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To my wife, Hut
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The empty space or free volume described

by the poet Lucretius who lived in the first century:

“Therefore there is intangible space, voids, emptiness.
But if there were none, things could not

in any way move; for that which is the province

of body, to prevent and to obstruct, would at all
times be present to all things; therefore nothing
would be able to move forward, since nothing could

begin to give place.”
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Abstract

In order to better understand phenomena related to “yield-like” behavior of polymers,
the nonlinear thermo-mechanical behavior of Polymethyl Methacrylate (PMMA) un-
der combined axial (tension, compression) and shear stress states (torsion) is investi-
gated on thin walled cylindrical specimens at temperatures between 22° and 110°C".
A non-contact measurement technique based on digital image correlation method is
developed to determine the surface deformations on curved cylindrical specimens at
various temperatures, including temperatures close to the glass transition when the
specimens become soft. The study indicates that in contrast to the mutual indepen-
dence of shear and dilatational response under conditions appropriate for linearized
viscoelasticity, one observes an increasingly strong coupling between all deformation
or stress invariants as assessed in creep experiments for strains in excess of 0.4%.
While shear stresses alone elicit nonlinear response in creep (rates) as “intrinsically”
nonlinear shear response, the superposition of small positive dilatation accelerates
shear deformations while negative dilatation retards it in quantitative agreement
with free volume arguments. Passing below the glass transition still produces greater
creep acceleration from positive dilatation than from a decrease in specific volume,
but the dominance of the intrinsic shear nonlinearity vis-a-vis the dilatational influ-
ence increases below T, as the temperature drops. A constitutive model based on
free volume consideration is modified from the models proposed by Losi and Knauss
(1992). Comparison of experimental results with model prediction indicates a good

qualitative agreement and reasonably good quantitative agreement.
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Introductory Remark

In spite of the tremendous increase in polymer applications to various sectors of in-
dustry such as automotive, civil, aerospace and electronics, there exists a surprising
lack of knowledge regarding polymer nonlinear behavior at elevated load or deforma-
tion levels. To date, uniaxial stress or simple shear fields serve almost exclusively
to characterize the mechanical properties of these materials. As structural polymers
are usually used under multiaxial stress states, the understanding of the multiaxial
behavior is essential in the critical application of polymers. As a consequence, the
response of polymers under multi-axial loading conditions at different temperatures
is investigated in this study.

There are different ways to generate bi-axial stress state. To separate the ef-
fects of the infinitesimal volumetric deformation and shear deformation a thin walled
cylindrical specimen is used in the experimental investigation because a relatively
uniform axial and torsional stress field can be generated under simultaneous axial
and torsional loadings.

The difficulties in characterizing the nonlinear behavior of polymers arise from
the facts that the polymers become soft around their glass transition temperatures,
which makes most standard measurement techniques inappropriate in determining
the local surface deformation. Thus a non-contact measurement technique, based on
digital image correlation method is developed to determine the local deformation of
a cylindrical specimens at various temperatures, including temperatures close to the
glass transition when the specimens become very soft.

The nonlinear thermo-mechanical behavior of Polymethyl Methacrylate (PMMA)

under combined axial (tension, compression) and shear stress (torsion) states is in-



vestigated between 22°C and 110°C". The interaction between volumetric and shear
deformation is investigated so that the effects of volumetric and shear deformations
in controlling the general viscoelastic response rate is determined. A constitutive
model that includes the contribution to instantaneous local free volume due to shear

is proposed to explain the results observed in the experiment.



Chapter 1 Surface Deformation Measurements of a

Cylindrical Specimen by Digital Image Correlation

1.1 Abstract

Planar digital image correlation has been extended to measure surface deformations
of cylindrical specimens without physical contact for high temperature situations. A
single CCD camera acquires the surface image patterns of a section of a specimen
in the undeformed and deformed states to determine two dimensional displacements
on a projection plane. Axial, circumferential and shear deformations are determined
through curvature transformation on the two dimensional projection displacement
field. The resolution of this technique was determined for a cylinder of 22.23 mm
diameter and was found to be 3.5 um for the axial displacement, 0.05% for the axial

and shear strains and 0.08% for the circumferential strain.

1.2 Introduction

EY

Solid or thin-walled cylindrical specimens subjected to combined axial and torsional
loading are often employed to determine multiaxial mechanical behavior. Strain
gauges are typically used for measuring surface deformation (axial, circumferential
and shear strains) when the stiffness of the test material is comparable to or greater
than that of strain gauges and the gauge temperature is not exceeded. However, if the
test material is soft, as is the case with polymers near their glass transition tempera-
ture, strain gauges are inappropriate since their relatively high stiffness prevyents the
deformation of the gauge with the specimen material. In this case a non-contact mea-

surement technique must be used. Although the application considered here bears
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polymers in mind this method should be equally useful in studying time dependent
deformations in metals and ceramics exposed to much higher temperatures.

Some of the currently popular non-contact measurement techniques are successful
for measurements of planar deformation, but are not applicable without modification
to curved surfaces. For geometric moire and moire interferometry the limitation
comes from both the complication of manufacturing gratings on curved surfaces and
from the fact that the interference fringes depend on both the surface deformation
of the specimen as well as the distance between the flat reference grating and the
curved specimen grating. The interferometric strain/displacement gauge (Sharpe,
1982) requires the incident laser beam to be normal to the local surface with sets of
indentations and that the interference fringe shift be measured at a fiducial point.
These conditions cannot be maintained for a cylindrical specimen undergoing rotation.
Since speckle interferometry records two exposures of the surface laser speckle pattern
on a holographic plate before and after deformation to deduce the planar deformation,
it is difficult to modify this method to measure time dependent, three dimensional
deformations.

Because of inherent difficulties in measuring local strain fields on curved surfaces
of soft materials, the assumption is often made that the deformation is uniform along
the axis of a cylindrical specimen and therefore the local deformation is computed
from the relative end rotations and axial displacement. This approach eliminates the
possibility to observe potential deformation inhomogeneities which may be prevalent
when yield-like behavior is being examined: then a surface deformation computed
from the end displacements may not represent the actual local deformation. To track
the uniformity of the deformation field on a soft cylindrical specimen with good
accuracy requires a new non-contact measurement technique.

Sutton et al. (Sutton, et al., 1983; Rason, et al., 1985; Sutton, et al., 1986; Sutton,

et al., 1988; Bruck, et al., 1989 and Luo, et al., 1993) proposed a technique to measure
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deformations via comparison of digital video images of black- or laser- speckled sur-
faces in the undeformed and deformed states. A typical resolution of 0.05% of strain
could be achieved. Recently this method has been extended to measure sub-micron
deformations of in-plane (James, et al., 1990) as well as out-of-plane (Vendroux and
Knauss, 1994a and 1994b) displacement field through a digital scanning tunneling
microscope and the three-dimensional displacement field through stereo-imaging of a
pair of CCD cameras (Luo, et al., 1993).

The technique of measuring the surface deformation of a cylindrical specimen
through a single CCD camera imaging is presented here. Digital images of a section
of the cylinder specimen in the undeformed and deformed states are acquired and
the projection of the displacement field on an observed plane is obtained by using
the correlation algorithm proposed by Vendroux and Knauss (1994b). A zero or-
der approximation gray level distribution function is introduced for correlating an
experimental image in order to establish the global positioning of the cylinder and
account is taken of the curvature to determine the axial, circumferential and shear

deformations.

1.3 Experimental

P

Specimen Preparation: A cylindrical specimen is shown with reference coordinates
in figure (1.1). To employ the digital image correlation method a speckle pattern
has to be imposed on the specimen surface. This is accomplished by first uniformly
spraying (Krylon) flat white spray paint on the specimen surface to generate a white
background. After this thin layer of white paint has dried, the black (flat Krylon)
paint is sprayed to a Colgate toothbrush and splattered onto the specimen surface
to produce black speckles. A high density random black speckle pattern is formed
on the specimen with a layer thickness of less than 0.01 mm so that the added load

carrying ability of the paint may be neglected in subsequent considerations.



Figure 1.1: Thin walled cylindrical specimen

Recording Equipment: The image acquisition system consisting of a Nikon 200 mm
f/2 lens with 50 mm exit pupil, a Sanyo CCD camera possessing a spatial resolution of
640 x 480 pizels and an 8—bit gray scale, a Data Translation D'T-2855 monochrome
frame grabber and a 486—66 M Hz personal computer is used to acquire images
automatically during experiment at predetermined times. The CCD camera with the
Nikon lens are mounted on a tri-pod and oriented at 90° with respect to the cylinder
axis. A black background is placed 30 c¢m behind the specimen to generate a clear
contrast with the specimen diameter. Two Sunnex Halogen illuminators (12V, 20W)
illuminate the specimen. By properly adjusting the positions and angles of the two

light sources, a relatively uniform light intensities can be generated on the specimen.

1.4 Computation of the Surface Deformation Information

from the Acquired Digital Images

Figure 1.2 shows a sample (projection) image of a cylindrical specimen (D = 22.23 mam)
against the dark observation background. We define in figure 1.3 a fixed frame
I' = {o,z,y} and a moving frame F’ = {o',z',y'}, the @’ coordinate being coin-

cident with the axis of the specimen, along with the diameter D, orientation angle £



Figure 1.2: A section of a cylindrical specimen

and the position yo of the specimen with respect to the image center.

We emphasize that the “local” deformation field anywhere in the image field can
be derived from a collection of grid points in a rectangular array (A; A2 A3 A4 in figure
1.3) that encompasses m grid points in the x direction and n in the y direction.

The two dimensional (projected) displacement field of the surface deformation
on an observation plane can then be obtained by the digital image correlation tech-
nique (Sutton, et al., 1983; Vendroux and Knauss, 1994b). The comparison of images
before and after deformation is accomplished by way of the least square coefficient
(Vendroux and Knauss, 1994b) instead of the least cross coeflicient (Sutton, et al.,
1983). The convergence of the algorithm code is robust. Usually a guess in displace-
ment components which are as far as 7 pixels away from the actual solution in either
the x or the y direction still leads to a convergent solution.

The computation field is a grid of m points in the @ direction and n points in the y
direction. In the examples illustrated in the subsequent sections a grid of 11 x11 points

with an interval of 10 pixels between neighboring points in either @ or y direction is
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Figure 1.3: Definition of parameters D, ¢ and yo, + represents the point (z., y.)
which is the center of the image
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used. The interpolation subset over the non-grid points are 41 x 41 pizels. This
area of investigation may be chosen from anywhere within the viewing field of the
CCD camera. The intervals between two neighboring points in either the z or the y
direction may be varied. An example of a projection or planar relative displacement
field, having its average displacement vector subtracted, is shown in figure 1.4. It
represents the displacement field over an area that is 5.52 x 5.52 mm for a combined
tension and torsion resulting in an axial strain of 0.25%, a circumferential strain
of —0.2% and a shear strain of 0.19%. The maximum relative displacements are

0.31 pizels in the horizontal direction and 0.63 pizels in the vertical direction.

1.4.1 The Two-Dimensional Projection Displacement Field of the Surface

Deformation and Global Positioning of a Cylindrical Specimen

The results of the planar image correlation are the displacements [u(z,y) and v(z, y)]
and the Lagrangian strain components with respect to the (reference) axes of the
data acquisition system. However, the determination of the cylinder deformations
are needed with respect to the coordinates ' and 3’. Since the orientation of the
cylinder with respect to x—y coordinates of the recording system is not necessarily
accurately pre-determined (cf., figure 1.2), the global positioning and dimensions of
the cylinder (diameter for reference purposes) need to be adhressed first. The cylinder
orientation and its diameter can be determined by comparing a recorded image to
a theoretical image which carries the global positioning information. This goal is
achieved with the code for the planar configuration and without reference to the
circular nature of the specimen. The positioning information can then be extracted
by using the Newton-Raphson method to solve a problem of minimizing a least square
coefficient.

It is seen in figure 1.2 that the gray levels on the background are (generally) lower

(darker) than the gray levels on the specimen. Along the lateral generators or “edges”
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of the specimen there exist two abrupt changes in gray levels. Therefore the deter-
mination of the radial boundaries of the specimen is equivalent to the determination
of the locations of gray level steps in the image reference frame.

In computing the global specimen position, the variation of gray levels on the
background and on the specimen is not important for purposes of determining the
cylinder orientation. As a consequence a “zero order” gray level distribution func-
tion 1s used assuming that the (average) gray levels on the specimen and on the
background are represented by two different constants. The transition of gray level
from the background to the specimen is then a step function, which is a function
with a discontinuous derivative at the boundary of the specimen. However, use of
the Newton-Raphson method to determine the global positioning parameters requires
the nonlinear function to be differentiable. We, therefore, use a hyperbolic tangent
function as a good approximation of a step function and emply the following repre-

sentation for the average gray level field

(@9, D,6,90) = 90— L ranhii(x - D) —vannix + 2, (1)

where g, is the average gray level on the background, ¢, is the average gray level on the
specimen. “[” is an adjustable parameter that determines the slope of the transition
zone between the background and the specimen. As [ increases the transition of the

gray level from the background to the foreground becomes steeper. X is defined as
X = —(z —ae)sin€ + (y — g — yo) cos €, (1.2)

with (2., y.) being the center of an image and D, €, yo are defined in figure 1.3.
The parameters D, ¢ and yo are determined through the process of correlating

this (approximate) gray level distribution function with an experimental image.
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Define the least square correlation coefficient C'

1
v= exp\ L, - z,Yy, L, &, Yo 27 )
ST o Dl ) = bl D6 o) (1.3)

r oy

where he.,(x,y) is the gray level of an experimental image. The minimization of C'
yields the diameter D, orientation ¢ and position yo of a specimen in an image. The
Newton-Raphson method with the use of the approximate Hessian matrix (Vendroux
and Knauss, 1994b) is used to solve this minimization problem.

