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Chapter 1 Introduction

The objective of this thesis is the construction of a low-order model of the martian
global circulation suitable for conducting long-term (decadal) studies of the martian
climate and application of this model to the problem of interannual variability of the
GDSs. The idea is to construct a computationally fast model by retaining only the
main elements of the global circulation (i.e., Hadley cell). The speed and simplicity of
the LOM allows one to perform long-term simulations of the variability of the martian
atmospheric system, - a prohibitive task with more sophisticated GCMs.

Simplified models of the martian global circulation have been published. They
include the zonally symmetric models [HLP82, MHTP93] and truncated spectral
models [HHBY97, MI80]. In the zonally symmetric models longitudinal variations are
neglected, while in the spectral models the set of basis functions is severely truncated
to yield the state space of lesser dimension. These models were used to simulate
GDSs and water transport in the martian atmosphere. However, no attempts to
study interannual variability were made.

LOMs are the simplest models. They usually consist of just a few independent
variables. The LOMs are widely used in studies of Earth’s climate [TSCJ94, Fra78,
SM80, Has76], the most famous example being the Lorenz system [Lor63]. Lately,
LOMs were successful in modeling the El Nino-Southern Oscillation phenomenon
[TSCJ94]. This work is the first attempt to simulate interannual variability on Mars
with a LOM.

The LOM is constructed by Galerkin projection of a 2D (longitudinally averaged)
GCM onto a truncated set of basis functions. The model describes the Hadley part of
the general circulation. The effects of waves and eddies are parameterized as Rayleigh
friction. Thermal forcing is included in the Newtonian cooling term. Strength of the
surface dust source depends on the strength of the atmospheric winds, allowing dust

storms to develop naturally.
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Part T of the thesis presents the description of the model and discusses its results.
Chapter 2 describes the method by which the model was constructed. It also outlines
the simplified way by which the atmosphere and surface are coupled. The model’s
performance for clear and dusty conditions is compared to the NASA Ames GCM
[PHSLI0] and it is found that the simulated mean meridional circulation and tem-
perature fields compare reasonably well. The date of occurrence and duration of the
global dust storms produced by the model also compare well with observations by
VLs. In Chapter 3 it is shown that the LOM without dust can be approximated as
the Lorenz system with forcing. This circumstance allows one to define the bound-
aries of different regimes in the behavior of the LOM. Chapter 4 summarizes Part 1
of the thesis. In Part II of the thesis the model is used to simulate the interannual
variability of GDSs. Chapter 5 offers a brief introduction to the subject. In Chapter 6
the behavior of the model with deterministic forcing is examined and it is found that
for realistic parameter values the model does not produce interannual variability. In
Chapter 7 a stochastic component is added to the forcing of the model. It is shown
that in this configuration the model is capable of producing interannual variability.
The results are very dependent on the degree of coupling between atmosphere and
surface. Chapter 8 summarizes results of the model simulations and discusses the

implications of the results for martian climate studies.



Chapter 2 Model Description

2.1 Model Domain

The model is a longitudinally averaged 2D model. The model domain extends verti-
cally from the surface (z = 0 km, p = p,) to the top of the atmosphere (z ~ 50 km,
p = pt), where z is height, p is pressure, p, is surface pressure and p; is pressure at
the top of the atmosphere. The pressure at the top of the atmosphere p, was fixed at
0.07 mbar, while p, changes seasonally, reaching its maximum of ~ 7 mbar at perihe-
lion. The model extends horizontally from § = —45° to § = 45°, where 6 is latitude.
The vertical extent of the model approximately corresponds to the vertical extent of
the Ames GCM [PHSL90], while the horizontal extent corresponds to the maximum
extent of the Hadley cell in the GCM simulations. The model is only applicable to
the Hadley part of the global circulation. There is no interaction with the polar re-
gions. The choice of the model domain is dictated by simplicity considerations, since
inclusion of the polar regions would require a more complex set of basis functions
to describe the dynamics of the atmospheric flows. On the other hand, interaction
between polar and mid-latitude-equatorial regions is only important during spring

and fall, when the polar caps are subliming and condensing [PHSL90, HPB*93].

2.2 Atmospheric Component

2.2.1 Primitive equations

The dynamics of the axially symmetric atmospheric motion is described by the zonally

averaged primitive equations in spherical coordinates:
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The above equations are the zonal and meridional momentum equations, the ther-
modynamic energy equation, the hydrostatic equation, and the mass continuity equa-
tion, respectively. The system of equations (2.1)-(2.5) is written for the Eulerian mean
circulation [Hol92] rather than for the residual mean circulation for the purpose of
comparing results with the GCM [PHSL90]. The terms —ru and —rv in Egs. (2.1)-
(2.2), where r is a Rayleigh friction coefficient, can be regarded as a parameterization
of eddy flux divergences. The value of r is discussed in Section 2.8.

The independent variables are the horizontal coordinate y (positive northward),
pressure p, and time ¢. The prognostic dependent variables are the zonal component of
horizontal velocity (positive eastward) u, the meridional component (positive north-
ward) v, and the temperature 7. The geopotential ® and pressure velocity w = dp/dt
are diagnostic dependent variables. Finally, f = 2Q2sin # is the Coriolis parameter, €2
is the planetary rotation rate, # is latitude, 7, is planetary radius (y = r,0), ps is
the surface pressure, R is the gas constant, K = R/C,, and C, is the specific heat at
constant pressure.

The 2D approximation is adequate for representation of the Hadley circulation
on Mars. 2D models neglect longitudinal features such as transient and stationary
planetary waves and eddies. However, the 3D GCM simulations ([HPB*93, PHSL90])
indicate that the kinetic energy ([HPB*93], Fig. 1) and heat fluxes ([PHSL90], Fig.
6) associated with eddies are much smaller than the energy and heat flux associated
with the Hadley cell. Comparison of the 2D and 3D GCM simulations of the GDS
([MPH*95, MHTP93]) show that in the 2D case dust remains confined to the region
between 40°N and 50°S, while in the 3D case dust extends over the south polar cap
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and into the northern polar regions ([MPH'95], Fig. 4). The difference is due to
the action of transient and standing eddies. As a result, the dust optical depth in
the SH in the 2D case is larger by a factor of about 2 during the active (sols 0 to
10) and decaying (sols 10 to 50) phases of the GDS. However, the difference in the
strength of the meridional winds is smaller (of the order of 10%), since for the levels
of atmospheric dustiness during the GDS (optical depth 10 in SH and 5 in NH at sol
10, and optical depth 4 in SH and 2 in NH at sol 25) the effect of dust on meridional
circulation levels off ((MPH*95], Fig. 7).

The change of atmospheric mass due to sublimation and condensation of CO, was
assumed to be slow enough so that dp,/0t in Eq. (2.5) can be neglected. However,
the change of atmospheric mass was accounted for by including the seasonal surface
pressure cycle derived from Viking observations [HFT95]. This neglects feedback
between atmospheric temperature and surface pressure, but deviations of pressure
from the seasonal mean [HFT95] are small - of the order of 10% even during a GDS
[Ti185, HRT*80]. Condensation mass flow was also neglected, but GCM simulations
indicate that it “...has very little effect on simulated zonal-mean zonal winds ...”
([HPB*93]). The GCM simulations in which the condensation flow was set to zero
show that “...the condensation flow mainly determines the strength of polar cap
surface winds ...” ([HPB*93], Fig. 42).

Topography was neglected and no pressure gradient at the ground was assumed,
so that dp,/0y = 0. The GCM simulations with flat topography ([HPB*93], Fig.
43) show that the surface winds and mean meridional circulation are stronger in
the simulations without topography, due to decreased frictional interaction with the

113

surface. However, “...the main effect of topography on mean circulation is confined
to lower levels ...” ([HPB*93]). Indeed, Fig. 33 of [HPB*93] compares three terms
entering into momentum balance: dynamic acceleration (atmospheric motions), sub-
grid scale acceleration (Rayleigh friction, convective adjustment, surface drug) and
mountain torque acceleration (topography). The mountain torque acceleration makes

significant contribution to the momentum balance only near the surface, where it is

comparable to the sub-grid scale acceleration and is of the order of 30% of the dynamic
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acceleration. Thus, it can be expected that in the absence of topography the increase
in the strength of the surface winds will be of the order of 100% and the increase in
the strength of the low level mean meridional circulation will be of the order of 30%.
The effect of topography on the circulation might be incorporated into the LOM by
assuming varying Rayleigh friction coefficient (see Section 2.9.3).

