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ABSTRACT

The ability of photorefractive crystals to holographically record an optical im­age in real time allows one to use them in a variety of optical information processing systems. A number of such systems are presented in this thesis. To form the ground work used in analyzing the performance of photorefractive optical processors, a com­parison between the Kukhtarev and Moharam models was done. The regimes whereeach model sufficiently predicted the response of the photorefractive crystal was de­termined. In addition, a new model based on a higher perturbation expansion of Kukhtarev’s material equation is presented. This method allows one to numericallyderive the profile of the space charge field recorded in the crystal and predict theregime where the Kukhtarev and Moharam models are most accurate.Three optical processing systems are presented. The first, a photorefractive incoherent to coherent converter (PICOC), utilizes a photorefractive crystal as a spatial light modulator. Both the Kukhtarev and higher expansion models wereused to analyze the performance of the converter. In the second example, the useof a photorefractive crystal as a time integrating detector is presented. By utilizingthis crystal in an acousto-optic time integrating correlator, the output correlationis presented without the bias inherent in standard time integrating architectures.This allows one to utilize the full dynamic range of the output detector, therebyincreasing the processing gain of the system. The third example utilizes a pho-
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torefractive crystal in a VanderLugt correlator. Standard VanderLugt correlators using planar holograms have been used successfully in pattern classification. In this thesis, we will derive the capacity of this system and demonstrate that by using aphotorefractive crystal as the storage medium, the volume holographic propertiesof the crystal results in an increase in the capacity of the system. In addition, theangular selectivity of the crystal allows one to perform multi-category classification.The effect of using a volume hologram in a VanderLugt correlator is analyzed andexperimental results presented.
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1
I. INTRODUCTION

1.1 Optical Processing SystemsOptical information processing systems have been used to implement opera­tions that are useful in solving a variety of problems. Among these accomplishments are optical correlators [1-3], spectrum analyzers [4,5], synthetic aperture radar pro­cessors [6,7], and associative memories [8,9]. Any optical processing systems can be subdivided into three basic components. These are the input, output and process­ing stages (Fig. 1.1). A major issue in the construction of the three stages is the availability of optical materials to perform the task of each stage.

TYPICAL OPTICAL SYSTEM

Fig. 1.1 Typical Optical System



2The input stage receives information from an external source and converts itto either coherent or incoherent light. If the original information is itself optical, itis necessary for the input stage to receive the light originating from the source and convert it into a form usable by the optical processor (usually coherent light). A number of devices, commonly refered to as spatial light modulators (SLMs), have been developed to perform the input task. These SLMs are sensitive to the lightdetected from the source and modulate an optical parameter such as the polariza­tion, refractive index, or transmitivity of the material. Another light beam, usuallya coherent beam, is used to readout this perturbation resulting in the informationfrom the light source being transferred onto the coherent beam. The coherent formof the original image is then suitable for further processing. Photographic film is an example of a device which uses amplitude modulation to convert images to theircoherent replicas. The necessity for high speed converters is important when theinformation must be processed in real time. Some devices which have this abil­ity are the Hughes Liquid Crystal Light Valve (LCLV) [10], the Pockels Readout Modulator (PROM) [11], PRIZ [12], and the MicroChannel Spatial Light Modulator (MSLM) [13]. The LCLV uses liquid crystals to modulate the polarization of the light while the remaining examples utilize the buildup of a local space charge fieldto modulate the refractive index through the electro-optic effect. Another type of SLM are thermoplastics [14] which utilize the temperature change induced by the



3incident light to modulate the refractive index of the material.
There are often situations where the information being received is electronic innature. In this case, the input device is required to convert the electronic signal intoa modulation of a light beam. These devices are sensitive to the electric field inducedby the signal and produce modulation of a light sensitive parameter in the mate­rial. The electronic signal is then converted to its optical replica by reading out the induced parameter modulation with an auxiliary beam. Devices capable of perform­ing this have been fabricated utilizting the acousto-optic (AOD) [15], electro-optic [16], and the magneto-optic effects (MOD) [17]. The AOD converts the input elec­trical signal to a propagating acoustic wave. Through the piezo-electric effect, thisacoustic wave in turn modulates the refractive index of the material. Similarly, inan electro-optic modulator, the electro-optic effect is utilized to convert the inputsignal to a refractive index modulation of the material. The major limitation ofboth these devices is that processing is limited to one-dimensional signals. In spiteof this, these modulators have been used successfully in optical procesing of video and radar images [18-20]. The MOD, in contrast, is capable of converting electronic signals into a two dimensional binary image. This device utilizes the magnetic fieldinduced by the electrical signals to vary the magnetic orienation of the pixels in the MOD. Through the Faraday effect, these pixels in turn rotate the polarizationof the incident light in one of two directions, depending on the orientation of the



4induced magnetic field. By detecting the output polarization of the incident light,the electronically generated image is transferred onto the coherent light beam.
The output stage of an optical processing system, like the input stage, has aclearly defined objective: to convert the post-processed optical information into ausable output. In most applications, the output of the optical system is simplyconverted into an electronic signal to be represented on a video monitor or recordedin an electronic computer. This can be accomplished through the use of optical detectors and/or video cameras. In some applications, however, the output device must convert the processed information to another optical beam, as in the casewhere a number of optical processing units are to be cascaded or when a feedbackloop is present in the system. In this situation, spatial light modulators or opticalamplifiers are used to maintain an all-optical system.
Unlike the input and output stages, the objective in the processing stage ofan optical processing system is varied. The requirements of the processing stagediffer with the task the system is being required to perform. As a result equalattention must be given to the design, as well as the materials and devices, used inconstructing the processing unit. The required devices in the processing stage arefor the implementation of the three basic processes: storage, nonlinear operationsand interconnections. In this situation, the design objective is to develop a method

of arranging the available components in order to accomplish the assigned processing



5task.One major drawback to implementing an information processing system op­tically is a lack of materials. The common factors which determine the usabilityof material for optical processing are its ability to modulate an optical parameter (e.ÿ. phase, amplitude, or polarization) of an incident light beam in a controllable manner, the ability to implement these changes of the optical parameters withinreasonable energy and time constraints, as well as the ease of manufacturing thesedevices in either large numbers or very dense structures. A promising material,which is the focus of this thesis, is the photorefractive crystal. These crystals havethe property that light incident on them induces a change in the refractive indexof the material. This property, coupled with the material’s high spatial bandwidthand relatively fast response time, has resulted in its use as an efficient rewriteablevolume phase hologram. This in turn has resulted in a wide variety of applicationwhich utilize photorefractive crystals in optical processing systems, some of whichare presented in this thesis. The basic mechanism of the photorefractive effect ispresented in the next section. In addition, an overview of optical processing systemswhich utilize photorefractive materials is presented.
1.2 The Photorefractive Effect1.2.1 The Basic Mechanism

In a photorefractive crystal, photoionizable trapping sites exist within the crys-
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7tai (Fig. 1.2) which are neutrally charged in the dark. When a light beam is incident on the crystal these trap sites are ionized and electrons are excited into the conduc­tion band (or holes into the valence band depending on the transport mechanism) leaving positively ionized donors. These electrons are transported to regions wherethe light intensity is low either through diffusion or drift resulting from either anexternal or photovoltaic field. In these dark regions, the electrons are retrappedproducing a net negative charge locally. The result is the build-up of a space chargefield in the crystal which has the same spatial dependence as the pattern of lightintensity exposing the crystal. This field in turn induces a change in the refractive index through the linear electro-optic effect which results in a phase hologram beingwritten in the crystal.
In addition to the donor trap sites discussed above, acceptor traps which nor­mally do not contain an electron are present in the photorefractive crystal. When alight intensity pattern is incident on the crystal, regions of bright intensity develop a net positive charge, while regions of low intensity will collect electrons. Uponturning off the light, these electrons can no longer remain in the conduction band (since most photorefractive crystals are insulators) and recombine with both ionized donors and acceptor sites in the region. As a result, the local space charge fieldremains even after incident light is no longer illuminating the crystal. In essence,the photorefractive material has recorded a phase hologram of the incident inten-



8sity pattern. Erasure of the hologram can be performed by illuminating the crystal with a uniform light beam. In this case, the uniform beam excites electrons into the conduction band which through transport effects is distributed uniformly over the crystal. As a result any spatial variation in the space charge field is removed and the hologram is erased. The holographic rewriting capability results in a great po­tential of using photorefractive crystals for optical information processing systems,some of which will be reviewed below.
1.2.2 Survey of Photorefractive Research

Study of the photorefractive effect began with the discovery of optical damage in lithium niobate crystals (L1NbO3) [21]. Ashkin et al. noticed that the refractive index change in the crystal was proportional to the amount of intensity incident onthe material. The potential for utilizing this intensity dependent index perturbation was first realized by Chen, LaMacchia and Fraser [22,23] who demonstrated that holograms could be written, stored and erased in lithium niobate. Since that timephotorefractive properties have been found in a variety of other crystals. Thesecommonly used materials can be subdivided into three categories: ferroelectrics,silinites, and semiconductors. Ferroelectric crystals are usually insulators and tosome degree exhibit photovoltaic properties. Among the ferroelectric materials in which the photorefractive effect has been observed are lithium niobate (L1NbO3) [22], lithium tantalate (L1TaO3) [23], potassium tantalate niobate (KTN) [24], bar­



9ium titanate (BaT1O3) [25], strontium barium niobate (SBN) [26], and barium sodium niobate (Ba2NaNb5Oχ5) [27]. The silinites on the other hand are normally paraelectric and exhibit no photovoltaic properties. These material are charac­terized by faster response time at the expense of lower diffraction efficiency. The photorefractive crystals which fall into this category are: bismuth silicon oxide (BSO) [28], bismuth germanium oxide (BGO) [28], and bismuth titanium oxide (BTO) [29]. The photorefractive properties in semiconductor materials have been studied relatively recently. At present, gallium arsenide (GaAs) [30] and indium phosphide (InP) [31] crystals have been used in photorefractive two- and four-wave mixing experiments. Both these crystals are most sensitive in the near infrared and demonstrate a very fast response time compared to the insulators (silenites and fer- roelectrics). In addition because of its semiconductive nature, information recorded in these crystals generally decays faster than the insulators.
Research in the field of photorefractive effects and material have developed on three parallel but distinct tracks: 1) the development and improvement of optical characteristics in photorefractive materials, 2) the formulation of a mathematical model for the photorefractive effect and 3) use of photorefractive materials in opticalsystems.
Since the discovery of the photorefractive effect in bulk crystals, much efforthas been made to improve the characteristics of the materials such as diffraction



10efficiency, sensitivity, and response time. One method of accomplishing this is by doping the photorefractive material with impurities in order to increase the concen­tration of traps, thereby increasing the sensitivity of the material. Lithium niobate crystals doped with iron [32], rhodium [33], copper [34], uranium [35], cesium [34], manganese [34] or nickel [35] have shown improvements over the crystal in its pure form. Other examples of enhanced photorefractive crystals are BSO doped with transition metals [35], cesium-doped SBN [36] and chromium-doped GaAs crystals [37]. Another method of improving the characteristics of a photorefractive crystal is by varying the experimental conditions, t.g., as applying an electric field to enhance the diffraction efficiency of the material [38]. Other improvement methods include experiments which demonstrate fixing by thermal [39] or electrical means [40], uti­lizing an auxiliary photovoltaic crystal to generate an applied field [41], recording information with high energy very short optical pulses [42] and using moving grat­ings [43] or alternating applied fields [44] to improve the phase conjugate reflectivity of the crystal.
In conjuction with the efforts to enhance the photorefractive effect in variouscrystals, much work has been done to formulate a mathematical model throughwhich the response of a photorefractive crystal can be accurately predicted. Thiswork is important in order to determine the limitations of photorefractive materialsand the experimental conditions such as incident wavelength and intensity which



11result in a better response by the material. A number of theories have been proposed [45-47] and are discussed in greater depth in chapter II. In addition, two of these models, the Moharam and Kukhtarev models, are reviewed in the chapter.
The final track of photorefractive research has been the use of these materialin various optical systems. The high spatial bandwidth and relatively fast responsetime of photorefractive crystals allows one to utilize these materials as real time,reusable, phase transparencies in holographic applications. Photorefractive crystalsin optical information processing systems are often utilized in this manner.Early applications of photorefractive crystals included using them in holo­graphic systems [48,49]. Later uses of the material utilized these holographic record­ing properties to design phase conjugate mirrors [50-52] and resonators [53,54] to perform aberration correction of optical wavefronts. Other uses of photorefractivecrystals include performing image arithmetic operations, such as image subtraction [55] and division [56], and image processing, such as edge enhancement [57], con­trast reversal [58], image correlations [59], and speckle removal [60]. In addition, systems which utilize these crystals have been demonstrated to perform real time interferometry [61], laser beamsteering [62], optical motion detection [63], and light amplification [64].

1.3 Outline of Thesis

The following chapter reviews some of the mathematical models used to quanti-



12tatively describe the photorefractive effect. Two models, the Moharam and Kukhtarevmodels, are described in detail. A new model based on a higher order perturbationexpansion of the Kukhtarev material equation is presented. Using this model andits numerically simulated results, comparisons between the Moharam, Kukhtarev,and higher order models are made.
The use of a photorefractive crystal as an input device is demonstrated in chap­ter 3. Specifically, the high spatial bandwidth and the relatively fast response timeof a BSO crystal is utilized to construct a spatial light modulator. A mathematicalmodel is formulated to predict the response of the photorefractive incoherent tocoherent converter and to determine the characteristics of this device.
In chapter 4, a photorefractive crystal is utilized as an output device, specifi­cally as a time integrating detector for an acousto-optic correlator. In a standardtime integrating acousto-optic architecture which uses CCDs, the output correla­tion is presented with bias. This results in a limitation on the effective dynamicrange of the correlator. In a photorefractive crystal, light that is without spatialvariation does not produce a cumulative bias signal and hence when the BSO crys­tal is used as the integrating detector, the correlation signal can be recorded andread out without bias. Important characteristics such as linearity, dynamic range,and integration time are also discussed in this chapter.
The use of photorefractive crystals as components in the processing stage of an



13optical processing system is demonstrated in chapter 5 The use of photorefractivecrystals as a storage medium for a pattern recognition system is discussed. AVanderLugt correlator is used to perform the classification, and the capacity ofthis architecture using a planar hologram as the filter is derived. By replacing theplanar hologram with a volume element, such as a photorefractive crystal, the filterbegins to demonstrate a degree of angular selectivity. The effect of replacing theplanar filter with a volume hologram is experimentally demonstrated and analyzed. It is expected that because storage occurs in three dimensions, the capacity of the volume VanderLugt correlator will be higher than that of the planar correlator. It will be demonstrated, however, that this increase in capacity is achieved at theexpense of a loss in the shift invariance of the correlator.
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IL THE PHOTOREFRACTIVE EFFECT

In this chapter, a review of the methodology used in predicting the photore- fractive effect is presented. Specifically, two theoretical models, the Kukhtarev and Moharam models, are reviewed. Each model makes a number of simplifying assump­tions in order to derive an analytical solution for the photorefractive effect. These assumptions consequently determine the accuracy of the model and the operating conditions under which each model can be used. In order to compare these models with a more accurate model of the photorefractive effect, a higher order model willbe derived, based on an extended perturbation expansion of the Kukhtarev ma­terial equations. Because of the inherent analytical complexity of this technique, numerical methods are used to generate a solution for the steady state regime. A comparison of these three models is then used to determine the accuracy of theanalytic models.
II. 1 Theoretical Framework for the Photorefractive Effect

In a typical photorefractive medium, such as those described in the previoussection, the crystal is photosensitive, has a relatively large electo-optic effect, andhas a high number of donor and acceptor trap sites. As shown in Figure 1.2, when anintensity pattern is incident on the photorefractive crystal, the photosensitive trapsites release electrons to the conduction band in regions where the intensity is bright.These free moving electrons are then transported through drift or diffusion effects.



23Bias fields necessary to induce drift currents may either be externally applied (as in the case of BSO and BGO) or they may be present due to an internal photovoltaic effect (as in the case of Lithium Niobate and Lithium Tantalate). These electrons then recombine with trap sites in the dark regions forming a local space charge fieldbetween light and dark regions. This locally varying field induces a change in therefractive index due to the linear electro-optic effect. A number of mathematical modes have been developed in order to quantify the photorefractive effect [1-15].
Because most photorefractive applications are holographic, the models con­centrate on determining the response of a photorefractive crystal to an incidentintensity grating. The models can be divided into two categories. The first is atraditional holographic model where it is assumed that the grating is formed bythe two incident beams. The induced space charge field and corresponding phase grating are calculated. The diffraction of the incident beams due to this grating is then computed while assuming that the diffracted beams do not significantlyalter the formed grating. In the second model, which is more complete but also more complicated, all four beams (two incident and two diffracted) are considered in computing the space charge field and their collective contributions are includedin the derivation of the grating formed.
In order to develop a model for the photorefractive effect, a set of materialequations are used to describe the physical processes occuring in the crystal, such



24as the excitation and recombination of the charge carriers (electrons or holes) and the buildup of the local space charge fields, from which the strength of the space charge field can be derived. Due to the linear electro-optic effect, this field would result in an index perturbation
∆n = -ef^l°Eac (x, f ). [2.1]

Esc {x, t) is the amplitude of the space charge field and has temporal variations much slower than optical frequencies, no is the refractive index of the material, and re∕∕ is the effective electro-optic coefficient for the particular direction of space charge field and readout polarization used in the experiment.The resulting index perturbation can then be subsituted into the coupled waveequation to predict the actual light diffracted by the photorefractive crystal
V2ξ + (no + ∆n(x, i))ξ = 0. [2.2]

In order to account for the effect of the incident and diffracted beams on the gratingformation in the crystal, equation 2.2 is solved simultaneously with the materialequations. In this case, the index change ∆n will be dependent on the amplitudeof the light beams propagating within the photorefractive crystal. The standardprocedure used in analyzing this problem is to consider a thin photorefractive slaband use the material equations to calculate the index perturbation based on theamplitude strength of the beams incident on the slab. The amplitude strength



25of the light beams in the crystal can then be found by solving the coupled wave equation, with the refractive index change being explicitly dependent on the light amplitudes. A number of techniques have been used to analyze this diffraction process in photorefractive media [9-15].In considering the response of a thin photorefractive slab, an important charac­teristic is the inherent phase shift between the incident intensity grating and the in­duced refractive index grating. This phase shift leads to an energy exchange between the two incident beams resulting in interesting effects such as self-amplification [16] and optical bistability [17]. Under certain operating conditions (i.e, high applied field and low spatial frequencies), the phase shift is small or the crystal is thin, there is very little energy exchange between the readout and diffracted beams. In this case, the diffraction efficiency of the index grating is [9]
η = sin2(Δn1L). [2.3]

It is assumed that the incident readout beam is perfectly Bragg matched to theindex grating and ∆nχ is the amplitude of the fundamental Fourier component ofthe induced index grating. L is the thickness of the photorefractive media. Thus,it is only important to determine the strength of the fundamental component ofthe induced space charge field in order to predict the diffraction efficiency of therecorded phase grating.In this chapter, we will concentrate on models of the first category, the thin



26slab (j.β., we will neglect self diffraction effects). Our theory must predict three things. Firstly, it must successfully determine the magnitude of the induced indexchange. This is important in predicting the diffraction efficiency of the holographicgrating. Secondly, the phase difference between the index grating and the incidentintensity grating must be accurately modeled since this parameter will determinethe fidelity with which signals are recorded in the optical processors considered inthis thesis. Lastly, the model must be able to predict the temporal behavior of the photorefractive process in order to determine the write and decay rates of dynamicholograms in the crystal.
A number of mathematical models have evolved along with the research in photorefractive materials [1-8]. The models of Moharam et al. [3] and Kukhtarev 

et al. [4] will be reviewed below. Both models utilize a set of material equations through which the induced space charge field is derived. Through equation 2.1 and 2.3, the index perturbation and resulting diffraction efficiency can then befound. The major difference between these two models and subsequent analyticalstudies is the accuracy through which the material equations are modeled. In theMoharam case, it is assumed that an infinite number of trapping sites exist in thecrystal. This assumption allows one to derive an analytical solution for the spacecharge fields in the steady state case. However, this assumption also results insevere inaccuracies in predicting the response of the crystal to high spatial frequency



27gratings. Kukhtarev sought to remedy this by incorporating the density of trapsinto the material equations. But because of the additional complexity, he was onlyable to derive an analytical solution for low modulation depth gratings.
A number of other models have been developed seeking to solve more accurate sets of material equations [5-8]. Valley [7] incorporated an additional trapping and recombination equation for acceptors and derived a dynamic solution which demonstrated more than one time constant. Ochoa et al. [8] incorporated the acceptor density to the Moharam model and utilized a higher order perturbation scheme to derive more accurate analytical solutions in the high modulation depthregime.In addition, mathematical models have been used to predict the response of photorefractive crystals with moving gratings [18] and in four-wave mixing geome­tries [19]. Unfortunately, most recent models suffer from a high degree of complexity and present results which hide the physics of the photorefractive effect behind vo­luminous analytical expressions.
In order to facilitate comparison between the two analytical models and thehigher order numerical model, we will consider the photorefractive effect in a BSOcrystal. The material parameters for BSO used in numerical comparisons are pre­sented in Table 2.1 on page 65.

