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Abstract

The complexity of integrated circuits requires a hierarchical design
methodology that allows the user to divide the problem into pieces, design
each piece independently, and assemble the pieces into the complete
system. The design hierarchy brings out comnposition problems, problems
that are a property of the assembly as a whole, not of one single instance in

the hierarchy.

Recent research has produced tools that automate part of the composition
task — the logical connection of the pieces. However, these tools do not
ensure that signals driven over these connections will be driven sufficiently
to give reasonable cycle speed of the resulting chips. It is easily possible to
specify an assembly in which a small-sized gate is required‘ to drive an
encrmous load. Parasitic capacitance of the wiring made automatically by
the logical connection tool cah be the dominant source of delay, so assernbly

tools can actually worsen the performance of the circuit and hide this fact

from the designer.

When retjuired to make large circuits, automated layout tools such as PLA
generators can blindly make layouts that give abysmally poor performance.
Here again, the delay is in a part of circuit that the designer did not specify,
so it is hidden. Finding and correcting these problems is a difficult and
time-consuming task in integrated circuit design, and one that consumes

vastly more people's time and computer time than the simple assembly of

the chip.
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The task of guaranteeing that circuits meet performance specifications has
been left mainly to the designer. Computer aided design has provided
analysis tools, tools that tell the designer the performance statistics of the
current design. It is then the designer's burden to interpret the

performance statistics and use them as guides to make changes in the

circuit.

This thesis views performance optimization as an electrical composition task.
Poor performance as a result of mismatched loads on devices is a problem of
composition and should be corrected by the composition tool. Such a tool is
presented in this thesis ~- a program that automatically sizes transistorsin a
symbolic description of a chip to match the load the transistors are driving.

The results are encouraging: they show that delays can be cut by a factor of

two in many current designs.
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CHAPTER 1

Introduction

The complexity of integrated circuits forces a design methodology that
encourages division of the problem into smaller pieces and subsequent
assembly, or composition of the pieces into systems. This "divide and
conquer’" methodology is the basis of the design hierarchy, a hierarchy made
up of instances of cells in which parent nodes in the tree contain the

instances of the child nodes.

This division is made to facilitate the layout of the circuit and does not take
into account the electrical properties. The result is that, although the design
hierarchy gives a good abstraction for the layout of the chip, it is usually a
very poor form for electrical optimizations such as minimizing delay and

meeting current density limitations.

As work progresses in the synthesis of layout of integrated circuits, the
optimization of electrical properties is falling farther and farther behind.
Delay optimization is frequently done by hand, with designers making coarse
estimates of loading by inspection and by assumptions about the circuits
they are designing. Designers tend to ignore delay problems in most
circuitry, making all devices minimum size, and tend to err on the side of
conservatism for those gates which they believe will have to drive large loads.
These oversized devices are wasteful of power and incur additional delay to

drive them.

Typically load estimates are made by counting the number of gates on a

-
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node, with no consideration of parasitic capacitance due to the wire. This
was a reasonable assumption in the past, but the parasitic capacitances are
beginning to dominate the gate capacitances in MOS, so designer’s estimates
are missing the mark. Symbolic layout, which is becoming increasingly
popular, encourages connection by stretching which tends to hide the
parasitic capacitances. These loads are not taken into account, so most of
the circuitry on the chip runs more slowly than it should because the gates
are minimum sized, and power is lost on those parts of the chip where the

désigner made a driver too large.

The problem with performance optimization is that the most important
information, that having to do with the interconnection loading is not
available to the designer until late in the design process. If a designer were
to take this information into account, he would typically have to lay out the
entire chip again. Since so much work is impractical and since the parasitic
capacitance information is not readily available anyway, this whole problem

is often ignored and slower, more power consumptive chips are the result.

Advanced chip assembly tools address physical design issues, but typically
provide little assistance for these difficult assembly probiems. These
systems may make electrical optimizations more difficult, since they hide
the implementation detail used to make the logical composition. Therefore,
the designer cannot take into account the effects of the implementation

when optimizing delays.

This thesis begins with a summary of the methods and tools currently used
for performance optimization of integrated circuits. This summary leads to

a discussion of delay models and an investigation of the tradeoffs between



delay and power consumption.

A program is presented for performance optimization that not only makes
devices as large as they must be to drive their loads, but also saves power by

altering gates off the critical path so they run slower and consume less

power.

Examples of the use of the program show the value of automated
performance optimization. For example, a performance improvement of a
factor of two over hand designs has been achieved. Delay-power product can

be improved by about twenty percent.

The later parts of the thesis describe in detail the algorithms used in the
electrical optimizations and present alternatives and possible improvements
to the algorithms. Finally, the role of performance optimization in a

complete design system is discussed.



CHAPTER 2

Performance Optimization Issues

This chapter is a discussion of several issues surrounding performance
optimization. It starts with a discussion of factors responsible for good
performance in integrated circuits. Attention is focused on device
modifications to improve performance, how it has been done in the past, and

the rationale for the system described in this thesis.

Later sections deal with optimal delay in a chain of gates. A heuristic
performance optimization method is presented and is compared to the
optimal solution. Finally, the results are extended to accommodate full

graph-like gate structure.

2.1. Where Does Speed Come From?

The performance of a circuit is affected by systems issues, circuit issues and
implementation issues. Systemns issues start with the way a chip fits into an
overall system. The algorithms used to calculate the desired results are also
systems issues, as are the geometric and electrical topology in the
structures that implement the algorithms. This topology and the structure

of the implementation is sormetimes called the floorpian of the chip.

Circuit issues include the driving power and load on individual devices.
Devices that drive large loads must be made large to accommodate the

loads. Devices that do not drive large loads can be made small to save power.
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Implementation issues center around the choice of implementation
technology and the particular process parameters used for fabrication of the

device in question.

Appropriate algorithms and efficient implementation structures are
important to overall system performance. However, automating the choices
involved is very difficult. The multiplicity of algorithms and implementation
structures makes the choice of a good one still a design decision, often
accompanied by high-level simulation. On the other end of the scale, process
selection is important for good performance, but the means by which a
process and the parameters for that process are selected is not one which
can be easily automated. So we are left with circuit issues which are decided
by relatively straightforward rules, but which are often ignored because the

data are hard to collect.

2.2. Statement of the Problem

This work addresses circuit optimization issues in an nMOS technology. The
program described in later chapters sets transistor and resistor sizes to
balance the loads that those devices must drive, giving a faster circuit,
within the constraints of the algorithms used for the function and the
technology in which the function will be implemented. The designer may
make changes in the structure and the algorithms in the circuit, and the

circuit issues will be taken care of automatically.
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2.3. Current Performance Optimization

Performance optimization has traditionally been the “weak sister” in
integrated circuit design. Area and power optimizations are much easier to
visualize and implement, and it has been a generally accepted belief that
area optimization will give reasonable delay statistics. Delay optimization
has only been addressed at a few industrial locations that specialize in high
speed devices. Even there, more concern was directed fo processing

technology and algorithms than to circuit issues [Anderson 1982].

2.3.1. Semiconductor Industry Approach to Performance Optimization

In the semiconductor industry, circuit issues have been traditionally
addressed in the design stage by coarse estimates of loading and by
electrical simulation coupled with rules of thumb. Estimates and rules of
thumb are usually stated in terms of gate counts and gate capacitances,
without regard to parasitic capacitance. When parasitics are taken into
account, it is typically doné in a very rough manner since the length of
interconnect is still unknown. Although these estimates may be improved
later in the desigh cycle, the geometry of the transistors cannot be

significantly changed.

Delay estimates are derived in three ways: gross estimates by the designer,
simulation, and path delay analysis. Delay estimates for even moderately-
sized chips are too difficult for a designer to carry out in his head, so
automated estimators are gaining popularity. Electrical simulation can give
good measures of delays [Daseking 1982], but it is expensive, so it is rarely

carried out on large parts of a chip. Usually, the small cells of the design are
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simulated electrically and it is hoped that the results of the cell simulations
will not be invalidated by the composition. Unfortunately, electrical nodes
cross the boundaries of those cells, and the purely cell-oriented simulation is

inadequate to characterize the true performance of the cell.

Electrical simulation does not give the results the designer needs.
Simulation tells the designer how good or bad the design is, it does not tell
him how to correct a bad design. So the designer is caught in a very

expensive loop of simulation and adjustment.

Path delay analysis [Bening 1982] is a relatively recent development in
response to the inefficiency of simulation. Typical delay analysis tools find
best case, worse case and normal delays for the paths through the chip,
directing the designer’'s attention to problem areas. Path delay analysis
systems are considerably faster than simulation and they provide
information in the form of delays, which are a more reasonable starting point
from which to optimize the circuit. However, path analysis systems merely
point out problem areas, they do not help correct them. After these
problems are corrected, the entire process must be repeated. These design

iterations are expensive and time consuming.

An interesting exception to the standard industry performance optimization
approach is a synthesis tool described in [Agule 1977] and [Ruehli 1977]. The
designer creates a gate array design and imposes some timing constraints on
the chip. The system adjusts the assignment of gates in a gate array system
so gates that drive small loads are assigned to less powerful gates in the gate
array, saving power. This system is similar to the one described in later

chapters of this thesis, but is constrained to work with a gate array



implementation.

2.3.2. University Approach to Performance Optimization

The relatively recent explosion in the university involvement in integrated
circuit design has brought few new ideas on performance issues. With few
exceptions, the only work in the university community in improved
performance has concentrated on algorithms and structures for high-speed

or parallel processing. '

The most notable contribution of the university community to improving
performance is the Spice simulator [Cohen 1978]. Some work on logic design
systems has addressed performance issues [McWilliams 1978)], which may be
applicable to integrated circuit design. More recently, [Penfield 1981]
derived some estimates for distributed resistance and capacitance effects in
integrated circuits. These estimates have application to simulation and

delay path analysis.

However, the university community in general has accepted simplified delay
models for integrated circuit design and has produced few tools to aid circuit

delay optimization.

One powerful design concept from the university community is language-
based integrated circuit design. The use of a programming language allows
cells to be parametrized: a cell can be referenced with parameters to set cell
size and drive power. If the cells are parametrized properly, a system can be
built which determines signal loading and calls cells with the parameters
necessary for opﬁmal drive, thus minimizing delay. Although such

possibilities have been recognized since the first embedded language system
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was proposed [Locanthi 1978], no such systems optimize delay, although
Bristle Blocks [Johannsen 1981] parametrizes power and ground bus widths

to avoid current density problems.

This light treatment of performance issues may be attributed to the
university community's concentration on fast turnaround of parts and the
subsequent acceptance of second-rate in all integrated circuit design
parameters. There seems to be little effort to gain optimal area, power
dissipation, or speed of operation. For the sake of expediency, most
university designers use simplified geometrical design rules from [Mead

1980] and skip precise timing analysis and optimization.

Unfortunately, although the simplified geometrical design rules yield designs
that are in the best cases within about twenty percent of the most dense
layouts, simplified delay models often yield designs that are a factor of two
slower than optimum. The simplified design rules may be acceptable but the
simple delay optimization appears to be toc simple. More accurate delay
optimization could improve the resulting designs considerably, but the cost
of traditional industrial solutions to performance problems are not
acceptable to university designers. These solutions require too much

computer time and too much delay to fabrication.

2.3.3. The Inadequacies of Current Performance Optimization Practices

The industrial approach of massive simulation and evaluation is too
expensive and only leads designers to problem areas. Solutions to the
problems require hand modification of the design requiring all checking to be

re-done.
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universities give up high performance for the sake of fast turnaround. Fast
turnaround requires automating layout or interconnection or both.
Programmable Logic Array (PLA) generators produce slow-operating PLAs,
and automated interconnect systems can hide the interconnection delays
from the designer. Correcting these problems takes time, so they are not
treated in the detail they require. This practice costs a factor of two or more
on many designs, and cost an estimated factor of ten on a recent project

[Foderaro 1982].

2.4. ANew Way to Address Performance Optimization

This thesis explores the circuit performance optimization question in a
system that automatically sets device sizes depending on the load which
those devices must drive. Such a system has many advantages over existing
and non-existent delay optimization methods. This section introduces the

concepts and the goals of the system.

2.4.1. Automated Sizing of Transistors

A system that automatically sets device sizes does not seriously impede the
fast turn-around desired by the university community as long as the
program runs in an insignificant amount of time compared to the fabrication
delay. A fully automated system can meet this restriction rather easily.
Such a system also performs the task the designer wants, actually optimizing
the delays instead of telling the designer what delays there are in the circuit
and requiring him to make the changes. This system could be used as a code

optimizer for a "silicon compiler”.
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It has been suggested that symbolic layout could be used as an interchange
form so chip area could be optimized separately for each process line on
which the chip is to be fabricated. This optimization could be done for delays
also, using the ideas presented in this thesis. Since each process line has its
own process resistance and capacitance parameters, the constants in the
program can be changed for each new process line. This optimization could
have dramatic effects on the performance of second-sourced parts, and for

parts after a change in the fabrication process.

2.4.2. Changes in Device Sizes Mandate Physical Changes

The optimizer makes geometrical changes in the circuit as well as electrical
changes. Because device sizes change, the geometry of the circuit changes.
This is disastrous in systems that are based on hard mask geometry, as most
are. The answer, of course, is to make the changes in a symbolic form.
Since the symbolic components can be moved, the circuit must be re-run
through the symbolic area optimizer after the delay optimization has been
done, Automated changes in device sizes require automated changes in the

physical location of components.

Without the symbolic form, changes in device sizes require a designer to
alter the design by hand. Such changes then require that the design be
checked for correctness. And, of course, the simulation of performance
estimation must be run again to check the changes. This loop is time

consuming and expensive.
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2.4.3. Targeted Delay Optimization

It is unreasonable to attempt to develop a circuit at the absolute minimum
delay. Such a circuit would consume an enormous amount of power and
would require an unreasonable amount of chip area. An algorithm that
attempted to make absolutely fast circuits would make unusable circuits.
The algorithm described in this thesis gains a reasonable amount of delay

optimization without seriously affecting the power or area statistics.

Delay optimization need only be done on the delay critical path. Other paths
can be made as slow as desired as long as they do not create delays longer

than the critical path delay. This saves power on parts of the circuit that are
off the critical path.

2.5. Delay Models

This section examines several delay models and discusses their usefulness in
a system that optimizes delays in circuits. Nearly all of the work on delay
models has been for simulators and delay path analysis systems, but much of

it is applicable to automated performance optimization.

2.5.1. Transistors

A transistor delay can measured as the delay from the time when the voltage
on the input of a gate reaching a value to the time when the output reaches
that value. A common voltage at which these delays are measured is the
voltage at which the voltage on input of an inverter equals the voltage on the

output, Vg in figure 2.1. [Pilling 1972a] [Nham 1980]. Others have used
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other points, such as the half-way point between the high and low voltage
[Putatunda 1982].

Given that delays are to be measured from some such point, there are two
more problems which must be addressed to estimate delays: the actual
equations involved to find the times at which the voltages cross that point,

and the measures of the resistances and capacitances, which are the input to

those equations.

2.5.2. Delay

Starting from a standard measuring point, it is possible to translate

simulated voltages into delays. There is a wide spectrum of choices for this

V. ___' out

in \'
out

EQN

Figure 2.1. Input Voltage Equals the Output Voltage.
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translation, ranging from very difficult, precise calculations to very simple
estimates. A rather good estimate of the voltage, V, at some time, £, can be

gotten from the equation:

('r)e (¢t -7/ R(MC(N g+

"0 = ] e

where R is the resistance discharging the capacitance, C, and V; is the input
voltage which may vary over time. For digital MOS circuits, the resistance in
the equation is the resistance of a transistor, which varies with the voltage on
its gate, hence the dependence on 7. The capacitance on the node is also
dependent on the voltage on the node, so it alseo varies over time. There is
even more complication: there may be more than one driver on the node, as
is the case in NOR structures in circuits, so the voltage may be the sum of

many of such equations.

Furthermore, the device that drives the node high is different than the
device that drives it low. The difference in delay is significant in nMOS
circuits and has led some researchers to describe the node delay with two
separate equations, one for rise time and one for fall time [Koppel 1978].
This practice yields a combinatoric explosion in the number of different
delays for an output node, since the delay at the output is a function of the
values on the inputs of the circuit. Therefore, this distinction between rise

and fall times is not always made.

The delay model used in this thesis takes the rise time for all nodes at all
gates, because the rise time is longer than the fall time. The resulting delay
estimate is rather pessimistic, since half of the inverters in a chain would be

falling instead. It gives nk T for the delay of a chain of inverters, where n is
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the number of inverters in the chain, k is the ratio of the pulldown resistance
to the pullup resistance in an inverter, and 7 is the transit time through a

transistor, as described in [Mead 1980). The true longer delay (most rising

signals) is [%-] (k+1)T for n even, and [nz;l} (k+1)T+k7T for n odd.

The estimate, nk 7, is more accurate for small chains of gates (n small) and
remains less than twice the true value in the limit for long chains. In the
system described later, this estimate is used as a comparison with other,
similarly pessimistic delays. Therefore, the pessimism of this simple model
is not catastrophic as long as there is no great mismatch in the number of
gates in the chains whose delays are being compared. In addition, since the
estimate is more pessimistic for longer chains, the system will tend to select
a longer chain of gates as the critical path over a shorter one -- a situation
that is not nearly as bad as the converse. This single "figure of merit”

simplifies comparisons immensely.

There is at least one of the delay equations, above, for each node in the
circuit. Since all must be solved simultaneously, we will be well served to

find some simplifications.

The integral looks rather forbidding, but the real problem with this
calculation is the need to know the input voltage, resistance and capacitance
over for all time. These are dependent on other nodes in the circuit, so each

node is dependent on many nodes, all of which are described by similar

integrals.

First, if we assume that the power supply does not vary, we can make V;

constant. Assuming that the resistance of the pullup transistor is constant
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and that the capacitance on the node does not vary significantly with voltage,

we get the equations below:

Vot
V(t) =z [tV ROg = V,-[l—e"“”?c]

We can solve for ¢ when the V(¢) is the voltage at which the output of a

standard inverter is equal to its input, Vgg:

17
= —RC In|1— =2 = kgoRC

|4

So the delay can be expressed in terms of the RC delay constant of the node.
Notice that the delay is proportional to the RC time constant regardless of
the special voltage measured. If we measure from the midpoint voltage, we
would simply have a different constant. This simple result is valid when a
perfect resistance is discharging a perfect capacitance over a perfect
conductor. Transistors do not have perfect resistance and perfect
capacitance, so some ad-hoc_ approximations with higher-order terms have
been proposed, for example [Koppel 1978]. Since perfectbonductors are

perfectly rare in integrated circuits, I now address wire models.

2.5.3. Wires

A wire is not a pure conductor, but has some resistance and capacitance.
These are frequently called parasitic, a term that carries a connotation of
secondary importance. However, parasitic capacitance is beginning to
dominate the gate capacitance in integrated circuits, and a delay model that

does not take it into account will be inaccurate.
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To be absolutely precise, the voltage along a conductor should take into
account the distributed nature of the parasitics. A voltage diffuses down a
wire with a behavior described by a differential equation:

av _ 8*v

RC-a—t—- P

It is unreasonable to solve this diffusion equation for every wire in the design.
Until recently, wires were often treated as prefect conductors, and in some
integrated circuit technologies, this is still a valid assumption. But MOS
technologies require a more accurate treatment of wires. Therefore,
estimates of different precision have been used for wires. Some of these

meodels are shown in figure 2.2.

A pessimistic estimate is to put the entire wire capacitance after the wire

v

c

N‘i}o

A oA

Figure 2.2. Wire Models
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resistance, an optimistic estimate is to put the capacitance before the
resistance or eliminate the resistance altogether. A compromise is to divide
the capacitance, putting half in front and half after the resistance. These
empirical models make reasonable approximations te the diffusion

equations, above, for most situations.

To choose an acceptable simplification, let us examine electrical parameters
for MOS wiring and transistors, figure 2.3. The capacitances of wiring layers
in MOS are typically one less order of magnitude than gate capacitances.

Therefore, any wire model must take into account the wire capacitance.

On the other hand, wire resistances are all several orders of magnitude less
than the transistor resistance, so for most circuits, wire resistance eflfects
are slight. The resistance of a polysilicon wire, the most resistive wiring
layer in nMOS, is typically less than one one-hundredth the gate resistance,
so differences in the models are significant for polysilicon wire lengths
greater than about few hundred lammbda. Longer diffusion and much longer

metal wires are needed before their wire resistances are significant.

Simulations indicate that short wires in current technologies can accurately

be modelled with a purely capacitive model. Longer wires cannot be

Transistor Capacitance 4.0 x 10™ pf/um?,
Diffusion Capacitance 1.0 x 10™* pf/um®.
Polysilicon Capacitance 0.4 x 10™* pf/um?®,
Metal Capacitance 0.3 x 10 pf/um?®,

Metal Resistance 0.03 O/,
Diffusion Resistance 10 Q/m
Polysilicon Resistance 15-100 Q/=.
Transistor Resistance 1.0 x 10* Q/m

Figure 2.3. MOS Electrical Parameters from [Mead 1980]
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adequately modelled so simply, however, and the simplified model is not

applicable to these wires.

Wire delays do not scale well. The resistance per square and the capacitance
per unit area both increase in proportion to the scaling. The size of the
allowed chip area is unchanged, so wires may be just as long. The result is
that the resistance per unit length of a wire increases as the square of the
scaling factor, due to thinner and narrower wires. The capacitance per unit
length remains constant. The transit time of a transistor decreases by the
scale factor. So the wire delay increases as the cube of the scaling factor
relative to the device transit time. Wire delays are rapidly getting more
important than gate delays. In current technology, w;re delays are a
problem in high-performance circuits, and must be considered throughout
the design process. Future technologies will require consideration of wire

resistance for long resistive wires.

Currently, in circuits where absolute high performance is not essential, the
wire delays are not considéred during the design of the chip, but the
resistances are calculated after the design is complete to determine whether
or notuthe wire delay is significant. Wire delay is only considered on very long
polysilicon and diffusion wires, and blatant conservatism guides the designer
in addressing the wire resistance problems. This conservatism is prompted
by the disastrous effect of ignoring wire resistance in very long wires, since

the delay increases as the square of the distance.

An investigation by [Bilardi 1981] of the necessary complexity of wire models
concludes that the capacitive model is adequate for current and future MOS

technologies. This work ignores the scaling of the thickness of the wires,
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thereby diminishing the effects of long wires on delay. Although this implies
that the results are not conclusive, it is safe to say that although the
diffusive effect of long wires will limit the speed of operation for integrated

circuits in the future, it is not now a dominant problem.

Although the wire resistances can be safely dismissed for the near future,
the resistance on a wire as a result of a pass transistor cannot. To cope with
this problem, [Penfield 1981] produced some bounding equations on the
speed of signal propagation along a wire and within a RC tree network. These
equations can be used to obtain bounds on the signal delay on a wire, and
they have been used to get an estimate of the path delay [Putatunda 1982].
This method may be less accurate than the simple models described above,
since it uses an average of bounds on delay, however, it is more accurate
over a large range of wire characteristics because it can take into account
distributed resistances and capacitances. This more complex model is also
more difficult to compute. The difficult task is to choose a model that is

sufficiently accurate and sufficientiy simple for use in a tool

2.5.4. A Simple Solution

The delay model for optimization serves two purposes. First, it is used to
estimate delays in the circuit to direct the optimization task, similar to the
delay path optimization done at many industry locations. Second, it is used
in reverse to reduce the delay in part of‘ the circuit. It is desirable to have
one delay model for both functions. In addition, in addressing the conceptual

basis for performance optimization, we wish to use a simple delay model.

Nearly all of the delay models were proposed to address simulation and delay
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estimation issues. In these applications, good quantitative models are
needed, and most of the computational complexity of those systems has
been included to get more accurate timing by taking into account
parameters that might be of no importance in the task of actually optimizing
the performance of the circuit. Also, electrical simulators are targeted to
analog circuits as well as digital, making the accuracy of thé delays that
much more serious. In a delay optimization system, there is no need for the
delay model to be a good quantitative model, only a good qualitative model.
Although we attempt to find a minimum delay, it is not necessary to know
what that minimum is. In addition, this delay optimization system is

targeted to digital systems, so complexity added for analog circuits is not

relevant.

Simpler models can be used to simplify the programming and speed up the
execution without undue reduction in the accuracy of the results. A tool with
a fast turnaround can allow the designer to experiment with different
structures and find a good one. Therefore, a very simple performance model
is used in the perfbrrnance optimization which is discussed in the remander

of this thesis.

Delays are assumed to be measured from a standard voltage point. That
point may be Vgg, but the precise value is not important. Therefore the
delay of a gate is simply a constant times the product of the resistance of

the pullup resistor on the gate and the capacitance of the output node of the
gate:

D = kRC;,

Since the resistance of the pullup transistor in a gate is proportional to the
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resistance of the pulldown transistor when it is turned on, the rise time and
fall time are related by a constant factor, so there is no need to distinguish
between the two. In this simple model, a wire is modelled as a lumped
capacitance which is added to the capacitance of the gates on the node. The
wire resistance is ignored because it is insignificant in most cases, as

discussed in the "Wires" section, above.

Cr = Cyates + Cuires

The delay of a chain of gates is the sum of the delays of the individual gates.

N
Depgin = g_:lpguts‘

The lumped capacitance, zero resistance model of wires allows us to treat
wire capacitance and gate capacitance uniformly, simplifying the algorithms.
A reasonable improvement in the system would be to model wire delays and
their associated loads on the gates. This improvement is discussed in a later

chapter.

The simplification gives a reasonable qualitative estimate of the delays. It is
rather optimistic when dealing with long wires, on which the delays are
proportional to the square of the length, because it does not take into
account the wire resistance. Therefore the performance optimizer will
underestimate the delay in a long wire, possibly missing that path as a
critical path, possibly driving it insufficiently. But since the delay of the path

is in the wire, that path will not go faster if it is driven harder.

In current integrated circuit design, wire resistance effects are significant

only in very long polysilicon wires. Long polysilicon wires are used in local
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clock routing because no layer change is needed to make a pass transistor.
They are also used in PLAs, so no layer change is needed to make a gate.
Also, long polysilicon wires may occur in the wires produced by channel
routers, which make connections in metal and polysilicon, avoiding diffusion
because of its large capacitance. This simple model will underestimate the
delay of signal propagation in these cases, but the error will not be very

large.

A more serious limitation occurs because pass transistor resistance is
ignored. Delays due to pass transistor resistance are more serious, and may

lead to serious underestimations of delays.

As integrated circuit geometries get smaller, the relative length of wires can
be expected to become larger, so the resistive effects will eventually become
more serious. Therefore, wire resistance must be taken into account in
systems in the future. This and other improvements are discussed in the

chapter titled "Performance Optimization Options".

The inaccuracy of f.he simple wire model does not affect the algorithm used
to optimize the delays, but does affect the resulting device sizes. Inclusion of
a more accurate wire model is akin to inclusion in a Sticks system of more
accurate design rules. The result is a better-optimized circuit, the cost is

more computation to find the optimization.

2.6. Delays in a Chain of Gates

In this section, I derive new equations to find the sizes of gates in a chain

which will minimize the delay of a signal through the chain, a combination of
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delay and power consumption, and the delay-power product.

Following that, I present the fundamental algorithm used in Andy for sizing
gates. This algorithm does not yield optimal delay nor does it give optimal
delay-power product. However, it does yield reasonable results, as will be
shown from comparison with the results from the equations. Later sections
deal with the comparison of the heuristic to the optimum and with more

complex gate and wire structures.

2.6.1. Optimum Delay

We are given a chain of gates, shown in figure 2.4. The chain is driven by a
pulldown transistor with a width of wjp, and the chain must drive a load
capacitance of C;. The task is to set the sizes of the transistors in the gates

in the chain to minimize signal delay across the chain.

[Mead 1980] states that for minimum delay, the number of gates in a chain
driving a large load should be chosen so that each one is larger than the
previous one by e, the base of the natural logarithms. The minimum is broad
and flat around e, and larger fanout yields area and power saving, so in

practice, this number is usually between four and eight.

PP o
L.

Figure 2.4. A Chain of Gates Between a Driver and a Load
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However, we are faced with a slightly different problem: the number of gates
in the chain is given and we must find the device sizes that minimize delay.
It seems obvious that each should be larger than the previous one by a
constant, and this is exactly what the equations, below, will show. But we will
also find from the equations how to choose gate sizes to find an optimum of a
function of power and delay and for the minimizing the delay-power product.

Gate sizes in these cases do not vary by a simple constant factor.

