

that the final state wave function must satisfy the Lippmann-Schwinger

equation (i.e. the integral form of the Schrodinger equation):

(2.3) |[£> = lk0> +G, T lk0>

Here G, 1is the free space propagator and T is the t-matrix describ-
ing the interaction of the propagating electron and the atoms in the
sample (including both the neighbours and the absorbing atom itself).
If this t-matrix is expanded in terms of single site sc;ttering proc-

esses then the resulting series for |f> can be inserted back into
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(2.2) to give a series expression for the cross-section. To get a

useful expression from this process requires a large amount of algebra

which will not be reproduced here, however the interested reader is
(2.14)

refered to Boland et al. for a very readable account. If all

multiple scattering terms involving more than one neighbour are ig-

nored then the end result of this algebra is the equation:

(2.4) o 3|2 }:ml (&R)) fﬁxm[%<hn>eﬁﬂﬁj+ép]
J

Here IM|Z is the dipole matrix element between the initial state and
the unmodified final state and the sum is over all neighbouring atoms.
Consequently M2 is proportional to the absorption coefficient ex-
pected for a free atom, which, as mentioned earlier, should be a
smooth function of k. If this relation between IM|Z and M, 1is used

then the above may be rewritten in a more conventional form.

U -
(2.5 x(k):= - g»ji

- Im[fj(k,ﬂ) 2T kR + 8p)

¥ N|N;,>

This last expression is very similar to the one given by Kozlen-
kov, except for the presence of the bolarization factor and the scat-
tering amplitude. Except for studies of oriented crystals using
polarized beams the polarization factor will average out, and conse-
quently this factor will play no role in the work of this thesis. The
presence of the scattering amplitude, however, requires some special
consideration. The most crucial assumption used in the derivation of

equation (2.5) is that the scattering off of the neighbouring atoms
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can be treated in an approximation where both the incident and scat-
tered waves have definite momenta (i.e. they are plane waves). This
is only a reasonable assumption for reasonably large photo-electron
momenta (say k > 3,5 A™1). Below such a value for the momen>tum the
curvature of the photo-electron wave front and the finite size of the
scattering atom must be accounted for. However, at lower momenta
other problems, not addressed in (2.5), such as many body effects and
multiple scattering become important as well. Consequently it is
common practice to simply apply (2.5) only to the high k region of the
spectrum where it is thought to be reasonably accurate. It is this
restriction to the high k regime that is responsible for the
"Extended" in the phrase "Extended X-ray Absorption Fine Structure."
There are, however, certain many body effects which must be
accounted for in real applications, even though they do not appear in
(2.5). These are the effect of relaxatioﬁ of the other "passive
electrons” on the absorbing atom, and the finite lifetime imposed on
the final photo-electron state by inelastic interactions with other
electrons. The first of these effects may be accounted for mathemati-
cally by computing the overlap integral between the states of the
passive electrons before and after the creation of the core hole.
Physically this corresponds to absorption events involving the shake-
up or shake-down of one or more of the passive electroms. If such an
event takes place the ionized electron loses coherence and therefore
such an event cannot contribute to the interference which produces the
fine structure. For this reason when calculated values are used for
[£(k,m)!, equation (2,5) invariably gives an amplitude which is 30 to

50% larger than that observed experimentally. The most common method
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for dealing with the second many~-body effect mentioned above is to
introduce a phenomenological damping term in which the photo-electron
is assigned an effective mean free path. Under this assumption the
final, useful form of the expression for the EXAFS function is:

A n 2
3(E*R))
(2.6) x(k) = -25 — 1 2R Si(k) [fj(k,n)
k R
J

.

e O

i 2kR,
sin ( RJ +26, + ¢j<k))

The sum in (2.6) is still over individual atoms, A is the phenomeno-
logical mean free path mentioned earlier and Soz(k) is the overlap
integral contribution of the passive electrons on the central atom.

As pointed out by Eisenberger and Lengeler (2.15) the mean free
path treatment is not an entirely satisfactory way of treating the
inelastic effects. This is particularly true for atoms in hard sphere
contact such as those which will be discussed in this thesis. Conse-~
quently herein the mean free path factor will be incorporated into the
two factors Soz(k) and |f(k,T)| for the remainder of this work.
Keeping this in mind the following expression wili be taken as the

starting point for all future discussions.
0
478’ :
(2.7) x(k) = - e ]fi(k,n)[ p; (k) sin (2kR + o, (k)) dR
i
)

In this equation the sum is now only over different types of atoms,
the atomic density function P,(R) has been introduced in order to
establish a connection with the earlier discussion of diffraction
expeériments in disordered solids, and (k) has been introduced to

combine 28, + ¢(k) into a single term. The most apparent simplifica-
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tion of (2.7) over the equivalent expression for diffraction (equa-
tion (1.2)) is that there is now only a single summation. This
reflects the fact that in an X-ray absorption experiment the central
atomic species is known by virtue of the experimenter”s choice of
photon energy. In addition, however, the fact that [£(k,M | varies
significantly with atomic number implies that some information about
the various P;(R)’s in the summation may be obtained even from just a
single absorption experiment. For this reason it was hoped that EXAFS
might provide a very powerful tool for the investigation of the local
structure of amorphous materials. The discussion will now turn to the
manner in which equations such as (2.6) or (2.7) are actually used in

extracting information about the material under study.

2.3 BASIC ANALYTICAL PROCEDURES

It must be realized from the outset that the discussion of the
previous section was all in terms of a single mechanism for
absorption., Naturally, in an actual experiment, any electron whose
binding energy is less than that of the incident photon will
contribute to the measured absorption coefficient. Hence, once an
absorption coefficient has been computed from the measured incident
and transmitted intensities, the first stage of the analysis must be
to isolate the absorption due only to the event discussed in section
2.2 (i.e. the resonant absorption) from all other events. To
accomplish this the absorption coefficient is typically measured from
a few hundred eV below the edge of interest, to at least several
hundred eV above that edge, as shown in figure 2,1, The pre-edge

region defines a trend for the absorption due to all non-resonant
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events, and these events are approximately eliminated in the analysis
by extrapolating this trend into the post—edge region. This is done

using a modified Victoreen functional form (2J6):

3 -4

(2.8) H =A+BE"- +CE
The original form proposed by Victoreen did not include the constant
term; however it was found necessary to incorporate such a term in
order to compensate for the arbitrary overall gain of the detection
system (see section 3.2). Using a form such as that shown above
ignores the energy dependence of the detection gain, and therefore the
extrapolation has systematic errors built into it. However the error
involved is a smooth function of photon energy and therefore will be
compensated for at a later stage of the analysis (see below).

With the resonant absorption isolated as described above, the
non-oscillatory "free atom" absorption must be removed from the
measured data, as indicated in equation (2.5). For a variety of
reasons (ranging from modification of the initial state due to
neighbouring atoms to the above mentioned systematic errors in
removing the non-resonant absorption events), it is impractical to use
a separate measurement, or tabulation, of the absorption of a
monatomic gas to define the free atom contribution to the absorption.
Consequently this contribution is derived from the measurement made on
the condensed phase sample by fitting to the measured coefficient with
a curve which has insufficient degrees of freedom to follow the fine
structure. In this work this is accomplished by using a least squares

cubic spline of 3 to 5 knots(247), starting from just above the edge
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and running up to the high E end of the data set. Typically the knots

are taken to be uniformly spaced on this interval although it was
found that the results obtained did not depend significantly on the
precise positions chosen for the knots. Other methods of fitting have
been proposed but that described above seems to offer a  very
satisfactory compromise between performance and ease of implementation
for most applications. For systems where the neighbouring atoms are
of small atomic number Boland et al.(z‘ls) have presented an alter-
native procedure which seems to perform well in spite of the added
difficulties encountered 1im such systems due to the weak scattering
and short radial distances involved. The cubic spline fit is somewhat
more easily implemented than that of Boland et al. however, and conse-
quently the former procedure has been used in this work.

The u, computed as outlined above should not be used for the
normalization of the data however. The reason for thie is the errors
encountered in the somewhat lengthy extrapolation of the Victoreen
background into the EXAFS region of the absorption coefficient. Such
errors can lead to significant error in the fall off of the resonant
absorption with energy and subsequently artificially enhance or sup-
press the high k region of the EXAFS. For this reason the param
etrized free atom cross—sections given by McMaster et al. (2.19) are
used in normalizing the difference between the measured coefficient
and the cubic spline fit. Thus the actual computation of the EXAFS

function, X , is performed according to the relation:

(2.9) x = —2
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where U, is computed from the spline fit and Uy is taken from the
McMaster compilation, appropriately scaled to match the measured edge
discontintity.

The above then defines the experimentally determined: function
which is to be analyzed on the basis of equation (2.7). Here too a
pumber of different procedﬁres have been used for extracting physical
information from the data, using this equation as a basis. The ear-
liest procedure is that initially proposed by Sayers, Sterm and Lytle,
which is simply to look at the position of the peaks in the magnitude
of the Fourier transform of the data and taking this as the position
of the given shell, shifted by an a known amount due to the presence
of the term 2(k) in the argument of the sinusoid in (2.7). Although

this method may still be found in the current literature (2.20)

, 1t is
not satisfactory since it provides no information about the number of
atoms in the shell and it does not account for a number of possible
systematic errors which will be discussed below. A more satisfactory,
and far more widely used, method is to assume a specific functional
form for the density function which is described in terms of a small
number of variable parameters. For the vast majority of EXAFS work
the form chosen is a Gaussian peak shape at the position of each of

the various shells. If such 8 form is substituted into equation (2.7)

the result may be written as:

N, 4TS’ 25 42
(2.10) (k) = -z —— [ am ] e F sin (2kR, + 5, ()
~ kRS 5
3 3

In this equation the sum is over shells of Nj identical atoms at a
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distance given by Rj. The data are then Fourier analyzed to isolate
the contribution of a specific shell of neighbours, and then the
parameters appropriate for that shell are determined from a least
squares fit. As pointed out by Lee et al. (2.21) the Fourier analysis
may be used to isolate the phase and amplitude of individual terms 1in
the sum of (2.10), in which case the parameters may be determined by a
number of linear least squares fits. This practice can run into diffi-
culties in some circumstances however, and therefore the more general
procedure of using nonlinear least squares to fit the contribution of
a given shell directly to the above form may have to be employed.

Naturally, if accurate values are to be obtained for the param-
eters defining the density function, then some knowledge of the
scattering functions must be available. This may be done using either
previous experiments on known samples, or by computing the scattering
function explicitly in some approximation which will hopefully be
valid for the material being investigated. More will be said of this
point in chapter 4. The various stages of the analysis described in
this section are outlined graphically on the following pages.

In these figures it should be noted that the data are weighted by
K3 prior to the computation of the Fourier transform. This is designed
to compensate for the k! in equation (2.10), as well as the fall off
due to Jf(k,7 )| and the damping due to disorder. Operationally the
effect is simply to increase the resolution of the transform, thereby
limiting the effects of a shell on those around it. If the effects of
a single shell are to be truly isolated in applying a window to the
transform then it is essential that some type of weighting scheme be

applied to enhance the high k region of the spectrum.
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It should also be noted that the window applied to the data

before the computation of the tramsform is not simply a rectangle, but
rather it is tapered at both its high and low k ends. This taper 1is
used to suppress the side lobe structure found on either side of the
main peaks in the Fourier spectrum. For a more complete discﬁssion of
the finer points of computing such transforms the interested reader is
referred to the power spectrum estimation section of any book on
digital signal processing (such as ref (2.22), for example). The
magnitude of the discrete Fourier transform of a "time series", such
as a weighted EXAFS spectrum, is called the periodogram of the time
series. Since this is a quantity which is used a great deal in EXAFS
analysis, a conventional notation has been developed for this
function. Therefore, throughout the remainder on this thesis the
notation ¢ (R) will be used to denote the periodogram (i.e.
estimated power spectrum) of an EXAFS spectrum which has been pre-

weighted by a factor ko.

2.4 ASYMMETRY

There have been a number of studies where analysis of EXAFS data
based on equation (2.10) has produced unphysical values for the param-
eters. Most notably Eisenberger and Brown’s experiments on Zn for
various temperatures, in which this type of amnalysis indicated a
decrease in both the number of nearest neighbours and in the radial
distance to these neighbours as the temperature was increased(2‘23).
This is in disagreement with the known behaviour of the density and
the thermal expansion coefficient with temperature. An explanation

for this anomalous behaviour was found in the asymmetric nature of the
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distribution caused by anharmonicity in the pair potential of the
solid., 1If the Fourier transform of a distribution such as that shown
in figure 2.6 is considered then it becomes clear that the long tail
is produced by comparatively low frequency Fourier components. There-
fore, since the distribution function and measured EXAFS spectrum are
approximately Fourier conjugate functioms, such a tail should
influence the EXAFS primarily at low values of k. However, as has
already been discussed, the experimentally determined spectrum does
not follow equation (2.10) at low values of k. Hence the information
contained in the tail will be severely degraded in the experimental
spectrum. The actual effect that asymmetry can have on the spectrum
can best be appreciated by considering another way of rewriting equa-

tion (2.7), as first suggested by Eisenberger and Brown.

