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Abstract 

 

The atmospheric dynamics of Jupiter is studied by the Cassini observations and 

numerical models.   

 

The multi-filter imaging data sets and the global thermal maps acquired by two 

instruments on Cassini ― the Imaging Science Subsystem (ISS) and the Cassini 

Composite Infrared Spectrometer (CIRS) during the Jupiter flyby, are utilized to study 

atmospheric activities on Jupiter including small-scale spots, the Great Red Spot (GRS), 

the Dark Oval (DO), the vertical structure of zonal winds, and wave propagation. These 

new observations enrich the library of atmospheric activities and offer more clues and 

constraints on theoretical studies.  

 

A reduced-gravity quasi-geostrophic (QG) model is combined with a parameterization of 

moist convections based on observations, to study the interaction between moist 

convection and zonal jets on Jupiter and Saturn. The numerical experiments support the 

idea that the zonal jets get their energy from moist convective events. Strong jets in 

Jupiter and Saturn, which violate the barotropic stability criterion, are reproduced by 

assuming westward flows in the deep underlying layer. Furthermore, our simulations 

suggest that the width and strength of jets on Jupiter and Saturn are controlled by the 

classical Rhines scale and a new velocity scale determined by characteristics of moist 

convection.  
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Overview 

 

Jupiter is one of the giant planets, which are characterized by their massive fluid 

envelopes. The red giant has the most dynamic atmosphere in our solar system. The 

intensely turbulent atmosphere of the planet displays almost all important dynamic 

processes ― lightning, storms, vortices, waves, clouds, jets, and so on. Some of these 

processes have a wide range of length scales. Examples include vortices ranging from the 

Great Red Spot (GRS) with a size larger than Earth to small eddies approaching the finest 

spacecraft resolution of a few tens of kilometers, waves ranging from planetary waves 

with horizontal wavelength on the order of 10,000 kilometers to gravity waves with 

wavelength on the order of 10-100 kilometers, and jets ranging from the strong equatorial 

jets with velocity larger than 100 m/s to the relatively weak high-latitude jets on the order 

of 10 m/s. Interestingly, the complicated jovian atmosphere has a simple dynamic 

environment since it has no mountain ranges, air-sea interfaces, and surface drag. The 

quasi-idealized dynamic environment means that some important dynamic principles can 

be identified more clearly, and some hypotheses in geophysical fluid dynamics can be 

tested more cleanly. This abundance of dynamic processes with a quasi-idealized 

environment make the jovian atmosphere an ideal laboratory of fluid mechanics that can 

not be achieved elsewhere.  

 

Observation and theory are two important methods to study planetary sciences including 

atmospheric dynamics. Observations can constrain theories and offer clues to new 

theories. Theories can explain observations and point to the direction of further 
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observations. Numerical modeling is a powerful tool to validate theories and augment 

classical means of validation from laboratory experiments and observations. Observation 

and numerical modeling are becoming more active in the planetary sciences due to the 

advance of spacecraft observing time and computer time.  From the first encounter with 

Jupiter by the Pioneer 10 and 11 in 1973 and 1974, to the grand tours of the twin 

Voyagers in 1979, to the 8-year (1995-2003) orbiting by the Galileo, to the Cassini’s 

flyby in 2000, observations from spacecrafts continue to progress our understanding of 

the jovian atmosphere. Specifically, the lengthy 6-month observations with numerous 

instruments and high transmission rate, a large data storage capacity, and a wide spectral 

range enabled Cassini to acquire high-quality time-lapse data during its Jupiter flyby. 

These data have enriched our knowledge of the jovian atmosphere, and more studies 

associated with the new Cassini observation are still being conducted. On the other hand, 

many numerical models have been applied to study the jovian atmospheric dynamics 

including convective storms, vortices, and multiple jets since the Voyager time. These 

models range from deep convection models (Busse, 1976; Aurnou and Olson, 2001; 

Christensen, 2001; Heimpel et al., 2005), to quasi-geostrophic (QG) models (singular 

layer or multi-lyaer) (Williams, 1979; Panetta, 1993; Marcus et al., 2000), to shallow 

water models (Dowling and Ingersoll, 1989; Cho and Polvani, 1996), to general 

circulation models (GCMs) (Dowling et al., 1998, 2006). The great success of these 

models suggests that numerical modeling plays an ever important role in the study of 

planetary sciences.  

 

In this thesis, we utilize the observations from the Cassini Jupiter flyby and numerical 
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modeling to answer some important dynamic questions associated with vortices, waves, 

convective storms, jets, and interactions between them: What are the characteristics of 

small-scale vortices, and what is their interaction with the GRS?  What are the vertical 

structures of zonal jets? Why are some planetary waves confined to specific latitudes and 

altitudes, and what are the generating mechanisms of these waves? What drives the 

jovian multiple jets, and what controls their width and strength? Why are some zonal jets 

stable even though they violate the barotropic stability criterion?  

 

We processed the multi-filter imaging data sets acquired by the Cassini Imaging Science 

Subsystem (ISS), and combined these data with the global thermal maps constructed by 

the Cassini Composite Infrared Spectrometer (CIRS), to extensively study the 

atmospheric activity on Jupiter. In chapter 1 (Li et al., 2004), we observed over 500 

compact oval spots (vortices) including convective storms based on the 70-day 

continuum-band ISS images, and measured the distributions of their locations and 

lifetimes.  The interaction between some compact oval spots and the GRS suggests a 

maintaining mechanism of the GRS.  In chapter 2 (Li et al., 2006a), the ISS multi-filter 

images are utilized to measure zonal winds at altitudes above and below the visible cloud 

deck. These are the first direct measurements of wind shear on Jupiter, confirming the 

inferences on high-altitude winds based on the thermal wind equation (Gierasch et al., 

1986; Flasar et al., 2004) and extending the measurements on low-altitude winds from 

the Galileo probe (Atkinson et al., 1998). In chapter 3 (Li et al., 2006b), the ISS images 

are combined with the vertical structures of zonal winds from Chapter 2 and the CIRS 

data, to discuss a North Equatorial Belt (NEB) wave. The 3-D zonal wind structures offer 
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a possible explanation of why the NEB wave is confined to specific latitudes and 

altitudes, and the calculation of the gradient of potential vorticity suggests that baroclinic 

instability is a possible generating mechanism of the NEB wave.   

 

Based on these new observations on convective storms from Chapter 1 and other studies 

(Little, et al., 1999; Porco et al., 2003), we suggest a new theory of the dynamic 

processes involving radiation, internal heat, convective storms, and zonal jets on Jupiter. 

In chapter 4 (Li et al., 2006c), a reduced-gravity quasi-geostrophic model, with a 

parameterization of moist convection that is based on observations, is developed to 

validate the new theory. The theory demonstrates that an “inverse cascade” of energy, 

from small-scale motions to large-scale jets, can operate even when the small-scale 

convective storms on Jupiter occupy only 0.01% of the planet’s surface area and are 

confined to latitudes where the vorticity is of one sign only. In addition, our experiments 

suggest that a velocity scale and a length scale, which are determined by characteristics 

of convective storms, control the strength and width of jets on Jupiter.  

 

In order to get a broader perspective on the dynamics of the jovian atmosphere, some 

excellent reviews on the dynamics of the jovian atmosphere (Ingersoll, 1976, 1990; 

Marcus, 1993; Dowling, 1995; Marcus et al., 2000; Williams, 2002; 2003; Ingersoll et 

al., 2004; Vasavada and Showman, 2005) are recommended in a sense of the historical 

development.  
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Chapter 1: Life Cycles of Spots on Jupiter from Cassini Images 
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1.1 Abstract 

 
Using the sequence of 70-day continuum-band (751 nm) images from the Cassini 

Imaging Science System (ISS), we record over 500 compact oval spots and study their 

relation to the large-scale motions. The ~100 spots whose vorticity could be measured ⎯ 

the large spots in most cases ⎯ were all anti-cyclonic. We exclude cyclonic features 

(chaotic regions) because they do not have a compact oval shape, but we do record their 

interactions with spots. We distinguish probable convective storms from other spots 

because they appear suddenly, grow rapidly, and are much brighter than their 

surroundings. The distribution of lifetimes for spots that appeared and disappeared during 

the 70-day period follows a decaying exponential with time constant (mean lifetime) of 

3.5 days for probable convective storms and 16.8 days for all other spots. Extrapolating 

the exponential beyond 70 days seriously underestimates the number of spots that existed 

for the entire 70-day period. This and other evidence (size, shape, distribution in latitude) 

suggests that these long-lived spots with lifetime larger than 70 days are from a separate 

population. The zonal wind profile obtained manually by tracking individual features 

(this study) agrees with that obtained automatically by correlating brightness variations in 

narrow latitude bands (Porco et al. 2003). Some westward jets have developed more 

curvature and some have developed less curvature since Voyager times, but the number 

of westward jets that violate the barotropic stability criterion is about the same. In the 

northern hemisphere the number of spots is greatest at the latitudes of the westward jets, 

which are the most unstable regions according to the barotropic stability criterion. During 

the 70-day observation period the Great Red Spot (GRS) absorbed nine westward-

moving spots that originated in the South Equatorial Belt (SEB), where most of the 
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probable convective storms originate. Although the probable convective storms do not 

directly transform themselves into westward-moving spots, their common origin in the 

SEB suggests that moist convection and the westward jet compose a system that has 

maintained the GRS over its long lifetime. 

 

1.2 Introduction  

 

Jupiter’s atmosphere is full of spots ⎯ compact, oval-shaped cloud features whose 

appearance, at some wavelengths at least, is different from that of their surroundings. 

This contrast may reflect differences in composition or size of the cloud particles, 

differences in optical thickness or altitude of the cloud, or differences in small-scale 

texture of the cloud (Smith et al. 1979, Ingersoll et al. 1979, Mitchell et al. 1979). Some 

spots have lightning in them, as revealed in night side images (Little et al. 1999, Gierasch 

et al. 2000).  

 

Spots form in a variety of ways (Mac Low and Ingersoll 1986). Some gather contrast 

slowly in an otherwise featureless region; some develop coherence and emerge from the 

turbulent flow; and others appear suddenly as bright points and grow by expansion. 

Likewise, some spots are absorbed by the turbulent flow; some are destroyed by mergers; 

and others simply fade away. “Life cycles” refers to appearances and disappearances, 

mutual interactions, and interactions with the zonal jets. Comparing the observed life 

cycles with those produced in numerical models (e.g., Ingersoll and Cuong 1981, 



 4

Williams and Yamagata 1984, Marcus 1988, Dowling and Ingersoll 1989) leads to a 

better understanding of the dynamics of Jupiter’s atmosphere. 

 

Our study uses data spanning 70 days (October 1 to December 9, 2000) of observation by 

the Cassini Imaging Science System (ISS) in a filter centered at 751 nanometers. The 

only other comparable study (Mac Low and Ingersoll 1986) used 58 days of observation 

by the Voyager imaging system in the violet filter. In both cases the resolution of the raw 

images ranged from ~500 km/pixel at the beginning of the sequence to ~100 km/pixel at 

the end. Voyager imaged the disk of the planet every 1/5 of a jovian rotation and covered 

the entire planet once per jovian rotation, i.e., once every 10 hours. The mosaics became 

a movie with time step ~10 hours and duration ~58 Earth days. Cassini operated in much 

the same way, except it often skipped a rotation so that the time step was sometimes 10 

hours and sometimes 20 hours. Morales-Juberias et al. (2002), hereinafter MJ, studied 

spots using HST data over a 6-year period. The temporal sampling is less dense than 

ours, but we will compare our results with theirs wherever possible. 

 

Each Cassini image was navigated by fitting (in the image plane) the observed planetary 

limb to its predicted location. Radiometric calibration was performed using the CISSCAL 

software developed by the Cassini ISS Team.  The images for each rotation were 

projected into a simple cylindrical map spanning 360° of longitude.  Illumination effects 

were removed by dividing by the cosine of the incidence angle, and regions shared by 

multiple images were averaged. The final maps were converted to 8-bit images using the 

same linear stretch for all maps and are stored without compression. To date, these steps 
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have been performed for the 751 nm filter only, although raw images spanning the same 

70-day period exist for several other filters.  

  

Each Cassini mosaic is 3600 x 1801 pixels and spans 360° of longitude and 180° of 

latitude. Therefore each pixel spans 0.1° of longitude and 0.1° of latitude. The scale of 

0.1°/pixel, or ~125 km/pixel at the equator, was chosen such that all the 70-day images 

could be mapped consistently without loss of information. The spatial areas over which 

spots are measured include all 360° in longitude and 80°S to 80°N in latitude. The gases 

in Jupiter’s troposphere are transparent in the 751-nm band, so these near-infrared 

continuum band images can capture a multitude of spots at different altitudes in the 

troposphere of Jupiter.  

 

We use the term “spot” to describe a structure having the following four characteristics: 

(1) compact oval shape, (2) appearance in at least three successive images (life–history at 

least 40 hours), (3) a marked brightness difference from the surrounding clouds, and (4) 

diameter at least 700 km during some part of the spot’s life. According to this definition, 

we record over 500 spots. We observe the sign of the vorticity for about 100 of the largest 

spots, whose rotation direction can be determined from a movie made from these images, 

and find that all these spots are anticyclonic (clockwise in the northern hemisphere, 

counterclockwise in the southern hemisphere). Among the 517 compact spots we record, 

306 compact spots are bright and 211 compact spots are dark. The dark spots may be 

holes in the clouds or they may be dark cloud material that absorbs the light at 751 nm. 

Other studies (Banfield et al, 1998) suggest that bright and dark contrast originates at 
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~0.7 bar. We use planetographic latitudes, System III west longitudes, and positive zonal 

winds in the eastward direction. Mac Low and Ingersoll (1986) recorded over 100 spots 

in the Voyager mosaics. Their study focused on interactions between spots. Our study is 

larger (500 vs. 100 spots) and more general; it includes appearances, disappearances, 

distribution of lifetimes, size distribution, mutual interactions, interactions with the Great 

Red Spot (GRS), distribution with respect to latitude, and motion relative to the zonal 

jets. 

 

We use the term chaotic region (CR) to define a patch of rapidly changing, amorphous 

features. CR’s are distinct from compact spots, and are not included in our study except 

as they interact with spots. In many cases it is difficult to define the boundaries of a CR, 

and in some cases a CR is simply a cyclonic band circling the entire planet. Smith et al. 

(1979) called these patches “disturbed regions.” Ingersoll et al. (1979) and Mitchell et al. 

(1979) used the term “turbulent, folded-filament regions.” They also used the term 

“oblong cyclones,” since the vorticity of the CR’s is always cyclonic. These authors used 

the term “wakelike” to describe the CR’s to the west of the large ovals. The largest 

wakelike region is the South Equatorial Belt (SEB) to the west and slightly equatorward 

of the Great Red Spot (GRS). Youssef and Marcus (2003) point out that a row of 

cyclonic CR’s alternating with a row of anticyclonic ovals resembles a Karman vortex 

street. With a numerical model they show that the relative positions of the vortices are 

stable. In a classic vortex street the cyclones and anticyclones have the same size. On 

Jupiter the east-west dimension of the CR’s is usually greater than that of the associated 

ovals.  
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1.3 Appearances and disappearances  

 

Figure 1 shows that the number of appearances minus disappearances oscillates around 

zero. Over the whole period the numbers of appearances (393) and disappearances (356) 

are basically in balance, and their difference (393 − 356 = 37) is not statistically 

significant. The null hypothesis is that both appearances and disappearances in a 70-day 

period have a mean of 374.5 = (393+356)/2. The standard deviation of each is 374.51/2 = 

19.4. The standard deviation of their difference is (2*374.5)1/2 = 27.4. The actual 

difference is 37, which is 1.35 standard deviations and not statistically significant.  

 

Mac Low and Ingersoll (1986) observed 23 mergers, 23 other kinds of disappearances, 

and 19 appearances, roughly an order of magnitude fewer events than in our study. These 

authors noted that the number of spots destroyed was a factor of 2 greater than the 

number created during the 58-day observation period, and recommended further study of 

the budget. However, the main goal of their paper was to study the time-dependent 

behavior of interacting spots.  The appearance of a spot is a solitary event. The fact that 

they observed less than one appearance per day whereas we observed more than four 

appearances per day suggests that Mac Low and Ingersoll did not record most of those 

events. In the long run, the appearance and disappearance of spots should be in balance.  

 

We divide appearances into three types: (1) development of contrast in an otherwise 

featureless region, (2) development of a coherent structure in an otherwise turbulent 
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region, and (3) sudden appearance of a bright point followed by rapid expansion in size. 

Type 1 usually takes place outside the CR’s, whereas Types 2 and 3 usually take place in 

the CR’s. Type 2 often involves ejection of the spot from a CR. Type 3 describes the 

rapidly growing, easily identified features that often have lightning in them (Little et 

al.1999, Gierasch et al. 2000, Ingersoll et al. 2000). Porco et al. (2003) referred to these 

as “convective storms” in their analysis of the Cassini data. However neither Porco et al. 

(2003) nor we observed the lightning directly, so we will call them “probable convective 

storms.” The resolution in our images ranges from 100 km to 500 km, which is enough to 

resolve the probable convective storms in the SEB (10°S-16°S) and the NEB (10°N-

15°N). Compared with Porco et al. (2003) we did not find many convective storms at 

other latitudes, probably because we used just the 751 nm filter and they used other filters 

including those in the strong and weak methane bands. Convective storms are important 

for the jovian atmosphere because they can transport much of the heat flux from the 

deeper troposphere (Gierasch et al. 2000).  

 

Figure 2a displays an example of a spot developing in a relatively calm area (Type 1). 

This is the most frequent kind of appearance among the three types (221 out of 393 

cases). The gradual appearance of the spot in Fig. 2a is not due to the change in 

resolution, because in the first two sub-images we can see that the embryo did not have 

elliptical shape and we can see much smaller scale features than the embryo itself. Figure 

2b shows a spot that emerged from the turbulence in a CR (Type 2). This is the next most 

frequent kind of appearance (141 out of 393). Figure 3a shows a very bright spot that 
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grows rapidly (Type 3), and is probably a convective storm. This is the least frequent 

kind of appearance (31 out of 393 cases).  

 

We also divide disappearances into three types: (1) disappearance due to merging, (2) 

destruction by the turbulence, usually in a CR, and (3) gradual fading. Figure 3b shows a 

merger between two spots. This type of disappearance is different from destruction by 

turbulence (Fig. 4a) because it results in a recognizable spot. Absorption by turbulence 

results in more turbulence �amorphous, rapidly changing patterns that have no definite 

spots. Mac Low and Ingersoll (1986) were especially interested in mergers because the 

solitary wave model (Maxworthy et al. 1978) predicted that when one spot overtakes 

another at the same latitude they would pass through each other, whereas other models 

(Ingersoll and Cuong 1981, Williams and Yamagata 1984) predicted that the two spots 

would merge. We record 119 mergers and 7 near misses � where spots passed around 

each other �out of the total 126 interactions during the 70-day period. Our result seems 

to support these merging models.  

