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Abstract 

In this thesis we reported the results of our investigation into the behavior 

of particles settling in a quiescent and sheared suspensions using a molecular­

dynamics-type simulator. The effects of varying the concentration over the range 

of 0.0025 to 0.05, and the shear rate between 0.0 and 20.0 on the average particle 

velocity, the diffusion coefficient, the variance of the particle velocity, the average 

particle-distribution function, the particle-distribution-correlation time, and the av­

erage velocity and variance .autocorrelation times are reported. We found that the 

first correction to the sedimentation velocity for concentration ( c) depended upon 
1 • -1 

c rather than ca, and that no structure with a length scale of 0( acs) developed 

in the particle-distribution function. Shearing the suspension caused a nonuniform 

particle-angular distribution to form, and the particle correlation times and the dif­

fusion coefficients to decrease. Using the diffusion coefficient from the simulations, 

we modelled the spreading of the interface between the supension and the clear fluid 

region. '\Ve found that the spreading of the interface could cause misinterpretation 

of the experimental measurements of the sedimentation velocity, and that this might 

explain the discrepancies among the experimental data. 

In building the simulator, we needed to determine what effects N, the number 

of particles used in the simulator, have on the simulation results. Neither the 

sedimentation velocity, nor the average particle-distribution function changed when 

N varied from 27 to 125. However, we found that both the variance of the particle 

velocity and the diffusion coefficent grew with N. We have shown that for an 

homogeneous suspension, these statistics will converge, although the number of 

particles needed may still be very large, especially in the low concentration range 

which we are interested in. 
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1. Introduction 

Many applications require an understanding of the sedimentation process. Ex­

amples include sizing sedimentation tanks, determining the fluidization velocity, 

and characterizing the sizes of particles. Another reason the sedimentation velocity 

is of interest is that it provides one of the constitutive relationships needed in the 

averaged equation approach to predicting suspension flows. With this method, the 

suspension, which is a dispersion of many particles in a fluid, is viewed as a single 

phase material composed of two or more species. This is possible whenever the 

length scale over which the properties of the suspension changes is large compared 

to the inter-particle spacing. When this occurs, the conservation equations govern­

ing the motion of the fluid and particles can be averaged over a volume whose size 

is in between these two length scales to yield a set of averaged equations of motion 

(e.g., Anderson and Jackson 1967, and Drew 1983). This approach represents a 

significant simplification since the details of the flow around each individual par­

ticle are no longer necessary. These averaged equations are, however, incomplete, 

and constitutive relationships are needed to close this set of equations; e.g., for an 

isothermal fl.ow one constitutive relationship is needed for the average suspension 

stress (suspension viscosity) and another is needed for the average force exerted on 

the particles by the suspending fluid (sedimentation velocity). Clearly these quan­

tities depend on the details of the flow around the particles, so an additional source 

of information is needed before flows can be calculated. 

A theoretical basis now exists for predicting these constitutive relations for 

the limiting case when the particle Reynolds number is small and the suspension 

is relatively dilute (Batchelor 1972, Batchelor and Green 1972, Batchelor 1982, 

Batchelor and \Ven 1982, and Feuillebois 1984). The problem can be broken down 

into two parts. First, given a set of fl.ow conditions and the average relative positions 

of the particles, determine the average suspension property of interest. Second, 

since the particles move in response to the imposed flow (and to the motions of 

each other) we must determine the statistics of the particle positions. Indeed, the 

micro}cale structure can be dominant in determining the dependence of a property 
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on the particle concentrations (Sa:ffman 1973, Jeffrey 1974). 

To illustrate this, let us consider a dilute suspension of particles and deter­

mine the sedimentation velocity relative to the average suspension velocity. Since 

the suspension is dilute, one can consider only the two-particle interactions since 

configurations where three-particle interactions are significant occur with the prob­

ability of 0( c2
), an 0( c) smaller than the two-body interactions. Since we are 

interested only in the leading order solution, we can simplify the problem further 

by treating the particles as point forces. Neglecting the finite size of the particles 

leads to an error of 0((;)3
), where r is the particles' separation. A point particle 

a: in this suspension will settle with the velocity, 

a 3 [I rr] 3 UP = Ua + -aUa - + 3 + O(l/r ), 
4 r r 

(1.1) 

where U 8 is the Stokes's velocity, a is the particle radius, r is the vector connecting 

particle a: with the second particle, and r is JxJ. Equation (1.1) gives the velocities 

of particle a: for a particular arrangement of the two particles. To obtain the average 

particle velocity, we average (1.1) over all possible configurations, leading to, 

3 J [I rrl < u; >=Us+ 4usa ; + r 3 P(x + rix)dr, (1.2) 

where the pair-particle distribution, P(x + r/x), is the probability of finding the 

second particle at x + r when particle a is at x. Similarly, the average suspension 

velocity Ususp is obtained by averaging, 

3 [I rr] 
llsusp = - U sjll - + 3 

4 r r 
+ O(c), (1.3) 

g1vmg, 

3 J [I rr] < Ususp > = 4 U 8 a ; + r 3 P(x + r)dr + O(c), (1.4) 

where P(x + r) is the probability of finding a particle at r, regardless of whether 

there is a particle at x or not. This probability is equal to n, the particle number 
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concentration of the suspension. The desired result is given by, 

< U~ > - < Ususp > = Ua[l +!a J (~ + ~~) (P(x + rlx)-n)dr] (1.5) 

+O(c). 

The exact behavior of P(x + rix) is not known, but we expect it to approach n as 

r increases since we do not expect the particles' positions to be correlated over a 

long distance. For convenience, a step function depicted in figure 1.1 is used for the 

conditional probability with the length scale of the pair-distribution function given 

by 2a,\. Using this distribution function, and assuming that the average suspension 

velocity is zero, the average sedimentation velocity is 

<Up>-Us __ 6,2 0() U - "'c+ c. 
s 

{1.6) 

The constant -6 is the result of the particular choice of the shape of the pan­

distribution between r = 0 and 2.\a. Another choice will lead to a different constant 

but the same dependence on ,\ and c. If the suspension is random,..\ equals one and 

the correction to the sedimentation velocity is of 0( c ). If on the other P.and ,\ is 

dependent on 0( c- l ) , as is the case where particles are arranged in a cu hie array, 

this correction to Stokes's velocity is of 0( d ). For other choices of the concentration 

dependence of the length scale, this correction can depend on concentration in a 

variety of ways. 

The above example demonstrates the sensitivity of the sedimentation velocity 

to the structure of the suspension. Batchelor (1972) made the ad hoc assumption 

that the distribution is random and found that, 

<UP>= Ua(l.O - 6.55c). (1. 7) 

Saffman (1973) found that for a suspension of point forces, 

<UP>= Us(l - Bci + O(c)), (1.8) 

where B is a constant which is 1. 76 for a cubic array of point particles and vanishes 

for a random distribution. 
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Instead of making ad hoc assumptions concerning the particle-distribution func­

tions needed in (1.5), this distribution can be obtained in principle using the con­

servation equation for pairs of particles. Batchelor (1982) solved the two-particle 

approximation of this continuity equation, 

8P(x + rlx) , , </> at = -V' · (V P(x + r)x)) + V' · {P(x + r1x)D · V'( kt)} (1.9) 

+ V'(D · V'P(x + rlx)), 

where V is the relative velocity between the two particles due to gravitational forces, 

D is the diffusion coefficient, and </> is the force potential (e.g., inter-particle forces 

and Brownian motion). The first term on the right hand side represents the effect 

of gravity on the pair-probability function. For the case of monodispersed, non­

Brownian particles with no inter-particle forces, the case which we are interested 

in, the first term on the right hand side of (1.9) disappears because there is no 

relative motion for two identical spheres settling under the influence of gravity. 

Equation (1.9) reduces to, 
ap 
at = o, (1.10) 

showing that the pair-probability function remains equal to the initial distribution, 

and thus the assumption made in obtaining (1.9) is inadequate. In principle one can 

use the three-particle approximation to the particle-continuity equation, but this 

problem is much more difficult, and there is no guarantee that the three-particle 

approximation is sufficient to determine the particle-distribution function either. 

An alternative to using (1.9) is to determine the structure experimentally. One 

can deduce the structure of the suspension from the concentration dependence of 

the sedimenta_tion velocity. Barnea and Mizrahi (1973) correlated numerous sets of 

experimental sedimentation data and found that they could be best fitted by the 

equation, 

(1.0 - c) 
<Up>= Us 5, , 

(1.0 + d )e 3 <1 -<l 
(1.11) 

which for low concentration reduces to, 

1 

<UP>= Ua(l - ell). (1.12) 
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From these experiments we would infer that at low concentration, on the average, 

particles are further apart than they would be if arranged in a random hard-sphere­

type distribution, and that the microscale structure has a length scale which depends 
-1 

on acs. There are, however, other experiments, (e.g., Chen and Schachman 1955, 

Kops-"Werkhoven and Fijnaut 1981, and Buscall et al. 1982), where the best fit to 

the data are of the form 

Up= U 8 (1 - /3c), (1.13) 

where /3 is about 5. These experiments indicate a random hard sphere type distri­

bution. Lynch (1985) noted that the experiments used to obtain equation (1.12) 

were performed using large particles (a> 5µm) while those used for equation (1.13) 

were small particles (a< lµm). To resolve the discrepancy between the two sets of 

data, he proposed that there is a competition between multi-particle-hydrodynamic 

interactions which for some reason tend to cause microscale structure with a length 

scale of 0( ac- ~) to form, and Brownian motion which tends to randomize the parti­

cle distribution. For large particles, the hydrodynamic effects are predominant and 

thus the sedimentation velocity behaves as described by equation (1.12). On the 

other hand, for small particles, Brownian motion is more important and a random 

particle distribution results, so the sedimentation velocity is described by equation 

(1.13). In fact, he found that the two sets of data did split into high and low Peclet 

number conditions. 

To further investigate this hypothesis, he conducted a set of experiments us­

ing a couette device to measure the sedimentation velocity with and without shear 

applied to the suspension. If particles tend to be well spaced in the quiescent sed­

imentation case, shearing the suspension should bring the particles closer together 

on the average, and the sedimentation velocity should increase. This enhancement 

of the sedimentation velocity was observed. The experimental data are reproduced 

in figure 1.2. These measurements imply that in sedimenting suspensions of large 

particles the pair probabilty distribution has a length scale 0( ac -a
1 

). 

Attempts have also been made to measure this structure directly. Smith (1968), 
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took pictures of a low Reynolds number fluidized bed from two perpendicular direc­

tions. He divided the domain into cubes, and using the particles' positions extracted 

from the photographs, assigned the particles to one of these cells. His conclusion 

was that the distribution in the suspension is random. Makhlouf (1988), took holo­

grams of sedimenting spheres and extracted the particles' positions from them. She 

divided the space about a particle into spherical shells and determined the number 

of particles in each of these shells. In the shells that are near twice the particle 

radius from the center of a particle, she found more particles than would have been 

expected if the distribution was uniform. The remaining shells showed no excess 

(figure 1.3). Due to the suspension becoming opaque at very low concentration, 

these measurements were taken at 0.13 by volume. Also only one hologram was 

analyzed. Her results therefore should be considered tentative only. These direct 

measurements of the structure suggest that the particle distributions in these sys­

tems are random. 

A third way to determine the particle-distribution function is through the use 

of a molecular-dynamics-type simulator. Bossis and Brady (1985), used this ap­

proach to examine the suspension viscosity and particle-distribution function for a 

monolayer of particles undergoing a shearing motion. More recently, Lester (1987) 

examined the particle distribution in a sedimenting monolayer of particles using 

this approach. Lynch (1985) constructed a simulator to examine the sedimentation 

velocity and particle distribution for a three dimensional system. In his simulator, 

the motions of the particles are governed strictly by multi-particle-hydrodynamic 

interactions. The pair-probability distribution obtained showed a slight deficit of 

close pairs. He also found that the sedimentation velocity depended on d, and thus 

concluded that multi-particle-hydrodynamic interactions can lead to structures in 

the suspension with length scale of 0( ac -3
1 

). As we shall show in chapter 2, the 

method he used in determining the sedimentation velocity is sensitive to the number 

of particles he used in the simulation. Furthermore the error is large for a small 

number of particles and it scales with c~, which accounts for the results he obtained. 

The problem was not detected by him because he lacked the computer resources to 
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vary the number of particles extensively. 

This review of the literature concerning whether structures with length scale 
-1 

of 0( ac 3 ) exist. in a sedimenting suspension of large particles shows conflicting 

results. The sedimentation velocity data suggest that these structures do exist, 

while direct measurements of the pair distribution indicate that they do not exist. 

The computer simulation results are inconclusive. One goal of this thesis is to 

resolve this discrepancy. 

This discrepancy may be due to the dispersive behavior of the particles in the 

suspension. By dispersive behavior we mean that if we draw an imaginary box in the 

suspension and move it with the average particle velocity, after a while, the particles 

originally inside the box will have drifted out of the box and other particles will have 

drifted in. This dispersive behavior occurs because at any instance in time, some 

particles will have close pairs and they will tend to settle faster than the average 

particle, while some particles will have no near neighbors and they will tend to move 

slower than the average particle. Clusters of particles tend to settle faster than the 

average because when a particle settles, it drags down with it a large volume of 

fluid. If a second particle comes sufficiently close to the first, the two particles 

will be in each other's downdraft, and both particles will settle faster than if they 

are far apart. The arrangement of particles is dynamic; clusters of particles do 

not remain together indefinitely. After breaking up, these particles will then settle 

slower than the average particle. On the other hand, particles which do not have 

near neighbors may come close to the other particles and they will now settle faster 

than the average particle. This mechanism may lead to a diffusive type behavior. 

This diffusive behavior causes the boundary between the suspension and the clear 

fluid region to spread, and causes a concentration gradient ranging from the bulk 

concentration at the true interface to zero concentration at some distance above the 

true interface to develop. This surface region continues to spread as the suspension 

settles. In the experiments, the sedimentation velocities are measured by the rate 

of fall of the boundary. The exact position in the surface region which the eyes pick 

as the boundary depends on the concentration at which the suspension appears 
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opague. This need not be at the true interface. As the experiment progresses, 

this false interface will lag further and further behind the true interface, and the 

measured sedimentation velocity will be less than that in the bulk. 

There is experimental evidence that a concentration gradient at the interface 

exists and that it leads to a significant error in the measured sedimentation veloc­

ity. Lynch (1985) filled a beaker with a 103 suspension. He suspended vertically a 

blackened plate 1 to 2 cm from the wall of the beaker. The sedimentation velocity 

measured when the suspension is viewed directly at the plate was 10 to 203 faster 

than that measured when viewed on either side of the blackened plate. This i"s com­

parable to the difference between the c and d velocity correlations. Furthermore, 

when the interface observed while looking directly at the blackened plate reached 

the bottom of the plate, the interface remained there until the interfaces on either 

side of the plate caught up with it. Afterward, all three settled as one. One way to 

interpret the results of this experiment is that when he was viewing the suspension 

on either side of the blackened plate, he was looking through more suspension. The . 
suspension therefore appeared opaque at a lower concentration. The difference in 

the sedimentation velocities is due to choosing a different constant concentration 

level as the interface. 

To explore this hypothesis, we have built a molecular-dynamics-type simula­

tor to model sedimentation in a quiescent and sheared suspension. This simula­

tor approach allows us to obtain suspension statistics (e.g., sedimentation velocity, 

pair-particle distribution, diffusion coefficient) relatively easily. We wish to model 

Lynch's couette device experiment to examine the differences in the suspension 

statistics when the suspension is being sheared and when it is not. In particular we 

wish to see whether there are any differences in the particle distribution, average 

sedimentation velocity, and the diffusion coefficient between the two cases. In chap­

ter 3 we will describe the simulator, and in chapter 4 we will present the results of 

the simulation. In Chapter 5 we will use these results to model the spreading of the 

interface to show that this spreading may account for the experimental observations. 
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We will solve the one dimensional macroscopic continuity equation, 

ac . acUP av ac 
-+-----=0, at ax ax ax (1.14) 

where t is time, Up is the average particle velocity, x is the vertical distance, and 1J 

is the diffusion coefficient. 

In performing the simulation, we are limited to modeling the motion of a rel­

atively small number of particles because the cost of performing the simulation 

increases rapidly with N, the number of particle used. The most we have used is 

192. Due to this limitation, it is desirable that the statistics we are interested in 

to converge rapidly with N. Unfortunately this is not generally true because of the 

slow decay of the velocity field due to a sedimenting sphere. In fact some statistics 

may actually diverge. Consider a volume of radius R containing a fluid in which N 

particles have been uniformly distributed. From (1.1 ), we note that the contribu­

tion from the particles at the edge of this volume to the velocity at the center of the 

volume decays as 0( Ji) as we increase R. However in order to maintain a constant 

concentration when we increase the size of this volume, we must also increase N. 

The number of particles increases as O(R3 ), and therefore the velocity at the center 

of the volume grows as O(R2
), or equivalently as O(N~). If we now reexamine 

( 1.2), we will notice that the equation is incomplete since the integral diverges with 

increasing size of the volume. The average particle velocity determined in this fash­

ion diverges. This is known as the Smoluchowski paradox. To avoid obscuring the 

main issue at that time, we did not point this out. (The average particle velocity 

relative to the suspension velocity, however, is free from this difficulty, and the anal­

ysis concerning the relationship between the length scale of the particle distribution 

and the concentration dependence of the sedimentation velocity is correct.) The 

resolution of the Smoluchowski paradox is well known (Batchelor 1972, Saffman 

1973). When a particle settles, it drags down with it a large volume of fluid. Since 

the bottom of the container does not permit the fluid to pass through, the fluid 

must percolate back up through the suspension. This back flow which decreases 

the particle velocity has not been accounted for in (1.2), which accounts for the 
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divergence of average particle velocity. We will elaborate further on this problem 

in chapter 2. Caflisch and Luke (1985) pointed out another problem that this long 

range interaction causes. They noted that if N particles are randomly placed into 

a box many times, the variance of the particles' velocities diverges with increasing 

number of particles. The divergence of the variance implies that there are many 

configurations in which particles move with infinite velocities. (He had taken into 

account the back flow.) This is not physically possible. One explanation for this is 

that the suspension is not random, but is homogeneous. By homogeneous we mean 

that if we draw a sufficiently large box anywhere in the suspension, it will contain 

the same number of particles. In chapter 2 we will show that this can eliminate 

this divergence difficulty. In chapter 2 we will also examine whether we can obtain 

the correct particle distribution function, sedimentation velocity and the diffusion 

coefficient from our simulator despite the slow decay of the velocity field due to a 

settling particle. 
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2. Divergence Difficulties 

The velocity field due to a settling sphere decays slowly, which implies that 

we need to include the effects of a large number of particles. This poses a prob­

lem to constructing our simulator because the cost of simulating the suspension 

grows quadratically with the number of particles used. In this chapter we will 

explore how this difficulty will affect the results of our simulations and examine 

methods which can be used to overcome some of the problems that arise. We will 

show that we can obtain the correct sedimentation velocity if we have the correct 

particle-distribution function. We will also consider the divergence of the velocity 

variance which Caflisch and Luke (1985) have noted and the implications it has 

on the diffusion coefficient which we wish to determine. (The diffusion coefficient 

is proportional to the variance.) Even though we are interested in the problem 

of sedimentation in a sheared suspension, we will restrict the discussion mainly to 

the quiescent sedimentation case. The velocity field due to a particle immersed in 

a shear flow decays as 0( ( ~ )2 ) for large r. This velocity field decays faster than 

the flow field generated by a settling particle, and therefore we do not expect that 

including the shear flow will cause any additional divergence difficulty. 