2.6.2. Equations for a Single Gate

An inverter gate like the ones shown in figure 2.4 has two driving transistors,
a pullup transistor and a pulldown transistor. In nMOS, the sizes of the

transistors is related by the following equation:

sl

where w and I are the widths and lengihs of the transistors and the
subscripts pu represent the pullup and pd the pulldown. kp; is the ratio of
the inverter pullup width to length ratio and the inverter pulldown width to
length ratio for nMOS, which is usually taken as four. The length/width ratio
is proportional to the resistance of the transistor, so we can express the

resistance of the gate as a constant times resistance of the pulldown

transistor:

By = k,.'[%] = kr%

The capacitance with which we are concerned is the capacitance of the

pulldown, which can be expressed as:
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Cg = kc %dwpd

Where k; is the capacitance per unit area of a transistor. Notice that we
have the resistance and the capacitance in terms of the dimensions of the

pulldown transistor.

2.6.3. Equations for a Chain of Gates

Let 2, and I; be the length and width of the pulldown transistor in the if*
gate in a chain. Write R; for the resistance of the i** gate and (¥ for the
capacitance the i gate must drive, and Cf* for the capacitance of the gate
itself. The power dissipated by a gate can be measured by the resistance of

the transistors in the gate:

el -]

where k; is the constant that converts the gate w/1 ratio to a measure of
power consumption. It absorbs the constant in the gate resistance equation.
As discussed earlier in this chapter, the delay of a gate can be approximated
as a constant times the resistance of the driving transistor times the output

capacitance:

L
Dy = kRGP = kd[EL_'] e
]

where kg is the delay constant. The capacitance of the i** gate is

proportional to the area of the pulldown transistor:

P = ko Lwy

where k; is the constant for capacitance. It should also be noted here that
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we are assuming perfect conductors for clarity, so the output capacitance of

the i** stage is the gate capacitance of the i +1% stage:

o = gy

We can assume that the lengths of the transistors in the pulldowns of the
gates are set to some minimum length, 5. Therefore, we need deal with
widths of transistors only. The power, delay and capacitance of the i** gate

become:
Pi = k?[_‘] = k'P’LU-,;

D = kd[é‘_—]q"“ = k'd[,‘i“]@“‘

q‘.n = kglow; = k';w;

C: can be rephrased now in terms of a transistor width that would have that

capacitance:
CL =k'cwyn

2.6.4. Equations for Total Delay and Power

We can now form the equations we wish to optimize. The total delay of the

chain is the sum of the gate delays:

Drop = k'g ﬁ—-——-—k ﬁc‘ml—k ﬁk' 'w1.+1 Wipt
i=0 Wi

where K is the product of the constants, k'gk'c. The equation for the total
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power of the circuit is the sum of the power consumed by each of the gates:
Pror = k'piﬁlu}‘i

2.6.5. Solving for Minimum Delay

The widths for minimum delay can be found by differentiating the total delay:

6[ Wity ]

8Dror _ i=0 Uk =K 1 Wy 41
- — — 2
By Ouy Wy -y wy

Setting that equal to zero, we find:

w; Wiy

This states that the ratio of any adjacent pair of gates must be identical to
the ratio of any other adjacent pair of gates for the minimum delay solution.

This derivation verifies the assumption made in [Mead 1980].

This solution can also be used to find the optimal gate sizes, given the initial
conditions wg and wy+, = Cr/ k'c, and given a fixed N, the number of stages
in the chain. Since each gate must be larger than the previous one by a

constant, the width of the i** gate can be expressed as:

So the total delay for the chain of gates is:



Dppr = K (N+1)

1
Wy | N+
Wp

2.8.8. Solving for a General Delay and Power Function

Usually, designers are concerned with power consumption as well as speed of
a circuit. We can take power consumption into account by minimizing a

function of power and delay:

J = Pyt + Dy

Here, a is a parameter that weights power consumption. Large a indicates
great concern with power, a=0 is the case discussed above where power was

of no concern. Differentiating this function, we get:

od _ 1 Wiy '
Bwy K{wi-l w;? ]-kap

Setting this equal to zero and solving, we find the relationship for the sizes of

transistors in this case:

U +1 Wy ak'p
= + wg_
wy Wy [1 K 1]

Each stage of the chain is larger than the previous stage by the constant
factor plus an additional term that depends on the size of the previous gate.
Thus to drive the same load from the same number of gates, the scale factor

is smaller, there are fewer large, power consumptive gates and more small

low-power gates.

This recurrence is much more difficult to solve than the one for minimum

delay. Figure 2.5 shows plots of numerical solutions of transistor size versus
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stage in the array for a fixed load and fora =0, 0.1,0.3,0.7and 1.0. a =0 is

the minimum delay solution.

The graph in figure 2.5 plots the stage of the gate in the chain of gates versus
the log of the width of the gate, so the minimum delay solution appears as a

straight line. The delay of the chain is related to the length of the path on
the graph:

width

Figure 2.5. Plots of Log of Transistor Width Versus Stage
for Different Values of Alpha.
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Drop = K Wi "Kﬁ In(uy ) - In(wg) _ ﬁem;
t=0 Wi i=0

where m; is the slope of the line in figure 2.5 between the i and the i+ 1%

stage. So, for m; >0, longer paths imply greater delay.

The power is related to the area under the curve by:

N ﬁ "
Prpr = k'ptz:lwi =k'p)e
= i=1

YVitVier _ Yo LY+
2 2 +§v1y=+ 2
where y; is the y-value on the plot, In{w;). This means that higher curves

imply greater power consumption.

2.6.7. Solving for Delay-Power Product

A value used frequently to measure the quality of a design is the product of
the delay of the circuit times the power it dissipates: the delay-power

product. We can find the optimum in this case:

S(ProrDror) _ w,“
- + D
~owm ,wi T e ror(k'p)
which resolves to:
Uk +4 Wy Drork 'p
= + w,_
wy ' ProrK ¢!
. . ) _ Dror
This equation is the same form as the one above with a= B . Note,
T0T

however, that this equation is deceptively simple, since Dypr and Ppor both

depend on the widths of the gates.
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2.7. A Simple Algorithm for Nearly Optimizing Delay in a Chain of Gates

In order to drive a large capacitive load with minimum delay, a designer
inserts a string of ever-larger buffers. The number of buffers and the ratio of
their sizes is determined by the optimal fanout for the design constraints.
For minimum delay, each stage should be larger then the previous stage by a

constant fonout factor, as has just been shown.

If the circuit has already been specified, the number of restoring logic gates
is fixed, and optimal is now in reference to the given number of stages in the
circuit. The equations above still hold, and the minimum-delay solution is
the one in which each stage is larger than the previous one by a constant
factor, as shown in figure 2.6. If the number of stages is not optimal, the
fanout factor will be either larger or smaller than the optimal fanout factor,

but the circuit will still perform with minimum delay for the number of

stages.

The optimal delay and power .equations require that all gates in the chain be
sized simultaneously, since the number of gates in the chain will not

necessarily have any relation to the optimum number. The fanout factor will

f3:l fatl fs:l T

- L
5 L k

f:1 £7:1

Figure 2.6. Optimal Fanout for a Chain of Gates.
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have to be computed from the number of gates in the chain. This
computation is more difficult with more complicated nets of gates, making

the calculations very time consuming indeed.

A simpler heuristic algorithm is presented here which is not guaranteed to
give an optimum. This algorithm is used in the system described in
subsequent chapters, and a detailed description of the implementation of the

algorithm is given there.

2.7.1. Heuristic Delay Optimization

If we work backward through a circuit, we can look only at the load on a nede
and at the gate driving it to size the gate. The gate size is set to the optimal
Janout factor value, which will only give the optimum delay if there are
exactly the right number of gates in the chain. The rest of the chain is
ignored, and the algorithm works backward, re-sizing the nodes that drive
the inputs to the gate. No transistor can be set to less than a minimum size,
so with a long chain in which the optimal result would have a fanout factor
less than the optimal (i.e. "too many" gates in the chain for optimal fanout),
some gates in the chain will be minimum size and the later gates will

increase in size at the optimal fanout rate, as can be seen in figure 2.7.

This solution is lower speed than the optimal. However it can be seen when
comparing the graph in figure F to the graph in figure 2.5 that this solution is
also lower power than the original. The relationship between the delay and
power consumption by this chain of gates and the delay and power
consumption of a chain of gates with a particular o depends on the number

of gates in the chain.
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It also bears notice that this ramped driver is closer to what is done by
human designers. Most of the gates are minimum size, and only those near
the large load are made larger to accommodate the load. This yields a lower
power solution, as has been noted, but that is secondary. More importantly,
this yields a smaller area solution and a more regular solution, since gates in
the interior of the chip may be part of a large regular array (for example a
memory array). Modification of those arrays would significantly increase the

complexity of the design and coxﬁplicate the logical assembly of the chip.

When the number of gates in the chain is less than the optimal number, we

reach a solution where the first gate in the chain may be very large
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Figure 2.7. Gate Size Versus Stage for Number of Gates Greater Than
Optimum for Fanout



-35-

compared to its driver (see figure 2.8). This yields a solution that is not only

slower but more power consumptive than the optimal delay solution.

We can address the problem by making the assumption that the chain really
does not begin there, because we are sizing gates for the whole chip. The
gate that drives this first gate will also be sized in this manner, so it will be

put along the optimum fanout line, as shown by the dotted line in figure 2.8.

Of course, there must be a first gate somewhere, but on the chip, the first
gate takes its input from one of the input pads. We can assume that the
driving power of an input pad is very large indeed, so there will be few, if any,
cases where this happens. However, this case does happen when an attempt
is made to drive off-chip much more strongly than the signal that comes on
chip, as is done with line drivers. Since line drivers constitute such a small
part of the LSI design problem, it seems safe to relegate them to the "special
case’ category. Thus this algorithm does not work properly on a line driver
where there are not enough gate stages to drive the output with the optimal

fanout factor between stages.’

There is a sub-case of the case above in which there were too many gates in
the chain between the load and the driver. Figure 2.B had the first driver at
minimum size. If the driver were larger than minimum size, an input pad for
example, the output of the algorithm would be as seen in figure 2.9. The
straight line shown by optimum delay might be desirable. More desirable
might be the curve in which gates are made smaller until they are the same
size as the input driver. However, this algorithm produces the lowest curve,
corresponding to lowest power solution. The shape of this curve is similar to

the shape of the curve in figure 2.5 above with large o. One interpretation of
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Figure 2.8. Gate Size Versus Stage for Number of Gates Less Than
Optimum for Fanout.

this curve is that the original driver is too large. It can also be interpreted
as great concern with power. Whether or not this represents "over concern"
with power is dependent on the application, but it should be noted that this
sharp drop from the large driving power of the input pad to a minimum-sized

transistor is frequently done in chip designs made by human designers. It

may not be good, but it is typical.

2.7.2. Power Optimization

Once all gates have been set to optimize delay, the path through the circuit

with the largest delay must be the critical path. Gates off the critical path
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Figure 2.9. Gate Size Versus Stage with Large First Stage
for Number of Gates Greater Than Optimum for Fanout

can be slowed down without aﬁectin,g the delay.

This optimization can be done by finding chains of gates off the critical path
and setting the delay to the equivalent critical path segment length. The
delays are made larger by the ratio of the desired delay to the current delay.
The gates become smaller as do their capacitances. So a gate that drives a

chain that is made slower can be made smaller and keep the same delay.

This part of the algorithm deals with delay: the desired delay of a chain and
the delays of individual gates in the chain After all desired delays are set,

the transistor sizes can be set to meet the delay requests.
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2.7.3. Heuristic Performance Optimization Can Slow Down a Chain of Gates

There are two rather counterintuitive cases that arise as a result of the way
the optimization algorithms are applied. Performance optimization may

actually make a circuit slower, and power optimization may make it faster.

There are cases where the performance optimizer makes a chain of gates
slower than the original. This is rather obvious, since it does not give the
absolute minimum delay solution. If the algorithm is run on a chain that has
been optimized for truly minimum delay, the result will be slower, as can be

seen in figure 2.10.

2.7.4. Power Optimization Can Speed Up a Chain of Gates

Another offshoot of the non-optimal nature of the delay optimizer is that the
power optimizer can make a chain of gates faster. A situation in which this
could happen is shown schematically in figure 2.11 in which each bubble
represents a gate. The lower path is the critical path. The gate on the upper
path will be off the. critical path, so it will be made slower. The smaller gate
will have less capacitance, so the gate that fans out to it can be made smaller

with no change in delay. All the other gates in the chain can be smaller also.

If we look at the chain from the start to the fanout gate, then, we see that
the load capacitance on the end of the chain has been reduced. If the chain
was very long compared to the optimal number of gates in the chain, then
the new graph of stage-versus-log(width), seen in figure 2.12, will show more
gates at minimum size, along the horizental part of the curve. Since these
gates run faster than gates that must drive larger loads, they run faster, so

the entire chain runs faster. If the chain is along the critical path, as this
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Figure 2.10. Delay Optimization of a Minimum-Delay Chain Makes it Slower.
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Figure 2.11. Situation in Which Power Optimization Can Reduce Delay
one is, the critical delay path will be shortened. Not all such situations will
shorten the actual delay of the cell, since the critical path may shrink to

become non-critical.

Speeding up of the chain because of lower capacitance in a chain occurs
because we have more fast gates and fewer doing fanout. If we had a
performance optimization aigorithm that always produced the minimum
delay solution, the straight line in figure 2.12, then we would still observe
some cases where power optimization reduced delay, because the chain
would still have less capacitance to drive, and therefore the fanout delays

would be smaller.

2.8. Comparison of the Heuristic with Optimum Delay Results

This section deals with the adequacy of the heuristic delay algorithm. The

delay of a chain of gates sized with the heuristic is derived and compared
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Figure 2.12. Power Savings Along Non-Critical Paths
Can Shorten Delays.

with the optimum delay. The results indicate that the delay of a chain sized

with the heuristic algorithm are reasonably close to the optimum.

2.B.1. Delays Using the Heuristic Sizing Algorithm

The delay of a chain of gates sized with the heuristic sizing algorithm can be
derived for comparison to the delay for the optimum solution. The heuristic
sizing algorithm works by sizing later gates in the chain to smoothly ramp up
to drive the load on the output. One of the assumptions of the system is that
there will be enough gates in the chain so there is no catastrophic jump at

the start of the chain. So we concern ourselves with the chain with widths



-4.2-
shown in the graph in figure 2.7, which was discussed in section 2.7.

In this case, the chain can be divided into two pieces, the horizontal part in
which all gates are minimum size, and the diagonal part, in which each gate
is larger than the previous one by the fanout factor. By definition, the first
gate that drives a larger load is the % gate in the chain. The delay of the

chain is then:

Dreuristic = Z—:IK+ ﬁ‘f](: bK+(N-b+1)fK =K (b+f(N-b+1))

b
i=0 i=b

where 0<b<N+1. But, because the ramp is calculated from the output

capacitance, b is not independent of the initial conditions. We know that.:

N-b+1
wof ¥+ = Wy +1

WN+1
Wgq

Letting r,, equal ; and solving for b, we find:

In(ry,)

In(f)

Combining the two equations gives the delay of the heuristic as a function of

b =N+l-

the fanout factor, the length of the chain, and the ratio of the sizes of the

transistors at the start and at the end of the chain:

In(7y,
Drteuristic = K IN+1+(f —1)31-('(7}—))'

This equation is not exact for two reasons. First, b must be an integer, since
there can only be an integral number of gates. Second, the b +15¢ gate may
not be larger than the b gate by f, since wy,; may not be greater than wy

by an even power of f. The result is that these two eflects are opposite in
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eflect and nearly cancel because the single gate driving a smaller load is
almost the same delay as two fractional gates, one driving no fanout, one
driving the full fanout. This fractional-gate model is a little pessimistic,
because it models the delay of the b% gate the same way the heuristic model
models a chain: instead of a straight line curve, it is modeled as a ramp on
the output. This difference is minor in this case since it is less than one gate

delay.

2.8.2. Comparison of the Heuristic Delay with the Optimum Delay

We wish to know for what relationship between the output load and fanout
factor the heuristic gives the worst results. Therefore, we can form the ratio

of the heuristic delay and the optimum delay and differentiate.

In(ry,)
K IN+1+(f -1
Dstist‘ic = Dipey = (f )]-n(f)
Dopr ratio K (N+1)’I‘wl/N+1

Since we wish to know the behavior as the ratio of the output load to the

input load varies, we differentiate with respect to 7, which was previocusly

defined to be _"_’-’11;
W

8Datia _ r;lm%n] _[f—l ][l_ln(rw)

ar, = N+1 In(f) N+1

Setting this equal to zero and solving for 7, we get:

In
e(N+1) [1—-;&?—]

Tw ~

This equation gives the value of 7, at which the algorithm performs most
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poorly for a given N and f. The optimal values, of course, occur when 7,
equals 1 or f¥*!, In both these cases, the heuristic delay is equal to the
optimal. This value of r, can now be substituted back into the heuristic

delay equation and the optimum delay equation to compare the delays in the

worst case.

Dreuristic = K

N - 1>lf<(j:°;]

N+1+(N+1)[l 7 1 ] ]

=K (N+1)[

=K

)
n(s)

Dopr = K (N+1)rl/ ¥+l
2]
=K (N+1e 'Y
These delay equations differ only in the final factor, which is dependent on f
only. That factor can be evaluated for typical values of f, for this worst-case
Tw. The results are shown in the table in figure 2.13. These values are within
a factor of two, and for a fanout factor of 4, a typical value, the difference is
approximately 25%. The worst-case of the heuristic gives delays that are

comparable to the optimum delay for the simple chain.

Fanout Factor | Minimum Delay | Heuristic Delay | Percent Difference
2 1.359 1.443 6.27%
R.72 1.519 1.718 13.1%
4 1.712 2.164 26.4%
B 2.020 3.368 68.7%

Figure 2.13. Worst-Case Delay Factors for Typical Fanout Factor Values
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2.9. Calculation of True Minimum Delay for a Chain with Capacitive Wires

The equatioﬁs examined so far did not take into account parasitic
capacitances in the wires between the gates. These parasitic capacitances
are frequently as important as the gate capacitances. The chain we wish to
solve, then is shown in figure 2.14, where there are additional capacitances

between the gates:

= + o4

The delay of the i** gate, then, is:

, l
D; = kR (G}, +¢;) = kd[‘u':—’](louku*'ci)

and the total delay for the chain is:

P D Do D} .
T f;z ;3 -5‘4 s 4

Figure 2.14. A Chain of Gates With Parasitic Capacitances.
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l
Dror = kq ﬁ ['—(’_"](lowm*'ci)
i=0{ Wi

We can now differentiate this equation with respect to w; to find the
optimum,
2

8Dror _ lo 6
au)l = kdwiz [ci+l0wi+1]+kp W,

Setting to zero and solving for the ratio of the widths of two gates:

So the delay of the i** gate is:

Locs Wy 41
Dy =ky w: + kglf——

Loe; Wy Ci ] Wy
=k +kglf - = kgld
wg Sy ¢ °[wH Lowy 30wy,

There are two interesting aspects to this equation. First, note that later
gates in the chain are slower than earlier gates in the chain. Earlier we saw
that in order to make a lower-power chain, the later, larger gates should also
be slower to save power. Second, the equation simplifies considerably in the
minimum-delay solution. It states that the delay of the i** gate should be
the same as the delay of the i—1% gate if the extra capacitance were
ignored. This is not identical to the case discussed earlier in which there is

no extra capacitance, since the widths of all transistors are different.

2.9.1. Relative Importance of Chain Load versus Parasitic Capacitance

The width ratio equation can be rewritten as:



In the equation above, ¢;/ 1y can be viewed as the width of a transistor that
would produce the parasitic capacitance ¢;. Thus, parasitic capacitances
can be modelled simply as a larger gate for each stage to drive.
Alternatively, we can view the equation as a ratio of capacitances. In either
view, the effect of parasitic capacitance on the sizing of a gate is equal to the

effect of capacitance of the next gate in the chain.

The first term in the equation is the same as the term in the "pure” case
earlier which ignored capacitance between the gates. It is the contribution
of the ramp to satisfy the load on the end of the chain of gates. The second
term represents the contribution of the parasitic capacitance on the output
of this gate. The relative size of the two terms is determined by the relative
capacitances of the next gate in the critical path and the parasitics on the

output. If either term is much larger, we could safely ignore the other.

The capacitance per unit area of a wire is only an order of magnitude less
than the gate capacitance. Therefore, even a short wire gives a capacitance
comparable to that of a minimum-sized transistor. The capacitance of a long
wire dominates the gate capacitance, So, the immediate parasitic term is as
important as the ramp term and may completely swamp the ramp term for

longer wires.

The parasitics on the output of a gate affect earlier gates in the chain
because they appear as a larger transistor to drive, creating, from the point
of view of the preceding gates, a larger ramp. The ramp effect diminishes
exponentially, though, since each gate in the chain is sized to be smaller

than the next one (even in the optimum case in which the fanout factor is
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chosen to be the optimum number).

It is possible to solve the equations above for the optimum sizes of all gates
in a chain with parasitic capacitance, but it is not easy. The width ratio
equation is quadratic, the simple case of two gates is quartic. Longer chains
of gates give higher power polynomials to solve to find the sizes of the gates.
They can be solved, but the approximation methods are not amenable to a
fast-turnaround system. We have seen that the parasitics are at least as
important as the optimal ramp term. The heuristic algorithm presented in
later chapters uses the heuristic sizing method described earlier with the
addition of parasitic capacitance, giving a simple, fast, and accurate

optimization method.

Figure 2.15. A Graph of Gates With a Critical Path.
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2.9.2. Extension of Capacitive Chain to Graph-Like Gate Structure

Let us examine a slightly more complex case. Instead of a simple chain of
gates, we have a graph-like structure, shown in figure 2.15. The equations
above can be used the model this graph structure. Fan in to a gate is not a
problem, since we consider a critical path, which ighores alternate non-

critical paths.

The critical path is the chain under consideration. There is some fan out to
gates off that critical path. These transistors appear as added parasitic
capacitance that has nothing to do with the chain driving the load. The
capacitance from gates off the critical path contribute to the ¢;. A single
gate fanout would make c; comparable to the capacitances of the gates in
the chain. In many applications, such as clock drivers and PLAs, fanout is
very large, perhaps dozens of gates. In these cases, the term in the sizing
equation dealing with the parasitic capacitances, the ¢;, will dominate the

term dealing with the load on the output of the critical path.

Gates will have large loads on them independent of the loads due to the later
transistors in the chain. Therefore, optimal sizing of the chain is not
essential. Much more important is the consideration of the effect of the
parasitic capacitance in the calculation of ﬁhe gate sizes. Parasitic
capacitances due to wires and gates off the critical path are important.
These effects are hard for designers to address because they are hard to
measure and because many wires are added automatically by the design

system.

The large loads in the chain imply that optimum sizing of gates in long chains

driving large loads is not as important as sizing of single gates to drive the
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parasitics on them. The heuristic performs well on a chain of gates and will

perform equally well with parasitic capacitances included.



CHAPTER 3

Andy — A System That Optimizes Performance in Sticks Circuits

This chapter describes Andy, a program that takes a logical composition
specification and performs the electrical composition, which involves three
tasks. Most importantly, Andy improves the speed of the circuit. In addition,
it ensures proper pullup-pulldown ratios on all gates including those that
have some inputs gated by pass transistors. Andy also flags the dangerous
condition where the gate of a pass transistor has itself been gated by a pass

transistor.

This chapter includes a description of the program and its environment and

gives a user's view of the optimization algorithms. The details of the

algorithms are given in a later chapter.

3.1. Overview of Alidy

Andy is a program that optimizes delays in circuits that are defined in a
symbolic notation, the Sticks Standard. The Sticks Standard and its
terminology is described in detail in Appendix B. The interface to the
optimizations is the major facility in Andy. The optimizations can be run
independently or as a group and the user may view the result or get

statistics on the resulting circuit.

Besides an interface to the performance and power optimization algorithms,

Andy has several utility functions for altering Sticks cells, to prepare the

-51.,
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design for the optimization, or to direct the optimizations. These utilities
add parameters to connectors on the edges of cells, and add constraints on
Sticks components and interconnecting twigs in Sticks Standard cells. Andy
has no Sticks editing facilities. Changes in the circuit must be done with

some other tool.

Andy is made up of more than 5000 lines of Simula code, not including the
shared graphics package (another 8000 lines). Associated utilities involve
another 5000 lines. The Andy compiled code takes 107K words in the DEC-20,
and has 22BK words of data space. Although Andy keeps all data in memory,
this space is adequate for small and medium-sized examples. Full-scale
large chip optimizations would require use of disk storage to avoid filling

memory.

Andy fits in the current design system as shown in figure 3.1. Andy reads
Sticks Standard files [Trimberger 1980a] which can be made with Rest
[Mosteller 1981], Riot [Trimberger 1982b], or other Sticks tools. Unlike some
tools, Andy accepts Sticks files that describe the entire design hierarchy.

Andy is a command-oriented design aid. Andy reads Sticks files and
processes them according to commands by the user. When the user is

content with the design, he may write it back in Sticks form.

3.2. Commands and Capabilities

This section provides an introduction to Andy. It is basically a summary of
the commands that can be given to the program grouped by function. For a

complete description of Andy, see the Andy User’s Manual in Appendix A.
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Figure 3.1. Andy in the Caltech Design World
3.2.1. Input and Output

Andy reads and writes the enhanced Sticks Standard. In addition, Andy can
write a dump of its internal form including the node and gate information
that was derived from the Sticks. A complete description of the additions to

the original Sticks Standard required for Andy is given later in this chapter.

3.2.2. Cell Management

In an interactive system such as this one, cell management facilities are
required to help the user select the cells to be optimized. Therefore, Andy
has facilities for listing cell names, entering a cell to view the cells defined

within it, and clearing the list of cells.

8.2.3. Plotting

It is often necessary to view the data to understand what the optimization
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has done or to identify the places where the design should be meodified so
more optimization can take place. Andy has a complete plotting package
that includes cell selection, windowing, output device selection and scaling of

the plot.

There are options on plotting that enable the user to plot only the cell

bounding box and connectors, and to optionally include component names on

the plots.

The user may plot the cell as a symbolic Stick diagram or as an abstract gate
diagram, showing the connections from the connectors on the cell and the

connections between gates.

3.2.4. Stick Modification Utilities

There are two major alterations that a user must perform on the Sticks data
in Andy. First, connectors must be labelled with types and given default
loading. Second, constraints must be added to limit the optimization
process. Constraints include loading constraints and transistor size
constraints. The types and constraints are described later in this chapter.
That section also includes an example of their use and an explanation of their

necessity.

These constraints can be expressed textually, if the name of the component
is known. This textual specification may not be easy if the Sticks cell was
generated automatically, so Andy also provides a graphical means of
identifying components. After the cell has been plotted one can point to
components and set the name, connector loading, and transistor length and

width. Also, constraints can be made on components. Bad constraints can
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be removed.

3.2.5. Parameters to the Optimizations

The delay and power optimizations use several global values for critical
parameters. the user may set these values and thereby direct the overall
operation of the optimization algorithms. The user may turn off and on the
inclusion of capacitance on wires. The wire capacitance is usually on,
because it is a significant load in most circuits. Examples in the following
chapter show a significant difference in device sizes when wire capacitance is

included.

In a further guidance of the optimization, the user may control whether or
not CLOCK nodes on pass transistors will break paths during delay calculation
and power optimization. Turning it on allows cptimization for minimum clock
cycle, turning it off allows optimization for minimum delay tlirough a

pipelined processor.

The user may adjust the most important number in the performance
optimization, the fanout factor. The fanout factor is the number of minimum
transistor capacitances that should be driven by a minimum transistor. The
fanout factor says in some sense how concerned the user is with power
versus delay. Larger fanout factor means larger delay but lower power. It

may be set to any value greater than one, and is set initially to four.

A third parameter is the default loading on a connector. Is is usually not
reasonable that connections to the outside world have no capacitance on
them. It is possibie to put a specific load on a specific connector, and it is

also possible to put a default load on all other connectors.



3.2.8. Statistics

To help the user determine the quality of a design, Andy reports statistics on
the cell. The user can get the delay of the critical path, a listing of the
critical path, the power consumption of the chip and the product of the delay
and power. The delay and power estimates from Andy are not exact because
constants are ignored, and they are based on the simplified models
described earlier, but one set of statistics can be compared to another to get
an idea of the relative goodness of two designs. The following is an example

of Andy output:

Cell PLA. Delay: 8.84E-01. Power: 2.34E+01. D*P (unscaled): 2.25E+01
Critical Path for cell PLA C.Y1IN G:INBUF_P1C4 GINBUF.P2C4 G:AND_P5 G:OR.P8

G:OUTBUF.PU1C5. Delay: 9.84E-01
Critical path changed.