Let D, yo,&o define a three dimensional vector space &

8 ={9 e R*|9(D,y0,€)} (1.4)
Q is an unknown vector in C, €' = C(Q) Let QJO be the vector solution of the
minimization problem. Expanding C (Q) as a truncated Taylor series around QJO gives

C(Q) = C(Q) + V(@) (Q ~ Qo) +5(Q~ QVIC(QQ - Q) (15)

~ ~

Since Q\P corresponds to a minimum C, VC(Q,O) = 0. Consequently, taking the

gradient of the above equation yields
VVC(QVO)(Q — Q\,O) = —VC(QO) (1.6)

Solving Qvo iteratively from the above equation will converge to the vector solu-
tion Qvo of the minimization problem. This algorithm, called the Newton-Raphson
optimization method (Bruck et al., 1989, Vendroux and Knauss, 1994b) requires the

representation of VVC (Q), the components of which are defined as

V9O = (o5 ) - (17)
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However, it may not be necessary to compute the second derivatives of C' with

respect to g, le.,

] oC
vel=(5e) (18)

To show this, we first write down the components of V("

¢ —2 Oh(z,y, D, o, |
8 2ZZ[hmp(JI,y)—h(:v,y,D,yo,f)] (‘r’y7 Y §)> (19)

0Q: ZZhew(m,y) Falia 0Q);
r oy
taking another derivative gives the components of Hessian matrix

820 -2 82}&(337?»1)»9075)
= hexp Ty 1 —h T, ,D, 0,
9000, S b5 9] };Z;[ (z,y) = h(z,y, D, 10,€)] 90.00,

r oy

2 dh Ok
Zzhexp(x,y)zg‘zy:é'@@ (1.10)

If Q is close to the QJ)? the experimental gray level h.,,(z,y) will approach the
ideal gray level h(z,y, D,yo,€), and the first term in equation (1.10) will be small
compared to the second term. Neglecting the first term, the Hessian matrix can be

approximated as )
9°C 2 Oh Oh
8Qian Z Z hemp(ma y)2 aQi aQ7 ‘
oy

(1.11)

3%-1; are given by
- D | b
% = Egj_zl_gb).l{SGChQ[l(X — 5)] -+ SechZ[l(X + .5)]}’

oh (95— %) 200x — PV _ sech? D
e _[—l—g——l{cosﬂsech X 5 )] RA[LH(X + 5 B2



Figure 1.5: An ideal image used to determine the global positioning parameters

O = ) am)cos e (y-yomyn) s ) sech (X~ )] -seck X+
From this algorithm, the global positioning information can be obtained for the
reference image and\ deformed image.
As an example, the global positioning parameters for ;he image shown in figure
1.2 were determined in this way to be: D = 331.0 £ 0.05 pizels, £ = 5.5 £ 0.05°
and yo = —12.2 £ 0.05 pizels. The ideal gray level distribution function with these

parameters is plotted in figure 1.5.

1.4.2 Accommodation for Curvature and the Determination of the Axial,

Circumferential and Shear Strains

The two dimensional displacement components on the projection plane as well as the

global positioning parameters are used to deduce the axial, circumferential and shear
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deformations of the specimen. Assume that the surface deformation field is locally
uniform in the computation field on the surface of the cylinder. The displacement
components u(z,y) and v(z,y) obtained in section 1.4.1 are along the z and y di-
rections of a planar (projection) image, not necessarily along the z’ and y’ directions
attached to the cylindrical specimen (cf., figure 1.3). Using the global positioning
parameters D, £ and yo, the displacement components u'(z,y) and v'(z,y) along the
¢’ and y’ directions on the projection plane are obtained with the help of the “mov-
ing frame” EI € {d,2',y'}. In frame El, the coordinates of a point (x,y) in the

undeformed state in the fixed image frame F' € {o,z,y} are

Ly = (:‘C - xC) COs éu - (y = Ye — yOu) sin é-u, (112)

v = (z—z¢)sinéu+ (¥ = Yo — You) o &y, (1.13)

where D, €, and yg are the positioning parameters for the undeformed image. In the
deformed state, the point (z,y) moves to (z+u(z,y),y+v(z,y)), and the coordinates

of this point in the frame I’ are

), = (z+u—a.)cosé&y— (y+v—y.— yoa)sin &y, (1.14)

yé = (x+u—-mc)sin§d+(y+?)“yc“j0d)0035d7 (115)

where Dy, & and yoq are the positioning parameters in a deformed image. The

(projected) displacements of the point (z,y) are then

ul(xvy) = x;(xay)_x;(xvy)a (1~16)

V(zyy) = yaley) — vl y), (1.17)

where v'(z,y), v'(z,y) are displacement components along the z’ and y’ directions

respectively. The rigid body translation in either the 2’ or y' direction and the rigid



Iigure 1.6: Definition of ¢ and &

body rotation around the 2’ axis have been accounted for in ' and v'.
Let 0 be the circumferential angle of point (2!, ;) in the undeformed state as

defined in figure 1.6.
2y,
D,

] (1.18)

[ |
0, =sin”" |

Similarly, the circumferential angle of (27, y}) in the deformed state is

%/ ‘
P uyd.
0y = sin™! [=4. 1.19
The relation between angles 8! and 8 is
= O )+ O ) + e, — ), (1.20)

where (2,9, is a reference point in the computation field; it can be any grid point at
which the displacements are computed. The (circumferential) rotation angle of this

point during deformation is 8. « is the rotation angle per unit length of the cylinder.
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The two dimensional projections of the displacement field onto the image plane

are then

ui(z,y) = @' (2"y) = (2, 9,) ~ eww (), — 7)), (1.21)
N YN 1 . / 1 . 7 .
vi(x,y) =0'(2))y) = ;)—Dd sin§, — 31)“' sind,,, (1.22)

where «/(z',y") is the axial displacement of point (2,7), and ¢, is the local axial
strain. ¢y and o need to be determined.

Define the least square correlation coefhicient

ZZ[u’(m,y) —uy(z,y))°
> Dby

¢ = (1.23)

By definition, u/(z,y) = ¥/ (&}, ;) —u' (2!, ¥.), if this relation is used in equation

(1.21) and then e, is computed by minimizing C”, there will be an accumulated
error in ¢y due to the error in axial displacement from a single point (z,y). To
reduce this possibly accumulated error in €,.,1, we seek here a v/(&,y) that can allow
the experimental displacements u; (equation 1.21) to best fit v’ (equation 1.16) in
the whole computation field so as to find the best fit for v/(&,y) and ¢,
Minimizing C' yields v/(Z,y) and €,y
Do WD, = ) = Do D v (e = @)D (2, — 7))
— < i paly

e , (1.24)

w(z,g) = (m x n)[z Z(.’E:‘, - &) - [Z Z(f"; — )]

(m x )Y (e, - )] — [ ] 30 Sl — o)
x y x Y T Y . ( 1 .

Cprp! = {(m x ?7)[2 Z(I; - jiz)g} - [Z Z(w; - ';-L;i“)](z

Do
[

Following the same procedure as in the computation of ¢,r,s, we have



2222812 (= )] = [ DB, — )1 (= &)

0([) — T Y - ":f 5 ; — 3 (1.26)
(mxn)[Y_ Y (2, =) = [0 (e, — &,)]
(m > [0 A, — 2] — (X 8 3 Sl — #4)]
o = kS ‘ ¥ { r oy oy : .’ (1.97
xS S — 7] — [ S — 7T 2
¢y E
where
v+ 1D, sind

3 =sin™! L L0 1.28
! SI1 %I)d w ( )

For “infinitesimal deformation”, the shear strain is

1 ,

Cptgr — Z[)lta. (129)

As long as the specimen is and remains perfectly circular and the deformation
is uniform in the imaged section of the specimen, the circumferential strain can be
computed {rom the circumference of the specimen as

Dy — D,

Corgr = T (.1.30)

If the deformations are inhomogeneous, the circumferential strain needs to be
computed {from the local deformation by image correlation. In the present study
involving mostly twist and axial extension it turned out, however, that this local

deformation always gave less accurate values than equation (1.30).



- 18 -
1.5 Validation of the Algorithm

Experiments were designed to check the validity of using the approximate gray level
distribution function as defined in equation (1.1) to determine the global positioning
information and, second, the validity of using the curvature correction algorithm for

determining the local cylindrical deformations.

1.5.1 Global Positioning of Ideal Images

For this examination two ideal example images were constructed. The first ideal
image exhibits a gray level of 0 on the background and of 255 on the specimen. The
diameter of the specimen D is set to 200 pizels, the position yo is 0 pixel and the
orientation angle is 0°. Using this gray level distribution computations lead to the
following global, code determined, positioning parameters: D = 200.0001 pizels,
yo = 2.278 x 1075 pizels and € = 2.212 x 107'?°. The computations thus indicate
excellent agreement between the prescribed parameters and the computation results
for the ideal image. In this example, the adjustable parameter [ in equation (1.1) is
set to unity. It is found that the computational speed for [ =1 is 4 times faster than
for [ = 1000 for the same accuracy, i.e., a steeper transition in gray level from the
background to the specimen results in a slower convergence. In all the subsequent
examples, [ = 1 was used.

For the second image D = 98.2878 pizels, yo = 0.5 pirels and £ = 45° were
chosen. To construct this ideal image with a specimen oriented at 45° of angle ¢,
“stairs” of gray level distributions on the two sides of the specimen were used. The
diameter of this ideal image is the distance between the two lines passing through
the centers of the “stairs”. The computations yielded D = 98.2885 pizels, yo =
0.4996 pizels and & = 44.9993°. The algorithm can thus recover the parameters

with very high accuracy. This demonstrates that the proposed gray level distribution
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function defined in equation (1.1) can be used to determine the global positioning

parameters for ideal images.

1.5.2 In-Plane Rotation

Next the validity of this algorithm for the determination of the global positioning
parameter, £, is examined. When a specimen undergoes rigid rotations around the
z" axis (figure 1.1), the rotation angles should be recoverable. A cylinder of diameter
22.23 mm coated with a random speckle pattern was mounted on a Melles Griot
manual rotation stage (Model 470-B) with a resolution capability of 0.084° with the
cylinder axis perpendicular to the rotation axis of the stage. Table 1.1 shows the
prescribed and commutated rotation angles. The maximum error is 3.51%, indicating
that the proposed function in equation (1.1) of a zero order gray level distribution
provides a good approximation in the determination of the orientation angle of a

cylinder relative to an image reference frame.

Table 1.1: In plane rotation angles

Prescribed Computed Error Percent

Rotation (°) || Rotation (°) °) Error (%)

1.00 0.9688 0.0312 3.12
2.00 1.9299 0.0701 3.51
3.00 2.9308 0.0692 2.31
4.00 3.8900 0.1100 2.75
5.00 4.8899 0.1101 2.21

6.00 5.8373 0.1627 2.71
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Figure 1.7: Translation in the axial direction of the cylinder

1.5.3 Specimen Translation in the Axial Direction

A cylindrical specimen coated with a random black speckle pattern is mounted on
a translation stage driven by a NRC translation actuator (model 360-30) with a
resolution of 0.1um. The axis of the cylinder is parallel to the translation direction
of the translation stage. The magnification of this optical-setup was determined by
a translation of 6.529 mm and by computing the displacement in pizels through
digital image correlation. The displacement in pizels is Vu? + v? with v and v being
the displacement components in the = and y directions (measured along the image
coordinates z,y). The magnification for this optical setup is 0.053 mm /pizel. Figure
1.7 indicates that the axial displacement can be recovered with very high accuracy.
The standard deviation in displacement is 0.0065 pizel, which interprets into an

accuracy of 3.5um in axial translation.
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Figure 1.8: Rotation around the axis of the cylinder

1.5.4 Rigid Body Rotation of a Specimen Around its Axis

To explore this mode of motion a cylinder was mounted to the piston of a servo-
hydraulic MTS machine possessing a resolution of 0.001 degree in rotation angle. The
comparison of the prescribed rotation angles and the results from the computation is
shown in figure 1.8. The maximum deviation is 1.3%, indicating that the computed

rotation angles match the prescribed angles very well.

1.5.5 Comparison of Strain Gauge Measurements and Image Correlation

To compare the ability of the image correlation method on a cylindrical specimen with
standard strain gauge measurements a rosette is attached to an aluminum 2024, thin
walled cylindrical specimen of 22.23 mm diameter and 1.59 mm wall thickness with
gauges oriented in the 45°, 90° and 135° directions with respect to the circumferential

direction. The random paint speckle pattern is deposited right over the rosette to
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Figure 1.9: Axial strain

assure that the deformation measurements via the strain gauge rosette and digital
image correlation are made at the same location. The strain gauge rosette has an
area of 5 mm x 5 mm and the computation field for the digital image correlation is
carried out over the same area. The specimen is subjected to simultaneous tension and
torsion. The loading is applied through a proportional ramp in the axial displacement
and the rotation angle. The results from both methods are'shown in figures 1.9, 1.10
and 1.11. The maximum deviation between the measurements of the strain gauge
and the digital image correlation is |Aegr,r| = 0.05%, |Acp| = 0.05%. The percent
error for the axial strain is high for strain values below 0.5% but improves for larger
strains, but at 1.5% of axial strain the percent deviation is still 3.4%. The maximum
deviation between the measurements of strain gauge rosette and this technique was
used as the accuracy of this measurement method.

