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SUMMARY

The effect produced by the reaction forces and
moments resulting from the fire of light and heavy calibre
rapid fire guns on the path of motion of a modern military
aircraft is discussed. This discussion is made on the
basis of the "exact" equations of motion as developed by
Bryan, Routh, and others, using the forms given in
Dr. C. B, killikan's notes on the dynamic stability of
the airplane. The formal solution is made by the use of
Heaviside operational calculus.,

For general use there 1s developed a nomogram
based on a series solution to the differential equations
of motion. The application of this nomogram is iliustrated
and it is shown to give an easy and rapid approximation
to the disturbance, and a sufficilently accurate one within
the time ranges recuired. Since the exact solution reguires
several hours and tine use of an experienced computer on a
computing mechine while the nomogram permits slide rule
computations and results in a solution within a few minutes,
its usefulness is readily apparent. The extension of the
methods used in this paper to disturbed lateral motions is

briefly ciscussed.



The present war has modified the design of
military aircraft in many particulars. Outstanding among
these is the increase of armament over anything heretofore
considered necessary. There has been an increase in the
number of machine guns from the usual two of the last war
to eight or twelve on modern pursuit and interceptor air-
planes. The calibre has been increased from size .20 to
.50, and rates of fire for all calibres including cannon
have been raised. Heavier types of craft such as attack
and patrol ships mount .20 calibre guns in batteries of
four, and turrets with batteries of two 20 mm, cannon, or
one &7 mm, or larger cannon are in existance or are belng
seriously contemplated.

The reaction forces arising from the Iiring of
these weapons are considerable, and are of a magnitude
sufficient to cause a disturbance in the flight path of
the airplane. It is then necessary to know the magnitude
of the disturbance for two purvoses: wihether a correction
can be made by the pilot in sufficient time so that the
aiming accurecy will not be impaired too greatly; for fire
prediction devices that will take into account the dis-

turbance in the flight path.



It is generally agreed that the reaction tine
of the average pilot is somethiug oi the order of six-tenths
of a second., Hence the range of interest insofar as this
problem is concerned is from the instant at which firing
begins to a time U.¢ seconds later at which time it may
be presumed that the piliot corrects the motion of the air-
plane. It is evident that the quantities which are to be
investigated must be the angle through which the aircraft
has been rotated and the time rate of change of the angular
motion, since these cuantities wili determine the corrective
control on the part of the pilot and the error produced in
the aim, In the case of an ailrplane Iiring guns forward
only, it may be of interest to determine the deceleration
and final velocity. Thils is of acadenric interest only
since the aim will not be impaired i1f tihe reaction forces
pass through the airplane center of gravity.

In order to calculate the motion of the airplane
under the disturbance produced by the gunfire, it i1s then
necessary to know the airplane dynamic characteristics and
the forces produced by the fire and the time duration of

the latter.



REACTIVN FONCES DUE TO GULNFIKE

A comparcetive table of characteristics of air-
craft machinesguns and aircraft cannon is given in
reference 4, While the forces resulting from cannon fire
are given, those corresponding to machine gun fire are not.
Sufficient data is available, however, so that tinese forces

can be computed. Thus, for the 37 mm, cannon the observed

data are:
bullet weight 1.10 pounds
muzzle velocity 1250 feet per second
reaction force 1000 pounds
rate of fire 125 per minute

From the relations for impulse and momentum, the

time duration of the explosion may be calculated:

1.1 x 1250
t = OV = 82.2 = .0426 seconds
f 1000

4 = V = 1250 = 29300 ft. per second assuming
t .,0426 uniform acceleration.

The gross weight of the 37 mm. shell is 1.4#, hence the
case and powder weigh 0.3#. From the size of the shell
case it is estimated that the case is 0,381 cubic inches
of brass of .308 pounds per cubic inch density = 117#

for the case leaving .183# powder. The powder to bulilet

weight ratio is .183 ¢+ 1.1 = .l66G,



The .30 calibre machihe gun fires a buliet weigh-
ing 180 grains from a cartridge of 395 grains gross. Assunm-
ing the same charge weight to cartridge weight as for the
cannon shell, there is then 138 grains of powder, and the
charge to bullet weight ratio is 138 4 180 = ,765., Assuming
the same rate of burning, the acceleration produced on the

.20 calibre bullet is .765 x £9300 = 4.6 x 29300 I sec.”
166

Since 180 grains = .0258#, the force on the gun is

f = ma = ,0258 x (4.6 x 29300) = 108 pounds per shot,
32 .2

t = IV = .0258 x 2660
SR8 108

.0197 seconds per shot.

1250 shots per second 1250 = 20,83

60

Average force from continuous fire = 108 x 20.83 x 0197

44 4%

From transfer of energy:

m = 1250 x ,0258 = 1.000 slugs per minute = 0167
322

ct

slugs per second.

Tavg = gg_= L0167 x 2660 = 44.3# whigh i? a good
chec

Since machine guns of .30 calibre will be considered in
groups of 4 (battery fire), and since all guns will probably
not fire simultaneously, the assumption of an average force

acting continuously at the gun will be a reasonable one.