3.2.7. Constructing the Data Structure

Andy has commands specifically to build the data structure. The data
structure must be built before the optimization steps, so the optimizations
build the structure if necessary. These commands to separately generate

the nodes and recognize the gates is included primarily as a debugging tool.

3.2.8. Delay and Power Optimization

Delay and power optimization are Andy’s main tasks. They can be performed
separately or sequentially with a single command. Separate commands for
each step are provided more as a debugging aid than as a user feature, but

there may be some situations where one or the other is not desired. The
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delay and power optimization is described in more detail later in this

chapter.

3.2.9. Area Optimization

Delay and power optimization change device sizes and may cause design rule
violations, mandating that area optimization be performed on the cell. Andy
sends simple cells to Rest to do this optimization. Rest cannot currently
handle cells with hierarchy, so some other software is needed for dealing
with area optimization of composition cells, An associated program, STK, can

be used to remove the hierarchy so Rest can optimize area.

3.2.10. Debugging Aids

There are a few commands of no interest to users which generate trace
information during the data structure construction and during the
optimization stages. There is also a command in Andy to enter the SIMULA

debugger for further examination of the internal structure of the program.

3.3. Input Requirements '

Andy reads Sticks Standard format [Trimberger 1980a]. A sample Sticks
Standard cell is shown in figure 3.2 and a drawing of the cell in figure 3.3.
The Sticks form describes components, such as transistors, resistors,
contacts and connectors; twigs, which are interconnection; and constraints,
limits on the cleverness of the optimizing program that will optimize the
data.



CELL srcell 250 4

COMPONENTS
CONNECTOR T GROUND: gndl -48 -45 gndr 48 -45 ;
CONNECTOR T INPUT: in -48 -28 ;
CONNECTOR T POWER: vddl -48 45 vddr 48 45 ;
CONNECTOR T OUTPUT: out 48 -28 ;
CONNECTOR T CLOCK: clktop B8 58 clkbot 8 -58 ;
NENH W 18 L 8: pd -20 -29 ;
NENH WB8L B ps NO-18-7;
NRES W 8 L 32: pu 20 1 ;
NBUT: but N -1 0 28 -15 ;
NDM: N1 -20 -45 ;
NDM: N3 -20 45 ;

TWIGS
POLY{8):= eclkbot 8,43 1ps.G1 clktop;
METAL(12):;= gndl N1  gndr;
DIFFUSION(B):;= N1 pd.SQURCE;
POLY(B):= in pd.Gy
DIFFUSION(8):= pd.DRAIN puDSOURCE ps.SOURCE;
POLY(B);= 28,20 (  out) Dbut.B;
DIFFUSION(8):= puDRAIN N3;
DIFFUSION(8):;= ps.DRAIN but.D;
METAL(12):i= wddl N3 vddr;

CONSTRAINTS
inY=out.Y;

END

CELL sr 250 4
COMPONENTS

srcell : srl 48 O;
srcell : sr2 144 O;
CONNECTOR T GROUND: gndin 0 -45 gndout 182 -45 ;
CONNECTOR T POWER: pwrin 0 45 pwrout 192 45 ;
CONNECTOR T INPUT: input 0.-29 ;
CONNECTOR T QUTPUT C 10: output 182 -29 ;
CONNECTOR T CLOCK: clktopl 58 59 clkbotl 58 -59 ;
CONNECTOR T CLOCK: clktop2 152 589 clkbot2 152 -59 ;

TWIGS
Metal : = srigndr sr2.gnd};
Metal : = srlvddr sr2.vdd];
Poly : = srl.out sr2.im;
Metal : = pwrin sril.vdd};
Metal : = pwrout sr2.vddr;
Metal : = gndin sri.gndl
Metal : = gndout sr2.gndr;
Poly : = input srl.im;
Poly : = output sr2.out;
Poly : = srl.clktop clktopl;
Poly : = sr2.clktop clktop?;
Poly : = sri.clkbot clkbotl;
Poly : = sr2.clkbot clkbot2;

CONSTRAINTS

END

Figure 3.2. The Sticks Standard Representation of a Shift Register Segment



Figure 3.3. The Shift Register Segment from Figure 3.2

3.3.1. Parameters

Unaugmented Sticks Standard does not include enough information for
performance optimization. Therefore, several parameters on components
and constraints were added to facilitate the performance optimization. New

parameters on components are shown in figure 3.4.

The gate finding algorithm can find pass transistors most of the time.
However, there are some circuits that confuse it. By explicitly declaring the
pass transistors in these cases, the gate finding algorithm will succeed and

performance optimization will produce better results.

The type of a connector is vital to the device recognition and performance



On a Transistor

P The transistor is forced to be a pass transistor.
On a Connector
T <type> The type of a signal on the connector.

C <number> A default capacitance on the connector.
O <number> A default capacitance on the connector.
P The signal on the connector came under a pass transistor.

Figure 3.4. Table of Additional Parameters on Sticks Components
optimization algorithms. The types understood by Andy are shown in the
table in figure 3.5.

The only required types are POWER, GROUND, INPUT and OUTPUT. Unlabelled
connectors are assumed to be I0. OUTPUT and IO connectors may have an
additional parameter to simulate a load of a given number of minimum-sized
transistors on the output. This simulated load is used when the cell is not
used as an instance in a larger circuit so there is no real load on the

connector.

For delay calculation, every INPUT to a cell is assumed to be driven by a gate
that is smaller than its load by the fanout ratie, or by a minimum size
transistor, whichever is larger. Also, an input connector is assumed to
represent a restored logic signal unless it is marked that it came under pass

transistor. Connector types, capacitances and unrestored signal markings

POWER Power connection from the power supply.

GROUND Ground connection from power supply.

INPUT Signal generated outside the cell driving logic inside the cell.
OUTPUT Signal generated inside this cell driving logic outside the cell.
10 Signal that acts as both INPUT and OUTPUT.

BUS Functionally equivalent to IO.

CLOCK Signal that delimits ends of time phases.

Figure 3.5. Table of Connector Types Used in Sticks Standard.
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are only used on connectors on the cell on which the performance
optimization is being done. Connectors on instances in the hierarchy are

absorbed in the node merging step described in the next section.

3.3.2. Constraints

Andy uses some additional constraints beyond the simple geometrical
constraints described in the Sticks Standard document. These constraints

limit the performance optimizer, and are surmmmarized in the table in figure

3.6.

Andy modifies transistor lengths and widths, therefore the user has the
option to restrict that resizing on specific transistors. A pre-defined
capacitance that is applied to a twig is transferred to the node that includes
the twig when the node creation is done. This constrained capacitance then
takes precedence over the capacitance that is calculated for the node. This
capacitance constraint is useful in shared bus situations where the designer
knows that each driver need not drive all loads off the bus at once. The
performance optimizer assumes the worst, looking through pass transistors

pessimistically, unless the node capacitance is constrained.

The gate finding algorithm terminates at a BUS node. Andy's gate recognition

algorithm will follow nodes to GROUND, which is incorrect in many cases with

trans .L = <number> The length of a transistor.

trans W = <number> The width of a transistor.
twig .C = <number> A pre-defined load capacitance on a twig.
twig .B The twig referenced is on a BUS-type node.

Figure 3.6. Table of Additional Sticks Standard Constraints.
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shared busses. The BUS constraint on a twig will cause the node that

contains the twig to be a BUS node, limiting the gate recognition algorithm.

Improper use of these constraints can cause the performance optimization

to give wildly inaccurate results, so they should be used sparingly.

3.4. The Data Structure

The circuit is made up of gates that drive capacitive loads on electrical
ﬁodes. A node is a collection of all the Sticks twigs and component
references that are always at the same electrical potential (after everything
settles down). Nodes may cross the boundaries of the physical hierarchy.

The derivation of the nodes for a simple cell is shown in figure 3.7.

3.4.1. Nodes

Every node has pointers to ail Sticks components and twigs attached to the
node. Elements in the node.are separated into two categories: those that
drive the node, drivers, and those that are driven by the node, loads. The
distinction is made so much of the gate recognition and optimization can run
faster. Twigs in the node are always loads. Transistor-like devices that drive
the node have either the source or the drain of the device attached to the
node. Devices that are driven have the gate attached to the node. A
transistor may be both a driver and a load if its gate and either source or
drain are connected to the node. Depletion-mode pullup devices are treated
separately as resistors. Pass gate transistors, which are recognized in the

gate derivation are both drivers and loads on the node.
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Figure 3.7. The Node Derivation of a Simple Cell.

3.4.2. Gates

Once the node structure is derived, it is followed to extract gates. Gates are
recognized on the entire cell submitted for optimization. The algorithm
follows nodes across cell boundaries if necessary and moves up and down the

design hierarchy to extract the gate information.

In nMOS circuits, there are basically two kinds of gates: restoring logic gates,
with a pullup device and a pulldown structure, and fransmission gates, which
are pass transistors (figure 3.8). The former are unidirectional and are the

form most often envisioned as gates in circuits. These unidirectional gates
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are made up of a single pullup device connected to the POWER node on one
side and the output node on the other, and a tree-like pulldown structure
connected between ground and the output node. A transmission gate is
formed by a transistor that does not connect directly to POWER and does not
connect even indirectly to GROUND. This is the same distinction used in the

gate extraction algorithm for the MOTIS simulator [Chawla 1975].

The gate recognition algorithm distinguishes between restoring logic gates

and transmission gates. However, there are some MOS structures that are
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Figure 3.B. Types of Gates. a) Restoring Logic Gate.
b) Transmission Gate
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not allowed, and some that will may not result in a gate derivation that the
designer wished. Gates may have only one pullup and one output. The
pulldown structure rﬁust be a true tree structure with no internal
connections. Examples of well formed gates are given in figure 3.8, and ill-

formed gates in figure 3.9.

The resulting data structure is shown in figure 3.10. Gates drive their output
nodes. Nodes drive transistors. Transmission gates are accessed via the

nodes on either side,
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Figure 3.9. ll-formed Gates
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Figure 3.10. The Node and Gate Data Structure.
3.4.3. Performance Optimization Design Rules

Performance optimization can be expressed in a somewhat formal manner
by defining "design rules" that the algorithm enforces and attempts to meet
as closely as possible. These rules are presented as a means of explanation
of the function of Andy, not as a description of the algorithm. Andy is not a
"rule based” system in the artificial intelligence sense. Design rules obeyed

by Andy are:

(1) The minimum transistor width is 2 lambda. Minimum transistor length

is 2 lambda.

This rule sets the minimum gate dimensions, which determine the cutoff
for making transistors smaller. These dimensions also determine when

the algorithm optimizes devices by changing width rather than changing

length of transistors,
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A pulldown structure in a gate must have at most one square transistor
resistance for each <fanout> minimum transistor sizes of gate

capacitance that are driven by the gate.

A pullup resistor must have at most one quarter square depletion
transistor resistance for each <fanout> minimum transistor sizes of

gate capacitance that are driven by the pullup.

These rules comprise the gate fanout rule. Meeting these rules is the
main task of the performance optimizer. No gate may drive more
fanout than the fanout variable allows. As discussed earlier, optimal
delay occurs when this number is e, but it is usually between four and
eight. In the Andy system, the default value is four, but it may be
changed by the user. The fanout number must always be greater than

one.

Rule 2 makes a statement about the pulldown structure of the gate, not
about individual transistors. Therefore, to obey this rule, the gate

structure must be determined to size the devices.

A pullup device that is not a depletion-mode transistor with the gate tied
to the source indicates that the gate driving current is four times that

of a normal gate.

A transistor-like pullup must be either a precharge device or a super-
buffer device. Either way, the pulldown becomes the limiting resistance

in the gate. Therefore, the gate can drive four times as much load as a

normal gate.
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A pass transistor must have at most one quarter square gate resistance
for each <fanout> minimum transistor sizes of gate capacitance that

are driven through the pass gate.

This is the pass transistor sizing rule. It makes pass transistors the
same resistance as a pullup resistor. This heuristic is included so
neither the pass transistor nor the pullup resistor is the dominant

resistance on the signal.

Transistor gate resistances and capacitances and interconnect

capacitances are assumed to be:

Transistor Capacitance 4.0 x 104 pt/,um. .
Diffusion Capacitance 1.0x 10 pf/u,m .
Polysilicon Capacitance 0.4 x 10 pf/p,m :
Metal Capacitance 0.3x 10" pf/p,ma.
Transistor Resistance 1.0 x 10" Q/a,

Wire Resistance 0.0Q/m

The resistances and capacitances of the elements of the design are used
by the performance ol;t.imization. These capacitance numbers are
taken from [Mead 1980]. The precise values of these numbers are not
important, but their ratios are important, particularly the relative sizes

of the capacitances for transistors and interconnect.

The resistance of a transistor that has had the signal on its gate go

under a pass transistor should be considered double.

This rule compensates for the lower gate voltage on the transistors
driven by signals that have gone under pass transistors. The gates will

be made wider.
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(8) The maximum length of a pulldown is 2 lambda.

This rule places an upper limit on the resistance of the pulldown and
therefore an upper limit on its delay. This keeps the power optimization
from going overboard when saving power on paths that are very far off

the critical path.

These rules define an optimum delay that is not a true global optimum. The
result will be a local optimum, subject to the constraints supplied by the
system, the accuracy of the design rules and the model of integrated circuit
performance. This is in the same sense that symbolic layout compaction
achieves a local optimum, subject the the constraints of design rules and

algorithmic limitations,

3.5. Optimization Overview

This section contains an outline of the performance optimization algorithm
used in Andy. The al_gorithm can handle constraints on transistor sizes and
loading. Figure 3.11 shows the optimization algorithm block diagram. First,
Andy reads a Sticks file and extracts the node and gate data structure. Then
performance optimization is done followed by the power optimization step.

In the end, Andy writes a Sticks Standard file.

The delay and power optimization in Andy is a purely electronic method,
dealing only with the electrical capacitive attributes of the circuit. Andy
optimizes performance of an integrated system by altering device sizes to
matech the loads on them. Andy also makes proper pullup/pulldown ratios

and fixes gate ratios for gates whose inputs went under pass transistors.
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Read Sticks
Make ¢Nodes
Recogn;ze Gates
Optmu;e Delay
Optimizti Power
Write %ticks

Figure 3.11. Performance Optimization Flowchart

Proper ratios are a side-effect of the gate sizing algorithm.

~ There are many other methods of performance enhancement that could be
used: wires could be shortened, logic stages could be inserted or deleted to
make the fanout factor as close to optimum as possible, duplicate logic could
be introduced to avoid fanout. These changes are considered design issues
to be handled by the designer, as opposed to layout issues that are handled
by the design system. The output from Andy will direct the designer to make

these kinds modifications of the logic to further improve the performance.

The optimization task is divided into two separate operations, speeding up all
gates to optimum speed, then slowing down all gates off the critical path to
save power and area. Gates that are off the critical path may be slowed down
so that all paths have delays equal to the delay of the critical path. The

slower gates consume less power,

Delay optimization of all gates is necessary to determine the delay of the
critical path, since the critical path is not known until the minimum delay
has been determined. The gates on the critical path must be made optimum

size, and optimizing the other gates gives initial device sizes that are less
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critical than the critical path. Therefore, when gates off the critical path are

slowed-down to save power, the amount of slack delay is known.

3.5.1. Delay Models

The delay of a restoring logic gate is proportional to the resistance (R) of the
pullup times the capacitance (C) on the output node. The capacitance may
include the parasitic capacitance on the wires. The delay through a chain of
gates is the sum of the RC delays. This RC delay is the measure used in
estimating delays in the optimization algerithms. The amount of power
dissipated by these gates is inversely proportional to the resistance of the

pullup.

Transmission gates are potentially bidirectional, and current supplied
elsewhere will pass through a pass transistor. The optimizer attempts to
keep pass transistors from being serious detriments to the performance of
the circuit. It is also unreasonable to make pass transistors have a negligible
effect of performance at a large cost in area. Therefore, the pass transistor
resistance is set to be the same as the resistance of a pullup that would have
to drive the larger of the capacitances on each side of the gate. Pass
transistors are not considered in the determination of the delays in a circuit
except as an additional capacitance on the node, and since they have no
connections to power and ground, they do not contribute to power

consumption.

There are places of special concern with bus-like structures in which the
signal goes through a pass gate. Logic on the other side of the pass gate may

at some times require that the node drive logic, and at other times the logic
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may drive the node. The algorithm assumes worst case in all pass transistor
situations: it assumes that it may have to drive all logic past a pass
transistor at once. Therefore, the capacitance on a node that runs to a pass
transistor includes the capacitance of the transistor and the capacitance on
the node on the other side of a pass transistor as well. The capacitance
calculation goes through all pass transistors. To limit this, the user may

constrain a capacitance on a node, such as the bus node.

Every circuit has some connections to the outside world that have some
driving requirements. These requirements may be supplied as constraints on
the loading of the node. For example, a bonding pad node may be
constrained so it can drive three TTL loads. If they are not given explicitly,

the default value, which the user can set, is used.

3.8. Performance Optimization

The performance optimization algorithm works as follows:

PROCEDURE optimize_performance;

WHILE some gates are yet to be sized DO BEGIN
FOR all gates DO [F gate.known load THEN move_intoready-list;
IF no gates in ready list THEN move any gate into ready list;
FOR all gates in ready list DO gate.setsize;

END

The transistor sizing algorithm maintains two lists of gates: gates that have
not yet been sized and are ready to be sized, and gates that have not yet
been sized but are not ready to be sized. A gate is ready to be sized when all
the loads on its output node are known. Known loads are twig capacitance,
output connectors, and transistor gate connections on transistors that have

already been sized.
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The gates in the former list are processed, setting the sizes of the transistors
that make them up, depending on the load on the output node. Transistor
sizes are set to MAX(minsize, output node capacitance /fanout factor). When

a gate is sized, it is removed from the list:

PROCEDURE gate.set.size;
BEGIN
basicresistance := MAX(min trans size,
const*output_capacitance /fanout factor);
pullup.setresistance(basicresistance *longest_NAND_length*pullup-ratio);
FOR all pulldowns DO BEGIN
pulldown.setresistance(basicresistance);
pulldown.driver_node.driver_gate.sized := FALSE;
END;
sized := TRUE; N
END

When a transistor in a gate is sized, the gate that drives the node that drives
the gate of the transistor is moved into the list of unsized gates, since its

load has changed.

As transistor sizes are set, more nodes have known loads. The gates that
drive these nodes nodes can then be sized and so forth. The algorithm
proceeds backward from the circuit outputs through the circuit until all

gates have been sized.

In a circuit with a feedback path, the loads on some gates are dependent on
the size of their own transistors. These gates cannot be sized because none
of the the loads on the output nodes is defined. The proper sizes of all the
transistors in the loop can be found by simultaneously solving the device size
equations. However, Andy solves these equations with much less
computation by relaxation into a fixed point. Andy detects and breaks the
loop by picking one gate arbitrarily and sizing it. The transistors in the sized

gate are now known loads, so the gate before the chosen gate can be sized,



-74-

and so on. Eventually, the optimization makes its way around the loop to re-
size the first gate. This re-sizing terminates when a transistor changes size
by less than five percent. A transistor that does not change much does not

move the driver of its gate node into the list of unsized gates.

3.7. Power Optimization

The power optimization algorithm can be expressed in general as follows:

PROCEDURE optimize power;

BEGIN
find..paths; .
sort paths into decreasing order;

FOR all paths DO BEGIN

find first gate that has not been optimized yet;

current_delay := delay at end of the path -
delay at first unoptimized gate;

desired _delay := constrained delay at end of the path -

constrained delay at first unsized gate;

expand_ratio ;= desired delay/current.delay;

FOR all gates between first unsized gate and end of path DO BEGIN
gate.constrained.delay := gate.current.delay * expand.ratio;
gate.sized = TRUE;

END;
END;
FOR all gates DO set delay to constrained delay;

END

Power optimization is done by sorting all the paths of gates in the cell into
decreasing length. A path is a chain of gates that starts at the input
connectors or at a pass transistor that is gated by a CLOCK node (if the
clocking mode is turned on) and ends at the output connectors, at the input
to a gate or at a pass transistor that is gated by a CLOCK nodes (if the
clocking mode is turned on). The paths of a simple circuit are shown in

figure 3.12.

Each path is treated independently in the power optimization. All gates
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Figure 3.12. The Paths in a Simple Circuit.
along the beginning of the path that have already been sized with the
performance optimizer are chopped off. The delay of the remaining gates is
compared to the difference in delay from the beginning of the path (either
the input connectors or the last gate that was chopped off) to the end of the
path (the output connector or the gate at which the path stopped). All gates
in the chain are made slower by the ratio between the desired delay and the

current delay.

In the end, then, all path delays are as long as the longest delay. In

accordance with the rules above, though, no gate is made so slow that a
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pulldown transistor width is smaller than its length, So some paths may

remain faster than the critical path.

The longest delay is usually the critical path delay, but it can be set by the
user, so the delay of the entire cell can be set to a desired value by the

power optimizer.



CHAPTER 4

Examples of the Andy Optimizer Operation

This chapter gives examples of the optimization in Andy. The first few
examples are small cells, designed to give the reader a better understanding
of the changes Andy makes to a cell. The larger examples in the later parts
of this chapter are "real world" chips, in the sense that they perform some
useful function and are adequate examples of the optimization that can be

expected by using Andy on real designs.

Examples shown in the this chapter were prepared using Rest to make the
cells and Riot to assemble them. Some small examples were made with Paul
[Trimberger 1980b]. A special purpose Sticks PLA generator was used to
make the PLAs. The Spice simulator [Cohen 1978] was used to generate some
of the timing results. Other tools were used at various times to process the

Sticks files.

4.1. Small Examples

These examples are included to show in some detail the effects of the delay
optimization on a simple gate with different loads. This section includes

some simulation results from Spice for comparison with Andy's statistics

output.



4.1.1. A Simple Loaded Inverter

The inverter in figure 4.1a was run through the performance optimizer with
several loads on the output. An example of one of the resulting gates is
shown in figure 4.1b. A graph of the transistor width versus load is shown in

figure 4.2. As expected, it is linear.

Optimizing a single inverter can have dramatic effects on the delay of the
output signal. Figure 4.3 is a plot of load versus delay for an unoptimized
inverter as estimated by the simple RC model in Andy (solid line) and as
measured at the $V sub EQ$ point in Spice (+). The Andy curve was scaled to
superimpose it on the Spice graph. Both are linear and both show the
problem with heavily unbalanced loads. The x marks are the Spice
simulation results for the optimized inverter. The delays are approximately

at the four transistor load delay, a result of setting the fanout factor to four.

4.1.2. A Shift Register Cell

The shift register shown in figure 4.4 was run with the same loads as the
inverter in the previous example. The graph of the width of the pulldown
transistor (upper line) and the pass transistor (lower line) in the cell are
shown plotted against load in figure 4.5. A major point of interest on the plot
is the load above which the pass transistor width changes. The larger pass
transistor makes a larger load on the output node for the inverter, so those
transistors must inust be made larger. This leads to the slight upward bend
in the pullup transistor width line at the point where the pass transistor size

starts changing.

Simulation results for the shift register are shown in figure 4.6. The Andy
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Figure 4.1. An Optimized Inverter. a) One Transistor Load on Output.
b) Twenty Transistor Loads on Output.
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Figure 4.2. Plot of Transistor Width Versus Transistor Loads
for the Inverter Cell in Figure 4.1.
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Figure 4.4. A Shift Register Cell. a) One Transistor Load on Output.

b) Twenty Transistor Loads on Output.

38

25

20

15

width (UM

‘] S 1
') { L i

S 18 15 20 25 38
load (MO

3

Figure 4.5. Plot of Transistor Width Versus Transistor Loads
for the Shift Register Cell in Figure 4.4.



delay estimate is shown as the solid line, Spice simulation results as "+" for
unoptimized delays and "X" for optimized delays. Again, optimizing the
devices yields great performance advantages. Notice also for the twenty
transistor data point, the relatively minor delay penalty from not sizing the

pass transistor (the asterisk).

Although the increase in speed for sizing the pass transistor as well is minor,
it comes with very little extra cost in power and area. The power cost is due
to the larger driver needed to balance the load of the larger pass gate. Area
costs are low because pass transistors are usually placed between restoring

logic stages that constrain the size of the cell.

An examination of typical integrated circuits shows that there are few cases
where pass transistors feed large loads. The most common cases are tri-
state output pads and bus structures. Adequate treatment of bus structures
may become more important in the future with larger and more complex
chips. It will be very important to guarantee seme reasonable decisions on

the bus drivers, so pass transistor sizing may become critical in the future.

4.2. A Chain of Gates

Figure 4.7 shows a short chain of gates. This chain of gates was put through
the performance optimizer with a variety of loads on the output. The
purpose was to show the ramped scaleup to drive the load. This ramp can be
seen in the graphs in figure 4.8 for several values of the capacitive load. The

load is measured in number of minimum transistor loads.

The table in figure 4.9 compares delays measured from Spice simulation for
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Figure 4.7. A Chain of Gates
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various output loading. The first set of numbers are for no load, the second
set for larger load and the final set for a relatively large load. Qualitatively,
the results are not astounding — larger transistors makes faster gates. But
quantitatively, the results are surprising — a great deal of additional

performance can be squeezed from common designs.

4.3. Power Optimization Examples

These examples show the small-scale effects of power optimization on a few
simple circuits. The savings can be important in larger circuits. A summary
of the results is shown in the table in figure 4.10. Notice that in both cases,
power optimization improves performance. This is the result of decreasing

the load on a minimum-sized transistor, as described in chapter 2.

_delay (ns) | power(uW) | area(?)

No Load

Unoptimized 15.91 114 1080

Optimized 16.91 114 1080

Optimal Delay 16.91 114 1080
Load = 5T

Unoptimized 23.56 114 1080

Optimized 20.19 142 1093

Optimal Delay 13.76 275 1080
Load = 20T

Unoptimized 48.54 114 1080

Optimized 21.35 359 1255

Optimal Delay 14.61 656 1404

Figure 4.9. Statistics for a Chain of Gates.



del pwr | dxp

Unrelated Paths
Original 1.12 1.00 | 1.12
After Delay Optimization 423 | 3.14 .33

1
After Delay and Power Optimization 422 [ R | 1.16
Fanout Example
Original 1.18 1.00 | 1.18
After Delay Optimization 633 | 3.22 | 1.72
After Delay and Power Optimization | .498 | 2.67 | 1.33

Figure 4.10. Power Optimization Results
4.3.1. Unrelated Paths Example

The simplest case of power optimization occurs when two unrelated paths are
present in a cell, as is the case in figure 4.11. One path is the upper path
from the input on the left through the one inverter to the output. The other
path is from the lower left input through the three gates along the bottom

and out the connector on the right.

The upper path is loaded with a 15 transistor load and the lower path with a
twenty-five transistor load. These loads could be reasoﬁably expected in
parasitics, since a twenty transistor load is produced by a a 200A polysilicon
run, about the length of 10 half shift register stages. The delay-optimized
and power-optimized versions of the cell are shown in ﬁgure 4.11. Notice that
the transistors in the gates along the non-critical path are made smaller by

the power optimization.

4.3.2. Fanout Example

Figure 4.12a shows a simple circuit with fanout. Both paths are loaded as
described in the unrelated, paths example. The lower path is the critical

path, since there are more gate stages in it. The cell after delay



Figure 4.11. Unrelated Paths Example. a) Original.
b) After Delay Optimization. c) After Power Optimization

Figure 4.12. Fanout Example. a) Original.
b) After Delay Optimization. c) After Power Optimization.
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optimization is shown in figure 4.12b. All gates were made larger to drive the
load optimally. However, the transistor on the upper path need not be that
large. When the upper transistor is made smaller, the transistor that fans

out to the other gates can be made smaller also.

The power optimization slows down the upper path so its delay is the same as
the delay along the critical path. The transistors in the upper path gate are
made smaller, so the capacitance on the output of the fanout gate is less so

that gate is made smaller also, as can be seen in figure 4.12c.

4.4. larger Examples

The two designs in this section are respectably large since they represent
significant parts of a design and involve some reasonably complex
interactions of gates and nodes. These examples are included to give an
understanding of how Andy works on a real chip and to show the kinds of

improvements Andy can make.