In figure 1.11 the circumferential strains are computed from the diameters of the

specimen in the undeformed and deformed states as formulated in equation (1.30).
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Figure 1.11: Circumferential strain
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The circumferential strain computed by digital image correlation fits the prescribed
circumferential strains only reasonably well. The maximum deviation is |Aey | =
0.08%, which is not much higher than for the axial strain case. However since the
circumferential strain is usually less than half of the axial strain, in experiments
involving €., strains of only 1% to 2%, this magnitude of error may be too large to

allow the satisfactory determination of Poisson’s ratio.

1.6 Conclusions

A non-contact technique has been developed to measure surface deformations of cylin-
drical specimens by digital image correlation technique, which employs an image ac-
quisition system with a single CCD camera system to obtain the digital image of the
projection of a specimen coated with a random black speckle pattern. A zero-order
gray level distribution function consisting of hyperbolic tangent functions is employed
to represent the gray level distribution of an experimental image in order to deter-
mine the global positioning information (diameter, orientation and position). The
displacement components computed from the two dimensional digital image correla-
tion scheme resolved along the reference axes of an image (camera position dependent)
are decomposed into directions along the axial and transverse directions of the cylin-
drical specimen. The cylinder curvature is accounted for in deriving these decomposed
displacement components and the axial, circumferential and shear and strains can be
determined. This technique has accuracies of 3.5um for axial displacements, 0.05%
in axial and shear strains and 0.08% in circumferential strain for a cylinder with a
diameter of 22.23 mm. The method should thus be useful for determining strains on

the order of a few tenths of a percent or larger.



Chapter 2 Uniaxial, Shear and Poisson Relaxation and

their Conversion to Bulk Relaxation

2.1 Abstract

Multiple viscoelastic properties are determined for PMMA in the context of examin-
ing experimental limitations on deriving other properties from these measurements,
specifically time dependent bulk modulus behavior. By means of master curves for
uniaxial extension on plate and cylinder specimens, as well as shear (torsion) and Pois-
son behavior' from measurements in the temperature range from —40°C’ to 125°C', it
is established that exorbitant precision is needed for reliable interconversion of some
properties to others. While normal inverse relations (modulus-compliance) are readily
obtained from one set of measurements, bulk (relaxation or creep) properties cannot

be derived reliably from other functions and must be determined directly.

2.2 Introduction

Within the context of linearly viscoelastic material behavior it is sufficient for any
analysis effort to define any two of the four material functions (in relaxation or creep)
describing uniaxial, shear, bulk or Poisson response. In the relaxation mode these
properties are identified as the uniaxial modulus £(¢), the shear modulus u(t), the
bulk modulus A'(¢) and Poisson’s ratio v(t), with appropriate functions defined for the
creep complement. By implication any two can then be computed from the others.
In current engineering practice it is common to deal with either the uniaxial or

shear relaxation modulus, assuming that the other function is described sufliciently

I"The Poisson behavior is determined by Zhang and Knauss (1991).



~ 96 —

well in terms of a constant Poisson’s ratio or a constant bulk modulus. With the
advent of more refined and powerful methods of computation the need arises to know
the material behavior with an increasing degree of sophistication. As a consequence
it becomes important to be able to determine the material properties with more pre-
cision for a full characterization of (even) linearly viscoelastic materials than current
engineering practices allow. For example, few reliable records of two of the four
time-dependent material functions for the same materials exist. Similarly, there is an
unbelievable dearth of information on the time dependent bulk response of linearly
viscoelastic materials (in the transition range). These difficulties in understanding
viscoelastic materials more fully derive from the often poorly appreciated time de-
pendent characteristics of these materials, their temperature sensitivities, and the fact
that both large and small deformations may be involved and need to be addressed
separately.

While some experimentally oriented investigators have realized serious limitations
in being able to determine any of the material functions from the others (Heydemann,
1959), this recognition is anything but general, and it appears appropriate to demon-
strate the experimental limitation underlying this conversion failure. Moreover, even
though a purely analytical demonstration using typical, though fictitious properties
might suffice, it appears more convincing to many to de;l with measured material
properties.

We report two groups of material functions for PMMA materials. For the first
group of tests, strip specimens are used to measure the uniaxial modulus and Poisson’s
ratio in relaxation with an image moire method on a Rohm & Haas material. In
the second group, tubular specimens are used to measure the uniaxial and the shear
relaxation moduli of an ACE material as monitored with the digital image correlation
method (Lu, Vendroux and Knauss, 1996). Moreover, preliminary uniaxial tension

and Poisson’s ratio measurements conducted dynamically at 5 M Hz frequencies,
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and uniaxial tension experiments at a strain rate of 0.1%/min at a temperature of
22°C; 1.e., 83°C below the glass transition, suggested that the uniaxial modulus still
decreases rather significantly under both conditions, so that relaxation behavior at
lower than room temperature conditions was indicated. Accordingly temperatures as
low as —40°C" are included in our study.

The earliest comprehensive temperature-dependent data for E(¢) on PMMA were
reported by McLoughlin and Tobolsky (1952) but similar shear relaxation data does
not appear to have been collected over as wide a range of temperatures. Several
investigators have contributed to the measurement of E(t) for PMMA, among them,
Rusch (1968) provided relaxation data between —20° and 106°C". The temperature
and time dependent Poisson’s ratio, v/(¢), has not been measured directly in the transi-
tion range, though Poisson’s ratio in the “glassy” state has been measured repeatedly
as a (limited) function of time: Gilmour, et al. (1974) summarized results on £ and
v for polystyrene; Wilson, et al. (1976a, 1976b) measured v(¢) on polyethylene sheets
using both an optical technique and Michelson interferometry; McCammond, et al.
(1973) determined v(t) from the deflection of a freely-supported circular plate under
uniformly distributed pressure for PMMA and PVC materials at room temperature.
However, the experimental methods employed in these studies, except possibly the
optical ones (Wilson, ef al. 1976, 1988) lead to serious diﬂiculties when applied over

a wide range of temperatures.

2.3 Analytical Prerequisites

The analytical relations connecting the various material functions of linear viscoelas-
ticity are readily derived and need not be recounted here. We document here only the
formulae for the numerical computations that are based on the Hopkins and Hamming
algorithm (1957) The range of material response is divided into “n” (non-constant)

time intervals ¢, so that the relaxation bulk modulus can be computed as a function
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of time from the uniaxial modulus E(¢) and the Poisson function v(t) via

n-—1

Bl) K (1 1)y = vltn — tae1)] + SOUK (timt) + K ()] [0(tn — £5) = vt — tict)]

’a tn — 1=1
K(ta) 1 =3v, + vty —te1)
(2.1)
with
K(ty) = E(t1)/3 + Kylvy — v(th))
1 —3v, +v(ty)
and K, = ———-E—g———, E, = E(0), v, = v(0); on the other hand, given E(t) and the
3(1 — 2vy)

shear modulus u(t) this quantity is computed from

K(ty) = g B % Koyl =1 = St~ i)
- iu(ti_%)[g(tn —t;) —g(tn — ti-1)l}, (2.2)

with

t =

f(1) = [ Bu() - BN, gt = [ B(e)de,

and

u(t)g(t)

K(t 30

) =

[

2.4 Experimental Work

As mentioned before, material functions for PMMA were determined for two variants:

the first set led to uniaxial relaxation modulus and Poisson’s ratio using a flat speci-
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men for a Rohm & Haas material. The second set of measurements vielded uniaxial
and shear relaxation functions as determined through tension and torsion of a hollow

cylinder specimen made of an ACEE PMMA.

2.4.1 Measurements of the Uniaxial Modulus and Poisson’s Ratio

Image moire was used to monitor the specimen deformation with time under strain,
and force recording was accomplished on an MTS servo hydraulic testing system via
a Masscomp data acquisition system; the moire fringe data was acquired photograph-

ically.

Material and Specimen Preparation

The material for this portion of study (commercial PMMA, Rohm & Haas. nomi-
nally 4.8 mm thick and possessing a T, of 105°C") was annealed?® for two Hours in
air at 120°C and cooled down (slowly) at 5°C'/hr to room temperature. The speci-
men is shown in figure 2.1, with moire grid locations and orientations indicated. Its
ends were reinforced with aluminum tabs to reduce grip creep in that portion of the
specimen. As a result, very stable ¢,, strains were obtained as determined by con-
tinuous monitoring. For each test at the various temperatures new specimens were
used to eliminate uncertainties arising from previous strain ;ll'ld thermal histories. All
specimens were cut from a single large sheet of PMMA without special orientation
preference.

The photoresist method was used to provide moire gratings for monitoring the
axial and transverse strains. A master grating with 40 lines per millimeter was found
optimal, since a finer grating developed resolution problems due to multiple reflections

of the light beam as it passed through the window of the environmental chamber.

>This annealing process was necessary because the as-received material contained residual strains.
While there exists a mild anisotropy in the material, that material feature disappears within exper-
imental error after annealing.
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Figure 2.1: Specimen cut from Rohm & Haas plate

Specimen  Test grating Reference grating
!

Leas

N | 4
b -/\_____—__\

A
Window  Scrcen Camera

Light source

Temperature cabinet

Figure 2.2: Test and recording arrangement

Physical Test Arrangement

A schematic of the test set-up is given in figure 2.2. The lens system is adjusted to
provide an initial, small mismatch between the grating on the specimen and its screen
image to enhance the sensitivity of the measurements. This lens system is used to
measure the ratio of the transverse strain and axial strain via the moire method.

An MTS servo hydraulic system was used to load the specimen to a constant
strain and the corresponding axial load was recorded by the Masscomp data acquisi-
tion system. In addition to the moire monitoring the strain was tracked by an MTS

extensometer with a gage length of 25.4 mm. A Russell’s environmental unit pro-



- 31 -

vided temperature control between —40°C" and 125°C. Liquid Nitrogen was used to
produce temperatures below 0°C'. The temperature was continuously monitored by a
thermocouple close to the specimen which was always within +£0.2°C" of the set tem-
perature. Optically flat window glass in the environmental control housing reduced
measurement errors due to light aberrations. Straining by ramp deformation entailed
a typical rise time of 1 second. The constant strain was 0.2% at all temperatures
except 0.5% at —40°C. These small strains were necessary to avoid nonlinear effects.
Using rigid wedge grips, the small strain could always be maintained with an accuracy
of 1% for the constant strain, ¢,o. The room humidity remained at about 50% for
these tests. The load cell has a full capacity of 15N as calibrated to a precision of
+0.5MN.

Photographs taken of the fringes indicative of the strain in the axial and transverse
directions were photographed periodically, and enlarged photographs were passed
through a digitizer to obtain an average scan of the gray level distribution. After
calibrating this data reduction method with an interferometrically generated fringe
pattern of known frequency, the strains were determined (shown in section 2.4.1) to
render Poisson behavior with an accuracy of +10%. Dimension and load levels were

such as to allow the relaxation modulus to be determined with an accuracy of +4%.

Image Processing and Date Analysis

Fringe images taken at various times (motor driven Nikon [* camera with Nikon
85 mm f 45 lens) were scanned with a digitizing scanner possessing a resolution of 118
pixels per ¢cm (The moire pattern covered an area of 4.3 x 10 em on the photograph).
At least 500 line passes were taken across the fringes and the gray scale distribution
was averaged to obtain the mean fringe spacing f(f). Accuracy calibration of this
method was accomplished with the help of an interferometrically constructed fringe

yattern of 3.96 mm. Processing of this image produced a fringe spacing of 3.98 mm.
| g



- 32 -
This 0.02 mm difference corresponds to a 0.5% error relative to the known spacing.
We accept this error bound for all fringe evaluations.

To evaluate the correspondence for the accuracy in measuring Poisson’s ratio
one needs to evaluate the error incurred in the moire fringe evaluation. To achieve
improved sensitivity of the moire process one employs an initial mismatch between
image and reference grating such that an initial fringe density fo results. If p is the

pitch of the master (observation) grating and F' is the image magnification then

l I .p .
ATy 29
with Poisson’s ratio given by
ezt
o(t) = — =) (2.4)
(',2/0
for
1 1.p
Cpo = |— — —|— 2.5
S A Y (25)
so that with f.o = fyo = fo and a constant f,
1/ f.(8) —1

}/fy - l/f(,
One derives from this a relative error due to the errors in f,(¢) and f, (fo remains

constant for all measurements) as

A _ /L)
v 1 — f:(t)/ fo

which interprets into a £10% error bound if the denominators are averaged over the

dfy/ Iy
I - fy/fo

J+1 } (

o
~1
S

range of the experimental data.
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2.4.2 Measurements of the Uniaxial and Shear Response on Tubular

Specimens
Material and Specimen Preparation

The material for this portion of study was commercially cast PMMA stock of 38 mm
diameter (ACE, now a part of Ono, T, = 105°C’). Cast instead of extruded rods were
chosen so as to avoid possible anisotropy due to molecular alignment incurred during
processing. Each rod, delivered in 152 em lengths was cut into blanks roughly one em
longer than the finished specimen length and the short rods were annealed in a Texaco
[SO 46 hydraulic oil bath (boiling point=355°C") at 115°C" for four hours and then
cooled down to room temperature slowly by cutting the power to the temperature
chamber; the cooling rate was about 5°C'/hr. This annealing process was necessary to
remove the memory of thermal and loading history stored in the material during the
casting process®. Tubular specimens with an outer diameter of 25.15 mm and an inner
diameter of 19.05 mm were machined from these rods. During the machining process,
coolant was constantly circulated in order to avoid damage due to overheating. The
finished specimens were annealed again in the hydraulic oil bath at 115°C for 4 hours
to remove the residual stress built in on the surface during the machining process.
As demonstrated by Knauss and Kenner (1980) the moisture content in amor-
phous polymers can have a significant effect on the viscoelastic behavior. The volu-
metric dilatation due to moisture content has the same effect on the creep behavior
as temperature if the induced volumetric deformations are the same. To avoid this,
the specimens were stored and used at the same relative humidity at all times. Aun
environment of 6% of relative humidity at room temperature was produced via a
saturated sodium hydroxide solution within an enclosed belljar (Lide, 1995). The

annealed PMMA specimens were stored for two weeks prior to use. The weight of

31t was found that if the rod was not annealed before machining, the finished specimen would
deform after annealing subsequent to the machining.
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each specimen was measured every few days and found to decrease initially but to
remain constant after three days (Mettler electronic balance, model HL. 32 with an
accuracy of 0.001g). During the measurements the relative humidity was maintained
at 6%. Excepting the time when the specimen was taken out from the belljar and
placed into the environment chamber the specimen was always in an environment of
6% of relative humidity.

