
Automated Performance Optimization of

Custom Integrated Circuits

Thesis by

Stephen Matbas Trimberger

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1983

(Submitted January 6, 1983)

@ 1983

Stephen Mathias Trimberger

All Rights Reserved

Acknowledgement

The completion of this work is due to my family and friends who endured the

roller coaster ride and did not give up hope. I could not have survived the

hard times had you not been there.

I would like to particularly acknowledge the one individual who, more than

anyone else, has been responsible for my success throughout my life. He has

been a competitor an instructor, a confidant, a model, an oracle, an

assistant, a co-worker, a critic and a friend - the perfect brother, Francis

Michael Trimberg er.

Many thanks t3 NC Pmo!i, for providing perspective.

This work was funded by the Silicon Structures Project.

Abstract

The complexity of integrated circuits requires a hierarchical design

methodology that allows the user to divide the problem into pieces, design

each piece independently, and assemble the pieces into the complete

system. The design hierarchy brings out composition problems, problems

that are a property of the assembly as a whole, not of one single instance in

the hierarchy.

Recent research has produced tools that automate part of the composition

task - the logical connection of the pieces. However, these tools do not

ensure that signals driven over these connections will be driven sufficiently

to give reasonable cycle speed of the resulting chips. It is easily possible to

specify an assembly in which a small-sized gate is required to drive an

ellormow !oaO. Parasitic capacitance of the wiring made aut,ematicd!y by

the logical connection tool can be the dominant source of delay, so assembly

tools can actually worsen the performance of the circuit and hide this fact

from the designer.

When required to make large circuits, automated layout tools such as PLA

generators can blindly make layouts that give abysmally poor performance.

Here again, the delay is in a part of circuit that the designer did not specify,

so it is hidden. Finding and correcting these problems is a difficult and

time-consuming task in integrated circuit design, and one that consumes

vastly more people's time and computer time than the simple assembly of

t h e chip.

The task of guaranteeing that circuits meet performance specifications has

been left mainly to the designer. Computer aided design has provided

analysis tools, tools that tell the designer the performance statistics of the

current design. I t is then the designer's burden to interpret the

performance statistics and use them as guides to make changes in the

circuit.

This thesis views performance optimization as an electrical composition task.

Poor performance as a result of mismatched loads on devices is a problem of

composition and should be corrected by the composition tool. Such a tool is

presented in this thesis -- a program that automatically .sizes transistors in a

symbolic description sf a chip to match the load the transistors are driving.

The results are encouraging: they show that delays can be cut by a factor of

two in many current designs.

Table of Contents

................... ... Chapter 1 . Introduction

........................... Chapter 2 . Performance Optimization Issues ..
.............................. 2.1 Where Does Speed Come From?

.. 2.2 Statement of the Problem

2.3 Current Performance Optimization
............................. 2.4 A New Way to Address Performance Optimization

................... .. 2.5 Delay Models ..
... 2.6 Delays in a Chain of Gates

2.7 A Simple Algorithm for Nearly Optimizing Delay in a Chain of Gates
...

2.8 Comparison of the Heuristic with Optimum Delay Results
2.9 Calculation of True Minimum Delay for a Chain with Capacitive

.. Wires
Chapter 3 . Andy .. A System h a t Optimizes Performance in Sticks Circuits
..

.............................. .. 3.1 Overview of Andy ...
....................... 3.2 Commands and Capabilities

................... 3.3 Input Requirements
3.4 The Data Structure
3.5 Optimization Overview ..

....................................... 3.6 Performance Optimization ...
..................... 3.7 Power Optimization

................................... Chapter 4 . Examples of the Andy Optimizer Operation

... 4.1 Small Examples ..

.. 4.2 A Chain of Gates

4.3 Power Optimization Examples

4.4 Larger Examples
... 4.5 Summary of Examples

............................ Chapter 5 . The Andy Performance Optimization Algorithms

5.1 Overview of the Algorithms
... 5.2 Finding Nodes

.. 5.3 Finding Gates ...
..................................... 5.4 Performance Optimization of Gates

5.5 Power Optimization Off the Critical Path ...

... Chapter 6 . Performance Optimization Options

.............................. 6.1 Explicit Parametrization of Delay. Power and Area

... 6.2 True Optimum Delay

................................... 8.3 Transistor-Oriented Performance Optimization

.. 6.4 Better Gate Recognition Heuristics

........................... 6.5 Should the Gates Be Described in the Data Format?

......................... 6.6 Problems With Unsorted Paths ...
............................... 6.7 Problems With the Current Path Sorting Method

.. 6.8 Limitations of the Andy Clocking Model

........................... 6.9 Non-Rectangular Transis tors
... 6.10 Additional Constraints

....................,..........*............ 6.11 More Accurate Delay Models

Chapter 7 . Summary
....................................... 7.1 Similarities With Sticks

...................... 7.2 Parametrized Cells and Symbolic Layout ..
7.3 The Relationship Between Hierarchy and the Design Data Format

...
7.4 AndyasaPieceof aDesignSystem ..
7.5 Other Applications of Andy ...

Chapter 8 . Conclusions ..

References~.o...a ..

Appendix A. Andy User's Manual *. , . , -. . *, . . , , , , 167

Appendix B. Sticks Standard Proposal 210

Table of Figures

2.1. Input Voltage Equals the Output Voltage

.. 2.2. Wire Models ...

...................................... 2.3. MOS Electrical Parameters from [Mead 19801

2.4. A Chain of Gates Between a Driver and a Load

2.5. Plots of Log of Transistor Width Versus Stage for Different Values of
.. Alpha ...

........................... 2.6. Optimal Fanout for a Chain of Gates

2.7. Gate Size Versus Stage for Number of Gates Greater Than Optimum
... f OF Fanout

2.8. Gate Size Versus Stage for Number of Gates Less Than Optimum for
.. Farmo~t

2.9. Gate Size Versus Stage with Large First Stage for Number of Gates
... Greater Than Optimum for Fanout

2.10. Delay Optimization of a Minimum-Delay Chain Makes it Slower

2.11. Situation in Which Power Optimization Can Reduce Delay

2.12. Power Savings Along Non-Critical Paths Can Shorten Delays

2.14. A Chain of Gates With parasitic Capacitances ..

2.15. A Graph of Gates With a Critical Path

3.1. Andy in the Caltech Design World

The Sticks Standard Representation of a Shift Register Segment

...................*... The Shift Register Segment from Figure 3.2

.......................... Table of Additional Parameters on Sticks Components

Table of Connector Types Used in Sticks Standard

Table of Additional Sticks Standard Constraints

... The Node Derivation of a Simple Cell

Types of Gates . a) Restoring Logic Gate . b) Transmission Gate

.. Ill-formed Gates

....................,.*........ The Node and Gate Data Structure ..
... Performance Qptimizatisn Flowchart,

... The Paths in a Simple Circuit

An Optimized Inverter . a) One Transistor Load on Output . b) Twenty
... Transistor Loads on Output

Plot of Transistor Width Versus Transistor Loads for the Inverter Cell
.. in Figure 4.1.

Plot of Output Delay Versus Transistor Loads for Inverter Cell

A Shift Register Cell . a) One Transistor Load on Output. b) Twenty
Transistor Loads on Output

Plot of Transistor Width Versus Transistor Loads for the Shift Register
Cell in Figure 4.4. ..

Plot of Output Delay Versus Transistor Load for Shift Register Cell

A Chain of Gates

Plots of Gate Stage Versus Transistor Widths for Several Capacitive
.. Loads

Statistics for a Chain of Gates

.. 4.10. Power Optimization Results

4.11. Unrelated Paths Example. a) Original . b) After Delay Optimization . c)
After Power Optimization ..

4.12. Fanout Example . a) Original . b) After Delay Optimization . c) After
.. Power Optimization

4.13. LogicalFilter Chip Gate Diagram ...

... 4.14. Logical Filter Example

... 4.15. Table of Logical Filter Results

4.16. Table of Logical Filter Results with Different Fanout Factors

.................... 4.17. Programmable Logic Array Example

.. 4.18, Optimized Traffic Light Controller PLA

4.1 9 . Statistics for the Traffic Light Controller PLA ..

5.1. Performance Optimization Flowchart ..

.............................. ... 5.2. Node Segment Derivation fro= a Simple Cell

......................... The Data Structure for Node Segments ...
The Scanloads Algorithm

................... Nodes in a Shift Register Segment

.. Well-Formed Gates

... Gate Determination of Shift Register

..................................... Shared Bus Structure

........................ Node and Gate Data Structure ...

Cross-Coupled Gates

... Sizing Gates in a Feedback Loop

Load Calculation Looks Through Pass Transistors Pessimistically

A Chain of Transmission Gates Driven by an Inverter

The Directed Graph Corresponding to the Circuit in Figure 5.7

The Directed Graph Corresponding to the Fanout Exarnple

The Paths Determination from the Graph in Figure 5.15

The Four Kinds of Paths
Paths Seen by the Delay Adjustment for the Path Determination in
Figure 5.16.

An Inverter ..

........................... Simple Method Cannot Size NAND Structure Properly

... Two Common Ill-Formed Gates

The Transistor Cell Gate Structure Cannot Be Known in Advance

..................................... Sizing Paths Without Sorting Causes Problems

A Situation That Causes Problems With. Sorted Path Optimization

... A Typical Sequential Circuit

A Simple Precharge Gate ...

.............................. Precharge Gates in a Four-Phase Clocking Scheme

Some Transistor Delay Models in the Literature

Comparison of Concepts in Area Optimization and Performance
... Optimization

Mode and Gate Data Structure ...*.......

.................... Symbolic Layout Compaction Graph

... k 1 . Design Process Flow 168

... A.2. Andy in the Caltech Design World 168

A3 . Performance Optimization Flowchart 169

A.4. Types of Gates . a) Restoring Logic Gate . b) Transmission Gate 172

.. k5 . Ill-formed Gates

A.6. The Sticks Standard Representation of a Shift Register Segment .
..

A7 . The Shift Register Segment from Figure A6

k €3 . Table of Additional Parameters on Sticks Components

A.9. Shared Bus Structure

A.18. Table of Connector Types Used in the Sticks Standard

k f 1 . Table of Additional Sticks Standard Constraints

B . 1 . nMOS Sticks Standard Components ...

B.2. The Shift Register Example

CHAPTER 1

htroduction

The complexity of integrated circuits forces a design methodology that

encourages division of the problem into smaller pieces and subsequent

assembly, or composition of the pieces into systems. This "divide and

conquer" methodology is the basis of the design hierarchy, a hierarchy made

up of instances of cells in which parent nodes in the tree contain the

instances of the child nodes.

This division is made to facilitate the layout of the circuit and does not take

into account the electrical properties. The result is that, although the design

hierarchy gives a good abstraction for the layout of the chip, it is usually a

very poor form for electrical optimizations such as minimizing delay and

current density limitations.

A s work progresses in the synthesis of layout of integrated circuits, the

optimization of electrical properties is falling farther and farther behind.

Belay optimization is frequently done by hand, with designers making coarse

estimates of loading by inspection and by assumptions about the circuits

they are designing. Designers tend to ignore delay problems in most

circuitry, m a w all devices minimum size, and tend to err on the side of

conservatism for those gates which they believe will have to drive large loads.

These oversized devices are wasteful of power and incur additional delay to

drive thew.

Typically load estimates are made by counting the number of gates on a

node, with no consideration of parasitic capacitance due to the wire. This

was a reasonable assumption in the past, but the parasitic capacitances are

beginning to dominate the gate capacitances in MOS, so designer's estimates

are missing the mark. Symbolic layout, which is becoming increasingly

popular, encourages connection by stretching which tends to hide the

parasitic capacitances. These loads are not taken into account, so most of

the circuitry on the chip runs more slowly than it should because the gates

are minimum sized, and power is lost on those parts of the chip where the

designer made a driver too large.

The problem with performance optimization is that the most important

information, that having to do -with the interconnection loading is not

available to the designer until late in the design process. If a designer were

to take this information into account, he would typically have to lay out the

entire chip again. Since so much work is impractical and since the parasitic

capacitance information is not readily available anyway, this whole problem

is often ignored and slower, more power consumptive chips are the result .

Advanced chip assembly tools address physical design issues, but typically

provide little assistance for these difficult assembly problems. These

systems may make electrical optimizations more difficult, since they hide

the implementation detail used to make the logical composition. Therefore,

the designer cannot take into account the effects of the implementation

when optimizing delays.

This thesis begins with a summary of the methods and tools currently used

for performance optimization of integrated circuits. This summary leads to

a discussion of delay models and an investigation sf the tradeoffs between

delay and power consumption.

A program is presented for performance optimization that not only makes

devices as large as they must be to drive their loads, but also saves power by

altering gates off the critical path so they run slower and consume less

power.

Examples of the use of the program show the value of automated

performance optimization. For example, a performance improvement of a

factor of two over hand designs has been achieved. Delay-power product can

be improved by about twenty percent.

Tb.8 later parts of the thesis describe in detail the algorithms used in the

electrical optimizations and present alternatives and possible improvements

to the algorithms. Finally, the role of performance optimization in a

complete design system is discussed.

CHAPTER2

Performance Optimization Issues

This chapter is a discussion of several issues surrounding performance

optimization. It starts with a discussion of factors responsible for good

performance in integrated circuits. Attention is focused on device

modifications to improve performance, how it has been done in the past, and

the rationale for the system described in this thesis.

Later sections deal with optimal delay in a chain of gates. A heuristic

performance optimization method is presented and is compared to the

optimal solution. Finally, the results are extended to accommodate full

graph-like gate structure.

2.1. Where Does Speed Come .Ft'om?

The performance of a circuit is affected by systems issues, circuit issues and

implementation issues. Systems issues start with the way a chip fits into an

overall system. The algorithms used to calculate the desired results are also

systems issues, as are the geometric and electrical topology in the

structures that implement the algorithms. This topology and the structure

of the implementation is sometimes called the f loorp lan of the chip.

Circuit issues include the driving power and load on individual devices.

Devices that drive large loads must be made large to accommodate the

loads. Devices that do not drive large loads can be made small to save power.

Implementation issues center around the choice of implementation

technology and the particular process parameters used for fabrication of the

device in question.

Appropriate algorithms and efficient implementation structures are

important to overall system performance. However, automating the choices

involved is very Micult. The multiplicity of algorithms and implementation

structures makes the choice of a good one still a design decision, often

accompanied by high-level simulation. On the other end of the scale, process

selection is important for good performance, but the means by which a

process and the parameters for that process are selected is not one which

can be easily automated. So we are left with circuit issues which are decided

by relatively straightforward rules, but which are often ignored because the

data are hard to collect.

2.2. Statement of the Problem

This work addresses circuit optimization issues in an nMOS technology. The

program described in later chapters sets transistor and resistor sizes to

balance the loads that those devices must drive, giving a faster circuit,

within the constraints of the algorithms used for the function and the

technology in which the function will be implemented. The designer may

make changes in the structure and the algorithms in the circuit, and the

circuit issues will be taken care of automatically.

2.3. Current Performance Optimization

Performance optimization has traditionally been the "weak sister" in

integrated circuit design. Area and power optimizations are much easier to

visualize and implement, and it has been a generally accepted belief that

area optimization will give reasonable delay statistics. Delay optimization

has only been addressed at a few industrial locations that specialize in h g h

speed devices. Even there, more concern was directed to processing

technology and algorithms than to circuit issues [Anderson 19621.

23.1. Semiconductor Industry Approach to Performance Optimization

In the semiconductor industry, circuit issues have been traditionally

addressed in the design stage by coarse estimates of loading and by

electrical simulation coupled with rules of thumb. Estimates and rules of

thumb are usually stated in terms of gate counts and gate capacitances,

without regard t~ parasitic ~ a p a c i t ~ c e . Wer, parasitics are taken into

account, it is typically done in a very rough manner since the length of

interconnect is still unknown. Although these estimates may be improved

later in the design cycle, the geometry of the transistors cannot be

significantly changed.

Delay estimates are derived in t h e e ways: gross estimates by the designer,

simulation, and path delay analysis. Delay estimates for even moderately-

sized chips are too dSicult for a designer to carry out in his head, so

automated estimators are gaining popularity. Electrical simulation can give

good measures of delays [Daseking 19821, but it is expensive, so it is rarely

carried out on large parts of a chip. Usually, the small cells of the design are

simulated electrically and it is hoped that the results of the cell simulations

will not be invalidated by the composition. Unfortunately, electrical nodes

cross the boundaries of those cells, and the purely cell-oriented simulation is

inadequate to characterize the true performance of the cell.

Electrical simulation does not give the results the designer needs.

Simulation tells the designer how good or bad the design is, it does not tell

him how to correct a bad design. So the designer is caught in a very

expensive loop of simulation and adjustment.

Path delay analysis [Bening 19821 is a relatively recent development in

response to the inefficiency of simulation. Typical delay analysis tools find

best case, worse case and normal delays for the paths through the chip,

directing the designer's attention to problem areas. Path delay analysis

systems are considerably faster than simulation and they provide

information in the form of delays, which are a more reasonable starting point

from which to optimize the circuit. However, path analysis systems merely

point out problem areas, they do not help correct them. After these

problems are corrected, the entire process must be repeated. These design

iterations are expensive and time consuming.

A n intereshg exception to the standard industry performance optimization

approach is a synthesis tool described in [Agule 19771 and [Ruehli 19771. The

designer creates a gate array design and imposes some timing constraints on

the chip. The system adjusts the assignment of gates in a gate array system

so gates that drive small loads are assigned to less powerful gates in the gate

array, saving power. This system is similar to the one described in later

chapters of this thesis, but is constrained to work with a gate array

implementation

2.3.2. University Approach to Performance Optimization

The relatively recent explosion in the university involvement in integrated

circuit design has brought few new ideas on performance issues. With few

exceptions, the only work in the university community in improved

performance has concentrated on algorithms and structures for high-speed

or parallel processing.

The most notable contribution of the university community to improving

performance is the Spice simulator [Cohen 19781. Some work on logic design

sys tems has addressed performance issues [McWilliams 19781, which may be

applicable to integrated circuit design More recently, [Penfield 19011

derived some estimates for distributed resistance and capacitance effects in

integrated circuits. These estimates have application to simulation and

delay path adysis .

However, the university community in general has accepted simplified delay

models for integrated circuit design and has produced few tools to aid circuit

delay optimization.

One powerful design concept from the university community is language-

based integrated circuit design The use of a programming language allows

cells to be parametrized: a cell can be referenced with parameters to set cell

size and drive power. If the cells are parametrized properly, a system can be

built which determines signal loading and calls cells with the parameters

necessary for optimal drive, thus minimizing delay. Although such

possibilities have been recognized since the @st embedded language system

was proposed [Locanthi 19781, no such systems optimize delay, although

Bristle Blocks [Johannsen 19811 parametrizes power and ground bus widths

to avoid current density problems.

This light treatment of performance issues may be attributed to the

university community's concentration on fast turnaround of parts and the

subsequent acceptance of second-rate in all integrated circuit design

parameters. There seems to be little effort to gain optimal area, power

dissipation, or speed of operation. For the sake of expediency, most

university designers use simplified geometrical design rules from [Mead

19801 and skip precise timing analysis and optimization.

Unfortunately, although the simplified geometrical design rules yield designs

h t are in the best cases within about twenty percent of the most dense

layouts, simplified delay models often yield designs that are a factor of two

slower than optimum. The simplified design rules may be acceptable but the

simple delay optimization appears to be too simple. More accurate delay

optimization could improve the resulting designs considerably, but the cost

of traditional industrial solutions to performance problems are not

acceptable to university designers. These solutions require too much

computer time and too much delay to fabrication.

2.3.3. The Irdequades of Current Performance Optimization Practices

%he industrial approach of massive simulation and evaluation is too

expensive and only leads designers to problem areas. Solutions to the

problems require hand modification of the design requiring all checking to be

re-done.

universities give up high performance for the sake of fast turnaround. Fast

turnaround requires automating layout or interconbection or both.

Programmable Logic Array (PLA) generators produce slow-operating PLAs,

and automated interconnect sys tems can hide the interconnection delays

from the designer. Correcting these problems takes time, so they are not

treated in the detail they require. This practice costs a factor of two or more

on many designs, and cost an estimated factor of ten on a recent project

[Foderaro 19021.

24. A New Way to Address Performance Optimization

This thesis explores the circuit performance optimization question in a

system that automatically sets device sizes depending on the load which

those devices must drive. Such a system has many advantages over existing

and non-existent delay optimization methods. This section introduces the

concepts and the gods of the system,

2.4.1. Automated Sizing of Transistors

A system that automatically sets device sizes does not seriously impede the

fast turn-around desired by the university community as long as the

program runs in an insignificant amount of time compared to the fabrication

delay. A fully automated system can meet this restriction rather easily.

Such a system also performs the task the designer wants, actually optimizing

the delays instead of telling the designer what delays there are in the circuit

and requiring him to make the changes. This system could be used as a code

optimizer for a "silicon compiler".

It has been suggested that symbolic layout could be used as an interchange

form so chip area could be optimized separately for each process line on

which the chip is to be fabricated. This optimization could be done for delays

also, using the ideas presented in this thesis. Since each process line has its

own process resistance and capacitance parameters, the constants in the

program can be changed for each new process line. This optimization could

have dramatic effects on the performance of second-sourced parts, and for

parts after a change in the fabrication process.

2.4.2. Changes in Device Sizes Mandate Physical Changes

The optimizer makes geometrical changes in the circuit as well. as electrical

changes. Because device sizes change, the geometry of the circuit changes.

This is disastrous in systems that are based on hard mask geometry, as most

are. The answer, of course, is to make the changes in a symbolic form.

Since the symbolic components can be moved, the circuit must be re-run

through the symbolic area optimizer after the delay optimization has been

done. Automated changes in device sizes require automated changes in the

physical location of components.

Without the symbolic form, changes in device sizes require a designer to

alter the design by hand. Such changes then require that the design be

checked for correctness, And, of course, the simulation of performance

estimation must be run again to check the cbnges. This loop is time

consuming and expensive.

2.4.3. Targeted Delay Optimization

It is unreasonable to attempt to develop a circuit at the absolute minimum

delay. such a circuit would consume an enormous amount of power and

would require an unreasonable amount of chip area. An algorithm that

attempted to make absolutely fast circuits would make unusable circuits.

The algorithm described in this thesis gains a reasonable amount of delay

optimization without seriously affecting the power or area statistics.

Delay optimization need only be done on the delay critical path. Other paths

can be made as slow as desired as long as they do not create delays longer

than the critical path delay. This saves power on parts of the circuit that are

off the critical path.

2.5. Delay Models

This section examines several delay models and discusses their usefulness in

a system that optimizes delays in circuits. Nearly all of the work on delay

models has been for simulators and delay path analysis systems, but much of

it is applicable to automated performance optimization.

A transistor delay can measured as the delay from the time when the voltage

on the input of a gate reaching a value to the time when the output reaches

that value. A common voltage at which these delays are measured is the

voltage at which the voltage on input of an inverter equals the voltage on the

output, vE8 in figure 2.1. [Pilling 1972a] [Nham 1980]. Others have used

other points, such as the half-way point between the high and low voltage

[Putatunda 19621.

Given that delays are to be measured from some such point, there are two

more problems which must be addressed to estimate delays: the actual

equations involved to find the times at which the voltages cross that point,

and the measures of the resistances and capacitances, which are the input to

those equations.

2.5.2. Delay

Starting from a standard measuring point, it is possible to translate

simulated voltages into delays. There is a wide spectrum of choices for this

v
out

Figure 2.1. Input Voltage Equals the Output Voltage.

translation, ranging from very dificult, precise calculations to very simple

estimates. A rather good estimate of the voltage, V, at some time, t , can be

gotten from the equation:

where R is the resistance discharging the capacitance, C, and 4 is the input

voltage which may vary over time. For digital MOS circuits, the resistance in

the equation is the resistance of a transistor, which varies with the voltage on

its gate, hence the dependence on 7. The capacitance on the node is also

dependent on the voltage on the node, so it also varies over time. There is

even more complication: there may be more than one driver on the node, as

is the case in NQR structures in circuits, so the voltage may be the sum of

many of such e quatisns.

Furthermore, the device that drives the node high is different than the

device that drives it low, The diflerence in delay is significant in nMG3

circuits and has led some researchers to describe the node delay with two

separate equations, one for rise time and one for fall time [Koppel 19781.

This practice yields a combinatsric explosion in the number of different

delays for an output node, since the delay at the output is a function of the

values on the inputs of the circuit. Therefore, this distinction between rise

arnd fall times is not always made.

The delay model used in this thesis takes the rise time for all nodes at all

gates, because the rise time is longer than the fall time. The resulting delay

estimate is rather pessimistic, since half of the inverters in a chain would be

falling instead. It gives n k ~ for the delay of a chain of inverters, where n is

the number of inverters in the chain, k is the ratio of the pulldown resistance

to the pullup resistance in an inverter, and T is the transit time through a

transistor, as described in [Mead 19801. The true longer delay (most rising

sigllsis) is [d (k + I)r for n even, and [.?I (k + I) T + ~ r for n odd.

The estimate, nkr, is more accurate for small chains of gates (n small) and

remains less than twice the true value in the limit for long chains. In the

system described later, this estimate is used as a comparison with other,

similarly pessimistic delays. Therefore, the pessimism of this simple model

is not catastrophic as long as there is no great mismatch in the number of

gates in the chains whose delays are being compared. In addition, since the

estimate is more pessimistic for longer chains, the system will tend to select

a longer chain of gates as the critical path over a shorter one -- a situation

that is not nearly as bad as the converse. This single "figure of merit"

simplifies comparisons immensely.

There is at least one of the delay equations, above, for each node in the

circuit. Since all must be solved simultaneously, we will be well served to

find some simplifications.

The integral looks rather forbidding, but the real problem with this

calculation is the need to know the input voltage, resistance and capacitance

over for d l time. These are dependent on other nodes in the circuit, so each

node is dependent on many nodes, all of which are described by similar

integrals.

First, if we assume that the power supply does not vary, we can make &

constant. Assuming that the resistance of the pullup transistor is comtant

and that the capacitance on the node does not vary significantly with voltage,

we get the equations below:

We can solve for t yhen the V (t) is the voltage at which the output of a

standard inverter is equal to its input, VEB:

So the delay can be expressed in terms of the RC delay constant of the node.

Notice that the delay is proportional to the RC time constant regardless of

the special voltage measured. If we measure from the midpoint voltage, we

would simply have a different constant. This simple result is valid when a

perfect resistance is discharging a perfect capacitance over a perfect

conductor. Transistors do not have perfect resistance and perfect

capacitance, so some ad-hoc approximations -with higher-order term have

been proposed, for example [Koppel 19781. Since perfect conductors are

perfectly rare in integrated circuits, I now address wire models.

2.5.3. Wires

A wire is net a pure conductor, but has some resistance and capacitance.

These are frequently called pu~asitie, a term that carries a connotation of

secondary importance. However, parasitic capacitance is beginning to

dominate the gate capacitance in integrated circuits, and a delay model that

does not take it into account will be inaccurate.

To be absolutely precise, the voltage along a conductor should take into

account the distributed nature of the parasitics. A voltage diffuses down a

wire with a behavior described by a differential equation:

It is unreasonable to solve this dippusion equation for every wire in the design.

Until recently, wires were often treated as prefect conductors, and in some

integrated circuit technologies, this is still a valid assumption But MOS

technologies require a more accurate treatment of wires. Therefore,

estimates of Merent precision have been used for wires. Some of these

models we shown in Qure 2.2.

A pessimistic estimate is to put the entire wire capacitance after the wire

resistance, an optimistic estimate is to put the capacitance before the

resistance or eliminate the resistance altogether. A compromise is to divide

the capacitance, putting half in front and half after the resistance. These

empirical models make reasonable approximations to the diffusion

equations, above, for most situations.

To choose an acceptable simplification, let us examine electrical parameters

for MOS wiring and transistors, figure 2.3. The capacitances of wiring layers

in MOS are typically one less order of magnitude than gate capacitances.

Therefore, any wire model must take into account the wire capacitance.

On the other hand, wire resistances are all several orders of magnitude less

than the transistor resistance, so for most circuits, wire resistance effects

are slight. The resistance of a polysilicon wire, the most resistive wiring

layer in nMOS, is typically less than one one-hundredth the gate resistance,

so diaerences in the models are significant for polysilicon wire lengths

greater than about few hundred lambda, Longer diffusion and much longer

metal wires are needed before their wire resistances are significant.

Simulations indicate that short wires in current technologies can accurately

be modelled with a purely capacitive model. Longer wires cannot be

Transistor Capacitance 4.0 x pf /pm2.
Diffusion Capacitance 1.0 x lo-* pf/pmi.
Polysilicon Capacitance 0.4 x lom4 pf/pm .
Metal Capacitance 0.3 x 10" pf/pm2.

Metal Resistance 0.03 R P .
Diffusion Resistance 10 R/a.
Polysilicon Resistance 15- 100 R/..
Transistor Resistance 1.0 x lo4 R/m.

Figure 23. MOS Electrical Parameters from [Mead 19801

adequately modelled so simply, however, and the simplified model is not

applicable to these wires.