(2.11) w (k) = C(K) \/Az(k) + 82(k) sin (2KR + a(k) + Z(k))
where: A(k) = -/_f(§>+ x) sin(2kx) dx

(eo]

S(k) =[ f(—§+ x) cos(2kx) dx

"
t
5
=}

and Z(k)

Therefore the effect of modeling the EXAFS spectrum obtained from an
asymmetric distribution with a Gaussian, is equivalent to fitting to
the above expression under the assumption that A(k), and therefore
z(k), is zero. This can obviously lead to serious problems. To avoid
these problems it is easiest to assume some form for the peak shape
other than a Gaussian, one which exhibits some asymmetry. This has

been done in a number of ways, but the one which will be considered
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here is described by the equation below.

(2.12) p(R) = A (R - R)" e (R-R)/O

This form has been used in the literature for the cases n=0 and n=2.
The first of these gives a very unphysical peak shape and therefore
shall not be used in this work. The second alternative (n=2), on the
other hand, has been shown to provide a shape which is a reasonable
approximation to that seen in the first peak of the radial density

(2.24)

function of a liquid , and therefore will be used.

Using equation (2.12) with n=2 implies the following relations

for (52(k)+A2(k))1/2 and 5(k):

3
(2.13) s+ a2 < 250

(1 + (2ko)

2)3/2

$(k) = 3 tan L(2k0)

Naturally any fit based on equation (2.11) using the relations (2.13)
must still be made only on an interval starting at about 4 INLH
However fits based on these relations have been successfully applied
to EXAFS studies of disordered systems(z'ZS), and will be used in this

work.

2.5 THE THRESHOLD ENERGY

One point which has been side-stepped up to this point in the

discussion 1is the fact that all of the relations derived from the
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theory for explaining the fine structure are based on the photo-
electron wave vector, k, which is not directly measurable from the
experiment. On the other hand, the experiment naturally provides the
energy of the incident photon which is related to k through the

following relation.

(2.14) K = \j2m(E - Eo)/ﬁz

However the value of Ej is also not a quantity which can be unam-
biguously determined from experiment. Nevertheless, once a8 spectrum
bas been collected in terms of photon energy, a wave vector axis must
be constructed on the basis of the above equation for some value of Ej
if use is to be made of the equations discussed in section 2.2. Since
E, is not known precisely, the effect of using the equations of sec-
tion 2.2 with a k axis which is in error must be comsidered. First it
will be noted that if E, is in error, then the k axis will be affected
primarily at 1low k where the theory is not applicable in any case.
However, even if the functional form of the argument of the sinusoid
is not changed explicitly at all for large k, a change in that argu-
ment at low k will result in a constant phase offset at large k. In a
fitting procedure which does not explicitly take such an offset into
account, the value obtained for R Qill have to deviate somewhat from
its true value in order to compensate for the offset. In other words
an incorrect value for E, will introduce yet another conmtribution to
the nonlinear part of the sinusoid phase, a contribution which will
remain even if the effects of a(k) and ZI(k) have been properly

accounted for. Hence it is clear that some method of selecting E in
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a reasonably accurate manner must be an integral part of any attempt
to obtain accurate physical parameters from EXAFS measurements.

In an ideal case where a core state is excited in a true single
particle transition, and no unoccupied bound states exist between the
initial core level and the continuum, E, will simply be the binding
energy of the initial core state. Furthermore in this idealized case
the edge transition will have the shape of an arc-tangent function
whose inflection point appears at precisely the energy Eo (236). In
real experiments, however, unoccupied Rydberg—-type states and many
body effects will invariably distort the simple arc-tangent shape of
the edge, and consequently the inflection point of the measured edge
will rarely, if ever, coincide with the single particle continuum
threshold energy Ej (see figure 2.7). Nevertheless Boland, Halaka and
Baldeschwieler have suggested that the position of the edge may be
obtained by convolving it with a Gaussian "resolution function" of
sufficient breadth to smear out all of the sharper features related to
many body and bound state transitions.(z'ls) The key to this method
is that the inflection point of the curve resulting from the convolu-
tion of an arc-tangent with a Gaussian is at the same position as the
inflection point of the original curve itself. Consequently, if a
series of Gaussians of progressively increasing width are considered,
then the inflection point of the convolved curve should appear at a
constant position once the width is sufficient to wipe out all
features in the original curve except the underlying arc-tangent,
This method has apparently been used with success for spectra col-
lected at the edges of a number of the 3d transition metal elements.

However during the course of the present work it was found to be
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unsatisfactory when applied to the Ga edge which exhibits a strong
"white line" (due to excitation to a bound 4-p state). Figure 2.8b
displays the results of convolving the Ga edge measured for GazLa with
Gaussians of various widths. From this figure it would be tempting to
take 10.366 keV as the "isosbestic" (sic) point to which Boland
et al. refer. However, by considering the analogous edge shown in
figure 2.8a, it becomes clear that E, should be at an energy which is
higher than the position of the inflection point in the original
spectrum, whereas the point suggested by figure 2.8b is actually lower
in energy than the inflection point of the original edge! A solution
to this problem would be to go to still wider Gaussians, however soon
the convolved curves would be making very shallow angles with the
energy axis and therefore the accurate determination of their point of
intersection would be most difficult. Consequently it is the opinion
of this author that, while this method of selecting E, may be
appropriate for many edges it is impractical to apply it to edges
which show strong white lines.

Most alternative methods of selecting E,, with one exception,
rely on the assumption that I (k) (from equation (2.11)) is zero, and
that 0(k) is well known, either from theory or from experiments on
known standard samples. Under these circumstances, any nonlinearity
which remains in the difference between the measured phase function
and the known phase shift @ (k), must be due to an incorrect selection
of E,. Therefore the value of E, is changed to maké this difference a
linear function and the value which accomplishes this is taken as the
correct one. These methods must obviously fail in the case where the

distribution function is asymmetric (unless the problem has already
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been solved and the function I (k) is known!).

The final method which has been proposed in the literature is to
simply treat E  as another free parameter in the fitting procedure
(2‘21). It is argued that an artificially good fit should not be
obtained for an incorrect value of R when this procedure is used,
because E, changes the phase primarily for low k, whereas a change in
R influences the phase more as k increases. This method of selecting
E, is not as susceptible to the problems described above as the other
methods, however care should be taken to make sure that changes in E,
are not allowed to mask changes in (k) caused by differences in the

atomic distribution functions of two materials. This point will be

discussed at greater length in chapter 4.
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3 __EXPERIMENTAL PROCEDURES

3.1 SAMPLE PREPARATION

All alloys used in this thesis were produced by levitation melting
the appropriate ratio of bulk elemental material on a wéter cooled
silver‘boat in a purified Ar atmosphere. The starting materials for
the La;_.Ga, alloys were La rod (99.9% metallic purity) and Ga chips
(99.999% pure). Typically ingots of 1.5 to 2 grams were produced at a
time. Homogeneity of these ingots was ensured by remelting each
several times, breaking them open for visual inspection, then
remelting them once more. Weight loss during alloying were generally
less than 0.05%, and in all cases the compositions quoted are the
nominal ones.

Due to its highly reactive nature the La was given special
treatment. After a piece of appropriate size was cut from the parent
rod, a steel brush was used to remove most of the surface oxide. The
La was then melted on the silver boat and all slag was worked to one
end of the ingot. The slag was then removed and depressions drilled
in the ingot in order to form a boat of La. This La boat was then Ti
getter cleaned for several days by sealing it in an evacuated fused
silica tube along with some Ti strips which were heated to approxi-
mately 850 C, while the La was kept at about 200 C. The end result of
this process was a La boat with a visibly shiny metallic surface.
During alloying the Ga had to be placed on top of this La boat and
care taken to ensure that the pure Ga did not come into contact with
the silver levitation boat, since such an event would have resulted in

the formation of a Ga-Ag alloy and a ruined silver boat.
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All amorphous samples used were prepared by rapidly quenching
small droplets of molten alloy with a piston and anvil apparatus(3‘l).
The resulting samples were in the form of foils, typically l to 2 cm.
in diameter and 30 to 40 um thick. After quenching, the samples were
checked for signs of crystallinity with a Norelco vertical diffractom—
eter scanning at a rate of 1 deg per minute and using Cu K radia-
tion. Any samples showing a trace of crystalline inclusions at this
stage were discarded. All samples used in subsequent absorption
experiments were further examined, after the completion of the
absorption experiment, by step scan X-ray diffraction measurements
with a minimum of 4000 to 5000 photons collected per channel. The
results reported in chapter 4 of this work were based on saﬁples which
showed no distinct crystalline peaks in this more detailed X-ray scan
as well. Some samﬁles, bhowever, did exhibit diffraction peaks,
corresponding to Gajlag crystalline inclusions, in the more detailed
X-ray scan, even though none were detected in the previous "rough
scan." The absorption spectra for a few of these latter samples were
also analyzed in the normal way to see if this amount of a crystalline
phase would change the results obtained. It was found that the
physical oparameters obtained did not change measurably for samples
where X-ray diffraction showed a clear indication of about 5 to 10%
crystals in the amorphous matrix. This lends support to the conclu-
sions that the physical parameters quoted in chapter 4 are those of
the amorphous material and are not influenced by any possible micro-
crystalline inclusions present below the detectable level of the X-~ray
diffraction test.

The as-quenched foils were too thick to be appropriate for
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absorption experiments and therefore had to be thinned. This was

accomplished by mechanical polishing with diamond pastes of 1/4 to

6 um grit size(3'2).

The samples were typically thinned to 15 to
20 ym, or about 1.5 absorption depths, representing a compromise
between the conflicting desires of optimizing the signal to noise

(3.3) and reducing the "thickness" effect 3+4),  After polishing

ratio
the samples became extremely reactive, and would visibly tarnish in a
matter of minutes if 1left in air. For this reason they were
immediately placed in a sample chamber which was subsequently purged
with He and then evacuated for the duration of the experiment. As a
result of this precaution the surface of the sample suffered no fur-
ther degradation during the course of the experiment.

Each sample was used in a total of 12 individual measurements of
the absorption coefficient in the region around the Ga K edge, each
individual scan lasting about 5 hours. These 12 scans were then
combined together in order to provide a form of signal averaging, as
well as to directly provide an estimate of the statistical errors
associated with the measurement.

The crystalline Ga,La samples were prepared by powdering a por-
tion of an ingot, produced as described above, with a tungsten carbide
mortar and pestle. GasLa is extremely brittle, making the production
of a very fine powder quite straightforward. The powder produced was
easily passed through a 400 mesh screen, indicating that the vast
majority of the powder particles were significantly smaller than the
38 ym maximum dimension passed by the screen. An optical microscope
was used to confirm the fact that most of the particles were closer to

15 or 20 um than 38yum in diameter. In order to facilitate the
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production of uniform powder samples of various thicknesses, various
quantities of GajLa powder were mixed with 30 to 50 mg of Mg0 which
acted as a filler. The resulting mixture was then pressed in a 1/2
inch die to a pressure of about 23,000 psi, thus producing a solid,
though fragile, disk of a thickness appropriate for X-ray absorption
measurements. These disks were then sandwiched between two pieces of
Scotch tape in order to provide a degree of mechanical integrity to
the specimen, X-ray diffraction measurements on the final powder
compact confirmed that neither the powdering nor the pressing induced
any measurable change in the structure or the lattice constants of the

material away from the published values.

3.2 DESCRIPTION OF THE EQUIPMENT

All absorption spectra were collected using a prototype "in-lab"

X-ray spectrometer designed by Art Williams(3‘sh

This spectrometer
is displayed schematically in figure 3.1 which is taken directly from
reference 3.5. The key feature of this spectrometer, although it is
by no means unique to this design, is the use of a Johansson geometry
focussing crystal monochromator. The use of this crystal may best be
described with reference to the diagram in figure 3.2, where the
optics are described in two dimensions.