4.4.1. The Logical Filter Example

The logical filter chip calculates the Boolean sum of products on a stream of
input bits, given a set of constants. It was designed and fabricated to test
the capabilities of Riot [Trimberger 1982b], a simple graphical chip assembly
tool. It predates Andy, so it makes an impartial, if not state-of-the-art test
case. In addition, it is a sample of a machine-composed chip, so it allows us
to evaluate Andy in the composition environment in which it will most likely

be used.
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Figure 4.13. Logical Filter Chip Gate Diagram.
A schematic gate-level diagram of the logical filter chip is shown in figure
4.13. It contains a few dozen transistors and some respectably long
interconnection runs. The bonding pads could not be used in Andy because
they were defined geometrically. The part of the chip used as an example is

shown outlined in figure 4.14,

The table in figure 4.15 compares the performance of the logical filter chip
before optimization, after delay optimization and after delay and power
optimization. The example was run with the parasitic capacitance both on

and off. The same runs without parasitics are shown in the second part of



Figure 4.14. Logical Filter Example.



del | pwr | dxp

With Parasitic Capacitance

Original 3.22 | 400 | 129

After Delay Optimization 2.00 | 965 | 19.1

After Delay and Power Optimization | 2.00 | 7.74 | 15.5
Without Parasitic Capacitance

Original 1.32 | 400 | 5.28

After Delay Optimization 1.46 | 3.44 | 5.02

After Delay and Power Optimization | 1.46 | 3.44 5.02

Figure 4.15. Table of Logical Filter Results.
the table.

The performance optimizer was able to cut the delay for the signal to be
ready by about 40 percent. The delay-power product was not as good as the
original, but not unreasonable, either. The power optimization was not very

effective because there are only a few gates off the critical path.

The numbers for the case without consideration of parasitic capacitances
after delay and power optimization were the same because all devices were
made minimum size during delay optimization and couldn't be optimized any
further for power. The delay numbers are a little worse because some scale-
up was put into the original circuit and was eliminated by the optimizer as

described in chapter 2.

The transistor sizes without the parasitic capacitance are nearly identical to
the original hand-optimized circuit. This is to be expected, since the rules
for sizing gates typically refer to the number of gates and not the parasitics.
This designer did not concern himself with parasitic capacitance. The
. resulting delays are calculated assuming no parasitics and imply that the
optimization is pretty good. However, if the circuit is optimized as if the ‘

parasitics are insignificant, then delays measured including the parasitics,
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the results do not seem as good.

One point of particular interest is the sizing of the NOR gate at the bottom of
the circuit (arrow in figure 4.14). When parasitics are ignored, the
transistors are made minimum size. When parasitics are included, they are
much larger than the minimum. At first glance, it would appear that the
former is correct, since the gate must only drive one transistor, the pulldown
of the inverter. However, closer inspection shows that the pérasitic
capacitive load is very large on that node, because the NOR gate was
stretched quite a distance by the assembly tool. The diffusion line that
connects the two pulldown gates (and is part of the output node for the NOR
gate) was made very long and its capacitance amounts to several gate

capacitances, requiring larger transistors to drive it.

Finally, this example was run with a number of different desired fanout
factors. The results of this run are shown in the table in figure 4.16. As
expected, delays shrink and power consumption rises considerably with
smaller fanout factors. Also of note is the delay-power product which

improves dramatically with larger fanout factors.

Fanout Factor | del pwr dxp
2.000 1.04 | 112 1186

2.718 139 | 213 29.6
4.000 2.00 7.74 15.5
8.000 3.31 3.59 11.9

Figure 4.16. Table of Logical Filter Results with Different Fanout Factors.



4.4.2. PLA Example

The Programmable Logic Array (PLA) shown in figure 4.17 is a Sticks version
of the traffic light controller example in [Mead 1980]. Currently, PLAs are
laid out on a regular grid with all transistors the same size. However, each
gate in the PLA, a horizontal slice in the AND-plane or a vertical slice in the
OR-plane, drives a different load, depending on the number of transistors and
the size of the transistors on it. In addition, large PLAs have large parasitics
associated with the wires. Finally, the cutputs on the PLA may be required to
drive large loads. All these effects cause PLAs to be wasteful of speed on the
heavily loaded paths and wasteful of power on the lightly loaded paths.

In the traffic light controller, a twenty transistor load was placed on the
Start Timer output (ST in figure 4.17) to simulate a long conductor to a
timer. The design was then passed through the delay optimizer and power
optimizer. The resulting layout is shown in figure 4.18. Notice that the array
is still regular, because all transistors in a gate are sized the same. This
leads to whole columns in the OR-plane and whole rows in the AND-plane being
sized identically. But different gates are sized differently. So, while the
array is still a rectangular grid, the grid spacing is increased or decreased
where the gate sizes were changed. One can follow the effects of the
increased load on the Start Timer output. The output transistor is larger, so
the transistors in the gate that make up the OR-plane gate for that output
are wider, causing the OR-plane to be wider in that column. Wider gates in
the OR-plane column lead to larger transistors in the AND-plane rows that

drive them. These in turn lead to larger drivers.

Another point of interest is the size of the two input drivers on the right side
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Figure 4.17. Programmable Logic Array Example



Figure 4.18. Optimized Traffic Light Controller PLA.
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of the PLA inputs. These are the drivers for the feedback terms, and they
must be made large because of the number of minterms they drive. They

were vastly undersized in the original layout.

The table in figure 4.19 compares the unoptimized and optimized versions of
the PLA. The numbers are all unscaled estimates from Andy. PLAs prepared
in this fashion can still be made without human intervention. Fast logic need

not be difficult to produce.

4.5. Summary 6f Examples

The Andy optimizations improve performance by approximately forty
percent in larger designs, and improve the delay-power product as well.
Power consumption is increased, as is area. While the area increase is rather
small. the power penalty of approximately twenty percent may be

unacceptable to some.

The use of the Andy performance optimizer to improve the performance of
automatically-generated designs, such as the PLA, and machine-composed
designs like the logical filter, shows the need for such a tool. The assembly
tools sometimes cause additional delay problems for a designer by creating

parasitics as part of the connection mechanism or by overloading a single

delay | power | dXp | area

Unoptimized | 1.63 17.0 27.6 | 22518
Optimized 964 | R2.4 | R1.6 | 24705

Figure 4.19. Statistics for the Traffic Light Controller PLA
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node in the PLA, Because of the automation of the assembly tools, the
designer cannot take these problems into account when the design is
specified. They must be addressed after the connection has been specified.

Andy is essential in these cases to avoid costly design iterations.



CHAPTER 5

The Andy Performance Optimization Algorithms

This chapter describes the aigorithms used in Andy in more detail than they
were covered in chapter 3. These algorithms are concerned with node
generation, gate recognition, performance optimization, and power
optimization. Possible variations on these algorithms are discussed in the

following chapter.

5.1. Overview of the Algorithms

The Andy performance optimization algorithm attempts to optimize fanout
between gates in the circuit, attempting to make the ratio from one gate to
the next as close as possible to the values that best meet the performance

design rules specified in chapter 3.

The algorithm is broken down into pieces in figure 5.1. The input to Andy is
in Sticks form. Sticks twigs are merged into electrical node segments inside
the cells and the node segments from all instances in the hierarchy are
merged into full electrical nodes. Gates are then derived from the nodes and

transistor structure.

After the gate and node data structure has been constructed, the
optimization algorithm proceeds backward through the net of gates, sizing
every gate for which the load on the output node is known. Known loads are
parasitic interconnection loads, gate capacitances of transistors that have

been sized, and outputs from the circuit. Feedback paths are broken by

-98-



Read Sticks
Make 'LNodes
Recogni;e Gates
Optimi;e Delay
Optimi;e Power

+
Write Sticks

Figure 5.1. Performance Optimization Flowchart.
simply choosing a gate and sizing it. When a transistor size is changed, it
causes the gate that drives it to be re-sized, since the load on the output of
that gate has changed. Therefore, feedback paths will be cut, then sized
properly.

The final optimization step is the power optimization step in which the
critical delay path is determined and all paths off the critical path are slowed
down to match the critical path delay. This saves power in those places

where high speed does nct improve the overall performance of the cell,

5.2. Finding Nodes

Electrical nodes must be extracted from the Sticks representation before
gates can be recognized in the circuit. An electrical node consists of all
twigs and component connector references in an equipotential region
[Sutherland 1979]. The node extraction is fairly easy, since each of the

components in the Sticks form has a simple electrical definition.

The node determination for a cell is done in three parts. First, all the node

segments in the cell are found. These node segments consist of a Sticks twig,
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all the component connector references on the twig, and recursively includes
other twigs and component connector references on electrically equivalent
connectors on the components. Node determination scans through contacts

and electrically common connection locations on transistors and connectors.

Node segment determination is done for all cells that have instances in the
cell in which we are doing the node determination. These node segments are
collected in the cell, then merged into complete electrical nodes. The merge
algorithm crawls up and down the design hierarchy coalescing node
segments across cell boundaries. Finally, as the nodes are merged, the
components in the node are separated into drivers of the node and loads on

the node.
Formally,

Def. A connection is a pair (£, r) where ¢ is a Sticks component and r is a

Sticks connector name.

Def. Two connections (£, ;) and (tp, T2) are equal if £, ={; and r; and rp
are electrically equivalent. The person who defines the atomic Sticks
components is responsible for stating which connectors are electrically

equivalent (See the Sticks Standard Definition).

Def. Two Sticks twigs are directly connected if they include equal

connections.

Def. Two twigs £, and {, are connected if there is some sequence of twigs T

such that T; and T;,, are directly connected for alli, and {; and {, arein T.

Def. A node segment is the largest set of connected twigs inside a cell and all
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connections on those twigs.

Def. A mode is the largest set of connected twigs and all connections on

those twigs inside a cell including all twigs inside instances in the cell.

5.2.1. Node Segment Determination

Node segment determination in a cell starts at the Sticks twigs. The twig is
added to the node, and all components connected to the twig are scanned as
outlined in the pseudo-code below. A reference to the specific connector on
a component is included in the node and all other twigs that refer to
electrically equivalent connectors on the component are added also. In the
case of a contact component, all connectors are electrically equivalent, so all
other twigs that refer to the contact are included in the node. References
may be made to connectors on instances, twigs, contacts, and transistors.
The algorithm proceeds recursively until nothing more can be included in the
node, then a new twig is chosen to start a new node. The node segment

determination for a simple cell is shown in figure 5.2.

PROCEDURE include_twig(tw);
IF twig not in a node already THEN BEGIN
include tw in node;
FOR all components in this twig DO BEGIN
include component reference in the node;
FOR all twigs connected to electrically equivalent connections on
components DO include.iwig;
END;
END;

At the time node segments are made in the instances included in the cell, a
pointer is placed in the instance that points back to the parent instance.
This pointer makes the design hierarchy doubly linked so the scanloads

algorithm, which is described below, can scan both up and down through the
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Figure 5.2. Node Ségment Derivation from a Simple Cell
hierarchy. The scanloads algorithm also requires that every connector in all
cells have a reference to its node segment in the cell. This pointer is also
added to connectors during the node segment determination. The resulting

data structure is shown somewhat schematically in figure 5.3.

5.2.2. Merging Node Segments

When all twigs are included in node segments, all the node segments from
instances are brought into the cell for merging into complete electrical

nodes. The merge crawls up and down and across the design hierarchy to
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Node Segment
type (e.g. GROUND)
name
loads \ \ cea
twig connection
. connector name (e.g. SOURCE)
drivers _ component

N N\

mygate \\connection connection

gate

Figure 5.3. The Data Structure for Node Segments.
determine full electrical nodes from the node segments. Merge uses a

recursive algorithm called the scanloads algorithm, shown in figure 5.4.
The scanloads algorithm follows a node anywhere in the hierarchy and may

PROCEDURE scanloads(nod,proc,inst);
REF(node) nod; PROCEDURE proc; REF(instance) inst;
IF NOT nod.scanning THEN BEGIN
PROCEDURE xSL(th); REF(thing) th;
INSPECT th
WHEN instance DO
scanloads(THIS instance.findconnector(myconn),proc,THIS instance)
WHEN connector DO
IF inst.parent=/=NONE
THEN scanloads{myinst.node(this connector),proc,inst.myparent)
ELSE proc(th)
OTHERWISE proc(th);

nod.scanning := TRUE;

nod.loads.apply(xSL);

nod.scanning := FALSE;
END of scenloads;

Figure 5.4. The Scanloads Algorithm.
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come back up the hierarchy to touch other nodes in the parent cell. The
parameters are the node to scan, a procedure to be invoked on each element
in the node, and the instance in which this node resides. The instance is
necessary for following the design hierarchy upward. When an instance is
encountered, the algorithm recursively calls scanloads on the corresponding
node inside the instance. When it reaches a connector, it finds the node on
the containing instance that connects to the current instance, and invokes
scanloads recursively on that node. If there is no containing instance, then
the current instance represents the cell in which we are finding nodes so the
connector must be kept. All other things in the node: twigs, contacts,
transistors and resistors, as well as the connectors on the top-level instance

are passed to the procedure.

Scanloads uses a flag in the node to keep cycles in the node description from
causing the algorithm to loop forever. Another improvement not shown here
for clarity sake is a fourth parameter, the "exception”. The "exception " is a
component that the algorithm will skip. Since some path must have been
followed to get to the current node, it is not necessary to check the
component reference through which that path arrived. The exception
parameter stops the algorithm from looking back at the node on the other

side of the instance or connector it just followed to get to the current node.

Merge starts by invoking a scanloads procedure on an unused node segment
in its list with the copy procedure. An unused node segment is one that has
not yet been merged into a complete node. The copy procedure simply
copies the component it is given into the new merged node from the node
segment. Therefore, all twigs, contacts, transistors, resistors and top-level

connectors are copied into the merged node.
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As the contents of each node segment are copied into the merged node, the
node segment is removed from the list of unused node segments. Also,
constraint information, node type and node name, if applicable, are copied
into the merged node. For clarity in the algorithm above, these operations
are not shown. Figure 5.5 shows the node segments and the final node
determination for a shift register piece. Notice that a node may contain

twigs and components from anywhere in the hierarchy.

Figure 5.5. Nodes in a Shift Register Segment
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5.2.3. Segregation of Drivers and Loads

As the node merge copy procedure adds components and twigs to the
merged node segment, it separates them into drivers of the node and loads
on the node. The discrimination is necessary for the gate finding algorithm
and improves the speed of the optimization algorithm. Twigs and contacts
are always loads on a node. Transistor gates are loads, but transistor source
and drain are drivers. Depletion pullup transistors are drivers, but the gate

connection is a load.

Connectors outside the cell are added as drivers or loads or both, depending
on the type of the connector. INPUT, I0, POWER, GROUND, BUS and CLOCK
connectors are drivers of the node. OUTPUT, 10, BUS, and CLOCK connectors
are loads. It is possible for a connector to be both a driver and a load on a
node. This is the case with source and drain connections on pass transistors

also, which are discovered and handled later in the gate finding algorithm.

The copy procedure also gives every component in the node a pointer back
to the node that drives it. This pointer is necessary for later operations,
such as critical path determination. Transistors keep pointers to all three
nodes: the gate, source and drain. The source and drain nodes are needed in
the gate finding algorithm, and all three are used during performance

optimization.

Nodes inherit types from the connectors on them, if any. POWER and GROUND
connectors are of particular importance because POWER and GROUND are not
driven by any of the transistors on them, they supply the drive for the
transistors. The final pass over the nodes moves all transistor source and

drain references on POWER and GROUND nodes from drivers of the nodes to
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loads on those nodes. BUS connection types are also propagated to the node.

BUS types are used to terminate the gate finding step which is described in

the next section.

5.3. Finding Gates

The gate network is derived from the node representation of the cell which
includes the complete electrical nodes derived from the entire hierarchy and
the Sticks transistors, resistors, contacts and twigs. Gate determination
from this form is possible, if it is assumed that the circuit contains only

well-formed gates and that there are no serious logical flaws in the circuit.

The gate finding step will be successful if the design is composed of only
well-formed gates. Well-formed gates are those with a single pullup
transistor or resistor and a tree-like pulldown connected to GROUND. There
may be pass transistors, but there may not be gates with multiple pullups.

Gates with general graph-like pulldown structures are not allowed, either.

Figure 5.8 shows two examples of well-formed gates.

Formally,

Def. A restoring logic gate is a triple (1, d, o) where « is a transistor called
the "pullup”, d is a tree of transistors called the "pulldown structure" whose
leaves are connected to GROUND and whose root is connected to the output

node, and o is a node called the "output node”.

Def. A tronsmission gate is a transistor that is not along a path from POWER

to GROUND or a transistor that is constrained to be a pass transistor.
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Def. A well-formed gate is a restoring logic gate or a transmission gate.

During the construction of the data structure, Andy checks the circuit for
serious flaws in the network. POWER shorted to GROUND is detected and
flagged in the node finding step. POWER and GROUND separated by a single
transistor is caught along with other ill-formed gates in the gate recognition
step. Ill-formed gates that do not involve shorting of POWER and GROUND are
caught in gate recognition when a single transistor is found to belong in two
different gates or at two different places in the same gate. Since intelligent

resolution is not possible, the construct is flagged as an ill-formed gate.
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As shown in the pseudo-code below, the gate finding algerithm finds gates by
following the POWER node to a transistor source or drain. Since one side of
the transistor is connected to POWER, it must be a pullup for a restoring logic
gate, so a new gate is created with the transistor as its pullup. Although, in
the usual case, the transistor is a depletion mode device used as a load
resistor, other forms for super-buffer gates and precharged gates are legal

as well,

PROCEDURE find gates;
FOR all POWER nodes DO BEGIN
FOR all trensistors on the node DO BEGIN
make & new gate.
the pullup is the trensistor.
the output node is the node opposite the POWER
FOR all paths of transistor source and drain from the output node DO
IF the path leads to GROUND
THEN make them pulldowns of the gate
ELSE make them transmnission gates
END;
END;

The node on the other side of the transistor is the node that the gate is
driving, which must be the output node of the gate. The gate finding
algorithm follows that node to find the pulldown transistor structure. When a
connection to the source or drain of a transistor is found, there are two
possible situations: the other side of the transistor may or may not connect
to GROUND. If the other side of the transistor does not connect to GROUND,
the transistor is remembered and the node on the other side of the
transistor is scanned recursively, building a tree-like structure pointing to

the transistors. The recursion stops when the GROUND node is found or if

there are no source or drain connections on the node.

If the node is the GROUND node, then all the transistors on the path from the

gate's output to GROUND must formm a NAND network, serial connection to
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GROUND in the gate. Parallel connections to GROUND make NOR-type
connections. If there is no GROUND connection, the transistors along the path
must be pass transistors, and a new transmission gate is made for each pass

transistor. Figure 5.7 shows the gate determination of a simple example.

The gate finding algorithm can differentiate between pulldown transistors
and pass transistors in most situations. However, some circuits, such as the
shared bus in figure 5.8, confuse it. The algorithm sees a path from both
pullups through the BUS node, the pass transistors and the pulldown on the

1
i
o
>

Gate 1 Gate 2 Gate 4
pullup PASSGATE pullup PASSGATE
pulldown transistor pulldown transistor’
output node output node’

Figure 5.7. Gate Determination of Shift Register
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other bus driver to GROUND. This improper interpretation can be avoided by

explicitly declaring the pass transistors or by constraining the bus node.

If a transistor has been constrained to be a pass transistor, the recursion
stops, the gate determination ends, and the transistor is made into a
transmission gate. If a node is found of type BUS, then the gate finding
algorithm is similarly terminated. These constraints help remove confusion
in some MOS structures that do not fall into the category of well-formed gates
described above, but which occur frequently in designs. These structures
include some more exotic transmission gate logic as well as the shared bus

described above.

As gates are made, the output node of a gate is given a pointer back to the
gate that drives it. This pointer is required later in the delay optimization
step. Figure 5.9 gives a schematic view of the node and gate data structure

that the gate determination completes for use in the delay optimization step.

Figure 5.8. Shared Bus Structure
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Figure 5.9. Node and Gate Data Structure.
5.4. Performance Optimization of Gates

The sizes of the transistors in a gate are determined by the resistance
required for the pullup and pulldown structures to charge or discharge the

capacitive load on the node in a reasonable time. '"Reasonable time" is

-n

defined by a user-set-able parameter that represents the number o
minimum sized transistor capacitances that can be charged or discharged
by a minimum sized enhancement pulldown transistor resistance in that
"reasonable time'. This number is called the fanout factor because it is the
ratio of the gate transistor size to the load size. A discussion of the fanout

factor and its effect on the performance of a circuit is included in chapter 2.
I now define some terms that are used throughout this section,

Def. Two nodes are possibly connected if they are separated by a chain of

transmission gates.

Def. The load on a node N is
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1) if the node contains a twig with a constrained load, then the load is the
constrained load, otherwise
2) the sum of the capacitances of all twigs in all possibly connected nodes

to N and all capacitances of all components in those nodes.

Four definitions that will be useful in the following section are also given

here:

Def. A node has a known load if the node contains a twig that has a
constrained load or if all the transistors in all possibly connected nodes are

in gates that were sized.
Def. A ready gale is a gate whose output has a known load.

Def. The delay of a gate is the length of the pullup divided by the width of
the pullup times the load on the output node.

Def. The power consumption of a gate is the width of the pullup divided by
the length of the pullup.

5.4.1. Gate-Oriented Performance Optimization

The performance optimizer first sets all constraints in the circuit, including
device size constraints and loading constraints on connectors. Then it
iterates, finding all gates for which all loads on the output node have been
determined, and sizing them. No gate can be sized until all transistors on its
output node have been sized. External connectors on the cell being
optimized have a minimum load or a constrained lead, so the gate sizing

starts at the outputs and works backward toward the inputs.
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The iteration continues while there are gates yet to be sized. If a pass
through the gates yields no gates that can be sized but there are still some
unsized gates, then a feedback must exist in the gate structure. The
smallest case where this occurs in functional circuits is the cross-coupled
NAND latch in figure 5.10. As shown in figure 5.11, the algorithm picks one of
the gates and sizes it, breaking the feedback. The transistors on the gate
are now defined loads, so the other gates in the chain can be sized, also.
When a transistor is sized, it marks the gate that drives it as "unsized",
because its load has changed. So that gate goes through the sizing algorithm
again. Thus, the sizing will proceed around a feedback loop, eventually
returning to the gate chosen to break the loop. All gates in the loop will

eventually be run through the resizing process with the correct loads on
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Figure 5.10. Cross-Coupled Gates.
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their outputs. The gate that was sized to break the feedback will be re-sized

after the last gate in the feedback loop is processed.

To keep the chain of re-sizing gates from continuing forever, transistors only
cause their driving gates to be resized if the transistor changed size
significantly (by more than 5%). It is easy to prove termination of this
‘ algorithm: at each stage the change in a gate is a constant factor less than
the gate before it. Even a gate that has its output connected to its input

sees geometrically decreasing changes in the resizing it must do.

A gate is sized by first finding the capacitive load on its output. If a node has
a constrained capacitance, then that capacitance is used, otherwise the load
determination totals the gate capacitances from all transistor gates on the

node and, optionally, the parasitic capacitances of the wires that make up

the node.

STEP 1 STEP 3 STEP 4
‘ nsized jed sized

sized

{ e
R 4 unsized unsized

e e O

Figure 5.11. Sizing Gates in a Feedback Loop.



-116-

The load determination looks through pass transistors pessimistically,
assuming the gate will have to drive all loads on the far side of all pass
transistors simultaneously. This pessimism is visible in figure 5.12, in which
both gates will be sized to drive C;+Cj,, even though logical analysis reveals
driving the separating pass transistor, P, may require that G only drive Cj.
Analysis of the logic for further optimization is beyond the scope of this

work.

5.4.2. Sizing Transistors in Restoring Logic Gates

The capacitance is divided by the fanout facfor and converted to a desired
transistor resistance, expressed as a desired width to length ratio of the
pulldowns, using a conversion factor derived from the ratio of the minimum A
sized transistor capacitance and the per-square transistor resistance for a
minimum sized transistor. If the pullup transistor gate is not connected to
the output of the gate, the desired resistance is cut to one quarter,

accounting for increased performance of super buffer and precharge gates.

e
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G
“‘D‘; a1
E2e

Figure 5.12. Load Calculation Looks Through Pass Transistors Pessimistically
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Enhancement-mode pullups, such as precharge transistors are treated
slightly differently. The resistance of resistor-like pullups is set to four times
the resistance of the pulldown, as demanded by the design rules in chapter 3.
The resistance of the precharge transistor, however, is made the same as
that of the corresponding pulldown transistor. This is not desirable in all
situations, however, so in precharging applications where the precharging

device is not time critical, the designer may wish to constrain its size.

The pullup/pulldown ratio is preserved in NAND structures by increasing the
pullup resistance in proportion to the number of serial transistors in the

longest pulldown chain to GROUND.

Finally, the pulldown transistor size is set to the width/length ratio that gives
the proper resistance for the transistor, as calculated from the capacitance
of the output node, the number of gates in the longest NAND chain in the

gate, the type of pullup device and the kind of signal on the gate of the

transistor.

The resulting equations for the width to length ratio for pullup and pulldown

transistors are:

s = 2
B Fuf prkaunkpn
Z .= CLdifps
Trrkan

where (} is the load capacitance on the output node, Ny is the number of
serial gates in the NAND chain in the gate pulldown, f,. is the factor which is
1 for resistor-like pullups and 4 for transistor-like pullups, f,, is the fanout

factor, the number of minimum transistor loads to be driven by a minimum
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transistor driver, kg is a constant that includes the constants to convert
capacitance in units of picofarads to a desired resistance and from that to a
transistor width. kg, is the basic ratio between an nMOS depletion-mode
pullup transistor and an nMOS pulldown transistor, f,s is the pass transistor
factor which is 1 if the signal on the gate of the pulldown transistor is a

restored logic signal and 2 if it has passed through a pass transistor.

When a pulldown transistor is sized, if the signal that drives the transistor
gate is gated by a pass transistor, the pulldown transistor is made twice as

wide to compensate for the lower gate voltage.

5.4.3. Sizing Transistors in Transmission Gates

Because of their bidirectionality, transmission gates cannot be sized until
the loads on the nodes on both sides of the pass transistor have been defined.
The size of the pass transistor is set so that the resistance of the pass
transistor is the same as the resistance of the pullup on an inverter driving
the the larger capacitance on either side of the pass transistor. This keeps
the pass transistor from becoming a serious impediment to the speed of the
circuit, while avoiding unnecessarily large pass transistors. The pass
transistor ratio is sized using the same equations as the pulldown, with some
simplifications because there is no NAND chain and the signal on the gate of
the pass transistor may not be gated by a pass transistor (that condition is

flagged as an error).

HAX(Cy,, Cr,)
Zips =

Trrkau
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5.4.4. Transmission Gate Chains

Frequently, transmission gates occur in chains, as in the case of the
Manchester carry chain. Such a chain is shown schematically in ﬁgure‘5.13.

This section describes how the techniques already presented optimize such a

chain.

The gate selection algorithm finds that none of the gates are ready to be
sized, since the inverter size depends on the sizes of the transmission gates
and the transmission gates themselves depend on the sizes of the other
transmission gates. Therefore, one of the gates is chosen to break the loop.
The algorithm will continue to pick one of the transmission gates to size until
all but one are sized. Then the last transmission gate will be sized since all
its loads are known. The other transmission gates may have to be re-sized,
and this process continues until all the gates reach mutually acceptable

sizes, within the five percent cutofl.

In the end, the last transmission gate in the chain, C, will be sized to drive
the larger load, presumably C;. Transmission gate B will see that its larger

load is C+(p, so it will be slightly larger. Transmission gate A will be sized to

Figure 5.13. A Chain of Transmission Gates Driven by an Inverter
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drive B+C+(C;. The inverter will see all pass transistors plus the load
capacitance as its load and will be sized accordingly. The result is a linear

increase in the sizes of the transmission gates.

5.5. Power Optimization Off the Critical Path

Fast gates off the critical path do not contribute to the overall speed of the
circuit, but they do consume more power and use more area than slow gates.
Therefore, the final step of performance optimization is concerned with
lengthening short delays in order to reduce power consumption in parts of

the circuit where delay is not critical.

This power optimization is done in two parts. First, the gate network is
analyzed and gates that are off the critical path are marked with desired
delays that will allow them to run more slowly without making any path delay
longer than the critical path delay. Afterward, the device sizing algorithm
from the delay optimization operation is run to set device sizes to match the

desired delays in each gate.

The node and gate data structure shown in figure 5.9 can be viewed as a

input Gate 1  Gate 3 output
connector connector

Figure 5.14. The Directed Graph Corresponding to the Circuit
in Figure 5.7
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weighted directed graph with restoring logic gates as the vertices of the
graph and the electrical nodes that are the outputs of the gates as the edges
of the graph. Each arc is weighted by the delay for the gate to drive the
capacitance on the node (figure 5.14). Transmission gates are referenced by
pointers on the electrical nodes, and are not nodes in this graph because
they do not contribute to the power usage. Loops in the graph would result
from feedback structures in the circuit. A more complex graph (figure 5.15)

results from the fanout example from chapter 4.