Similary, for the case of the .50 calibre guus,
.since they also will be considered in batteries of four,
the assumption of an average force acting continuously
instead of considering finite impulses will nof be too
drastic. Although in this case, however, it is more severe
than in the .30 calibre case since tne rate of fire is half
that of the lighter calibre.

By means of an identical analysis the average
force for the .50 calibre mechine gun, firing continuously
is found to be favg = 91.4#. Table I gives the pertinent
data for the various types of guns considered here, taken

or computed from data in reference 4.

TABLE I
Gun Calibre .20 .50 20 mm. 37 mm..
Rate of fire rds/min. 1250 650 600 125
Bullet weight # .0258  .1062  .290 1.1
Muzzle velocity ft./ses. 2660 2550  £920 1250
Avg. reaction force, # 44,4 91.4 5222“ 1000

*0nly during expiosion, i.e., actual and not average forces.

~5e
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NUsBENCLALTURE

da() , differential operator

at

ax , resistance

ax N 1
aw
aX , rotary
de

az/du resistance
dz/dw "
d7/dg rotery
dil/du resistance
Ani/dw n

diM/da rotsry

comnonent of ext
" "
1" 1"
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"
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erivative

force ¢+ mass in x-direction.
n in z cirection s+ mass.

moment about y-axis ¢ mass.
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reaction force due to guniire ¢ mass, in x-direction.

" " conponent in z-direction due to gun-
fire % mass

" moment about y axis # mass

dx/dt velocity in x-direction (disturbance velocity)

dz/dt n " z-direction

do/ dt angular velocity about y axis

angular displacement from x-axis

velocity in x-direction of airplane

radius of gyration about the y axis (at the c.g.)

-2 g'S Cp, where q! = P e
mU 2

-2 a!'S Cg
mU

0 (power-off)

gts  1-1a(ED ¢
mU ?+ a’-’ L
™™

—'g'flﬁ'%< 1+a7-;'5§{ ’ C°>

q'!s ‘l:,2 Qo dC m
U x= Qo 3
m XB 1+ 2 aCi,




BEQUATIONS OF LOUNGITUDINAL wmOTIUN

The general equations of motion for an airplane

subjected to small disturbances is given by

(D-Xy) v - Xyw - (XqD - g cos 6;) 8 =0 (a)
-Zyu + (D =Zy) w - (ZgD + UD - g sin 65) 6 = 0 (b) (1)
~igu - Myw + (Kg® D% - MgD) 6 = O (c)

In the development of these equations* aero-
dynamic forces only were considered. For the case in
which the forces and moments produced by the gunfire
reaction are considered, the equations are modified to:
(D - X)) u-Xw- (XD - g cos 8) 0 =Xg (a)
-Zuyu + (D - Zy) w - (Zg D+ UD - g sin 6,) 6 = 2g (b) (2)
“Myu - Wyw + (K5 DF - MgD) © = lig (c)

Solving the simultaneous equations for 9:

Zg -Zy  D-Zy
M - -1
8 = g u v = f Dg
F%D (®)
D-Xy Xy  (-XgD - g cos &p)
-Zy D-Zy -(ZqD + UD - g sin ;)
~liy, My (Kg® DF - 1yD)

#Miliikan, C. B., Aerodynamics of the Airplane, p. 16.

-8



From the expansion of the determinants:
£(D) = Xg | Zadhy + iy (D-Zy)] + Zg [ My + My (D-Xy)]
+ Mg [ (D-Xy) (D-zw) -~ ZuXe] (4)
(D-Xu) [ (D-Zy) (KxPD® - HgD)- My (ZqD + UD-g sin 6o)]
¥ 7u [jiviw(—XqD - g cos §) - Xw (KgFD? - MgD)] (5)

v
~~
o
[

!

+ By [(D-Zy) (~XoD+E cos 65)-Xw(ZgD + UD - g sin 95)]
By means of the Heaviside formulsa, equation (3)

may be put into the form
0 = fgoz S f(ocgeo‘ t (6) wnere OX{ are the
F 0) a‘OC F OC)

roots of F(D) = C. Inspection of ecguation (5) shows that
F(D) is & quartic, which is one of the reasons for the
difficulty in obtaining a rapid solution because solving
for the roots of the quartic is a long and tedious process.
For the purposes of this investigation the spproximate
factorizations of Bairstow and others are insufficiently
accurate. An accurate factorization, as will be seen later,
is necessary so that the boundary conditions to the problem
will be maintained in the solution of the differential
equation of motion (8).

For use in conjunction with the Heaviside formule,
the following statements simplify the actual calculations:
if there are conjugate roots in the equation F(D) = 0, that

is, roots of the form (a+ib) and (a-ib), then*

*Klemin & Ruffner, Operator Solutions in Airplane Dynamics,
J. Ae. Sci., Vol. III, page 252.
~9-



fju%e £(x) Xt o %t x (I?(ce—df)+
X FT (X = a+1b CXFva) (a2+02) (eR417) (

b(de-cf)]cos bt + [b(cerdf)-a(de-cf)] sin bt)
n 2 W 6 vi 3
where ¢ = £(a) - b2 f'(a) + b* f(a) -1® £ (a) + ... )
41 61

21

d = bf' (a) - b5 £ (a) + 02 £ (a) + ...
51

e = F'(a) - b2 FM (a) + 93 F'(a) - 0° ¥'(a) + ...
! 6!