The crystal is ground and bent in such a way that its surface
defines a circle of radius R, while its crystal planes 1lie on circles
of radius 2R (neglecting for the moment any variation from one plane
to the next). The circle of radius R is called the Rowland circle (in

analogy with the terminology used in the applications of curved dif-

fraction gratings) and both the source (S) and the detector slit (D)
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Figure 3.2 Ray diagram for a Johansson geometry focussing

monochromator.
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must lie on this same circle. It is a simple geometrical exercise to
show that any angle‘§53 inscribed in the Rowland circle will be the
same, irrespective of the position of the point P. Hence all rays
driginating from S and scattering from the crystal surface to the
point D will be scattered through the same angle. If the planes in
the crystal can be configured in such a way as to ensure that these
same rays make an angle with the crystal planes which does not depend
on the position of incidence along the crystal, then it is clear that
all rays of a given energy (specified by the angle of incidence with
respect to the crystal planes) emitted from S and hitting the crystal,
will be focussed onto the point D (assuming that the arcs SX and XD
are held equal so that the Bragg angle is simply 1/2 of the scattering
angle). It is not difficult to show that this latter condition is
satisfied by having the crystal planes lie on circles of radius 2R,
and that in this configuration the relevant Bragg angle for reflection
is given by 1/4 of the angle SXD.

The great advantage of this type of monochromator, over a simple
flat crystal monochromator, is that it allows a very large solid angle
to be accepted from the source with only a marginal sacrifice in
resolution. Thus this device has been used to deliver on the order of
3x10° photons per second into a 10 eV window at about 9 keV, using a
fixed anode Mo X-ray tube operating at 20 kV and 24 mA., Although the
fluxes and resolution of current synchrotron sources are significantly
superior to that obtained here, the fact that this spectrometer can be
used as a dedicated facility means that such spectrometers may have a

definite place in research labs where X-ray absorption may be desired

as a standard tool.



-50-

Referring once again to figure 3.1 it is seen that the energy
focussed by the crystal may easily be changed using a single stepping
motor motion to change the angle gi‘. The mechanical linkage shown
ensures that the two angles SX and po) are kept equal, allowing the
focussing condition to be maintained over a large angular range (Bragg
angles between 9 and 61 degrees can be easily accommodated).

The spectrometer used has a Rowland circle radius of 40 cm and an
angular resolution of approximately 2.7 prad (or .6 arc sec) in the
drive. Play in the mechanical linkage as well as in the drive itself,
results in a backlash of approximately 6.8 mrad. However, for a given
experiment, position reproducibility is better than 20 urad. Near the
Ga K edge, where the majority of the measurements reported in this
work were taken, this corresponds to an energy setting reproducibility
of better thanl eV from one run to the next., This level of repro~-
ducibility is important if the practice of adding the results of
several runs together is to be used for signal averaging.

The spectrometer was calibrated by measuring the intensity of the
radiation provided by the X-ray tube as a functionvof energy over an
energy interval of ome or two keV. Invariably a number of character-
istic lines from the numerous impurities in the anode of the tube
would be seen in such a scan. A subset of these lines (typically the
4 to 7 most intense lines) would be identified and their known angular
positions computed from tabulated values for their energies(3‘6).
Since the drive is linear in the Bragg angle a linear least squares
fit was then made to the above set of angles and an energy scale
corresponding to this angular scale was computed. This done, the

deviations of the drive from perfect linearity were investigated by
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recording the position of all lines in the scan with respect to the
newly constructed energy axis. In no case was the energy of a line
computed from this procedure fourd to differ by more than 2 eV from
the published energy for that line. 1In fact most deviations were less
than 1 eV except for limes which were very faint. A sample calibra-
tion scan used for measurements of Ga edges is shown in figure 3.3.
The spectrometer aligmment is a comparatively straightforward,
though rather time consuming procedure. First an aligoment jig 1is
used to set the detection stage at a distance of 40.0 cm, and the
crystal and anode postions at a distance of about 40 cm., from the
central axis of the machine. The in-plane tilt angle of the crystal
is then adjusted for maximum intensity at the detector, for a given
energy setting, say Ej. A different energy, E; , is then selected
(typically one which differs by about 150,000 motor steps from E;) and
the position of the source (along its arm from the spectrometer axis)
is varied until the maximum intensity is seen at the detector. If a
change in the source position of 0S5 is required then & new source
position 1is selected as -0.3 §S from the setting used at energy Ey.
The spectrometer 1is then reset to energy Ey and the process is re-
peated. Typically this procedure will converge after only a few
iterations, and the result is that the source and detector slit will
now be at the same distance from the spectrometer axis. Obviously the
distance between E; and E, should be increased as the aligmment im-
proves since this will increase the sensitivity of the procedure.
Equally obviously, both energies should be chosen to lie in a flat
part of the source spectrum (i.e. well away from any cparacteristic

lines).
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Energy dependence of photon flux from the Mo X-ray
tube used for measurements of Ga EXAFS, The two

groups of lines are W LB and W L_, and the Ga

Y
edge occurs at an energy of about 10.37 keV,
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After the source and detector positions have been determined as
outlined above, the position of the crystal should be varied to opti-
mize the intensity or resolution, depending on the requirements of the
particular experiment. The final stage of the alignment requires
moving the source, crystal, and detector stages im or out uniformly in
case the crystal used has a radius which differs slightly from the
specified 40.00 cm. This last stage of alignment is the most time
consuming and has generally been found to produce only slight dif-
ferences in the spectrometer performance.

The source used in this work was a standard 1.8 kW Mo anode sealed
X-ray tube with a long fine focus beam geometry (focal spot 0.4x12
mn) . The average take-off angle was roughly 6° which gives a pro-
jected source width of omly 0.04mm. The detector slits were typically
0.075 to 0.15 mm wide, and using this information a rough estimate of
the energy resolution of the spectrometer may be computed from the

following relation, which was given by Knapp (3.7 for a similar

spectrometer.
3.2 2 2\2 1%
E'D 2 hcfin? l/h
(3.1) AE=——-—-—-—[(W syl 4 <____> A+_<___) }
2RH2C2 s d udE A\ 8R
2.2 2.2
_ 2 _ 4d7E” - h7CT
where A = cos GB = 35 ~ 1.0

4d°E

Here W, and W, are the widths of the source and the detector slits
respectively. H is the height of the source and the detector slits
which is taken to be the same in both cases, R 1is the Rowland circle
radius, eB is the Bragg angle, and u is the absorption coefficient of

the crystal. Figure 3.4 displays the results of this calculation,
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Figure 3.4 Energy resolution of the spectrometer. Solid curves
give the result of calculations based on equation
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along with the actual resolution obtained, for the various crystals
used. As should be expected the resolution obtained is significantly
worse than that predicted on the basis of equation 3.1, since this
equation is based on an ideal geometry which ignores all crystal
imperfections and errors in the aligmment of the spectrometer.

The resclution of the spectrometer was measured by carefully
recording the profiles of the characteristic lines from the impurities
in the anode. Assuming that these profiles are due to a Lorentzian
line of known width, convolved with a Gaussian resolution function of
unknown width, the resolution was determined by varying the width of
the Gaussian until a best fit was obtained(3’8).

The crystals used in this thesis are listed below in table 3.1,
along with their useful energy ranges, when used in first order. This
useful range is determined by such considerations as available {flux,
and resolution, the minimum anode potential available for the source
(15 kV), and the physical constraints of the spectrometer”s angular

range.

IABLE 3.1

Useful energy range for the crystals used in this work

CRYSTAL Eoin B ox
Ge(111) 6.0 keV 10.5 keV
s1(400) 10.0 keV 14 keV (7)

It is seen that the Ge(lll) crystal is appropriate for measurements on
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3d transition element compounds, and indeed this crystal has been used
for measurements of the edges of Fe, Ni and Cu. For this crystal the
lower energy limit is set both by a decreasing intensity and the 15 kV
minimum potential setting of the source. Although an ideal crystal of
this orientation has an extinct second order reflection, the distor-
tions produced by the curvature of the crystal are sufficient to allow
a very weak second order reflection to exist. The intensity of this
second order reflection is approximately 0.1% of the primary bean.
Nevertheless, this may be sufficient to cause problems in regions near
strong characteristic lines in the spectrum of the source. For this
reason it may be desirable to run the source at a potential less than
2 times the energy of interest, rather than the 3 times one might ex~
pect, if the region being investigated contains some characteristic
lines in the source spectrum. The upper limit of the energy range of
this crystal is set primarily by the rapidly decreasing energy
resolution at energies near 10 keV.

The Si(400) crystal has been used successfully for measurements at
the Ga K edge (10.4 keV), but could not be used at energies less than
this due to insufficient flux. At higher emergies the resolution
starts to drop off due to the small absorption coefficient of Si. By
carefully limiting the vertical divergence of the beam, it may be
possible to extend the range of this crystal up to the ;dge of Br
(13.5 keV), however this has not yet been demonstrated.

The spectrometer is controlled by a prototype "black-box" based
on a 6502 microprocessor, and designed by Douglas Whiting. This con-
troller is able to record both incident and transmitted intemsities at

up to 1024 different energy settings, which may or may not be evenly
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spaced in angle. Intensity is recorded as a number which is either
equal to, or proportional to, the number of photons detected during
the channel dwell time. The recording time taken for each energy
setting may be determined by either a predetermined length of time, or
by the time it takes to accumulate a predetermined number of counts in
the transmitted beam detector. Upon completion of the experiment the
recorded data may be transferred to a host computer over a standard
RS~232 data link.

The X-rays are detected using either an ionization chamber or a
NaI(T1) scintillation detector, depending on the available flux of
photons. If the detector sees at least 5x104 photons per second then
an acceptable level of noise is obtained using an ionization chamber.
At lower fluxes the noise in the current to frequency converter used
in conjunction with the chamber (see fig 3.5) dominates the statis-
tical noise, and therefore discrete photon counting is required. The
NaI(T1l) detector is used with an Ortec model 579 "fast filter" nuclear
amplifier, With the shaping times of this amplifier set to 100 nsec
the measured dead time of the total photon counting circuit is
approximately 1.3 usec. Even at count rates of 5x10% this leads to a
dead time correction of only 6%Z and hence the useable rénges of the
two types of detectors compliment each other nicely. Naturally an
ionization chamber was always used to monitor the incident beam in-
tensity.

The ionization chambers used were constructed using 6061 aluminum
parts to limit the effect of possible fluorescence from the walls and
teflon insulation was used throughout to limit leakage currents.

Great care was taken during assembly to remove all grease from the
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inside of the detectors to keep leakage to a minimum as well.
Generally Ar was used as a fill gas as a compromise between detector
thickness and cost. The incident beam chamber was charged with suffi-
cient pressure to absorb between 20 and 40% of the beam. Under ideal
circumstances the incident chamber should only absorb about 20% of
the beam for optimal signal to noise(3'3), however, a slightly thicker
detector was sometimes needed in order to maintain a count rate of
5x10%. The ionization chambers were biased with at 235V battery and
they were connected to the current to frequency converters through
special low noise coaxial cables (amphenol 21-537) as recommended by
Spokas and Meeker(s‘g).

The current to frequency converters used with the ionization
chambers are described in figure 3.5, The 1010 ohm resistors used in
the preamplifiers for the current to frequency converters were ob~-
tained form Victoreen Nuclear and the capacitor in parallel with this
resistor uses polystyrene as a dielectric in order to provide suffi-
ciently low leakage. The Analog Devices model 310K op amps used in
the preamplifier are designed to have extremely high input impedence,
low voltage drift and low input bias current. These characteristics
are necessary since the currents beiﬁg measured are typically on the
order of pico—amps. After preamplification the signal is fed into a
variable gain amplifier and thence into a 0-10V, 1 MHz voltage
controlled oscillator (VCO). The output from the VCO is then fed
directly into the input of the controller which has TTL counters
acting as a high speed front end to the 6502 microprocessor.

When the scintillator detector was used for the transmitted beam

a single channel analyzer was required to discriminate against noise
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pulses and cosmic rays and to provide TTL compatible pulses, suitable
for processing by the microprocessor. In addition with this type of
detector, a multi-channel analyzer was used to determine the maximum
aliowed potential on the source anode. The potential used was chosen
so that no indication of a peak corresponding to a harmonic reflecticn
was seen at the minimum energy setting of the spectrometer used in the
experiment of interest.