 

Figure 4a shows a small spot that is destroyed by turbulence inside a CR. This kind of 

disappearance accounts for more than one-fourth of the total number of disappearances 

(90 out of 356). CR’s are not only an important source of spots but also an important sink 

of spots. Figure 4b shows a spot that fades away. It disappears without undergoing any 

interaction with other spots or CR’s. The number of this kind of disappearance is largest 

among the three types of disappearance (147 out of 356 cases). 

 



 10

 

1.4 Dimensions  

 

In Fig. 5 we record the sizes of all spots and give a scatter plot of north-south (NS) and 

east-west (EW) diameters based on the brightness and lifetime. In our study, long-lived 

spots are those that existed throughout the entire 70-day period, and short-lived spots are 

those that both appeared and disappeared during the 70-day period. The GRS and white 

oval at -33° are not included in the list of long-lived spots. Figure 5 offers two different 

linear fits between the two diameters by assuming that the uncertainties of measurement 

in major and minor diameters are the same (Meyer 1986). The fitting lines from the 

origin indicate that long-lived spots and dark spots have smaller NS/EW ratios than short-

lived spots and bright spots. The two-parameter fit presents a different result because it is 

more sensitive to spots having extreme low and high ratios than the fit from the origin.  

 

Figure 5 shows that all the long-lived spots have major diameters greater than ~2000 km. 

The short-lived spots have major diameters ranging from below 1000 km to over 6000 

km.  There is no correlation between lifetime and size for the short-lived spots, and we 

cannot measure the lifetimes of the long-lived spots. Our results are generally in 

agreement with Figs. 4 and 6 of MJ, although our study has a smaller minimum spot size 

(700 km vs. 1500 km) and a shorter time base than theirs. 
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1.5 Distribution of lifetimes  

 

The time between the appearance and disappearance of a spot is its lifetime. Figure 6 is a 

histogram of lifetimes, constructed using those spots having a complete life history 

during Cassini’s 70-day observation window. The histogram has a bias, which is 

correctable: A spot with lifetime t < 70 days must appear in the initial (70-t) days of the 

observation window to be included in the histogram. Spots with lifetimes t > 70 days are 

not included in the histogram. Thus if nA is the average number of spots that appear 

during a 70 day window and p(t) dt is the fraction whose lifetimes are in the range (t, 

t+dt), then (70-t)/70 nA p(t) dt is the number in this lifetime range that appear and 

disappear in the window. This is the histogram displayed in Fig. 6.  

 

In Fig. 6, the fitted curves show (70-t)/70 nA p(t) dt, where dt = 1 day and p(t) = 

(1/τ)exp(-t/τ). For the value of nA we average the number of appearances and the number 

of disappearances, since the two are the same except for statistical fluctuations. This 

gives nA =29.5 for the upper panel and nA = 345 for the lower panel. The one adjustable 

parameter is τ, and the fitting yields τ = 3.5 days for the probable convective storms and τ 

= 16.8 days for all other spots. We separated the latter (other spots) into a bright group 

and a dark group, and fit the distribution of lifetimes for the two groups separately (not 

shown).  The fitting shows that the time constant of bright spots having a complete life 

history (τ =14 days) is smaller than the time constant of dark spots having a complete life 

history (τ =21 days).   
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The expectation value for the total number of spots that appear and disappear in the 

window is 

 

nAD = nA (70 − t)/ 70 p(t) dt
0

70∫ . 

 

The expected number nAO of spots that only appear in the window and disappear later is 

nA – nAD. The expected number nDO of spots that only disappear in the window and appear 

earlier is also nA – nAD. Actual numbers will be different because of statistical 

fluctuations. 

 

Information about lifetime t > 70 days is contained in the number nLL of long-lived spots 

that existed throughout the observation period. To be included in this number, a spot with 

lifetime t must appear no more than (t-70) days before the start of the Cassini observation 

window. Thus if nA p(t) dt is the average number of spots appearing in a 70 day window 

with lifetimes in the range (t, t+dt), then (t-70)/70 nA p(t) dt is the number that exist 

throughout the observation period. The integral is the expectation value of nLL: 

 

nLL = nA (t − 70)/ 70 p(t) dt
70

∞∫  

 

In Table I we compare the observed and expected values of nLL, nAO, nDO, and nAD for 

probable convective storms and for all other spots. The expected values use the best fit to 

the histogram in Fig. 6, with τ = 3.5 days for the probable convective storms and τ = 16.8 

days for all other spots. The number of appearances is nAO + nAD, and the number of 
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disappearances is nDO + nAD. Except for nLL, the differences between the observed and 

expected numbers are consistent with statistical fluctuations. However, the expected 

number of non-convective (other) spots that survive for the entire 70-day period is 1, 

whereas the observed number is 35. Evidently there are more spots with long lifetimes 

than the exponential distribution would suggest. There is even some evidence that the 

spots with lifetimes longer than 70 days are from a different population: As shown below, 

the long-lived spots have different distributions with respect to latitude and size than the 

spots that appear and disappear in the Cassini observation window. 

 

1.6 Relation to zonal winds  

 

Much work on zonal winds of Jupiter has been done based on the data sets of Voyager, 

Galileo, and HST (Ingersoll et al. 1981, Limaye 1986, Vasavada et al. 1998, Garcia-

Melendo and Sanchez-Lavega 2001). These studies support the idea that the zonal wind 

profile at the cloud level has remained basically unaltered in spite of some minor 

variations in jet shape and speed. This implies that the global circulation of Jupiter is 

stable even though there are turbulence and convection in the atmosphere. 

 

Feature tracking and correlation are two methods for measuring the wind velocity on 

Jupiter. By manually following the target clouds in images taken at different times, the 

feature tracking method can determine the wind speed at the latitudes where these target 

clouds sit, if clouds can be regarded as passive tracers of atmospheric mass motion. For 

this method, the change of feature shape, the interaction between these clouds and their 
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environment, and operator judgment will cause some errors. On the other hand, the 

correlation method takes a narrow latitude band spanning 360° in longitude as the target 

and determines its mean east-west movement by finding the largest correlation 

coefficient between two images taken at different times. Systematic errors caused by 

changes of the clouds, wave-like phenomena, and large vortices (GRS, for example) will 

affect the correlation method (Garcia-Melendo and Sanchez-Lavega 2001). Both methods 

are sensitive to spots, but the correlation method is also sensitive to amorphous features 

and large-scale structures that a human operator might ignore.  

 

In our study, we record the position of each spot every 60 hours and compute a velocity 

based on its displacement over this 60-hour time interval. If the spot changes latitude by 

less than 1°, and if it changes velocity from the average value for its complete life history 

by less than 10 m s-1, then we will use the spot as a record for the wind velocity of the 

latitude in which it sits. In addition, for these latitudes in which there are few spots we 

use other features having stable non-oval shape as tracking targets to get the wind 

velocity for these latitudes. Then we average these records in different 1° bins to get the 

wind velocity for latitudes from 78°S to 83°N. This was impossible for some latitudes 

(77°N, 25°N, 21°N, 16°N, 10°N, 2°N-5°N, 1°S, 14°S, 26°S, 30°S, 37°S, 44°S, 54°S, 

61°S, 63°S, 67°S-70°S and 77°S) where we could not find good tracking targets. We use 

interpolation to get the values of wind velocity at these latitudes.  

 

Figure 7 shows that the wind profile obtained from Cassini by the feature tracking 

method is in good agreement with the wind profile obtained by the correlation method 
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(Porco et al. 2003).  The correlation coefficient between the two profiles from 78°S to 

83°N is 0.9257. Porco et al (2003) study changes in the jets from the Voyager time to the 

Cassini time. Further study of the changes of wind profiles requires a detailed discussion 

of the accuracy of data from different sources (Voyager, HST and Cassini) and an error 

analysis of velocity measurement in all these studies. Such an effort is beyond the scope 

of this study.  

 

Using the data of Voyager, Ingersoll et al (1979, 1981) and Limaye (1986) discussed the 

curvature of the westward jets and the jets’ stability according to the barotropic stability 

criterion. In this paper, we repeat this work based on more data including Voyager, HST 

and Cassini. The Voyager data (Limaye, 1986) were taken in 1979. The HST data 

(Garcia-Melendo and Sanchez-Lavega 2001) were taken from 1995 to 2000. The Cassini 

data were taken in 2000.  

 

The barotropic stability criterion says that a two-dimensional (barotropic) flow is stable 

when β − u yy > 0  at all latitudes. Here β = df / dy = 2Ωcosφ / RJ  is the planetary vorticity 

gradient, f = 2Ω sinφ  is the Coriolis parameter, φ  is planetographic latitude, Ω and RJ  

are Jupiter’s angular rate of rotation and planetary radius, respectively; u  is the mean 

zonal wind, y is the northward coordinate, and u yy  is the curvature of the jets. Since β  is 

positive everywhere and u yy  is positive at the latitudes of the westward jets, the criterion 

is most likely to be violated at these latitudes.  Vertical structure in the flow can alter its 

stability, but it is uncertain and we do not discuss it here.  
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Figure 8 shows parabolas with curvature β that are centered on the westward jets. The 

figure shows that some jets developed more curvature than β  and others developed less 

curvature than β  during the 21 years 1979-2000. The jet at 39°N had u yy > β   during 

HST time and less at other times. The jet at 31°N had u yy > β  during Voyager time and 

less at other times. The jet at 17°N had u yy > β  during Voyager times and less at other 

times. The jet at 20°S had u yy > β  during HST and Cassini times and less during Voyager 

times. The jet at 32°S had u yy > β  during Voyager time and less at other times. The 

general agreement between HST and Cassini and between the feature tracking and 

correlation methods suggests that the differences relative to β  are significant. In general, 

the number of westward jets that clearly violate the barotropic stability criterion is about 

the same during Cassini time as during Voyager and HST times.  

                

The left panel of Fig. 9 shows that in the northern hemisphere the spots are concentrated 

at the latitudes of the westward jets. The appearances and disappearances (not shown) of 

these compact spots have almost the same latitude distributions as the spots themselves. 

Since the westward jets are most likely to violate the barotropic stability criterion, they 

are most likely to develop waves and eddies, which could coalesce into spots (e.g., 

Dowling and Ingersoll 1989). This may explain the distribution of spots in the northern 

hemisphere. However in the southern hemisphere there is not a good correlation between 

the latitude distribution of spots and zonal winds. Obviously, the barotropic stability 

criterion cannot explain the difference between the northern and southern hemispheres. 
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Perhaps the GRS and the large White Oval Spot centered at –33° affect the distribution of 

spots in the southern hemisphere due to their large size.  

  

The right panel of Fig. 9 shows that long-lived spots are concentrated at middle latitudes, 

mainly in anticyclonic bands. Their distribution is significantly different from that of all 

spots, which on average are concentrated in the westward jets (left panel of Fig. 9). Since 

the long-lived spots are anticyclonic, this observation is consistent with numerical 

models, which show that vortices of one sign are stable when they are imbedded in a 

region whose vorticity has the same sign  (Ingersoll and Cuong 1981, Williams and 

Yamagata 1984, Marcus 1988, Dowling and Ingersoll 1989). 

 

MJ found differences between the vortex speed and the mean zonal velocity at the central 

latitude of each vortex (see their Fig. 8). They found that the difference is anti-correlated 

with the mean zonal velocity. Figure 10 is the same as MJ Fig. 9, and shows the relative 

velocity (difference between the zonal velocity of the spot and that of the mean flow) vs. 

the mean zonal velocity at the center of the spot. There is no obvious anti-correlation 

(negative slope) between the two variables, except possibly for the long-lived spots 

(bottom half) if one ignores the three points farthest to the right. The absolute value of the 

slope of the remaining points is less than that of the line in MJ Fig. 9. Our data in Fig. 10 

are not too different from those in MJ Fig. 9, considering that their time base is much 

longer than ours and we have more data for short-lived spots (top half of Fig. 10).  
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1.7 Interaction with the GRS  

 

As the largest anticyclone of the jovian atmosphere, the GRS has existed for at least 100 

years and probably for over 300 years (Rogers 1995). Smith et al. (1979) and Mac Low 

and Ingersoll (1986) recorded that the GRS absorbed smaller anticyclones, which 

suggests that the GRS maintains itself in this way (Ingersoll and Cuong 1981, Ingersoll et 

al. 2000). Their conclusion is derived from Voyager observations, when the SEB was in 

one of its disturbed phases (labeled SEBD1 by Sanchez-Lavega and Gomez 1996). 

During the Cassini encounter, from which our study was taken, the SEB was also in a 

disturbed phase. Our conclusions may not apply when the SEB is in its faded phase, as it 

was during the Pioneer 10 encounter in 1973. 

 

During the 70-day period, we find nine large spots (major diameter greater than 2000 km) 

that were absorbed by the GRS from the east. These large spots are shown in Fig.11. 

Further information about them is given in Table II. In those cases where we could 

determine the vorticity (7 out of 9 cases), it was anticyclonic. In addition to these large 

spots, small dark spots were absorbed by the GRS from the west. Because these spots are 

small and because we could not determine their vorticity, we have not included them in 

this discussion.  

 

The large spots absorbed by the GRS probably originate from the CR’s in the SEB west 

of the GRS. They are entrained into the westward jet to the south of the SEB and 

encounter the GRS from the east. Figure 12 shows a time history of spots coming from 
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the chaotic regions in the SEB west of the GRS. Lightning observations (Gierasch et al. 

2000) show that moist convection associated with convective storms is very active in the 

SEB west of the GRS. The last four sub-images contain a probable convective storm that 

appears in Fig. 3 of Porco et al. (2003). Figure 12 also shows two other probable 

convective storms (white arrows) appearing in the same chaotic regions in the SEB. The 

fact that the westward-moving spots that are  absorbed by the GRS originate in the same 

chaotic region as the probable convective storms suggests that development of westward-

moving spots is related to the latent energy released by these storms.  Some uncertainty 

remains, however, because there is no one-to-one correspondence between the compact 

spots and the convective storms (Fig. 12). They both originate in the same region, but 

they do not appear to be the same features.  

 

Nevertheless, these observations support the idea that the chaotic regions in the SEB, 

probable convective storms, and the westward jet compose a system that supports the 

GRS (Gierasch et al. 2000, Ingersoll et al. 2000). In this system, convective storms in the 

SEB get energy from the interior of Jupiter by moist convection and deliver energy to the 

compact spots that will be absorbed by the GRS.  

 

1.8 Conclusions  

 

In this study, we record properties of over 500 spots during a 70-day period from the 

continuum band ISS images of Cassini. The relation between the spots and mean zonal 

wind profile and interactions between spots and the GRS are also discussed.   
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The appearance and disappearance of compact vortices maintained a balance during the 

period, and the CR’s are an important source and sink for compact vortices. The major 

diameter of long-lived spots is greater than 2000 km. 

 

Exponential functions provide a good fit to the distribution of lifetimes, with time 

constants of 3.5 days for probable convective storms and 16.8 days for all other spots.  

 

Our wind profile from feature tracking is in good agreement with the one from the 

correlation method. The wind profile shows that the number of westward jets violating 

the barotropic stability criterion is about the same during Cassini time as during Voyager 

and HST times. The barotropic stability criterion can explain the observation that spots 

are concentrated at the latitudes of westward jets in the northern hemisphere, but the 

theory cannot explain why there is no such concentration in the southern hemisphere.  

The fact that long-lived spots are concentrated in anticyclonic bands is consistent with 

numerical models.  

 

Spots that originate in the chaotic regions in the SEB are absorbed by the GRS. This and 

other observations suggest that the chaotic regions in the SEB, moist convection, the 

westward jet, and spots in the SEB latitudes compose a system supporting the GRS. 
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Table 1.1                Number of Appearances and Disappearances  
       

                                                                                                      
                                                                                                        nLL      nAO      nDO     nAD 

                       

                      probable convective storms (expected)       0          2        2         27 
 
                      probable convective storms (observed)       0          3        0         28  
            

      
    all other compact spots     (expected)     1           82        82      263 
  
    all other compact spots     (observed)     35        123       89      239 
 
 

                       nLL  = long-lived spots, lifetime > 70-days  

                       nAO = appear only, disappear later  

                       nDO = disappear only, appeared earlier 

                       nAD = appear and disappear in the 70-day period. 
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Table 1.2  Nine Spots Absorbed by the GRS 

 
 
number     time of absorbing     long diameter    short diameter     vorticity  
 

 
    1             Oct 14   00:57              3513 km             1466 km      anticyclone 
 
    2             Oct 18   14:37              5387 km              2053 km     anticyclone 

    3             Nov 08  17:33              6675 km              2443 km      unknown 

    4             Nov 12  14:37              5738 km              2443 km     anticyclone 

    5             Nov 17  01:10              3513 km              1662 km     anticyclone 

    6             Nov 17  21:02              2576 km              1173 km     anticyclone 

    7             Nov 28  16:19              2928 km              1759 km      unknown 

    8             Dec  02  20:02             3748 km              1759 km      anticyclone 

    9             Dec  09  11:42             5270 km               2150 km     anticyclone 
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Figure 1.1 The numbers of appearances and disappearances of spots every 60 hours 

during the 70-day period. The figure also shows the value of appearance minus 

disappearance during the period.  
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Figure 1.2 (a) Large spot developing slowly outside of a CR. In this figure and all other 

figures like it (Figs. 2b, 3a, 3b, 4a, and 4b), time increases from top to bottom. Note that 

the time step between neighboring sub-images of Fig. 2a is 10 days, so the spot is 

developing very slowly. The time step for all other such figures (Figs. 2b, 3a, 3b, 4a, and 

4b) is 20 hours. The range for every frame of Fig. 2a is (12°N-23°N, 350°-17°). The time 

of the first sub-image (the top one) is Oct 5, 2000. The large spot covers the center of the 

17°N westward jet. (b) Spot coming from a CR. The range for every frame is (42°Ν-

54°Ν, 230°-267°). The time of the first sub-image is Nov 5, 2000. The spot sits in an anti-

cyclonic band.  

a                                   b 

     

     

     

     

     

    



 29

 

Figure 1.3 (a) A fast-developing spot in a CR, probably a convective storm. The range for 

every frame is (9°N-17°N, 8°-30°). The time of the first sub-image is Oct 29, 2000. The 

spot sits in a cyclonic band. (b) Two spots merging with each other. The range for every 

frame is (38°N-45°N, 280°-295°). The time of the first sub-image is Nov 13, 2000. The 

two spots sit in an anti-cyclonic band. 

a                                      b 
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Figure 1.4 (a) A small spot destroyed by a CR. The range for every frame is (46°N-57°N, 

90°-117°). The time of the first sub-image is Nov 25, 2000. The spot sits in an 

anticyclonic band and meets the left side of a turbulent structure in the CR. (b) A spot 

that lost contrast and faded away. Sometimes this case resembles that in Fig. 4a, 

absorption by turbulence. The range for every frame is (42°N-48°N, 310°-324°). The 

time of the first sub-image is Nov 18, 2000. The spot covers the center of the 45°N 

eastward jet. 

a               b 
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Figure 1.5  Scatter plot of the major and minor diameters of spots. The left-top panel is 

for bright short-lived spots, and the left-bottom panel is for dark short-lived spots. The 

right-top panel is for bright long-lived spots, and the right-bottom is for dark long-lived 

spots. Solid lines are one-parameter (slope) linear fitting from origin, and the dashed lines 

are two-parameter (slope and intercept) linear fitting.  
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Figure 1.6  The distribution of lifetimes of spots having complete life cycles during the 

70-day period. Each point represents the average number of spots in a lifetime bin 1 day 

wide. The upper panel is for probable convective storms and the bottom panel is for all 

other spots.  
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Figure 1.7 The zonal wind profile obtained from Cassini by two different methods 

⎯ feature tracking and correlation. Both wind profiles use planetographic latitudes. In 

the left panel, each point is a single feature, and the solid line is the average of the points 

in a 1° bin. In the right panel, the two lines are from feature tracking in this study and 

correlation method from Porco et al. (2003).  

