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ABSTRACT 

Methods of dipole localization were applied to human scalp-recorded electr- 

ical activity associated with a simple auditory cognitive discrimination task. 

Human neuroanatomy ahd neurophysiology were reviewed from a biophysi- 

cal standpoint in order to describe the probable neurogenesis of electrical 

activity in the brain and on the surface of the head. Topographic electroen- 

cephalography (EEG) analysis and source localization methods were historically 

reviewed in detail, followed by a brief review of the history of non-invasive 

evoked potential (EP) and magnetic field measurements of human central ner- 

vous system activity. 

Four well h o r n  simple cognitive tasks were considered that were known to 

elicit non-obligatory brain responses, and the odd-ball task chosen. Three sub- 

jects listened to a series of two tones, one frequent and one rare, and counted 

the rare tones. During task performance, 40 to 46 channels of EEG activity were 

recorded from their scalps. 

From the EEG data, average evoked potentials (aEP) were calculated for the 

frequent and rare conditions. From these a difference response was calculated. 

All three of these EPs were plotted as equipotential maps over a schematic of a 

head for topographic display and the major distribution features discussed. 

These aEPs and maps matched those previously reported in the literature. 

From estimates of the spatial electrical power over the head, four peak 

components were selected for analysis by equivalent source modeling fESM). 

These were designated the F'P40, FP100, F'P200, and F'P350, where FP stands for 

field power. ESM demonstrated that one centrally located point dipole or two 

bilaterally symmetric dipoles could model the empirical data quite well. These 

results were discussed in relation to other topographic studies, as well as 



studies of intracranial recordings, lesions, and animal models. The source loca- 

tions found were consistent with auditory cortical !.ocations for the obligatory 

sensory peaks (F'P40, FP100, FP200) and with brainstern locations as the source 

of the FP350 cognitive event-related peak. 
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Ever since their initial discovery, "brain-waves" have prodded fuel for 

speculation. The very idea of having an objective, quantitative tool to measure 

what is going on in one's mind is fascinating, and a little bit scary. After all, our 

minds are our most private place, the only place where others cannot intrude or 

spy. Medical practitioners have an obvious need to examine every part of us in 

order to fix what has gone wrong, as do psychologists. But the potential for good 

can be turned around. The study of so-called brain-waves, or the EEG, has 

certainly not reached the stage of sophistication where it can be abused, other 

than by quacks. Rut fiction has prepared us for the eventuality. The following is 

taken from a well-known science fiction classic. 

Hari Seldon was the first to express what afterwards came to be 
accepted as truth. 

"Neural microcurrents," he once said, "carry within them the 
spark of every varying impulse and response, conscious and 
unconscious. The brain-waves recorded on neatly squared paper in 
trembling peaks and troughs are the mirrors sf the combined thought- 
pulses of billions of cells. Theoretically, analysis should reveal the 
thoughts and emotions of the subject, to the last and least. Differences 
should be detected that are due not only to gross physical defects, 
inherited or acquired, but also to shifting states of emotion, to 
advancing education and experience, even to something as subtle as a 
change in the subject's philosophy of life." 

And now for fifty years, the men of the First Foundation had been 
tearing at that incredibly vast and complicated storehouse of new 
knowledge. The approach, naturally, was made through new 
techniques - as, for example, the use of electrodes a t  skull sutures by a 
newly-developed means which enabled contact to be made directly with 
the gray cells, without even the necessity of shaving a patch of skull. 
And then there was a recording device which automatically recorded 
the brain-wave data as a n  overall total, and as separate functions of 
six independent variables. 

The first half of this extract could fit right into the next chapter of this 

manuscript. That is probably because the author of this book is no quack but a 



respected scientist and author, Isaac Asimov 1195 I]. For the experimental 

studies presented here I wish that 1 actually could have had equipment like that 

mentioned in the last paragraph above. Instead, I was conAned to 20th century 

methodology. However, I have had the good luck and fortune to be able to utilize 

the most sophisticated analysis techniques that have so far been developed for 

the non-invasive study of human brain activity. 

Conflict in Asimov's book arises between physicists and psychologists. This 

thesis, however, presents an attempt to combine the techniques of both in 

studying simple mental processes non-invasively in normal humans. The 

contribution from the physicist is the electromagnetic theory that can describe 

the electrical events produced by biological generators. The contribution from 

the psychologist is the cognitive theory that attempts to describe the interplay 

of mental operations. 

In the work to be described, the techniques of source localization will be 

applied to the analysis of scalp evoked electrical potentials in alert, behaving 

subjects. One advantage of eIectrica1 potential recording is that it can now be 

done quite simply and effectively, while a subject is engaged in a wide variety of 

tasks. This is a distinct advantage when performing some of the more 

complicated tasks experimental psychologists design, thus making brain 

potential recording a valuable adjunct to traditional behavioral studies. Some 

psychologists now put it on a separate but equal footing with behavioral tests. 

Certainly it is being used more and more in the assessment of brain function. 

The source localization technique is a biophysically meaningful method for 

parameterizing the electrical events associated with mental activity. Up until 

now, it has been applied only to the study of the sensory input of the brain to 

locate and characterize the brain areas that have obligatory responses to 



repetitive stimuli. Here I present its first use in the study of simple, non- 

obligatory responses of the brain that are related to mental operations of a 

more central nature. 

Brain potential recording has had its ups and downs. In the past it has 

barely kept pace with other techniques used to study the brain. I t  does have its 

advantages in certain areas and thus retains its viability. Though we may never 

achieve the technical wizardry of Asimov's 120th century denizens, we may And 

in the coming years that "brain-wave" technology has finally found its prime 

application in the study of higher mental operations. 



2. ANATOEY, PHYSOUXX, AND BIOPHYSICAL BRAIN MODELING 

In order to address the problem of analyzing brain activity with electrical 

potential methods, several areas of science and engineering must be related. In 

this chapter 1 will review some areas of human neuroanatomy, neurophysiology, 

and biophysics that ere relevant to this problem. 

2.1 Relevant Functional Human Anatomy 

Since we will be measuring macroscopic potentials, we have to consider the 

macroscopic structures of the brain. To understand the origins of the observed 

potentials we will also have to consider the microscopic structure of the brain. 

And to relate the data to brain function, we must consider the anatomy and 

physiology of several levels ~f the brain. 

2 .1 .2  Qross View of the Brain 

The upper part of Flgure 2-1 shows a drawing of the human brain in its 

casings. The lower part of the figure shows the surface of the brain stripped of 

all its covering membranes. Various parts of the brain that can be seen with the 

naked eye are labelled. We shall be primarily concerned with the cerebral 

cortex, the convoluted outer layer comprising a large percentage of the total 

brain weight and volume. Upon closer examination, we can see that many parts 

of the brain can be divided into groups of cells (nuclei) and groups of cell 

processes (tracts), or some combination of the two. One can find neurons 

arranged as layers, columns, and amorphous blobs, with axial, radial, planar, 

and no symmetry. Figure 2-2 shows two examples of layered brain structures, 

the hippocampus and the lateral geniculate body. The local physical layout of 

brain structures will greatly affect the type of potentials generated close to and 

far away from those structures. 



2.1.2 ~ U u L a r  Vbw of the Brain, 

Like most of the human body, the brain is composed of living cells. Non- 

cellular components of the brain include blood, cerebral-spinal fluid (CSF), and 

interstitial fluid, all of which are primarily the same thing filtered In different 

ways. Cellular components include the cells of the blood vessels and choroid 

plexus, the glia, and the main constituent of the nervous system, the neurons. 

The vascular components serve a nutritional support function, and also carry 

neurohormonal messages. The glia are cells intimately interspersed with the 

neurons which are thought to provide repair, nutrition, and physical support for 

the neurons. By their presence, they can affect the operation of the neurons and 

their resultant current distributions [KufRer and Nicholls 19761. 

The basic functional elements of the brain are the neurons. It has been 

estimated that the brain contains 10'' or 10" nerve cells, or neurons. With this 

number of elements to deal with, it is fortunate indeed that the brain has 

structure to it in terms of nuclei and tracts, layers and columns. Otherwise the 

task of understanding would have proceeded even more slowly than it has to 

date. Figure 2-3 shows a sketch of various neurons that occur in layers of the 

cerebral cortex in man, The lower part of the figure shows expanded views of a 

Purkinje cell from cerebellar cortex and a pyramidal cell from cerebral cortex. 

2.2 Electrophysiological Basis of Scalp Potentials 

Scalp potentials are theoretically caused by neural activity reaching the 

surface. I will next trace the mechanisms by which this can happen. 

2.2.1 S n g l e  Cell 

One way of viewing a neuron is as an information processing element. This 

view, borrowed from computer science, has been applied for quite some time 

now to the nervous system as a whole. The idea still has much to recommend it, 



for there are obvious and measurable ways in which the brain can be said to 

process information and base subsequent motor behavior on it. 

Most neurons seem to be uni-directional in terms of information flow. For a 

neuron, information takes the form of voltage or time sequences of voltages. 

Hundreds or thousands of axons can impinge on a neuron, usually over the 

dendrites or cell body. The information from all these inputs is integrated over 

time and space by the dendrites and soma and thresholded at the axon, which 

transmits a graded output voltage or a series of frequency-modulated voltage 

spikes to the next neuron in the chain. 

The voltages produced in and near the neuron by its normal mode of 

operation give rise to ionic currents that, by virtue of the fact that the brain, 

head, and indeed whole body is a conductor, flow throughout the surrounding 

tissue. The primary currents associated with neural activation are usually 

termed near-field, while the return currents that flow throughout the volume 

conductor are termed far-fleld. Near- and far-field current causes electric 

potential gradients, or voltages, that appear throughout the brain and on the 

scalp surface. These currents and voltages do not propagate beyond the scalp 

surface because of the insulating properties of air. Plonsey [I9741 has developed 

expressions for the potentials produced by a single neuron imbedded in a 

volume conductor. This particular configuration is not of great utility. 

More realistic multiple-neuron structures give rise to modified currents 

because of constrained pathways and organized cellular orientations. These 

must be analyzed separately for each geometry. The structure of these groups 

will greatly influence the macroscopic potentials generated in their vicinity. 

Some examples to consider are the lateral geniculate nucleus ( E N ) ,  



hippocampus, cerebral cortex, cerebellar cortex, optic radiation, optic nerve 

and the red nucleus The LGN, hippocampus, cerebellum, and parts of the 

cortex are all layered structures and can be expected to produce net currents 

primarily in a direction perpendicular to the planar layers since the cells have 

long processes in the perpendicular direction. The optic radiation and optic 

nerve are nerve fiber bundles and can be expected to produce currents in a 

parallel direction. The red nucleus, part of the reticular activating system, is 

shaped like a column, but with no particular orientation of cells. I t  may not 

produce currents in any preferred direction and thus may not be detectable in 

the far  field. However, it could be seen as a whole entity if it acted as a current 

source or sink with respect to the rest of the brain for any measurable length of 

time. 

The present view is that far-field potential gradients in the brain are 

produced primarily by post-synaptic potentials (PSP) and not action potentials 

(AP) [Wood and Allison 1981, Buchwald 19831. Thus most scalp potentials should 

be a result of nerve cell and dendritic activity and not axonal activity. Part of 

the reason for this may be the transient nature of APs, whose potentials get 

spatially low-pass filtered over a very short distance. Another part of the reason 

may be that the currents associated with PSPs are much larger than those 

associated with APs. 

As a general observation, a brain structure that has layering or repetition 

of subunits, and whose cells can be made to Are in synchrony, will produce far- 

field potential effects. Almost by their nature, spatially mapped sensory and 

motor systems have these properties. Structures that are radially symmetric, 

spatially unorganized, or temporally unsynchronized will not be able to produce 

strong far-field effects. Many non-sensory systems and structures are like this, 

including perhaps the reticular activation system, medulla, pons, and basal 



ganglia [Truex and Carpenter 19691. 

2.2.3 Sk alp Potentials 

Neuronal current sources can occur in any area of the brain, but whether 

they can be detected at the scalp surface depends principally on the anatomy of 

the sources and their surroundings. The folds of the cerebellum and cortex can 

change the source orientation drastically over a small area. The 

inhomogeneities between cerebraI-spinal fluid, gray matter, white matter, and 

brain coverings can distort potential distributions. An accurate biophysical 

model of the brain would have t o  include these inhomogeneities, along with 

anisotropies of conductivity among various types of tissue. 

The potentials produced by the activity of a particular brain structure can 

be said to "travel" by volume conduction to all parts of the body. This travel 

time is negligible in comparison to neural propagation delays [Plonsey 19691. 

The skull and scalp, the latter being the tissue covering the skull, have a marked 

effect on the potentials that are measured on the surface of the scalp. Because 

the bone of the skull has an electrical conductivity about 80 times less than the 

brain, not much current will Aow out through the skull. The current that would 

have reached the scalp is thus greatly attenuated and will produce smaller 

relative potential gradients on the surface of the scalp. 

One cannot actually measure potentials, but only potential differences over 

space or potential gradients. The most common technique is to define one point 

on the body as the reference point to which the potentials at all other points are 

to be compared. Then several other sites are chosen as "active" measurement 

points, and their voltages are recorded as a function of time. Analysis of these 

voltage vs. time records under experimental variation constitutes the majority 

of the evoked potential investigations. No ideal reference point exists, however, 



that can be guaranteed to be inactive in a volume conductor, as a point a t  

infinity would. Thus recordings of potential a t  individual sites cannot be directly 

interpreted, though it is common practice to ignore such referencing difficulties. 

Making inferences about the location of the source of scalp surface 

potential gradients is a tricky business, prone to misinterpretation. An active 

area of neural tissue near the surface of the brain, say in the cortex, would 

produce the highest current densities in its immediate vicinity, but the highest 

potential gradients would not necessarily appear radially outward from the 

source on the scalp surface. Depending on the source configuration and 

orientation, one or more areas of peak potential gradient could appear to the 

side of the radial projection of the source, and others, of varying magnitude, on 

the opposite side of the head. 

Figure 2-4 diagrams a hypothetical situation like this using a small area of 

cortex near the surface of the scalp, tilted as  it might be inside a fissure. 

Currents produced by this piece of cortex are indicated by dashed lines and the 

resulting isopotential contours by solid lines. It can be seen that peaks in 

potential gradient would most likely occur off to the side of the radial projection 

of the tissue on the scalp surface, thus giving the wrong impression as to its 

location. In the worst case, with the reference and active inputs of a potential 

measuring device placed as indicated in the figure, zero potential would be 

measured directly over the site of the active tissue! 

The only way to be sure of properly locating possible neural current sources 

is to record from an array of measuring sites and study spatial potential 

differences. In practice this is not always done, with many workers still assuming 

that sources are located directly underneath recorded potential peaks. These 

problems of referencing and oversimplified localization can theoretically be 



eliminated by biophysical modeling of brain activity. 

2.3 Biophysical IEhain Modeling 

The brain is a physical system, albeit highly complex. As such, it is 

amenable to physical analysis. Here we will be primarily concerned with 

electromagnetic theory. Mechanics are not too important when speaking of the 

neural processing of the brain, unless the brain in question is undergoing some 

pretty strenuous accelerations. Chemistry is important a t  a low level in terms of 

the basic operation of the neural elements, and at a somewhat higher level in 

terms of gross neurohormonal effects, but it will have to be included at a later 

date as a reflnement. No quantum mechanical effects manifest themselves in 

the brain, to the best of present knowledge, so only classical electromagnetics 

will be included here. 

Plonsey [1969] has developed equations describing the potential field due to 

bioelectric sources in a volume conductor assumed to be linear, homogeneous, 

and isotropic. Using pertinent electromagnetic theory, an expression is derived 

for the electric scalar potential field arising from generalized impressed current 

sources. This expression involves complex phasor notation. Plonsey then 

estimates the relative size of the real and complex terms and concludes on the 

basis of experimental measures of biological media properties that the potential 

expression can be reduced to a real one. This is equivalent to stating that the 

biological media of concern exibit no capacitative or inductive effects. Poisson's 

equation is derived from this potential expression and presented as the "quasi- 

static mathematical formulation of the volume-conductor problem," 

where p denotes electric potential a t  a field point, I, the volume current source 



density, and o the media conductivity. This is the basic starting equation then 

for most biophysical models of brain and cardiac activity, including those used 

here. One benefit of this Poisson formulation is its parallel in the study of the 

electrostatic potential of charges. Solutions to problems in the latter area can 

thus be applied to the volume conductor case. 

2.3.1 U f i l i t y  of Modeling 

Modeling can be described as representing an object or a process in 

physical or symbolic form. Modeling can be used to study and test hypotheses 

about complicated systems. A system may be well described, but its behavior 

under various conditions may be practically impossible to deduce from its 

description. Other systems may not be well described. Here modeling can help in 

first simply identifying the system parameters. Man-made structures are 

examples of the first type of system. A dam, for instance, can be modeled to 

determine if it could withstand a particular stress. The brain is an example of 

the latter class. Modeling the brain can allow us to test hypotheses about how 

the various parts of the brain are configured and work together. 

Various disciplines have used a variety of methods to model the brain and 

its processes. Mathematical psychologists use equations to describe measurable 

aspects of cognitive phenomena. Psychophysicists use equations for sensory 

transduction, often partly based on some knowledge of neural organization. 

Neural modelers on the cellular level use a biophysical description of single 

neurons [Rall and Shepherd 1968]. Neural modelers on a higher level use very 

simplified models of single neurons so as to be able to link a lot of them 

together in a network. The modeling described in this thesis is a biophysical 

model on a somewhat higher level than the single neuron, representing a section 

of neural tissue on the order of millimeters or centimeters acting in synchrony. 



As with all brain models, compromises have to be made. The modeling in this 

thesis is not neural modeling, as it includes no information about the structure 

or processing capabilities of neural elements. Rather it is a model that relates 

currents in the brain to mental processing. 

The history of this type of modeling is short, so a full review will be 

attempted. First a brief description of multielectrode analysis and display will be 

given, followed by a history of biophysical modeling of brain macropotentials. 

2.3.2 Multi-electrode Topographic Display 

For experiments involving only a few measurement sites, visual inspection 

of evoked potential versus time plots can be sufficient for analysis purposes. 

Most experiments, however, should use many measurement sites across the 

head because of the complications of volume conduction, lack of knowledge of 

individual brain configuration, snd lack of knowledge of the complexity of the 

response or phenomena being studied. Large numbers of recordings then 

present a problem in analysis and display. 

One early attempt to deal with the vast amount of data generated in brain 

potential recordings was to use a type of pseudo-3D display where one axis was 

time and one space, or distance across the head [RBmond 19611. A third 

dimension was introduced in the form of a topographic representation of the 

recorded potential using isopotential contour lines. This method has not been 

used by any other investigators. Unfortunately, it can deal with only one spatial 

dimension, whereas there are 2 (ideally 3) on the head. 

Various display techniques have been described using two spatial 

dimensions over the head, and a contour, gray, or color scale to indicate 

potential levels [Allison et al. 1977, Buchsbaum et al. 1982, Dubinsky and Barlow 

1980, Duffy et al. 1879, Estrin and Uzgalis 1869, Lehmann 1971, Petsche et al. 