Digital image correlation (Lu, Vendroux and Knauss. 1996) was used to monitor
the surface deformation of the specimen. This method requires a uniformly random
speckle pattern on the specimen surface which is attained by first uniformly spraying
(Krylon) flat white spray paint on the specimen surface to generate a white back-

ground and by subsequently splattering on black paint with the help of a toothbrush.

Physical Test Arrangement

The same MTS test system and Russell’s environmental chamber were used in the
measurements of the uniaxial and the shear relaxation moduli. An image acquisition
system consisting of a Nikon 200 mm f/2 with a 52 mm objective, a Sanyo CCD
camera with 640 x 480 pizels spatial resolution and 8 bits of gray scale, a Data
Translation monochrome frame grabber (model DT2855) and a personal computer
(486, 66 M Hz) was used to automatically acquire digital hnages at pre-determined
times during the experiment. The acquired images were processed later using the
digital image correlation method (Lu, Vendroux and Knauss, 1996). An air hole
drilled in the lower grip allowed the air inside the hollow cylinder to circulate and

equilibrate with the surrounding temperature®.

1We mention peripherally that the application of a fixed end rotation of the cylinder produced
a steady shear strain in the specimen. This was established with digital image correlation, which
yielded very constant strain values with time and in agreement with the value derived from the end
rotation.
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Figure 2.3: Uniaxial relaxation modulus for the Rohm & Haas Material
(Aging time = 10800 s)

2.5 Results and Discussions

2.5.1 Uniaxial Relaxation Modulus and Poisson’s Ratio Measured of the

Rohm & Haas Material (Plate Specimens)

The relaxation data for this material are shown in figure 2.3 for different temperatures,
and the corresponding Poisson data in figure 2.4. I’()llovvirlg McLoughlin/Tobolsky
(1952) and Williams/Landel/Ferry (1955) the relaxation data is shifted along the
log-time axis to obtain the best-fit master curve in figure 2.5 and the Poisson data
shifted by identical amounts in figure 2.6 with the shift factor recorded in figure 2.7.
Although there is no common understanding or agreement that such shifting in the
glassy region is valid, it has been observed to hold for several materials (e.g., see for
PVAc, Emri and Knauss 1981 and an epoxy, Matsukawa, et al. (1992) ), though the
existence of a pronounced f—transition might be cause for concern.

The master relaxation curve is fairly smooth in terms of experimental error, how-
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Figure 2.5: Master uniaxial relaxation modulus referred to 110°C" (Rohm & Haas

material)
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Iigure 2.8: Best fit Poisson master curve

ever, the master curve for the Poisson data is not. This is due to the error incurred
in measuring the extremely small transverse strains (between 0.06% and 0.1%) for a
Poisson’s ratio between 0.3% and 0.5% for most polymers when only 0.2% of axial
strain is applied. It seems also reasonable to log-shift the Poisson data at different
temperatures so as to produce a “best fit master curve” independent of the modulus
data, as shown in figure 2.8 with the shift factors shown in figure 2.7. The Poisson
master curve produced in this way is more narrowly bounded.

The question arises whether the shift factor for the uniaxial modulus and Poisson’s
ratio data are intrinsically different. Since the error bound for Poisson’s ratio is +=10%.
and a smooth master curve can be generated within the error band, the evidence is
not sufficient to determine at this time whether the shift factors for uniaxial relaxation
and Poisson data are the same or not.

Using this data (figure 2.8) one obtains the bulk modulus via equation (2.1) as

recorded in figure 2.9. The error band is small at short times but increases over
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Figure 2.9: Bulk modulus computed from £(t) and v(¢). The three curves correspond
to the average, upper and lower bounds in figure 2.8

time. At ¢ = 10%, the bulk modulus in the upper bound is 3.67 times of that in
the lower bound. The actual bulk modulus might be between the upper and lower
bounds. However, these bounds are too large to be able to provide useful bulk data for
practical use. Since the actual variation of bulk modulus over a wide range of time (or
frequency) has been determined to be small® (1989) , the results computed from £(t)
and v(t) would not be more accurate than a fictitiously constant bulk modulus. This
observation casts serious doubt on the validity of computing the bulk modulus from
the uniaxial relaxation modulus and Poisson’s ratio. A simple quasi-clastic estimate
renders from

E
g

R —
31— 2v)’

51t has been determined by McKinney and Belcher (1963) that for PVAc, the dynamic storage
compliance decreases by less than 50% over 12 decades of frequency. Recent measurements by Deng
and Knauss (1996) render a ratio of 2.8. While Lin and Nolle (1989) determined the ratio as 2.7
(0°C <temperature< 550°C).
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that the relative error in K is, in terms of relative errors in [ and v

dk dFE 2v dv
D e R L 58
| k =l I ]+l—21/ | v | (2.8)

For a reasonably good measurement one may expect a 5% of error in £ and 10%
of error in v. For theses error bounds in F and v, the relative error in A" is plotted
in figure 2.10 as a function of v for 0.3 < v < 0.49 whiL:h covers most polymers.
This error is much higher than the errors in £ and v and increases rapidly as v
approaches 0.5; at v = 0.49 it reaches 500%! This large error makes it unrealistic to
expect a reasonable determination of K from measurements of I and v, especially
at temperatures near the glass transition when Poisson’s ratio approaches 0.5. In
fact, one computes from equation (2.8) readily that for a relative error in the uniaxial
modulus and an expected error of 5% for the bulk modulus that Poisson’s ratio
must be determined with a precision on the order of 107" as the rubbery plateau is

approached (v — 0.499), experimentally a more than daunting task.
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2.5.2 The “Short-Time (Glassy) Limit” of the Relaxation Modulus

The uniaxial modulus was also determined through ultrasonic measurement at room
temperature by determining the wave speeds of a longitudinal and a shear pulse at a
frequency of 5M Hz; the uniaxial modulus and the Poisson’s ratio were found to be
6.1(/Pa and 0.33. By way of comparison, the uniaxial modulus obtained in tension at
a strain rate of 0.1%/min was 3.1G'Pa. This large difference in the moduli measured
at different strain rates suggests that the moduli of PMMA at room temperature
(22°C') are still rate dependent, rather than reaching a glassy plateau, an observation
indicative of the well-established extended F—transition in PMMA. One may expect
thus that the relaxation process will proceed even at temperatures very much below
the glass transition. Consequently, the uniaxial relaxation modulus was measured at
suitably low temperatures, and the data from —40°C" to 0°C' are included in figure
2.11. More data may be found in Lu and Knauss (1997). 1t is clear that the relaxation
process is still significant at a temperature that is 145°C’ below the glass transition,
contrary to the widely accepted concept that the relaxation is negligible at such low

temperatures. See also experiments by Rush (1968)

2.5.3 Uniaxial and Shear Relaxation Data for ACE Material; (Tubular

Specimens)

Figures 2.11 and 2.12 show the uniaxial and shear relaxation moduli at different
temperatures for the ACE material. The shift factor in figure 2.13 transforms this
data into the master curves (figures 2.14 and 2.15) which are rather smooth in terms
of experimental error.

To illustrate the uncertainties in determining the bulk modulus from such mea-
surements it suffices to show this computation for the room temperature data over
three decades of time, as shown in figure 2.16. These computations are based on

numerically evaluating convolution integrals and illustrate the sensitivity of the bulk
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behavior to errors in the shear modulus in two ways: Assuming the uniaxial modu-
lus [(t) to be error-free, the measured shear modulus in that figure, u(), yields a
strongly increasing bulk characteristic. Alternately, assuming a (very) small “correc-
tion” to the shear modulus in the form of u.(t), as shown in that figure, brings the
relaxation behavior of the bulk function “in line”.

As a second way of illustrating the sensitivity of the conversion computation one
may use again quasi-elastic analysis to estimate the required accuracy on the shear
modulus function in order to achieve a bulk modulus function within a prescribed

range of precision. Using the elastic relation

ks .
k= —————mr, 2.9
33u — F) (2.9)
one finds (for dIf = 0) that the relative error in the shear modulus is given by
dp 1 dk 1
— =(z—V)/— as v— =
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Figure 2.16: Sensitivity of bulk modulus to £(t) and u(t)

Thus when approaching the rubbery domain (v — %) the shear modulus would
have to be determined with about thousand fold precision relative to the desired bulk

=

modulus precision. This requirement is impossible to meet experimentally.

2.5.4 Additional Comparison of Measured and Converted Functions

Let us conclude this presentation with two (limited) comparisons, one for the two
uniaxial relaxation measurements, and one which inverts this relaxation modulus to
the creep compliance for comparison with experimental creep data. The relaxation
data compiled from the two materials (Rohm & Haas and ACL) are juxtaposed in
figure 2.17. The agreement is not “perfect” because one deals here with two different
sources of material without detailed molecular identification. More importantly, one
should bear in mind that these results derive from measurements at different relative
humidities. While no detailed study of the quantitative effect of humidity on the

rheological behavior was intended here, one notes that the differences are certainly
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consistent with the different environments.

In figure 2.18 the shear creep compliance as measured at 22°C for the ACE ma-
terial is compared with the creep compliance for the same material, but as computed
from the shear relaxation modulus for the same solid. Within experimental error,
the agreement appears acceptable. One only notes that there appears to persist a
systematically larger slope for the measured creep behavi;or which occurred at an
increasing strain larger than that used to determine the relaxation behavior. This
(slight) difference is believed to be a vestige of nonlinear behavior, inasmuch as similar
comparisons at higher temperatures incur larger creep strains than those are typically
used in relaxation measurements, and the creep measurements deviate consistently
from those computed from the relaxation data by increasingly exhibiting both larger
slopes as well as larger values. Discussion of this type of comparison exceeds the
purpose of this presentation and the reader is referred to a more detailed discussion

on this topic in Lu and Knauss (1997).
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2.6 Conclusion

Normally accessible viscoelastic material functions have been measured by means
of relatively straightforward experimental methods and it has been illustrated that
standard measurement accuracy is totally inadequate to allow conversion of these
properties to bulk-related time dependent behavior. Computations indicate and ex-
perimental data support the idea that the relative error irl bulk data is extremely
sensitive to errors in other material functions (£(¢), p(t) and v(¢)). Direct measure-
ments over a wide range of temperatures and times (or frequencies) are thus necessary

to determine the bulk behavior.



Chapter 3 Nonlinearly Viscoelastic Behavior of PMMA

under Multiaxial Stress States

Abstract

The nonlinear thermo-mechanical behavior of Polymethyl Methacrylate (PMMA) un-
der combined axial (tension, compression) and shear stress states (torsion) is investi-
gated on thin-walled cylindrical specimens at temperatures between 22° and 110°C".
In contrast to the mutual independence of shear and dilatational response under con-
ditions appropriate for linearized viscoelasticity, one observes an increasingly strong
coupling between all deformation or stress invariants as assessed in creep experiments
for strains in excess of 0.5%. While shear stresses alone elicit “intrinsically” nonlinear
response in creep (rates), the addition of positive dilatation accelerates shear defor-
mations while negative dilatation retards them in quantitative agreement with free
volume arguments above and in a range about Tg. Passing below the glass transition
still produces significantly greater creep acceleration from positive dilatation than
from a decrease in specific volume, but the dominance of the intrinsic shear nonlin-
earity vis-a-vis the dilatational influence increases below 7}, as the temperature drops.
A limited set of pure shear data suggests that the creep strain can be represented
as the sum of a component following linearly viscoelastic behavior and a component
that is (nearly linearly) proportional to a critical stress exceedance (overstress) with

a power law function of time.