Wire delays do not scale well. The resistance per square and the capacitance

per unit area both increase in proportion to the scaling. The size of the

allowed chip area is unchanged, so wires may be just as long. The result is

that the resistance per unit length of a wire increases as the square of the

scaling factor, due to thinner and narrower wires. The capacitance per unit

length remains constant. The transit time of a transistor decreases by the

scale factor. So the wire delay increases as the cube of the scaling factor

relative to the device transit time. Wire delays are rapidly getting more

important than gate delays. In current technology, wire delays are a

problem in high-performance circuits, and must be considered throughout

the design process. Future technologies w i l l require consideration of wire

resistance for long resistive wires.

Currently, in circuits where absolute high performance is not essential, the

wire delays are not considered during the design of the chip, but the

resistances are calculated after the design is complete to determine whether

or not the wire delay is significant. Wire delay is only considered on very long

polysilicon and diffusion wires, and blatant conservatisrn guides the designer

in addressing the wire resistance problems. This conservatism is prompted

by the disastrous effect of ignoring wire resistance in very long wires, since

the delay increases as the square of the distance.

An investigation by [Bilardi 1981] of the necessary complexity of wire models

concludes that the capacitive model is adequate for current and future MOS

technologies. This work ignores the scaling of the thickness of the wires,

thereby diminishing the effects of long wires on delay. Although this implies

that the results are not conclusive, it is safe to say that although the

difIusive effect of long wires will limit the speed of operation for integrated

circuits in the future, it is not now a dominant problem.

Although the wire resistances can be safely dismissed for the near future,

the resistance on a wire as a result of a pass transistor cannot. To cope with

this problem, [Penfield 19811 produced some bounding equations on the

speed of signal propagation along a wire and within a RC tree network. These

equations can be used to obtain bounds on the signal delay on a wire, and

they have been used to get an estimate of the path delay [Putatunda 19821.

This method may be less accurate than the simple models described above,

since it uses an average of bounds on delay, however, it is more accurate

over a large range of wire characteristics because it can take into account

distributed resistances and capacitances. This more complex model is also

more difficult to compute. The difficult task is to choose a model that is

sufTicientiy accurate and sufffcientiy simpie for use in a tool.

2.5.4. A Simple Solution

The delay model for optimization serves two purposes. First, it is used to

estimate delays in the circuit to direct the optimization task, similar to the

delay path optimization done at many industry locations. Second, it is used

in reverse to reduce the delay in part of the circuit. It is desirable to have

one delay model for both functions. In addition, in addressing the conceptual

basis for performance optimization, we wish to use a simple delay model.

Nearly all of the delay models were proposed to address simulation and delay

estimation issues. In these applications, good quantitative models are

needed, and most of the computational complexity of those systems has

been included to get more accurate timing by taking into account

parameters that might be of no importance in the task of actually optimizing

the performance of the circuit. Also, electrical simulators are targeted to

analog circuits as well as digital, making the accuracy of the delays that

much more serious, In a delay optimization system, there is no need for the

delay model to be a good quantitative model, only a good qualitative model.

Although we attempt to find a minimum delay, it is not necessary to know

what that minimum is. In addition, this delay optimization system is

targeted to digital systems, so complexity added for analog circuits is not

relevant.

Simpler models can be used to simplify the programming and speed up the

execution without undue reduction in the accuracy of the results. A tool with

a fast turnaround can allow the designer to experiment with different

structures and find a good one. Therefore, a very simple performance modei

is used in the performance optimization which is discussed in the remander

of this thesis.

Delays are assumed to be measured from a standard voltage point. That

point may be VEQ, but the precise value is not important. Therefore the

delay of a gate is simply a constant times the product of the resistance of

the pullup resistor on the gate and the capacitance of the output node of the

gate:

D = kRCL

Since the resistance of the pullup transistor in a gate is proportional to the

resistance of the pulldown transistor when it is turned on, the rise time and

fall time are related by a constant factor, so there is no need to distinguish

between the two. In this simple model, a wire is modelled as a lumped

capacitance which is added to the capacitance of the gates on the node. The

wire resistance is ignored because it is insignificant in most cases, as

discussed in the "Wires" section, above.

The delay of a chain of gates is the sum of the delays of the individual gates.

The lumped capacitance, zero resistance model of wires allows us to treat

wire capacitance and gate capacitance uniformly, simplifying the algorithms.

A reasonable improvement in the system would be to model wire delays and

their associated loads on the gates. This improvement is discussed in a later

chapter.

The simplification gives a reasonable qualitative estimate of the delays. It is

rather optimistic when dealing with long wires, on which the delays are

proportional to the square of the length, because it does not take into

account the wire resistance. Therefore the performance optimizer will

underestimate the delay in a long wire, possibly missing that path as a

critical path, possibly driving it insufficiently. But since the delay of the path

is in the wire, that path will not go faster if it is driven harder.

In current integrated circuit design, wire resistance effects are significant

only in very long polysilicon wires. Loag polysilicon wires are used in local.

clock routing because no layer change is needed to make a pass transistor.

They are also used in PLAs, so no layer change is needed to make a gate.

Also, long polysilicon wires may occur in the wires produced by channel

routers, which make connections in metal and polysilicon, avoiding diffusion

because of its large capacitance. This simple model will underestimate the

delay of signal propagation in these cases, but the error will not be very

large.

A more serious limitation occurs because pass transistor resistance is

ignored. Delays due to pass transistor resistance are more serious, and may

lead to serious underestimations of delays.

As integrated circuit geometries get smaller, the relative length of wires can

be expected to become larger, so the resistive effects will eventually become

more serious. Therefore, wire resistance must be taken into account in

systems in the future. This and other improvements are discussed in the

chapter titled "Performance Optimization Options".

The inaccuracy of the simple wire model does not affect the algorithm used

to optimize the delays, but does afl'ect the resulting device sizes. Inclusion of

a more accurate wire model is akin to inclusion in a Sticks system of more

accurate design rules. The result is a better-optimized circuit, the cost is

more computation to find the optimization.

26. Belays in a Chain of Gates

In this section, 1 derive new equations to find the sizes of gates in a c h i n

which will minimize the delay of a signal though the chain, a combination of

delay and power consumption, and the delay-power product.

Following that, I present the fundamental algorithm used in Andy for sizlng

gates. This algorithm does not yield optimal delay nor does it give optimal

delay-power product. However, it does yield reasonable results, as will be

shown from comparison with the results from the equations. Later sections

deal with the comparison of the heuristic to the optimum and with more

complex gate and wire structures.

2.6.1. Optimum Delay

We m e given a chain of gates, shorn in Ague 2.4. The chain is driven by a

pulldown transistor with a width of wo, and the chain must drive a load

capacitance of C'. The task is to set the sizes of the transistors in the gates

in the chain to minimize signal delay across the chain.

[Mead 1980] states that for minim,unn delay; the number of gates in a chain

driving a large load should be chosen so that each one is larger than the

previous one by e, the base of the natural logarithms. The minimum is broad

and flat around e, and larger fanout yields area and power saving, so in

practice, this number is usually between four and eight,

PlPgure 2.4. A Chain of Gates Between a Drives and a Load

However, we are faced with a slightly m e r e n t problem: the number of gates

in the chain is given and we must find the device sizes that minimize delay.

It seems obvious that each should be larger than the previous one by a

constant, and this is exactly what the equations, below, will show. But we will

also And from the equations how to choose gate sizes to find an optimum of a

function of power and delay and for the minimizing the delay-power product,

Gate sizes in these cases do not vary by a simple constant factor.

2.6.2. Epuations for a Single Gate

An inverter gate like the ones shown in figure 2.4 has two driving transistors,

a pullup transistor and a pdldom transistor, In M B S , the sizes of the

transistors is related by the following equation:

where w and i are the widths md lengths of the transistors and +the

subscripts pu represent the pullup and pd the pulldown. kp is the ratio of

the inverter pullup width to length ratio and the inverter pulldown width to

length ratio for nFnOS, which is usually taken as four. The lengthhidth ratio

is proportional to the resistance of the transistor, so we can express the

resistance of the gate as a constant times resistance of the pulldown

transistor:

The capacitance with whch we are concerned is the capacitance of the

gulldown, which can be expressed as:

cg = k'$dwpd

Where k, is the capacitance per unit area of a transistor. Notice that we

have the resistance and the capacitance in terms of the dimensions of the

pulldown transistor.

2.6.9. Equations for a Chain of Gates

Let wt and 4 be the length and width of the pulldown transistor in the iU1

gate in a chain. Write Ri for the resistance of the iUC gate and cUf for the

capacitance the iUC gate must drive, and for the capacitance of the gate

itself. The power dissipated by a gate can be measured by the resistance of

the transistors in the gate:

where kp is the constant that converts the gate w/l ratio to a measure of

power consumption. I t absorbs the constant in the gate resistance equation.

As discussed earlier in this chapter, the delay of a gate can be approximated

as a constant times the resistance of the driving transistor times the output

capacitance:

where kd is the delay constant. The capacitance of the ith gate is

proportional to the area of the pulldom transistor:

p=: kc&wi

where k, is the constant fo; capacitance. It should also be noted here that

we are assuming perfect conductors for clarity, so the output capacitance of

the i" stage is the gate capacitance of the i + 1'' stage:

We can assume that the lengths of the transistors in the pulldowns of the

gates are set to some minimum length, lo. Therefore, we need deal with

widths of transistors only. The power, delay and capacitance of the iUL gate

become:

= k c l o w = k tcwi

C' can be rephrased now in terms of a transistor width that would have that

capacitance:

2- 6.4. Eqyations for Total Delay and Power

We can now form the equations we wish to optimize. The total delay of the

chain is the sum of the gate delays:

where K is the product of the constants, kVdk' , . The equation for the total

power of the circuit is the sum of the power consumed by each of the gates:

2 6.5- Solving for Minimum Delay

The widths for minimum delay can be found by differentiating the total delay:

Setting that equal to zero, we find:

This states that the ratio of any adjacent pair of gates must be identical to

the ratio of any other adjacent pair of gates for the minimum delay solution.

This derivation verMes the assumption made in [Mead 198O].

This solution can also be used to find the optimal gate sizes, given the initial

conditions wo and W N + ~ = C'/ k r c , and given a fixed N, the number of stages

in the chain. Since each gate must be larger than the previous one by a

constant, the width of the ith gate can be expressed as:

So the total delay for the chain of gates is:

2.6.6. Solving for a General Delay and Power Function

Usually, designers are concerned with power consumption as well as speed of

a circuit. We can take power consumption into account by minimizing a

function of power and delay:

Here, a is a parameter that weights power consumption. Large a indicates

great concern with power, a=O is the case discussed above where power was

of no concern. Differentiating this function, we get:

Setting this equal to zero and solving, we find the relationship for the sizes of

transistors in t h s case:

uli+l uli ak' -=
uli w-1

Each stage of the chain is larger than the previous stage by the constant

factor plus an additional term that depends on the size of the previous gate.

n u s to drive the same load from the same number of gates, the scale factor

is smaller, there are fewer large, power consumptive gates and more small

low-power gates.

This recurrence is much more difficult to solve than the one for minimum

delay. Plgure 2.5 shows plots of numerical solutions of transistor size versus

stage inthe arrayfor afkcedloadandfor a = 0, 0.1, 0.3, 0.7and 1.0, a = O i s

the minimum delay solution.

The graph in figure 2.5 plots the stage of the gate in the chain of gates versus

the log of the width of the gate, so the minimum delay solution appears as a

straight line. The delay of the chain is related to the length of the path on

the graph:

mure 2.5. Rots of Log of Transistor Width Versus Stage
for Merent Values of Alpha.

where is the slope of the line in figure 2.5 between the iUL and the i+ lS"

stage. So, for %>0, longer paths imply greater delay.

The power is related to the area under the curve by:

where yi is the y-value on the plot, ln(q). This means that higher curves

imply greater power consumption,

2.6- 7. Solving for Delay-Pmer Product

A value used frequently to measure the quality of a design is the product of

the delay of the circuit times the power it dissipates: the delay-power

product. We can find the o p t h u m in this case:

which resolves to:

This equation is the same form as the one above with a=- e Note.
PTOT

however, that this equation is deceptively simple, since DTm and PTm both

depend on the widths of the gates.

27. A Simple Algorithm for Nearly Optimizing Delay in a Chain of Gates

In order to drive a large capacitive load with minimum delay, a designer

inserts a string of ever-larger buffers. The number of buft'ers and the ratio of

their sizes is determined by the optimal fanout for the design constraints.

For minimum delay, each stage should be larger then the previous stage by a

constant f a n m t fac tor , as has just been shown.

If the circuit has already been specified, the number of restoring logic gates

is fixed, and optimal is now in reference to the given number of stages in the

circuit. The equations above still hold, and the minimum-delay solution is

the one in which each stage is larger than the previous one by a constant

factor, as shown in figure 2.6. If the number of stages is not optimal, the

fanout factor will be either larger or smaller than the optimal fanout factor,

but the circuit will still perform with minimum delay for the number of

stages.

The optimal delay arad power .equations require that all gates in the chain be

sized simultaneously, since the number of gates in the chain will not

necessarily have any relation to the optimum number. The fanout factor will

Figure 2.6. Optimal Fanout for a Ghain of Gates.

have to be computed from the number of gates in the chain. This

computation is more difficult with more complicated nets of gates, making

the calculations very time consuming indeed.

A simpler heuristic algorithm is presented here which is not guaranteed to

give an optimum. This algorithm is used in the system described in

subsequent chapters, and a detailed description of the implementation of the

algorithm is given there.

2'7.1. Heuristic Delay Optimization

If we work backward through a circuit, we can look only at the load on a node

and at the gate driving it to size the gate. The gate size is set to the optimal

funout factor value, which will only give the optimum delay if there are

exactly the right number of gates in the chain. The rest of the chain is

ignored, and the algorithm works backward, re-sizing the nodes that drive

the inputs to the gate. No transistor can be set to less than a minimum size,

so with a long chain in which the optimal result would have a fanout factor

less than the optimal (i.e. "too many" gates in the chain for optimal fanout),

some gates in the chain will be minimum size and the later gates will

increase in size a t the optimal fanout rate, as can be seen in figure 2.7'.

This solution is lower speed than the optimal. However it can be seen when

comparing the graph in figure P to the graph in figure 2.5 that this solution is

also lower power than the original. The relationship between the delay and

power consumption by this chain of gates and the delay and power

consumption of a chain of gates with a particular a depends on the number

of gates in the chain.

It also bears notice that this ramped driver is closes to what is done by

human designers. Most of the gates are minimum size, and only those near

the large load are made larger to accommodate the load. This yields a lower

power solution, as has been noted, but that is secondary. More importantly,

this yields a smaller area solution and a more regular solution, since gates in

the interior of the chip may be part of a large regular array (for example a

memory array). Modification of those arrays would significantly increase the

complexity of the design and complicate the logical assembly of the chip.

When the number of gates in the chain is less than the optimal number, we

reach a solution where the flrst gate in the chain may be very large

lCPgupe 2.7, Gate Size V e m Stage for Number of Gates Greater TBan
Optimum for b o u t

compared to its driver (see figure 2.8). This yields a solution that is not only

slower but more power consumptive than the optimal delay solution.

We can address the problem by m a w the assumption that the chain really

does not begin there, because we are sizing gates for the whole chip. The

gate that drives this first gate will also be sized in this manner, so it will be

put along the optimurn f anout line, as shown by the dotted line in figure 2.8.

Of course, there must be a first gate somewhe~e, but on the chip, the &st

gate takes its input from one of the input pads. We can assume that the

driving power of an input pad is very large indeed, so there will be few, if any,

cases where this happens. However, this case does happen when an attempt

is made to drive off-chip much more strongly than the signal that comes on

chip, as is done with line drivers. Since line drivers constitute such a small

part of the LSI design problem, it seems safe to relegate them to the "special

case" category. Thus this algorithm does not work properly on a line driver

where there are not enough gate stages to drive the output with the optimal

fanout factor between stages.'

There is a sub-case of the case above in which there were too many gates in

the chain between the load and the driver. Figure 2.8 had the first driver at

minimum size. If the driver were larger than minimum size, an input pad for

example, the output of the algorithm would be as seen in figure 2.9. The

straight line shown by optimum delay might be desirable. More desirable

might be the curve in which gates are made smaller until they are the same

size as the input driver. However, this algorithm produces the lowest curve,

corresponding to lowest power solution. The shape of this curve is similar to

the shape of the curve in figure 2.5 above with large a. One interpretation of

FPgure 2.8. Gate Size Versus Stage for Number of Gates Less Than
QptiBam for Fasout.

this curve is that the origindl driver is too large. I t can also be interpreted

as great concern with power. Whether or not this represents "over concern"

with power is dependent on the application, but it should be noted that this

sharp drop from the large driving power of the input pad to a minimum-sized

transistor is frequently done in chip designs made by human designers. It

may not be good, but it is typical.

2.7- 2. Power Optimization

Once all gates have been set to optimize delay, the path through the circuit

with the largest delay must be the critical path. Gates off the critical path

1 mtage

F3gux-e 2.9. Gate Size Versus Stage w i t h Large Ffrst Stage
for Number of Gates Greater Than Optim1pm for Fanout

can be slowed down without affecting the delay.

Tbis optimization can be done by finding chains of gates off the critical path

and setting the delay to the equivalent critical path segment length. The

delays are made larger by the ratio of the desired delay to the current delay.

The gates become smaller as do their capacitances. So a gate that drives a

chain that is made slower can be made smaller and keep the same delay.

This part of the algorithm deals with delay: the desired delay of a chain and

the delays of individual gates in the chain. After all desired delays are set,

the transistor sizes can be set to meet the delay requests.

2.7.3. Heuristic Performance Optimization Can Slow Down a Chain of Gates

There are two rather counterintuitive cases that arise as a result of the way

the optimization algorithms are applied. Performance optimization may

actually make a circuit slower, and power optimization may make it faster.

There are cases where the performance optimizer makes a chain of gates

slower than the original. This is rather obvious;since it does not give the

absolute minimum delay solution If the algorithm is run on a chain that has

been optimized for truly minimum delay, the result d l be slower, as can be

seen in figure 2.10.

2.7.4. Power Optimization Can Speed Up a Chain of Gates

Another offshoot of the non-optimal nature of the delay optimizer is that the

power optimizes can make a chain of gates faster. A situation in which this

could happen is shown schematically in @we 2.11 in which each bubble

represents a gate. The lower ,path is the critical path. The gate on the upper

path will be off the critical path, so it will be made slower. The smaller gate

will have less capacitance, so the gate that fans out to it can be made smaller

with no change in delay. All the other gates in the chain can be smaller also.

If we look at the chain from the start to the fanout gate, then, we see that

the load capacitance on the end of the chain has been reduced. If the chain

was very long compared to the optimal number of gates in the chain, then

the new graph of stage-versus-log(width), seen in figure 2.12, will show more

gates a t minimum size, along the horizontal part of the curve. Since these

gates run faster than gates that must drive larger loads, they run faster, so

the entire chain runs faster. If the chain is along the critical path, as this

optimum

optimized

, by the heuristic
2
4
"C1
'r(

f '4

m :
Q

e-4

stage

Ffgure 2.10. Delay Optimization of a Minimum-Delay Chain Makes it Slower.

Figure 2.11. Situation in Which Power Optimization Can Reduce Delay

one is, the critical delay path will, be shortened. Not all such situations -will

shorten the actual delay of the cell, since the critical path may shrink to

become non-critical.

Speeding up of the chain because of lower capacitance in a chain occurs

because we have more fast g&es and fewer doing fmouti If we had a

performance optimization algorithm that always produced the minimum

delay solution, the straight line in figure 2.12, then we would still observe

some cases where power optimization reduced delay, because the chain

would still have less capacitance to drive, and therefore the fanout delays

would be smaller.

28. Comparison of the Heuristic w i t h Optimum Delay Results

This section deals with the adequacy of the heuristic delay algorithm. The

delay of a chain of gates sized with the heuristic is derived and compared

Figuse 2.12. Power Savings Along NonMtical Paths
Can Shorten Delays.

with the optimum delay. he results indicate that the delay of a chain sized

with the heuristic algorithm are reasonably close to the optimum.

2.8.1, Delays Using the Heuristic Sizing Algorithm

The delay of a chain of gates sized with the heuristic sizing algorithm can be

derived for comparison to the delay for the optimum solution. The heuristic

sizing algorithm works by sizing later gates in the chain to smoothly ramp up

to drive the load on the output. One of the assumptions of the system is that

there will be enough gates in the chain so there is no catastrophic jump at

the start of the chain. So we concern ourselves with the chain with widths

shown in the graph in figure 2.7, which was discussed in section 2.7.

In this case, the chain can be divided into two pieces, the horizontal part in

which all gates are minimum size, and the diagonal part, in which each gate

is larger than the previous one by the fanout factor. By definition, the first

gate that drives a larger load is the bU" gate in the chain. The delay of the

chain is then:

b -1
DH-& = C K + f f ~ = ~K+(N-b+~)f~=K(b+f(N-b+l))

i = 0 i=b

where % b S N + l . But, because the ramp is calculated from the output

capacitance, b is not independent of the initial conditions. We know that:

Letting T, equal %; and solving for b , we And:
w 0

Combining the two equations gives the delay of the heuristic as a function of

the fanout factor, the length of the chain, and the ratio of the sizes of the

transistors at the start and at the end of the chain:

This equation is not exact for two reasons. First, b must be an integer, since

these can only be an integral number of gates. Second, the b +lst gate may

not be larger thaxi the bU" gate by f , since WN+I may not be greater than w e

by an even power of f . The result is that these two effects are opposite in

effect and nearly cancel because the single gate driving a smaller load is

almost the same delay as two fractional gates, one driving no fanout, one

driving the full fanout. This fractional-gate model is a little pessimistic,

because it models the delay of the bUL gate the same way the heuristic model

models a chain: instead of a straight line curve, it is modeled as a ramp on

the output. This difference is minor in this case since it is less than one gate

delay.

28.2. Comparison of the Heuristic Delay w i t h the Optimum Delay

We wish to know for what relationship between the output load and fanout

factor the heuristic gives the worst results. Therefore, we can form the ratio

of the heuristic delay and the optimum delay and differentiate.

Since we wish to know the behavior as the ratio of the output load to the

input load varies, we differentiate with respect to Tw, which was previously

W N + ~ defined to be -----:
U o

Setting this equal to zero and solving for T,, we get:

This equation gives the value of at which the algorithm performs most

poorly for a given N and f . The optimal values, of course, occur when r,

equals 1 or f N+l. In both these cases, the heuristic delay is equal to the

optimal. This value of r, can now be substituted back into the heuristic

delay equation and the optimum delay equation to compare the delays in the

worst case.

These delay equations differ only in the final factor, which is dependent on f

only. That factor can be evaluated for typical values of f , for this worst-case

Twe The results are shown in the table in figure 2.13. These values are withn

a factor of two, and for a fanout factor of 4, a typical value, the difference is

approximately 25%. The worst-case of the heuristic gives delays that are

comparable to the optimum delay for the simple chain.

F'igum 2.13. Worst-Case Belay 'Factors for Typical Fanout Factor Values

-45-

2.9. Calculation of The Ithimum Delay for a Chain w i t h Capacitive Wms

The equations examined so far did not take into account parasitic

capacitances in the wires between the gates. These parasitic capacitances

are frequently as important as the gate capacitances. The chain we wish to

solve, then is shown in figure 2.14, where there are additional capacitances

between the gates:

pt = + C i

The delay of the iU" gate, then, is:

Bi = k R i (G l +ct) = kd

and the total delay for the chain is:

Figure 2.14. A Chain of Wes With Parasitic Capacitances.

We can now differentiate this equation with respect to w, to find the

optimum.

Setting to zero and solving for the ratio of the widths of two gates:

So the delay of the iUL gate is:

There are two interesting aspects to this equation. First, note that later

gates in the chain are slower than earlier gates in the chain. Earlier we saw

that in order to make a lower-power chain, the later, larger gates should also

be slower to save power. Second, the equation simplifies considerably in the

minimum-delay solution. It states that the delay of the i" gate should be

the same as the delay of the i - ls t gate if the extra capacitance were

ignored. This is not identical to the case discussed earlier in which there is

no extra capacitance, since the widths of all transistors are different.

2.9.1, Reiative Importance of Chain had versus Parasitic Capacitance

The width ratio equation can be rewritten as:

In the equation above, c i / lo can be viewed as the width of a transistor that

would produce the parasitic capacitance C i s Thus, parasitic capacitances

can be modelled simply as a larger gate for each stage to drive.

Alternatively, we can view the equation as a ratio of capacitances. In either

view, the effect of parasitic capacitance on the sizing of a gate is equal to the

effect of capacitance of the next gate in the chain.

The first term in the equation is the same as the term in the "pure" case

earlier which ignored capacitance between the gates. It is the contribution

of the ramp to satisfy the load on the end of the chain of gates. The second

term represents the contribution of the parasitic capacitance on the output

of this gate. The relative size of the two terms is determined by the relative

capacitances of the next gate in the critical path and the parasitics on the

output. If either term is much larger, we could safely ignore the other.

The capacitance per unit area of a wire is only an order of magnitude less

than the gate capacitance. Therefore, even a short wire gives a capacitance

comparable to that of a minimum-sized transistor. The capacitance of a long

wire dominates the gate capacitance. So, the immediate parasitic term is as

important as the ramp term and may completely swamp the ramp term for

longer wires.

The parasitics on the output of a gate afeect earlier gates in the chain

because they appear as a larger transistor to drive, creating, from the point

of view of the precedmg gates, a larger ramp. The ramp effect diminishes

exponentially, though, since each gate in the chain is sized to be smaller

than the next one (even in the optimum case in which the fanout factor is

chosen to be the optimum number).

It is possible to solve the equations above for the optimum sizes of all gates

in a chain with parasitic capacitance, but it is not easy. The width ratio

equation is quadratic, the simple case of two gates is quartic. Longer chains

of gates give higher power polynomials to solve to find the sizes of the gates.

They can be solved, but the approximation methods are not amenable to a

fast-turnaround system. We have seen that the parasitics are at least as

important as the optimal ramp term. The heuristic algorithm presented in

later chapters uses the heuristic sizing method described earlier with the

addition of parasitic capacitance, giving a simple, fast, and accurate

optimization method.

Figure 2.15. A Graph of G a t e s With a Critical Path.

2.9.2. Extension of Capacitive Chain to Graph-Like Gate Structure

Let us examine a slightly more complex case. Instead of a simple chain of

gates, we have a graph-like structure, shown in Qure 2.15. The equations

above can be used the model this graph structure. Fan in to a gate is not a

problem, since we consider a critical path, which ignores alternate non-

critical paths.

The critical path is the chain under consideration. There is some fan out to

gates off that critical path. These transistors appear as added parasitic

capacitance that has nothing to do with the chain driving the load. The

capacitance from gates .off the critical path contribute to the cis A single

gate fmout would make ci c~mparable to the capacitances of the gates in

the chain. In many applications, such as clock drivers and PLAs, fanout is

very large, perhaps dozens of gates. In these cases, the term in the sizing

equation dealing with the parasitic capacitances, the c i , will dominate the

term dealing with the load on the output of the critical path.

Gates will have large loads on them independent of the loads due to the later

transistors in the chain. Therefore, optimal sizing of the chain is not

essential. Much more important is the consideration of the effect of the

parasitic capacitance in the calculation of the gate sizes. Parasitic

capacitances due to wires and gates off the critical path are important.

These effects are hard for designers to address because they are hard to

measure and because many wires are added automatically by the design

system.

The large loads in the chain imply that optimurra sizing of gates in long chains

driving large loads is not as important as sizing of single gates to drive the

parasitics on them. The heuristic performs well on a chain of gates and will

perform equally well with parasitic capacitances included.

CHAPTER3

Andy - A System That Optimizes Performance in Sticks Circuits

This chapter describes Andy, a program that takes a logical composition

specification and performs the electrical composition, which involves three

tasks. Most importantly, Andy improves the speed of the circuit. In addition,

it ensures proper pullup-pulldown ratios on all gates including those that

have some inputs gated by pass transistors. Andy also flags the dangerous

condition where the gate of a pass transistor has itself been gated by a pass

transistor.

This chapter includes a description of the program and its environment and

gives a user's view of the optimization algorithms. The details of the

algorithms are given in a later chapter.

3.1. Overview of Andy

Andy is a program that optimizes delays in circuits that are defined in a

symbolic notation, the Sticks Standard. The Sticks Standard and its

terminology is described in detail in Appendix B. The interface to the

optimizations is the major facility in Andy. The optimizations can be run

independently or as a group and the user may view the result or get

statistics on the resulting circuit.

Besides an interface to the performance and power optimization algorithms,

Andy has several utility functions for altering Sticks cells, to prepare the

design for the optimization, or to direct the optimizations. These utilities

add parameters to connectors on the edges of cells, and add constraints on

Sticks components and interconnecting twigs in Sticks Standard cells. Andy

has no Sticks editing facilities. Changes in the circuit must be done with

some other tool.

Andy is made up of more than 5000 lines of Simula code, not including the

shared graphics package (another 6000 lines). Associated utilities involve

another 5000 lines. The Andy compiled code takes 107K words in the DEC-20,

and has 228K words of data space. Although Andy keeps all data in memory,

this space is adequate for small and medium-sized examples. Full-scale

large chip optimizations would require use of disk storage to avoid filling

memory.

Andy fits in the current design system as shown in figure 3.1. Andy reads

Sticks Standard Ales [Trimberger 1980aI which can be made with Rest

[Mosteller 198 I], Riot [Trimberger 1982b], or other Sticks tools. Unlike some

tools. Andy accepts Sticks files that describe the entire design hierarchy.

