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Abstract

The main theme of this work is the development of a simplified model of the martian
circulation suitable for conducting computationally fast long term simulations of the
martian climate system. In particular, we are looking for causes of the irregular
occurrence of the martian global dust storms (GDSs). The low-order model (LOM)
is constructed by Galerkin projection of a 2D (zonally averaged) general circulation
model (GCM) onto a truncated set of basis functions. The resulting low-order model
consists of twelve coupled nonlinear ordinary differential equations (ODEs). The
forcing of the model is described by simplified physics based on Newtonian cooling
and Rayleigh friction. The atmosphere and surface are coupled: atmospheric heating
depends on the dustiness of the atmosphere, and the surface dust source depends
on the strength of the atmospheric winds. Parameters of the model are tuned to fit
output of the NASA Ames GCM.

The model performance is examined for different seasons and dust opacities and
it is found that the simulated mean meridional circulation and temperature fields
compare well with the more sophisticated GCM. The time of occurence and duration
of the global dust storms produced by the model compare well with observations
by Viking Landers (VLs). The intensity of the meridional circulation as simulated
by the LOM during northern summer is stronger than that predicted by the GCM.
The situation can be improved if the Rayleigh friction varies seasonally. The LOM
uncoupled from the dust source can be further simplified to form the Lorenz system
with forcing.

The model is applied to the problem of interannual variability of martian global
dust storms. Basic hypotheses of the intrinsic and of the extrinsic irregularity of
the martian climate system are tested. The intrinsic irregularity hypothesis implies
that the system under consideration is chaotic, so that small variations in initial

conditions make the behavior of the system essentially unpredictable. Different paths
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taken by the system in state space would correspond to years with and without a
GDS. The extrinsic irregularity hypothesis, on the other hand, implies that without
noise the system behaves periodically, but stochastic forcing of the system causes it
to behave irregularly. It is concluded that the observed variability of GDSs is more
easily explained by extrinsic irregularity. The stochastic forcing (“noise”) could be
provided by transient weather systems or some surface process, like size sorting or
redistribution of the sand particles in the “active” (i.e., storm generating) zones on the
surface. The results are very sensitive to the value of the saltation threshold, which
hints at the possible feedback between saltation threshold and dust storm activity.
According to this hypothesis, the saltation threshold has adjusted its value so that

dust storms are barely able to occur.
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