1974, and Wilkus et al. 198 I]. Time must be indicated by a series of such maps, 

but our perceptual systems seem to cope with this better than if we had 

separated one of the spatial dimensions from the other. Motion pictures have 

even been made of series of maps at  Caltech and elsewhere, thus re-introducing 

the time dimension in a natural way. Such display methods, however, begin to 

have a very high information content and beg for simplification. They are useful 

for visual topographic comparison, but not for direct quantitative comparison. 

Topographic analysis of brain potentials or brain fieIds [Barth et al. 1982, 

Romani et al. 1982, Cohen and CufEn 19831 can be likened to topographic 

analysis in meteorology of temperature or pressure levels over the earth's 

surface. These phenomena, however, have R strong 2 D  component, with a minor 

component in the third (radial) dimension in the atmosphere and less so in the 

depth of the earth. Brain potential analysis could more accurately be compared 

with seismic exploration in the depth of the earth. Measurements can usually 

only be made on the earth's surface of waves produced by earthquakes or 

simulated earthquakes (man-made explosions). Surface topography alone can 

be complicated and misleading to the novice. Proper analysis requires 

knowledge or theories of the underlying rock strata, sometimes covering the 

whole interior of the earth. Similarly, to properly analyze brain topographic 

data, it must be placed within a framework of knowledge about the interior 

structure of the brain. 

2.3.3 Dipole Methods 

One popular method for modeling brain electrical activity is to assume that 

localized areas of the brain can be simulated by a current dipole, consisting of a 

current source and a current sink in close proximity, with current flowing from 

the source to the sink. Brazier [I9491 flrst published a discussion of such a 



method. Wilson and Bayley [1950] &st published equations describing the 

electric potential of a dipole in a sphere, which they based on work done almost 

a century before by Helmholtz [1853]. Shaw and Roth [1955ab] studied some of 

the theoretical aspects of these equations for use in EEG studies. 

Geisler and Gerstein compared theoretical single dipole results to monkey 

auditory scalp potentials, and added a concentric shell around an inner sphere 

to model the lower conductivity of the skull. Paicer et al. [I9671 reported 

studying a three-shell model and comparing theoretical and experimental 

results of median newe stimulation using a single point dipole, which did not At 

the data well. Vaughan and Ritter [1970] reported a good A t  between theoretical 

dipole sources in auditory cortex and experimental scalp potentials, but did not 

say what sort of head and source models they used. Nakamura and Biersdorf 

[1971] talked about using dipole models, but did not indicate if they actually 

made quantitative calculations. Jeffreys [19?1] and Jeffreys and Axford 

[1972ab] performed visual experiments and compared their results to a single 

homogeneous sphere model containing a single dipole. Thus ended the Stone Age 

of dipole source modeling. 

2.3.4 l h e  h v e r s e  Problem 

Up to this point everyone had based his comparisons on the solution of the 

forward problem, that is, calculating the potential distribution from a 

hypothesized source configuration and qualitatively comparing it to the 

empirical results. The complementary inverse solution involves calculating the 

source configuration from the empirical potential measurements. This problem 

is ill-posed mathematically, but with a few constraints can be solved uniquely. 

Schneider 119721 Arst introduced optimization methods ("steepest ascent") to 

source calculations, calculating the optimum dipole that At the scalp potential 



data of epileptiform EEG. He made a detailed report of how his optimization 

method converged for various dipole locations and orientations and initial 

starting conditions, something later workers have not bothered to do. 

Smith et al. [1973] reported the use of the steepest ascent method with the 

Wilson and Bayley dipole formulation to localize sources of activity in three 

modalities, but their results are suspect since they only recorded from four 

electrodes. The dipole model has six parameters and thus needs a minimum of 

six simultaneous measurements at non-redundant locations to produce 

anything meaningful. 

Henderson et al. [I9751 published the next major work in brain dipole 

localization. They recorded from 16 electrodes widely spaced over the head and 

attempted dipole fits to eyeblink potentials, alpha rhythm, and visual evoked 

responses. In addition, they constructed a physical model of the head to test the 

accuracy of localizations of known sources. They used an improved method of 

optimization developed by Powell [I9641 that is more efficient because it does 

not need to calculate derivatives. 

Fender and his colleagues followed the work of Henderson, applying a more 

refined set of models to the visual evoked potential recorded from 40 or more 

electrodes. Kavanagh [1972, et al. 19761 analyzed the dimensionality of the 

human VEP using principal factor analysis. They found that 97 percent of the 

variance in the data taken from 38-41 electrodes could be accounted for by only 

six parameters. This can be taken to indicate that a dipole model a t  least has a 

good chance of fitting the data. Following this, Fender and Santoro [1977] 

reported the results of multipole modeling of the YEP. A sixteen-pole model 

usually over-fit the data. One- and two-dipole models were usually sufficient to 

account for the variance in the data measured on 42 electrodes. 



Kavanagh et al. [1978] used both one- and three-shell models of the head 

with one or two embedded dipoles to At VEP data. They introduced the use of the 

Marquart algorithm [I9631 for parameter optimization. This algorithm gives 

confidence limits on the sources, which were plotted along with the dipole 

parameters, Over certain time intervals of the flash-evoked response the dipoles 

could be localized to within a cubic centimeter volume. Darcey [1979, et al. 

lQ80abI and Ary et al. [lQSlabc] followed this work with visual experiments 

using a more appropriate pattern-reversal stimulus presented to various parts 

of the visual fields of one or both eyes. They were able to dserentially activate 

visual cortical areas and find appropriate dipole-like sources in the proper 

anatomical locations for certain topographically stable regions of the visual 

responses. Darcey et al. [I9791 additionally applied these methods t o  

simultaneous intracranial and scalp potential recordings taken from 48 

electrodes. 

The use of dipole source models and spherical head models for the forward 

problem and the addition of non-linear optimization techniques for the inverse 

problem was thus well established by the end of the 1970s. As is usual, the 

terminology in this new area has diverged and produced some confusion and 

misinterpretation. Sidman et al. [1978] introduced the acronym DLM (Dipole 

Localization Method) for dipole source modeling and it has caught on in the 

small literature of this area. I will prefer here to use the less loaded and more 

generalized term equivalent source modeling (ESM). It does not constrict the 

model nor imply that anything is being localized in as direct a fashion as CT 

scanning, for instance. 

Others to use ESM to solve the inverse problem in the brain are Hosek et al. 

[I9781 in the monkey, Sidman [et al. 1978, 19791 for early somatosensory 

activity, Sencaj and Aunon [1979] for visual pattern presentation, Ryding [1980] 



for somatosensory activity induced by finger stimulation, and Wood and Wolpaw 

[1982] for auditory stimulation. None of these reports has yet matched the work 

of Fender and colleagues in number of electrode sites and model sophistication. 

2.3.5 Refinements to Equivalent S o u ~ c e  Modeling 

Most improvements to ESM fall into two categories: more realistic head 

models and more realistic current sources. Of course, most improvements will 

involve an increase in complexity and hence an increase in the computational 

load of calculating the results of a model. 

Refinements to the head model fall into two categories: structural anatomy 

and media properties. Suggested refinements to the head anatomy include 

adding more spherical shells, using non-spherical heads such as ellipsoids, and 

using piece-wise continuous models of combinations of simple shapes. These 

refinements can be accomplished by reference to anatomy books and 

tomography. Though the head is bilaterally symmetric, on any detailed scale it is 

a complicated structure. Thus, for better accuracy, weighted-residual methods 

might be utilized to discretize the shape of the brain, skull, and scalp. EKG 

researchers have used the weighted-residual method extensively, but only 

Witwer et al. [1972] have applied them to brain studies. 

Further measurements of head electrical properties can be performed 

using both invasive and non-invasive techniques, Average properties have been 

fairly well established. The main problem is to individualize the model. To do this 

Rush and Driscoll [1968] proposed passing current through the subject's head 

and measuring the resultant potential distribution, from which some aspects of 

the electrical properties of the head can be established, especially given 

anatomical data from other sources. 



Improving the source models usually involves adding more dipoles, as 

individually speciffed point dipoles or as parameterized two- or three- 

dimensional structures. In another approach, the dipole can be left behind and 

replaced by individual current sources and sinks, or multipoles. Sources and 

sinks can be made into two-dimensional structures instead of points. The 

possibilities are endless, but choices should be guided by known anatomy and 

physiology and by computational difficulty. 

2.3.6 Validity of Equiuatenf Source Modeling 

The inverse problem is mathematically ill-posed. A unique solution cannot 

be found unless other constraints are placed on the solution. Practically there 

many ways to establish such constraints. Studies of the variability of the data, 

such as in Kavanagh et al. [I$?€!], can limit the maximum number of 

parameters to utilize. Anatomical knowledge can suggest the most likely source 

configurations. Intracranial recordings can be fit into the same models as the 

scalp data to give extra information. Very few techniques in science are 

completely direct and fool-proof. We are impressed by CT, PET and NMR scans, 

just as we are impressed by moon landings. Some wonder why the study of brain 

potentials cannot be straight forward, just as some wonder why, with our 

technical excellence, we cannot solve such problems as world hunger. Moon 

landings and tomography simply involve more straight forward physical 

phenomena, Brains and societies are much more complicated. 

Even if ESM cannot always give definitive information when used alone, it is 

still a valuable way to summarize and parameterize multichannel recordings of 

brain activity. 



2.3.7 Magnetic 5 b u ~ c e  Modeling - A Step Buckwards 

Magnetic fields are also produced by biological currents. The recording of 

brain-associated magnetic fields in the past decade has grown exponentially, but 

their interpretation has not been very sophisticated. To date, every researcher 

has assumed a single dipole model in a single homogeneous sphere and has 

estimated dipole position in a manner akin to early brain potential researchers, 

based simply on the position of field extrema. 

Modeling of brain magnetic fields and electric potentials should be put on 

the same level of sophistication. The models in this thesis can easily be 

expanded to include the magnetic fields produced by the identical sources that 

lead to the potentials. Simultaneous measurement of the brain's field and 

potential can then be used f ~ r  the s~lut ion  of the inverse problem. There are 

well-described theoretical cases in which certain source configurations will 

produce no measurable electric potential or no measurable magnetic field. By 

recording both, responses produced by either of these cases can be detected. It 

has already been established that the EEG and MEG contain complementary 

information [Cohen and Cuffin 19831. Such additional information could be used 

in ESM hypothesis testing to decide between various possible source 

configurations that would all fit the EEG data alone. 

2.3.8 What We Have Learned 

Dipole modeling has proven effective and accurate for some types of 

responses over certain time frames, primarily early sensory-evoked potentials. 

Here the response has been well understood previously from other techniques, 

and the dipole model assumed correct if and when it matched the known 

anatomy and physiology. It was necessary to do this first in order to verify the 

applicability of the technique. Not much new scientific information has been 



disclosed about the brain, except for the thesis work of Ary [1978], where 

different cortical generators were suggested for the source of difTerent color 

responses. This thesis describes an attempt to apply these complex methods to 

post-sensory processes in the brain, about which little is known compared to the 

sensory processes. 

The computational complexity and equipment requirements of the ESM 

method have retarded its use. On a more basic level, the apparent non- 

uniqueness of the inverse problem has caused a lack of faith in its validity, 

mainly among the clinical contingent. Nevertheless, the method can generate 

detailed hypotheses about the source of electrical and magnetic brain responses 

that can be verified sometimes by other means. Information from many other 

fields can be combined with equivalent source modeling profitably. 
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k"igure 2-1. The human brain: a) in the skull, b) uncovered. 
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Figure2-2. Layered structures in the brain: a) hippocampus, b) lateral 
geniculate body. 
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Rgure 2-4. Potential gradients on the surface of a sphere caused by a small 
neuroelectric current source. Arnplifler lead placement illustrates 
problems with locating the source from potential measurements. 



This chapter will define and discuss some of the nomenclature of scalp 

potential studies, followed by a brief history of their discovery, development, 

and use. Analysis methods will be critically reviewed with an emphasis on 

demonstrating the improvements that can be achieved using ESM techniques. 

Finally, several well-studied, cognitive-related scalp potentials will be presented 

as likely candidates for the application of ESM. 

3.1 Nomenclature 

In the early days of recording brain electrical activity, the potentials were 

amplified and translated directly to paper in graphical form for which the term 

electroencephalograph (EEG) was coined. Today, the EEG refers to the ongoing 

potentials on the scalp, either in a hypothetical sense or in reference to a 

recorded or coded form of the potentials. The EEG is the basic data from which 

other derived measures are taken. 

A section of the EEG taken iriunediately following a controlled stimulus 

given to the subject can be called a single evoked potential or sEP. Often, many 

single EPs are averaged together to increase the signal-to-noise ratio, generating 

an  average EP, or aEP. It is widely agreed that the preponderance of the noise 

associated with sEPs is caused by intracranial, biological sources. Such noise is 

often assumed to be a stationary random process. If it is, adding together a set 

of successive sEPs will result in the noise increasing more slowly than the signal, 

or putative "true" EP [Ruchkin 19651. 

Median or modal calculations are other possible ways of increasing the 

signal/noise that offer advantages under certain conditions [Walter 1971, 

Ruchkin 19741. In fact, a vast range of operations that can be subsumed under 

the rubric of signal processing can be and are performed on single EPs. Since 



the nomenclature can become cumbersome if new letters are prepended for 

every operation, I will use the term EP in a very general sense to indicate any 

time-domain representation of biological potentials associated with an evoking 

stimulus. It can be single, averaged, filtered, experimental, or derived from a 

model. Its derivation will be taken from context. 

It is fairly useful to differentiate among evoking sensory modalities. I will 

follow the practice of prepending modality. Visual EPs, auditory EPs, 

somatosensory EPs, olfactory EPs, and gustatory EPs will be indicated by VEP, 

AEP, SEP, OEP, and GEP, respectively. Any of these evoked potentials may be 

derived in a variety of ways from the raw EEG. Only the modality is specifled, 

Terminology again starts to become cumbersome when we consider multiple 

modality EPs, so no special names will be used for these. 

If we consider a simplified model of the brain as a black box havmg inputs, 

outputs, and some kind of processing in between, evoked potential terminology 

usually refers to the initial input stages. The final effector outputs produce what 

have been termed motor potentials or MP. They are not considered evoked in 

general, a t  least in relation to the stimulus, because they are dependent upon 

the central processing. Just as sensory evoked potentials are associated with a 

sensory stimulus, an MP is associated with a motor response that can be 

measured and located in time. Presumably, a fixed, reflexive motor potential 

should be called a motor evoked potential, or MEP. 

Another term has been in use almost as long as EP. Not all potentials can 

be considered as evoked, especially those associated with internal mental 

processes. Donchin [19?9] has championed the use of the term event-related 

potential, or ERP, to refer to any potential related to an external or internal 

event. Psychologists are more likely to use the term ERP, while physiologists use 



EP. Psychologists may also use ER, or evoked response, to refer to sensory- 

evoked potentials. The ERP designator is often used for later, more variable, 

responses of the brain, but can also be used inclusively. Hence we can have 

sensory, motor, or cognitive event-related potentials, the latter being related in 

time to some variable, internal state of the subject. 

In this thesis I will use both EP and ERP interchangeably, depending on 

convenience and context. In order to discuss magnetic field work also, I will 

adopt a similar nomenclature. ERP becomes event-related field (ERF), EP 

becomes evoked field (EF), and motor potential becomes motor field (MF). The 

EEG is analogous to the magnetoencephalogram (MEG). To lump both electric 

potentials and magnetic fields I will use simply evoked response (ER). 

3.2 History of Brain Potential Recording 

Hans Berger, in 1929, was the first to record the EEG from human subjects. 

CIinicians initially had great hopes for using the EEG as a window on the brain. 

Its early promise was never quite realized, in part because of over simplification 

in its interpretation. The EEG has been most useful in the diagnosis of epilepsy. 

It also has been an aid in brain trauma diagnosis and large brain tumor 

detection. New analysis techniques show some promise in adding to the 

usefulness of modern clinical EEG recordings. 

3.2.2 Baked Scalp Potentials 

The concept of an evoked potential was a natural one, arising from the 

scientific principle of experimental control. The first single evoked potentials 

were recorded by Berger during his early work. But they were, of course, only 

visible under very restricted conditions. The first application of averaging 

evoked potentials was reported by Dawson [1947]. He simply superimposed 



multiple EEG traces, each time-locked to a stimulus presentation, on the same 

piece of film. The experimenter performed the averaging in his visual system 

upon examination of the exposed film. Dawson also [1951] reported the use of 

an  analog, capacitor-based averager. 

The use of EPs grew in parallel with the development of computer storage 

and signal digitization technology. Clynes and Kohn [I9601 developed the first 

digital signal averager for use with EPs by converting a device used in nuclear 

energy research, the Computer of Average Transients or CAT. With the CAT one 

could record in real time up to four averaged EPs, display them on a storage 

CRT, and photograph the display for a permanent record. Raw data were initially 

stored in analog form on FM magnetic tape and could be played back on a CAT 

for off-line analysis. More recently, raw data have been Uitized and stored on a 

variety of digital media. Both on-line and off-line analysis can be performed on 

the digital data, resulting in higher precision, reliability, and portability. 

Just as with the EEG, researchers initially had great hopes for EPs as 

probes of the brain. They were recorded under a wide variety of stimulus 

conditions. Basic researchers eventually lost interest because EP results were 

not clear-cut and could not usually be correlated with other measures that were 

deemed more trustworthy. A resurgence of interest in EPs, now renamed ERPs, 

occurred in the 1970s. On the one hand, clinicians found new uses for ERPs, 

mainly based on new stimulus and data analysis techniques being applied to the 

right patient populations. On the other hand, psychologists discovered many 

cases of reproducible ERPs elicited by endogenous events. In both cases ERPs 

are used as a rough correlational tool, as a blind measure of something whose 

origin is unknown, but that correlates with experimental variables. 

The study of exogenous ERPs has not led to much new scientific knowledge 



about the way the brain processes sensory information, but it has led to clinical 

applications whose viability has then been rationalized by neurophysiological 

hand-waving. The study of endogenous ERPs, though, is beginning to shed new 

light on central processes that in the past could only be studied with behavioral 

methods. Some researchers are beginning to use ERPs to decide between rival 

cognitive theories [Hillyard and Kutas 19831. Donchin et al. [I9781 consider the 

study of ERPs as a separate but equal partner to traditional behavioral methods 

in psychological research, providing complementary information about the 

workings of mental processes no less valid than the information gleaned from 

reaction time tests and psychophysics. 

3.2.3 m e  Magnetoencephalogram a n d  &oked Magnetic Fields 

Cohen [I9601 demonstrated that neural activity in the brain could produce 

measurable magnetic fields around the head resulting from alpha activity and 

visual evoked responses. Cohen had to place his subjects in a special 

magnetically shielded room to exclude the ambient natural and man-made 

magnetic fields that normally would swamp the incredibly small brain-evoked 

fields. Brenner et d. 119751 reported the successful utilization in a brain 

response experiment of a new, highly sensitive detector of magnetic fields, the 

superconducting quantum interference device (SQUID). They measured visual 

EFs in a non-shielded environment, demonstrating the viability of the magnetic 

technique in a regular university research environment. 