 

 



 34

 

Figure 1.8  Curvature d2u /dy 2  of the zonal velocity profile compared to β . From left to 

right the data are from Voyager(1979), HST(1995-2000), Cassini (2000) feature tracking, 

and Cassini correlation. The parabolic curves are defined by d2u /dy 2 = β , and are 

centered on the westward jet maxima. For the Cassini feature tracking profile, each point 

is an average of features in a 1° latitude bin. For the other profiles the resolution is 2-3 

times better. Where the measured profile lies inside the parabola, the flow violates the 

barotropic stability criterion.  
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Figure 1.9 Comparison between the latitude distribution of spots and the zonal wind 

profile. The left panel gives the number of all spots per degree of latitude with a scaling 

factor 4 (light line) along with the zonal wind profile determined by the feature tracking 

method (heavy line). The right panel is same as the left panel except for long-lived spots 

and scaling factor 20. 
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Figure 1.10 Relative velocity (difference between the zonal velocity of the spot and that 

of the mean flow) vs. mean zonal velocity. The mean zonal velocity is from Cassini 

(Porco et al., 2002). The top panel is for all spots, and the bottom panel is for long-lived 

spots. Each dot represents a spot. Compare with Fig. 9 of MJ. 
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Figure 1.11  Nine large spots absorbed by the GRS during the 70-day period. The range 

for every frame is (10°S-28°S, 130°-185°). This figure is not a time sequence like Figs. 2-

4. Every sub-image in this figure records a different large spot that will be absorbed by 

the GRS from the east at a different time.  
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Figure 1.12  Spots originating from the chaotic regions in the SEB west of the GRS. The 

range for every frame is (10°S-24°S, 320°-190°). Time increases down page 1 and then 

down page 2. The time of the first sub-image is Nov 10, 2000. The time between two 

neighboring sub-images is 20 hours. Two examples of compact spots originating from the 

SEB and being absorbed finally by the GRS are shown with dark arrows. Tracing these 

spots from lower left to upper right (backwards in time), we find that all of them come 

from the chaotic regions in the SEB west of the GRS. In addition, two bright probable 

convective storms are shown with white arrows. 
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Chapter 2: Vertical Wind Shear on Jupiter from Cassini 

Images  
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2.1 Abstract 

 

Multi-filter images of Jupiter acquired by the Cassini Imaging Science Subsystem (ISS) 

are used to derive zonal winds at altitudes above and below the visible cloud deck. Small 

features unique to the ultraviolet images of ISS are tracked to get the systematic high-

altitude zonal winds. Comparison between the zonal winds from ultraviolet images and 

the vertical profile of zonal winds from the Cassini Composite Infrared Spectrometer 

(CIRS) shows that the zonal winds from the ultraviolet images are from a pressure level 

that is ~ 0.2 scale heights higher than the pressure level of the zonal winds from 

continuum-band images. Deeper zonal winds at different latitudes of the equatorial region 

are measured by tracking cloud features observed within hot spots on continuum-band 

images. The deeper zonal winds in this study extend the measurement of the Galileo 

probe to different latitudes of the equatorial region. Comparison between the Galileo 

probe and this study suggests that these fast-moving clouds within hot spots are deeper 

than 3 bars and are therefore probably water clouds.  
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2.2 Introduction 

 

The vertical structure of zonal winds on Jupiter is critical for understanding the origin of 

the global-scale circulation on the giant planet [Barcilon and Gierasch, 1970; Gierasch, 

1976; Ingersoll and Pollard, 1982; Busse, 1992]. Most measurements of zonal winds 

from ground-based telescopes, Voyager, HST, Galileo, and Cassini are limited to motions 

within the visible cloud deck and are made by tracking clouds in sequences of images 

taken at time intervals of ~1 hour to ~1 day [Garcia-Melendo and Sanchez-Lavega, 2001; 

Ingersoll et al., 1979; Ingersoll et al., 1981; Limaye, 1986; Limaye, 1989; Porco et al., 

2003; Rogers, 1995; Simon, 1999; Smith, 1976; Vasavada et al., 1998]. In this paper, the 

visible cloud deck refers to the features seen at visible wavelengths in broadband 

continuum filters. Although the chemical components and pressure levels are uncertain 

[Banfield et al., 1998; Irwin et al., 2005], the principal cloud is probably ammonia (NH3) 

at a pressure level around 0.7 bar, in agreement with the classical cloud scheme from 

thermodynamic modeling [Atreya et al., 1997].  

 

The Galileo Doppler Wind Experiment (DWE) is the only measurement of the winds 

below the visible cloud deck [Atkinson et al., 1998]. High-altitude zonal winds decaying 

with altitude above the visible cloud deck are suggested by the Voyager Infrared 

Interferometer Spectrometer (IRIS) thermal measurements and the thermal wind equation 

[Gierasch et al., 1986]. Several attempts to detect vertical wind shear by tracking clouds 

in images at different wavelengths were inconclusive [Simon, 1999; Garcia-Melendo and 

Sanchez-Lavega, 2001]. Banfield et al [1996] measured high-altitude zonal winds at 
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limited sites in the southern hemisphere of Jupiter by studying the impact debris from 

Comet Shoemaker-Levy 9. Vincent et al [2000] performed measurements of the zonal 

motions in Jupiter’s high-altitude atmosphere by tracking selected features on the HST 

ultraviolet images, but the measurements are limited by poor limb-darkening correction 

of images in low latitudes and irregular intervals between images ranging from 10 to 70 

hours.  Here we present the Cassini imaging data that yield the zonal winds above and 

below the level of the visible cloud deck.  

 

The Cassini flyby of Jupiter produced a wealth of scientific data. The wide spectral range 

of the Imaging Science Subsystem (ISS), from the ultraviolet (UV) into the near-infrared 

(near-IR), can discriminate Jupiter's multi-level clouds and hazes [Porco et al., 2003].  

Multi-filter ISS images taken at different times make it possible to measure zonal winds 

at different pressure levels by tracking multi-level clouds and hazes. During the 

encounter, the Cassini Composite Infrared Spectrometer (CIRS) returned spectra of the 

jovian atmosphere from 10-1400 1−cm  (1000-7 mμ ) at a programmable spectral 

resolution of 0.5 to 15 1−cm . The vertical profile of zonal winds above the visible cloud 

deck has been estimated by combining the temperature maps constructed from these 

spectra with the thermal wind equation [Flasar et al., 2004; Simon-Miller et al., 2005].  

The simultaneous observations of the ISS and the CIRS offer an unprecedented 

opportunity to compare estimates of the zonal winds above the visible cloud deck from 

these two subsystems of Cassini.    
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The Galileo probe entered into a 5-micron hot spot, which is a hole in the visible cloud 

deck [Young, 2003]. The wind velocity was ~100 m/s at the level of the visible cloud 

deck, which agrees with the cloud-tracked winds for the latitude (7.4°N planetographic) 

at which the probe entered. From there the winds increased to 180 m/s at the 4-5 bar 

level. After that, the winds stayed constant at 170-180 m/s down to the 21 bar level 

[Atkinson et al., 1998]. Seen from outside the atmosphere, the hot spots appear to move 

with most of the other visible cloud features in Jupiter’s bright equatorial band (7°-10°N) 

[Vasavada et al., 1998].  If there are clouds at deeper levels, it should be possible to see 

them through holes in the upper clouds – they should appear as small clouds within the 

hot spots. We have examined some of the hot spots in the continuum filter (CB2), where 

the gases are transparent and the only significant opacity above 10 bars is due to clouds 

[Banfield et al., 1998], to check the possibility of measuring the deep wind by tracking 

these deep clouds through the hot spots.  

 

2.3 Description of image sets 

 

The ISS images analyzed in Section 3 consist of narrow-angle camera (NAC) images in 9 

filters (UV1, BL1, GRN, MT1, CB1, MT2, CB2, MT3, and CB3) acquired over a 45-day 

period (October 1 to November 14, 2000) [Porco et al., 2004]. The ISS images analyzed 

in Section 4 include additional CB2 images after the 45-day period (November 15 to 

December 9, 2000) and 1×2 North-South mosaics acquired every 63 minutes in a 

separate image set (December 11-13, 2000). Information including center wavelength, 

observation time, and effective pressure level (optical depth τ =1 in the absence of cloud 
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opacity) for the 9 filters are shown in Table 1. The methane filters MT1, MT2, and MT3 

are centered on weak, medium, and strong absorption bands, respectively. The continuum 

filters CB1, CB2, and CB3 are paired to the corresponding MT filters, but are at 

wavelengths where the atmospheric gases are relatively transparent. Global mosaics of 

the same filter are separated by either 10 or 20 hours. Mosaics of different filters are 

taken 40 seconds apart so that each 9-filter set is near-simultaneous.  

 

Each image was navigated by fitting (in the image plane) the observed planetary limb to 

its predicted location. This procedure locates the limb to a precision much less than one 

pixel, but may introduce systematic errors due to imprecise knowledge of the altitude of 

limb-defining opacity. However, wind measurements are performed on images that were 

navigated using the same portion of the planetary limb, resulting in systematic errors that 

occur in the same direction and that are partially mitigated by a relative wind 

measurement. The spatial resolution in the image plane of the October-November data 

ranged from 506-262 km/pixel, while that in the December data is ~120 km/pixel. The 

full width at half maximum (FWHM) of the point spread function (PSF) of the NAC 

through the clear filters is 1.3 pixels. At these resolutions, a one-pixel uncertainty in the 

navigation of the raw images would result in wind-speed errors of 3-14 m/s at the 

equator, when measured using images separated by 10 hours. Navigation error can be 

estimated directly when the images are mapped and combined into global mosaics. 

Inspection of the overlap regions reveals errors of less than a few map pixels, often less 

than one map pixel (one map pixel is 0.1 degree, or ~125 km at the equator), giving an 

error of less than 3 m/s in wind speed. Radiometric calibration was performed using the 
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CISSCAL software developed by the Cassini ISS Team [Porco et al., 2004]. The map 

projection is simple cylindrical (rectangular) with equal increments of planetocentric 

latitude and longitude. Every map is 1801×1801 pixels (180 degrees of latitude and 

longitude at 0.1 degree per pixel). In this paper, we use planetographic latitude and west 

longitude defined in System III [Riddle and Warwick, 1976]. 

 

2.4 High-altitude winds 

 

Figure 1 shows an example of the near-simultaneous 9-filter maps. The same features 

show up in most of the filters, indicating that one is viewing the same clouds at roughly 

the same altitudes in most of the images. The UV1 map differs the most from the others, 

suggesting that it is viewing features at a different altitude. Previous wind measurements 

trying to detect zonal winds at different altitudes [Garcia-Melendo and Sanchez-Lavega, 

2001; Simon, 1999] probably track the same features appearing in different wavelength 

images so that no significant velocity differences between these different wavelength 

images are detected. Many features in the Cassini images behave the same way. Figure 2 

shows an example where the same features appearing in different filter maps have the 

same velocities. Here we show 4-filter maps (UV1, MT3, MT2, and MT1) with 

significantly different effective pressure levels (350 mbar for UV1, 600 mbar for MT3, 4 

bar for MT2, and 10 bar for MT1) under cloud-free conditions. The two ovals existing in 

longitude 123° and 167° appear in the four filters of Fig.2, which suggests that the two 

ovals have large vertical structure. Furthermore, each of the two ovals keeps the same 

positions in the four filters even after 15 days (groups A and B of Fig. 2 are separated by 
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15 days). It shows that the vertical shear of ambient zonal winds (if there is any) does not 

shift the vertical structure of the two ovals, probably because the ovals are coherent in the 

vertical. In addition, the anti-correlation of brightness in UV1 and MT3 (dark in UV1 and 

bright in MT3) suggests that the ovals have UV-absorbing components at high altitude 

that appear dark relative to the Rayleigh scattering gas. These same components appear 

bright in MT3 relative to the methane absorbing gas. An exception to the anti-correlation 

between UV1 and MT3 is shown in Fig. 3.  The moist convective storm shown in Fig.3 

has a bright appearance in both UV1 and MT3, which suggests that the cloud particles are 

bright in the UV and penetrate to higher altitude than the effective pressure level of UV1  

~ 350 mbar. The moist convective storm keeps the same position in the four filter images 

of each group A and B  (separated by 20 hours), which also suggests that the vertical 

shear of the ambient zonal winds does not affect the vertical structure of the moist 

convective event.   

 

We selected small features unique to the UV1 filter images in order to track high-altitude 

winds. A sample of such features is shown in Fig. 4. Column A and B are two multi-filter 

image sets separated by 20 hours. The dark feature sitting at latitude 24º in the UV1 

image, which does not appear in the MT3 and CB3 images, suggests that this feature is 

high-altitude UV-absorbing haze. The feature has a velocity of 110 m/s, which is slower 

than the corresponding velocity, 130 m/s, in the CB2 filter at the same latitude. Figure 4 

also shows that the dark feature changes shape during the 20-hour period. The rapidly-

varying characteristic of features in UV1 filter combined with lower feature contrast in 

the UV1 filter makes it difficult to measure zonal winds by an automated correlation 
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method [Limaye et al., 1982]. Therefore, we manually track these features unique to the 

UV1 images to measure the high-altitude zonal winds. Features appearing in both UV1 

images and other filter images are not included in this study. We increase the feature 

contrast of UV1 images by removing the mean value of every constant-latitude line of the 

UV1 images and utilizing the VICAR software developed by the Jet Propulsion 

Laboratory. Most of these features have sizes less than 4 degrees in latitude and 

longitude, which are equivalent to 4000 km at latitude 30 degree and are much larger than 

the spatial resolution, which is 500-250 km/pixel during the observing epoch (October 1 

to November 14, 2000). Some features are bright relative to their surroundings and others 

are dark. The features we tracked have different shapes (ovals, elongated, and irregular). 

All the above characteristics of these features unique to UV1 images are independent of 

latitude.  

 

Table 2 summarizes our measurements of high-altitude zonal winds by tracking these 

small features unique to the UV1 images. The uncertainties of zonal winds (column 3 of 

table 2), which are estimated by the standard deviation of the multiple measurements, 

vary around 10 m/s with the maximal value less than 20 m/s. In Fig. 5A we present all 

1529 measurements of high-altitude zonal winds by tracking small features unique to the 

UV1 images. The solid curves in Fig. 5B are the zonal wind profiles derived from the 

continuum filter CB2 images, with the black solid line coming from the automatic 

correlation method [Porco et al., 2003] and the red solid line coming from the manual-

tracking method [Li et al., 2003]. The points with error-bars in Fig. 5B are averages in 1° 

latitude bins of individual velocity vectors shown in Fig. 5A. The error-bars are estimated 
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by the standard deviation of these individual velocity vectors within the 1° latitude bins. 

The figure shows that the winds in UV1 are slower than those in CB2 except near zero 

latitude. The differences between the UV1 zonal winds and the CB2 zonal winds, which 

are displayed in Fig. 6, further suggest that relatively large differences are concentrated in 

the centers of westward and eastward jets. This is consistent with the inference from the 

thermal wind equation that the winds decay with altitude in the high troposphere of 

Jupiter [Geirasch et al., 1986; Flasar et al., 2004].  

 

Figure 7 shows a comparison between the average UV1 zonal winds and the results from 

the CIRS data [Flasar et al., 2004; Simon-Miller et al. 2005]. In Fig. 7, the blue and red 

lines are the zonal winds at 499 mbar and 315 mbar, respectively, inferred by integrating 

the thermal wind equation. The integration starts with the cloud-tracked wind profile 

derived from the CB2 filter of Cassini imaging data [Porco et al., 2003], assigning it to 

the 600-mbar level, and uses the temperatures derived from the Cassini CIRS data to 

integrate upward [Simon-Miller et al. 2005]. The points in Fig. 7 are the same as those 

shown in Fig. 5B, and represent the high-altitude zonal wind from the UV1 filter. Figure 

7 shows a good match between the UV1 zonal wind and 499-mbar zonal winds from the 

CIRS data. The match suggests that the UV1 zonal winds probably correspond to a 

pressure level that is around 499 mbar if we assume the pressure level of CB2 zonal 

winds is 600 mbar. The 499-mbar pressure level of UV1 zonal wind is reasonable based 

on the optical characteristics of UV1 filter.  The effective pressure level of the UV1 filter 

with optical depth 1=τ  is 350 mbar (Table 1). It is not much different than 499 mbar, so 

the contrast from deeper atmosphere (499 mbar) can propagate up to higher level (350 
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mbar) via scattering. The Pioneer experiences on Venus show that we see through a UV 

scattering gas and haze down to about 32 −=τ  quite easily [Delgenio and Rossow, 

1990]. The recent Cassini observations of Titan also verify that we can see the surface in 

CB3 filter with the optical depth 3=τ  at surface [Porco et al., 2005].  Therefore, if these 

feature contrasts in UV1 images are produced at 499 mbar they can still be seen at the top 

of the atmosphere. At latitudes > 35°N the stratospheric haze has significant opacity, 

especially in the ultraviolet (West et al., 2004). This suggests that the UV1 zonal winds 

correspond to higher altitudes (pressures < 0.5 bar) than the UV1 winds at lower 

latitudes. Unfortunately, the vertical structure of zonal winds from the CIRS [Flasar et 

al., 2004; Simon-Miller et al., 2005] does not show obvious vertical changes of zonal 

winds above 0.5 bar for latitudes > 35°N, so that it is difficult to estimate the pressure 

level of the UV1 zonal winds at latitudes > 35°N from the CIRS data.  

 

The exact altitude of the UV1 zonal winds depends on the choice of 600 mbar as the level 

to start the integration of the CIRS data, and that has a large uncertainty. Estimates range 

from 0.5 bar to 1.0 bar [Banfield et al., 1998; Irwin et al., 2005]. A safer statement is that 

the features used for cloud tracking in the UV are ~ 0.2 scale heights higher than those 

used in CB2, which follows because the measured temperature gradient determines the 

wind shear with respect to log (P), i.e., scale heights. In addition, the resolution of the 

CIRS data (~ 2.5° of latitude) and the UV1 average zonal winds in this study (~ 1° of 

latitude) are much lower than the resolution of the CB2 zonal wind (~ 0.1 of latitude), 

which suggests that the high-altitude zonal winds from this study and the CIRS may have 

lost some fine structures.  
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This difference in resolution could account for some of the difference between the UV1 

profile and the CB2 profile shown in Fig. 5, but it is a small effect. If the zonal velocity 

profile were a sinusoid with wavelength L , averaging in a box of width h  would reduce 

the apparent amplitude by a factor xx /sin , where Lhx /π= . For 1=h ° and 10=L °, 

this factor is 0.98. For 1=h ° and 5=L °, which is the wavelength at high latitudes, the 

factor is 0.94. Both of these factors correspond to a small reduction in amplitude 

compared to the reduction from CB2 to UV1 shown in Fig. 5. 