Andy is a command-oriented design aid. Andy reads Sticks files and

processes them according to commands by the user. When the user is

content with the design, he may write it back in Sticks form.

3.2. Commands and Capabilities

This section provides an introduction to Andy. It is basically a summary of

the commands that can be given to the program grouped by function. FOP a

complete description of Andy, see the Andy User's Manual in Appendix A.

STK
STICKS

,STKPLT

-STONES

FSgure 3.1. Andy in the Caltech Design World

3.8 1. Pnput and Output

Andy reads and writes the enhanced Sticks Standard. In addition, Andy can

write a dump of its internal form including the node and gate information

that was derived from the Sticks. A complete description of the additions to

the original Sticks Stmdai-d required for h d j j is give= later in this chapter.

3.2.2. Cell Management

In an interactive system such as this one, cell management facilities are

required to help the user select the cells to be optimized. Therefore, Andy

has facilities for listing cell names, entering a cell to view the cells defined

within it, and clearing the list of cells.

It is often necessary to view the data to understand what the optimization

has done or to identify the places where the design should be modified so

more optimization can take place. Andy has a complete plotting package

that includes cell selection, windowing, output device selection and scaling of

the plot.

There are options on plotting that enable the user to plot only the cell

bounding box and connectors, and to optionally include component names on

the plots.

The user may plot the cell as a symbolic Stick diagram or as an abstract gate

diagram, showing the connections from the connectors on the cell and the

connections between gates.

3.24. Stick Modification Utilities

There are two ma~or alterations that a user must perform on the Sticks data

in Andy. First, connectors must be labelled with types and given default

loading. Second, constraints m ~ i be added to L ~ i t the optimizatior;

process. Constraints include loading constraints and transistor size

constraints. The types and constraints are described later in this chapter.

That section also includes an example of their use and an explanation of their

necessity.

These constraints can be expressed textually, if the name of the component

is known This textual specification may not be easy if the Sticks cell was

generated automatically, so Andy also provides a graphical means of

identifying components. After the cell has been plotted one can point to

components and set the name, connect~r loading, and transistor length md

width. Also, constraints can be made on components. Bad constraints can

be removed.

3.2.5. Parameters to the Optimizations

The delay and power optimizations use several global values for critical

parameters. the user may set these values and thereby direct the overall

operation of the optimization algorithms. The user may turn off and on the

inclusion of capacitance on wires. The wire capacitance is usually on,

because it is a significant load in most circuits. Examples in the following

chapter show a significant difference in device sizes when wire capacitance is

included.

In a further guidance of the optimization, the user may control whether or

not CLOCK nodes on pass transistors will break paths during delay calculation

and power optimization. Turning it on allows optimization for minimum clock

cycle, turning it off allows optimization for minimum delay tlkough a

pipelined processor.

The user may adjust the most important number in the performance

optimization, the fanout factor. The f mout factor is the number of minimum

transistor capacitances that should be driven by a minimum transistor. The

fanout factor says in some sense how concerned the user is with power

versus delay. Larger fanout factor means larger delay but lower power. It

m y be set to any value greater than one, and is set initially to four.

A third parmeter is the default loading on a connector. Is is usually not

reasonable that connections to the outside world have no capacitance on

them. It is possible to put a specific load on a specific connector, and it is

also possible to put a default load on all other connectors.

3.26. Statistics

To help the user determine the quality of a design, Andy reports statistics on

the cell. The user can get the delay of the critical path, a listing of the

critical path, the power consumption of the chip and the product of the delay

and power. The delay and power estimates from Andy are not exact because

constants are ignored, and they are based on the simplified models

described earlier, but one set of statistics can be compared to another to get

an idea of the relative goodness of two designs. The following is an example

of Andy output:

Cell PM. Delay: B.&QEOl. Power: 2.343+01. D*P (unscaled): 2.253+01

Criticd Path for cell PLA C:YIIN G:%NBUFJlC4 G:INBUFJ2C4 G:ANDJ5 G:ORP6
GOUTBUFJU la. Delay: 0.64E-01

Critical path changed,

9-87. Constnrcting the Data Structure

Andy has commands specifically to build the data structure. The data

structure must be built before the optimization steps, so the optimizations

build the structure if necessary. These commands to separately generate

the nodes and recognize the gates is included primarily as a debugging tool.

3.2.8. Delay and Pawer Optimization

Delay and power optimization are Andy's main tasks. They can be performed

separately or sequentially with a single command. Separate commands for

each step are provided more as a debugging aid than as a user feature, but

there may be some situations where one or the other is not desired. The

delay and power optimization is described in more detail later in this

chapter.

3.2.9. Area Optimization

Delay and power optimization change device sizes and may cause design rule

violations, mandating that area optimization be performed on the cell. Andy

sends simple cells to Rest to do this optimization Rest cannot currently

handle cells with hierarchy, so some other software is needed for dealing

with area optimization of composition cells. An associated program, STK, can

be used to remove the hierarchy so Rest can optimize area.

Ek 2.10. Debugging Aids

There are a few commands of no interest to users which generate trace

information during the data structure construction and during the

optimization stages. There is also a command in Andy to enter the SIMULA

debugger for further examhition of the internal structure of the program.

3.3. Input Requirements

Andy reads Sticks Standard format [Trimberger 1980a]. A sample Sticks

Standard cell is shown in figuse 3.2 and a drawing of the cell in figure 3.3.

The Sticks form describes components, such as transistors, resistors,

contacts and connectors; twigs, which are interconnection; and constraints,

limits on the cleverness of the optimizing program that will optimize the

data.

CEU srcell 250 4
COMPONENTS

CONNECTOR T GROUM): gndl -48 -45 gndr 48 -45 ;
CONNECTOR T WUT: in -48 -29 ;
CONNECTOR T POW'ER: vddl -48 45 vddr 48 45 ;
CONNECTOR T OUTPUT: out 48 -29 ;
CONNECTOR T CLOCK; clktop 8 59 clkbot 8 -59 ;
NENH W 16 L 8: pd -20 -28 ;
NENHWBL8: p s N O - 1 8 - 7 ;
NRES W 8 L 32: pu -20 1 ;
NBm but N -1 0 28 -15 ;
NDM: N1 -20 -45 ;
NDP: N3 -20 45 ;

TWIGS
POLY/B):= clkbot 8,-43 ps.G1 clktop;
hBTAL(12);= gndl N1 gndr;
DIFFUSION(B):= N1 pd.SOURCE;
POLY(8):= in pd.Gl;
DIFFUSION(B):= pd.DRAIN pu,DSOURCE ps.SOURCE;
WLY(8):= 28,-29 (out) but.P;
DIFFUSION(B):= pu.DRAIN N3;
DIFFUSION(B):= ps.DRAIN but.D;
METAL(12):= vdd N3 vd&

CONSTRAINTS
jn.Y=out.Y;,

END

CEU sr 250 4
COMPONENTS

smell: s r l 4 8 0 ;
srcell: sr214.40;
CONNECTOR T GROUND: gndin 0 -45 gndout 192 -45 ;
CONNECTOR T POWER: pwrin 0 45 pwrout 192 45 ;
CONNECTOR T INPUT: input 0 .-29 ;
CONNECTOR T OUTPUT C 1 0 output 192 -29 ;
CONNECTOR T CLOCK: clktopl 56 59 clkbotl 56 -59 ;
CONNECTOR T CLOCK: clktop2 152 59 clkbot2 152 -59 ;

TWIGS
Metal : = srl.gndr sr2.gndl;
Metal : = srl.vddr sr2.vddl;
Poly : = srl.out sr2.k
Metal : = pwrin srl.vddl;
Metal : = pwrout sr2.vddr;
Metal : = gndin srl.gndl;
Metal : = gndout sr2.gndr;
Poly : = input sr1.h;
Poly ; = output sr2.0ut;
Poly : = srl.clktop clktopl;
Poly : = sr2.clktop clktop2;
Poly : = srl.clkbot clkbotl;
Poly : = sr2.clkbot clkbot2

CONSTRAINTS
END

Ffigure 3.2. The Sticks Standard Representation of a Shift Register Segment

Fegure 3.3. The Shift Register Segment from Figure 3.2

3.3.1. Parameters

Unaugmented Sticks Standard does not include enough information for

performance optimization. Therefore, several parameters on components

and constraints were added to facilitate the performance optimization. New

parameters on components are shown in figure 3.4.

The gate &ding algorithm can find pass transistors most of the time.

However, there are some circuits that confuse it. By explicitly declaring the

pass transistors in these cases, the gate Gndmg algorithm wi l l succeed and

performance optimization will produce better results.

The type of a connector is vital t o the device recognition and performance

On a Transistor
P The transistor is forced to be a pass transistor.

On a Connector
T <type> The type of a signal on the connector.
C <number> A default capacitance on the connector.
0 <number> A default capacitance on the connector.
P The signal on the connector came under a pass transistor.

F'igure 3.4. Table of Additional Parameters on Sicks Components

optimization algorithms. The types understood by Andy are shown in the

table in ffgure 3.5.

The only required types are POWER, GROUND, INPUT and OUTPUT. Unlabelled

connectors are assumed to be 10. OUTPUT and I0 connectors may have an

additional parameter to simulate a load of a given number of minimum-sized

transistors on the output. This simulated load is used when the cell is not

used as an instance in a larger circuit so there is no real load on the

connector.

For delay calculation, every INPUT to a cell is assumed to be driven by a gate

that is smaller than its load by the fanout ratio, or by a minimum size

transistor, whichever is larger. Also, an input connector is assumed to

represent a restored logic signal unless it is marked that it came under pass

transistor. Connector types, capacitances and unrestored signal markings

POWER Power connection from the power supply.
GROUhiD Ground connection from power supply.
INPUT Signal generated outside the cell driving logic inside the cell.
OUWUT Signal generated inside this cell driving logic outside the cell.
I0 Signal that acts as both INPUT and OUTPUT.
BUS Functionally equivalent to 10.
CLOCK Signal that delimits ends of time phases.

F'igure 3.5. Table of CannectoP Types Used in Sticks Standard

are only used on connectors on the cell on which the performance

optimization is being done. Connectors on instances in the hierarchy are

absorbed in the node merging step described in the next section.

3.3.2. Constraints

Andy uses some additional constraints beyond the simple geometrical

constraints described in the Sticks Standard document. These constraints

limit the performance optimizer, and are summarized in the table in Qure

3.6.

Andy modifies transistor lengths and widths, therefore the user has the

option to restrict that resizing on specific transistors. A pre-defined

capacitance that is applied to a twig is transferred to the node that includes

the twig when the node creation is done. This constrained capacitance then

takes precedence over the capacitance that is calculated for the node. This

capacitance constraint is useful in shared bus situations where the designer

hows that each driver need not drive all loads off the bus at once. The

performance optimizer assumes the worst, looking through pass transistors

pessimistically, unless the node capacitance is constrained.

The gate hdirtg algorithm terminates at a BUS node. Andy's gate recognition

algorithm will follow nodes to GROUND, which is incorrect in many cases with

trans ,E = <number> The length of a transistor.
trans ,W = <number> The width of a transistor.

twig .C = <number> A pre-defined load capacitance on a twig.
twig .B The twig referenced is on a BUS-type node.

Figure 3.6. Table of Additional Sticks Standard Constraints.

shared busses. The BUS constraint on a twig will cause the node that

contains the twig to be a BUS node, limiting the gate recognition algorithm.

Improper use of these constraints can cause the performance optimization

to give wildly inaccurate results, so they should be used sparingly.

3.4. The Data Structure

The circuit is made up of gates that drive capacitive loads on electrical

nodes. A node is a collection of all the Sticks twigs and component

references that are always at the same electrical potential (after everythmg

settles down). Nodes may cross the boundaries of the physical hierarchy.

The derivation of the nodes for a simple cell is shown in figure 3.7.

84.1. Nodes

Every node -has pointers to ail Sticits components and twigs attacked to ihe

node. Elements in the node are separated into two categories: those that

drive the node, drivers, and those that are driven by the node, Loads. The

distinction is made so much of the gate recognition and optimization can run

faster. Twigs in the node are always loads. Transistor-like devices that drive

the node have either the source or the drain of the device attached to the

node. Devices that are driven have the gate attached to the node. A

transistor may be both a driver and a load if its gate and either source or

drain are connected to the node. Depletion-mode pullup devices are treated

separately as resistors. Pass gate transistors, which are recognized in the

gate derivation are both drivers and loads on the node.

Figure 3.7. The Node Derivation of a 5 p l e CeU,

3.4.2. Gabs

Once the mode structure is derived, it is followed to extract gates. Gates are

recognized on the entire cell submitted for optimization. The algorithm

follows nodes across cell boundaries if necessary and moves up and down the

design hierarchy to extract the gate information.

In d 0 S circuits, there are basically two kinds of gates: restoring logic gates ,

with a pullup device and a pulldown structure, and t T m m i s s i o n ga te s , which

are pass transistors (figure 3.8). The former are unidirectional and are the

form most often envisioned as gates in circuits. These ugi&rectisnal gates

are made up of a single pullup device connected to the POWER node on one

side and the output node on the other, and a tree-like pulldown structure

connected between ground and the output node. A transmission gate is

formed by a transistor that does not connect directly to POWER and does not

connect even indirectly to GROUND. This is the same distinction used in the

gate extraction algorithm for the MOTIS simulator [Chawla 19751.

The gate recognition algorithm distinguishes between restoring logic gates

and transmission gates. However, there are some MOS structures that are

Figure 3.8. TPpes of Gates. a) Restoring Logic Gate.
b) Trammission Gate

not allowed, and some that will may not result in a gate derivation that the

designer wished. Gates may have only one pullup and one output. The

pulldown structure must be a true tree structure with no internal

connections. Examples of well formed gates are given in figure 3.8, and ill-

formed gates in figure 3.9.

The resulting data structure is shown in Q u r e 3.10. Gates drive their output

nodes. Nodes drive transistors. Transmission gates are accessed via the

nodes on either side.

Flgplp% 3.9. Ill-formed Gates

GATE TR. GATE GATE TR. GATE
I \ I I 1

NODE -tr -NODE - t r -NODE- t r -NODE -tr-NODE
input I \ output

connector I
I connector

FSgure 3.10. The Node and Gate Data. Structure.

3.4.3. Be2lo~~lance Optimization Design Rdes

Performance optimization can be expressed in a somewhat formal manner

by defining "design rules" that the algorithm enforces and attempts to meet

as closely as possible. These rules are presented as a means of explanation

of the function of Andy, not as a description of the algorithm. Andy is not a

"rule based" system in the artificial intelligence sense. Design rules obeyed

by Andy are :

(I) The minimum transistor width is 2 lambda. Minimum transistor length

is 2 lambda.

This rule sets the minimum gate dimensions, which determine the cutoff

for making transistors smaller. These dimensions also determine when

the alg o r i t h optimizes devices by changing width rather than changing

length of transistors.

(2) A pulldown structure in a gate must have at most one square transistor

resistance for each <fanout> minimum transistor sizes of gate

capacitance that are driven by the gate.

(3) A pullup resistor must have at most one quarter square depletion

transistor resistance for each <fanout> minimum transistor sizes of

gate capacitance that are driven by the pullup.

These rules comprise the gate fanout rule. Meeting these rules is the

main task of the performance optimizer. No gate may drive more

fanout than the fanout variable allows. As discussed earlier, optimal

delay occurs when t h . number is e, but it is usually between four and

eight. In the Andy system, the default value is four, but it may be

changed by the user. The fanout number must always be greater than

one.

Rule 2 makes a statement about the pulldown structure of the gate, not

about individual transistors. Therefore, to obey this rule, the gate

structure must be determined to size the devices.

(4) A pullup device that is not a depletion-mode transistor with the gate tied

to the source indicates that the gate driving current is four times that

of a normal gate.

A tramktss-like pullup must be either a precharge device or a super-

bufEer device. Either way, the pulldown becomes the limiting resistance

in the gate. Therefore, the gate can drive four times as much load as a

normal gate.

(5) A pass transistor must have at most one quarter square gate resistance

for each <fanout> minimum transistor sizes of gate capacitance that

are driven through the pass gate.

This is the pass transistor sizing rule. It makes pass transistors the

same resistance as a pullup resistor, This heuristic is included so

neither the pass transistor nor the pullup resistor is the dominant

resistance on the signal.

(6) Transistor gate resistances and capacitances and interconnect

capacitances are assumed to be:

Transistor Capacitance 4-0 x pf /p.m2.
DifTusion Capacitance 1 .O x lo4 pf //.an2.
Polysilicon Capacitance 0.4 x 1 oe4 pf/pm:.
Metal Capacitance 0.3 x pf/pm .
Transistor Resistance 1.0 x 104 Q/m.
Wire Resistance 0.0 R/m.

The resistances and capacitances of the eiements of the design are used

by the performance optimization. These capacitance numbers are

t&en from [Mead 1980]. The precise values of these numbers are not

important, but their ratios are important, particularly the relative sizes

of the capacitances for transistors and interconnect.

('7') The resistance of a transistor that has had the signal on its gate go

under a pass transistor should be considered double.

This rule compensates for the lower gate voltage on the transistors

driven by signals that have gone under pass transistors. The gates will

be made wider.

(8) The maximum length of a pulldown is 2 lambda.

This rule places an upper limit on the resistance of the pulldown and

therefore an upper limit on its delay. This keeps the power optimization

from going overboard when saving power on paths that are very far off

the critical path.

These rules define an optimum delay that is not a true global optimum. The

result will be a local optimum, subject to the constraints supplied by the

system, the accuracy of the design rules and the model of integrated circuit

performance. This is in the same sense that symbolic layout compaction

achieves a local optimum, subject the the constraints of design rules and

algorithmic limitations.

3.5. Optimization Overview

'Fhis sec t io~ conkins ar, outlim of the perfo-nnce aptimizati~n dgositkran

used in Andy. The algorithm: can handle constraints on transistor sizes and

loading. Figure 3.11 shows the optimization algorithm block diagram. First,

Andy reads a Sticks file and extracts the node and gate data structure. Then

performance optimization is done followed by the power optimization step.

In the end, Andy writes a Sticks Standard file.

The delay and power optimization in Andy is a purely electronic method,

dealing only w i t h the electrical capacitive attributes of the circuit. Andy

optimizes performance of an integrated system by altering device sizes to

match the loads on them. Andy also makes proper pullup/pulldown ratios

and fixes gate ratios for gates whose inputs went under pass transistors.

Read Sticks
J

Make Nodes
J

Recognize Gates
J

Optimize Delay
J

Optimize Power
J

Write Sticks

Fegure 3.1 1. Performance Optimization Flowchart

Proper ratios are a side-effect of the gate sizing algorithm.

There are many other methods of performance enhancement that could be

wed: -&re= rodd be shortened, logic stages could be inserted or deleted to

make the ianout factor as close to optimum as possible, duplicate logic could

be introduced to avoid fanout. These changes are considered design issues

to be handled by the designer, as opposed to layout issues that are handled

by the design system. The output from Andy will direct the designer to make

these kinds modifications of the logic to further improve the performance.

The optimization task is divided into two separate operations, speeding up all

gates to optimum speed, then slowing down all gates off the critical path to

save power and area. Gates that are off the critical path may be slowed down

so that all paths have delays equal to the delay of the critical path. The

slower gates consume less power.

Belay optimization. of all gates is necessary to determine the delay of the

critical path, since the critical path is not known until the minimum delay

has been determined. The gates on the critical path must be made optimusra

size, and optimizing the other gates gives initial device sizes that are less

critical than the critical path. Therefore, when gates off the critical path are

slowed-down to save power, the amount of slack delay is known.

3.5.1. Delay Models

The delay of a restoring logic gate is proportional to the resistance (R) of the

pullup times the capacitance (C) on the output node. The capacitance may

include the parasitic capacitance on the wires. The delay through a chain of

gates is the sum of the RC delays. This RC delay is the measure used in

estimating delays in the optimization algorithms. The amount of power

dissipated by these gates is inversely proportional to the resistance of the

pdlup:

Trammission gates are potentially bidirectional, and current supplied

elsewhere will pass through a pass transistor. The optimizer attempts to

keep pass transistors from being serious detriments to the performance of

the circuit. It is also unreasonable to make pass transistors have a negligible

effect of performance a t a lafge cost in area. Therefore, the pass transistor

resistance is set to be the same as the resistance of a pullup that would have

to drive the larger of the capacitances on each side of the gate. Pass

transistors are not considered in the determination of the delays in a circuit

except as an additional capacitance on the node, and since they have no

connections to power and ground, they do not contribute to power

consumption.

There are places of special concern with bus-like structures in which the

signal goes through a pass gate. Logic on the other side of the pass gate may

at some times require that the node drive logic, and at other times the logic

may drive the node. The algorithm assumes worst case in all pass transistor

situations: it assumes that it may have to drive all logic past a pass

transistor a t once. Therefore, the capacitance on a node that runs to a pass

transistor includes the capacitance of the transistor and the capacitance on

the node on the other side of a pass transistor as well. The capacitance

calculation goes through all pass transistors. To limit this, the user may

constrain a capacitance on a node, such as the bus node.

Every circuit has some connections to the outside world that have some

driving requirements. These requirements may be supplied as constraints on

the loadmg of the node. For example, a bonding pad node may be

constrained so it can drive three 'FIZ loads. If they are not given explicitly,

the default value, which the user can set, is used.

3.6. Performance Optimization

The performance optimization algorithm works as follows:

PROCEDURE optirnizqerformance;
WIG3 some gates are yet to be sized DO BEGIN

FOR all gates DO IF gate.hownload THEN moveintareadylist;
IF no gates in ready list THEN move any gate into ready list;
FOR all gates in ready list DO gatesetsize;

EM)

The transistor sizing algorithm maintains two lists of gates: gates that have

not yet been sized and are ready to be sized, and gates that have not yet

been sized but are not ready to be sized. A gate is ready to be sized when all

the loads on its output node are known. Known loads are twig capacitance,

output connectors, and transistor gate connections on transistors that have

already been sized.

The gates in the former list are processed, setting the sizes of the transistors

that make them up, dependmg on the load on the output mode. Transistor

sizes are set to MAX(minsize, output node capacitance /fanout factor). When

a gate is sized, it is removed from the list:

PROCEDURE gate.setsize;
BEGIN

basicresistance := M A X (s T I R e ,
const*outpu~apacitance /fanout factor);

pull~p,setresistance@asicresistance *longestNANDlength~dupratio);
FOR all pulldowns DO BEGIN

pddo~setresistance(basicredst~~~,ce);
pulldown.drivermode.driver-gate.sized := FALSE;

Ern;
sized := TRUE; t

END

When a transistor in a gate is sized, the gate that drives the node that drives

the gate of the transistor is moved into the list of unsized gates, since its

load has changed.

As transistor sizes are set, more nodes have known loads. The gates that

drive these nodes nodes can then be sized and so forth ?"ne algorithm

proceeds backward from the circuit outputs through the circuit until all

gates have been sized.

In a circuit with a feedback path, the loads on some gates are dependent on

the size of their own transistors. These gates cannot be sized because none

of the the loads on the output nodes is defined. The proper sizes of all the

transistors in the loop can be found by simultaneously solving the device size

equations, However, Andy solves these equations with much less

computation by relaxation into a fixed point. Andy detects and breaks the

loop by picking one gate arbitrarily and sizing it. The transistors in the sized

gate are now known loads, so the gate before the chosen gate can be sized,

and so on. Eventually, the optimization makes its way around the loop to re-

size the &st gate. This re-sizing terminates when a transistor changes size

by less than Ave percent. A transistor that does not change much does not

move the driver of its gate node into the list of unsized gates.

3.7. Power Optimization

The power optimization algorithm can be expressed in general as follows:

PROCEDURE optimizqower;
BEGM

finQaths;
sort paths into decreasing order;
FOR all paths DO BEGIN

find first gate that has not been optimized yet;
currentdelay := delay at end of the path -

delay at Arst unoptimized gate;
desireddelay := constrained delay at end of the path -

constrained delay at first lmsized gate;
expanhati0 := desireddelay/currentdelay;
FOR a91 gates between first unsized gate and end of path DO BEGIN

gate.constraineddelay := gate.cwentdelay * expanbratio;
gate.sized := TRUE;

END;
END;
FOR all gates DO set dehy to constrained delay;

EM)

Power optimization is done by sorting all the paths of gates in the cell into

decreasing length. A path is a chain of gates that starts a t the input

connectors or a t a pass transistor that is gated by a CLOCK node (if the

clocking mode is turned on) and ends at the output connectors, at the input

to a gate or at a pass transistor that is gated by a CLOCK nodes (if the

clocking mode is turned on). The paths of a simple circuit are shown in

Each path is treated independently in the power optimization. All gates

Gate Diagram

Paths

Fiigure 3.12.' The Paths in a Simple Circuit.

dong the beginning of the path that have already been sized with the

performance optimizer are chopped off. The delay of the remaining gates is

compared to the difference in delay from the beginning of the path (either

the input connectors or the last gate that was chopped off) to the end of the

path (the output connector or the gate at which the path stopped). All gates

in the chain are made slower by the ratio between the desired delay and the

current delay.

Pn the end, then, all path delays are as long as the longest delay. In

accordance with the rules above, though, no gate is made so slaw that a

pulldown transistor width is smaller than its length. So some paths may

remain faster than the critical path.

The longest delay is usually the critical path delay, but it can be set by the

user, so the delay of the entire cell can be set to a desired value by the

power optimizer.

c- 4

Faamples of the Andy Optimizer Operation

This chapter gives examples of the optimization in Andy. The first few

examples are small cells, designed to give the reader a better understanding

of the changes Andy maJses to a cell. The larger examples in the later parts

of this chapter are "real world chips, in the sense that they perform some

useful function and are adequate examples of the optimization that can be

expected by using Andy on real designs.

Examples shown in the this chapter were prepared using Rest to make the

cells and Riot to assemble them. Some small examples were made with Paul

[Trimberger 1900b]. A special purpose Sticks PLA generator was used to

ma& the PLAs. The Spice simulator [Cohen 19701 was used to generate some

~f the timing results. Other tools were used at various times to process the

Sticks files.

4.1. Small Examples

These examples are included to show in some detail the effects of the delay

optimization on a simple gate with different loads. This section includes

some simulation results from Spice for comparison with Andy's statistics

output.

4.1.1. A Simple Loaded Inverter

The inverter in figure 4.la was run through the performance optimizer with

several loads on the output. An example of one of the resulting gates is

shown in Agure 4.lb. A graph of the transistor width versus load is shown in

Qure 4.2. As expected, it is linear.

Optimizing a single inverter can have dramatic effects on the delay of the

output signal. Figure 4.3 is a plot of load versus delay for an unoptimized

inverter as estimated by the simple RC model in Andy (solid line) and as

measured at the $V sub EQ$ point in Spice (+). The Andy curve was scaled to

superimpose it on the Spice graph Both are linear and both show the

problem with heavily unbalanced loads. The x marks are the Spice

simulation results for the optimized inverter. The delays are approximately

at the four transistor load delay, a result of setting the fanout factor to four.

4.1.2. A Shift Register Cell

The shift register shown in figure 4.4 was run with the same loads as the

inverter in the previous example. The graph of the width of the pulldown

transistor (upper line) and the pass transistor (lower line) in the cell are

shown plotted against load in figure 4.5. A major point of interest on the plot

is the load above which the pass transistor width changes. The larger pass

transistor makes a larger load on the output node for the inverter, so those

transistors must must be made larger. This leads to the slight upward bend

in the pullup transistor width line at the point where the pass transistor size

starts changing.

Simulation results for the shift register are shown in figure 4.6. The Andy

F'igure 4.1. An timized Inverter. a) One Transistor h a d on Output. 3 m n t y Basistor Loah on Output.

load (7')

Qgum 4.2. Plot of Transistor Width V e m Transistor Loads
for the Inverter Cell in w e 4.1.

Figure 4.3. Plot of Output Delay V e m Transistor Loads for Inverter Cell

F'igure 4.4. A Shift Register Cell. a) One 'Ransistor h a d on Output.
b) Twenty Transistor b a d s on Output.

v
%B 25 30

load <TI

Figure 4.5. Plot of Transistor Width 'Versus 'Praasistor Loads
for the Shift Register Cell in Figure 4.4.

delay estimate is shown as the solid line, Spice simulation results as "i-" for

moptimized delays and "xu for optimized delays. Again, optimizing the

devices yields great performance advantages. Notice also for the twenty

transistor data point, the relatively minor delay penalty from not sizing the

pass transistor (the asterisk).

Although the increase in speed for sizing the pass transistor as well is minor,

it comes with very little extra cost in power and area. The power cost is due

to the larger driver needed to balance the load of the larger pass gate. Area

costs are low because pass transistors are usually placed between restoring

logic stages that constrain the size of the cell.

An examination of typical integrated circuits shows that there are few cases

where pass transistors feed large loads. The most common cases are tri-

state output pads and bus structures. Adequate treatment of bus structures

may become more important in the future with larger and more complex

chips. I t will be very important to guarantee some reasonable decisions on

the bus drivers, so pass transistor sizing may become critical in the future.

4.2. A chain of Gates

P"rgure 4.9 shows a short chain of gates. This chain of gates was put through

the performance optimizer with a variety of loads on the output. The

purpose was to show the ramped scaleup to drive the load. This ramp can be

seen in the graphs in figure 4.8 for several values of the capacitive load. The

load is measured in number of minimum transistor loads.