[4V]

BFM (a) - b2 F'(a) + @ FV (a) + ...
Z1 51

+
i

The procedure followed in the solution of a
given case by the method given above is as follows. The
values of the aerodynamic derivatives are obtained from
the relationships given on page 7. These values are then
substituted into the equations for f£(D) and F(D). The
roots of the quartic F(D) = Q0 are then obtained. In the
example given in the appendix, the method of Zimmerman¥
was used., This method is essentially one of repeated
approximations starting from an arbitrarily assumed value,
and using a graph to obtain successively closer approximations.
Having once obtained the roots of F(D) = 0, these can be
introduced into the Heaviside formula and 6 = 6 (t) can be
obtained numerically. The solution obtained then holds for

all values of time, or until conditions &are changed.

*Zimmerman, C. H., N.,A.C.A., Technical Report No. 589.

10—~



Now since the range of interest exists only

till time t = 0.6 seconds it is feasible to investigate

a solution in series form. Such a form, if the number

of terms are few enough, would lend itself to a more

‘ rapid numerical solution. It would also be zdaptable to

some form of graphical solution.

Assuming, then, a solution of the form

! " .

2} 51

where the subscrint ()o indicates conditions at time

t = 0, there is obtained by differentiation

| 1 n L

3 4
0 = 6, + 0.t + 9,t° + 8 5 + &t
°c- e °2T 3T

From equation (2a) there is obtained:

41

d@ l?gg_—qu—XWW+gQ—Xg)

at g ( dt

ate Xg ( dat? at d

a%9 = 1 g gBu - Xy Pu - Xpd W + g gﬁgg

ate  Xq (atd at?  at dt
“From ecuation (2b), similarly:

dae = ’“;“é - W+ W - Zyw - Zg 3

at  Zg#U at

de = _1 g - Iy du + " Zw gy g

ate  ZgtU dat dt

! 12 S — q° )

d°g = 1 g - Z; &°u + d y Zy 4w

at®  ZqtU at®  at dat®

49 = 1‘§ 42y - Xy du - Xy dw + g ggg

¢ 8,82
i °5T

(8)

(9)

(a)
(b) (10)
(c)



And from e

gquation (2c¢):

2 1 1
d g =_1 g iy + Mg 48 + M w + M u 3 (a)
at Kg dt

)

% = 1 g Mg 4% + Wy dw + My du g (b)
atd  Kg® at® at at

4 Bo . . <2 . 2

d’e = 1 E M, 4% + My d%w + M du g (c)
at® kP at® at® at®
a°@) = 1 g ngfg # U d%w o+ uatu g

atd  kg® at? at® atd ) (@)

Applying the initial conditions that at time t = O ,

U-W=2©8

from (10a)
from (1lla)

from (1lga)

from (11Db)

or

=0 = 0, then the following relations obtain:
ae =0 =4du] - X
at o dtl &
QQ‘ =0 =dw| - Zg
dt lo atlo.
at  lo KB:E
© " . P N .
(10b) d g = _lNg = "*‘E ? g - XXg - XylZg g
dtc e Kg®  Xq - at<h
or dfu| = *glg + XuXg + X%
at® lo KBg
P2 M 2 o
9| =_g « __1 g - ZyKg + 05y) - ZyZ g
A g
at? lo  Kg® Zy+U dt L
2 . i e
d g = (Zy+U) & + ZyXg + szg
at~ ' Kp*

-10-



from (12b) d°e

= 1 é Mg M% + liyZg + IyXg g
KB

dtd le kg
from (12¢) d4@J = 1 (g aBe + oy dPw] o+ Iy dgulg
atdl,  kg? ( atdle dt® lo dat®l
Noting that Xq = I = 0 , then:
1" 18 ] \% v \
Q'—’@oﬁ +go.§_5_ +Qoﬁ+go£ (8)
Z 5 2 12
* 1 ity
2 Where (9)

"t "

v _omgoom " " _ ,
go = l g lViq go + _‘“JiWV\:‘O )) V’ 'Wo - UQO + /)ux{g + Zwé:g

v v 1 nt " on L
8 = L_ g ligOy + My¥g 3 y Wy = Uy + ZyUg + ZyW,
KBK,J

u, = XyXg+ XyZg

It is seen that each coefficient in the series solution
is a function of the known stability derivatives of the
airolane, and of the external forces and moments produced
by the gunfire feactions. This form of the general
solution readily lends itself to nomographical methods
for the solution of particular cases.

-] G-



Following the procedure of reference 8, equation
(9), for example, can be put into a foru such that a
generalized nomogram may be constructed from it immediately.