\Ve have pointed out that the average particle velocity as defined by (1.2) 

diverges with increasing number of particles. The physical interpretation is that the 

bottom of the container forces a large volume of fluid to move upward to satisfy the 

no flux condition there. This contribution from the back flow has not been included 

in (1.2). There are two ways to resolve this divergence difficulty. The effects of 

the container bottom can be included explicitly (Beenakker and Mazur 1985), or 

they can be included through the use of known bulk properties of the suspension 

(Batchelor 1972, Saffman 1973, Mazaika 1974, and O'Brien 1979). The two methods 

have been shown to give equivalent results. The latter method, however, is simpler, 

and it is the approach we will use. A review will be given below. The following 

derivation is essentially that given by Batchelor (1972), and by Mazaika (1974). 

We will first properly formulate the solution for a finite system and then take the 
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limit as the volume and the number of particles increase to infinity to recover the 

solution for the unbounded sedimentation problem. 

There are several techniques which can be used to define the average particle 

velocity. In presenting the theory of suspensions, the ensemble average (denoted 

by < > E) is most convenient. In the literature this is the approach generally used 

and it is the method we will follow here. However in the simulator we will use 

the particle number average (denoted by < > N ), and the time average (denoted 

by < >T) instead because they are simpler to obtain during the simulation. All 

three methods are equivalent provided that the number of particles is large and the 

averaging time period is long. 

The average particle velocity is given by 

(2.1) 

where the conditional probability, P(CNlx), is the probability of finding the other 

particles distributed in configuration CN, given that there is a particle centered at 

x, and Up(CN,x) is the particle velocity at the point x when the other particles are 

arranged in configuration CN. The particle velocity in (2.1) can be related to the 

fluid velocity by the Faxen's law, 

where u; satisfies 

"72 * "' * v u, = v p ' 

\7 · uj = 0, 

u j = u 0 i + no i /\ r on the i th particle's surface, 

< Ususp > = N\ { uj(CN,x)P(CN )dCN 
· lxE/ 

+ Nl' f Up(CN,x)P(CN)dCN =constant, 
· lxEp 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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where U 0 1, and 0 0 i are chosen such that the force on a particle is given by the 

bouyancy force ~7ra3 .6pge 1 , and the torque is zero, and P(CN) is the probability of 

finding the particles in configuration CN about point x regardless of whether there 

is a particle there or not (unconditional probability). The first integral in (2.6) is 

over all configurations with x in the fluid while the second is over all configurations 

with x in a particle. The fluid velocity field which satisfies this set of equations is 

where Uf is the fluid velocity which satisfies (2.2) to (2.5) but not (2.6), and u' is 

the fluid velocity, Uf, if x is in the fluid, and is the particle velocity if x is in a 

particle. It should be noted that uj in (2.7) is not necessarily bounded as N----+ oo. 

There are configurations which will give unbounded velocity. This problem does 

not arise because we have used the macroscopic constraint instead of requiring the 

suspension to satisfy the no-slip condition at the container walls explicitly, but it 

is due to the slow decay of the zero Reynolds number solutions. Substituting (2. 7) 

into (2.2) and averaging gives 

< Up(x) > -U8 e = ~! j ( 1 + ~
2 

'\7 2
) u'(CN, x) (2.8) 

[P(CN!x) -P(CN)]dcN+ < Ususp >. 

"\\i·e have assumed that the average suspension velocity varies on a length scale which 

is large compared to the inter-particle spacing, and therefore '\7 2 < Ususp > is negli­

gible. To obtain the 0( c) solution, we neglect all but the two-particle interactions. 

The term u' is approximated by 

, _ LN 3 U [ (Cij XiXj) , a
3 

(Cij 3xiXj )] U- -·a-+--,-----
4 3 r r 3 3 r 3 r 5 

if xis in the fluid, (2.9) 

if x is in the particle, 

and uj is given by, 

(2.10) 
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f 3U·[ (bij XiXj) a3
(bij 3xiXj)]d -n - a-+-- +- ----- r 

4 3 
r r 3 3 r 3 r 5 

+ < Ususp > 

Equation (2.8) now becomes, 

U _ ( a
2

n 2)1 3U [ (8ii XiXj) a3 (8ii 3xiXj)] ( ) < > - 1 + - v - · a - + -- + - - - -- 2.11 
P 6 4 3 r r 3 3 r3 r 5 

r>a 

[P(x + rlx) - P(x + r)]dr 

(The term involving the Laplacian is singular at r =a because the velocity gradient 

changes from zero to a non-zero value there. This singularity integrates to 0.5cU8 .) 

If the difference in the two probabilities decays faster than 0( r2~• ), the integral 

converges. For a random hard-sphere type distribution (2.11) becomes 

<UP>= (1 - 5.0c)U 8 • (2.12) 

Equation (2.12) is incomplete. When the test particle settles, it induces a flow 

field which the second particle must respond to. The second particle responds by 

generating an additional flow field which is 0( (; )4 ) for large r. These terms have 

been neglected. Batchelor (1972) has found that they contribute an additional 

-1.55cU8 to the sedimentation velocity, and that the sedimentation velocity is now 

<UP>= (1 - 6.55c)U 8 • (2.13) 

The same technique can be used for the shear flow problem. In place of a constant 

average suspension velocity constraint, we require that 

(2.14) 

where Eii is the bulk strain rate, ni is the bulk vorticity, eiik is the permutation 

tensor. To satisfy (2.14) we add to (2.11) the disturbance velocity field generated 
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by a particle immersed in a shear flow (Batchelor and Green 1972), 

(2.15) 

+ n E·kXk -bi·-+___!___!_ -- + - dr J [ a
5 

x·x · ( 5a
3 

5a
5
)] 

1 1 r 6 r 2 2r3 2r5 

The terms in the sum in (2.15) are the disturbance velocity due to a particle in a 

shear fl.ow, and the remaining terms are that which are needed to statisfy th~ con­

straint (2.14). For a random hard-sphere distribution the average particle velocity 

lS 

(2.16) 

Equation (2.11) can be used to obtain the sedimentation velocity if the pair­

probability distribution is known, but it is not known. However we can approximate 

the integral in (2.11) using our simulator. The simulator consists of a volume within 

which N particles are placed. The motion of these particles is obtained with (2.10) 

along with Faxen's law. We allow the structure in this simulator to evolve over a 

long period of time, and at every instance in time we determine the number average 

of the particle velocities in the simulator. We then time average these instantaneous 

number averages to obtain 

((NL-I 3 U [ (bij XiXj) 2a
3 

( bij 3xiXj )] < Up > = - · a - + - + - - - -- (2.17) 4 1 r r 3 . 3 r 3 r 5 

J 3u [ (bij ' XiXj) a
3 

(Dij 3XiXj)]d) ) u - n - j a - -t- -- + - - - -- r + c s· 
4 r r 3 3 r 3 r 5 

N T 

Provided that the simulator yields the correct particle distribution and that we 

average over a sufficiently long period of time and over a sufficiently large volume, 

this average particle velocity should be equivalent to that given by (2.11 ). 

In our simulator, we can only use a small number of particles. The finite size of 

our simulator may change the particle distribution. Whether this is true or not can 
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be tested by varying the number of particles in the simulator and then comparing 

the resulting distributions. The details of this test are given in chapter 4. It appears 

that the particle distribution is unaffected by the size of the simulator. Even if the 

distri bu ti on is unaffected by the size of the simulator, we may still need a large 

number of particles before the velocity given by (2.17) will converge to a constant 

value. How many particles are needed depends on the definition of n, the particle­

number concentration. If it is defined as ~, the average velocity decays slowly with 

N. On the other hand if it is defined as Nvl, the velocity converges rapidly with 

N. This is demonstrated in figure 2.1. We randomly placed N particles into a box 

many times and determined the average velocity of a hypothetical particle located 

in the middle of the box using (2.17). To simplify the problem we kept only terms 

that are of 0( ~) (i.e;, we treated the particles as point forces). The exact solution 

for this problem is zero (Saffman 1973). If n is defined as ~, it takes over 104 

particles to converge to the correct solution, while with the other definition it has 

already converged with 27 particles. The difference between the two definitions is 

1J3U· (8ij XiXj)d - - a-+-- r 
V 4 3 r r 3 ' 

(2.18) 

-1 1 • 

which is of O(Ns cs). The error is large for a small number of particles and 

what is even worse, the error is proportional to d. Lynch chose to define n as 

~ and therefore he found a d dependence for the sedimentation velocity. In our 

work we will define n as Nvl. We believe this is more appropriate because the 

sedimentation velocity converges rapidly with N, and furthermore, it gives the 

correct sedimentation velocity for the random distribution case. Mathematically 

the reason why ~ is the incorrect choice is because the sum in (2.17) is based on 

(N - 1) particles while the integral (the back fl.ow) is based on N particles. 

We next turn our attention to the variance of the velocity. The variance of the 

velocity is defined as 

(2.19) 

The variance measures the fluctuations of the particle velocities. Since large flue-
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tuations in the particle velocity have not been observed in the sedimentation ex­

periments, one expects that the variance should be bounded. Unfortunately, the 

variance of the particles' velocities is not bounded as N approaches infinity for a 

random suspension. Caflish and Luke (1985) have pointed out this problem. The 

average variance for a volume randomly filled with point particles is given by 

V = J (uj(x + r,x))2 ndr. (2.20) 

To leading order, uj is of order(~), and therefore the variance grows as O(r). The 

number of particles (N) increases as r 3 so the variance is of O(N~) for large N. 

We have verified their observations with our Monte Carlo simulations. We created 

a configuration by randomly placing N particles into a cube with the restriction 

that no particles may come within two radii of the center of this cube. We then 

determined the velocity of a hypothetical particle located at the center of the box. 

Thousands of configurations were generated, and the variance of the particle velocity 

at the center of the cube for a 13 suspension was determined. This process can be 

expressed mathematically as, 

M 

Y = ~ L(ui - u)2' 
j 

(2.21) 

where M is the number of configurations, Uj is the velocity of the particle at the 

center of the cube for configuration j, and u is the velocity of the particle averaged 

over all configurations. The results are presented in figure 2.2. The variance for a 

small number of particles grows as 0( N ~ ), and the variance eventually grows as 

O(N~) for large N. 

Infinite variance is not physically possible. One plausible explanation is that 

m a real suspension, a small amount of inertia invalidates the Stokes's solution 

at large r. The first correction for Reynolds number (Re) is given by Oseen's 

solution (Van Dyke 1975). For large r ( r ~ ~e ), the velocity decays as 0( ; 2 ), 

and the integrand in (2.20) decays as O(r- 4 ) for large r. The variance converges. 

This explanation implies that there is no solution for the zero Reynolds number 
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sedimentation problem, a suprising result if it is true. Furthermore, this explanation 

predicts that significant variation in the particles' velocities will develop as the 

Reynolds number is reduced. This is because as the Reynolds number decreases, 

the region over which Stokes's solution is valid grows, and hence the variance will 

also grow. Sedimentation experiments for wide ranges of the Reynolds number have 

been reported in the literature, but this effect has not been observed. 

An alternate explanation is that the suspension is not random, and therefore 

Caflisch and Luke's (1985) calculations, and our Monte Carlo simulations are in­

valid. When the point particles are randomly placed into the box during the Monte 

Carlo simulation, any configurations are possible, including configurations where a 

large portion of all the particles are clustered about one point. Particles in this type 

of configurations have a much larger velocity compared with particles in configura­

tions which have no large clusters. It is the formation of these large clusters which 

lead to the large variances. For a random suspension, as the number of particles 

are increased, one can obtain increasingly larger clusters and therefore increasingly 

larger variances. The real suspension may not be random, but it may be homo­

geneous instead. By a. homogeneous suspension, we mean that a sufficiently large 

volume drawn anywhere in the suspension will encompass an equal number of par­

ticles. A homogeneous suspension will not have large clusters of particles and the 

divergence problem will be eliminated. Using the Ewald sum method (Lester 1987), 

we can demonstrate that homogeneity can eliminate the divergence problem. We 

place N particles inside a cell and then replicate this parent cell periodically in all 

directions. The particles inside each of these cells can be arranged in any configura­

tions, but all the cells must have the same configuration. The contributions to the 

particles' velocities inside the parent cell from all the particles in the other cells can 

be divided into a portion which decays rapidly and a portion which decays slowly 

with respect to the distance from the parent cell. Taking advantage of the period­

icity of the system, the slowly convergent portion can be evaluated rapidly using 

the Poisson summation formula. Using this Ewald sum technique, one finds that 

the velocity is bounded for any configurations. From (2.21), since Uj is bounded, 
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u is bounded, and hence the variance is also bounded. The system contains an 

infinite number of particles, but we have restricted the inhomogeneity in the system 

to the size of a sir~gle cell. We can therefore conclude that introducing homogeneity 

into the suspension can eliminate the divergence problem. The requirement that 

the suspension be periodic facilitates the computation but is not essential for elim­

inating the divergence difficulty. We have tested this by performing the following 

Monte Carlo simulation. We begin by randomly placing M point particles into a 

cell and calculating the particle velocity at the center of the box. Next we surround 

this cell with 26 other cells. Into each of these 26 cells, M particles are randomly 

distributed, and again the velocity of the particle at the center of the inner cell is 

determined. We continue adding cells to the simulator a layer at a time until a 

desired number of layers are in place. This entire process is repeated many times 

and the variance as a function of the total number of particles (N) is obtained. 

Figure 2.3 shows the variance as a function of N for M ranging from one particle to 

512 particles per cell, and for a 13 suspension. Figure 2.3 shows that the variance 

does not diverge with N. This proves our contention that the periodicity is not 

essential for eliminating the divergence problem. Figure 2.3 further shows that the 

variance however does depend on Af. In other words, if we allow the size of the 

inhomogeneity to grow by increasing M, the variance will grow. If we allow M to 

grow to infinity, we will recover the random suspension, and the variance will be 

unbounded. In figure 2.3, the curves asymptote to a constant value. These values 

as a function of lvf are shown in figure 2.4; they grow approximately with M 0 .4. 

The results of these Monte Carlo simulations show that if one can restrict the length 

scale of the inhomogeneity (i.e., M) in the suspension, the divergence problem will 

disappear. 

The Monte Carlo simulation results shown thus far are for point particles, and 

as such, these particles are permitted to overlap with other particles. This model 

is realistic for only the very dilute suspensions. For more concentrated suspensions, 

volume exclusion effect reduces the number of particle configurations which can be 

realized, and this in turn can affect the variance. Before we examine this problem, 
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we will first determine the concentration dependence of the variance for a suspension 

of point particles. We will see later that volume exclusion affects this dependence. 

The velocity variance for a suspension of point particles is given by (2.20). Since 

the integral is 0( L ), n is f's and c is ~7T'a3 f's, the variance is proportional to N ~ d. 

To examine the effects of volume exclusion on the variance, we performed the 

Monte Carlo simulation exactly as before except now we do not allow particles 

to overlap. To accomplish this we need to check for overlaps not only between 

particles within a cell but also for overlaps between particles in adjacent cells. The 

latter is rather time consuming and we do this approximately. Note first 'that if 

we did not check for particle overlap between adjacent cells, the distribution will 

have more particles near the edge of the cell than if we did check. This is because 

particles jutting in from the adjacent cells exclude part of the volume at the cell's 

edges. If we allow overlaps at the edges to occur, this volume exclusion effect will 

disappear. This difference can be eliminated by applying the toroidal boundary 

condition (section 3.4). As the name implies," in this scheme, opposite faces of a 

cell are connected so a particle along the left face of the cell can exclude·a volume 

along the right face of the same cell. This mimics the volume exclusion effect due 

to the presence of particles at the edges of the neighboring cells. When the number 

of particles per cell (M) is large, this scheme will exclude the same volume at the 

edges of each cell as if we have checked for overlap between adjacent cells. The 

reason the two methods are equivalent only when M is large can be understood 

if we examine the case when M is one . .The toroidal boundary condition can not 

exclude any volume in this case because the length of the side of a cell is always 

greater than two particle radii. In general the toroidal boundary condition can only 

exclude N ;:.;1 of the volume excluded when we do check for overlap between adjacent 

cells. The toroidal boundary condition, though only approximate, is significantly 

faster and simpler to implement. It is the approach we have taken. 

Besides the volume exclusion effect, we also wished to examine how the method 

of determining the particle velocity affects the variance. To accomplish this, we 
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performed the simulation using the stokeslet approximation, 

(2.22) 

and the stokeslet-dipole approximation, 

(2.23) 

We performed the simulation described above for volume fractions ranging from 

0.001 to 0.1 and values of M ranging from 1 to 512. The variance's dependence 

on the total number of particles, N, is shown in figures 2.5 through 2.16. Figures 

2.5 through 2.10 were obtained using the stokeslet approximation, and figures 2.11 

through 2.16 were obtained using the stokeslet-dipole approximation. These two sets 

of figures are the same, which means that the method of determining the particle 

velocity is unimportant, and that the contribution to the variance comes mainly 

from the stokeslet term. Figure 2. 7 shows the variance as a function of N for a 1 % 

suspension. This figure is nearly the same as figure 2.3, which was obtained without 

considering particle overlap. This implies that volume exclusion does not affect the 

divergence of the variance at a concentration of 0.01. Figures 2.17 and 2.18 show the 

growth of the variance with M for five different concentrations. The variances grow 

approximately with M 0 ·4, the same as when we did not take particle overlaps into 

account. The results from these simulations show that preventing particles from 

overlapping with each other does not eliminate the divergence problem, at least not 

for volume fractions of 0.1 or less. 

Prohibiting particle overlaps, however, does have a significant effect on the 

concentration dependence of the variance. In figures 2.19 and 2.20, the maximum 

variance's dependence on concentration for various values of Mis shown. For M of 

one, the variance depends on d. This is expected, since with one particle in a cell, 

this particle can not overlap with another particle. Therefore, whether we prohibit 

overlap or not should make no difference, and we should recover the point particle 

result. For values of M other than one, the variances asymptote to constant values 
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at a concentration between 0.05 and 0.1. At high concentration, volume exclusion 

forces particles to crowd around the particle at the center of the box. All the 

possible configurations are similar and yield similar velocities for the particle at the 

center of the box, and the variance decreases. An extreme example is when the 

suspension is at maximum packing, and all the particles are locked into one large 

cluster. In this configuration all the particles settle with the same velocity and the 
. . 

variance 1s zero. 