The circulation is derived from the zonal-mean daily averaged diabatic heating

rate (), which is due to net solar radiation. The heating is given by:

Q=- (26)

where 7 is the diurnaly and zonally averaged radiative-convective equilibrium tem-
perature and ¢, is a radiative damping time. £, is assumed to be spatially uniform. Its
value is discussed in Section 2.8. Both 7¢ and ¢, depend on the amount of dust present
in the atmosphere. In addition, 7 varies with season. The simplified approach by
which 7 and ¢, depend on dust optical depth is outlined in Section 2.4. Following

the conventional definition of the radiative damping time [Hou86), ¢, is modeled as

tr = tr (%) (%)3 (2.7)

where 7., p, and T are the values of the radiative damping time, surface pressure and
atmospheric temperature at perihelion, respectively. £, contains most of the depen-
dence on dust optical depth, while scaled pressure and temperature terms contain
seasonal variability.

The continuity equation (Eq. 2.5) allows one to introduce a mass stream function

1 in the following way:

g
v 277y, cos 0 Op (28)
w 9% (2.9)

27Ty, cos § Oy

where g is gravity and the units of ) are kgs~'.
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After substituting Eqgs. (2.8) and (2.9) into Egs. (2.1)-(2.3) and making use of
Eq. (2.4), the momentum equations and the thermodynamic energy equation can be

rewritten in terms of u, 1, and T only:
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where A = g/(27r,, cos §).

2.2.2 Spectral representation

The system of equations (2.10)-(2.12) can be solved by expanding the variables u, ¢

and T into a series of weighted basis functions:

u(y,p,t) = Zuz t)F (y, ) (2.13)
Yy, p,t) = Zdh HFY (y,p) (2.14)
T(y,p,t) = ZT t)F (y,p) (2.15)

where F* F? and F] represent the ith basis function for the fields u,v and T
respectively and w;,1; and T; are the weighting coefficients. Weighting coefficients
vary in time, while basis functions vary in space. Boundary conditions for the basis
functions assume that ¢y = 0 on the boundaries of the model domain, which are the
southern boundary 6 = —45°, the northern boundary 8 = 45°, the surface p = p, and
the top of the atmosphere p = p,. The zonal wind u = 0 on the lower boundary. With
this choice of the boundary conditions there is no mass flow through the boundaries.

With the complete set of basis functions any field can be reproduced. Substitution

of the Egs. (2.13)-(2.15) into the system of partial differential equations (2.10)-(2.12)
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converts it into an infinite number of ODEs. Since the goal was to construct a model
with the minimum number of ODEs, the basis set was truncated. The truncated basis
set was chosen based on the analysis of the u,1 and T fields generated by the Ames
GCM [HPB*93] with the aim of capturing the maximum variance of the system. It

will be shown later that the model mimics the GCM to a remarkable extent.

2.2.3 The truncated basis set

The zonal wind u and stream function 1 fields are divided into asymmetric and

symmetric parts (relative to the equator), so that u = @, + @, and ¥ = 1, + ¥, and

U, = ug(t)sinly(1+ cosmp')/2 (2.16)
s = us(t)(A — cosly)(1+ cosmp')/2 (2.17)
Yo = tho(t)sin 20y sin mp’ (2.18)
Yy = ,(t) coslysin myp' (2.19)

= To(t) + Tys(t) sinly + T, (t) cos mp' + T (t) cosly (2.20)

where

p = PP
| = ©/2D

m = ﬂ-/(ps _pt)

2D = r,7m/2 is the length of the model domain (—D < y < D) and A is an empirical
constant equal to 0.8. The value of A was chosen by comparing the structure of the
model’s zonal wind field to the one produced by the GCM.

Plots of the basis functions (2.16)-(2.20) are shown on Figs. 2.1, 2.2 and 2.3.
Meridional circulation is parallel to the contours of the stream function. The direction
of the flow is clockwise around negative values of ¢ and counterclockwise around

positive values of 1. 1, is positive when air rises in northern hemisphere. 1), is
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negative when air rises at the equator. Mean zonal winds blowing from west to east
(westerlies) are positive and winds blowing from east to west (easterlies) are negative.

The temperature field is made up of the average temperature 7,,, the horizon-
tal temperature difference 27}, between north and south, the vertical temperature
contrast 27T, between lower and upper atmosphere, and the equator-mid latitude tem-
perature difference T,,. T,, and T,,, are always positive. T, is positive when the
northern hemisphere is warmer than the southern hemisphere, and T, is negative
when the lower atmosphere is warmer than the upper atmosphere. The atmosphere
is convectively stable when the mean atmospheric lapse rate —d7/dz is smaller than
the adaibatic lapse rate I'y = g/c, [Hou86]. In a stable atmosphere, an air parcel
removed from its original position will tend to return to this position, while in an
unstable atmosphere it will tend to move away. For Mars, I, = 4.5 K/km [ZBH*92].
From Fig. 2.3 it appears that the value of T} corresponding to the adiabatic lapse rate
in the lower atmosphere is ~ —35 K. However, in the LOM, which deals with vari-
ables and parameters that are averaged throughout the atmosphere, the value of T
corresponding to the adiabatic lapse rate corresponds to the value of —c47,, ~ —45
K. Thus a value of T, = —35 K is convectively stable.

The radiative equilibrium temperature 7¢ (Eq. 2.6) is expanded in the same way

as T

T = Tg(t)+ Tr,(t)sinly + T (t) cosmp + Tg, (t) cosly (2.21)

2.3 Dust Transport
The transport of dust is governed by the continuity equation:

dg  Og dq
5 = Uay wap+5 L (2.22)

where ¢ is the dust mixing ratio, and S and L represent sources and sinks of dust,

respectively.
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For the dust transport equation, the atmosphere is divided into four domains as
shown on Fig. 2.4. The average optical depths of the atmospheric domains a, b, ¢

and d are denoted by 7,, 7y, 7. and 74, respectively. The average optical depth is

T =0" //Zq cos Odpdy (2.23)

where 7 denotes any of the subscripts a,b,c or d. The proportionality coefficient
o* is related to the extinction cross section for the dust (assumed constant). The
integration extends over the domain ¢. Optical depths 7; are used as variables in the
model. ¢* and ¢ are only used for consistency in the derivation of the dust transport
equation.

There are two reasons for using “boxes” to describe the atmospheric dust distri-
bution, rather than using smooth basis functions as in (2.16)-(2.20). First, it allows
one to avoid difficulties in representing surface dust sources with the truncated basis
set. When the dust distribution is represented by a truncated set of basis functions,
injection of dust into the atmosphere at the lower boundary will have an immediate
effect on the dust distribution everywhere in the atmosphere, since the basis functions
are continuous throughout the model domain. With the “boxed” representation, the
surface dust source affects only the lower atmosphere. Second, the “boxed” represen-
tation conserves the amount of dust during advection, while advection of dust in the
truncated spectral model may lead to occurrences of negative dust in some parts of
the atmosphere.

In the “boxed” representation, the sources of dust exist at the lower boundary of
the cells ¢ and d, representing the surface dust source during dust storm activity, and
at the upper boundary of the same cells, representing dust gravitationally settling
from the cells directly above. Specifics of the surface dust source modeling will be
addressed in Section 2.5. The removal of dust from the cells was assumed to be due
to gravitational settling only. For simplicity it was modeled as

q

L=-=+ (2.24)
tq
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where t4 is dust fallout time, constant throughout the atmosphere. Numerical values
of parameters like £; are discussed in Section 2.8. Such an approximation of the
fallout process assumes strong vertical mixing [Con75].
Rewriting the continuity equation (2.22) in terms of the average optical depths of

the corresponding domains, one obtains:

O _ _Ta + a5 (1, — 1) (1 = &) + avhs(1p — 74)8 (2.25)
ot 14
% = —E —+ a'(/_Js(Tb —_ Ta)(l — 6) + a'(/_Js(Tc - Tb)(s (226)
ot tq
Oc T ™y (=)= 0)+ ath(ra— )0+ 50+ 50 (227)
ot tqg tg
O T Ty o (rg = 1)(1 = 6) + ab(ra — 1)6 + (1 — 6) + 5, (2.28)
ot tqg 14
where
0, s> 0
MRS
1, 4, <0,

a = gv/2/psr?m, s is an interactive dust source at the surface, s, and s, are the surface
dust sources that are independent of the circulation. The details of the derivation
can be found in Appendix A.