From this point on, the use of the SQUID grew rapidly. Reports came out on 

the use of SQUIDS to study sleep activity [Hughes et al. 19761, somatically 

evoked fields [Brenner et al. 19761, auditory evoked fields [Reite et al, 19811, 

epileptic spike activity [Barth et al. 19821, tonotopic organization in the 

auditory system [Romani et al. 19821, and the source of the endogenous 



magnetic P300 analog [Okada et al. 19831. High hopes were initially placed on 

the theoretical locedization properties of the magnetic technique. While many 

still hold on to these hopes, it is notable that the original reporters of human 

brain magnetic recordings have recently compared the EEG and MEG both 

theoretically and experimentally [Cohen and Cuffin 19831 and concluded that 

neither of the two has any strong advantages over the other. With proper 

quantitative biophysical analysis, though, the two can probably complement 

each other in their application to the elucidation of the neural generators of 

brain potentials and fields. 

3.3 Scalp Potential Analysis Yethods 

This section will critically review many aspects of traditional EP 

measurement, analysis, ~ ind  interpretation. The concept of an EP component is 

discussed in detail. EP parameterization is next discussed, foliowed by 

measurement practices and statistical analysis. Then the improvements in 

analysis of equivalent source modeling to EPs and EFs are discussed. 

3.3.1 Components 

A central notion in EP work is that of the component. Since an EP is 

composed of a time series of voltages, it naturally will have some shape to it in 

terms of peaks and troughs. The earliest EP researchers, noticing changes in 

amplitude of EP peaks, initially considered each peak as representing a separate 

part, or component of the response, as their amplitudes could often be 

manipulated independently. Underlying this idea was the hopeful supposition 

that a component could also be associated with a particular cortical area or 

brain process. Some components were named by their negative or positive peak 

number or peak time in milliseconds. Examples of the former are N1, PI, N2, P2, 

and the latter, P165, N200, and P300. Components that did not A t  this scheme 



well received special names, with acronyms such as CNV, MP, SW, and BP. 

A refinement to the component idea was to differentiate between those 

peaks that seemed to be directly associated with an evoking external sensory 

stimulus, and those that were assumed to be correlated with an internal event 

in cognition or the brain. Classic examples of the former, "exogenous" 

components are the PlOOs of the VEP, AEP, and SEP. Examples of the latter, 

"endogenous" components are the P300 and N400 cognitive ERPs. The PlOO of 

each sensory modality is primarily influenced by the properties of the external 

stimulus. The P300 and N400 are mainly dec t ed  by aspects of the subject's 

internal state, as set by the experimental task and the subject's moment-to- 

moment reactions. If we define a component as an EP peak, then almost all 

components will likely have endogenous and exogenous parts. The ??IOU peak is 

known to be affected both by stimulus properties and subject attention [Hillyard 

19811, for instance. 

The concept of a peak component is artificial and can be misleading. I t  is 

obvious that any part of an EP could be composed of the sum of many so-called 

components overlapping in time. Many people have recognized this and have 

made various attempts to identify components defined not by waveform 

features, but by experimental manipulation. Hunt et al. [1983] recently 

described a way of modeling EPs using what mathematically would be called 

basis functions. Donchin [1966] has long used a statistical technique to extract 

overlapping components on the basis of variance measures. Wood [1983] has 

pointed out some difficulties with this technique of "principle components 

analysis." However, it is still a theoretically more realistic model than simple 

peak components. 

The differentiation between endogenous and exogenous components is also 



somewhat artificial, but is based on a fairly clear differentiation between 

externally measurable stimuli arLd internal brain "events." As more experiments 

are done, though, it appears that most components after 50 ms or so are either 

endogenous or a mixture of exogenous and endogenous sub-components. The 

only truly exogenous components are perhaps pre-cortical in origin. The 

distinction is still useful in that it serves to categorize the variables that 

influence EPs. 

Underlying the previous discussion is the assumption that the EEG and EP 

are actually direct measures of something like the potential a t  a particular spot 

on the scalp. But only potential differences, i.e., potential gradients, can ever be 

measured [Feynman et al. 19641. The choice of reference can and usually does 

greatly adect the EPs. To properly interpret EPs they must be recorded referred 

to an inactive reference far removed from the active current sources or situated 

a t  a null point in the potential distribution. The first is hard to achieve since 

placing the reference electrode far  away allows the pick-up of more 

environmental and biological noise. The second is virtually impossible to achieve 

over any finite time frame of interest because of the complexity of the neural 

generators and the varying topology of their resultant scalp potential 

distributions. 

Even if they exist, null points are very rarely searched for in any systematic 

fashion. Thus most EPs are suspect in this regard, though the extent of the 

uncertainty is difficult to estimate. Wolpaw and Wood [1982] have recently 

experimented with several referencing schemes and again pointed out the 

problems associated with determining a proper reference. I believe that the 

best solution to the referencing problem is to record over a spatial array and 

analyze the potential gradients. 



Given a time series of measurements, it is o f t ~ n  convenient and useful to 

reduce the amount of data to a small set of numbers derived from the full time 

series. Early EP workers started this process by concentrating on the peaks and 

valleys of the individual EP, noting the time, or latency, and voltage value of 

selected positive and negative local extrema. These parameters were found to 

correlate with various experimental parameters and became the basis for the 

earliest systematic EP studies. One difficulty with measuring peak voltage values 

is determining the zero potential, or baseline. (The referencing problem also 

obviously enters into this discussion, but has been dealt with adequately above.) 

Technical zero, the output of the amplifier with its inputs shorted, is probably 

the best choice, but amplifiers do drift with time. Many chose to define the 

baseline as the average pre-stimulus value over a specified time. 

To get around the baseline definition problem, many started to use peak-to- 

peak measures, with the rationale that differences between closely spaced 

transient components would not be affected by the slow baseline shifts that 

occur in some ERPs. This still assumes peaks have a connection with underlying 

brain phenomena, which can be true for simple exogenous ERs, but is most 

definitely not true for more complex endogenous ones. 

Another problem stems from the reliability of the signal in the presence of 

noise. The most significant noise problem arises from biological sources. Even 

after averaging 100 to 200 individual ERs, enough noise can remain to shift the 

latency or value of a peak a significant amount. Area measures were thus 

introduced as a further way to increase the signal/noise ratio by essentially 

averaging over the ER time dimension (whereas the initial averaging was over 

the experimental, or stimulus repetition time dimension). Each throws away 



information, while improving the S/N ratio. But area measures can be valid only 

if the peak they are based on corresponds to a single underlying process. This 

has rarely been established for any peaks besides the earliest brainstem 

responses. 

3.3.3 N Y n b e ~  of Recwding Sites 

Typically, only one to three active electrodes are utilized in most ERP 

experiments. ERP researchers actually discuss the "topography" of a response 

based on three midline electrodes! I will reserve the term topography to cases 

where data have been recorded from 18 or more electrodes in a montage that 

covers an area, not just a line. The realities of volume conduction, neural 

transmission, and inter-subject variability do not leave much hope that useful 

information can be obtained from a small number of measuring sites. Some 

phenomena are robust enough, though, to actually produce a measurable effect 

across subjects on electrodes placed by external landmarks and referenced in a 

wide variety of ways. But only very rarely have any experimenters shown that 

their referencing and montages are optimal for a particular task. This can only 

be done by recording from a large number of electrodes and then properly 

selecting from them. Otherwise, many non-robust phenomena can be obscured 

or lost. 

3.3.4 Statistical Methods 

Through the years, more involved statistical treatments have been applied 

to ERP analysis. This was only natural in order to extract more information out 

of poor parameterizations of indirect measurements. All statistical analysis 

requires a model of the phenomena being measured. In ERP work, these models 

are most often ad hoc, and take no stock of physics and physiology. An 

analogous situation would be genetics before DNA and molecular biology. Early 



genetics had to rely almost wholly on statistical analysis of measurements made 

on individual phenotypes in order to deduce anything about the underlying 

genotype. The power of biochemistry led genetics far beyond what it could 

achieve beforehand. 1 feel that the power of biophysics, if properly applied, could 

lead neuroscience far beyond where it is today. 

Spectral analysis is often used in EEG work, and sometimes in ER work, to 

obtain measures of the EEG or ER that can then be correlated with experimental 

variables. To perform any type of spectral analysis, a model is made, either 

implicitly or explicitly, of the system under study. In most cases, the model is 

simply a bunch of spectral generators, with highly constrained properties such 

as stationarity and ergodicity. While the brain does have components that act 

like spectral generators at times, such models never attempt to take into 

account actual physiological data concerning these generators and the spread 

of their signals. 

Principal Components Analysis (PCA) is a powerful statistical technique 

first applied to human ER work by Donchin [1966]. It comes closer to modeling a 

real brain in that it allows overlapping components, presumably arising from 

different brain processes. If each component can be varied by experimental 

manipulation, then P C A  is capable of separating these components, though a 

recent study by Wood [I9831 indicates that the assignment of variance may be 

faulty. Others have tried explicitly modeling ERs as a series of overlapping 

waveforms [Hunt et al. 19831. All these attempts still fail to account for 

physiology and thus lose much validity and power. 

3.3.5 3he Use of EqzLivalent Ssurce Modeling 

All currently known measures of brain processing are indirect, ERs 

included. ERs are a measure of the currents associated wlth brain events. I 



argue that ESM is the most direct measure available of those currents, simply 

because the underlying model is exactly those currents. With ESM, time series of 

complex topographic data can be reduced to a small set of parameters with 

which we can define components in a more objective way than with peak area, or 

statisticel means. Referencing problems are non-existent. Because of the large 

number of recording sites used, noise can be dealt with in more effective ways. 

Statistical methodology can still be applied, but on top of a more realistic base. 

ESM is not able to stand completely on its own, because of its mathematical 

non-uniqueness. But no other ER analysis technique can stand alone either. For 

correlational purposes, ESM should stand far above other ER measurement 

techniques. Information from complementary fields of inquiry can be combined 

with ESM to provide new analytical conclusions. The main difficulties with ESM 

are the extra time and expense needed to record from many sites and develop 

the software to model and compute sources. 

3.4 Endogenous Event-Related Potentials 

In this section I will introduce the nomenclature of evoked potentials and 

event-related potentials (ERP), particularly in relation to so-called cognitive 

potentials. I will discuss the central notion of components as applied to brain 

potentials. Finally, I will summarize the main types of cognitive ERPs based 

mainly on the categories of tasks involved in eliciting them. 

3.4.1 What is an h d o g  en= ERE 

Many endogenous ERP components have been labeled "cognitive." This word 

means many things to many people. To lay people it relates to "mental," 

"thinking," "conscious." or "reasoning." To psychologists, it also has many 

meanings, though usually well defined in relation to any particular experimental 

context. Webster defines cognition as "the act or process of knowing, including 



both awareness and judgment." To psychophysiologists, a cognitive ERP is 

usually an endogenous component presumably associated with some internal 

cognitive state of the subject. This usage seems to lump both conscious and 

unconscious processes and just about anything not directly related to sensation 

or motor output. Such a broad definition of cognitive does not suit Webster or 

psychologists, so it is perhaps wiser not to use such a loaded word and stick with 

the descriptive terms exogenous and endogenous. 

The rest of this section will introduce several well-known "cognitive" or 

endogenous ERPs. They will be given their usual names, with the realization that 

their appropriate derivation and nomenclature are more properly derived from 

the experirnentd task and subject state, 

3.4.2 Erpeetamy and the CNV 

Walter et al. [1964] first described and named an ERP called the Contingent 

Negative Variation (CNV). It was observed following an unconditioned stimulus 

(UCS) as a "slowly" growing negative (with a standard ear reference) "wave," that 

"resolved," or disappeared when the conditioned (CS) stimulus came along. In 

this classic case, the interval between the CS and UCS was one second. The CNV 

started about 800 ms before the UCS, grew to about 20 pV, and returned to pre- 

UCS baseline in about 100 ms. 

The first CNV was recorded with a dc amplifier. This was not common 

practice, but turned out to be necessary in order to observe the low-frequency 

content of the response. The CNV presumably occurs in many experimental 

tasks but is not seen because of the higher bandpass used by most workers. 

Some use a higher bandpass purposefully in an attempt to exclude the CNV, but 

this tactic cannot be completely effective, and distorts the other slow (low- 

frequency) components of the response. 



Naturally, subsequent workers attempted to see what effects varying the 

timing of the stimuli had on features of the CNV. Different modalities and 

response modes were tried. Evidently, eye movement artifact was problematic 

in the early CNV studies and led to many misinterpretations [Chapman 19691. 

The need to use DC or low bandpass amplification also confused things, since 

there was little standardization of recording techniques. The consensus seems 

to be that the CNV indexes some measure of "expectancy." If this is true, then 

the CNV must be ubiquitous in all types of "cognitive" experiments that involve 

warning, repetition, responses, or subjective timing. 

3.4.3 Attention and the Nl OO 

Hillyard and his colleagues [1973] have defined an endogenous response 

that overlaps exogenous responses at about 100 ms after a sensory stimulus, 

and usually is negative with reference to a subject's earlobes. Some call it N1, to 

indicate the first negative peak, but I will prefer the NlOO designator here, 

indicating a negative peak a t  about 100 ms. The NlOO was first reported as an 

enhancement of the exogenous NlOO in an attended auditory channel. When 

instructed to pay attention to tones presented to one ear while ignoring tones 

presented to the other ear, NlOOs associated with the attended ear's stimuli 

were larger than NlOOs associated with the unattended ear's stimuli. 

The first "attention" NlOO was differentially defined between two sensory 

channels that were physically quite separate, i.e., the ears. Other workers have 

tried defining channels in other modalities, cross-modalities, and within 

modalities, sometimes separated physically, sometimes only by attribute. More 

than two channels have even been examined. Through all these variants, one 

form or another of Nl00 has been observed. 

The N l O O  can be said to index processes that most psychologists associate 



with attention [Posner and Boies 19711. A t  this time, many fine points of 

attention are being disc~.ssed in the ERP literature in terms of various 

psychological theories of sensory gating, stimulus set, and response set [Hillyard 

and Kutas 19031. Because of its presumed connection to peripheral gating, the 

N l O O  is thought by most to originate in sensory cortex or in the pathways to 

sensory cortex. Knowing the cause of the N l O O  could evidently help resolve 

some very important questions in cognitive psychology. 

3.4.4 me Ubiquitous P300 

Sutton et al. El9651 discovered the most famous of the endogenous ERPs 

when he  asked subjects to guess whether single or double clicks were to appear 

next in a randomized sequence. When the actual stimulus occurred, it elicited a 

late peak around 300 ms if it was not the stimulus that the subject had guessed, 

or expected. A similar positive peak was later observed to follow rare events in a 

sequence consisting of two stimuli presented in random order, one being much 

more frequent than the other [Ritter and Vaughan 19691. This latter 

experiment has become known as the "oddball paradigm" for the P3QO response. 

Auditory [Ritter et al. 19721, visual [Simson et al. 1977a], somatosensory 

[Wood et al. 1980], and mixed modality [Ford et a1 19731 P300s have been 

recorded. P300-like responses have also been recorded time-locked to a missing 

stimulus in a sequence [Simson et al. 19761. Squires et al. [1975] claim that 

there are two varieties of P300 based on semi-topographical data. Donchin has 

studied the P300 extensively, varying stimulus probabilities in complex ways and 

fitting the resultant data to ad hoc mathematical models of subjective 

probability. 

The interpretation of the P300 has had the most extensive evolution of any 

of the endogenous components. Because it seems to arise in so many different 



contexts, it continually has more attributes laid upon it. Sutton first linked it to 

the resolution of "uncertainty" in his guessing :asks. Ritter and Vaughan [1969] 

related it to novelty or surprise on the basis of the oddball paradqm. Kutas et 

al. [I9771 thought it indicated stimulus evaluation or response selection. There 

has been a long controversy over the relationship of the P300 to the CNV. 

Initially, some workers thought that the P300 was the result of the resolution of 

the CNV upon stimulus evaluation [Chapman 19691. Studies by Donchin et al. 

[I9751 and others have since demonstrated many differences between the two in 

terms of experimental manipulation and topology. However, Simson et al. 

[1977b] present arguments that both could still have the same neural origin. 

Because it peaks over the parietal region when measured with various 

standard reference sites, the P300 was originally supposed to originate in 

parietal, or associational cortex. This supposition did not confiict with the 

interpretation of the P300 as an index of stimulus evaluation. However, later 

experiments using intercranial recordings in man [Wood et al. 19801 have 

suggested a role for deeper, non-cortical brain structures such as the 

hippocampus and arnygdala. 

3.4.5 Smantic hcangm%ty  and the N400 

A more recently discovered endogenous ERP is the N400 elicited by the 

occurrence of semantically incongruous words in a sequence of words that 

normally form a sentence. Kutas and Hillyard [1%80abe] presented seven word 

sentences, each word spaced one second apart, to subjects while recording EPs. 

One quarter of the sentences ended with an inappropriate word that produced a 

nonsense phrase. When the sentence ended appropriately, a f560 was seen a t  

the vertex electrode. But when the sentence ended inappropriately, an N400 

potential peak was observed. 



Though the N400 has been replicated and seems to be a robust 

phenomenon, too little information about its variability is availsble to make 

inferences about its localization and function. Full topographic studies are still 

lacking. 



The gods for this thesis are to choose an experimental task that elicits a 

robust endogenous component, to repeat the experiment within and across 

subjects a suf'Ficient number of times to ensure reliability, and to apply the 

techniques of source location to the data thus gathered to characterize the ERP 

in terms of the time courses of the sources that represent the components of 

cortical activity associated with the task. 

In choosing an experimental task, I considered those that had well-studied 

cognitive or endogenous components in order to facilitate comparison to a 

previous body of knowledge. Candidates considered were the odd-ball task, the 

attention-shift task, the expectancy task, and the semantic-incongruity task. 

The odd-ball task produces a high amplitude P300 In a majority of subjects. The 

attention task enhances or reduces the N100, which also overlaps sensory 

components. The expectancy task produces a long duration, slow negative shift 

contingent upon an expected event (CNV). The semantic task generates an N400 

at  the end of a series of words presented to a subject. 

Since I intend to apply the techniques of source location to what are most 

likely overlapping neural processes in the brain, I desire a task where the 

putative sensory and motor components can be minimized or eliminated. 

The CNV is generally thought to be very long-lasting, which in ERP terms is a 

second or more. In the classical experiment [Walter et al. 19641 it presumably 

starts upon detection of the warning stimulus and resolves after the imperative 

stimulus. The CNV thus overlaps both of the exogenous responses to the stimuli. 

Exogenous components that last well past 100 ms are produced in all 

modalities. The attention-related endogenous NlOO will thus always overlap 



some sort of sensory response. hi tact., the N l  00 is often defined operationally as 

a difference potential, the Nd [Hillyard 19811. While it is my intent to develop the 

capability to analyze overlapping components, it is preferable to be able to 

separate the components by other means as a verification. The N100, as the 

CNV, is virtually impossible to separate from exogenous components by 

experimental manipulation. 

The odd-ball P300 occurs only after a surprising or unexpected sensory 

stimulus. By reducing the length or intensity of the stimulus, exogenous sensory 

components which normally end by 250 ms can be reduced in amplitude, leaving 

an almost uncontaminated P300. Of course, if the stimuli are reduced to near 

threshold, the task becomes more one of signal detection and the whole 

scenario changes. A P300-type response can also be emitted by the absence of 

an expected stimulus in a repetitive string of identical stimuli. This kind of P300 

may have diflerent properties from the evoked one, however. 