If we know the length scale of the inhomogeneity, then the variance can be ob­

tain from the Monte Carlo simulations. This length scale is also important because 

we need to make our simulator larger than it so as not to artifically restrict the size 

of the inhomogeneity which can develop. However this length scale is not known 

and the Monte Carlo simulation gives no basis for choosing this length scale. We 

can obtain an estimate of this length scale from (2.20) by solving for the size of the 

volume in terms of the variance, 

V = n j (uj - (uj) )2 dr =kc~, (2.24) 

where k is a proportionality constant, and ~ 1s the length scale which we are 

interested in, 
L V _1 - = -c . 
a k 

(2.25) 

Similarly we can estimate the number of particles required, 

(2.26) 

where k' is another proportionality constant. If~ and (~)3 are 0(1), then for a 

1 % suspension ~ is 0(100) and N is of 0(104 ). This analysis suggests that we 

need a substantial number of particles in our simulator before we can capture the 

correct variance and also the correct diffusion coefficient. (The diffusion coefficient 

is proportional to the variance.) Unfortunately we can at most employ about a 

hundred particles. We therefore expect that our simulator will underestimate both 

the variance and the diffusion coefficient. 
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Figure 2.6 The variance of the velocity for different numbers of particles per cell. 

The particles are not permitted to overlap. The stokeslet approximation is used to 

determine. the particle velocity. The concentration of the suspension is 0.005. 0 
is 1 particle per cell, x is 8 particles per cell, l:l. is 27 particles per cell, O is 64 
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Figure 2. 7 The variance of the velocity for different numbers of particles per cell. 

The particles are not permitted to overlap. The stokeslet approximation is used to 

determine the particle Yelocity. The concentration of the suspension is 0.01. 0 is 

1 particle per cell, x is 8 particles per cell, 6 is 27 particles per cell, D is 64 
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Figure 2.8 The variance of the velocity for different numbers of particles per cell. 
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3 Simulator 

3.1 Introduction 

In this chapter we will describe the simulator which we have built to model 

sedimentation in either a quiescent or sheared suspension (figure 3.1). The particles 

are settling in the e1 direction while being sheared in the e2 , and e3 plane. The 

suspension is assumed to be homogeneous and free from any convection in the direc­

tion of sedimentation. The particles are monodisperse and the problem's Reynolds 

number is assumed to be small. The latter is a reasonable assumption since in 

Lynch's experiments, the Reynolds number is 0(10- 3 ). This assumption linearizes 

the governing equations and renders the problem tractable. We will further assume 

that quasi-steady state approximation is valid. This assumption is reasonable since 

the Reynolds number is small, and the fluid is incompressible. It allows us to de­

termine the particles' velocities from knowing only their positions at that instant 

in time. The general scheme of the simulator is as follows. The simulator consists 

of a collection of particles inside a box. Initially we place these particles inside the 

box in any desired arrangement. Using the known particle positions, we determine 

their velocities, and integrating the velocities we obtain the new particles' positions. 

This process is repeated many times until steady state is reached in a statistical 

sense. Along the way, suspension statistics of interest (e.g., average particle veloc­

ity, variance of the velocity, particle diffusion coefficient, particle radial and angular 

distributions) are determined. Steady state is achieved when these statistics reach 

a constant value. There are two steps in building this simulator. First the true 

problem which involves infinitely many particles must be reduced to a N-particle 

problem. This will be discussed in section 3.4. The second step involves determin­

ing the velocity of the N particles given their positions. This will be described in 

the next section. 
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3.2 Determination of the Particles' Velocities 

There are a variety of methods which can be used to determine the velocities 

of N particles moving in a fluid. However for use in the simulator, the method must 

not only be accurate, but must also be computationally fast. Before describing the 

approach we have used in our simulator, we will review the different ways to solve 

the N-particle problem. Our procedures are a combination of these methods. 

One numerical technique for solving the N-particle problem is the collocation 

method developed by Ganatos, Pfeffer and Weinbaum (1978). The exact solution 

is assumed to be a linear combination of a set of basis functions and the weight for 

each of these basis functions is determined from requiring the solution to satisfy 

the boundary conditions at points on the particles' surfaces. Ganatos chose Lamb's 

solution as the set of basis functions. This method has been applied mainly to 

two dimensional or axisymmetric flow problems. In principle, this approach can 

determine the particles' velocities for any particle separation. However when the 

particles are close to each other, the number of collocation points (Ne) needed 

increases, and the computation time grows as Ne 3 . This technique, applied in this 

fashion, cannot be used in the simulator because it requires excessive amount of 

computer time. 

When the particles are well spaced, an alternate approach is the method of 

reflections (Happel and Brenner 1965). In this method, instead of requiring the 

solution to satisfy the boundary conditions on all the surfaces simultaneously, the 

solution is -required to satisfy the boundary conditons at one surface at a time. This 

is an iterative scheme because when the solution satisfies the boundary conditions 

on one particle exactly, it will no longer satisfy the boundary conditions on the 

others. However, after each iteration, the error on each of the boundaries is smaller 

by a factor of ]1, where R is the distance to the nearest surface. If the particles are 

well spaced, a few iterations are sufficient to give a reasonable approximation. The 

main advantage of this method is that the solution can be obtained analytically. 

A third approach is the method of multipole expansions (Jeffrey and Onishi 

1984, Dabros 1985, and Durlofsky, Brady and Bossis 1987). The fundamental singu-
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larity of the Stokes's equation is the stokeslet. The stokeslet along with its deriva­

tives form a complete set of basis functions for any solution to a zero Reynolds 

number problem. The solution to the N-particle problem can be obtained by plac­

ing a set of these singularities at the center of each of the particles. The strength 

of these singularities can be determined using either the method of reflections or 

the collocation technique. One generally needs only the stokeslet and its first few 

derivatives to obtain a reasonable approximation to the particles' velocities, even 

when the particles are touching. For instance, for a horizontal chain of touching 

spheres, the errors are less than 103 (Dabros 1985). Because the strength. of the 

stokeslet, the rotlet, and the stresslet have physical meaning (they are the force, 

torque and stress exerted by the particle on the fluid) one can often construct the 

leading order solution by inspection. For instance, a settling particle exerts a force 

on the fluid, and thus the leading term of the velocity field due to this particle is a 

stokeslet whose strength is equal to the weight of the particle. 

Combining the ideas behind the method of reflections and the method of mul­

ti pole expansion, we can develop the pairwise additivity in velocities approximation 

to the N-particle problem. At the center of each particle, we place a stokeslet and 

a potiential dipole (laplacian of the stokeslet ). To the leading order, the velocity 

field Uf generated by a particle is, 

( ) _ Fj [(Oij TiTj) a2 (Oij 3riTj)] u1;x+r,x --- --+-- +- ____ , 
87rµ r r 3 3 r3 r 5 (3.1) 

where F; is the bouyancy force exerted by the particles on the fluid. It is equal to 

67rµ U ,,a. In the suspension, the velocity field at a point in the fluid is approximately 

given by the sum of these velocity fields, 

( ) _ LN F [(Oi1 r;r1) a
2 

(OiJ 3r;r1 )] Ufi xo - --e1 - +- -- + - - - -- . 
87rµ r r 3 3 r 3 r 5 

q=J 

(3.2) 

By Faxen 's law, a test particle immersed in this flow field will travel with the 

velocity, 

U = Fe1 ~ [( 0;1 
7 

r;r1) + ~ a2 ( 0;1 _ 3r;r1 )] . 
P 87r µ L r r 3 3 r 3 . r 5 

Fl ~ 

(3.3) 
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The particle velocity given m the above equation depends on the velocity field 

generated by the other particles one at a time, and thus the name pairwise additivity 

in velocity. Terms involving reflections of one particle's velocity field off a second 

particle and then on to the test particle have been neglected. When the particles 

are well spaced, the terms neglected to the terms kept are of 0( J;,3 ) for large R, 

where R is the particle separation. One can in principle improve upon the estimate 

of the particle velocity given in (3.3) by applying the method of reflection again and 

by adding additional singularities to each of the particles (Burgers 1941, Mazur and 

Van Saarloos 1982). We will not do so. 

Equation (3.3) relates the linear velocity of a particle to the forces on the other 

particles. Similarly we can relate the rotational velocities of a particle to the forces 

on the other particles, 

N 

n . = ~ "°"' Fi f . . k r k 
1 2 ~ 8rr '1 r 3 ' 

q=1 µ 

the translational velocities to the torques on the other particles, 

N 

L T· rk 
U· - - 1-f··k-

i - 8 tJ 3' rrµ r 
q===1 

and the rotational velocities to the torques on the other particles, 

(3.4) 

(3.5) 

(3.6) 

Again these expressions are approximate since we have kept only the stokeslet plus 

its first two derivatives. These equations can be written in the matrix form, 

(3.7) 

where [ .MuF] is the mobility matrix. This mobility matrix will be used later to 

obtain a more accurate approximation to the particles' velocities. 
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There is an alternate method of approximating the N- body problem. First the 

problem is cast in the matrix form, 

(~) (~), (3.8) 

where [RFLr]Nb is the N-body resistance matrix, U and 0 are the translational 

and rotational velocities of the particles, and F and T are the known applied forces 

and torques. To approximate the N-body resistance matrix, one assumes that the 

particles' resistances to motion can be determined by considering pair interactions. 

For example, if particle a is in a cluster with particle f3 and /, the force on particle 

a when it moves in the presence of these two other particles is approximated by 

the force on particle o: in the presence of particle f3 with particle / absent, plus 

the force on particle a in the presence of particle / and in the absence of particle 

/3, minus the force on particle a when both particle f3 and a are not there. The 

exact two-particle solutions needed to construct the resistance matrix are given by 

Jeffrey and Onishi (1984). Once the particles' resistances to motion are known, the 

particles' velocities can be determined by solving, 

(3.9) 

where [RFu] 2b is the pairwise additivity of forces (PAF) approximation to the N­

body resistance matrix. The advantage of this approach is that the lubrication forces 

between particles are preserved, a feature which prevents particles from overlapping. 

This is not true in the PAV approximation, especially since we have kept only several 

terms of the series expansion in (3.3) through (3.6). The PAF approximation, 

however, is less accurate; the ratio of the terms neglected to the terms kept is of 

0( ~) for large r. For a chain of six touching spheres, this method overestimates the 

settling velocity by a factor of two. This method is also more time consuming since 

it requires solving a set of simultaneous equations. As the number of particles (N) 

increases, the computation time required for the P AF method grows as N 3 , while 

for the PAV method it grows only as N 2
• 
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The source of the error in the P AF approximation can be seen from the following 

problem. Consider a cluster of three particles o:, f3, and /. One piece of information 

needed in constructing the matrix [RFu ]2b is the force on particle o: when particle 

j3 is moved while keeping both particle a and/ fixed. To determine this force using 

the P AF approximation, we ignore the presence of particle /. The force on particle 

o: is approximately 0( ~ ). If we had solved this three-body problem exactly, we 

would have found that the motion of particle /3 induces a force on particle / which 

in turn reduces the net effect that particle /3 has on particle o:. If particles f3 and r 
are nearly touching and particle a is far away, the force on o: due to the motion of 

f3 is 0( ~~ ). Only when particle f3 is very close to a so that the lubrication forces 

between particle o: and f3 are much stronger than the contribution from the induced 

force at particle 1, will the PAF method give a good result. 

Durlofsky, Brady and Bossis (1987) developed a method to overcome this prob­

lem. We will refer to their method as the FT method. Instead of using PAF to 

approximate the N-body resistance tensor, this resistance tensor is approximated 

by 

(3.10) 

where [Mu F] is the mobility matrix given in (3.4), [RFv] 2b is the PAF approx­

imation to the N-body mobility matrix, and [Rpu] 2b
00 

is constructed similar to 

[RFv J 
2

b except that instead of using the exact two-body solutions, one uses the 

first few terms of the far-field expansion of the exact two-body solutions. [RFu] 2b
00 

does not contain the lubrication forces. ·when the mobility matrix is inverted, one in 

essence is solving a series of boundary value problems using the collocation method. 

One asks, what are the forces and torques on each of the particles when particle 

one moves in the x direction, when particle one moves in they direction, etc. These 

forces and torques include the effects of all N particles simultaneously and not just 

one particle at a time. Due to this, the inverse of the mobility matrix gives a 

reasonable approximation of the exact N- body resistance matrix. The inverse of 

the mobility matrix, however, does not contain the lubrication forces. These terms 
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are introduced in [RFu] 2
b. As was noted earlier, [RFu] 2

b formed using the PAF 

method is a poor approximation of the N -body resistance matrix when some of the 

particles are far apart. Furthermore, better estimates of these far field terms have 

been included in [MuF J. We therefore need to eliminate these terms from [R] 
2

b 

which is accomplished by subtracting [R] 
2

b
00 

from [R] 
2

b. In so doing, the far field 

terms are eliminated while leaving behind the lubrication terms. 

At this point a question which may arise is, why not attempt to obtain an 

approximation to the N-body mobility matrix in an analogous fashion instead. The 

obvious advantage of this approach is that one can obtain the particles' velocities 

directly without having to solve another set of simultaneous equations by using 

(3.4). The reason is due to numerical accuracy considerations. If we consider the 

case when two particles are very close to one another, the forces required to move 

the two particles toward each other with a finite velocity is very large compared to 

the other resistances in the problem. Therefore, the terms in the resistance matrix 

associated with the lubrication forces are dominant, and their effects are preserved. 

On the other hand, from the mobility matrix point of view, the relative velocities 

of the two particles when they are subjected to a finite force is small relative to 

the other motions of these particles. The lubrication terms contribute little to the 

elements of the mobility matrix. If the particles are sufficiently close, the lubrication 

terms' contributions will be so small that they will be masked by the errors in the 

approximation made in the other parts of the problem. If we attempt to invert 

the PAF approximation of the N-body resistance matrix to obtain the mobility 

matrix, we can lose the lubrication terms due to numerical errors, especially since 

the matrix often becomes ill conditioned when the particles come very close to each 

other. To retain the effects of the lubrication forces, we must express the problem 

in the form of (3.9). 

We have considered the case when these N particles are settling in the absence 

of a shear flow. If a shear flow is imposed, equations analogous to equations (3.3), 

(3.9), and (3.10) can be derived. 

To account for the shear flow in the PAV approach, we need to add to equation 
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(3.2), a stresslet plus a potential quadrapole, 

( ) _ LN F1 [( 8i1 TiT1) a
2 

( 8i1 3rir1 )] 
Ufi Xo - -- -- + -- + - - - --

87rµ r r 3 3 r 3 r 5 
q=1 

(3.11) 

After applying the Faxen 1s law, equation (3.3) becomes, 

. (3.12) 

where/ is the imposed shear rate. To the leading order, the stress S23 for a particle 

immersed in a shear fl.ow is 2rrrµa 3 E23 • Equation (3.10) relates the velocity to the 

force and the stress. Similar expressions can be written to relate the strain rate to 

the stress (Durlofsky, Brady and Bossis 1987). Just as before, these equations can 

be put in a matrix form, 

[M] (fl G) (3.13) 

where [MJ is the grand mobility matrix, and it will be used later to obtain a more 

accurate approximation to the particle velocity. 

In the P AF approximation, the effects of the shear flow enter as additional 

forces and torques (:F and T) on the right side of equation (3.9), 

(3.14) 

:F and T are related to the strain rate by the shear resistance matrix RF E, 

( :F) : l rE' T = lRFEJl J· (3.15) 
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The shear resistance tensor can be obtained using the PAF approximation. The 

exact two-particle solutions that .are needed are given by Arp and Mason (1977), 

and Kim and Mifflin ( 1985). 

Finally, one can obtain a better approximation of the effects of the shear flow 

by using the method developed by Durlofsky, Brady and Bossis (1987). We first 

cast the problem into the matrix form, 

(3.16) 

where ['R] Nb is the N-body grand resistance tensor, and Sis the stress tensor. The 

grand resistance matrix can be partitioned into submatrices, 

In] Nb= ( RFu 
L Rsu 

RFE) 
RsE · 

(3.17) 

The scheme is to form 'R, and then extract Rpu and RFE from it. Finally using 

(3.14) and (3.15), the motions of the particles can be determined. Analogous to 

(3.10), we can approximate the N-body grand resistance matrix by, 

(3.18) 

where [M] is the grand mobility matrix, ['R] 2
b is the grand resistance matrix formed 

using P AF approximation, and [ 'R] 2
b

00 
is constructed similar to [ 'R] 2b except that 

instead of using the exact two-body solutions, one uses only the leading terms of 

the expansion of the exact two-particle solutions. The elements of these matrices 

can be found in the reference just cited. We will refer to this method as the FTS 

method. 

We have presented several ways for determining the motions of N particles. 

The PAV approximation is least costly in terms of computation time. The cost 

of this method grows with the the square of the number of particles (N). It is 

accurate when the particles are well spaced. However when particles are close, 

because this method does not preserve the lubrication forces, the particles tend to 
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overlap with one another. The PAF approximation, on the other hand, preserves 

the lubrication forces, and the particles are prevented from overlapping with each 

other. However this method is not as accurate as the PAV approximation when 

the particles are far apart. Since the PAF method requires the solution of a set 

of 6N simultaneous equations, the computation time needed by this method grows 

as (6N)3 , and therefore we cannot simulate as many particles with this method as 

with the PAV method. The FT and the FTS methods are the most accurate, but 

they are also the most expensive. 

Since we will be modeling dilute suspensions, we expect that most of the par­

ticles to be far apart and that the PAV approximation will be adequate. However 

even at low concentration, particles do come together to form clusters, and (3.3) 

may not be sufficiently accurate to determine the velocities of these particles. One 

can in principle use the FT or FTS method, but the computation time required is 

large, and considering that the majority of the particles have no near neighbors, 

this approach is wasteful. A compromise developed by Lynch (1985) is to treat the 

particles in the cluster separate from the remaining particles. The velocities of the 

particles which have no near neighbors are calculated using (3.3), i.e., using the 

PAV approximation. The velocities of the particles in a cluster are approximated 

by treating the cluster as being immersed in a fl.ow field generated by the remaining 

particles. This fl.ow field is given by (3.11) with the sum performed over all parti­

cles not in the ~luster. Suppose the cluster consists of two particles a and /3. (The 

treatment of a cluster with more than two particles is identical.) We divide this 

problem into two sub-problems, the pair of particles settling in a quiescent fluid, 

and the pair (treated as being neutrally bouyant) immersed in the flow field (3.11). 

The solution of the former problem is given by (3.14) with :F, T, and T set equal to 

zero, and F set equal to the buoyancy force. For the second problem, the velocity 

of particle a is obtained from applying Faxen's law to the velocity field given by 

(3.11) and evaluating the resulting expression at the center of particle a. Particle 

/3's velocity can be obtained in a similar fashion. These velocities are incomplete 

because interactions between particles a and /3 have been neglected. To correct 
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for this, we approximate (3.11) as a linear shear flow and in this flow field, the 
additional forces on these particles are given by the product of the shear resistance 

matrix and the strain rate (3.15). With this force and equation (3.14) (setting F 
and T to zero) the additional velocity can be obtained. 