In Egs. (2.25)-(2.28) the terms 7;/t4 represent dust losses due to gravitational
settling (negative terms) or sources of dust from the cell directly above (positive
terms). Terms multiplied by 1 — § represent advection of dust by air rising in the SH,
while terms multiplied by ¢ represent advection of dust by air rising in the NH. s,
and s, represent surface dust sources that are independant of global winds, such as
dust devils or local storms. The interactive dust source s is the source for GDSs. It
exists only in the hemisphere where air is rising, to account for the observation that
during the expansion phase of a GDS dust is entrained into a rising branch of the

circuation and carried to high altitudes [LBY 172, AL78].
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2.4 Effect of Dust on the Heating Rate

To determine the effects of dust on the heating rate, one can use calculations of the
equilibrium temperature fields ([HLP82], Fig. 8-10, 12) which are for the single sea-
son Ly ~ 270° (where aerocentric longitude L, is used as a measure of martian season,
L, = 270° being northern winter solstice) and for uniformly distributed atmospheric
dust with total optical depths 7 ranging from 0 to 5. These calculations are used
to determine the functional dependence of the equilibrium atmospheric temperatures
in different regions of the atmosphere (a, b, ¢ and d in Fig. 2.4) on the amount of
the atmospheric dust. The seasonal dependence is determined using a simple radia-
tive model. The desired equilibrium temperatures for nonuniform dust distributions
and different seasons are then calculated as a product of the function describing the
dependence on the atmospheric dust amount and the seasonally varying equilibrium
temperatures for clear atmosphere. The dependence of the radiative damping time
t. on dust optical depth is approximated based on the net heating calculations from
[PHSL90].

In general, the effect of dust in the atmosphere is to shorten the radiative damping

. . ¢
time, to increase T,

T:,, |TE,| and to decrease the lapse rate Tf. The latter effect
levels off for high dust amounts. The seasonal change of Tf,, T<,., |TY,| and T¢
is about 11% by absolute value between perihelion (L, ~ 251°) and aphelion. In
addition, T, term changes sign as the subsolar point switches between the southern
and the northern hemispheres.

The details of the heating rate calculation can be found in Appendix B. Compar-
isons of the LOM’s atmospheric fields with the GCM results for different seasons and
dust loadings show considerable similarity (see Section 2.9). This lends credence to

the method by which the heating was calculated.
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2.5 Surface dust source

Once the surface winds exceed a certain threshold speed, sand-size particles become
mobilized by winds and are transported by saltation [Bagdl, GI85]. The surface
friction speed U* is defined as

U*=1/T/p (2.29)

where 7 is surface shear stress and p is fluid density. U* can be related to the free

stream velocity U by the following relationship [Sch55]:
U =UCy (2.30)

where Cf is a skin-friction coefficient. The saltation threshold speed Uy is the “lowest
friction speed at which continuous motion of grains is possible” [GI85]. It depends on
the particle size, increasing with size for large particles (due to increase in mass), and
decreasing with size for smaller particles (due to aerodynamic effects and interparti-
cle forces) [GWP*76]. Thus the minimum threshold velocity is for an intermediate
particle size. Figure 2.5 shows the threshold friction velocity dependence on particle
size calculated for conditions appropriate for Mars. The curve on Fig. 2.5 was calcu-
lated using the formula given in [IW82] with particle density p, = 2.65 - 10° kg/m?,
atmospheric density p, = 2- 1072 kg/m?® and viscosity v = 11.19 - 10* m?/s. The
threshold friction velocity for the most easily moved particles (~ 100 pm) is about 1.5
m/s. The threshold friction velocity needed to raise dust particles (1-20 um) observed
in suspension during a GDS is much greater — ~ 4 ms~!. Observations by the VLs
suggest that surface winds are not strong enough to carry dust particles directly into
suspension. Instead, the impact of saltating sand particles on the surface can lead to
the raising and suspension of the dust particles [AGM 183, RSL81].

For the dust source s in Egs. (2.25)-(2.28) the formula for the horizontal particle
flux derived in [Whi79] was used:

G = 5U**(1 — R)(1 + R?) (2.31)
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where GG is the horizontal flux of particles of a given size, s¢ is a model parameter,

and

R=U; /U,

where U* is the surface friction speed and U is the threshold surface friction speed.
The flux G is equal to zero when U* is below the threshold surface friction speed
U (R > 1) and tends to s,U*® as U* — oo (R — 0). Equation (2.31) is used to
calculate the vertical dust flux in the LOM since observations suggest that the vertical
flux is linearly proportional to the horizontal flux [SRF93]. The value of sq is a model
parameter and is discussed below.

The total flux s is then a sum over the size distribution of saltating particles

weighted by their areal abundance:

s = sgU*S / (1 - R)(1 + R?) dSra dD, (2.32)

P

where s is in units of optical depth per second, S, is the relative area covered by
particles of the diameter D,,

/ dS,e; dD, = 1

The intensity of the dust source s varies significantly depending on the particle
size distribution through the dependence on U;. Figure 2.6 shows the normalized
particle flux s/soU** for two size distributions. The solid line is for the most easily
moved particles covering the whole saltating area (Particle Size Distribution 1 or
PSD1). At the saltation threshold (R = 1) the normalized flux of particles is 0,
and at the limit of infinite speed (R = 0) the normalized flux is 1. The dashed line
corresponds to the case when particles of the sizes from 20 to 2000 pm cover equal
surfaces in saltating area (Particle Size Distribution 2 or PSD2). The intensity of
the source is much weaker for R close to 1, since only particles with threshold speed
close to the minimum threshold speed are going into saltation. As the surface friction
speed increases (R — 0) all particles become involved in the saltation process and the

normalized flux reaches its maximum (at R = 0.22). It is thus clear that the particle
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size distribution has a profound effect on the intensity of the source, especially for
friction velocities just above the threshold value.
Since the surface winds in the LOM are equal to zero, the surface friction speed
U* was assumed to be proportional to the free stream speed, the coefficient of pro-
portionality being absorbed by the parameter s;. As a proxy for the friction speed

the dimensionless quantity

v* =\ (e ) + (G + 1) (2.33)

was used. Here the overbar indicates normalization. The zonal winds were normalized
to the quantity (Qr,,/2) ~ 120 m s~ and the stream functions were normalized to

10 kg s~1. These normalization quantities were chosen somewhat arbitrarily so that

maximum values at clear conditions of the functions |u,| + |us| and |¢b,] + |15 are of
order 1. The zonal and meridional winds thus make approximately equal contributions
into U*, and the value of the dimensionless variable U* is of order 1. Since I want
dust storms to occur only when the wind is close to its maximum value, the threshold
friction speed U} is assumed to be a dimensionless parameter of order 1.

The amplitude of the dust source sy is assumed to be in units of optical depth
per second. For convenience, s and sy are scaled by unit optical depth and the
characteristic time scale 5. The dimensionless value of sg is used throughout the rest
of the thesis as a model parameter.