The classical P300 is thus easy to separate from exogenous components. 

Upon closer examination, many workers have discovered earlier components 

associated with the P300. An N200 has often been reported and can be seen 

most clearly by taking the difference potential between the rare and frequent 

responses. The P300 is probably best defined as a dserence, but the rare and 

frequent stimuli will produce slightly different exogenous components that may 

obscure the true odd-ball difference potential. Goodin et al. [1Q78] use the 

difference between attending to and ignoring the stimulus sequence, thus 

controlling stimulus parameters. Their odd-ball difference potential evidences a 

PI65 peak as well as the N200 and P300 peaks. So while part of the odd-ball 

response may be separable in time from exogenous components, other parts are 

probably not. 



In the semantic task the N400 should be easy to analyze separately from 

exogenous components because of its relatively long latency. It has not been 

examined as thoroughly yet as the P300, and it could possibly have other 

associated early components that overlap the exogenous responses to the 

eliciting words. No one has computed the semantic incongruity response as a 

difference so far, either. Another component of interest is the P560 following a 

semantically correct sentence. This is even further removed from the exogenous 

components. 

In conclusion, we see that parts of the responses to the odd-ball and 

semantic tasks can be separated in time from the earlier sensory responses, 

especially by reducing stimulus intensity, since the sensory responses are 

primarily independent of the stimulus parameters. The expectancy and 

attention tasks do not allow this. 

The expectancy task is classically performed with a motor response t o  the 

imperative stimulus. Motor-related brain potentials thus complicate the CNV. In 

their original paper, Walter et al. [I9641 reported that subjects could produce a 

CNV without an imperative stimulus, suggesting that it  was the intention to 

produce a motor response that caused the CNV. The CNV has caused much 

controversy over the last 20 years concerning its relation to or identity with 

motor and other endogenous components. I will assume that the CNV is not 

easily separable from associated motor components by experimental 

manipulation. 

The attention-shift task is usually presented as two separate odd-ball tasks, 

one to each ear. Attention is focused by requiring a motor response to the odd 

stimuli in the selected channel. While the motor response could be replaced by 



mental counting as in the P300 odd-ball task below, the attention task is more 

involved in that it switches between one channel and the other. The motor 

requirement is probably necessary here, to force a mental set to one channeI or 

the other. 

It is possible to perform the odd-ball task without motor involvement by 

mentally countmg the occurrences of the rare stimuli. A difficulty with doing 

this is the lack af an alternative measure of stimulus detection or recognition, 

such as a motor response would give. In Lieu of this, the subject is asked to 

report a total count at  the end of a session. This necessitates paying attention 

at  least to the rare stimuli in order to  obtain a correct count. The subject is 

given feedback on the accuracy of the count, so that vigilance can be controlled. 

Of course, only runs with accurate subject counting and presumably detection 

and recognition of the rare stimuli are used for the analysis proper, though data 

on subject errors are also intrinsically useful for further study. 

The semantic task usually is performed without a motor response. Thus it is 

the best choice if we are to avoid any motor contamination. The odd-ball task 

runs a close second since it can be readily accomplished without a motor 

response. The attention task comes in third since it probably works better with 

motor involvement. The CNV finishes last as it appears to be intimately 

connected with motor behavior. 

Because of the vast amounts of data collected in a 40-48 channel 

experiment, it is necessary to  consider the length of time needed to produce a 

desired brain response and the amount of data of which the response consists. 

The CNV can last from 1 to 2 seconds, and typically uses intertrial intervals (ITI) 

of 3 to 10 seconds. Also, the CNV is best recorded with dc amplifiers which 



involve contact-potential problems a t  the electrodes. The available EEG 

am~flifiers are AC coupled with a bandpass of 0.5 to 100 Hz, which pretty much 

rules out any possibility of recording the CNV with the present equipment. 

The NlOO is a short latency potential, and the complete response in an 

attention-shift experiment should last 250 to 300 ms. ITIs can be as short as 200 

ms. Even with a 400 ms minimum IT], a subject would have to sit only one-tenth 

as long as for a CNV experiment to get the same number of repetitions. Of 

course, there is still the problem that the attention-related NlOO can be 

observed only as a dserence potential. 

The so-called P300 can last as Iong as 600 ms, and ITIs can be as short as 

that. Thus it would take more subject time and data collection per trial for the 

odd-ball task compared to the attention task. But the collection time is much 

greater because the rare stimulus occurs only about 20 percent of the time, and 

the ITIs must be randomized in duration to produce a strong P300, thus 

increasing the length of the mean ITI. 

The N400 is longer than the P300 but requires many stimuli in a single trial. 

Kutas and Hillyard [lQBOabc] used seven-word sentences with one second 

between words, while Herning et al. [1983] were successful with four-word 

sentences. And as with the P300, only a small percentage of the sentences can 

be semantically incorrect, making the semantic task the longest running and 

data-intensive of the four tasks considered. 

From a data collection standpoint, the attention task would take the least 

amount of time, followed closely by the odd-ball task. The semantic task would 

take a much greater amount of time, as would the expectancy task. The latter 

would be out of the question without flrst converting the preamplifiers to the 

direct coupled mode. 



Based on the above considerations, 1 chose to examine the P300 and 

associated components elicited by the odd-ball task. It is relatively easy to 

separate from sensory or exogenous components. Motor contamination can be 

controlled or eliminated. Data collection is manageable with the use of fairly 

short ITIs. Finally, the odd-ball task is quite simple to implement. 

4.4 Controls 

There are a myriad of experimental controls that would need to be done in 

a full study of the odd-bail task, both to ensure data integrity and to reduce the 

variability of the responses. Many of these could not be performed here, but a 

fairly complete exposition of them will be presented. 

4.4. I Other Modalities 

I selected the auditory modality for the initial odd-ball experiments 

because it is the easiest to work with. Visual and somatosensory stimuli are just 

as successful in eliciting the odd-ball ERP, but the stimulating apparatus needed 

is more involved. Visual ERP experiments also have to contend with controlling 

and measuring fixation, extraneous eye-movements, and concomitant noise. 

Even so, it would prove useful to perform odd-ball experiments in other 

modalities to confirm or refute the currently accepted notion that the odd-ball 

ERP is independent of modality. 

4.4.2 Norise and Art i facts  

The intent of an ERP experiment is to elicit brain responses and record 

them for later analysis. Other potentials, however, can arise from various 

sources in the equipment and in the subject. These all are considered to be 

noise and must be controlled or eliminated. Amplifier and electrode noise are 

not usually a problem with modern equipment, and with the system used for 

this experiment I can always discard the data from a few channels if they are in 



any way suspect. Each channel can be viewed during the experiment as well as 

afterwards in voltage-time plots and equipotential maps in order to  look for  

unwanted noise of any sort. 

Biological noise from the subject comes in two varieties. One is intrinsic 

brain noise caused by all the other ongoing processes in the CNS during a task. 

This type of noise is recorded along with the ERPs and dealt with later during 

the averaging process. The second is from sources outside the brain, such as 

muscle activity and associated movement of body parts, especially the eyes. 

Muscle tension produces its own electrical activity that will spread by volume 

conduction to all conducting parts of the body. Movement of the eyes, which 

have a standing potential gradient, generates the EOG electro-oculogram which 

also can appear on EEG electrodes, especially in the frontal area. 

Movement-related noise can be reduced three ways: by experimental design, 

by proper subject instruction and behavior, and by special data processing. In 

choosing the auditory add-ball task I have eliminated motor responses and task- 

relevant eye movements. The subjects are told to minimize all movements while 

performing the task. Of course, independent measurement of a subject's 

behavior should always be made in order to verify that the subject has indeed 

performed as instructed. Ideally, non-physiological measures of eye and head 

movement should be made. Lacking these, voltage-time records and 

equipatentiel maps should be examined to discern if eye and muscle artifacts 

appear in the raw or averaged data. 

It was discovered early on in the study of sensory-evoked potentials that 

the brain could lock onto repetitive stimuli and produce certain potentials, such 

as alpha bursts, that went away when the ITls were randomized in length. From 



a systems-engineering standpoint, the brain was thought to be driven by the 

periodic input. Academic researchers, and eventually clinical workers as well, 

adopted the practice of randomizing the ITIS in evoked potential experiments. 

Psychophysiologists soon discovered that many endogenous potentials were 

affected by the exact probability structure of the preceding stirnulus sequence. 

Randomization of ITIs then became not a means to remove artifacts but an 

experimental variable in its own right. 

For the odd-ball task, the ideal I'R sequence would probably follow a Poisson 

distribution, where the next interval could be any length and would bear no 

relationship to any previous interval. This is impractical in that very long 

intervals would result. The next best solution would be to select the ITIs from a 

uniform distribution with a fixed lower and upper bound, thus preventing 

overlapping responses and unduly long intervals. 

4.4.4 Counting 

To reduce motor artifacts and motor-related brain potentials, I decided to 

have the subjects simply attend to the sequence of rare and frequent tones. To 

control attention and verify that they were actively participating, I asked them 

to keep a mental running count of the number of occurrences of the rare tones 

and report it a t  the end of each run, while ignoring the more frequent tones. 

Their report could be checked against the actual count immediately after the 

run and fed back to them. 

A difficulty with such mental counting is that it may produce its own ERP 

signature which, if time-locked to the stimulus presentations, would appear in 

the averaged ERPs. Of course, such internal counting would probably be highly 

variable in time and differ in strategy from subject to subject. In performing the 

task myself I find that I repeat the previous count whenever I hear a frequent 



tone and increment it when a rare tone occurs, with a lot of extraneous talking 

to myself in between. The most proper way to deal with this diPBculty would be to 

perform an experiment to try to characterize mental counting alone, using 

internally and externally timed sequences. 

If the odd-ball task were to be done with tone 1 always being the frequent 

tone and tone 2 always being the rare one, a bias would result because of the 

difference in exogenous responses to the two slghtly different tones. It is 

necessary to reverse the rare/frequent designation of the two tones on half of 

the runs to determine if the difference in stimulus attributes obstructs the 

analysis of the endogenous components. if it does, itfen it will be essefitial to 

examine the odd-ball difference potentials calculated from the same tone used 

in different runs as the frequent or rare stimulus. 

4.4.6 Ignore Condition 

Besides controlling the stimulus attributes to reduce the variability of the 

exogenous components, it is necessary to control the task to reduce the 

variability of the endogenous components. If the endogenous components are 

truly caused by attending to the tones, then it should be possible to suppress 

them by engaging the subject in some other primary task while the tones are 

ignored, Goodin et al. [1978] utilized this control, presenting subjects with 

identical sequences of tones while they either attended to the tones or read a 

book. The endogenous odd-ball components did not appear when the subject was 

reading, but the exogenous components remained, presumably because the 

brain has no power of suppression at this level. 



Aspects of the odd-ball task ERP are fleeted by the relative probability of 

occurrence of the rare and frequent tones. As may be expected, the P300 mostly 

disappears when the odds reach .50/.50. As the probabilities become more 

skewed, the amplitude of the P300 rises monotonically [Duncan-Johnson and 

Donchin 1977]. I chose a ratio of .20/.80 as a compromise in order to produce a 

robust P300 component in a reasonable number of trials, and because most 

other workers use that ratio. It would be very interesting to vary the ratio to 

.50/.50 as a control and to other values to see how the odd-ball ERP changes 

configuration with  stimulus probability. 

4.4.8 PLLre &ogmous Component 

Even though the odd-ball task does not seem to elicit any endogenous 

potential in response to the frequent tone, it is not possible to be certain 

without a control for comparison. By generating a sequence of identical tones 

with the same temporal attributes as the two-tone, odd-ball experiment, and 

having the subjects listen to it attentively while counting or not counting the 

tones, and while reading, makes it possible to ascertain what the pure 

exogenous auditory-evoked potential is like and compare it to the frequent tone 

ERP from the odd-ball task. 

4.4.9 Va*ng Stimulus htens i t y  and Pitch 

Two additional variables affect the odd-ball ERP: detectability and 

discriminability. In the auditory modality detectability is primarily affected by 

stimulus intensity, usually measured in decibels (dB). If the intensity is reduced 

to near threshold the nature of the task changes to include signal detection. 

New ERP components appear which confound the surprise ERP component 

evoked by the odd stimuli. Thus the desire to reduce the exogenous components 



must be weighed against the need to restrict the task definition. 

Discriminability is mainly affected by the auditory stimulus attributes of 

intensity and pitch. Pitch also aflects detectability, but usually two tones are 

selected that are near the peak of detectability so that pitch will not be a 

variable in this regard. Pitch separation, though, can aflect the odd-ball ERP. 

Widely separated pitches are more easily discriminable and elicit a strong P300. 

As pitch separation decreases, the task becomes more difacult and the response 

becomes more complicated, just as when detectability decreases. The classical 

odd-ball ERP is produced when the two stimuli are easily detectable and 

discriminable. It would be useful to vary these two parameters and study their 

effects on the sources of the ERP. 

4.4.10 Addition of Motor Response 

To simplify the analysis, I chose to do the odd-ball task without a motor 

response. One complication of this was discussed above. Yet another control 

would be to require a button-press to the rare stimulus as Ritter and Vaughan 

[1969] did, but this would bias the response, since the motor-related brain 

potentials would be difTerent for the two stimuli. One could require a different 

button-press for the frequent tone, but then we would not expect quite the same 

odd-ball ERP since the subject could not ignore the frequent tones as much as 

in the mental counting odd-ball task. Nevertheless, such a control should be 

run, along with a separate motor task where the subject just presses the 

buttons in various combinations, both self-paced and in response to repetitive 

cues. Presumably, after the motor components are subtracted, the remaining 

ERP differences should look like those from the mental counting variant. Any 

residual differences might reflect responses from mental counting and motor 

preparedness. 



After consideration of the goals of this experimental work I have chosen to 

use the auditory odd-ball task to elicit exogenous and endogenous components 

of the human ERP. It meets requirements of robustness, ease of 

implementation, moderate data collection, and controllability in relation to 

other well-known tasks that also produce endogenous components. 



This chapter specifies the exact experimental and analytical methods used 

in performing the odd-ball tasks chosen for this thesis. 

5.1 Experimental 

The experimental aspects of these experiments involve subject selection, 

stimulus parameters, electrodes, amplifiers, referencing, and digitization and 

storage of data. 

5.1.2 Subjects 

Three subjects were used, referred to here by the designators S1, 52, and 

53. Their ages ranged from 24 to 33 years a t  the time of the experiments. A11 

three were male; two were graduate students and one a post-doctoral fellow a t  

Caltech and were highly motivated and cooperative. Basic audiological testing 

revealed that 52 and S3 had normal hearing for their age. Subject S1 was found 

to have a deficit in his left ear above 2 or 3 KHz. Subjects were volunteers and 

not remunerated for their participation. Guidelines established by the 

Caltech/JPL Committee for the Protection of Human Subjects were followed 

throughout to ensure the safety and privacy of all the subjects. 

The only necessary stimuli were two tone bursts. One was set at  800 Hz and 

the other a t  1200 Hz. For subject S1 the tone bursts were produced by a Wavetek 

signal generator and gated to last 50 ms. For subjects S2 and 53 the tones were 

produced by an Apple 11+ microcomputer equipped with a D/A converter. The 

amplitude, duration, frequency, and waveform envelope were controllable by the 

Apple. A 50 ms tone burst length was selected, with a 5 ms ramp a t  the 

beginning and end, these being the most commonly used parameters found in 



the literature. The tones were presented to the subjects though 6-ohm stereo 

headsets. For subjects 52 and 53, the intensities of the tones measured at the 

eardrum were 45 decibels sound pressure level (dB SPL). For S1, the tones were 

estimated to be 60 dB SPL. 

The tones were presented in random order based on the pseudo-random 

number generator built into the Apple operating system. The selection of tone 1 

or tone 2 for each trial was done at run time such that the probability was 0.2 

(0.8) for the rare (frequent) tone. Each tone presentation constituted one trial, 

with the IT1 varying randomly with uniform distribution between 1 and 2 

seconds. No constraints were placed on the sequence of tones, such as trying to 

eliminate two rare tones in succession, as some researchers are inclined to do. 

No other sounds, such as masking noise, were presented to the subjects. They 

sat in a sound-attenuating room inside another quiet room in the basement of a 

quiet building. 

5.1.3 h t a  Collection 

Figure 5-1 shows a schematic diagram of the experimental setup and 

equipment used for subject stimulation and EEG data recording. Details of the 

operation of this equipment for the odd-ball experiments are explained below. 

5.1.3.1 mectrodes The system used for multi-electrode placement had been 

previously developed at Caltech by Fender and colleagues [Fender and Santoro 

1977, Ary et al. 1981a]. It  consisted of custom-fit plexiglas helmets with equi- 

angularly spaced holes where electrodes could be applied in consistent locations 

from day to day. The electrodes were brass cylinders coated with Ag/AgCl, with 

cupped ends for holding electrode gel. To apply the electrodes the helmet was 

donned and adjusted to skull landmarks, primarily the inion at the back of the 

head. The helmets are very close-fltting and do not rotate on the head in a side- 



to-side manner, hence the inion positioning was sufficient to allow the 

application of the helmet in an identical position from day to day. Each 

eIectrode site was prepared through the 1.7 cm diameter access hole by parting 

the subject's hair and abrading the scalp with a dab of Hewlett Packard Redux 

Paste electrolyte gel. After each site was prepared, a rubber grommet was 

placed in the access hole and an electrode with its cupped end full of more 

conductive electrolyte gel was inserted through the center of the grommet and 

pressed against the scalp. 

The montages for the electrodes were laid out to give as wide a coverage of 

the head as possible. This was deemed necessary because of the unknown 

topography of the odd-ball endogenous potentials and the probable involvement 

of widely separated areas of the brain. Indeed, the only time one should not use 

such a montage is when the phenomenon is known to have gradients in a 

proscribed area and one wishes to study that area in greater spatial detail. ESM 

generally works better the more widely separated the measuring sites. Figure 

5-2 shows the montages used for each subject. S1 had 40 active recording sites, 

while S2 and 53 had 48. 

After all the electrodes were in place, the ac  impedances were checked 

using a modified Grass Model EZMlD Electrode impedance Meter that applied a 

30 Hz square wave to each electrode in turn, with the return current path 

through the parallel combination of the remaining electrodes. Impedances were 

minimized as much as possible by twisting the electrodes down in the grommets 

against the scalp until the subject expressed discomfort. High impedance 

electrodes were removed and the site prepared again. Impedances generally 

ranged from 2 t o  15 K ohms for S1 and also for S3, but with a few a t  20 K ohms. 

Subject 52 evidently had highly resistive skin, registering impedances from 5 to 

30 K ohms and several up to 40 K ohms. 



The whole process of electrode application and testing took about two 

hours. In most cases the impedances were also measured after the 

experimental session and were found to be the same o r  less than before the 

experiment was run. 