The shear resistance matrix can be derived in two ways, either from using the 

PAF approximation or from extracting it from the grand resistance matrix formed 
using the FTS method. When there is no imposed shear flow, the forces due to 
the strain rate are small compared with the buoyancy forces ( 0( (; )2 ) versus 0(1) ), 
and the PAF approximation is adequate. However when there is an imposed shear 

flow, this will not be true, and we will obtain the shear resistance matrix from the 

grand resistance tensor (i.e., (3.17) and (3.18)). (For the two-particle case, the two 
methods are identical, but for more than two particles, they are not.) 

The strain rate which is needed in (3.14) is obtained from taking the gradient 

of the velocity field given by (3.11), 

Vui -{ t ~u.+5~:' _ 3r~1r1) (3.19) 
qf. cluster 

·+ 2E23 [(r2r3)(rir3 _ bi1)(25(a)
3 

_ 35(a)
5

)] 

r 2 r 2 3 2r3 2 r 5 

+ E23 ( 5.,513 + 5;,512)} 

The terms between the first set of curly braces is the strain rate, and those in the 
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second set of curly braces less the permutation tensor, fijk, is the vorticity. Since 

the flow field about this pair of particles is not truly a linear shear flow, the value 

of the strain rate depends on where it is evaluated. (The difference however is no 

more than 0( (; )2 ( ~) ), where R is the separation between the two particles.) In 

determining the force and torque employing the P AF method, we use the average 

of the strain rates evaluated at the centers of particles a and /3. 

In the simulator, the method described above is only employed when the cluster 

contains more than two particles. (We have used the simple two-particle problem 

only to illustrate the method.) The velocity of particles in a doublet can be obtained 

more efficiently using the results of Batchelor and Green (1972). The velocities of 

two particles, a and /3, in a shear flow are given by, 

a2 
[(>..1 - >.2)RiR1 + A2t\i] · Uoe1 + (1 + 68181)u1ila (3.20) 

1 RiR3 RiRi 
- 2{AR2 +B(oii - Rl)}R1.:Ej1.:, 

a2 
l/13i = [(>..1 - >..2)RiR1 + ..\28i1] · Uoe1 + (1 + 68181)u1ila (3.21) 

1 RiR3 RiRi 
+ 2{AR2 + B(t5i3 - Ii_2 }RkE3k, 

where Ri is the displacement vector between the two particles, and where >. 1 , >..2 , A, 

and B are functions of IRil· These scalar functions can be found in Batchelor and 

Green (1972). The terms in the square brackets are the velocities of two particles 

settling in an unbounded quiescent fluid. The next term is the velocity of the particle 

due to the fl.ow field generated by particles not in the cluster, and if the companion 

particle is not there. The terms in the curly brace are from the interactions of the 

two particles in the linear shear flow. This method allows us to obtain the particles' 

velocities without solving a set of simultaneous equations and therefore is faster. 

To implement this hybrid method, we need to establish a criterion for deciding 

when particles are considered to be in a cluster. Our definition of a cluster is ad hoc. 

Particles are considered to be in a cluster if they are within a critical radius of each 
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other or if they share a common near neighbor. Thus for a linear chain of particles, 

the particles at each end of the chain are considered to be in a cluster even though 

they may be separated by more than one critical radius from each other. The choice 

of the critical radius is a compromise between speed and accuracy. A small critical 

radius will lead to fewer clusters and less computation time. However, it will also 

be less accurate. When the critical radius is increased, the opposite is true. The 

critical radius we have used is 4a. To conserve computer memory, we have also 

placed a limit on the number of particles permitted in a cluster. In principle, all 

the particles in the simulator can be in one cluster. If we permit this to hapP,en, for 

125 particles, we must reserve at least 4 megabytes of memory just for the mobility 

matrix. Since large clusters of particles rarely appear at low concentration, this is 

wasteful. We generally set the limit at six particles. At a concentrat.ion of 1 %, the 

number of times this limit is exceeded in 100,000 iterations is only several hundred 

times. When the maximum cluster size is exceeded, we change the definition of a 

cluster so that now only particles which are within the critical radius are considered 

to be near neighbors; long chains are broken up into smaller pieces. Breaking up a 

large cluster into smaller pieces also allows us to reach higher concentration. When 

we determine the velocity of a cluster of N particles, we need to invert a llN 

by llN matrix, which requires 0((11N)3 ) operations. If the cluster is broken up 

into Af smaller clusters, the operation count is O(M2
) less. This increase in speed 

however, is also accompanied by lower accuracy. In the simulation we do not model 

suspension greater than 53. 

Up to now we have described how the motion of a finite system of particles is 

determined. Before these methods can be used to model an infinite suspension, they 

must be modified to satisfiy the macroscopic constraint on the suspension velocity, 

(3.22) 

where Eii is the imposed bulk strain rate, n i is the bulk vorticity. Modifying (3.11) 
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to satisfy this contraint gives, 

(3.23) 

J [ a
5 

rirk -5a
3 

5a
5 l 2 - Ei·r· -~ik- + -(-- + -) dr+O(c ). 1 1 r 5 r 2 2r3 2r5 

The first integral on the right hand side is the familiar back flow term which is 

needed to satisfy the zero flux condition in the x direction. We have already seen 

the first two lines of (3.23) in chapter 2. The next line represents the effects of the 

linear shear fl.ow. It, however, does not satisfy the constraint (3.22). The integral 

in the fourth line eliminates this problem. The new velocity gradient is obtained 

by differentiating (3.23), and the particle velocity is obtained by applying Faxen's 

law to (3.23). The complete set of equations used in the simulator will be presented 

later in section 3.4. 

Before concluding this section, we will give an estimate of the error in the 

hybrid method. The error analysis for the hybrid method is complex because the 

largest error made depends on the configuration of the particles. If a cluster of 

particles is surrounded by a swarm of isolated particles, the largest error is due to 

the approximation of the strain rate discussed earlier. The error is 0((~)2 (~)). 

On the other hand if the particle configuration consists of a cluster located near 

a second cluster, the largest error is in the velocity field ll/ given by (3.23). This 

equation neglects the effects of the interactions between the particles in the second 

clusters, and these effects are now important because the particles in the second 

cluster are close to each other. This error is of 0( ( ~ )2 ( _;;, ) 2 ), where R' is the 

particle separation in the second cluster. From these error analyses, we will expect 

the hybrid method to give good estimates of the velocities when the cluster is far 



-60-

from the other particles, and we will expect this method to perform poorly when 

a second duster is nearby. In the next section, where we compare the various 

methods, this will be shown to be true. 

3.3 Comparison with Other Methods 

In this section we will test the particle velocities predicted by the hybrid method 

described in the previous section against that of the FT and the FTS method, the 

latter two assumed to be nearly exact. (These methods give solutions which are 

very close to those obtained by Ganatos, Pfeffer and Weinbaum (1978) who used a 

collocation technique.) Comparisons will also be made with the PAV approximation 

( 3.3) to demonstrate the advantages in using the hybrid method. In this test, six 

particles are placed in an arbitrary configuration. Their velocities are determined 

using the three different methods and then compared. We can obtain the three 

different methods from our computer code by simply adjusting the definition of 

when particles are considered to be in a cluster. By setting the critical distance 

to a large value, our computer program will consider all the particles to be in one 

cluster, and the velocities will be determined using the FT or the FTS method. By 

setting this distance to one particle radius, the program will estimate the particles' 

velocities using only the PAV approximation. To determine the particles' velocities 

that would have been obtained in the actual simulation, this critical distance is set 

to 4a, the value used in the simulation. 

The results of this test are recorded in tables 3.1 through 3.6. Tables 3.1, 

3.2 and 3.3 are for sedimentation in a quiescent suspension, and the remainder are 

for sedimentation in a sheared suspension. For the first configuration (table 3.1 ), 

the velocities calculated using the three methods agree well. This is not suprising 

since the particles in this configuration are all well spaced. In the second config­

uration (Table 3.2), the particles are distributed with four particles close together 

surrounded by two other particles located far away. For this configuration, the hy­

brid method and the FT method show good agreement in the e 1 direction, but in 

the e 2 , and e3 directions, while the errors are small compared with the Stokes's ve-
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locity, they are large compared with the actual velocity in the appropriate direction. 

The PAV method overestimates the velocity in the e 1 direction, and the agreements 

in the other two directions are worse. Finally in the third configuration (table 3.9), 

the particles are distributed in two clusters of three particles each. The difference 

between the hybrid method, and the FT method is about 123 in the e 1 direction 

and substantially worse in the e2 and e 3 directions. The PAV approximation again 

gives still poorer agreement. 

When shear is introduced, similar results are obtained (tables 3.4 through 3.6). 

The dimensionless shear rate i: is 13, a typical maximum value used in the actual 

simulation. In determining the velocities of the close pairs in this test, the FTS 

method was used. 

These tests indicate that the hybrid method is more accurate in general than 

the PAV approximation. Furthermore this hybrid method does not require much 

more computation time than the PAV method. For example, for a volume fraction 

of 0.01, the computation time increases less than 103. This is not because there 

are few clusters (about 303 of the particles are typically found to be in clusters at 

13 ), but because the clusters tend to be small. This hybrid method thus gives us 

greater accuracy without extracting a heavy price in computation time. 

3.4 Reduction to a N-Body-Problem and Other Details Needed to Con­

struct the Simulator. 

In the previous section, we described how the motion of a finite system of 

particles can be determined. In this section we will describe how we reduce the 

infinite suspension to a manageable problem involving a finite number of particles. 

Other details such as the integration method and size of the time step used in the 

integration will also be given here. 

The suspension consists of many particles. However the number of particles 

(N) that we can use in the simulator is limited because the computation time 

required grows as N 2 . We typically use 27, 64 or 125 particles. One problem that 

this causes is that the effects of the simulator's box edges are important. Recall that 
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the simulator consists of a box into which the N particles have been placed. Even 

with 125 particles, 783 of the particles are within one average particle spacing from 

the sides of the l?ox. To minimize this problem, the toroidal boundary conditions 

are used. The main features of this model are depicted in figure 3.2. As the name 

implies, the opposite faces of the simulation box are connected. In essence the 

simulation cell finds itself surrounded by its own replicas. When particles leave one 

face of the box, they are returned to the box at the exact same point but on the 

opposite face. The periodicity of the torus is not used explicitly in calculating the 

particle velocities. Instead, in calculating the velocity of any given particle, say B, 

the effect of each of the other N - 1 particles is considerred only once. However, if 

one of the images of particle A is closer to B than is the actual location of A in the 

simulator box, then A is considered to be at the image location when calculating the 

velocity of B. The simulation box is not restricted to a cube. In fact, for modeling 

sheared suspensions, the box is made longer in sheared direction ( e2) than in the 

other two to ensure that when a pair of particles encounter each other a second time, 

the second encounter is not correlated with their previous meetings. Consider the 

following situation in a sheared suspension. Two particles, one moving faster in the 

e2 direction than the other, meet. The faster-moving particle will leave the slower 

particle behind, go through the box and eventually overtake the slower particle. 

This second encounter in principle should represent the interaction between the 

slower particle with a new particle. Therefore the second encounter should not 

be correlated with the previous one. At low concentration, particles in a shear 

fl.ow interact weakly, and encounters between particles remain correlated for a long 

time. This problem can be aleviated by increasing the concentration or the number 

of particles used. Either method will increase the likelihood that a particle will 

interact significantly with several other particles before meeting a particle for the 

second time. The concentration range is restricted by the method which we use to 

calculate the particle velocity, and thus we are left with the option of increasing the 

number of particles. The most efficient way to add particles to the simulator is to 

add them in the direction of shear, that is make the simulation box longer. 
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When a shear flow is imposed, we model this by shifting the adjacent box in the 

e3 direction by an amount equal to the shear rate multiplied by the elapsed time. 

Since the adjacent boxes are shifted when shear is introduced, particles leaving the 

right face of the box are returned at a lower position along the left face of the box. 

In applying the toroidal boundary conditions, the simulator is restricted to 

modeling the bulk of the suspension since the replication of the simulation box is 

unreasonable if boundaries are nearby. 

The exact size of the simulation box needed to eliminate size effect is not known 

a priori. In chapter 2, we have shown that the sedimentation velocity convergfs with 

27 particles. The number of particles needed before the variance converges depends 

on the homogeneity in the the suspension and it may be as many as 0(104 ). We 

will examine the effects of the box size on the simulation results fort.her in chapter 

4. 

Besides the toroidal boundary condition, Another method for overcoming the 

box edge effects is to use true periodic boundary conditions. Lester (1987) made 

use of the Ewald sum method discussed in chapter 2. Instead of neglecting the 

contribution of particles outside of the simulation box, the simulation box is literally 

replicated periodically in all three dimensions in space. The contribution from 

these additional boxes are calculated using the Ewald sum method. In this method 

the contribution from all the boxes are divided into two parts; one part is rapidly 

convergent while the second portion converges slowly. Making use of the periodicity 

of the system, the slowly convergent portion can be calculated using the Poisson 

summation formula. This method is more time consuming. If we adopted this 

method, it would increase our computation time by a factor of 125 depending upon 

the accuracy desired. We prefer to expend the extra computer time in increasing 

the number of particles used in our simulation. 

The toroidal boundary conditions allow us to simplify the expressions given in 

section 3.4 for the fluid velocity, velocity gradient, and the particle velocity. In using 

the toroidal boundary condition, we are in effect drawing an imaginary box inside 

the suspension centered about a particle. The effects that the particles outside the 
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simulator have on the particle at the middle of the box are neglected. This model 

implies that the summation in (3.23) is now over only particles inside the simulation 

box, and the the integral is over the volume of the simulator. Since the simulator 

cell has spherical symmetry, many of the integrals appearing in the expression for 

the fluid velocity, particle velocity and the velocity gradient vanish. After making 

these simplifications we obtain 
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and the particle velocity is 
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(3.26) 

Finally we will nondimensionalize distance with the length of the box and time by 

ri, the time required for a particle to move relative to another particle an average 

particle separation, ( ~7r) ! ac-L This time, rz, is obtained from considering the 

following. Suppose all the particles are well separated; then the relative velocity of 

two particles a and j3 is given by Ra13 · '\7u1, where Ra/3 is the vector connecting the 

two particles. If we take Ra,a to be the average particle spacing and the velocity 
2 2 

J !(!7r)3a2 c-3 
gradient to be 4 Us 1 a 1 , then the characteristic time is 3 3 or 

((~11")3ac-3)2 au. 

~ L
2 

2 • After performing these nondimensionalizations, the fluid velocity is given 
au.Na 

by 

N .::..3. ( ) _ LN [( 8i1 Tir1 ) ( L )2 
( bi1 3rir1 )] 

3 Uf Xo - - + -- + -- -- - --
r r 3 3 r 3 r 5 

q=l 

(3.27) 

the velocity gradient is given by 

(3.28) 
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{ L
N Tt LN r4 £23£ ( TjTz 5( L )3 

TjT3 5( L )3 )] + Ei3l - + Eikl l - -- Ek ·3 ----- + Ek ·z -----
r3 3 U0 

1 r 2 2r3 1 r 2 2r3 
q=l q=l 

and the particle velocity is 

N2/3u = ~ [(bi1 + rir1) + ~ a2 
(bi1 _ 3rir1 )] 

P L..t r r 3 3 L 2 Ti· r 5 
q=l J 

(3.29) 

The treatment of the cluster of particles using the hybrid method is unchanged 

except that the velocities and velocity gradient needed are given by (3.27) and 

(3.28) instead. 

The characteristic time ~ L
2 

2 is appropriate when sedimentation is domi­
aU.Na 

nant, but when the suspension is sheared vigorously, we choose 1 (denoted by Th) 
-y 

as the characteristic time. Scaling time this way leads to 

. ( ) _ 3 Us a LN [( 5i1 , Tir1 ) , ( f )2 
( 5i1 3rir1 )] 

Uij Xo - ---e1 - T -- T -- -- - --

2 IL L r r 3 3 r3 r5 
q=1 

(3.30) 

5 N [ ( L )2 l a 5·k r·rk -5 - 5 
+ 2R3e2 + - ~ E;·r· --

1 + -1
-( a + -) 

£5 L..t J J rs r2 2r3 2r5 
q=J 
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for the velocity 

(3.31) 

for the velocity gradient, and 

(3.32) 

for the particle velocity. 

The toroidal boundary conditions allow us to model the unbounded homoge­

neous supension by a rectangular cell containing N particles. Using the methods 

described in section 3.1 and equations (3.22) through (3.32), the velocities of these 

N particles can be determined. These velocities must now be integrated to deter­

mine the new positions of the particles. The two integration methods we have used 
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are the first-order Euler method, and a fourth order predictor-corrector scheme, 

with Adam-Bashforth as the predictor, and Adam-Moulton as the corrector. The 

reason for using two integrators is to guard against the possibility that the results 

obtained are due to the numerical technique rather than the physics of the problem. 

With the integrator chosen, we must next choose the step size. The step size 

must be sufficiently small so that all the important details can be captured. Lynch 

(1985) identified three important time scales associated with the sedimentation 

problem. They are the time needed for well spaced particles to move relative to 

each other a distance ( ~71") ~ ac- ~ (i.e., rz), the time for a cluster of two parti.cles to 

move a distance comparable to their separation in the straining flow cause by the 

other particles (also equal to Tc), and the time for a pair of particles to settle relative 

to the other particles a distance (~7r)~ac-~. For the latter, the velocity of a pair of 

particles is approximately twice U8 , and therefore this time is ( ~7r) t:c-i. It is the 

smallest of the three time scales. We typically use time steps which are Jo of this 

time scale when sedimentation is the dominant motion. When shear is imposed on 

the suspension the time it takes for the shear fl.ow to separate two close_ particles 

is also important. The smallest is the time required by the shear flow to move a 

pair of nearly touching spheres relative to each other a distance comparable to their 

gap width. The velocity along the line connecting the centers of the particles is 

approximately given by 4.0~Ea, where 6 is the gap width between the two particles 

(Batchelor and Green (1972)). The time it takes to move along the line of center a 

distance b is therefore given by, 

1 
(3.33) T1 = ---

4.0Ez3 

The velocity perpendicular to the line of center is given by (1.6 - lo;C.S) )E23a. The 

time it takes to move a distance l is, 

Tz = __ a_ 

l.6E23 
(3.34) 

We choose l to be a and therefore Tz is l.!E. We typically use a step size that is t 
of T1. 
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Finally we will mention two ad hoc procedures which we have found convenient. 

Due to the inaccuracy in the velocities and the integration routine, the particles 

sometimes overlap. When this occurs, we pull them apart along their line of center 

by a small amount. The second ad hoc procedure involves inversion of the resistance 

matrix. "\i\Then particles in a large cluster are all nearly touching each other, the 

resistance matrix, though it remains positive definite, can become ill-conditioned 

and the inversion routine we use does not permit the inversion of such a matrix. To 

avoid this problem, we do not allow particles to come within (2 + t:)a of each other. 

When t: is chosen to be 10-6 we have experienced no problems with the matrix 

becoming ill-conditioned. 

3.5 Statistics 

The results of a simulation run is summarized using eight statistics. They 

are the average particle velocity, the variance of the particle velocity, the parti­

cle diffusion coefficient, the particle radial and angular distribution functions, the 

particle-correlation time, and the velocity and variance autocorrelation times. 