Thus, separating the eguation into two parts ¢l and ¢2

such that

6 = ¢l + ¢g (a) (10)

" noo
where ¢l =0,t + 0,5 (b)
. 5
v
and ¢n = IQO _tai + é _'E_é_
~ 6 2 (c)

and by introducing new veriables x and y, a determinant
may be obtained for each part. Tnhnis determinant gives
the scale proportions of the nomogram. There is a nomogranm
for each part, and by adding the solutions obtained from

"

each, o - 6(t) results. Now let x = 8, and y = -4, , from
n

which tx + ¥ + % Qotg =0 (a)
11
X+O—QO=O (b) (ll)
O+y+¢l:0 (C)
Writing the determinent:
1"y
t 1 30 _t°
®
1 0 —Qo =0
0 1 ¢l

The several operations reguired to put this determinant into

the form from which the nomogram may be obtained directly,

~14-



are indicated below:

1] . LI PN o
t 1 30,17 t L+t 36,t7 t 1 de,t”
1+t 1+t

1 0 -6 |= |1 1 65 | = |1 1 -85 |=0

By resrranging the columns and shifting the rows

dowvnward by one row:

0 #1 1
. 39.% 1| Zo (12)
1+t 1+t

1 -6, 1

The form which includes the scale factors for the

nomogram is given by:

) &
Sy = 58
31 My 2282

I+1

PP b s (o) & s

=0 (13

g3 _/u’5 éo

From the choice of extensions of each scale and from the
space limitations of the nomogram the scale factors
My, g and 3; are obtained. Since the quantities in

the first column represent the coefificients of x and those

—15=-



in the second column the coefficients of y, and knowing
the scale factors, the nomogram may now be drawn. The
first and third rows give the ecuations for the lines of
¢l a?d 5O’respectively. The second row gives the eguation
of go as a function of x, y, and t. This equation results
in & family of curves in which 8; is a constant. These
curves together with the lines of constant values of t
form a grid. Figure 2 is the nomogram represented by

the determinant of (13). Conunecting a given value of

80 with a given value of g; at a designated time by means
of a line (isopleth) results in a value of ¢l at the inter-
section of the isopleth and the ¢l—scale. This value of

g1 satisfies the equation (10 c¢)

n R} >
1 = 6ot + G, t”
2

The complete curve of # = #1(t) is then obtained by
reiteration of this process at different values of time t.
Adding the solutions of ¢l those obtained by using &
similar nomogram for ¢2 results in o = é(t). By & similar
nomographical means the curve of 6 - 6(t) can also be
obtained.

The method of obtaining the numerical values
for the construction of these nomographical charts is

illustrated in the Appendix.

-10-



TVESTIGALTUN U a4 PaRTICULAR CabE

A twin engined military airplane of recent
design, Figure 1, was investigated for longitudinal motion
wiwder fire. The investigation was made using the exact
analysis and, later wnhen the generalized nomogram had been
developed, was checked by the second metnod given 1n the
previous section., Three types of gun instaliations more
or less typical of the latest practice were assumed,

These installations were deliberately assumed iun the worst
probable position insofar as the efiect on stablility was
concerned., Specificalily, the conditions assumed were:

1) batteries of four .30 calibre machine guns in each turret,
£) battery of two 20 mm. cannon in ezch turret, 3) one

27 mm. cannon in each turret. In ezch case the aft turret
guns were assumed directed downward while the tail turret
guns were assumed deflected 20° downward from the horizontal.
Presumably such a position could be attained if the air-
craft were operating sagalist ground targets. The data and
sample calculations are included in the Appendix, the
results being tabulated in table 1II.

In addition a small two seater airplanie was
investigated., The object was primarily to check the
accuracy of the nomogrem ana to establish the scule limits

of the diagram, The aerodynamic derivatives of the bomber

-17~



were calculated from the relations givein on page 7.

of the two-seater were

The derivatives

taken directly from reference 2.

ere tebulated in tepble II, while the gun-

fire forces are given in table III.

Table IT - Aercdyneamic Derivstives

Alrplane
Derivatives
Xu
2
Xy
Loy
My
Mq
U
KBE

Bomber Two Seater
-.01615 -.0739
-.1720 -. 2230

-.0460 -.0985
-1.21 -.228
-.811 -1.40
-146.5 -160
a5 252
7.3 8.6

Table III - Gunfire Forces and koments

Calibre and Condition oi Firing

Case

i

Xg Zg
battery of four
.50 calibre per
turret firing 414 716

upward- continu-
ous fire

be ttery of two
.20 mm, per
turret firing
aovnward

-18-
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Table III Continued

IT &) simultaneous
fire of both guns 1.128 -1.25

C:::Ifééfiiig:izxa III b) steggered fire .562  -.073
G

one .37 mm. per
IV turret firing i1.le2 -=-2,010
downwara

one .&7 nm.