In this paragraph I show that for sy of order 1 the dust flux in the LOM during
a GDS is comparable to the constant dust flux used in the GCM to simulate a GDS
[MPH*95]. To convert the dimensionless dust flux s in the LOM to units of kg

1

m~2s7!, used in the GCM, the flux s is divided by the characteristic time scale %4

and by the extinction cross section for the dust o:

§=—" (2.34)

1

where 5 is flux in units of kg m=2s71, ¢ is in units of m? kg=! and s is given by Eq.
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(2.32) with dimensionless parameters s, U; and U*. The flux s during a GDS can be
estimated for by assuming U; ~ 1 and U* ~ 2U;. From Fig. 2.6 the dimensionless
flux is then s =~ sU*® &~ 508 for PSD1. The extinction cross section o can be
estimated as the ratio of the geometric cross section of the dust particle to its mass:

2
7er

=— P 2.35
? 4/3m R3p, (2:35)

where R, is particle radius and p, is particle density. Assuming R, ~ 10pm and
pp = 3-103% kg m™2 for silicate particles, o &~ 25 m* kg™'. Substituting the values for

s, 0 and tq = 25 sols (see Section 2.8) into Eq. (2.34) yields:

8
%095 .25-8.9 - 10"

S~

~ sol.4-10""kgm 257" (2.36)

The magnitude of the constant dust source used to simulate GDS in the GCM
[MPH*95] was 1.54 - 1077 kg m~2s~!. Thus, for the chosen scaling U} ~ 1 and
tq = 25 sols, the dust flux in the LOM is comparable to the dust flux in the GCM if
the dimensionless amplitude of the dust source sg is of order 1.

The dust source is turned on once the value of U* exceeds U;. The dust source
is then calculated each time step according to Eq. (2.31) and substituted into Egs.
(2.25)-(2.28).

2.6 Projection

The LOM is constructed by Galerkin projection of Egs. (2.10)-(2.12) and (2.25)-
(2.28) onto the truncated basis set (2.16)-(2.20). The resulting system is a set of 12
ODE:s for the model variables ug, s, Yo, Vs, Tav, Tnsy LTvy Tems Tar To, Te and 74. The
equations of the reduced model are given in Appendix C.

As in [Lor63] the truncated basis set is a set of trigonometric functions, chosen
for their simplicity. It is not a set of empirical orthogonal functions (EOF), that
are often used in construction of LOMs, so there is no guaranty that the resulting

LOM is the best approximation of the original model. However, comparison of the
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meteorological fields generated by LOM with the GCM simulations (see Section 2.9)

shows remarkable similarity, which justifies the choice of the truncated basis set.

2.7 Numerical Method

The model was integrated using a fourth order Runge Kutta scheme. The time
step of integration was fixed at 0.4185 of a sol (martian day). Simulations with the
time step reduced by a factor of 2 or 4 show no significant difference, except in the
initialization phase of the runs and in several special cases, when the model became
computationally unstable. The computational method failed when friction in the
model (governed by the parameter r in Egs. (2.10)-(2.12)) was chosen to be too
small or too large. The same sensitivity towards parameterized friction was noted in

previous models [HLP82].

2.8 Parameter Values

The parameters of the LOM are: r - parameterized friction, ¢, — radiative damping
time, t4 — dust fallout time, T}, — spatially averaged equilibrium temperature, T, —
half of the hemispheric equilibrium temperature difference, T,y — half of the equilib-
rium temperature contrast between lower and upper atmosphere, T¢  — equator-mid
latitude equilibrium temperature difference, sy, — amplitude of the dust source, U} —
threshold surface friction speed.

The value of the friction parameter r (or, conversely, of the frictional decay
time 1/7) was determined empirically by matching the LOM meteorological fields
to GCM results for clear conditions. The best results were achieved for 1/r = 5
sols. This value of r is consistent with the values of parameterized friction used in
other models [HLP82]. Radiative damping time for clear conditions was taken to
be 2 sols [ZBH"92]. The dust fallout time was estimated by different authors from
observations of GDS decay and on theoretical grounds to be of the order of 60 sols

[Con75, PCF*79, HLP82]. Since in the model presented here ¢; represents the fallout
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time through half of the atmosphere, #; is equal to 30 sols. Note, that #; is the decay
time without circulation, while GDSs observations give the decay time affected by
circulation. The estimates of the values of the equilibrium temperature components
were obtained from analysis of the 2D GCM calculations of the radiative-convective
fields [HLP82]. Due to some ambiguity in determining the parameter values, a range
of values is given. The values of model parameters are: T, ~ 180 to 210 K, T}, ~ 10
to20 K, Tf ~ —25to —35 K, T%, ~ 1 to 3 K.

The parameters sy and U; are dimensionless and of order unity (see Section 2.5).
They were varied to achieve the desired result (i.e., GDSs or interannual variability),

and will be discussed later.

2.9 Comparison to GCM

The mass stream function, zonal wind and temperature fields produced by the LOM
were compared to the Ames GCM results for four seasons and for a range of optical
depths (7 = 0.3 — 5). The parameters of the LOM were tuned to fit GCM results.
In the simulations with constant dust loading, the interactive dust source s in the
LOM was turned off and constant values of 7,, 7, 7, and 7; were assumed. After the
set of parameters was established, the LOM with interactive dust source was used to
simulate a GDS and the results were again compared to the observations [CPH89].

It was possible to reproduce the GCM results reasonably well with one set of
parameters for all seasons, except for southern winter solstice (L;=90°) (see below
Section 2.9.3).

Results for southern fall equinox (L,=0°) and southern spring equinox (L,=180°)
are in general quite similar to each other both in the LOM and the GCM. Thus only

results for L,=0° are shown.

2.9.1 Southern summer solstice, L, = 270°, 7=0.3 -5

Figures 2.7-2.12 compare results of the LOM and GCM simulations for this season.
The model parameters are: 1/r = 5 sols, ¢, = 2 sols, T, = 195 K, T¢, = 15 K,



20

Ty = =35 K, T; = 2 K. Dust is uniformly distributed throughout the atmosphere.
Dust optical depth and distribution are not affected by the circulation. The figures
show meridional cross section of the meteorological fields of interest. The negative
values are shaded. The structure of the merdional circulation is shown on the upper
panel. It consists of one cross-equatorial Hadley cell with its rising branch in the SH
and descending branch in NH. The maximum value of the mass stream function is
close to —1.0 - 10! kgs~! for 7 = 0.3 and close to —1.5 - 10'® kgs=! for 7 = 5 in
the LOM (Figs. 2.7 and 2.11). The zonal winds and temperature fields are shown
on the middle and lower panels, respectively. The zonal winds are easterly (from the
east) in the SH and westerly (from the west) in the NH. The strength of the winds
increases with height in accordance with the thermal wind balance. There is a broad
easterly jet with a maximum at about 40°S and a westerly jet with a maximum at the
northern border of the model domain (consistent with the polar jet at ~ 60 — 70°N
in the GCM simulations - see Figs. 2.8, 2.10 and 2.12 reproduced from [HPB193]).
The magnitude of the easterly jet increases in the LOM from ~ 70 ms~! for 7 = 0.3
to ~ 100 ms~! for 7 = 5. The strongest westerlies in the NH in the LOM increase
from ~ 80 ms™! to ~ 120 ms~! for the same values of the optical depth. The
highest temperatures at this season occur near surface in SH (230-240 K). The lowest
temperatures are in the upper atmosphere above the NH (170-200 K). As the dust
loading increases, the temperatures become higher, the atmospheric static stability
increases and meridional temperature gradient becomes larger.

Although LOM fields show much less structure than the GCM fields, the overall
similarity is quite remarkable. The LOM reproduces reasonably well the location and
strength of the zonal jets, the strength, structure and width of the meridional Hadley
cell, and the structure of the temperature fields. The differences can be attributed
to the lower spatial resolution of the LOM, assumed flat topography and simplified
treatment of the effects of dust on atmospheric heating. Qualitatively, the LOM does
not reproduce the weak Hadley cell at high southern latitudes and the Ferrel cell at
high northern latitudes - because they are outside the model domain. And it does not

reproduce the surface westerly jet in the SH - because its scale is smaller than can
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be reproduced by the zonal winds basis functions. The sharp temperature gradient
near the polar cap is not reproduced by the LOM since the model domain does not
extend far enough into the winter hemisphere. Finally, the temperature increase in
the upper atmosphere in the NH (due to compressional heating in the descending
branch of the Hadley cell) is not seen in LOM simulation. Quantitatively, the LOM
matches quite well the strength of the Hadley cell (~ —1.0 - 10! kgs™! for 7 = 0.3
and ~ —1.5- 10! kgs™! for 7 = 5 for the GCM) and zonal jets (the magnitude of
the easterly jet in the GCM increases from 60 m s~! to 120 ms~! for 7 = 0.3 and
T = b, respectively, while maximum westerlies at the boundary of the LOM domain
increase from ~ 80 ms™' to ~ 100 ms~! for the GCM) (Figs. 2.8 and 2.12). The
LOM overestimates the temperatures of the upper atmosphere by about 20 K (lowest
temperatures within the LOM domain in the GCM are 170 and 200 K, for 7 = 0.3

and 7 = 5, respectively).