The average particle velocity is obtained by first number-averaging the parti­

cles' velocity at an instant in time and then time-averaging these means. Vve employ 

both averages because the number of particles used in our simulator is small, and 

significant fluctuations in this statistic will occur if we do not also perform the 

time average. We report the sedimentation velocity in terms of the deviation from 

S k , l . U -<U > to es s ve oc1ty, • u. P • 

The variance of the particle velocity is given by 

(3.35) 

Again time-averaging is employed to smooth the fluctuation in this statistic. The 

variance is given in units of u; for the quiescent suspension, and both u; and 

(Ea) 2 for the sheared suspension, the latter being more appropriate at high shear 

rates. In chapter 2 we have shown that the variance is small for suspensions whose 
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instantaneous distributions are homogeneous. This statistic therefore can be used 

to measure the degree of homogeneity of the suspension in the simulator. 

The diffusion coefficient is given by 

'D·(t) = lim ~ [2:[: 1 (xf(t) - xf(t))
2

] 
1 t-oot N ' 

(3.36) 

where xf (t) is the distance particle k would have travel in the ith direction, xf(t) 

is the distance travelled by particle k in the ith direction if this particle had moved 

with the average particle velocity (instantaneous number average), and t is the 

elapsed time. Subtracting xf(t) from xf(t) removes the displacement due to the 

convective motion of the particles. In practice we cannot perform the simulation 

for a very long time. Instead we perform the simulation sufficiently long so that 'Di 

reaches a constant value. This usually occurs within 100 '' for quiescent sedimenting 

suspension, and 1000 Th for the sheared sedimenting suspension. 

Since we are using a small number of particles, and a short t, the values of the 

diffusion coefficients vary between runs with different initial positions. To overcome 

this problem, we can make many runs with different initial positions and average 

the resulting diffusion coefficients. Alternatively, we can from a single run extract 

multiple sets of diffusion coefficients. At time zero we begin to follow the time 

evolution of one set of 'Dij(t). At some later time we treat this new time as time 

zero and begin a second set of 'Dij(t). This process is repeated many times over the 

course of a single simulation run. If the period between starting a new set of 'DiJ( t) 

( r) is sufficiently long so that the initial particle positions for each set of 'Dij( t) 

are different, then effectively we have 'Dij(t) for many runs with different initial 

conditions. We applied both methods. The diffusion coefficients are given in units 

of U8 a. 

The diffusion coefficient can also be determined from 

N 

Dt = ~ L j (U/(t + r)- < U1 > )(U/(t)- < U1 > )dr, (3.37) 
l 
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where Uf is the velocity of particle i in the zth direction, and < U1 > is the average 

particle velocity. If the velocity becomes uncorrelated after a time To, this expression 

can be rewritten as, 
N 

1 ~ . 2 
D1 '"'"'To N ~(Ut(t)- < U1 >), (3.38) 

where To is the correlation time, and the sum is the velocity variance. Equation 

(3.38) relates the diffusion coefficient with the correlation time and the velocity 

variance, two quantities which we can measure independently. Thus we have an 

independent check on the diffusion coefficient. 

The radial distribution function is found by dividing the space about each 

particle into concentric spherical shells. The number of particles in each shell is 

determined and is then normalized by the number of particles that would have 

been there if the suspension was uniform. After averaging over all the particles and 

time averaging these means, the radial distribution is obtained. We typically use 

shells which are 0.1 particle radius thick. 

The phi and theta angular distributions are found by taking the set of shells 

used in determining the radial distribution and further subdividing them in the ¢ 

and (} directions to form smaller volumes bounded by constant¢, 8, and r surfaces. 

Counting all the particles in the volumes with the same value of(} and r, and nor­

malizing with the number of particles that would have been there if the suspension 

was uniform, gives the theta distribution at a fixed r. Similarly counting all the 

particles in the volumes with the same values of¢ and r, and normalizing gives the 

phi distribution at a fixed r. The reason for determining phi and theta distributions 

at a fixed r is that if any angular dependence develops, it is expected to appear at 

small values of r. If these phi and theta distributions are averaged over all r, the 

uniformity of the suspension at larger will mask out any angular dependence that 

may exist in the inner shells. In the simulator, we divide the(} and ¢ directions into 

ten slices. The coordinate system is shown in figure 3.3. 

The particle correlation time measures the average time a pair of particles 

remains together. Suppose there are Ai ( t) particles at a distance between r and 
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r + dr from particle i at time t. To determine the correlation time, we first obtain 

the autocorrelation function for Ai ( t) using, 

A{r) = f(A.i(t)- <A> )(A.i(t + r)- <A> )dt 
i j(Ai(t)- < A> )2 dt ' 

(3.39) 

where < A > is the average number of particles (averaged over the entire simu­

lation) in the shell. Since there are only a small number of particles used in the 

simulator, Ai( r) differs from particle to particle. To obtain a better estimate of 

the true autocorrelation function, one can determine Ai( T) for each of the particles 

and then average them. This is the correct procedure for determining the aver­

age autocorrelation function, and it will be denoted by the subscript pd. However, 

because each A.i(t) requires a substantial amount of memory, we determine the au­

tocorrelation function for three particles only. Three particles may not be enough 

to determine the average autocorrelation function. Another approach is to average 

A.i(t) over all the particles first and then determine the autocorrelation function 

of the average Ai(t). This procedure will be denoted by the subscript < pd >. 

After the autocorrelation function is obtained, the correlation time is determined 

by finding the time at which the correlation function becomes zero (denoted by 

the superscript z ). Sometimes the correlation curve never falls to zero or the slope 

of the curve decreases abruptly before the function becomes zero. To accommo­

date these cases, we obtain another estimate of the correlation time by drawing 

a tangent to the initial portion of the curve and determining the time at which 

this tangent reaches the value of zero correlation. This method will be denoted by 

the superscript i. For each simulation we extract a total of four correlation times, 

i z i d z 
Tpd' 'pd' '<pd>' an '<pd>" 

The autocorrelation functions A( T )pd and A( T )<pd> are not necessarily the 

same. The former is defined as 

( ) 
L. f (Ai(t)- < A.> )(A.i(t + T)- <A> )dt AT - ~~1 ~~~~-.,,.-~~~~~~~~~~~-

pd - Li f (Ai(t)- <A> )2dt ' 
(3.40) 

while the latter is defined by 

J(-Jt Li A.i(t)- <A>)( N Li Ai(t + r)- <A> )dt 
A(r)<pd> = Lif(}v LiAi(t)- <A >)2dt . (3.41) 
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The difference is given by 

A(r)pd - A(r)<pd> = (3.42a) 

(l ~2>. 1 ) L j(Ai(t)- <A> )(A.i(t + r)- <A> )dt 
i 

->.:~2 LL j(Ai(t)- <A >)(Aj(t + r)- <A >)dt, 

where, 

i J 
j yf i 

,\ - Lif(Ai(t)- <A >)2 dt 
1

- f(JvLiAi(t)-<A>)2dt' 

>.2 = ~ J (Ai(t)- <A> )2dt. 
l 

~3.42b) 

(3.39c) 

The difference is in the cross term (the second integral in (3.42a)). If'the cross term 

has the same correlation time as the autocorrelation function (the first integral in 

(3.42a)) or if Ai(t) and Aj(t) are not correlated, then A(r)<pd> will have the same 

correlation time as A( T )pd· We shall see from the simulations that in fact these 

correlation times are the same. 

In determining the correlation time we need to choose the shell with which to 

determine Ai(t) since the correlation time will depend on the particlular choice. 

Since we wish this correlation time to be related to the time particles in a cluster 

remain together, we should choose a shell which is less than the average particle 

spacing ( ac- ~ ). We have chosen a shell between 2a and 3a. 

The velocity and variance correlation times are obtained by taking the auto­

correlations of the average velocity and the average variance, 

(3.43) 

VT _ J(-}J Li 11i(t)- < V >)(-}J Li Vi(t + r)- < V >)dt 
( )<pd> - Li f ( 1 Li .Vi(t)- < ir > )2dt , 

(3.44) 

where < U > and < V > are the velocity and variance averaged over all time. For 

each U( T) and l/( T) we again obtain two estimates of the correlation time. These 
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correlation times are useful information because they represent the minimum time 

it takes for the memory of the initial conditions to be forgotten. The simulation 

should be performed longer than these times. 
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Method 1 FT Method 
Method 2 Hybrid Method 
Method 3 PAV 

particle # 
1 
2 
3 
4 
5 
6 

Particle# 
Method 

1 
2 
3 

coordinate 
(0,0,0) 

(4.0,0,0) 
(0,4.0,0) 
(0,0,4.0) 

(4.0,0,4.0) 
(4.0,4.0,4.0) 

1 2 

2.08 2.06 
2.09 2.08 
2.09 2.08 

Particle# 1 2 
Method 

1 .033 -.062 
2 .034 -.062 
3 .034 -.062 

!.!. - 0.0 
Us 

x V~IQQity 
3 4 

1.86 2.06 
1.87 2.08 
1.87 2.08 

Y V~IQQi!:i 

3 4 

-.094 .062 
-.097 .062 
-.097 .062 

Z VelQdty 

Particle# 1 2 3 4 
Method 

1 .094 -.060 .096 -.060 
2 .097 -.062 .097 -.062 
3 .097 -.062 .097 -.062 

e 
z 

Us 
5 

2.08 
2.09 
2.09 

Us 
5 

-.033 
-.034 
-.034 

Us 

5 

.094 

.097 

.097 

6 

1.86 
1.87 
1.87 

6 

.094 

.097 

.097 

6 

.096 

.097 

.097 

e 
y 

Table 3.1 Comparison between the three different methods (1). All the particles 
are well spaced. No shear flow is imposed. 
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e 
Method 1 FT Method x 

Os 
Method 2 Hybrid Method 

05 Method 3 PAV 

gr particle # coordinate 
1 (0,0,0) e 

y 
2 (2.01,0,0) 
3 (0,2.01,0) e 
4 (0,0,2.01) z 
5 (4.02,4.02,0) 

12.. = 0.0 6 (4.02,0,4.02) Us 

x V~IQc;ib! Us 

Particle# 1 2 3 4 5 6 
Method 

1 2.56 2.55 2.40 2.40 1.93 1.98 
2 2.59 2.59 2.42 2.42 2.00 2.00 
3 2.88 2.58 2.58 2.58 2.00 2.00 

Y.. V~IQQi!:i Us 

Particle# 1 2 3 4 5 6 
Method 

1 .026 -.010 .018 .053 0.22 -.018 
2 .026 -.017 .022 .052 0.23 -.026 
3 .062 -.039 -.065 .052 0.23 -.026 

z VelQcjzy Us 

Particle# 1 2 3 4 5 6 
Method 

1 .026 -.010 .053 .018 -.018 0.22 
2 .026 -.017 .052 .022 -.026 0.23 
3 .062 -.039 .052 -.065 -.026 0.23 

Table 3.2 Comparison between the three different methods {2). Four particles are 
in a cluster surrounded by t~o other particles far away. No shear flow is imposed. 
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ex 

Method 1 FT Method 6 

Method 2 Hybrid Method 
Method 3 PAV 

gi 
3 

particle # coordinate 1 
1 (0,0,0) ey 

2 (1.01,1.74,0) 
3 (2.02,0,0) 

ez 4 (6.01,0,0) 
5 (7.02,0, 1.74) 

E - o.o 6 (8.03,0,0) Us 

X V~IQ!:iiel Us 
Particle# 1 2 3 4 5 6 

Method 
1 2.43 2.40 2.45 2.45 2.40 2.43 
2 2.61 2.54 2.59 2.59 2.54 2.61 
3 2.73 2.64 2.97 2.97 2.64 2.73 

Y V~IQQj!y Us 
Particle# 1 2 3 4 5 6 

Method 
1 -.022 -.014 .007 -.025 -.020 -.021 
2 -.034 -.010 -.005 -.035 -.029 -.028 
3 .082 -.090 -.008 -.040 -.027 -.023 

z VelQcity Us 

Particle# 1 2 3 4 5 6 
Method 

1 .020 .021 .025 -.007 .014 .022 
2 .028 .029 .035 .005 .010 .034 
3 .023 .027 .041 .082 .090 -.082 

Table 3.3 Comparison bet~een the three different methods (3). The six particles 
are divided into two groups of three particles. No shear flow is imposed. 
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Method 1 FTS Method 
e 

x 
Method 2 Hybrid Method 

05 Method 3 PAV 

particle # coordinate gr 1 (0;0,0) e 
2 (4.0,0,0) y 
3 (0,4.0,0) 
4 (0,0,4.0) e. 
5 (4.0,0,4.0) 

1.!!. .. 13.6 
z 

6 (4.0,4.0,4.0) Us 

~ V~IQ~ib! Us 
Particle# 1 2 3 4 5 6 

Method 
1 2.18 2.06 1.74 2.06 2.18 1.74 
2 2.22 2.09 1.74 2.09 2.22 1.75 
3 2.22 2.09 1.74 2.09 2.22 1.74 

Y V~IQQib! Us 
Particle# 1 2 3 4 5 6 

Method 
1 0.24 0.37 0.40 53.0 53.1 52.9 
2 0.25 0.37 0.40 53.0 53.1 52.9 
3 0.25 0.37 0.40 53.0 53.1 52.9 

z Velocity Us 

Particle# 1 2 3 4 5 6 
Method 

1 0.28 0.31 -0.46 0.31 0.28 -0.46 
2 0.30 0.30 -0.47 0.30 0.30 -0.47 
3 0.30 0.30 -0.47 0.30 0.30 -0.47 

Table 3.4 Comparison between the three different methods (4). All the particles 
are well spaced. The dimensionless shear rate is 13. 
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e 
Method 1 FTS Method x 

Os Method 2 Hybrid Method 
05 Method 3 PAV 

gi 
particle # coordinate 

1 (0,0,0) e 
y 2 (2.01,0,0) 

3 (0,2.01,0) 
e 4 (0,0,2.01) z 

5 (4.02,4.02,0) 
~ - 13.36 6 (4.02,0,4.02) Us 

X VelQQit~ Us 
Particle# 1 2 3 4 5 6 

Method 
1 2.54 2.53 2.37 2.37 2.07 2.07 
2 2.55 2.55 2.37 2.37 2.13 2.13 
3 2.88 2.80 2.45 2.45 2.13 2.13 

Y V~IQQity Us 
Particle# 1 2 3 4 5 6 

Method 
1 1.73' 0.50 1.72 23.5 0.69 53.2 
2 1.72 0.50 1.78 23.5 0.71 53.2 
3 1.16 0.19 1.18 24.3 0.71 53.2 

z Ve!Qcjty Us 

Particle# 1 2 3 4 5 6 
Method 

1 1.73 0.50 -3.35 1.72 -0.52 0.69 
2 1.72 0.50 -3.39 1.78 -0.52 0.71 
3 1.16 0.19 -2.52 1.18 -0.52 0.71 

Table 3.5 Comparison between the three different methods (5). Four particles are 
in a cluster surrounded by two other particles far away. The dimensionless shear 
rate is 13. 
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ex 

Method 1 FTS Method 
Method 2 Hybrid Method 
Method 3 PAV 

gr particle # coordinate 1 
1 (0,0,0) ey 

2 (1.01, 1.74,0) 
3 (2.02,0,0) 
4 (6.01,0,0) ez 

5 (7.02,0, 1.74) 
I.!. - 13.36 6 (8.03,0,0) Us 

X V~IQ~izy Us 

Particle# 1 2 3 4 5 6 
Method 

1 2.56 2.45 2.58 2.59 2.56 2.57 
2 2.65 2.53 2.64 2.64 2.63 2.65 
3 2.73 2.59 2.97 2.97 2.68 2.73 

Y V~IQCit~ Us 

Particle# 1 2 3 4 5 6 
Method 

1 -.033 .001 .047 1.21 20.7 1.22 
2 -.038 .008 .010 1.21 20.7 1.22 
3 .083 -.074 -.074 0.90 21.3 0.92 

z Velocizy Us 

Particle# 1 2 3 4 5 6 
Method 

1 1.27 -2.47 1.27 .028 .037 .036 
2 1.27 -2.47 1.28 .005 .026 .041 
3 0.96 -1.88 0.98 .089 .108 -.080 

Table 3.6 Comparison between the three different methods (6). The six particles 
are divided into two groups of three particles. The dimensionless shear rate is 13. 
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Figure 3.1 Problem description. 
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Figure 3.2 Toroidal boundary conditions. "'f is the shear rate, tis the elapsed time~ 
and the velocity field is v = "}'ze2. 
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Figure 3.3 Coordinate system for determining the angular distributions, 
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4 Results and Discussion 

4.1 Introduction 

The simulator described in the previous chapter has been used to investigate 

the effects of concentration and shear rate on the settling behavior of particles in a 

suspension. \Ve have modelled suspensions in which the volume fraction of particles 

ranged from 0.0025 to 0.05 and for imposed dimensionless shear rate (defined as i:) 
ranging from 0 to 20.0. Of. course, before the simulations could be performed, an 

integration method, an integration step size, the number of particles to be used in 

the simulator, and the method of determining the particles' velocities had to be 

chosen. We shall begin by investigating how different choices of these parameters 

affect the suspension statistics, and then present the results for the full range of 

concentrations and shear rates. 

4.2 Effects of Integration Methods and Simulation Parameters on the 

Suspension Statistics 

We start by comparing the results obtained using the Euler integration method 

and the fourth order predictor-corrector integration routine with Adam-Bashforth 

as the predictor and Adam-Moulton as the corrector for a broad range of integration 

step sizes. Although the predictor-corrector takes twice as much computer time for 

a given time step, one would normally expect that the much greater accuracy and 

stability of this method would allow a significantly larger time step and hence an 

improvement in efficiency. It is not clear whether this savings can be realized in 

the present problem however, since the method of calculating the particle velocities 

introduces artificial jumps when clusters of particles are formed. Hence, one might 

expect that even with a high order integration method, a very small time step might 

be needed in order to prevent particles from coming artificially close to each other. 

Furthermore, this effect should be more important at higher concentrations. 

The results for a quiescent suspension with volume fraction of solids of 0.01 

are given in tables 4.la and 4.lb for the Euler and predictor-corrector methods, 

respectively. The time step is made dimensionless with r1, and all runs had the 
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same initial particle positions. With the Euler method the sedimentation velocity, 

variance and the diffusion coefficient all increase with increasing step size, with a 

dramatic change between step sizes of 0.01 and 0.1. The deviation from Stokes's 

velocity changes from 0.058 to -0.095, while the variance and the diffusion coefficient 

double. The corresponding radial distributions (shown in figure 4.1) show little 

change except for the largest time step for which the excess of particles extending 

to r = 8a. It thus appears that increasing the step size causes particles to form 

large clusters. The corresponding results for the predictor-corrector method (table 

4.lb and figure 4.2) show no change except at the largest time step and agree with 

the small time step Euler results. We repeated these tests using a suspension with 

c = 0.03. The same general trend is again observed {table 4.2a, figure 4.3) with 

significant changes in the statistics occurring between the step sizes of 0.02 and 

0.1. At the higher concentration, however replacing the Euler integration scheme 

with the predictor-corrector method does not give any improvement for larger time 

steps (cf. table 4.2b and figure 4.4). For both 13 and 33 suspension, significant 

clustering occurs only at a step size between 0.01 and 0.1. The predictor-corrector 

performs better than the Euler scheme at 13, but at 33, the Euler method is better 

in determining the diffusion coefficient and the variance. From this series of tests, 

we have decided to perform most of the simulations of the quiescent sedimenting 

suspension using the Euler method with a step size of 0.005 T[. 