II.2 Moharam Model



28The theoretical framework derived by Moharam et al. [3] uses the following set of material equations
3JV‰i) =So/(li) "(*.*) 

at τr [2∙4]
∂Np{x,t} ∂n(x,t) l∂J(x, Z)

∂t ∂t e ∂x [2∙5]1 ftE^xlt'∣ — — I J{X)t}dt -∣- G(t) c Jo
[2∙6]

J(x,t) = μen(x,t}E(x,t) + ⅛gT,μ
∂x [2∙7]

where
I(x,t) is the incident intensity
go = aη∣h∣jj (α=absorption coefficient, »/-quantum efficiency, h-Planck’s con­stant, and ^-frequency of recording light)
τr is the recombination time between free carriers and traps 
J(x, Z) is the current density 
kβ is Boltzmann’s constant
T is the temperature n(z,Z) is the charge carrier density 
Np (x, Z) is density of ionized traps 
e is the unit electronic charge
μ is the charge carrier mobility 
E(x,t) is the space charge field
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G{t} is determined from the boundary condition (ι.e. constant applied voltage constraint).The first equation is a trap density equation incorporating the generation andrecombination rates of the charge carriers. The charge balance relationship is de­scribed in the second equation while the relationship between the space charge fieldand the current density is expressed in the third equation. The fourth is the currentdensity equation incorporating both drift and diffusion components.Assume an incident intensity grating of the form
I(x,t) = 2o(l ÷ mcoskx) [2.8]

where Jo is the average light intensity, m is the modulation depth and fc∕2π is the spatial frequency of the grating. The resulting space charge field in the steady state regime is [3]
„ , . mEdsinkx „ 
Eβc(x) = —----- r- + Eo1 + mcoskx

√Γ m“1 + mcos(kx) [2.9]1 -
where Eq is the strength of the applied DC field and Ed is the characteristic diffusionfield given by

Ed =
keTk [2.10]

In most applications detailed knowledge of the space charge field profile is notnecessary. Since the fundamental component of the space charge field determines



30the diffraction efficiency or the coupling strength, calculating the strength and phaseshift of this Fourier component is essential in predicting the response of a photore-fractive crystal. Decomposing equation 2.9 into its Fourier components results in afundamental component with magnitude given by 
Ei = 2√¾≈ + Eg √1 — m2 — 1

[2.11]
mand phase shift by

φι = tan-ι [2.12]
Figure 2.1 shows the magnitude of the space charge field induced in a BSO crystalas a function of the spatial frequency for various values of applied field. The mod­ulation depth of the intensity grating incident on the crystal is assumed to be 1.0.It is interesting to note that in Figure 2.1, the induced space charge field compo­nent stays constant down to a zero spatial frequency grating. This arises becausethe model developed by Moharam assumes the photorefractive crystal has infinitetransverse dimensions. As a result, gratings of arbitrarily low spatial frequenciesand the corresponding space charge profile still maintain their structure over thetransverse dimension of the crystal. In reality, however, the transverse dimensionof a photorefractive crystal are finite. This results in a minimum spatial frequencythat can be detected and hence recorded by the crystal. In addition, since the in­cident light is used to record a phase hologram, an overall change in the refractive index induced by a uniform beam (*.e. zero spatial frequency) will not result in a



31change in the DC component of the diffracted output (as opposed to the case of an absorption hologram). Figure 2.2 shows the dependence of the phase shift between the incident intensity and induced index gratings on the spatial frequency of the intensity grating.
The major advantage of this model is its ability to determine exactly the space charge profile recorded in the crystal. Figure 2.3 shows a typical profiles predicted by this model. Figures 2.3a depicts the space charge fields for an intensity grating with modulation depth 0.9 and a spatial frequency of 100 l∕mm. being recorded on a BSO crystal. In this case, an external applied field of 6kV∕cm was applied to the crystal. The resulting profile shows the symmetry about the minimum intensity point, typical in the drift dominated regime. Figure 2.3b shows the profile for a grating with spatial frequency of 1000 l∕mm. In this case, the space charge field shows a slight asymmetry arising from the contribution of the diffusion field (which is higher for higher spatial frequencies) to the overall recorded field. Figures 2.3c and 2.3d show the space charge field profiles for a 100 and 1000 l∕mm. grating when no applied field is present. In both cases, the field pattern shows the asymmetrical distribution, typical of charge transport in the diffusion dominated regime.
The main disadvantage of this model is its inability to provide a temporal anal­ysis of the photorefractive effect. In their paper [3], Moharam ci al. expanded the space charge field into its spatial frequency components and solved numerically for
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Spatial Frequency (lines/mm)Fig. 2.1 ∣E,1[ vs Spatial Frequency (Moharam ModelJ

Fig. 2.2 Phase Shift vs Spatial Frequency (Moharani Model)
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Fig. 2.3 Space Charge Field Profiles Derived from the Moharam Model
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35the dynamics of the photorefractive crystal. Another disadvantage is the assump­tion that the recombination time τr is independent of the trap density. This resultsfrom an assumption that the trap density in the crystal is essentially unlimited.Consequently, the model makes incorrect predictions in the high spatial frequencyregime, where the finite trap densities result in an upper limit in the space chargefield that can be supported within the crystal. Kukhtarev et. al. corrected thisproblem by incorporating the density of trapping sites into the material equation and the recombination rate. The result of this will be reviewed in the followingsection.
II.3 Kukhtarev ModelThe Kukhtarev model is similar to that of Moharam in utilizing a set of a ma­terial equations to predict the space charge field, and hence the index perturbationwithin the photorefractive material. The material equations which form the core ofthe Kukhtarev model are:

= (39Ι(χ,ΐ)+β)(Νο-Νί(χ,ή)-ΊκΝ+^)η(χ,ή [2.13]
∂N^(x,t) ∂n(x,t) l∂J(x,t)

∂t ∂t e ∂x

= ~{N^x,t) ~ n(x,t) - Na) [2.15]
∂τι>[x t}

J(x,i) = μen(x,t)E(x,t) + kβTμ—— [2.16]
in which
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Nd is the total concentration of donor-like trapping center
Npeq is the concentration of ionized donor-like trapping centers in the absenceof light
Np(x,i) is the concentration of ionized donor-like trapping centers7Vχ is the concentration of negatively charged acceptor-like centers that com­pensate for the charge N&eq

n{x,t} is the concentration of electrons in the conduction band 
E(x,t} is the internal space charge electric fielde is the electronic charge
sg is the absorption cross section at the grating beam wavelength
β is the thermal generation rate of electrons into the conduction band7κ is the carrier recombination constant∕(x,i) is the optical intensity profile incident on the photorefractive material 
J(x,t} is the current density within the crystal 
μ is the charge carrier mobility
kp is Boltzmann’s constant
T is the absolute temperature of the crystale is the dielectric constant of the crystal.Equation 2.13 describes the trapping and recombination process, while equa­tions 2.14-2.16 are the transport, Poisson, and current density equations. The main



37difference between the two models lies in the form of the recombination term inequation 2.13. In the Moharam model, the recombination term is of the from n(x,f)∕rr which assumes that the recombination time is independent of the density of available traps. In Kukhtarev’s formulation, the recombination term, 'ΙrNq∏assumes a recombination time of the form
rr(x, t)

1 [2.17]
This added terms leads to a number of important differences in predicting the space charge field recorded in the crystal. As discussed in the previous section, the simpler formulation of the trapping/recombination equation lead to a closed form solution for the space charge field in the steady state case. By removing theconstant recombination time approximation in the Kukhtarev model, the additional nonlinearities that one introduced in describing the photorefractive effect can no longer be solved in closed form. As a result, Kukhtarev uses a perturbation analysis on the set of material equations to predict both the steady state and temporal response of a photorefractive crystal for low modulation depths.Assuming again, an intensity profile of

∕(x,i) 0 t<07o(l + mcosx) t>0 ’ [2.18]
the trap and electron densities, as well as the current and space charge fields can



38be expanded in terms of their Fourier components ∞JV+(1,i) = N+eq + ∑>+r(f)√t~ + c.c.r=l [2.19]∞π(τ,f) = no + nr(f)e*fcr* + c.c.r=l [2.20]∞
J(x,t) = Jo 4- Jτ[t}e*krx +r=l [2.21]∞
E{x,t} = J?o + ∑E+eikrx + c.c.. [2.22]r=lIn predicting the diffraction efficiency of a grating recorded in a photorefrac- tive media, the Fourier component of most importance is the space charge field corresponding to the frequency of the intensity grating, the Eι{t) component. By assuming the modulation depth of the grating profile is small, the E± component of the space charge field can be solved analytically be truncating each series to thefirst harmonic component. By utilizing a first order perturbation expansion, the resulting space charge field component is given by [4]

2 Eq Eo + i(Ed + Eq) L1 J [2.23]
where the complex rise time τ is given by

r - i° ¾ + i(Ei + E,) l2∙241and E<ι, Em and Eq are the characteristic fields due to diffusion, drift and trap density limit, respectively, and are given by
kβTk [2.25]Ed =



39
Em — μk

Deq

E - ‘N^ e-~~Λ~

[2.26]
[2.27]

and io is the fundamental recombination time given by
io JV+ivPeg

aNr>Io [2.28]
The steady state value for the r = 1 component of the space charge field

E1 =
Eq + iEd2 1 + (E0 + iEtj,) ∕Eq

[2.29]m

One feature of equation 2.29 is the linear relationship between Eι and themodulation depth m. This arises from the small modulation depth approximationwhich allows a first order space charge field solution. In the high modulation depthregime, E1 depends on many higher powers of m.Figure 2.4 shows the dependence of ∖Eι ∣ on the spatial frequency of the incidentintensity grating for various applied field strengths. The material parameters for a BSO crystal (shown in Table 2.1) and a grating modulation depth of 1 are used to facillitate a comparison with the Moharam model described in the previous section. The major difference in the prediction of this model and that of Moharam (Fig. 2.l) lies in predicting J-E*ι ∣ in the high spatial frequency regime. In the low frequency regime, both models predict that the amplitude of the space charge field will remainat a constant value. In the Kukhtarev model, this value is equal to one half the



40applied field strength multiplied by the modulation depth of the grating, whereas inthe Moharam model, this value will have a nonlinear relationship with m, reaching a peak value equal to the applied field when m equals 1. However, in the highfrequency regime, the Kukhtarev model predicts a decrease in the amplitude as thespatial frequency increases. This is primarily due to the finite number of trap sites present in the crystal. Specifically, for a material with an ionized trap density of 
Npeq and a grating with spatial frequency k, Poisson’s equation determines that the maximum field that can be supported is

eN+
Eimax = = Eq. [2.30]

This inverse relationship between the space charge field and the grating frequency is demonstrated in the high frequency regime of Figure 2.4, where Eq < E§. The Kukhtarev model, like that of Moharam, assumes a photorefractive crystal which isinfinite in the transverse direction and as a result predicts the recording of a spacecharge field for arbitrarily low spatial frequencies.The phase shift between the Eγ component of the space charge field and theintensity grating as a function of spatial frequency is shown in Figure 2.5. Again the results are similar to those derived by the Moharam model (Fig. 2.2) in the low frequency regime. In the high frequency regime, however, the phase shift tendstoward 90°.Another advantage of the Kukhtarev model over the Moharam model is its
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Spatial Frequency (lines/mm)

Spatial Frequency (lines/mm)
Fig. 2.5 Phase Shift vs Spatial Frequency (Kukhtarev Model)



42ability to predict a closed form solution for the temporal response of the photore-fractive effect. Again it must be noted that the analysis is restricted to situationswhere the modulation depth of the grating being recorded is small. Equation 2.24 demonstrates that when an intensity grating is incident on a photorefractive crystal, a space charge field is built up exponentially with a time constant τ given by equa­tion 2.25. This time constant contains a number of interesting features. Firstly, τ isinversely proportional to the intensity incident on the crystal. This arises from thefact that a minimum number of photons is necessary to excite enough charges to create a index grating of fixed strength [20]. As a result, the stronger the light that is incident on the crystal, the quicker the task can be accomplished. The secondinteresting feature in the expression for τ is the that it contains both a real andimaginary component characteristic of an underdamped system. The writing timeof the material is dependent on the real part of r and is given by
t write — Ee[r] ' [2.31]

This writing time is plotted as a function of spatial frequency in Figure 2.6. Thelight incident on the material was assumed to have a wavelength of 488 nm and a strength of 1 mW∕cm2. Figure 2.6 demonstrates two regimes for the time constant of the photorefractive material. In the low frequency regime, the response timeof the crystal is very fast and rises proportionally to the spatial frequency of thegrating being recorded. In the high frequency regime, however, the time constant



43reaches a saturation value and becomes independent of the grating frequency. Theexpression for the time constant τ given in equation 2.24 can be rewritten as a function of the ionized trap density Np1_ 1 ,r+ ^*^ ^*^
7^ “ o,NdIq di Eo + iEd)In BSO, for applied fields, Eq > lkV/cm and spatial frequencies, f> 10 l∕mm, 

Eq > Ed,Em.The ratio of the characteristic fields in the right hand side of the equation isapproximately unity. Hence, the time constant is proportional to the amount of traps 2Vp1 ionized by the intensity grating. In the low frequency regime, the space charge field component Eι that is recorded is clamped to a value equal to half the applied electric field. From Poisson’s equation (Eq. 2.15, in order to maintain this constant space charge field, the number of charges that must be ionized increaseswith increasing spatial frequency. Since the amount of light incident on the material is also constant, the time required to excite charges is proportional to the amountof ionized traps that must be generated, hence the linear relationship between therecording time constant of the material and the spatial frequency of the grating.In the high frequency regime, the induced space charge field decreases due to thefinite number of charges that can be ionized in the crystal. As a result, the number of ionized traps have reached a saturation value equal to Λrpeρ. Consequently, the time required to form the space charge grating remains constant in this regime.
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47The imaginary part of τ, on the other hand, results in an oscillation in theresponse of the crystal. Figure 2.7 shows two possible responses that may occur. The first case (Fig. 2.7a) corresponds to the recording of a grating at a spatial frequency of 100 lines/mm. In this case, the crystal exhibits a very strong oscillatory behavior. In contrast, Figure 2.7b shows the temporal behavior at 5 lines/mm and demonstrates negligible oscillatory behavior. A parameter which can be used tocharacterize the two cases is the ratio of the imaginary part to the real part ofthe time constant. In the first case, the ratio is high and as a result a numberof oscillatory cycles occur before they are sufficiently damped out. In the secondcase, the ratio between the real and imaginary parts is low, describing the rapid damping of the oscillation term (imaginary part) by the decay term (real part). The spatial frequency dependence of the ratio between the real and imaginary parts of
τ is shown in Figure 2.8. It is interesting to note that the ratio of the imaginaryto real parts of the τ reaches its maximum value when the grating wavelength isequal to the drift length induced by the applied field resulting in a highly oscillatorybehavior. This seems intuitively reasonable since the physical process within thecrystal attempts to move the electrons from one intensity peak and recombine themwith traps in the adjoining intensity peak. The recombination process results in abuild-up of a field which overcompensates for the applied field. This internal fieldcannot be maintained and consequently decreases as electrons are transported from



48regions of high space charge field. A set of damped oscillations occurs as the internalspace charge field undergoes a series of overcompensation and undercompensationof the applied field.
The major disadvantage of the Kukhtarev model lies in the assumption thatthe modulation depth of the incident grating is small. Since the analysis is car­ried out only to first order, the model predicts a space charge field amplitude Eγwhich is proportional to the modulation depth. However, as the modulation depthapproaches unity, higher order perturbation components play an important part inpredicting the recorded space charge field. In the next section, we will incorporatehigher order components of the space charge field in order to extend the Kukhtarev model for higher modulation depths as well as produce profiles of the space chargefield.

∏.4 Higher Order Perturbation Model

The analytical model proposed by Moharam et al. [3] demonstrates an advan­tage over that of Kukhtarev et al. [4] by being able to predict the steady state response of the photorefractive crystal at high modulation depth. In order to com­bine this feature of the Moharam model, while being able to accurately predict theresponse of the photorefractive media in the high frequency regime, we present ahigher order perturabation technique to solving Kukhtarev’s set of material equa­tions to higher order and hence higher accuracy.



49As in the case of the Kukhtarev model, the space charge field, trap electron, andcurrent densities are expanded into their Fourier series components. This method is advantageous since the important fundamental Fourier component is solved explic­itly. However, because of the nonlinearities inherent in the photorefractive materialequations, higher order Fourier components may affect the values of the funda­mental Fourier term. Consider equation 2.13 describing the charge generation andrecombination within the photorefractive crystal. The first Fourier term of the trap density (Arp1) can be solved by collecting terms with the same spatial frequency components such as Np0ni and N^ln0. The inclusion of these terms were suffi­cient to characterize the photorefractive effect in the low modulation depth regime as demonstrated by Kukhtarev et al. [4]. However, since it is suspected that higher order terms have an important effect in regimes where the modulation depth ap­proaches 1, terms such as Np2n~1 and N^-1n2 must be included in the solution of each component of the material parameters. In essence, the presence of higher orderspatial frequencies generated by the nonlinearities in the photorefractive recordingprocess can affect the strength of the fundamental and lower order Fourier com­ponents. The resulting expansion of each material equation will then result in aninfinite set of equations corresponding to each spatial frequency components. In ad­dition, these equations will be nonlinearly (multiplicative) coupled to one another making an analytical solution difficult to discover.



50Another look at the first order solution as derived by Kukhtarev et al. shows a linear dependence of the material parameters to the modulation depth m. It is reasonable to assume then that higher Fourier orders, which arise through the mul­tiplicative nonlinerities (t.e., they are a product of only two unknown parameters, such as n(x,t)E(x,t)), would depend on higher powers of m. As a result, the effect of these higher order Fourier components on the fundamental component would most likely depend on even higher powers of m. Based on this motivation, we choose to further expand each Fourier component by a power series in the modulation depth, m. Hence the expressions for the space charge field, electron, trap and currentdensities can be written as: ∞ ∞7V+(1,() = N+'q + ∑∑tn∙Λ⅞r,(i)√'"'≈ + c.c.r=l s=l [2.33]∞ ∞n(x,<) = n0 + m8nra{t}exkrx + c.c.
r— 1 s=l [2-34]oo ooJ(x,f) = Jo + 52 Σ2 m8Jr8{t}eikrx + c.c. r=lβ=l [2.35]oo oo

E(x,Z) = Eo + y j y j m8 E+e(t)etκrx + c.c.. [2.36]r=l s=lThe solution is found by substituting the above equations into the material equa­tions 2.13-2.16. Terms are grouped primarily by their spatial Fourier componentsand then by powers in m. Solutions for lower powers in m are then used to solve forhigher order terms. The above expansion is equivalent to declaring m as a pertur­bation parameter and solving for each Fouier-ρower component through successive



51iteration. Because of the multiplicative nonlinearities, it relatively easy to determinewhich components multiply to give the Fourier and power component of interest.The method by which this expansion eases the bookkeeping is demonstrated by anexample summarized below as well as in the Appendix.As mentioned previously, most applications of photorefractive crystals onlyrequire the amplitude of the first fundamental frequency component of the spacecharge. Consider a steady state expansion of the first harmonic component toa second order in m. In other words, we wish to derive the first two nonzero components of Eγι8 in the steady state regime. The actual analytical derivation is presented in the Appendix but the general procedure is reviewed below.Since the material equations describing the photorefractive process involve only a simple product between independent variables (such nN^ in equation 2.13 and 
nE in equation 2.16), it is easy to determine which Fourier orders will combine to contribute to other Fourier components. Assume first that the DC component of the space charge field is undepleted (i.e. Eθo » Eιo,E2o)∙ The first term En can then be solved as a function of Eo and yields a result identical to that derived byKukhtarev,

τn Eq + iEd 2 1 + ( Eq + iEd) I Eq
[2.37]

This solution combines with components having the same spatial frequency to pro­duce terms with twice the spatial frequency (i.e. terms with the Fourier component



52e,2fc*). This term is explicitly written in the Appendix and has a dominant com­ponent proportional to m2 (ie-E20 = E21 = 0). This solution in turn combines with spatial frequency components e~tkx to affect terms in the fundamental fre­quency. Since the terms with frequency et2fcl are proportional to m2 and terms with frequency e~*kx are proportional to m, they will combine to form terms in e*kx proportional to m3. Hence the first harmonic component of the space charge fieldwill be of the form
Eχ = τnEγ∖ + τn^E^∖. [2.38]

The explicit expression of £31 is also presented in the appendix.It is possible to derive analytical expressions for higher order terms using thesetechniques; however, the results tend to be very cumbersome. Dynamic solutionsare also possible, but they result in a large number of time constants yieldingvery little physical intuition. Consequently, utilization of the higher order modelis best done by numerical simulation. By applying these numerical techniques,profiles of the space charge distribution and electric field strength within the crystalcan be generated. Figures 2.9-2.14 show a number of numerically simulated trapdensity and space charge field profiles for various of applied field strengths, spatialfrequencies, and modulation depths for a BSO crystal in the steady state regime. The trap densities depicted in these figures have been normalized to the equilibrium trap concentration which is approximately 10lθ cm-3 in BSO. These calculation was



53performed for 100 Fourier orders and a power series expansion in m of 100 orders.These profiles took several hours on a VAX 750 to compute.
Figure 2.9 shows the trap density and space charge field for a grating of 100 l∕mm, an applied field of 6kV∕cm, and a modulation depth of 1 being recorded in a BSO crystal. The trap density exhibits three distinct regions: a highly local­ized positive region, a highly localized negative region, and the remaining neutralregion. Under these operating conditions, the drift length is approximately 9μmand translates to 0.9 in the normalized distance scale. As a result, photogeneratedelectrons from throughout the intensity pattern are swept into the regions wherethe intensity is zero. In these regions, the electrons recombine and cannot be reex­cited. Consequently, a large region of negative charge collects in areas of zero lightintensity. Because the applied field results in an asymétrie direction for current flow (in this case the applied field is oriented toward the right), the compensating region of positive charge is located immediately to the right of the region of high negativecharge. In the remaining regions, the charge density remains neutral resulting froma balance between the excitation and recombination rates. The size of localized pos­itively and negatively charged region results from a diffusive process. Under theseoperating conditions, the diffusion length is approximately 0.6 μm correspondingto 0.06 distance units. This corresponds to approximately one half the width ofthe highly negatively charged region as well as the highly positively charged region.