 

Previous measurements of high-altitude zonal winds utilizing the debris of Comet 

Shoemaker-Levy 9 [Banfield et al., 1996] and using the UV filter at 218 nm [Vincent et 

al., 2000] also show zonal winds decreasing from the principal cloud deck. In this 

respect, our UV1 zonal winds are consistent with the previous measurements. However, 

previous measurements [Banfield et al., 1996; Vincent et al., 2000] refer to higher 

altitudes (a few tens of millibars) than the estimated pressure level of the UV1 

measurement in this study. The higher altitude is where the impact debris of Comet 

Shoemaker-Levy 9 was deposited [Banfield et al., 1996]. In addition, the UV filter at 218 

nm is at a shorter wavelength than Cassini’s UV1 filter [Vincent, et al., 2000]. The 

estimation of the pressure level in the previous wind measurements utilized the decay rate 

of zonal winds at 270 mbar derived by the Voyager IRS data [Gierasch et al., 1986] and 

assumed the decay rate keeps constant through the upper troposphere to stratosphere 

[Banfield et al., 1996; Vincent et al., 2000]. The CIRS data generates a zonal wind profile 

in a wide altitude range (600 mbar to less than 1 mbar) [Flasar et al., 2004] so it offers an 
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opportunity to check the pressure level of wind measurements in the previous studies. 

 

The thermal wind equation does not hold at the equator, so we estimate the vertical 

change of the zonal wind at the equator by extrapolating the thermal winds at ± 3° 

latitudes. The extrapolation for both 315 mbar and 499 mbar (Fig. 6) suggests that the 

vertical shear of zonal winds near the equator would have the same sign as the thermal 

wind shear at ± 3° latitude, which has winds decreasing with altitude. However, Fig. 5B 

shows that the UV1 zonal winds are not less than the CB2 zonal winds within ± 3° of the 

equator, which means that zonal winds do not decrease with altitude.  The different sense 

of vertical shear of zonal winds near the equator probably offers some clues to the 

mechanisms of prograde equatorial jets on the giant planets, and is worthy of further 

study.  

 

2.5 Low-altitude Winds 

 

The information on deep winds is relatively scarce compared to that on high-altitude 

winds because of obscuration from over-lying clouds. The DWE on the Galileo probe 

measured the deep zonal wind profiles to the 22-bar pressure level [Atkinson et al., 1998], 

but this measurement was limited to a single site at 7.4° N. The probe entered one of 

Jupiter's 5- μ m hot spots, where a hole 5000 km wide exists in the visible top clouds. 

Fortunately, some deeper clouds are detected through the hot spots in the Cassini ISS 

high-quality images. The motions of these deeper clouds make it possible to directly 

measure the deeper zonal winds below the visible top clouds.  

1=τ
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The left column A of Fig. 8 is a time sequence of CB2 images separated by 10.5 hours, in 

which a cloud feature moves across a hot spot from west to east. The cloud feature has a 

velocity of 175 m/s, which is much stronger than the corresponding CB2 zonal wind in 

the visible cloud deck (110 ± 20 m/s at this latitude). The hot spots move at the latter 

speed. The substantial vertical shear suggested by Fig. 8 is consistent with the Galileo 

DWE and the numerical simulation [Showman and Dowling, 2000]. The right column B 

is a multi-filter image set corresponding to the top panel of A. The MT3, MT2, CB2 

images of column B are near-simultaneous images separated by 40 seconds. The multi-

filter images show that the cloud is visible in CB2 and MT2 and invisible in MT3, which 

suggests that the cloud is not a high-altitude feature.  Therefore, the cloud pointed to by 

white arrows in Fig. 8 is probably a deeper cloud below the visible cloud deck. There are 

two kind of clouds below the principal cloud deck: ammonia hydrosulfide (NH4SH) with 

cloud base ~ 2 bars and water (H2O) with cloud base ~ 6 bars [Atreya et al., 1997]. In 

addition, the fact that the cloud is visible in MT2 images suggests that the top of the 

cloud is above the 3-bar level, which is the pressure level of the optical depth 1=τ  for 

the MT2 filter [West et al., 2004]. Model simulations [Delgenio and McGrattan, 1990; 

Hueso and Sanchez-Lavega, 2001] suggest that strong moist convection, originated at the 

pressure level ~ 5 bars, can extend above the 0.5-bar pressure level on Jupiter. The moist 

convective storm appearing in 4-filter maps of Fig. 3 also shows that some convective 

storms have large vertical extent. Based on these factors, the features within hot spots 

could be either ammonium hydrosulfide clouds, whose cloud base is ~2 bars or water 

clouds that extend above 3 bars. 
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The previous wind measurements in the regions of hot spots [Hueso and Sanchez-

Lavega, 1996; Vasavada et al., 1998] mainly tracked features around the hot spots. In this 

study, these features we tracked are different from these features measured in the 

previous two papers [Hueso and Sanchez-Lavega, 1996; Vasavada et al., 1998]. They 

move across the centers of hot spots and have faster zonal wind than the zonal winds at 

the principal cloud deck, which suggests that these features moving across the hot spots 

probably are deep clouds and are mainly controlled by the deep faster ambient zonal 

wind.   

 

Figure 9 shows the measurements of deep zonal winds by tracking these cloud features 

observed within hot spots and comparison with the results of Galileo DWE. In total, 15 

cloud features sitting at 13 different latitudes of the equatorial regions of Jupiter are 

tracked in this study. Our deep zonal winds at different latitudes (from latitude 6° to 9° 

N) extend the results of Galileo DWE, and are consistent with the theoretical and 

numerical results of deep convection models, which say that the strong equatorial 

prograde jets of the giant planets penetrate to deep levels [Busse, 1976; Sun et al., 1993; 

Christensen, 2001; Aurnou and Olson, 2001; Yano et al., 2003]. The velocity that we 

measure at the latitude of the Galileo probe (7.4° N planetographic) is around 170 m/s, 

which is equal to the zonal wind at the 3-bar pressure level determined by the Galileo 

probe (bottom panel of Fig. 8) [Atkinson et al., 1998]. If the Galileo probe results in 1995 

can be applied to the Cassini flyby in 2000, the ammonium hydrosulfide (NH4SH) cloud 

can be ruled out as a candidate for the deeper clouds detected through hot spots because 
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the temperature at the 3 bar level is too high for ammonium hydrosulfide to condense. 

Therefore, the cloud features detected through hot spots are probably thick water clouds 

extending above 3 bars.  

 

2.6 Conclusions 

 

High-quality images from the Cassini ISS, acquired in 9 filters, are used to measure the 

high-altitude and low-altitude zonal winds of Jupiter. The first systematic measurements 

of the high-altitude zonal winds by tracking these small features unique to UV1 images 

certify that the winds are weaker at the higher altitudes. Winds at the lower altitudes are 

measured by tracking cloud features through hot spots. The deep zonal winds are 

consistent with the results from the Galileo probe, provided the clouds are at a pressure 

level around 3 bars. These new results will shed light on the dynamics of the jovian 

atmosphere and the internal structure of Jupiter.  
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Table 2.1 The information of the Cassini ISS 9 filters 
 

 
    Filter         centerλ          effetiveλ           Observation time       Pressure ( 1=τ ) 

    UV1          258 nm      264 nm        Oct.1 – Nov. 14          350 mbar 
    BL1           451 nm      455 nm        Oct.1 – Nov. 14          4.5 bar 
    GRN         568 nm       569 nm       Oct.1 – Nov.14           10 bar  
    MT1          619 nm      619 nm        Oct.1 – Nov.14           10 bar  
    CB1           619 nm      619 nm        Oct.1 – Nov.14           > 10 bar 
    MT2          727 nm      727 nm        Oct.1 – Nov.14           4 bar  
    CB2           750 nm      750 nm        Oct.1 – Dec. 9,           > 20 bar   
                                                            Dec.11 – Dec. 13 
    MT3          889 nm      889 nm        Oct.1 – Nov.14           600 mbar 
    CB3           938 nm      938 nm        Oct.1 – Nov. 14          > 50 bar   
 
 

Notes:  Column 1 is the names of different filters. Column 2 and 3 are center and 

effective wavelengths of the different filters. The effective wavelengths are computed 

using the full system transmission function convolved with a solar spectrum [Porco et al., 

2005], which are more relevant to the optical characteristics of filters.  Column 4 is the 

observation times for different filters. The last column is the effective pressure level, 

which is defined as optical depth τ =1 in the absence of cloud opacity.  The effective 

pressure levels are estimated by taking account of Rayleigh scattering and methane-

absorption for these ultraviolet, visible, and near-infrared filters [West et al., 2003].   
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Table 2.2   Zonal Wind by Tracking Features Unique to UV1 Images   
   

 
   Latitude         Wind           Error         number           Latitude         Wind         Error          number  

      (graphic)         (m/s)           (m/s)                                (graphic)         (m/s)          (m/s) 
  
     54.8       9.4       ---         1        -58.9      -1.3       6.9         3 
     53.6       0.0       ---         1        -58.1       0.5       7.2         2 
     52.1      -8.9       ---         1        -57.4      -3.9       ---         1 
     50.7      -3.1       3.3        11        -54.8      -4.7       2.6         2 
     50.0      -2.1       4.0        22        -54.0       6.0       6.4        21 
     49.1      -1.0       4.3        14        -53.0      12.7       7.8        32 
     47.9       4.2       5.7        10        -52.0      10.0       6.3        22 
     46.8       2.5       3.2         6        -50.9       7.3       5.6         8 
     46.1       1.1       5.8        13        -50.1       5.1       6.8        19 
     45.0       2.6       4.8        27        -48.9       4.7       7.1        19 
     44.0       1.7       5.5        30        -48.0      -1.9       5.5         7 
     43.0       3.6       7.4        13        -47.0      11.6       8.8         7 
     42.1       1.1       6.9        37        -44.8      18.8      14.4         4 
     40.9      -0.2       6.5        60        -43.2      15.6       ---         1 
     40.1      -4.7       5.8        88        -41.0      13.5       ---         1 
     39.1      -4.7       6.8        65        -39.9       4.8       6.6        10 
     38.0      -3.0       7.3        34        -39.0       7.1       6.5        45 
     37.2       0.9       3.9         8        -38.4      11.8       6.3         2 
     36.0      -1.7       7.4        43        -36.8      14.2       0.0         1 
     35.1      10.7      11.5         8        -35.9      23.0       0.0         1 
     34.0       8.1      11.6        18        -35.2      10.1       1.5         2 
     33.0       3.5      12.2        35        -33.0       0.0       ---         1 
     32.0      -2.3      18.0         4        -32.0      -2.8       5.9        19 
     30.9      -9.2      13.1        10        -31.1       3.3       5.3        90 
     30.0      -9.9       6.6        85        -27.5      28.0       ---         1 
     29.4      -0.9      12.9         9        -26.8      19.8       2.9         3 
     28.3      32.5       ---         1        -26.3      18.9       3.2         2 
     27.0      32.4       5.4         3        -23.8       9.1       5.9         3 
     26.2      60.8      17.1         8        -22.9     -15.5      18.8        11 
     25.2      95.1       ---         1        -22.2     -21.5      16.4        27 
     23.7     111.5       8.4        30        -21.1     -32.9      11.8         6 
     23.3     108.6       6.7        64        -20.0     -38.7      10.0        23 
     22.2      72.3      19.7         3        -19.3     -40.7       8.4        11 
     20.9      57.1      19.0         2        -18.0     -16.9      10.8        15 
     19.7      27.0      12.2        11        -17.1     -13.0       9.0        17 
     19.1       9.2      10.0        32        -16.5     -10.0       ---         1 
     18.3       3.0       7.2         5        -13.8      20.3       ---         1 
     17.1       6.2       8.2         4        -12.9      22.9       2.6         2 
     15.9       3.6       8.2        17        -12.2      10.2       3.4         2 
     15.0       5.0      11.8        15        -11.1      47.5      15.9         7 
     13.9      16.3       6.6         9        -10.0      63.7      16.7        11 
     13.0      27.0      11.4        24         -9.2      73.3      11.8        23 
     12.0      30.2      10.0        29         -7.9      61.9       3.7         4 
     11.1      47.1      13.8        20         -7.0      95.9      17.4        10 
     10.2      49.7       9.8        13         -6.0      86.8      14.8        18 
      9.3      71.9       6.8         2         -5.0      89.3      16.2        17 
      7.9      82.5       3.4         2         -4.2      77.4      12.4        22 
      6.9      79.6       6.0         9         -1.0      88.4       7.9         3 
      6.1      76.3       7.7         4         -0.5      83.2       ---         1 
      4.2      79.5       ---         1           
      1.1      81.7      11.2         6   
 
 
 

        
Notes:  The planetographic latitudes in column 1 and 5 are average latitudes of the 

features tracked within the 1° latitude bin. Column 2 and 6 are the corresponding average 

zonal winds within the 1° latitude bin.  Column 3 and 7 are uncertainties calculated by 

the standard deviation of the multiple measurements within the 1° latitude bin. Dash lines 
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in Column 3 and 7 indicate that only one measurement was done within the 

corresponding latitude bin. Column 4 and 8 are the number of measurements in the 

corresponding 1° latitude bin.     
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Figure 2.1   Map-projected images of the same area in nine filters. The images were taken 

at intervals of 40 seconds, which makes them virtually simultaneous. The mean value of 

every constant-latitude line in the MT3 and UV1 images is removed so that the feature 

contrast covered by the equatorial haze in MT3 and UV1 can be seen.   
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Figure 2.2  Features visible in UV1, MT3, MT2, and MT1 images at two different times. 

For columns (A) and (B) the UV1, MT3, MT2 and MT1 are near-simultaneous images 

separated by 40 or 80 seconds. The time separation between (A) and (B) is 15 days. The 

mean value of every constant-latitude line in the UV1 images is removed to make the 

feature contrast clear. 

 

 



 68

 

Figure 2.3 One moist convective storm visible in UV1, MT3, MT2, and MT1 images at 

two different times. For columns (A) and (B) the UV1, MT3, MT2 and MT1 are near-

simultaneous images separated by 40 or 80 seconds. The time separation between (A) and 

(B) is 20 hours. The mean value of every constant-latitude line in the MT3 and UV1 

images is removed to make the feature contrast clear. 
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Figure 2.4   Feature visible in UV1 image and invisible in MT3 and CB3 images at two 

different times. For columns (A) and (B) the UV1, MT3, and CB3 are near-simultaneous 

images separated by 40 seconds. The time separation between (A) and (B) is 20 hours. 

The mean value of every constant-latitude line in the MT3 and UV1 images is removed 

to make the feature contrast clear.   
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Figure 2.5   Measurements of zonal wind by tracking features unique to the UV1 images 

and comparison to the CB2 zonal wind profiles. (A) All 1529 measurements performed 

on the UV1 images. (B) Comparison of the average UV1 zonal winds and two zonal 

winds from CB2 images [Porco et al., 2003; Li et al., 2004]. Each dot in (A) represents a 

single measurement. Each dot in (B) represents the average zonal wind of these 

measurements in (A) within a 1º latitude bin. The CB2a zonal wind profile comes from 

automated correlation method utilizing 29 pairs of Cassini CB2 images separated by 10 

hours [Porco et al., 2003] and the CB2b comes from manually feature-tracking method 

utilizing CB2 images from Oct.1 to Dec.9, 2000 [Li et al., 2004]. The uncertainties in (B) 

are estimated by the standard deviation of the multiple measurements within the 1°-

latitude bins. 
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Figure 2.6 Differences between the UV1 zonal winds and the CB2 zonal winds. (A) 

Difference between the UV1 zonal winds and the CB2a zonal winds [Porco et al., 2003].  

(B) Difference between the UV1 zonal winds and the CB2b zonal winds [Li et al., 2004]. 
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Figure 2.7 Comparison between the average UV1 zonal winds and the results from the 

CIRS data. The high-altitude zonal wind profiles at 315 mbar and 499 mbar come from 

the CIRS data on the assumption that the base zonal winds from CB2 are at 600 mbar 

[Flasar et al., 2004; Simon-Miller et al. 2005]. Equatorial latitudes between -3° and 3° 

are omitted in the CIRS profile because the thermal wind equation greatly amplifies the 

errors in temperature when latitude is small.  
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Figure 2.8   Time series of a deep cloud through a hot spot. (A) Time series of CB2 

images separated by 10.5 hours. (B) Multi-filter images corresponding to the top panel of 

(A). The MT3, MT2, CB2 images of group (B) are near-simultaneous images separated 

by 40 seconds. The mean value of every constant-latitude in MT3 images is removed so 

that these feature contrasts covered by the equatorial haze of MT3 can be seen.  
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Figure 2.9   Comparison between the zonal winds by tracking features through hot spots, 

the zonal winds for all features in CB2 images, and the deep zonal winds from the 

Galileo probe [Atkinson et al., 1998]. Each red circle without an error bar is the velocity 

of a deep feature that only can be tracked in a pair of images. Each red circle with an 

error bar is the velocity of a deep feature that is tracked in more than one pair of images, 

or the velocity of multiple measurements on different features at the same latitude. Error 

bars are calculated by the standard deviation of the multiple measurements at the same 

latitude. The CB2 zonal wind profile between latitudes 5° and 10°N is the same as the 

CB2a zonal wind in Fig.5 [Porco et al., 2003]. The dashed line in the upper panel 

represents the latitude of Galileo probe. The results of the DWE on the Galileo probe 

[Atkinson et al., 1998] are show in the bottom panel.  
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Chapter 3:   Waves in Jupiter’s Atmosphere Observed by the 

Cassini ISS and CIRS Instruments  
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3.1 Abstract  

 

The Cassini Imaging Science Subsystem (ISS) and Composite Infrared Spectrometer 

(CIRS) reported a North Equatorial Belt (NEB) wave in Jupiter's atmosphere from optical 

images (Porco et al., 2003) and thermal maps (Flasar et al.,  2004), respectively. The 

connection between the two waves remained uncertain because the two observations were 

not simultaneous. Here we report on simultaneous ISS images and CIRS thermal maps 

that confirm that the NEB wave shown in the ISS ultraviolet (UV1) and strong methane 

band (MT3) images is correlated with the thermal wave in the CIRS temperature maps, 

with low temperatures in the CIRS maps (upwelling) corresponding to dark regions in the 

UV1 images (UV-absorbing particles) and bright regions in the MT3 images (high clouds 

and haze). The long period of the NEB wave suggests that it is a planetary (Rossby) wave. 