V cannon 7 ft. aft
of c.g. firing 0 1.287
upward

Table IV - Calculated Fquations for Angile

and Angular Velocity as Functions of Time

Case 8 = 6(t)
- 530 T, .
I 0 =.1168-,0873¢ 1.55 5§in(112.04t°+24.580)
-.00695t
+.,4458 e ¢in(5.51t0-1.%,23°)
II aporoximately seme as IV
-1.5585 ¢t o
ITI 6 =-.1055+,0488 e sin(112.04t° +24.25)
-.,00885 1t o o
+.5858 e cos(5.51t°+81.1%)
Iv 6 =-.2484+.,1006 € sin(112.04t +£2.727)
-l.2587e cos (5.51t°+80.377)

-005501:' o . O

v 6 =.0811+.0058e sin(10.88t0+21°)
—£.1891 ¢t

~.0587 e sin(152.04t°+46.2°)




Teble IV - Continued

Case 6 = é(t)
. -1.5535t
I 0 =.0951 e sin(112.04t°-27.17°)
-.00895t
-.0489 e sin(5.51t°-103.22°)
II approximately same as IV
. -1.5535 t o
III 6 =.l222 e cos(112,04t°%+62.68°)
-.00695 t
~-.0564 e sin(5.51°+85,21°)
IV 8 =.251l%e cos(112,04t°+61.207)
-.00695t°
-.1208 e sin(5.51t%+84.50°)
. ~-.0350t
v 8 =.001l1lle cos (10,88t°+32°)
~-2,1891t o
-.1071e cos (132.04t°+89.7")

The czlculated equations for the angle and the
angular velocity as functions of time are given in table III.
It should be noted that these eguations were obtained by
the use of the Heaviside unit function. Hence, the ecuations
give the reaction of the airplane to forces and moments
which are zero until time zero &t which point in time they
assume finite values instantaneously, these values being

continuously maintained. Thus, for rapid fire guns the



equation gives the motion oi the airplane. For guns of
the 37 mm, type, in which there is a considerable period
oi time betweeneach shot, the path of motion is obtained
by repected use of the equation in which the Heaviside
function is alternately positive and negative. That is,
at time zero a positive force is applied which lasts for
the duration of the explosion time and &t the end of
that time an equal negative force is &pplied to the air-
plane., By combining the solutions, the true path is
obtained. This is most easily done graphically and is
illustrated in figure 5.

Figures 2 to 6 are the plots of the equations
given in table III. The worst condition for the attack
bomber exists for the case of two .20 mm cannon per
turret fixed simultaneously. Figure 5 shows tnat at .6
seconds after firing has begun the airplane has rotated
approximately .06 radius (integrating under curve of
0 = é(t) and assuming linesr variation of é with t) and
and has an angular velocity of .10 radius per second.

At a range of 200 yards and a iiring rate of 500 rounds
per minute this corresponds to £.1 feet dispersion per
round computed from the angulsr deflection of the air-
plane, but neglecting the angular velocity, and at the

maximum effective practical range of the cannon, 1200 yards,

-]



the dispersion would be 12 feet. If it 1s assumed that
effectively the target, say an airplane, presents a 6 foot
diameter vulnerable area, and 1f satisfactory fire is
defined as placing at least two successive rounds within
the target, then the effective range of the 20 mm. cannon
on this airplane is reduced to 600 yards. It is the
ovinion of several military pilots that the angular velocity
of .10 radius per second, or about 6 degrees per second,
could be overconme so that gunuer could maintain satisfactory
aim in the period following the pilot reaction time. Since
the burst of fire rarely lasts more than a second or two
it is seen that over a considerable period of the firing
time the effectiveness of the weapon is seriously reduced
at ranges over 600 yards. At shorter ranges a siight error
in initial aim may result in missing the target altogether
because of the rotation of the plane during fire.

Figure 4 shows that alternate firing of the
20 mm. cannon in a turret can be well approximated by
use of an average force., Hence, for this case as well as
that of the .50 calibre machine guns the nomogram can be
used instead of the long "exact" method. In fact, the nomo-
gram can be applied to any case in which an average force
may be used to approximate the true conditions. Figures
%, 4, and € show the degree to which the true curve is

approximated by the use of the nomogram. This soproximation



is seen to be guite satisfactory, up to the peak of the
curve reached by the use of the nomogram. Thereafter,the
divergence becomes cuite large., It has been found in
oractice (on the cases investigated) that & better determi-
nation of the peak results from using the nomogram first
as a four term approximation, then as a three term approxi-
mation, and splitting the diflerence. This may not be
true for all cases, However, since the sizes of the third
and fourth terms are always opposite, it will give a good
indication of the trend. In the bonmber case the pezk
occurs after .6 seconds and the apuroximation by nomogranm
is good until that time. In the two seater case the peak
occurs bhefore .6 seconds but the apvroximation at the
peak is good. The nomogram, then, will give a good
approximation for the peak value of é if it occurs before
.6 second, and & good approximation to the value of é at
.6 second if the peak occurs later than .6 second. Complete
nomograms for use in determing 6 and é &s functions of time
have been calculated and are included for general use.
(figures 7 and 8). These should orove useful in giving
& rapid indication as to the effect of various combinations
oi turrets.

While only the é nomogram was employed, the o
nomogram being thé last part of the resesrch, the saume
remarks as tnose made concerning the é nomogram are applicable

to the diagram for ©.