5.1.3.2 Amplifie~s and Refmenchg All EEG signals were amplified by custom- 

built amplifiers based on a Burr-Brown hybrid technology instrumentation op- 

amp. All their gains were set to 45000 (+-1%) prior to each experimental run by 

adjusting the output amplitude of a 20 Hz sine wave. The amplifiers had switch- 

selectable bandwidths of 0.5 to 30, 60, or 90 Hz. For S1 the 30 Hz bandwidth was 

used. This was changed to 90 Hz for 52 and S3 in an attempt to get a better idea 

of the higher frequency spectral components of the responses. Filtering was 

later performed on the data of S3 in order t o  compare it to Sl%. Figure 5-3 

shows the amplitude and phase characteristics of a typical amplifier used in 

these recordings. 

Several features of the amplifier system are provided for subject 

protection. The input stages, connected directly to the subject, are battery 

powered so that if any faults occur in those sections the voltage applied to the 

subject is limited. The whole input section is optically isolated from the output 

section by integrated circuit devices rated with a 500 volt breakdown potential. 

The power supply for the output stages is rectified from line voltage protected 

by ground-fault interrupters. 

Differential amplification is necessary to reject common-mode signals that 

can be of higher amplitude than the signal (EEG) itself. In most operating 

environments 60 Hz signals are induced into the body from line currents or 

motor-run equipment. These noise signals will appear on all leads connected to a 

subject and can be greatly attenuated by the process of differential 



amplification. Though the subject and amplifiers were in a double Faraday cage, 

60 Hz line current still could be picked up with certain configurations of the 

leads. The ongoing EEG was examined on all channels continuously during the 

experiments to check for noticeable 60 Hz interference, and none was found. 

To achieve differential amplification, two additional electrodes must be 

attached to the subject besides the 40 or 48 active electrodes. A reference 

electrode is used to establish a baseline against which all the active electrodes 

are measured, recalling that only potential differences can be measured. The 

ground electrode is used to establish a baseline against which the reference and 

active electrodes are measured in turn, thus subtracting out the common mode 

voltage appearing on the ground electrode. The locations of the ground and 

reference electrodes for each subject are indicated in Figure 5-2. The placement 

of the reference is not critical to the analysis here because reference-free 

methods, namely topographic descriptions and ESM, will be used in the 

interpretation of the results. 

5.1.3.3 Digitization and Storage The amplified EEG signals were brought outside 

the Faraday cage and, along with a stimulus indicator signal produced by the 

Apple, fed to a custom-built data acquisition system (DAS). The BAS multiplexed 

all of these signals sequentially every four ms through a variable-gain buffer 

amplifier and performed a 12-bit analog-to-digital (A/D) conversion. The buffer 

gain was set to 2.0 for all of the experiments described here. Only the higher 

order 8 bits were saved and stored on digital magnetic tape. The total 

conversion time was fixed a t  10 p s per channel, for a total time of 400 or 480 p 

s required per time frame, depending on the subject. Thus the total elapsed time 

between sampling the first and last channel was 0.39 or 0.47 ms, or about 10 

percent of the interval between successive time samples. No correction was 

applied to the data to compensate for this slight time shift between sampling 



successive channels. 

5.1.9.4 ?he f?lm of the Bperimenf After a11 electrodes were in place and their 

impedance checked, the subject was seated in a chair in front of a table inside 

the Faraday cage. Electrode cables were attached to the amplifiers along with 

the ground and reference electrodes. The headphones were placed on his head 

avoiding disturbance of the EEG electrodes. At this point the subject's EEG was 

visually examined by means of a multiplexed oscilloscope display system and 

electrodes that gave obviously bad signals were corrected. Once it was 

established that the EEG was nominal the subject was given instructions to keep 

his eyes open and to fkate on a small red light seen through the shielded 

window of the Faraday cage. He was instructed to listen to the tones coming 

from the headphones and to keep a running mental count of the number of 

occurrences of the rare one of the two. A test run was conducted to check the 

equipment and familiarize the subject with the task. The test run also provided 

the definition of the rare and frequent tones. The subject was told to minimize 

movements, especially of the eyes and facial muscles. 

When the subject was ready, the light was turned out in the Faraday cage 

and the door closed. For each run the subject first indicated his readiness; then 

the experimenter started an Apple program that controlled the DAS and 

selected and presented the stimuli. The DAS sampled and stored data 

continuously during each run. At  the end of each run the Apple printed the 

complete tone sequence used and the total number of frequent and rare tones. 

The experimenter then opened the door of the cage to ask the subject how many 

rare tones he had counted. Two 5.5 minute runs were recorded for S1, with tone 

1 as the rare tone in both. Six 3.0 minute runs were recorded for 53, also with 

tone 1 as the rare tone in all runs. Six 3.0 minute runs were recorded for S2, 

with tone 1 being rare for the first three and tone 2 being rare for the second 



three. Subjects S2 and S3 had breaks between their two sets of three runs in 

which two 30 second recordings of ongoing EEG were recorded, one with eyes 

open and one with eyes closed. Each subject was in the Faraday cage about 30 

minutes total. 

After data collection was completed the electrode impedances were checked 

for stability and the batteries were checked to see if they were still provihng the 

necessary potential to the voltage regulators of the input stage. The subject was 

relieved of his electrodes and given the option of washing his hair. Data tapes 

were removed from the DAS and taken to an IBM 370 computer for copying. 

A flow chart of the data analysis is shown in Figure 5-4. The same basic 

analysis was performed on all three subjects. Additionally, S3's data were low- 

pass filtered after averaging in an attempt to remove high-frequency noise. The 

details of each step in the data processing are explained below. 

It is commonly assumed that a single EP is the sum of some signal arising 

from brain regions excited by the eliciting stimulus and some noise unrelated to 

the stimulus coming from different brain regions. This relation can be 

expressed analytically as an algebraic sum 

EP(n) = s (n) + e (n),n = 0, 255 (5.1) 

where EP is an evoked potential sequence, s is the signal of interest, and e is 

the error term or noise. In an evoked potential experiment such as this the 

signal of interest has a maximum value of about 10 pV, whereas the signal 

actually recorded has a maximum value of about 100 pV. In most cases it is 

impossible to  discern the EP in the noise without some form of signal processing 



to increase the signallnoise. The typical method for accomplishing this is to 

average multiple segments of the EEG waveforms time-locked to the external 

stimulus. If, as commonly assumed, the EP signal is not variable in time and the 

background EEG noise can be modeled as a random process with zero mean, 

then the signal/noise can be improved by a multiplicative factor proportional to 

the square root of the number of repetitions averaged [Ruchkin 19651. For 

example, averaging 100 repetitions would thus increase the signal/noise by a 

factor of ten. 

Both of the previous assumptions are known to be false. EPs, and 

especially the later components, are not the same every time they are elicited. 

The EEG is not stationary over the period required to record even a few EPs. But 

there is a dearth of viable alternatives to time-domain averaging. One major 

problem is that the EEG and EP have quite similar spectral characteristics, 

making it difficult to apply frequency-domain methods to increasing the 

signal/noise. Slight differences in the characteristics of the EEG and EP have 

been used in schemes to filter the background EEG from the EP signal of 

interest [McGillem and Aunon 19771 but were considered too untried for 

application here. 

Data tapes were taken to a VAX 11/780 system for off-line analysis with 

Fortran programs. The first step in the analysis was to extract the stimulus 

channel from each run and identify all the points where sections of the data 

should be extracted for averaging the rare and frequent responses. Then the 

data were passed through a second time to actudly perform the averaging, A 

section of data 256 frames long was averaged for each stimulus, with 25 pre- 

stimulus frames and 231 post-stimulus frames, This process is formalized by 



where aEP is the average evoked potential sequence, ir the repetition index, 

Msps the number of stimulus repetitions, ic the channel or electrode index, 

Nchan  the total number of channels, is the experimental run number, Nruns 

the total number of runs, and n the time index. The resulting average evoked 

potentials (aEP) for the rare and frequent tones then ranged from -100 ms 

before the stimulus to 920 ms after the stimulus, each time frame being 

separated by 4 ms. The pre-stimulus period was desired to determine whether 

there was any stimulus artifact or leftovers from the previous response, and t o  

establish a potential baseline. The post-stimulus period was long enough to 

capture the section of the EP in which we are interested. Using exactly 256 

frames was, of course, a concession to the efficient computation of digital signal- 

processing algorithms. 

The aEPs were stored on disk and magtape. Multiple aEPs from separate 

runs but identical stimulus conditions were averaged together, weighted by the 

number of stimulus repetitions of each. This process can be represented by 

where g a p  is the resuItant grand average evoked potential and the rest of the 

variables are the same as before. This couid not be done for S1, only one of 

whose runs was actually useable. For 52 and S3 six runs were averaged 

together, producing two grand average EPs (gaEP), one to the rare and one to 

the frequent tones. The next step was to subtract the DC amplifier offset from 

each channel. The offset was determined as the average value of the signal over 



the 25 pre-stimulus values. This calculation is expressed as 

where gaEP' is the adjusted grand average sequence, in a dummy time index, 

and the number of pre-stimulus samples. 

5.2.2 oifference Potentials 

To more clearly define the changes in the EPs between the rare and 

frequent cases, the difference potential was calculated as the rare gaEP minus 

the frequent gaEP. This is formalized as 

= 1, Nchan 
dEPk (n)  = TEPI, ( n )  - f EP~E (n) ,  = 0,255 1 

with d ,  7 ,  and f standing for the difference, rare, and frequent experimental 

conditions. The resulting difference EP was taken as the operational definition 

of the odd-ball ERP. The interpretation of such a calculation is somewhat 

controversial. Its use here is defended in Chapter 7. 

Digital lowpass filtering was performed on S3's averaged data in an attempt 

to remove high-frequency noise that was discovered after the experiment was 

run and for comparison to Sl's data that was recorded at a lower bandpass. A 

finite-impulse response filter of 51 sample points with a frequency cut-off of 30 

Hz was convolved with the three gaEPs of 53 before they were average 

referenced. 

5.2.4 Average Referencing 

Software average referencing was next performed on the three resultant 

EPs for each of the three subjects. A t  each time frame the average value of the 



voltage over all the electrodes was calculated and then subtracted from each 

electrode a t  that time frame. We can represent this by 

M a n  
C zEPjc ( n )  1 ic = 1 ,  Nchan 

zEP*(n) = xEP*(n) - '=' I n = 0 ,  255 
k h a n  ' I (5 .6)  

x = d,f ,r 

where z represents the experimental condition. The result of this operation is 

to equalize the areas of positive and negative potential over the head for each 

frame. Assuming uniform spatial sampling the spatial potential gradients 

remain the same, but the ESM algorithms work more efficiently with the 

constant spatial component removed. The resulting equipotential maps are also 

easier to interpret. 

When only a small number of electrodes are used in an experiment it is 

possible to break up an EP into a series of peaks and valleys that can be 

discussed and analyzed separately. The segmentation may not necessarily agree 

with any underlying brain processes, but it is a convenience none-the-less. With 

many electrodes, no one of them can be singled out as representing the typical 

response, yet the need for a summary of the response is even more desired. One 

such summary statistic is the spatial field power [Lehmann and Skrandies 

19801, defined at each time frame as the sum of squares of the potentials over 

all the electrodes, or 

with SFP being the spatial field power sequence. It represents a measure of the 

strength and complexity of the potential gradients a t  an  instant in time, but has 

no simple relationship to the actual underlying sources of the potentials. 



Spatial field power curves were calculated for each condition of each 

subject. Plots were made for each subject, normalized to the maximum power 

among that subject's three basic xEPs. Comparisons among subjects were not 

justified, since each had unknown anatomical and physiological parameters that 

would affect the strength of the potentials a t  the scalp surface. 

5.2.6 Epu5potential Rott ing 

In order to visualize the spatial potential distribution at particular times of 

a response, contour plots were made of the potential over the surface of the 

head. Figure 5-5 shows examples of such equipotential maps. They cover an 

area of the head encompassing all the measuring sites used, which are in turn 

marked with x's. To achieve smooth and more realistic contours, missing 

potential values are estimated by local spatial averaging and assigned to the 

unused electrode locations. Then bi-cubic spline fitting is used to define a finer 

mesh of potential values between the standard electrode positions. Two extra 

positions between each electrode are used, thus tripling the linear sampling and 

increasing the spatial sampling density nine times. 

Equipotential maps were only plotted for times when the spatial power was 

above a criterion value. Maps of low level responses are noisy and, while very 

interesting to look at,  contain little useful information and lead to confusion. 

5.2.7 Equivalent Source Modeling 

5.2.7.1 Fbnoard Solution The main intent of this thesis was to apply ESM to the 

EPs from the odd-ball task. To this end a homogeneous model of the head was 

used, consisting of a unit sphere of conductivity a with irnbedded point dipoles, 

surrounded by a non-conductive medium to simulate the air. The coordinate 

system used for this model is shown in Figure 5-6. The potential for any point 

on the surface of this head was given by the same equations used in Kavanagh et 



al. [1970]. Multiple-dipole source configurations were calculated by summing 

the potentials produced by each component dipole at each electrode site. This 

is valid because the principle of superposition holds. The voltage at a particular 

location on the surface of the model head is given by 

where Vk is the voltage, f the potential function, and dm a dipole with six 

parameters representing its location and moment. 

5.2.7.2 htverse Solution The central technique of the variant of ESM used here 

is the actual equivalent source localization. A simplex algorithm [Nelder and 

Mead 19651 was used for all source localizations in this thesis. Given an initial 

guess for a dipole configuration, this algorithm varied the parameters of the 

dipole(s) until an optimal least-squares fit to the measured experimental data 

was obtained. Either 6 or 12 parameters were varied, representing one or two 

dipoles. The convergence criterion was set empirically to achieve accurate 

localization in a reasonable number of iterations. The following function was 

thus minimized at selected time frames 

The results of each equivalent source localization were thus 6 or 12 numbers 

defining the location, strength, and orientation of the one or two dipoles that 

best fit the experimental data for that time frame. 
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Rgure 5-1. Schematic diagram of experimental equipment. 



Rgure 5-2. Electrode montages for three subjects. 



Rgure 55. Typical EEG amplifier gain and phase. 
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RguFe 56. Examples of equipotential maps. 
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Rgure 58. Coordinate system used for mathematical model of the head. 



In this chapter I present some of the data obtained during the odd-ball 

experimental task and the results of topographic and source localization 

studies. First I summarize the stimulus sequences as they actually occurred. 

Next I review the raw data that were collected for each subject. Then I present 

the averaged EPs for each subject under the frequent and rare conditions and 

the difference potential calculated from these. I next show a selection of 

equipotential maps for each condition and each subject. Finally, I offer the 

results of one and two dipole modeling of the sources of these EPs. 

Only the &st of the two runs for S1 was recovered, due to equipment 

malfunction. It was a continuous recording of 86372 time frames, or about 345 

seconds. A total of 242 stimuli were delivered, 197 frequent and 45 rare. The 

measured rare/frequent probability ratio is thus .19/ .8 1. The ITIs ranged from 

0.99 to 1.86 seconds, with a mean of 1.40 seconds. To check the uniformity of 

the IT1 sampling distribution, they were sorted into ten bins of equal duration 

over the inclusive range. The tabulated bin values are: (24, 30, 24, 28, 26, 20, 27, 

22, 21, 19). 

52 completed six runs, the first flve of which lasted 177 seconds on average, 

the sixth lasting 124 seconds. A total of 668 stimuli were delivered, 524 frequent 

and 144 rare, for a probability ratio of .21/.78. The ITIS ranged from 1.03 to 

1.99 seconds, with a mean of 1.50 seconds. The sampling distribution is 

represented by the following values: (59, 66, 72, 85, 66, 52, 64, 65, 78, 55). 

53 also completed six runs averaging 177 seconds. He heard 708 tones in 

all, of which 548 were the frequent and 160 the rare tone. The measured 

probability ratio is .23/.77. The ITIs ranged from 1.03 to 1.99 seconds, with a 



mean of 1.40 seconds. Bin values for the In s  are: (60, 69, '79, 86, 67, 69, 66, 67 ,  

77, 54). Comparing the distribution of ITIS from the three subjects, I detect 

biases in the sequence, with a peak in the fourth bin. I judge the bias to be 

neghgible in terms of the goals of this thesis, which do not include an in-depth 

study of stimulus probability. 

All three subjects had no difficdty counting the number of rare stimulus 

occurrences, missing the correct value by no more than one either way. 

6.2 EEG h t a  

Examples of the raw EEG data recorded from each subject are shown in 

Figure 6-1. It is readily apparent from the lack of higher-frequency components 

that the data for S1 were recorded at  a lower bandpass than the data for S2 and 

S3 (30 vs 98 Hz). S2 has very obvious alpha (8 to 13 Hz) waveforms with a 

frequency of about 10 Hz and amplitude of about 40 pV peak-to-peak, while 53 

has alpha of lesser amplitude. 52 had a difficult time staying alert during the 

experiment, as is evidenced in the alpha activity scattered throughout all of his 

data, and as was verbally verified after each run. Indeed, during the experiment 

I could watch S2's alpha on most of the channels displayed on the display 

multiplexer. Overall, the subjects had an ongoing EEG of about 100 pV peak-to- 

peak. 

6.3 Average Evoked Potentials 

After offset adjustment, gain adjustment, low-pass filtering, differencing, 

and average referencing, I obtained aEPs such as displayed in Figure 6-2 for the 

frequent case. These have the highest signal/noise of the three cases since they 

have approximately four times as many repetitions. The channels plotted do 

not necessarily represent the same relative electrode locations on each subject. 

The positions of the electrodes can be determined from Figure 5-2. 



The aEPs for 52 still retain alpha residual, even after well over 500 

repetitions are averaged. A small amount can also be seen in S3's aEPs, along 

with some higherfrequency components in the beta range (13 to 22 Hz). S1 has 

some beta-range noise as well. If the relative amounts of alpha and beta activity 

are used as a measure of subject attentiveness, then S1 can be judged the most 

cooperative and 52 the least. 

Comparing this set of aEPs we can see that they each have three major 

peaks following stimulus onset (indicated by the vertical line). These three peaks 

change polarity from positive to negative to positive on some electrodes, and 

from negative to positive to negative on other electrodes. On closer 

examination, though, it can be seen that these peaks occur at  shghtly different 

times on different electrodes, How can we summarize the time course of these 

aEPs if they each have Werent  features? The spatial field-power curves in 

Figures 6-3 through 6-5 represent one way. 

A quick glance at the three subjects' power curves reveals quite a bit of 

complexity in the responses and a lot of variability among subjects. I have split 

the analysis intervaI into four sub-intervals: 0-250, 250-400, 400-650, and 650- 

820 ms. These were chosen based on the observation that the power curves for 

all subjects under all conditions fall close to zero between them. For clarity, I 

will use the terms FREQ, RARE, and DIFF to refer to the frequent, rare, and 

difference cases throughout this chapter. 

Each power calculation will be discussed in detail below, but a few general 

features will be mentioned here. The only interval where all three subjects have 

similar power curves is the first one, before 200 ms. Here each subject has two 

large peaks in the FREQ and RARE cases and negligible power in the DIFF 



response. Most eubjects' responses f a l l  away in the last interval, except for the 

DIFF response of 53. 

6.3.1.1 mequent Tone fazsponse The upper portion of Flgure 6-3 shows the field- 

power curve for S1. It consists of three major peaks at 88, 208, and 320 ms, with 

a small but definite earlier peak a t  40 ms. The pre-stimulus power is negligible, 

as is the power after 376 ms. The three main peaks obviously correspond to the 

three major peaks of the individual aEPs. 