54The space charge field profile that is generated by the derived trap density patternshows a comb-like field pattern. As expected the space charge field is highly non-sinusoidal and agrees with the profiles generated by the Moharam model, which areaccurate in this operating regime.
Figure 2.10 shows the trap density and field strengths for Eq = 6kV∕cm, f = 1000 l∕mm, and m = 1. In this case, the trap density profile is similar to that shown for the 100 1/mm case (Fig. 2.9) but with a much broader region of positively and negatively charged carriers. This broadening is attributed to anincreased importance of diffusion effects as well as saturation of ionized traps. Withthe spatial frequency used in this case, the diffusion length is approximately 0.6distance units. The consequence of this broadening in the trap density results in amore sinusoidal looking space charge field, as predicted by the Kukhtarev model.
Figures 2.11 and 2.12 demonstrate the case when there is no applied field (jE,o = 0 kV∕cm). In this case, the modulation depth is unity and the spatial frequencies are 100 and 1000 1/mm, respectively. In the 100 1/mm case (Fig 2.11), the trap density profile is characterized by a symmetric function which is spatiallylimited around the region of minimum incident intensity. The width of this region is approximately one diffusion length (0.06 distance units) in each direction. This leads to the highly nonsinusoidal space charge field profile shown in the figure. In contrast, the 1000 1/mm case (Fig. 2.12) has a trap density profile which extends
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Normalized Distance in WavelengthFig. 2.9 Trap Density and Space Charge Profile of a Grating Recorded on a BSO crystal(∙Eo= 6kV∕cm, f = 100 lines/mm, m = 1)
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Fig.
Normalized Distance in Wavelength2.10 Trap Density and Space Charge Profile of a Grating Recorded on a BSO crystal 

(Eq= 6kV∕cm, f = 1000 lines/mm, m = l)
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INTENSITY PROFILE

Normalized Distance in WavelengthFig. 2.11 Trap Density and Space Charge Profile of a Grating Recorded on a BSO crystal(JE,o= 0kV∕cm, f = 100 lines/mm, m = 1)
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.S 1 1.8 2

Normalized Distance in WavelengthFig. 2.12 Trap Density and Space Charge Profile of a Grating Recorded on a BSO crystal
(Eq= 0kV∕cm, f = lOOÛlines/mm, m = 1)



59through the entire grating wavelength due to the larger normalized diffusion length.This results in a more sinusoidal-looking space charge field yielding a fundamental Fourier component larger than that derived from the 100 1/mm case.Figures 2.13 and 2.14 show the space charge field profile for a 0.5 modulation depth grating being recorded at 100 and 1000 1/mm, respectively with an applied field of 6kV∕cm. In both cases the space charge field is almost sinusoidal. This results because the contribution from higher Fourier orders is lessened at lowermodulation depths, as expressed by the analytical derivations from the higher ordermodel.
Figure 2.15 shows the strength of each of the Fourier components when an intensity grating of spatial frequency 100 and 1000 lines/mm is recorded in a BSO crystal. Both the drift dominated (Eq = 6kV∕cm) and diffusion dominated (Eo = 

0kV∕cm} cases are plotted. As expected, the contribution of higher order harmonic components to the space charge field profile are significantly higher for low frequency gratings than high frequency gratings. In the high frequency regime, the higher order terms become negligible when compared to the fundamental component.
∏.5 Comparison between the Moharam, Kukhtarev and Higher Order

Models

The higher order model described in the previous section allows one to analyzethe accuracy of the Moharam and Kukhtarev analytical models in the steady state
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SPACE CHARGE FIELD

Normalized Distance in WavelengthFig. 2.13 Space Charge Profile of a Grating Recorded on a BSO crystal (Eq= 6kV∕cm, f = 100 lines/mm, m = 0.5)

Normalized Distance in WavelengthFig. 2.14 Space Charge Profile of a Grating Recorded on a BSO crystal (Fq= 6kV∕cm, f - 1000 lines/mm, m = 0.5)
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Fig. 2.15 Fourier Spectrum of Space Charge Field Profiles



62regime. Figure 2.16 shows the first harmonic component of the space charge field 
Ei as a function of modulation depth using all three models. In this figure a grating of 100 lines/mm recorded in a BSO crystal was simulated. As expected, both the Kukhtarev and Moharam models agree with the numerical simulations in the lowmodulation depth regime. However, in high modulation depth regime, the solution of the Kukhtarev model deviates greatly from the higher order solution. In contrast, the Moharam model accurately predicts the space charge field component over the full range. It is interesting to note that the Moharam model still overpredicts the actual response of the crystal due to its assumption of an infinite trap density (or constant recombination time). Figure 2.17 shows the 2£i-m relationship for a 1000 line/mm grating. In this case, the Kukhtarev model shows good agreement with the numerical simulations over the full range of modulation depths. However, because of the inability of the Moharam model to predict a trap limited screening field, the model is inaccurate over the entire range.
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Fig. 2.16 ∣2*7ι I vs Modulation Depth for Moharam, Kukhtarev and Higher Order Models at f = 100 lines/mm.



64

Fig. 2.17 ∣F,1∣ vs Modulation Depth for Moharam, Kukhtarev and Higher Order Models at f = 1000 lines/mm.
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Table 2.1 Material Parameters for Bismuth Silicon Oxide (BSO)ParameterMobility Symbol

CarrierLifetime τ

Donor-likeTrap Density nd
Dark IonizedTrap Density N+plDeg

RecombinationCoefficient Ιr

DielectricConstant e

Value Ref0.03cm2∕V-s [24]5x10~6 s [24]
1019cm^3 [24]
10lθcm~3 [24]
2xl011cm3∕s [24]
56 [24]

Index ofRefraction n0
OpticalAbsorption a

ElectroopticCoefficient Γ41

Photo-Ionization Cross Section sg

488 515 633 nm2.650 2.615 2.530 [23]
7.0 2.8 0.6 cm-1 [23]
4.52 4.51 4.41 pm/V [23]

0.42 - cm2 ∕J [24]
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APPENDIX

Second Order Expansion of the Eι Component of the Space Charge Field

in Steady StateThis appendix will focus on deriving the first harmonic component of the space charge field that is induced when an intensity grating is incident on a photorefrac- tive BSO crystal. The method described here extends the first order perturbation expansion forwarded by Kukhtarev[4] to higher orders. An explicit expression for the second order expansion of the Eχ component of the steady state space chargefield will be derived.Consider an intensity grating of the form∕(x) = Iq(1 ÷ mcoskx} μ.ι]
incident on a BSO crystal. The material equations which govern the photorefractiveeffect are described by equations 2.13-2.16. By combining equations 2.14 and 2.16,the steady state material equations can be written as:

sNdI(x) = 7rn-V+ [A.2]
dE e, . [A.3]

dE dn d2n
μe hi+⅛J + kβTμ-^ = Q [A.4]

Equation A.4 corresponds to the fact that the time derivative of the current densityis zero in the steady state regime. In order to derive an explicit expression for the



67induced space charge field, the solutions to field, electron and trap densities areassumed to be of the form:
E = Eq + 52 J2 Erβm8eirkx + c.c. M∙5]r=l β=lΛ⅛ = W÷, - E E Ni,.m∙etrl~ + c.c. [A.6]r=l 8=1n = no + nram8e*rkx + c.c.. [A.7]r=lβ=lHence the amplitude of the fundamental component of the space charge field willbe given by

Ei = mEιι + m2 J&12 + m? Eι⅛ + ... . [-^-∙θ]
Since m is always less than 1, we can consider m as a perturbation parameter in solving the material equations. By substituting equations A.5-A.7 in equations A.2- A.4 and collecting terms for the non-harmonic spatial components (i.e., DC terms), results in the following relationship

σNdI0no 7⅛,'
Likewise by collecting terms for which r=l and s=l, and using equations A.9, theexpression for En is given by:p.. — -' Eg E° +2 Eo + i(Eq + Ed)

μ,ιo∣



68where Ej, = k^Tk/e and Eq = eNpeq∣ek are the characteristic fields due to diffusion and space charge. The above expression is identical to that derive by Kukhtarevwhich corresponds to a first order solution of the material equations. In orderto extend the solution of the fundamental component of the space charge field tosecond order, components with higher spatial frequencies must be incorporated intothe solution. Since the nonlinearities in the material equations are simple productsbetween the unknown variables, it is relatively easy to determine the lower orderterms which affect a given higher order term. In this case, we would like to derive thehigher terms in the Eχ series. The next significant term which would produce termswith spatial frequency k is a product between a term with frequency 2k and a termwith frequency -k. Hence an expression for E% must first be derived. By collectingterms with spatial frequency 2k and substituting the first order expressions for E-iand their complex conjugates, it can be shown that Eq^ = -^12 = 0. In addition,the first nonzero component, E22∙, is given by
En=i⅛Kl(l-Kl)Di [All]

Eq + iEd 
Eq + i(Ed + Eq)
Eq + i(2Ed + Eq) 

Eq + i(2Ed + Eq∣2)

μ,12]

μ.13]

Thus, the dominant term of the second spatial frequency component of the space



69charge field is given by
E2 = m2E22∙ [A.14]

In order to solve for the second term of the fundamental Fourier components, components with spatial frequency 2k must be combined with components with spatial frequency -k. Utilizing equation A.11 and the corresponding equations for the electron and trap densities (n22 and Np22) in conjunction with the conjugate expressions for E,-n,n-n, and 2Vp-11, the expression for Eι3 can be derived.
E13 = -i¾-[D1K1∖l - K1∖2D2 + ∣K112(1 - Kx)(l - P1)P3] [A.15]

where
Eq + i(Ed + Eq∕2)
Eq + i(Ed + Eq)

Eq + i(Ed — Eq) 
Eq + i{Ed + Eq)

[4.16][Λ.17]
Through further examination of the nonlinearities in the material equation, it can be shown that Eh = 0. Hence the fundamental component of the space chargefield can be written to second order as

Ei = mE11 + m3Eι3 + O(m5). [4.18]
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III. THE PHOTOREFRACTIVE INCOHERENT TO COHERENT

CONVERTER

I. Introduction

High performance spatial light modulators (SLMs) are essential in many optical information processing and computing applications in order to convert incoherent images to coherent replicas suitable for subsequent processing [1,2]. A typical spatial light modulator consists of a photosensitive element to capture the incoherent lightimage and an optical modulator element to impress the incoherent image onto acoherent readout beam. A particularly important class of spatial light modulatorsemploys photorefractive crystals that combine both photosensitive and electro-opticmodulation functions within the same medium. Examples of electro-optic spatiallight modulators that utilize photorefractive crystals include the Pockels Readout Optical Modulator (PROM) [3] and the PRIZ [4].
During operation of the Pockels Readout Optical Modulator, the input image-bearing beam creates photoinduced carriers which are longitudinally separated byan applied bias electric field. This charge separation produces a space-variant divi­sion of the applied field across the electro-optic crystal and one or more dielectricblocking layers as shown in Figure 3.la. The local birefringence of the medium depends on the longitudinal component of the local electric field, and hence can besensed by a polarized readout beam observed through an exit analyzer. In the PRIZ,



75the same charge generation and separation process is utilized, with the exceptionthat the crystallographic orientation is chosen to emphasize readout sensitivity to the transverse components of the induced electric field distribution, as shown inFigure 3.lb.
The PROM and the PRIZ are typically limited in spatial frequency response to an order of 10 1/mm at their optimum optical exposure [5] and hence are lim­ited to relatively modest bandwidth optical processing and computing applications.The physical configurations of the PROM and PRIZ devices do not lend themselvesreadily to exploitation of the remarkably high spatial bandwidths available in holo­graphic configurations, in which the input image is encoded on a spatial carrier (as shown in Figure 3.1c). Even when utilizing the same electro-optic crystal as in the PROM and PRIZ (typically Bismuth Silicon Oxide (BSO)), holographic recording configurations employing transverse applied electric fields and no blocking layers have been shown to exhibit spatial frequency bandwidths in excess of 2000 1/mm [6]. However, such purely holographic recording requires the input of image de­pendant information on one of two coherent input beams, and as such cannot bedirectly utilized for performing the incoherent to coherent conversion function.
A fourth distinct type of photorefractive spatial light modulator has been inde­pendently proposed by Kamshilin and Petrov [7] and by the author and his cowork­ers [8-10], which combines the incoherent to coherent conversion function with holo-



76

ELECTROOPTIC SPATIAL LIGHT MODULATORS
( θ'l12^*θ2O^PROM PR∣2

*APP

VHOE
†-

T^COH 

, ♦ INC PICOC
κ

Fig. 3.1 Schematic Diagram of Four Spatial Light Modulators Using Bi 12SiO20 
a) Volume Holographic Optical Element (VHOE) b) PROM c) 
PRIZ d) Photorefractive Incoherent to Coherent Converter (PICOC)



77graphie recording process, and as such exhibits several advantages of each. As inthe holographic recording case, a transverse applied electric field is used in conjunc­tion with two uniform coherent writing beams to produce a volume grating that isthen selectively modified by a third incoherent beam encoded with the informationcontent to be stored or converted. This configuration is shown schematically in Fig­ure 3.Id. This Photorefractive Incoherent to Coherent Optical Converter (PICOC) [8-10] is a device capable of recyclable real time operation, is characterized by an enhanced spatial frequency response, and is much simpler to construct than thePROM or PRIZ. In addition, the PICOC device configuration allows its use in many quasi-holographic techniques (such as optical phase conjugation), which in turn leads to potentially novel optical information processing and computing archi­tectures [11-13].
The photorefractive incoherent to coherent conversion process is described inthe following section along with alternative sequencing schemes and optical imple­mentations. Section 3 analyzes the steady state response of the conversion processthrough both the Kukhtarev model and a higher order perturbation model similar tothat described in chapter 2. Important criteria such as the linearity and frequencyresponse of the converter are discussed. In section 4, the perturbation analysis isextended to analyze the temporal response of PICOC and its implications on var­ious sequencing architectures. Conclusions and further research regarding PICOC



78are presented in section 5.
III.2 Photorefractive Incoherent to Coherent ConversionIII.2.1 Physical PrinciplesThe photorefractive incoherent to coherent optical conversion (PICOC) pro­cess is perhaps best understood as an extension of the more familiar holographic recording process in a photorefractive medium. The physical principles governingsuch recording are briefly reviewed in this section while greater mathematical detailis presented in following sections and the appendix. This extension of the recordingprocess to include PICOC allows for at least three different temporal modes forsequencing the coherent grating with respect to the incoherent image. These modesare identified and compared in this section. In addition, two alternative opticalarchitectures are defined, and converted images generated by one representativeconfiguration are presented.

In the photorefractive incoherent to coherent optical conversion (PICOC) pro­cess, an incoherent image is focused in the volume of the photorefractive material inaddition to the coherent beams that form a uniform grating. In regions where theincoherent image has a high intensity distribution, the space charge field patternresulting from the coherent grating will be erased. Conversely, in regions where theincoherent image is weak, the space charge grating will remain relatively unaffected.This spatial modulation of the coherent grating by the incoherent image can then be



79transferred onto a coherent readout beam by reconstructing the holographic grating.In regions where the grating remains unaffected, i.e. the incoherent image is dark, the diffracted output will be bright. In the erased regions, i.e. where the incoherentimage is bright, the diffracted light will be attenuated. The spatial modulation ofthe coherent reconstructed beam will then be a negative replica of the input inco­herent image as shown in Figure 3.2. It should be noted here that a related imageencoding process can be implemented non-holographically by premultiplication of the image with a grating [15].III.2.2 Modes of Operation
The ability of photorefractive crystals to store the charge patterns written onthe material allows PICOC to operate in several different modes. These include the grating erasure mode (GEM; Fig. 3.3), the grating inhibition mode (GIM; Fig. 3.4), and the simultaneous erasure∕writing mode (SEWM; Fig. 3.5).
In the grating erasure mode (GEM), shown schematically in Figure 3.3, a uniform grating is first recorded by interfering two coherent writing beams in thephotorefractive crystal. The writing beams are turned off, and this grating is thenselectively erased by incoherent illumination of the crystal with an image-bearingbeam. A probe beam is then used to reconstruct a coherent replica of the incoherentimage.
In the grating inhibition mode (GIM), shown schematically in Figure 3.4, the
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GRATING ERASURE MODE 
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Fig. 3.3 Grating Erasure Mode (GEM)
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84crystal is pre-illuminated with the incoherent image-bearing beam prior to grating formation. This serves to selectively decay (enhance) the applied transverse electric field in exposed (unexposed) regions of the crystal. After this pre-exposure, the coherent writing beams are then allowed to interfere within the crystal, causing grating formation with spatially varying efficiency due to significant differences inthe local effective applied field.
In the simultaneous erasing/writing mode (SEWM) shown in Figure 3.5, the incoherent image modulation, the cohrent grating formation, and the readout func­tion are performed simultaneously. A stable conversion of the incoherent image isproduced after the space charge fields within the crystal have reached steady state.
A major difference between the first two operating modes and SEWM lies inlight sequencing required by each of the modes. In GEM and GIM, no useful steadystate condition exists. Prolonged exposure to the incoherent beam in GEM resultsin an erasure of the previously recorded coherent grating. As a result, no light willdiffracted and conversion will not occur. Likewise in GIM, prolonged exposure tothe coherent grating would lead to erasure of the information previously recorded bythe incoherent image. Consequently, an important operating parameter in analyzing these two modes is the optical exposure (energy per unit area) required for optimum conversion of the incoherent image. In the case of SEWM, however, both theincoherent and coherent beams are simultaneously incident on the photorefractive



85crystal. As a result, conversion can occur in the steady state regime. Thus theimportant parameter for this mode is the optical power of the incident light beams.The ability of SEWM to convert incoherent images to their coherent replicas, despite prolonged exposure, allows one to construct a simplified experiment whichrequires no temporal sequencing of the incident beams. Because of its experimentalconvenience and analytical simplicity, SEWM is emphasized in this thesis. Moredetailed discussions of GEM and GIM are given in the temporal analysis describedin section 3.4.III.2.3 Experimental ImplementationThe implementation of PICOC is a modification of the non-degenerate four-wave mixing geometry to include simultaneous exposure by an incoherent image- bearing beam (Fig. 3.6). This configuration requires a readout wavelength separate and distinct from the coherent grating writing wavelength, which then allows thereadout wavelength to be selected for significantly reduced grating erasure rates. Thus, the grating inhibition mode (GIM) and the grating erasure mode (GEM) are best implemented in this configuration. One drawback of the nondegeneratefour-wave mixing implementation lies in the difficulty of aligning the probe beam.Since the wavelength for writing and read out of the recorded pattern differs, the Bragg angle for the two beams will not be the same (as shown in Figure 3.6).An alternative method of reconstructing the hologram consists of retroreflecting
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87one of the writing plane waves and using it as a readout beam. This degenerate four-wave mixing architecture (shown in Fig. 3.7) has the advantage of easier optical alignment, as the readout beam is readily Bragg aligned by the retroreflecting of one of the two coherent grating writing beams. It has the disadvantage that since the readout beam is at the same wavelength as the coherent grating writing beams, the process of reconstruction simultaneously erases the grating structure being probed. Thus, this implementation can be utilized for the simultaneous erasure/writing (SEWM), and can be adopted for the grating erasure mode (GEM) and the grating inhibition mode (GIM) only by significantly reducing the probe beam intensity, with a correspondingly reduced readout signal intensity.
As a specific example of the PICOC process, a non-degenerate four-wave mixing configuration was utilized, in which the coherent writing beams and the incoherentimage-bearing beam were made to illuminate the same face of a 2 mm thick crystal of bismuth silicon oxide (BSO) obtained from Crystal Technology Inc. An electric field of 6kV∕cm was applied along the < 110 > axis as shown in Figure 3.8. A 300 1/mm grating was written by the 488 nm line of an argon laser with the grating wave vector oriented parallel to the applied bias field to maximize the diffractionefficiency. The image bearing light source was either a Xenon arc lamp, a tungstenlamp, or the 514 nm line of the argon laser. The average coherent grating intensity was 0.4 mW/cm2 and the image-bearing light intensity was typically 8.0 mW∕cm2.
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89The coherent grating writing beams were polarized orthogonal to the applied electric field. An auxiliary beam, utilizing the 633 nm line of a He-Ne laser, was used to read out the information recorded in the crystal. The average intensity of the readout beam was 5 mW∕cm2. A polarizer was inserted at the output to minimize coherent optical scatter from the crystal [16].

Fig. 3.8 Crystal Orientation Used in PICOC



90Sample converted images obtained from two binary transparencies (a spoke target and a U.S. Air Force resolution target) and from two black-and-white slides with continuous gray scale are shown in Figure 3.9. The original transparency andits converted image have reversed contrast, as explained by Figure 3.2. An approx­imate resolution of 15 l∕mm, as determined from the resolution target image, was achieved without optimization factors such as the Bragg readout condition. Furtheroptimization of the optical beam orientations results in striking enhancement of the resolution up to the order of 50 l∕mm. This is discussed in section III.3.3 below. Similar images of comparable quality have also been recorded in a bismuth siliconoxide crystal in which the < 001 > axis is aligned parallel to the coherent gratingwave vector and to the applied bias electric field.
Having discussed the physical principles, modes of operation and experimentaldemonstration of the PICOC process, a mathematical model is now formulatedthrough which specifications of the converter can be analyzed. The analytical model is based on the Kukhtarev model [17] for the recording process in photorefractive crystal which was reviewed in section II.3. This method allows one to derive ananalytic expression for the dynamic and steady state response of PICOC in the lowmodulation depth regime.
A higher order model similar to one discussed in section II.4 is also applied tothe PICOC process and presented in section III.3.4. Numerical analysis utilizing
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(Μ C⅛
Fig. 3.9 Examples of PICOC Conversion of Binary and Gray-Level Images: a) Spoke Target, b) Air Force Resolution Target, c) Incoherent Graduate Student, and d) Airplane.



92this model allows one to derive the space charge profile within the-photorefractivecrystal under different operating conditions. In addition, this allows one to predictthe steady state response of the converter in the high modulation depth regime.
The following section presents the steady state analysis of PICOC and discusses important issues such as linearity and spatial frequency response of the converter. The temporal analysis of PICOC is presented in section III.4 with more detailedstudies on the different operating modes of the coverter.