One of the most troublesome problems encountered when measuring
EXAFS on in-lab spectrometers is the appearance of characteristic
lines in the source spectrum, and the effect these lines have on the
measured absorption coefficient. An analogous problem arising from
glitches in the monochromator output has also plagued synchrotron
users.(3'10) Although the response of the electronics used in the
ionization chamber is highly 1linear with respect to changes in
measured intensity, small offsets can lead to significant effects in
the region around a strong line in the source spectrum. In addition,
it should be noted that the appearance of a linme in the source is not
simply equivalent to an increase in source intensity! This imequi-
valence is due to the finite energy resolution of the spectrometer and
the fact that, for a given energy setting, different areas of the
sample will be sampling slightly different energies. If all portions
of the beam were treated identically this would still not present a
problem. However, invariably some portions of the beam will have
slightly different effective gains in the two detectors. These varia-
tions in effective gain could be due to such effects as variations in
sample thickness, or fluorescence off of the detector slit, sample

holder or back wall of the It ionization chamber.
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To see the result of the above discussed effect, consider the
following simplified model. Assume that the two detectors have
nominal gains GO(E) and Gt(E) respectively, and that for a given
spectrometer setting the beam is composed of the centre eneréy plus a
small amount of flux at an energy which differs from this by a small
amount (say E+0E)., Furthermore assume that the transmitted beam
detector has a slightly different effective gain for the second com~
ponent of the beam than it has for the primary component (e.g. as
would happen if a small part of the upper extremity of the sample was
slightly thinner than the rest). In what follows this difference in
effective gain is accounted for by a factor a . If M, and M, are the
measured intensities (expressed as a total number of counts in a given
time), then the measured absorption coefficient will be obtained from

the ratio:

gg ) GO(E) IO(E) + oy IO(E + &E)
Mt Gt(E) It(E) + a, It(E + &E)

(3.2)

which may be rewritten as :

lo

M GO(E) IO(E) oy IO(E + &E) o It(E + &E)
(3.3) 1+

t
M - G, (E) It(E) G, (E) I_(E) G, (E) I (E)

If the variation of the absorption coefficient with energy can be

neglected, then the above expression reduces to:

=

G1I

(3.4) Oz-i—9<1+(80«8)
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G I

t tt

IO(E + SE)
t

I (B)
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Here the explicit E dependence of the G's and I's has been suppressed,
and a new variable B =a / G ¢s been introduced for notational
convenience. The above finally implies that the measured absorption

coefficient will be:

(3.5 ( dI_ 6E G_(E)
. i (E = + - — P
Ho(E) x = u(E) x (B, - 8 L+ 55 1 +G(E)>
o] t
G _(E)
Generally GO(E) will be a smooth function of the photon energy and
t

this will not influence the experiment as such variations are removed
in the analysis (see section 2.3). However the derivative of I_ can
be significant in the region of a characteristic line, and so the
relevant equation 1is:

dIO 8E
(3.6) um(E) x = u(E) x + (Bo - Bt) -

dE Io

It is comparatively simple to limit this second term to order 1% of
the first, although reduction below this level can be quite difficult
in the vicinity of a characteristic line. However, at a sufficient
distance from the edge the variations in the absorption coefficient of
interest can also be significantly less than 1%Z of the total
absorption, and therefore_serious contamination of the data can arise
from the presence of characteristic lines in the incident spectrum.

A demonstration of this problem is given in figure 3.6. Here the
absorption coefficient of Cu was measured near the WL quartet, which

is 600 to 1000 eV above the Cu K edge. The difference between the
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various curves is the amount of lead tape placed in the peripheral

regions of the sample. The derivative shape predicted by equation 3.6

is clearly seen. Note that in some cases even comparatively weak

lines can produce sizeable effects,
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4 EXPERIMENTAL RESULTS AND ANALYSIS

4,1 La-Ga ALLOY SYSTEM

The bulk of the work for this thesis has been performed on binary
metallic alloys from the La-Ga system. The phase diagram for this
system is typical of a large number of glass forming systems and is
shown in figure 4.1. The canonical deep eutectic appears at a compo-
sition of 20 Z Ga, and, with the exception of the phase LajGa, all
crystalline compounds in the system have at least some of the consti-
tuent Ga atoms in the trigonal prisms of La atoms used by Gaskell in
his model of amorphous metallic structure. The glass forming region
of this system has been reported to extend from 16 to 28% Ga(4°2),
and the current study investigates glasses with 20, 24 and 28% Ga.
The theoretical scattering functions tabulated by Teo and Lee(4.3)
have been usgd in the analysis of the EXAFS spectra collected for
these amorphous samples. However, first a study of one of the crys-
talline compounds of this system was undertaken to determine the
function Soz(k) and an appropriate value for the threshold emergy E.

The compound Ga,La was chosen since, among those in the phase
diagram, it is the easiest to work with experimentally. This compound
has the Al,B structure which is described diagrammatically in figure
4.2. In line with what was mentioned above, the basic structural unit
of this compound is a pair of La trigonal prisms, sharing a common
face, with a Ga atom situated in each prism. In this structure each
Ga atom has three in-plane Ga neighbours as well as the six Lla
neighbours forming the trigonal prism. The Ga neighbours are at a
distance of 2,494 A, indicating a degree of covalency in the bonding

between these atoms, whereas the La atoms are at a distance of 3.331A
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Phase diagram for the La-Ga alloy system.

from reference 4.1).

(Taken
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Figure 4.2 Basic unit, and arrangement of these units, in

x-GayLla (AlB, structure).
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which is roughly the sum of the Goldschmidt radii of the two atoms.

EXAFS spectra for this material were measured on powder samples
whose preparation was described in chapter 3. The resulting spectrum
is displayed in figure 4.3 along with the window applied to the data
before computation of the Fourier transform. The wave vector axis
used in this figure was constructed with the threshold energy set
equal to 10.376 keV, which is 7 eV above the inflection point of the
measured absorption edge. Figure 4.4 displays the magnitude of the
Fourier transform obtained from the data given in figure 4.3. It is
apparent from this figure that the La peak at about 3.0 A could be
seriously contaminated by the side lobe contributions from the main Ga
peak at 2.3 A, even though the input to the transform was weighted
with k2 and a tapered window was applied to the spectrum before
computing the transform. For this reason the measurement of Soz(k)
and E, was based on the Ga shell in Gaj,la, even though the Ga EXAFS in
the glasses was expected to be dominated by La neighbours.

The contribution of the Ga shell to the measured EXAFS was iso-
lated using the window shown in figure 4.4, and the resulting band
pass filtered EXAFS spectrum is shown in figure 4,5, along with the
fit obtained for this spectrum using equation (2.10) and the scat;
tering functions of Teo and Lee(4‘3). In performing this fit the
resolution of the spectrometer was accounted for in the approximate
manner suggested by Lengeler and Eisenberger (4°4l. The selection of
optimal values for the parameters in the model used was achieved using
the general '"Variable Metric" algorithm of Fletcher and Powel1(4:3),
It was found that the fitting procedure used could easily become

trapped in local minima. Care must therefore be taken to investigate
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a large area of parameter space by systematically choosing various
initial parameter values for the search. To facilitate this it was
fourd most useful to keep the values of 0 and E  fixed during any
given fit, and to let the program find the optimal values of N and R
corresponding to the selected values of 0 and Eg. Under these
circumstances the fit was found to be far less susceptible to local
minima, and as a result the physically meaningful region of parameter
space could be searched quite efficiently by selecting a wide range of
values for o and E. An indication of the correlation between the
various parameters in the fit is also directly obtained in this type
of search. As expected for a symmetric shell there is virtually no
correlation between the width and the position of the peak, with some
correlation being noted between E0 and R, and a great deal of correla-
tion between ¢ and N. Figure 4.6 displays this correlation and the
behaviour of the error in the fit (measured as simply the sum of
squared errors for a subset of the data) as a function of ¢ and Ej.

At the time that the optimal values for the physical parameters
are determined, the data are expressed as a function of a wave vector
( k), computed with respect to a threshold energy which was selected
at an earlier stage of the analysis ( say E.). Therefore in the
optimization program a parameter $E, is used to construct a perturbed
k axis that is equivalent to an axis which would bé found from using a
value of E = E;, + SE, at that earlier stage of the analysis. The
discussion that follows will use either the notation E, or SE,
interchangeably.

The results of this procedure are summarized in table 4.1, which

appears on the following page.
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TABLE 4.1

Parameters obttained for the Ga shell of neighbours in x-GajyLa

2.7 0.086 2.485 1.0

For these results the functional used in determining the fit was:

@O = ; (fi-di)z, where the sum is over every other data point, d; .
This t;pe of decimation of the data was used in order to save computer
time and was generally found not to affect the results significantly.
It should be noted at this time that the distance given in the above
table is within 0.01 A of the known Ga-Ga distance in this material,
and the value found for N is 107 smaller than the known value of 3 for
the coordination number. These discrepancies are a reflection of the
accuracy of the Teo and Lee computations for the phase shifts and of
the many body effects mentioned in chapter 2.

As mentioned in section 2.3, it is possible to extract separately
the amplitude and phase functions for a given shell”s contribution to
an EXAFS spectrum. Figure 4.7 compares the results of performing this
extraction, using the known values of 3 and 2.494 for N and R respec-
tively, with the functions computed by Teo and Lee for a Ga-Ga pair of
atoms. The computer program used in computing the phase from an

experimental spectrum introduces an essentially arbitrary additional

term equal to a multiple of 7 , corresponding to a selected branch of
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the arctangent, and hence some multiple of 7 must in general be added

to an experimentally determined phase function before it is compared
to a given calculation. After such a term has been added, figure 4.7
displays excellent agreement between the calculated and measured
phases. As should be expected, the agreement is not as goodvfor the
amplitudes, and it is assumed that the discrepancy is entirely due to
the factor Soz(k).

Looking at the comparison of amplitudes given in figure 4.7, it is
clear that Soz(k) must be smaller at large k than it is at small Kk,
since the experimental curve falls below the theoretical one as k
increases. If the consequences of this are considered it becomes
clear that the results given in table 4.1 undoubtedly overestimate the
value for ¢ (since it is the only parameter in the fit controlling
the drop off at large k). Hence, in computing Soz(k) for future use a
value of ¢ will be chosen which is somewhat less than that given 1in
table 4.1. In fact two values were considered, 0.084 and 0.079.
Figure 4.8 displays Soz(k) curves computed assuming each of these two
values for o. The shape of the curve is very similar for both cases
but it should be noted that the curve corresponding to o =0.084
actually takes on unphysical (i.e. greater than 1) values near 6 AL,
Although the experimental error is of the same order as the amount by
which this curve exceeds the physical limit of 1, wusing this curve in
future computations would seem imprudent at best since it would
obviously result in a systematic underestimate of coordination num-
bers. Furthermore, the curve corresponding to ¢ =0.079 has a peak
value very similar to that found by Stern et al.(4’6) in measurements

on GaAs samples. Consequently this latter curve is the one that will
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be taken to define S,2(k) in the analysis that follows.

4.2 Laj_,Gay GLASSES: SINGLE SHELL MODEL

Figure 4.9 displays the spectra obtained for glasses of all 3
compositions studied. In subsequent discussion these spectra will be
referred to by using the notation x=n to indicate the Ga concentration
of the sample under consideration. Although the three curves look
very much alike it will be seen that significant differences can be
found between them, For the moment, however, the discussion will
focus only on the data for x=20,

The first thing to note in comparing the data for the amorphous
samples (figure 4.9) with that shown earlier for the crystalline
compound GajsLa is that the amplitude of the spectra for the amorphous
samples fall off much more rapidly with energy than did the spectrum
for the crystalline compound GajLa., This is a confirmation of the
inability of the micro-crystalline models to correctly describe the
structure of metallic glasses. Since EXAFS is truly a local probe of
the structure, if any significant fraction of the Ga atoms in the
sample were in identical, well-defined sites, as would occur in a
micro-crystalline picture of the structure, then the observed spectrum
should not be as strongly damped as figure 4.9 shows it to be.

" The Fourier transform of the data for this composition (computed
after the application of a k3 weighting factor) is shown in figure
4,10a. Comparing this figure to figure 4.4 it would be natural to
assume that the peak near 3.0 A indicates a shell of La neighbours
while that near 2.2 A indicates a shell of Ga neighbours, However,

this simple interpretation of the tramnsform is seen to be inadequate
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when figure 4.10b is also considered. This figure shows the transform

computed from a simulated EXAFS spectrum which was constructed
assuming only a shell of La neighbours around the absorbing Ga atom.
It is seen that the peak near 2.2 A is still present in the model even
when no Ga neighbours were included! This emphasizes the fact that
even comparatively strong peaks in the transform do not necessarily
correspond to physical structures in the sample, and therefore care
must be taken when interpreting the transform as a radial density
function.

The reason for the anomalous peak is to be found in the compli-
cated nature of the scattering functions for La, which are displayed
in figure 4.11. This type of enhanced side lobe structure has been
noted before (4’7), however earlier authors have attributed it only to
the oscillatory nature of the back-scattering amplitude of a heavy
atom (such as La). This would produce side bands in the Fourier
transform in much the same way that amplitude modulation produces side
bands in the spectrum of radio transmissions. However such modulation
should produce a symmetric side lobe structure, 1i.e. enhanced side
lobes of approximately equal size should be seen on either side of the
main peak, not just on the low R side as seen in figure 4.10. 1In fact
it is the convex nature of the nonlinearity in the scattering phase
shift for the Ga-La pair that produces the low R asymmetry in the side
lobe structure, although the oscillating nature of the back—scattering
amplitude certainly contributes to the size of the effect.