The table in figure 4.9 compares delays measured from Spice simulation for

F5gum 4.6. Plot of Output Delay Versus 'lYansistor bad for Shift Register Cell

Figure 4.7. A Chain of Gates

IFPgure 4.6. Plots of Gate Stage Versus ' P r m s t o r Widths for Several
Capacitive Loads.

various output loading. The first set of numbers are for no load, the second

set for larger load and the Anal set for a relatively large load. Qualitatively,

the results are not astoundmg - larger transistors makes faster gates. But

quantitatively, the results are surprising - a great deal of additional

performance can be squeezed from common designs.

4.3. Po- Optimization Examples

These examples show the small-scale effects of power optimization on a few

simple circuits. The savings can be important in larger circuits. A summary

of the results is shown in the table in figure 4.10. Notice that in b ~ t h cases,

power optimization improves performance. This is the result of decreasing

the load on a minimum-sized transistor, as described in chapter 2.

FXgwe 4.9. Statistics for a Chain of Gates.

Figure 4.10. Power Optimization Results

4.3.1. Unrelated Paths Example

Unrelated Paths
Original
After Delay Optimization
After Delay and Power Optimization

Fanout Example
Original
After Delay Optimization
After Delay and Power Optimization

The simplest case of power optimization occurs when two unrelated paths are

present in a cell, as is the case in figure 4.11. One path is the upper path

from the input on the left through the one inverter to the output. The other

path is from the lower left input through the three gates along the bottom

and out the connector on the right.

The upper path is loaded with a 15 transistor load and the lower path with a

twenty-five transistor load. These loads could be reasonably expected in

parasitics, since a twenty transistor load is produced by a a 2OOh polysilicon

run, about the length of 10 half shift register stages. The delay-optimized

m d power-optimized versions of the cell are shown in figure 4.11. Notice that

del

1.12
,423
.422

1.16
,533
,498

the transistors in the gates along the non-critical path are made smaller by

the power optimization.

Q u r e 4.12a shows a simple circuit with fanout. Both paths are loaded as

described in the me la t ed , paths example. The lower path is the critical

path, since there are more gate stages in it. The cell after delay

pwr

1.00
3.14
2.75

1.00
3.22
2.67

dxp

1.12
1.33
1.16

1.16
1.72
1.33

Figure 4.11. Unrelated Pa& Ekample. a) Original.
b) After Delay Optimization. c) After Power Optimization

Figure 4.12. Fanout Example. a) Original.
b) After Delay Optimization, e) After Power Optimization.

optimization is shown in figure 4.12b. All gates were made larger to drive the

load optimally. However, the transistor on the upper path need not be that

large. When the upper transistor is made smaller, the transistor that fans

out to the other gates can be made smaller also.

The power optimization slows down the upper path so its delay is the same as

the delay along the critical path. The transistors in the upper path gate are

made smaller, so the capacitance on the output of the fanout gate is less so

that gate is made smaller also, as can be seen in figure 4 .12~ .

4.4. Larger Examples

The two designs in this section are respectably large since they represent

significant parts of a design and involve some reasonably complex

interactions of gates and nodes. These examples are included to give an

understanding of how Andy works on a real chip and to show the kinds of

improvements Andy can make.

4.4.1. The Logical Nter Example

The 2og.icalplte~ chip calculates the Boolean s u m of products on a stream of

input bits, given a set of constants. It was designed and fabricated to test

the capabilities of Riot [Trimberger 1982b], a simple graphical chip assembly

tool. It predates Andy, so it makes an impartial, if not state-of-the-art test

case. In addition, it is a sample of a machine-composed chip, so it allows us

to evaluate Andy in the composition environment in which it will most likely

be used.

Data
in

Data
out

result

Kgure 4.13. Ikgical Filter Chip Gate Bagram.

A schematic gate-level diagram of the logical filter chip is shown in figure

4.13. It contains a few dozen transistors and some respectably long

istesconnection runs. The bonding pads could not be used in Andy because

they were defined geometrically. The part of the chip used as an example is

shown outlined in figure 4.14.

The table in Q u r e 4.15 compares the performance of the logical filter chip

before optimization, after delay optimization and after delay and power

optimization The example was sw with the parasitic capacitance both on

and off. The same runs without parasitics are shown in the second part of

mure 4.15. Table of Logical mter Results.

the table.

The performance optimizer was able to cut the delay for the signal to be

ready by about 40 percent. The delay-power product was not as good as the

original, but not unreasonable, either. The power optimization was not very

effective because there are only a few gates off the critical path.

The numbers for the case without consideration of parasitic capacitances

after delay and power optimization were the same because all devices were

made ~rakdmum size during delay optimization and zouldr~t be optimized a?;.

further for power. The delay numbers are a little worse because some scale-

up was put into the original circuit and was eliminated by the optimizer as

described in chapter 2.

The transistor sizes without the parasitic capacitance are nearly identical to

the original hand-optimized circuit. This is to be expected, since the rules

for sizing gates typically refer to the number of gates and not the parasitics.

This designer did not concern himself with parasitic capacitance. The

resulting delays are calculated assuming no parasitics and imply that the

optimization is pretty good. However, if the circuit is optimized as if the

parasitics are insignificant, then delays measured including the parasitics,

the results do not seem as good.

One point of particular interest is the sizing of the NOR gate at the bottom of

the circuit (arrow in figure 4.14). When parasitics are ignored, the

transistors are made minimum size. When parasitics are included, they are

much larger than the minimum. At first glance, it would appear that the

former is correct, since the gate must only drive one transistor, the pulldown

of the inverter. However, closer inspection shows that the parasitic

capacitive load is very large on that node, because the NOR gate was

stretched quite a distance by the assembly tool. The diffusion line that

connects the two pulldown gates (and is part of the output node for the NOR

gate) was made very long and its capacitance amounts to several gate

capacitances, requiring larger transistors to drive it.

Fbally, this example was run with a number of different desired fanout

factors. The results of this run are shown in the table in figure 4.16. As

expected, delays shrink and power consumption rises considerably with

smaller fanout factors. Also of note is the delay-power product wbich

improves dramatically with larger fanout factors.

Wguse 4.16. Table of bg~cal mter Results w i t h IXlTerent Fanout Factors.

The Programmable Logic Array (PLA) shown in figure 4.17 is a Sticks version

of the traffic light controller example in [Mead 19801. Currently, PLAs are

laid out on a regular grid with all transistors the same size. However, each

gate in the PLA, a horizontal slice in the AND-plane or a vertical slice in the

OR-plane, drives a different load, depending on the number of transistors and

the size of the transistors on it. In addition, large PLAs have large parasitics

associated with the wires. Finally, the outputs on the PLA may be required to

drive large loads. All these effects cause PLAs to be wasteful of speed on the

heavily loaded paths and wasteful of power on the lightly loaded pat&.

In the traffic light controller, a twenty transistor load was placed on the

Start Z m e ~ output (ST in Qure 4.17) to simulate a long conductor to a

timer. The design was then passed through the delay optimizer and power

optimizer. The resulting layout is shown in figwe 4.18. Notice that the array

is still regular, because all transistors in a gate are sized the same. This

leads to whole columns in the OR-plane and whole rows in the AND-plane being

sized identically. But different gates are sized differently. So, while the

array is still a rectangular grid, the grid spacing is increased or decreased

where the gate sizes were changed. One can follow the effects of the

increased load on the Start 5'ht.e~ output. The output transistor is larger, so

the transistors in the gate that make up the OR-plane gate for that output

are wider, causing the OR-plane to be wider in that colwnn. Wider gates in

the OR-plane column lead to larger transistors in the AND-plane rows that

drive them. These in turn lead to larger drivers.

Another point of interest is the size of the two input drivers on %he right side

of the PLA inputs. These are the drivers for the feedback terms, and they

must be made large because of the number of rninterms they drive. They

were vastly undersized in the original layout.

The table in Q u r e 4.19 compares the unoptimized and optimized versions of

the PLA. The numbers are all unscaled estimates from Andy. PLAs prepared

in this fashion can still be made without human intervention Fast logic need

not be difficult to produce.

4.5. Summary of W p l e s

The Andy optimizations improve performance by approximately forty

percent in larger designs, and improve the delay-power product as well.

Power consumption is increased, as is area. While the area increase is rather

small, the power penalty of approximately twenty percent may be

unacceptable to some.

The use of the Andy performance optimizer to improve the performance of

automatically-g enerat ed designs, such as the PLA, and machine-composed

designs like the logical filter, shows the need for such a tool. The assembly

tools sometimes cause additional delay problems for a designer by creating

parasitics as part of the connection mechanism or by overloading a single

Elgum 4.19. Seatisties f ~e the Traf5.c Light ControBer gLlh

node in the PLA. Because of the automation of the assembly tools, the

designer cannot take these problems into account when the design is

specified. They must be addressed after the connection has been specified.

Andy is essential in these cases to avoid costly design iterations.

CHAPTER5

The Andy Performance Optimization Algorithms

This chapter describes the algorithms used in Andy in more detail than they

were covered in chapter 3. These algorithms are concerned with node

generation, gate recognition, performance optimization, and power

optimization Possible variations on these alg~rithms are discussed in the

following chapter.

6.1. Qverview of the Algorithms

The Andy performance optimization algorithm attempts to optimize fanout

between gates in the circuit, attempting to make the ratio from one gate to

the next as close as possible to the values that best meet the performance

design rules specified in chapter 3.

The algorithm is broken down into pieces in figure 5.1. The input to Andy is

in Sticks form. Sticks twigs are merged into electrical node segments inside

the cells and the node segments from all instances in the hierarchy are

merged into full electrical nodes. Gates are then derived from the nodes and

transistor structure.

Mter the gate and node data structure has been constructed, the

optimization algorithm proceeds backward through the net of gates, sizing

every gate for which the load on the output node is known. Known loads are

parasitic interconnection loads, gate capacitances of transistors that have

been sized, and outputs from the circuit. Feedback paths are broken by

Read Sticks
J

Make Nodes
J

Recognize Gates
J

Optimize Delay
J

Optimize Power
J

Write Sticks

Flgure 5.1. Performance Optimization Flowchart.

simply choosing a gate and sizing it. When a transistor size is changed, it

causes the gate that drives it to be re-sized, since the load on the output of

that gate has changed. Therefore, feedback paths will be cut, then sized

properly.

The final optimization step is the power optimization step in which the

critical delay path is determined and all paths off the critical path are slowed

down to match the critical path delay. his saves power in those places

'iifnere high speed does mt imprave the overall perfarmmce of the cell.

5.2. Finding Nodes

Electrical nodes must be extracted from the Sticks representation before

gates can be recognized in the circuit. Am electrical node consists of all

twigs and component connector references in an equipotential region

[Sutherland 1979]. The node extraction is fairly easy, since each of the

components in the Sticks form has a simple electrical definition.

The node determination for a cell is done in three parts. F'irst, all the node

segments h the cell are found. These node segments consist of a Sticks twig,

all the component connector references on the twig, and recursively includes

other twigs and component connector references on electrically equivalent

connectors on the components. Node determination scans through contacts

and electrically common connection locations on transistors and connectors.

Node segment determination is done for all cells that have instances in the

cell in which we are doing the node determination. These node segments are

collected in the cell, then merged into complete electrical nodes. The merge

algorithm crawls up and down the design hierarchy coalescing node

segments across cell boundaries. Finally, as the nodes are merged, the

components in the node are separated into drivers of the node and loads on

the node.

Formally,

Def. A connection is a pair (t , 'P) where t is a Sticks component and T is a

Sticks connector name.

Def. Two connections (t l , r l) and (tz , ' P ~) are e p d if t l = t z and 'PI and rz

are electrically equivalent. The person who defines the atomic Sticks

components is responsible for stating which connectors are electrically

equivalent (See the Sticks Standard Definition).

Def. Two Sticks twigs are ~ r e c t l y connected if they include equal

come c tions.

Def. Two twigs t, and t b are connected if there is some sequence of twigs T

such that Ti and Ti+, are directly connected for all i , and t , and tb are in T .

firP A node segment is the largest set of connected twigs inside a cell md all

connections on those twigs.

w. A node is the largest set of connected twigs and all connections on

those twigs inside a cell including all twigs inside instances in the cell.

5-2.1. Node Segment Determination

Node segment determination in a cell starts at the Sticks twigs. The twig is

added to the node, and all components connected to the twig are scanned as

outlined in the pseudo-code below. A reference to the specific connector on

a component is included in the node and all other twgs that refer to

electrically equivalent connectors on the component are added also. In the

case of a contact component, all connectors are eiectrically equivalent, so all

other twigs that refer to the contact are included in the node. References

m y be made to connectors on instances, twigs, contacts, and transistors.

Tke algorithm proceeds recursively until not- more can be included in the

node, then a new twig is chosen to start a new node. The node segment

determination for a simple ceil is shown in figure 5.2.

PROCEDURE include-twig (tw) ;
IF twig not in a node already THEN BEGIN

include tw in node;
FOR all components in this twig DO BEGIN

include component reference in the node;
FOR all twigs connected to electrically equivalent connections on

components DO includciwig;
END;

Em

At the time node segments are made in the instances included in the cell, a

pointer is placed in the instance that points back to the parent instance.

'Ffnis pointer makes the design hierarchy doubly W e d so the seadoads

dgMhm, which is described below, can scan both up and down through the

mure 5.2. Node Bgment Derivation from a Simple Cell

hierarchy. The scanloads algorithm also requires that every connector in all

cells have a reference to its node segment in the cell. This pointer is also

added to connectors during the node segment determination. The resulting

data structure is shown somewhat schematically in figure 5.3.

6.2.2. Mergiag Node Segments

When all twigs are included in node segments, d l the node segments from

instances are brought into the cell for merging into complete electrical

nodes. The merge crawls up and down and across the design hierarchy to

Node Segment
type (e.g. GROUND)
name
loads

twig connection
connector name (e.g. SOURCE)

drivers \ component

rnygate connection Eonnection

gate

Rgwe 5.3. The Data Structure for Node Segments.

determine full. electrical nodes from the node segments. Merge uses a

recursive algorithm called the scanloads algori thm, shown in figure 8.4.

The scanloads algorithm follows a node anywhere in the hierarchy and may

PROCEDURE scariloads(nod,prec,inst);
REF(node) nod; PROCEDURE proc; REF(instance) inst;
IF NOT nodascanning THEN BEGIN

PROCEDURE xSL(th); REF(thing) th;
INSPECT th
WHEN instance DO
scanloads(TH1S instance.findconnector(myconn),proc,THIS M a m e)
WHEN connector DO
IF inst.parent=/=NONE

THEN scanloads(m~.node(t$is cennector) ,proc,+. myparent)
ELSE proc(th)

OTHERWISE proc(th);

nod.scanTjing := TRUE;
nod.loads.apply(xSL);
nod.scmnhg := FALSE;

END of scanloads;

Figure 5.4. The Scanleads &orittnm.

As the contents of each node segment are copied into the merged node, the

node segment is removed from the list of unused node segments. Also,

constraint information, node type and node name, if applicable, are copied

into the merged node. For clarity in the algorithm above, these operations

are not shown. Figure 5.5 shows the node segments and the final node

determination for a shift register piece. Notice that a node may contain

twigs and components from anywhere in the hierarchy.

w e 5.5. Nodes in a Shift Fkghter Segment

5.2.3. Segregation of Drivers and Loads

As the node merge copy procedure adds components and twigs to the

merged node segment, it separates them into CEri'uers of the node and loads

on the node. The discrimination is necessary for the gate fmding algorithm

and improves the speed of the optimization algorithm. Twigs and contacts

are always loads on a node. Transistor gates are loads, but transistor source

and drain are drivers. Depletion pullup transistors are drivers, but the gate

connection is a load.

Connectors outside the cell are added as drivers or loads or both, dependmg

on the type of the connector. INPUT, 10, POWER, GROUND, BUS and CLOCK

connectors are drivers of the node. OUTPUT, 10, BUS, and CLOCK connectors

are loads. It is possible for a connector to be both a driver and a load on a

node. This is the case with source and drain connections on pass transistors

also, which are discovered and handled later in the gate finding algorithm.

The copy procedure aiso gives every component in the node a pointer b a c ~

to the node that drives it. This pointer is necessary for later operations,

such as critical path determination. Transistors keep pointers to all three

nodes: the gate, source and drain. The source and drain nodes are needed in

the gate finding algorithm, and all three are used during performance

optimization.

Nodes inherik types from the connectors on them, if any. POWER and GROUND

csmectors are of particular importance because POWER and GROUND are not

driven by any of the transistors on them, they supply the drive for the

transistors. The final pass over the nodes moves all transistor source and

drain references on POWER and GROUND nodes from drivers of the nodes to

loads on those nodes. BUS connection types are also propagated to the node.

BUS types are used to terminate the gate finding step which is described in

the next section.

5.3. F3ndi.g Gates

The gate network is derived from the node representation of the cell which

includes the complete electrical nodes derived from the entire hierarchy and

the Sticks transistors, resistors, contacts and twigs. Gate determination

from this form is possible, if it is assumed that the circuit contains only

w e l l - f m e d gates and that there are no serious logical flaws in the circuit.

The gate finding step will be successful if the design is composed of only

well-formed gates. Well-formed gates are those with a single pullup

transistor or resistor and a tree-like pulldown connected to GROUND. There

may be pass transistors, but there may not be gates with multiple pullups.

Gates with general graph-1-&e psllldowi strut-wes are not allowed, either.

Figure 5.6 shows two examples of well-formed gates.

Formally,

Def. A res tor ing logic gate is a triple (u, d , o) where u is a transistor called

the "pullup", d is a tree of transistors called the "pulldown structure" whose

leaves are connected to GROUND and whose root is connected to the output

node, and o is a node called the "output node".

Def. A hczrzsmission gate is a transistor that is not along a path from POWER

to GROUND or a transistor that is constrained to be a pass transistor.

l5gpm-e 5.6. Well-Formed Gates

Def. A well-formed gate is a restoring logic gate or a transmission gate.

During the construction of the data structure, Andy checks the circuit for

serious flaws in the network. POWER shorted to GROUND is detected and

flagged in the node finding step. POWER and GROUND separated by a single

transistor is caught along with other ill-formed gates in the gate recognition

step. Ill-formed gates that do not involve shorting of POWER and GROUND are

caught in gate recognition when a single transistor is found to belong in two

Meren t gates or at two different places in the same gate. Since intelligent

resolution is not possible, the construct is flagged as an ibl-formed gate.

As shown in the pseudo-code below, the gate fin- algorithm finds gates by

following the POWER node to a transistor source or drain. Since one side of

the transistor is connected to POWER, it must be a pullup for a restoring logic

gate, so a new gate is created with the transistor as its pullup. Although, in

the usual case, the transistor is a depletion mode device used as a load

resistor, other forms for super-b-er gates and precharged gates are legal

as well.

PROCEDURE Anbgates;
FOR all POWER nodes DO BEGIN

FOR all transistors on the node DO BEGIN
make a new gate.

the pullup is the transistor.
the output node is the node opposite the POWER

FOR a91 paths of transistor source and drain from the output node DO
IF the path. leads to GROUND

W E N make them pulldowns of the gate
ELSE make them transmission gates

END;
END;

The node on the other side of the transistor is the node that the gate is

driving, which must be the output node of the gate. The gate fin-

algorithm follows that node td find the pulldown transistor structure. When a

connection to the source or drain of a transistor is found, there are two

possible situations: the other side of the transistor may or may not connect

to GROUND. If the other side of the transistor does not connect to GROUND,

the transistor is remembered and the node on the other side of the

transistor is scanned recursively, building a tree-like structure pointing to

the transistors. The recursion stops when the GROUND node is found or if

there are no source or drain connections on the node.

If the node is the GROUND node, then all the transistors on the path from the

gate's output to GROUND must form a NAND network, serial connection to

GROUND in the gate. Parallel connections to GROUND make NOR-type

connections. If there is no GROUND connection, the transistors along the path

must be pass transistors, and a new transmission gate is made for each pass

transistor. Figure 5.7 shows the gate determination of a simple example.

The gate finding algorithm can dSerentiate between pulldown transistors

and pass transistors in most situations. However, some circuits, such as the

shared bus in figure 5.8, confuse it. The algorithm sees a path from both

pullups through the BUS node, the pass transistors and the pulldown on the

FPgur% 5.7. Gate ation ion of Shift Register

other bus driver to GROUND. This improper interpretation can be avoided by

explicitly declaring the pass transistors or by constraining the bus node.

If a transistor has been constrained to be a pass transistor, the recursion

stops, the gate determination ends, and the transistor is made into a

transmission gate. If a node is found of type BUS, then the gate fin-

algorithm is similarly terminated. These constraints help remove confusion

in some MOS structures that do not fall into the category of well-formed gates

described above, but which occur frequently in designs. These structures

include some more exotic transmission gate logic as well as the shared bus

described above.

As gates are made, the output node of a gate is given a pointer back to the

gate that drives it. This pointer is required later in the delay optimization

step. Figure 5.9 gives a schematic view of the node and gate data structure

that the gate determination completes for use in the delay optimization step.

GATE TR. GATE GATE TR. GATE
I \ I I \ I

NODE - t r -NODE - t r - NODE - tr - NODE - t r - NODE
input I 1 output

connector I I

I
connector

mure 5.9. Node and Gate Data Structure.

5.4 Perfommce [$iimization of Gates

The sizes of the transistors in a gate are determined by the resistance

required for the pullup and pulldown structures to charge or discharge the

capacitive load on the node in a reasonable time. "Reasonable time" is

defined by a lser-set-able param-eter t b t represents the number of

rnhirnum sized transistor capacitances that can be charged or discharged

by a minimum sized enhancement pulldown transistor resistance in that

"reasonable time". This number is called the fanout f a c t o ~ because it is the

ratio of the gate transistor size to the load size. A discussion of the fanout

factor and its effect on the performance of a circuit is included in chapter 2.

I now define some terms that are used throughout this section,

Def. Two nodes are possibly connected if they are separated by a chain of

transmission gates,

DeJ. The load on a node N is

1) if the node contains a twig with a constrained load, then the load is the

constrained load, otherwise

2) the sum of the capacitances of all twigs in all possibly connected nodes

to N and all capacitances of all components in those nodes.

Four definitions that will be useful in the following section are also given

here:

Def. A node has a h o r n Load if the node contains a twig that has a

constrained load or if all the transistors in all possibly connected nodes are

in gates that were sized.

Def. A ready gate is a gate whose output has a known load.

Lkf . The delay of a gate is the length of the pullup divided by the width of

the pullup times the load on the output node.

Dep. The power c o m m p h . r e of a gate is the width of the pullup divided by

the length ~f the pullup.

5.4.1. GateOriented Performance Optimization

The performance optimizer first sets all constraints in the circuit, including

device size constraints and loading constraints on connectors. Then it

iterates, fSnding all gates for which all loads on the output node have been

determined, and sizing them. No gate can be sized until all transistors on its

output node have been sized. External connectors on the cell being

optimized have a minimum load or a constrained load, so the gate sizmg

starts at the outputs and works backward toward the inputs.

The iteration continues while there are gates yet to be sized. If a pass

through the gates yields no gates that can be sized but there are still some

unsized gates, then a feedback must exist in the gate structure. The

smallest case where t h s occurs in functional circuits is the cross-coupled

NAND latch in figure 5.10. As shown in flgure 5.11, the algorithm picks one of

the gates and sizes it, breaking the feedback. The transistors on the gate

are now defbed loads, so the other gates in the chain can be sized, also.

When a transistor is sized, it marks the gate that drives it as "unsized,

because its load has changed. So that gate goes through the sizing algorithm

again. Thus, the sizing will proceed around a feedback loop, eventually

returning to the gate chosen to break the loop. All gates in the loop will

eventually be run through the resizing process with the correct loads on

Fegure 5.10. Gross-Coup1ed Gates.

their outputs. The gate that was sized to break the feedback will be re-sized

after the last gate in the feedback loop is processed.

To keep the chain of re-sizing gates from continuing forever, transistors only

cause their driving gates to be resized if the transistor changed size

significantly (by more than 5%). It is easy to prove termination of this

algorithm: at each stage the change in a gate is a constant factor less than

the gate before it. Even a gate that has its output connected to its input

sees geometrically decreasing changes in the resizing it must do.

A gate is sized by first finding the capacitive load on its output. If a node has

a constrained capacitance, then that capacitance is used, otherwise the load

determination totals the gate capacitances from all transistor gates on the

node and, optionally, the parasitic capacitances of the wires that make up

the node.

STEP % STEP 2 STEP 3 STEP 4

sized

PPguPe 5.1 1. Sizing Gates in a Feedback bop.

The load determination looks through pass transistors pessimistically,

assuming the gate will have to drive all loads on the far side of all pass

transistors simultaneously. This pessimism is visible in figure 5.12, in which

both gates will be sized to drive C1+C2, even though logical analysis reveals

driving the separating pass transistor, P, may require that & only drive C2.

Analysis of the logic for further optimization is beyond the scope of this

work.

5.4.2. sizing Transistors in Restoring bgic Gates

The capacitance is divided by the funout factor and converted to a desired

transistor resistance, expressed as a desired width to length ratio of the

pulldowns, using a conversion factor derived from the ratio of the minimum

sized transistor capacitance and the per-square transistor resistance for a

minimum sized transistor, If the pullup transistor gate is not connected to

the output of the gate, the desired resistance is cut to one quarter,

accounting for increased performance of super buffer and precharge gates.

Figure 5.12, Load Calculation h k s Through Pass IP-aasislors Pessimisticallg

Enhancement-mode pullups, such as precharge transistors are treated

slightly differently. The resistance of resistor-like pullups is set to four times

the resistance of the pulldown, as demanded by the design rules in chapter 3.

The resistance of the precharge transistor, however, is made the same as

that of the corresponding pulldown transistor. This is not desirable in all

situations, however, so in precharging applications where the precharging

device is not time critical, the designer may wish to constrain its size.

The pullup/pulldown ratio is preserved in NAND structures by increasing the

pullup resistance in proportion to the number of serial transistors in the

longest pulldown chain to GROUND.

Finally, the pulldown transistor size is set to the width/length ratio that gives

the proper resistance for the transistor, as calculated from the capacitance

of the output node, the number of gates in the longest NAND chain in the

gate, the type of pullup device and the kind of signal on the gate of the

transistor.

The resulting equations for the width to length ratio for pullup and pdldown

transistors are:

where CL is the load capacitance on the output node, Npd is the number of

serial gates in the NAND chain in the gate pulldown, $& is the factor which is

1 for resistor-like pullups and 4 for transistor-like pullups, f f f is the fanout

factor, the number of minimum transistor loads to be driven by a minimum

transistor driver, k* is a constant that includes the constants to convert

capacitance in units of picofarads to a desired resistance and from that to a

transistor width. k,, is the basic ratio between an nMOS depletion-mode

pullup transistor and an N O S pulldown transistor, fp is the pass transistor

factor which is 1 if the signal on the gate of the pulldown transistor is a

restored logic signal and 2 if it has passed through a pass transistor.

When a pulldown transistor is sized. if the signal that drives the transistor

gate is gated by a pass transistor, the pulldown transistor is made twice as

wide to compensate for the lower gate voltage.

5.4.3. SEzing Tramistors in Transmi&on Gates

Because of their bidirectionality, transmission gates cannot be sized until

the loads on the nodes on both sides of the pass transistor have been defined.

The size of the pass transistor is set so that the resistance of the pass

transistor is the same as the resistance of the pullup on an inverter driving

the the larger capacitance on either side of the pass transistor. This keeps

the pass transistor from becoming a serious impediment to the speed of the

circuit. while avoiding unnecessarily large pass transistors. The pass

transistor ratio is sized using the same equations as the pulldown, with some

simplifications because there is no NAND chain and the signal on the gate of

the pass transistor may not be gated by a pass transistor (that condition is

flagged as an error).

5.4.4. Transmission Gate Chains

Frequently, transmission gates occur in chains, as in the case of the

Manchester carry chain. Such a chain is shown schematically in figure 5.13.

This section describes how the techniques already pr~sented optimize such a

chain.

The gate selection algorithm Ands that none of the gates are ready to be

sized, since the inverter size depends on the sizes of the transmission gates

and the transmission gates themselves depend on the sizes of the other

transmission gates. Therefore, one of the gates is chosen to break the loop.

The algorithm will continue to pick one of the transmission gates to size until

all but one are sized. Then the last transmission gate will be sized since all

its loads are known. The other transmission gates may have to be re-sized,

and this process continues until all the gates reach mutually acceptable

sizes, within the five percent cutoff.

In the end, the last transmission gate in the chain, C, will be sized to drive

the larger load, presumably C'. Transmission gate B will see that its larger

load is C+CL, so it will be slightly larger. Transmission gate A will be sized to

Flgwe 5.13. A Chain of Transmission Gates Driven by an Inverter

drive B+C+ C'. The inverter will see all pass transistors plus the load

capacitance as its load and will be sized accordmgly. The result is a linear

increase in the sizes of the transmission gates.

5.5. Power Optimization OfZ the Critical Path

Fast gates off the critical path do not contribute to the overall speed of the

circuit, but they do consume more power and use more area than slow gates.

Therefore, the final step of performance optimization is concerned with

lengthening short delays in order to reduce power consumption in parts of

the circuit where delay is not critical.