Power optimization is carried out on paths of gates through the circuit. A
path, as used in this section, is a chain of gates in which all gates are
distinct. The representation of the path in the directed graph is thus the
same as the definition of path given in [Harary 1972]. A path can be
identified by the final electrical node in the path, which is the last node to be
driven. That node may be on an output connector on the cell or it may be on

the gate of a transistor in a gate in the cell.

We are concerned with critical paths, the longest path between any two
points, as measured by the sum of the weights on the arcs connecting the

points (the sum of the delays).

D
output connector
O——0E—0O
input output
connector connector

Figure 5.15. The Directed Graph Corresponding to the Fanout Example
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Therefore, for the power optimization, we make the set of the longest paths
in the directed graph that start at the points that correspond to inputs of
the cell and end at points that correspond te the cell's output connectors or
to inputs to gates. Shorter path segments form separate paths, but paths

that are subsets of longer paths are not included.

The resulting paths include all gates in the cell, and every gate will belong to
- a chain along its most time critical path. When clocks are recognized as
breaking the paths, paths may start and end at pass transistors that are
gated by CLOCK signals.

Formally,

Def. The power optimization graph, G (V.£) of a circuit with node set S, and
gate set S, is a weighted directed graph such that
1) The vertices include
1) restoring logic gates,
2) connectors, and
3) if the CLOCKiﬁg option is on (see below), then include two new vertices
for each pass transistor.
2) The edges are
1) (i, j, 4) if © is an input connector, where d is the delay due to either a
minimum-sized transistor driving the load or a transistor smaller than
the load by the fanout factor, whichever is smaller, as discussed in the
following section,
2) (i, j, d)ifi and j are restoring logic gates and j includes transistors
in its pulldown transistor tree that are on a node that is possibly

connected to the output node of i, where d is the delay of gate %,
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3) (i, 4, d) if i is a pass transistor, where d is as described in 1),
4) (i, 7, 0) if j is a pass transistor, and

5) (i, §, 0) if  is an output connector.

Def. An i4 critical path, m, on the power optimization graph G is a pathin G

such that for all paths between vertices i and j, m has maximum weight.

Def. The critical path of a power optimization graph is the maximum weight
i-j critical path.

5.5.1. Path Determination

The path determination scans first the nodes on output connectors on the
cell, then the nodes on the transistors in gates. The node is followed
backward to either an input node or a transmission gate that is driven by a
node of type CLOCK. All paths starting at a CLOCK node are checked as part of
the critical path also. The use of the CLOCK as a path delimiter is optional

and can be turned off.

The path determination does a depth-first backward search of the graph
shown in figure 5.15, following the node connected to each of the pulldown
transistors on every gate it encounters. The maximum of the delays to a
gate is saved in the gate as is the delay to drive ité output node (that delay is

the product of the gate's pullup length/width and the output node

capacitance).

In this delay calculation, all input nodes are assumed to be driven by a gate
that would have been produced by the performance optimization algorithm.

That is, every input is assumed to be driven by a gate that is either scaled
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down by the fanout factor from the capacitance on the input node, or
minimum-sized, whichever is greater. These delays are used later when
optimizing paths inside the cell. The path determination from figure 5.15 is
shown in figure 5.18. Notice that a gate may be part of more than one path.

This is corrected in further processing.

Paths that start at a gate that is a member of a longer path are known as
Janout paths. Paths that end at a gate are called fanin paths. There are two

other kinds of paths, those that are unrelated to other paths, unrelated

Paths

Figure 5.16. The Paths Determination from the Graph in Figure 5.15
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paths, and those that are both fanout and fanin paths, fanboth paths. All
four kinds of paths are shown in figure 5.17.

The path determination algorithm described above does not recognize fan
out, since it follows the path all the way to the input connector, and lengths
of paths are not known until after all paths have been found. Fanout and
fanboth paths are uncovered on the second pass through the gates when the
gate delays are actually set. So the paths seen by the delay adjustment are
those in figure 5.18. When all paths have been found, they are sorted in order
of decreasing delay so paths with longer delays are sized before those with
shorter delays. The longest delay path is the critical path for the cell.

unrelated fanin

—0O0—0

fanout fanboth

Figure 5.17. The Four Kinds of Paths.
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O—O—O—

Figure 5.18. Paths Seen by the Delay Adjustment for the Path Determination
in Figure 5.186.

5.5.2. Path-Oriented Power Optimization

Power optimization attempts to make all paths through a cell take as much
time as the critical path does. Gates in unrelated paths must be adjusted so
the delay of the path is the same as the critical path. Gates in fanout paths
must be set so the path length is the same as the delay from the gate at the
start of the path to the total delay for the cell. Gates in fanin paths must be
set so the delay of the path :1s the same as the critical delay to the gate at
the end of the path. Fanboth paths must be lengthened so the delay is the

same as the delay between the gates at the ends of the path.

Instead of making the all paths in the cell as long as the critical path, the
user may set a desired delay for the entire cell. If that delay is longer than
the critical path, it is taken as the total delay for unrelated paths and there
is no critical path in the cell, so the longest path goes through the power

optimization just like other paths.

When the paths are found, each path is given a pointer to the gate that
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terminated it. The delay to that gate, which might change during the power
optimization, is the final time for the path. The starting time for the path
may be zero, if the path leads to an input on the cell. If some gates in the
path have already been set by the power optimization, the starting time is
taken as the delay from the last gate that has already gone through the
power optimization. When this is done, the path is shortened before
optimization, cutting off the already-optimized gates. This shortened path is

either a fanout path or a fanboth path, as mentioned above.

The path delay must be set to the difference between the final time and the
starting time. There are several options as to how to divide this extra delay
among the gates in the path. If we only care about matching the delay, we
could simply choose one gate and make it much slower to use all the extra
delay. Alternatively, we could make all gates have the same delay, dividing
the desired delay evenly.

We could divide the extra delay evenly among all gates in the chain, making
each gate slower than it was by the same amount of time. Or, we could make
each gate slower by the ratio of the desired delay to the current path delay.
It is not clear what the optimum solution is, and the solution used in Andy is
the last one: each gate in the chain is made slower by the ratio of the desired

delay to the current path delay, so each gate shares in the power saving.

The gate sizing algerithm in the performance optimizer uses the desired
delay field on the gates to set the size of the devices if the desired delay is
present. The power optimization simply sets those desired delays then runs
the performance optimizer. The performance optimization algorithm sets

device sizes to match the desired delays, which are set to zero for delay
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optimization.

Transmission gates are not explicitly modified by the power optimization
algorithm, since pass transistors do not affect the power consumption. Pass
transistor sizes may change, however, as a result of the power optimization if

the capacitances on its nodes are reduced.



CHAPTER 6

Performance Optimization Options

- This chapter deals with the myriad ways that Andy could have been. Some of
these alternate approaches were tried and found to be lacking. Some were
thrown out without being tried. Some are simply other ways of doing
performance optimization that may be as valid as the one implemented in

Andy.

There are also several suggestions for future work in this area, centering

around improved algorithms and more accurate delay models.

6.1. Explicit Parametrization of Delay, Power and Area

It has already been stated that long before physical limitations limit the
speed of a circuit, area use.and power requirements become ridiculous. A
system that optimizes performance cannot do so without regard to other
design parameters. Rather than use an algorithm that has the side effect of
limited delay, as 1 have done, one could envision a system that allows the
designer to specify the relative importance of the various design constraints

such as power, speed, and area, and let the system choose a design that fits

them all.

Such systems are called multiple criterion optimization systems [Lightner
1981]. These systems typically rely on heuristics, techniques for design that

are derived from a designer's experience, to lay out the circuit and trade off
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one design criterion against another. Unfortunately, the search for an
optimum in the rmultiple criterion decision space can be very time
consuming, so these systems have been used only on very small circuits.
Improved heuristics may be available in the future that will enable such

systems to produce reasonable chips in a reasonable amount of time.

Multiple criterion optimization systems also require a way to express the
relative importance of various design criteria. However the desired
optimizations for an integrated circuit are pretty well determined by the
time the circuit is in a form suitable for machine optimization. To be
specific, one wants optimum delay along the delay critical path an optimum
density along the dimensional critical paths. In all places where there is
slack space and delay, one wants low power. Although a system like the one
described in this thesis could provide that function, a more versatile system
would give the designer even more power to trade off design constraints very

late in the design cycle.

6.2. True Optimum Delay

As discussed in chapter two, the Andy performance optimization algorithm
does not make gate chains with true optimal delay. The optimal delay
requires a constant factor scale up through the entire chain of gates. It
should be possible to optimize small chains of gates using this uniform

ramping thereby achieving optimum delay along the chain.

The correct constant scaling factor for minimurm delay is relatively simple to
calculate in simple structures like a chain of inverters, but rather difficult to

calculate in more complex structures. Attempts to address this problem ina
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gate array system [Ruehli 1977] led to a rather complex solution, since the
size of every gate is dependent on the size of all gates in all chains that

intersect the chain of which the gate is a part.

True optimum was abandoned in Andy for three reasons. First, because the
algorithms were too complex for a system that was even remotely
interactive. Such time consuming algorithms may be made faster, or new
computer hardware may make them more attractive in the future, causing a
re-evaluation of this reason. The second reason for avoiding true optimum of
all gates is because the designers do not now design chips where every gate
is optimally fast. Designers are not concerned with delay to the exclusion of
all else. A casual survey showed that circuits produced by human designers
have most geometry at minimum size and only a few gates larger to make

the circuit faster. These designs usually have good area and power statistics.

The third and most important reason for abandoning true optimum is the
quality of the results obtained with the heuristic. Since the heuristic
produces circuits that are within about twenty five percent, not much more

improvement could be expected with a more accurate algorithm.

6.3. Transistor-Oriented Performance Optimization

An early attempt at the delay optimization algorithm used a transistor-based
optimization method. This was assumed to agree with MOS circuits that may

include a considerable amount of pass transistor logic.

A simple transistor sizing algorithm takes each transistor independently and

sizes it according to the load it drives. There are two difficulties with this
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approach. First, MOS transistors typically are bidirectional, and it is
impossible to tell which side is the load. This problem can be solved by
marking the POWER and GROUND nodes, and assuming that no devices drive
POWER and GROUND nodes and that there are no transistors that will make a
short circuit between POWER and GROUND. Therefore, in the inverter in figure
6.1, the transistors drive the the output rather than POWER and GROUND
nodes. These are the same assumptions made in the current system during

the gate extraction step.

The second problem with this method is more severe and is shown in figure

8.2: the size of the pullup transistor on the NAND gate depends on the number

POWER [F . £
] s

O /| -+

GROUND [J— ——F]

Figure 6.1. An Inverter
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pulldown transistors in the longest NAND structure in the gate. If the gate
structure is not known, the pullup cannot be sized correctly. This could be
solved by requiring the designer to provide proper pullup/pulldown ratio.
However, the structure of the design may not allow the designer to know how

many transistors are in series in the pulldown.

In order to size NAND structures properly, then, the system must have a
description of the circuit in terms of gates. This causes some problems with
MOS circuits, since a traditional gate-like description is frequently an
unacceptable description. Because so much MOS logic is made with
transmission gates, transmission gates were added as a separate case to

Andy's repertoire of gates.

L

--—H

Figure 6.2. Simple Method Cannot Size NAND Structure Properly.
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6.4. Better Gate Recognition Heuristics

The gates in figure 8.3 are not recognized by Andy's gate recognition
algorithm, the first because the pulldown structure is not tree-like, the
second, because the pulldown structure does not pull directly to ground, but
rather to other signals. They are valid nMOS circuits that should be
recognized and handled properly. Recognition of the graph structure
pulldown on the right side of figure 6.3 is relatively straightforward, since the
algorithm could noticé that both parts of the pulldown include the same
transistor. However, the exclusive-NOR on the left is more difficult, primarily
because part of its pulldown structure is in the gates that drive its inputs.
This circuit is similar to the select logic transistors in memories, which act
at some times like pass transistors and at other times like pulldown

transistors.

8.5. Should the Gates Be Described in the Data Format?

Why is it necessary to recognize gates at all? The Sticks Standard is used as
a symbolic interchange form for all Sticks processing programs. Those
program do not have to‘ recognize Sticks components every time a file is
read. Similarly, Andy could read and write an electrical symbolic form, a
form that expresses complete electrical entities. Currently, Andy goes
halfway to an electrical symbolic form, since it outputs a text representation
of the node and gate data structure. A simple modification to read such a
form would seem a reascnable alternative to deriving all that information

every time the cell is read.

The major problem with stating gates in a data format is that the
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Figure 6.3. Two Common lli-Formed Gates
decomposition of a chip into. gates is rarely the same as the decomposition
into cells. Cells are commonly parts of gates, and gates often span large
distances on the chip. An example of the independence of the design
hierarchy from the gate decomposition is the PLA. The PLA is typically
composed of cells that optionally include one transistor in a large fan-in NOR

gate. The question is where to put the gate, since none of the cells contain

the whole thing.

If each cell contains its own part of the gate, then the gate recognition
algorithm must still be run to resolve the problems at boundaries of cells.
Actually, it is irnpoésible to specify the gates in a cell, as shown in figure 6.4.

The cell £r is used in two radically different ways in the cell, once as a



-136-

pulldown transistor and once as a pass transistor. It is impossible to

characterize the transistor as anything other than a simple transistor, which

is what is done in the Sticks form.

The opposing argument states that it should be illegal to specify incomplete
gates, as shown in figure 8.4, just as designers using Sticks cannot make
individual mask changes. It also seems that all one need do to find a gate
structure is smash the lower levels of the design hierarchy. Although this
argument holds for many designs, there are some designs that resist gate-
level categorization. Indeed, it would seem unwise to restrict designers to

gates when much of the design cannot be categorized as gates.

TR

v

TR

Figure 6.4. The Transistor Cell Gate Structure Cannot Be Known
in Advance
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6.6. Problems With Unsorted Paths

The longer delay paths are sized first so that there is no chance of
accidentally lengthing a path beyond the critical path. A situation where a
path might otherwise be lengthened beyond the critical path length is shown
in figure 6.5. If the shorter of the non-critical paths is sized first, then re-
sizing for the longer path may cause the longer path to be longer than the
critical path, since gates cannot be made that generate results in negative

time.

The dangers of power optimization without sorting paths includes not only
making delays longer. A gate sizing algorithm that attempted to make the

remaining gates of the longer non-critical path very fast might find a solution
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Figure 6.5. Sizing Paths Without Sorting Causes Problems.
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which, although meeting delay requirements, was very wasteful of power,

possibly offsetting the advantages of the rest of the power optimization.

Some of the problems with unsorted paths can be solved by simply re-sizing
all gates to smaller values along the longer critical path in figure 6.5, not just
the gates that had not yet been sized. In this case, the remaining gates
along the shorter non-critical path would not be sized properly. They would
will still be too fast, and more powér could have been saved. Sorting the

paths is an inexpensive and accurate solution.

6.7. Problems With the Current Path Sorting Method

The current method of sorting paths and optimizing power in order of length
is not free of problems. Figure 6.6 demonstrates a case where the current
algorithm can fail. First, assume that none of the paths is the critical path,
and gates in both horizontal paths will be made smaller to save power. The
two horizontal paths (A B C D and F G H) are longer than the short path that
connects them (EA H), so they will be sized before the diagonal one. This
causes the gates on the two ends of the path (B and H) to be resized
independently. It may therefore be necessary to choose a negative delay
value for the central gate so the delay of its short path does not exceed the
delay between the already-sized gates at the start and at the end of the path.
The result may be an enormous gate (E) or simply an error, creating a new

longest path (A B E H) that may be longer than the critical path.
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Figure 6.6. A Situation That Causes Problems With
Sorted Path Optimization

6.8. Limitations of the Andy Clocking Model

The timing model used by the CLOCKing option is a rather simple one. It uses
the two phase non-overlapping clocks described in [Mead 1980]. In this
section, the clocking model used in Andy is compared to other sequential

timing models.

A typical sequential circuit with a two phase clock is shown in figure 6.7. The
circuit is composed of logic blocks that contain no state, separated by pass
transistors that clock the data between the blocks. Each logic block
generates results that must be ready before the clock signal following the
block goes low. This falling signal indicates that the data are valid for the
next logic block. In the figure, the data for logic block 2 are stable when ¢,
goes low and the results must be ready when ¢, goes low. Therefore, the
logic block must generate its results in the time between the falling edges of

the clock signals. Andy uses this simple timing model for its path analysis,



-140-

since it uses pass transistors that are controlled by CLOCK signals. Andy
assumes that the critical path that determines the clock frequency lies

between two clocked transmission gates.

The real behavior of this situation is more complex than that which was just
described. Some of the outputs from logic block 1 become valid before the
falling edge of ¢p. Logic block 2 can begin calculation of the next results
before the falling edge of g3 This more complex model requires that the
optimization be carried out on paths starting at ¢, through block 1, through
the ¢z pass gate and through block 2. The paths starting at ¢z through block
2, ¢, and block 1 must be optimized independently. ‘Andy does not support
this timing model.

Notice that this two-phase scheme can have precharged gates in the form
shown in figure 8.8. The inverter is precharged high during ¢, and computes

its result during ¢;. The delay of the signal on the output of the gate is

Logic

Block 2

Logic
Block 1

Figure 6.7. A Typical Sequential Circuit.
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dependent only on the fall time of the gate. The precharging does not
change the timing or the analysis. Paths of gates with precharges are legal
gates in Andy, and are treated correctly, since the CLOCK nodes on

transmission gates still determine the optimization paths.

The same precharge structure is used in a four-phase clocking scheme,
figure 6.9, In the four-phase scheme, the precharge gates themselves
provide the timing. The output of the first inverter is precharged on ¢, and
is calculated on ¢, That signal is valid on pg, when both ¢; and ¢, are low,
isolating the output node. The second inverter precharged during ¢z when
the first output result was being calculated, and the second inverter

calculates its result during gs.

In this four-phase timing meodel, the gate precharge structure provides the
timing information. So the precharge gates must be recognized as breaking

optimization paths, like the transmission gates with CLOCK nodes in Andy.

¢1-]
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Figure 6.8. A Simple Precharge Gate
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Figure 6.9. Precharge Gates in a Four-Phase Clocking Scheme.
Since these are exactly the same structures used in the two-phase
precharged scheme described above, an automated process cannot tell them
apart. If Andy were restricted to one of these two timing strategies, though,
it could be recognized. Alternatively, the labelling of timing gates, those that
break optimization paths, could be left to the user. Andy uses the former

method, limitihg the designs to the simple two-phase clocking model.

6.9. Non-Rectangular Transistors

Drivers of large loads frequently have non-rectangular transistors so they
can form more compact structures. Some algorithm for bending or snaking
very large transistors would be useful. It would seem reasonable, since
choosing the shape of a transistor is motivated by area constraints, that the
performance optimizer not be required to find appropriate shapes for large
transistors, but the performance optimizer should be able to handle bent

transistors.
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6.10. Additional Constraints

Consider the case of the shared bus, where the user wants to constrain the
load. Without any constraints, Andy assumes that the load is the sum of all
loads on the bus. Ideally, the load should be constrained to be worst of the
individual loads that the bus might drive. At the least, one would like to set
the bus load to the bus parasitics plus some additional load, the expected
worst-case load. The load constraint in Andy, however, only allows a single

number to represent the constrained load on the bus.

Since Andy deals with delays, it would seem reasonable that the designer
should constrain delays in the design. Most delay constraints are implicit in
the design: it is rather obvious that all delays should be as long as the longest
delay. But there are a few situations in which delay constraints are
meaningful. First, one would like to set the overall delay for a circuit
between clock phases. This is currently done with a command to the Andy
power optimizer, rather than a constraint, but its inclusion as a constraint

would not be difficult.

A second situation in which a delay constraint might be useful is when setting
the delays of several signals that form a composite multiple-wire signal. An
example is a sixteen-bit parallel data bus from a processor. External
circuitry cannot use any bit until all are ready, so there is ne need to drive
some faster than others. Not only would one like all signals to be driven at
the same speed, but one would like to set high and low bounds on the delays.
Setting a maximum bound is not difficult, but the current algorithms would
have some difficulty if the bounds were too extreme. Andy cannot make

arbitrarily slow or arbitrarily fast circuits.
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A third situation where a delay constraint would be useful is in setting the
size of a precharge transistor. The delay to precharge the signal should not

exceed the clock delay, which is the duration of the other clock phase.

6.11. More Accurate Delay Models

The delay model used in Andy is admittedly simple. More accurate models,
particularly for long wires, are commonly used in path delay analysis
software. The wire model used in [Putatunda 1982] provides a reasonably
good estimate of wire delay. This system uses the average of the Penfield
voltage bounds to get a reasonable estimate of the voltage over time. The
system extracts a delay for driving the node by measuring when the voltage
reaches a predefined point. The delay is divided by the effective resistance
of the wire plus the driving transistor to get an effective capacitance that is

used in simpler calculations, later.

Inclusion of pass transistor resistance would improve the accuracy of the
delay equations considerably, and the same mechanism that included the

pass transistor resistance could be used to include wire resistance also.

More complex models such as these which take into account distributed
resistance and capacitance could be used in Andy, but care would have to be
taken when making the changes because changes in the transistor resistance
do not affect the effective resistance of the node, and hence the delay in the
straightforwared way it does in the simple model now in use. Complex ad-hoc
approximations like this one can have disastrous special cases. Before one is
used, some work must be done to be sure that those special cases are not

catastrophic.
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The simple transistor model does not take into account sidewall capacitance
and other more minor effects. A more exact approximation of the delay
from the transistor would lead to more accurate delay calculations.
Although some existing systems use the simple RC model used in Andy,
others use more complex models. The table in figure 8.10 shows a few that
have been in the literature recently. These equations are all empirically
derived. Therefore, it is unknown if these equations would be valid in a

general case.

A problem with more complex delay equations is that some equation must be
used to translate backward from the capacitance on the node to a desired
resistance of the pulldown transistor. It is not immediately clear with some
of the more baroque transistor models how to do this. Even with the
relatively simple models, some work must be done first to be sure that sizing
feedback loops still terminates and that there are no additional less-

optimum stable sizes for feedback loops.

Finally, at this time it is not -clear how much performance optimization can
be gained with more accurate models. Before putting out all the effort, one
should be apprised of the gain. Andy could be used as a testbed for the

investigation of the advantages of these more accurate meodels.

Nham 1980] t =kRC

Koppel 1978] t = k+k by +hkoCr kgt Cp k(b Cr)?
Putatunda 1982] t =k+k,Cp+kaR Cp

Pilling 1972b] t = kRC;,

Figure 6.10. Sorne Transistor Delay Models in the Literature



CHAPTER 7

This chapter summarizes some of the philosophy about the relationship
between the work reported in this thesis and Sticks symbolic layout. It
starts with a description of the similarities between the performance
optimization described here and Sticks symbolic area optimization. This
discussion is carried to the role of symbolic systemns such as the Sticks and
Andy in supplanting parameters on parametrized cells, and the role of such
parameters in defining the design hierarchy. Later sections discuss the role

of a performance optimization system such as Andy in a complete design

system.

7.1. Similarities With Sticks

The table in figure 7.1 summarizes the comparison between Sticks area-
based optimization packing and stretching with Andy performance
optimization and power optimization. Many of the parameters are similar,
yielding similar algorithms and similar language for describing the
processes. Others are rather different, and serve to make more noticeable

the fundamental differences between the two operations.

Neither operation attempts to reach an absolute optimum. The optimization
operation only gives a local optimum for the parameter, and it may be that a

better value can be gotten by modifying the algorithm or the topology.
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Attribute Sticks Andy
Primary optimization parameter Length Delay
Secondary optimization parameter | Length (other axis) | Power
Unit of manipulation Component Gate
Connections between units Twigs Nodes (signals)
Parameter manipulated X or Y position Device size
Search limiter Spatial locality Electrical locality
Invariant Spatial topology Electrical topology
Algorithm limits Geometric Fanout rule,
design rules min. device size
Constrained Value X,Y position Capacitance,
Transistor LW

Figure 7.1. Comparison of Concepts in Area Optimization
and Performance Optimization.

Both operations optimize with respect to a set of inviolate rules. The Sticks
rules are minimum geometric size and spacing rules, the Andy rules are
fanout factor and minimum device size rules. More lenient rules, such as a
smaller line width or better metal spacing in Sticks yield better
optimizations. Similarly, a different fanout factor and lower capacitance
devices and wires yield faster circuits in Andy.

Andy uses an electrical locality, where adjacency is determined by electrical
connections between gates. 'ihis electrical locality does not follow the design
hierarchy, which is related to the physical decomposition of the design. It is
common to have several elements from all levels of the design hierarchy

closely related by their electrical locality. Electrical nodes must cross cell

boundaries.

7.1.1. The Unit of Manipulation

There are interesting differences between the units of manipulation of the
two systems. Andy's gates and nodes are much larger and much more

removed from the physical layout than the Sticks components and twigs.
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The Sticks components are good atomic units of the design. They are
infrequently split by cell boundaries. Indeed, the requirement that the
Sticks designs include only whole components has not met significant

resistance among designers.

Andy's gates and nodes, on the other hand, are frequently split by the design
hierarchy. It is not possible to determine what makes up a gate or what that
gate must drive until the entire hierarchy is known. Since designers prefer
to think in terms of the design hierarchy, Andy-like composition systems

have received very little notice compared to Sticks leaf cell design systems.

This globality of gates and nodes also shows the relative importance of the
performance optimizer. Sticks systems have not been embraced by
designers who believe that they can envision all the design rules and design
with them better than the Sticks system. When the rules that the designer
must work with are all local, and do not depend on far-away, possibly as-yet-
undesigned pieces of the layout, this is true. But the performance
optimization cannot be done on a small, local cell. The entire hierarchy must
be examined. The amount of information is just too great for a human to

handle, even for a small chip.

7.1.2. Constraints

In Sticks systems, constraints are applied to the positions of components,
the primary optimization parameter. In the Andy system, the constraints
are applied to loading on nodes and connectors, and to device sizes. While
the device size is the attribute being modified by the algorithm, the primary

optimization parameter is the delay across the circuit. Indeed, when the
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critical path is analyzed in the secondary optimization pass, delays, not

device sizes are inserted into the graph.

Since the purpose of the constraints is to limit the cleverness of the
optimizer, constrained loads and device sizes serve well. They provide an
interface with which the user is comfortable and which can be seen in the
representation of the circuit. As discussed in the previous chapter, there
are a few cased in performance optimization and power optimization where

one would like to constrain delays.

7.1.3. Tertiary Optimization

Andy performance and power optimization and Sticks area-based
optimization packing and stretching can be envisioned as automated
solutions to multiple criterion optimization problems. The general algorithm
attempts to optimize the primary parameter in the "packing” step, then
trade off optimization of that parameter when it does not affect the critical

path for the secondary parameter, in the "stretching” step.

These optimizations must be applied after the composition has been
specified to achieve some kind of global optimization, although some packing

could be done on a cell-by-cell basis.

In Sticks area optimization, the primary parameter is the length of the side
of the cell and its optimization is the familiar Sticks compaction. In the
second phase, constraints are determined so that the primary parameter
will get no worse, then all elements of the design that are off the critical path
of the primary parameter are made worse so that all path lengths match the

critical path length. This is the determination of stretch values in Sticks
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followed by stretching. Length in one dimension is traded for wiring
channels, saving length in the other dimension.

In the Andy opérations, the primary parameter is delay propagation across
the circuit. The secondary parameter is power dissipated by the chip.
Notice that with Andy, we could have reversed the order of parameters and
gotten the lowest-power design first (putting some constraint on pullup
transistors to keep them from getting ridiculous), then trading power for
speed making, perhaps, all parts of the chip dissipate the same power per

unit area, regaining speed.

It is difficult to see the parameters being traded off against one another in
Sticks because both the primary and secondary parameters are length. Also,
Sticks systems have only been used recently for stretching. The delay-power

tradeoff is much more familiar and has been worked for many years.

There is no reason to have only two parameters. There can be a tertiary
parameter, and so on. During each stretch operation, ail previous
parameters not on their respective critical paths are made less optimal in

favor of the new parameter.

This type of optimization, adjusting one parameter at a time, is rather
amenable to automation, since it requires no heuristics for exploring the
design space. However, it gives a design in which the critical parameter
absolutely optimized, and others are truly in a subordinate role. It is often
easy to see which dimension is critical in Sticks systems, so absolutely
optimizing that dimension at the cost of the other is not a great loss. When
trading off other parameters, for example speed, power and area, some

middle ground away from "optimally fast”, "minimum size”, and ’'lowest



-151-
power" is often desirable.