A similar set of tests has been performed on a suspension with an imposed 

dimensionless shear rate of 20. The step size for these runs was made dimensionless 

with Th· The results in table 4.3 show no discernible step size effect for either 

integration method. No diffusion coefficient was obtained because the simulations 

were not carried out long enough (the final time equals 500 Th) for the traces of 

V(t) to asymptote to a constant. VVith the Euler method, however, the radial 

distribution function (cf. figure 4.5) has a narrow peak at a radius near 2a with 

the smallest time step, but a slight deficit near 2a for all larger step sizes. On the 

other hand, as shown in figure 4.8 the radial distributions of the predictor-corrector 

method retained a narrow peak near 2a for all time steps. This peak may not 
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be significant since neither the sedimentation velocity nor the variance differ much 

from the results using the Euler integration method where this peak is absent (table 

4.3b ). We also examined the influence of step size and integration scheme on the 

suspension statistics at a dimensionless shear rate of 0.5. The radial distributions 

showed a broader peak near the radius of 2a (figures 4.9 and 4.10) which did not 

change significantly with either step size or the integration method. Varying the 

step sizes between 0.02 to 0.1 made only a slight difference (table 4.4a) in the other 

statistics as well. From these tests we have chosen to use an Euler integration 

method with a step size of 0.05 Th in simulating sheared sedimenting suspensions. 

We next examine whether changing N, the number of particles used in the 

simulation will influences the statistics. Using the Euler integration method and 

a step size of 0.005, a series of simulations of a quiescent sedimenting suspension 

were performed with 27, 64, and 125 particles, and at volume fractions of 0.005, 

0.01, and 0.02. (We will refer to this set of simulations as set A). Figure 4.11 shows 

the sedimentation velocity as a function of N. Despite increasing N by a factor of 

five, no noticeable difference is observed. The sedimentation velocity of a sheared 

suspension is also independent of N. Using 135 particles or 192 particles makes no 

difference (cf., table 4.7, runs s3 through sll, and s20). 

From the discussions in chapter 2, we expect that for the quiescent sedimenting 

suspension, the variance of the particle velocity depends on N since it is a noncon­

vergent quantity for a random suspension. The dependence on N of the x variance 

for a quiescent suspension is shown in figure 4.12. A least squares fit shows that the 

variance grows approximately as N ~ . For the sheared suspensions, if the shear rate 

is sufficiently large, the variance in the x and z directions should be independent of 

N. This is because the dominant portion of the variance will be due to the shear 

flow and we have seen in chapter two that this contribution is convergent since the 

disturbance velocity field of a particle in a shear flow decays as 0( ( ~ )2 ) for large r. 

An examination of the variances of the particle velocity for runs s3 through sl 1, and 

s20 shown in table 4.11 reveals that when expressed in units of (Ea) 2
, the variances 

in the z direction are independent of N, but the variances in the x direction are 
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not. This is because even at a dimensionless shear rate of 13, the variance due to 

the difference in the sedimentation velocity among the particles is still large. To 

obtain an estimate of the relative size of the contributions to the variance from the 

sedimentation and the shear portions of the problem, the following Monte-Carlo 

simulations were performed. N particles were randomly placed into a box which 

is three times longer in the y direction than in the other two (the same box which 

we use to perform our molecular-dynamics-type simulations). The only restriction 

on the placement of these particles was that no particle may come within 2a of the 

center of the box. Using (3.29) and keeping only the leading order terms (stokeslet 

and stresslet ), we determined the velocity that a particle would have if it is located 

at the center of the box. The first two terms in (3.29) represent the contributions to 

the velocity from the sedimentation portion of the problem (which will be denoted 

by Used), and the remaining terms are the contributions to the velocity from the 

shear portion of the problem (denoted by Us hear). After generating many configura­

tions by repeatedly placing N particles into the box, the variances were determined. 

From these Monte-Carlo simulations, we extracted three velocity variances, 

( 4.1) 

i 2 
TT Li(Ushear- < Ushear >) 
"shear= N ( 4.2) 

and 
i 2 V. _ Li(Utotal- < Utotal >) 

total - N , (4.3) 

where l'sed is the contribution to the total variance ('V..otal) from the sedimentation 

part of the problem, Vshear is the shear contribution to ViotaI, and the angle brackets 

represent the average over all configurations. The results for a suspension with a 

concentration of 0.01 and a shear rate of 13, using 81 and 192 particles, are shown 

in table 4.5. Vsed grows with the number of particles used while Vshear does not. 

Also notice that the Vsed in the x direction is twice as large as the corresponding 

V~hear, while Vsed in the y direction is only 53 of the corresponding l1shear· The 
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total x variance depends on N because v~ed in the x direction depends on N. We 

see that the critical shear rate at which the sedimentation portion of the problem 

can be neglected is much higher in the x direction than in the y direction. 

Since the variance depends on N, the diffusion coefficient which is proportional 

to the variance is expected to depend on N also. From the results of set A, we find 

that this is indeed true. The dependence of the x diffusion coefficient on N for 

a quiescent suspension is shown in figure 4.13 for volume fraction of 0.005, 0.01 

and 0.02. Suprisingly at 1 % and 23, the curves appear to be asymptoting to 

a constant value. The diffusion coefficient is equal to the variance multiplied by 

the correlation time, but since the variance grows steadily with increasing N for 

a 1 % and 23 suspension, and since the correlation time shows no dependence on 

N (tables 4.12, 4.15 and 4.16, runs q46 through q49, q54 through q51, q62 and 

q63), the diffusion coefficient should not be asymptoting to a constant value. This 

decrease in the slope may be due to scatter in the diffusion coefficients. 

From these tests we conclude that for 27 or more particles, the sedimentation 

velocity and the correlation time are independent of N, but the variance and the 

diffusion coefficient increase with increasing N. In chapter 2 it has been argued that 

on the order of ten thousand particles may be needed before the variance and thus 

also the diffusion coefficient become independent of N. Since too much computation 

time is needed for this many particles, we must accept the fact that the variance 

and the diffusion coefficient obtained from the simulator will be smaller than the 

true values. For performing the bulk of the simulations, we have chosen to use 64 

particles for modelling the quiescent suspension and 192 particles for modelling the 

sheared suspensions. 

Finally, to examine the effects that the method used to determine the parti­

cle velocities has on the statistics, we performed several simulations of quiescent 

sedimenting suspensions using the PAV approximation. Surprisingly, the variance 

and diffusion coefficient using the PAV approximation are similar to those obtained 

using the hybrid method (cf., tables 4.10 and 4.20 runs q21, q22, and q23). The 

sedimentation velocity, on the other hand, is higher, which is expected since for 
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the same configuration, the PAV approximation predicts a larger velocity than the 

hybrid method. We chose to continue using the hybrid method because it does not 

cost much more to use and it does reduce the occurence of particle overlap. 

Before concluding this section, we wish to point out the sensitivity of the sim­

ulation to round off. As an example, in figures 4.14a, and b, two graphs of the 

instantaneous number average of the particle velocity versus time are shown. They 

were both performed using the same initial configuration, 64 particles, a step size 

of O.OlTh, and the predictor-corrector integration method. The only difference was 

that the run shown in figure 4.14a was performed on a Sun 3/160 without the float­

ing point accelerator board while the other run shown in figure 4.14b was performed 

on the same computer but with a floating point accelerator board. The two curves 

are similar up to the time of 50Th, or 5000 iterations, and then the two curves di­

verge. Part of the reason for this behavior is the artificial jump in the velocity due 

to the hybrid method. In the hybrid method, when a cluster of particles are within 

the critical radius of each other, they are treated using the FTS method, and when 

they are not within this critical radius, they are treated using the PAV approxima­

tion. The two methods do not give identical results. Since the round off in the two 

runs is slightly different, at some point in time, in one run some of the particles 

will be close enough to be in a cluster while in the other run they are not. The 

difference in the PAV and the FTS methods will magnify the difference in the round 

off errors. Another reason for the behavior of these two runs is that the equations 

governing the positions of the particles are nonlinear, and nonlinear equations can 

give rise to chaotic behavior. If the equations are chaotic, a small perturbation in 

the particle positions will quickly grow to the point where the configurations in the 

two runs are totally different. 

Though the two curves of the instantaneous average deviate by as much as 

O.lU8 after the time of 50.0, the running averages shown in figures 4.15a, b differ by 

less than 0.01. In another words, though the configurations in the two given runs 

at any instance in time may be quite different, and therefore their statistics are also 

different, over a long period of time, the two runs will experience approximately the 
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same set of configurations, and the time average of their statistics will be the same. 

The time average therefore is a meaningful quantity. 

4.3 Simulation Results 

From the above sensitivity analysis we have decided to employ 64 particles, the 

Euler integration method, a step sizes of 0.005 Ti, and the hybrid method to model 

the quiescent sedimenting suspensions. For a sheared sedimenting suspension, we 

will use 192 particles distributed in a simulation box which is three times longer 

in the y direction than in the x or z directions, the Euler integration method, 

the step size of 0.05 Th, and the hybrid method to model the sheared sedimenting 

suspension. We typically perform the simulation for a hundred Tl for the quiescent 

sedimentation suspensions, and a thousand Th for the sheared suspensions. This is 

usually long enough for the diffusion coefficient to asymptote to a constant value. 

The results of these simulations will now be presented. Because we did not recognize 

the importance of some of the statistics at the beginning, some runs do not have all 

of them. (Since these runs are costly, we did not discard the runs which do not have 

all the statistics. A simulation run for a quiescent suspension of 13 volume fraction 

with a step size of 0.005 T/ requires six hours on a Sun 3/160 mini computer, and 

for a sheared suspension with a step size of 0.05Th requires three cpu days.) 

In figure 4.16 we show the number average of the particle velocity against time 

for run q45. Since we are using only 64 particles, whenever a group of particles 

come together to form a cluster, the avera.ge velocity increases. At other times the 

particles are well separated and the average velocity decreases. This is why the 

curve in figure 4.16 contains many peaks and valleys. The curve of the running 

average, on the other hand, is smooth. 

The time-averaged velocities for all the quiescent simulations are compiled in 

table 4.6 and those for the sheared suspension are listed in table 4. 7. From these 

tables one sees that there is little difference between the sedimentation velocity in 

a sheared and a quiescent suspension. In figure 4.17, we show the concentration 

dependence of the sedimentation velocity obtained from our simulator, along with 
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the experimental data and Batchelor's theoretical predictions. The sedimentation 

velocity from the simulator for both the sheared and quiescent cases falls along 

the experimental curve for the sheared suspension, and furthermore in both cases 

the deviation from Stokes's velocity depended on c and not d. From this linear 

dependence on c we can infer that the length scale of the radial distribution is 

proportional to a and not ac- ~ . Performing a linear regression analysis on the 

sedimentation velocity gives, for the quiescent sedimenting suspensions, 

UP = U8 (1.0 - 4.0c), ( 4.4) 

and for the sheared sedimenting suspension, 

UP= U8 (1.0 - 4.5c). ( 4.5) 

Next we will examine the radial distributions. The radial distributions for runs 

q45 (quiescent sedimenting suspension) and s62 (sheared sedimenting suspension) 

are shown in figures 4.18 and 4.19, respectively. The shear rate for run s62 is 

eight and the concentration is 0.01 for both runs. The radial distribution for run 

q45 exhibits a significant peak at the radius of 2a. Table 4.8, which describes the 

radial distribution function for each of the quiescent simulations, shows that this 

is a common feature of the quiescent sedimenting suspensions and that this peak 

generally disappears by r = 3.0a. The radial distribution for run s62 shows a small 

peak at the radius 2a and a slight deficit from 2.5a to 3.5a. Table 4.9, which 

describes the radial distribution for each of the sheared simulations, shows that this 

is ususally the case when a high shear rate is imposed or when the concentration 

is low. The reason again is because of the accumulation of error as discussed in 

section 3.4. Upon examining the brief descriptions of the radial distributions for 

the different runs in tables 4.8 and 4.9, we conclude that the microscale structure 

does not scale with ac- ~. 

Besides testing the particle distributions for radial dependence, we have also 

tested it for angular dependence. The phi and theta distributions for run q45 are 

shown in figures 4.20 through 4.22, and those for run s62 are shown in figures 4.23 
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through 4.25. For both sheared and qutescent suspensions, the phi distributions 

averaged over all r are uniform. For the sheared suspension, between r = 2a to 

r = 4a, the phi distributions show an excess along the axis perpendicular to the 

direction of shear(¢= 0,7r), and a deficit along the direction of shear(¢= +f). 

The reason can be seen from figure 4.26, which shows the trajectories of two particles 

in a shear flow. The second particle moving toward particle A is deflected to one side 

before it can come close to r = 2a, and hence a deficit in the phi distribution near 

</J = + f and r = 2a. Furthermore notice that the trajectories are compressed at 

</J = 0. This is why there is an excess of particles there. For quiescent sedimentation, 

because there is no preferred </J angle, the particle distribution is not expected to 

show any </J dependence. Figures 4.23 through 4.25 indeed show no phi dependence. 

The theta distributions for run q45 are shown in figures 27 through 29, and those 

for run s62 are shown in figures 30 through 32. The theta distributions averaged 

over all r for both sheared and quiescent suspension runs also show no structure. 

Between r = 2a to r = 4a, the particle distributions for the sheared suspension show 

a dependence on the angle 8. The features are not as pronounced as the structure 

in the phi distribution. For quiescent sedimentation, similar features are observed 

but they are even less pronounced. This theta dependence may be just statistical 

fluctuations. 

The time-averaged variances for the quiescent sedimenting suspensions are col­

lected in table 4.10, and those for the sheared suspensions are in table 4.11. For the 

quiescent sedimenting suspensions, the variances in the x direction (the direction of 

sedimentation) are five times larger than those in either the y, or z directions. In 

a suspension, the variation in the particles' velocities arises because particles in a 

cluster tend to move faster than isolated particles. If one compares the velocity of 

isolated particles to the velocity of the particles in a cluster, one will find that the 

difference is larger in the x direction than in the other two, and hence the variance 

is also larger in the x direction. "\Ve can show this by estimating the variance for 

a simple type of particle configuration. A typical arrangement of particles in the 

simulator will consist of say n isolated particles and ;- doublets. Triplets and larger 
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clusters do form, but at low concentration; only several percent of the particles are 

in these large groups, and we will neglect their contribution to the variance. To 

further simplify the analysis, we will assume that the doublets consist of two parti­

cles in contact with each other. For such a doublet, the x velocity on the average is 

~Us and the maximum y velocity is 
1
3
6 

Us. The isolated particles will settle with U11 

and will not move in the y direction. The average velocities for this arrangement of 

particles are 

The x variance is given by 

nUs + m~Us 
<uz > = ---~­

n+m 

=Us [1 + ~ m ] , 
2n+m 

<Uy >"" 0. 

( 4.6) 

(4.7) 

< Vz > = u; Lsingle(l - (1 + ~~))2 + Ldouble(~ - (1 + ~~))2 ' (4.8) 
n+m 

= ~; [(1 - <Pn)<Pb + <Pn(l - <Pn)2
], 

where <Pn is equal to n~m, the fraction of the particles in a doublet. Similarly, the 

y variance is given by, 

= u2(~)2,1.. . 
s 16 '+'D 

( 4.9) 

For a 13 suspension, typically 20 to 303 of the particles are in a doublet. If we let 

<Pn be 203 then the x variance is 0.04U'1, the y variance is 0.001u;, and the ratio 

of the x variance to the y variance is 5. 7. 

The concentration dependence of the x variance for the quiescent sedimenting 

system is shown in figure 4.33. The log log plot of the variance versus concentration 

is linear which suggest that we can fit the variance to an equations of the form Aca. 

For 27 particles, 

(4.10) 
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and for 64 particles, 

( 4.11) 

and for 125 particles, 

( 4.12) 

The variance is a measure of the homogeneity in the suspens10n with the more 

homogeneous suspension having the smaller variance. To determine whether the 

suspension in our simulator is more homogeneous than random, we need to first 

determine the variance for a random suspension. To accomplish this, we used 

our molecular-dynamics simulator and performed the simulation exactly as before 

except that now at each iteration, the particle positions are randomly assigned 

rather than determined from integrating the particles' velocities. The results for 

27, 64, and 125 particles, and for a volume fraction ranging from 0.0005 to 0.03 are 

shown in figure 4.34. On this log log plot, notice that for volume fractions less than 

0.005 the slope is ~, while at concentration over 0.01 the slope is approximately k. 
This behavior is consistent with the results of our Monte Carlo simulation discussed 

in chapter two. In figure 4.35, we compare the variances of the random suspension 

with those obtained from our molecular-dynamics-type simulations (i.e., table 4.10). 

The two sets of variances are identical and we conclude that the structure of the 

suspensions produced in our molecular-dynamics-type simulator, on the length scale 

of our simulator, is essentially random. 

Figure 4.36 shows the concentration dependence of the variance when the sus­

pension is sheared with a shear rate of 10. The best fit through these data is, 

( 4.13) 

In figure 4.37 the variance dependence on the shear rate is shown. These data 

are for a 13 suspension and are in units of (Ea) 2 • At the shear rate of four, the 

z variance asymptotes to a constant value. The reason is that the z variance is 

composed of two parts. One part is due to two particles moving apart in the z 

direction as they pass each other, and this portion scales with (Ea )2 • The other 
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part is due to particles sedimenting, and it scales with Stokes's velocity. As the 

shear rate is increased, the former contribution dominates and the variance in units 

of (Ea)2 asymptotes to a constant. In figure 4.38 the x variance's dependence on 

the shear rate is shown. Even with a shear rate of 13.3, the x variance in units of 

(Ea) 2 still depends on the shear rate. This implies that the sedimentation part of 

the problem still contributes significantly to the total x variance. The critical shear 

rate at which the sedimentation part of the problem can be neglected is larger than 

13.0, especially since we are underestimating the variance because we are using a 

small number of particles. This agrees with our earlier finding. In figure 4.39, the 

x variance's dependence on shear rate is again shown, hut the variance is now in 

units of u;. In these units, the x variance first decreases and then increases with 

increasing shear rate. The reason why the x variance increases with shear rate 

is because the contribution from the shear portion is increasing with shear rate. 

However we are not certain why the variance decreases with increasing shear rate 

at low shear rate. 

Figure 4.40 shows the time evolution of the x velocity variance for run q45. 

Earlier we noted that the valleys in the x velocity versus time curve for run q45 

(figure 4.16) are due to the formation of clusters. If this is so then we will expect 

a corresponding peak in the x variance versus time curve because the variance is 

large when a cluster is present. Examination of figures 4.16 and 4.40 shows that 

this is indeed the case. 