Explanations for the effect aside however, the preceding discus-
sion makes abundantly clear that if the EXAFS spectrum for this alloy

contains contributions from both La and Ga neighbours, these contribu~
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tions cannot be separately assessed by successively isolating the two

main peaks in the Fourier transform. Consequently the analysis pro-
ceeds by applying the broad window displayed in figure 4.10a and
testing whether a contribution from some Ga neighbours is needed to
adequately model the resulting band-passed EXAFS spectrum., Considera-
tion of figure 4.10 also brings out another point which has been all
but ignored in the literature. The transform displayed shows no
obvious physical structure beyond the primary peak and its low R side
band (compare figures 10a and 10b). This is obviously due to the fact
that in an amorphous material the higher order coordination shells are
much broader than are those in a crystal and as a result the contribu-
tion of these shells is damped to the point where it essentially gets
lost in the noise. Hence the primary effect of applying the window
shown in figure 4.10 is that of a band pass filter acting on noise,
rather than the explicit isolation of one main frequency band from a
set of two or three. This noise rejection action of Fourier
filtering has been completely ignored in the EXAFS literature, however
it will be seen that attention should be given to this feature when
analyzing the data,

In an earlier publication the analysis of the spectrum for x=20
was discussed, and a comparison was made between the results obtained
when three different distributions were chosen for the Ga-la

coordination shell of this glass(A'BX

Rather than repeat those
results here, this discussion will be restricted to studies based on
the peak shape which was found to be most satisfactory in that earlier

work. The shape in question is that described by equation (2.12) with

n=2, (See figure 2.6),



-84—
Since Ga is the minority constituent, and since the diffraction

experiments by Williams (see chapter 1) indicated strong chemical
ordering in these glasses, the EXAFS spectra were first analyzed under
the assumption that only La neighbours are to be found around the
absorbing Ga atom. The results of fitting such a model to the data
for x=20 are summarized in figure 4.12. In constructing the k- axis
for this spectrum E, was originally chosen to be 10.3765 keV, or
roughly 9 eV above the inflection point in the measured edge transi-
tion. As was done for the crystalline sample discussed in the pre-
vious section, the fitting proceeded by fixing the two parameters OE,
and 0 at various values and using the optimization program to find the
corresponding optimal values for N and R,. This procedure was parti-
cularly necessary for the spectrum from the amorphous samples because
of the strong correlation present between the phase and amplitude of
the expression given in equation (2.,11), Figure 4,12 displays this
correlation by showing the optimal value obtained for the fit func-
tional ¢  at various selected E,'s. Values of G&E, between -5 eV and
+5 eV were selected, and for each of these a curve giving the varia-
tion of N with o was constructed on the basis of fits performed for
various fixed 0 . At all values chosen for §E, the curve of N

vs. 0 was found to be essentially the same. The solid curve in figure
4.12 shows this N-O correlation, while the error bars along this curve
indicate the variation in the position of the curve as 6E° is allowed
to vary between -3 eV and +3 eV. For éach selected value of §E, there
naturally exists a curve showing the variation of the value of the fit
functional as O is allowed to vary. Two representative examples of

this variation are given as dashed lines in the figure ( for
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6E0= 0 eV and +3 eV). For other values of 6Eo the curve of @o Vs. 018

represented by a single point ( * ) at the position where this curve
reaches its minimum. It is seen that although the basic trend of N
vs., ¢ does mnot vary with the threshold energy, the optimal position
along this trend does vary considerably. It is also noted that if the
value of E  is chosen simply on the basis of a best fit criterion,
then an unphysically small value of 4.3 is obtained for the coordina-
tion number of the absorbing atom.

Recall from the discussion of chapter 2 that the motivation for
choosing E, on the basis of the best fit was that an artificially
good fit could not be obtained at an incorrect value of R as a result
of allowing E_  to vary. This, however, assumes a symmetrically
shaped distribution function, so that I of equation (2.11) is zero and
the correlation between N, O and E, is negligible. As seen from
equation (2.11), however, both E, and Z influence the nonlinearity
of the sinusoid phase, and consequently such correlations cannot be
neglected. Furthermore, the actual distribution of the sample consi-
dered will , in all likelihood, be slightly different from the model
assumed in the fit, and an incorrect value for E, might provide a
fortuitous cancellation of the effects of this difference. Therefore
the argument presented to support the treatment of E  as a free param-
eter in the fitting process ceases to be valid in the case where an
asymmetric peak shape is considered. For this reason the practice of
choosing E, on the basis of obtaining the best fit to a given set of
data should not be used when the system under study is modeled with an

asymmetric distribution. By the same token, the other methods of

choosing E° on the basis of linearizing the phase of the sinusoid inm
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the EXAFS expression cannot be used unless the structural problem has
already been solved so that the contribution of I may be properly
accounted for. Of the methods discussed in section 2.5 therefore,
none is suitable for the experimental data being considered im this
chapter. For this reason the remainder of the discussion in this
chapter will be based on a threshold energy of 10.377 keV (corre-
sponding to <SEO=O.5 eV in figure 4.12). This value is chosen based
on the fact that it was found to be the best value in the crystalline
standard compound.

The results obtained for a single shell fit wunder the above
assumption for the threshold energy are summarized in table 4.2 aﬁd
figure 4.13 for all three compositions studied. In obtaining these
results the data were defined only on a relatively restricted interval
in k-space (4.0 to 10.0 A"1) due to the rapidly decaying signal, and
the fit functional was the same as was used in the previous section
for Gajla. In this case using half of the data resulted in a fit to

approximately 80 points.

TABLE 4.2
Parameters obtained for a single La shell model for the Ga environ-

ment in la;_,Ga, glasses.

s o)
20 6.2 0.125 3.00 1.4
24 8.9 0.155 2.97 2.3
28 5.5 0.125 3.00 2.9

These values for the parameters were obtained using the dashed
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curve given in figure 4.8 for the function Soz(k). Roughly the same
values for the parameters were obtained if this factor was taken to be
1.0 (with the exception of the width parameter, which was always
approximately 107 larger if a constant So2 was assumed). However the
values of the fit functional invariably were larger if a constant
overlap factor was assumed.

It is clear from the above table that the £it obtained for the
LagpGagp glass is much better than that obtained for the other two
compositions, even though the noise level was less in the latter two
spectra. This implies that the local environment of the Ga atoms in
these materials does in fact change as the concentration of Ga is
increased. At this stage, however, the analysis is unable to identify
what form these changes have, although two possible explanations
immediately present themselves. First of all, it is possible that as
the concentration of Ga increases, some Ga-Ga contacts start to occur
and the inadequacy of the above fits may be related to the neglect of
such contributions to the spectrum in the model used. Altermatively,
as the concentration of Ga is increased it is possible that, beyond a
certain concentration between 20 and 24Z, the effect of more Ga is to
distort the prevailing La network in the structure, creating a conse-
quent distortion of the local La shell about each Ga. Each of these
two possibilities will be discussed in the next section,

Before proceeding on to the next section, however, a few more
words are needed about the one shell fits. Most importantly it will
be noted that the fit obtained for x=20 is not perfect, even though it
is certainly superior to that seen at the other two compositions. The

question then arises as to whether or not the errors in this fit are



_89_
due solely to the effects of noise in the original spectrum, or if the

simple single La shell model inadequately describes this glass as
well, To address this question a simulated EXAFS spectrum was con-
structed using a distribution given approximately by the pafameters
listed in table 4.2 for the x=20 data. Fifteen different noise
realizations were then added to this simulated spectrum to provide
fifteen simulated,  noisy spectra. The 1level of noise chosen
corresponded to a statistical fluctuation of .13% in a measured
absorption coefficient, which is roughly the level seen in the data
for x=20. Due to the amount of filtering and weighting that is applied
to EXAFS spectra before actual physical parameters are determined, it
is difficult to assess quantitatively the effect that noise 1in the
measured spectrum has on the results obtained. However, when the
noisy simulated spectra were processed in the same manner as were the
experimental spectra, the fits obtained indicated that a value for the
fit functional of about 1.5 + 0.5 should be expected for the given
level of noise. On this basis, therefore, it appears that the single
La shell model for the Ga enviromnment does adequately describe the
measured spectrum at the composition x=20, but certainly not for x=24
or x=28.

From figure 4.12 the expected uncertainties for the parameters N
and are *1.5 atoms and +0.02 A respectively (based on the points
where the value of the fit functional increases by 30%). Using a
similar criterion, the uncertainty in R, is +0.02 A, Although not
shown in the figure, the correlation between and R, is such that the
expected uncertainty in the position of the peak of the distribution

is slightly 1less that the 0.06 A which might be expected from the
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above discussion (recall that Rk = Ro + 20 ), However these uncer-
tainties neglect the possiblity of a systematic error which might be
‘introduced by an incorrect choice for E,. Table 4.3 lists the physi-
cal parameters found from optimal fits of various models to the three
experimental spectra shown in figure 4.13, In this table the error
intervals quoted account for the additional uncertainty introduced by

the uncertainty in the threshold energy.

4.3 TWO SHELL MODELS

As indicated above the two most logical explanations for the
failure of the single La shell model to describe the spectra measured
for the alloys at x=24 and x=28 are that either the La distribution
does not exactly follow the curve shown in figure 2.6 ( as the pre-
vious section assumed), or there are, in fact, some Ga-Ga pairs in the
glass even though none were indicated in the earlier diffraction
experiment. In the discussion which follows each of these two models
will be applied to the spectra obtained for the glasses with x=24 and
x=28,

From table 4,2 it is apparent that a single La shell model of the
Ga environment in the x=24 glass, while incomplete, does account
fairly well for the major contribution to this environment (since the
value of the fit functional is only about 50%Z larger than that
expected). For this reason the majority of the effort expended in
trying to find a better description, involved introducing a small
perturbation onto the distribution found for the 1 shell model. Thus
the first possibility mentioned above for the discrepancy in the 1

shell fit for this composition, was addressed by introducing a small
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second subshell of La near the centre of the soft high R tail in the

distribution of figure 2.6. This model will be referred to as a La
doublet and the results obtained for this model are summarized 1in
table 4.3, along with those found for the other cases discussed below.
The introduction of such a second La subshell does indeed bring the
value of the fit functional down to the region expected om the basis
of the tests with the noisy simulations. The improvement in the fit
is not particularly dramatic however, particularly considering the
fact that the number of free parameters has doubled.

In contrast to the La doublet model, the model which assumes that
some of the absorbing Ga atoms have Ga neighbours (referred to as the
Ga pair model in subsequent discussion) does result in a dramatic
improvement 1in the quality of the fit. In fact the value of the fit
functional for this model is near the lower limit of the region of
expected values, whereas the La doublet model gave a value closer to
the upper limit of this range. It must be remembered, however, that,
when noise is present in the data, a fit which produces too small a
value for the fit functional is just as suspect as one which produces
too large a value for this functional. Therefore this comparison of
the two possible models is not truly able to distinguish between the
two, even though one has produced a much "better fit". This point is
also apparent if the two fits are viewed graphically as presented in
figure 4.14. In this figure it is seen that the Ga—-Ga pair model in
fact achieves a smaller value of the fit functional primarily by
following the data more closely at bhigh k than does the La doublet
model. However since the data have been weighted by K3 the high k

region of the filtered spectrum is subject to the greatest uncer-
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tainty. In contrast to this, the 1 shell fit to the x=20 glass

(reproduced in figure 4.15 for greater clarity) is seen to follow the
data very well at low k and depart from the data somewhat at high k.

Table 4.3 does however indicate that the majority contribution to
the spectrum at x=24 is the same, regardless of which model is assumed
for the environment. In both cases the environment is dominated by
approximately 9 La atoms at a distance of about 3.28 A, The best fit
obtained using a model which allowed for Ga-Ga pairs contained only
very few of these pairs ( a coordinationvnumber of about 0.2 for Ga-
Ga). However the correlation between the width of the distribution
for these pairs and their number is so great that the value of the fit
functional increases by only 30% if a rather broad distribution of up
to 2 Ga neighbours is assumed for the absorbing Ga atom. Since the
noise simulations of the previous section indicated that a 30%
increase in the value of this functional could be expected simply on
the basis of the noise in the data, this experiment is not adequate
for an accurate measurement of the chemical short range order ( CSRO )
parameter. The uncertainties quoted in table 4.3 for this composition
reflect this fact and were found in a manner analogous to that
described above for the x=20 case.