The system described in this thesis is not usable directly for such
optimization, but there are solutions to the problem. First, the order of the
parameters may be varied in different parts of the design. Alternatively,
optimizations could be allowed to reduce a previously-optimized parameter
by some amount, say five or ten percent, if the savings in the current
parameter was great enough. This would ease the restrictions on the
secondary parameter and could result in a better overall design. This type of
optimization is seen in Sticks cells in which the minimum area usually doees

not have one dimension totally minimized.

7.1.4. Algorithmic Similarity

The optimization and constraint generation occurs in the net defined by the
electrical adjacency, which is analogous to the solution graph used in Sticks
’ systenis [Mosteller 1981] The node and gate structure graph is shown in
figure 7.2 and a sample compaction graph from Rest is shown in figure 7.3.

Conceptually, the graph is solved in much the same way. However, additional

output comnector

input ' - - output
connector connector

Figure 7.2. Node and Gate Data Structure.
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complications in the graph solving algorithm for delay and power
optimization arise because we wish to spread out the delay savings evenly

among as many gates as possible in order to save as much power as possible.

7.2. Parametrized Cells and Symbolic Layout

A paorametrized cell is a cell that is defined as an algorithm that accepts
parameters. The cell can change to match its environment, reducing the

number of unique cells. The parameters to cells fall into three categories:
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Figure 7.3. Symbolic Layout Compaction Graph
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physical properties, electrical properties, and behavioral properties.

Physical properties are primarily connection points for cell stretching. The
algorithm that represents the cell includes a stretching algorithm to make a
geometric transformation. This algorithm allows connectors to be moved to
the positions given in the parameter list while maintaining geometrical

correctness.

Electrical properties include power loading and signal strengths. Electrical
parameters are much less common, and are handled by the algorithm
internally by sizing devices and performing a kind of stretching operation, if

needed, so the cells remain geometrically correct.

The third category of parameters is behavioral properties, which includes
number or bits in a data path, ROM and PLA coding, memory array sizes and

conditional geometry.

Parametrized cells can accept transformations like a geometrical data form,
device stretch positions, like a symbolic form, and device sizes like an
electrical symbolic form. In parametrized cells, all the processing of the
parameters is done by the cell. In Sticks and Andy symbolic systems, an
external algorithm handles all the parameter resolution. This is reasonable
for physical and electrical properties, since the way the optimization is done
does not vary from cell to cell. However, behavioral parameters are very

different.

Sticks eliminates the need for the user to deal physical parameters by
providing a form that can be stretched and an algorithm for stretching all

cells. The algorithm to modify component positions is external to the cell



-154-

and is shared among all cells. In a symbolic layout system, there is no need

for processing of physical parameters, the processing is incorporated in a

program that relies on the malleable positions of components.

Processing of electrical parameters is handled in a similar fashion in Andy. 7
The electrical symbolic data form relieves the user of the electrical
parameters, and there is an algorithm to perform the electrical composition

and optimization that is external to all cells and applicable to all.

This leaves only behavioral parameters. By their definition, behavioral
parameters are inherent to the design. Our goal is to shield the user from
having to deal with too many unnecessary parameters. Since behavioral
parameters cannot be eliminated, it would appear that a system that
eliminated the need for the user to address physical and electrical

parameters would be the best automation that could be produced. Andy is

such a system.

This treatment of parameters can be seen in the Sticks Standard. Those
parameters that are passed from the instance are specified in the cell by
"soft" numbers. In the Sticks Standard, the only hard numbers are the
device sizes. Therefore, an electrical symbolic format such as Andy's, that
makes those numbers soft as well, eliminates all hard numbers in cells. This

seems to be an indication that something is being done right.

7.3. The Relationship Between Hierarchy and the Design Data Format

Some people argue that since the electrical properties are inherently global,

a system that modified them would, of necessity, destroy the hierarchy. This
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statement is false on two counts. First, although electrical components may
be global spatially, they are perfectly local elecirically. Electrical
meodifications of parts of a circuit must look at other parts of the circuit, but
not more than one electrical node away. We have electrical topology similar
to the geometrical topology in symbolic layout systems. The electrical
topology is based on electrical nodes, and modification of that topology is the

creation of more nodes.

Second, destruction of the hierarchy depends on the hierarchy you view, If
the design hierarchy contains elements in an electrical symbolic format,
then cells can be personalized electrically without changing the hierarchy or
defining new cells. If you envision your hierarchy as containing symbols with
hard sizes on electrical components, like the Sticks Standard components,
then electrical optimizations do indeed destroy the hierarchy, just like a
Sticks system destroys a hierarchy that contains only symbols defined as

absolute geometry.

The number of "unique” cells in the system depends on the definition of
unique. If "unique" means "having a particular hard geometry”, then
symbolic stretching of a cell creates a new cell. If "unique” means having a
particular set of device sizes, then electrical optimizations create new cells,
but a Sticks-like positioning does not. If "unique” means having a particular
set of devices, regardless of size or absolute position, then an electrical

optimization does not create new cells.

Sticks systems have not be envisioned as destroying hierarchy because they
bave typically performed the compaction function before chip assembly.

This means the designer has control of the number of different compactions
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of the cell (typically one compaction to some minimum area). However, the
user cannot take advantage of the stretching properties when the cell is
interfaced to other cells in the system, losing the most important aspect of
the Sticks form: the ability to modify the positions of components when the
chip is assembled. Thus, early Sticks systems still had to route wires to
matqh connections to the exterior of cells [Williams 1977]. This revelation
also explains why assembly systems such as Riot [Trimberger 1982b] create
such a large number of cell definitions - the design tools still envision a cell

as having a particular hard geometry, so differently-sized cells required

different cell definitions.

An electrical symbolic system creates a large number of cells if we envision
cells as primitive geometrical or topological objects, and if we insist on using
the full power of the malleable-transistor form. This proliferation of cell
definitions in an Andy-like system would not be apparent either if
performance was optimized within the cell without considering the
environment, then the celllused in designs, because the control of cell
creation falls back on the designer. But in this case the designer is forced to
use pre-optimized cells that may make a good implementation in the new
environment. The is the same problem faced in standard cell systems that

must add function outside the cell to make the logical interface.

7.4. Andy as a Piece of a Desgign System

Performance optimization alone cannot make a design system. A design
system requires tools to generate the data Andy uses, and tools to take

Andy's output and produce a chip. An example of such a system is outlined
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in figure 7.4.

The optimization system takes input from any of a number of assembly tools
and performs the logical composition, making physical connections to
correspond to the logical connections between instances, and making the
equivalent electrical composition, setting device sizes so that all signals can

be driven quickly. The system optimizes area, delay and power.

Of course, all composition tasks must process the complete design
hierarchy. The performance optimizer described in this thesis does so, and
an area optimizer must work in conjunction with it. Another part of the
system must be a program to set power wire widths to meet current density

limits. Such a feature is relatively simple, given the data structure in Andy.
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7.4.1. Interaction of Optimization Tasks

The changes Andy makes in device sizes may violate geometrical design
rules. Therefore, after performance optimization, the circuit must be put
through a Sticks area optimizer to repair geometrical design rule violations.
The changes made by the Sticks compactor will be reflected in different wire
lengths, changing the parasitic capacitances and therefore the required
drive of the gates. This will require another delay optimization with the new

parasitic capacitances,

This iteration through performance optimization and area optimization
should settle down relatively quickly, since delay and area are not tightly
coupled. During delay optimization, transistor sizes increase by a factor of
1/fenout factor in width at the most, and may actually become smaller. A
segment of wire of comparable length is generated by the area optimizer
with capacitance also proportional to 1/fanout fuctor. This increase leads to
increased device sizes of order 1/fanout factor’ to accommodate the

increased capacitance of the longer wires. Since the gate sizing has a cutoff

point, this iteration must coverage.

Iteration of the optimization steps may seem unsettling, but it is already
done in area compaction in which X and Y dimensions are compacted
independently. Since the X and Y dimensions are indeed dependent on one
another, the compaction steps must be iterated. Since the size of wires and
the size of transistors are related, and we wish to optimize them separately,
we must iterate the optimization steps. Of course, a different order of

optimization steps leads to a different final circuit.

If the area composition system has a choice of where to lengthen wires, it
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would certainly be advantageous to decide which wires to lengthen by the
effects of the longer wires on the delays. A reasonable choice is the
minimum capacitance solution produced by the agffinity algorithm in Rest
[Mosteller 1981]. However, this is not necessarily the minimum delay
solution. Rather than build a system with the delay optimization and area

optimization separate, it may be advantageous to build them together.

7.5. Other Applications of Andy

The algorithm described in this thesis can be used in more than one way. It
has been described as a synthesis tool for éreating proper layouts. It could
be used earlier in the design process with a logic diagram to determine
optimum device sizes before any layout takes place. In this mode, though, it
could not take into account the parasitics on the wires. Andy could also be
used as an analysis tool to show where the fanout rules are not being obeyed

in a circuit.

These uses of Andy could be incorporated inte conventional design systems
in which the circuits are described geometrically, and electrical information
is extracted for analysis. It would not be reasonable to adjust device sizes in
such a system because no area optimizer would be available to correct the

geometrical design rule violations introduced by the electrical optimization.

However, this seems rather inefficient, because if the circuits were described
in the proper form, the design system could not only check a circuit, but

correct it as well.



CHAPTER 8

Conclusions

Current integrated circuit design practice does not address performance
issues well. Current means of gaining better performance are expensive,

generate poor optimizations or both. Hierarchical design aggravates this

problem.

The integrated circuit design work in universities stresses fast turnaround
and functional correctness at the expense of area and performance
optimizations. The loose area design rules do not cause chips to be too much
larger than those made with more precise design rules. However, many in
the university community ignore performance optimization because it is
difficult and because the traditional way to do performance optimization
requires more design iterati.ons. These design iterations seriously impact

the delay to getting working parts.

The system described in this thesis can generate faster parts automatically.
It does not require additional design iterations or costly simulation. The
algorithm can be changed without modification of the underlying conceptual

basis if different models or true optimum performance is desired.

The system is cheap to use in terms of elapsed time, computer time, and
human operator’s time, Rather than give the user statistics or telling him
what to do, the system actually makes the changes that must be made to

produce faster circuits.
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The system has many similarities to symbolic layout. Those similarities
include data structures, algorithms and general approach to optimization.
Performance optimization as described in this thesis relies on symbolic

layout area optimization to make design rule correct chips.

The system described in this thesis allows the designer to use more advanced
assembly tools, such as stretching tools, which otherwise might generate
hopelessly slow chips. It allows the composition system to do electrical

composition, not merely physical composition.

Traditional tools are caught between enormous circuit complexity and the
physical hierarchy that is used to address that complexity. The hierarchical
design does not necessarily aid difficult composition tasks, and may make
them even more difficult. Tools that address some cornposition tasks may
fool the designer by hiding other problems. It is hoped that this work will

stimulate others to investigate the new role tools must play in composition.



References

[Agule 1977] B.J. Agule, J.D. Lesser, A.E. Ruehli and P.X. Wolff, Sr., "An
Experimental System for Power/Timing Optimization of LSI Chips”,
Proceedings of the Fourteenth Design Automalion Conference

[Anderson 1982] J.M. Anderson, B.L. Troutman and R.A. Allen, "A CMOS LSI 16
X 16 Multiplier-Accumulator', 1982 IEEE International Solid State Circuils
Conference Digest of Technical Papers

[Bening 1982] L.C. Bening, T.A. Lane, C.R. Alexander and J.E. Smith,
"Developments in Logic Network Path Analysis" Proceedings of the
Nineteenth Design Automation Conference

[Bilardi 1981] G. Bilardi, M. Pracchi and F.P. Preparata, "A Critique and an
Appraisal of VLSI Models of Computation”, CHU Conference on VLSI Sysiems

and Computations, H.T. Kung; B. Sproull, and G. Steele, ed.

[Chawla 1975] B.R. Chawla, HK. Gummel and P. Kozak, "MOTIS -- An MOS
Timing Simulator”, IEEE Transactions on Circuils and Systems, December,
1975.

[Chen 1977] KA. Chen, M. Feuer, K.H. Khokhani, N. Nan, and S. Schmidt, "The
Chip Layout Problem: An Automatic Wiring Procedure”, Proceedings of the
Faurteenth Design Automation Conference.

[Cohen 1978] E. Cohen, A. Vladimirescu and D.O. Pederson, "User's Manual for

Spice" University of California at Berkeley, Computer Science Department

-162-



-183-

[Daseking 1982] H.W. Daseking, R.1. Gardner and P.B. Weil, '"Vista: A VLSI CAD
System", IEEFE Transactions on Computer-Aided Design of Inlegrated
Circuits and Systems, January, 1982.

[Foderaro 1982] J.K. Foderaro, K.S. Van Dyke and D.A. Patterson, "Running
RISCs", VLSI Design, September/October 1982.

[Harary 1972] F. Harary, Groph Theory, Addison-Wesley, Reading,
Massachusetts, 1972.

[Johannsen 1981] D. Johannsen, "Silicon Compilation”, PhD Thesis, Computer
Science Department Technical Report #4530, California Institute of

Technology.

[Kingsley 1981] C. Kingsley, "Earl: An Integrated Circuit Design Language”,
Master’s Thesis, Computer Science Department Technical Report #5021,
California Institute of Technology.

[Koppel 1978] A. Koppel, S. Shah and P. Puri, "A High Performance Delay
Calculation Software System for MOSFET Digital Logic Chips", Proceedings of
the Fifteenth Design Automation Conference,

[Lang 1979] D. Lang, "LAP User's Manual”, Computer Science Department
Technical Report #3356, (Rev 1982 #4379), California Institute of Technology.

[Lightner 1981] M.R. Lightner and S.W. Director, 'Multiple Criterion
Optimization for the Design of Electronic Circuits”, IEEE Transactions on

Circuils and Systems, March 1981.

[Locanthi 1978] B. Locanthi, "LAP: A SIMULA Package for IC Layout”,

Computer Science Department Display File #1862, California Institute of



-164-
Technology.

[McWilliams 1978] T.M. McWilliams and L.C. Widdoes, Jr., "The SCALD Physical

Design Subsystem", Proceedings of the Fifteenth Design Automation

Conference.

[Mead 1980] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-
Wesley, Reading, Massachusetts, 1980.

[Mosteller 1981] R. Mosteller, "A Leaf Cell Design System", Master's Thesis,

Computer Science Department Technical Report #4317, California Institute of
Technology.

[Mosteller 1982] R. Mosteller, "An Experimental Composition Tool",

Conference on Microelectronics, 1982, The Institution of Engineers, Australia.

[Nham 1980] H.N. Nham and A K. Bose, "A Multiple Delay Simulator for MOS
LSI Circuits”, Proceedings of the Seventeenth Design Automation

Conference.

[Penfield 1981] P. Penfield, Jr. and J. Rubinstein, "Signal Delay in MOS

Interconnections”, Proceedings aof the Second Caltech Conference an VLSI.

[Persky 1976] G. Persky, D.N. Deutsch, and D.G. Schweikert, "LTX - A System
for the Directed Automatic Design, of LSl Circuits”, Proceedings of the 13th

Design Automation Conference,

[Pilling 1972a] D.J. Pilling, P.F. Ordung and D. Heald, "Time.Delays in LSI
Circuits”, JEEE 1972 International Symposium on Circuif Theory.

[Pilling 1972b] D.J. Pilling and J.G. Skalnik, "A Circuit Model for Predicting



-165-

Transient Delays in LSI Logic Systems"”, Sizth Asilomar Conference on

Circuits and Systems.

[Putatunda 1982] R. Putatunda, "Auto-Delay: A Program for Automatic
Calculation of Delay in LSI1/VLSI Chips", Proceedings of the Nineteenth Design

Automation Conference,

[Rowson 1980] J.A. Rowson, "Understanding Hierarchical Design", PhD Thesis,

Computer Science Department Technical Report #3710, California Institute of
Technology.

[Ruehli 1977] A.E. Ruehli, P.X. Wolff, Sr. and G. Goertzel, "Analytical
Power/Timing Optimization Technique for Digital System", Proceedings of the

Fourteenth Design Automation Conference.

[Sproull 1980] R. Sproull and R. Lyon, "The Caltech Intermediate Form for LSI
Layout Description”, from [Mead 1980].

[Sutherland 1979] I.E. Sutherland, C.E. Molnar, R.F. Sproull, J.C. Mudge, "The

Trimosbus", Proceedings of the Caltech Conference on VLSI, C.L. Seitz, ed.

[Trimberger 1980a] S. Trimberger, "The Proposed Sticks Standard",
Computer Science Department Technical Report #3880, California Institute of
Technology.

[Trimberger 1980b] S. Trimberger, '"Paul -- Stick Diagram Maker", Computer
Science Department Display File #3898, (Rev. 1982 #5009), California
Institute of Technology.

[Trimberger 1982a] S. Trimberger and C. Kingsley, "Chip Assembly Tools",

Proceedings of the 1982 International Symposium on Circuits and Systems.



-166-

[Trimberger 1982b] S. Trimberger and J. Rowson, "Riot — A Simple Graphical
Chip Assembly Tool", Proceedings of the Nineteenth Design Automation

Conference

[Williams 1977] J.D. Williams, "Sticks — A New Approach to LSI Design", M.S.

Thesis, Massachusetts Institute of Technology.

,...
o

{

3
Pl
gu

I




APPENDIX A

Andy User’s Manual

A.1. Introduction

Andy is a program that takes a logical composition specification for an nMOS
circuit and performs the electrical composition, which involves three tasks.
Most importantly, Andy improves the speed of the circuit by adjusting
transistor and resistor sizes to match the capacitive lcads on them. In
addition, it ensures proper pullup-pulldown ratios on all gates including those
that have some inputs gated by pass transistors. Andy also flags dangerous,
probably illegal conditions, such as the case where signal on the gate of a

pass transistor has itself been gated by a pass transistor.

The role of Andy in the design tool structure can be seen in figure A.1. Chip
assembly tools are used to specify a composition for a chip. Then area and
delay optimizations improve the design. The results of the optimization
steps may lead the designer to improvements that require another design
cycle. The design iterates through editing and optimization steps until the

designer is satisfied with the result.

The current design system using Sticks is shown in figure A.2. Andy reads
and writes Sticks Standard files that may be prepared by REST, Paul, Riot,

Rcomp, PLA, or other leaf cell and composition tools.

The area optimization makes the logical connection, whether by routing or

-187-
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Figure A.2. Andy in the Caltech Design World
stretching, and guarantees some local optimum for the resulting size of the
cell. Likewise, performance optimization makes the electrical connections,
ensuring that these connections are correct in an electrical sense -- nMOS

ratios are correct, and all gates achieve some local optimum for delay and
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power.

Figure A.3 shows the optimization algorithm block diagram. First, Andy
reads a Sticks file and extracts the node and gate data structure. Then
performance optimization is done followed by the power optimization step.

In the end, Andy writes a Sticks Standard file.

The delay and power optimization in Andy is a purely electronic method,
dealing only with the electrical capacitive attributes of the circuit. Andy
optimizes performance of an integrated system by altering device sizes to
match the loads on them. Andy also makes proper pullup/pulldown ratios
and fixes gate ratios for gates whose inputs went under pass transistors.

Proper ratios are a side-effect of the gate sizing algorithm.

There are many other methods of performance enhancernent that could be
used: wires could be shortened, logic stages could be inserted or deleted to
make the fanout factor as close to optimum as possible, duplicate logic could
be introduced to avoid fanout. These changes are considered design issues
to be handled by the designer, as opposed to layout issues that are handled

by the design system. The output from Andy will direct the designer to make

Read Sticks
Make 'LNodes
Recogn;ze Gates
Optimiz+e Delay
Optimiz‘Le Power
Write J‘Sticks

Figure A.3. Performance Optimization Flowchart



-170-

these kinds modifications of the logic to further improve the performance.

This document is the User's Manual for Andy. It includes information on the
kind of input Andy expects and the kinds of operations that can be
performed on that input. The document is divided into three parts: a
description of the input required by Andy, a description of the commands,

and a description of the algorithms.

A.2. Overview of Andy

Andy is a program that optimizes delays in circuits that are defined in a
symbolic notation. The interface to the optimizations is the major facility in
Andy. The Andy is a command-oriented design aid. The Andy program allows
the user to read Sticks files alter then and run the performance optimization
on them. The optimizations can be run independently or as a group and the
user may view the result or get statistics on the resulting circuit. When the

user is content with the design, he may write it back in Sticks form.

Besides an interface to the performance and power optimization algorithms,
Andy has several utility functions for altering Sticks cells, to prepare the
design for the optimization, and to direct the optimizations. These utilities
add parameters to connectors and constraints on components and twigs in
Sticks Standard cells. Andy has no Sticks editing facilities. Changes in the

circuit must be done with some other tool.
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A3. The Andy Node and Gate Model

The circuit is made up of gates that drive capacitive loads on electrical
nodes. A node is a collection of all the Sticks twigs and component
references that are always at the same electrical potential (after everything

settles down). Nodes may cross the boundaries of the physical hierarchy.

Gates are recognized on the entire cell submitted for optimization. The
algorithm follows nodes across cell boundaries if necessary and moves up

and down the design hierarchy to extract the gate information.

In nMOS circuits, there are basically two kinds of gates: restoring logic gates,
with a pullup device and a pulldown structure, and fransmission gafes which
are pass transistors (figure A.4). The former are unidirectional and are the
form most often envisioned as gates in circuits. These unidirectional gates
are made up of a single pullup device connected to the POWER node on one
side and the output node on the other, and a tree-like pulldown structure
connected between the output node and GROUND. A transmission gate is
formed by a transistor that is not along a path from POWER to GROUND. This is
the same distinction used in the gate extraction algorithm for the MOTIS

simulator [Chawla 1975].

The gate recognition algorithm distinguishes between restoring logic gates
and transmission gates. However, there are some MOS structures that are
not allowed, and some that will not result in a gate derivation that the
designer wished. Gates may have only one pullup and one output. The
pulldown structure must be a true tree structure with no internal
connections. Examples of well formed gates are given in figure A.4, and ill-

formed gates in figure A.5. The gate on the left side of figure A5 has a
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graph-like pulldown structure. The gate on the right side has two outputs.

A.3.1. Delay Models

The delay of a restoring logic gate is proportional to the resistance (R) of the
pullup times the capacitance (C) on the output node. The capacitance may
include the parasitic capacitance on the wires. The delay through a chain of
gates is the sum of the RC delays. This RC delay is the measure used in
estimating delays in the optimization algorithms. The amount of power
dissipated by these gates is inversely proportional to the resistance of the

pullup.

Transmission gates are potentially bidirectional, and current supplied
elsewhere will pass through a pass transistor. The optimizer attempts to
keep pass transistors from being serious detriments to the performance of
the circuit. It is also unreasonable to make pass transistors have a negligible
effect of performance at a large cost in area. Therefore, the pass transistor
resistance is set to be the safne as the resistance of a pullup that would have
to drive the larger of the capacitances on each side of the gate. Pass
transistors are not considered in the determination of the delays in a circuit
except as an additional capacitance on the node, and since they have no
connections to POWER and GROUND, they do not contribute to power

consumption.

There are places of special concern with bus-like structures in which the
signal goes through a pass transistor. Logic on the other side of the pass
transistor may at some times require that the node drive logic, and at other

times the logic may drive the node. The algorithm assumes worst case in all
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pass transistor situations: it assumes that it may have to drive all logic past
a pass transistor at once. Therefore, the capacitance on a node that runs to
a pass transistor includes the capacitance of the transistor and the
capacitance on the node on the other side of a pass transistor as well. The
capacitance calculation goes through all pass transistors. To limit this, the

user may constrain a capacitance on a node, such as the bus node.

A4. Input

Andy’'s input format is Sticks Standard with some extensions for dealing with
electrical properﬁes of the design, and some restrictions on the kinds of
constructs that are acceptable so that no ill-formed gates exist. This section
introduces the Sticks Standard and lists the extensions to the Sticks

Standard for Andy.

Andy deals with symbolic layout defined in the Sticks Standard [Trimberger
1980a] and uses the Sticks nMOS components [Kahle 1981]. Andy accepts the
full Sticks Standafd including the design hierarchy. Therefore, the Riot
output, when converted to Sticks form is an acceptable form for Andy. It
should be noted, however, that because Andy makes changes to device sizes,
there must be a compaction (area optimization) step after the performance
optimization. Due to limitations in current tools, this is not possible with all
circuits at this time. It seems possible, though, that RCOMP could be made
to do this,

There are also several added parameters on components and constraints
that are used to control Andy’'s cleverness that are not part of the usual

nMOS Sticks. Some of these are necessary for Andy, some are desirable.



-175-

These extensions must be added before the optimization algorithms are run,
and there are commands in Andy to do this. Problems occur with some
software that does not accept the extensions that Andy requires, so with the
current setup, it may be necessary to add these extensions every time

through the design loop.

Figure A.6 shows a Sticks Standard representation of a cell with several of
the additions required for Andy. These additions are discussed in the

following sections.

Andy reads Sticks Standard format [Trimberger 1980a]. A sample Sticks
Standard cell is shown in figure A.6 and a drawing of the cell in figure A.7.
The Sticks form describes components, such as transistors, resistors,
contacts and connectors; twigs, which are interconnection; and constraints,

limits on the cleverness of the optimizing program that will optimize the
data.

AA.1. Parameters

Unaugmented Sticks Standard does not include enough information for
performance optimization. Therefore, several parameters on components
and constraints were added to facilitate the performance optimization. New
parameters on components are shown in figure A.B. These parameters can

be added to Sticks cells in Andy.

The gate finding algorithm can find pass transistors most of the time.
However, some circuits, such as the shared bus in figure A.9, confuse it
because Andy sees a path from both pullups through the Bus node, the pass

transistors and the pulldown on the other bus driver to GROUND. By explicitly
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CELL srcell 250 4

COMPONENTS
CONNECTOR T GROUND: gndl -48 -45 gndr 48 -45 ;
CONNECTOR T INPUT: in -48 -29 ;
CONNECTOR T POWER: vddl -48 45 vddr 48 45 ;
CONNECTOR T OUTPUT: out 48 -29 ;
CONNECTOR T CLOCK; clktop B 58 clkbot B -58 ;
NENH W 186 L 8 pd -20 -29 ;
NENH WBL &psNO-18-7;
NRES W8 L 32: pu 20 1 ;
NBUT: but N -1 0 28 -15 ;
NDM: N1 -20 -45 ;
NDM: N3 -20 45 ;

TWIGS
POLY{(B):= clkbot 8,43 7ps.Gl clktop;
METAL(12):;= gndl N1 gndx
DIFFUSION(8):= N1  pd.SOURCE;
POLY{8);= in pd.Gl;
DIFFUSION(8):= pd.DRAIN puDSOURCE ps.SOURCE;
POLY(8):;= 28,29 ( out) butP;
DIFFUSION(8);= pu.DRAIN N3;
DIFFUSION(8):=  ps.DRAIN  but.D;
METAL(12):;= vddl N3 wvddr

CONSTRAINTS
in.Y=out.Y;

END

CELL sr 250 4
COMPONENTS

srcell : srl 48 O
srcell :  sr2 144 O;
CONNECTOR T GROUND: gndin 0 -45 gndout 182 -45 ;
CONNECTOR T POWER: pwrin 0 45 pwrout 192 45 ;
CONNECTOR T INPUT: input 0 -29 ;
CONNECTOR T QUTPUT C 10: output 182 -29 ;
CONNECTOR T CLOCK: clktopl 58 59 clkbotl 58 -59 ;
CONNECTOR T CLOCK: clktop2 152 59 clkbot2 152 -59 ;

TWIGS
Metal : = srigndr sr2.gndl;
Metal : = sri.vddr sr2.vdd];
Poly : = srl.out sr2.in;
Metal : = pwrin srl.vddl;
Metal : = pwrout sr2.vddr;
Metal : = gndin sri.gnd];
Metal : = gndout sr2.gndr;
Poly : = input srl.im;
Poly : = output sr2.out;
Poly : = sri.clktop clktopl;
Poly : = sr2.clktop clktop?;
Poly : = srl.clkbot clkboti;
Poly : = sr2.clkbot clkbotl;

CONSTRAINTS

END

Figure A.68. The Sticks Standard Representation of a Shift Register Segment.
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Figure A.7. The Shift Register Segment from Figure A 6.

On a Transistor

P The transistor is forced to be a pass transistor.
On a Connector
T <type> The type of a signal on the connector.