III.3 Steady State Analysis of PICOC

During the recording process, a space charge electric field E(x) is formed in the photorefractive crystal in response to the combined illumination by a coher­ent grating light beam Ig(x) and an incoherent image beam Iβ(x). The recording process can be analyzed using the Kukhtarev model [17] (section II.3) to predict the recorded index change subject to the two simultaneous intensity patterns. Theresults obtained by using a perturbation expansion on Kukhtarev’s equations arepresented in the next section. The implications of these results on the nonlineartransfer function of the conversion process are explored in section III.3.2. Issuesaffecting the resolution of the recording process are discussed in section III.3.3.Results of numerical analysis performed on the higher order model are shown insection III.3.4. The temporal response of the converter is discussed in the following



93section ΠL4.
ΠI.3.1 Two Grating Recording

When an incoherent image beam is present simultaneously with the coherent grating, as in the simultaneous erase/writing mode (SEWM), then additional terms corresponding to harmonics of the spatial frequencies of the illuminating intensity must be incorporated into the analysis. Let us consider the recording of a coherent grating with frequency kg and an incoherent grating with frequency ka. The light intensity incident on the crystal is then
I(x) = Jr0(l + mgcoskgx) + i1(l + mεcosk8x). [3.1]

The presence of both gratings in the crystal and the nonlinearities in the pho-torefractive process results in the recording of a space charge with additional har­monic components. The dominant components in the harmonic expansion are the 
kg and ka orders due to the presence of the two intensity gratings incident on the photorefractive crystal. If these were the only two spatial frequencies recorded in thephotorefractive crystal, then the incoherent image would not modulate the coherentgrating and conversion would not be possible. However, due to the nonlinearities in the recording process, the intermodulation terms kg ± ka and possibly higher order terms are also recorded in the crystal. As a result, when two sinusoidal grating are



94recorded on the crystal, the resulting space charge field is
E(x,t) = ^oιctfc'x + [-Eιo÷-E'ιιe*fc'1 + -i'X-ιe"^,fc'i]etλ,'1÷higher order terms. [3.2]

In this notation, Epq is the amplitude of the Fourier component of the space charge field at the spatial frequency (pkg +qka). It is important to note that the subscript notation used in this chapter is different from that used in the higher order model (section II.4) to denote the double Fourier-power series expansion. The space charge field described in equation 3.2 will give rise to an diffracted intensity pattern of theform
lout = Ao + 27ιι cos (kβx). [3.3]

Thus, the incoherent sinusoidal pattern results in a modulation of the diffractedoutput and the incoherent image is impressed on the coherent diffracted beam. The far field diffraction pattern, shown in Figure 3.10, shows the spatial Fourier com­ponents which arise when two gratings are written on the photorefractive crystal. The Λo and lox orders arise from the diffraction of the incident probe beam by the two fundamental gratings (kβ and kg). In addition, the ∕11 order is created by a nonlinear interaction between the two fundamental modes and it is this termthat is responsible for the incoherent to coherent conversion that occurs in the crys­tal. Hence, the photorefractive incoherent to coherent conversion (PICOC) process must be analyzed by examining how the intermodulation term En depends on dif-



95ferent parameters such as incident intensity and spatial frequency, as well as itsrelationship with the other first order harmonic components.The analysis of PICOC using the Kukhtarev model is based on a Fourier ex­pansion solution to the material equations governing the photorefractive process (Eqs. 2.13-2.16). In this case, however, two intensity gratings are being transcribed on the crystal. By using mathematical techniques similar to those described by Kukhtarev et al. ,[17] the space charge field components at the two fundamental frequencies can be analytically solved to first order and are found to be
ip _ θ g mgsglθ r________ -Eq + tΕ⅛[⅛g]________

10 ^ ' sgI0 + s8I1 L1 - i(E0 + iEd[kg]) ∕ Eq[kg} ] [3∙4]
E01 = -0.5- m8sgI0 Eq -(- iEd[k8] [3∙5]sglQ + s8I∖ 1 — i{Eo + t.Eii[λβ])∕.E'g[fci] where Eq is the applied bias field and sg and s8 are the absorption cross sections at the coherent and incoherent frequencies, respectively. Ed [⅛] and -E,<j[⅛] are the characteristic diffusion and trap limited saturation field described in section II.3and rewritten as functions of the grating spatial frequency below.

Ed[k} =

Γ,∣⅛] =
keTk

eNp„
ek

[3-6]

[3.7]

These expressions correspond closely to the space charge field generated by a singleintensity grating in a photorefractive crystal as predicted by the Kukhtarev analysis.
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Fig. 3.10 Spatial Fourier Components Generated by Conversion of an Inco 
herent Sinusoidal Image



97In this case, however, the space charge fields are proportional not to2the modulationdepth of each sinusoidal intensity component but rather to an effective modulationdepth due to the presence of a DC intensity component in both beams. The spacecharge field can thus be described in terms of an effective modulation depth [3.8]'" = "∙-H⅛⅛mgj j = mg

m

'SgIθ + 5β∕χ ‘ Sβ∕χ
Sglθ + 5β∕χ ]eff -= raβ[ [3.9]which accounts for the reduction in the original modulation depth due to the pres­ence of both incoherent and coherent beams simultaneously on the crystal.Using the material parameters for a BSO crystal (shown in Table 2.1), the expressions for the fundamental space charge fields can be further simplified by assuming incoherent and coherent spatial frequencies of less than 200 1/mm and an applied field 2kV∕cm< Eç> < 15kV∕cm. In this case, the trap limited saturation field Eq > 26 kV/cm and is much greater than the applied field Eo. The applied field is in turn much greater than the diffusion field Ed, which is less than 0.8 kV/cm for the spatial frequencies of interest. The lowest harmonics of the space charge fieldcan then be simplified to

Ei0 =-O.5megffEo [3.10]⅞ = -0.5m⅛. [3.11]In order to analyze the steady state response of the photorefractive incoherent tocoherent optical converter, an expression for the intermodulation term must be



98found. By carrying a perturbation analysis to a higher order the En term can be derived analytically. The complete expression for this term is shown in the Appendix III.A.1. Using the same assumptions for a low spatial frequency and high bias field as above, the expression for Eu can be simplified to
En = 9 n β Eo. [3.12]

An identical expression for En was derived by Marrakchi ct al. [9] based on the Moharam model [18] which assumes a constant recombination time (see section II.2). This derivation involves an additional linearization of the response in the limit of low modulation depths for rn,gff and meJf.Equations 3.10-3.12 indicate that under the conditions described above, theSEWM response in the steady state limit is predominantly governed by the modu­lation depths r∏gff and meJf. The consequent impact on the overall readout image light intensity and on the modulation transfer function is discussed in the nonlineartransfer response analysis, presented next.
III.3.2 Nonlinear Transfer Response

In order to characterize the nonlinear transfer characteristics of the photore-fractive incoherent to coherent process, we would like predict the effect of varyingthe input parameters characteristics on the output image. We will consider theSEWM mode in the steady state regime with a single coherent frequency grating



99and a single incoherent frequency grating and determine the modulation depth ofthe readout image as a function of the characteristics of the incoherent and coher­ent input light. A convenient parameter that describes these characteristics is the product BR, where R = h/h is the ratio of the average incoherent light image intensity to the average coherent grating intensity and B = s8∕sg is the ratio of the absorption cross sections at the incoherent and coherent wavelengths. In termsof the actual absorption coefficients of the photorefractive material, the absorptionratio is given by
G-a^atfe

αg^grig
[3.13]

where αe,g is the absorption coefficient at the signal and coherent grating wave­lengths, λs,3. ηβtg is the quantum efficiency of material at the two wavelengths.With these definitions, the output intensities of the various harmonic compo­nents can be rewritten as
ho «

hi oc 1 -f^ BR

mgmsBR η 2 
d J- RPΙ2

[3.14]
[3.15]

Figure 3.11 shows the intensity components ho∙> Λι> and ∕oι as functions ofthe intensity ratio BR. In this graph, we have assumed that the absorption coeffi­cient ratio B is equal to 0.5. For low levels of image intensity corresponding to lowintensity ratios , the coherent grating’s charge pattern is not significantly erasedby the image beam. In this regime, increasing the incoherent image-bearing light
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Ratio of Incoherent to Coherent IntensityFig. 3.11 Intensity Components Ii0, I01, and ∕11 as a Function of the Ratio of Incoherent to Coherent Intensities, R.

Ratio of Incoherent to Coherent IntensityFig. 3.12 Contrast Ratio vs R



101intensity increases the transfer of image modulation onto the space-charge gratingprofile without destroying that profile. For high levels of incoherent light inten­sity, corresponding to larger intensity ratios (R), the high intensity of the uniform incoherent image beam,Zι strongly erases the coherent grating profile leading to a decrease in the /10 component and likewise the intermodulation term In. Hence, over the full range of R values, the ∕1ι diffracted component exhibits the peaking behavior shown in Figure 3.11. This peak occurs when the ratio of the incoherent to coherent intensity is equal to the inverse of the absorption cross section, 1∕B. In other words, Jn peaks when the amount of photons absorbed (causing photoexci­tation) from the incoherent beam is equal to the number of photons absorbed fromthe coherent beam.As shown from equation 3.3, the diffracted light contains both ∕ιo and Indiffracted components. In this case, the output modulation depth is given by the ratio of the modulated component In to the DC component of the diffracted light∕10 and is given by
mout msBR 1 ^(^ BR

[3.16]
Figure 3.12 shows a theoretical plot of the contrast ratio (Jrn∕Iιo), as a function of the ratio of the incoherent to coherent intensity (∕ι∕∕o)∙ The plot demonstrates that the contrast ratio improves steadily with increasing intensity of the image bearinglight. However, as also shown in this figure, the overall average diffracted intensity
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Iιo declines with increasing incoherent intensity because the uniform backgroundin the incoherent light erases the coherent grating pattern in the photorefractivecrystal. Thus there are two competing mechanisms, output modulation depth andoutput overall intensity, which result in a performance tradeoff for image transferPICOC. In one case, high overall diffraction efficiency is possible at the expense ofa poorly contrasted output image and in the other case, a well contrasted outputcan be created only by sacrificing output brightness.

In many optical information processing applications, optimization of the imagecontrast ratio is desirable within the image intensity constraints implied by the per­formance tradeoff described above. In other types of signal processing applicationssuch as correlation with a Vander Lugt filer, the DC portion of the output imagecontained in the Iiq diffraction component does not contribute to the processing,or can be readily reduced by spatial filtering, whereas maximizing Ili is criticalto good conversion performance. For these cases, the optimum level of incoherent- image bearing beam intensity is that which maximizes the 71ι component (t.e., when Iι=I0∕B).

To test the predictions of this nonlinear transfer model, the erasure of thereadout beam’s first diffraction order /10 in response to spatially uniform incoherentillumination was measured in the nondegenerate four wave mixing configurationdiscussed in section III.2.3 with the results shown in Figure 3.13. The grating



103was written with the 515 nm line of an argon laser while the 488 nm line wasused to simulate a spatially uniform image beam. For comparison, the theoreticalprediction based on Kukhtarev’s linear expansion is also drawn. The model hasbeen scaled in intensity to match the experimental point at R = 0.6. As expected,the experimental results agree well with theoretical predictions in regions where the modulation depth is low (t.β,. R is high). For regions where the modulation depth is near unity, numerical simulations predict that the linear model would underestimatethe expected diffracted output. This fact is demonstrated clearly by the deviationbetween the theoretical and experimental curves in the region near R = 0.
A more challenging test of the theory is to predict accurately the conversionresponse to a sinusoidally modulated image beam. This can be done with the nondegenerate four-wave mixing geometry described previously. In this case, the coherent grating was written with the 488 nm line of an Argon laser and the 514 nmline passing through a Michelson interferometer was used to generate a sinusoidalspatial modulation as shown in Figure 3.14. The sinusoidal image modulationintroduces an additional diffraction order ∕1χ not observed in the uniform erasurecase. The diffracted light sideband intensity ∕n was measured as a function of theintensity ratio R and is presented in Figure 3.15 with a theroretical fit correspondingto the analytical form predicted by the perturbation expansion method.
From the position of the experimentally derived peak, one can infer the ra-
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107tio of the absorption cross sections at the writing and reading wavelengths. The experimental results demonstrate that this sg∣s8 ratio is about 2.
III.3.3 Spatial Resolution Issues for the Recording Process

A number of distinct factors influence the ultimate resolution achievable withthe PICOC spatial light modulator. These factors can be classified as geometric,configurational, and materials related. The geometric and materials factors dealprimarily with the recording of the image and the ability of the photorefractivecrystal to store it. The configurational factors deal with reading out the stored image, and how the Bragg requirements for reconstructing a volume hologram affectthe spatial resolution of PICOC.
III.3.3.1 Geometrical Limitations

Geometric resolution limitations arise from incorporating an incoherent imag­ing system in the four-wave mixing geometry and from the finite crystal thickness d required to create a volume holographic grating. These effects are illustrated inFigure 3.16.Figure 3.16 describes the case for low optical absorption {agd <<1 and a8d «1), such that the induced holographic grating has essentially uniform amplitude through-'out the volume of the crystal. The optimal focal point occurs at the center of thecrystal and is not localized on the front surface of the crystal, as would be the case in
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OPTICAL CONVERTER;
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R - 50 line pαirs∕mm

Fig. 3.16 Geometrical Constraints of PICOC Resolution



109a highly absorptive media. The spatial frequency response will theπ⅛e proportionalto ∆∕jeom = (VV∕2)-1 = [3.17]where W is the diameter of the incoherent image beam at the front surface of thecrystal, no is the refractive index of the electro-optic crystal. F# is the F-numberof the incoherent imaging system and d is the crystal thickness. As an example, forno = 2.5, d = 1mm and an F-number of 5, the resolution limit is approximately 50 lines/mm.III.3.3.2 Material Limitations
An additional resolution limitation results from material-dependent parameterconstraints which influence the physics of grating formation, in particular the finite supply of traps Npeg. As discussed in section ∏.3, if the trap density is limited, then the space charge field that can be recorded is similarly limited because sufficientspace charge cannot be generated to establish higher field strengths. This limitationbecomes progressively more severe at higher spatial frequencies and results in areduction of the the space charge field as the spatial frequency is increased. Thefinite level of compensating traps leads both to a reduction of the space charge fieldand to a phase shift as consequences of the finite saturation field. These two effectsare discussed in more detail below.In making the assumptions used to simplify the expressions for fn, we assumed
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Illthat the spatial frequency of the two gratings are less than 200 -Bnes/mm. The dependence of this intermodulation term on the incoherent spatial frequency is explicitly derived in Appendix IILA.1 (equation A.20). Figure [3.17] shows the 2i11 component of the space charge field as a function of the incoherent spatialfrequency at various coherent grating frequencies. As depicted from this figure, thevariation over the effective bandwidth of the photorefractive incoherent to coherentconverter is negligible especially when compared with the effect induced by thecoherent grating spatial frequency.
To verify the predicted high bandwidth of the recording process and to elim­inate the depth of focus issues discussed previously, the Michelson interferometerconfiguration shown in Figure 3.14 was again used to record a sinusoidal imagepattern onto a BSO crystal. The ratio of the incoherent image intensity to thecoherent image intensity was adjusted experimentally to maximize the intensity ofthe In diffraction order. As the image grating frequency was varied, the angularalignment of the readout beam was also varied to maintain optimum Bragg align­ment, thereby removing Bragg detuning effects on the readout resolution. Thus themeasured diffracted intensity ∕n corresponds to the strength of the space chargefield stored in the crystal, with results as shown in Figure 3.18. A slight decreasein diffraction efficiency with increasing spatial frequency is observed, but the fre­quency response far exceeds the bandwidths for Bragg detuning, discussed in the



112following section.
A far more serious implication of finite density of trap sites is a shift in thephase of the recorded space charge field profile with respect to the incident coherentgrating illumination profiled. Considering an equilibrium donor-like trap density, 

Npeq °f 10lθ cm-3, a coherent grating frequency of 300 line/mm and an applied bias field of 6kV∕cm, the resultant phase shift is of the order of 18°. This phase shift poses no problems for PICOC performance so long as it remains uniform overthe full aperture of the photorefractive crystal and the full spatial bandwidth of theincoherent image. On the other hand, an image-induced differential phase shift canprove to be problematic for particular optical processing architectures.
The expression shown in equation 3.15 derives the magnitude of the intermod­ulation field. An important parameter, however, is the phase relationship betweenthe En term an the DC component of the diffracted field 2?io· Should the phaseshift between the two space charge field components vary significantly as a func­tion of the spatial frequency of the incoherent grating, this would result in a highlydistorted coherent reconstruction of the image. In making the assumptions leadingto equation 3.15, we can conclude that there is no phase shift between the inter­modulation term and Eiq. A more detailed analysis based on the full analytical expressions of the two space charge fields (shown in equation A.20) demonstrates that there is indeed a phase shift between the two components. Figure 3.19 shows



113the phase shift of the Eu intermodulation component as a function of the incoher­ent spatial frequency at various coherent grating frequencies. From this figure, we can conclude that the phase shift is linearly proportional to the spatial frequencyof the incoherent image. Thus, the image that is recorded in the crystal is spatiallyshifted with respect to the intensity profile of the incoherent image. At a coherent spatial frequency of 100 l∕mm, the amount of phase shift is approximately 0.09° per 1 l∕mm. This would correspond to a spatial translation of image-induced space charge pattern of 20 μm. Thus for a 1:1 output imaging system, the phase shiftinduced in the recording process will result in a 20 μm shift of the converted out­put image. Thus, we can conclude that the phase shift is essentially linear withfrequency throughout the bandwidth of the converter and will have negligible effecton the converted image.
III.3.3.3. Resolution Anisotropy

Another issue of affecting resolution that has been predicted by the perturba­tion series is a moderate anisotropy in the recording of image structures parallelas opposed to perpendicular to the applied bias field for the simultaneous erasure writing mode (SEWM), and a resolution anisotropy for the grating inhibition mode (GIM).The analysis described above is conducive to an intuitive interpretation of the



114

Incoherent Spatial Frequency (lines/mm)

Fig. 3.19 Phase Shift of E11 vs Incoherent Spatial Frequency



115perturbation terms as a sequence of discrete recording events. For the simultaneous erasure/writing mode (SEWM), two recording paths contribute to the In diffrac­tion order. In one recording path, the incoherent image writes a space charge field
Eon independent of the coherent grating profile. This space charge field then mod­ulates the recording of the coherent grating light beam. This transcription path is analogous to the grating inhibition mode (GIM). In the second SEWM transcrip­tion path, the coherent grating profile writes a space charge field Eiq, which thenmodulates the recording of the incoherent image-bearing beam. This second path is analogous to the grating erasure mode (GEM). The GEM-like path exhibits perfect isotropy of response to an arbitrary image, but the GIM-like path exhibits a verystrong anisotropy with image structures oriented perpendicular to the applied biasfield generating much weaker space charge fields than structures oriented parallelto the bias field.To elaborate, consider an image profile consisting of a single spatial frequencysimilar to equation 3.1, but oriented such that the wave vector ka is orthogonal to the applied bias field Eq. Thus the incident image intensity Ia{y} is given by

∕s(y) = ∕1(1 + m3cosksy) [3.18]
in which the y axis is orthogonal to the applied bias field. This image profile, in combination with the coherent grating profile, induces a space charge field E(x, y)



116of the form ’
E(x,y) = x(E0 + Ei0eik°x) + yE0ieik'y + (xEllx + yElly)ei^k>x+k^

+ (iE1~lx + yE1-ly)ei(k°x~k'ri + c.c. [3.19]in which x and y are unit vectors parallel and perpendicular respectively to the direction of the applied field.Terms such as E,oι and E↑↑y involve recording a charge pattern along a direction orthogonal to the applied bias field, and hence do not benefit from the enhancement of the photoconductivity due to the applied field. In practice these terms are very much smaller than terms Eιo and Fqii, which involve recording a charge pattern along a direction parallel to the applied bias field. The perturbation method analysis solving for the jE,iix term is presented in Appendix III.A.2 (equation A.35). It can be shown that if the spatial frequencies of both the incoherent and coherent gratings are less than 200 l∕mm, and the applied field is between 2 and 15 kV∕cm, the intermodulation term Elll can be approximated by
E∏x = —0.25m r∏g  ̂Eq. [3.20]This value is reduced by a factor of two compared with the E∩ term given inequation 3.12 that results when the image wave vector ks is parallel to the biasfield.It is through this analysis of resolution anisotropy, that the importance of the coherent grating in PICOC is seen. Consider a system such as shown in Figure 3.20.
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Fig. 3.20 Experimental Set-up for Implementing Conversion Without Coher­
ent Writing Beams (Polarization Modulation)
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Fig. 3.21 Conversion of Nested Squares Image Using: a) No Coherent Beam 
(Phase Modulation), and b) With Coherent Beam (P1COC)



119In this optical system, an incoherent image is imaged onto the BSO-crystal without the presence of the coherent grating. An auxiliary beam is then used to read out the phase information recorded in the crystal through a set of crossed polarizers. The index perturbation induced in the crystal will result in a modulation of theintensity of the coherent light observed through to the polarizer. Figure 3.21ashows the conversion of a nested square image using this optical conversion system.The lines perpendicular to the direction of applied field have an increased indexchange due to the drift mechanism induced by the field. As for lines parallel to theapplied field, the photorefractive process is totally governed by the weaker diffusionprocess. The result is high index variation for the lines perpendicular to the fieldand a low variation for lines parallel to the field, as demonstrated in Figure 3.21a.In contrast, if a coherent grating were added to the optical architecture as in thecase of PICOC, the nested square image is converted nicely for lines oriented in both directions (Fig. 3.21b).
One immediate consequence of the severe anisotropy in converting without a coherent grating is in the response of the grating inhibition mode (GIM). Since the crystal must first support a space charge field generated by the incoherent imagebefore a coherent grating is brought in, the anisotropy in the image induced fieldis transferred to the modulation of the coherent grating. As a result, modulationof the coherent grating by an incoherent structure perpendicular to the applied



120field will be much more pronounced than modulation by structures parallel to theapplied field. Thus, GIM cannot be used to convert two dimensional images totheir coherent replicas, but must be constrained to only converting informationwith Fourier components nearly parallel to the direction of the applied field.
IΠ.3.3.4 Bragg Limitations

In the configuration typically used in PICOC, the phase gratings are thick,and consequently the readout quality is degraded when the Bragg condition is notsatisfied. This may occur by a slight angular misalignment of the readout beam orby sub-optimum alignment of the incoherent image beam. This section examinesthe readout of these phase gratings and its consequences for the performance ofPICOC as a spatial light modulator.Bragg detuning impacts PICOC performance in two ways: the angular align­ment sensitivity of the hologram to the coherent readout beam, and the spatialfrequency response of the hologram readout as a function of the incoherent imagefrequency. Consider first the alignment sensitivity to the coherent readout beam.The optimum angle at which a readout beam must be incident on the photorefrac-tive crystal is given by the Bragg condition
3∙∙n(⅛) = ½½ [3.21]

where Θb is the Bragg angle, Xr is the wavelength of the readout beam, kg∕2π is the



121spatial frequency of the phase grating, and no is the refractive index of the crystal.An angular misalignment ∆θ between the readout beam and the optimum Braggalignment introduces decrease in the light diffracted from the crystal. The overalldiffraction efficiency can be characterized through a Bragg mismatch parameter £of ξ = = o.5fcpd∆0 [3.22]
where kg is the magnitude of the grating wavevector, Δ0 is the angular deviation from the Bragg angle, and d the thickness of the volume hologram, ∆fc is a crys­tal independent mismatch parameter which is used in characterizing the relativeamount of mismatch in a given optical configuration as shown in Figures 3.23 and24. Assuming a small grating strength, the dependence of the diffraction efficiency on ζ is given by [19]

η = ηosinc2(ζ) [3.23]
where ηo is the diffraction efficiency when the Bragg condition is satisfied (i.e. ξ = 0). Thus, the angular misalignment Δ0 needed to reach the first null of this profileoccurs when 2τr λ-9

d
[3.24]

where Ag is the wavelength of the grating. For a 2 mm thick photorefractive crystal with a 300 line/mm grating frequency, the angular tolerance is on the order of 0.1°.