Figure 4,16 demonstrates that extremely accurate measurements of
EXAFS spectra will have to be made if the technique is to provide a
reasonable measurement of the CSRO parameter in systems such as the
one studied here. In this figure two simulated spectra are shown. In
both cases the primary contribution to the spectrum is a shell of 9.3
La atoms just as indicated in table 4.3 for the glass at x=24., The

two spectra differ only in the Ga shell assumed in the simulation. In
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one case (dashed line) a distribution is assumed with N=0.2 but a

width of 0.24 A, whereas in the second case (solid line) the distribu-
tion has N=2.2 with a width of 0.65 A. Clearly, in order to distin-
guish between these two curves it will be necessary to measure the
spectra extremely accurately. |

The results obtained by applying the two shell models discussed
above to the spectrum for x=28 are shown graphically in figure 4.17.
For this glass both of the models considered in this section provide
an improvement over the result obtained with a single La shell fit,
just as they did for x=24. 1In this case however each model provides a
marginally inferior fit than it did for the glass at x=24, Also in
contrast to the previous case is the fact that the two models indicate
quite different values for the parameters describing the major contri-
bution of the La shell. These facts would seem to 1indicate that
neither model is accurately describing the La ;oordination of Ga at
this composition. If this is the case, it is matural to suppose that
allowing more freedom in the La shell of the model might be able to
more closely approximate the true shape of the La distribution. How~
ever, im order to do this in the present context the number of free
parameters would have to be increased to the stage where the extrac-
tion of meaningful physical information would be virtually impossible,

It 1is also possible that another model peak shape may be able to
describe the 1local La arrangement found in this glass, however,
finding the appropriate model is an impossible task in general. In
chapter 5 an alternative method of amalyzing EXAFS spectra is de-
scribed which might be able to solve this problem. However, using the

current method of analysis it appears that the only conclusion that
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Figure 4.17 Best fits to filtered EXAFS spectrum for x=28 using
two shell models. a). La doublet model b). Ga pair

model.



‘TABLE 4.3

Summary of physical parameters found for La Ga glasses using EXAFS and X-ray diffraction.
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~ can be drawn from the spectrum for this composition is that the struc-

ture of the glass changes in going from x=24 to x=28 as well as from
x=20 to x=24. The nature of the change between the former two compo-

sitions cannot be assessed on the basis of the current analysis.

4.4 COMPARISON WITH X-RAY DIFFRACTION RESULTS

The results discussed in the previous section have been
translated into a2 form suitable for comparison with the X-ray diffrac-
tion results displayed in table 1.1l. All the appropriate quantities
are listed in table 4.3 for direct comparison. The most striking
difference seen between the EXAFS and diffraction results is in the
width the two techniques give for the distribution of La atoms around
Ga atoms. The primary cause of this discrepancy is an error in the
analysis of the diffraction experiment, and the source of this error
is discussed briefly in the following paragraph.

Since no diffraction experiment can be performed to infinite
momentum transfer, experimental RDF's (as discussed in chapter 1) will
always be comprised of the true RDF convolved with an effective reso-
lution function which 1is the Fourier transform of the truncation
function applied to the experimentally obtained reduced interference
function. In obtaining the results quoted in reference 1.3 the
effects of this convolution were accounted for by simply subtracting
the width of the peak in the Fourier transform of the truncation
function from the width of the peak in the measured RDF. While the
width of the convolution of two positive definite functions (such as a
Gaussian resolution function with a Lorentzian line shape) may be

reasonably well approximated by the sum of the widths of the two
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functions, s8such a sum is a very poor approximation to the result of
the convolution of two functions which are not both positive definite.
Since the RDF shown in figure 1.2 is obviously not positive definite
the above mentioned treatment of the effects of trunmcation in the
diffraction experiment causes the quoted results to underestimate the
true width of the distribution by about 0.25 A, which is the width of
the resolution function. When this error is accounted for, the
disagreement between the two experiments on the width of the distribu-
tion is greatly reduced.

The EXAFS and X-ray diffraction results are also seen to disagree
considerably on the number of La neighbours the Ga atoms have at the
composition x=28. It has already been suggested that the models used
for analyzing the EXAFS spectrum are inadequate at this composition,
however this is based on very indirect reasoning at best. Perhaps a
more conclusive argument for the inadequacy of the models used is the
fact that the disagreement between the EXAFS result and the diffrac-
tion result 1is less in the case where the La shell is modeled with
greater flexibility. For both x=20 and x=24 the value for N based on
the EXAFS measurement is less than that given by diffraction, although
in both cases the discrepancy is within the interval of uncertainty in
the EXAFS measurement. For these 1latter two compositions the
difference 1is more 1likely due to a systematic error in E,or in a
reference function ( such as [£(k,T)]| or Soz), rather than to a
deficiency in the model.

A more detailed examination of table 4.3 indicates that the trend
seen for Ry  in the diffraction experiment is not present in the EXAFS

results, For both experiments the amount of variation seen is within
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the interval of uncertainty so perhaps a great deal of attention need
not be paid to this observation. Bowever, if the original values of
the parameters are considered (see table 4.2 for example), it is seen
that the R, parameter in the fit is significantly less for the x=24
composition than for either of the other two. Therefore this may
reflect the same feature which led to the reduced value for R at this
composition as found in the diffraction experiment. The disagreement
between the value given for the position of the peak in the La distri-
bution would then be yet another indication of the limitations of the

traditional method of analysis used in this chapter.

4,5 CONCLUSIONS

From the discussion of the previous two sections it is apparent
that EXAFS measurements can provide a description of the majority
contribution to the local environment of a specific atom in a metallic
glass. However it is slso clear that the EXAFS technique can also
fail in certain cases, and it appears most likely that the greatest
problem may be found in systems which contain distributions that are
not well described by the model used for the analysis of the spectrum.

Moreover the correlation between the width and size of the dis-
tributions used in the analysis is sufficiently strong as to make
accurate measurement of the CSRO parameter extremely difficult, if not
impossible, in cases where the contributions of the various comnsti-
tuents cannot be isolated in the Fourier filtering stage of the
analysis,

This study should not be taken as mere floccinaucinihipilifi-

cation of the EXAFS technique however. It has been shown that EXAFS
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spectra are indeed sensitive to changes in the local structure at
specific sités in materials. The precise interpretation of these
changes, however, will require extremely accurate measurements of the
absorption coefficient ( with a noise level of at most 0.03%) and the
developement of more sophisticated methods of amalysis. Preliminary
studies of one such possible alternative method are presented in the

final chapter of this thesis.
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5 FREDHOLM INVERSION OF EXAFS DATA

5.1 MATHEMATICAL BACRGROUND
As was seen 1in chapter 2, the experimentally observed EXAFS
function, X(k), due to a single shell of neighbouring atoms, may be

interpreted through the equation:

[o0]

4

(5.1) x(k) = - = fi(k,w) Si(k) d/kMR) sin [2kR + ui(k)] dr

o

Here the effects of resolution and other shells have been ignored.
Given that the particular shell of interest is generally only non-
negligible on a finite interval, the above may be effectively
rewritten as:

R,

Sg(k) fp(R) sin [2kR + ai(k)] drR

Ry

(5.2) x(k) = - %Ifi(k,w)

Traditionally, as described in chapter 2, the above expression
has been wused to obtain physical parameters by assuming some
analytical form for P(R) and computing the integral in (5.1) in closed
form. The result is a model expression for X(k) which depends on some
finite set of parameters used in defining the P(R). However, as
indicated in chapter 4, it would be desirable to have an alternative
method of analysis which would be essentially non-parametric.

Just such an alternative approach to analyzing EXAFS data has
been proposed by Babanov et al.(s'l). This latter method proceeds by
noting that (5.2) is a Fredholm integral equation of the first kind

for P(R), which can be solved numerically. However, it must be noted
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from the outset that this is by no means a trivial procedure. Indeed,
integral equations of the first kind are ome of the classic examples
of an ill-posed problem. An explanation for this may be seen quite
‘easily by comsidering Riemann”s lemma which essentially states:
For any integrable function f:

1
(5.3) lim ff(R) sin AR dR = 0

A= ®
o

From this it is seen that any solution of (5.2) may have a very
large, highly oscillatory function added to it which would only
slightly perturb the right hand side of the equation. Conversely, it
is clear that any small change in the left hand side (which for the
purposes of this discussion will be determined from experiments of
finite accuracy) could lead to large changes in the result obtained
from any exact solution to (5.2). This is precisely what is meant by
the phrase "ill-posed."

The fact that (5.2) cannot be solved exactly, however, does not
imply that an accurate estimate of the solution ( P(R)) cannot be
obtained from a given set of data (X (k)). In fact a number of
algorithms for obtaining approximate solutions to such equations
exist, and in ideal cases these approximate solutions can approach the
true solution with arbitrary accuracy(s'z).

 Equations such as (5.2) are seen in many areas of the physical
sciences, and a certain amount of terminology bhas been built up around
such problems. The problem of determining Xx(k), from a given ¢(R),
is called the "direct problem." The more difficult problem, finding

p(R) from a given X(k), is called the "inverse problem." The process
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by which p(R) is obtained from ¥ (k) is referred to as "inversion."

Babanov et al. obtain an approximate solution to (5.2) through
the regularization method of Tikhonov(5‘3x In this chapter a
slightly different approach will be presented which borrows heavily
from the geophysical literature of "Inverse Theory"(5'4x Both
methods involve minimizing some functional corresponding to the dis-
tance between the two sides of (5.2) in some norm (typically the L,
norm). In both cases some mechanism must be provided for damping out
the high frequency components of any potential solutiom., In
Tikhonov's method this is done by adding a penalty functional to the
functional being minimized, such that the penalty functional is large
for highly oscillatory functions. Thus, for example, the object may

be to minimize an expression such as the following:
(5.4) R £=-x|,4+ a|Lf],

Here K stands for the integral operator with the EXAFS kernel, o is
called the regularization parameter, and L is some linear operator
such as the identity or gradient operator. The value of the para-
meter & should be selected according to some knowledge the experi-
menter has about the inaccuracy of the left hand side of the integral
equation. However, when similar methods are used in the inversion of
Mossbauer aata, the choice of o is often left up to more subjective
criteria such as whether the p (R) obtained ( which in this case would
be a distribution of hyperfine fields) looks "reasonableJKS'S)

The method which will be discussed in detail throughout the

remainder of this chapter will be called "Singular Value Decomposi-
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tion" (or SVD) inversion, for reasons which will become clear in due
course. In this method the problems foretold by Riemann”s lemma are
controlled by expanding the function p(R) in terms of a basis of
eigenfunctions on some discrete R axis, and setting the coefficients
of the more oscillatory functions in this expansion to zero. As was
the case with @, the choice of which coefficients to set to zero can
be obtained either from the known level of noise in the original data,
or semi-arbitrarily on the basis of certain features of the solutions
obtaiped.

The first step in any inversion procedure is to obtain a discrete
algebraic equation which is equivalent to the analytic equation (5.2).
This is done by first quantizing the R and k axes, and then approxi-
mating the integral on each of the subintervals (Ri’Ri+l) with some
numerical quadrature formula. It is possible to use a relatively high
order quadrature formula if interpolation is used to provide values

for the integrand at points inside the subintervals (5'6%

However it
is generally more advantageous to use a simple formula, such as the
trapezoidal rule, and increase the fineness of the grid on the R axis
if greater atcuracy is required. The end result of this process is an

algebraic equation, which will be very over-determined in all cases of

practical interest. Such a system might appear as:

(5.5) ji Kij pj = Xy

Since this system is over-determined, however, it cannmot in

1

general be solved simply by computing Kij- and using this operator

on both sides of the above equation, as Kij may not have an inverse.
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Indeed, even if Kij'l did exist the fact that the underlying problem

(i.e. equation (5.2)) 1is ill-posed will cause Rij to be extremely
poorly conditioned, and consequently its inverse could not be computed
‘accurately. Even in the case where Kij-l does not exist, however, it
is still possible to solve (5.5) for Oj in a least squares sense, and
furthermore to do so in such a way that the components of the problem
which are causing the instabilities can be identified.

It can be proven that any real matrix, K, of rank k, may be

expressed as a product of three matrices as follows(5'7):

(5.6) K=0RVI

where, if Kis an m x n matrix, U and V are orthogonal matrices
(mxmand n xn respectively) and R is a diagonal matrix of rank
k. Furthermore, algorithms exist for the computation of such an
expansion and the diagonal elements of R are uniquely defined, non-
negative real numbers, which can be arranged in non-increasing order.
This expression for K 1is called its Singular Value Decompostion, the
diagonal elements of R are called its Singular Values and the
columns of V are called its singular vectors. Since the inversion of
an orthogonal matrix is manifestly stable, the problems encountered
when inverting K must arise solely from the poor conditioning of the

diagonal matrix R,



-109~-

At this stage, therefore, the original problem has been converted

to the approximately equivalent* problem:

(5.7) minimize |Ry - g 9 3 where y = vI

and g = uT x.