3.1 Introduction

In spite of the tremendous increase in polymer applications to engineering problems
there exists a surprising lack of knowledge regarding polymer nonlinear behavior at
clevated load or deformation levels. To date, uniaxial stress or simple shear fields
serve almost exclusively to characterize the mechanical properties of these materials.
Such a simplistic approach to material characterization is clearly inadequate when
large strains and high stresses are involved that can and will lead to structural fail-
ure/fracture. For example, crack propagation is an important aspect of evaluating
the strength and life expectancy of polymeric structures. While linearly viscoelastic
crack propagation models exist (Maller and Knauss, 1971: Knauss, 1974; Schapery,
1975) which correspond roughly to the Griffith model for rate independent, brittle
fracture, their extension to nonlinearly viscoelastic material behavior cannot be in-
vestigated realistically because the nonlinearly viscoelastic description of the material
constitution for arbitrary (uniaxial and multiaxial) loading histories and environmen-
tal (temperature, moisture content, etc.) conditions is not available. It is thus not
possible to expand the investigation of linearly viscoelastic fracture models to non-
linear material behavior, similar to how plasticity considerations have extended the
application of linear fracture mechanics to the engineering metals.

While there exist numerous investigations on the nonlinear time dependent be-
havior in one dimensional stress or strain states (sometimes superposed on pressure),
investigations on the nonlinear viscoelastic behavior under multiaxial stress states
arc sparse. Most are restricted to the formulation of yield or flow rules modeled after
(volume preserving) plasticity (Thorkildsen, 1964; Sternstein, 1969; Carapellucci, and
Yee, 1986) under neglect of time dependence or evolutionary material characteristics.
While this behavior is typically based on equivoluminal deformation behavior, that

characteristic does not apply to polymers.



Polymer nonlinear viscoelastic behavior is also different from the pressure sensitive
plasticity (Sternstein and Ongchin, 1969), where the yield-like! criterion is proposed
as

T — YO = Tt (3.1)

7 and ¢ are equivalent stress and isotropic stress, respectively, 7. is a yield-like
stress. u has been determined to be around 0.15 for certain polymers at temperatures
well below the glass transition. Though the isotropic stress is incorporated into the
yield-like criterion, the flow rule is usually treated as pressure insensitive, because it
is usually considered that p is small so that the contribution from the isotropic stress
may be neglected at low temperatures. However, these conclusions do not agree
with the observations made on multiaxial creep behavior in which the contribution
of volumetric deformation increases over time and temperature.

Very few results are reported on time dependent polymer behavior under multiax-
ial loading. Ewing, et al. (1972, 1973) investigated the creep behavior of polyethylene
and found that under combined tension and torsion the equivalent stress is related
isochronically to the “equivalent strain” by a power law under moderate strains, pro-
vided the material is considered incompressible (Poisson ratio=0.5) which is true at
room temperature only for the amorphous phase. McKenna (1979) investigated the
torsional relaxaion behavior of Poly(methyl) Methacrylate cylinders under constant
length constraints at room temperature, and measured the resulting dilatation and
axial force as a function of time.

In contrast to the pressure insensitivity in metal plasticity, the volumetric defor-
mation in polymers plays an important role in controlling the “yield-like” behavior in
polymers. There is ample evidence that at least around and above the glass transi-

tion volumetric changes affect the material time scale (internal clock) whether these

1t is not appropriate to use “yield” that is used typically for metal materials to describe the
“yield-like” behavior in polymers because the “yield-like” behavior in polymers is the evolutionary
character of the viscoelastic response rather than a physical process.
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changes derive from moisture absorption (Knauss and Kenuer, 1980) or mechanical
pressure (Fillers and Tschoegl, 1977; Moonan and Tschoegl, 1983, "84, ’85). The latter
authors demonstrated experimentally, for example, that above T, the classical time-
temperature shift factor for (linearly) viscoelastic material characterization could be
considered as a function of temperature or pressure induced volumetric deformation.
In this study the nonlinear time dependent shear (creep) behavior and its interac-
tion with dilatationl effects is investigated and the degree to which the latter controls
the nonlinearly viscoelastic response. Of particular interest is the effect of uniaxial
tension or compression superposed on the response to shear loading. These effects are
examined experimentally in biaxial stress states imposed on hollow cylinders. Because
strain gauges cannot be used under high temperature conditions and since computing
deformations from the end displacements and rotation angles may not be accurate
when the possibility of inhomogeneneous deformations exists, a non-contact measure-
ment technique based on digital image correlation (Sutton, 1983; Lu, Vendroux and

Knauss, 1996) is used.

3.2 Experimental Preliminaries

Specimen Preparation: The material is commercially? cast rather than extruded
PMMA stock of 38 mm in diameter to avoid possible anisotropy due to molecular
alignment incurred during manufacturing. Blanks roughly one ¢m longer than the fin-
ished specimen length were annealed® before machining in Texaco ISO 46 hydraulic oil
(boiling point=355°C") at 115°C" for four hours and then cooled to room temperature
al a cooling rate of about 5°C'/hr. During the cylinder machining process, coolant
was circulated over the work piece to control any possible heating. The finished

specimens were annealed again in the hydraulic oil bath at 115°C for 4 hours.

?ACE, now a part of Ono, T, = 105°C
31t was found that if the rod was not annealed, the finished specimen would deform after annealing
subsequent to the machining.
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Specimen Dimensions and Poynting Effect: Two kinds of thin walled specimens”
are used to avoid buckling in different temperature regimes. A thin-walled specimen
(outer diameter R = 22.23 mm, wall thickness A = 1.59 mm, test length= 88.9 mm,
A/ R = 0.14) is used for the lower temperatures to reach shear strains on the order of
5% while the thicker wall (thick-walled specimen: outer diameter £2 = 25.15 mm. wall
thickness [ = 3.18 rnm, test length=76.2 mm, A/ R = 0.29). The specimen geometry

is monitored continuously and all data are acquired without interference of buckling.

Specimen Re-Use and Aging: In order to minimize specimen-to-specimen vari-
ations the same thin walled cylindrical specimen is re-used at each temperature re-
peatedly which was made possible by annealing the specimens after each use. Care
was taken to minimize the effect of physical aging (Struik , 1978; Gates, 1997). Lee
and McKenna (1989) determined that at a certain time the polymer glass may reach
a structural equilibrium state after which physical aging is not significant over several
decades. A test series aimed at avoiding physical aging effects established boundaries
for practically eliminating this phenomenon. Figure 3.2 shows example comparisons
in terms of shear creep behavior at two temperatures; on the basis of such data spec-
imens were aged at the test temperature after annealing typically for three days after

annealing and prior to use.

Moisture Control: To control the influence of moisture variation (Knauss and
Kenner, 1980), the specimens were stored and tested at the same relative humidity.
A 6% relative humidity at room temperature was produced via a saturated sodium
hydroxide solution within an enclosed belljar (Lide, 1995) in which the anncaled

PMMA specimens were stored for at least two weeks prior to use. The weight of each

specimen was measured® at begining a few days and found to decrease initially but

4Axial strain will be generated that is proportional to the square of the shear strain due to
Poynting effect (Poynting, 1912). For moderate shear deformation the Poynting effect is not expected
to significantly affect the multiaxial behavior.

5Mettler electronic balance, model HL 32 with an accuracy of 1 mg.
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to remain constant after three days. During the measurements the relative humidity
was also maintained at 6% so that, excepting the time when the specimens were taken

from the belljar and placed into the environmental chamber, they were always in an

environment of 6% relative humidity.

Loading Arrangement: The experimental setup is shown in figure 3.1. An MTS
809 servo-hydraulic system with the dual capacity of 15 N of axial load and 168 Nm
of torque (calibrated to a precision of £0.5 N of load and 0.08 Nm of torque) was used
to axially deform and twist the specimen, A customer-designed (Russell’s) chamber
provided an environment of constant temperature and relative humidity. The temper-
ature being monitored continuously by a thermocouple close to the specimen assures
a range of £0.2°C of the set temperature. The environmental chamber is activated
at all times to control the temperature and humidity, even when the experiment is
conducted at room temperature. The original standard furnace window glass of the
Russell’s environmental chamber was replaced by a single panel optically flat glass
to reduce errors in the deformation measurements. The specimen, gripped by a well
aligned fixture®(see Appendix), was illuminated by two Halogen lights (Fuji, 12v,
20w) outside of the chamber so that the heat exposure of the specimen was minimal.

Axial load and torque were applied simultaneously to the specimen in ramp fashion
(rise time =1 s) and the corresponding surface image patterns were recorded by
an image acquisition system which used a Sanyo CCD camera possessing a spatial
resolution of 640 x 480 pixels and an 8—bit gray scale. Images were processed by the
digital image correlation method (Sutton, 1983, 1986; Vendroux and Knauss, 1994;
Lu, Vendroux and Knauss, 1996) to extract the surface deformations. For a cylinder
of diameter 22.23 mm this rendered a resolution of 0.05% in axial and shear strains

and 0.08% in circumferential strain (Lu, Vendroux and Knauss, 1996).

SWe are indebted to Dr. T. Nicholas of the Wright Laboratories for providing the basic design.



Figure 3.1: Experimental setup

Stress/Strain Distribution: End effects and nonlinearity in the axial direction of
the specimen are not important here since strains were measured locally. The surface
stresses for a cylindrical specimen with an outer radius R and inner radius r under
an axial force I’ and a torque 1" are given by
F
7'!'(12’21'— 7‘2) (3 ‘))
l [{ L} Py
(R* — )

[MIE

The axial and shear compliances” (D(t) and J(¢)) are defined by

D(t) = C"”(;(i)
0 (3.3)

1
Equations (3.2) are derived from the linear theory of viscoelasticity shich yields
a linear distribution of shear stress over the radial coordinate. This behavior is not

correct when a portion of the material in the specimen enters the nonlinear range.

“The (axial or shear) creep compliance in linearized viscoelasticity (appropriate for infinitesimal
deformation) is a material function. In moderate deformations generating nonlinear material re-
sponse, this “crecp compliance” does not represent the basic material property but the terminology
is still used here for reasons of expediency.
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I'igure 3.2: Shear creep compliance at 35°C' and 90°C

However, for the specimens used, the variation in the shear stress across the wall
thickness is small (£7% — +14.5%) and are, therefore, assumed to have secondary

importance.

3.3 Results

The presentation of results divides naturally into the characterization of pure shear
deformations and their modification by superposed axial stresses. We present first

the results for

Shear (Torsion) only

and examine subsequently modification of that response under superposed tension or
compression. The shear creep compliances for different stress levels at 22°C, 35°C,

80°C' and 100°C' are shown in figures 3.3 through 3.7. 'To compare the creep com-

pliances with the behavior under infinitesimal deformation, we derive the “linear” or
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Figure 3.3: Shear creep compliance at 22°C

“small deformation” compliances from relaxation behavior at strains of 0.25% (Lu

8 identified by solid circles.

and Knauss, 1996) and these are included in the figures
Since these curves are obtained from small deformations, they represent a basic ma-
terial property and are (by assumption) stress and strain independent in the linearly

viscoelastic regime.
Isochronic Stress-Strain relation at 30°C

Because data for the largest number of stress levels have been accumulated for
80°C' we examine first the behavior at that temperature. Iigure 3.8 shows the
isochronic stress-strain response of the data in figure 3.6. The two lines emanat-
ing from the origin represent a (linear) fan encompassing the linearly viscoclastic
behavior for the duration of experiments. The remaining data are also fitted by

straight lines. While a least square fit to each isochronic curve would not necessarily

8The inversion was performed via a code written by . Emri and modified by L.C. Brinson based
on the Hopkins-Hamming algorithm (Hopkins and Hamming, 1957).
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produce a straight line, we find it illustrative and, in view of experimental uncertain-
ties, admissible to represent these portions by straight line fits. It is observed that all
the fitted straight lines intersect at a point or range that lies within the linear fan.
Thus, for values of €9 > 0.4% (7 > 8 M Pa) accelerated creep occurs. This indicates
that below a critical stress or strain value the material behaves essentially in a linear
fashion while exceeding the critical value carries the material into the nonlinear range.

This relationship is reasonably represented by

Ji()T €ro < €g Or T < Tg,
. " : (3.0
rJi(t) + (7 — 70)Jp(t) €z9 > €9 OF T > To,

where 7o is the stress at the apex of the high-stress fan, Ji(¢) is the linear shear creep
compliance and J,(t) is the time (power law) function shown in figure 3.9. It is left to
future, more detailed studies of this phenomenological representation to establish any
possible relation between Ji(t) and J,(t), as well as rules for response under variable
stress histories.

We present also the isochronic stress-strain curves for the other temperatures in
figure 3.10. The curves at 22°C' and 35°C' represent features similar to 80°C. At
100°C' the fitted straight lines do not appear to intersect at the a point, which may
indicate that at a temperature close to the glass transition the volume effect starts
to emerge. The exponents of the J, function are 0.10, 0.11 and 0.34 for 22°C, 35°C
and 100°C respectively.

[t is next of interest to consider briefly the molecular mechanics responsible for
this form of the constitutive shear behavior. It is clear that below a certain strain or
stress value linearly viscoelastic shear behavior prevails. Inasmuch as the stress was
constant for these tests it appears reasonable to think in terms of a critical stress level
below which the molecular mechanicsms associated with small deformations prevail.

Once this threshold has been passed additional molecular deformation mechanisms
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become available that add to the shear deformation. We think here in terms of
molecular arrangements such as illustrated schematically (in two dimensions) in figure
3.11, but in which the chain flexibility is governed primarily by rotational degrees of
freedom about the chain axis rather than by “backbone bending” (See also Argon,
1973). The activation of these mechanisms depends on the stress level, more of them
becoming available to contribute as the global stress increases. In fact, the (nearly)
linear increase in the nonlinear component (second term in equation 3.4) indicates
that at least for the current range of data the number of such mechanicsm is directly
proportional to the stress level, and that they all contribute with about the same

(creep) time dependent response.