2.9.2 Southern fall equinox, L; =0°, 7 =0.3

Zonal winds, temperatures and stream function for southern fall equinox are shown
on Fig. 2.13 and Fig. 2.14. The large cross-equatorial Hadley cell of the solsticial
circulation is replaced by two weak Hadley cells of comparable strength (7-108 kg s™!
in SH and —5 - 10® kgs™' in NH in the LOM, Fig. 2.13) with a common equatorial
rising branch. The pattern of the zonal winds is more symmetrical with a weak (~5
m s~!) easterly jet above the equator and comparable magnitude westerlies in SH
and NH (~ 30 m s7') in the LOM. The maxima of the westerly jets are outside the
model domain at ~ 60°S and ~ 60°N [HPB*93]. The agreement with the GCM
results is again quite remarkable. The LOM reproduces quite well the structure and
strength of the westerlies in SH and NH (~ 60 ms™! and ~ 30 ms~! in the GCM,
respectively), and the width and strength of both Hadley cells (~ 10 - 10® kgs™' in
SH and ~ —5 - 10® kgs™' in NH for the GCM) (Fig. 2.14). The temperature field
captures the overall weaker latitudinal temperature gradient, although the middle

atmosphere in the LOM is colder than in the GCM (the 180 K temperature contour
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is at ~ 15 km in the LOM and at ~ 25 in the GCM).

2.9.3 Southern winter solstice, L, = 90°, 7 = 0.3

The results for the southern winter solstice simulation are shown on Fig. 2.15 and
Fig. 2.16. The general structure of the global meteorological fields at southern
winter solstice is similar to that at southern summer solstice except for slightly weaker
winds and lower temperatures. However, there is a significant discrepancy between
the strength of the stream functions in the LOM and GCM simulations. In the
GCM simulation the intensity of the Hadley circulation is about a factor of 2 greater
during southern summer than during southern winter. In the LOM simulation the
difference is smaller - of the order of 30%. The discrepancy is probably due to factors
not taken into account by the LOM, such as topography or eddy and wave activity
[ZBH*92]. However, the GCM result for southern winter can be reproduced if the
friction parameter r is reduced by a factor of 2 (see Fig. 2.17). Thus, it seems
reasonable to suggest that the friction parameter is not a constant, but rather a
seasonally variable parameter. If this variance is incorporated into the model, every

season can be reproduced by LOM with only one set of parameters.

2.9.4 Dust storm

Finally, an experiment with an interactive dust source was performed, and the dust
optical depth variation was compared to the VLs observations of the GDS in 1977
[CPH89]. A GDS develops spontaneously in the model for sufficiently small U} and
sufficiently large sq. The amplitude of the dust source and threshold friction speed
were varied to achieve the best fit to the observations. Accordingly, the threshold
friction speed and amplitude of the dust source were U = 1 and sy = 4.5 in this
experiment. The amplitude of the dust source was chosen so that the maximum
optical depth of the storm is above the lower limit on optical depth measured at the
VL1 site. The maximum optical depth reached during a GDS scales approximately

linearly with the magnitude of the dust source sy for this parameter range. At the
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same time, the magnitude of the source in the LOM is comparable to the magnitude
of the source in the GCM [MPH"95] (see Section 2.5). For this particular choice of
Uy and syp, GDSs only occur in the SH near perihelion. Two different particle size
distributions, described in Section 2.5, were used. The results are similar, thus only
results for the PSD2 are shown. Figure 2.18 compares optical depth changes in the
NH simulated by the LOM with measurements at the VL1 and VL2 sites (Clb89).
The horizontal axis represents time measured in sols from perihelion (L, &~ 250°).
Observations are indicated by x’s, while the LOM simulation is depicted by a solid
line. Note that the measurements during the maxima of the dust storms (¢ &~ —100 to
0 sols and t =~ 25 to 150 sols) are lower limits. The VL1 and VL2 measurements are
at 0 =~ 23°N and 6 ~ 48°N respectively, while the LOM gives optical depth averaged
over the NH. Thus, given the progression of the storm from the south to the north,
and the position of the VL1 in the middle of the LOM NH domain, the data for VL1
might be more suitable for comparison with the LOM.

The storm starts near perihelion, which corresponds to the time of maximum
insolation. At the beginning of the storm, the optical depth in the NH increases
sharply as dust is transported from the SH into the NH. At this initial stage, increased
heating due to atmospheric dust in the SH creates a large meridional temperature
gradient. The peak value of the stream function increases by a factor of ~ 3 relative
to its value at the same season in clear conditions, and reaches —2.4-101% kg s~1. The
circulation time, calculated as the atmospheric mass divided by the average mass
flux, is of the order of 6 sols, which compares very well with the timescale of the dust
storm spreading ~10 sols [Mar74, Tho79].

As the storms progresses, dust optical depth reaches its maximum of ~4 in the
NH (for comparison, the maximum 7 in SH is ~10; this two to one ratio of the
maximum optical depth reached in SH and NH compares very well with the 3D GCM
simulations of the GDS [MHTP93]). The meridional temperature gradient and the
meridional and zonal winds all decrease, because both hemispheres are now equally
dusty. The decrease of the winds is also due to a change in planetary orbital position

and the corresponding decrease in solar insolation. The dust input diminishes and
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GDS enters into the decay phase. The observed dust storm decay continued until
the dust optical depth reached value of ~1, at which point the decay slowed down
[PCF*79]. It is suggested that this change in the rate of decay is due to the triggering
of the local dust raising activity, which maintains the global dust haze at the level
of 7 = 0.3 — 0.7. Since no such process was included in the LOM, the decay of the
simulated storm continued until 7 = 0. Nevertheless, the duration of the simulated
and observed storms compares very well.

It is evident from the Fig. 2.18 that LOM simulates very well the second GDS.
It does not do as well simulating the first GDS. If the value of the threshold friction
speed is lowered from U; = 1.0 to U; = 0.5 in an effort to shift the timing of the
storm, GDSs start to occur in the NH during northern summer. The atmosphere
becomes permanently dusty and the dust source remains active for the better part
of the year. Two dust storms occur every year, one in the SH and one in the NH,
and their durations lengthen with decreasing U;. Even if the interactive dust source
is turned off in the NH, only one long storm occurs in the SH. It can be made to
start at the time of the first storm of 1977, but it develops slower than the observed
storm, picks up around perihelion and then slowly decays with the decay time that
is much larger then the observed one. Apparently, some kind of a negative feedback
between dust source and circulation is needed to shut down the dust source shortly
after the start of the first storm, so that two dust storms are possible during southern
summer. Some of the mechanisms that were proposed for dust storm decay include:
redistribution of dust or saltating particles on the surface [ZBH"92], increased static
stability that suppresses surface winds [PCF*79], scavenging of dust by condensing
water or COy [PCF*79] and passage through a resonant state of the atmosphere
[Ti188]. No such mechanisms are present in the LOM. The GDS simulated by the
LOM does not need a special mechanism for the dust source to shut down since the
intensity of the source decreases as the circulation weakens with the advent of autumn

in the SH.
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Table 2.1: Coefficients of the functions f;(7;).

g S
0.23 | 2.8
0.23 | 2.8
0.08 | 2.6
0.08 | 2.6
0.6 | 1.0

N A0 O Q.
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Figure 2.1: Contour plots of the basis functions 1), and 1), corresponding to hypo-
thetical values of ¢y, = —120 and of ¥, = —10. Negative values are shaded. Flow in
the meridional plane is parallel to stream function contours. The direction of the flow
is clockwise around negative values and counterclockwise around positive values.
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Figure 2.5: Threshold friction speed prediction for Mars according to [[W82].
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Figure 2.7: LOM simulation of the southern summer solstice. (a) Mass stream func-
tion in units of 10® kgs™!, (b) zonal winds (ms™') and (c) temperatures (K) for
southern summer solstice, L, = 270°, 7 = 0.3.
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35