Note at this point that if (5.7) is used in conjunction with (5.6) the
minimization problem may involve as many as 50 or more variable param-
eters ( the number of points on which p(R) is to be defined).
However 1in this case the minimization is linear and consequently the
problem is far easier than the minimizations performed in chapter 4,
even though the number of parameters is considerably larger. In the
following discussion the compact notation Ry = g will be used to
represent the minimization of the L, norm of the difference between
Ry and g. From (5.7) it is seen that the solution desired, o,
may be easily obtained from the solution to the more straightforward
problem, Ry = g. Since V is orthogonal, its columns span the vector
space in which the solution vector is defined. Therefore, (5.7) can
be thought of as an equation determining the coefficients for the
expansion of the solution of (5.5) in terms of this basis. The stabi-
lity needed for inversion of the original integral -equation of
interest will come from setting some of the coefficients in this
expansion to zero. To see how this selection is to be made, consider

the expanded version of equation (5.7) given on the following page.

* .. .
By this is meant equivalent to the extent allowed by the procedures
of quantization and numerical quadrature.
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Three things should be noted about this equation:
1). If R has rank k <n, then elements yy,j... y, are
completely undetermined

2). The L, norm difference between the two sides of

m
(5.8) is at least Z‘gi 2,
i=k+1

3). The minimum norm of this difference is obtained if

the y; are chosen according to y; = g; / Ry

for i=l, . . . k.

From these three points‘it is clear that, if Rk+1""Ru are zero,
then the elements y; i=k+l,... n, will be completely undetermined, and
therefore the solution will not be unique. It must be remembered
however that the above calculations are being performed on a computer,
starting with data of finite accuracy, so that the meaning of "zero"
must be defined.

In most practical cases encountered none of the singular values
will be identically zero, or even zero to within the precision of the
computer being used. However, often R; (the largest singular value by
convention) may be five or six orders of magnitude greater than R,

(the smallest), and it will be recalled that the ratio of these two
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quantities defines the condition number for the diagonmal matrix R.
Furthermore, as indicated in the preceding discussion, it is the size
of this condition number which is at the heart of the problem. Conse-
‘quently, it is reasonable to question whether these smaller elements
should be kept as non-zero, particularly when some minor perturbation
of the problem could cause some of them to be zero anyway.

Based on the above discussion, consider what would happern if some
of the smaller singular values were in fact zero, since they might
well have been so under a slightly different set of circumstances.
First, as noted above, any solution would then be non-unique. This,
however, may not be a8 serious problem since the unique solution to the
full rank problem is of no practical use. To get around this non-
uniqueness of the solution to least squares problems it is conven-
tional to take the minimum norm solution (i.e. that unique solution
which minimizes |y |, as well as the residual norm). By examining
equation (5.8) it is clear that this corresponds to setting y; = 0 for
all i for which R; = 0. For the problem being discussed here this
choice has an advantage in addition to simply providing uniqueness,
for it is found empirically that the singular vectors corresponding
to the smallest singular values tend to be the most oscillatory.
Hence setting the undetermined y; to zero corresponds to eliminating
the most oscillatory components of the solution.

The number of singular values which are to be treated as non-zero
is ‘called the pseudo-rank of the problem (denoted kp), and for any
given problem its value depends on a such factors as the noise in the
data and the precision of the computer used to perform the calcula-

tions. Therefore some procedure must be applied to select the appro-
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priate pseudo-rank, since it cannot be known a priori for any given
problem. As mentioned earlier ome choice for the pseudo~rank (kp)
would be based on having the residual norm equal to that expected on
the basis of the noise. However, even if no knowledge of the noise
level 1is assumed a reasonable selection may still be ©possible. As
increasingly large kp are considered the residual norm will decrease
while the norm of the solution will increase. Typically, beyond a
certain point, increasing kp will provide only a marginal decrease in
the residual norm and this will be obtained only at the expense of a
very large increase in the norm of the solution. Such a large norm
for the solution would be indicative of the fact that some highly
oscillatory components have been introduced into the solution, and
therefore a smaller kp should be considered. Reference 5.7 should be
consulted for a more detailed discussion on the selection of the
pseudo-rank.

Implementing these ideas for the case of simulated EXAFS spectra
yields results such as that shown in figure 5.1. In this figure the
solid line represents a density function which was used to construct
an EXAFS spectrum on the basis of equation 5.2, ﬁsing the scattering
functions corresponding to Ga-Ga pairs. The dashed line represents
the results of applying the inversion procedure described above. In
this case kp was taken to be 10. For this case the spectrum was
simulated without noise (at least none beyond that inherent due to
computational error) using a symmetrically shaped shell of La atoms
around an absorbing Ga atom. The X (k) was defined on & - 15 A"! and

70 data points within this interval were used as input to the inver-

sion routine after first weighting the data by a factor of k3. The
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Figure 5.1  SVD inversion for a symmetric distribution. Solid
line gives the distribution used in computing the
simulated spectrum. Dashed line gives the SVD

inversion of that spectrum.
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output of the inversion was defined on 30 points between 2.9 and 4.3

A, kp was taken to be 9, and the trapezoidal rule was used in the
construction of the algebraic equation (5.5). It is clear that the
method ﬁrovides a reasonable description of the input distribution in
this ideal case, even though no explicit constraints were imposed on
the solution as was done by Babanov et al. However, careful observa-
tion of figure 5.1 reveals that the solution obtained does make some
excursions into the unphysical regime of negative density. This
problem is of little consequence however, particularly since the least
squares minimization can be performed under the constraint that the
solution be nonnegative (see chapter 23 of reference 5.7).

Although the results displayed in figure 5.1 are most gratifying,
it is important to note that the traditional methods of EXAFS analysis
perform adequately under such ideal circumstances as well, For this
reason it is imperative that the new method also be tested under the
more demanding circumstances brought about by asymmetric peak shapes,
noisy, truncated data sets (truncated at both low and high k) and
inexact threshold energies and scattering functions. The next section

treats these problems in greater detail,

5.2 _INVERSION IN NON-IDEAL CASES

A major concern for the purposes of this thesis is how the
analysis method presented above will handle an asymmetric peak when
the data are truncated at about 4.0 A-l. Figure 5.2 demonstrates that
this simple combination of features presents no serious problem,
although it is seen that for this problem constraining the solution to

be non-negative does help. Again no noise has been introduced in the
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Figure 5.2  SVD inversion for an asymmetric distribution.
Simulated spectrum was defined on 4.0 to 15,0 A-l.
Dotted line gives the inversion without constraints,

the dashed line gives the inversion compuyted under

non-negative comstraints,
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Figure 5.3 Result for constrained inversion of data defined

only on the restricted interval 4.0 to 10.0 AL,
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simulation used, and no filtering has been performed so the test is
still not rigorous. However, as before, the result is encouraging. A
key feature that should be pointed cut here is that much poorer
results are obtained if the inversion is performed from a data set
containing only 50 points, rather than the 70 used to produce figure
5.2a. On the other hand, no significant improvement was obtained as a
result of expanding the problem so that 150 data points were used to
determine the density function on 50 points along the same interval of
the R-axis. Thus a fairly large data set is needed, but beyond a
certain point nothing is gained by going to larger systems. Naturally
the amount of computer time required for larger systems increases
rapidly with the size of the linear system.,

When the constraint of non-negativity is imposed the question of
the selection of the pseudo-rank of the problem is solved in a
straightforward manner. When too small a kp is selected it is found
empirically that the resulting constrained least squares system has
inconsistent constraints. Generally it was found that a value of kp
which was one or two larger than this cut—-off value produced the best
results when compared with the density function use in simulating the
spectrum. For the above test a pseudo-rank of kp = 22 was used for
the constrained solution while kp = 19 was used for the unconstrained
solution. All the results reported below were based on simulations on
a smaller interval of k-space than that used above and in these cases
a value of kp = 15 or 16 was found to be appropriate. Again the
interested reader is referred to reference 5.7 for a more detailed

exposition on the selection of the pseudo-rank.

Figure 5.3 demonstrates that limiting the available data set at
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large momentum transfer also has little effect on the results

obtained., In fact the inversion obtained from a more restrictive k-
space interval is superior to that shown in figure 5.2a, due to errors
encountered in the numerical quadrature at the higher values of k.
This test, as well as all those discussed below deal with constrained
solutions,

The model distribution used in figures 5.2 and 5.3 is simply a
single shell of the type used in chapter 4, However, as discussed in
chapter 4, ome of the short-comings of the more traditional methods of
analysis is that the experimenter may be left wondering if the failure
of a given model to describe the data is due to a failure of the
physical model in general, or simply its inability to follow subtle
changes in the peak shape. Thus a real test of the possible useful-
ness of the new method would be whether or nmot it is able to pick out
such subtle differences between two possible peaks. To assess this
aspect of the problem three different model distributions were consi-
dered, as shown in figure 5.4a. The SVD inversions of the correspond-
ing EXAFS spectra are show in figure 5.4b. It is seen immediately that
the trends present among the three models are also present in the
inversions, although the detailed reproduction of the more complicated
peaks is not as true as that for the unperturbed peak (solid line in

the figure). The same pseudo-rank ( k_, = 15) was used for all three

P
cases.

All tests up to this point have been conducted using simulated
EXAFS spectra to which no noise has been added. To assess the effects
that noise in the data can have on the procedure, some inversion tests

were performed on noisy simulations and the results of some of these
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Test of the sensitivity of the method to changes in
the distribution shape. a). The three different dis-
tributions used. b). Results for inversion of data
constructed from the three distributions shown in a).

Line types in the two figures correspond.
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Figure 5.5 Inversion results corresponding to the distributions
of figure 5.4a). with .03% noise added to the simu-
lated spectrum before the computation of the inver-

sion.
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tests are displayed in figure 5.5. The noise level was simulated by
adding 8 Gaussian random variable to the spectrum used for figure 5.3,
its magnitude corresponding to a 0.03% noise level in an EXAFS mea-
- surement (or 1/3 the noise level seen earlier in the Ga,, experiment
of chapter 4). To further reduce the effects of this noise the simu-
lated spectrum was passed through a band pass filter, just as
described in chapter 4, although in this case a much wider band pass
was used ( 0 to 5 A with no taper). Due to the effects of the noise
the results of the inversion exhibit sharp features which were not
present in the input distributions, however, as in figure 5.4b the
correct trend from one distribution to the next is reproduced even in
the presence of noise. Thus a certain level of noise can be present
in the data without destroying the viability of the method. Tests
conducted with noise levels closer to those present in the data con-
sidered in chapter 4, however, gave much poorer results. Therefore it
appears that the method discussed, as presented here, cannot be used
on those data.

As noted above, the filter used in creating the inversion shown in
figure 5.5 was much wider than that used on the experimental data
presented in chapter 4. This is because it was found that the inver-—
sion method encountered serious difficulties when a more restrictive
band pass window was used. As an example of this, figure 5.6b was
created from the same data as figure 5.5, except for this case the
window used to define the band pass filter had a 20% taper on each end
of 1its range. The result of this is a significant distortion of the
side lobe structure of the main peak in the transform, and a conse-

quent minor distortion of the EXAFS spectrum, as shown in figure 5.6a.
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However figure 5.6b shows that this very minor distortion of the input
data can lead to very significant differences in the results of the
inversion, and once again emphasizes the inherent instability of the
integral equation. Similar problems were encountered when the
threshold energy was chosen incorrectly (by 2 eV say), although in
this case the result actually improved if non-negative constraints
were removed from the solution. This indicates that some fraction of
the problems encountered here may be due to a deficiency in the
algorithm used to implement the non-negative constraints. Indeed the
algorithm used has been only quite recently developed and there is

reason to believe that it is inadequate for many applications(S'S).

As described in this section, therefore, SVD inversion will not
be able to fulfill the task originally envisioned. That is, it will
not be possible to use it in order to invert a spectrum which corre-
sponds to a single shell in the Fourier transform of a measured spec-
trum, after this contribution has been isolated by a narrow band pass
filter. This is due to the distortions introduced into the scattering
functions a(k) and |f(k, m)| by the filter. To fully appreciate this
fact, it must be realized that the distortion introduced by the filter
depends not only on the parameters of the window (such as its position
and shape), but also on the specific shape of the peak in the demsity
function. This is illustrated in figure 5.7, where the inversions
presented are based on data filtered with a rather narrow band pass
(1.5 to 4.0 a™1).  The scattering functions used were determined from-
an identically filtered spectrum, which had been constructed assuming
a peak shape given by the solid curve of figure 5.4. In other words

the amplitude and phase functions of the simulated, filtered spectrum
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were extracted in the same manner as was used in chapter 4 to deter-
mine Soz(k) for Gagla. Naturally, under these conditions the inver-
sion is able to extract the density function for the same spectrum
which was used to determine the scattering functions, since the dis-
tortions introduced by the filter are precisely accounted for. How
ever, 1if the same scattering functions are used to invert a spectrum
which corresponds to a slightly distorted demsity distribution the
result 1is unacceptable, as seen in figure 5.7b. Therefore the
problems demonstrated in figure 6 cannot be rectified merely by using
distorted scattering functions computed from a simulated spectrum,
since the distribution used will undoubtedly differ somewhat from the

distribution in the material under study.