122Hence very accurate angular alignment is needed to achieve optimum diffractionefficiency.
One possible alignment of the PICOC system is to orient the readout beamto be Bragg matched precisely to the coherent grating, thereby maximizing theintensity of the Ιχθ diffracted order. When an incoherent grating is also incidentupon the crystal, the nonlinear recording process creates a new grating with wave vectors {kg ± ka} that does not satisfy the same Bragg condition as the coherent grating wave vector kg. The resulting ∕il intensity component is then attenuated by an amount dependent upon the orientation and magnitude of the image wavevector ka.

The importance of the orientation of ka on the spatial frequency response ofthe converter is strinkingly illustrated in Figure 3.22. Two converted images of a 5 line/mm Ronchi ruling are shown at two orthogonal orientations along with their associated coherent Fourier transforms. As can be seen from the figure, asignificant difference in resolution exists between cases in which the wave vector ofthe ruling is parallel or perpendicular to the coherently written grating. As a result,a higher number of diffracted orders can be seen in the direction perependicular tothe coherent grating. This difference derives principally from the fact that a differentwave vector matching condition exists for these two cases.
Consider the two wave vector matching conditions shown in Figures 3.23 and
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Ronchi-Ruling Fourier Transform
5 lp∕mm

Pig. 3.22 Fourier Transform of a Conversion of a Ronchi- Ruling Image



1243.24. In Figure 3.23, the incoherent grating wave vector ke is parallel to the coherent grating wave vector kg, a condition achieved by symmetrically orienting the incident coherent beams about the normal to the crystal while simultaneously arranging the incoherent imaging system such that its optical axis is parallel to the crystal normal. In this case, significant Bragg detuning occurs for even small incoherent grating wavevectors.Let the spatial bandwidth of the readout process be defined as that spatial frequency f8 for which the magnitude of the Λι diffracted intenstiy component is attenuated to 25% of its peak value. As determined for equation 3.23, this occurs when the Bragg mismatch parameter £ = 1.9. From equation 3.22, 25% attenuation will then occur when the amount of angular deviation is given by
∆θ =

1.9 [3.25]
where fg is the spatial frequency of the coherent grating. Taking the derivative of the Bragg condition results in a relationship between the spatial frequency of theincoherent image and the consequent angular mismatch

Δ∕, = 2i⅛c<w⅛δ,,. [3.26]

Substituting equation 3.25 in 3.26 gives the spatial bandwidth of the incoherentimage ∆∕β ∆∕β = 1.2 -^^cosΘb. [3.27]
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Fig. 3.23 Phase Matching Diagram for the Bisecting Configuration

Fig. 3.24 Ph ase Matching Diagram for the Tangential Configuration



126For the parameters used in our experiments (no = 2.5, fg — 300 lines/mm, T = 2mm, and λ = 488nm), this bandwidth is calculated to be on the order of 8 lines/mm. Note that doubling the crystal thickness d to increase the diffraction efficiency by almost a factor of four has the adverse effect of reducing the spatial bandwidth by a factor of two for this alignment configuration.
Compare now the resolution performance associated with the alignment of Fig­ure 3.24 with that for Figure 3.23. In Figure 3.24, the incoherent grating wave vector is arranged to lie tangent to the circle defined by the readout wave vector. In this case ∆fc, which is given by the distance between the intermodulation grating wavevector and the equiphase circle is minimized. As a result, the angular deviation thatcan occur before serious Bragg detuning occurs is significantly increased, yielding amuch larger incoherent spatial bandwidth. Such a wave vector tangency conditionis automatically satisfied when the incoherent image wave vector is normal to thecoherent grating wave vector as it is when recording an incoherent grating in they orientation normal to the plane of incidence.. In addition, the wave vector tan­gency condition can be satisfied when the central ray of the incoherent image beamis aligned parallel to the diffracted probe light. A typical PICOC set-up achievingthis tangency condition is shown in Figure 3.25.
In the tangential geometry, the addition of an image frequency fa shifts the direction of the combined wave vectors (fcff ± ks} such that the incident readout
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128light remains almost perfectly Bragg matched over a much broader range of imagefrequencies. The mismatch parameter in this case can be geometrically calculatedand is found to be
Δ.= [√(2⅛)≈ + (^-^]. [3.28]

Since l/λ >> fa, equation 3.28 can be approximated by a binomial expansion.
∆k = [3.29]∏o

Setting ξ = 1.9 and using equation [3.22], the resulting spatial bandwidth for the tangential configuration is Δ∕. = [3.30]
For our experimental configuration, the tangential geometry increases the con­verter’s bandwidth from 8 to 48 lines/mm. It is interesting to note that in addition to the increased bandwidth of the tangential geometry, the spatial resolution is in­dependent of the the coherent grating frequency and that doubling the thickness ofthe crystal d does not halve the converter’s bandwidth as it would for the colinear alignment configuration, but only reduces it by a factor of √z2.An important consideration for achieving the tangential matching needed tooptimize the spatial bandwidth of the converter is the sensitivity of the system toangular misalignment. It can be shown that for small angular deviations α from



129the optimum tangential matching conditon, the Bragg mismatch parameter, ξ, isgiven by ξ = πfsad [3.30]
Thus, the angular misalignment of the image beam results in an increased mismatchparameter and consequently a smaller angular bandwidth. For the conditions usedin our experiments, an angular mismatch of approximately 0.7° would result in a decrease in the spatial bandwidth from 48 to 24 lines/mm.Further experimental tests of the Bragg detuning hypothesis are presented infigures 3.26-3.27, in which the image source was generated by a Michelson inter­ferometer at a coherent wavelength of 514 nm (shown in Figure 3.14). The inter­ferometer was used to alleviate the depth of focus issues discussed previously. Inthis experiment, the intensity of the diffracted component In was measured as afunction of the spatial frequency of the image source grating. Figure 3.27 shows theresponse for the geometry in which the incoherent image beam bisects the coherentgrating writing beams to achieve the wave vector mismatch condition diagrammedin Figure 3.23. The experimentally derived frequecy response indicate a bandwidth of about 9 lines/mm which agrees reasonably well with the theoretically predicted bandwidth of 8 lines/mm. Figure 3.27 shows the rolloff when the signal beam wave vector is tangent to the equiphase circle as shown in Figure 3.24, giving a much improved frequency response of 45 lines/mm. This again agrees well with the



130theoretical bandwidth of 48 lines/mm.
Figure 3.28 shows the response of the converter to changes in the spatial fre­quency of the signal when its wave vector is oriented perpendicular to the directionof the applied bias field and coherent grating vector. The theoretical bandwidthfor this configuration is identical to that of the tangential condition derived above. However, experimental measurements yielded a bandwidth of only 25 lines/mm. This discrepancy is attributed to a misalignment in the path of the incoherentimage beam relative to the plane defined by the two coherent writing beams. Adeviation of approximately 0.7° would cause a deterioration of the bandwidth from 48 lines/mm to the observed 25 lines/mm.
To conclude, we have found that the material limitations on the spatial res­olution of PICOC are negligible when compared with the geometrical limitationsresulting from finite apertures in the incoherent imaging system. These in turnare comparable with the limitations on resolution due to the Bragg sensitivitiesinherent when recording in a volume hologram. As a consequence of these Braggsensitivities, the readout beam must be aligned typically within 0.1° of the optimumand the image bearing beam to within 0.5°. In addition, the optimum alignmentdoes not consist of bisecting the two beams that record the coherent grating withthe incoherent image, but rather aligning the incoherent imaging beam with thediffracted probe thereby achieving the tangency condition necessary for maximum
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Fig. 3.26 Experimental Measurements of Spatial Resolution in Bisecting Con­
figuration

Fig. 3.27 Experimental Measurements of Spatial Resolution in Tangential 
Configuration
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Fig. 3.28 Experimental Measurement of Spatial Resolution in the Direction 
Perpendicular to the Applied Electric Field



133bandwidth.
III.3.4 Higher Order Model

A double perturbation expansion such as the one described in section II.4 canbe used to calculate higher order spatial Fourier components of the space chargefield in the case of PICOC. In this procedure, numerical methods were used to solvefor the first 50 Fourier terms of the space charge field as well as the electron and trapdensities. The major difference from the calculations performed in Chapter 2 is thepresence of both an incoherent and coherent intensity being recorded in the crystal.In order to simplify the numerical calculations, the coherent spatial frequency waschosen to be a multiple of the incoherent spatial frequency. As a result, accounting ofthe higher orders of the incoherent gratings could be accomplished at the same timeas the Fourir orders of the coherent gratings. Using this technique, it is possible to generate the space charge field that is induced by the two incident gratings. Figure 3.29 shows the space charge profiles that are generated for 6kV∕cm applied field, a incoherent frequency of 10 lines/mm, and coherent frequency of 200 lines/mm. Incoherent to coherent intensity ratios of 10, 1, and 0.1 are represented in thisfigure. From these figures, the modulation of the coherent grating pattern by theincoherent grating is clearly evident resulting in the necessary refractive index profileto perform incoherent to coherent conversion. Figure 3.30 shows the space charge



134profiles in the absence of an applied field and the same conditions used to generate Figure 3.29. Again, the profile shows the incoherent grating modulating the highfrequency coherent grating.
III.4 Temporal Response of PICOC

A temporal response analysis is necessary for the study of the photorefractive incoherent to coherent conversion process. In the grating inhibition (GIM) and grating erasure (GEM) modes, analysis is necessary to determine the optimum sequencing of the coherent and incoherent light beams. The temporal analysis is also of interest in the simultaneous erasure/writing mode (SEWM) because it clarifies the duration and nature of the transient writing period before a stable responseis achieved, and also because it leads to the reciprocity law between the incidentlight power and the response time of the converter. The analysis reported hereis restricted to small modulation regimes for simplicity. The results are modifiedsubstantially when operating with large modulation depths and require the useof numerical methods to provide accurate predictions of the dynamic behavior ofPICOC.
Let us consider one version of the simultaneous erasure/writing mode (SEWM) for the photorefractive incoherent to coherent optical conversion (PICOC) process. In this example, we assume that a coherent grating of wave vector kg has been prewritten on the photorefractive crystal and has reached its steady state value. At
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Fig. 3.29 Space Charge Field Profile of Two Grating Incident on a Photorefractive Crystal 
i,0=6kV∕cm, fg = 200 l∕mxn, f8 = 10 l∕mm, mff=l, ms=l. a) Ie∕Ic = 1, b) l8∕Ic = 
10, and c) Is∕Ic = θ∙l
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Fig. 3.30 Space Charge Field Profile of Two Grating Incident on a Photorefractive Crystal.
E,o=OkV∕cm, fg = 200 Ι/mm, fa = 10 l∕mm, ms = l, ms=l. a) ∕s∕∕c = 1, b) Ia∕Ie = 
10, and c) 1b∣1c — θ∙l
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139time t = 0, a grating with wave vector kβ is turned on. The intensity incident uponthe crystal is then described by
τi †\ _ f Λ)(l + mgcoskgx}' “ ∣ jθ(1 + mgcos]tgχ} _|_ ∕1

t<0
(1 + m8coskex} t>0. [3.32]

The temporal evolution of the various components of the space charge field can be solved for by perturbation techniques, valid for small levels of the modulation depth mg. The derivations are included in Appendix III.A.3.The temporal response of the En intermodulation term arises from the mul­tiplicative nonlinearities inherent in the photorefractive process. Since these non- linearities generating the En intermodulation term arises from the product of the space charge field at the two fundamental frequencies, it is expected that the time response for En would be determined by the temporal evolution of the product of the E10 and Eoι fields. From the Kukhtarev analysis, the time response for the space charge field at the coherent frequency is expected to decay from its initial value to a steady state value with an exponential time constant r[⅛ff]. Hence, E,10 is proportional to Γ10 α [(ms - meg^)e~t∕τ^ + meg^} [3.33]
where mgff is the effective modulation depth of the coherent grating in the presence of both the coherent and incoherent beams and is given by

eff = ma1o 

3 mgI0 + m8Il
[3.34]



140and r[fc] is the complex time constant of a single frequency grating with wave vector k and is given by the expression [17], , 1 - .∙(⅞ + i¾[⅛]∕¾[⅛i)11 0ι-i(⅞ + ⅛lΨMi)∙to is the dielectric relaxation time and is given 7V+. _ ly,Deq
θ aNDI0

[3.35]
[3.36]

and the Ed, Em, and Eq are the characteristic fields for diffusion, drift and trap limited space charge, respectively
kβTk

Ed[k}

Em[k} =

Eq{k} =

e
°Na 
μk 

eNA 
ek '

[3.37]
[3.38]
[3.39]Likewise, the space charge field induced by the incoherent grating rises ex­ponentially from its zero initial condition to its final steady state value with an exponential rise time of τ[fcs]

Em α m,∣l - e-'∕rii∙l]. [3.40]
The product of equations 3.33 and 3.40 give rise to the time constants which areimportant in the dynamical behavior of the Eχχ intermodulation term. These timeconstants are τ[⅛s], r[ks], and their product r2, where

1 1 ^,^1 
Tl = -∏~~ι + [3.41].r[⅛] Ψ∙J.



141The recording of the En intermodulation component is in fact a* recording of a grating at a spatial frequency kβ + kg. Such a grating is characterized by a time constant r[fcβ+fcff] which is unique to its spatial frequency. The temporal evolution of .En can be considered to be a system with a resonant time constant τ[fcβ + A⅛] which is forced by a term proportional to the product of the E±q and Eoι space chargefield components. Hence, the En component will consist of four characteristic time constants τ[fcβ], r[A⅛], τ[fcs + fcs] and τ2 and have the form
En = Af0 + M1e~t^τ^ + M2e~t^τ^ + M3e~t^τ^kβ+k^ + M4e~t!τ2. [3.42]

Explicit expressions for Mo — M5 are presented in the Appendix III.A.3 (Eqns. A.42-A.53). The time independent term Mo corresponds to the steady state valueof En∙The response time of the system is dependent on four distinct time constantsas well as the relative magnitudes of Mi to M4. Each of the four time constants,however, is inversely related to the amount of intensity incident on the crystal.Hence, the overall time constant for the En component can be rewritten as
∣3∙431

Thus, the time required to reach saturation is characterized through the followingreciprocity law:
G

γ's∙ ^ s,I0 + s√, ' [3.44]



142The proportionality constant G involves only material parameters and the applied bias field Eq. ks a result, the rate at which new information can be recorded is determined by the total available intensity incident on the crystal.
Similar temporal response analyses have been performed for both the grating inhibition mode (GIM) (Appendix III.B) and the grating enhancement mode (GEM) (Appendix IILC). In the GEM mode, the response time constant of the system is inversely proportional to the incoherent erasing intensity ∕χ, rather than the sum of the incoherent and coherent intensities. Conversely in the GIM mode, the timeconstant of the system is inversely proportional to the coherent intensity Iq.

Sample analytical solutions for GEM, GIM, and SEWM are shown in Figures 3.31, 3.32 and 3.33 respectively for a 1 mW∕cm2 average intensity coherent grating beam at 515 nm wavelength with a spatial grating frequency of 200 lines/mm and a small modulation depth mg, a 1 mW∕cm2 average intensity incoherent image bearing beam at 488 nm wavelength with an image spatial frequency of 10 lines/mm and also with a small modulation depth m8, an applied bias field of 6kV∕cm and with material parameters for bismuth silicon oxide as given in Table 2.1.
Figure 3.31 shows the GEM response for three diffracted light components, Jιo,

loi, and In. The coherent grating has been recorded to saturation and then turnedoff before the time interval shown in the figure. The time t = 0 is defined when theimage bearing beam is turned on. Thus the coherent grating frequency 7χo starts



143at its saturated level and decays for t > 0 because of erasure by the image-bearingbeam. The direct recording of the image-bearing beam Joι grows from an initial value of zero to its saturation level. Note that the response time for the J0ι image component, with its much lower spatial frequency, is significantly faster than that for the ∕χo coherent grating component. The image modulated grating componentin exhibits a temporal response which is derived from a combination of the ∕χoand ∕0ι response, eventually evolving into a slow decay in time when the incoherent image-bearing light beam erases the coherent grating. The image modulated gratingcomponent in initially shows a very rapid rise, followed by a much slower erasureby the coherent grating beam, eventually decaying to zero for very long recordingtimes. As a result, to convert incoherent image efficiently, the image-bearing lightexposure time must be truncated before decay of the intensity begins to occur.
Figure 3.32 shows a similar set of temporal response curves for GIM. Theimage-bearing light has been recorded to saturation, then turned off before thetime interval shown in this figure. Time t = 0 is defined when the coherent gratinglight is turned on. In this mode, ∕χo starts with zero intensity and gradually grows tosaturation, whereas the directly recorded incoherent image-bearing beam loi startsfrom its saturation level and is quite rapidly erased by the uniform component ofthe coherent grating light. The ∕11 gradually builds up to its maximum value andis eventually erased when the space charge induced by the image-bearing beam is
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148erate a rapid rise in the amplitude of ∕11, but the strong incoherent illuminationeventually erases the coherent grating and hence the diffraction efficiency decreasesto a small steady state value.
III. 5 ConclusionThrough the use of a photorefractive crystal, an incoherent to coherent opticalconverter, PICOC, has successfully converted incoherent images into their coherent replicas. The PICOC system is simple, easy to implement, and compares favorablyin its performance with other photorefractive spatial light modulators. A mathe­matical framework has been developed to analyze the performance of the converter. Using this formalism, conditions necessary to achieve high linearity, good contrast ratio, high spatial bandwidth and fast temporal response have been derived.Despite the simplicity and high spatial bandwidth of the photorefractive in­coherent to coherent converter, the converter exhibits two major drawbacks: lowdiffraction efficiency and slow response time. The efficiency of the converter is primarily due to the choice of material, specifically BSO, which demonstrates a maximum diffraction on the order of 1% for the crystal thicknesses used in our ex­periments. Other crystals with higher electro-optic coefficients such as LiNbθ3≈Feand SBN may be used in place of BSO to improve the efficiency of the converter. Another method of increasing the diffraction efficiency can be accomplished by in­creasing the thickness of the crystal; however this results in a decrease in the spatial
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150bandwidth of the converter. The slow response time of PICOC also results fromthe choice of the photorefractive material used to implement the converter. It ispossible to increase the recording time of the converter by increasing the amountof light incident on the photorefractive crystal. This technique, however, is stilllimited by the availability of high intensity levels required to achieve a fast writ­ing rate. Faster converters may be implemented by using photorefractive crystals which exhibit inherently fast response times (i.e., GaAs). These crystals, however, are still fundamentally limited by the amount of light incident on the material [20].
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APPENDIX

Steady State and Temporal Behavior of the Space Charge Field Compo­

nents in PICOCIII.A. Simultaneous Erase/Write Mode (SEWM)In this appendix, the expressions for the lowest order components of the spacecharge field Emn are presented, both in the steady state as well as its full temporalevolution.The material equations which characterize the photorefractive process are de­scribed in section II.3 and are rewritten below
9N+

at
SN+

∂t
∂E
∂x

J

sgNDIg - ΙrN^n [A.1]
1∂J
e ∂x [A.2]

e-(Ni - Nλ) [A.3]
∂fl

μenE + kβT—.
∂x [A4]

In writing the above equations, the effects of dark current is neglected and the fact that n << Np = 7Vχ « N∑>, and is used to simplify the equations.III.A.1 Steady State BehaviorIn the steady state regime of the simultaneous erasure/writing mode of PICOC, the light incident on the photorefractive crystal is given by
∕(x) - ∕0(l + mgcoskgx} + ∕1(1 + m8coskax). [A5]



152In order to derive the space charge field components which describe the conversionprocess, we assume that the electric field can be written as
E(x) = E0 + E10eik°x + Γ01e*'*'* + E11ei(k∙+k∙)χ + E1-1ei^ko~k∙'>x + c.c. [A.6]

The first term Eς> corresponds to the applied DC field, and the second and thirdterms £10 and E<yι correspond to the amplitude of the field at the fundamentalfrequencies of the incident gratings. The last two terms Eu and E1-1 are the amplitudes of the cross terms generated through the nonlinearities inherent in the photorefractive effect. As discussed in section IΠ.3, without the generation of these intermodulation terms, conversion of the incoherent image to its coherent replicacould not occur.Expressions for the trap, electron, and current densities are also assumed tohave forms similar to equation A.6
= N+eg + N+l0eik°x + N+0leik'x + N+11ei(k°+k''>x + AΓ+1-1el'ifcβ-fc-,)1 + c.c. [A.7]n(x) = n0 + n10eik°x + n01eik∙x + n11ei(k°+k∙'>x + n1.1ci^~k^x + c.c.[A.8] 

J(x) = Jo + Jι0eik,,x + J0ιetfc'1 + J1ιei(kβ+k∙)χ + J1-1ei(kβ~k^x + c.c. [A.9]
By substituting equations A.6-A.9 into the steady state form (d∕dt=O) of the ma­terial equations A.l-A.4 and combining terms with equal spatial frequency compo­nents, one can derive the amplitudes of the various space charge field components.