MEAN STREAM FUNCTION (Kg/s)
T

0
LATITUDE, deg
ZONAL WINDS (m/s)
T

S

o
AN
Slo
60 —
Hoh—
=

=50 0 50
LATITUDE, deg
TEMPERATURE (K)
T T T T T
‘ N
N} o
N — o
N o
o
1 1 1
-50 0 50
LATITUDE, deg



HEICHT, km

HEIGHT, km

HEIGHT, km

40

30

20

30

40

30

36

MEAN STREAM FUNCTION
T

[
LATITUDE, deg

ZONAL WINDS (m /s)
- FFAT-F T

/OO
S~
80 -
60 —

1 o - " " " " — 1
=50 [ 50
LATITUDE, deq
TEMPERATURE (K)

T T T
N
o

220

1 " " " " 1 " " " " 1

Figure 2.11:

-50 0 50
LATITUDE, deg

Same as Fig. 2.7 but for 7 = 5.



20

HEIGHT, km

40

HEIGHT, km

40—

HEIGHT, km

Figure 2.12: Same as Fig. 2.8 but for 7 =5 ([HPB193], Figs. 6, 8).
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Figure 2.15: Same as Fig. 2.7 but for southern winter solstice, L, = 90°, 7 = 0.3.



41

MEAN STREAM FUNCTION (Kg/s)
T

50 T T 3
E 3 E
40— —
E S E
- —
)E( = |
s E =
s £ =
g £ =
g E =
20— -
E ) E
10— o o) -
E I3 E
E LL& —— — =
ol " " " 1 1 - |
-50 0 50
LATITUDE, deg
ZONAL WINDS (m/s)
50 T T T 3
= ‘ | ‘ ' | ‘ o 3
E o o lo . 3
40— o © o N [l | |
E © on Yo BN | |
E ~ “ | o1 w o 3
E o O =
= O =
s~ N —
£ E I =
: E R E
Q = . . N . |
g £ I =
¥ E Lo =
20— o —
10— Lo e —
D: " " " 1 " " " " Il 1 " " " =
=50 0 50
LATITUDE, deg

TEMPERATURE (K)
. ; ¥

a0f— —

%0

HEIGHT, km
3 3
T ‘ HHHH“HI
H“HHHH“HX

E — 160
B —170 — E
E — [ E
g 180 190 500 E

o 1 1 1

-50 0 50
LATITUDE, deg

Figure 2.16: Same as Fig. 2.8 but for southern winter solstice, L, = 85° — 107°,
7= 0.3 (([HPB*93], Figs. 9, 10).
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Chapter 3 Analogy with the Lorenz
System

3.1 Introduction

The LOM described in Chapter 2 has 12 variables and 9 parameters. The model is
too complex to be analyzed by any means other than numerical. However, the part of
the model describing atmospheric dynamics (i.e., the LOM uncoupled from the dust)
can be further simplified and analyzed analytically. The resulting model is a system
of three ODEs that links model variables v;, T;,; and T,. This system is the famous
Lorenz system [Lor63] with an additional seasonal forcing term.

This result is not very surprising since the original Lorenz system described
Rayleigh-Bénard convection, and the Hadley cell is just a huge convection cell (in
the first approximation). The very eminence of the Lorenz system is based on its ap-
plicability towards climate research [Lor63]. The solutions of the system are known
to exhibit chaotic behavior. In the context of the evolution of the climate system
this means that small variations in initial conditions can over time lead to significant
differences in final states of the system. For Mars, this may mean a difference between
years with and without a GDS.

The Lorenz system has been extensively studied [Spa82] and modified to include
noise [Fow89], time varying parameters [AHL85, SWB91| and external forcing [FZ95]
to better approximate real climate systems. External forcing, for example, may rep-
resent the annual or daily cycle in the thermal forcing of the atmosphere. Addition
of the external forcing can lead to suppression and creation of chaos [FZ95], depend-
ing on model parameters and the amplitude and period of the forcing. However, the
modification of the Lorenz system derived in the next Section has not been previously

described in the literature. The forcing term is added to a different equation, which
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changes the symmetry of the system. Qualitative analysis of the parameter space and
numerical results will be presented. This analysis can be used as a rough guide to

the properties of the full LOM.

3.2 Reduction of the Model

The following derivation should not be viewed as a rigorous one, but rather as an
easy way to simplify the model, which will be later validated numerically.

With certain assumptions, the LOM reduces to a set of 3 equations in the 3
variables v,, T, and T,. Equation C.1 becomes a balance between two quanti-
ties (1) the sum of the zonal Coriolis and centrifugal forces on the meridional wind
(a11 X2 X4—0a12X4) and (2) frictional drug on the zonal wind u, (—¢; X1). Equation C.4
becomes an equation for the rate of increase of the meridional circulation ), where
the forcing is proportional to the interhemispheric temperature difference T, (a43Xs)-
Equations C.6 and C.7 become equations for the rate of change of the interhemispheric
temperature difference T,, and vertical temperature difference T, respectively, due
to advection of heat by the meridional circulation [—ag; X4(X7 + ¢4 X5) and a7 X4 X
and forcing by diabatic heating [—co(Xg — F2) and —co( X7 — F3)].

The assumptions made in the derivation are: the circulation timescale associated
with 1), is much longer than the timescale of the frictional process 1/r and of the
radiative cooling £,; the zonal Coriolis force is much larger than the centrifugal force;
Ter, is much smaller than Ty,; Ou,/0t =~ 0; and 9T¢/0t =~ 0 . Since the radiative
damping time is short, T, was used as a proxy for 7,,. Numerical simulations show
that these approximations are valid if 2 < 1/7 < 50 sols and ¢, < 50 sols.

The resulting system can be written as

X = —6X+6Y (3.1)
= Y -XZ+Xi+F (3.2)

= —Z+XY (3.3)
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where a dot denotes a derivative with respect to the dimensionless time ¢’ = t/t,, and

X, Y and Z are dimensionless model variables:
X =,/ 0, Y =T,,/T, Z = (T, - T%)/T.

The scaling coeflicients are:

U = ¢¥/a=1.7p,r2 /gt

~
I

(cf + a12a41) Tcy/aagze; = 0.9(r* +0.16 Q?)r2 H/rt, Rh

where a = (ag; +ar)/2, ¥ and T are the normalization coefficients of the LOM, and
indexed coefficients are the coefficients of the LOM (see Appendix C). For typical
martian conditions and 7 not too small (1/7 of the order of several sols), ¥ ~ 2.2 -
10'°/t, kg s~!, where t, is in sols, and T = 11/t,r K, where t, is in sols and 1/r is in
sols.

Parameters of the model are the seasonal forcing F', 6 and 7:

F = T/T

Qp
I

(cf + a12a41) [eice = (r® 4+ 0.16 Q)¢ /r

3
Il

—(Tf + ¢4TE) JT = — (Tf +0.24T%) /T

For parameter values used in Chapter 2, 6 =~ 65, 7 =~ —0.5, F' = 0.55. Since T}, and
T¢ are seasonally dependent, the parameter 7 changes slowly with time. However,
since Ty, and T)? change “in phase,” the time dependence of the parameter 7 is very
weak and for practical reasons it can be assumed constant.