The FREQ tone response for 52 is shown in Figure 6-4, consisting of three 

major peaks at  116, 184, and 288 ms that seem to correspond to the three 

major peaks of S1. A peak at  40 ms is also evident and seems to stand out from 

the pre-stimulus baseline. The pre-stimulus noise has been mostly eliminated by 

the averaging of 524 responses. An additional peak at 412 ms may be caused by 

the alpha generator. This can be surmised from an examination of the aEPs for 

various channels over the head, in particular channels 40 through 48 (see 

Appendix A). This subject evidently produced alpha bursts after, or in 

conjunction with, the typical auditory-evoked responses. 

S3's FREQ response power curve is shown in Figure 6-5. It starts with a 

defhite 40 ms peak, corresponding to those of S1 and 32. The next two peaks at 

104 and 188 rns correspond to S1 (88 and 208 rns) and 52 (116 and 184) also. 

The next two peaks, at  372 and 464, do not correspond to either S1 or S2. In 

addition, S3 has appreciable field-power from 665 to 920 ms, whereas neither S1 

or 52 do. 

Figure 6-6 compares the FREQ power curves for all subjects. In this and the 

two subsequent figures the spatial field-power curves have been individually 

normalized to help in a relative comparison. One might think that the absolute 

field-power values should be retained for direct comparison of brain activity 



power between subjects, but such a comparison would be unreliable without 

knowledge of the individual electrical parameters of each subject's head. 

In summary, the FREQ field-power curves show similar early peaks for all 

three subjects a t  about 40, 100, and 200 ms. After 250 ms, though, each subject 

shows a diflerent structure in his response. These differences presumably 

refiect the diigerent cognitive strategies used by each subject in performing the 

odd-ball task with concomitant mental counting. 

6.3.1.2 &re TmLe Response S1 shows a most complex RARE response power 

curve in Figure 6-3. However, some of the complexity may be artifactual. Only 

45 stimulus repetitions were averaged and the pre-stimulus and near-stimulus 

power is appreciable, thus indicating the presence of significant noise 

throughout the RARE aEPs. The 4Q ms peak found in the FREQ case is now 

probably buried in this noise. The flrst strong peak occurs at  08 ms, 

corresponding exactly with the FREQ case for the same subject. A knee at 120 

ms is more prominent than the knee seen on the F'REQ power curve. The second 

peak occurs at  180 ms and a third a t  264, unlike the FREQ response. However, it 

is possible that the 180 peak is just the FREQ 208 peak that has been shifted by 

the inclusion of extra cognitive processing. A fourth double-capped peak at  348 

ms matches the 320 peak of the FREQ response. A completely new broad peak 

then occurs, from about 400 to 700 ms, that has no analog in the FREQ case. It 

has three sub-peaks, but these may be artifacts that were not completely 

averaged out. Examination of the aEPs for Sl's RARE case (see Appendix B) 

bears this out on channels 1 to 10, especially. 

On the basis of Sl's RARE and FREQ responses it is obvious that some 

differences in processing are occurring between the two cases as early as 200 

ms, maybe even 150 ms. Certainly there is substantial extra activity after 400 



ms in addition to the changes from 150 to 350 ms. 

The field-power curve for S2's RARE response, in Figure 8-4, shows no more 

complexity than his FREQ response. The 40 ms peak is barely visible. A double 

capped peak at  104-124 ms directly matches the FREQ 116 peak. The 192 ms 

peak directly matches the FREQ 184 peak, and ditto for the 280 RARE and 288 

FREQ peaks. The 412 ms FREQ peak is replaced by a small 368 ms peak. 52 is 

not unusual in his low response. Many have been reported in the literature. Most 

researchers admit to subject selection in order to get kugh amplitude responses. 

S3's RARE response is shown in the middle of Figure 6-5. The ubiquitous 40 

ms peak is quite evident, followed by an 88 ms peak that matches the 104 ms 

FREQ peak. The next peak at  156 ms matches the 188 ms FREQ peak in duration, 

though the peak maximum has shifted considerably, perhaps representing a 

difference in exogenous response to the slightly different tone frequencies. The 

rest of the power curve is complicated, as it is for S1, but not as high in power. 

Pre-stimulus noise is not completely averaged out. Nevertheless, a peak at  312, a 

broad peak at  500, and two very late peaks at 740 and 860 ms can be discerned. 

Figure 6-7 compares the RARE response Aeld-power curves for these three 

subjects. All three subjects have two major peaks at  corresponding latencies 

near 100 and 200 ms, as in the FREQ case. Any earlier peaks get lost in the noise, 

since the number of repetitions averaged is only about 20 percent of the 

repetitions for the FREQ case. Only 53 still shows a strong 40 ms peak. In the 

second interval, from 250 to 400 ms, each subject might be said to have two 

peaks, but their relative latencies and power level vary widely among the 

subjects tested here. The third interval has the most widely varying structure. 

S1 has a high, broad peak with three sub-peaks. S2 has a negligible response. S3 

has a low, broad peak with one or two sub-peaks. The fourth interval also shows 



a lot of inter-subject variability, with S1 registering something near the noise 

level, 52 again registering essentially nothing, and 53 registering two very late 

peaks. 

6.3.1.3 D i f f e ~ a c e  Response The Aeld power curves for each subject's DIFF 

response are shown on the bottom of Figures 6-3 through 6-5. A full discussion 

of the validity and interpretation of DIFF potentials will be postponed until the 

next chapter. For the present simply consider the DIFF response to be an aid in 

delineating what has changed between the RARE and FREQ responses. It is 

important to note that the DIFF power curve is not the daerence between the 

RARE and FREQ power curves. As was explained in the previous chapter it is the 

power of the aEP calculated by subtracting the FREQ aEP from the RARE aEP. 

For S1, differencing uncovers a peak at 216 rns in the first interval, with a 

smaller one possibly at 164. In the second interval. a very large power peak 

occurs at 332 ms, possibly preceded by a small one at  268. This large peak is 

used to normalize the FREQ and RARE power curves for this subject. In the third 

intewal the DIFF response is essentially equal to the RARE response, since the 

FREQ response is negligible. Thus we see the same broad peak that we saw in the 

RARE case. The fourth interval seems to contain just noise. 

52 has a very low-power DIFF response, but i t  is above the pre-stimulus 

noise level. The Arst interval has peaks at 72, 144, and 196 ms, though these are 

noisy. Interval two has the largest peaks, at  276 and 368 ms. Ths low DIFF 

response may be attributed to this subject's inattentive state during the course 

of the experiment, though he did meet the (rather simple) behavioral criterion 

of correct counting of the number of rare tones. 

In S3, some pre-stimulus noise is found, but a peak a t  208 ms in the f i s t  

interval rises above it. Differencing uncovers a large power peak in the second 



interval of S3's response. A peak rises at  272 ms followed by the knee of the 

large peak at 320 and 380 ms, respectively. The third interval contains a 

definite peak a t  488 ms, matching ones at 500 ms in the RARE, response and at 

484 in the FREQ response. The fourth interval contains a broad peak which 

covers the whole interval, and two sharp sub-peaks at 744 and 864 ms. These 

last two are obvious in the RARE response but grow in importance when the 

F'REQ response is subtracted. 

Comparing the DIFF response across subjects in Figure 6-8, we see quite a 

bit of variability. Interval one perhaps contains one peak that corresponds 

across subjects, at  (216, 196, 208) ms for (Sl, 52, 53). Interval two is the most 

consistent across subjects with a large (relative within each subject) peak a t  

(332, 368, 380) ms and possibly another sub-peak at (268, 276, 272) ms. In 

interval three S1 has a large response, while 52 and S3 have much smaller ones. 

In the fourth interval S1 has a minimal response, S3 a very large one, and 52 a 

medium one that somewhat parallels 33's. 

6.3.1.4 Summary of a a t i a l  hid Power  Analysis All subjects had two large 

power peaks in the first interval of their FREQ and RARE responses, with a much 

smaller earlier peak appearing most of the time. also. In their DlFF response, 

two subjects had large peaks in the second interval, while S2 had a small peak 

that was nevertheless well above the pre-stimulus noise. Based on analysis of 

the spatial field power curves, I have decided to concentrate subsequent analysis 

on the three peaks in the first interval of the FREQ response (40, 100, and 200 

ms), and the major peak of the second interval of the DIFF response (350 ms). 

These are most consistent across subjects and correspond to the time intervals 

that most other experimenters have concentrated on in the past. 



Though field power curves are a convenient way to summarize an  EP, 

especially when 40 or 48 channels have been recorded, they are a gross over- 

simplification of the data. All spatial and polarity information is lost. 

Equipotential mapping is probably the most useful and least biased way to 

display the information from multiple electrode studies. The amount of 

information contained in a series of them is vast, so only selected maps will be 

presented here. I will present maps for each subject and each condition spaced 

a t  40 ms intervals and compare them over the same four intervals selected for 

the discussion of the power curves. 

6.4. I mequent Tone 

Sl's maps are shown in Figure 6-9. They are normaiized over Sl's entire 

FREQ response to show ten contour levels a t  the maximum field power, which 

occurs at 88 ms. In the 0-250 ms interval the field pattern is negative on the 

back of the head and positive elsewhere at 40 ms, then inverts by 80 ms. It 

inverts again by 200 ms. In the 250-400 ms interval, the pattern again inverts 

and then decays away into the noise. Notice that, while the field power is 

essentially gone by 380 ms, the decaying Aeld pattern is still discernible in the 

400 ms map. 

52 shows a similar response in the first inverval in Figure 6-10. A t  40 ms the 

back of the head is negative and the front positive. A t  120 ms the pattern is 

reversed and reverses again at 200 ms. In the second interval i t  again reverses 

as it did for S1, but decays much more rapidly and is followed by a same- 

polarity pattern a t  400 ms that then fades into the noise. 

The maps for S3 bring to hght difficulties that have been so far hidden in 

the aEPs and power curves. Much spatial noise is obviously present compared to 



the maps for S1 and 52. 1 will suggest four possible origins for this noise, to be 

ciiscussed partly as I go along and also in a special section in the next chapter. 

These are 1) EEG amplifier problems, 2) involuntary muscle artifacts, 3) eye- 

movement artifacts, and 4) intrinsic neural noise including alpha, beta, and 

epileptif orm activity. 

Ignoring the spatial noise for the moment, I will first discuss the major 

topographic features of S3's maps in Figure 8-11. In the 0-250 ms interval, the 

40 ms map is comparable to the other subjects in being negative on the back of 

the head and positive on the front. This inverts at 80 ms and again at 200 ms, 

thus being comparable with the other subjects. In the 250400 ms interval the 

front and right of the head are positive while the top and back are negative. The 

area around the left ear is positive, however. In the 400-650 ms interval this 

same pattern decays and then partly re-appears at 600 ms. In the 650-920 ms 

inverval a stable pattern varies slightly in spatial power with the front negative 

and the back positive. 

Now I will consider the possible sources of spatial noise in S3's equipotential 

maps. The most obvious difference between his and the other subjects' maps is 

the occurrence of lots of little circles around various electrode positions. 

Something that could produce this effect is inequality of the amplifier gains 

among all the channels. The amplifier system was deteriorating at the time this 

third subject was run, and stability of the gains was a known problem. Hence, 

calibration tests were recorded between sets of experimental data. 

Unfortunately, too large a calibration signal was used, or perhaps feedback in 

the amplifier system artificially increased the gains. The calibration runs were 

only partially useable. The gains of some channels were indeed too low, but the 

relative gains of the rest of the channels could not be determined. The partial 

information was used to correct the gains that were too low, but with minimal 



effect on the equipotential maps. 

A second source of noise could be caused by muscle potentials. Muscle 

artifact should show up as spatially constrained, high-gradient activity on the 

equipatential maps. Such activity is indeed seen on many of S3's maps around 

the ears. Note in particular the 80 ms map, The present mapping software does 

not permit side views of the head, which would make observing the potentials 

around the ears easier. Many researchers have noted myogenic contamination 

while recording auditory EPs [Bickford et al. 1961], in particular around 90 ms. 

Another extra-cranial source of spatial noise could be eye-related. Eye and 

facial muscle contractions could give rise to localized high-gradient noise in the 

frontal area. Eyeball rotation could give rise to lower-gradient noise with the 

highest gradients also in the frontal area. Frontal spatial gradients can indeed 

be observed in S3's maps from 80 to 520 ms, and possibly around 800 ms. 

The fourth possible noise source that I consider covers all the inter-cranial 

activity that does not directly relate to the sources of the task-related brain 

activity, but may be affected in some way by the task. This includes but is not 

limited to the alpha, beta, and pathological activity generators. Inspection of 

some of the raw, unfiltered EEG for 53 reveals beta, gamma, and perhaps higher 

frequency components on occipital, frontal, and right frontal areas. This signal 

component is another likely source of the frontal and right-frontal spatial noise 

seen in the maps. Occipital spatial noise can be seen also at  80, 600, and 840 ms, 

for instance. 

These noise sources are all plausible. If they are accounted for, then the 

three subjects can be seen to have similar responses to the FREQ tones during 

the 0-250 ms interval, and different responses at  later times. 



8.4.2 Rure lbne Bsponse Maps 

Figure 6-12 shows selected maps from Sl'a RARE response. In the 0-250 ms 

interval the topography is fairly similar to the FREQ case, except for some 

negativity to the front a t  200 ms, thus driving the positive spatial peak toward 

the top of the head. The 250-400 ms interval is marked by changes in the top 

and frontal areas that eventually lead to a reversal of spatial polarity between 

400 and 440 ms. The 400-850 ms interval has hgh spatial power but the pattern 

remains stable throughout. In the 650-920 ms interval there is still measurable 

power, but the pattern is not well organized. 

S2 shows little change between his FREQ response to his RARE response in 

Figure 6-13, In the first interval he displays the same two polarity inversions 

with similar topographies. The second interval is marked by additional negativity 

across the back of the head, The third and fourth intervals have very little 

power. 

The RARE response maps for S3 are plotted in Figure 6-14. As for the other 

two subjects, very little change can be seen throughout the 0-250 ms interval 

between the FREQ and RARE responses. In  describing the rest of the topography 

I ignore the probable noise around the ears and in the frontal areas. The 250- 

400 rns interval is marked by rapid change, but with a basic pattern of top 

positivity and peripheral negativity. The 400-650 ms interval is stable 

topographically, with the opposite polarity oi the previous interval. The 650-920 

ms interval is also stable, with frontal positivity and occipital negativity. 

Arnong the three subjects, the first analysis interval is topographically quite 

consistent for the RARE response. The second interval is also fairly consistent, 

the field distribution being poeitive on the top of the head and negative around 

the back, side, and front. Upon direct visual comparison, the maps for the third 



interval also look similar across subjects, with the back positive and the front 

negative, though S2's topography is low-power and rotated in the left-right axis. 

Finally, some similarities can even be seen in the last interval, though not as 

much as in the three earlier intervals. Here the top is negative, and positive 

areas appear in the front and/or back depending on the subject and exact time 

frame. 

6.4.3 w e ~ e n c e  Response Maps 

DIFF maps were plotted based on the potentials obtained from subtracting 

the FREQ aEPs from the RARE aEPs on a point by point basis. For the present 

discussion it will be useful to consider the following working hypothesis. Assume 

that the FREQ response is a result of source configuration A, and that the RARE 

response is a result of source configuration A and. B. Physically, we assume that 

linear superposition holds, so subtracting the former from the latter would 

result in a set of aEPs reflecting only source configuration B, or the additional 

neural generators associated with the extra processing involved upon detecting 

the RARE tones. 

Because of the small number of repetitions in the RARE case, S1 has 

substantial noise power near near stimulus onset. Hence I will only consider 

maps for times where the spatial field power rises above this noise. In the first 

interval, the map a t  160 ms in Rgure 6-15 has frontal positivity and occipital 

negativity. This pattern is inverted a t  200 ms and then begins to diminish in 

power and shift a t  240 ms. In the second interval the frontal region remains 

positive and the back negative until 400 ms, when the pattern rotates and 

reverses. The pattern then remains fairly stable throughout the third interval, 

though it is skewed to one side. During the fourth interval the activity is down in 

the noise. 



Though very low in field power, 52'8 DIFT response maps are almost as clean 

a s  Sl's. as shown in Elgure 6-I 6. In the 0-250 ms interval, the topography Arcst 

demonstrates a slow rotation from back to front from 80 to 160 ms, then a 

reversal at 200 ms, ending with the front positive and the back negative. This 

pattern remains fairly constant through the 250-400 ms interval, with the 

positive region slowly moving backwards. The 400-650 ms interval first shows two 

quick reversals around 480 ms and then continues with small front-back and 

back-front rotations keeping the top or back negative. 

Figure 6-17 shows S3's DIFF response maps. During the first interval, the 

maps are down in the noise. The second interval maps all have the top positive, 

with negative areas moving in and out of the periphery. In the third interval the 

positivity rotates around to the back leaving the front negative from 440 

through 560 ms, then inverts a t  600 ms and continues unchanged throughout 

the rest of of the third interval and all through the fourth. 

Comparing the maps of a11 three subjects in the 0-250 ms interval I find 

that S2 differs from the other two subjects, and they are not all that similar. S1 

has a strong parietal-occipitd potential peak at 200 ms that may match an 

occipital peak a t  240 ms for 53. 52, on the other hand, has a strong frontal 

potential peak a t  200 ms. In the 250-400 ms interval all subjects do have a 

similar topography, with the back negative and the top and front positive. The 

400-650 ms interval shows quite a bit of similarity, too, having the top negative 

and the back positive. Even the 650-920 interval shows a fair amount of 

similarity with the front positive and the back negative. 

6.5 Equivalent Soume Hodeling 

Field power curves and equipotential maps represent two extremes in data 

presentation. The first is a condensation to one dimension, the second a full 



display of complex and probably redundant information. Equivalent aource 

localization can be viewed as a procedure for parameterization of multichannel 

data that uses a small set of values to specify the many spatial measurements 

within some error criterion. The previous qualitative description of equipotential 

map topography could be accomplished more succinctly with a time series of 

equivalent sources. I shall instead present a set of sources calculated at times 

previously selected from the field power curves. Since the traditional positive 

and negative terminology is not appropriate, I will adopt the letters 'F'P' for 

component designation, as the components considered here were derived from 

fleld-power curves. 

6.5.1 FP40 FREQ Componsnt 

AU three subjects have an FP40 peak exactly at 40 ms in their FREQ 

response. The left-most column of Figure 6-18 compares the maps for each 

subject. The second column shows the location, orientation, and strength of the 

best-fit single dipole. The third column maps the field resulting from the dipole 

in the second column. The fourth column shows the parameters of the two- 

dipole best-fit solution. The last column maps the field resulting from the two- 

dipole fit. 

Just looking down the first column of experimental data it is obvious that 

all subjects have a similar topology, though Sl's is rotated backwards a bit and 

skewed to one side. This skew may be a result of a differential hearing loss, 

which will be discussed later. The single-dipole fits match the experimental data 

fairly well, based on visual inspection of the maps. The two-dipole fits match the 

data somewhat better, though not dramatically. For S1 the two dipoles are 

bilaterally symmetric and in locations not inconsistent with auditory pathways. 