3.3.1 Multiaxial Stress States

In this section we present first the shear creep data above and near the glass transition

range and then proceed to creep data well below the glass transition.
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Figure 3.12 and 3.13 show the shear creep compliances under multiaxial loading
at 100°C and 110°C, both above the glass transition temperature (7, = 105°C). It
is apparent that the shear creep rate increases when a tensile stress is superposed on
pure torsion at 100° and 110°C?®. While a superposed compressive stress reduces the
shear creep rate at both 100°C and 110°C'°.

These observations indicate that volume dilatation is a controling factor to the
nonlinear viscoelastic response near the glass transition. While a positive dilatation
increases the nonlinear viscoelastic response rate, a negative dilatation decreases the
nonlinear viscoelastic response rate.

We turn next to the multiaxial creep behavior in the glassy state. Figure 3.14 show
the creep compliance for a thin walled cylindrical specimen at 22°C subjected to a

shear stress of 14.4 M Pa and various axial stresses. Upon comparing the shear creep

9At 110°C the creep rate increased so much that the specimen soon buckled and broke.

19Tq confirm that the results observed at 110°C are not due to any nonanticipated effect of the
prior specimen history, an additional uniaxial creep under a pure torsion with zero axial load is
conducted with a new specimen. Figure 3.13 shows that the results obtained from two different
specimens are reproducible. Multiaxial creep test under ¢ = —9.5 M Pa and v = 7.0 M Pa with
a new specimen gives a slightly smaller shear creep compliance than that for ¢ = —6.0 M Pa and
7 = 7.0 M Pa and the shear creep compliances in both compression and torsion case is smaller than
that for the pure torsion with the same magnitude of shear stress and zero axial load.
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response at axial stresses of ¢ = £25.5 M Pa with that under zero axial stress, we
observe that a superposition of either a tensile stress (¢ = 25.5 M Pa) or a compressive
stress (o0 = —25.5 M Pa) on a pure torsion increases the torsional (shear) creep rate.
However, a superposed tensile stress tends to increase the rate distinctly more than
does a compressive stress. This same phenomenon is observed at other temperatures.
Figures 3.15, 3.16 and 3.17 show the shear creep compliances superposed with different
axial stresses at 35°C, 50°C and 80°C.

Let us examine the results shown in figure 3.17 for 80°C more closely. A super-
position of an axial compression of —13.0 M Pa increases the shear creep compliance
relative to that pure shear (torsion) of 9.4 MPa by 8.2% at time ¢t = 10* 5. On
the other hand, a superposition of an axial tensile stress of +13 M Pa increases the
shear creep compliance much more, namely by 46.9% at the same time. When a
compressive stress of ¢ = —25.0 M Pa is superposed on shear, the creep rate is sig-

nificantly increased and is even higher than that for a superposed tensile stress of
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0 = +13 M Pa. The shear creep compliance is now 86.7% higher than that for pure
torsion under zero axial load at ¢ = 10* s.

To provide a qualitative explanation to the behavior observed here, consider a
pure shear (7 = 9.4 M Pa) superposed by either a tensile stress (¢ = 13 M Pa) or a
compressive stress (0 = —13 M Pa). In both cases the resultant maximum shear stress
and octahedral shear stress (o2 = %m) are the same but the isotropic stress
components are different. If one thinks of a stress state with the maximum shear stress
and zero hydrostatic stress as an intrinsic shear, one might expect that as the intrinsic
shear stress (and the shear strain) increases the creep rate increases; this was observed
for the pure torsion case. For this examples of the tensile and compressive stresses
superposed on the pure torsion, the intrinsic shear is also the same, and thus the role
of volumetric deformation starts to emerge. For the superposed tensile stress case,

the isotropic stress is positive and the volumetric deformation (free volume variation)

is positive; the creep rate is further accelerated with respect to the intrinsic shear
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case. On the other hand, for the superposed compressive stress case, the volumetric
deformation (free volume variation) is negative, which slows down the creep rate with
respect to the intrinsic shear case, though the net creep rate is still higher than that
for a pure torsion with zero axial load.

When a much higher compressive stress (¢ = —25.0 M Pa, figure 3.17) is su-
perposed on the pure torsion, the intrinsic (maximum) shear stress is 15.6 M Pa,
much higher than the intrinsic shear stress (11.4 M Pa) for superposed axial stress
of 13 M Pa, it thus accelerates significantly shear creep rate. Despite the decrease in
creep rate due to the negative isotropic stress, the net shear creep rate is still higher
than the superposition of a smaller tensile stress (13 M Pa).

Notice that although the shear creep compliances at temperatures between 22°C
and 80°C' are clos at short times, the difference of creep compliances at lower tem-
peratures (from 22°C' to 50°C') are larger than that at 80°C. These results are due
to the strain range experienced at each temperature. At 80°C, the material is closer
to the glass transition temperature and becomes relatively soft. Thus a creep curve
covers a relatively wider strain range than that at lower temperatures. The strain
range covers most likely linear regime at the beginning and nonlinear regime as time
evolves. In the linear regime the creep compliances are stress (or strain) independent
and therefore exhibit coincidence appearance at different Asuperposed axial stresses.
However in the nonlinear regime the creep compliances start to deviate, as observed
in figure 3.17. At lower temperatures (22°C, 35°C'), the material becomes more rigid
than that at 80°C and the creep behavior is less pronounced. The strains experi-
enced in the creep time may be all within the nonlinear regime and therefore exhibit

deviation from the beginning for the chosen axial stress magnitude.
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Figure 3.18: Axial creep compliance at 100°C'

3.4 Axial Creep Behavior

Consider next the axial creep behavior resulting from combined axial and torsional
loading. Figures 3.18 and 3.19 show the axial creep compliances corresponding to the
combined axial and torsional loading as shown in figures 3.12 and 3.13. For the same
magnitude of axial and shear stresses, the axial creep compliance in combined tension
and torsion is much higher than that for the combined cor;pression and torsion. In
both cases the maximum shear stress is the same, it is therefore the difference in
isotropic stress that produces the difference in axial creep compliance. The combined
tension and torsion leads to positive volume dilatation (and thus free volume dilata-
tion) which provides a higher axial creep response rate than the combined compression
and torsion (negative volumetric deformation).

The axial creep compliances for the combined axial and torsional loading below

the glass transition (described in section 3.3.1) in figures 3.20 to 3.23. It can be

seen from figure 3.20 that the axial creep compliance under combined tension and



~ 69 —

-2.4
110°C
& 26 b Tension+Torsion
- o =6.0MPa, 1= 7.0 MPa
)
(6]
8
E' -
E 28+
o L
(o3
¢
(&]
s 5
< 30f
S : Compression+Torsion
S I 0 =-6.0MPa, 1=7.0 MPa
3.2 1 1 i 1
1 2 3 4
Log(t) (s)

Figure 3.19: Axial creep compliance at 110°C’

torsion loading is higher than that for a combined compression and torsion of the
same magnitudes of stresses. In both loading conditions, the intrinsic shear stress
(maximum shear stress) is the same, the difference is again in the isotropic stress.
Free volume consideration suggests that a positive free volume variation increases
the deformation rate while a negative volumetric deformation decreases it, and this
conclusion is confirmed by these results. s

Figure 3.23 shows the axial creep compliance for the combined axial and torsional
creep tests at 80°C. The creep rate for the compression case is apparently smaller
than that for tension case. This is also consistent with the prediction of free volume
concept. However, the magnitude of the axial creep compliance for the combined
compression and torsion case is larger than that for the combined tension and torsion
case at the beginning. This is possibly due to uncertainties in measurement.

The results for the axial creep compliances under uniaxial creep and multiaxial

creep at 35°C are presented in figure 3.24. It is observed that the axial creep com-
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Figure 3.24: Axial Creep Compliance at 35°C’

pliance under multiaxial creep is higher than that under axial creep with an increase
of 32% at t = 10* s. Since the difference in the two tests is the shear stress, we can
identify that the shear stress accelerates the axial creep compliance. Although there
is Poynting effect generated axial strain due to torsion, since it is on the order of
the square of the applied shear strain, it is expected that it can induce only an axial
strain variation of less than 0.05%. Therefore the significant amount of acceleration
in axial strain cannot be explained by the Poynting effect, and it can be identified to

be the influence of the applied shear stress.

3.5 Octahedral Behavior

In dislocation governed yield behavior plasticity theory can provide a unifying con-
stitutive description in terms of octahedral stress and strain representations. It is
thus natural to ask in the present context whether an octahedral description instead

of a shear and normal stress/strain description similarly offers simplified or unified
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material description. The answer is a clear "no”, even though in the context of classi-
cal plasticity occtahedral stresses and strains are related through shear response and
independently so of the dilatational stress and strain relation.

In casting the data into octahedral form we must incorporate an assumption re-
garding the deformations: While surface strains are measured directly, the strain
through the wall thickness is not determined explicitly. In order to compute octa-
hedral strains we assume thus that the radial strain is equal to the circumferential
strain and related to the axial strain via a Poisson ratio. Following the analysis of
Poisson’s ratio in Lu, Zhang and Knauss (1997) we assume a value that depends on
temperatures but not on time. The error in the present situation is minimal and
insufficient to invalidate the conclusions reached here.

It is clear from figures 3.25 and 3.26 octahedral response is modified by the
isotropic stress or stain component for temperatures at 100°C' and 110°C, which
should be compared with figures 3.12 and 3.13 respresenting the same data as simple
shear behavior. Similar results prevail for the comparison between octrahedral and
simple shear response at all temperature (well) below the glass transition; for demon-
stration purposes it suffices to show in figure 3.27 one illustration of this behavior at
50°C, which is the counterpart of figure 3.16. In summary, we conclude that respre-
sentation of the (non-linear) creep behavior in terms of an octahedral representation
neither eliminates nor reduces the effect of the dilatational stress or strain compo-
nent(s) on the creep behavior. While the non-linearly time dependent behavior may
ultimately be formulated in terms of an octahedral (shear) format, the second com-
ponent in that formulation must be a first stress or strain invariant the magnitude of

which modifies the time dependence (rate) of the deformations.
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3.5.1 Relation of Data to Model Representations

Formulations for non-linearly viscoelastic deformation behavior have been suggested
by variouws authors (Bernstein, Kearsly and Zapas (BKZ), 1963; Schapery, 1969;
Boyce, 1976; Knauss/Emri, 1981 and 1987; Losi/Knauss, 1992; Caruthers, 1986).
While we shall not attempt to evaluate all these models agamst our measurements
we examine the dilatational (free volume) model of Knauss / Emri/Losi and the strain
clock moodel of Wineman/Waldron (1995), as well as the ”stress clock” model ad-
vanced by Schapery, all of which have been used in recent stress analysis documenta-
tions. While it has been demonstrated earlier that free volume explanations controls
(much of) the deformation response around the glass transition (Knauss/Emri, etc.)
and of higher temperatures, the same is not true (substantially) below the glass tran-
sition. While either model renders qualitatively the behavior observed in tests, all fail
to corraborate the data quantitatively; and only the volume clock model recognizes

the distinct effect of dilatation on (shear) creep response.
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Stress-Clock

We turn first to examining the stress-shift clock suggested by Schapery (1969), and
note that in view of the complex shear-dilatational behavior outlined in section 3.3.1
it is hardly expected that a single stress-shift, whether by maximum shear stress,
octahedral or principle value, will coordinate the data (quantitatively). We demon-
strate this lack of corroboration via the 80°C' (shear) data in figure 3.6 where it is
clear that the creep curve segments do not possess (sufficient) portions of common
slopes to allow completion of a simple "master curve”. Following Schapery’s sug-
gestion that often the subtraction of a ”"glassy” compliance from the data leaves a
transient (time-dependent) portion that plots with constant slope on a log-log plot,
we have also attempted to extract a "glassy compliance” in the form of a monotonic
function of the stress level from these data to a stress-shifting process. While the
curvature of the creep segments changed with log(time), the net result was such that
both slope and curvature were measurably different from the steep segments so as to
preclude horizontal (and/or vertical) shifting®!.

Returning to measurements obtained at 80°C (figure 3.6) one observes that the
(shear) creep compliance increases monotonically with the shear stress. The creep
compliance inverted from the relaxation modulus is different from that measured at
a shear stress of 9.4 M Pa. Nonlinearity is thus apparent at a much lower shear stress
level than

Turning to measurements obtained at 80°C' (figure 3.6) one observes that the

1'We also observe this phenomenon in Govaert’s data (1995). Figure 3.28 shows this for Poly-
carbonate at 20°C under multiaxial tensile stresses. At axial stresses of 15 M Pa and 20 M Pa,
the creep data are initially very close but deviate as time increases, so that the shifting (either
horizontally or vertically, or both) is not appropriate. Shifting at higher stress levels appears more
reasonable for these curves which are, however, measured over only 2 decades in time. It is typically
more subjective to shift data obtained for short periods of time, i.e., the master curves might be
significantly different if segments are shifted by different persons. Figure 3.29 shows the creep mas-
ter curve shifted by Govaert (1995) and by present authors. The latter is effected so as to obtain
overlapping of the short time portion of the segments while the shifting by Govaert is conducted
possibly to ensure a global least square fit to the measured data. One notes differences of more than
1.5 decades of time at ¢ = 10° s and more than 3 decades of time difference at ¢ = 10'° s.
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(shear) creep compliance increases monotonically with the shear stress. The creep
compliance inverted from the relaxation modulus is different from that measured at
a shear stress of 9.3 M Pa. Nonlinearity is thus apparent at a much lower shear stress
level than at 22°C'. The creep compliance inverted from the relaxation modulus and
those at shear stresses of 9.3 M Pa and 12.3 M Pa are essentially the same again at
the beginning (short time) but deviate gradually as time increases, thus repeating
the phenomenon observed at 22°C' and 35°C'. These consistent observations indicate
that in the initial stage when the shear strains are small (< 1%) the linearity range
has not been exceeded significantly and therefore the material behaves as a (nearly)
linearly viscoelastic solid. However, as the shear strain increases the nonlinearity
effect becomes more pronounced and as a consequence the shear creep compliance
deviates from the linear function. In this sense the nonlinearity is controlled by the
magnitude of the shear strain.