C <number> A default capacitance on the connector.
O <number> A default capacitance on the connector.
P The signal on the connector came under a pass transistor.

Figure A.B. Table of Additional Parameters on Sticks Components
declaring the pass transistors in these cases or by constraining the bus node
(see below), the gate finding algorithm will succeed and performance

optimization will produce better results.

The type of a connector is vital to the device recognition and performance
optimization algorithms. The types understood by Andy are shown in the
table in figure A.10. Note that the types are all capitals.
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Figure A.9. Shared Bus Structure.

POWER Power connection from the power supply.

GROUND Ground connection from power supply.

INPUT Signal generated outside the cell driving logic inside the cell.
OUTPUT Signal generated inside this cell driving logic outside the cell.
10 Signal that acts as both INPUT and OUTPUT.

BUS Functionally equivalent to I0.

CLOCK Signal that delimits ends of time phases.

Figure A 10. Table of Connector Types Used in the Sticks Standard
The required connector types are POWER and GROUND. If POWER and GROUND
are not specified, the gate recognition will not be able to find gates in the
circuit. INPUT and OUTPUT connectors may be labelled to direct the
algorithmn's attention. Unlabelled connectors are assumed to be I0. OUTPUT
and IO connectors may have an additional parameter to simulate a load of a
given number of minimum-sized transistors on the output. This simulated
load is used when the cell is not used as an instance in a larger circuit, so

there is no real load on the connector.

For delay calculation, every INPUT is assumed to be driven by a gate that is
smaller than its load by the fanout ratio, or by a minimum size transistor,
whichever is larger. Also, an INPUT connector is assumed to represent a

restored logic signal unless it is marked that it came under pass transistor.
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Connector types, capacitances and unrestored signal markings are only used
on connectors on the cell on which the performance optimization is being
done. Connectors on instances in the hierarchy are absorbed, and their

attributes are extracted from the circuit.

A.4.2. Constraints

Andy uses some additional constraints beyond the simple geometrical
constraints described in the Sticks Standard document. These constraints

limit the performance optimizer, and are summarized in the table in figure

A1l

Andy modifies transistor lengths and widths, and the user has the ability to
restrict that resizing on specific transistors. A pre-defined capacitance that
is applied to a twig is transferred to the node that includes the twig when the
node creation is done. This constrained capacitance then takes precedence
over the capacitance that is calculated for the node. This capacitance
constraint is useful in shared bus situations where the designer knows that
each driver need not drive all loads off the bus at once. The performance
optimizer will otherwise assume the worst, looking through pass transistors

pessimistically, unless the node capacitance is constrained.

The gate finding algorithm terminates at a BUS node. Andy's gate recognition

trans .L = <number> The length of a transistor.

trans .W = <number> The width of a transistor.
twig .C = <number> A pre-defined load capacitance on a twig.
twig .B The twig referenced is on a BUS-type node.

Figure A.11. Table of Additional Sticks Standard Constraints
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algorithm normally follows nodes to GROUND, which is incorrect in many
cases with shared busses, such as the one in figure A.8. The BUS constraint
on a twig will caﬁse the node that contains the twig to be a BUS node, so the
pass transistors that connect modules to the bus will be recognized as pass

transistors not as part of a pulldown structure that extends through the bus.

Improper use of these constraints can cause the performance optimization

to give wildly inaccurate results, so they should be used sparingly.

A5. Andy Commands

This section deals with the commmands to Andy. The commands are grouped
into categories, and each command is treated separately. Commands, file
names, and cell names are not case-sensitive. That is, the capitalization is
not important. However, component names and connector types are case
sensitive, so you must type them exactly as they appear in the file. When the
user must type a number, if the number is a physical size, the units are
lambda, as defined by the scaling parameters on the cell definition. If the
number is a capacitance, the units are minimum-sized transistor loads
(.01pF). If the number is a delay, the units are in terms of the resistance (as
measured by a transistor length/width ratio) times a capacitance in

picofarads. These are the same units put out by Andy.

A5.1. Input and Output

Andy reads and writes the Sticks Standard, and recognizes the extensions
described above. In addition, Andy can write a dump of its internal form

including the node and gate information that was derived from the Sticks.
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get <filename>

This command reads a Sticks Standard file from disk into memory. The
file may contain many cell definitions and may describe a hierarchy for

the design. The extension .STK is default.

put [cellname] [filename]

This command writes the cell into the file in Sticks Standard. The cell
and all of the defining cells for the instances in it are written into the
file. The extension .STK is assumed for the file. If the file name is not
specified, the output is put on the terminal. The cell name is searched
as defined in the Sticks Standard, first in the definition in which the user
is currently working, then up the definition tree to the top-level cells. If
the cell name is not specified, then the last cell that was used in any

command is used.

dump [cellname] [filename]

This command writes the cell into the file in dump mode. The entire
data structure including the full internal component and twig structures
and all nodes and gates are written out. Only the specified cell is
written, not the defining cells for the instances in it. The extension .DMP
is assumed for the file. If the file name is not specified, the output is put
on the terminal. If the cell name is not specified, then the last cell that
was used in any command is used. If nodes and gates have not yet been
recognized on the cell with the makegates command or some
optimization command, the node and gate sections of the dump will be

empty.
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dumpgates [cellname] [filename]

This command writes only the gates in the cell into the file in dump
mode. The extension .DMP is assumed for the file. If the file name is not
specified, the output is put on the terminal. 1If the cell name is not
specified, then the last cell that was used in any command is used. If
gates have not yet been recognized on the cell with the makegates

command or some optimization command, the gate dump will be empty.

A5.2. Cell Management

Andy maintains a list of currently-defined cells. In an interactive system
such as this one, cell management facilities are required to help the user
select the cells to be optimized. Andy has facilities for listing cell namés,
entering a cell to view the cells defined within it, and clearing the list of cells.

list or cells

This command types on the display the cells currently in the cell list. If
the user has pushed into a cell, then that cell's list is displayed. The cell

names and bounding boxes are displayed on the screen.

clear

Remove all cells from the list of cells.

push <cellname>

The Sticks Standard allows cells to be defined locally to another cell. In
order to view them, the user must change his cell context to that cell
definition. When a cell name is specified in some other command, the

search for the definition of that cell proceeds as defined in the Sticks
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Standard, first in the definition in which the user is currently working,
then up the definition tree to the top-level cells. Note that this does not

affect the current cell, the cell that is the default when none is specified.

pop

This command sets the working cell to the cell that includes the current
working cell's cell definition. It moves up the cell definition hierarchy.

who [cellname]

This command sets the current cell (not the same as the working cell).
The current cell is the cell that is used of no cell is specified. If no cell
name is given, then the cell is not changed. The name of the current

cell is typed out.

A5.3. Plotting

It is often necessary to view the data to add constraints, to understand what
the optimization has done or to identify the places where the design should

be modified so more optimization can take place.

Andy has a complete plotting package that includes cell selection, windowing,
output device selection and scaling of the plot. There are options on plotting
that enable the user to plot only the cell bounding box and connectors, and
to optionally include component names on the plots. The user may plot the
cell as a symbolic Stick diagram or as an abstract gate bubble diagram,

showing the connections from the connectors on the cell and the connections

between gates,.
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user <> <b> <r> <t>

This command sets the left, right, top and bottom of the wser
coordinates, the corners of the screen in the plotting data space. The

default is 1000 -1000 1000 1000.

virt <I> <b> <r> <t>

This command sets the left, right, top and bottom of the wirfual
coordinates, the corners of the area on the output device where the plot
will fall, assuming the output device extends from -1 -1 to 1 1 (the
square may be chopped at the top and bottom or left and right,
depending on the aspect ratio of the output device. The default is the

entire plotting area.

interface [cellname]

This command plots the cell bounding box and connectors. If the names

plotting flag is on, the connector names will be plotted also.

plot [cellname]

This command clears the display then plots the cell as Sticks with the

current user coordinates.

fit [cellname]

This command clears the display, sets the user coordinates to be
slightly larger than the bounding box of the cell, then plots the cell as
Sticks.

plotgates [cellname]
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This command clears the display, sets the user coordinates to the
bounding box of the cell, then plots the gates in the cell as a bubble
diagram, with one bubble per gate and a line representing electrical

connections between gates,

dev or device <devname>

This command sets the type of the output device. Default device is

VT52. Legal devices are:

charles Charles Terminal.
gigi DEC GIGI Terminal.
hp HP7221A Plotter.
7RR0 HP7220 Plotter.

tek Tektronix Terminal.

tty or vt52 DEC VT5R equivalent text terminal.

names

Toggle name plotting flag. Default is OFF. When the name plotting flag is

ON, all component names or gate names are plotted on plots.

half

Toggle the half-page HP plotting flag. Default is ON. When half-page
plotting is ON, the HP plotters will plot on an B% by 11 inch page.

topqtr

Set the HP plotter to plot on top half of 8/ by 11 inch page. The device
must already be set to the HP plotter.

botqtr
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Set the HP plotter to plot on bottom half of 8% by 11 inch page. The
device must already be set to the HP plotter.

midqgtr
Set the HP plotter to plot on middle section of 8% by 11 inch page. The
device must already be set to the HP plotter.

gatecircle [circlesize]

Set the size of the circles in the gate plot bubble diagrams. Default is
1000.

A.5.4. Stick Modification Utilities

There are two major alterations that a user must perform on the Sticks data
in Andy. First, connectors must be labelled with types and given default
loading. Second, constraints must be added to limit the optimization
process. Constraints include loading constraints and transistor size

constraints. The types and constraints are described above.

These constraints can be expressed textually, if the name of the component
is known. This may not be easy if the Sticks cell was generated
automatically, so Andy also provides a graphical means of identifying
components. One can point to components after the cell has been plotted
and set the name, connector loading, and transistor length and width. Also,

constraints can be made on components. Unwanted constraints can be

removed.
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load <name> <type> <number>

Set the load on a specific connector. The units are minimum-sized
transistor loads (.01pF). The default load for all connectors is set with
the connload command, in the section on '"Parameters to the

Optimizations”, below.

type <connname> <type>

Set connector type for the connector connname in this cell to the type
specified in the command. Any type name is legal, but Andy only
handles the ones listed above. Note that the capitalization must be the

same (all caps!).

con <name> <type> <op> <number>

Make a constraint of the given type in the current cell. For example,
con foo X>2 constrains the X-value of component foo to be greater than
2. Capacitance constraints can be made also. All capacitances are in

units of a minimum transistor load (.01pF).

rem <name> <type> <op>

Remove a constraint of the given type from the current cell. For

example, rem foo X> removes the constraint given above.

set [cellname]

This command enters the set mode that allows the user to set
parameters and make constraints graphically. Before giving the
command, you must plot or fit the cell. The set command will work even

if you don't, but you won't be able to see what you are doing. Because
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the set command requires input from a pointing device on the output
device, you must be at a Charles terminal with a mouse or at a GIGI with

a BitPad.

When you are in set mode, you point at a component with the mouse or
tablet or whatever. You will then get a prompt that gives you the

following sub-commands:
name <nam>

Set the name of the component.
type <typ>

1f the component is a connector, then set its type.
cap <real>

If the component is a connector, then set its default capacitance.
width <real>

If the component is a transistor, then set its width.
length <real>

If the component is a transistor, then set its length.
con <type> <op> <other>

Make a constraint. The constraint is made of type <type>, which
may be X, for a x-dimension constraint, Y, for a y-dimension
constraint, C, for a capacitance constraint, P, to constrain a
transistor to be a pass transistor or to constrain a connector to
have a signal come under a pass transistor. The <op> is the
operator, which is ignored in a "P" constraint (but which must be

present anyway), is one of >, <, or =, as described in the Sticks
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document. <other> may be an edge constraint, LEFT, RIGHT, TOP,
or BOTTOM, as described in the Sticks document, the name of
another component, a number for numerical constraints, or &,
which lets you point at another component that is to be the other
part of the constraint. When the constraint command is done, the
constraint is printed on the terminal.
help or ?
This command causes a terse command summary to be printed.
refresh
Re-draw the cell on the screen.
quit

Return to Andy main command mode.

Proceed. This command lets you point at another component.

A.5.5. Parameters to the Optimizations

The delay and power optimizations use several global values for critical
parameters. The user may set these values and thereby direct the overall

operation of the optimization algorithms.

The user may turn off and on the inclusion of capacitance on wires. The wire
capacitance is usually on, because it is a significant load in most circuits.
The user may also control whether or not CLOCK nodes on pass transistors
will break paths during delay calculation and power optimization. Turning it

on allows optimization for minimum clock cycle, turning it off allows
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optimization for minimum delay through a pipelined processor.

The user may adjust the most important number in the performance
optimization, the fanout factor. The fanout factor is the number of minimum
transistor capacitances that should be driven by a minimum transistor. The
fanout factor says in some sense how concerned the user is with power
versus delay. Larger fanout factor means greater delay but lower power, It

may be set to any value greater than one, and is set initially to four.

The user may also change the default loading on a connector. Is is usually
not reasonable that connections to the outside world have no capacitance on
them. It is possible to put a specific load on a specific connector, and it is

also possible to put a default load on all other connectors.

dotwigs
Toggle the twig capacitance flag. The default is ON. When the twig

capacitance flag is ON, the capacitance of twigs is included in the

calculation of _loads on nedes.

doclocks

Toggle the clocking flag. The default is OFF. When the clocking flag is
ON, pass transistors that have CLOCK nodes on their gates break paths
for the power optimization. Therefore, delay and power can be
optimized for either the delay through the whole cell (minimum delay
for a signal to pass through the cell) or just across a clock cycle

(minimum clock cycle time).
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scale [sf]

This command sets the fanout factor, also known as the scale down
factor. It is the number of minimum-sized transistor capacitances that
can be driven by a minimum-sized transistor resistance. This number
should always be greater than 1. The default is 4. If the fanout factor is

not given, then the current fanout factor is typed on the screen.

connload [1d]

This command sets the default minimum load on a connector. The
default is 1 minimum transistor load. If the load is not given, then the

current load number is typed on the screen.

status

This command prints the value of all status variables. An example

follows:

Current cell: SR, MBB: -50000,-50000 50000,50000.

Scale Down Factor = 4.00E+00.
Minimum Connector Load = 1.00E-02.
Gate Circle Size = 1000.

Won't die on error.

Trace off.

Verbose trace off.

Space tracking off.

Twig capacitance on.

Clocks off.

Name plotting off.

Plotter: VI52. User coords: -2000,-1000 2000,1000.
Half page HP plots
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A.5.8. Dtatistics

To help the user determine the quality of a design, Andy reports statistics on
the cell. The user can get the delay of the critical path, a listing of the
critical path, the power consumption of the chip and the product of the delay
and power. The delay and power estimates from Andy are not exact because
constants are ignored, and they are based on a simple RC model of delay, but
one set of statistics can be compared to another to get an idea of the relative

goodness of two designs,

delay [cellnhme]

This command prints the maximum delay across cell and the critical
path that resulted in that delay. It also includes a message if the
critical path has changed since the last time it was displayed. The delay
is the sum of the RC time constants for all the gates in the critical path.
The resistance is unscaled as the transistor length/transistor width for
the pullup of the restoring logic gate. The capacitance is the sum of all
capacitances, including .twig parasitic capacitance if the dotwigs flag is
on. The capacitance calculation looks through pass transistors
(transmission gates) pessimistically, assuming that all pass transistors
will be open when the gate is trying to drive the node. If the doclocks
option is turned ON, then the delay calculation also follows paths that
start at pass transistors that are gated by CLOCK nodes. Those pass
transistors also end delay calculation paths. The following is some

sample output from the delay command.
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Critical Path for cell PLA C:Y1IN G:INBUF.P1C4 G:INBUF_P2C4 G:AND.P5 G:OR.P8
G:QUTBUF_PU1C5. Delay: 9.84E-01
Critical path changed.

power [cellname]

This command prints the power consumption of the cell in unscaled
units of transistor width/transistor length (proportional to 1/resistance
of the transistor). The power consumption for the cell is the sum of all

the width to length ratios of all pullup transistors in the cell.

fm [cellname]

This command prints the delay of the critical path in the cell, the power

consumption of the entire cell and the product of the two:

Cell PLA. Delay: 9.84E-01. Power: 2.34E+01. D*P (unscaled): 2.25E+01

A5.7. Constructing the Data Structure

The data structure must bé built before the optimization steps, so the
optimizations build the structure, finding nodes and gates, if necessary.
Andy also has commands specifically to build the data structure. These
commands to separately generate the nodes and recognize the gates is

included primarily as a debugging tool. The node and gate extraction

algorithms are described briefly below.

makenodes [cellname]

This command causes Andy to find all the nodes in the cell. Nodes span

the design hierarchy, possibly including components and twigs in

instances of cells contained in this cell.
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justnodes [cellname]

This command causes Andy to find all the node segments in the cell.
This command differes from makenodes because it will not merge node

segments through the design hierarchy.

makegates [cellname]

This command runs the gate recognition algorithm on the cell. If the

nodes have not yet been found, makegates finds nodes first.

A.5.8. Delay and Power Optimization

Delay and power optimization are Andy's main tasks. They can be performed
separately or sequentially with a single command. Separate commands for
each step are provided more as a debugging aid than as a user feature, but
there may be some situations where one or the other is not desired. The

delay and power optimization algorithms are described briefly below.

clearstretch [cellname]

The performance optimization and power optimization algorithms use
the same code to meet constraints. This command clears the desired

delays set by the power optimization algorithm.

setstretch [cellname] [real]

This cormmand runs the part of the power optimization algorithm that
sets desired delays on gates. After this part, the cell must be run
through the gate sizing algorithm to set the correct transistor sizes
from the desired delays. The user may supply a number for the

minimum delay for the critical path, the desired delay for the cell as a
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whole. If the number is absent, 0 is assumed, and all paths in the cell

are made as long as the critical path.

stretch [cellname] [real]

This command does the whole power optimization step: clearstretch;

setstretch(real); sizegates;.

pack [cellname]

This commands does the complete performance optimization step:

clearstretch; sizegates;.

opt [cellname] [real]

This command does the complete optimization of a cell: clearstretch;
sizegates; setstretch(real); sizegates;. Performance optimization is

done before power optimization,

A59. Area Optimization

Delay and power optimization change device sizes which may result in design
rule violations, mandating that area optimization be performed on the cell.
Andy sends simple cells to Rest to do this optimization. Rest cannot
currently handle cells with hierarchy, so some other software is needed for
dealing with area optimization of composition cells. An associated program,
STK, can be used to remove the hierarchy so Rest can optimize area. Other
commands in STK do simple area optimizations with the hierarchy. The

reader is referred to the STK documentation for more information.
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pack=x [cellname]

This command invokes REST to perform area optimization in the x-

dimension.

packy [cellname]

This command invokes REST to perform area optimization in the y-

dimension.

A.5.10. Debugging Aids

There are a few commands of little or no interest to users which generate
trace information during the data structure construction and during the
optimization stages. There is also a command in Andy to enter the SIMULA

debugger for further examination of the internal structure of the program.

debug

Enter the SIMULA debugger.

trace

Toggle the trace flag. Default is OFF. When the trace flag is ON, pages of
output are generated so you can follow the program’'s execution. A

working knowledge of the code is necessary to decipher the output,

though.

virace

Toggle the verbose trace flag. Default is OFF. When the verbose trace
flag is ON, reams of output are generated so you can follow the

-program's execution.
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space
Toggle the free pages flag. Default is OFF. When the free pages flag is
ON, messages are generated during execution which tell the user the
-amount of free memory space. If the program runs slowly, it is often

due to large memory use. This can show which parts of the program are

eating large amounts of memory.

dieonerror

Toggle the flag to enter debugger when a design error is found. Default
is OFF. On the test circuits, a spurious design error indicates a bug in
the program. The dieonerror flag causes Andy to enter the debugger
after printing the error message when a design error is found. If the flag

is OFF, the message will be printed and execution will continue.

status

This command prints the value of all status variables. An example is

shown above in the section titled "Parameters to the Optimizations”

A.5.11. Miscellaneous Commands

These commands do not fall into any of the categories above.

@Andy [file]

When Andy is run, if a file is given, an initial get is done on that file. If
the file name is 8, then Andy starts by taking commands from the file
"ANDY.INI". (Note that commands are taken from ANDY.INI, it is not
read as a Sticks file.)
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? or help

Type a summary of the commands.

quit
Terminate Andy execution. If you continue the program from the

monitor, you get right back into the Andy command loop with everything

exactly as it was.

invade
Enter "space invaders" mode for a short recreation. This mode only

works properly on a VT52.

A.B. Design Rules

Performance optimization can be expressed in a somewhat formal manner
by defining "design rules” which the algorithm enforces and attempts to
meet as closely as possible. These rules are presented as a means of

explanation of the function of Andy, not as a description of the algorithm.

(1) The minimum transistor width is 2 lambda. Minimum transistor length

is 2 lambda.

This rule sets the minimum gate dimensions, which determine the cutoff
for making transistors smaller. These dimensions also determine when

the algorithm optimizes devices by changing width rather than changing

length of transistors.
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(2) A pulldown structure in a gate must have at most one square transistor

(4)

(5)

resistance for each <fonout> minimum transistor sizes of gate

capacitance that are driven by the gate.

A pullup resistor must have at most one quarter square depletion
transistor resistance for each <fenout> minimum transistor sizes of

gate capacitance that are driven by the pullup.

These rules comprise the gate fanout rule. Meeting these rules is the
main task of the performance optimizer. No gate may drive more
fanout than the fanout variable allows. Optimal delay occurs when this
number is e, but it is usually between four and eight. In the Andy
system, the default value is four, but it may be changed by the user.

The fanout number must always be greater than one.

A pullup device that is not a depletion-mode transistor with the gate tied
te the source indicates that the gate driving current is four times that

of a normal gate.

A transistor-like pullup must be either a precharge device or a super-
buffer device. Either way, the pulldown becomes the limiting resistance
in the gate. Therefore, the gate can drive four times as much load in the

same amount of time as a normal gate.

A pass transistor must have at most one quarter square gate resistance
for each <fanout> minimum transistor sizes of gate capacitance that

are driven through the pass transistor.

This is the pass transistor sizing rule. It makes pass transistors the
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same resistance as a pullup resistor. This heuristic is included so
neither the pass transistor nor the pullup resistor is the dominant

resistance on the signal.

Transistor gate resistances and capacitances and interconnect

capacitances are assumed to be:

Transistor Capacitance 4.0 x 10°* pf/um®.
Diffusion Capacitance 1.0 x 10 pf/um?,
Polysilicon Capacitance 0.4 x 10°* pf/um?®
Metal Capacitance 0.3 x 10" pf/um’
Transistor Resistance 1.0x 10* Q=
Wire Resistance 0.0 Q=

The resistances and capacitances of the elements of the design are used
by the performance optimization. These numbers are taken from [Mead
1980]. The precise values of these numbers are not important, but their
ratios are important, particularly the relative sizes of the capacitances

for transistors and intercconnect.

The resistance of a transistor which has had the signal on its gate go

under a pass transistor should be considered double.

This rule compensates for the lower gate voltage on the transistors

driven by signals that have gone under pass transistors. The gates will

be made wider.

The maximum length of a pulldown is 2 lambda.

This rule places an upper limit on the resistance of the pulldown and
therefore an upper limit on its delay. This keeps the power optimization

from going overboard when saving power on paths that are very far off
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the critical path.

These rules define an optimum delay that is not a true global optimum. The
result will be a local optimum, subject to the constraints supplied by the
system, the accuracy of the design rules and the model of integrated circuit
performance. This is in the same sense that symbolic layout compaction
achieves a local optimum, subject the the constraints of design rules and

algorithmic limitations,

A7. Description of the Operations

This section contains a brief description of each of the algorithms in Andy. It

is included as an aid in understanding of Andy’'s capabilities.

A.7.1. Node Determination

The node determination for a cell is done in three parts. First, ail the node
segments in the cell are found. These node segments consist of a Sticks twig,
all the components connector references on the twig, and recursively
includes other twigs and component connector references on electrically
equivalent connectors on the components. Node determination passes
through contacts and electrically common connection locations on

transistors and connectors.
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PROCEDURE find-nodes;
FOR all twigs DO IF twig NOT already in a node then newnode.addtwig(twig);
PROCEDURE node.addtwig(twig);
IF twig NOT already in a NODE then BEGIN
add twig to this node
FOR each component reference in the twig DO BEGIN
FOR all twigs DO IF the twig has a reference to
en electrically equivalent connector on the same
component THEN addtwig;
END;
END;
END;

Node segment determination is done for all cells that have instances in the
cell in which we are doing the node determination. These node segments are
collected in the cell and merged into complete electrical nodes. The merge

algorithm crawls up and down the design hierarchy coalescing node

segments across cell boundaries.

A7.2. Gate Finding

As shown in the pseudo-code below, the gate finding algorithm finds gates by
following the POWER node to é. transistor source or drain. Since one side of
the transistor is connected to POWER, it must be a pullup for a restoring logic
gate, so a new gate is created with the transistor as its pullup. Although, in
the usual case, the transistor is a depletion mode device used as a load

resistor, other forms for super-buffer gates and precharged gates are legal

as well.
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PROCEDURE find_gates;
FOR all POWER nodes DO BEGIN
FOR all transistors on the node DO BEGIN
make a new gate.
the pullup is the transistor.
the output node is the node opposite the POWER
FOR all paths of transistor source and drain from the output node DO
IF the path leads to GROUND
THEN make them pulldowns of the gate
ELSE make them transmission gates
END;
END;

The node on the other side of the transistor is the node that the gate is
driving, which must be the output node of the gate. The gate finding
algorithm follows that node to find the pulldown transistor structure. When a
connection to the source or drain of a transistor is found, there are two
possible situaiions: the other side of the transistor may or may not connect
to GROUND. If the other side of the transistor does not connect to GROUND,
the transistor is remembered and the node on the other side of the
transistor is scanned recursively, building a tree-like structure pointing to
the transistors. The recursion stops when the GROUND node is found or if

there are no source or drain connections on the node.

If the node is the GROUND node, then all the transistors on the path from the
gate's output to GROUND must form a NAND network, serial connection to
GROUND in the gate. Parallel connections to GROUND make NOR-type
connections. If there is no GROUND connection, the transistors aleng the path

must be pass transistors, and a new transmission gate is made for each pass

transistor.

The gate search process can also be stopped by parameters on transistors or
constraints on nodes. If the transistor has been constrained to be a pass

transistor, the recursion stops, the gate determination ends, and the
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transistor is made into a transmission gate. If a node is found of type BUS,
then the gate finding algorithm is similarly terminated. These constraints
help remove confusion in some MOS structures that do not fall into the
category of well-formed gates described above, but which occur frequently in
designs. These structures include shared bus structures and some more

exotic transmission gate logic.

A7.3. Performance Optimization

The performance optimization algorithm works as follows:

PROCEDURE optimize.performance;

WHILE some gates are yet to be sized DO BEGIN
FOR all gates DO IF gate.known load THEN move.into_ready.list
IF no gates in ready list THEN move any gate into ready list
FOR all gates in ready list DO gate.setsize

END

The transistor sizing algorithm maintains two lists of gates: gates that have
not yet been sized and are ready to be sized, and gates that have not yet
been sized but arevnot ready to be sized. A gate is ready to be sized when all
the loads on its output node are known. Known loads are twig capacitance,
output connectors, and transistor gate connections on transistors that have

already been sized.

The gates in the former list are processed, setting the sizes of the transistors
that make them up, depending on the load on the output node. Transistor
sizes are set to MAX(minsize, output node capacilance /fanout factor). When

a gate is sized, it is removed from the list:
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PROCEDURE gate.set _size;
BEGIN
basicresistance := MAX(min. trans size,
const *out put_capacitance /fanout factor);
pullup.setresistance(basicresistance *longest.NAND_ length*pullup.ratio);
FOR all pulldowns DO BEGIN
pulldown.setresistance(basicresistance);
pulldown.driver.node.driver_gate.sized := FALSE;
END;
sized := TRUE;
END

When a transistor in a gate is sized, the gate that drives the node that drives
the gate of the transistor is moved into the list of unsized gates, since its

load has changed.

As transistor sizes are set, more nodes have known loads. The gates that
drive these nodes nodes can then be sized and so forth. The algorithm
proceeds backward from the circuit outputs through the circuit until all

gates have been sized.