For 52 the two dipoles do not match expectations for auditory sources, but the 



fit may be bad here because of the small spatial gradients involved. For 53 the 

two dipoles are almost co-linear, indicating that the fi.t ie no better than the 

one-dipole fit. 

A few comments are in order that will apply to the rest of the discussion of 

source localization. First, only the homogeneous head model has been used. If 

the more proper inhomogeneous shell model of the head were used instead, the 

sources would be located more eccentrically, and more physiologically 

reasonable fits might be achieved. Second, only point dipoles are being used as 

source models here. More realistic extended sources would also lead to more 

eccentric source locations. No one would argue that bilateral sources are active 

a t  40 ms, and equivalent source modeling should reflect this. The use of 

extended sources would most likely result in a two-dipole, bilaterally symmetric 

source configuration that would fit the data better than one- or two-dipole point 

sources. 

The simplex algorithm used for optimizing the dipole fits is not guaranteed 

to find the global minimum over the whole parameter space. The final result 

depends somewhat on the initial guess, the convergence criteria, the initial 

parameter displacements, and machine round-off error. More optimal results 

can be obtained by trying multiple guesses, decreasing the convergence 

criterion, increasing the parameter displacements, and using higher precision 

machine arithmetic, but convergence time is increased accordingly. Practically 

speaking, a compromise has to be reached. 

Another tactic that can be tried with multiple sources that are presumed to 

have certain spatial relations is to build those relations into the model. This has 

the effect of reducing the number of model parameters. For instance, if two 

dipoles are known to be bilaterally symmetric, a six-parameter model specifying 



two mirror-image dipoles can be used instead of a full 12-parameter model for 

two unconstrained dipoles. O r  a nine-parameter model can be used, with three 

parameters to specify mirror-image locations and three parameters for each 

dipole's orientation and strength, if they are thought to be unrelated. Nter 

reducing the number of model parameters the search space can be increased 

and a more global minimum with a better fit can possibly be achieved. 

6.5.2 FPl OO FREQ Component 

Figure 6-19 compares the FPlOO peak component across the three subjects. 

The maps of the experimental data in the first column show a similar 

topography for all subjects with frontal negativity and occipital positivity. One 

central dipole Ats the data quite well for each subject. The two-dipole fits reduce 

the residual as they are bound to do. Visually, two dipoles fit the maps better 

than  one for S1 and 52. Bilaterally symmetric sources are found for S1 and 52, 

while S3 has a source in the occipital area that could be an alpha generator. The 

deeper source for 53 matches the left dipole of the other subjects. Note that 

the process of dipole localization acts as a form of spatial low-pass filtering on 

S3's maps, allowing an easier comparison of his results with the other two 

subjects'. 

6.5.3 FP200 FREQ Component 

The FP200 component in Figure 8-20 is an inversion of the FPlOO 

component, which in turn was an inversion of the FP40 component. All three 

subjects again show the same general topdgraphy of frontal negativity and 

occipital negativity. Visually, the FPlOO and FP200 look like a true inversion, the 

topographies being very similar except in polarity. The FP40 and FPlOO do not 

look as similar. 



One dipole fits the data fairly well for all three subjects, though 53 is 

problematic, as usual. Two dipoles fit the topography better for S2 and 53. S1 

has two bilaterally symmetric sources, just as he did for the FP40 and FPlOO 

components. The two-dipole flt for 52 is probably spurious, since the resultant 

dipole would match the one-dipole fit. For S3 one dipole is located very near the 

ear, indicating a myogenic noise source. The other is near the vertex. 

The major component of interest for this thesis has been what the ERP 

literature refers to as the P300 component. Here I have the same component, 

but defined in terms of the field power calculation on the DIFF potential between 

the two experimental conditions. For S1 and S2, this peak is the hghest power 

peak for the duration of the response, and for S3 it is the hrghest in the first 700 

ms. Visually inspecting the equipotential maps for each subject's DIFF response 

it is apparent that this FP350 component is stable for a considerable period. For 

S1 it lasts from 276 to 344 ms, for 52, from 332 to 396 ms, and for 53, from 268 

t o  384 ms, though it is harder to judge this last one. 

Since the DIFF potential has controversial aspects to it, I will precede its 

discussion with a comparison of the FREQ and RARE cases from which it is 

derived. Figure 6-21 shows the results of source localization on the FREQ FP350 

for each subject. Topographies are different for each subject, as is the spatial 

power level. One-dipole fits are fairly good, with two dipoles better for S2 and 53. 

The two-dipole fit for S1 is probably spurious. One dipole for S3 is very near the 

right eye, indicating EOG artif act. 

The dipole localizations for the RARE FP350 are shown in Figure 8-22. 

Unlike the FREQ response a t  these time frames, the RARE response is similar 

across subjects, being positive on top and negative on the back and front. This 



topography has been found by most other researchers for the P300 [Simson et 

al. 1977a, Vaughan and Ritter 1970]. One-dipole fits are fairly good. Two-dipole 

flts are all better looking, but are physiologically unreasonable. 

Figure 6-23 shows the DIF'F FP350 for each subject. The topography is 

essentially the same as for the RARE case, with more spatial power and noise for 

S3. As for the RARE case, the one-dipole fits are reasonable, the two-dipole fits 

are all better but unrealistic. What has been accomplished, then, by subtracting 

the FREQ response? For one thing, the power of the odd-ball response has been 

increased. This can be seen for S1 and S3 in the power curves, and for all three 

subjects by the length of the single-dipole fits in the second column of Figures 6- 

22 and 6-23. Numerically, the single-dipole amplitudes increase by factors of 

1.11 for 52, 1.45 for S3, and 1.89 her 51. 

By subtracting I have shown that the RARE and DIFF topographies are quite 

similar to each other both within and between subjects. The FREQ topographies 

are so for neither. These results are consistent with the hypothesis that in the 

FREQ case source configuration A is active, while in the RARE case source 

configuration A and B are both active. Configuration A is different for each of 

the subjects here. Configuration B is similar for these three subjects and of 

much greater power than A. Configuration A masks B partially in the RARE case. 

This masking can be removed by subtracting the FREQ potential from the RARE 

potential and analyzing the difference. Configuration B is associated with the 

odd-ball, surprise response to the RARE stimuli. Configuration A is associated 

with the presumably different processing each subject uses in rejecting the FREQ 

stimuli. Later components may reflect subject-specific processing of the RARE 

stimulus, i.e., mental counting. 



Rgure 6-1. Selected raw EEG data for three subjects. Numbers on each plot 
refer to electrode placements diagrammed in Figure 5-2. 
Horizontal tiks = 51 ms, verticd tiks = 10 fiV. 



Flgme 62. Selected average evoked potentials for the FREQ condition. 
Numbers on each plot refer to electrode placements diagrammed 
in Figure 5-2. Horizontal tiks = 51 ms, vertical tiks = 1.0 pV. The 
number of stimulus repetitions averaged is indicated as N. 



-6-3. Spatial field power curves for S1 for three experimental 
conditions. Horizontal tlks = 51 ms, vertical tiks = 10 percent of 
maximum field power for the DXFF response. The number of 
stimulus repetitions averaged is indicated as N. 
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Rgure &4. Spatiat fleld power curves for 52 for three experimental 
conditions. Horizontal tiks = 51 ms, vertical tiks = 10 percent of 
maximum field power for the RARE response. The number of 
stimulus repetitions averaged is indicated as N. 



RguFeM. SpatiaI field power curves for 53 for three experimental 
conditions. Horizontal tiks = 51 ms, vertical tiks = 10 percent of 
maximum field power for the DIFT response. The number of 
stimulus repetitions averaged is indicated as N. 
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Kgure6-8. Spatial field power curves for three subjects for the FREQ 
condition. Horizontal tiks = 51 ms, vertical tiks = 10 percent of 
maximum field power for each curve. The number of stimdus 
repetitions everaged is indicated as N. 



FSguret3-7. Spatial field power curves for three subjects for the RARE 
condition. Horizontal tiks = 51 ms, vertical tiks = 10 percent of 
maximum field power for each curve. The number of stimulus 
repetitions averaged is indicated as N. 



RgareM. Spatial field power curves for three subjects for the DIFF 
condition. Horizontal tiks = 51 ms, vertical trks = 10 percent of 
maximum fieId power for each curve. The number of stimulus 
repetitions averaged is indicated as N. 
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F'igure 6-9. Equipotential maps for S1 for the FREQ condition. Top and back 
views of head spaced every 40 ms with time frames as indicated. 
Each map is normalized to produce ten contour lines for the 
maximum field power of this subject under this condition. Shaded 
areas are negative. Times are in ms. N = 197. 



F'igure 6-1O.Equipotential maps for 52 for the FREQ condition. For 
explanation see Figure 8-9. N = 524. 



Rgure8-11.Equipotential maps for S3 for the FREQ condition. For 
explanation see Figure 6-9. N = 546. 



Rgure6-12.Equipotential maps for S1 for the RARE condition. For 
explanation see Figure 8-9. N = 45. 



Kgure 6-13.Equipotential maps tor S2 for the RARE condition. For 
explanation see Figure 6-9. N = 144. 



Rgure6-14.Equipotential maps for S3 for the RARE condition. For 
explanation see Figure 6-9. N = 160. 



6-1S.Equipotential maps for S1 for the DIFF condition. For explanation 
see Figure 6-9. N = 45. 



Rgure 6-1S.Equipotential maps for 52 for the DIFF condition. For explanation 
see Figure 6-9. N = 144. 



Agure $-1'F.Equipotential maps for S3 for the DIFF condition. For explanation 
see Figure 6-9. N = 180. 
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Rgune 6-18.Comparisons of experimental data and dipole model fits for three 
subjects for the FP40 peak of the FREQ condition. Each map is 
normalized to produce ten contour Lines for the maximum field 
power of each subject under this condition. The Arst column is 
the experimental data map. The second column shows the 
parameters of the best fitting single equivalent dipole. The third 
column is the map that results from the single dipole f i t .  The 
fourth column shows the parameters of the best fitting two-dipole 
fit. The fifth column is the map that results from the two-dipole 
fit. Each dipole is represented by an arrow with its base at  the 
center of the dipole and pointing in the positive direction. The 
length of the arrow represents the amplitude of the dipole 
moment. Dipole lengths are normalized for each subject to fit 
reasonably on the page. 
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Rgare f3-19.Comparisons of experimental data and dipole model fits for three 
subjects for the WlOO peak of the FREQ conation. For 
explanation see Figure 6-18. Each subject's peak time is indicated 
in ms. 
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Rgure M.Comparisons of experimental data and dipole model fits for three 
subjects for the IT200 peak of the FREQ condition. For 
explanation see Figure 6-10. Each subject's peak time is indicated 
in ms. 



SUB 1 

3 3  
FREQ 

F&me 6-21.Comparisons of experimental data and dipoIe model fits for three 
subjects for the FP350 peak of the FREQ condition. For 
explanation see Figure 6-10. Each subject's peak time is indicated 
in ms. 
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Figure g-22.Comparisons of experimental data and dipole model fits for three 
subjects for the FP350 peak of the RARE condition. For 
explanation see Figure 6-1B. Each subject's peak time is indicated 
in ms. 
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Kgure 6-23.Comparisons of experimental data and dipole model fits for three 
subjects for the FP350 peak of the DIFF condition. For 
explanation see Figure 6-18. Each subject's peak time is indicated 
in ms. 



In this chapter 'I will compare my results to those of other researchers and 

point out the similarities and dflerences. I will discuss the results of the source 

localizations in relation to brain physiology and anatomy. I will suggest 

improvements in procedure and further experimental work. lastly, f will discuss 

the usefulness of the techniques presented in this thesis to cognitive 

psychophysiology. 

7.1 bEP Comparisons 

To compare the aEPs I have recorded to those of others, many reports have 

to be sifted. P300-like responses are usually recorded in response to one of 

three different tasks. The first is a guessing task such as used by Sutton et al. 

[l$$5] and recently by Karis et al. [1953]. The second is a signal detection task 

such as used by Debecker and Desmedt [I9661 and Begleiter et al. [1983]. The 

third and most popular is the odd-ball discrimination task used here and by 

many other workers from Ritter andvaughan [1969] to Wickens et al. [1$83]. 

Those who have their subjects perform the odd-ball task use s variety of 

stimulus modalities, stimulus attributes, recording sites, amplifier bandpetss 

and filtering, referencing methods, averaging, and component definitions. The 

reader is referred to the following for experiments most similar to the ones 

described here: Ritter et al. [1972], Simson et al. [1977a], Goodin et al. [1978], 

and F'itzgerald and Picton [1981]. The work of Goodin et al., in particular, was 

chosen as a model for this experiment. They used tones of 1000 and 20DO Hz, 

with a probability ratio of .15/.85, and calculated the DIFF potential. They also 

ran a control experiment in which the subject ignored all the tones and read a 

book. Their DIFF potential was calculated from the RARE tone responses when 

attending to the tones and when ignoring them. However, examination of their 



waveforms indicates that the RARE response minus the FREQ response would 

have given the same DIFF potential. 

EIectrode 3 of S1 is the closest to the vertex as deffned in the 10-20 system 

of electrode placement [Jasper 19571. The aEP recorded from it closely 

resembles the DIFF waveform recorded at the vertex in Goodin's Figure 1, with a 

P160, an N210, and a P310 corresponding to their P165, N200, and P300. Of 

course, Sl's data has been calculated with respect to an average reference, but 

the zero-potential line runs near the mastoids in most of his responses; hence 

his data will correspond with the mastoid reference used by Goodin. S2's 

electrode 39 is near his vertex, but his data cannot be said to resemble that in 

Goodin's Figure 1. However, 52 does fall in the range of the 15 subjects 

presented in Goodin's Q u r e  2. The data for S3 fit that of Goodin's typical 

subject as well as S1 does, with his near-vertex electrodes 35 and 36 where a 

P150, N200, and P300 are evident. 

7 2  Subject Comparisons and Controls 

The three subjects for these experiments show a lot of similarities h their 

field potential distributions at the four power-peak times selected. In terms of 

source localization they do not compare as closely. Part of the reason for this is 

the putative noise associated with 33's data. Aside from this, S1 was presented 

with louder tones than the other two subjects. This could have led to stronger 

auditory cortical sources for Sl .  Stronger sources would most certainly result in 

more easily separated peak distributions on the two sides of the head, based on 

a greater signal/noise. This in turn would make two-dipole source localizations 

more reliable. In fact, S1 is the only subject who shows reasonable bilateral 

sources for all three of the exogenous auditory aEP components at 40, 100, and 

200 ms. 



It has been well established in the ERP literature that an easy 

discrimination will give a higher amplitude P900 than a difficult discrimination, 

Having louder tones made the odd-ball task easier for S1. Accordingly, S1 has 

the highest relative DIFF FP350 of the three subjects. It is also possible that 

because of the lower stimulus intensities, the odd-ball task became more of a 

signal detection task for 52 and S3. In signal detection tasks all stimuli elicit a 

P3OO-type response. If this were the case it could partially explain the smaller 

FP350 DIFF responses of 52 and S3. 

Though 52 and 53 were run under very similar conditions, they show very 

dissimilar fleld-power curves, while all three subjects show topographical 

differences for various times between the power peaks selected for study here. 

Major differences between the subjects occurred in the latter half of the DIFF 

responses. S1 had a broad peak in the 400-650 ms interval, 52 had virtually 

nothing, and S3 had a broad peak in the fhal  650-920 ms interval. One might 

speculate that the broad peak could be related to the mental counting of the 

odd-ball stimuli. In S1 it occurs earlier because the tone is louder and easier to 

detect and recognize. But examination of the equipotential maps shows that the 

topographies are quite different for these two subjects, indicating different 

source configurations. 

Certain controls discussed in Chapter 4 were not accomplished. Tone 

reversal was done only for 52, and these results have been added together here. 

The condition in which the tones were ignored was not run, either. One or both 

of these should be done in further studies of this type to control the exogenous 

responses and the attentional state of the subject. Recordings of purely 

exogenous responses would need to be done to ascertain better what parts of 

the FREQ response were endogenous. Eye movement and muscle contractions 

should be studied separately to identify their probable sources. 



73 Uae of Power CPffes and Spatial ]&ateof€hange 

The use of spatial fleld power curves to define components is a necessary 

evil. I t  allows the summary and comparison of a large number of channels 

across subjects. It is a measure of the strength and complexity of a fleld pattern 

but is not very well correlated with the latter. All orientation information about 

the fleld pattern is lost. Many dBerent source configurations can produce the 

same field power curve, so it also suffers from non-uniqueness. Thus it should 

only be used with the greatest caution and only as a flrst step in analysis. 

Field patterns can rotate and change complexity quite rapidly, yet not show 

any change in their spatial power. I t  can be argued that a lot of the information 

content in topographical data is contained in the time periods of rapid change. 

To quantify periods of such change another statistic was reported by Darcey et 

al. [1980b] as the sum-of-squares of the time derivative of all the voltages. 

The spatial rate-of-change still suffers from the same problems of the field 

power in that it loses all orientation and most complexity information, and is 

non-unique. It is useful for just what it does: provide a summary of the time 

course of the change in field power over all the electrodes. Many other 

simplifications of the vast amount of information contained in multi-channel 

recordings could be devised, including specific measures of complexity, 

orientation, etc., but anything more complex than these two would probably be 

a waste of time. W i t h  just a little more effort a physically realistic summary of 

the data can be made, namely equivalent source modeling. 

7.4 Differena Calculations 

There is no doubt that calculating a DIFF waveform is useful in delineating 

changes that would otherwise be obscure. The experimental procedures of 

differential amplification and average referencing are used for this reason. They 



can be safely applied based on sound physical principles of linearity and 

superposition applied over the spatial dimension. The DIFF potentials used here, 

though, are calculated across the dimension of experimental manipulation, and 

are thus valid only if linearity and superposition hold over that dimension. 

Certainly they hold in biophysical terms since the neurophysiology and 

neuroanatomy should be constant over the time frame of most experiments, 

assuming as we do that Poisson's equation holds. The main question is if the 

mental processes that change with cognitive activity or brain state are linear 

and obey some form of superposition. 

It is one thing to use a DIF'F potential as an aid in describing change, but 

another thing entirely to base quantitative analysis on it. I would say that a DIFF 

potential is always valid, and that validity criteria should rather be applied to 

any further analysis based on the DIFF potential. HOW can we determine the 

validity of a DIFF analysis or, alternatively, how can we determine if the changes 

in response to experimental manipulation obey h e a r  superposition? In some 

cases it may be possible to elicit the same phenomenon without using a DIFF 

potential. An emitted P300 occurs following an omitted stimulus in a repetitive 

train. This type of P300 is very similar to the P300 response defined by 

subtraction [Simson et al. 1976, Ruchkin and Sutton 1978, and Ford and 

Hillyard 19811, including the presence of an N200 and sometimes the PI65 

described by Goodin et al. [19?8, 19831. 

In general, though, analysis of the DIFF potential cannot be used to prove 

anything about the underlying causes of EP changes, just as ESM cannot be used 

to prove anything absolutely about the sources of scalp electromagnetic activity. 