The combined observations from the ISS and CIRS are utilized to discuss the vertical and 

meridional propagation of the NEB wave, which offers a possible explanation for why the 

NEB wave is confined to specific latitudes and altitudes. Further, the ISS UV1 images 

reveal a circumpolar wave centered at 48.5°S (planetocentric) and probably located in the 

stratosphere, as suggested by the ISS and CIRS observations. The simultaneous 

comparison between the ISS and CIRS also implies that the large dark oval in the polar 

stratosphere of Jupiter discovered in the ISS UV1 images (Porco et al., 2003) is the same 

feature as the warm regions at high northern latitudes in the CIRS 1-mbar temperature 

maps (Flasar et al., 2004). This comparison supports a previous suggestion that the dark 

oval in the ISS UV1 images is linked to auroral precipitation and heating (Porco et al., 

2003).   
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3.2  Introduction 

 

Atmospheric waves can serve as probes of atmospheric internal structures in the same 

way that  seismic waves probe the internal structure of Earth (Flasar and Gierasch, 1986; 

Bosak and Ingersoll, 2002). Also, waves are important for transporting momentum, 

energy, molecules, and particles between different latitudes and altitudes. Their presence 

provides information about the forces that drive them. Among the giant planets, waves 

are discovered to be ubiquitous in the atmospheres from thermal fields and optical images 

(Magalhaes et al., 1989, 1990; Orton et al., Deming et al., 1989, 1997; Godfrey, 

Achterberg and Flasar, 1996; Godfrey, 1988; Sanchez-Lavega and Richard Hueso, 1998).  

For Jupiter, optical images have revealed wave patterns over a large range of spatial 

scales. Planetary waves with horizontal wavelength longer than 10,000 km were reported 

at high latitudes in Jupiter’s stratosphere by the optical imaging system on Hubble Space 

Telescope (HST) (Sanchez-Lavega et al., 1998). At the same time, gravity waves with 

horizontal wavelength around 300 km were discovered in the planet’s equatorial 

atmosphere in Voyager images (Flasar and Gierasch, 1986). Jupiter’s horizontal thermal 

maps (Orton et al., 1991, 1994; Deming et al., 1997) and vertical temperature structure 

(French and Gierasch, 1974; Young et al., 2005) also revealed the large-scale planetary 

waves and meso-scale gravity waves.  The equatorial 5 µm hot spots, which allow 5 µm 

thermal emission from deeper atmospheric level to escape due to their low cloud opacity, 

are observed in optical images (Allison, 1990), thermal maps (Ortiz et al., 1998; Orton et 

al., 1998), and numerical modeling (Showman and Dowling, 2000). The hot spots are 

interpreted as Jupiter’s planetary waves in the above studies. For the other giant planets, 
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waves are also discovered to be ubiquitous in the atmospheres from thermal fields and 

optical images (Godfrey, 1988; Hinson and Magalhaes, 1991, 1993; Achterberg and 

Flasar, 1996).   

 

More recently, the Cassini ISS discovered an obvious longitudinal wave in Jupiter 

between 10°N and 19°N latitude (planetocentic) from the ultraviolet (258 nm, UV1) and 

strong methane band (889 nm, MT3) images (Porco et al., 2003). Subsequently, the 

Cassini CIRS reported a thermal wave at the same latitude ranges from temperature maps 

(Flasar et al., 2004). Unfortunately, these two Cassini observations are not simultaneous 

so it was difficult to correlate the two waves and determine their relative phase. Some 

previous work (Magalhaes et al., 1989; Orton et al., 1994; Sanchez-Lavega et al., 1998) 

that tried to connect optical waves to the thermal waves suffered from the same problem. 

Fortunately, the Cassini ISS obtained multi-filter images of Jupiter (the ride-along data 

set) during the working time of the CIRS observations, which provide a good opportunity 

to study the correlation between the optical waves and thermal waves.  

 

In this paper, we discuss the waves that were discovered by the ISS and CIRS. The wave 

between 10°N and 19°N latitude (planetocentic) is a Rossby wave. By comparing the 

phase speed of the wave with the local wind speed, we are able to identify a region in 

latitude-altitude space where the wave can propagate. At the boundaries of the region the 

wave is either absorbed or reflected. These studies help identify the regions where the 

wave is generated. The simultaneous observations are also used to connect the large dark 
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oval in the polar region discovered by the ISS UV1 images and the warm regions in the 

CIRS 1-mbar temperature maps. 

 

The following section (Section II) is a description of the data sets used in this paper. Our 

observations of waves are discussed in Section III. Theoretical considerations are in 

Section IV. In Section V, we summarize our discussion in the context of previous 

observations. Planetocentric latitudes, System III west longitude, and positive velocity in 

the eastward direction are used in this paper.  

 

3.3 Description of data sets and processing 

 

Our observations are made using three data sets: 1) the continuous ISS multi-filter images 

acquired over the 45-day period October 1 to November 14, 2000, 2) the ISS ride-along 

imaging data set, which was taken during the working time of the CIRS regular 

observations over the 10-day period January 1-10, 2001, and 3) temperature maps 

constructed from the CIRS data taken at the same time as the ride-along imaging data set, 

January 1-10, 2001. The spatial resolution of the Cassini ISS images at the equator ranges 

from ~ 500 km/pixel at the beginning of October in 2000 to ~ 100 km/pixel at the 

beginning of January in 2001. The CIRS thermal maps have spatial resolution of ~ 1º in 

the latitudinal and longitudinal directions, which corresponds to ~ 1000 km in the tropical 

regions of Jupiter.  
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The ISS acquired high-quality time-lapse images in different filters during its lengthy 6-

month (October 1, 2000 to March 22, 2001) Jupiter flyby. The ISS multi-filter imaging 

data sets before the middle of December of 2000 are fairly regular in time and space, 

which covered the jovian global disk once per one or two jovian rotations, i.e. once every 

10h or 20h. The corresponding imaging strategy for these continuous images has been 

described elsewhere (Porco et al., 2003, 2005; Li et al., 2005). The phase angle between 

the spacecraft and Jupiter was 20 degrees at the beginning of the flyby (October 1, 2000). 

The spacecraft began a month-long sweep through a large range of phase angles after its 

phase angle passed through zero on December 14 of 2000 (Fig. 1).  

 

The image navigation, map projections, and radiometric calibration for these ride-along 

images are the same as used for the continuous ISS images (Porco et al., 2003, 2005; Li 

et al., 2005). For photometric calibration, the classical Minnaert correction (Minnaert, 

1941) does not work well for these ride-along images because the phase angle is large 

and the physical properties of the atmosphere depend strongly on latitude. Therefore, we 

adopt a more empirical approach to define the Minnaert correction factor f . One divides 

by this number to get the normalized brightness at zero incidence and phase angles. 

 

                                      )()( )(cos)(cos φφ lk eif = ,                                         (1) 

 

where i  is the solar incidence angle and e  is the emission angle. The indices )(φk  and 

)(φl  are set as functions of latitudeφ . In order to maximize the feature contrast and 

minimize the seams, which appear when the neighboring images taken at different times 
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are put together to make global maps, we make k  and l  change independently even 

though it violates the reciprocity principle (Minnaert, 1941). Further, in the MT3 and 

UV1 images, we subtracted the mean brightness of every line of pixels, corresponding to 

lines of constant latitude in the map-projected images, to enhance the contrast of the 

small-scale features and reveal some features covered by the equatorial haze.   

  

The CIRS team produced temperature maps with high vertical and horizontal resolution 

(Flasar et al., 2004a, 2004b). Some CIRS thermal maps at specific pressure-levels (400-

mbar, 243-mbar, 4-mbar, and 1-mbar) at different times (January 1, 5, and 10, 2001) are 

utilized to make a simultaneous comparison with the ISS ride-along images in this paper.  

 

3.4  Observations and analysis  

 

3.4.1.  Waves in the Cassini ISS multi-filter images  

 

Figure 2 shows an example of cylindrical-projected global maps in different filters 

constructed from the continuous ISS multi-filter image set. The ISS continuous images 

were taken at intervals of 40 seconds for the three filters (UV1, MT3 and CB3), which 

makes the constructed global maps in the three filters shown in the Fig. 2 virtually 

simultaneous. The mean value of brightness in every constant-latitude line in the MT3 

and UV1 images is removed so that the feature contrast covered by the equatorial haze in 

MT3 and UV1 can be seen. In the UV1 (258 nm) and MT3 (889 nm) global maps, the 

most conspicuous wave is observed between 10° and 19°N latitudes with a clear anti-
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correlation between the UV1 and MT3 maps. The anti-correlation implies that this North 

Equatorial Belt (NEB) wave is composed of UV-absorbing small particles mixed with the 

high-altitude scattering haze, both of which absorb in the UV1 and scatter in the MT3. 

Also, the gases in the atmosphere absorb in the MT and scatter in the UV. The number of 

wavelengths in the planetary circumference for the NEB wave is 12-13, which 

corresponds to a wavelength of 34,000-37,000 km at 14.5°N. The quasi-periodic bright 

areas around 60°W, 120°W, 180°W, 240°W, and 300°W in the top and bottom 

boundaries of the MT3 global map (panel B) come from incomplete removal of limb 

darkening.   

 

The so-called 5 µm hot spots revealed by the 5 µm thermal measurements are also 

observed by the Cassini ISS images at the visible bands and methane-absorption bands.  

The CB3 global map in Fig. 2 displays these hot spots, which are dark patches located in 

Jupiter’s bright equatorial band.  These hot spots are different from the NEB wave in the 

UV1 and MT3 global maps: First, they are located at a different latitude, and second, they 

have a different longitudinal pattern than the NEB wave. The MT3 global map of Fig. 2 

shows both the NEB wave centered at 14.5°N and these hot spots centered at 5°N, which 

confirms that they are different phenomena. Previous studies show that the number of hot 

spots encircling the planet changed from 13 during the Voyager 1 encounter to 11 during 

the Voyager 2 encounter (Smith et al., 1979a, 1979b). The number decreased to 8-10 at 

the time of Cassini, as seen in the CB3 global map of Fig. 2.   
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Figure 2 shows that the NEB wave cannot be seen in the continuum band CB3 global 

map centered at 938 nm, even though that band is close in wavelength to the MT3 band at 

889 nm. The NEB wave pattern shows clearly only in the UV1 and MT3 among the 9 

filters of the Cassini ISS (Fig. 3). Some features seen in the other 7 filters may be related 

to features of the wave that are seen in the UV1 and MT3 filters (Porco et al., 2003), but 

the correlation is weak. We suggest two possibilities: One is that the NEB wave exists at 

the pressure levels sampled by the 7 filters, but the mechanism to produce contrast from 

the wave activity is weak there. The other is that the NEB wave does not exist at the 

altitudes sampled by the 7 filters. The effective pressure-levels (optical depth τ =1 in the 

absence of cloud opacity) in the UV1 and MT3 filters are 350-mbar and 600-mbar 

respectively (West et al., 2004; Li et al., 2005). These pressure-levels are higher in 

altitude than the effective pressure-levels in the other 7 filters. The cloud features seen in 

the continuum band images are estimated to be at a pressure-level ~ 0.7 bar (Banfield et 

al., 1998), so the second possibility would imply that the bottom of the NEB wave is 

above the 0.7 bar surface.  

 

A circumpolar wave system centered at 48.5°S is seen in the UV1 global map of Fig. 2, 

but not in the other 8 filters of the ISS images. The polar-projected map of panel A of 

Fig. 2 is displayed in Fig. 4, which clearly shows that the wave encircles the polar region 

in the southern hemisphere. The stratospheric haze on Jupiter has significant opacity at 

UV wavelengths at high latitudes (Tomasko et al., 1986; West, 1988; Rages et al., 1999; 

West et al., 2004), which is probably due to auroral destruction of methane with 

subsequent ion and neutral chemistry (Hord et al., 1979; Pryor and Hord, 1991). In 
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addition, estimates of the pressure levels of high-latitude features in ultraviolet images 

(Banfield et al., 1996; Vincent et al., 2000) suggest that, at high latitudes, the ultraviolet 

filter mainly senses the stratosphere. The above discussion combined with the fact that 

the circumpolar wave only shows in the UV1 images suggests that it is probably located 

in the stratosphere. The number of wavelengths in the corresponding planetary 

circumference for the circumpolar wave is estimated to be 18-20, which corresponds to a 

wavelength of 15,000-17,000 km at 48.5°S.  

 

Many circumpolar waves were observed in mid-latitudes of the northern hemisphere in 

the UV1 global map of Fig. 2 (Porco et al., 2003). These circumpolar waves in the 

northern hemisphere do not show in the other 8 filters of the Cassini ISS images either, 

which similarly suggests that these waves are located in the stratosphere. The chaotic 

appearance of these waves makes it difficult to measure their features.  

 

The NEB wave and circumpolar mid-latitude wave approximately kept their wave-

numbers during the period of the continuous ISS images set over 45 days (October 1 to 

November 15, 2000) with small changes in the brightness and shapes of wave crests and 

troughs. Phase velocities relative to System III are measured by choosing clear parts of 

the two waves and tracking the motions of the crests.  Figure 5 shows the time series of 

the clear parts for the two waves in the UV1 filter. Panel A is for the NEB wave with the 

time separation 5 days, and panel B is for the circumpolar wave with the time separation 

1.7 days. The figure shows that the NEB wave steadily moves to the west with a drift of 

11° of longitude during a 40-day period and the circumpolar wave steadily moves to the 
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east with a drift of 8.5° of longitude during a 15-day period. The average phase velocities 

are calculated by averaging the movements of the three crests in the two waves, which 

are displayed in Fig. 6 as red dots with error-bars (panel A is for the NEB wave and panel 

B is for the circumpolar wave). The error-bars are estimated by the standard deviation of 

the velocities of the three crests. The two average phase velocities relative to System III 

are xc = -3.9 m s-1 for the NEB wave and xc = 4.2 m s-1 for the circumpolar wave.  The 

wave periods relative to System III for the two waves are estimated as ~ 100 days for the 

NEB wave and ~50 days for the circumpolar wave by taking account of the 

corresponding zonal wavelength and phase velocity.   

 

Figure 6 shows the ambient flows at the pressure levels of the UV1 filter (red line) and 

CB2 filter (green line) within the latitude ranges of the two waves. The velocities of the 

ambient flows in the UV1 filter come by tracking the small features unique to the UV1 

images in the continuous ISS multi-filter image sets acquired over a 45-day period (Li et 

al., 2005). The small features are distinct from the wave itself, which has a larger scale. 

The comparison with the CIRS thermal wind suggests that the ambient flows from UV1 

images are located at a pressure level of 0.5 bar (Li et al., 2005).  The UV1 ambient flows 

outside equatorial regions are probably located at a higher altitude than 0.5 bar due to the 

increase of stratospheric opacity at high latitudes (Tomasko et al., 1985; West, 1988; 

Rages et al., 1999; West et al., 2004). The green line comes from an automatic-

correlation measurement based on the time-lapse CB2 images in the  ISS data set (Porco 

et al., 2003), which represents an ambient flow at the pressure level ~ 0.7 bar (Banfield et 

al., 1998). The phase velocities of the waves and the corresponding UV1 ambient flows 
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come from the same ISS UV1 image set over a 45-day period, which implies that the 

waves and the UV1 ambient flows are around the same pressure-level. Figure 6 shows 

that the two waves propagate westward relative to the UV1 flow at its altitude, although 

they propagate eastward relative to the CB2 flow at its altitude. Since the CB2 flow is at a 

lower altitude than the wave, this difference has important implications for wave 

propagation, which will be discussed in Sections IV.B and IV.C).  

  

3.4.2 The NEB wave in ISS and CIRS images 

 

The MT3 filter images during the ride-along imaging period (Jan 1 to Jan 10, 2001) are 

spaced in a regular pattern compared to the UV1 filter images, so we can make MT3 

global maps during the period. Figure 7 shows a simultaneous comparison between an 

ISS MT3 global map and the CIRS global temperature field. Panel A is the CIRS 400-

mbar global temperature field on 1 January 2001. The CIRS global temperature maps 

discussed in this paper are the actual retrieved temperatures at specific pressure levels 

(Flasar et al., 2004). Panel B is the ISS MT3 global map at the same time. Panel C is the 

same as Panel B except the mean value of every constant-latitude line was removed to 

increase the feature contrast. The simultaneous comparison displays a clear negative 

correlation between the ISS MT3 bright regions and the CIRS high temperatures for the 

NEB wave. It also suggests that the bright regions of the NEB wave in UV1 images are 

positively correlated with high temperatures in the CIRS maps because of the anti-

correlation between the UV1 and MT3 for the NEB wave. The following near-

simultaneous comparison between the ISS UV1 and CIRS (Fig. 8) confirms this point.  
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During the ride-along imaging period, the UV filter images are irregular in time and 

space and relatively scarce compared to the MT3 filter images. Therefore, we cannot 

make a whole UV1 global map during the period. Panel B in Fig. 8 shows a UV1 map 

from longitude 135° to 300°W and latitude 12°S to 69°N on 7 January 2001. Likewise, 

the mean value of every constant-latitude line is removed to increase the feature contrast. 

We do not have the CIRS temperature map at exactly the same time, so the CIRS 400-

mbar temperature maps in January 5 (panel A) and January 10 (panel C) are used for the 

comparison in Fig. 8. All three CIRS 400-mbar thermal maps (January 1, 5 and 10, 2001) 

are put together (Fig. 9) to measure the movement of the NEB thermal wave. Figure 9 

shows that most of these thermal features move to the west with a longitude displacement 

~ 2° during the 10-day period, which is roughly consistent with the measurement by the 

continuous UV1 images (11° during the 40-day period).  The 2° longitude displacement 

during the 10-day period is only a small fraction of the wavelength of the NEB wave, so 

the comparison between the ISS UV1 image and the CIRS maps in Fig. 8 can be regarded 

as near-simultaneous observations. Figure 8 displays a clear positive correlation for the 

NEB wave between the bright regions in the ISS UV1 map and the high temperatures in 

the CIRS thermal maps. In summary, the simultaneous comparison between the MT3 

global map and the CIRS temperature field and the near-simultaneous comparison 

between the UV1 map and the CIRS thermal maps both suggest that the NEB wave 

appearing in the ISS images and the CIRS temperature field are parts of the same 

phenomenon. The low temperatures in the CIRS maps imply upward displacement of 

low-entropy air from below. The upward displacement is probably associated with these 
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UV-absorbing small particles either by bringing them up from below or forming them 

during the process of upward displacement. 

 

Figure 10 shows CIRS thermal maps at four pressure levels – 400, 243, 4, and 1 mbar. 

The NEB wave is apparent at 400 and 243 mbar but not at the 4 or 1 mbar levels. The 

simplest interpretation is that the wave does not exist at the higher levels. 

 

Ground-based observation (Orton et al., 1994) revealed waves in the temperature field 

(thermal waves) between 1980 and 1993, which are located around 13°N latitude and the 

250-mbar pressure level with zonal wavelengths of order 40,000 to 70,000 km and phase 

velocity of –5.5 m s-1 relative to System III. Hubble Space Telescope (HST) wide field 

planetary camera 2 (WRPC2) observations taken between 1995 and 1996 in the visible 

wavelengths and methane bands (Simon-Miller et al., 2001) also showed a wave system 

with roughly the same wavelength and latitudes as the NEB wave in this paper. The 

similarity between the waves discovered by the previous observations and the NEB wave 

observed by Cassini during 2000-2001 suggests that the NEB wave is a recurring 

phenomenon or a long-lived system.   