Except for the additional term F in the Y equation, the system of equations
(3.1)-(3.3) is the Lorenz system [Lor63] with his parameter b = 1. The X equation
states that the intensity of the Hadley circulation is governed by dissipation (—&X)
and forcing by the horizontal temperature gradient (6Y"). The parameter 6 defines

the dynamical response rate of the system. For & large the system responds to
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changes almost immidiately compared to the timescale of radiative damping and the
forcing F'. Evolution of the horizontal temperature gradient Y is described by the Y
equation. Changes in Y are due to radiative damping (—Y’), advection (—X Z + X7)
and seasonal forcing F. The advection term represents advection of the quantity
Z — 7 ~ T, + ¢y Ty, by the scaled circulation X. The quantity Z — 7 can be viewed
as the scaled atmospheric stability with T, (T, < 0) representing the temperature
change associated with the mean lapse rate and the quantity ¢, 7,, representing the
temperature change associated with the adiabatic lapse rate (¢; Ty ~ T'oH =~ 50
K, where T' is adiabatic lapse rate and H is scale height). The Y equation thus
represents a scaled version of the energy balance equation of the nearly inviscid Hadley
circulation theory [HH80]. Finally, the Z equation states that changes in the scaled
vertical temperature gradient Z are due to radiative damping (—Z) and advection of

the horizontal temperature gradient (XY).

3.3 Parameter Space Analysis

Because the system of equations (3.1)-(3.3) depends on time explicitly — via the
seasonal forcing term F'(t), — it belongs to a different class from the original Lorenz
system — the nonautonomous systems. The boundedness of the trajectories can be
proven in much the same way as in [FZ95]. Furthermore, it is obvious that dissipation
and periodic forcing prevent the existence of stationary points or completely unstable
periodic orbits. Again, in much the same way as in [FZ95], it can be proven that
the only attracting sets that can be found for Egs. (3.1)-(3.3) are periodic orbits and

strange attractors.

3.3.1 Constant forcing

The stability of the solution X, Y, Z of the system (3.1)-(3.3) can be formally analyzed
by assuming constant F' and considering the behavior of small perturbations of the
steady state solution. Experience shows that conclusions made about parameter

domains found in this way are applicable to an extent to periodically forced systems,
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because the system’s behavior differs in each domain [FZ95]. In addition, for the
parameter values appropriate for Mars the response time of the system is much shorter
than the year, so F' is quasi-steady.

The characteristic equation of the constant F system (3.1)-(3.3) is

N4 64+2N+14602-7)+X*(1+6)A+6[14+3X*—7]=0 (3.4)

where )\ is the Lyapunov exponent. The Lyapunov exponent describes the rate of
growth (decay) of small disturbance of the initial condition. X in Eq. (3.4) is the
steady state solution of the Egs. (3.1)-(3.3):

= X(X*+1-7) (3.5)
= X (3.6)
Z = X? (3.7)

The solution is given in term of X, rather than in terms of F for the sake of simplicity.
Equation 3.5 can be solved analytically to give X (F'), but the result will be described
by a complex formula.

Solutions of Eq. (3.4) depend on the parameters &, 7 and on the forcing F.
Depending on the values of these parameters, the solutions of the Egs. (3.1)-(3.3)
can be stable or unstable. The following qualitative analysis of the parameter space
is for 6 > 1, for the sake of comparison with the LOM described in the previous
Chapter.

Graphic representation of the Eq. (3.5) is given on Fig. 3.1. Steady state solutions
are given by intersection of the line F' = const and the curve F(X). The solid
curve is for 7 = —0.5 (corresponding to parameter values used in Chapter 2 and
also representative of the solutions with # < 1) and the dashed curve is for 7+ = 3
(representative of the solutions with # > 1). It is clear from Fig. 3.1 that the system

(3.1)-(3.3) has only one steady state solution for 7 < 1 (solid curve) for any given F,
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and three solutions for 7 > 1 (dashed curve) and F. < F < F;, where

2 (7 —1\**

are the local extrema of the dashed curve. Letters A, D mark regions of stability and
B, C' mark boundaries of the region of instability on the dashed curve.

Analysis of the solutions of Eq. (3.4) shows that for 7 < 1 it has three roots with
negative real parts, and the solution given by Egs. (3.5)-(3.7) is always stable.

If # is increased above 1, one of the roots has positive real part for B < X < C.
For 7 slightly above 1, B and C correspond to the local extrema of the dashed curve
on Fig. 3.1. For larger #, B moves along the curve towards more negative X’s and C'
moves towards more positive X’s. Numerical integration of the system (3.1)-(3.3) with
constant forcing shows that solutions within this region are unstable and the system
quickly switches to the stable branch of the curve (to branch A for B < X < C and
F <0 and to branch D for F' > 0).

For # > 7., where 7..;; is the original Lorenz critical value of 7 for the onset of

unsteady convection (with b = 1):
Perit = 0(0 +4)(0 —2)7"

Eq. (3.4) possesses complex roots in the vicinity of points B and C. For B < X < C
the real parts of those roots are positive and solutions oscillate and grow with time.
Numerical experiments show that the system (3.1)-(3.3) with constant forcing exhibits
aperiodic behavior for sufficiently small F' and # > 7. Figure 3.2 illustrates the
behavior of the system in this regime. The figure shows a time series of the model
variable X for the first 80 sols of simulation, corresponding to 2,000 iterations. The
model parameters are: 6 = 10, # = 25 and F' = 0.9. The critical value of 7 in this
case is Ferip = 17.5, hence 7 > 7..4. The variable X, as well as the model variables Y
and Z (not shown), undergo seemingly chaotic oscillations. Recall, however, that the

parameter values used in Chapter 2 give 7 =~ —0.5.
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3.3.2 Periodic forcing

When the external forcing F' is periodic, the behavior of the system (3.1)-(3.3) de-
pends on the frequency of the forcing. The response of the system can be changed
significantly (compared to the case of constant F') if the forcing frequency is near
the system’s eigenfrequency or its multiples [FZ95]. Here analysis is restricted to
the forcing with the annual frequency. It can be expected that the frequency of the
forcing will not have a noticable effect on the behavior of the model, since it is much
lower than the frequency of the model’s free oscillations (see Fig. 3.2).

For # < 1 the system remains stable under the periodic forcing. The state of the
system, which can be represented by a point on (F, X) plane, follows the forcing F'
along the curve F'(X) (solid curve on Fig. 3.1). The solid curve thus represents the
trajectory of the state of system on the (F, X) plane.

For 1 < # < 7.4t an interesting phenomenon is observed in the behavior of the
system. The state of the system again can be found on or near the curve F(X)
for X < B and X > C. However, as the system approaches the point B from the
left or point C from the right, it switches to the stable branch — to D from the
vicinity of B and to A from the vicinity of C'. This kind of behavior of the system is
illustrated on Fig. 3.3 (compare to Fig. 3.1). The dotted curve represents the steady
state solutions of Egs. (3.1)-(3.3) for 6 = 65, # = 3. The solid curve represents
the trajectory of the state of the system in the (F, X) plane calculated for F' = 1.6
and annual frequency. The time progression is clockwise along the solid curve. As
the system switches between branches, it exhibits damped oscillations with frequency
higher than the annual frequency. The behavior of the system, however, is periodic.

Another interesting phenomenon, characteristic of the parameter regime 7 > 1,
occurs when the amplitude of the forcing F is smaller than F, = —F_ (Eq. (3.8)). In
this case, depending on the initial state of the system, it will remain on either branch
A or D, without switching to the other branch every season. Physically, this would
mean that the same hemisphere is always warmer than the other, and air continues

to rise in the same hemisphere, despite the normal progression of the seasons.
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For # > 7. and for small F', chaos persists in the system. For larger F', mixed
behavior is observed — periodic oscillations near the extrema of F'(¢) and chaos near
F(t) =~ 0. An example of such mixed behavior is shown on Fig. 3.4. The figure shows
time series of the model variable X (rapidly oscillationg curve) overlaped on the F'(¢)
(smooth curve) for 6 = 10, 7 = 25 and F = 5. The same simulation with constant
forcing produces a stable solution.

The above analysis of the parameter space is by no means complete. However,
the results agree well with similar studies [FZ95] and allow one to make a number of

conclusions regarding the behavior of the LOM.

3.4 Behavior of the Uncoupled LOM

To validate the derivation of the simplified model (3.1)-(3.3), its results were com-
pared to results of the full LOM without dust (uncoupled LOM). Figure 3.5 shows
plots of time series of the stream function v, and of the temperatures 7,, and —T,
calculated with two models with parameter values used in Chapter 2. Solid lines
indicate calculations with Egs. (3.1)-(3.3) and dashed lines indicate calculations with
the uncoupled LOM. The time series start at ¢ = 0.75 martian year to exclude the
spin-up oscillations at the start of the run. A year starts at perihelion (L, =~ 251°).
Negative values of 1, correspond to air rising in the SH and positive values correspond
to air rising in the NH. Negative values of T;,; correspond to warmer SH and positive
values correspond to warmer NH.