This power optimization is done in two parts. First, the gate network is

analyzed and gates that are off the critical path are marked with desired

delays that will allow them to run more slowly without making any path delay

longer than the critical path delay. Afterward, the device sizing algorithm

from the delay optimization operation is run. to set device sizes to match the

desired delays in each gate,

The node and gate data structure shown in 6Sgure 5:9 can be viewed as a

tput

connector connector

Figure 5-14. The DirecteB Graph Corresponding to the Circuit
in J%gprt? 5.7

weighted directed graph with restoring logic gates as the vertices of the

graph and the electrical nodes that are the outputs of the gates as the edges

of the graph. Each arc is weighted by the delay for the gate to drive the

capacitance on the node (figure 5.14). Transmission gates are referenced by

pointers on the electrical nodes, and are not nodes in this graph because

they do not contribute to the power usage. Loops in the graph would result

from feedback structures in the circuit. A more complex graph (figure 5.15)

results from the fanout example from chapter 4.

Power optimization is carried out on paths of gates through the circuit. A

path, as used in this section, is a chain of gates in which all gates are

distinct. The representation of the path in the directed graph is thus the

same as the definition of path given in [Harary 19721. A path can be

identified by the final electrical node in the path, which is the last node to be

driven. That node may be on an output connector on the cell or it may be on

the gate of a transistor in a gate in the cell.

We are concerned with c1-itical p a t h , the longest path between any two

points, as measured by the sum of the weights on the arcs connecting the

points (the sum of the delays).

t connector

input output
connector connector

FZgure 5 15. The Dirtrcted Graph Corresponding to the Fanout Example

Therefore, for the power optimization, we make the set of the longest paths

in the directed graph that start at the points that correspond to inputs of

the cell and end at points that correspond to the cell's output connectors or

to inputs to gates. Shorter path segments form separate paths, but paths

that are subsets of longer paths are not included.

The resulting paths include all gates in the cell, and every gate will belong to

a chain along its most time critical path. When clocks are recognized as

b r e a m the paths, paths may start and end at pass transistors that are

gated by CLOCK signals.

Formally,

13ef. The power optimization graph, G (V ,E) of a circuit with node set S, and

gate set Sg is a weighted directed graph such that

1) The vertices include

1) restoring logic gates,

2) connectors, and

3) if the CLOCEC1ng option is on (see below), then include two new vertices

for each pass transistor.

2) The edges are

I) (i, j , d) if i is an input connector, where d is the delay due to either a

minimum-sized transistor driving the load or a transistor smaller than

the load by the fanout factor, whichever is smaller, as discussed in the

following section,

2) ((i, j , d) if i and j are restoring logic gates and j includes transistors

in its pulldown transistor tree that are on a node that is possibly

connected to the output node of i, where d is the delay of gate i,

3) (i , j , d) if i is a pass transistor, where d is as described in I),

4) (i , j , 0) if j is a pass transistor, and

5) (i, j , 0) if j is an output connector.

Def. An ij &al path, n, on the power optimization graph G is a path in G

such that for all paths between vertices i and j , .rr has maximum weight.

Def . The critical path of a power optimization graph is the maximum weight

i-j critical path.

5.5.1. Path Determination

The path determination scans &st the nodes on output connectors on the

cell, then the nodes on the transistors in gates. The node is followed

backward to either an input node or a transmission gate that is driven by a

node of type CLOCK All paths starting a t a CLOCK node are checked as part of

the critical path also. The use of the CLOCK as a path delimiter is optional

and can be turned off.

The path determination does a depth-first backward search of the graph

shown in a w e 5.15, following the node connected to each of the petlldown

transistors on every gate it encounters. The maximum of the delays to a

gate is saved in the gate as is the delay to drive its output node (that delay is

the product of the gate's gullup lengthiwidth and the output node

capacitance).

h this delay calculation, all input nodes are assumed to be driven by a gate

that would have been produced by the performance optimization algorithm.

That is, every input is assumed to be driven by a gate that is either scaled

down by the fanout factor from the capacitance on the input node, or

minimum-sized, whichever is greater. These delays are used later when

optimizing paths inside the cell. The path determination from figure 5.15 is

shown in figure 5.16. Notice that a gate may be part of more than one path.

This is corrected in further processing.

. Paths that start at a gate that is a member of a longer path are known as

fanout paths. Paths that end at a gate are called f a n i n paths. There are two

other kinds of paths, those that are unrelated to other paths, u n ~ e l a t e d

Gate Diagram

Paths

Figure 5.16. The Paths Determination from the Graph in FiguPe 5.15

paths, and those that are both fanout and fanin paths, fanboth paths. All

four kinds of paths are shown in figure 5.17.

The path determination algorithm described above does not recognize fan

out, since it follows the path all the way to the input connector, and lengths

of paths are not known until after all paths have been found. Fanout and

fanboth paths are uncovered on the second pass through the gates when the

gate delays are actually set. So the paths seen by the delay adjustment are

those in figure 5.18. When all paths have been found, they are sorted in order

of decreasing delay so paths with longer delays are sized before those with

shorter delays. The longest delay path is the critical path for the cell.

un re l a t ed

FIigure 5.18. Paths Seen by the Delay Adjustment for the Path Determination
in F%gure 5.16.

5.5.2. Path-oriented Power Optimization

Power optimization attempts to make all paths through a cell take as much

time as the critical path does. Gates in unrelated paths must be adjusted so

the delay of the path is the same as the critical path. Gates in fanout paths

must be set so the path length is the same as the delay from the gate at the

stazrt, of the path to the total delay f ~ r the cell, Gates h- fanin paths must be

set so the delay of the path is the same as the critical delay to the gate at

the end of the path. Fanboth paths must be lengthened so the delay is the

same as the delay between the gates at the ends of the path.

Instead of making the all paths in the cell as long as the critical path, the

user may set a desired delay for the entire cell, If that delay is longer than

the critical path, it is taken as the total delay for unrelated paths and there

is no critical path in the cell, so the longest path goes though the power

optimization just like other paths.

When the paths are found, each path is given a pointer to the gate that

terminated it. The delay to that gate, which might change during the power

optimization, is the final time for the path. The starting time for the path

may be zero, if the path leads to an input on the cell. If some gates in the

path have already been set by the power optimization, the starting time is

taken as the delay from the last gate that has already gone through the

power optimization. When this is done, the path is shortened before

optimization, cutting off the already-optimized gates. This shortened path is

either a fanout path or a fanboth path, as mentioned above.

The path delay must be set to the difference between the final time and the

starting time. There are several options as to how to divide this extra delay

among the gates in the path. If we only cape about matchmg the delay, we

could simply choose one gate and make it much slower to use all the extra

delay, Alternatively, we could make all gates have the same delay, dividmg

the desired delay evenly.

We could divide the extra delay evenly among all gates in the chain, making

each gate slower than it was by the same amount of time. Or , we could make

each gate slower by the ratio of the desired delay to the current path delay.

It is not clear what the optimum solution is, and the solution used in Andy is

the last one: each gate in the chain is made slower by the ratio of the desired

delay to the current path delay, so each gate shares in the power saving.

The gate sizing algorithm in the performance optimizer uses the desired

delay field on the gates to set the size of the devices if the desired delay is

present. The power optimization simply sets those desired delays then rum

the performance optimizer. The performance optimization algorithm sets

device sizes to match the desired delays, which are set to zero for delay

optimization.

Transmission gates are not explicitly modified by the power optimization

algorithm, since pass transistors do not afPect the power consumption. Pass

transistor sizes may change, however, as a result of the power optimization if

the capacitances on its nodes are reduced.

- 6

Performance Optimization Options

This chapter deals with the myriad ways that Andy could have been. Some of

these alternate approaches were tried and found to be lacking. Some were

thrown out without being tried. Some are simply other ways of doing

performance optimization that may be as valid as the one implemented in

Andy.

There are also several suggestions for future work in this area, centering

around improved algorithms and more accurate delay models.

6.1. Explicit Parametrization of Delay, Power and Area

It has already been stated that long before physical limitations limit the

speed of a circuit, area use and power requirements become ridiculous. A

system that optimizes performance cannot do so without regard to other

design parameters. Rather than use an algorithm that has the side effect of

limited delay, as I have done, one could envision a system that allows the

designer to specify the relative importance of the various design constraints

such as power, speed, and area, and let the system choose a design that fits

&ern all.

Such systems are called mdt ip le cmXerion optimizetian systems [Lightner

1981]e These systems typically rely on heuristics, techniques for design that

are derived from a designer's experience, to lay out the circuit and trade off

one design criterion against another. Unfortunately, the search for an

optimum in the multiple criterion decision space can be very time

consuming, so these systems have been used only on very small circuits.

Improved heuristics may be available in the future that will enable such

systems to produce reasonable chips in a reasonable amount of time.

Multiple criterion optimization systems also require a way to express the

relative importance of various design criteria. However the desired

optimizations for an integrated circuit are pretty well determined by the

time the circuit is in a form suitable for machine optimization. To be

specific, one wants optimum delay along the delay critical path an optimum

density along the dimensional critical paths. In all places where these is

slack space and delay, one wants low power. Although a system like the one

described in this thesis could provide that function, a more versatile system

would give the designer even more power to trade off design constraints very

late in the design cycle.

$3. h e Optirnum Delay

As discussed in chapter two, the Andy performance optimization algorithm

does not make gate chains with true optimal delay. The optimal delay

requires a constant factor scale up though the entire chain of gates. It

should be possible to optimize small chains of gates using this uniform

rmping thereby achieving optimum delay along the chain.

The correct constant scaling factor for minimum delay is relatively simple to

calculate in simple structures like a chain of inverters, but rather difficult to

calculate in more complex structures. Attempts to address this problem in a .

gate array system [Ruehli 19771 led to a rather complex solution, since the

size of every gate is dependent on the size of all gates in all chains that

intersect the chain of which the gate is a part.

True optimum was abandoned in Andy for three reasons. First, because the

algorithms were too complex for a system that was even remotely

interactive. Such time consuming algorithms may be made faster, or new

computer hardware may make them more attractive in the future, causing a

re-evaluation of this reason. The second reason for avoidmg true optimum of

all gates is because the designers do not now design chips where every gate

is optimally fast. Designers are not concerned with delay to the exclusion of

ail else. A casual survey showed that circuits produced by human designers

have most geometry at minimum size and only a few gates larger to make

the circuit faster. These designs usually have good area and power statistics.

The third and most important reason for abandonhg true optimum is the

qu&tgr of the resSdts obtained with the heuristic. Shce the heuristic

produces circuits that are within about twenty five percent, not much more

improvement could be expected with a more accurate algorithm.

6.3. Transisto~ented Performance SptimizaaPjaon

An early attempt at the delay optimization algorithm used a transistor-based

optimization method. This was assumed to agree with MOS circuits that may

include a considerable amount of pass transistor logic.

A simple transistor sizing algorithm takes each transistor independently and

sizes it according to the laad it drives. There are two dfliculties with ths

approach. First, MOS transistors typically are bidirectional, and it is

impossible to tell which side is the load. This problem can be solved by

marking the POWER and GROUND nodes, and assuming that no devices drive

POWER and GROUND nodes and that there are no transistors that will make a

short circuit between POWER and GROUND. Therefore, in the inverter in figure

6.1, the transistors drive the the output rather than POWER and GROUND

nodes. These are the same assumptions made in the current system during

the gate extraction step.

The second problem with this method is more severe and is shown in figure

6.2: the size of the pullup transistor on the NAND gate depends on the number

POWER

pulldown transistors in the longest NAND structure in the gate. If the gate

structure is not known, the pullup cannot be sized correctly. This could be

solved by requiring the designer to provide proper pullup/pulldown ratio.

However, the structure of the design may not allow the designer to know how

many transistors are in series in the pulldown.

In order to size NAND structures properly, then, the system must have a

description of the circuit in terms of gates. This causes some problems with

MOS circuits, since a traditional gate-like description is frequently an

unacceptable description. Because so much MOS logic is made with

transmission gates, transmission gates were added as a separate case to

Andy's repertoire of gates.

6.4. Better Gate Recognition Heuristics

The gates in flgure 6.3 are not recognized by Andy's gate recognition

algorithm, the first because the pulldown structure is not tree-like, the

second, because the pulldown structure does not pull directly to ground, but

rather to other signals. They are valid nMOS circuits that should be

recognized and handled properly. Recognition of the graph structure

pulldown on the right side of figure 6.3 is relatively straightforward, since the

algorithm could notice that both parts of the pulldown include the same

transistor. However, the exclusive-NOR on the left is more difficult, primarily

because part of its pulldown structure is in the gates that drive its inputs.

Tiris eke-uit is similar to the select logic transistors in memories, which act

at some times like pass transistors and at other times like pulldown

transistors.

Why is it necessary to recognize gates at all? The Sticks Standard is used as

a symbolic interchange form for all Sticks processing programs. Those

program do not have to recognize Sticks components every time a Ale is

read. Similarly, Andy could read and write an electrical synzbolic form, a

form that expresses complete electrical entities. Currently, Andy goes

halfway to an electrical symbolic form, since it outputs a text representation

of: the node and gate data structure. A simple modification to read such a

form wodd seem a reasonable alternative to deriving all that inlormation

every time the cell is read.

The major problem witkt stating gates in a data format is that the

Figure 6.3. Two Common Ill-Formed Gates .

decomposition of a chip into.gates is rarely the same as the decomposition

into cells. Cells are commonly parts of gates, and gates often span large

distances on the chip. An example of the independence of the design

Merwchy from the gate decomposition is the PLA. The PEA is typically

corsfposed of c e b that optionally include one transistor in a large fan-in NOR

gate. The question is where to put the gate, since none of the cells contain

the whole thing.

If each cell contains its own part of the gate, them the gate recognition

algorithm must still be run to sesohe the problems at boundaries of cells.

Actually, it is impossible to specify the gates in a cell, as shown in figure 6.4.

The cell tr is used in two radically different ways in the cell, once as a

pulldown transistor and once as a pass transistor. I t is impossible to

characterize the transistor as anythmg other than a simple transistor, which

is what is done in the Sticks form.

The opposing argument states that it should be illegal to specify incomplete

gates, as shown in figure 8.4, just as designers using Sticks cannot make

individual mask changes. It also seems that all one need do to find a gate

structure is smash the lower levels of the design hierarchy. Although t h s

argument holds for many designs, there are some designs that resist gate-

level categorization. Indeed, it would seem unwise to restrict designers to

gates when much of the design cannot be categorized as gates.

FQpm 6-4. The Transistor Cell Grate Structure Cannot Be Known
in Advance

6.6. Fhblems With Unsorted Paths

The longer delay paths are sized &st so that there is no chance of

accidentally lengthmg a path beyond the critical path. A situation where a

path might otherwise be lengthened beyond the critical path length is shown

in figure 6.5. If the shorter of the non-critical paths is sized &st, then re-

sizing for the longer path may cause the longer path to be longer than the

critical path, since gates cannot be made that generate results in negative

time.

The dangers of power optimization without sorting paths includes not only

making delays longer. A gate sizing algorithm that attempted to make the

remaining gates of the longer non-critical path very fast might find a soleztion

Figure 6.5. Sizing Path Without Sorting Causes Problems,

which, although mee- delay requirements, was very wasteful of power,

possibly offsetting the advantages of the rest of the power optimization.

Some of the problems with unsorted paths can be solved by simply re-sizing

d l gates to smaller values along the longer critical path in figure 6.5, not just

the gates that had not yet been sized. In this case, the remaining gates

along the shorter non-critical path would not be sized properly. They would

will still be too fast, and more power could have been saved. Sorting the

paths is an inexpensive and accurate solution.

6.7. Problems With the Current Path Sorting Method

The current method of sorting paths and optimizing power in order of length

is net free of problems. Figure 6.6 demonstrates a case where the current

algorithm can fail. First, assume that none of the paths is the critical path,

and gates in both horizontal paths will be made smaller to save power. The

two h~rizolftd paths (A B C D and F G Ej are longer than the short path that

connects them (E H), so they will be sized before the diagonal one. Ths

causes the gates on the two ends of the path (B and H) to be resized

independently. It may therefore be necessary to choose a negative delay

value for the central gate so the delay of its short path does not exceed the

delay between the already-sized gates a t the start and at the end of the path.

Tke result may be an enormous gate (E) or simply an error, creating a new

longest path (A B E H) that may be longer than the c s i ~ e d path.

BIgme 6.6. A Situation That Causes Problems With
Sorted Path Optimization

6.8. limitations of the Andy Clocking Model

The timing model used by the CLOCKing option is a rather simple one. It uses

the two phase non-overlapping clocks described in [Mead 19803. In this

section, the clocking model used in Andy is compared to other sequential

Uming models.

A typical sequential circuit with a two phase clock is shorn in Qure 6.7. 'Ihe

circuit is composed of logic blocks that contain no state, separated by pass

transistors that clock the data between the blocks. Each logic block

generates results that must be ready before the clock signal following the

block goes low. 'Fhis balling signal indicates that the data are valid for the

next logic block. In the figure, the data for logic block 2 are stable when rp2

goes low and the results must be ready when pl goes low. Therefore, the

logic block must generate its results in the time between the falling edges of

the clock signals. Andy uses this simple timing model for its path analysis,

since it uses pass transistors that are controlled by CLOCK signals. Andy

assumes that the critical path that determines the clock frequency lies

between two clocked transmission gates.

The real behavior of this situation is more complex than that which was just

described. Some of the outputs from logic block 1 become valid before the

falling edge of 92. Logic block 2 can begin calculation of the next results

before the falling edge of p2. This more complex model requires that the

optimization be carried out on paths starting at (pl through block 1, through

the 9 2 pass gate and through block 2. The paths starting at 92 through block

2, p1 and block 1 must be optimized independently. Andy does not support

this t h i n g model.

Notice that this two-phase scheme can have precharged gates in the form

shown in figure 6.8. The inverter is precharged high during pl and computes

its result during p2. The delay of the signal on the output of the gate is

IQwe 6.7. A Typical Sequential Circuit.

dependent only on the fall time of the gate, The precharging does not

change the timing or the analysis. Paths of gates with precharges are legal

gates in Andy, and are treated correctly, since the CLOCK nodes on

transmission gates still determine the optimization paths.

The same precharge structure is used in a four-phase clocking scheme,

figure 6.9. In the four-phase scheme, the precharge gates themselves

provide the timing. The output of the first inverter is precharged on pl and

is calculated on p2. That signal is valid on pg, when both pl and pz are low,

isolating the output node. The second inverter precharged during pz when

the first output result was being calculated, and the second inverter

calculates its result during p ~ .

In this four-phase timing model, the gate precharge structure provides the

timing information So the precharge gates must be recognized as breaking

optimization paths, like the transmission gates with CLOCK nodes in Andy.

Figure 6.9. Precharge Gates in a Four-Phase Clocking Scheme.

Sineti these are exactly the same structures used in the two-phase

precharged scheme described above, an automated process cannot tell them

apart. If Andy were restricted to one of these two timing strategies, though,

it could be recognized. Alternatively, the labelling of timing gates, those that

break optLrzation paths, coldd be left t a the user? Andy uses the former

method, limiting; the designs to the simple two-gbse clocking model.

Drivers of large loads frequently have non-rectangular transistors so they

can form more compact structures. Some algorithm for bending or snaking

very large transistors wodd be useful. It would seem reasonable, since

choosing the shape of a transistor is motivated by area constraints, that the

performance optimizer not be required to find appropriate shapes for large

transistors, but the performance optimizer should be able to handle bent

transistors.

6.10. Additional Constraints

Consider the case of the shared bus, where the user wants to constrain the

load. Without any constraints, Andy assumes that the load is the sum of all

loads on the bus. Ideally, the load should be constrained to be worst of the

individual loads that the bus might drive. At the least, one would like to set

the bus load to the bus parasitics plus some additional load, the expected

worst-case load. The load constraint in Andy, however, only allows a single

number to represent the constrained load on the bus.

Since Andy deals with delays, it would seem reasonable that the designer

should constrain delays in the design. Most delay constraints are implicit in

the design: it is rather obvious that all delays should be as long as the longest

delay. But there are a few situations in which delay constraints are

meaningful, First, one would like to set the overall delay for a circuit

between clock phases. This is currently done with a command to the M y

power optimizer, rather than a constraint, but its inclusion as a constraint

would not be difficult.

A second situation in which a delay constraint might be useful is when settirag

the delays of several signals that form a composite multiple-wire signal. An

example is a sixteen-bit parallel data bus from a processor. External

circuitry cannot use any bit until all are ready, so there is no need to drive

some faster than others. Not only would one like all signals to be driven at

the same speed, but one would like to set high and %ow bounds on the delays.

Setting a maximum bound is not difficult, but the current algorithms would

have some difficulty the bounds were too extreme. Andy c m o t make

arbitrarily slow or arbitrarily fast circuits.

A third situation where a delay constraint would be useful is in setting the

size of a precharge transistor. The delay to precharge the signal should not

exceed the clock delay, which is the duration of the other clock phase.

6.11. More Accurate Delay Models

The delay model used in Andy is admittedly simple. More accurate models,

particularly for long wires, are commonly used in path delay analysis

software. The wire model used in [Putatunda 19821 provides a reasonably

good estimate of wire delay. This system uses the average of the Penfield

voltage bounds to get a reasonable estimate of the voltage over time. The

system extracts a delay for driving the node by measuring when the voltage

reaches a predefined point. The delay is divided by the effective resistance

of the wire plus the driving transistor to get an effective capacitance that is

used in simpler calculations, later.

Inclusion of pass transistor resistance would improve the accuracy of the

delay equations considerably, and the same mechanism that included the

pass transistor resistance could be used to include wire resistance also.

More complex models s w h as these which take into account distributed

resistance and capacitance codd be used in h d y , but care would have to be

taken when making the changes because changes in the transistor resistance

do not affect the effective resistance of the node, and hence the delay ira the

straightforwared way it does in the simple model now in use. Complex ad-hoc

approximations 'like this one can have disastrous special cases. Before one is

used, some work must be done to be sure that those special cases are not

catastrophic.

The simple transistor model does not take into account sidewall capacitance

and other more minor effects. A more exact approximation of the delay

from the transistor would lead to more accurate delay calculations.

Although some existing systems use the simple RC model used in Andy,

others use more complex models. The table in figure 6.10 shows a few that

have been in the literature recently. These equations are all empirically

derived. Therefore, it is unknown if these equations would be valid in a

general case.

A problem with more complex delay equations is that some equation must be

used to translate backward from the capacitance on the node to a desired

resistance of the pulldown transistor. It is not immediately clear with some

of the more baroque transistor models how to do this. Even with the

relatively simple models, some work must be done first to be sure that sizing

feedback loops still terminates and that there are no additional less-

optimum stable sizes for feedback loops.

Finally, at this time it is not. clear how much performance optimization can

be gained with more accurate models. Before putting out all the effort, one

should be apprised of the gain. Andy could be used as a testbed for the

investigation of the advantages of these more accurate models.

Flgure 6.10. Some Transistor Delay Models in the literature

This chapter summarizes some of the philosophy about the relationship

between the work reported in this thesis and Sticks symbolic layout. It

starts with a description of the similarities between the performance

optirnization described here and Sticks symbolic area optimization. This

discussion is carried to the role of symbolic systems such as the Sticks and

Andy in supplanting parameters on parametrized cells, and the role of such

parameters in defining the design hierarchy. Later sections discuss the role

of a performance optimization system such as Andy in a complete design

sys tern.

7.1. Similarities W i t h Sticks

The table in figure 7.1 summarizes the comparison between Sticks area-

based optimization packmg and stretching with Andy performance

optimization and power optimization. Many of the parameters are similar,

yielding similar algorithms and similar language for describing the

processes. Others are rather different, and serve to make more noticeable

the fundamental differences between the two operations.

Neither operation attempts to reach an absolute optimum. The optimization

operation only gives a local optimum for the parameter, and it may be that a

better value can be gotten by modifying the algorithm or the topology.

Figure 7.1. Comparison of Concepts in Area Optimization
and Performance Optimization.

Both operations optimize with respect to a set of inviolate rules. The Sticks

rules are minimum geometric size and spacing rules, the Andy rules are

fanout factor and minimum device size rules. More lenient rules, such as a

smaller line width or better metal spacing in Sticks yield better

optimizations. Similarly, a different fanout factor and lower capacitance

devices and wires yield faster circuits in Andy.

Attribute
Primaryoptimizationpararneter
Secondary optimization parameter
Unit of manipulation
Connections between units
Parameter manipulated
Search limiter
Invariant
Algorithm limits

Constrained Value

h d y -uses an electrical locality, ~ h e r e adjacency is deterrhed by electrical

connections between gates. This electrical locality does not follow the design

hierarchy, which is related to the physical decomposition of the design. It is

Sticks
Length
Length (other axis)
Component
Twigs
X or Y position
Spatial locality
Spatial topology
Geometric
design rules
X,Y position

common to have several elements from all levels of the design hierarchy

Andy
Delay
Power
Gate
Nodes (signals)
Device size
Electrical locality
Electrical topology
Fanout rule,
min. device size
Capacitance,
Transistor L,W

closely related by their electrical locality. Electrical nodes must cross cell

boundaries.

'7.1. I. The Unit of IBaaipPrlaU~n

There are interesting dif%erences between the units of manipulation of the

two systems. M y ' s gates and nodes are much larger and much more

removed from the physical layout than the Sticks components and twigs.

The Sticks components are good atomic units of the design They are

infrequently split by cell boundaries. Indeed, the requirement that the

Sticks designs include only whole components has not met significant

resistance among designers.

Andy's gates and nodes, on the other hand, are frequently split by the design

hierarchy. It is not possible to determine what makes up a gate or what that

gate must drive until the entire hierarchy is known. Since designers prefer

to think in terms of the design hierarchy, Andy-like composition systems

have received very little notice compared to Sticks leaf cell design systems.

This globality of gates and nodes also shows the relative importance of the

performance optimizer. Sticks systems have not been embraced by

designers who believe that they can envision all the design rules and design

with them better than the Sticks system. When the rules that the designer

must work with are all local, and do not depend on far-away, possibly as-yet-

unclesigned pieces of the layout, this is true. But the performance

optimization cannot be done on a small, local cell. The entire hierarchy must

be examined. The amount of information is just too great for a human to

handle, even for a small chip.

In Sticks systems, constraints are applied to the positions sf components,

the primary optimization parameter. In the Andy system, the constraints

are applied to loading on nodes and connectors, and to device sizes. While

the device size is the attribute being modified by the algorithm, the primary

optimization parameter is the delay across the circuit. Indeed, when the

critical path is analyzed in the secondary optimization pass, delays, not

device sizes are inserted into the graph.

Since the purpose of the constraints is to limit the cleverness of the

optimizer, constrained loads and device sizes serve well. They provide an

interface with which the user is comfortable and which can be seen in the

representation of the circuit. As discussed in the previous chapter, there

are a few cased in performance optimization and power optimization where

one would like to constrain delays.

7.1.3. Tertiary Optimization

Andy performance and power optimization and Sticks area-based

optimization packing and stretching can be envisioned as automated

solutions to multiple criterion optimization problems. The general algorithm

attempts to optimize the primary parameter in the "packing" step, then

trade off optimization of that parameter when it does not affect the critical

path for the secondary in the "stretching" step.

These optimizations must be applied after the composition has been

specified to achieve some kind of global optimization, although some packing

could be done on a cell-by-cell basis.

In Sticks area optimization, the primary parameter is the length of the side

of the cell and its optimization is the familiar Sticks compaction. In the

second phase, constraints are determined so that the primary parameter

wil l get no worse, them all elements of the design that are off the critical path

of the primary parameter are made worse so that d l path lengths match the

critical path length. This is the determination of stretch values in Sticks

followed by stretching. Length in one dimension is traded for wiring

channels, saving length in the other dimension.

In the Andy operations, the primary parameter is delay propagation across

the circuit. The secondary parameter is power dissipated by the chip.

Notice that with Andy, we could have reversed the order of parameters and

gotten the lowest-power design first (putting some constraint on pullup

transistors to keep them from getting ridiculous), then trading power for

speed making, perhaps, all parts of the chip dissipate the same power per

unit area, regaining speed.

It is difTicult to see the parameters being traded off against one another in

Sticks because both the primary and secondary parameters are length. Also,

Sticks systems have only been used recently for stretching. The delay-power

tradeoft is much more familiar and has been worked for many years.

There is no reason to have only two parameters. There can be a tertiary

parameter, and so on. During each stretch operation, a'li previous

parameters not on their respective critical paths are made less optimal in

favor of the new parameter.

This type of optimization, adjustmg one parameter at a time, is rather

amenable to automation, since it requires no heuristics for exploring the

design space. H~wever, it gives a design in wkch the critical parameter

absolutely optimized, a d others ape t r d y in a subordinate role. I t is often

easy to see which &armension is critical in Sticks systems, so absolutely

optimizing that dimension at the cost of the other is not a great loss. When

trading off other parameters, for example speed, power and area, some

middle ground away from "optimally fast", "minimum size", and "lowest

power" is often desirable.

The system described in this thesis is not usable directly for such

optimization, but there are solutions to the problem. First, the order of the

parameters may be varied in different parts of the design. Alternatively,

optimizations could be allowed to reduce a previously-optimized parameter

by some amount, say five or ten percent, if the savings in the current

parameter was great enough. This would ease the restrictions on the

secondary parameter and could result in a better overall design. This type of

optimization is seen in Sticks cells in which the minimum area usually does

not have one dimension totally minimized.