But it can be used quite profitably to formulate and test hypotheses about the 

underlying causes, especially in conjunction with ESM. A case in point is the 

FP350 component considered in this thesis. By calculating the DIFF potential I 



uncovered a large power peak a t  around 350 ms (for S1 and S3 anyway). I then 

make the hypothesis that this fleld power arises from a new mental process or 

source configuration that follows the RARE response but is partially obscured by 

activity that occurs in both the FREQ and RARE responses. ESM quantitatively 

embodies this hypothesis, and the results of source localization can be checked 

for self-consistency and agreement with the original hypothesis. 

7.5 Topography Cornperhmna 

True topographical studies have been few and far between in the past. 

Vaughan and Ritter [1970] used 12 electrodes in two linear arrays to record 

auditory aEPs. Based on this rather sparse data they hand-drew isopotential 

contours on a cartoon of the side of the head from which they recorded, The 

two eontour maps thus generated for their M (P200) and MI (P300) components 

match my maps for the FP200 and FP350 components. 

Goff [1978] recorded auditory aEPs using about 20 electrodes placed 

according to the 10-20 system and schematized the resultant topography. He 

used a higher bandpass and enough repetitions to delineate many middle (10- 

100 ms) components, so the FP40 component described here is not directly 

comparable. Goff plots both a PI15 and an N115 component that might 

correspond to my FP100, but it is hard to compare because he plots positive and 

negative voltages on separate heads. His last figure, taken from Hillyard et al. 

[19?6], shows the topography of a P200 and two types of P300. These conform to 

my FPZOO and FP350 quite well. 

More recently, Wolpaw and Wood [l902] recorded from 20 electrodes on one 

side of the head and drew machine-calculated isopotential contours based on 

auditory aEPs. The topography of the 100 ms map in their Figure 6 indicates 

more detail than can be seen in my maps on the side of the head, though the 



topography on the top of the head is similar to that which I found. In a 

companion paper, Wood and Wolpaw [1982] present a variety of maps that cover 

the range from 20 to 250 ms. My FP40 map matches their 31 and 56 ms maps. 

My FPlOO map matches their 88 ms map. My FP200 map matches their 170 ms 

map. 

Simson et al. [l976, 19??a] specifically sought to discover the scalp 

topographies of two types of P300. In the first paper they report the results of a 

missing stimulus task which produces an emitted P300 that they call the MSP 

for missing stimulus potential. I t  actually has both an N200 and a P300 in it. For 

both auditory and visual stimuli they fmd that the P300 is similar, with the 

vertex positive. My auditory FP350 maps match their P300 maps. They claim 

that the N200 part of the MSP is different for auditory and visual tasks. I can 

only compare my auditory DIFF FP20O to their auditory MSP N200. Their grand 

average subject shows a frontal-vertex positive spatial peak for the N200 that 

shifts backwards to an occipital-vertex position. For S1, the DIFF FP212 is 

occipital-vertex and shifts forward to a frontal-vertex position at FP332. Thus 

the activity for S1 shifts in the opposite direction from Simson's average 

subject. S2, however, follows Simson's subjects by shifting from a frontal FP196 

to a top FP36B. 53 behaves as does 52 within the Limits of his noise. Only actual 

source localization can resolve the anomalous behavior of Sl's spatial peak 

shift. Maps for the seven individual subjects in Simson's study do show quite a 

bit of variability in the rostral-caudal location of spatial peaks 

In Simson et al.'s other paper [19?7b] they compare the DIFF potentials 

from auditory and visual odd-ball tasks to the MSP of their first paper. They 

find that the MSP N200 is very similar in topography to the DIFF N200, and that 

the MSP P300 is very similar in topography to the DIFF P300. This experiment is 

the closest in task and analysis to this thesis that I can And in the literature. 



Sfmson's auditory NlOO and P200 also match the topography of my FPlOO and 

FP200. 

7.6 ESP Besalb Compariam 

7.6.1 Ac ha1 ESM 

Various authors have speculated on the neural generators of exogenous 

auditory and endogenous ERP components, but this thesis represents the first 

reported attempt to apply numerical optimization methods to source 

localizations of the endogenous components. Most previous attempts involved 

EEG, visual EPs, or somatosensory EPs. Wood [1982] reported single-dipole flts to 

auditory aEPs in the 90-170 ms range. The dipole fits fn his Figure 6 compare 

favorably with my source localizations in the second column of my Figure 6-1 1 

and 6-12. His dipole fits f ~ r  times between 100 and 200 ms do not agree with 

mine. This is most likely because Wood recorded only on one side of the head 

while I used a montage that covered the whole upper half of the head. The 

necessity of using as wide a coverage as possible was first pointed out by 

Schneider [I 9721. 

7.6.2 ESM Based 7bpog.raphic Arguments 

For many years it was assumed that the auditory vertex potentials, so 

named because of their vertex maxima, originated in parietal association 

cortex, as did the vertex potentials in the visual and somatosensory modalities. 

This was a naive assumption, but fit the idea that all modalities projected to the 

parietal area. Vaughan and Ritter [1970] showed that their auditory topographic 

results were consistent with bilateral dipole sources in primary auditory cortex 

for the P200 component. The resulting field pattern appeared like a single 

midline source because of the way the bilateral sources summed. Similarly, they 

showed that the P300 distribution couId be explained by bilateral extended 



cortical surface layers in parieto-temporal association area. They based these 

results on 14 electrodes in two linear arrays on one side of the head. They did 

not use any type of optimization method to find the best fit to  their data. 

In later work [Simson et al. 1976, 1977a1 they stuck to the same basic 

interpretation, suggesting that the NlOO originates in a "small supratemporal 

generator" while the P200 is "generated on the lateral surface of the superior 

temporal gyrus." These interpretations are supported by intracranial work and 

comparisons to animal models. The emitted or the DIFF N200, they suggest, 

corresponds to the joint activity of sources in auditory cortex in the 

supratemporal plane and auditory association cortex on the lateral surface of 

the superior temporal gyrus. They suggest that the emitted or ditllerence P300 

arises from the inferior parietal lobule. These suggestions are a14 evidently based 

on visually inspecting the topographic aEP results with no forward or inverse 

dipole calculations whatsoever. In a recent review [Vaughan 19021 a similar 

interpretation is reiterated. 

Wood and Wolpaw [1982] have done the most extensive topographic studies 

to date on the auditory aEP, covering the interval from 20 to 250 ms. In their 

paper they rightly point out the limitations of traditional aEP and spatial peak 

component definitions and note their lack of correlation with scalp topography. 

They summarize the auditory aEP in terms of stability and change in the 

topography over eight sub-intervals. Comparing their verbal descriptions of 

topology in each of these intervals to S1, I find substantial agreement between 

my results and theirs. Any differences could probably be explained by the fact 

that Wood and Wolpaw recorded on only one side of the head. 

Wood and Wolpaw also quickly review equivalent source modeling and 

correctly make the following observation about the technique: "Hypothesized 



sources can be rejected if they conffict with empirical scalp distributions, but 

competing hypotheses that account equally well for empirical distributions must 

be evaluated using other data (e.g., intracranial recordings, lesion effects, 

animal studies, etc.)." They go on to say that the topology in the 20-60 ms region 

is consistent with bilateral auditory cortical generators. My FP40 source 

localizations support this contention for S1, at  least. As mentioned earlier, more 

realistic head and dipole models might also support it for 52 and S3. 

My data are also consistent with bilateral sources in auditory cortex for S1 

and 52 a t  100 ms and S1 a t  200 ms. As with the 40 ms component, more realistic 

sources would probably result from using better modeling techniques. With 

accurate anatomical data, as might be obtained from CT scans or ultrasound, it 

is conceivable that ESM techniques could be used to differentiate relative 

contributions of closely spaced cortical generators, such as those of 

primary/secondary auditory cortex. 

To summarize this section on the neural generators of the auditory and 

odd-ball responses, it is clear that the scalp distributions of potential that I 

measured on my three subjects match those of previous experimenters, within 

the limits of variability of referencing, electrode placements, and stimulus 

parameters. The source locations that were calculated here are in accord with 

previous qualitative and quantitative source-location estimates. My addition to 

this literature has been to present the fullest distributions so far of auditory 

and odd-ball responses, and to attempt one- and two-dipole model flts to a large 

portion of this data. My results do not as yet conclusively decide between single 

and multiple sources for these phenomena. 

7.6.3 htrac~anial Comparisons 

Proper intracranial recording done over a large region of the brain can 



establish the true location of neural and giial electrical activity. Most everyone 

agrees on this point, but not on the proper way to interpret intracranial 

recordings. Unlike what many seem to believe, recording inside the head is 

almost identical to recording on the surface. Volume conduction still holds 

throughout the head and referencing problems still arise. Many hang their 

highest hopes on locating the polarity reversal that indicates passing from one 

side of a dipole sheet to the other. But if the reference is improperly placed, 

both ends of a dipole can appear of the same polarity. This is evidently what 

happens when Goff et al. [I9001 performs his intracranial probes around 

auditory cortex and detects no reversal. On this basis he later states that 

intracranial recording data does not select between the old associational cortex 

origin of vertex potentials and the current theories of Vaughan and Ritter or 

Wood and Wolpaw, involving bilateral sources in auditory cortex. 

Polarity reversals can be properly detected if the reference is allowed to 

travel close to the active electrode, thus measuring the local potential gradients 

near the dipole. Recordings done in this manner or data re-calculated 

differentially in this manner would definitely help decide between confiicting 

hypotheses of the origin of the aEPs discussed here. Theoretically, measuring 

the second spatial derivative is the best play. One of Maxwell's equations tells us 

this should be zero everywhere except at the source. 

A definitive intracranial study of P300 in epileptic patients was reported by 

Wood et al. [1980]. Scalp and intracranial recordings were made simultaneously 

during auditory and somatosensory odd-ball tasks. P300 activity was observed 

on the scalp and in depth for most of the subjects. With a linked-ear reference, 

maximum PSOO amplitude occurred deep in the brain. Simple polarity inversion 

was not found, but then the referencing problem was not dealt with properly. 

The depth-P300 was independent of stimulus modality as was the scalp-P300. 



Overall, these results cast doubt on a purely cortical origin of P300-like activity. 

Lesion studies can provide another independent source of information 

about the neural generators of aEPs. The major problem encountered is the 

exact specification of the ablated or damaged area. A recent study by Knight et 

al. [19BO] used CT scans to delineate brain damaged areas. It was found that 

frontal cortex lesions had no effect on aEP parameters, except perhaps the 

removal of a small inhibitory gating. Temporal-parietal lesions had a marked 

effect on the NlOO component but no effect on the P200 component. This result 

supports the consensus of hypotheses for the origin of the auditory aEP. 

7.6.5 Animal Models 

Animal models have been instrumental in suggesting hypotheses for the 

origin of analogous human EPs, notably in the auditory modality [Arrezo et al. 

19751. Animal models for some of the endogenous ERP components have been 

discovered in recent years. Pirch [1980ab] records CNV and slow-wave 

components in rats. Endogenous responses have also been reported in the eat 

[Paller et al. 19821 and monkey [Neville and Foote 19811. Arthur and Starr 

[1984] reported a P300-like response during an odd-ball task, performed by two 

monkeys, that has features in common with the human P300. Further work with 

this animal model may bring to light useful information on the neural 

generators of this and other endogenous components. 

Two reports of magnetic measurements of evoked Aelds are relevant to the 

work presented here. Romani et d. [1882] were able to demonstrate that certain 

steady-state auditory responses could be modeled by a current dipole in 

auhtory cortex. Their experiment was performed in the frequency domain, so 



latency comparisons are not possible. Using a simplified localization method 

they estimated the depth of the associated dipole based on the location of the 

two field extrema found over the surface of the head. They discovered that the 

estimated magnetic source locations varied in depth with the frequency of the 

tone, thus indicating the existence of a tonotopic mapping in human auditory 

cortex. 

EP evidence for a tonotopic mapping in humans has been lacking, 

presumably because of the summation effects of the bilateral sources in 

auditory cortex. With proper two-dipole ESM, such a mapping could be found 

using EP techniques to collaborate the EF findings. The bilateral magnetic 

sources do seem to have a tighter fleld pattern, both theoretically and 

empirically [Cohen and Cuffin f 9831, and thus do not summate to a single broad 

vertex field analogous to the vertex potential. 

The magnetic field associated with the visual odd-ball task has recently 

been reported by Okada et al. [1983]. They estimate a current source deep in the 

brain to be the cause of their M300, which they place in the hippocampus or 

amygdala. The dipole representing their M300 is directed upward toward the 

vertex, just as is the source I calculate for the FP350 component. 

7.6.7 cALmmary of Neural Origins 

The prevailing consensus for the source of exogenous evoked potentials in 

the time range considered here is auditory cortex. Topographic examination and 

Limited dipole ESM support this consensus, including the one- and two-dipole 

source localizations done for this thesis. Lesion studies, intracranial recordings, 

primate studies, and magnetic field measurements also support this 

interpretation. Properly interpreted intracranial studies and further detailed 

ESM will undoubtedly refbe our knowledge of these sources. 



The notion that auditory vertex potentials actually originate at  the vertex 

has been pretty much discounted. Now the notion that the P300 originates in 

associational cortex is being brought into question. lntracranial and magnetic 

studies have indicated the probable involvement of deep sources, perhaps in 

addition to  cortical sources, in the electrogenesis of the odd-ball P300 and its 

relatives. The ESM that was done here does not yet help differentiate between 

different hypotheses of P300 origin, but then not very many hypotheses have 

been tested. With more data collection, some further controls, estimates of 

variance, and realistic models, ESM will definitely be able to make a contribution 

toward understanding these types of brain responses. 

7.7 ESP Improvements 

Many improvements are possible for ESM. Most have already been used or 

suggested previously by the small group of people most involved with ESM. In 

the following I will discuss what are reasonable improvements to make for the 

next stage of application to  the type of experiments performed in this thesis. 

7.7.1 Better Head Models 

A necessary improvement for the head model is the use of multiple shells to 

simulate the scalp, skull, and brain coverings. Corrections can be applied to the 

homogeneous source localizations reported here to map them to their proper 

locations in an inhomogeneous model, but it is still better to actually perform 

the inhomogeneous source calculations if the computing resources are 

available. A further improvement would involve the actual estimation of head 

parameters such as electrical conductivity and scalp and skull thickness for 

individual subjects for inclusion in their model Ary et al. [lBBlc]. 

A problem encountered in the present experiments involves the mapping 

between electrodes on the plexiglas helmet and the spherical computer model. 



The helmets were originally laid out for a good A t  of a sphere to the back of the 

head for use in visual experiments. This produces a skewed mapping for frontal 

electrode positions from subject head to model sphere. In terms of source 

localization, calculated dipoles that depend strongly on data gathered from 

frontal regions should be placed more eccentrically and further back on the 

head. To correct this problem properly I would suggest measuring all the 

electrode positions on the helmets in an appropriate coordinate system and 

then fitting a sphere to these locations in a least-squares sense. Then I would 

find the radial projection of each electrode onto this sphere and use the 

resulting location as the coordinates for that electrode. This is probably the best 

that can be done without switching to a non-spherical head model. 

Better source models have been suggested and used by Darcey [1970] and 

Sidman et aI. [1978]. Extended dipole sheets in the form of pieces of cortex, 

namely spherical caps and annular sectors, may give more realistic results in 

some cases. Given some knowledge of an individual's brain anatomy, 

configurations of dipoles can be designed to fit any arbitrary geometry that 

would be encountered. Non-dipolar source models are also possible. 

7.7.3 Accounting f o r  Variance 

No analysis of the variance of this data was attempted, mainly because of 

the lack of a sufAcient sample base. When enough data are collected to be able 

to judge the variance accurately, the errors in dipole fitting can be estimated 

and measures of the accuracy and reliability of the fits made. Obviously, the 

number of model parameters can be increased up to the number of 

measurement sites and the data fitted exactly. But given a finite variance in the 

data, many fewer parameters are usually sufficient t o  account for it. Increasing 



the number of parameters should properly be stopped as soon as all of the 

variance in the data has been accounted for. 

7.7.4 Wng ESMto Subtract Noise 

For various reasons already discussed, S3's data was contaminated with 

noise that was most obvious in the spatial domain. Some results of source 

localizations were presented in the last chapter indicating that some of the 

noise could be ascribed to electromyographic activity near the ears, to eye- 

movements, and to putative occipital alpha generators. Figure 7-1 shows the 

results of three-dipole fits to some of S3's data. For the FP104 peak, one dipole 

corresponds to a possible EMG source near the ear, one to possible EOG activity 

near the eyes, and one to possible auditory cortical activity. For the Wl88 

peak, a midbrain source and two central sources are indicated, though the 

central ones appear spurious. For the FP376 peak an ear source is again 

indicated, as well as a midbrain one. Four- and five-dipole fits may very well be 

able to account for ear, eye, and occipital noise sources, with two left over for 

the bilateral auditory cortex. To confirm any of these results would necessitate 

proper experimental controls where each noise source was purposefully 

activated, both singly and in combination. And it goes without saying that the 

amplifier gains would have to be properly stabilized and calibrated. 

Some of the earliest optimal sources calculated were for ongoing EEG 

[Schneider 19721. With more work ESM could become a useful tool for the study 

of biological noise sources in aEPs and for modeling single trial EPs. In the 

latter case, the sources of the ongoing activity could be modeled and subtracted 

out, leaving something close to the true single-trial evoked potential. 



While the results of ESM applied to the auditory and odd-ball responses 

described here do not yet provide definitive information to choose between 

competing hypotheses of the origins of these responses, a little further study 

should provide that information. A next step would be to study various aspects 

of the odd-ball response in depth. The effects of all the variables discussed in 

Chapter 4 under controls need to be studied with ESM, including manipulations 

of probability, intensity, pitch, detectability, discriminability, and modality. The 

odd-ball P300 should be compared to the signal-detection P300 and the guessing 

P300. Other endogenous responses could then be studied with ESM, most 

especially the attention-related N100, since with source characterization there 

is some hope ~f separating it from the s t r ~ n g  exogenous N100. 
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Figure! 7-1. Comparisons of experimental data and dipole model fits for 53 for 
selected peaks. For explanation see Figure 6-16. 
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APPENDTX A: Raw EEG 

S1 Raw EEG 

horizontal scale: 51 ms/div, vertical scale: 10 uV/div 



S2 Raw EEG 

horizontal scale: 51 msf div, vertical scale: 10 uV/div 



S3 Raw EEG 

horizontal scale: 51 ms /div, vertical scale: 10 uV/div 



S1 FREQ aFPs 

horizontal scale: 51 ms/div, vertical scale: 1.0 uV/div 



52 FREQ aEPs 

horizontal scale: 5 1 rns/div, vertical scale: 1.0 uV/div 



S3 FREQ aEPs 

horizontal scaIe: 51 ms/div, vertical scale: 1.0 uV/div 



S1 RARE REPS 

horizontal scale: 51 ms/div, vertical scale: 1.0 uV/diiv 



S2 RARE aEPs 

horizontal scale: 5 1 ms/div, vertical scale: 2.0 uV/div 



S3 RARE sEPs 

horizontal scale: 51 ms/div, vertical scale: 1.0 uV/div 



S 1 DIFF aEPs 

horizontal scale: 51 ms/div, vertical scale: 1.0 uV/div 



S2 DIFF aEPs 

horizontal scale: 51 ms/div, vertical scale: 2.0 uV/div 



53 DIFF aEPs 

horizontal scale: 51 ms/div, vertical scale: 1.0 uV/div 