Segments derived from creep compliances at different shear stress levels at 80°C
were also shifted horizontally as shown in figure 3.30 as well as analyzed by “glassy”
behavior. The result is not smooth compared to the relaxation modulus master
curve measured at infinitesimal deformation (figure 2.15) inasmuch as creep curves at
different shear stress levels cross each other. At these short time intervals when the
long term direction is not determined, the shifting may a%pear fair, but the curves
do not have common slopes.

The creep data (figure 3.7) at different shear stress levels at 100°C are shifted
horizontally and a master curve is obtained as shown in figure 3.31. The master
curve is much smoother than that at lower temperatures (22°C, 35°C' and 80°C'). This
suggests that the time-stress superposition can be applicable near the glass transition,
but not not necessarily for certain stress levels well below the glass transition.

At 100°C when the temperature is close to the glass transition, the Poisson’s ratio

is close to 0.5. As the dilatation variation is small over the test period of 10 s, it
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Figure 3.30: Shear creep compliance at 80°C

may be close to a constant. The shifting of creep data in terms of stress might be
essentially the same as the shifting in terms of the strain induced dilatation. This
seems to indicate that stress-shifting might be valid near the glass transition not deep
in the glassy state.
Nonlinearly Constitutive Relations

The constitutive models proposed by Emri and Knauss (1981) and Losi and
Knauss (1992) are modified to accomodate the instantaneous local free volume change
due to shear. The basic equations are listed in this section'?. For an isotropic, sim-
ple material with memory the constitutive relation under an isothermal process is

described by

su) = [ ot - e 28 ar (3.5)
oo = [ (e - ), (3.6)

12For a detailed development of the free volume based model, see Emri and Knauss, 1981; Losi
and Knauss, 1992 and Lu and Knauss, 1996.
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Figure 3.31: Shear creep compliance shifted from different stress levels at 100°C’

where 0;;, €;; are stress and strain components, S;; and e;; are deviatoric stress and
strain components, K (t) and p(t) are the bulk and shear relaxation functions, and ¢

is the internal time determined by

tdr

£(t) = ; (3.7)
0o ar
where a7 is the time shift factor determined by }
1 B(1 ! ) (3.8)
og a = - 3 J.
ST T

where B is a material parameter, f is the effective fractional free volume and fy is its

value in the reference state.

<t cos(fg + €27)

: €
f=fe+ aep + -

sin 8o
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(3.10)

A is a stochastic parameter.

fo + a(T~T,) for T LT
fo=1 " AT = T3) ’ (3.11)
fo + ay(T'—=T,) for T>T,

where a, and a; are the coefficients of thermal expansion in the glassy and rubbery
states respectively, T is the temperature and T}, is the glass transition temperature.

Model Parameters

It is found that with a pair of parameters (o = 1.0,4 = 1.0) all the behavior
observed may be explained qualitatively. However, to best fit the data under various

loading conditions, the following parameters may be appropriate.

A = 02
fo = 0.036
B = 0.4342

a, = 25x107*C7
o = 947 x 107t C!
Below T, o = 0.3
g = 0.6
Above Ty, o = 1.0

B = 0.25.

Comparison of model prediction and measurements

Figure 3.32 shows the comparison of the model prediction and measurements. The
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model predicts the relative creep rates at different stress levels. At the lower shear
stress level (1 = 9.4M Pa), the agreement is good. At higher shear stress levels, the
model reproduces the features only qualitatively, however, the curvature of the model
prediction is different from that of the measurement. There are two possible reasons
for this discrepancy: (i) The model prediction is very sensitive to dilatation, which
is computed from the measured axial strain, shear strain and circumferential strain.
While the axial and shear strains are measured with an error of £0.05% of strain,
the error in measuring the circumferential strain s larger and on the order of 0.08%.
Therefore, the measured circumferential strain is not used to compute the volumetric
deformation; instead, the circumferential strain is computed from the axial strain via
Poisson’s ratio v(t) (Lu, Zhang and Knauss, 1996) that is measured from infinitesimal
deformation and so that the circumferential strain egg 1s (quasi-elastically) related to

the axial strain €z through

€9 = —V(t)€xa- (3.12)

In the case of larger axial strain, the relation between circumferential and axial
strains may not obey this relation that is valid for infinitesimal deformation. It
might then be appropriate to shift the Poisson’s ratio logarithmically to larger strains
because the dilatation accelerates the internal time. Thi; requires either data on
the ratio of circumferential strain to axial strain at higher strain levels or accurate
data on Poisson’s ratio at different temperatures, neither of which are available at
this time. The determination of the actual shear induced dilation is important in
this model, we have proposed an analog model to demonstrate the shear induced
dilatation, the actual shear induced dilatation requires the distribution (spectrum)
of initial orientation angles 8y and the parameter, which should be determined from

direct measurement of the shear induced dilatation. In the case that a specific angle

0, is used as an average, may explain qualitatively but might not be able to explain



_ 83 -
quantitatively the behavior over a wide range of temperature and stress levels.

It is noted that after ¢ = 10 s, the model predicted shear creep compliances in-
crease very fast at higher shear stress levels. This is so because the effective fractional
free volume has reached the level of the value in the glass transition and the internal
time has reached the rubbery regime. It is expected this might change when the two
problems listed above can be resolved.

Figure 3.33 shows the comparison of results between the model prediction and
measurements. The model can predict qualitatively the relative position of one curve
relative to others. The quantitative agreement is good for the pure torsion (¢ = 0, 7 =
9.4 M Pa) and pure torsion superposed by a smaller compression (¢ = —13.0, 7 =
9.4 M Pa). However, the predicted creep rates are smaller than those measured at
short times. At longer times because the effective fractional free volume reaches the
value of the glass transition region, the predicted creep compliance should take the
value in the glass transition. Since the creep compliance increases very fast in the glass
transition region, this leads to a very faster creep compliance than measurements.
With an accurate determination of the volumetric strains, one may expect a slower
increase in creep compliance that is closer to measured data.

Figure 3.35 shows the comparison of shear creep compliances between model pre-
diction and measurement. The shear creep compliance unaer pure torsion with zero
axial load predicted from the model and that measured from the experiment has a
very good agreement. Under a superposed tension, the model predicts a faster shear
creep rate, and, under a superposed compression, the model predicts a slower shear
creep rate. The model predicts qualitatively the right feature as experimental ob-
servation. When there is superposed tension, there is a positive effective fractional
free volume variation, the internal time goes into the rubbery regime and therefore
induces a much faster shear creep rate. On the other hand, when there is a compres-

sion superposed on pure torsion, there is a negative effective fractional free volume
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Figure 3.34: Comparison of model prediction and measurements at 50°C

variation and the internal time goes into the glassy state, and therefore induces a slow
rate. Since the shear creep compliance does not vary over time significantly in the
glassy state, the shear creep compliance decreases only slightly under compression.
The discrepancy between model prediction and measurements at 110°C' might
arise from two facts: (i) The internal material governing time is very sensitive to
the volumetric deformations. For this experiment, the axial and shear strains can be
determined to an accuracy of £0.05%, respectively, however, an accurate determi-
nation of the circumferential strain is not possible. As an approximation, an elastic
response between the circumferential strain and axial strain is assumed and the cir-
cumferential strain is computed from the axial strain via Poisson’s ratio (Lu, Zhang
and Knauss, 1996). This might lead to some extent of error when the circumferential
strain determined in this way is not accurate.(ii) The shear creep compliance under
infinitesimal deformation (u(t¢)) measured at temperatures between 105°C' and 120°C

is not accurate because the torque reading is not accurate when the torque is not big
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Figure 3.35: Comparison of model prediction and measurements for shear creep compliance
at 110°C
compared with the accuracy of the MTS system (0.084 Nm).

If the circumferential strain measurement is not accurate, a question arises: to
what accuracy a measurement should be made in order to predict the behavior under

combined tension and torsion?

3.6 Summary

This study intends to investigate the the effects of volumetric and deviatoric defor-
mations on the nonlinearly viscoelastic behavior at creep strains up to 6%. To this
end a sequence of creep tests were performed under combined axial (tension, compres-
sion) and torsional loading at temperatures between room temperature and 110°C
with PMMA thin walled cylindrical specimens. A constitutive model based on free
volume consideration was proposed to model the multiaxial behavior. The following

conclusions can be made:
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(i) A strong coupling between axial and shear strains at strains as small as 1%
at different temperatures is observed. This observation indicates that the linear vis-
coelasticity is not valid for strains higher than about 1% for certain categories of
polymers. A nonlinear characterization of the behavior of polymers under multiaxial
loading is needed for strains not less than 1%.

(i1) Well below the glass transition temperature wither a superposed tensile stress
or a compressive stress increases the torsional creep rate, with a tensile stress pro-
viding distinctly more creep acceleration than a compressive stress. However, in the
vicinity of the glass transition, a superposed compressive stress decreases the torsional
creep rate while a tensile stress increases it. These observations indicate that both
volumetric deformation (free volume) and deviatoric deformation contribute to the
nonlinearly viscoelastic behavior of polymers. However, the effect relative contribu-
tion of any volumetric vis-a-vis shear effects in controlling general deformation rates
varies with temperature and is particularly sensitive to how close the temperature is
close to the glass transition.

(iii) The effect of shear to the viscoelastic behavior is incorporated through the
shear induced dilatation and the concept of effective free volume is introduced to
include the shear induced dilatation. A constitutive model that is based on free vol-
ume consideration is proposed to explain the behavior observed in the experiment.
This model can qualitatively explain the acceleration and deceleration of deformation
rate under various multiaxial loading. The relative deformation rates under various
loading conditions can be explained qualitatively within the framework of free volume
consideration. Quantitative agreement is good for time-temperature superposition,
creep behavior under pure torsion loading at relatively small shear stress and multi-
axial creep behavior near the glass transition. However, the model prediction cannot
fit the creep data very well under multiaxial loading at tempertures well below the

glass transition.
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3.7 Appendix: Nonlinearly Viscoelastic Constitutive Rela-

tion for Amorphous Polymers

3.7.1 Introduction

The constitutive models proposed by Emri and Knauss (1981) and Losi and Knauss
(1992) are modified here to accomodate the instantaneous local free volume change
due to shear. Based on free volume consideration, a nonlinear constitutive model was
proposed by Knauss and Emri (1981, 1987) to describe the time dependent behav-
ior near the glass transition and another model that generalizes Knauss and Emri’s
description to glassy state was proposed by Knauss and Losi (1992) to describe the
behavior both in the glassy and rubbery states. These models can explain a variety of
phenomena in nonlinear range, including the effects of moisture content and pressure,
relaxation behavior at different non-infinitesimal strain levels, uniaxial straining with
piecewise constant deformation rates, uniaxial stress-strain behavior superposed in
pressure, etc.

A point that has been made is that if volumetric changes are solely responsible for
the “yield-like” behavior in polymers, then “yielding” should not occur in these mate-
rials if pure shear deformations, such as under torsion, prevail. This latter assumption
is based on our normal understanding of metal yielding, :but is not necessarily jus-
tified for polymers. Indeed, that dilatational straining can result from shear is both
conceivable and measurable. In fact, Robertson (1963, 1966, 1968, Robertson & Pa-
tel, 1972) argued that volumetric changes should accompany with shear stressing as
a result of molecular chain stiffness and suggested that shear-yielding would then re-
sult from the dilatationally induced increase in molecular mobility. However, a direct
measurement of the associated dilatation was not attempted. On the other hand,

McKenna and coworkers (McKenna & Zapas, 1979; Duran & McKenna, 1990) have

recorded volume changes under purely torsional deformations. Similarly, we have
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observed axial deformation under purely torsional creep under zero axial loading (Lu
and Knauss, 1996), though the resolution limitation of the digital image correlation
prevents to provide the volumetric changes.

We present an analog model here to demonstrate that local shear deformation
may induce instantaneous local dilatation which allows the surrounding molecules to
take this position, and this process occurs in sequence to give rise to local volume
needed for molecules to move. Although the overall deformation may not change
significantly, the local shear induced dilatation is significant and may tremendously
accelerate the deformation rate. We therefore introduce the concept of effective free
volume that includes the volumetric deformation from different sources, including
volumetric deformation due to the isotropic deformations, such as moisture content,
temperature and hydrostatic pressure, and the local instantaneous dilatation due to
deviatoric deformation. The dependence of internal time on the shear deformation is
therefore included through the local effective volumetric deformation.

A similar approach was proposed by Wineman and Waldron (1995), where he
introduced the dependence of a material clock or pseudo time on a scalar function
that is equivalent to a shift factor, and this scalar function depends not only on
the volumetric deformation but also on the local shear. The definition of local shear
depends on the deformation considered. The local shear was introduced to contribute
the deformation rate without any physics explanation.