In a circuit with a feedback path, the loads on some gates are dependent on
the size of their own transistors. These gates cannot be sized because none
of the the loads on‘ the output nodes is defined. Andy detects and breaks the
loop by simply picking one gate arbitrarily and sizing it. The transistors in
the sized gate are now known loads, so the gate before the chosen gate can
be sized, and so on. Eventually, the optimization makes its way around the
loop to re-size the first gate. This re-sizing terminates when a transistor
changes size by less than five percent. A transistor that does not change

much does not move the driver of its gate node into the list of unsized gates. -
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A7.4. Power Optimization

The power optimization algorithrn can be expressed in general as follows:

PROCEDURE optimize_power;
BEGIN
find_paths;
sort paths into decreasing order;
FOR all paths DO BEGIN

find first gate that has not been optimized yet;

current.delay := delay at end of the path -
delay at first unoptirnized gate;

desired_delay ;= constrained delay at end of the path -
constrained delay at first unsized gate;

expand_ratio ;= desired_delay/current_delay;

FOR all gates between first unsized gate and end of path DO BEGIN
gate.constrained delay := gate.current.delay * expand._ratio;
gate.sized := TRUE;

END;

END;
FOR all gates DO set delay to constrained delay;
END

Power optimization is done by sorting all the paths of gates in the cell into
decreasing length. A path is a chain of gates that starts at the input
connectors or at a pass trapsistor that is gated by a CLOCK nodes (if the
doclocks mode is turned on) and ends at the output connectors, at the input
to a gate or at a pass transistor that is gated by a CLOCK nodes (if the

doclocks mode is turned on).

Each path is treated independently in the power optimization. All gates
along the beginning of the path that have already been sized with the
performance optimizer are chopped off. The delay of the remaining gates is
compared to the difference in delay from the beginning of the path (either
the input connectors or the last gate that was chopped off) to the end of the
path (the output connector or the gate at which the path stopped). All gates

in the chain are made slower by the ratio between the desired delay and the
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current delay.

In the end, then, all path delays are as long as the longest delay. In
accordance with the rules above, though, no gate is made so slow that a
pulldown transistor width is smaller than its length. So some paths may

remain faster than the critical path.

The longest delay is usually the critical path delay, but it can be set by the

user, so the delay of the entire cell can be set to a desired value by the

power optimizer.

A 8. Command Summary

The commands to the Andy program are listed below, each with a terse

summary. Values in brackets are default values, where applicable.

get <file>
put [cellname] [filename]
dump [cellname] [filename]

dumpgates [cellname] [filename]

list or cells

clear

push <cellname>
Pop

who [cellname]

user <I> <b> <r> <t>
virt <1> <b> <r> <t>
interface [cellname]

plot {cellname]

fit [cellname]

plotgates [cellname]

dev or device <devname>

names
half

topgtr
botgtr

get a sticks file

put the sticks cell into the file (no file=terminal)
dump the cell into the file (no file=terminal)
dump the gates of the cell into the file

type the cells defined here

cleer the list of cells

go down the cell def hierarchy

go up the cell def hierarchy

[ set then ] print the name of the current cell

set the user plotting area

set the virtual (device) plotting area [ALL]
plot the cell bounding box and connectors
plot the cell

set the user coordinates, then plot the cell
set user coords then plot gate connections
set the plotting device to one of

charles gigi hp 7220 tek tty or vt52 [VI52]
toggle name plotting flag [OFF]

toggle the half-page HP plotting flag [ON]
set HP plotter to plot on top half of 8.5x11 page

set HP plotter to plot on bottom helf of 8.5x11 page
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gatecircle [circlesize]

load <name> <type> <mumber>

type <connname> <type>

con <name> <type> <op> <number>

rem <name> <type> <op>
set [cellname]

dotwigs
doclocks
scale [sf]
cannload [1d]
status

delay [cellname]
power [cellname]
im [cellname]

mekenodes [cellname] -
justnodes [cellname]
makegates [cellname]

clearstreteh [cellname]
setstretch [cellname] [real]
stretch [cellname] [real]
pack [cellname]

opt [cellname] [reeal]

packx [cellname]
packy [cellname]

debug
trace
virace

space
dieonerror

®Andy $
? or help
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set HP plotter to plot on middle section of 8.5x11 page
set the size of the circles for gate plots [1000]

set a load on a connector (units are trans. loads)
set connector type for conn in this cell
make e constraint of TYPE (i.e. con foo X>2)
NOTE — capacitance consts are #min. trans loads
remove a constraint of TYPE (i.e. rem foo X>}
set parameters of components graphically.
You point at the component with the mouse of tablet or whatever.
You have the following sub-commands
name <nam> Set the component name
width <real> set the width of & transistor
length <real> set the length of a transistor
con <type> <op> <other> make a constraint
type <typ> set the type of a connector
cap <real> set the capacitance of a connector
helpor?  get a terse command summary

refresh re-draw the cell on the screen
quit return to ANDY main command mode
P (proceed) point at next component

toggle twig capacitance flag [ON]

toggle clocking flag [OFF]

set or examine the scale down factor [4]
set the min. load on a connector [1]
print state of all status vars

print max delay across cell
print power consumption of cell (units of w/1)
print unscaled delay*power product for figure of merit

find nodes in cell
find nodes in cell but don't merge them
find gates in cell

clear desired delays in all gates for full pack
set desired delays in all gates for stretching
setstretch(real); pack;

pack cell for speed (clearstretch; pack;)
clearstretch; pack; setstretch(real); pack;

pack x-dimension using REST
pack y-dimension using REST

enter the SIMULA debugger

toggle trace flag [OFF]

toggle verbose trace flag [OFF]

toggle FREEPAGES flag [OFF]

toggle flag to enter debugger on design error [OFF]

start with input from ANDY.INI
type this message
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quit end it all
invade enter "space invaders" mode
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APPENDIX B

Sticks Standard Proposal

This is version 2.0 of the Sticks Standard. This version includes clarifications
to the original proposal and additions to make the Standard more useful in
chip composition. This version of the Sticks Standard provides a more
strictly defined syntax for parameter specification which allows new
parameters to be easily added. In places where the syntax does not allow for
parameter specification, an optional extension field has been added. These
features allow new information to be more easily incorporated into Sticks
Standard files. This version of the Sticks Standard also includes an array

construct for simple rectangular arrays.

This document consists of three parts: the specification of the Sticks
Standard, an example of the Standard in use, and a description of the

technology-dependent parts for an nMOS process.

B.1. The Sticks Standard Overview

The Sticks Standard has a descriptive rather than a procedural semantics,
That is, it describes an image rather than the means for creating the image.
The Standard is intended to be a means for data interchange, not a database.

Many suggestions for extensions and changes can be traced to a

conceptualization of the use of the Sticks Standard as a database.

A description in the Sticks Standard carries with it a set of coordinates for
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all interesting locations in the Sticks data. The locations are useful for
plotting, and may be used by Sticks processing programs as an initial
placement for compaction. In addition to the physical locations, the cell
definition may contain a list of constraints on the final positions of the points
in the design. The physical locations should be considered to be suggestive,

whereas the constraints are imperative.

The definition of the syntax and semantics of the technology-dependent parts
of the design are separate from this definition of the "pure" Sticks Standard,
but the Sticks Standard cannot be used for a given electronics technology
until those technology-dependent parts are defined. At the end of this

document are the technology-dependent parts for an nMOS technology.

This description of the Sticks Standard is separated into two parts: syntax

and semantics.

B.2. Syntax

The syntax description consists of a formal Backus-Naur Form (BNF)

description of the syntax and a discussion of some interesting features of

that syntax.

Wirth's standard notation is used [Wirth 1977]: production rules use equals to
relate identifiers to expressions, vertical bar for choice and double quotes
around terminal characters. Curly brackets indicate zero or more
repetitions, square brackets indicate optional features and parentheses are

used for grouping.

The formal syntax description is divided into two parts: one for token
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scanning, one for parsing. The BNF for token scanning is ambiguous when the
scanner encounters a string of characters. According to the BNF, a space
may appear as zero repetitions between characters in a name or number.
This ambiguity is resolved in the obvious manner: in every case, the largest

legal string is chosen as the next token.

BNF For Token Scanning

file = space | token space |

token =name | number | keyword | specialChar | quotedString

keyword ="CELL" | "MACRO" | "CONNECTORS" | "COMPONENTS" | "TWIGS" |
"CONSTRAINTS" | "TOP" | "LEFT" | “BOTTOM" | "RIGHT" | "ARRAY"

specialChar - "(ﬂ i u)u l u;n I u.n ‘ n:n l "[n l u]n I

. u<n .l u>n I lant? I " i n+n l o0
quotedString = string {string}

string =" ** jany character except quotej * **

name . =letter {nameChari

number =[ "] digit {digit}

letter ="A"|"B" | .. | "2 | e | "D .. | 2"

nameChar = letter | digit | "

digit - nou I "1" l nzn l e | ngu

space = [sepChar] | space "["" commentText "]" space

sepChar = any character except nameChar, specialChar

commentText = {commentCher] | commentText "[" commentText "]" commentText

commentChar = any character except "[" or "}"
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EBNF For Parsing

File = [TechnologyName] {celldef}
CeliDe? = CellHeader {cellDef} CellBody "END" | Macroteader "END"
CellHeader = "CELL" name number number point point HeaderExt ConnectorSpec
MacroHeader = "MACRO" name number number point point
CellType quotedString HeaderExt ConnectorSpec
HeaderExt = |any token except "CONNECTORS"}
CellBody = ComponentSpec TwigSpec ConstraintSpec
ConnectorSpec = "CONNECTORS" {ParamText ;"
ConnName point {ConnName point} ;" }
ComponentSpec = "COMPONENTS” {ComponentType ParamText ":"
CompDecl {CompDec]j ";"{
TwigSpec = "TWIGS" {ColorName ParamText ;" [twigname] ""="
TwigPrimitive TwigEntry {TwigEntry] ";"}
ConstraintSpec = "CONSTRAINTS” {ConstraintStmt ;"]
ComponentType = name | POINT
CompDecl = CompNeme [ArraySpec] [orientation] point
ParamText = {name ParamTok]
ParamTok = name | number | quotedString |
*(" { neme | number | quotedString } ")"
ArraySpec = "ARRAY” nx, y dx dy "X” conns "Y” conns
conns = { connname connname }
orientation = ("N" | "M") number number
TwigEntry = TwigPrimitive | {"'(" TwigEntry ")"{
TwigPrimitive = CompName ["." ConnName] [Arrayindicator]| point | ConnName
ArrayIndicator =" number ".” number
ConstraintStmt = "Y" YPrim OrderOp YPrim {OrderOp YPrim] |
X" XPrim OrderOp XPrim {OrderOp XPrimj | ConstrExt
YPrim = (ConstrPrimitive | "BOTTOM" | "TOP") [Displacement]
XPrim = (ConstrPrimitive | "LEFT" | "RIGHT") [Displacement]
ConstrPrimitive = = CompName [.ConnName] | ConnName | Number
orderop ‘= rer I iyt | ti
Displacement = (""" | "+" ) PositiveNumber
ConstrExt = any token except "END" { any character except ;" |
ColorName = name
CompName =name
TwigName = name
CellType = neme
ConnName = name
TechnologyName = name
PositiveNumber = digit {digit]
point = mumber number

The file contains a list of cell definitions. Each cell definition begins with
either "CELL" or "MACRO" and ends with "END". A "CELL" description is divided
into four sections: Header, Component Definition, Twig Definition, and

Constraints. Each section starts with a keyword. Cell definitions may be
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nested within other cell definitions. A "MACRO” description has only the

header section.

All numbers are integers, and are considered to be in units of hundredths of
a micron. The header of the cell has a scale factor to be applied to the
numbers in the cell. Comments can be included anywhere a space can be

put and can be removed in the lexical scan.

Whenever two consecutive quotes are encountered in a quoted string, they

are to be interpreted as single quote within the string.

B.3. Semantics

The Sticks file consists of components, interconnect, and constraints on the
physical layout. Each file can be prefixed with an optional technology type,
for example nMOS or CMOS. The technology type can be useful to select a set
of technology-deperident names for components and layers. An example for
nMOS is given at the end of this document. The header gives the cell name,
scale, abutment box, and connectors. The component definition indicates
the type of each kind of component. The twig definition section describes
the twigs, their connections, and their paths. The constraints section

specifies restrictions on the physical layout.

The points given with the components and twigs, and in constraint
displacements give a sample physical arrangement of the components and
twigs. These physical locations and distances may be considered mere

suggestions by a Sticks processing program.
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B.3.1. Cell Definitions

Cell definitions can define either a Cell or a Macro. A Cell has its complete
definition included in the Sticks Standard file, while Macro cells are those
that are defined elsewhere. Macros may include cells from a library of hand-
drawn circuitry, PLAs, ROMs or other cells produced from specialized
generators. The precise description of these cells is not included in the
Sticks Standard file, but is contained in the external file whose name is listed
in the Macro definition. The Macro definition specifies the interface to those
cells in a uniform manner. No nested cell definitions, components, twigs, or

constraints sections are allowed in Macros.

The Header

A Cell header consists of the cell name, scaling factor, abutment box,
optional header extensions, and connectors. A Macro header consists of the

name, scaling factor, abutment box, Macro type, external file name, optional

header extensions, and connectors.

The scaling factor consists of two numbers: A and B. A specifies the value of
lambda in hundredths of a micron and B specifies the value of lambda in
Stick file units. For example, A=250, B=4 specifies that lambda=2.5 microns
and that one Stick file unit is one-quarter lambda. If units of hundredths of a
micron are desired, then all numbers in the cell are scaled by A*number/B.-
The scaling is not applied to instances of other cells declared in the

component list or to cells whose definitions are nested within the current

cell.

The abutment box is specified by two points that define a box. The first point
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is the lower left corner of the box and the second point is the upper right
corner. In the composition of cells this box is treated as the cell outline,
with the connectors as fingers on or inside of the box. It should be noted
that the abutment box can be different from the minimum bounding box of

the cell.

The optional header extension field is useful for adding new or non-standard
features to the cell header. The only restriction on this field is that it may
not contain the token "CONNECTORS".

The connectors are named locations to which connections to instances of the
cell are made. Connectors may be parametrized. For example, the layer of
the connector, the side of the cell from which the connector should be
attached from outside the cell, or the connector type all could be useful
parameters. Examples of connector parameters are again in the nMOS

technology definition later.

The Macro type is the general class to which a Macro cell belongs, such as a
cell defined as geometry. The external fille name specifies as much
information as is needed for a Sticks reader to locate a Macro cell for those
applications where a Sticks reader must examine the external file on which
the complete definition of a Macro exists. As with other quoted strings in the
Standard, two consecutive quotes inside the fill name is interpreted as a

single quote in the string.

B.3.2. Component Definition

A component may be a Point, a technology-dependent name, or a reference

to a cell defined in the current context. The predefined component Point is
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simply an interesting location in the design. Twigs may be routed through
Points to provide the initial topology of the design. The component Point
may be used in several twigs to ensure that all twigs pass through the same
physical location.

Technology-dependent names denote transistors, resistors, contacts, and
similar features in that technology. The reader should refer to the

specification of the technology that he is using for technology-dependent

component definitions.

A cell reference, denotes an instantiation of the cell, the placement of the
cell's contents at the position and in the orientation specified by the

transformation on the component.

Each component definition includes a position and an optional orientation,
which includes mirroring and rotation information. This orientation, like the
physical locations on components, is mere suggestion, and may be altered by
a Sticks processing program. The orientation consists of a one-letter
indication of the nﬁrroring of the coordinate system. A "N"ormal coordinate
system has the +y axis counterclockwise from the +x axis. A "M"irrored
coordinate system has the component mirrored about the (1,1) vector (i.e.
the x and y values are swapped). The two numbers following the mirroring
key is the rotation key. These two numbers give the x-y coordinate of the
direction to which to rotate the +x axis. When transforming a component,

mirroring is done first, followed by rotation then translation.
Array Specification

The array specification requires the replication count in x and y (nx and ny),



-218-

which must at least 1. Also, the spacing of the array must be given in the
same units as other measurements in the cell. As with other positions and
sizes, the array spacing may be modified by processing programs. The user
must also specify the interior connections in the array. All interior
connections must be the same. These connections imply twigs between the
connectors on cells. Connections are made either horizontally ("X") or
vertically ("Y"). The first connector name in the interior connection
specification refers to the i®* element of the array, the second connector

names refers to the i+1% element.

Positioning and orientation of an array are relative to the origin on the (1,1)
element of the array. Specific connectors on array elements can be

referenced in twigs by referring to the array index.

B.3.3. Twig Definition

A Sticks twig is a connected path with a given layer and set of parameters
(for example, line width). The twig may or may not be a true electrical node,
as it may run into a contact component that may make contact to the same
layer or other layers. It may intersect other twigs. The electrical
interaction at the crossing of twigs is not specified, and the Sticks Standard
does not restrict the crossing in any way. Such a construct might violate
design rules in a particular technology, and could be checked. Twig

attributes cannot be changed as they are specified only once for the twig.

A twig optionally has data following the layer name to allow specification of
technology-dependent information. The legal layer names and the

parameters for a twig must be defined as part of the technology-dependent
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parts of Sticks for a particular technology.

The twig definition describes the path taken by the twig. A path consists of
two or more points and can have branches. Mere connection can be easily
represented for those applications where paths are unnecessary or
redundant. A branch in a twig is represented by a parenthesized point list.
The TwigEntry in parentheses branches off the point given immediately

before the parentheses. Therefore no twig may start with a branch point.

A specific connector on a component is referenced by the component name
followed by a dot and the connector name. If a twig is routed te a component
that is referenced by its component name only, then the connection point is
assumed to be the origin of that component. Unnamed points may be
specified directly in the twig definition using a coordinate pair. Two
unnamed points at the same coordinate are assumed to be separate points

and their identical positions mere co-incidence.

A connection to an array element is specified by following the connector
name with a dot then the x-index, another dot and the y-index. Omitting the
array element number causes a bus connection to be made to all array
elements. If the twig connects two differently-sized arrays, array element 1
connects to 1, 2 to 2 and so forth until one array has no more elements to be

connected. Bus twigs should be used with caution, since all elements in the

bus must be arrays.

The twig may be named if desired. The name is not used in the Sticks
Standard, but may be useful later in viewing the Sticks or assembling the
Sticks data into a form useful for simulation. There is no guarantee by the

Sticks Standard that twigs with the same name all belong to the same
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electrical node.

B.3.4. Constraints

A constraint is a restriction on the physical location of a component or a
connector. Constraints can be considered instructions to a Sticks

processing program to limit the deformation performed by that program.

There are three constraint operators for ordering: <, > =. They are the

familiar relational operators and force their ordering.

There are four keywords in the Constraint section: LEFT, RIGHT, TOP, BOTTOM.
They refer to the four edges of the abutment box of the cell. It is implied
that LEFT < everything < RIGHT and BOTTOM < everything < TOP. A point can be
constrained to be equal to one of the keyword values, in which case it will
always be positioned at the appropriate edge of the cell. The keywords need
not be used in the description, but their values represent the physical limits
of the cell and as such may be very helpful when setting connections to the

outside world.

An optional displacement can be added to a constraint. This displacement
sets a limit to deformation offset from a component. In addition, an
orderPrimitive may be a number that restricts the legal physical locations of
a component. These numbers are in the same units as the others in the cell,
and like those others are mere suggestion and are expected to be changed

by Sticks processing programs.

Constraints apply in either the horizontal (x position of components) or

vertical (y position of components) direction. They are applied in pairs, so
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"al < a2 < a3;" is just shorthand for "al < aR; a2 < a3;". The constraint
section also has provisions for non-standard constraints to be specified with
the constraint extension that allows extensions to be intermixed with
standard constraints. A constraint extension cannot start with the token

"END" and it is terminated with a ;"

Circular constraints can be built, and the reader of the Sticks Standard file is

advised to beware of them.

B.3.5. The Definition Hierarchy

Cell definitions may be nested within other cell definitions to arbitrary depth.
Any cell can be used as a component within any other cell subject to the
following constraints that limit the scope of each cell definition: A cell
definition must be complete (to its "END" statement) before it can be used as
a component. There may no self-references or forward-references. All cells
defined within the definition of any cell at any level are considered local to
that cell and may not be used as components by any cell defined outside that
cell. If two cells have the same name and rboth are accessible by some cell,
the cell most-recently defined shall be used when reference is made to that

name. The following example demonstrates the cell nesting.
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Cell definitions as they  Cells that can be used

occur in the file. within the given body.
CELLA ..
CELLB...
{BODY B} none
[BODY A] B
CELLC...
CELLA...

CELLD...

[BODY D] first A
[BODY A] D, first A
CELLE...

[BODY E} second A
[BODY €] E, second A

[BODY x] = entire definition of cell x except for the Cell Header.
Indentation is used to emphasize the hierarchy.

B.3.6. Technology-Dependent Parts

There are pieces of a Sticks specification that are not predefined by "pure”
Sticks. This allows the framework of the Sticks Standard to be used for more
than one integrated circuit technology. For a given technology, the
component names and twig }ayers must be named, their parameter syntax
and semantics must be given, and the geometrical representation of the
components and twigs must be specified if geometric manipulation of the
Sticks is to be done. The names may be made deliberately unique within an
integrated circuit technology as well as across technologies to avoid
confusion. Parameters to components may or may not have precise

geometrical or electrical meaning.

Component, twig, and connector parameters are similar in their form. All
are specified as a series of pairs where the first token of each pair is a
technology-dependent keyword and the second is the value associated with

the keyword. A value that consists of more than one token must be
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surrounded by parentheses. This allows the equivalent of extensions in the

parameter lists since the procedure for getting to the next parameter is

always known,

C§mponent parameters give transistor dimensions or similar information.
Twig parameters identify wiring layer widths or current capacity. Connector
parameters give types and layer information. All technology-dependent
specifications should become appendices to this document. The technology-

dependent specification for nMOS is given below.

B.3.7. Parametrization of Instances

In most applications, the position of components in an instance must be
different than the positions specified in the definition. The parameter
passing mechanism for components is used to pass a list of the desired
transformation of the components for the individual instance. If more
transformations are given than there are components in the instance, then
the last ones are ignored. If fewer coordinate pairs are specified than there
are components in the cell, then the remaining components are placed using

the sample positions in the cell. The form of these parameters is given in the

at the end of this document.

B.4. nMOS Sticks Standard Components

This is a summary of the definitions of the nMOS Sticks in [Kahle 1981]. These
definitions have been widely used and have been found adequate for a wide
variety of applications. Not all users have implemented all the parameters,

though.
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B.4.1. Component Definition
The nMOS components are shown in figure B.1. They are summarized below:
NENH and NDEP

NENH is an enhancement mode transistor, NDEP is a depletion meode
transistor. The origin of the transistor is at the center of the gate area. In
both, the gate is horizontal, the drain is at the top, the source is at the

bottom. The connectors on the to transistor are:

G1 the left side gate connector.
G the right side gate connector.
DRAIN the transistor drain connector.

SOURCE the transistor source connector.

The parameters to the enhancement transistor are given in the table below.

The value in brackets is the default value.

W <num> width of the transistor [2].

L <num> lehgth of the transistor [2].

G1 <point> the location of the G1 gate connector [(-2,0)].
G2 <point> the location of the GR gate connector [(2,0)].

DRAIN <point> the location of the drain connector [(0,2)].
SOURCE <point> the location of the source connector [(0,-2)].

A path can be given for either the gate or the drain. The reader is referred

to [Kahle 1981] for details.

NRES and NBRES

These are pullup resistor type depletion mode transistors with their source
shorted to the gate. NRES uses a butting contact to make the connection,

NBRES uses a buried contact. In both, the origin is the center of the contact.
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Figure B.1. nMOS Sticks Standard Components.
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Their connectors are:

DRAIN the transistor drain connector.

PSOURCE the transistor source connector on poly.

DSOURCE the transistor source connector on diffusion.
MSOURCE the transistor source connector on metal (NRES only).
SOURCE the transistor source connector on unknown layer.

The parameters to the resistors are given in the table below. The value in

brackets is the default value.

W <num> width of the transistor [2].
L <num> length of the transistor [6].
DRAIN <point> the location of the drain connector [(0,9)].

PSOURCE <point> the location of the poly source connector
[(0,0) for NBRES, (0,2) for NRES].

DSOURCE <point> the location of the diffusion source connector
[(0,0) for NBRES, (0,-2) for NRES].

MSOURCE <point> the location of the metal source connector
[(0,0) NRES only].

NBUT

This is a butting contact. The polysilicon part is above the diffusion part. Its

connectors are:

P the poly connection.
D the diffusion connection.
M the metal connection.

The parameters to the butting contact are given in the table below. The

value in brackets is the default value.
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W <num>  width of the contact area [4].

P <point> the location of the poly connector [(0.28(].
D <point> the location of the diffusion connector [(0,-2)].
M <point> the location of the metal connector [(0,0)].

NBUR

NBUR is a buried contact. It is symmetrical, and has two connectors that

default to its origin:

P the poly connection.
D the diffusion connection.

The parameters to the buried contact are given in the table below. The value

in brackets is the default value.

W <num>  width of the buried contact area [4].

L <num> length of the buried contact area [4].

P <point> the location of the poly connector [(0,0)].

D <point> the location of the diffusion connector [{0,0)].

NPM, NDM and NCON

These are simple contacts to metal. NPM is a polysilicon to metal contact,
NDM is a diffusion to metal contact, and NCON is an uncommitted contact.

They are all symmetrical, and have no connectors, so all connections must

contact the center (0,0).

The parameters to these contacts are given in the table below. The value in

brackets is the default value.
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W <num> width of the contact cut area [2].
L <num> length of the contact cut area [2].

CONNECTOR

The final component is the connector, which has no geometrical
representation. However, it can have one parameter, a type, indicated by
the key letter T. The legal types are: INPUT, OUTPUT, I0, POWER, GROUND,
CLOCK and BUS.

B.4.2. Twig Definition

The nMOS twig can have the following layers: POLY, DIFFUSION or METAL.

B.4.3. Instance Parameters

It is desirable in some design systems to pass a value that is a position to a
component inside an instance in the current cell. This aliows the same cell
definition to be used for several positions of the components, several

"compactions". The parameter specification to do this is:
C ( <compname> [<orientation>] <point> )

Where <compname> is the name of the componént in the cell definition for
the instance, <orientation> is a Sticks orientation specification, and <point>
is the location in the instance’s coordinates where the component should be
placed. If the orientation is omitted, the orientation that the component in

question already has is used.



-228-
B.5. Example of the Sticks Standard in Action

The following is a shift register cell in the Sticks Standard form using nMOS

components.

NMOS
CELL srcell 250 4 [ lambda = 2.50 microns | ~48 -59 48 59
CONNECTORS
T GROUND: gnd! -48 45 gndr48-45.
T INPUT; in-48 -29 ;
T POWER: vddl -48 45 vddr4845 ;
T QUTPUT: cut 4828 ;
T CLOCK: clktop 8 59 clkbot 8-59;
COMPONENTS
NENH W16 L 8: pd -20-29;
NENHWS8LB:. psNO-18-7;
NRESWBL32: pu-201;
NBUT: but N-1028-15;
NDM: N1-20 ~45 ;
NDM: N3-2045;
TWIGS
POLY:= clkbot 8,-43 ps.G1 clktop;
METAL:= gndl N1 gndr;
DIFFUSION N1 pd.SOURCE;
POLY:= in pd.Gi;
DIFFUSION:= pd. DRAIN pu.DSOURCE ps.S0URCE;
POLY:= 28,20 (out) but.p;
DIFFUSION:= pu.DRAIN N3;
DIFFUSION:= ps.DRAIN but. D;
METAL:= vddl N3 vddr;
CONSTRAINTS
X clkbot = clktop;
Ygndl = gndr;
Y in = out; )
Y vddl = vddr;
inY=out.Y;
END .

CELL sr 250 4 -50-58 350 58
CONNECTORS
T POWER: PWRIN -50,45 PWROUT 350,45;
T GROUND: GNDIN -50,~45 GNDOUT 350,-45;
T INPUT: INPUT -50,-18;
T QUTPUT: OUTPUT 350,-19;
T CLOCK: CLKTOP ARRAY 4,1 100 0 6,59;
T CLOCK: CLKBOTTOM ARRAY 4,1 100 0 6,-58;
COMPONENTS
SRCELL: sreg ARRAY 4,1 100,0
%vddr vdd! gndr gndl out in

0,0;
TWIGS
POLY:BCLOCKS = CLKBOTTOM sreg.clkbot;
POLY:TCLOCKS = CLKTOP sreg.clktop;
METAL:= PWRIN sreg.vddl.1.1;
METAL;= PWROUT sreg.vddr.4.1;
METAL:= GNDIN sreg.gndl.1.1;
METAL:= GNDOUT sreg.gndr.4.1;
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POLY:= INPUT sreg.in.1.1;
POLY:= QUTPUT sreg.out.4.1;
CONSTRAINTS
END
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Figure B.2. The Shift Register Example