—2B-



Examination of the équations 0i lateral motion
ol an airplane under small disturbances shows that they
are guite similar to those for the longitudinal motion.
By a similar but not identical procedure, egulvalent
nomogrems for use in connection with lateral motion could
be developed. The effect of gunfire on the lateral
motion of an airplane is of particular interest since
broadside firing for fighter planes as well as attack and
bomber craft is being discussed in contemporary sritish

aeronautical Journals.
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Figure / - Nomogram for the determination of ¢ = 4’.(15)



Figure 2 - Three-view of Attack Bomber Investigated
for Effect of Gunfire on Longitudinal

Motion
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Appendix
CALCULATION OF A PARTICULAR CASE BY MEANS OF THE

EXACT METHOD

Using the airplene aerodynamic derivatives as given in

table II for the‘attack bomber, anq_the gunfire forces

and moments as given by teble III for case IV, there is

ottained by direct sunstitution into equations (4) end

(5)

f(D)==Xg[zumw+ﬂu(b-zw)]+Zg[NuXW+HW(D-Xu)]+Fg[(D-ZW)(D-Ku)-zuxd
={1.162[-.1720(~.0106x77.3)] -2.010[ -.0105x77. 5 (1+. 0162 )]
'-47.60[(D+1.21)(D+.0162)+.1720x.046ﬂ}

£(D) = -(47.600% +58.6396D +1.1156)
el 2.2,
F(D) {ku KQ)[(D-ZW)(KB D-Ey :
Zy [JW(-XQD+gcoseo)-XW(RE2D4-MqDﬂ}

D)-¥,, (Lo D+UI-gsiné, )]

:{(D'°0152>[(3+1.a1>(77.3D3+1.895x77.3p)+.01o5x77.3(575.5pﬂ
'-172[--0105x77-5(32.2)-.046(77.5DE+1.595x77.53ﬂ}

4 3 4 6.293D° +.1159D + .0581)

(D) =77.3( D* + 3.121D
©, has been assumed eguel to zero

Obtsining the roots of the guartic by meens of Zimmerman's
method: |

F(X)=)f+ EN +0R 4D\ +E = ()\7'4»&1)\-‘01)(}\1 +a2)\-b2) where
B=ai+a2 » C=ajap+by+b, , D=ajbpract, , E=b1by » The
values of the quertic coefficients obitrined from inspection
from the above ecuation for F(D) are:

P=3.121 , C=6.290 , D=0.1159 , ==0.05881 .

The roots of the guadrztic fecters in the equstion for (D)

are the roots of the quertic. Numericel velues for &y and b]

(1)



are obtained by using the relationships:

181 _b1%B - b0 11812 B_tVBz- C+b +E
5 207 Fl

bl - E
Vaelues of bj are assumed and substituted into the eguations
for a;. When the value of by such that the values ofa; ob-
tsined from both equations are identical is reached, those

‘velues correspond to the true velues for the quadratic feac-

tors in the equation for F(D).

by 181 1121
6.2800 3.1071 3.1207
6.2400  3.1071 3.1079

6.2200 3.,1070 3.101d5

Flotting the values of a; against by obteined from the two
equations, the point of intersection cf the two curves thus

obteined determines the required V%}ue:
N 1 ]

L 1 g 1 -4
/ W '
PARNTEE
3105 - .
1 la,=3.07
a
//
/*’/
3.100
620 6230 6U0 B (750
From E=byb, B=a] + 8, . check
.0581 = 6.2375b, 3.121 =3.1071 + a5 D=81by + &by
by = .0093 ap = .0139 =.0289 + .0867

.1159 =.1156

The check is sufficiently close, being accurate to « 3%,

(1)



Substituting the velues of ay, 8o, bl, and b2 into the
equation for F(D) thers is oblteined:
w(D) = 77.3(0% + 3.1070D + 6.2375)(D° ¢ .0193D + .0093)
the roots of which are:
0, 781t 1by = -1.5535 £ 1 1.9555 | (1)

d;_-a£+ 1b2_ -.00695 £1 .0962 (B)

From the roots defined by equation (4) &nd by means of the
reletionships of egustion (7), the following result:

c=fla) - t2rr(a) + virV(a) - ....
2 IT

-(47.60(. 55%5)2 £ 58.6396(-1.5535) + 1.1156)

( )
- (1. 95 ) (-2x%47.60)
| )

- 157.12
dzbf'(a) 'bsf"'(a) + sse
ZT
2=1.9555(2%47.60(-1.5535) + 58.6396)
( \ )
d =174.51
e =F'(a) - beF"'(a) + pt Fv(a) - eee
2T a7
=77.5§ 4(-1.5535) O33x3.121 (-15535)

+ .1159; - (l.9555)2x77.3(4x5x2(-1.5555) -3x2%x1x3.12!)
e (

e =1826.66
f=1bF"(a) - t3 F'(a) + v° F'(a) - ...
3T 57 '

L]

77°5§1,9555[12(-1.5555) +6x3.121(-1,5535) +2x6293]
-(1.9555)%(24))
1:9855)

f =-429.76

(1i1)



alece + df) + b(de - cf)= 426050
b{ce + df) - a(de - e¢f)= 1014690
(a® + b2) (e + £2) = 21948000
From equation (7), then:

268%( a(ce+df)+b(de-cf)

( Ta&>o )l 2o T °°% bt +

b(ce+df) -a(de-cf) gin bt)
(&¥r 5= ) (e*r £2) sin )

sin 1.9555%)

-1.5535% .
2e ( 426050 § ., 1014690
( ZToz000 °°8 19995%+ srormnnn- )

.1006 e~1+9935% g1 11112.02t° 4 22.72°)

*

By operating on part (B) with the same relations
as were used with part (A), the following result:

a =-,00695 = «5.,5770 a{cerdf)+b(de-cf) = 8.3331
b =.0962 e =~ ~4.4015 b(ce*df)-a(ge-cf)=-49.0882
c ==-,2702 £=92.3503 : (alfbﬁ(gﬁ—f ) =79.4959
2e"00695t( 843331 _49.0882

(7T 2oEg—C08 0962t ~ Tt sin . 0962t)

1.2527 e"00695t§cos (5.5123t° + 80.37°)

Substituting the velue of zerc into eguations (49 and (5):

£(0) &1.1156
FO] Z.Z9IT 3464

The final equation for @ @(t) is now;:
9=-.2484 + .1006 e”1+P035%y p (115 0249 22,720)
. + 1.2527 ~+00690% 5 (5 5140 4 80.379)
By differentisting with respect to t end combining terms
baving common factors:
o'=.2512 ¢™1*9%3%%09(112.02¢° + 61.20°)
-.1208 ¢ *9%%%% 11 (5,514 + 84.500)
Tabulated valued for 6 and @' esre given in the following
tables; the curves corresponding to these values are shown

also.

(iv)



§'=.2512 e

~1.5535%
~.1208 e=~-00695¢

cos(112.02t% 61.20°)
Sin( 5.5ltof840500)

which can be

written as @'= .2512 e"%%coga - .1208 ¢ Plsing
" -1ss3st 0 ~opHst "
T s 2512605 e'ssa A p snf  HoBuap e B 8
0 481 .121 1.000 .121 84,50 .995 -,120 1.00 -.1202 .0006
.1 .302 076 .855 .065 85.05 .996 -.120 1.00 -.1204 =-.0445
.2 .111 <028 .733 .021 685.60 .997 -.120 .999 v.1203 ~.0998
3 -.084 ~-,021 .628 ~-.0133 86.15 ,998 =-.121 ,998 -.1203 -.1336
a4 -0276 '1069 0537 ‘00372 86.70 0998 ‘-121 -958 ‘01205 ‘nl575
05 “0456 ”cllﬁ 0461 '00528 87026 0999 " 0997 ’QlEOZ “-1751
o6 =eB21 =o156 .393 -.0613 87.81 .999 "  ,996 -.1202 -.1815
07 °0761 ’algl 0337 °o0644 88.56 l.O " 0995 “01202 1-1846
.8 '0873 ’0219 u289 “00634 88091 l.O " 0994 ‘01201 *01835
29 =951 -.239 .247 -.0590 89.46 1.0 " ,993 -,1£00 -.1790
1.0 -.994 -.250 .212 -.0529 90.01 1.0 " .992 £.1198 -,1727
1.2 -.963 ~-.242 155 -.0375 91.11 1.0 " 2991 -.1197 -.1572
1.4 =.787 -.198 .113 -.0223 92121 .999 "  ,990 -,1195 ~.1418
1.6 -.499 -.125 .083 -.0105 93.32 .998 "  ,989 -,1193 -.1298
108 -0125 ’-031 0065 ’00020 94.42 0997 " 0988 '01189 “51209
2.0 0262 0066 0045 00029 95.52 0995 ‘0120 .986 ~.1185 '.1156
&)
20
e
/6 Ve ~
// =
M—

2,02 ~
/6/

98

o4 /

1/

0 c 8 L0 r2 14 le 18 Lo

(v)



CALCULATICN OF THE NOMOGRAM FOR THE & = §(t) EQUATION

The determinant given by (13) is in the form
from which the nomogram for the ¢l function may bve con-

structed directly.

2

0 o &
T
St 1t W -ft ,

(13)
(/u"%) t L T (pps) L B TH2

I
o

35 ’ﬂegL

Assuming the limitations on the ¢l nomgram as:
&) 0<g,<.5
b) 0<63<.5
e} 0<t<1,0
a) 0>85'>-1.0

e) dimensions 10" high x 6" wide

From (a) and (e) 10 = #4(.5-0}, or i = 20

From (b) and (e) 10 = #3(.5-0), or M3= 20
From (e) %'6

Substituting the numerical values for the scsle factors,

the determinant becomes:

. 70 4; ,

et \ogt

T+ ]+t ! =0 (‘34)
G - 208, ‘

(vi)



The determinant given by (13a) dictates the construction

of the ¢1 function nomogram, as described on page‘145 of

reference 8. The method is as follows (see figure }:

A ﬁl scale ig drawn verticélly, extending between the
values of zero and 0.50 in a length of 10 inches. This in-
formetion is given by the first row of the determinant. Sii
inches to the left of the ¢, scale another sczle is drawn

/parallel to the former, its scale extensions being between
zero and 0.50. The latter is the scaleecfor €j. The direction
of the scele is the reverse of that adopted for ¢1. This in-
formation 1s obtained from the third row of the determinant.
The first and third roﬁs of the determinent really gi#e the
equations of parallel lines separated by six inches. The
equation for the grid is given by the second row of the de~-
terminant. At various velues of the time t, the velues of
the x coefficient and the y coefficient may be obtained from
the quantities in the first ahd second colﬁmns respectively.
For the ﬂl function these coefficients are:

x 2 6t/t-1 y = 10 e3't&/t-1

t o WE 872 874 B0 §=38 8710
g o 0 0 o 0 0 o

4 .346 pq908 018 .03, .054 077 090 -
2 loop 3336 Dbl 134 200 .Zbe .334

3 1186 692 138 .2]6 Ale 554 L92

4 1712 144 228 458 L8 ql1e |i44

5 2000 |bbd 332 66l 9498 13327 1664

b 7250 2248 AB0 doo 1348 1198 2248

7 2470 2880 .5T6 1152 (28 2304 2880

B 2664 3556 iz 1471 2.134 2844 3550

1 2840 4260 952 |Jo4 255, 3408 4260
Lo 3.0p0 5000 Vlooo 2.000 3.000  4.000 5000

(vii)



By en slgebreic manipulation identical to that given on

page 15 the determinant for the ¢2 function can be put

into the form:
o i ?z |
t?: v o4
S3/"l —)(:3:(9 /bb;/w5 49(0-;,) =
t ) fé |
(/""1-/""5\) Pt +/L3 (/U/,—/U/3> ,Eg_:a *
4
83 —/u’a eo I '
The method of construction is identical to that given in
page (vii).
Nomogram Lmnzarions
a) _,67 <~;§W<r.zv AOf}q'(fﬁa) or /ﬂ@=ﬂ;ﬁ?
Y TSE < g <25 0 =y (25H5) or ay=2Z5

|4
A -8 < g <+
9 dmensrons SO by e 12 Wde

o 5 So é , /
L (25 4L
| 73 = 0
4].92‘—3:—@*?5 4752————3*@ +25
W
12 2568 /

For the grid of & £ £ :

ZL-'? v 2‘4
= ?40;,;2 g~ /2552‘_3:2’
/9 Z‘j:; +/ /19 z‘_éz +/

(viii)



Joble for constructon gy'gﬂﬁk’qf B Fncton  romogrom

z
.040
.3/4
787

2./07
33530
020
6405
565
B.200
9240

~
Q

v . v
45 4=¢

287
R/

00/
- o20
073
346
WSS/

Y =0 b=3 b4
s o do/ Do/
003263 . 007 g0 0/3
548 A3/ D46 062
o577 a5 7323
0919 /84 .2l 368
573 .35 A77 629
2338 48 Jo/ FRE
353 .43 6 L2726/
3982 JP6 LITS 153
ABlo 2 19F3 T2

JE) 9
L16T 1423
4577 /872
177/ 2387
2405 2886

In like manner a nomogram can be constructed for the

ation of @ =

6(t). The determinants for the ¥

and g

4=7

o0
D23
08
A4
593
L10/
/. 637
2207
2787
3367

equ-

functions which were used are g€iven below a3 are also the

determinants with the scale fsotors (numerical values) in-

serted. It should be noted that while dsta for the con-

struetion is given up to e value of time equal to 1 second,

the series approximstion used is good only till approximately

% to .6 seconds.

6= at)= 9@ » 4t

© ,/94f
J ____L_‘j_ ;//3
) 2*&‘2 H i3 j/z‘ 2)
%/‘3)[ 7 A /9) i th3
"
4 "3 By
o2 /00 Y v 3 /
L%Z 3233 %57 /
7 2
7t A

[ |=0

) 0 £ % >
il ?*—;4‘ jﬂzﬁ
) 7 4 e /‘3%‘,, 4+/‘3
4 — 4y O
o y ZOj;Z;
%0 Hizs 4?4&5
AR
/2 258

{ix)

/




FORM FOR COMPUTING COEFFICIENTS FOR USE WITH NOMOGRAMS

2 3 4
' = 0"t + "'t + 6.tY + 6 ¢t
° °zm % =
M, + Kg© = ( ) = 9%
My'Zg = i ) =
Hq' o = ) 2 nt
( T = Kg® = 6
U-el = )
Zu‘xg - { )
Zyw'Zg z ( )
T T =Wy
M,*99 v
b T7T + 55° = &,
S
T
e
Ueg, = )
Borl
Zw'wo = ne
= wo
ne
Mg'wo = | )
| T T:x5" = §
Note: The nomogram as ordinarily employed is a four term

approximstion tovthe true curve. By neglecting the

grid formed by e. , a three term approxinmation can

be obtzined. In Phe first few tenths of & second it
is more rapid and almost as accurate to use & three
term approximation.