As can be seen from the figure, the Lorenz system approximates the LOM quite
well. The biggest discrepancy is during the peak of southern summer and the peak
of northern summer. The simplified model tends to overestimate the intensity of the
circulation compared to the LOM during this period by ~ 10%. The discrepancy
between temperatures is much smaller — of the order of a percent. Thus, the results
of the analysis of Section 3.3 can be extended to the uncoupled LOM. The behavior
of the coupled LOM will be addressed in Part II of the thesis.

The system of Egs. (3.1)-(3.3) allows one to analyze the subspace of solutions of
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the LOM pertaining to the variables ,, T,, and T,. It is, however, possible that
the rest of the model variables comprise a separate system that might possess chaotic
solutions in the relevant parameter range. The analysis of Section 3.3 thus must
be viewed as a rough guide to the properties of the uncoupled LOM. Theoretical
conclusions have to be validated by numerical calculations. If these conclusions are
valid for a number of parameters, they are probably valid everywhere in the parameter
space.

For the set of parameters appropriate for Mars, 6 = 65, 7 =~ —0.5, F' = 0.55. From
the above analysis it follows that the system is stable, since the control parameter
7 is much smaller than the critical value necessary for onset of instability for this &
(Ferit = 66.94). The critical value of the parameter 7 corresponds to the unrealistic
value of T}Y ~ —1889 K.

To place the model into a region in parameter space where instability is possible,
the parameter 7 has to be at least larger than 1. However, positive 7’s correspond
to atmospheric vertical temeprature gradients that are close to or larger than the
adiabatic lapse rate. This corresponds to an atmosphere that is neutral or unstable
throughout the year, which contradicts both the observations [LHS*79, SK77, MSS99|
and the GCM simulations [PHSL90, HPB*93|.

Numerical simulations support the conclusion that the uncoupled model is in a
stable regime. Figure 3.6 shows a 5 year run of the uncoupled LOM. The model
parameters are the same as in Chapter 2. The upper panel shows zonal winds u,
(dashed) and wu, (solid). The middle panel shows the mean stream functions 1), (solid)
and 1), (dashed). The lower panel shows temperatures T, (solid),—T, (dashed), Tey,
(dotted) and ¢4Ty, (dashed-dotted). It is clear that the behavior of the model is
periodic in this case. Low frequency oscillations of the model variables are purely
seasonal. Variations of the model parameters in the range appropriate for Mars do
not produce aperiodic behavior in the uncoupled model.

The analysis of the Section 3.3 can be extended to the special case of a dusty
atmosphere with uniform dust distribution. Assuming that atmospheric motions do

not affect the dust distribution, the dust can be accounted for by decreasing the
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radiative damping time ¢, and the equilibrium vertical temperature parameter 7T,
and increasing the equilibrium horizontal temperature parameter Ty,. The solutions
of the uncoupled system will remain stable, since the control parameter + would still
be much less than #..;. This circumstance may be used in the analysis of the decay
phase of the GDS, when the dust source is no longer active and the dust distribution
is more or less uniform.

Hence, it can be concluded that the behavior of the uncoupled LOM is stable for a
clear atmosphere and for the atmosphere with a static uniform dust distribution. The
behavior of the coupled LOM, however, can be expected to be more complex, since it
includes the interactive surface dust source and dynamically redistributes radiatively
active dust in the atmosphere. The behavior of the coupled LOM, as well as the LOM

under the influence of stochastic forcing, will be considered in Part II.
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Figure 3.1: Schematic diagram illustrating the stability of solutions of the system
(3.1)-(3.3) with constant forcing. The curves represent steady state solutions with
constant forcing F' for # = —0.5 (solid curve) and for # = 3 (dashed curve). Letters
B and C indicate boundaries of the unstable region, while A and D denote stable
regions on the dashed curve. For # < 1 all solutions are stable. For 1 < # < 7t
solutions are unstable for B < X < C, and stable for X < B and X > C. For
7 > Perir the system possesses aperiodic solutions. See text for details.
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Figure 3.2: Time series of the model variable X for the first 80 sols of integration
(2000 iterations). ¢ = 10, # = 25, F = 0.9.
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Dimensionless forcing, F

Dimensionless circulation, X

Figure 3.3: Behavior of the Lorenz system with periodic forcing for 1 < 7 < 7.
The dotted curve represents steady state solutions of the Egs. (3.1)-(3.3) for 6 = 65,
7 = 3. The solid curve represents trajectory of the state of the system in the (F, X)
plane calculated for F' = 1.6 and annual frequency.
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Figure 3.4: Time series of the model variable X for first 400 sols of integration (20000
iterations). & = 10, # = 25, F' = 5. The smooth curve is periodic forcing F'(t).
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Figure 3.5: Comparison of the stream function 9, and temperatures 7,, and -7,
calculated with the full LOM and using Egs. (3.1)-(3.3). The upper panel shows the
stream function 1, vs. time in units of 10® kgs~! calculated for one martian year
with the full LOM (solid line), and using analogy with the Lorenz system (dashed
line). A year starts at perihelion (L, = 251°). Negative values of 1, correspond to
air rising in SH and positive values correspond to air rising in NH. The lower panel
shows temperatures T}, and —7, calculated for one martian year with the full LOM
(solid line), and using analogy with the Lorenz system (dashed line). Negative values
of T,,s correspond to warmer SH and visa versa.
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Chapter 4 Conclusions

A simplified LOM of the martian global circulation was developed. The model is
capable of simulating zonal mean circulation and dust transport in the Hadley cell.
The model is constructed by Galerkin projection of the primitive equations onto the
truncated set of basis functions. The basis functions and the parameter values are
chosen based on the analysis of the results of the Ames GCM. The forcing of the model
is described by simplified physics based on Newtonian cooling and Rayleigh friction.
An interactive surface source of dust is included in the model. The dependence of
the dust source on the surface winds is modeled after wind tunnel experiments. The
LOM was validated by comparison to GCM simulations and observations.

By tuning the model parameters it was possible to reproduce very well the meteo-
rological fields generated by the Ames GCM for all seasons and various dust loadings,
except at southern winter solstice. However, by assuming that the frictional param-
eter r varies by a factor of 2 during the year, it was possible to reproduce the GCM
results for all seasons with one set of model parameters. Variations in the friction
parameter 7 can be attributed to seasonal changes in wave and eddy activity, or (and)
to drastic topographic difference between NH and SH.

The LOM reproduces reasonably well the location and strength of the zonal jets,
the strength, structure and width of the cross equatorial Hadley cell at solstice, of
two weaker Hadley cells at equinox, and the structure of the temperature fields.
Discrepancies can be attributed to the lower spatial resolution of the LOM, assumed
flat topography, and simplified treatment of the effects of dust on atmospheric heating.
Given the simplicity of the model the similarities are remarkable.

Experiments with interactive dust source compare very well with VL1 and VL2
observations of GDS. By tuning the threshold friction speed and amplitude of the
source it was possible to reproduce closely the time of occurrence, intensity and

duration of the second GDS of 1977. The first storm of 1977, which occurred before
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perihelion, could not be reproduced by the LOM just by lowering the threshold friction
speed. To reproduce two GDSs during southern summer, some kind of a negative
feedback mechanism is needed to turn off the dust source shortly after the start of
the first storm.

Finally, a subspace of the LOM parameter space was investigated analytically
using analogy with the Lorenz system with periodic forcing. The analysis indicates
that solutions of the LOM without dust transport or interactive source are stable in
the parameter range suitable for Mars. Numerical experiments with the uncoupled
LOM support this conclusion. The behavior of the coupled LOM, however, can be
expected to be more complex, since it includes the interactive surface dust source and
dynamically redistributes radiatively active dust in the atmosphere.

The LOM is suitable for conducting long term studies of the martian climate. The
results of the model’s application to the problem of interannual variability of GDS

are reported in Part II of the thesis.