 

3.4.3 The circumpolar wave in ISS and CIRS images 

 

No high-latitude UV1 images in the southern hemisphere of Jupiter are found from the 

ISS ride-along imaging data set during January 1-10, 2001, so we can not connect the 

circumpolar wave centered at 48.5°S to the CIRS thermal maps directly. However, these 
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CIRS temperature maps at different pressure levels (400-mbar, 243-mbar, 4-mbar, and 1-

mbar) in January 1 of 2001, which is displayed in Fig. 10, do not show this wave pattern 

around 48.5°S. Therefore, the circumpolar wave centered at 48.5°S latitude probably 

exists in a pressure levels between 243-mbar and 4-mbar if we assume that the 

circumpolar wave lived through the first week of January in 2001.  

 

3.4.4 The 65ºN oval in ISS and CIRS images 

 

The ISS 2.5-month (October 1 to mid-December, 2000) UV1 movie displays a large dark 

oval centered at 65°N in Jupiter with the same size and shape as the Great Red Spot 

(Porco et al., 2003). Although this feature is not long-lived, a nearly identical feature had 

been seen in HST images taken in 1997 (West et al., 2004). The UV1 global map of Fig. 

2 (panel A) shows a dark oval formed in the beginning of November in 2000 with 

position (65°N, 170°W), and is indicated by a white arrow.  The dark oval does not show 

in the strong methane band (MT3) and the corresponding continuum band (CB3). This 

and the fact that the UV1 light cannot penetrate to the troposphere in the polar region due 

to the intense stratospheric haze (Tomasko et al., 1986; West, 1988; Rages et al., 1999; 

West et al., 2004), suggest that the dark oval is located in the stratosphere (Porco et al., 

2003). The oval formed and grew from early October to mid-November, then elongated 

and died at the end of the 2.5-month period (Porco et al., 2003). Other observations 

suggest that large oval formation in the polar region is a recurring phenomenon (West et 

al., 2004). Panel B of Fig. 11 shows a new dark oval indicated by a white arrow, which is 

centered at 65°N and 180°W and formed on 8 January 2001 after the old large oval died 
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in the middle of December. The new dark oval implies that the polar oval is a recurring 

event. Flasar et al. (2003) also reported large warm regions in January of 2001 at the 

same latitude (65°N) in the CIRS 1-mbar temperature maps, but it is speculative to 

connect the CIRS warm regions to the UV1 dark oval in November of 2000 because the 

two observations are not simultaneous. Our UV1 maps in January 7 make it possible to 

study the correlation.  

 

Figure 11 shows a near-simultaneous comparison between the 1-mbar CIRS temperature 

maps and the ISS UV map. Panel B of Fig. 11 is the same as panel B of Fig. 8, which is 

the UV1 map on 7 January 2001. Panel A and panel C are the CIRS 1-mbar temperature 

maps in January 5 and 10, respectively. Figure 11 suggests that the location and shape of 

the warm regions do not change much from January 5 to 10.  The figure also shows that 

the dark oval in the UV map has the same location (65°N, 180°W) and oval shape as the 

warm regions in the CIRS temperature maps. This comparison suggests that the dark oval 

in the UV1 images is connected to the high-latitude warm regions in the CIRS 

temperature maps. This relation is opposite to the NEB wave, where dark regions in UV1 

images are connected to cold temperatures in the CIRS thermal maps. There the 

explanation was that the upward displacement of low-entropy air, corresponding to low 

temperatures in the CIRS maps, brings these small UV-absorbing particles from below or 

helps to form them. The correlation between the dark oval in the UV1 images and the 

warm regions in the CIRS thermal maps suggests that auroral processes play an important 

role in heating the air and forming the particles (Porco et al., 2003). Downward 

displacement of high-entropy air might bring these UV-absorbing particles down from 
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above. The location of the new dark oval in January (65°N, 180°W) within the main 

auroral oval supports the connection between the dark oval and auroral process (Porco et 

al., 2003; Flasar et al. 2004).  In addition, the warm regions shown in the CIRS 1-mabr 

temperature maps do not show in the CIRS 4-mbar temperature maps (Fig. 11), which 

suggests the dark oval in the UV1 images is probably located above the 4-mbar pressure 

surface. This conclusion is consistent with the previous inference from limb darkening 

observations, which also implies that the dark oval is at 1-mbar or higher (West, 1988; 

West et al., 2004).   

 

However, the warm regions in the CIRS temperature maps (panel A and C of Fig. 11) are 

larger than the dark oval in the UV1 map (panel B of Fig. 11). Likewise, Figs. 7 and 8 

also show that the NEB wave in the CIRS temperature maps is larger than the NEB wave 

in the UV1 and MT3 images. We do not have an explanation why the size difference 

exists between brightness features in the ISS images and the thermal features in the CIRS 

temperature maps. 

 

3.5 Theoretical considerations 

 

3.5.1  Gravity waves versus planetary waves 

 

The low frequency (period ~ 100 days) suggests that these are planetary waves - they 

cannot be gravity waves or acoustic waves. If the NEB wave were a gravity wave, its 

frequency relative to the zonal flow u would be (Holton, 2004, p. 208) 
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where v  is frequency, k  is zonal wave-number, u  is the ambient zonal wind, 0f  is the 

Coriolis parameter at the latitude of the NEB wave (14.5°N), N is the buoyancy (Brunt-

Vaisala) frequency, hK  is the horizontal wave-number, and m  is the vertical wave-

number. The Coriolis parameter 15
0 101.9 −−×= sf at the latitude 14.5°N. The term uk  is 

much smaller than the Coriolis parameter 0f  for the NEB wave with k =1.77 ×10−7m−1 

and u < 50 m s-1 at the latitude 14.5°N. Therefore 0fv > , implying a period shorter 

than 0.8 days, but this is inconsistent with the period of the NEB wave, which is ~100 

days. Previous observations (French and Gierasch, 1974) also show that the period of 

jovian gravity waves in the upper atmosphere is less than 1 day. Therefore, we can rule 

out the gravity wave as the candidate of the NEB wave. The 48.5°S circumpolar wave 

can be ruled out as gravity wave for the same reason. Therefore, we think that the two 

waves (14.5°N wave and 48.5°S wave) are planetary waves. 

 

3.5.2  Meridional trapping of the NEB wave 

 

The NEB wave is observed between latitudes of 10° and 19°. We treat it as a planetary 

(Rossby) wave and ask if the wave is trapped within this band. With the data at hand, 

there are limitations to this analysis. Wave propagation and trapping depend on the zonal 

wind profile and static stability, and these are not precisely known at all the latitudes and 

altitudes of interest. Also, the vertical and horizontal structure of the wave is known at 

only a few latitudes and altitudes. Therefore a full-wave solution is not warranted, and we 
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use the Wentzel-Kramer-Brillouin (WKB) approximation instead. Further, we use the 

WKB approximation beyond its range of validity, which is when the wavelength is much 

less than the scale of variation of the medium in which it propagates. However as stated 

by Morse and Feshbach (1953, p. 1105), even when this condition is not satisfied, the 

WKB method is often a convenient starting point for further analysis. 

 

Consistent with this approximation, we assume that the NEB wave has solutions of the 

form exp[(z /2H) + i(kx − cxkt + ∫ mdz)]cos( ∫ ldy) . Substituting this into the equation for 

small-amplitude quasi-geostrophic planetary waves on a β-plane (e.g., Salby, 1996, p. 

463), we obtain the following dispersion relation for the square of the meridional 

wavenumber; 
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Quasi-geostrophic theory is valid here because the relative frequency )( xcuk −  is much 

smaller than f  at the latitude of the NEB wave (14.5°N).   

 

If l2 is positive within a specfic latitude range and negative outside that range, then the 

wave may be trapped within that range. Trapping therefore depends not only on the 

properties of the wave like m2, k2, and cx, but also on the properties of the medium like βe, 

u , N2, H2, and f2. Here eβ  is the meridional gradient of zonal-mean vorticity, and H  is 
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the scale height. Other variables have been defined in Eq. (2). In a zonal-mean flow 

),( zyu , eβ  is defined by (Salby, 1996, p. 465):  
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The meridional gradient of zonal-mean vorticity eβ  is composed of three parts: the 

gradient of the planetary vorticity yf ∂∂=β , the vorticity gradient associated with the 

curvature of the ambient flows in the meridional direction 22 yuy ∂∂−=β , and the term 

associated with vertical shear of the ambient flows βz = −(1 ρ )(∂ ∂z) (ρ f 2 N 2)(∂u ∂z)[ ]. 

The vertical coordinate z in zβ  is defined as ( )0ln ppHz −=  in the log-pressure 

coordinates, where H is the reference scale height and 0p  is a reference pressure, e.g., 

one bar.   

 

The estimation of eβ  depends on the meridional and vertical structure of the zonal wind 

),( zyu , which we obtain from the CIRS data. We assume that the NEB wave is located 

around the 400-mbar and 243-mbar levels based on the observations that the wave shows 

there but not at the 4-mbar and 1-mbar levels (Fig. 10). We use the CIRS 315-mbar zonal 

winds, which are near the middle of the two pressure-levels (400-mbar and 243-mbar). 

The first term β  has the value 1112109.4 −−−× ms  at 14.5°N and changes smoothly with 

latitude (panel B of Fig. 12). We estimate yβ  by fitting the CIRS 315-mbar zonal wind 

with two cosine functions and calculating yβ  based on that function. Figure 12 shows the 
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result (panel A) and the corresponding yβ  (panel B). Assuming that 2N  is constant and 

combining with the thermal wind equation, we can re-write the third term zβ  of Eq. (4) 

in the form 
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Therefore, the third term zβ  can be estimated from the CIRS temperature fields with 

relatively higher spatial resolution (~ 1° latitude) compared to the CIRS zonal winds 

fields (~2.2° latitude). We approximate yzT ∂∂∂ 2 , yT ∂∂ , and zT ∂∂  at 315-mbar by 

[ ]400243 )()()1( yTyTz ∂∂−∂∂Δ , [ ]400243 )()()21( yTyT ∂∂+∂∂ , and ( )400243)1( TTz −Δ , 

respectively. The meridional gradients of temperature 243)( yT ∂∂  and 400)( yT ∂∂  are 

estimated by a central-difference scheme of the first derivative and the CIRS thermal 

maps at 243-mbar and 400-mbar pressure-levels. The estimation of zβ  by this method is 

shown in the panel B of Fig. 12.  In addition, the frequency 2N in Eq. (3) is defined as 

zgN ∂∂= θln2 , which we estimate using the CIRS average potential temperature θ  at 

the two pressure-levels (243-mbar and 400-mbar). The resulting expression is 

N 2 = g (0.5θ 243 + 0.5θ 400) (θ 243 −θ 400) Δz[ ]= 3 ×10−4 s−2  for 315-mbar, which is consistent 

with the value in Voyager times (Achterberg and Ingersoll, 1989). The scale height 

gTRH /= is calculated to be m4108.1 ×  at the 315-mbar by setting the T as the average 
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temperature of the 400-mbar and 243-mbar pressure-levels. Figure 12 (panel B) shows 

eβ  within the latitude range [5ºN, 25ºN].  

 

Figure 10 shows that the NEB wave appears in both CIRS 400-mbar and 243-mbar maps 

without obvious phase shift. In addition, Figs. 2 and 3 suggest that the NEB wave 

penetrates down at least to the pressure level of the UV1 filter, which is around 0.5 bar 

(Li et al., 2005). Therefore, the half-wavelength of the NEB wave is larger than the 

altitude difference between the 243-mbar and 500-mbar levels, which means that the 

vertical wavelength of the NEB wave is larger than 1 scale height.   

 

In the WKB approximation, the meridionally trapped wave has to satisfy      

∫ +=2

1

)2/1()(
y

y
ndyyl π  (Morse and Feshbach, 1953, pp. 1099-1099), where 1y  and 2y  

are the turning points – the meridional boundaries of the trapping region – the latitudes 

where l2 = 0. Since the wave appears to have only a single maximum in latitude, the 

number n  is set to 1 in our case although this violates the condition of the WKB method. 

Evaluating the meridional wave-number )(yl  with Eq. (3) for different values of the 

vertical wave-number m , we find that the condition l(y)dy = (3/2)π
y1

y2∫  is satisfied 

when 14 m1039.0 −−×=m , corresponding to a vertical wave-length 160 km. This is 

around 9 scale heights at the 315-mbar level, which is at least consistent with the 

previous conclusion that the vertical wavelength of the NEB wave is larger than 1 scale 

height.  We also tried larger values of the meridional mode number n  ( L,4,3,2=n ), but 

the condition ∫ +=2

1

)2/1()(
y

y
ndyyl π  could only be satisfied with negative 2m . The 
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trapping latitude range in that case is larger than 30 degrees (i.e., the lower turning point 

1y  < 0º and the polar turning point 2y  > 30ºN), which is inconsistent with the 

observational trapping latitude range ~ 9 degrees ( 1y  ~ 10ºN and 2y  ~ 19ºN).  

 

Figure 13 shows l2 as a function of latitude at the 315 mbar level, assuming m is constant 

with latitude and equal to 0.39 × 10-4 m-1, the value that satisfies l(y)dy = (3/2)π
y1

y2∫ . In 

general, m could vary with latitude and altitude. In a full treatment using the WKB 

approximation, one would launch rays in various directions from various locations and 

compute m2 and l2 along the ray path. Such detailed calculations are not justified in our 

case, first because we have almost no information about m, and second because the WKB 

approximation is not valid for small m and l. Figure 13 and the equation 

l(y)dy = (3/2)π
y1

y2∫  are useful only as a guide to show that trapping is possible within the 

latitude band centered around 14.5°N.  

 

Figure 13 shows that 2l  becomes negative when moving away from the latitude of the 

NEB wave (14.5°N): The wave is trapped within this range by reflections at the latitude 

boundaries (Salby, 1996, p. 465). The reversal of the sign of 2l  around 12.5°N and 24°N 

is mainly due to the increasing eastward wind u  when moving away from the latitude of 

the NEB wave (14.5°N). This makes the term )( xe cu −β  in Eq. (3) very small and 

offers a possible trapping mechanism in the meridional direction. Figure 13 suggests that 

the trapping is not complete at the lower latitude: Wave energy could leak out to the 

south, since the region of negative l2 is neither deep nor wide. 
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Although the preceding analysis does imply qualitatively that the wave is trapped near 

14.5°, the latitudes at which 2l  changes sign (12.5°N and 24°N) do not agree 

quantitatively with the observed boundaries of the wave (10°N and 19°N). In addition, 

uncertainties exist in the estimation of eβ  and the vertical wave-number m .  Detailed 

discussion of the propagation of the NEB wave has to involve a full wave analysis, but 

the theory will introduce more unknown parameters like the initial conditions. Such 

analysis is beyond the scope of this paper.  

 

3.5.3  Vertical  propagation of the NEB wave  

                                             

When the zonal wind varies with height, the wave may encounter a critical level, which 

is defined as a level where 0=− xcu . The classical theory (Salby, 1996) says that 

∞→m  at the critical level and the wave is absorbed. Figure 6 shows that the phase 

velocity of the NEB wave is smaller than the UV1 ambient flow at ~ 0.5 bar (Li et al., 

2005) and larger than the corresponding CB2 ambient flow at ~ 0.7 bar (Banfield et al., 

1998). Figure 14 verifies this point again by comparing the phase velocity with the CIRS 

zonal winds at 315-mbar and 499-mbar. These facts suggest that the phase velocity of the 

NEB wave will be equal to the ambient flow ( 0=− xcu ) somewhere between the 

pressure-level ~ 0.5 bar and the pressure-level ~ 0.7 bar. Therefore, the NEB wave will 

be absorbed between 0.5 bar and 0.7 bar when its perturbation energy propagates 

downward. This conclusion seems to support the second explanation for why the wave is 

not seen clearly in the other 7 filters of the ISS (Figs. 2 and 3) ⎯ it does not exist at the 
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pressure-levels sampled by these filters. The vertical structure of the zonal winds from 

CIRS (Flasar et al., 2004; Simon-Miller et al., 2006) shows that the wind at 14.5°N is 

westward relative to the wave at 0.7 bar (CB2), changes sign near 499-mbar, is eastward 

at 315-mbar, changes sign again near 4-mbar, and finally becomes westward at 1-mbar. 

This suggests that the NEB wave can propagate between the 499 and 4 mbar levels and 

will be absorbed around the pressure-level ~ 4-mbar. The analysis is consistent with the 

CIRS observations that the NEB wave is seen in the 243-mbar and 400-mbar temperature 

maps, but not seen in the 1-mbar and 4-mbar temperature maps (Fig. 10). 

 

3.5.4  Generating mechanism of the NEB wave 

 

The property that the NEB wave is quasi-stationary relative to System III suggests that it 

is deep-rooted, although it cannot be seen in the continuum band images, which are 

sensitive to the deep jovian atmosphere. In addition, the NEB wave cannot propagate up 

from below through the critical level, since 0=− xcu  between the pressure-level ~ 0.5 

bar and the pressure-level ~ 0.7 bar. Either the wave is generated between 0.5 bar and 4 

mbar, or else it propagates in from the sides, having been generated below and to the 

north or south of 14.5°N latitude. Moist convective storms are always active in the 6°-

15°N cyclonic regions (Little et al., 1999; Porco et al., 2003). Some strong convective 

storms can penetrate to altitudes above the 0.5-bar level (Li et al., 2005). The dynamical 

disturbance and the corresponding heating associated with these convective storms could 

be a generating mechanism for the NEB wave if we assume it is generated between 0.5 

bar and 4 mbar.  
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Likewise, the circumpolar wave at 48.5°S could not be seen in the continuum band 

images, which suggests that it is generated in the upper troposphere or stratosphere.  

Some long-lived vortices are located at the latitudes of the circumpolar wave. An 

example of such vortices is shown in the global MT3 and CB3 maps of Fig. 2 with 

location at 48.5°S, 355°W. Flow disturbance above these vortices could create an 

obstacle in the flow that gives rise to the high-altitude circumpolar waves including the 

wave centered at 48.5°S. Furthermore, the upward momentum transportation associated 

with breaking or dissipation of small-scale gravity waves could be the origin of planetary 

waves in the upper atmosphere (Smith, 2003).   

 

In general, Kelvin-Helmholtz (KH) instability due to strong wind shear can serve as a 

mechanism to generate atmospheric waves. Bosak and Ingersoll (2002) show that such 

instability can occur in the lower troposphere around 5-10 bar but not in the upper 

troposphere because the Richardson number is larger than 1.0 due to the large static 

stability there. In addition, Bosak and Ingersoll (2002) show that the waves due to KH 

instability have horizontal wavelength on the order of 300 km, which is several times the 

thickness of the shear layer.  This is much smaller than the wavelengths of the NEB wave 

and the circumpolar wave in this study. Therefore, the KH instability can be ruled out as 

a generating mechanism for the two waves in this study.  