153Combining the nonsinusoidal component leads to the following equation for the background density of electrons
n0 _ sgN1>Io ÷ s8NdIi) [A.10]

Using equation A.10, the space charge field amplitudes for the components at the two fundamental frequencies k8 and kg can be found. These terms are very similar to the response of the crystal to an intensity pattern consisting of only asingle frequency grating and are found to be
2P _  9 Eq +2 1 — t[JE7o + ^Ed∖kg∖∕ Eq [fcff]]

Eq + iJ5,(i[fcs]r, me8ffC∕Q1 = - 2 l-i[E0 + iEd[k8}∕Eq[k8}}

[All]

μ.i2]
in which meff _

meff _

= mg[
s∩I(glθ

___ _ r se^i ι
— rn,a L r i τ~J ' isgiQ + s8Iχ

[A.13]
[A.14]Sfl∕0 + s,

-El<j[fc] and -E⅛[fc] are the space charge limited and diffusion limited space charge fields and are functions of the spatial frequency of the gratings
Eq[k} = ek

Ed{k} =
kBTk

e

[A.15]

[Λ.16J



154In addition to the space charge field components, one can also derive the trap and electon densities at the fundamental frequencies (*.e., Nplo,Npθl,nιo and n0ι)∙ Because of the nonlinearities in the material equations, expressions for these components are important in deriving the amplitudes of the intermodulation terms
En and Ei—i.Consider the En component. By collecting terms with spatial frequency com­ponents (k8 + kg) and combining the steady state forms of equations A.2 and A.4, the following set of equations can be derived:

(-^Γ>llnO + -^ponll) — (∙^P10nθl -∣^ ∙^DOlnlθ) [A.17]
iμe(ke + kg)(nιiE0+n0Eιι)-kBT(ke+kg)2nιι = →μe[(fc8+fcJ(nιθ2⅞ι+noι-E,ιo)] [A.18]

E11 = (k.+⅛s)ejv5i'∙ 1λ∙19'

By substituting equations A.11 and A.12 as well as the explicit expressions for Λp10, Np01, nχo and ∏oι into equations A.17-A.19, the amplitude of En can be derived. In the steady state regime, this amplitude is
En = -^γ-1-[C'1[fcβ+fc3,^]P1[⅛s]P2[fc8]+C1[fcs+^,fcβ]P1[fcβ]P2[⅛g]] [A.20]

where
Eq + t(J⅞[H] + Eq[k2})

1 - i(E0 + iEd[kl})∕Eq[kl} [A.21]
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Pι[fc] = Eq + t-Etj[fc]

Eo + i(Ed[k] + Eq[k})

D2[k}
iEg[k}

Eq + i(Ed [⅛] + ,Fg[fc])
[A.22J

[A.23]
If the spatial frequency of both the coherent and incoherent gratings is less than 200 lines/mm and the applied field is between 2 and 15 kV∕cm, then Eq » 

Eo » Ed. In this regime, Dχ[fc] = EQ∣iEq[k∖,D2 — 1 and C[fcl,fc2] = tΕg[fc2]. As a result E↑↑ simplifies to 2?n En. [Λ.24]
III.A.2 Steady State Analysis in Two DimensionsIn this section, we consider the effect of an incoherent intensity grating orientedperpendicular to the direction of the applied field. The intensity incident on thephotorefractive crystal is given by

I(x, y) = J0(l + mgcoskgx} + Ii (1 + mscosk8y) [A.25]
where the applied field is chosen to be parallel to the x direction. Let us assumethat the electric field vector can be written as

E(x,y} = χ

+ y

Eq + Eι0eik<>x + Ellxei(k°x+k'rt + E1-lxe^kox~k∙^

E01e*k,x + E11ye'(k,,x+k'yj + E1-lvei(kox~k,y) + c.c. [A.26]
where x and y are the unit vectors parallel and perpendicular to the applied field,repectively. The expressions for the electron and trap densities have the same form



156as those in equations A.7 and A.8 In addition to the material equations given inequations A.l-A.4, another constraint, given by Faraday’s Law
V X E(x,y) = 0 [Α.2Ί]

is used to solve for the various components of the space charge field. By substi­tuting equation A.26 as well as the corresponding forms for the electron, trap andcurrent densities into A.l-A.4, the steady state expressions for the fundamental fieldcomponents are found to be
Eq + t∙Ed[fcff]#io 2 l-i[E0 + iEd[kg}∕Eq[kg}}

Eqi =
ef f Ed[ka2 1 + Ed[ka}∕Eq[ka]}

[A.28]
[A.29]m

It is interesting to note that the expression for -E,χo is identical to that described in section A.l (equation A.ll). In contrast, the expression for E,oι is similar to that of equation A.12 but with the applied field Eq set to zero. This is result ofthe incoherent intensity grating being oriented perpendicular to that of the appliedfield. Similar to the analysis performed in the previous section, expressions for the trap and electron densities at their fundamental frequencies (AΓplθ, 2Vp01, nχo and noι) can also be found. These terms can be substituted into the equations A.17 and A.18 to solve for the intermodulation term and result in an expression for Arp11. Using the curl equation A.27, the relationship between the Eux and Euy is found



157to be
Ellx = ½-e11v. μ.30]

Since the spatial frequency of the coherent grating is very much larger than that of the incoherent grating, Eux » Euv. As a result, the relationship between the x component of the intermodulation field E∩x and Np11 is
E∏z =

—te
(kg + kj/kg)eNDÏ1

—te -7V+(fes)t du' [Æ31]
Using this relationship and collecting terms with spatial frequency components kβ +

kg, the resulting amplitude of Eux is found to be
Ellx =....*... λ.. s---iEg[kg}(Dl{kg}B1 + B2D2[kg}) [A.32]

where
_  ∙^g[^β]1- ^d[⅛8] + E,[fcβ] Ed[fcβ] [A.33]

[A.34]*ι =
B2 = jE∕cf[⅛s] + jE7φ[∕zβ]and Dι[ft] and Γ>2[fc] are given in equations A.22 and A.23, respectively.If the spatial frequency of the coherent grating is less than 200 lines/mm andthe applied field is between 2 and 15 kV∕cm, then Eq » Eq » Ed. As a result, 

D1 = E0∕iEg[kg],D2 = l,Bi = 1, and B2 = jE⅛[fcs]∕.E'g[fcs]. As a result Ellx simplifies to
Eilx = 9- tj~Eq. [A.35]4
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III.A.3 Temporal ResponseOne of the advantages of using the Kukhtarev model to predict the response of a photorefractive crystal to incident light is its ability to predict the temporal behavior of the refractive index change in the crystal. In this section, the temporal response of the SEWM mode of PICOC is derived. Consider the following sequencing of light intensity which characterizes the simultaneous erasure/write mode:

∕0(l + mgcoskgx} t<0 . ,
7o(l + mgcoskgx) + ∕1(1 + macosk8x} t>0 ' ι ∙ J

In this set-up, a coherent grating is recorded on a photorefractive BSO crystal until it has reached steady state. At this time (t = 0), an incoherent grating is imaged onto the crystal in addition to the coherent beam. The temporal evolution of the various components of the space charge can be derived by substituting the time varying forms of equations A.7-A.9 into the time dependent material equations A.l- A.4. By collecting terms with similar spatial frequency components, the amplitudes of the field components can be derived by solving a set of inhomogeneous first order differential equations. In summary, the two components of the space charge field at the fundamental frequencies (Elιo(i) and Eoι (i)) are given by:
£10 = [(mff - megff)e~t^ + me"] Eo + iEd{[kg

E01 = ∣m.(l - <r,Mt∙⅛[ L1 - i{E0 + iEd∖kg∖}∕Eq∖kg 
Eo ÷ iEd([fcβ]

{EQ + iEi\ka\}lEq[k8\

[A.37]
[A.38]1 — i



159where
r[(=] =Γ[fc] =

⅛ 1
SgNoIo + 5βJVp∕ι T[Λ] 
Eo + i(Ed[k} + Γq[⅛]) 
Eq + i(Ed [fc] + Eu [⅛]

[A.39] [A.40]
and Eu[fc] is the characteristic field due to the drift process which is given by⅛w = 2⅞*∙ μ.«]
Equation A.37 describes the decay of the coherent grating from its intial strengthwithout the presence of the incoherent beam, to its final steady state value. Like­wise, equation A.38 describes the exponential growth of the incoherent grating fromits zero initial condition to its steady state value.In order to derive the intermodulation component of the space charge field, E11, terms with spatial frequency component kg + kβ are collected. This is similar to the technique used to derive the steady state response. Solutions for the fundamentalcomponents are then substituted into the equations to derive the E∩ component.This intermodulation component is given by:
En =M0 + + M2e~t/T[k’] + Af3e-i(1∕rtλ<')+1∕r!fc'l) + M4e~tWk°+kΛ[A.42]where

mÿfmÿf
Mo =

-F0 μ,43]T[fcff + ks



160M = ~ m9ff^rnBff -*11 4 T[kg + fcβ] - Γ[fcff]
Μ ~ m9ffm^f ~F*2 4 T[kg + ⅛β] - Γ[Jfc,]
Μ = ^mg - rnaff^ff_____________-*3__________3 4 T[kg + kβ} - Γ[fcβ] - Γ[Jfcff]
M4 = -(Af0 + M1 + M2 + Μ3)

[Α.44]
[Α.45]
[Α.46][Λ.47]

Fo = [-iEq[kg + fc8]][C3P1[⅛ff]P2[fcβ] + C4D1[fcs]P2[A⅛]] [Æ48]
F1 = [-iEq[kg + fcβ]][C3P1 [⅛p]P2[fcβ] + C4D1 [fcp]D1 [fcβ](¾] - 1)] [Α.49]
F2 = [-iEq[kg + Μ[C3D1 [fcs]P1 [fcβ](1 - Γ[fc8]) + C4D2[fc,]D1 [fc,]] [Α.50]
F3 = [-iEq[kg + fcβ]][C⅛P1 [fcs]P1 [fcβ](1 - T[kβ}) + C4Dl [kg]P1 [fc8](Γ[fcp] -[4]51]

_ Eo + i(Ed{kg + fcs] + Ε∕g[fcfl]) 
E0 + i(Ed[kg + kg] + Eu[fcg + λ8]

_ Εο + i(Ed[kg + kg] + Eg[fcs]) 
Eq + i(Ed[kg + jfcβ] + Eu[kg + fcβ]Expressions for D1[fc] and Z)2[fc] are given in equations A.22 and A.23. 

III.B. Temporal Response of the Grating Erasure Mode (GEM)In the Grating Erasure Mode (GEM), a coherent grating is prewritten on the BSO crystal. At certain point in time (t = 0), the coherent beam is turned off and an incoherent grating is imaged onto the crystal. The nonlinearities in the



161photorefractive process give rise to a conversion of the incoherent image into its coherent replica. The sequencing of light intensities in this mode is given by:
7o(l + mgcoskgx} 
∕ι(l + mecoskax)

t<0t>0. [B.l]
By using the same procedure as that described in the previous two sections, the amplitude of the various space charge field components can be derived. The two components at the fundamental frequencies are given by:

-E,ιo = (mse -i∕r[fcβ] Eq + iEd[kg
l-i(E0 + iEd[kg])∕Eq{kg}

E01 = m,(l - e~t^) Eq + tΕ<i[fcβ]_1 — i(E0 + iEd [fcβ] ) ∕Eq [⅛s] _

[B.2]
[B.3]

where r « I _  Npeq 1
~ seNDh Γ[fc]

7,r,1 _ Eo + t(-Eld[⅛] + Ε7g[fc]) 

l j Eo + i(Ed[k] + Eu[k})'

[B.4][B.5]
Equation B.2 again describes the temporal evolution of the coherent grating whichdecays exponentially from its initial value to 0. The evolution of the incoherentgrating demonstrating an exponential growth to its steady state value is describedin equation B.3. It is important to note that the time constant in this mode is not inversely proportional to the sum of the incoherent and coherent intensities (as in the case of SEWM) but only on the intensity of the incoherent image.



162The intermodulation component can also be derived and is given by
E11 = M1e~t∕τ{k"] + +M3e i(1∕r[*⅛]+ι∕ι-[fc*]) + jv∕4e i∕r[fcβ+*∙] [£.6]

where
M1

Mz

M4

mgm8 —F[4 T[kg + fcβ] - Γ[fcs]
mgm8 -F^

4 T[kg + Aβ] - T[k8} - Γ[fcJ-(M1+M3)
[B.7][B.8][B.9]

F{ — -iEg[kg + fcβ] 
F% = -iEg[kg + fcβ]

σ3[P1 [fcfl]P2[fcβ] + D1 [kg}D1 [fcβ](Γ[fcs] - 1) [£•10]C4[P1 [fci,]P1 [Ml - ¾]) + D1[kg}D1[k8}{T{kg} - 1)[£.11]
IΠ.C Temporal Response of the Grating Inhibition Mode (GIM) of PICOC In the grating inhibition mode (GIM), an incoherent image is prerecorded ona BSO crystal. After the fields have reached steady state, a coherent grating isrecorded on the crystal. The nonlinear interaction inherent in the photorefractiveeffect creates intermodulation terms which result in the conversion of the incoherentimage to its coherent replica. Consider the following sequencing of the incoherentand coherent light beams:

+ m8cosk8x 
+ mgcoskgx

t<0t>0 [C.l]
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where
£χο = [r⅜(l - e-i∕r⅛l)]2?οι = [(mβe-i∕τffc*l]

________ Ep + t'Ε>(j[⅛g] _______.1 — t(-Elo + iEd[kg})∕ E9[fcfl]
Ep + tΕj[⅛i] 

i(E0 + iΕl<i[fc8])∕Fg[fcβ],
[C.2]
[C.3]

,r,,1 _ Nßeq 1 1 ^ SgNDIo Γ[fc]mrjLl _ Ep + ¾(-E⅛[fc] + ffq[fc]) 
lj E0 + i(Ed[k] + Eu[k} ’

[C.4][C.5]
Equation C.2 again describes the temporal evolution of the coherent grating whichgrows exponentially from its 0 to its steady state value. The evolution of theincoherent grating demonstrating an exponential decay from its initial state to 0is described in equation C.3. It is important to note that the time constant inthis mode is not inversely proportional to the sum of the incoherent and coherent intensities (as in the case of SEWM) but only on the intensity of the coherent beam. The intermodulation component of the space charge field in this mode is

E11 = M2e~t∕τ^ + +M3e_i(1/r[A’1+1/r[A'1) + Λ/4β“ί/τ[Α’+Α’1 [C.6]
where

_ Jllgl,ia__________ J_2________2 4 T[kg + k8} - Γ[fc8]

= mgm3_____________-F^_____________3 4 T[kg + k8}-T[ka}-T[kg} 

M4 = —(Λ∕2 4^ -¾3)
[C.7]

[C.8]

[C.9]
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F!i = -iEg[kg + ke∖C3 D1 [fcs]P1 [fcβ](1 - Γ[fcβ]) + D1 [fcβ]P2[⅛i]
⅛ = -iEq[kg + ks}C4 ∣P1 [fcfl]P1 [fcβ](1 - Γ[fcs]) + ⅛]⅛](¾] [C.10]1⅛11]
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IV. PHOTOREFRACTIVE TIME INTEGRATING CORRELATOR

IV.1. Introduction

Time integrating correlators have been extensively used in the field of optical processing in order to detect temporally varying waveforms [l]. The processing gain of a time integrating correlator is determined by the length of the integration time on the output detector [2]. However, because of the limited dynamic range of the detector, the processing gain is severely limited by the bias that is being integrated at the output along with the signal. In this chapter, an alternative approach to performing the temporal integration of the correlation signals is presented. By usinga photorefractive crystal on which to record the correlation, the bias at the outputcan be removed, thereby utilizing the full dynamic range of the output detector. In addition, because the writing time of the crystal can be made relatively long, theprocessing gain of the system is increased.
In the following section, the use of a photorefractive crystal as a time integrat­ing detector is analyzed. A review of the standard time integrating correlator ispresented in section 3, while the alternative architecture utilizing a photorefractivecrystal and experimental results are presented in section 4. Section 5 discusses im­portant issues in characterizing the photorefractive time integrating correlator suchas its linearity, dynamic range, and integration time.
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ΓV.2 Photorefractive Crystals as Time Integrating Detectors

The ability to record and erase holograms in real time using photorefractive crystals allows one to optically process temporal signals. In this section, the effect of a temporally varying intensity signal incident on a photorefractive crystal is ana­lyzed. Specifically, it is shown that the crystal acts as a sliding window integrating detector whose integration time is approximately equal to the writing time of the crystal.Consider an intensity pattern incident on a photorefractive crystal consisting of a grating whose modulation depth varies as a function of time. The intensityincident can be written as⅛i) = {°0 t<0
+ Re{Iι(x,t)e'kx} t>0 [4.1]

where fc∕2π is the spatial frequency of the grating. Using the Kukhtarev model [3], in the low modulation depth regime, the diffracted intensity is given byWx,i) = ⅛!- f Û^ÏleC'-<)/rÂ, I r Jo Io [4.2]
where K-i is a complex coefficient dependent on the material parameters of thephotorefractive crystal, the spatial frequency of the grating, and the applied electricfield. The explicit expression for Kι is given in section 2.3. τ is the complex timeconstant of the material given in equation 2.4 and it is dependent on the material parameters, spatial frequency, and total intensity (7q) incident on the crystal. Ir



170is the intensity of the readout beam. The above equation can be rewritten in terms of the Fourier components of ∕ι (x, i)
— Ir

Kχ f∞ 
τ J-<x> (l∕r + iw}I0

[4.3]il(1'm> -eiwtdw

where Iι(x, w) is the temporal Fourier transform of the signal Ιι(χ,ί):∕1(x,w) = Î Ii(x,t)etwtdw. 
J — ∞

[4.4]
Equation 4.3 is recognizable as a low pass filter of the input modulation with a cutoff frequency given by 72e{l∕r}, which is the inverse of the rise time of a single frequency grating being recorded in a photorefractive crystal as derived in section 2.3. Thus, the response of the crystal to a temporally varying intensity pattern is approximately equivalent to a time integrator with a sliding integration windowand has the form of

T Jt-r> Io Ir [4.5]
where τ, is the writing time of the grating in the crystal. Hence, the output intensity from the photorefractive crystal is proportional to the square of the integration of the signal Iι{x,t) over a sliding time window of length τ' = ∣τ∣2∕ Re{τ}. In the following sections, we will demonstrate an acousto-optic time integrating correlatorwhich utilizes a photorefractive time integrating detector in order to enhance the processing gain of the system and present the output information free of bias.
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IV.3 Time Integrating Correlators

Time integration is a powerful technique in optical signal processing and has been used in a wide variety of architectures [2][4]. A one dimensional time integrat­ing correlator is shown in Figure 4.1. This architecture, known as an additive timeintegrating correlator, utilizes two acousto-optic devices as input devices. When anelectrical signal is applied to either of the AODs, the signal modulates a tranducerwhich launches an acoustic wave through the acousto-optic medium. This wave inturn modulates the refractive index of the material. Through this device, a tempo­rally varying electrical signals can be converted to spatially varying optical signalsin the form of a phase hologram.In the acousto-optic time integrating system, a signal is presented to one AOD,and a second signal is presented to the other. The optical system is aligned suchthat the diffracted output from each cell is imaged onto the output detector. Thetwo images have acoustic vectors which are counterpropagating with respect to each other and the diffracted orders from both beams are chosen to be upshifted (or downshifted) with respect to the incident beam. Let the inputs to each of the AODs be Sι(∕) and s2(i) respectively. The resulting intensity detected by the outputdetector is∕<,(x,i) = [t ∣5l(f' - x/v)e~iwx/v + s2(t, + x∕v)eiwχ∕v∖2dt, [4.6] 
j(t-rd)where Td is the integration time of the detector, w is the center frequency of the
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Fig. 4.1 Standard Time Integrating Acousto-Optic Correlatoracoustic wave and v is the acoustic velocity of the AOD. Let us assume that the magnitudes of ∣sι(i)∣2 and ∣s2(i)∣2 are constant in time as in the case of bipolar or phase encoded signals. The output intensity is then
∕0(z,i) — [∣5i∣2 + ∣s2 ∣2]r<i + 2Re{

f

Jt-Td
S∖(t — x∕v)s2(t + xjv}dt e,'2w≈∕υ}. [4.7]

Hence the detected output consists of a bias term ∣Sj∣2 + ∣s212 and a sliding window correlation of the two input signals which modulates a spatial carrier with frequency



1732tt>∕υ.
This method of producing the correlation creates a two-fold problem. Firstly,the presence of the spatial carrier results in an increase in the resolution required bythe output detector. In the absence of a spatial carrier, the detector would requireonly two or three pixels to sample a correlation peak. This system, however, requirestwo to three spatial fringes to sample a correlation peak and correspondingly two tothree detector elements to sample each fringe. The resolution required will typicallybe equal to the space-bandwidth product of the input signals. Secondly the biasrecorded on the detector decreases the effective dynamic range of the correlatorand therefore the overall processing gain of the system. One method which iscommonly used to seperate the correlation signal from the bias utilizes the factthat the correlation information modulates a high frequency spatial carrier. Boththe correlation information and the spatial carrier are detected and temporallyread out. The output of the detector is then electronically filtered to separate the high frequency correlation signal from the lower frequency bias [6]. This method, however, does not diminish the fact that prior to post-processing both the signaland bias are still detected by the detector, thus decreasing the performance of thecorrelator.
In most signal processing environments, the requirement of the correlator is that it recognizes a signal contaminated by noise. Consider an input signal s(f)



174which is additively contaminated by a white noise process n (i) (ie. s1(t) = s(t),s2(t) =∣ s(i) + n(f)). In the standard time integrating correlator, the output is given by
V0(x,t} oc ft ∣(s(f - x∕v) + n(t - x∣v))e~iwx∣v + s(t + ≠)e→∣2Λ. [4.8]

J{t-τd)Assuming that the signal and noise terms are sufficiently uncorrelated and that ∣n(i)∣2 is a constant, the output of the integrator is
V0(x,t) oc [∣s(t)12 + ∣n(i)∣2]τtι + [ i s(t — x∕v)s*(t + x∣v}dt}cos{2wx∣v). [4.9]

J t — TdThus the effect of noise on a standard time integrating correlator is an increase in the bias while the strength of the correlation signal remains constant. If the dynamic range of the output detector is DR and the light incident on it has a signal to bias ratio SBR, then the effective dynamic range of the correlator is reduced by a factor given by [5]
SBRDR, = DR [4.10].1 + SBRIn most applications, the noise power will far exceed that of the desired signal resulting in a very small signal to bias ratio. Thus, the effective dynamic range will be severely reduced. Consequently, for a given signal strength, the smaller the effective dynamic range of the detector, the faster the detector will saturate and the shorter the integration time. The ability of the detector to accomplish signal recognition is described by its processing gain which is the signal to noise ratio of the output correlation to signal to noise ratio of the input signal. Hence a higher



175processing gain implies the ability of the correlator to recognize weaker signals in the presence of noise. It has been shown that the processing gain of a correlation system is given by [2]
Gain =

SNRout
SNRin

= τdBW [4.11]
where BW is the bandwidth of the input signals and rd is the integration time ofthe detector. As a result, the presence of bias reduces the maximum integration time of the detector thereby decreasing the processing gain of the correlator. Theintegration time of the correlator may always be increased by decreasing the amountof light incident on the detector. However, this will be limited by the amount ofdark current and shot noise generated within the detector.
IV.4 Photorefractive Time Integrating Correlator