The effective free volume we introduce here is still in the framework of free volume
consideration. In the regime of linear viscoelasticity, when a cylinder is subjected to
a pure torsion with a fixed end distance, the volumetric deformation generated from
torsion is on the order of the square of the shear strain, which is usually considered
to be negligible for infinitesimal deformation. However, in the regime of nonlinearly
viscoelasticity, the volumetric deformation may be higher, as observed by McKenna.

Since the volumetric deformation determined from the trace of the infinitesimal strain
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tensor contains only the volumetric deformation from the isotropic stress, the volu-
metric deformation due to deviatoric deformation is therefore neglected. The inclusion
of the volumetric deformation due to the deviatoric part is thus necessary to take into
account the volumetric deformation due to all possible sources.

Volumetric deformation may be generated from pure shear deformation in poly-
mers. It may be determined (with some unknown constant to be determined from
experiment) from a kinematic analysis based on large deformation description (Mur-
naghan, 1951) or an analysis based on small deformation and nonlinear constitutive
relation (Poynting, 1912). But the shear induced dilatation in our consideration is
a material behavior, which cannot be determined from kinematic analysis. It can
only be determined from measurements. McKenna measured the dependence of vol-
umetric deformation on shear deformation from a cylindrical specimen for an epoxide
monomer. The volumetric deformation contains most likely linear term of the shear
strain and higher order terms. Although this result depends on the geometry of the
specimen and test conditions, the dilatation observed in the experiment is apparently
contrary to the prediction of the Poynting effect for the test condition, because the
Poynting effect predicts a volumetric contraction due to negative normal stress when
the length of the cylinder specimen is fixed under pure torsion. This appears to indi-
cate that there exists a volumetric deformation associated Vs;ith the shear deformation.

With the extension of the free volume concept to effective free volume, we can
therefore extend the framework of Knauss and Emri (1981, 1987) and Losi and Knauss
(1992) accordingly. The extension of Knauss and Emri’s model to effective free vol-
ume leads to a constitutive relation that is valid above the glass transition. On the
other hand the extension of Losi and Knauss’ description leads to a more general

constitutive relation that may be applied to both glassy and rubbery states.
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3.7.2 Nonlinearly Constitutive Model for Amorphous Polymers

For an isotropic, simple material with memory the constitutive relation under an

isothermal process is described by

5o = [ oter - &) 20 a (3.13)
S /_twfx’(g(t)—g(f))%dr, (3.14)

where o5, €;; are stress and strain components, 5;; and e;; are deviatoric stress and
strain components, K(t) and p(t) are the bulk and shear relaxation moduli measured

at a reference temperature, and £ is the internal time given by

Time shift behavior in the nonlinear range

When the deformation is not infinitesimal such that the material exhibits nonlinear
behavior, experimental observations have indicated that the time shift factor for poly-
mers depends not only on the thermal history, but also on the mechanical induced
volumetric deformation (Knauss and Emri, 1981, 1987). In the case that there are
only isotropic deformations such as deformations induced by moisture content, tem-
perature and hydrostatic deformation (in the absence of de\jiatoric deformation). The
time shift factor is still given by equation (3.8), however, the fractional free volume

which is a fraction of the total volumetric deformation, may be represented through

an equation as proposed by Ferry and Stratton (1960).

[ =fo+afAT + B;Aokk + 75 Ac, (3.15)

where «y, B and v; are material parameters, AT, Aex, and Ac are temperature,
isotropic stress and solvent concentration changes with respect to the reference con-

dition at fo (or Hp).
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We now choose a reference state that is stress free under isothermal condition.
The temperature and fractional free volume at this reference state are Ty and fo,
respectively. With the introduction of the metastable free volume in section 3.7.2,
The first two terms ( fo+a;AT) on the right-hand side in Eq. (3.15), designating the
fractional free volume at a reference state and that due to temperature effect, may
now be replaced by a more general quantity, f. (metastable fractional free volume),
to account for the fractional free volume at any temperatures. Thus Eq. (3.15) can

be written as

[ =fe+ BrAop + v A. (3.16)

Knauss and Emri (1981, 1987) considered a more general material model for which
the material parameters ( oy, Oy, ) are time-operators in the case that the Eq.
(3.15) needs to be expressed in terms of convolution integrals over time histories of
temperature, isotropic stress and solvent concentration. As an example, in the case

of moisture concentration change only, the convolution integral would be

P = Fot [ et - &) godr (3.17)

We focus our consideration on the contribution to free volume from the mechanical
stress induced dilation with the material having the same moisture content as that
in the reference state, the contribution from moisture content variation is therefore
absent. We thus do not need to consider the contribution from moisture content in

the subsequent consideration.

Effective Fractional Free Volume

Experimental results on the multiaxial behavior of polymers (Lu and Knauss,

1996) have demonstrated that shear can also accelerate viscoelastic deformation rate.
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It is usually understood that there is no dilatation associated with the shear deforma-
tion in homogeneous polymeric materials. Experimental results, however, appear to
indicate that there is a dilatation generated when there is a shear deformation in the
nonlinear range. McKenna (1990) observed that when a polymer cylinder specimen
is subjected to pure torsion with fixed end distance, there is a volumetric deforma-
tion generated. At small shear strain in lower temperatures the volumetric dilatation
is approaching v%. However at higher strain or higher temperature, the volumetric
deformation should include a linear term in 4. This observation is different from that
as observed in steel wires by Poynting (1912). Poynting determined that when a steel
wire under torsion with a free end, the wire may extend, the diameter may shrink and
the total volumetric deformation may increase. It is therefore expected that when
the wire is subjected to torsion with a fixed end distance, since the fixed ends prevent
the elongation of the wire, there must be compressive force generated and this should
induce a diameter increase due to Poisson effect and make the total volume decrease,
which is different from the volume increase in polymers as observed by McKenna.
We consider an analog model as shown in figure 3.11. The interaction of a molecule
chain from the surrounding molecules may be modeled by a “Z” shaped molecule
embedded in a viscoelastic medium. When this molecule is subjected to a pair of shear
forces, F', and starts to move, it has to overcome the interacjcions from the surrounding
medium and create a local volume in its surrounding medium. This volume is on the
same order of the shear strain, it may exist instantaneously and then disappear.
But it creates a temporary volume (possibly a volumetric deformation relaxed over
time) for the surrounding molecules and allows the surrounding molecules to take
this position and move more easily. This instantaneous volume is expected to be
observed by experimental investigations, such as McKenna’s (1990) investigation. It
certainly needs more thorough investigation to confirm this shear induced volumetric

dilatation.
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We now consider the magnitude of the shear induced local dilatation. Let ¢ be
the axial strain in the vertical direction, v be the local shear deformation. When a

molecule initially at an orientation angle 6y moves to 8, the local shear strain is given

by

1

In order to allow this shear strain to proceed, there must be a local shear induced

axial strain, which is given by

R(sin § — sin )
Rsin 6,
_ 2cos(bp + ) siny (3.18)

sin O

€ =

where 2R is the length of the molecule trapped between the upper and lower media.
This formulation is based on a two dimensional consideration. For a more general
three dimensional case, the local shear, v, may be replaced by the octahedral shear

strain 7,et, then Eq. (3.18) becomes

2 cos(o 4 Yoct) SIN Yocr
€= :
sin g

(3.19)

oct

The local shear induced dilation €% is assumed to be proportional to the shear

induced axial strain, e, i.e.,

,2¢08(00 + Yoct) SIN Yoot

oct
€y =0 -
kk sin g

: (3.20)

where 3" is a parameter. The molecule chains in a polymer may take any orientation
angles 0o. We consider here an average behavior of molecules in different initial

orientation angles and represent it by a parameter 6y. For small deformation, the
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molecule chains may easily move forward and backward near 6§ = 7/2. We therefore
chose a 0 that is close to 7 /2 for our modeling of the constitutive behavior at strains
on the order of a few percent.

In the previous consideration we consider only the mechanical induced free vol-
ume derived from isotropic stress. The contribution of free volume from the deviatoric
stress, possibly on the same order as that due to isotropic stress, is not considered.
To take into account the volumetric deformation due to the deviatoric deformation,
we introduce the concept of effective free volume. The effective free volume consists
of the volumetric deformation generated from both the isotropic stress induced dila-
tion, shear induced dilation and the dilatation from any other sources including the
contributions from moisture content and temperature variation. The shear induced
local dilatation, which was ignored in the previous free volume considerations (Knauss
and Emri, 1981 and 1987; Losi and Knauss, 1992), is included here in the effective
fractional free volume to account for the shear induced acceleration to deformation
rate. Following the same consideration as that of the fractional free volume, we now
assume that the fractional effective free volume is a fraction of the total volumetric

deformation and is given by

20" cos(0o + Yoct) SIN Aoer
sin 00

[ = fe+alew + ), (3.21)

where « is a material parameter. We consider here small deformations with shear
strains on the order of a few percent, therefore sin voer = Yor. Introducing a material

parameter § as defined by

B =208,

Eq. (3.21) then becomes
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cos(0o + Yoct )Y
sin g '

f=ft+aeg+0

(3.22)

With the extension of the free volume concept to effective fractional free volume,
the time shift factor may be still described by Eq. (3.8), but the fractional free volume

f has to be understood as the fractional effective free volume as given by Eq. (3.9)

Model Parameters

The nonlinearly viscoelastic behavior of amorphous polymers in isothermal state at
any temperatures below or above the glass transition may be described by equations
Eq. (3.13) and (3.14) with the internal material governing time ¢ determined by Eq.
(3.7) and the shift factor ar determined by Eq. (3.8). The effective fractional free
volume f is given by Eq. (3.22) with a and § being material parameters having
different values in the glassy regime and rubbery regime.

It is found that with a pair of parameters (o = 1.0, = 1.0) all the behavior
observed may be explained qualitatively, however, to best fit the data under various

loading conditions, the following parameters may be appropriate.

fo = 0.036
B = 04342
a = 25x1070C7!
a = 947 x107* C~h
Below T,, a = 0.3
g = 06.
Above Ty, o = 1.0

B = 0.25.
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The analysis requires the bulk relaxation modulus K (¢) and shear relaxation mod-
ulus u(t) for infinitesimal deformation. While u(¢) has been determined for PMMA
(Lu and Knauss, 1996), the bulk modulus is not available in the literature. Corre-
spondingly, the shear creep behavior cannot be determined from the applied axial and
shear stresses. However, we may obtain the effective fractional free volume from the
measured surface deformations, and compute the time-temperature shift factor from
the effective free volume. The model predicted shear creep compliance may then be

determined and compared with the experimental results.
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Appendix

Axial-torsional Alignment of the Cylindrical Specimens

The alignment of the specimen relative to the MTS frame is essential. A mis-
aligned loading frame may apply unexpected bending moment on the specimen and
generate inhomogeneous stress and strain field on a specimen. When a specimen is
gripped improperly on an MTS test system the specimen may be subjected to un-
expected complicated loading conditions: the upper and lower ends of the specimen
may not be parallel to each other, resulting in a bending moment on the specimen.
Also suppose that the axis of the upper grip is not aligned with the axis of the lower
grip; This may induce both a bending moment and shear forces on the test section.
Because this experimental research focuses on relatively small deformations, defor-
mations resulting from the misalignment that are comparable to those arising from
infinitesimal loading need to be suppressed.

An alignment fixture'® (figure 3.36 and 3.37) is designed to conduct the axial-
torsional alignment of the grip on the MTS material test system. It employs a low
temperature alloy, Woods metal (Belmont Metals Inc.), with.a melting point between
70°C and 75°C'. To effect the alignment one fixes a pot with grooves in the vertical and
circumferential directions to the base of the MTS frame. The load cell is connected
to the lower grip, and an extension part (plug) which also has grooves in the axial
and circumferential directions is connected to the load cell (figure 3.36). A dummy
aluminum cylindrical specimen that has the same dimensions as the actual specimen
is at first gripped on the top piston of the MTS frame. The Woods metal pot is first
heated up by an Ohm heater wrapped on the pot to a temperature of 100°C". The

melting Woods metal is poured into the Woods metal pot to fill out the space between

13Thank Ted Nicolas of Wright Pat for making idea and drawings available.



Figure 3.36: Axial-torsional alignment of the MTS loading frame

the pot and the extension part (plug). The alignment at this moment is perfect. We
then stop heating up the pot and cool down the Woods metal slowly in the air. After
the Woods metal has solidified, the Woods metal pot and the plug become one piece.
The load applied to the specimen is taken over by the base of the MTS frame through

the Woods metal and the pot.

To demonstrate the effect of misalignment, Figure 3.38 shows the (optical) pro-
jection of the relative surface displacements of a cylindrical specimen subjected to si-
multaneous tension and torsion'?. As seen in this figure, besides tensile and torsional
loading, there are some other unexpected deformations that arise from misalignment.
For comparison, Figure 3.39 shows a projection of the relative surface displacements
of a specimen subjected to simultaneous tension and torsion. The maximum displace-

ment vector has a magnitude of 0.32 pixels, the axial strain is 0.25% and the shear

n this displacement field the average displacement vector has been subtracted to make a better
visual results.
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Figure 3.37: Components of the alignment fixture
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Figure 3.38: A projection of a relative displacement field for a mis-aligned specimen
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Figure 3.39: A projection of a relative displacement field for a well-aligned specimen

strain is 0.19%. It can be seen that a simultaneous tension and torsion are applied

on the specimen and the displacements due to misalignment are very small.
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