7.1.4. Algorithmic Similarity

The optimization and constraint generation occurs in the net defined by the

electrical adjacency, which is andogow to the solution graph used in Sticks

systems [Mosteller 1981] The node and gate structure graph is shown in

&we 7.2 and a, sample compaction graph from Rest is shown in figure 7.3.

Conceptually, the graph is solved in much the same way. However, additional

connector connector

F e g m '9.2. Node arnd Gate Data Stmct-.

complications in the graph solving algorithm for delay and power

optimization arise because we wish to spread out the delay savings evenly

among as many gates as possible in order to save as much power as possible.

7.2. Parametrized Ceh and Symbolic Layout

A pa~arnetrized ceU is a cell that is defined as an algorithm that accepts

parameters. The cell can change to match its environment, reducing the

number of unique cells. The parameters to cells fall into three categories:

POWER

GROUND

mure 7.3. mbslic layout. Compaction Graph

physical properties, electrical properties, and behavioral properties.

Physical properties are primarily connection points for cell stretchrig. The

algorithm that represents the cell includes a stretching algorithm to make a

geometric transformation. This algorithm allows connectors to be moved to

the positions given in the parameter list while maintaining geometrical

correctness.

Electrical properties include power loading and signal strengths. Electrical

parameters are much less common, and are handled by the algorithm

internally by sizing devices and performing a kind of stretching operation, if

needed, so the cells remain geometrically correct.

The third category of parameters is behavioral properties, which includes

number or bits in a data path, ROM and PLA coding, memory array sizes and

conditional geometry.

Parametrized cells can accept, t,ran.lsfarrnations like a geometrical data, form:

device stretch positions, like a sy-mbollc form, and device sizes like an

electrical symbolic form. In parametrized cells, all the processing of the

parameters is done by the cell. In Sticks and Andy symbolic systems, an

external algorithm handles all the parameter resolution. This is reasonable

for physical and electrical properties, since the way the optimization is done

does not vary from cell to cell. However, behavioral parameters are very

differenk.

Sticks eliminates the need for the user to deal physical parameters by

providing a form that can be stretched and an algorithm for stretching all

cells. The algorithm to modify component positions is external to the cell

and is shared among all cells. In a symbolic layout system, there is no need

for processing of physical parameters, the processing is incorporated in a

program that relies on the malleable positions of components.

Processing of electrical parameters is handled in a similar fashion in Andy.

The electrical symbolic data form relieves the user of the electrical

parameters, and there is an algorithm to perform the electrical composition

and optimization that is external to all cells and applicable to all.

This leaves only behavioral parameters. By their definition, behavioral

parameters are inherent to the design. Our goal is to shield the user from

having to de'al with too many unnecessary parameters. Since behavioral

parameters cannot be eliminated, it would appear that a system that

eliminated the need for the user to address physical and electrical

parameters would be the best automation that could be produced. Andy is

such a system.

This treatment of parameters can be seen in the Sticks Standard. Those

parameters that are passed from the instance are specified in the cell by

"soft" numbers. In the Sticks Standard, the only hard numbers are the

device sizes. Therefore, an electrical symbolic format such as Andy's, that

makes those numbers soft as well, eliminates aU hard numbers in cells. Tbs

seems to be an indication that something is being done right.

?.% %Be Relationship Between EIiermh J md the Design Data Format

Some people argue that since the electrical properties are inherently global,

a system that modified them would, of necessity, destroy the Bierar~hy. This

statement is false on two counts. First, although electrical components may

be global spatially, they are perfectly local electrically. Electrical

modifications of parts of a circuit must look at other parts of the circuit, but

not more than one electrical node away. We have electrical topology similar

to the geometrical topology in symbolic layout system. The electrical

topology is based on electrical nodes, and modiflcation of that topology is the

creation of more nodes.

Second, destruction of the hierarchy depends on the hierarchy you view. If

the design hierarchy contains elements in an electrical symbolic format,

then cells can be personalized electrically without changing the hierarchy or

deftnlne new cells. If you envision your hierarchy as containing symbols with

hard sizes on electrical components, like the Sticks Standard components,

then electrical optimizations do indeed destroy the hierarchy, just like a

Sticks system destroys a hierarchy that contains only symbols defined as

absolute geometry.

The number of "'unique" cells in the system depends on the definition of

unique. If "unique" means "having a particular hard geometry", then

symbolic stretching of a cell creates a new cell. If "'unique" means having a

particular set of device sizes, then electrical optimizations create new cells,

but a Sticks-like positioning does not. If "unique" means having a particular

set of devices, regardless of size or absolute position, then an electrical

optimization does not create new cells.

Sticks systems have not be envisioned as destroying haeraschy because they

have typically performed the compaction function before chip assembly.

This means the designer has control of the number of different compactions

of the cell (typically one compaction to some minimum area). However, the

user cannot take advantage of the stretching properties when the cell is

interfaced to other cells in the system, losing the most important aspect of

the Sticks form: the ability to modify the positions of components when the

chip is assembled. Thus, early Sticks systems still had to route wires to

match connections to the exterior of cells [Williams 19771. This revelation

also explains why assembly systems such as Riot [Trimberger 1982bl create

such a large number of cell definitions - the design tools still envision a cell

as having a particular hard geometry, so differently-sized cells required

different cell definitions.

An electrical symbdic system creates a large number sf cells if we envision

cells as primitive geometrical or topological objects, and if we insist on using

the full power of the malleable-transistor form. 'Phis proliferation of cell

definitions in an Andy-like system would not be apparent either if

performance was optimized within the cell without considering the

environment, then the cell used in designs, because the control of cell

creation falls back on the designer. But in this case the designer is forced to

use pre-optimized cells that may make a good implementation in the new

environment. The is the same problem faced in standard cell systems that

must add function outside the cell to make the logical interface.

T04. Andy a% a Rece of a Design System

Performmce optimization done cannot make a design system. A design

system requires tools to generate the data Andy uses, and tools to take

Andy's output and produce a chip. An example of such a system is ~utlined

in figure 7.4.

The optimization system takes input from any of a number of assembly tools

and performs the logical composition, making physical connections to

correspond to the logical connections between instances, and making the

equivalent electrical composition, setting device sizes so that all signals can

be driven quickly. The system optimizes area, delay and power.

Of course, all composition tasks must process the complete design

hierarchy. The performance optimizer described in this thesis does so, and

an area optimizer must work in conjunction with it. Another part of the

system must be a program to set power wire widths to meet current density

limits. Such a feature is relatively simple, given the data structure in. Andy.

ASSEMBLY TOOLS SILICON COMPILERS

PERFORMANCE
OPTIMIZATION

AREA
OPTIMIZATION

F%gure 7.4. An Electrical Symbolic Design Sgzstem.

7.4.1. Interaction of Optimization Tasks

The changes Andy makes in device sizes may violate geometrical design

rules. Therefore, after performance optimization, the circuit must be put

through a Sticks area optimizer to repair geometrical design rule violations.

The changes made by the Sticks compactor will be reflected in different wire

lengths, changing the parasitic capacitances and therefore the required

drive of the gates. This will require another delay optimization with the new

parasitic capacitances.

This iteration through performance optimization and area optimization

should settle down relatively quickly, since delay and area are not tightly

coupled. During delay optimization, transistor sizes increase by a factor of

l / f m m t f a c t o r in width at the most, and may actually become smaller. A

segment of wire of comparable length is generated by the area optimizer

with capacitance also proportional to 1 / f u r n u t $'actor. This increase leads to

hcrsased device sizes nf order 2/feaout f a c t 0 9 ta accommodate the

increased capacitance of the'longer wires. Since the gate sizing has a cutoff

point, this iteration must coverage.

Iteration of the optimizati~n steps may seem unsettling, but it is already

done ian area compaction in which X and Y dimensions are compacted

independently. Since the X and Y dimensions are indeed dependent on one

another, the compaction steps must be iterated. Since the size of wires and

the size of transistors are related, and we wish to optimize them separately,

we must iterate the optimization steps, Of course, a different order of

optimization steps leads to a different final circuit.

If the area composition system has a choice of where to lengthen wires, it

would certainly be advantageous to decide which wires to lengthen by the

effects of the longer wires on the delays. A reasonable choice is the

minimum capacitance solution produced by the affinity algorithm in Rest

[Mosteller 19811, However, this is not necessarily the minimum delay

solution. Rather than build a system with the delay optimization and area

optimization separate, it may be advantageous to build them together.

7.5. Other Applications of Andy

The algorithm described in this thesis can be used in more than one way. It

has been described as a synthesis tool for creating groper layouts. It could

be used earlier in the design process with a logic diagram to determine

optimum device sizes before any layout takes place. In this mode, though, it

could not take into account the parasitics on the wires. Andy could also be

used as an analysis tool to show where the fanout rules are not being obeyed

ira a c k c ~ t .

These uses of Andy could be incorporated into conventional design systems

in which the circuits are described geometrically, and electrical information

is extracted for analysis. It would not be reasonable to adlust device sizes in

such a system because no area optimizer would be available to correct the

geometrical design rule violations introduced by the electrical. optimization.

However, this seems rather inefficient, because if the circuits were described

in the proper form, the design system could n ~ t only check a circuit, but

correct it as well.

CHAPlXR8

Conclusions

Current integrated circuit design practice does not address performance

issues well. Current means of gaining better performance are expensive,

generate poor optimizations or both. Hierarchical design aggravates this

problem.

The integrated circuit design work in universities stresses fast turnaround

m d functional correctness at the expense of area and performance

optimizations. The loose area design rules do not cause chips to be too much

larger than those made with more precise design rules. However, many in

the university community ignore performance optimization because it is

W c u l t and because the traditional way to do performance optimization

requires more design iterations. These design iterations seriously impact

the delay to getting working parts.

The system described in this thesis can generate faster parts automatically.

It does not require additional design iterations or costly simulation. The

algorithm can be changed without modification of the underlying conceptual

basis if Meren t models or true optimum performance is desired.

The system is cheap to use in terms of elapsed time, computer time, and

human operator's time. Rather than give the user statistics or telling him

what to do, the system actually makes the changes that must be made to

produce faster circuits.

The system has many similarities to symbolic layout. Those similarities

include data structures, algorithms and general approach to optimization.

Performance optimization as described in this thesis relies on symbolic

layout area optimization to make design rule correct chips.

The system described in this thesis allows the designer to use more advanced

assembly tools, such as stretching tools, which otherwise might generate

hopelessly slow chips. It allows the csmposition system to do electrical

composition, not merely physical csmposition.

Traditional tools are caught between enormous circuit complexity and the

physical hierarchy that is used to address that complexity. The hierarchical

design does not necessarily aid difficult composition tasks, and may make

them even more difficult. Tools that address some composition tasks may

fool the designer by hiding other problems. It is hoped that this work will

stimulate others to investigate the new role tools must play in composition.

References

[Agule 19771 B.J. Agule, J,D. Lesser, A.E. Ruehli and P.K. WolfP, Sr., "An

Experimental System for Power/Timing Optimization of LSI Chips",

Proceedings of the Fourteenth Design Automation Conference

[Anderson 19821 J.M. Anderson, B.L. Troutman and R.A. Allen, "A CMOS LSI 16

x 16 Multiplier-Accumulator", 1 982 IEEE International Solid State Circuits

Cbnference Digest of Technical h p e r s

[Bening 19821 L.C. Bening, T.A, Lane, C.R. Alexander and J.E. Smith,

"Developments in Logic Network Path Analysis" Proceedings of the

Nineteenth Design Automation Conference

[Bilardi 19811 G. Bilardi, M. Pracchi and F.P. Preparata, "A Critique and an

Appraisai of -TLSI Modeis of Computation", L̂ A3U &01t fe~en€~ it TYZSi Sgstewii

and Computations, H.T. Kung, B. Sproull, and G. Steele, ed.

[Chawla 19751 B.R. Chawla, H.K. Gurnmel and P. Kozak, "MOTIS -- An MOS

Timing Simulator", IEEE Ransac tions on Circu%ts and Systems, December,

1975.

[Chen 19771 K . k Chen, M. Feuer, K.H. Khokhani, N. Nan, and S . Schmidt, "The

Chip Layout Problem: A n Automatic Wiring Procedure", Proceedings of the

FOIL~t@i??tth Design Automatien Confe~enc e.

[Cohen 19781 E. Cohen, A. Vlladlimisescu and D.O. Pederson, "User's Manual for

Spice" University of California at Berkeley, Computer Science Department

[Daseking 19821 H.W. Daseking, R.I. Gardner and P.B. Weil, 'Vista: A VLSI CAD

System", 1 . E i"ra7~saction.s o n Computer-Aided Design of Integrated

CLrcuits and Sys tems , January, 1982.

[Foderaro 19821 J.K. Foderaro, K.S. Van Dyke and D.A. Patterson, "Running

RISCs", W I Design, September/October 1982.

[Harary 19721 F. Harary, Lkaph Theory, Addison-Wesley, Reading,

Massachusetts. 1972.

[Johannsen 19811 D. Johannsen, "Silicon Compilation", PhD Thesis, Computer

Science Department Technical Report #4530, California Institute of

Technology.

[Kingsley 19811 C. Kingsley, "Earl: An Integrated Circuit Design Language",

Master's Thesis, Computer Science Department Technical Report #5021,

California Institute of Technology.

[Koppel 19781 A. Koppel, S. Shah and P, Puri, "A High Performance Delay

Calculation Software System for MOSFET Digital Logic Chips", Proceedings of

the F%f t een th Design Automation C o n f e ~ e n e e .

[Lang 19791 D. Lang, "LAP Uses's Manual", Computer Science Department

Technical Report #3356, (Rev 1982 #4379), California Institute of Technology.

[Lightner 198f] M.R. Lightner and S.W. Director, "Multiple Criterion

Optimization for the Design of Electronic Circuits", IEEE Pansac t ions o n

Ci7'62Lit.s and Sys tems , March 1981.

[Locanthi 19781 B. Locanthi, "LAP: A SIMULA Package for IC Layout",

Computer Science Department Display File #1862, California Institute of

Technology.

[McWilliarns 19781 T.M. McWilliams and L.C. Widdoes, Jr., "The SCALD Physical

Design Subsystem", Proceedings of the fifteenth Design Automation

Cbnf erence.

[Mead 19801 C. Mead and L. Conway, Introduction to VLSI Systems, Addison-

Wesley, Reading, Massachusetts, 1980.

[Mosteller 19811 R. Mosteller, "A Leaf Cell Design System", Master's Thesis,

Computer Science Department Technical Report #4317, California Institute of

Technology.

[Mosteller 19821 R. Mosteller , "An Experimental Composition Tool",

Cbnference o n Microelectronics, 1982, The Institution of Engineers, Australia.

[Nham 19BO] H.N. Nham and A.K. Bose, "A Multiple Delay Simulator for MOS

LSI Circuits", Proceedings of the Seventeenth Design Automation

Conference.

[Penfield 19811 P. Penfield, Jr. and J. Rubinstein, "Signal Delay in MOS

Interconnections", Proceedings of the Second Caltech Conference o n ESI.

[Persky 19761 G. Persky, D.N. Deutsch, and D.G. Schweikert, "LTX - A System

for the Directed Automatic Design, of LSI Circuits", Proceedings of the 13th

Design Automation Conference.

[Pilling 1972al D.J. Pilling, P.F. Ordung and D. Heald, "Time Delays in LSI

Circuits", IEEE 1972 International S y m p o s i u m o n Circuit 7'heory.

[Filling 1972bl D.J. Pilling and J.G. Skalnik, "A Circuit Model for Predicting

Transient Delays in LSI Logic Systems", Sixth Asilomar Conference o n

Gi~cuits a n d Systems.

[Putatunda 19821 R. Putatunda, "Auto-Delay: A Program for Automatic

Calculation of Delay in LSI/VLSI Chips", Proceedings of the Nineteenth Design

Automation Conference.

[Rowson 19801 J.A. Rowson, "Understandmg Hierarchical Design", PhD Thesis,

Computer Science Department Technical Report #3710, California Institute of

Technology.

[Ruehli 19771 A.E. Ruehli, P.K. Wolff, Sr. and G. Goertzel, "Analytical

Power /- Optimization Technique for Digital System", Proceedings of the

Fourteenth Design Automation Confe~ence.

[Sproull 1980] R. Sproull and R. Lyon, "The Calteck Intermediate Form for LSI

Layout Description", from [Mead 1980].

j3uiherland i979] 1.E. Siltherland, C.E. Molnw, R.F. Spro-d, J.C. Miidge, "me

Trimosbus", Proceedings of the Caltech Conjerence o n K S I , C.L. Seitz, ed.

[Trimberger 1980a1 S. Trimberger, "The Proposed Sticks Standard",

Computer Science Department Technical Report #3880, California Institute of

Technology.

[Trimberger 1980b1 S. Trimberger, "Paul -- Stick Diagram Maker", Computer

Science Department Display File #3898, (Rev. 1982 #5009), California

Institute of Technology.

[Trimberger 1982a1 S. Trimberger and C. Kingsley, "Chip Assembly Tools",

Proceedings of the 1982 International S y m p o s i u m o n B~c'LLits a n d S y s t e m .

[Trimberger 1982b] S. Trimberger and J. Rowson, "Riot - A Simple Graphical

Chip Assembly Tool", Proceedings of the Nineteenth Design Automat ion

Conf e r e m e

[Williams 19771 J.D. Williams, "Sticks - A New Approach to LSI Design", M.S.

Thesis, Massachusetts Institute of Technology.

APPENDIX A

Andy User's Manual

k 1. Introduction

Andy is a program that takes a logical composition specification for an nMOS

circuit and performs the electrical composition, which involves three tasks.

Most importantly, Andy improves the speed of the circuit by adjusting

transistor and resistor sizes to match the capacitive loads on them. In

addition, it ensures proper pullup-pulldown ratios on all gates including those

that have some inputs gated by pass transistors. Andy also flags dangerous,

probably illegal conditions, such as the case where signal on the gate of a

pass transistor has itself been gated by a pass transistor.

The role of Andy in the design tool structure can be seen in figure A.1. Chip

assembly tools are used to specify a composition for a chip. Then area and

delay optimizations improve the design. The results of the optimization

steps may lead the designer to improvements that require another design

cycle. The design iterates through editing and optimization steps until the

designer is satisfied with the result.

The current design system using Sticks is shown in figuse A.2. Andy reads

m d writes Sticks Standard files that may be prepared by REST, Paul, Riot,

Rcomp, PLA, or other leaf cell and composition tools.

The area optimization makes the logical connection, whether by routing or

ASSEMBLY TOOLS SILICON C O W PLERS

STK

PERFORMANCE
OPTIMIZATION /-f

AREA
OPTIMIZATION

F7.gure k 1. Design Pracess Flow

PAUL RE ST

/---

STKPET

ANDY -STONES
I

Flgure k2. Andy in the Cdtech Design World

stretching, and guarantees some local optimum for the resulting size of the

cell. Likewise, performance optimization makes the electrical connections,

ensuring that these connections are correct in an electrical sense -- nMOS
ratios are correct, and all gates achieve some local optimum for delay and

power.

Figure A.3 shows the optimization algorithm block diagram. First, Andy

reads a Sticks file and extracts the node and gate data structure. Then

performance optimization is done followed by the power optimization step.

In the end, Andy writes a Sticks Standard file.

The delay and power optimization in Andy is a purely electronic method,

dealing only with the electrical capacitive attributes of the circuit. Andy

optimizes performance of an integrated system by altering device sizes to

match the loads on them. Andy also makes proper pullup/pulldown ratios

and fixes gate ratios for gates whose inputs went under pass transistors.

Roper ratios are a side-effect of the gate sizing algorithm.

There are many other methods of performance enhancement that could be

used: wires could be shortened, logic stages could be inserted or deleted to

make the fanout factor as close to optimum. as possible, duplicate logic could

be introduced to avoid fanout. These changes are considered design issues

to be handled by the designer, as opposed to layout issues that are handled

by the design system. The output from Andy will direct the designer to make

Read Sticks
J

Make Nodes
J

Recognize Gates
J

Optimize Delay
J

Optimize Power
J

Write Sticks

Figure k 3. Performance Optimization Flowchart

these kinds modifications of the logic to further improve the performance.

This document is the User's Manual for Andy. It includes information on the

kind of input Andy expects and the kinds of operations that can be

performed on that input. The document is divided into three parts: a

description of the input required by Andy, a description of the commands,

and a description of the algorithms.

k2 . Overview of Andy

Andy is a program that optimizes delays in circuits that are defined in a

symbolic notation. The interdacs to the aptimizati~ns is the major facility in

Andy. The Andy is a command-oriented design aid. The Andy program allows

the user to read Sticks files alter then and run the performance optimization

on them. The optimizations can be run independently or as a group and the

user may view the result or get statistics on the resulting circuit. When the

user is content with the design, he may write it back in Sticks form.

Besides an interface to the performance and power optimization algorithms,

Andy has several utility functions for altering Sticks cells, to prepare the

design for the optimization, and to direct the optimizations. These utilities

add parameters to connectors and constraints on components and twigs in

Sticks Standard cells. Andy has no Sticks editing facilities. Changes in the

circuit must be done with some other tool.

A3. The Andy Node and Gate Model

The circuit is made up of gates that drive capacitive loads on electrical

nodes. A node is a collection of all the Sticks twigs and component

references that are always at the same electrical potential (after everythmg

settles down). Nodes may cross the boundaries of the physical hierarchy.

Gates are recognized on the entire cell submitted for optimization The

algorithm follows nodes across cell boundaries if necessary and moves up

and down the design hierarchy to extract the gate information.

In nMOS circuits, there are basically two kinds of gates: restoring Logic ga te s ,

with a pullup device and a pulldown structure, and t ransmiss ion ga te s which

are pass transistors (figure k4). The former are unidirectional and are the

form most often envisioned as gates in circuits. These unidirectional gates

are made up of a single pullup device connected to the POWER node on one

side and the output node on the other, and a tree-like pulldown structure

connected between the output node and GROUND. A transmission gate is

formed by a transistor that is not along a path from POWER to GROUND. This is

the same distinction used in the gate extraction algorithm for the MOTIS

simulator [Chawla 19751.

The gate recognition algorithm distinguishes between restoring logic gates

and transmission gates. However, there are some MOS structures that are

not allowed, and some that will not result in a gate derivation that the

designer wished. Gates may have only one pullup and one output. The

pulldown structure must be a true tree structure with no internal

connections. Examples of well formed gates are given in figure A.4, and ill-

formed gates in figwe A.5. The gate on the left side of figure A5 has a

F'igure k4. Types of Gates. a) Restoring Logic Gate.
b) Transmission Gate.

Cfi FQpm k5. Ill4ormed Gates

-173-

graph-like pulldown structure. The gate on the right side has two outputs.

A3.1. Delay Models

The delay of a restoring logic gate is proportional to the resistance (R) of the

pullup times the capacitance (C) on the output node. The capacitance may

include the parasitic capacitance on the wires. The delay through a chain of

gates is the sum of the RC delays. This RC delay is the measure used in

estimating delays in the optimization algorithms. The amount of power

dissipated by these gates is inversely proportional to the resistance of the

pullup.

Transmission gates are potentially bidirectional, and current supplied

elsewhere will pass through a pass transistor. The optimizer attempts to

keep pass transistors from being serious detriments to the performance of

the circuit. It is also unreasonable to make pass transistors have a negligible

edect of performance ai; a iarge cost in area. Therefore, Vie pass transistor

resistance is set to be the same as the resistance of a pullup that would have

to drive the larger of the capacitances on each side of the gate. Pass

transistors are not considered in the determination of the delays in a circuit

except as an additional capacitance on the node, and since they have no

connections to POWER and GROUND, they do not contribute to power

comumption.

There are places of special concern with bus-like structures in which the

signal goes through a pass transistor. Logic on the other side of the pass

transistor may at some times require that the node drive logic, and at other

times the logic may drive the node. The algorithm assumes worst case in all

pass transistor situations: it assumes that it may have to drive all logic past

a pass transistor at once. Therefore, the capacitance on a node that runs 'to

a pass transistor includes the capacitance of the transistor and the

capacitance on the node on the other side of a pass transistor as well. The

capacitance calculation goes through all pass transistors. To limit this, the

user may constrain a capacitance on a node, such as the bus node.

k4. Input

Andy's input format is Sticks Standard with some extensions for dealing with

electrical properties of the design, and some restrictions on the kinds of

constructs that are acceptable so that no ill-formed gates exist. This section

introduces the Sticks Standard and lists the extensions to the Sticks

Standard for Andy.

Andy deals with symbolic layout defied in the Sticks Standard [Trimberger

198OaI and uses the Sticks W O S components [Kahle 19811. Andy accepts the

f u l l Sticks Standard including the design hierarchy. Therefore, the Riot

output, when converted to Sticks form is an acceptable form for Andy. I t

should be noted, however, that because Andy makes changes to device sizes,

there must be a compaction (area optimization) step after the performance

optimization. Due to limitations in current tools, this is not possible with all

circuits at this time. It seems possible, though, that RCOMP could be made

to do this.

There are also several added parameters on components and constraints

that are used to control Andy's cleverness that are not part of the usual

nMOS Sticks. Some of these are necessary for Andy, some are desirable.

These extensions must be added before the optimization algorithms are run,

and there are commands in Andy to do this. Problems occur with some

software that does not accept the extensions that Andy requires, so with the

current setup, it may be necessary to add these extensions every time

through the design loop.

Figure k 6 shows a Sticks Standard representation of a cell with several of

the additions required for Andy. These additions are discussed in the

following sections.

Andy reads Sticks Standard format [Trimberger 19BOa]. A sample Sticks

Standard cell is shown in figure A.6 and a drawing of the cell in figure A?.

The Sticks form describes components, such as transistors, resistors,

contacts and connectors; twigs, which are interconnection; and constraints,

M t s on the cleverness of the optimizing program that will optimize the

data.

A4.1. Parameters

Unaugmented Sticks Standard does not include enough information for

performance optimization. Therefore, several parameters on components

and constraints were added to facilitate the performance optimization. New

parameters on components are shown in figure A.B. These parameters can

be added to Sticks cells in h d y .

The gate finding algorithm can find pass transistors most of the time.

However, some circuits, such as the shared bus in figure A.9, confuse it

because Andy sees a path from both pullups through the Bus node, the pass

transistors and the pulldown on the other bus driver to GROUND. By explicitly

CELL srcell 250 4
COMPONENTS

CONNECTOR T GROUND. gndl -48 -45 gndr 48 -45 ;
CONNECTOR T INPUT in -48 -28 ;
CONNECTOR T POWER: vddl -48 45 vddr 48 45 ;
CONNECTOR T OUTPUT: out 48 -29 ;
CONNECTOR T CLOCK: clktap 8 59 clkbot 8 -59 ;
NENH W 16 L 0: pd -20 -29 ;
N E N H W B L 0 : p s N O - 1 8 - 7 ;
NRES W 8 L X pu -20 1 ;
NBUT: but N -1 0 28 -15 ;
NDM: N1 -20 -45 ;
NDM: N3 -20 45 ;

TWIGS
POLY(B):= clkbot 8,-43 ps.G1 clktop;
METAL(12):= gndl N1 gndt;
DIFFUSION(B);= N1 pd.SOURCE;
POLY(8):= in pd.Gl;
DIFFUSION(B):= pd.DRAIN pu.DSOURCE ps.SOURCE;
POLY(8):= 28,-29 (out) but.P;
DIFFUSION(8):= puDRAIN N3;
DIFFUSION(B):= ps.DRAIN but.D;
kETAL(l2):= vddl N3 vddr;

CONSTRAINTS
in*Y=out.Y;

EM)

CELL sr 250 4
COMPONENTS

e : srl 48 0;
=cell : sr2 144 0;
CONNECTOR T GROUND: gndh 0 -45 gndout 192 -45 ;
CONNECTOR T POWER: pwrin 0 45 pwrout 192 45 ;
CONNEXTOR T INPUT: input 0 -29 ;
CONNECTOR T OUTPUT C 10: output 1QZ -29 ;
CONNECTOR T CLOCK: cMop 1 58 59 clkbotl 58 -59 ;
CONNECTOR T CLOCK: clktop2 152 59 clkbot2 152 -59 ;

TWIGS
Metal : = srl.gndr Sn.gndl;
Metal : = srl.vddr sr2.vddl;
Poly : = srl.out s r 2 . i ~
Metal : = pwrin srl-vddl;
Metal : = pwrout sr2.vddr;
Metal : = gndin srl.gndl;
Metal : = gndout sr2.gndr;
Poly : = input srl.in;
Poly ; = output sr2.0ut;
Poly : = pl.l.clktop clktopl;
Poly : = sr2.clktop clktop2;
Poly : = srl.clkbot clkbotl;
Poly : = sr2.clkbot clkbot2

CONSTRAINTS
EM)

Figure k6. The Sticks Standard Representation of a Shift Register Segment.

Figure AT. The Shift Register Segment from FZgure A6.

Or, a 'Pansister
P The transistor is forced to be a pass transistor.

On a Connector
T <type> The type of a signal on the connector.
C <number> A default capacitance on the connector.
0 <laumber> A default capacitance on the connector.
P The signal on the connector came under a pass transistor.