5.3 HOPE FOR THE FUTURE

Although the discussion of the last section indicates that the
simple application of SVD inversion described here will not be ade-
quate for inversion of real EXAFS data, the method should not be
dismissed out of hand. In particular it has been noted that the
failure mode of the method is most often to give a distribution which
has far too large a coordination number, and/or has very sharp kinksﬁ
It may be possible to control these problems if additional constraints
are put on the solution, as has been done by Babanov for regulariza-
tion inversion. The early results presented at the start of section
5.2 are encouraging enough that the investigation of possible refine-
ments such as those mentioned could prove most beneficial. In addi-
tion the use of a more robust algorithm for the implementation of the
non-negative constraints could provide a considerable iﬁprovement over

the performance seen bere.
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APPENDIX: SOFTWARE DESCRIPTION

During the course of the research described in this thesis a
rather extensive amount of computer software was developed for the
analysis of EXAFS data. This software is designed to run on a PDP-
11/23 computer under the RT-11 operating system, and it assumes that a
VT105 graphics terminal is available. The individual programs in this
package are reasonably well documented. However an overview of how
these programs relate to each other, as well as some background on the
reasons for selecting various algorithms, should be useful for future

users. The purpose of this appendix is to provide such an overview.

I DATA STRUCTURES

The RS232 interface of the PDP-11/23 is most easily accessible
through the MINC BASIC operating system. For this reason a BASIC
program called MICROT or MICROC (depending on whether the data were
recorded in constant time or constant counts mode) is used to transfer
data from the EXAFS spectrometer controller to the host computer.
Each of these two programs create two ASCII files which consist of a
sequence of numbers, one ASCII floating point number per record. In
the following discussion such files will be referred to as 'transfer
files.,"

The EXAFS controller works with numbers in a BCD representation,
however MINC BASIC only accepts data transfers in ASCII form, and

furthermore it ignores the parity bit of the ASCII byte. To bypass
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this problem, the controller breaks each number to be sent to the
computer into a base 100 representation, and sends a8 7 bit binary
number for every numeral in this representation. In other words,
"2698642." would be sent as 2,-69,-86,-42,. Each numeral sent will be
interpreted by the MINC BASIC routine "CIN" as a legal ASCII character
(since it will lie between 0 and 128). The routine "ASC" may then be
used to convert this character into the numerical value of its ASCII
code, and this may then be used to reconstruct the original number.
The end result of all of this rather involved conversion is that the
MINC has a binary version of a number which started off in a BCD
representation in the controller. The complexity of this procedure is
necessitated by the fact that MINC BASIC ignores the most significant
bit of‘ the transfer byte, and the fact that the controller was de~
signed before this limitation of the MINC transfer system was known.

A large number of intermediate data files are generally created
during the analysis of a typical EXAFS spectrum. In order to save
space on the floppy disks used for mass storage, all of’these files
are stored in binary form rather than as ASCII files. The only excep-
tions to this rule are the "transfer files'" created by the two MINC
BASIC programs to store the raw data. All other files are created as
"unformatted" FORTRAN files with a specified record length of 6
words. The first record contains two integers and two real numbers,
as follows:

NDAT NVECT  XORIGN XSTP

All subsequent records will have 1, 2, or 3 real numbers, the specific

number present in a given file being specified by the number NVECT in
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the first record. NDAT specifies the number of records following the
first, corresponding to the number of data points represented.

For most circumstances data used by this software can be defined
on a uniformly spaced axis for the independent variable. 1In such

cases, the NDAT values for this independent variable are given by:

(A.1) X(1) = XORIGN + (I-1) * XSTP I=1,NDAT

In such a case the records 2 through NDAT+l in the file will give the
dependent variable values for up to three sets of data ( i.e. up to
three functions of the independent variable). For example, in some
files X will be a distance axis in real space and the records after
the first will define the real and imaginary parts, and the magnitude
of a Fourier transform defined on that axis.

In cases where the independent variable cannot be expressed om a
uniformly spaced grid, XSTP in the first record will be set to zero.
In this case each subsequent record will have at least two real num~
bers, the first being the value of the independent variable at some
point, and the other one or two giving the corresponding values of
the dependent variables. Naturally in this case a maximum of two
dependent variables may be given in the file, and the value of XORIGN
is arbitrary, allowing it to be used to pass some additional informa-
tion to the program using the data file.

Two programs were written to allow the user to "see" what is
inside one of these binary data files, since they cannot be written

out directly. These programs, PLTFIL and FIGFIL, allow the user to
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obtain a listing of the numbers in the file either on the terminal or
a printer. They also allow any of the dependent variables to be
plotted as a function of the independent variable, either on the
terminal or on an HP9872B four colour plotter. The contents of
different files may also be plotted on the same graph using these
programs. PLTFIL is designed to provide "quick and dirty" plots of
data, whereas FIGFIL is designed to be more flexible, allowing the
production of graphs of suitable quality for publication. Most of the
figures in this thesis were produced using FIGFIL.

Two other programs have also been included in the package for
working with these data files. These are ASC2BN and BN2ASC, which
convert to and from ASCII representations of the data contained in the
files as described above. These programs are needed for transfering
data to other computers, such as a VAX, where different word sizes
etc., would make it impossible to access the binary version of the

files directly.

11 PRELIMINARY DATA PROCESSING

Preliminary data analysis consists of all processing between the
transfer of the data to the computer (as described above) and those
programs used to determine the values of physical parameters. Five

major programs are used in performing these operations.

L2CALB
This program provides a calibration of the spectrometer in the

manner described in chapter 3. The lines used in the calibration are
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selected interactively with the user specifying the channel number to
be used, guided by a graph of the spectrum with a linear or
logarithmic vertical axis. The calibration is specified by giving the
change in the Bragg angle associated with a single step of the step-
ping motor, and an offset (the number of steps between a Bragg angle

of zero and a reading of .000000 on the spectrometer controller).

SEPAVG

This program accepts as input either a standard binary data file,
or ASCII "transfer" files. Its purpose is to either separate two
different experiments from a given transfer file, or to add several
experiments together as a form of signal averaging. The program
accounts for the mode of data collection (constant counts or comstant
time), as well as any variation in the number of steps taken per
channel during the data collection. The output from this program
consists of a standard binary data file, whose independent variable
gives the number of motor steps taken from the starting point to each
subsequent channel, and whose dependent variables are the number of
incident and transmitted beam counts., If any dead time correction is
needed for the transmitted beam channel, then it is applied in this

program.

MUISL

The purpose of this program is to convert the independent
variable from "number of steps" to photon energy, and to isolate the

resonant part of the absorption coefficient (i.e. to perform the pre-
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edge background removal). In addition it allows for the removal of
"glitches", in the rare case when such action is necessary. The
energy scale may be constructed purely on the basis of the step size
and offset found by using L2CALB on a separate measurement of the
source output, but more often a slight variation of this procedure is
used. The energy range covered in the measurement of a typical edge
will generally contain onme or two characteristic lines in the spectrum
of the tube. This is insufficient to provide a reasonable calibration
using L2CALB, however it will certainly be enough to establish a
"fixed point" on the energy axis corresponding to the known position
of one of these lines. The step size obtained from an earlier appli-
cation of L2CALB on a wider energy interval may then be combined with
this fixed point to provide a very satisfactory calibration, whose
reproducibility will be even better than the intrinsic reproducibility

provided by the spectrometer itself.

CHICLC

This program takes the isolated absorption edge provided by MUISL
and calculates the EXAFS function X according to the discussion of
chapter 2. All routines dealing with splines were taken from the
book " A PRACTICAL GUIDE TO SPLINES" written by Carl de Boer(2:17), In
addition this program provides a preliminary guess for the threshold
energy Ey, by finding the major inflection point of the measured edge
transition. The output file created defines the EXAFS function X on

a non-uniform energy axis.
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CHIANX

This program converts the independent variable to photo-electron
wave vector from photon energy, and performs the Fourier band-pass
filtering needed to isolate the contribution of various atomic
shells. The initial guess for E, computed by CHICLC is passed to this
program in the variable XORIGN, and the user may accept this value or
specify another., Alternatively the input may be given directly inm
terms of a uniformly spaced wave vector axis. This is useful when
dealing with files created by the simulation programs which will be
discussed below. The type of input used in any given case can be
flagged by the variable XSTP, since the output from CHICLC is always
non-uniform, where as all files created with respect to a wave vector
axis are uniformly spaced.

After computing the wave vector value appropriate for each data
point the program uses Lagrange interpolation to comstruct a uniformly
spaced "k" axis. The data can then be weighted and windowed in the
manner described in chapter 4 (using either k™ weighting, or weighting
with respect to a known set of scattering functions). The Fourier
transform is computed using a pruned FFT routine with the data padded
to a total of up to 4096 points. Windows of various shapes may be
applied to both the input to the transform and to the transform
itself, thus providing the flexibility needed in assessing the effects
of such procedures. The output is a band pass filtered spectrum, and
optionally, the amplitude and phase functions associated with a

specified shell of neighbours (see reference 2.21).
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EXPCRT

This program takes the amplitude and phase function output of
CHIANX and derives the specific functions [f(k,m)| and a(k) based on
user supplied values for the known parameters N, 0 , R, and FWHM (the

experimental resolution), for either a Gaussian or a Crozier-Seary

peak shape.

III CURVE FITTING

The nonlinear least squares curve fitting program used in this
thesis 1is base on the variable metric function minimization algorithm
of Fletcher and Powe11(4'5). Although this algorithm is not speci-
fically tailored for least squares minimization (as are some other
algorithms), its flexibility was useful in addressing some of the
problems encountered in fitting to EXAFS spectra.

This algorithm, like all multi-dimensional optimization
algorithms, works by choosing A certain direction in parameter space
and then minimizing along this direction. Another direction is subse-
quently chosen and minimization along this direction is performed,

etc. In the Fletcher—Powell algorithm the search direction is taken

as:
(A.2) o) o o gd) JG-1)
where S(i-l) is the gradient at the point that the one~dimensional

search along d(l) starts. Although intuition might suggest that the
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best direction to search would be along the path of steepest descent
(corresponding to taking H(i) in the above to te the identity matrix),
this is often not the case, particularly when the equipotentials of
the function being minimized are extremely oblate (as is the case for
EXAFS curve fitting). The Fletcher~Powell algorithm constructs a
sequence of positive definite "metrics” g(i) which converge toward the
inverse of the Hessian of the function being minimized (assuming that
the function is reasonably well approximated by a quadratic form in
the neighbourhood of the minimum). It is useful to note that if the
function being minimized is in fact a quadratic function of the param-
eters, and H(i) is the inverse Hessian, then a one-dimensional mini-

mization along the direction given by (A.2) will exactly minimize the

functional.
= 1 .. XeXs
(a.3) f 3 ;E;G13 x5%; + bx + ¢
1,7
i

Obviously from this, it is seen that the condition Vf = 0 is satis-

fied for that x determined by the equation:

(A.5) x=-c"1p

~ ~

where b is the gradient of the functional at x = 0. This is then the
motivation for the variable metric algorithm. For a detailed discus-
sion of the actual manner in which it is carried out the reader is

referred to the original paper by Fletcher and Powe11(4'5).
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1V _FREDHOLM INVERSION

For the most part the procedures involved with this type of
analysis have been adequately outlined in chapter 5, and the
references given therein. The implementation of the constraints on
the solution is, however, somewhat more involved, and is not fully .
described in the references.

Lawson and Hanson provide a routine "NNLS", which is designed for
minimizing a sum of squares under a non-negative constraint. However,
this routine is not designed to handle "rank deficient" problems, and
therefore it cannot be used directly on the very poorly conditioned
problems seen in chapter 5. For this reason the procedure used in
chapter 5 is to first perform the singular value decomposition on the
original problem in order to obtain a reduced problem such as (5.8).

At that point the least squares problem to be solved is of the form:

(A.ﬁ) R(m) y(m)

~

1}

g(m) y(m) = k' x x>0,

In this R(m) is an m x m diagonal matrix and m is the selected
pseudo-rank. By appropriate selection of the pseudo-rank this system
will be sufficiently well conditioned as to allow its use with a least
squares algorithm designed for full rank problems. Unfortunately,
however, at this point the constraints of non-negativity for x have
been transformed into the inequality constraint K(m) y(m) > 0. Thus

~

equation (A.6) defines a problem of the form LSI in the notation of
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Lawson and Hanson. Chapter 23 of reference 5.7 describes how this
problem may be rewritten in terms of a "Least Distance Programming"
problem, and appendix C of this reference provides a subroutine for
the solution of such problems,

This, then, is the procedure used for the computation of
constrained solutions in chapter 5. However, as pointed out in that
chapter, the algorithm used in the subroutine provided by Lawson and
Hanson, while mathematically rigorous, is not numerically robust and
therefore in future work perhaps a more robust algorithm should be

employed.
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