 

The third possible generating mechanism is baroclinic instability. Achterberg and Flasar 

(1996) suggested that a changing potential vorticity gradient can be a source of planetary 
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waves in Saturn’s upper troposphere. Our estimation of the potential vorticity gradient 

( eβ  in Fig. 12) shows that the gradient is always positive within the latitude range of the 

NEB wave at the 315-mbar pressure-level, which suggests that the ambient flows are 

stable at the 315-mbar pressure-level. However, there are uncertainties in our estimates of 

the potential vorticity gradient eβ  as we discussed in section IV.B.  Here we assume that 

the deeper visible cloud deck (~ 0.7 bar) has the same value of zβ  as the 315-mbar 

pressure-level and calculate the potential vorticity gradient eβ  at the visible cloud deck 

based on the CB2 zonal wind measurements. The resulting eβ  at the pressure-level of the 

visible cloud deck is shown in Fig. 15. Figure 15 shows that the potential vorticity 

gradient eβ  is negative around the center of the NEB wave (latitude 14.5ºN) at the visible 

cloud deck (~ 0.7 bar), which is the result of the increasing curvature of the eastward jets 

when going deeper. Therefore, the baroclinic instability could be a candidate of the 

source of the NEB wave.  

 

3.6  Summary and discussion 

  

One NEB wave and one circumpolar wave were observed in the ISS multi-filter images. 

Their properties (wavelength, period, and movement relative to the ambient flows) 

suggest that the two waves are planetary waves. The simultaneous comparison between 

the ISS and CIRS (Porco et al., 2003; Flasar et al., 2004) confirms that the waves seen by 

the two instruments are the same. Furthermore, the combined observations from the ISS 

and CIRS offer a possible explanation of why the NEB wave is trapped in the vertical and 

meridional directions.   
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The near-simultaneous comparison between the ISS and CIRS observations connects the 

large dark oval in polar region in the UV1 images to the warm regions in the CIRS 

thermal maps. The large oval is dark in UV1 and warm in the CIRS, which suggests that 

it is composed of UV-absorbing particles transported down from above. In addition, the 

CIRS thermal maps suggest that the UV1 dark oval is located above the 4-mbar pressure 

surface. 

 

Sanchez-Lavega et al.(1998) noticed that Jupiter's 67°S circumpolar waves (wavelength 

15,000 km) and Saturn's hexagon at 79°N have an interesting relationship between the 

numbers n of wavelengths in the corresponding planetary circumference: 

)79cos(/)67cos()79(/)67( 0000 ≈NnSn , The circumpolar wave system centered at 

48.5°S in this study and the 67°S wave discovered by Sanchez-Lavega and Hueso (1998) 

have the same relationship: )67cos(/)5.48cos()67(/)5.48( 0000 ≈SnSn . In other words, 

the two circumpolar waves on Jupiter have the same wavelength because the radius is 

proportional to cosine of the latitude. The two waves share other properties. Firstly, they 

are both quasi-stationary relative to the System III (phase velocity 4 m s-1 for the 48.5°S 

wave and 2 m s-1 for the 67°S wave). Secondly, the CIRS polar stratospheric zonal winds 

(Simon-Mille et al., 2006) based on the thermal wind equation and the CIRS thermal 

maps suggest that the 67°S circumpolar wave is embedded in the stratospheric eastward 

jets, which is same with the 48.5°S wave in this paper. As we discussed in the section 

IV.D, the negative yβ  due to the eastward jets can change the sign of the potential 
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vorticity gradient eβ , which offers a possible source not only for the NEB wave but also 

for the circumpolar waves.  
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Figure 3.1 Phase angle during the Cassini Jupiter flyby. The Jupiter flyby observation 

began in October 1 of 2000 and ended in March 22 of 2001. The phase angle decreased to 

minimal value (1 degree) in December 14 of 2000. Irregular blanks during the series of 

dots indicate no ISS or CIRS data in the corresponding time. The maximal period of 

missing data is from December 19 to 29 in 2000.  
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 Figure 3.2 Cylindrical-projected ISS global maps in multi-filter filters. The ISS images 

used in the three global maps were taken on 1 November 2000 with intervals of 40 

seconds between the three filters (UV1, MT3, and CB3). The mean brightness of every 

line of pixels in the MT3 and UV1 images is removed so that the feature contrast covered 

by the equatorial haze in MT3 and UV1 can be seen.  Note that the quasi-periodic bright 

areas around 60°W, 120°W, 180°W, 240°W, and 300°W in the top and bottom 

boundaries of the MT3 global map are not real features. They mainly come from 

incomplete photometric calibration due to high incidence and emission angles in polar 

region.   
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Figure 3.3 Cylindrical-projected ISS maps of the NEB waves in nine filters. The images 

were taken on 1 November 2000 with intervals of 40 seconds, which makes them 

virtually simultaneous.  
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Figure 3.4 Polar-projected map of southern hemisphere of the UV1 global map of Fig. 2. 

The 30°N and 60°N latitude circles are shown in the figure.  
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Figure 3.5 Time series of the NEB wave and the circumpolar wave in the UV1 filter. (A) 

Time series of the NEB wave with the time separation 5 days, which began on 2 October 

2000 and ended on 10 November 2000. (B) Time series of the circumpolar wave with the 

time separation 1.7 days, which began on 28 October 2000 and ended on 12 November 

2000. The dashed lines indicate the movements of the three crests.  
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Figure 3.6 Velocities of the ambient flows within the latitude ranges of the NEB wave 

and the circumpolar wave in the UV1 and CB2 filters and average phase velocities of the 

two waves. (A) The NEB wave. (B) The circumpolar wave. The red solid lines are the 

velocities of the ambient flows in the UV1 filter coming from previous measurements by 

tracking the small features unique to the UV1 (Li et al., 2005).  The green solid lines are 

the velocities of the ambient flows in the CB2 filter coming from an automatic-correlated 

measurement based on the time-lapse CB2 images in the Cassini ISS data sets (Porco et 

al., 2003). The red dots with error-bars are the mean phase velocities of the two waves by 

averaging the velocities of the three crests in (A) and (B) of figure 2.  The error-bars are 

estimated by the standard deviation of the velocities of the three crests.  
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Figure 3.7 Simultaneous comparison between the CIRS global temperature map and the 

ISS MT3 global map in the equatorial regions. (A) The CIRS global temperature map at 

pressure level 400 mbar on 1 January 2001. White areas in (A) indicate gaps in the CIRS 

data coverage. (B) The ISS MT3 global map at the same time with (A). (C) Same with 

(B) except for removing mean value of every constant-latitude line to increase the feature 

contrast.  
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Figure 3.8 Near-simultaneous comparison for the NEB wave between the CIRS 

temperature maps and the ISS UV1 map. (A) The CIRS 400-mbar temperature map 

between longitude 135° to 300°W and latitude 12°S to 69°N on 5 January 2001. (B) The 

ISS UV1 map in the same location (longitude 135° to 300°W and latitude 12°S to 69°N) 

on 7 January 2001. The mean value of every constant-latitude line in the UV1 map is 

removed to increase the feature contrast. (C) Same with (A) except for a different time 

(10 January 2001). White areas in (A) and (C) and in the boundaries of (B) indicate gaps 

in the data coverage.  
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Figure 9. Time series of the NEB wave in the CIRS 400-mbar thermal maps. Panel (A), 

(B), and (C) are the CIRS 400-mbar thermal maps on 1, 5 and 10, January 2001, 

respectively. White areas in (A), (B) and (C) indicate gaps in the data coverage.  
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Figure 3.10 Simultaneous CIRS thermal maps at different pressure-levels. (A) The CIRS 

1-mbar global temperature map on 1 January 2001. (B), (C), and (D) are same as (A) 

except for different pressure-levels (4-mbar, 243-mbar, and 400-mbar, respectively). 

White areas in these temperature maps indicate gaps in the CIRS data coverage.  
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Figure 3.11 Near-simultaneous comparison on the large oval feature between the CIRS 

temperature maps and the ISS UV1 map. This figure is same as Fig. 8 except that the 

CIRS temperature maps are in a high-altitude pressure-level (1-mbar). The dark oval in 

the ISS UV1 maps is indicated by a white arrow.  
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Figure 3.12 CIRS 315-mbar zonal wind profile and meridional gradients of vorticity 

within the latitude range of the NEB wave. (A) The CIRS 315-mbar zonal wind profile 

around the latitude range of the NEB wave and a cosine function fit. The cosine function 

is set to have different amplitudes for the 21°N eastward jet and the 7.5°N westward jet. 

(B) The vorticity gradients ,,, zy βββ and eβ  at 315-mbar.  
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Figure 3.13  The  square of the meridional wave-number of the NEB wave. The 

calculation of the meridional wave-number 2l  is based on Eq. (3) and the values of eβ  in 

Fig. 12. The vertical wave-length zL =160 km ( 14 m1039.0 −−×=m ) is kept constant 

within the 315-mbar pressure surface in the above calculation.  
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Figure 3.14 CIRS zonal wind profiles at different pressure levels, phase velocity of the 

NEB wave, and CB2 zonal winds at the pressure level of visible cloud deck. The red dot 

with error-bar represents the phase velocity of the NEB wave. The CB2 zonal winds are 

same as the CB2 zonal winds used in the Fig. 8, but more latitudes are included.   
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Figure 3.15 CB2 zonal wind profile and meridional gradients of vorticity within the 

latitude range of the NEB wave at the visible cloud deck (~ 0.7 bar). (A) The CB2-mbar 

zonal wind profile around the latitude range of the NEB wave and a cosine function fit. 

(B) The vorticity gradients ,,, zy βββ and eβ  at ~ 0.7bar.  The yβ  at 315mbar is used for 

the CB2 pressure-level because the temperature fields at ~ 0.7 bar is unavailable.   
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Chapter 4:   Interaction of Moist Convection with Zonal Jets                       

on Jupiter and Saturn 
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4.1 Abstract 
 

Observations (Little et al., 1999; Porco et al., 2003; Li et al., 2004; Dyudina et al., 2004; 

Gierasch et al., 2000; Sanchez-Lavega et al., 1999; Porco et al., 2005) suggest that moist 

convection plays an important role in the large-scale dynamics of Jupiter’s and Saturn’s 

atmospheres. Here we use a reduced-gravity quasi-geostrophic model, with a 

parameterization of moist convection that is based on observations, to study the 

interaction between moist convection and zonal jets on Jupiter and Saturn. Stable jets 

with approximately the same width and strength as observations are generated in the 

model.  The observed zonal jets violate the barotropic stability criterion (Li et al., 2004; 

Ingersoll et al., 1981; Limaye, 1986), but the modeled jets do so only if the flow in the 

deep underlying layer is westward. The model results suggest that a length scale and a 

velocity scale associated with moist convection control the width and strength of the jets. 

The length scale and velocity scale offer a possible explanation of why the jets of Saturn 

are stronger and wider than those of Jupiter. 
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4.2 Introduction  

 

Multiple zonal jets in each hemisphere of Jupiter have been constant (Porco et al., 2003; 

Garcia-Melendo and Sanchez-Lavega, 2001) in location and intensity since Voyager 

times even though some westward jets violate the barotropic stability criterion (Li et al., 

2004; Ingersoll et al., 1981; Limaye, 1986). The jets outside the equatorial regions on 

Saturn are constant with time. HST observations (Sanchez-Lavega et al., 2003) and 

recent Cassini observations (Porco et al., 2005) suggest that the equatorial jets may be 

constant in time as well, and that only the altitude of the visible clouds has changed.   

 

Rhines (1975) first demonstrated that zonal jets emerge from decaying turbulence, during 

a process known as an inverse energy cascade. Williams (1978) first applied these ideas 

to Jupiter. Voyager observations (Ingersoll et al., 1981; Beebe et al., 1980; Ingersoll et 

al., 1984) showed that the inverse cascade of energy plays an important role in the 

atmospheres of Jupiter and Saturn. Many two-dimensional turbulence models have 

addressed the large-scale dynamics of the giant planets in this way. The forced-

dissipative turbulence models (Huang and Robinson, 1998; Marcus et al., 2000) use 

either a random Markov process or positive and negative sources of vorticity at a 

prescribed scale. The decaying turbulence models (Cho and Polvani, 1996) drive their 

simulation by an initial eddy field. One model (Panetta, 1993) is forced by a prescribed 

vertical shear of the zonal wind, which generates the turbulence. In all these models, the 

forces are prescribed, and are not affected by any feedback from the flow that develops. 

All models succeed in producing jets from turbulence, but the jets are not as intense as 
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the observed jets in Jupiter and Saturn: In these models, the largest value of the curvature 

of zonal jets yyU  is never larger than β3.0 . Here U  is the mean zonal wind (positive 

eastward), y  is the northward coordinate, and β  is the planetary vorticity gradient. On 

Jupiter the largest values of yyU  are of order β2  (Li et al., 2004; Ingersoll et al., 1981; 

Limaye, 1986).  

 

Models of the thermochemical structure suggest that moist convection (MC) exists in the 

atmospheres of Jupiter and Saturn (Lewis, 1969; Weidenschilling and Lewis, 1973). 

Observations from Voyager, ground-based telescopes, and HST show that a rich 

meteorological activity including convective storms exists there as well (Hunt et al., 

1982; Carlson et al., 1992; Sanchez-Lavega, et al., 1999). The Galileo orbiter and Cassini 

flyby revealed important new information about MC in Jupiter’s atmosphere. The relative 

humidity of water varies from 210−  to 1.0 at the 260 K level (Roos-Serote et al., 2000). 

Lightning, which is a good indicator of MC, is associated with small (<1000 km), 

distinct, widely-separated cloud features that appear suddenly in the cyclonic regions 

(Little et al., 1999; Porco et al., 2003) and extend to great height (Banfield et al., 1998). 

The MC features are anticyclones (Li et al., 2004; Gierasch et al., 2000), although they 

appear in cyclonic shear zones. Generally they are either swallowed by the larger 

anticyclonic ovals like the Great Red Spot (GRS) or pulled apart by the shear of the zonal 

jets (Li et al., 2004).  

 

One interpretation (Gierasch et al., 2000; Ingersoll et al., 2000) of these observations is 

that MC is providing energy to the large-scale flow structures in Jupiter’s atmosphere. 
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Our model is based on the following concepts: The weather layer, which is the region 

between the base of the water cloud at ~6 bars and the level of emission to space at ~0.4 

bars, rests hydrostatically on a much deeper lower layer. The interface is stable, so the 

potential temperature of the weather layer is greater than that of the lower layer. Heat 

from the planet’s interior converts lower layer parcels into parcels whose potential 

temperature is equal to that of the weather layer. These parcels rise into the weather layer 

during a MC event. Steady radiative cooling converts weather layer fluid back into low-

entropy fluid of the lower layer, so there is a net long-term balance. The MC events are 

triggered whenever the weather layer thickness falls below a certain threshold, which 

means that the MC events appear in the cyclonic regions, as observed. The injection of 

mass into the weather layer generates mesoscale anticyclonic (negative) vorticity (Little 

et al., 1999; Li et al., 2004; Gierasch et al., 2000), and the steady radiative cooling 

generates large-scale cyclonic (positive) vorticity. During the adjustment between the 

mesoscale forcing from MC and the large-scale forcing from radiation, the mechanical 

energy of mesoscale vortices is transferred to large-scale structures, i.e., the GRS and 

zonal jets, by merging with them in an inverse energy cascade (Ingersoll et al., 1981; 

Beebe et al., 1980; Ingersoll et al., 1984). 

 

There have been several numerical simulations of MC on Jupiter and Saturn (Stoker 

1986; Yair et al., 1992, 1995; Hueso et al., 2002; Hueso and Sanchez-Lavega, 2001, 

2004). However, the numerical simulation of the interactions between MC and the large-

scale dynamics is a relatively new field partly due to the large difference in scale between 

the mesoscale processes and the large-scale dynamics. In this paper, we parameterize MC 
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using the available observations, and we study its role in maintaining the large-scale flow 

structures in the atmospheres of Jupiter and Saturn. We take the motions below the 

weather layer into account in order to get intense westward jets with curvature larger than 

β . These ideas are tested by a reduced-gravity quasigeostrophic (QG) model.  

 

The assumptions of the QG model do not hold near the equator, so we cannot study the 

equatorial jets, which are strong and westerly on Jupiter and Saturn. A shallow water 

model (Cho and Polvani, 1996) generates strong easterly jets at the equator. Deep 

convection extending through the planet from north to south (Busse, 1976) makes 

westerly equatorial jets possible in theory.  Numerical models of deep convection (Sun et 

al., 1993; Christensen, 2001; Aurnou and Olson, 2001; Yano et al., 2003) successfully 

reproduce the westerly equatorial jets, but the models generate fewer jets in the middle 

and high latitudes. We do not address these issues. The global wind profile including 

strong equatorial jets will be postponed for further research.  

 

4.3 Numerical method  

 

Two-dimensional flow in a rapidly rotating fluid is governed by the QG potential 

vorticity equation (Pedlosky, 1987; Andrews et al., 1987):  

 

             FSqJ
t
q

+=+
∂
∂ ),(ψ                (1)                                                     
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where the potential vorticity q  is 22 / dLy ψβψ −+∇ , ψ  is the streamfunction, which is 

proportional to the thickness of the weather layer, β  is the planetary vorticity gradient, 

and dL  is the radius of deformation. The non-linear term is the Jacobian 

xyyx qqJ ψψ −= . Friction F  is represented by horizontal eddy diffusion: ζκ 2∇= hF , 

where the relative vorticity ζ  is ψ2∇  and hκ  is the horizontal eddy diffusion 

coefficient. The vorticity source S  consists of two parts: 1) a positive constant rS  that 

represents uniform radiative cooling and 2) negative bursts, localized in space and time, 

that represent MC. When radiative cooling and dynamics make the thickness of the 

weather layer drop below a critical threshold at some place, MC will be excited there and 

will increase the thickness of the local weather layer. The assumption of MC excited in 

the regions where the thickness of the local weather layer is small implies that MC will 

only appear in the cyclonic bands, which are small-thickness regions in Jupiter. MC 

therefore creates intense regions of anticyclonic vorticity in regions where the large-scale 

vorticity is cyclonic, which is consistent with the observations (Little et al., 1999; Porco 

et al., 2003; Li et al., 2004; Dyudina et al., 2004; Gierasch et al., 2000).  