FQme AS. Table of Additional Parameters on Sticks Components

declaring the pass transistors in these cases or by constraining the bus node

(see below), the gate finding algorithm will succeed and performance

optimization will produce better results.

The type of a connector is vital to the device recognition and performance

optimization algorithms. The types understood by Andy are shown in the

table in figure A.lO. Note that the types are all capitals.

FIgure A9. Shared Bus Structure.

POWER Power connection from the power supply.
GROUND Ground connection from power supply.
INPUT Signal generated outside the cell driving logic inside the cell.
OUTPUT Signal generated inside this cell driving logic outside the cell.
I0 Signal that acts as both INPUT and OUTPUT.
BUS Functionally equivalent to 10.
CLOCK Signal that delimits ends of time phases.

Figure A 10. Table of Connector Types Used in the Sticks Standard

The required connector types are POWER and GROUND. If POWER and GROUND

are not specified, the gate recognition will not be able to find gates in the

circuit. INPUT and OUTPUT connectors may be labelled to direct the

algorithm's attention. Unlabelled connectors are assumed to be 10. OUTPUT

and I0 connectors may have an additional parameter to simulate a load of a

given number of minimum-sized transistors on the output. Tbs simulated

load is used when the cell is not used as an instance in a larger circuit, so

there is no real load on the connector.

For delay calculation, every INPUT is assumed to be driven by a gate that is

smaller than its load by the fanout ratio, or by a minimum size transistor,

whichever is larger. Also, an INPUT connector is assumed to represent a

restored logic signal. unless it is marked that it kame under pass transistor.

Connector types, capacitances and unrestored signal markings are only used

on connectors on the cell on which the performance optimization is being

done. Connectors on instances in the hierarchy are absorbed, and their

attributes are extracted from the circuit.

A4.2. Constraints

Andy uses some additional constraints beyond the simple geometrical

constraints described in the Sticks Standard document. These constraints

limit the performance optimizer, and are summarized in the table in figure

A l l .

Andy modifies transistor lengths and widths, and the user has the ability to

restrict that resizing on specific transistors. A pre-defined capacitance that

is applied to a twig is transferred to the node that includes the twig when the

node creation is done. This constrained capacitance then takes precedence

over the capacitance that is calciated for the ilode. This cspacitance

constraint is useful in shared bus situations where the designer knows that

each driver need not drive all loads off the bus at once. The performance

optimizer will otherwise assume the worst, looking through pass transistors

pessimistically, unless the node capacitance is constrained.

The gate finding algorithm terminates at a BUS node. Andy's gate recognition

trans .L = <number> The length of a transistor.
trans .W = <number> The width of a transistor.
twig .C = <number> A pre-defined load capacitance on a twig.
twig .B The twig referenced is on a BUS-type node,

Flgwe k 11. Table of Additional Sticks Standard Constraints

algorithm normally follows nodes to GROUND, which is incorrect in many

cases with shared busses, such as the one in figure A.9. The BUS constraint

on a twig will cause the node that contains the twig to be a BUS node, so the

pass transistors that connect modules to the bus will be recognized as pass

transistors not as part of a pulldown structure that extends through the bus.

Improper use of these constraints can cause the performance optimization

to give wildly inaccurate results, so they should be used sparingly.

A5. Andy Commands

This section deals with the commands to Andy. The commands are grouped

into categories, and each command is treated separately. Commands, file

names, and cell names are not case-sensitive. That is, the capitalization is

not important. However, component names and connector types are case

sensitive, so you must type them exactly as they appear in the file. When the

user must type a number, if the number is a physical size, the units are

lambda, as defined by the scaling parameters on the cell deht ion. If the

number is a capacitance, the units are minimum-sized transistor loads

(.OlpF). If the number is a delay, the units are in terms of the resistance (as

measured by a transistor length/width ratio) times a capacitance in

picofarads. These are the same units put out by Andy.

A5.1. Input and Output

Andy reads and writes the Sticks Standard, and recognizes the extensions

described above. In addition, Andy can write a dump of its internal form

irncluding the node and gate information that was derived from the Sticks.

get <filename>

This command reads a Sticks Standard Ale from disk into memory. The

file may contain many cell definitions and may describe a hierarchy for

the design. The extension .STK is default.

put [cellname] [filename]

This command writes the cell into the file in Sticks Standard. The cell

and all of the defining cells for the instances in it are written into the

me. The extension .STK is assumed for the file. If the file name is not

specified, the output is put on the terminal. The cell name is searched

as defined in the Sticks Standard, first in the definition in which the user

is currently working, then up the deAnition tree to the top-level cells. If

the cell name is not specified, then the last cell that was used in any

command is used.

dump [cellname] [filename]

This command writes the cell into the file in dump mode. The entire

data structure including the fdl internal component and twig structures

and all nodes and gates are written out. Only the specified cell is

written, not the defining cells for the instances in it. The extension .DMP

is assumed for the file. If the file name is not specified, the output is put

on the terminal. If the cell name is not specifled, then the last cell that

was used in any command is used. If nodes and gates have not yet been

recognized on the cell with the makegates command or some

optimization command, the node and gate sections of the dump will be

empty.

dumpgates [cellname] [filename]

This command writes only the gates in the cell into the file in dump

mode. The extension .DMP is assumed for the file, If the file name is not

specified, the output is put on the terminal. If the cell name is not

specified, then the last cell that was used in any command is used. If

gates have not yet been recognized on the cell with the makegates

command or some optimization command, the gate dump will be empty.

k5.2. Cell Management

Andy maintains a list of currently-defined cells. In an interactive system

such as this one, cell management facilities are required to help the user

select the cells to be optimized. Andy has facilities for listmg cell names,

entering a cell to view the cells defined within it, and clearing the list of cells.

list or cells

This command types on the display the cells currently in the cell list. If

the user has pushed into a cell, then that cell's list is displayed. The cell

names and bounding boxes are displayed on the screen.

clear

Remove d l cells from the list of cells.

push <cellname>

The Sticks Standard allows cells to be dehed locally to another cell. In

order to view them, the user must change his cell context to that cell

defmition. When a cell name is specified in some other command, the

search for the definition of that cell proceeds as defined in the Sticks

Standard, first in the definition in which the user is currently working,

then up the definition tree to the top-level cells. Note that this does not

affect the cument cell, the cell that is the default when none is specified.

POP

This command sets the workmg cell to the cell that includes the current

working cell's cell definition. It moves up the cell definition hierarchy.

who [cellname]

This command sets the current cell (not the same as the working cell).

The current cell is the cell that is used of no cell is specified. If no cell

name is given, then the cell is not changed. The name of the current

cell is typed out.

A5.3. Plotting

It is often necessary to view the data to add constraints, to understand what

the optimization has done or to identify the places where the design should

be modified so more optimization can take place.

Andy has a complete plotting package that includes cell selection, windowing,

output device selection and scaling of the plot. There are options on plotting

that enable the user to plot only the cell bounding box and connectors, and

to optionally include component names on the plots. The user may plot the

cell as a symbolic Stick diagram or as an abstract gate bubble diagram,

showing the connections from the connectors on the cell and the connections

between gates.

user <L> <r> <t>

This command sets the left, right, top and bottom of the user

coordinates, the corners of the screen in the plotting data space. The

default is -1000 -1000 1000 1000.

virt <L> <r> <t>

This command sets the left, right, top and bottom of the v i r tua l

coordinates, the corners of the area on the output device where the plot

will fall, assuming the output device extends from -1 -1 to 1 1 (the

square may be chopped at the top and bottom or left and right,

dependmg on the aspect ratio of the output device. The default is the

entire plotting area.

interface [cellname]

This command plots the cell bounding box and connectors. If the names

plotting !?lag is on, me ~ o m e c t o r a m e s will be plotted also.

plot [cellname]

This command clears the display then plots the cell as Sticks with the

current user coordinates.

fit [cellname]

This command clears the display, sets the user coordinates to be

slightly larger than the bounding box of the cell, then plots the cell as

Sticks.

plotgates [cellname]

This command clears the display, sets the user coordinates to the

bounding box of the cell, then plots the gates in the cell as a bubble

diagram, with one bubble per gate and a line representing electrical

connections be tween gates.

dev or device <devname>

This command sets the type of the output device. Default device is

VT52. Legal devices are:

c harles Charles Terminal.
gigi DEC GIG1 Terminal.
h~ HP7221A Plotter.
7220 HP7220 Plotter.
tek Tektronix Terminal.
tty or vt52 DEC VT52 equivalent text terminal.

names

Toggle name plotting flag. Default is OFF. When the name plotting flag is

ON, all component names or gate names are plotted on plots.

half

Toggle the half-page HP plotting flag. Default is ON. When half-page

plotting is ON, the HP plotters will plot on an 8% by 11 inch page.

Set the HP plotter to plot on top half of 8% by 11 inch page. The device

must already be set to the HP plotter.

Set the HP plotter to plot on bottom half of 6% by 11 inch page. The

device must already be set to the HP plotter.

midqtr

Set the HP plotter to plot on middle section of 8% by 11 inch page. The

device must already be set to the HP plotter.

gatecircle [circlesize]

Set the size of the circles in the gate plot bubble diagrams. Default is

1000.

k5.4. Stick MtxWcation Utilities

There are two major alterations that a user must perform on the Sticks data

in Andy. First, connectors must be labelled with types and given default

loading. Second, constraints must be added to limit the optimization

process. Comiz;&lris inel-ide loading constraints and transistor size

constraints. The types and constraints are described above.

These constraints can be expressed textually, if the name of the component

is known. This may not be easy if the Sticks cell was generated

automatically, so Andy also provides a graphical means of identifying

components. One can point to components after the cell has been plotted

m d set the name, connector loading, and transistor length and width. Also,

constraints can be made on components. Unwanted constraints can be

removed.

load <name> <type> <number>

Set the load on a specific connector. The units are minimum-sized

transistor loads (.OlpF). The default load for all connectors is set with

the connload command, in the section on "Parameters to the

Optimizations", below.

type <connname> <type>

Set connector type for the connector connname in this cell to the type

specified in the command. Any type name is legal, but Andy only

handles the ones listed above. Note that the capitalization must be the

same (all caps!).

con <name> <type> <op> <number>

Make a constraint of the given type in the current cell. For example,

con foo X>2 constrains the X-value of component foo to be greater than

2. Capacitance constraints can be made also. All capacitances are in

units of a minimum transistor load (. OlpF).

Remove a constraint of the given type from the current cell. For

example, rem foo X> removes the constraint given above.

set [cellname]

This command enters the set mode that allows the user to set

parameters and make constraints graphically. Before giving the

command, you must p l ~ t or fit the cell. The set command will work even

if you don't, but you won't be able to see what you are doing. Because

the set command requires input from a pointing device on the output

device, you must be at a Charles terminal with a mouse or at a GIG1 with

a BitPad.

When you are in set mode, you point at a component with the mouse or

tablet or whatever. You will then get a prompt that gives you the

following sub-commands:

name <nam>

Set the name of the component.

type <typ>

1% the component is a connector, then set its type.

cap <real>

If the component is a connector, then set its default capacitance.

width <real>

If the corrrpone~t is a krmsist,ori then set its width.

length <real>

If the component is a transistor, then set its length.

con <type> cop> <other>

Make a constraint. The constraint is made of type <type>, which

may be X for a x-dimension constraint, Y, for a y-dimension

constraint, C, for a capacitance constraint, P, to constrain a

transistor to be a pass transistor or to constrain a connector to

have a signal come under a pass transistor. The <op> is the

operator, which is ignored in a "P" constraint (but wbch must be

present anyway), is one of >, <, or =, as described in the Sticks

document. <other> may be an edge constraint, LEFT, RIGHT, TDP,

or BO'ITOM, as described in the Sticks document, the name of

another component, a number for numerical constraints, or &,

which lets you point at another component that is to be the other

part of the constraint. When the constraint command is done, the

constraint is printed on the terminal.

help or ?

This command causes a terse command summary to be printed.

refresh

Re-draw the cell on the screen.

sruit

Re turn to Andy main command mode.

P

Proceed. This command lets you point a t another component.

A.5.5. Parameters to the Optimizations

The delay and power optimizations use several global values for critical

parameters. The user may set these values and thereby direct the overall

operation of the optimization algorithms.

The user may turn off and on the inclusion of capacitance on wires. The wire

capacitance is usually on, because it is a significant load in most. circuits.

The user may also control whether or not CLOCK nodes on pass transistors

will break paths during delay calculation and power optimization. Turnirg it

on allows optimization for minimum clock cycle, turning it off allows

optimization for minimum delay through a pipelined processor.

The user may adjust the most important number in the performance

optimization the fanout factor. The fanout factor is the number of minimum

transistor capacitances that should be driven by a minimum transistor. The

fanout factor says in some sense how concerned the user is with power

versus delay. Larger fanout factor means greater delay but lower power. I t

may be set to any value greater than one, and is set initially to four.

The user may also change the default loading on a connector. Is is usually

not reasonable that connections to the outside world have no capacitance on

them. I t is possible to put a speciPlc load on a specific connector, and it is

also possible to put a default load on all other connectors.

dotwigs

Toggle the twig capacitance flag. The default is ON. When the twig

capacitance flag is ON, the capacitance of twigs is included in the

calculation of loads on nades.

doclocks

Toggle the clocking flag. The default is OFF. When the clocking flag is

ON, pass transistors that have CLOCK nodes on their gates break paths

for the power optimization. Therefore, delay and power can be

optimized for either the delay through the whole cell (minimum delay

for a signal to pass through the cell) or just across a clock cycle

(minimurn clock cycle time).

scale [dl

This command sets the fanout factor, also known as the scale down

factor. It is the number of minimum-sized transistor capacitances that

can be driven by a minimum-sized transistor resistance. This number

should always be greater than 1. The default is 4. If the fanout factor is

not given, then the current fanout factor is typed on the screen.

connload [ld]

This command sets the default minimum load on a connector. The

default is 1 minimum transistor load. If the load is not given, then the

current load number is typed on the screen.

status

This command prints the value of dl status variables. An exarnple

follows:

Current cell: SR MBB: -50000,-50000 50000,50000.

Scale Down Factor = 4.00E+00.
Minimum Connector Load = 1.00E-02.
Gate Circle Size = 1000.
Won't die on error.
Race off.
Verbose trace off.
Space tracking off.
TPng capacitance on
aocks off.
Name plotting off.

Paotter: W52. User coords: -2800,- 1080 2000,1000.
Half page HP plots

A5.6. Statistics

To help the user determine the quality of a design, Andy reports statistics on

the cell. The user can get the delay of the critical path, a listing of the

critical path, the power consumption of the chip and the product of the delay

and power. The delay and power estimates from Andy are not exact because

constants are ignored, and they are based on a simple RC model of delay, but

one set of statistics can be compared to another to get an idea of the relative

goodness of two designs.

delay [cellname]

This c o m m d prints the maximum delay across cell and the critical

path that resulted in that delay. It also includes a message if the

critical path has changed since the last time it was displayed. The delay

is the sum of the RC time constants for all the gates in the critical path.

The resistance is unscaled as the transistor length/transistor width for

the pullup of the restoring logic gate. The capacitance is the sum of all

capacitances, including twig parasitic capacitance if the dotwigs flag is

on. The capacitance calculation looks through pass transistors

(transmission gates) pessimistically, assuming that all pass transistors

will be open when the gate is trying to drive the node. If the doclocks

\option is turned ON, then the delay calculation also follows paths that

start a t pass transistors that are gated by CLOCK nodes. Those pass

transistors also end delay calculation paths. The following is some

sample output from the delay command.

Critical Path for cell PLA C:YlIN G:INBUFJlC6 G:ENBUFJ2CQ GAND,P5 GORP8
G:OUTBUFJUlC5. Delay: 9.843-01
Critical path changed.

power [cellname]

This command prints the power consumption of the cell in unscaled

units of transistor width/transistor length (proportional to l/resistance

of the transistor). The power consumption for the cell is the sum of all

the width to length ratios of all pullup transistors in the cell.

fm [cellname]

This command prints the delay of the critical path in the cell, the power

consumption of the entire cell and the product of the two:

Cell PLA. Delay: Q.&QE-01. Power: 2.343+01. D*P (unscaled): 2.253+01

A5.7. Constructing the Data Structure

The data structure must be built before the optimization steps, so the

optimizations build the structure, finding nodes and gates, if necessary.

Andy also has commands specifically to build the data structure. These

commands to separately generate the nodes and recognize the gates is

included primarily as a debugging tool. The node and gate extraction

algorithms are described briefly below.

This command causes Andy to find all the nodes in the cell. Nodes span

the design hierarchy, possibly includmg components and twigs in.

instances of cells contained in this cell.

justnodes [cellname]

This command causes Andy to find all the node segments in the cell.

This command differes from makenodes because it will not merge node

segments through the design hierarchy.

makegates [cellname]

This command runs the gate recognition algorithm on the cell. If the

nodes have not yet been found, makegates finds nodes first.

k5.8. Delay and Power Optimization

Delay and power optimization are Andy's main tasks. They can be performed

separately or sequentially with a single command. Separate commands for

each step are provided more as a debugging aid than as a user feature, but

there may be some situations where one or the other is not desired. The

delay and power optimization algorithms are described briefly below.

The performance optimization and power optimization algorithms use

the same code to meet constraints. This command clears the desired

delays set by the power optimization algorithm.

setstretch [cellname] [real]

This command runs the part sf the power optimization algorithm that

sets desired delays on gates, After this part, the cell must be run

through the gate sizing algorithm to set the correct transistor sizes

from the desired delays. The user may supply a number for the

minimum delay for the critical path, the desired delay for the cell as a

whole. If the number is absent, 0 is assumed, and all paths in the cell

are made as long as the critical path.

stretch [cellname] [real]

This command does the whole power optimization step: clearstretch;

setstsetch(rea1); sizegates; .

pack [cellname]

This commands does the complete performance optimization step:

clearstretch; sizegates;.

opt [callname] [red]

This command does the complete optimization of a cell: clearstretch;

sizegates; setstretch(rea1); sizegates; . Performance optimization is

done before power optimization.

k5.9. Area Optimization

Delay and power optimization change device sizes which may result in design

rule violations, mandating that area optimization be performed on the cell.

Andy sends simple cells to Rest to do this optimization. Rest cannot

currently handle cells with hierarchy, so some other software is needed for

dealing with area optimization of composition cells. An associated program,

STK, can be used to remove the hierarchy so Rest can optirnize area. Other

commands in STK do simple area optimizations with the hierarchy. The

reader is referred to the STK documentation for more information.

This command invokes REST to perform area optimization in the x-

dimension.

P=kY [=-el

This command invokes REST to perform area optimization in the y-

dimension.

A5.10. Debugging Aids

There are a few commands of little or no interest to users which generate

trace information during the data structure construction and during the

optimization stages. There is also a command in Andy to enter the SIMULA

debugger for further examination of the internal structure of the program.

&bug

Enter the SIMULA debugger.

trace

Toggle the trace flag. Default, is OFF. When the trace Aag is ON, pages of

output are generated so you can follow the program's execution. A

working knowledge of the code is necessary to decipher the output,

though.

mace

Toggle the verbose trace flag. Default is OFF. When the verbose trace

Bag is ON, reams of output are generated so you can follow the

program's execution.

space

Toggle the free pages flag. Default is OFF. When the free pages flag is

ON, messages are generated during execution which tell the user the

amount of free memory space. If the program runs slowly, it is often

due to large memory use. This can show which parts of the program are

eating large amounts of memory.

dieonerror

Toggle the flag to enter debugger when a design error is found. Default

is OFF. On the test circuits, a spurious design error indicates a bug in

the program. The dieonerror flag causes Andy to enter the debugger

after printing the error message when a design error is found. If the flag

is OFF, the message will be printed and execution will continue.

status

This command p a t s the value of all status variables. An example is

shown above in the section titled "Parameters to the Optimizations"

A5.11. Miscellaneous Commands

These commands do not fall into any of the categories above.

@Andy [file]

When Andy is run, if a file is given, an initial get is done on that file. If

the fUe name is S, then Andy starts by taking commands from the me

"ANDY.IT\H". (Note that commands are taken from IWDY.TN1, it is n o t

read as a Sticks file.)

? or help

Type a summary of the commands.

quit

Terminate Andy execution. If you continue the program from the

monitor, you get right back into the Andy command loop with everything

exactly as it was.

invade

Enter "space invaders" mode for a short recreation. This mode only

works properly on a VT52.

AS. Design Rules

Performance optimization can be expressed in a somewhat formal manner

by deibing "design rules" which the algesrik enforces and attempts to

meet as closely as possible. These rules are presented as a means of

explanation of the function of Andy, not as a description of the algorithm.

(I) The minimum, transistor width is 2 lambda. Minimum transistor length

is 2 lambda.

This rule sets the minimum gate dimensions, which determine the cutoff

for making transistors smaller. These dimensions also determine when

the algorithm optimizes devices by changing width rather than changing

length of transistors.

(2) A pulldown structure in a gate must have at most one square transistor

resistance for each <fanout> minimum transistor sizes of gate

capacitance that are driven by the gate.

(3) A pullup resistor must have at most one quarter square depletion

transistor resistance for each <fanout> minimum transistor sizes of

gate capacitance that are driven by the pullup.

These rules comprise the gate fanout rule. Meeting these rules is the

main task of the performance optimizer. No gate may drive more

fanout than the fanout variable allows. Optimal delay occurs when this

~ m b e r is e, but it is usudy between four and eight. In the Andy

system, the default value is four, but it may be changed by the user.

The fanout number must always be greater than one.

(4) A pullup device that is not a depletion-mode transistor with the gate tied

to the solJrce indicates that the gate driving c l ~ r r e ~ t Is fomr t k e s that,

sf a normal gate.

A transistor-like pullup must be either a precharge device or a super-

buffer device. Either way, the pulldown becomes the limiting resistance

in the gate. Therefore, the gate can drive four times as much load in the

same amount of time as a normal gate.

(5) A pass transistor must have at most one quarter square gate resistance

for each qanouf> minimum transistor sizes of gate capacitance that

are driven through the pass transistor.

'This is the pass transistor sizing rule. It makes pass transistors the

same resistance as a pullup resistor. This heuristic is included so

neither the pass transistor nor the pullup resistor is the dominant

resistance on the signal.

(6) Transistor gate resistances and capacitances and interconnect

capacitances are assumed to be:

Transistor Capacitance 4.0 x 10'"~ pf/pm2.
Diffusion Capacitance 1.0 x pf /pm2,
Polysilicon Capacitance 0.4 x 1 o4 pf /pmi.
Metal Capacitance 0.3 x pf/pm .
Transistor Resistance 1 . 0 ~ i o 4 ~ / = .
Wire Resistance 0.0 R/..

The resistances and capacitances of the elements of the design are used

by the performance optimization. These numbers are taken from [Mead

19801. The precise values of these numbers are not important, but their

ratios are important, particularly the relative sizes of the capacitances

for transistors and interconnect.

(7) The resistance of a transistor which has had the signal on its gate go

under a pass transistor should be considered double.

This rule compensates for the lower gate voltage on the transistors

driven by signals that have gone under pass transistors. The gates will

be made wider.

(8) The maximum length of a pulldown is 2 lambda.

This rule places an upper limit on the resistance of the pulldown and

therefore an upper limit on its delay. This keeps the power optimization

from going overboard when saving power on paths that are very far off

the critical path.

These rules define an optimum delay that is not a true global optimum. The

result will be a local optimum, subject to the constraints supplied by the

system, the accuracy of the design rules and the model of integrated circuit

performance. This is in the same sense that symbolic layout compaction

achieves a local optimum, subject the the constraints of design rules and

algorithmic limitations.

A7. Description of the Operations

This section contains a brief description of each of the algorithms in Andy. It

is included as an aid in understanding of Andy's capabilities.

67.1. Node Determination

The node determination for a cell is done in three parts. First, all the node

segments in the cell are found. These node segments consist of a Sticks twig.

all the components connector references on the twig, and recursively

includes other twigs and component connector references on electrically

equivalent connectors on the components. Node determination passes

through contacts and electrically common connection locations on

transistors and connectors.

PROCEDURE findnodes;
FOR all twigs DO IF twig NOT already in a node then newnode.addtwig(twig);

PROCEDURE node.addtwig(twig);
IF twig NOT already in a NODE then BEGIN

add twig to this node
FOR each component reference in the twig DO BEGIN

FOR all twigs DO IJ? the twig has a reference to
an electrically equivalent connector on the same
component THEN addtwig;

END;
END;

END;

Node segment determination is done for all cells that have instances in the

cell in which we are doing the node determination. These node segments are

collected in the cell and merged into complete electrical nodes. The merge

algorithm crawls up and down the design hierarchy coalescing node

segments across cell boundaries.

A'7.2. Gate F'inding

As shown in the pseudo-code beiow, tine gate finding algorithm k d s gates by

following the POWER node to a transistor source or drain. Since one side of

the transistor is connected to POWER, it must be a pullup for a restoring logic

gate, so a new gate is created with the transistor as its pullup. Although, in

the usual case, the transistor is a depletion mode device used as a load

resistor, other forms for super-buffer gates and precharged gates are legal

as well.

PROCEDURE finhates;
FOR all POWER nodes DO BEGIN

FOR all transistors on the node DO BEGIN
make a new gate.

the pullup is the transistor.
the output node is the node opposite the POWER

FOR all paths of transistor source and drain from the output node DO
IF the path leads to GROUND

THEN make them pulldowns of the gate
ELSE make them transmission gates

END;
END;

The node on the other side of the transistor is the node that the gate is

driving, which must be the output node of the gate. The gate finding

algorithm follows that node to find the pulldown transistor structure. When a

connection to the source or drain of a transistor is found, there me two

possible situations: the other side of the transistor may or may not connect

to GROUND. If the other side of the transistor does not connect to GROUND,

the transistor is remembered and the node on the other side of the

transistor is scanned recursively, building a tree-like structure pointing to

the transistors. The recursion stops when the GROUND node is found or if

there are no source or drain connections on the node.

If the node is the GROUND node, then all the transistors on the path from the

gate's output to GROUND must form a NAND network, serial connection to

GROUND in the gate. Parallel connections to GROUND make NOR-type

connections. If there is no GROUND connection, the transistors along the path

must be pass transistors, and a new transmission gate is made for each pass

transistor.

The gate search process can also be stopped by parameters on transistors or

constraints om nodes. If the transistor has been constrained to be a pass

transistor, the recursion stops, the gate determination ends, and the

transistor is made into a transmission gate. If a node is found of type BUS,

then the gate fin- algorithm is similarly terminated. These constraints

help remove confusion in some MOS structures that do not fall into the

category of well-formed gates described above, but which occur frequently in

designs. These structures include shared bus structures and some more

exotic transmission gate logic.

k7.3. Performance Optimization

The performance optimization algorithm works as follows:

PROCEDURE optimizeperformance;
WHILE some gates are yet to be sized DO BEGIN
FOR all gates DO IF gate.knodoad THEN moveintareadylist
IF no gates in ready list THEN move any gate into ready list
FOR all gates in ready list DO gate.setsize

END

The transistor sizing algorithm maintains two lists of gates: gates that have

nst yet been sized and are ready to be sized, and gates that have not yet

been sized but are not ready to be sized. A gate is ready to be sized when all

the loads on its output node are known. mown loads are twig capacitance,

output connectors, and transistor gate connections on transistors that have

already been sized.

The gates in the former list are processed, setting the sizes of the transistors

that make them up, depending on the load on the output node. Transistor

sizes are set to MAX(minsize, output node ccrpacitance/fanout factor) . When

a gate is sized, it is removed from the list:

PROCEDURE gate.setsize;
BEGIN
basicresistance := MAX(minArenssize,

const *outputcapacitance If anout factor);
pullup.setresistance(basicresistance *longestNANDlength*pulluplatio);
FOR all pulldowns DO BEGIN

pulldownsetresista~lce@asicresistance);
pulldowadrivernode.drive~-gate.sized := FALSE;

END;
sized := TRUE;

END

When a transistor in a gate is sized, the gate that drives the node that drives

the gate of the transistor is moved into the list of unsized gates, since its

load has changed.

As transistor sizes are set, more nodes have known loads. The gates that

drive these nodes nodes can then be sized and so forth. The algorithm

proceeds backward from the circuit outputs through the circuit until all

gates have been sized.

In a circuit with a feedback path, the loads on some gates are dependent on

the size of their o m transistsrs. These gates cannot be sized because none

of the the loads on the output nodes is defined. Andy detects and breaks the

loop by simply picking one gate arbitrarily and sizing it. The transistors in

the sized gate are now known loads, so the gate before the chosen gate can

be sized, and so on. Eventually, the optimization makes its way around the

loop to re-size the first gate. This re-sizing terminates when a transistor

changes size by less than five percent. A transistor that does not change

much does not move the driver of its gate node into the list of unsized gates.

67.4. Power Optimization

The power optimization algorithm can be expressed in general as follows:

PROCEDURE optimizqower;
BEGIN

finQaths;
sort paths into decreasing order;
FOR all paths DO BEGM

fbd first gate that has not been optimized yet;
currentdelay := delay at end of the path -

delay at Arst unoptimized gate;
desireddelay := constrained delay at end of the path -

constrained delay at first unsized gate;
expanbratio := desireddelay /currentdelay;
FOR all gates between first unshed gate and end of path DO BEGIN

gate.constraineddelay := gate.currentdelay * expanctratio;
gate.sized := TRUE;

Ern
END;
FOR all gates DO set delay to constrained delay;

END

Power optimization is done by sorting all the paths of gates in the cell into

decreasing length. A path is a chain of gates that starts a t the input

connectors or a t a pass transistor that is gated by a CLOCK nodes (if the

doclocks mode is turned on) and ends at the output connectors, at the input

to a gate or at a pass transistor that is gated by a CLOCK nodes (if the

doclocks mode is turned on).