The radial distribution correlation times for the quiescent sedimenting suspen­

sions are shown in table 4.12, and those for the sheared suspensions are shown in 

table 4.14. The autocorrelation times obtained from A( T )pd and A( T )<pd> give sim­

ilar results, which implies that the cross terms in (3.39) are small. The values of r;d 
and T~pd> are approximately 0.5 Tt for the quiescent suspensions and 1. 7 Th for the 

sheared suspensions. The values of r;d and T~pd> are approximately 1.0 Tt for the 

quiescent sedimenting suspensions and 4. 75 Th for the sheared suspensions. These 

values appear to be independent of concentration. Since these correlation times 

are large compared to the integration step size used, our step size is sufficiently 
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small to capture the breakup and formation of clusters. Also this correlation time 

is small compared to the total time of the simulation, which implies that many 

cluster breakups and formations occur over the course of the run. In table 4.13, 

we have also expressed the correlation times for the sheared suspensions in units 

of Tt to facilitate the comparison between the sheared and quiescent suspensions. 

Tables 4.12 and 4.13 show that the correlation time for a quiescent sedimenting 

suspension is larger. For instance, at the shear rate of 10.0, the correlation time for 

the quiescent suspensions is over 50 times larger. The difference in the correlation 

time is to be expected since the time for moving two nearly touching particl:s apart 

a distance l due to the shear flow is approximately given by J_, and due to the 
-ya 

sedimentation is _l_2 • The ratio is ~ or 0(100). Since the diffusion coefficient 
U,ca U,ca 

is proportional to the correlation time, the diffusion coefficient should be larger for 

the quiescent sedimenting suspension. This will be shown to be true. 

In tables 4.14 and 4.15, a summary of the velocity and variance correlation 

times for the quiescent sedimenting suspensions is shown. From these tables, it 

can be seen that the correlation times in the x direction are ten times larger than 

in the y or z directions. Since the diffusion coefficients are proportional to the 

correlation time, one expects that the diffusion coefficient to be greater in the x 

direction than in the other two. This will be shown to be true. Since the velocity and 

variance correlation times in the x direction ultimately depend on how long a cluster 

of particles stay together, we expect these correlation times to be approximately 

the same as the particle correlation time. Comparing the three correlation times 

shows this to be true. The velocity and variance correlation times in the other two 

directions depend not only on how long the particles remain together, but on also 

how long the orientation of the clusters remains the same. From the correlation 

time data, it appears that the latter is significantly shorter than the former. 

In tables 4.16 and 4.17 the velocity and variance correlation times for the 

sheared suspensions are shown. These times are given in units of Tt for comparing 

with the quiescent suspension cases. The effect of the shear fl.ow is already significant 

even at a dimensionless shear rate of 0.125; the x correlation time has fallen to i 
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of its quiescent value. In the absence of a shear flow, a cluster of particles is broken 

up by the velocity gradient generated by the surrounding particles. This is a slow 

process because the velocity gradient is weak. When a shear flow is imposed upon 

the supension, the velocity gradient due to the shear flow is much larger, and the 

cluster dissociates faster. Table 4.16 also shows that at a dimensionless shear rate 

of 0.125, the y correlation time has quadrupled. The reason is that the mechanism 

which produces significant changes in the y velocity is different in the two cases. 

Consider the following example. Suppose we center the coordinate system at an 

isolated particle, and suppose further that a doublet is located in the positive x 

- positive y quadrant of this coordinate system. In this configuration, the three 

particles will as a group move in the negative y direction. However, since the 

doublet settles faster than the isolated particle, the doublet will quickly settle past 

this particle. Now the doublet is located in the positive x - negative y quadrant with 

respect to the isolated particle, and in this configuration, the three particles drift 

in the positive y direction. Now consider what occurs when a shear flow is applied. 

The y velocity is given approximately by iy/Z. This is an approximation because 

the velocity in they direction due to the arrangement of particles (i.e., the y velocity 

due to the mechanism just discussed) still exists, but it is small compared with the 

y velocity due to the shear flow. Now in order to change they velocity significantly, 

the particles must migrate in the z direction. As we shall see, the migration in the 

z direction is slow and this is why there is an increase in the correlation time when 

a shear flow is applied. 

Tables 4.18 and 4.19 show the velocity and variance correlation times in units 

of rh. Expressed in these units, the x and z correlation times are independent of 

shear rate. The y correlation time, however, increases with the shear rate, and 

this again is because the change in the y velocity depends on the migration of the 

particles in the z direction, and because the rate of migration in the z direction 

decreases with shear rate. 

The diffusion coefficients proved to be the most difficult statistic to extract 

from the simulator, especially when the shear rate is large. It takes a long time 
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before Vii asymptotes to a constant value. In many sheared suspension cases, Vij 

never asymptotes even after a time of l000Th. Figures 4.41through4.43, and figures 

4.44 through 4.46, show the time evolution of the diffusion coefficients for runs q45 

and s62. The constant values which these curves asymptote to are the diffusion 

coefficients. In the case of the y diffusion coefficient for run s62 (figure 4.45 ), the 

curve never asymptotes to a constant value and no diffusion coefficient was obtained. 

The diffusion coefficients for all the quiescent simulations are recorded in table 4.20, 

and the diffusion coefficients for the sheared suspension simulations are shown in 

table 4.21. 

Figures 4.47 and 4.48 show the time evolution of the x diffusion coefficients 

with restart for runs q45 and s62, respectively. In obtaining the diffusion coefficients 

with restart, a new set of Vi;( t) was started at regular intervals of one Tt for the 

quiescent cases, and lOTh for the sheared suspension cases. We terminated this 

process midway into the run so that we could observe the variation between the 

different Vii. For instance, for figure 4.48, we kept track of 50 sets of Vii each spaced 

lOTh apart. From time 0 to time 500Th, the curve was obtained from averaging over 

all 50 sets of Vij. However after the time of 500Th, only a subset of these 50 Vij 

was averaged to obtain the curve. For example, at time of 600 Th, only the 40 Vij 

which began before the time of 400 Th, were used. Since the portion of the curve 

after the time of 500 is rising, we deduce that the Vii, which began during the 

early portion of the run, gave a significantly larger diffusion coefficient. We can 

also deduce that some of the Vii have not asymptoted to a constant value by the 

time of 500Th because the curve is still rising at that point. In this type of curve, 

since only the first half contains the average over all the Vij, the diffusion coefficient 

with restart is defined to be the asymptotic value at the middle of the run. These 

diffusion coefficients for the quiescent sedimenting suspensions are recorded in table 

4.22, and those for the sheared sedimenting suspensions are shown in table 4.23. 

In principle the diffusion coefficients with restart are more accurate since they are 

averages over several runs. The disadvantage, however, is that they are determined 

from only half of the simulation run, and for runs, wher~ the diffusion coefficients 
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have not asymptoted by the middle of the run, no diffusion coefficient with restart 

can be obtained. Comparing the diffusion coefficients with restart and those without 

shows good agreement for the quiescent suspensions. For the sheared suspensions, 

in many of the runs especially at the high shear rates, the diffusion coefficients with 

restart fail to asymptote to a constant value by the middle of the run. Those that 

did asymptote by then show good agreement with those determined without restart. 

The concentration dependence of the diffusion coefficients for the quiescent 

sedimenting suspensions performed using 64 particles are shown in figure 4.49. The 

diffusion coefficients vary with c-i. If the data point for the concentration of 0.253 

is neglected, the diffusion coefficients vary with c- ~. (Because of the scatter in the 

data, and because of the limited number of data points, no attempt will be made 

to correlate the diffusion coefficients for the sheared suspensions or for quiescent 

suspension simulations performed using 27 and 125 particles.) The dependence on 

a negative power of concentration implies that the diffusion coefficient grows as the 

concentration decreases. One, however, should be cautious in extrapolating this 

correlation to zero volume fraction because the variance's dependence on concen-

tration changes at small volume fraction. We have seen that the variances from the 

simulator are the same as those from the Monte Carlo simulations. The variance 

depends on d for concentration less than 0.005. The -diffusion coefficient is equal 

to the variance multiplied by the correlation time, and the latter appears to be 

independent of concentration when expressed in units of Tl (i.e., ~(i7r)~c-~ /J. ). 
Therefore it is possible that at very low concentration, the diffusion coefficient may 

be independent of concentration. 

From tables 4.20 and 4.21, notice that the x diffusion coefficients for the qui­

escent sedimenting suspensions are 20 times larger than the diffusion coefficients in 

the other two directions. The reason is that the variances and the correlation times 

are larger in the x direction than in the other two. The x diffusion coefficient is also 

larger than the z diffusion coefficient for the sheared suspension even though at high 

shear rates, the velocity correlation time is the same in these two directions and 

the variance is larger in the z direction. The relative size of the diffusion coefficient 
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is suprising since by (3.35), the diffusion coefficient is the product of the variance 

and the correlation time; the z diffusion coefficient therefore should be larger. The 

reason why the x diffusion coefficient is larger can be understood from considering 

the following. Suppose in the suspension, all the particles are well spaced except 

for two. Under the influence of the shear flow ( u f = I zey ), the particles in the 

clusters will move apart in the x and z directions as they move pass each other. 

This leads to a large variance. However after passing each other, their motion in 

the x and z directions is reversed so that the net displacements in the x and the z 

directions are zero. The shear flow leads to a large variance but does not cause the 

particles to drift away from their center of mass, and hence the diffusion coefficient 

is zero. This anti-correlation which occurs when two particles interact in a shear 

flow is not reflected in (3.35). In the x, direction when the two particles come close 

to each other, they will settle faster than the average particle so that they will drift 

downward relative to the center of mass of the system. When the two particles are 

finally separated, they now settle with the average particle velocity, and the down­

ward displacement relative to the center of mass of the system is retained after the 

encounter. This is why the diffusion coefficient is larger in the x direction than in 

the z direction. 

Comparing the x diffusion coefficient of the sheared and the quiescent sedi­

menting suspension reveals that the former is an order of magnitude smaller when 

the dimensionless shear rate is above eight. Physically the reason is that when the 

suspension is being sheared rapidly, before the particles can settle a significant dis­

tance, each particle will have sampled the average particle distribution. Since the 

average distribution is approximately the same for all the particles, all the particles 

will settle the same distance and the diffusion coefficient will be small. Figure 4.50 

shows the diffusion coefficient's dependence on shear rate. 

Using (3.35), we can determine a correlation time from the diffusion coefficient 

and the variance. The derived correlation times for the quiescent suspension sim­

ulations are shown in table 4.24, and those for the sheared suspension simulations 

are shown in table 4.25. These derived correlation times were obtained using the 
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diffusion coefficient with no restart since there are more of them than the diffusion 

coefficient with restart. We expect these derived correlation times to be of the same 

order of magnitude as the velocity correlation time. This is because (3.35) is an 

expression of the mean value theorem, where Tis the velocity correlation time, and 

the constant of proportionality multiplied by the variance is the mean value of the 

integrand of (3.34). The derived correlation time therefore is the product of the 

proportionality constant and the velocity correlation time. Since the proportional­

ity constant is 0(1), the derived and the velocity correlation times should be the 

same order of magnitude. Comparison of these two times shows this to ~e true. 

The derived correlation times are about 1 to t of the the velocity and the variance 

correlation times and about the same size as the particle correlation times. The 

sheared suspensions showed similar behavior. The derived correlation times for the 

sheared suspensions fluctuate significantly because of the the scatter in the diffusion 

coeffi ci en ts. 

In order to compare the diffusion coefficients from different simulations, the 

number of particles used in each case should be the same. In this way, any differ­

ences will not be due to the effects of different N. However, we need to model the 

sheared sedimenting suspensions using 192 particles while we prefer to use only 64 

particles in modelling the quiescent sedimenting suspensions to reduce the compu­

tational cost. Since the diffusion coefficient increases with the number of particles, 

after accounting for the larger number of particles used in modelling the sheared 

suspensions, the statement that the diffusion coefficient is smaller for sheared sedi-

menting suspensions is even more true. 

4.4 Discussions and Conclusions 

From all the statistics extracted from the simulator and discussed in the pre­

vious section, we have pieced together the following picture of a sedimenting sus­

pension. For both a quiescent and sheared suspension, the microscale structure is 

proportional to a rather than ac -s
1

• Furthermore, the sedimentation velocities in 

both cases depend on c rather than d. This contradicts some of the quiescent 
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sedimentation experiments reported in the literature (e.g., Barnea and Mizhrahi 

1973, Oliver 1961, Lynch 1985). The particles in the suspension do not all settle 

with a uniform velocity. Those with near neighbors tend to settle faster than those 

without. The distribution of particles changes with time so that during one period 

of time, a particle may be settling downward relative to the center of mass of the 

system, while during another period, the same particle may be moving upward with 

respect to the center of mass of the system. This leads to a diffusive type behav­

ior. The diffusion coefficient is anisotropic and is the largest in the direction of 

sedimentation. The size of the diffusion coefficient generally depends on how long 

a cluster of particles stay together (correlation time) and the difference between 

the velocities of the particles in the cluster and the mean velocity (related to the 

velocity variance). When the suspension is sheared, the correlation time falls and 

so does the diffusion coefficient. At a shear rate of 10, the diffusion coefficient is 

less than a tenth of the corresponding quiescent case. 

If this is an accurate description of the suspension, then the question still 

remains, why is there a discrepancy among the sedimentation data for the sheared 

and quiescent supensions, and the suspensions of small Brownian particles? From 

the simulations we find two important differences between the sheared and quiescent 

suspensions, their particle correlation times, and their diffusion coefficients in the x 

direction. We propose that these two differences may account for the differences in 

the sedimentation velocities 

The sedimentation velocity is obtained experimentally by measuring the rate 

of fall of the interface. It is generally assumed that this is the same as the sed­

imentation velocity in the bulk of the suspension, but this may not be true. For 

instance, at the interface, particles that have near neighbors settle faster and will 

leave the isolated particles behind. The particles at the interface are biased toward 

a distribution where particles are well spaced, and they will tend to settle slower 

than those in the bulk of the suspension. If the time it takes for the particles to 

rearrange themselves is short relative to the time for the interface to settle a sig­

nificant distance, the particles at the interface can quickly reform close pairs and 
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the particle distribution will not be significantly biased. However, if the time for 

particle rearrangement is long, then there will be a strong bias at the interface. To 

compare these two times, we introduce the peclet number +. It is the ratio of the 
u, 

time for two particles to dissociate to the time for the interface to settle a distance 

l. For the quiescent sedimenting suspension of large particles, T is H ~7r) ~ c ~
2 

(;,, 

and for the sheared suspension, it is ~. (Both values are from the simulations.) 

For Lynch's (1985) experiments, where a is 50 µm, and U8 is 1 mm/min, and the 

concentration is 5.03, the peclet number is 1 
·
3fm. When the same suspension is 

sheared ( i: = 10.0), the peclet number is ·03rro. In the case of a suspension of 
2 

Brownian particles, T is a
2

~= 8 , VB is the Brownian diffusion coefficient. For the 

experiments of Buscall et al. (1982) (they reported a sedimentation velocity which 

depends on c.) where the particles were 1.55 µmin radius, Us was 0.02 mm/min, 

and 'DB was 0.0084 mm2 /min, the peclet number is ·04fm. We see that the peclet 

numbers show the correct trend. 

The difference in the diffusion coefficients can also cause the interface to settle 

slower than the sedimentation velocity in the bulk of the suspension. This diffusive 

behavior causes a concentration gradient to develop at the top of the suspension, 

and hence, smears the apparent boundary between the suspension and the pure 

fluid above. During an experiment, the eye chooses as the interface the point in 

this transition region where the suspension becomes opaque. As the experiment 

progresses, this transition zone continues to spread so the measured velocity of 

the interface is equal to the sedimentation velocity minus the velocity due to the 

spreading of the boundary region. When diffusion is large, the velocity of the 

interface can deviate substantially from the true sedimentation velocity. In the 

next chapter we will examine this problem further. 
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Run Step Size Deviation Dxx Vxx 
from U, (U,a} (U,2) 

q28 0.001 0.058 5.0 0.077 
q60 0.005 0.037 6.7 0.098 
q26 0.01 0.025 7.6 0.106 
q27 0.1 -0.095 14.0 0.196 

Table 4.la The effects of step size on the simulation of a quiescent 1 % suspension 
using the Euler integrator. N is 64. Dzz is the x diffusion coefficient, and Vi::z: is 
the x variance. 

Run Step Size Deviation Dxx Vxx 
from U, (U,a) (U,2) 

q29 0.001 0.05 6.0 0.087 
q30 0.002 0.05 6.0 0.089 
q31 0.01 0.05 6.0 0.092 
q32 0.1 -0.265 49.0 0.35 

Table 4.lb The effects of step size on the simulation of a quiescent 1 % suspension 
using a predictor-corrector integrator N is 64. Du is the x diffusion coefficient, 
and Vu is the x variance. 
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Run Step Size Deviation Dxx Vxx 
from U1 (U1 a) (U,2) 

q35 0.002 0.145 4.5 0.13 
q61 0.005 0.128 4.7 0.14 
q33 0.01 0.125 5.2 0.15 
q37 0.02 0.13 4.5 0.13 
q39 0.1 0.065 7.0 0.18 

Table 4.2a The effects of step size on the simulation of a quiescent 33 suspension 
using the Euler integrator. N is 64. Du is the x diffusion coefficient, and V"zz is 
the x variance. 

Run Step Size Deviation Dxx Vxx 
from U1 (U1 a) (U}) 

q40 0.002 0.135 6.0 0.13 
q34 0.01 0.145 3.2 0.12 
q36 0.02 0.105 10.0 0.17 
q38 0.1 -0.645 80.0 0.96 

Table 4.2b The effects of step size on the simulation of a quiescent 33 suspension 
using a predictor-corrector. N is 64. D:r.: is the x diffusion coefficient, and Vu is 
the x Yariance. 
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Run Step Size Deviation Dxx Vxx 
from U1 (U1a) (U12) 

s36 0.01 0.055 - 0.54 
s35 0.02 0.072 - 0.48 
s32 0.05 0.061 - 0.51 
s31 0.1 0.075 - 0.47 
s37 0.2 0.067 - 0.48 
s39 0.5 0.059 - 0.55 

Table 4.3a The effects of step size on the simulation of a quiescent 13 suspension 
subjected to a shear rate of 20.0 and performed using the Euler integrator. N is 
192. Dzz is the x diffusion coefficient, and V~z is the x variance. 

Run Step Size Deviation Dxx Vxx 
from ul (U,a) (U12) 

s34 0.02 0.058 - 0.55 
s33 0.05 0.054 - 0.51 
s30 0.1 0.063 - 0.54 
s38 0.2 0.059 - 0.55 
s40 0.5 0.054 - 0.53 

Table 4.3b The effects of step size on the simulation of a quiescent 13 suspen­
sion subjected to a shear rate of 20.0 and performed using a predictor-corrector 
integrator. N is 192. Dzz is the x diffusion coefficient, and Vzz is the x variance. 
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Run Step Size Deviation Dxx Vxx 
from U1 (U,a) (U.2) 

s42 0.02 0.048 4.S 0.22 
s45 0.05 0.054 - 0.19 
s46 0.1 0.049 4.2 0.22 

Table 4.4a The effects of step size on the simulation of a quiescent 13 suspension 
subjected to a shear rate of 0.5 and performed using the Euler integrator. N is 192. 
Dzz is the x diffusion coefficient, and l":z::z: is the x variance. 