 

We parameterize the vorticity source due to MC by a function with negative parabolic 

shape in lifetime and radius. The lifetime, radius and amplitude of the vorticity source 

due to MC are constrained by observations from Voyager, Galileo, Cassini, HST and 

ground-based telescopes. Large uncertainties exist in these observations, so we explore 

the parameter space around a standard model. Galileo and Cassini observations (Little et 

al., 1999; Porco et al., 2003) show that the size of MC ranges from a few hundred 
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kilometers to a few thousand kilometers. Cassini continuum images (Li et al., 2004) 

suggest that the lifetime of MC is 3.5 days, but these measurements refer to storms with 

lifetime larger than 40 hours and diameter larger than 700 kilometers. Obviously, some 

small convective storms have shorter lifetime. Our standard model has lifetime of 1 day 

and diameter of 1000 kilometers, although we varied the lifetime between 0.3 and 6 days 

and the radius between 250 and 4000 km. The amplitude of the vorticity source due to 

MC is mcS , which is given by mcr CS / , where rS  is the radiation vorticity source, and 

mcC  is the fractional area of MC over the global disk, under the assumption that the 

negative vorticity source due to MC is balanced by the positive vorticity source due to 

uniform radiative cooling. The fractional area of MC is set to 4101 −×  based on the 

Galileo and Cassini observations (Little et al., 1999; Dyudina et al., 2004). The 

calculation of the radiation vorticity source rS  is given in the appendix. We varied the 

amplitude of the vorticity source due to MC by a factor of 20. The horizontal eddy 

diffusion hκ  is set to 310  m 2 s 1−  to give horizontal eddy diffusion the same net effect as 

vertical eddy diffusion, assuming that the vertical eddy diffusion is ~ 110−  m 2 s 1−  in the 

upper troposphere of Jupiter (Edgington et al., 1999) and the horizontal scale is 100 times 

the vertical scale for the jovian weather layer. The radius of deformation dL  on Jupiter is 

unknown but has been estimated by different studies. Ingersoll and Cuong (1981) 

suggested the radius of deformation is in the range of 500 – 5000 km. Achterberg and 

Ingersoll (1989) concluded that the radius of deformation is likely on the order of 1000 

km by comparing their model results with the observations. Dowling and Ingersoll (1989) 

estimated the radius of deformation from the potential vorticity and offered a value of dL  
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~ 2000 km. In this study, we set the standard value of dL  as 5000 km to guarantee small 

rS , so that the corresponding mcS  can change in a relatively large range (see Eq. (7) in 

Appendix). In addition, the numerical experiments in the next section show that our QG 

model is insensitive to the radius of deformation. Without loss of generality, we keep rS  

and β  constant in all experiments, which is equivalent to fixing the units of length and 

time.  

 

Our numerical code for solving equation (1) is a finite-difference scheme with Arakawa’s 

energy- and enstrophy-conserving algorithm in space (Arakawa, 1966) and the modified 

fourth-order Adams-Bashforth algorithm in time (Press et al., 1986). The latter is 

initiated by the Runge-Kutta method (Press et al., 1986). A periodic boundary condition 

is used in the x (zonal) direction, so a fast Fourier transform and an inverse fast Fourier 

transform can be performed. Channel walls are used in the y (meridional) direction 

(Holton, 1979, p. 252). Such boundary conditions allow the weather layer to change its 

total momentum. All numerical experiments begin with a random initial streamfunction 

pattern. The standard domain size is 32 thousand kilometers in the x  and y  directions in 

order to include multiple jets, although we have run cases with larger domains in the x 

and y directions. The space resolution is generally 250 km in both directions and the time 

step is 1000 s in order to capture MC.  We have verified that the results are independent 

of the resolution, domain size, and random initial pattern. Figure 1 displays two different 

initial random patterns and the corresponding steady patterns of streamfunction. The 

figure shows that the same steady pattern is developed from the different initial random 
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patterns. In Fig. 2 we run the numerical model with different domain sizes by setting the 

same initial random pattern as in Fig. 1a and holding the same group of parameters 

( 1=mcT  day, 1000=mcR  km, 9100.1 −×=mcS  s-2, 5000=dL  km, and hκ = 310  m2 s-1).  

Figure 2 shows that the coherent zonal pattern still forms and the zonal wind profile does 

not change when the domain size is expanded, although some large-scale vortices are 

clearly displayed in the largest x domain experiment (Fig. 2d).  Notice that the vortices at  

~ 26000 km in Fig. 2d alternate in longitude (y direction) with oppositely-signed vortices 

at y  ~ 20000 km, which is suggestive of a Karman vortex street (Youssef and Marcus, 

2003). These large-scale vortices showed in Fig. 2d are aligned around the same latitude 

so that they do not change the zonal wind profile. However, the co-existence of large-

scale vortices and stable zonal wind is a very interesting phenomenon, which is worthy of 

further study. The experiments shown in Figs.1 and 2 suggest that our numerical model is 

independent of the initial random pattern, the spatial resolution, and the domain size.  

Therefore, we use the same initial random pattern (Fig. 1a), the same spatial resolution 

(250 km), and the same domain size (32000 km in the x  and y  directions) for all 

following numerical experiments.  

 

4.4 Simulation results  

 

Large uncertainties exist in the radius of deformation, the horizontal eddy diffusion, and 

the parameters associated with MC. A series of numerical experiments are performed to 

explore the parameter space. An example of these numerical experiments, which is run 

with standard values of parameters except for the increased amplitude of the vorticity 
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source mcS , is shown in Fig. 3. Figures 3a - 3f show a time series of stable zonal jets 

developing from a random initial pattern during the process of adjustment between MC 

and radiation. A statistically steady large-scale pattern is generated after 1 year, shown in 

Fig. 3e. Figure 3e also includes a MC event near the center of the domain. Figure 3f 

shows the location of all MC events over a four-year period after the large-scale flow had 

reached a statistically steady state. This figure demonstrates that MC only appears in 

cyclonic bands. Figure 4 is the corresponding zonal wind profile for the steady state 

phase of the experiment shown in Fig. 3. The width of the modeled stable jets (half 

wavelength of the zonal wind profile) is a few thousand kilometers, and the peak zonal 

wind is around 20 m s 1− . Both width and strength of the modeled jets have the same 

order of magnitude as the observed jets outside the equatorial regions on Jupiter.  Figure 

5 displays the time series of energy of the experiment shown in Fig. 3. The time series of 

energy suggests that the developed zonal jet pattern is in a statistically steady state after 

the initial adjustment.  

 

Parameter space exploration in certain ranges around standard values is shown in Fig. 6. 

In general, no clear zonal patterns are developed beyond these ranges. The figure shows 

that the width jetL and strength jetV of the jets in our experiments are insensitive to the 

radius of deformation and the horizontal eddy diffusion coefficient. The width jetL and 

strength jetV  vary directly with the parameters associated with MC: mcR , mcT , and mcS . 

Hence, we define a velocity scale 2/mcmcmc STRV =  and a length scale βVL = . Figure 

7 shows that LL jet /  and VV jet /  do not change as we vary the parameters associated with 
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MC. In other words, our experiments suggest that the width and amplitude of stable jets 

are controlled by the length scale L  and velocity scale V . Actually, the velocity scale V  

represents the tangential velocity that is generated at the edge of a MC event at the end of 

its lifetime. The length scale L  is the same as the Rhines scale β/jetV  when the 

velocity scale V  is proportional to the amplitude of the jets jetV . The above results also 

suggest that the parameters of MC do not change the curvature yyU  of the zonal wind 

profile because the curvature is proportional to 2
jetjet LV .  Further exploration of 

parameter space of MC verifies this point: Figure 8 shows that the ratio between the 

curvature of the jets and the planetary vorticity gradient varies around 0.5, but the ratio is 

never larger than 1. This is consistent with the barotropic stability criterion, which says 

that flow is stable when 0>− yyUβ  and may be unstable when yyU−β  changes sign. 

 

To get the observed strong zonal wind with yyU−β  changing sign around the westward 

jets, we invoke motions below the weather layer. The Galileo probe measured winds 

down to the 20-bar level and found that the equatorial eastward jet increased with depth 

within the weather layer and stayed constant at a high velocity from 5 bars to 20 bars 

(Atkinson et al., 1998). Study of the coupled magnetic field and zonal flow in the interior 

of Jupiter (Liu and Stevenson, 2003; Kirk and Stevenson, 1987) suggests that retrograde 

(westward) deep flow will exist in middle and high latitudes and prograde (eastward) 

deep flow will exist in equatorial regions. In this paper, the deep flow is assumed to be 

zonal and steady in the whole domain. The corresponding QG model including the zonal 
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deep flows is dynamically equivalent to a one-layer model with meridionally varying 

solid bottom topography, called the reduced-gravity model (Dowling and Ingersoll, 

1989). The gravity g  is interpreted as ρρ /Δ=′ gg , where ρΔ  is the density difference 

between the weather layer and the deep layer, and ρ  is the mean density of the weather 

layer. The stability criterion for the weather layer jets is changed into (Pedlosky, 1987. 

pp. 478-478):  

 

0)(1
22 >−=−+− yyeff

d
yy UUU

L
U ββ                (2) 

                                                               
where the deep zonal velocity is 2U , and the effective planetary vorticity gradient is 

2
2 )( deff LUU −+= ββ . The inequality (2) shows that the weather layer jets would be 

stable provided )()( 2
2 β−>− yyd ULUU . Since effβ  is largest when the deep flow 2U  is 

strong and westward relative to the weather layer flow U , the curvature yyU  will 

increase as 2U  becomes more negative. Figure 9 shows that the observed sharp westward 

jets with curvature yyU  larger than β  can be simulated with a uniform westward deep 

flow. The westward deep flow offers a possible and simple explanation of why the 

weather layer jets remain stable even though they violate the barotropic stability criterion. 

 

The experiments for Jupiter suggest that the width and strength vary directly with the 

lifetime, radius, and amplitude of MC. The limited observations from Voyager, HST, 

ground-based telescopes, and Cassini (Sanchez-Lavega et al., 1999; Porco et al., 2005) 
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have shown giant convective storms in Saturn’s atmosphere with diameter around a few 

thousand kilometers and lifetime around a few weeks. In addition, observations (Beebe, 

et al., 1992; Sanchez-Lavega, et al., 1991,1996) and numerical simulations (Sayanagi et 

al., 2004) suggest that very giant convective storms play an important role in the 

dynamics of Saturn’s equatorial atmosphere. These observations also suggest that Saturn 

has fewer convective storms than Jupiter. We can simulate the wide and strong zonal jets 

of Saturn relative to Jupiter by increasing the lifetime and radius of MC and decreasing 

the fractional area of MC over the global disk. Figure 10 shows a comparison between 

the model result and the observed zonal wind profiles in the middle latitudes of Saturn, 

and is to be compared with Figs. 4 and 9 for the middle latitudes of Jupiter. The result 

suggests that the large differences of width and strength of the jets between Jupiter and 

Saturn are probably due to the different characteristics of MC (lifetime, size and 

frequency). What controls the characteristics of MC in Jupiter and Saturn is proposed for 

further study.  

 

4.5 Conclusions and discussions  

 

Our study suggests that MC can drive the zonal jets in the atmospheres of Jupiter and 

Saturn. The width and strength of the jets are controlled by the length scale and velocity 

scale associated with MC. The length scale and velocity scale also offer an explanation 

for the different width and strength of jets on Jupiter and Saturn. Sharp westward jets 

with curvature larger than the planetary vorticity gradient can be simulated with 

westward flow below the weather layer. 
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There are strong equatorial eastward jets in Jupiter and Saturn. Our QG model and 

previous QG models of the giant planets (Panetta 1993; Marcus and Lee, 2000) are not 

suitable to study the equatorial regions. Decaying turbulence in a shallow water model 

cannot generate eastward equatorial jets (Cho and Polvani, 1996). Observations (Little et 

al., 1999; Sanchez-Lavega et al., 1999; Porco et al., 2003, 2005; Li et al., 2004) show 

that MC is active in the equatorial regions of Jupiter and Saturn. Therefore, the idea of 

MC driving jets should be tested in equatorial regions with new numerical models. 

 

Laboratory models are important as a way to study atmospheric dynamics. Previous 

laboratory models drive the jets either with a radial temperature gradient in a rotating 

bowl cooled from above (Condie and Rhines 1994) or sources and sinks of the same size 

on the bottom of a rotating annular tank (Sommeria et al. 1989). Here, we suggest that 

the latter laboratory experiment should be redone with uniform small sinks and a few 

large sources from the bottom.  
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4.6 Appendix:  Calculation of radiation vorticity source  

 

To calculate the radiation vorticity source rS , we start with conservation of mass for the 

weather layer 

mcr hhVhtDhD &&
v

+=⋅∇+ 0                                                                                               (3) 

where the thickness h of the weather layer is hh ′+0 , and the average thickness 0h  is 

much larger than the perturbation thickness h′ . The divergence of the horizontal velocity 

is V
v

⋅∇ , the rate of thickness increase due to mass removed from the weather layer by net 

radiation is rh& , a negative quantity, and the rate of thickness increase due to mass added 

to the weather layer by MC from the deep underlying layer is mch& , a positive quantity. 

The outgoing energy flux due to net radiation is assumed as rF . Therefore, we have 

rpr hCF &θρΔ−= , where pC  is the specific heat, θΔ  is the potential temperature of the 

weather layer minus that of the deep layer, and ρ  is the mean density of the weather 

layer.  

 

The large-scale vorticity equation (Holton, 1979) of the weather layer is 

00 =⋅∇++ VfvtDD
v

βζ                                                                                                (4)  

The streamfunction ψ  is defined as 0/ fhg ′′ , where θθρρ // Δ=Δ=′ ggg  is the 

reduced gravity of the two-layer QG model and 0f  is the Coriolis parameter.Combining 

Eqs. (3) and (4) and eliminating V
v

⋅∇ , we have  



 142

0)/)(/(/ 00 =−−−+ mcr hhDtDhhfvDtD &&βζ                                                                (5) 

From )/)(/( 0 θθψ Δ′= gfh , we have dtDgfdthDdtDh /)/(// 0 ψθθ Δ=′= . 

Substituting dtDh /  into Eq (5), we have  

))(/(),(/)/1(/ 00
2

mcrd hhhfqJtqDtDLvDtD && +−=+∂∂=−+ ψψβζ                        (6) 

where the potential vorticity q  is 22 / dLy ψβψ −+∇  and the radius of deformation dL  is 

)/( 2
00 θθ fhg Δ . Therefore, substituting rh&  into Eq. (6) and using the pressure 

0ghP ρ= , we have  

)/()/( 2
000 drrr LfPFghhfS γ=−= &                                                                               (7) 

where γ  is the ratio of the gas constant R  to the specific heat pC . So by setting 3/1=γ , 

24=g  m s 2− , 7.5=rF  W m 2− , 5105×=P  Pa, 4
0 107.1 −×=f  s 1−  , and 5000=dL  km, 

we have 141014.2 −×=rS  s 2−  for Jupiter. Likewise, we have 151026.1 −×=rS s 2−  for 

Saturn by setting 28.0=γ , 9=g m s 2− , 2=rF  W m 2− , 51010×=P  Pa, 4
0 106.1 −×=f  

s 1− , and 5000=dL  km.  
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Figure 4.1   Dependence of QG model on different initial random patterns. a and c are 

two initial random patterns with different amplitudes and length scales.  b and d are the 

corresponding steady patterns. For these runs the parameter values are: 1=mcT  day, 

1000=mcR  km, 9100.1 −×=mcS  s-2, 5000=dL  km, and hκ = 310  m2 s-1. The domain size 

is 32000 km in the x  and y directions, which is equivalent to 30 longitude degrees (at 

latitude 30°) in the x  direction and 25 latitude degrees in the y direction.  
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Figure 4.2   Dependence of QG model on the spatial resolution and domain size. a , 

steady state of the experiment shown in Fig.1 with space resolution 250 km and domain 

size 32,000 km in both directions (30 longitude degrees in the x  direction and 25 latitude 

degrees in the y  direction).  b, steady state with space resolution 125 km and domain 

size 32,000 km in both directions (30 longitude degrees in the x  direction and 25 latitude 

degrees in the y  direction). c, steady state with space resolution 250 km and domain size 

64,000 km in both directions (60 longitude degrees in the x  direction and 50 latitude 

degrees in the y  direction). d, steady state with space resolution 250 km and domain size 

32,000 km in y direction and 128,000 km in x direction (120 longitude degrees in the x  

direction and 25 latitude degrees in the y  direction). In all experiments of this figure, we 

use the same initial random pattern as in Fig. 1a and the same group of parameters as in 

Fig. 1.       
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Figure 4.3 Time evolution of streamfunction pattern for 1=mcT  day, 1000=mcR  km, 

9101.1 −×=mcS  s-2, 5000=dL  km, and hκ = 310  m2 s-1. a, time = 0 (initial random 

pattern). b, time = 1 hour. c, time = 1 day. d, time = 1 month. e, time = 1 year. f, time = 5 

years. In this and all other experiments of Jupiter the values of rS  and β  are 141014.2 −×  

s 2−  and 121026.4 −×  m 1− s 1− , respectively. The positions of all MCs between 1 year and 5 

years are shown in f (each bright cross ‘x’ represents the position of one MC). The 

domain size is 32000 km in the x  and y directions, which is equivalent to 30 longitude 

degrees in the x  direction and 25 latitude degrees in the y direction.  
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Figure 4.4 Zonal wind profile for the steady state portion of the experiment shown in 

Fig.3. 
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Figure 4.5 Time series of global averaged energy for the experiment shown in Fig. 3:  

potential energy PE  (solid line), total kinetic energy KE (dashed line), and zonal kinetic 

energy zonalKE  (dotted line) − the part associated with the zonal wind U . The initial 

energies are not zero, but they are small compared to the energies in the steady state.  
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Figure 4.6 Parameter space explorations. a, Width of jets jetL  (half wavelength of zonal 

wind profile) as a function of different parameters: (I) radius of deformation dL  (unit: 

km); (II) horizontal eddy diffusion coefficient hκ  (unit: m2s-1); (III) lifetime mcT  of MC 

(unit: day); (IV) radius mcL  of MC (unit: km); (V) amplitude mcS  of vorticity source of 

MC (unit: 1210−  s-2). b, Same as a except for the amplitude of jets jetV  . The asterisk 

symbol * in a and b represents the experiment with the standard values ( 5000=dL  km, 

hκ = 310  m2 s-1, 1=mcT day, 1000=mcR  km and 101014.2 −×=mcS  s-2).  
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Figure 4.7 The ratios LL jet /  and VV jet /  for different values of the parameters 

associated with MC. a, LL jet / . b, VV jet / .  (I) only changing the lifetime of MC; (II) 

only changing the radius of MC; (III) only changing the average amplitude of MC. The 

asterisk symbol *  in a and b represents the experiment with the standard values. 
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Figure 4.8  Exploring the ratio yyU / β  in the space of lifetime and radius of MC, for four 

different amplitudes of MC. a, 10100.1 −×=mcS  s-2. b, 10100.2 −×=mcS  s-2. c, 

10100.3 −×=mcS  s-2. d, 10100.4 −×=mcS  s-2. 
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Figure 4.9 Observed and simulated zonal wind profiles in the middle latitudes of Jupiter. 

a, Observed wind profile in the middle latitudes of Jupiter from Cassini. The range of 

latitudes is chosen with the same size as the domain size of our experiments. b, Modeled 

zonal wind profile of Jupiter with same parameters in Fig.1 except for westward deep 

flow 802 −=U  m/s. The thin solid curves are defined by β=22 / dyUd , and are 

centered on the westward jet maxima.  
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Figure 10 Observed and simulated zonal wind profiles in the middle latitudes of Saturn. 

a, Observed wind profile in the middle latitudes of Saturn from Voyager. b, Modeled 

zonal wind profile of Saturn with mcT = 1 day, mcL =4000 km, 151026.1 −×=rS  s-2, 

11102.4 −×=mcS  s-2 (fractional area 5100.3 −×=mcC ), 5000=dL  km, and hκ = 310  m2 s-1.  

 

 

 

 

 

 