As mentioned previously, two important attributes for a time integrating de­tector in a correlator architecture are that the resolution of the device must be highenough to sample the correlation information and the spatial carrier, and that the integrator must have a high dynamic range needed for longer integration times and hence higher processing gains. These needs are nicely satisfied by a photorefractive crystal which demonstrates resolution up to 1000 lines/mm and integration times as long as several seconds.When a photorefractive crystal is used as the time integrating detector in the



176acousto-optic correlator with input signals sι(<) and s2{t), the light incident on the crystal is given by
Λ∙nc = hW∣2 + ∣52(i)∣2 + 2Re{s1(t - x∕v)s*2(t + x∕υ)e2iwx∕v}. [4.12]

Again, considering signals whose power is constant in time and using equation 4.5, the signal diffracted from the photorefractive crystal is given by
I0(x,t) = K1

IMi)l2 + IM*)l2
f
J t-τt

sι(i — x∕υ)s2{t + x∕v}dt [4.13]
where τ, is the writing time of a grating of frequency 2w∕v in a photorefractive crys­tal. Hence, the system produces the magnitude square of the correlation integral. In addition, the absolute intensity of the output is dependent on the signal-to-biasratio of the writing information.A schematic diagram of the time integrating correlator which uses a photore­fractive detector as an output device is shown in Fig. 4.2. The system can be subdivided into two stages: a standard time integrating architecture incorporating two colinearly aligned acousto-optic devices identical to the system described in theprevious section, and a photorefractive time integrating detector with an auxiliarybeam used to read out the recorded correlation information.In our experiment, we used two flint glass acousto-optic devices illuminated with light from an argon ion laser (λ=488 nm). The average intensity incident on the photorefractive crystal was lμW∕cm2. The acousto-optic cells were driven at
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178a center frequency of 70 Mhz and a symmetric linear chirp with bandwidth ∆f =5 Mhz was entered into each Bragg cell to produce an autocorrelation peak. The acoustic velocity in the device was 4 km/sec leading to a Bragg angle of 0.2° and a grating frequency of 35 lines/mm in the crystal.
A bismuth silicon oxide (BSO) crystal cut in the < 110 > direction and measur­ing 15x15x2 mm was used as the integrating detector. An electric field of 6 kV/cm was applied transverse to the crystal in order to enhance the diffraction efficiency of the crystal. Cylindrical lenses (not shown in figure) were used to expand the output of the AODs to illuminate the full aperture of the BSO crystal. A He-Ne laser (λ=633 nm) at an intensity of 150 μW∕cm2 was used to read out the recorded correlation information. The diffracted beam was then imaged onto a l-dimensionalCCD for observation.
The output of a standard time integrating correlator using an electronic de­tector (CCD) for the noise-free case and equal input amplitudes is shown in Fig. 4.3. As we can see from this figure, the output is composed of a strong bias term in addition to the correlation peak. Since the noise free case gives the highest signal to bias ratio, typical applications of the correlator in a noisy environment would lead to a severe degradation of the output signal, as well as diminish the effective dynamic range of the system. The correlation produced by temporally integrating on the photorefractive crystal is shown in Fig. 4.4. In this case, all the bias due



179to temporal integration is removed and any residual bias is due to the dark current from the CCD. It is interesting to notice that because the photorefractive crystal produces the square of the correlation, the output appears as a unipolar signal and as a result does not need a background bias term. In contrast, the output of the standard time integrating correlator is bipolarly represented (Fig. 4.3) and requires the presence of the bias for accurate representation.The effect of noise on the photorefractive time integrating correlator is verydifferent than that for the standard time integrating correlator. Assuming a ref­erence signal sι(i) = s(Z) and an input signal S2(i) = s(i) + n{t), contaminated by uncorrelated constant energy noise n(t), the output of the photorefractive time integrating correlator is
2∕o(x,f) K1s(iψ + ∣n(i)∣2 x∕v)s*(t + x∕v}dt [4.14]

Thus the immediate consequence of adding noise to one of the inputs is an increase inthe amount of DC light incident on the photorefractive crystal. Since the diffractedoutput from the crystal is dependent on the modulation depth of the recordedgrating, the result of the additive noise will be a decrease in the intensity of diffractedoutput. This information, however, will remain free of any output bias. Figures4.5 and 4.6 show the output of the photorefractive time integrating correlator withan input signal to noise ratio of OdB and -10dB respectively. In both cases, thepresence of a bias floor is entirely due to the buildup of dark current in the output
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Fig. 4.3 Autocorrelation of Two Chirp Signals in a Standard Time Integrat­
ing Correlator Without Noise

Fig. 4.4 Autocorrelation of Two Chirp Signals in a Photorefrac*uve Time Integrating Correlator Without Noise



181CCD detector. The is a result of the long CCD integration times required to detectthe weak diffracted image. In practice, the detector dark current can be minimizedby increasing the intensity of the readout beam, thereby decreasing the requiredintegration time of the output CCD detector or by thermally cooling the detector.
An additional advantage of the photorefractive time integrating correlator isthat the output modulates a coherent light beam. As a result, the correlationinformation can be used as an input to a coherent optical processing system without the utilization of a spatial light modulator. One example, demonstrated by Hong 

et al. [6], utilizes this correlator architecture in implementing an acousto-optic adaptive system. This particular system was used to descriminate between high temporal bandwidth signals and low bandwidth (or single frequency) jammers andnull out the latter.
IV.5 Performance Issues

The experimental results described in the previous section show a dramaticqualitative improvement in the correlation that is obtained when the photorefractivecrystal is used instead of the CCD. In this section, we examine certain characteris­tics of this method which are useful for quantitatively evaluating its performance.Specifically, we examine the linearity, integration time, dynamic range and sensi­tivity of the correlator.
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Fig. 4.5 Autocorrelation of Two Chirp Signals in a Photorefractive Time 
Integrating Correlator (SNR = 0dB)

Fig. 4.6 Autocorrelation of Two Chirp Signals in a Photorefractive T. i∣< Integrating Correlator (SNR = -10dB)



183ΓV.5.1 LinearityIn a conventional time integrating correlator (coherent or incoherent), the out­put correlation is basically proportional to the signals applied to the AODs. Nonlin­earities occur when the linear dynamic range of the devices used is exceeded, as inthe case where the diffraction efficiency of the AOD exceeds several percent or if the integrating detector is driven to saturation. In the photorefractive time integrating processor, the output intensity is a nonlinear, monotonically increasing function of the input voltage. The nonlinearity arises because of the square-law detection atthe final readout stage and the recording mechanism in the photorefractive crystal. The nonlinear relationship is studied analytically and is experimentally verified.Let t>ι(i) = s(i) be a fixed reference signal and υ2(i) = αs(f) be an input signal of varying amplitude (0 < α < 1). Near the correlation peak (x=0) the intensity incident on the photorefractive crystal is
∕(x,∕) α (l + α2 + 2acosfcx)∣s(i)∣2. [4.13]

Using equation 4.9, the output intensity at the CCD is proportional to the magni­tude square of the modulation depth of the intensity incident on the BSO crystal
I0ut <xm2 =

2a 4α21 + α2 l + α2
l4.14j

where m is the modulation depth of the spatial grating. Figure 4.7 is a graph of the output intensity at the correlation peak versus the modulation depth incident on



184the crystal. The experimental result is in excellent agreement with the square-lawrelationship predicted by equation 4.14.A plot of the output intensity as a function of the amplitude of the input signal
a is shown in Fig. 4.8. The nonlinear relationship between the input and outputsignals is generally a disadvantage since the scaling of signals of varying amplitudeswill be nonlinear. This, however, will not cause a problem if the correlator is usedonly as a signal detection device, since correlation peaks will still be discernible andonly the threshold level need be adjusted accordingly to maximize the probabilityof detection.
IV.5.2 Integration Time

In a conventional time integrating correlator, the integration time is limited by the dark current buildup on the output detector, typically up to several hundredmilliseconds. When a photorefractive crystal is used, the integration time is deter­mined by the rise time of the internal space charge field which can easily be mademuch longer. The correlation can be read out at any rate less than the writing timeof the crystal that is convenient for the auxiliary detector array.The integration time of the photorefractive time integrating correlator is
K2τ' = [4.15]Re{τ} I0where K2 is a complex constant depending on the material parameters, spatial
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Fig. 4.7 Intensity of Correlation Peak vs. Modulation Depth

Fig. 4.8 Intensity ot Correlation Peak vs. Amplitude of Input Signal



186frequency of the carrier, and the applied field only. Thus, the integration time of the correlator can be increased by decreasing the amount of light incident on the photorefractive crystal. This is similar to the integration time of the standard timeintegrating correlator, where the maximum integration time is inversely dependenton the total intensity incident on the electronic detector. This control is importantsince the integration time can be matched to the length of the reference signalthereby maximizing the processing gain of the system.
The time response of the correlation peak for different values of average incidentintensity is shown in Figure 4.9. Figure 4.10 is a plot of intensity versus the inverseof the experimentally observed rise time which shows excellent agreement betweenthe experiment and the theoretical prediction.
The integration time, however, has a finite range over which it can be adjusted.The maximum integration time is limited by the thermal effects in the crystal. If therate at which carriers are thermally generated becomes comparable with the rateat which they are photogenerated, the modulation depth of trap density will be reduced. As a result, the diffraction efficiency of the grating will decrease, therebydecreasing the signal to noise ratio at the output and hence the processing gain ofthe system. In practice the minimum integration time is limited by the maximumlight intensity that is available for recording. As seen from the graph, the integrationtime can be reduced to real time rates of 30 msec, if the incident intensity is made
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Fig. 4.9 Temporal Response of the Correlation Peak for Various Incident Intensities

Fig. 4.10 Inverse of Integration Time vs. Incident Intensity



188equal to lmW∕cm2. This would require very efficient acousto-optics devices and such power level are simply not practical for most applications.
ΓV.5.3 Dynamic Range and Sensitivity

Since the output of the bias removal correlator is presented without bias, theoutput dynamic range of the system is essentially equal to the dynamic range ofthe readout detector array. It is more important to determine the input dynamicrange of the detector, that is to say, the minimum signal that can be detected bythe correlator in the absence of noise. To achieve this, it is necessary to determinehow the dynamic range of the photorefractive crystal affects the dynamic range ofthe correlator. Let the dynamic range of the photorefractive crystal be defined as DRpβ = mfnαx∕mm,∙n, where τnmax is the maximum modulation depth that can be recorded on the crystal (in our case 1), and mnn∙n is the minimum modulation depth for which a diffracted signal is detectable above the output scatter and noise level of the system. Given two input signals t>ι(i) = αs(Z) and t>2(Z) = s(i), the modulation depth of the light incident on the crystal is m = 2a∕(l + α2). Thus for small values of a, the minimum detectable input signal is given by
&min —

^tmin   12 2DRpr
I4.16l

Hence, the useful range over which a can vary is limited by the dynamic range of



189the photorefractive crystal DRpp. Thus, the input dynamic range is given by
DRi

at mt
[4.17]

The most important parameter in determining the system’s dynamic range is romt∙n.By adjusting the ratios between the input and reference signals to the correlator,the dynamic range of our experimental system was found to be equal to 23dB. Thiscorresponds to a minimum modulation depth of 0.142. We expect that throughcareful design this can be substantially improved. At present, not all mechanismsthat determine mrn,∙rt are fully understood. It is believed that in addition to thedetector noise and scattering from the crystal, the modulation depth is also limitedby thermal effects in the material and shot noise arising from currents within thecrystal.Another important aspect of the correlator system is its sensitivity. This pa­rameter is defined to be the minimum input signal to noise ratio that produces adetectable correlation peak. This parameter is also intrinsically related to the min­imum detectable modulation depth, mm,∙n. Given a reference signal υι(f) = as{t} and an input signal contaminated by additive white noise V2(t) = bs{t) + n(f), the modulation depth of the intensity incident on the crystal is
2α0∣<s(∕)∣2(α2 + δ2)∣sw∣2 + ∣n(i)∣2∙ [4.18]m =



190The reference level, a, which maximizes m is given by
[4.19]

resulting in an optimum modulation depth of
4 _ i snr v/2m°p,~ (δ2 + ∣w(i)∣2∕∣s(i)∣2)1∕2 ^^ ^SJVΛ + lJ [4.20]

In practice, optimizing the reference level can easily be achieved by setting the power of the reference equal to the total average power of the input signal (i,e. setting ∣υi(i)∣2 = lυ2(i) ∣2)∙ Thus for small input signal-to-noise ratios, the minimum input SNR that produces a detectable correlation peak at the output is
SNRmin s⅛ mrnι∙n. [4.2i]

Using the minimum modulation depth experimentally derived above, the pho- torefractive time integrating correlator used in our experiment was predicted to have a sensitivity of -17dB. This value was verified by continuously adding noise to one of the system inputs while adjusting the reference to maximizes the output until the correlation peak in the diffracted output was no longer detectable.
IV.6 ConclusionWe have successfully implemented a time integrating correlator by utilizinga photorefractive crystal as the time integrating detector. This method has beenshown to produce the magnitude square of the correlation signal without the bias



191term inherent in a standard time integrating architecture . As a result, the absenceof bias allows one to lengthen integration times thereby increasing the processing gain of the correlator. As mentioned in the PICOC chapter, photorefractive crystals (specifically BSO) suffer from both low diffraction efficiency and long writing time constants. In this application, we utilized the long writing times to an advantage allowing the construction of a correlator with extremely high processing gains. Thesystem, however, is still plagued by low diffracted output intensities which are exacerbated when the input signals are contaminated by noise. Other crystals with higher electro-optic coefficiencts may be used in place of BSO to improve the diffraction of the photorefractive time integrating detector.
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V. CAPACITY OF OPTICAL CORRELATORS

V.l The VanderLugt Optical Correlator

The VanderLugt correlator, shown in Figure 5.1 has been used extensively in optical processing systems. Among its uses are pattern recognition [3,4], associative memories [5,6], and holographic interconnections [7]. In its original implementation 
[l], the correlator was used to recognize a stored reference in an input image. In this original configuration, the Fourier transform of the reference image is recordedas a planar hologram. When an input image is presented to the correlator, theFourier transform of the input is used to read out the recorded reference filter.The diffracted beam is then inverse Fourier transformed to produce the correlationbetween the input and the reference on the output plane. It can be shown that foran image contaminated by white noise, the VanderLugt correlator is the optimum filter to detect the image [2]. An experimental result obtained with a VanderLugt correlator is shown in Figure 5.2. In this experiment, the Fourier transform ofthe word GARNET is recorded on the planar hologram. When an input imagecontaining many words is presented to the correlator, an output peak is producedwherever the word GARNET appears in the sentence.

In the system described above, the correlator is only required to produce a peak whenever the input is identical to the reference image. A more complex scenario would be to require the system to differentiate between two classes, each containing



194

PLANE
Fig. 5.1 Vander Lugt Correlator

a number of images. In this instance, we would like the correlator to produce a peak if the input image is a member of class I and no peak if it is a member of class II. The information of the images in each class is stored in some fashion in the hologram and the main problem is then to design a filter which accomplishes classification. A number of methods have been developed to perform this task [8-10]. One criterion which characterizes the efficiency of these systems is the capacity of the classifier,which henceforth will be denoted by M. M is defined to be the maximum number of
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196images in each class that can be stored in one filter and still perform classification correctly. The capacity of a standard VanderLugt correlator will be addressed in the following section.In the architecture described above, the reference filter used in perfoming thepattern classification is recorded on a planar medium. Aside from using a planehologram, it is also possible to store information in a volume hologram, such asa photorefractive crystal. This has two distinct advantages. Firstly, the ability ofthe photorefractive material to record and erase holograms in real time allows oneto update the filter quickly. As a result, the photorefractive crystal can be used to record reconfigurable filters necessary in adaptive or training systems [ll]. Sec­ondly, because a volume hologram uses all three dimensions to store information asopposed to only two by planar holograms, it is expected that the volume Vander­Lugt correlator will demonstrate an increase in storage capacity. However, becauseof the angular selectivity inherent in the readout of a volume hologram, this in­crease in capacity comes at the expense of the shift invariance inherent in a planarVanderLugt correlator. The effect of utilizing a volume hologram in a VanderLugtcorrelator is discussed in section V.3. The capacity of the volume VanderLugt cor­relator and the tradeoff between capacity and shift invariance is derived in sectionV.4.
V.2. Capacity of the Planar VanderLugt Correlator



197V.2.1 Inner Product ArchitectureA common method of performing pattern classification is to calculate the innerproduct between the input image xp{i,j) and a reference filter h(i,f) [12,13]√y y/N
Vp = ∑∑Xp('>iW>fl [5.1]⅛=ι y=ιwhere both x(i,j) and h(i,j) are composed of N pixels. Whether the resulting output yp exceeds a preset threshold or not determines which class the input image 

xp belongs to. This algorithm is easily implemented in a VanderLugt correlator. The correlation between the input image and the reference filter is formed, and the output yp is determined by detecting the center of the correlation plane. This value is then electronically thresholded to determine the class of the input image.The major difficulty in implementing this type of pattern classification systemis the construction of the reference filter. A number of different methods have beendeveloped to perform classification [8-10]. One simple method of achieving this isto form a linear combination of the images in both classes. Hence 
M= wp∙^p(^>j)∙ [^∙2]p=ιThe linear weights wp are usually found through some optimization or adaptive procedures such as the perceptron learning algorithm [14] or adeline [15] in order to achieve proper classification. The capacity of this system, M, is a well knownresult in pattern recognition and is given by

M = 2N [5.3]



198where N is the total number of pixels in each image.In this section we will consider the standard VanderLugt correlator with aplanar hologram in the Fourier plane as a device to classify images. Instead ofutilizing a learning algorithm, the filter is constructed by summing up all the imagesin class I, while ignoring those in class II. Hence,
M

h{χ,y) = ∑Wp*p('J)
p=l1 if φi(x, y) E Class I 0 if φi{x, y} ∈ Class II.This method forms a much simpler reference filter which is easily implemented byexposing a hologram to the images in class I for an equal length of time.To derive the capacity of this algorithm, let us consider a set of binary, bipolarimages, composed of N distinct pixels, denoted by xp(i,j) (i,j = l...y∕N, p = 1...2M) which may belong to one of two classes, I or II, each class being represented by M samples. The pixels xp(t,j),s are assumed to be independent, identicallydistributed random variables with

Pr[xp(i,>) = 1] = Pr[xp{i,j) = -l] = ∣ [5.5]
and

Pr[xp(i,j) = a,xg(k,Γ) = β} = Pr[xp(i,j) = α]Pr[x9(fc,Z) = β}

for all p ≠ q, i ≠ k, j ≠ 1. [5.6]



199We will first derive the capacity using this statistical model for the images to be stored when detection is performed only at the center of the correlation plane (t.e., inner product architecture).
In the inner product architecture, the amplitude transmittance of the Fouriertransform hologram in the VanderLugt correlator must be such that all the imagesthat belong to class I produce a correlation peak at the output plane that is strongenough to exceed a predetermined threshold, while all the images in class II mustproduce a peak that does not exceed the threshold level.
We will calculate the probability that the correlator will misclassify an inputimage and through this determine the maximum number of images that can berecorded before a certain probability of error is exceeded. Let the input to thecorrelator be a member of class I. This will correlate with itself and produce a peakwith expected value N, In addition, signals due to cross-correlations between theinput image and the other images stored in the hologram will also be produced. This may cause errors in image classification. These cross correlation terms have an expected value of 0 and variance of (M — 1)N at the correlation peak, where M is the number of images in class II.
If the number of pixels is large and the statistics of the contribution of each pixel to the correlation peak is independent of all other pixels, the central limit theorem can be used to determine the output distribution. The proof of the inde­



200pendence argument is presented in reference [16]. Using the theorem, the statisticaldistribution of the correlation peak approximates with a Gaussian function withmean N and variance (M — 1)N. Since the threshold level is set to one-half theexpected value of the peak, the probability of making an identification error for aninput in class I at the center of the correlation plane is
ΓZ^ fth≈N∕2

Pr{y1 < th) = ∖Jlj e-^-N?f™Ndx

y/N 
2y∕Mwhere Φ is the cumulative Gaussian function. We have also assumed that thenumber of stored states M is large enough that we can approximate M — 1 by M. Likewise, if the input is a member of class B, the expected value of the output at the correlation peak will be 0 with variance also MN. Thus, the probability ofmaking an error at the output in this case is also

prfo">"ιj=φ(S)∙ m
In order to derive an expression for the probability that the correlator performscorrectly for all input images, it is necessary to show that the statistics of thecorrelation output due to one input image are independent of the output statisticsresulting from other input images. In the limit that N and M become large, it has been proved that the output statistics for different input images become statistically independent [16]. Hence, the probability that the VanderLugt correlator produces



201an error for any of the images of class I or II is
Pr (Error) = 1 — (l — Pr (error for one input)) 2M [5.9]

where the probability of an error for a single input is given by equation 5.8 and 5.9. If the desired probability of error is small, the cumulative Gaussian function can beapproximated by its asymptotic form
y/N ∖ e-N∕iM

2∖∕m) ~ y∕2τrVN∕4y∕M'
[5.10]

If the probability of error for each input is small, the probability of misclassificationcan be written as
e-N∕SMPr(Error) = 2M-—=. [5.1l]√ΣF√jV∕4√M jThe number of images M can then be solved, giving a bound on the maximumnumber of images that can be stored in the correlator in order to achieve a desiredprobability of correct identification. This bound is given as the solution of thefollowing transcendental equation:

Slog[M1∙5 ∕N0∙5} + 8logk t ' j

where k = [∙√z27γ∕4]Pr(Error). Thus, equation 5.12 can be solved to determine the maximum M for which the correlator will classify inputs correctly with a probability of error no greater than Pr{Error}. In the limit that of large N, log[M1's∕TVθ∙5]