Each path is treated independently in the power opthnization. 4 1 gates

along the beginning of the path that have already been sized with the

performance optimizer are chopped off. The delay of the remaining gates is

c~mpared to the difTerence in delay from the beginning of the path (either

the input connectors or the last gate that was chopped off) to the end of the

path (the output connector or the gate at which the path stopped). All gates

in the chain are made slower by the ratio between the desired delay and the

current delay.

In the end, then, all path delays are as long as the longest delay. In

accordance with the rules above, though, no gate is made so slow that a

pulldown transistor width is smaller than its length. So some paths may

remain faster than the critical path.

The longest delay is usually the critical path delay, but it can be set by the

user, so the delay of the entire cell can be set to a desired value by the

power optimizer.

AS. Command Summary

The commands to the Andy program are listed below, each with a terse

summary. Values in brackets are default values, where applicable.

get <file> get e sticks file
put [cellname] [flename] put the sticks cell into the file (no file=terdnd)
dump [cellname] [filename] dump the cell into the file (no file=terrninal)
dumpgates [cellname] [filename] dump the gates of the cell into the file

list or cells
clear
push <cellname>
POP
who [cellname]

user <1> <r> <t>
virt <I> <r> <t>
interface [cellname]
plot [cellname]
fit [cellname]
plotgates [cellname]
dev or device <devname>

names
m
top-
botqtr

type the cells defined here
clear the list of cells
go down the cell def hierarchy
go up the cell def hierarchy
[set then] print the name of the current cell

set the user plotting area
set the virtual (device) plotting area [ALL]
plot the cell bounding box and connectors
plot the cell
set the user coordinates, then plot the cell
set user coords then plot gate connections
set the plotting device to one of
c k l e s gipj hp 7220 tek tty or vt52 [VT52]
toggle name plotting flag [OFF]
toggle the half-page HP plotting flag [ON]
set HP plotter to plot on top half of 8.5~11 page
set HP plotter to plot on bottom half of 8.5~11 page

midqtr
gatecircle [circlesize]

set HP plotter to plot on middle section of 8.5~11 page
set the size of the circles for gate plots [1000]

load cname> <type> <number> set a load on a connector (units are trans. loads)
type <connname> <type> set connector type for conn in this cell
con <name> <type> top> <number> make a constraint of TYPE (i.e. con boo X>2)

NOTE - capacitance consts are #min trans loads
rem <name> <type> <op> remove a constraint of TYPE (i.e. rem foo X>)
set [cehame] set parameters of components graphically.

You point at the component with the mouse of tablet or whatever.
You have the following sub-commands

name a m > set the component name
width (real> set the width of a transistor
length <real> set the length of a transistor
con <type> cop> <other> make a constraint
type <typ> set the type of a connector
cap <real> set the capacitance of a connector
help or ? get a terse command summary
refresh redraw the cell on the screen
quit r e t m to ANDY rnain command mode
P (proceed) point at next component

dotwigs
doclocks
scale [sf]
c d o a d pd]
status

delay [cellname]
power [cellname]
fm [cellname]

d e n o d e s [cellname]
justnodes [ceUname]
Wega tes [cellnarne]

clearstretch [cellname]
setstretch [cellnarne] [real]
stretch [cellname] [real]
pack [cellname]
opt [cehame] [real]

debug
trace
*ace
space
dieonenor

toggle twig capacitance flag [ON
toggle clodking flag [OFF]
set or examine the scale dom factor [4]
set the min, load on a connector [I]
print state of status vars

print max delay across cell
print power consumption of cell (units of w/l)
prict u.nsctJeO delagvow5r product for f i i ~ r e d mesit

find nodes in cell
h d nodes in cell but don't merge them
find gates in cell

clear desired delays in all gates for full pack
set desired delays in ell gates for stretching
mtstretch(real); pack;
pack cell for speed (clearstretch; pack;)
clearstretch; pack; setstretch(real); pack;

pack x-dimension using REST
pack pdimension using REST

enter the SIMULA debugger
toggle trace flag [OFF]
toggle verbose trace flag [OFF]
toggle FREEPAGES flag [OFF]
toggle flag to enter debugger on design error [OFF]

start with input from AMIY.INI
type this message

suit
invade

end it all
enter "space invaders" mode

kg. References

[Chawla 19751 B.R. Chawla, H.K. Gummel and P. Kozak, "MOTIS - An MOS

Timing Simulator", IEEE ?kamactions o n Circuits a n d Systems, December,

1975.

[Kahle 19811 C. Kahle and R. Mosteller, "NMOS Sticks Standard Components",

Computer Science Department Display File #4300. California Institute of

Technology.

[Mead 19801 C. Mead and L. Conway, I n t roduc t ion t o ZLSd Systems, Addison-

Wesley, Reading, Massachusetts, 1980.

[Trimberger 198Oal S. Trimberger, "The Proposed Sticks Standard",

Computer Science Department Technicai Report #388G, California Institute sf

Technology.

APPENDIX B

Sicks Standard Proposal

This is version 2.0 of the Sticks Standard. This version includes clarifications

to the original proposal and additions to make the Standard more useful in

chip composition. This version of the Sticks Standard provides a more

strictly defhed syntax for parameter specification which allows new

parameters to be easily added. In places where the syntax does not allow for

parameter specificatio~, an optional extension field has been added. These

features allow new information to be more easily incorporated into Sticks

Standard files. This version of the Sticks Standard also includes an array

construct for simple rectangular arrays.

R i a document consists af three parts: the specification of the Sticks

Standard, an example of the Standard in use, and a description of the

technology-dependent parts for an nMOS process.

B. 1. The Sticks Standard Overview

The Sticks Standard has a descriptive rather than a procedural semantics.

That is, it describes an image rather than the means for creating the image.

The Standard is intended to be a means for data interchange, not a database.

Many suggestions for extensions and changes can be traced to a

conceptualization of the use of the Sticks Standard as a database.

A description in the Sticks Standard carries with it a set of coordinates for

all interesting locations in the Sticks data. The locations are useful for

plotting, and may be used by Sticks processing programs as an initial

placement for compaction In addition to the physical locations, the cell

definition may contain a list of constraints on the final positions of the points

in the design. The physical locations should be considered to be suggestive,

whereas the constraints are imperative.

The definition of the syntax and semantics of the technology-dependent parts

of the design are separate from this deAnition of the "pure" Sticks Standard,

but the Sticks Standard cannot be used for a given electronics technology

until those technology-dependent parts are defined. A t the end of this

riocument are the tech-nology-dependent parts %or an nM0S technology.

This description of the Sticks Standard is separated into two parts: syntax

and semantics.

The syntax description consists of a formal Backus-Naur Form (BNF)

description of the syntax and a discussion of some interesting features of

that syntax.

Wirth's standard notation is used [Wirth 19771: production rules use equals to

relate identifiers to expressions, vertical bar for choice and double quotes

around terminal characters. Curly brackets indicate zero or more

repetitions, square brackets indicate optional features and parentheses are

used for grouping.

The formal syntax description is divided into two parts: one for token

scanning, one for parsing. The BNF for token scanning is ambiguous when the

scanner encounters a string of characters. Accordmg to the BNF, a space

may appear as zero repetitions between characters in a name or number.

This ambiguity is resolved in the obvious manner: in every case, the largest

legal string is chosen as the next token.

BNF For Token Scanning

file
token
keyword

quotedStrjng
staing
name
number
letter
namechar
digit
space
-Char
commentText
comntclrk;

= space [token space j
=name j number j keyword 1 specialchar I quotedstring
= ''CELL" I "MACRO" I "CONNECTORS' I "COMPONENTS' I "mW I
"CONSTRAINTS" I "TOP" 1 "LEFT' I "BOTTOM" / "RIGHT" I "ARRAY'
= v1r 1 ,,)#I 1 .,;*, 1 r,,,, 1 ,,;,, 1 ,,[" 1 ,,I*# 1
#I<** 1 ##>St 1 #I=#l 1 .f-.V 1 .1+11 1 ,, ,, ,#

= string Idrjngj - #t *I *# - (any character except quote! " '' "
= letter [namechar]
= ['L"] digit {digit1
= 1 1 y 1 **@I I I .,Zl I *I ,I ..* a 1 "b" / ... I"z"
= letter I digit 1 "2'
= I lor t I *If#, 1 8 2 0) 1 .IQl, 0 . .

= IsepCharj I space "[" commentText "I" space
= any character except namechar, specialchar
= [commentChar] (commentText "[" commentText "I" commentText
= m y ckectez- except "I" m "]"

BNF For Pa~s4ng

File
CellDef
CellHeader
MacroHeader

HeaderEkt
CellBody
ConnectorSpec

ConstraintSpec
ComponentType
CompDecl
ParamText
ParamTok

h a y s p e c
conns
orientation
TPrigEntxy
~ R b i t i v e
ArrapIndicator
ConseSaint Stmt

?Trim
xhim
ComtrPrimitive
Order@
Displacement
ConstbExt
ColorName
CoqName
MgName
CellType
ConnName
Technology Name
PositiveNumber
point

= [TechnologyName] [celldef]
= CellHeader IcellDef] CellBody "END" (MacroHeader "END"
= "CELL" name number number point point HeaderEkt ConnectorSpec
= "MACRO" name number number point point
CellType quotedstring HeaderEkt ConnectorSpec
= [any token except "CONNECTORS"]
= ComponentSpec %Spec ConstraintSpec
= "CONNECTORS [ParamText ":"
CormName point lConnName point) ";" f
= "COMPONENTS [ComponentType ParamText ":"
CompDecl ICompDecl] ";"I
= "TWIGS" lColorName PatamText ":" [twigname] "="
Twigprimitive TwigEntrp [TwigEntry] ";"I
= "CONSTRAINTS" [ConstraintStmt ";"I
= name I POINT
= CompName [Arrayspec] [orientation] point
= [name ParamTokj
= name I number I quotedstring I
"(" [name I number I guotedString j "1"
= "ARRAY" nx8 y dx dy 'X' corms 'Y" conns
= I cormname connname]
= ("N" I "M") number number
= TwqRimitive I ["(" TwigEntry ")"I
= CompName p." ConnName] [Arrayindicatorll point I ConnName - #I O - . number "."number
= 'Y" YPrim OrderOp YRim [Order@ YPrimj I
'X' XPrim BderOp XRim IBderOp XPrim] I ConstrExt
= (ConstrE?rimitive I "BOTTOM" I "TOP") [Displacement]
= (ConstbPrimitive I "L8FT" I "RIGHT') [Displacement]
= CompName [.ConnName] I ConnName I Number
= l * < E l 1 *I>#* 1 It-## -
= ('I-" I "+") PositiveNumber
= any token except "END" [any character except ";" j
= name
= name
= name
= name
= name
= name
= digit {digit j
= number number

The file contains a list of cell definitions. Each cell demtion begins with

either "CELL" or "MACRO" and ends with "END". A "CELL" description is divided

into four sections: Header, Component Defbition, Twig Definition, and

Constraints. Each section starts with a keyword. Cell definitions may be

nested within other cell definitions. A "MACRO" description has only the

header section.

All numbers are integers, and are considered to be in units of hundredths of

a micron. The header of the cell has a scale factor to be applied to the

numbers in the cell. Comments can be included anywhere a space can be

put and can be removed in the lexical scan.

Whenever two consecutive quotes are encountered in a quoted string, they

are to be interpreted as single quote within the string.

B.3. Semantics

The Sticks file consists of components, interconnect, and constraints on the

physical layout. Each file can be prefixed with an optional technology type,

for example nMOS or CMOS. The technology type can be useful to select a set

of technology-dependeat oames for componeE.,ts and layers. kt example for

nM0S is given at the end of this document. The header gives the cell name,

scale, abutment box, and connectors. The component definition indicates

the type of each kind of component. The twig definition section describes

the twigs, their connections, and their paths. The constraints section

specifies restrictions on the physical layout.

The points given with the components and twigs, and in constraint

displacements give a sample physical arrangement of the components and

twigs. These physical locations and distances may be considered mere

suggestions by a Sticks processing program.

B.3.1. Cell Definitions

Cell definitions can define either a Cell or a Macro. A Cell has its complete

definition included in the Sticks Standard flle, while Macro cells are those

that are defined elsewhere. Macros may include cells from a library of hand-

drawn circuitry, PLAs, ROMs or other cells produced from specialized

generators. The precise description of these cells is not included in the

Sticks Standard flle, but is contained in the external file whose name is listed

in the Macro definition. The Macro definition specifies the interface to those

cells in a uniform manner. No nested cell definitions, components, twigs, or

constraints sections are allowed in Macros.

The Header

A Cell header consists of the cell name, s c a h g factor, abutment box,

optional header extensions, and connectors. A Macro header consists of the

m e , s c a h g factor, abutment box, Macro type, external file name, optional

header extensions, and connectors.

The scaling factor consists of two numbers: A and B. A specifies the value of

lambda in hundredths of a micron and B specifies the value of lambda in

Stick file units. For example, A=250, B=4 specifies that lambda=2.5 microns

and that one Stick file unit is one-quarter lambda. If units of hundredths of a

micron are desired, then all numbers in the cell are scaled by A*number/B..

The scaling is not applied to instances of other cells declared in the

component Ust or to cells whose definitions are nested within the current

cell.

The abutment box is specified by two points that define a box. The first point

is the lower left corner of the box and the second point is the upper right

corner. In the composition of cells this box is treated as the cell outline,

with the connectors as fingers on or inside of the box. It should be noted

that the abutment box can be different from the minimum bounding box of

the cell.

The optional header extension field is useful for adding new or non-standard

features to the cell header. The only restriction on this field is that it may

not contain the token "CONNECTORS".

The connectors are named locations to which connections to instances of the

cell are made. Connectors may be parametrized. For example, the layer of

the connector, the side of the cell from which the connector should be

attached from outside the cell, or the connector type all could be useful

parameters. Examples of connector 'parameters are again in the nMOS

technology definition later.

The Macro type is the general class to which a Macro cell belongs, such as a

cell defined as geometry. The external file name specifies as much

information as is needed for a Sticks reader to locate a Macro cell for those

applications where a Sticks reader must examine the external file on which

the complete definition of a Macro exists. As with other quoted strings in the

Standard, two consecutive quotes inside the fill name is interpreted as a

single quote in the string.

B.3.2. Component Defhition

A component may be a Point, a technology-dependent name, or a reference

to a cell defined in the current context. The predefined component Point is

simply an interestmg location in the design. Twigs may be routed through

Points to provide the initial topology of the design. The component Point

may be used in several twigs to ensure that all twigs pass through the same

physical location.

Technology-dependent names denote transistors, resistors, contacts, and

similar features in that technology. The reader should refer to the

specification of the technology that he is using for technology-dependent

component definitions.

A cell reference, denotes an instantiation of the cell, the placement of the

cell's contents a t the position and in the orientation specified by the

transformation on the component.

Each component definition includes a position and an optional orientation,

which includes mirroring and rotation information. This orientation, like the

physical locations on components, is mere suggestion, and may be altered by

a Sticks processir%g pr0gra.m. The orientation consists of a one-letter

indication of the mirroring of the coordinate system. A "Wormal coordinate

system has the +y axis countercllockwise from the +x axis. A "MWirrored

coordinate system has the component mirrored about the (1,l) vector (i.e.

the x and y values are swapped). The two numbers following the mirroring

key is the rotation key. These two numbers give the x-y coordinate of the

clh-ection to which to rotate the +x axis. When transforming a component,

mirroring is done &st, followed by rotation then translation.

Array Specification

The array specification requires the replication count in x and y (nx and ny),

which must at least 1. Also, the spacing of the array must be given in the

same units as other measurements in the cell. As with other positions and

sizes, the array spacing may be modified by processing programs. The user

must also specify the interior connections in the array. All interior

connections must be the same. These connections imply twigs between the

connectors on cells. Connections are made either horizontally ("X") or

vertically ('Y"). The first connector name in the interior connection

specification refers to the i" element of the array, the second connector

names refers to the i+lst element.

Positioning and orientation of an array are relative to the origin on the (1,l)

element of the array. Specific connectors on array elements can be

referenced in twigs by referring to the array index.

B.3.3. Twig Definition

A Sticks twig is a connected path with a given iayer and set of parameters

(for example, line width). he twig may or may not be a true electrical node,

as it may run into a contact component that may make contact to the same

layer or other layers. It may intersect other twigs. The electrical

interaction at the crossing of twigs is not specified, and the Sticks Standard

does not restrict the crossing in any way. Such a construct might violate

design rules in a particular technology, and could be checked. Twig

attributes cannot be changed as they are specified only once for the twig.

A twig optionally has data followiw the layer name to allow specification of

technology-de pendent information. The legal layer names and the

parameters for a twig must be dafbed as part of the technology-dependent

parts of Sticks for a particular technology.

The twig definition describes the path taken by the twig, A path consists of

two or more points and can have branches. Mere connection can be easily

represented for those applications where paths are unnecessary or

redundant. A branch in a twig is represented by a parenthesized point list.

The TwigEntry in parentheses branches off the point given immediately

before the parentheses. Therefore no twig may start with a branch point.

A specific connector on a component is referenced by the component name

followed by a dot and the connector name. If a twig is routed to a component

that is referenced by its component name only, then the connection point is

assumed to be the origin of that component. Unnamed points may be

specified directly in the twig definition using a coordinate pair. Two

unnarned points at the same coordinate are assumed to be separate points

and their identical positions mere co-incidence.

A connection to an array element is specified by following the connector

name with a dot then the x-index, another dot and the y-index. Omitting the

array element number causes a bus connection to be made to all array

elements. If the twig connects two differently-sized arrays, array element 1

connects to 1, 2 to 2 and so forth until one array has no more elements to be

connected. Bus twigs should be used with caution, since all elements in the

bus must be arrays.

The twig may be named if desired. The name is not used in the Sticks

Standard, but may be useful later in viewing the Sticks or assembling the

Sticks data into a form useful for simulation. There is no guarantee by the

Sticks Standard that twigs with the same name all belong to the same

electrical node.

B.3.4. Constraints

A constraint is a restriction on the physical location of a component or a

connector. Constraints can be considered instructions to a Sticks

processing program to limit the deformation performed by that program.

There are three constraint operators for ordering: 6, >, =. They are the

familiar relational operators and force their ordering.

There are four keywords in the Constraint section: LEFT, RIGHT, TOP, BOTTOM.

They refer to the four edges of the abutment box of the cell. I t is implied

that LEFT 6 everythmg 6 RIGHT and BOTTOM < everything < TOP. A point can be

constrained to be equal to one of the keyword values, in which case it will

always be positioned a t the appropriate edge of the cell. The keywords need

not be used in the description, but their values represent the physical limits

of the cell and as such may be very helpful when setting connections to the

outside world.

A n optional displacement can be added to a constraint. This displacement

sets a limit to deformation offset from a component. In addition, an

orderprimitive may be a number that restricts the legal physical locations of

a component. These numbers are in the same units as the others in the cell,

and like those others are mere suggestion and are expected to be changed

by Sticks processing programs.

Constraints apply in either the horizontal (x position of components) or

vertical (y position of components) direction. They are applied in pairs, so

"a1 < a2 < a3;" is just shorthand for "a1 < a2; a2 < a3;". The constraint

section also has provisions for non-standard constraints to be specified with

the constraint extension that allows extensions to be intermixed with

standard constraints. A constraint extension cannot start with the token

"END" and it is terminated with a ";".

Circular constraints can be built, and the reader of the Sticks Standard file is

advised to beware of them.

B. 3.5. The Definition Hierarchy

Cell definitions may be nested within other cell definitions to arbitrary depth.

Any cell can be used as a component within any other cell subject to the

following constraints that limit the scope of each cell definition: A cell

definition must be complete (to its "END" statement) before it can be used as

a component. There may no self-references or forward-references. All cells

defined within the definition of any cell at any level are considered local to

that cell and may not be used as components by any cell defined outside that

cell. If two cells have the same name and both are accessible by some cell,

the cell most-recently defined shall be used when reference is made to that

name. The following example demonstrates the cell nesting.

Cell definitions as they Cells that can be used
occur in the file. within the given body.

CELL A ...
CELL B ...
[BODY B] none

[BODY A] B
CELL C ...

CEU A ...
CELL D ...
[BODY Dl A r s t A

[BODY A] D, firstA
CELL E ...
[BODY El second A

[BODY C] El second A

[BODY x] = entire definition of cell x except for the Cell Header.
Indentation is used to emphasize the hierarchy.

E1.3.6. Tecbnobgy-Dependent Parts

There are pieces of a Sticks specification that are not predefined by "pure"

Sticks. This allows the framework of the Sticks Standard to be used for more

than one integrated circuit technology. For a given technology, the

component names and twig layers must be named, their parameter syntax

and semantics must be given, and the geometrical representation of the

components and twigs must be specified if geometric manipulation of the

Sticks is to be done. The names may be made deliberately unique within an

integrated circuit technology as well as across technologies to avoid

confusion. Parameters to components may or may not have precise

geometrical or electrical meaning.

Component, twig, and connector parameters are similar in their form. All

ape specified as a series of pairs where the &st token of each pair is a

technology-dependent keyword and the second is the value associated with

the! keyword. A value that consists of more than one token must be

surrounded by parentheses. This allows the equivalent of extensions in the

parameter lists since the procedure for get- to the next parameter is

always known.

Component parameters give transistor dimensions or similar information.

"Mg parameters identify wiring layer widths or current capacity. Connector

parameters give types and layer information. All technology-dependent

specifications should become appendices to this document. The technology-

dependent specification for nMOS is given below.

B.3.7. Parametrization of instances

In most applications, the position of components in an instance must be

different than the positions specified in the definition, The parameter

passing mechanism for components is used to pass a list of the desired

transformation of the components for the individual instance. If more

t , r a n s f ~ r m a t n are given than there are components in the instance, then

the last ones are ignored. If 'fewer coordinate pairs are specified than there

are components in the cell, then the remaining components are placed using

the sample positions in the cell. The form of these parameters is given in the

at the end of this document.

B.4. -0s Sticks Standard Components

This is a summary of the definitions of the nMOS Sticks in [Kahle 19811. These

definitions have been widely used and have been found adequate for a wide

variety of applications. Not all users have implemented al l the parameters,

though

B.4.1. Component Definition

The nMOS components are shown in. figure B. 1. They are summarized below:

NENH and NDEP

NENH is an enhancement mode transistor, NDEP is a depletion mode

transistor. The origin of the transistor is at the center of the gate area. In

both, the gate is horizontal, the drain is at the top, the source is at the

bottom. The connectors on the to transistor are:

G1 the left side gate connector.
62 the right side gate connector.
DRAIN the transistor drain connector.
SOURCE the transistor source connector.

The parameters to the enhancement transistor are given in the table below.

The value in brackets is the default value.

W <num> width of the transistor [2].
L <num> lehgth of the transistor [2].
61 <point> the location of the G1 gate connector [(-2,0)].
62 <point> the location of the G2 gate connector [(2,0)].
DRAIN <point> the location of the drain connector [(0,2)].
SOURCE <point> the location of the source connector [(0,-2)].

A path can be given for either the gate or the drain. The reader is referred

to [Kahle 1981] for details.

NRES and NBRES

These are pullup resistor type depletion mode transistors with their source

shorted to the gate, NRES uses a butting contact to make the connection,

NBIRES uses a buried contact. In both, the origin is the center of the contact.

NENH

ri"1

NRES

NPM

NDEP

NBRES

m
NBUT

NBUR

NCON

Figure B. I. -0s Sticks Ehndard Compsneats.

Their connectors are:

DRAIN the transistor drain connector.
PSOURCE the transistor source connector on poly.
DSOURCE the transistor source connector on diffusion.
MSOURCE the transistor source connector on metal (NRES only).
SOURCE the transistor source connector on unknown layer,

The parameters to the resistors are given in the table below. The value in

brackets is the default value.

W <nun> width of the transistor [2].
L < n u > length of the transistor [6].
DRAIN <point> the location of the drain connector [(Q,9)!,
PSOURCE <point> the location of the poly source connector

[(0,0) for NBRES, (0,2) for NRES].
DSOURCE <point> the location of the diffusion source connector

[(0,0) for NBRES, (0,-2) for MIES].
MSOURCE <point> the location of the metal source connector

6(0,0) NRES only].

This is a butting contact. The polysilicon part is above the diffusion part. Its

connectors are:

P) the poly connection.
D the diffusion connection.
M the metal connection.

The parameters to the butting contact are given in the table below. The

value in brackets is the default value.

W <num> width of the contact area 141.
P <point> the location of the poly connector
D <point> the location of the diffusion
M <point> the location of the metal connector [(0,0)].

NBUR is a buried contact. It is symmetrical, and has two connectors that

default to its origin:

P the poly connection.
D the diffusion connection.

The parameters to the buried contact are given in the table below. The value

in brackets is the default value.

W <num> width of the buried contact area [4].
L <nun> length of the buried contact area [4].
P <point> the location of the poly connector [(0,0)].
D <point> the location of the diffusion connector [(O, O)].

NEW, NBlllI and NCON

Tkese are simple contacts to metal. NPM is a polysilicon to metal contact,

NDM is a ditPusion to metal contact, and NCON is an uncommitted contact.

They ape all symmetrical, and have no connectors, so all connections must

contact the center (0,O).

The parameters to these contacts are given in the table below. The value in

brackets is the default value.

W <nun> width of the contact cut area [2].
L < n w > length of the contact cut area [Z] .

The final component is the connector, which has no geometrical

representation. However, it can have one parameter, a type, indicated by

the key letter T. The legal types are: INPUT, OUTPUT, 10, POWER, GROUND,

CLOCK and BUS.

B.4.2. Twig Definition

The nMOS twig can have the following layers: POLY, DIFFUSION or METAL.

B.4.9 Jnstance Parameters

It is desirable in some design systems to pass a value that is a position to a

component inside an instance in the current ceii. This aiiows the same cell

definition to be used for several positions of the components, several

"compactions". The parameter specification to do this is:

Where <compname> is the name of the component in the cell definition for

the instance, <orientation> is a Sticks orientation specification, and <point>

is the location in the instance's coordinates where the component should be

placed. If the orientation is omitted, the orientation that the component ia

question already has is used.

B. 5. Example of the Sticks Standard in Action

The following is a shift register cell in the Sticks Standard form using nM0S

components.

NMOS
CELL smell 250 4 [lambda = 2.50 microns] -48 -58 48 59

CONNECTORS
T GROUND: gndl-48 -45 gndr 48 -45 ;
TINPUEin-48-29;
T POWER: vddl -48 45 vddr 48 45 ;
T OUTPUE out 48 -29 ;
T CLOCK: clktop 8 59 clkbot 8 -59 ;

COMPONENTS
NENHW 16LB:pd-20-29;
NENHWBL8: psNO-18-7;
NRESW8L92;pu-201;
NBUT: but N-1 028-15;
NDM: Nl -20 -45 ;
NDM: NS-2045;

TWIGS
POLE= cakbot 8,-43 s.G1 ⊤
ma= ggdl N1 gn&;
DIFFUSION:= N1 pd.SOURCE;
POLE= in pd.Gl;
DIFFUSION:= p d . D W paDSOURCE ps.SOURCE;
POLE= 28,-29 (out) but.P;
DIFFUSION:= puDRAIN NF$
DZFFUSION:= p s . D W but.D;
METAc..= vddl N3 vddr;

CONSTRAINTS
X clkbot - cIktop;
Y gndl = gndq
Y in = out;
Y vddl = vddr;
in.Y=out.X

END

CELL sr 250 4 -50 -59 350 59
CONNECTORS

T POWER: -50,45 PPPROUT 350,45;
T GROUND: GNBM -50,-45 GNDOUT 350,-45;
T INPUT: INPUT -50,-18;
T OUTPUT OUTPUT 950,-18;
T CLOCK: CLKTOP ARRAY 4,l 100 0 638;
T CLOCK: CLKBOTTOM ARRAY 4,1 100 0 6,-fjO;

COMPOI'IENTS
SRCELL: sreg ARRAY 4,l 100,0

X vddr vddl gndr gndl out in
Y

TWIG-'
WL,Y:BCLOCI(S = CLKBOTTOM sreg.clkbot;
WLYTCLOCKS = CLKTOP sreg.clktop;
&ETL:= P m sreg.vddl.1.1;
W A L L = PWROUT sreg.vddr.4.1;
MET&= GNDIN sreg.gndl.l.1;
lEX'AL:= GNDOUT sreg.pdr.4.1;

POL%= INPUT sreg.in.l.1;
POLE= OUTPUT sreg.out.4.1;
CONSTFWNTS
END

B.6. References

[Kahle 19811 C. Kahle and R. Mosteller, "NMOS Sticks Standard Components",

Computer Science Department Display File #4300. California Institute of

Technology.

[Wirth 19771 N. Wirth, "What Can We Do About the Unnecessary Diversity of

Notations for Syntactic Definitions?", Communications of the ACM, 11 /77

FQue B.2. 'Fhe W t Register Example