202approaches logN and
M = as N → ∞. [5.13]8logN l jIt is interesting to note that the capacity derived for a simple multiple exposurehologram is less than the 2N capacity derived for an arbitrary linear discriminantfunction. However, this simpler method for constructing the reference filter resultsin a relatively modest loss in capacity of a factor 16logN.V.2.2 Shift Invariant ArchitectureAn important attribute of a VanderLugt correlator is the ability of the systemto recognize shifted versions of the reference image. In order to utilize this shiftinvariant property in a VanderLugt classifier, detection of a correlation peak mustbe performed by thresholding over the entire output correlation plane. As a result,by determining the location of the correlation peak, one could determine not onlywhether the input is a member of a given class, but also whether it is a shiftedversion of a member of class I. In this situation, the classifying algorithm is givenby the following correlation function √3v √V

yp(i>i) = ∑2 Σ h(i + i'Λ + ∕)⅞(,'J')∙ [5∙14]t,=ιy,=ιThe effect of increasing the number of images stored in the reference hologram is demonstrated in Figure 5.3.This figure shows the output at the correlation plane for N = 256 and and 
M = 1,3 and 6. From these figures, it is evident that for the case where only one
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204image is recorded in the reference filter, the input image correlates well with thereference, producing a single peak lying above the threshold. When the number ofstored images is increased, the sidelobe level also increases. For the case of M =3, even though the sidelobe level has significantly increased, only the correlationpeak lies above the threshold value in this example. Hence, the classification of theinput is still performed correctly. However, when the number of images is furtherincreased to 6, two peaks now exceed the threshold level. As a result, the correlatorwill erroneously detect two shifted patterns and can no longer decide whether theinput is simply a member of class I or a shifted version of class I.The derivation of the capacity of the shift invariant VanderLugt correaltor issimilar to that of the inner product algorithm derived above. In this situation,however, the probability of error will no longer by given by equation 5.8 and 5.9,but we must take into account the possibility that an output pixel other than thecenter of the correlation may be incorrect. In this case, by using the multivariate central limit theorem, it can be shown that as the number of pixels N2 becomes large, the statistics of each output bit become independent of the other output bits [15]. Thus, √7V 2√MIn this system, we have chosen to restrict the output to an area of N by N pixels, as opposed to the (2N-1) by (2N-1) pixels needed to encompass the whole correlation
Pr (error for one input) = 1 — (l — Φ f [5.15]



205output. Since any shifted version of the stored images will produce peaks withinthis smaller area, the system will still be able to recognize all shifted versions of theimages in class I.Using equation 5.15 in equation 5.9, the probability that the VanderLugt sys­tem commits an error in any output bit for any input image to can be approximatedby
t-N∕%MPr (Error) = 2MN    r=-—= [5.16l

The number or images M that can now be stored is given by the following tran­scendental equation
N [5.17]M = 8logM1∙5N0∙5 + 8logk where k=√z27r∕8 Pr(Error). In the limit of large N, N → ∞, the capacity becomes
N

M = 16logN [5.18]
Thus the capacity of the shift invariant system is decreased by only a factor oftwo from that of the non shift invariant system. It is important to point out that even though the shift invariant correlator can classify up to MN images (including their shifted forms), the capacity of the shift invariant correlator is not truly MN, since it is not possible to store MN arbitrary images. Rather, by choosing the first
M images, the correlator predetermines all the other stored images to simply bethe shifted versions of the original images. In the next section, we investigate the



206consequences of using a volume hologram to store the Fourier transform filter. Inparticular, we will consider the loss of shift invariance introduced by the volumehologram and the ability of the correlator to perform multi-class categorization.
To verify the theoretical capacity of the correlator, 100 computer trials wereaveraged to determine the capacity for various N. For each trial, two random vectorswere generated to form the initial reference filter. Each image was correlated todetermine whether classification was performed correctly. If no error occured, anew random image was added to the reference filter and correlation with all theimages was done. The number of images in the reference was increased until amisclassification occured. At this point, the capacity was said to be one less thanthe number of images stored in the reference. Figure 5.4 shows the capacity of boththe peak only and shift invariant systems as a function of the number of pixelsN in the image. Experimental simulations show good agreement with theoreticalpredictions. It is important to note that because the simulations were performed in the regime of small N, the transcendental equations for the capacity (Eqs. 5.12 and 5.17) were used to plot the theoretical curves.

V.3 The Volume VanderLugt Correlator

While a planar hologram uses only two dimensions to record information, a volume hologram utilizes all three dimensions for storage. It has been shown thatthis added dimension results in a large increase in the storage capacity of a volume
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Number of Pixels

Fig. 5.4 Capacity Curves of the Peak Only and Shift Invariant Filters



208hologram [16]. It is then expected that by incorporating a volume hologram in a VanderLugt system, the capacity of the correlator can be greatly increased. Animmediate consequence of the gain in capacity is a loss of shift invariance associatedwith the angular selectivity of volume holograms.
Consider the correlation between two point sources in the volume VanderLugtcorrelator shown in Figure 5.5. During the recording process, a reference planewave and the Fourier transform of the point source reference function, which isitself a plane wave are incident on the hologram. The two plane waves record aspatial grating in the hologram whose frequency and phase are determined by theposition of the reference point source. When an input point source is presentedto the correlator, the Fourier transform of the input, another plane wave, readsout the volume hologram to produce the correlation. If the input point source isperfectly aligned with the reference source, the readout plane wave will be perfectlyBragg matched with the grating recorded in the volume hologram. This will resultin a diffracted plane wave which when inverse Fourier transformed will producea correlation spot at the output plane. Now let the input point be shifted in adirection parallel to the plane of incidence, which is plane formed by the directionof the image and reference beams. If the amount of shift exceeds the Bragg angularbandwidth of the hologram, the readout plane wave will no longer diffract light andno correlation spot will be detected. In contrast to the planar case, shifts of the
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210input in the direction parallel to the plane of incidence do not result in a shift of the correlation pattern, and shift invariance is lost. In the direction perpendicular to the plane of incidence, however, the volume hologram remains insensitive to angulardeviations from the Bragg conditions.In the next section, we will analyze the response of the volume VanderLugtcorrelator to an arbitrary input and reference image and derive the degree to whichthe shift invariant capabilities of the system are lost. Experimental demonstrationsof the optical system will also be presented. The capacity of the volume VanderLugtcorrelator will be derived in section V.4. In addition, we will demonstrate that usinga volume hologram to record a series of reference filters allows the correlator to beused as a multi-category classifier.
V.3.1 Mathematical AnalysisThe basic difference between a standard VanderLugt correlator utilizing a planehologram to store the Fourier transform filter, and the system which we wish toanalyze, is the angular selectivity present in a volume hologram. In order to accountfor this property in volume holograms, we will analyze the effect of correlatingarbitrary images with the aid of the k-space diagram.

Let us now examine the correlation of a recorded image A(x,y) with an input B(x,y). Each plane wave is represented by a vector in k-space with a length 2π∕λ and oriented in the direction of propagation of the plane wave. The z direction



211was chosen to coincide with the propagation direction of the reference beam (see Fig. 5.6). The optical axis forming the input arm of the VanderLugt correlator is at an angle θ with the reference beam. Hence, the k vector corresponding to the optical axis of the input arm is "α0 = kx0x + - kx0z, where kxQ/kQ = sinθand kβ = 2π∕λ. λ is the wavelength of the readout light.
A(x,y} is placed at the input plane of the image arm as shown in Figure 5.6. The lens is essentially a Fourier transform lens, taking the light from each point at the input and mapping it into a plane wave at the output. The direction of thisplane wave is determined by the position of the input point. Let us denote

k a = (kx0 + kx)x + kyy + (k% - (kx0 + kx}2 - k⅛}z [5.19]as the wavevector emitting from a point in the input space, x, y and z are the unit vectors in the kx,ky and kz directions, respectively and kxQ is the x component of the propagation direction of the input beam. The amplitude of each wavevector isα(fcx,fcy) = j4(-kx∖F ∣2π,- ky∖F∣2π), [5.20]where F is the focal length of the Fourier transform lens at the input end of thecorrelator.In the recording process, these plane waves interfere with the reference planewave to form a set of gratings in the volume medium. Let the reference wave be represented in k-space as a single vector of unit amplitude and direction
k γ --  ICqZ. [5.21]
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Fig. 5.6 Optical Set-up and Phase Matching Diagram for the Volume Vander Lugt Correlator

Fig. 5.7 Phase Matching Diagram of the Recording Process in a Volume 
VanderLugt Correlator



213This recording process is described in Figure 5.7, which shows another two dimen­sional slice of the equiphase sphere containing the reference wave and the corre­sponding gratings. These grating vectors stored in the volume hologram have adirection given by
km — k r k a

= ~(kx0 + kx)x - kyy + (fc0 - γ∕⅛θ - (fcl0 + ⅛1)2 - k‡}z.For a grating recorded in a photorefractive medium, the induced index change is proportional to the modulation depth of the fringes that are being recorded. The amplitude of the index grating vector m{kx,ky)

[5.22]

ft k ∖ — GaVcχ>ky)
( v) ~ l+∣A(x,yψ [5.23]

where G is a constant relating the relationship between the modulation depth of the incident grating and the actual induced refractive index change. If the total intensity due to the input image is relatively constant over the area of the crystal and much less than the intensity of the reference wave, the stored grating strengthcan be approximated by
Ga(kx, ky^ * [5.24]

Consequently, the resulting index change change is linearly proportional to the plane wave component of the image A(x,y).To perform a correlation, a new image B(x,y) is placed at the input of the correlator and reads out the stored hologram, as shown in Figure 5.8. The resulting



214diffracted light diffracted light propagates through the inverse Fourier transform lens to produce the output correlation. In k-space, this corresponds to a new set of plane waves due to the image B(x,y) attempting to read out the stored gratings m(fcx,fcy). This new set of plane waves have amplitude
6(⅛,⅛) = -δ(* ⅛af2τr [5.25]2π 5 )

and propagation direction
k b = (fcχθ + k,x)x + k,yy + (γ⅛ - (fc≈o + k'x}2 - k'J}z. [5.26]

In this case, it is assumed that the optical axis of the readout image B(x,y) is identical to the optical axis of the recording image A(x, y) and is given by kxox +

Vko ~ k2x0z.When an new input image B(x,y) reads out the stored gratings, a new set of wavevectors k c will be formed as shown in Fig.[5.8], where
k c = k b 4^ k rn

= k'ix + fc"+√⅛ - (fc1o + A1)2 - *J ∙ [5.27]+ √⅛ - (*⅛o + <=χ + ⅛')2 - ⅛ + ¾')2 - ⅛o
As shown in Figure 5.9, each vector k c will contribute to the diffracted beam, 

k d by an amount dependent on the amplitude strength of k c and attenuated by
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Fig. 5.8 Phase Matching Diagram of the Readout Process in a Volume Van derLugt Correlator .

Fig. 5.9 Determination of ΔA^ in the Volume Vanderl,ugt Correlator



216the amount of Bragg mismatch ∆fc, where
∆fc = k d~ k c

= {k0 - ^kl-k'^-k^ - ^kl-(kx0 + kxy-kl+ [5.28]
↑∕⅛ - (kx0 + kx + k'tf - (ky + fc'')*)z.

In this expression for ∆fc, we have assumed a volume hologram which has infinite transverse area and a finite thickness in the z direction. Consequently,the direction of the phase mismatch Δ k also lies in the z direction. Under theassumption that the diffraction efficiency of each diffracted component is small, the strength of the diffracted wave vectors can be approximated by [17]
d(k",ky) = ∕ J b(k"+kx,ky+ky)Ga(kx,ky)el\AK(Kz'K»^L/^inc[\Ak(kx,ky)L\/2]dkx,dy[5.29]where L is the thickness of the crystal. If the recording angle is large and the spatial extent of the input and output images small, then ko,kxo » kx,ky,k",k^. The expression for ∆fc can then be approximated by the first term of a Taylor expansion:

m=√⅛⅝∙
In this case, the amount of Bragg mismatch Δ⅛ becomes independent of the integrat­ing variables kx and ky. This results from the approximation that the wavevectors 
k a and k b lie on a small portion of the equiphase circle which can be approximated



217by a straight line in k-space. Hence, d(k", kÿ} can be rewritten asd(⅛",⅛") = y y a(kx,ky)b(k" + kx,kÿ + kv)sinc(ak")exp(iak")dkxdki 
= [α * b](k,',k,̂ )sinc(ak")exp(iak")where

[5.33]
kxoL = Ltan0. [5.34]a = 2∖∕⅛q — k%Q* is the correlation operator and θ is the recording angle between the referencebeam and the input images. The resulting output pattern is

D(x,y) =
t F1 F1 λ 2πaxA*B(-⅛ -±y) 

Jr 2 -Γ2 sine
. λp2 .

,.2πax. [5.35]
where F2 is the focal length of the inverse Fourier transform lens.The output intensity is then

∖D(χ,y)∖2 = 2
• 2 2πax

τr!∕) 

-tf2 ½2
stnc

>*

1__
__ [5.36]

The output diffracted intensity pattern will then be composed of the standard two dimensional correlation pattern with a demagnification factor of F2 ∕F1 and which is apodized by a sine function with width given by
Wapod —

λF2
15.371

a

One consequence of using a volume hologram in a Vander Lugt correlator is theloss of shift invariance. In a typical image detection scheme, a set of inputs are



218correlated sequentially with a reference image. The output of the correlator is thenthresholded to determine whether the input image matches a stored reference. In astandard Vander Lugt correlator any shifts of the input will result in a correspondingshift of the correlation pattern at the output. Recognition and position of shiftedforms of the image can then be made by thresholding the entire correlation planeand locating the correlation peak. In the case of the volume VanderLugt correlator, only a portion of the correlation image is produced at the output. If the input is shifted in a direction parallel to the plane of incidence the correlation peak can beshifted outside the correlation band of the system. As a result, shifted inputs whichindeed match with the reference image will not produce a correlation peak at theoutput and, therefore, they will not be recognized.
In the direction perpendicular to the plane of incidence, the shifts in the inputwill produce correlation peaks which shift within the output correlation band. Con-sequenty, the system will be able to recognize images which are shifted only in thisparticular direction. Because of the assumptions made in deriving equation 5.36,the apodizing sine envelope has no dependence in the direction perpendicular to the plane of incidence (y direction). In reality, the diffracted output is also attenuated in this direction, although to a much smaller degree than in the parallel direction.To estimate the size of this envelope, let us consider the correlation of an arbitrary image A(x, y) with a point source B(0,0). In addition, we will analyze the envelope



219only along the x = 0 axis of the output plane. As a result of these assumptions, we can set kx = k" = 0 and the equation for ∆fc,the Bragg mismatch (Eq. 5.28)becomes
∆k = ka- ^Jkl - ⅛J≈ - v∕⅛ - kl0 - + χ∕⅛ - ⅛ - (k, + ⅛")2. [S.3S]

For ky,k∙' « ko,kxθ, this equation simplifies to
∆fc = Jk"2 ⅛'2 [5.39]2⅛ 2√fcg - ⅛ √⅛ - ⅛When this expression is substituted in equation 5.31, and the fact that the input image consists of a point source is used, the diffracted field becomes

_ y +

D(0,y) = A(O,^y)sinc[^^-]exp[i^^-}

where
β = L

1τ- +
[5.40]
[5·«]L*□ √⅛f→IxθThe expected height of the correlation band in the direction perpendicular to the plane of incidence is Height ≈ [5.42]

In general, the height of the correlation band will be much larger than its width. For example, in a system with F = 50cm, λ = 633nm, L = lmm, and a Bragg angle of 30°, the height of the correlation band is found to be 21.4 mm, while its widthis only 0.54 mm.
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V.3.2 Experimental Results

To verify the basic operational characteristics of the volume VanderLugt cor­relator that we predicted, an autocorrelation of an ”0” was performed. An iron-doped lithium niobate crystal was used to record the Fourier transform volumehologram. The crystal dimensions were 25 x 25 x 5 mm and was oriented such thatthe < 001 > axis was parallel to the plane of incidence. The Fourier transformholograms were recorded by interfering the Fourier transform of an image with areference plane wave. Exposure times ranged from 30 - 60 seconds at a reference intensity of lmW∕cm2. The gratings were then read out with the Fourier transform of a second image producing the correlation at the output plane.
Figure 5.10 shows a computer simulation of the autocorrelation of an O. Thisis the expected output of the correlator if the reference O had been recorded on aplane hologram.
Figure 5.11a shows the optically generated autocorrelation of an O with thevolume VanderLugt correlator described above utilized to perform the correlation.As expected, only the portion of the correlation pattern which lies within the corre­lation band is visible. As mentioned previously, by shifting the input image parallelto the plane of incidence, different portions of the correlation function can be readout. Figures 5.11b and 5.11c show the correlation of an O with its shifted formshowing other sections of the autocorrelation funciton of the object. It is interest-
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Fig. 5.10 Autocorrelation of an O
ing to note that the reconstruction shown in Figure 5.11b shows a relatively bright dot which lies outside the correlation band. This corresponds to the very bright DC peak lying in the second lobe of the sine function which multiplies the correlationfunction.In the above experiment, a primary Fourier transform lens of focal length 26cm was used. By increasing the focal length of the primary lens, it is expected thatthe size of the correlation would decrease and as a result a larger portion of thecorrelation function would lie within the correlation band. Figure 5.12 shows the



Fig 5.11 Experπ∣cntal Outputs of the Autocorrelation of an O Using a Vol ume VanderLugt Correlator (λ'2 — 26cnι)



223autocorrelation of an O when a primary lens with a focal length of 60 cm is used. Inthis case, the autocorrelation remains the same, but the portion which is presentedat the output has increased. This effect can also be achieved by decreasing thethickness of the crystal.
V.4 Capacity of Volume VanderLugt Correlators

The angular selectivity of the volume holographic recording medium results in aloss of shift invariance as demonstrated in the previous section. This characteristic,however, results in an increase in the capacity of the system, as well as a multi-class descrimination capability [18].
In the typical volume VanderLugt correlator architecture (Fig. 5.13a), a series of filters are recorded on the volume hologram. Each filter will be constructed byinterfering the Fourier transform of a reference image with a plane wave at a givenangle. Subsequent filters are recorded by interfering each filter with reference beamsincident at different angles, each separated by at least the angular bandwidth ofthe hologram. Because of the Bragg selectivity of the volume hologram, an inputimage will correlate with all the recorded filters and produce correlation slits which are spatially separated on the output correlation plane (Fig. 5.13b). Each filter can then be used as a discriminator to classify its own class of images. As a result,by determining which slit the correlation peak focuses on, one could simultaneouslydetermine to which of the many classes recorded in the volume hologram the input
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Fig. 5.12 Autocorrelation of an O Using a Volume VanderLugt Correlator 
(F2 = 60c m)



225image belonged.Let us now consider the capacity of the volume VanderLugt correlator. If the output of the correlator is still restricted to be NxN pixels, then the total numberof filters K that can be stored will be limited by the number of correlation bands∕which can be fitted in the output correlation plane. This number is given by
K = TLtanθ

λF
[5.43]

where L is the dimension of the correlation plane parallel to the plane of incidenceand T is the thickness of the hologram. Let us assume that K different filters canbe recorded in the volume hologram without cross talk. We will now determinethe maximum number of images that can be stored in each of the K classes toachieve a desired probabilty of correct identification. Assume again that the inputimages consist of randomly chosen, independent, identically distributed, bipolarpixels. Since each of the filters is recorded independently of all the others and eachfilter does not produce an output away from its respective correlation band, wewill first consider the effect of storing multiple images in one of the K filters. Forthe remainder of the paper we refer to each of these filters and its correspondingcorrelation output as an output channel. The purpose of the filter corresponding toone output channel is to separate a set of M images belonging to the class it wantsto recognize from the images of all the other members of the K-l classes recognizedby the other channels. Let be the value at the tth pixel position for the
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Fig. 5.13 Multi-class Categorization Using a Volume VaiidcrLugt Correlator: a) Recording Stage and b) Readout Stage.



227zγth input and the ∕3th output channel. In addition, let us again assume that the threshold is set to one half the value of the expected value of a correlation peak, Λ7^∕2. The probability of error for a random input is
Pr(y^(/?) < th) = > th} = Φ » i ≠ θ∙ [5∙44]

Since the N by N pixels in the output correlation plane is subdivided into K distinct output channels, each band will consists of only N/K output bits. Through the use of the multivariate central limit theorem, the statistics of each N/K output pixel can be shown to be independent of other output bits in the same correlation band [15]. Likewise, the statistics of each correlation output for one input image is independent of the output statistics resulting from other inputs. Assuming thateach channel wishes to recognize a class consisting of M images, it is necessary toconsider all KM images to determine whether an error occurs in a single channel.Hence, the probability that an error occurs in one of the output channels is
Pr (Error in one channel) = 1 — [5.45]

Since the statistics of each output channel are independent of other channels, theprobability that an error occurs in any channel of the volume VanderLugt correlatoris given by Pr(Error) = 1 — (1 — Pr(Error in one channel)^. [5.46]



228By using the asymptotic form for the cumulative Gaussian function and assuming a small probability of error, equation 5.47 can be approximated by
Pr(Error) = MNiK

,N∕%M

<f⅛∖fif∕4∖∕M' [5.47]
Hence, the maximum number of images that can be stored in one output channel is bounded by

M = _________N_________
16logNM3K + 4logδ

[5.48]
where δ = y∕2πPr(Error}jK. In the the limit that N → ∞, the capacity of each channel approaches

M = ∖,∖.....Λϊ, r, N→∞ [5.49]
ISiogN + 4logK

where K is given by equation 5.44. It is interesting to note that for a crystal of finite thickness (ie K constant), the capacity obtained for one channel of the volume correlator is equivalent to that obtained for the plane hologram correlator (Eqn. 5.18). Hence, the total number of images that can be stored in the volume correlator will be asymptotically bounded by
= km=i⅛⅛n f∣5∙5θl

or K times the capacity of a planar hologram.
V.5 Conclusion



229Photorefractive crystals can be used to record volume holograms as the stor­age medium in a VanderLugt correlator. We have shown that this implementation results in an increase in the capacity of the correlator, when used as a pattern classifier, at the expense of the shift invariance properties characteristic of a planar VanderLugt correlator. In addition, we have demonstrated that by utilizing a vol­ume hologram, multi-class classification can occur simultaneously. The ability of aphotorefractive medium also allows one to reconfigure the filter that is recorded in the crystal to adapt to changes in the pattern recognition environment. In addition, the ability to grow extremely thick crystals (up to lcm) allows one to distinguish between an extremely large number of classes. In the volume VanderLugt correlator architecture described above, a filter for one class is recorded by interference with a single reference plane wave. Subsequent filters are recorded sequentially by expos­ing the hologram to a filter-reference plane wave pair. The major problem in thisimplementation is that the hologram is subjected to a large number of exposures which may degrade the quatlity of the output image. In particular, photorefractivecrystals with an erasure time on the same order as the write time can only record alimited number of holograms before erasure of holograms written earlier begins tooccur.
Studies have been made to determine the maximum number of exposures aphotorefractive crystal can record and the optimum exposure schedule that will



230result in holograms of equal strength [20]. In addition, it has been shown that through fixing techniques the number of exposures can be significantly increased at the expense of reconfigurability.
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