Run Step Size Deviation Dxx Vxx 
from U1 (U,,a) (U.2) 

s41 0.02 0.042 3.0 0.23 
s43 0.05 0.046 - 0.22 
s44 0.1 0.047 - 0.22 

Table 4.4b The effects of step size on the simulation of a quiescent 1 % suspension 
subjected to a shear rate of 0.5 and performed using a predictor-corrector integrator. 
N is 192. Du is the x diffusion coefficient, and V:z::.:z: is the x variance. 
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X Variance 

number of sedimentation shear tot.al 
particles contribution contribution 

81 3.736c-3 3.08e-3 6.73e-3 
192 S.60e-3 3.lle-3 8.S2e-3 

Y Variance 

number of sedimentation shear tot.al 
particles contribution contribution 

. 

81 2.99e-4 9.36c-3 9.66e-3 
192 4.63e-4 9.66e-3 1.03e-2 

Table 4.5 The relative importance of sedimentation and shear to the variance of 
a sedimenting suspension subjected to a shear rate of 13.3. The variances are in 
units of (Ea)2. The data are from performing a Monte-Carlo simulation using a I% 
suspension. 
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Run c N Method dt T Deviation 
from u • 

q6 .01 64 Euler .0005 0-100 . 068 
q7 .01 64 Euler .0005 0-100 .063 
q3 .01 64 Euler .001 0-100 .061 
q4 .01 64 Euler .001 0-100 .054 
q5 .01 64 Euler .002 0-400 .057 

q43 .01 64 Euler .005 0-100 .044 
q44 .01 64 Euler .005 0-100 .057 
q45 .01 64 Euler .005 0-100 .04 
q60 .01 64 Euler .005 0-100 .037 

qlO .01 64 PC .001 0-100 .043 
qll .01 64 PC .001 0-100 .037 
q29 .01 64 PC .001 0-100 .049 
q30 .01 64 PC .001 0-100 .052 

qBt .01 64 Euler .001 0-100 •• 058 
q9t .01 64 Euler .001 0-200 .065 

ql .01 'Z7 Euler .001 0-100 .058 
q2 .01 'Z7 Euler .001 0-100 .051 

q12 .01 125 Euler .001 0-50 .055 
ql3 .01 125 Euler .001 0-50 .055 
q14 .01 125 Euler .001 0-50 .059 

q16 .01 125 PC .001 0-50 .055 

q15t .01 125 Euler .001 0-50 .076 

q21i .01 64 Euler .001 0-52 .033 
q22* .01 64 Euler .001 0-50 .045 
q23* .01 125 Euler .001 0-100 .046 

Table 4.6 The sedimentation velocities of the quiescent sedimenting suspensions. C 
\i-,Jh~ ~OI!.<;entration, N is the number of particles used, dt is the step size, T is the 
length of the run, and pc is the predictor-corrector method. 
t runs performed with an initial configuration which has a deficit of close pairs. 
~runs performed using the PAV method. 
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Run c N Method dt T Deviation 
from u • 

q50 . 0025 64 Euler .005 0-100 .007 
qSl .0025 64 Euler .005 0-100 .003 

ql7 .005 64 Euler .001 0-100 .031 
ql8 .005 64 Euler .001 0-100 .018 
ql9 .005 64 Euler .001 0-100 .031 
q48 .005 64 Euler .005 0-100 .029 
q49 .005 64 Euler .005 0-100 .022 

q20t .005 64 Euler .001 0-200 .018 

q62 .005 27 Euler .005 0-200 .018 
q63 .005 27 Euler .005 0-200 .02 . 
q56 .005 125 Euler .005 0-100 .018 
q57 .005 125 Euler .005 0-100 .021 

q64 .02 27 Euler .005 0-200 .fl) 
q65 .02 27 Euler .005 0-200 .fl) 

q46 .02 64 Euler .005 0-100 .12 
q47 .02 64 Euler .005 0-100 .10 

q54 .02 125 Euler .005 0-100 .10 
q55 .02 125 Euler .005 0-100 .fl) 

q42 .03 64 Euler .005 0-100 .14 
q52 .03 64 Euler .005 0-100 .12 
q53 .03 64 Euler .005 0-100 .12 
q61 .03 64 Euler .005 0-100 .128 
q35 .03 64 Euler .002 0-100 .13 
q40 .03 64 PC .002 0-100 .13 

q41 .03 64 PC .01 0-100 .14 
q34 .03 64 PC .01 0-100 .14 
q37 .03 64 Euler .01 0-100 .14 

q58 .OS 64 Euler .005 0-100 .18S 
q59 .OS 64 Euler .005 0-100 .21S 

Table 4.6 continued. 
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Run c 'Y N Method dt T Deviation 
from u. 

s23 .01 .125 19213 Euler .01 0-200 .040 

s24 .01 .25 19213 Euler .01 0-200 .048 
s25 .01 .25 19213 Euler .01 0-200 .03S 

s26 .01 .5 19213 Euler .01 0-200 .044 
s27 .01 .5 19213 Euler .01 0-200 .04S 
s42 .01 .5 19213 Euler .02 0-200 .048 
s45 .01 .5 19213 Euler .OS 0-200 .OS4 
s46 .01 .5 19213 Euler .1 0-200 .049 
sSl .01 .5 19213 Euler .OS 0-1000 .040 
sS3 .01 .5 19213 Euler .OS 0-1000 .038 

s41 .01 .5 19213 PC .02 0-200 .042 
s43 .01 .5 19213 PC .OS 0-200 .046 
s44 .01 .5 19213 PC .1 0-200 .047 

sS4 .01 1.0 19213 Euler .OS 0-1000 .04S 
s60 .01 1.0 19213 Euler .OS 0-1000 .047 

s21 .01 1.25 19213 Euler .02 0-400 .041 
s28 .01 1.25 19213 Euler .01 0-200 .056 

s61 .01 2.0 19213 Euler .OS 0-1000 .oss 

s29 .01 2.5 19213 Euler .01 0-200 .060 
sl7 .01 2.5 19213 Euler .1 0-800 .O(J() 

sS2 .01 4.0 19213 Euler .OS 0-1000 .06S 

sl6 .01 s. 19213 Euler .1 0-800 .042 

Table 4. 7 The sedimentation velocities of the sheared sedimenting suspensions. C 
is the concentration, ; is the dimensionless shear rate, N is the number of particles 
used, dt is the step size, T is the length of the run, and pc is the predictor-corrector 
method. 
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Run c . "( N Method dt T Deviation 
from U, 

s62 .01 8.0 192/3 Euler .OS 0-1000 .OS7 

sS6 .01 10.0 19213 PC .OS 0-1000 .031 
s63 .01 10 192/3 Euler .OS 0-1000 .OS6 

s7 .01 13.3 192/3 Euler .1 0-300 .041 
s8 .01 13.3 192/3 Euler .1 0-800 .060 
s9 .01 13.3 192/3 Euler .OS 0-80D .06S 
slO .01 13.3 19213 Euler .1 0-80D .060 
sll .01 13.3 19213 Euler .1 0-80D .OS8 
s20 .01 13.3 19213 Euler .1 0-800 .060 

s3 .01 17.8 13S/3 Euler .1 0-800 .060 
s4 .01 17.8 13S/3 Euler .1 0-80D .OS8 
sS .01 17.8 13S/3 Euler .1 0-1600 .062 
s6 .01 17.8 13S/3 Euler .OS 0-800 .062 

sl4 .ODS 10.6 192/3 Euler .1 0-800 .044 
slS .ODS 10.6 19213 Euler .1 0-800 JJ 
sS7 .ODS 10.0 192/3 Euler .OS 0-1000 .017 

sl8 .02 16.8 192/3 Euler .1 0-80D .072 
s19 .02 16.8 19213 Euler .1 0-80D .082 

s65 .03 .s 192/3 Euler .OS 0-1000 .114 

s64 .03 1 • 19213 Euler .OS 0-1000 .117 

sSS • 03 10. 19213 Euler .OS 0-lOOO .142 

Table 4.7 continued. 
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Run c N Method dt T Disaiption of g(r) 

q50 .0025 64 Euler .005 0-100 excess extends to 4a 
q51 .0025 64 Euler .005 0-100 excess extends to 4a 

q48 .005 64 Euler .005 0-100 ~ess extends to 2.Sa -· 
q49 .005 64 Euler .005 0-100 excess extends to 2.Sa- ·--,.-~- -

q62 .005 27 Euler .005 0-200 excess extends to 3.0a 
q63 .005 27 Euler .005 0-200 excess extends to 2.6a 

q56 .005 125 Euler .005 0-100 excess extends to 3.0a 
qS7 .005 125 Euler .005 0-100 excess extends to 3.0a 

q43 .01 64 Euler .005 0-100 excess extends to 2.75a 
q44 .01 64 Euler .005 0-100 excess extends to 3a 
q45 .01 64 Euler .005 0-100 ~ess extends to 3.0a 
q60 .01 64 Euler .005 0-100 excess extends to 3.0a 

q30 .01 64 PC .001 0-100 ~ess extends to 3.0 a 

q64 .02 27 Euler .005 0-200 ~ess extends to 2.Sa 
q65 .02 27 Euler .005 0-200 excess extends to 2.Sa 

slight deficit from 2.Sa to 5.Sa 

q46 .02 64 Euler .005 0-100 excess extends to 2.Sa 
slight deficit from 2.Sa to 4.Sa 

q47 .02 64 Euler .005 0-100 ~ess extends to 2.5a 

q54 .02 125 Euler .005 0-100 excess extends to 3.0a 
q55 .02 125 Euler .005 0-100 excess extends to 3.0a 

q42 .03 64 Euler .005 0-100 excess extends to 3.0a 
q52 .03 64 Euler .005 0-100 ~ess extends to 3.0a 
q53 .03 64 Euler .005 0-100 ~ess extends to 2.Sa 
q61 .03 64 Euler .005 0-100 ~ess extends to 3.0a 
q35 .03 64 Euler .002 0-100 excess extends to 2.75a 
q40- .03 64 PC .002 0-100 excess extends to 3.0a 

q41 .03 64 PC .01 0-100 excess extends to 2.Sa 
q34 .03 64 PC .01 0-100 excess extends to 2.Sa 
q37 .03 64 Euler .01 0-100 excess extends to 3.0a 
q58 .OS 64 Euler .005 0-100 excess extends to 3.0a 
q59 .OS 64 Euler .005 0-100 excess extends to 2.5a 

Table 4.8 The radial distributions of the quiescent sedimenting suspensions. C is 
the concentration, N is the number of particles used, dt is the step size, T is the 
length of the run, and pc is the predictor-corrector method. 
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Run c ., N Method dt T Disaiption of g(r) 

s57 .oos 10.0 19213 Euler .OS 0-1000 slight peak ending at 2.Sa 

s23 .01 .125 19213 Euler .01 0-200 excess extends to 2.Sa 

s24 .01 .25 19213 Euler .01 0-200 excess extends to 3.0a 
s25 .01 .25 19213 Euler .01 0-200 excess extends to 3.0a 

s26 .01 .s 19213 Euler .01 0-200 acess extends to 2.Sa 
s27 .01 .s 19213 Euler .01 0-200 excess extends to 3.0a 
s42 .01 .5 19213 Euler .02 0-200 excess extends to 2.Sa 
s4S .01 .s 19213 Euler .OS 0-200 excess extends to 2.Sa 
s46 .01 .s 19213 Euler .1 0-200 acess extends to 2.Sa 
sSl .01 .s 19213 Euler .OS 0-1000 excess extends to 3.0a 
s53 .01 .s 19213 Euler .OS 0-1000 acess extends to 2.Sa 

s41 .01 .5 19213 PC .02 0-200 acess atends to 3.0a 
s43 .01 .s 19213 PC .OS 0-200 acess extends to 2.Sa 
s44 .01 .5 19213 PC .1 0-200 acess atends to 3.0a 

sS4 .01 1.0 19213 Euler .OS 0-1000 excess extends to 2.Sa 
s60 .01 1.0 19213 Euler .OS 0-1000 excess extends to 2.Sa 

s21 .01 1.25 19213 Euler .02 ~ acess extends to 2.Sa 
s28 .01 1.25 19213 Euler .01 0-200 excess extends to 2.Sa 

s61 .01 2.0 19213 Euler .OS 0-1000 excess extends to 2.4a 

s29 .01 2.5 19213 Euler .01 0-200 excess extends to 2.Sa 
s62 .01 8.0 19213 Euler .OS 0-1000 excess ends at 2.4a 

lben deficit to 3.Sa 

sS6 .01 10.0 19213 PC .OS 0-1000 excess extends to S.2a 
s63 .01 10 19213 Euler .OS 0-1000 slight deficit to 3.2a 
s6S .03 .5 19213 Euler .OS 0-1000 excess extends to 3.0a 

s64 .03 1. 19213 Euler .OS 0-1000 excess extends to 2.Sa 

sSS .03 10. 19213 Euler .OS 0-1000 excess extends to 2.Sa 

Table 4.9 The radial distributions of the sheared sedimenting suspensions. C is the 
concentration, 'Y is the dimensionless shear rate, N is the number of particles used, 
dt is the step size, T is the length of the run, and pc is the predictor-corrector 
method. 
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Run c N Method dt T v"" vrl v. 
u.2 u • u: 

q6 .01 64 Euler . 0005 0-100 .076 .015 .015 

q7 .01 64 Euler .0005 0-100 .079 .016 .016 

q3 .01 64 Euler .001 0-100 .079 .015 .015 

q4 .01 64 Euler .001 0-100 .084 .016 .016 

q5 .01 64 Euler .002 Q.400 .083 .015 .015 

q43 .01 64 Euler .005 0-100 .09 .016 .016 

q44 .01 64 Euler .005 0-100 .089 .015 .015 

q45 .01 64 Euler .005 0-100 .092 .016 .016 

q60 .01 64 Euler .005 0-100 .095 .016 .016 

qlO .01 64 PC .001 0-100 .043 .015 .016 

qll .01 64 PC .001 0-100 .037 .016 .016 

q29 .01 64 PC .001 0-100 .049 .016 .016 

q30 .01 64 PC .001 0-100 .052 .016 .016 

q8t .01 64 Euler .001 0-100 .08 .015 .016 

q9t .01 64 Euler .001 0-200 .079 .014 .014 

ql .01 27 Euler .001 0-100 .051 .01 .01 
q2 .01 27 Euler .001 0-100 .055 .01 .01 

ql2 .01 125 Euler .001 0-50 .11 .022 .022 
ql3 .01 125 Euler .001 0-50 .12 .02 .02 
ql4 .01 125 Euler .001 0-50 .11 .02 .02 

q16 .01 125 PC .001 0-50 .11 .02 .02 

q15f .01 125 Euler .001 0-50 .095 .02 .02 

q21* .01 64 Euler .001 0-52 .11 .02 .02 
q22; .01 64 Euler .001 0-50 .1 .02 .02 
q23* .01 125 Euler .001 0-100 .09 .02 .02 

Table 4.10 The variances of the quiescent sedimenting suspensions. C is the con­

centration, N is the number of particles used, dt is the step size, T is the length of 
the run, rzz, i;,., and irz.z are the velocity variances in the :z:, y, and z directions, 

respectively, and pc is the predictor-corrector method. 
t runs performed with an initial configuration which has a deficit of close pairs. 

t runs performed using the PAV method. 
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Run c N Method dt T V.a vll v .. 
u.2 u • u.2 

qSO • 0025 64 Euler .005 0-100 .048 .007 .007 
q51 .0025 64 Euler .005 0-100 .053 .007 .007 

ql7 .005 64 Euler .001 0-100 .06 .01 .009 
q18 .005 64 Euler .001 0-100 .09 .01 .01 
ql9 .005 64 Euler .001 0-100 .07 .01 .01 
q48 .005 64 Euler .005 0-100 .064 .01 .01 
q49 .005 64 Euler .005 0-100 .07 .01 .01 

q20t .005 64 Euler .001 0-200 .07 .01 .01 

q62 .005 27 Euler .005 0-200 .044 .007 .0069 
q63 .005 27 Euler .005 0-200 .043 .007 .0069 

q56 .005 125 Euler .005 0-100 .096 .014 .014 
q57 .005 125 Euler .005 0-100 .097 .014 .014 

q46 .02 64 Euler .005 0-100 .095 .02 .02 
q47 .02 64 Euler .005 0-100 .11 .02 .02 

q64 .02 27 Euler .ODS 0-2oo .06S .014 .014 
q6S .02 27 Euler .005 0-200 .067 .014 .014 

q54 .02 125 Euler .005 0-100 .16 .031 .031 
q55 .02 125 Euler .oos 0-100 .16 .031 .032 

q42 .03 64 Euler .005 0-100 .14 .027 .028 
q52 .03 64 Euler .oos 0-100 .14 .027 .03 
q53 .03 64 Euler .oos 0-100 .1S .03 .03 
q61 .03 64 Euler .005 0-100 .14 .027 .028 
q35 .03 64 Euler .002 0-100 .13 .028 .027 
q40 .03 64 PC .002 0-100 .13 .028 .028 

q41 .03 64 PC .01 0-100 .12 .027 .028 
q34 .03 64 PC .01 0-100 .12 .026 .03 
q37 .03 64 Euler .01 0-100 .13 .029 .029 

q58 .OS 64 Euler .oos 0-100 .1S .039 .035 
qS9 .OS 64 Euler .005 0-100 .126 .034 .036 

Table 4.10 continued. 
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• • 

s23 .01 .12S 19213 Euler .01 0-200 .24 1.13 .017 61.4 289. 
s24 .01 .2S 192/3 Euler .01 0-200 .22 4.9 .017 14.1 312. 
s2S .01 · .2S 19213 Euler .01 0-200 .2S 4.7 .017 16. 301. 
s26 .01 .5 192/3 Euler .01 0-200 .23 18.4 .018 3.6 294. 
s27 .01 .s 19213 Euler .01 0-200 .21 17.7 .018 3.36 283. 
s41 .01 .s 192/3 PC .02 0-200 .23 18.3 .019 3.68 293. 
s42 .01 .s 19213 Euler .02 0-200 .22 19.2 .017 3.S2" 307. 
&43 .01 .5 192/3 PC .05 0-200 .22 19.S . 017 3.S2 312. 
s44 .01 .5 19213 PC .1 0-200 .22 18.4 .017 3.52 294. 
s45 .01 .s 19213 Euler .OS 0-200 .19 19.7 .019 3.0 315. 
s46 .01 .s 192/3 Euler .l 0-200 .22 18 .017 3.52 288. 
sSI .01 .s 19213 Euler .OS 0-1000 .21 18.9 .018 3.0 315. 
sS3 .01 .s 19213 Euler .OS 0-1000 .22 19.6 .017 3.52 313 
sS4 .01 1.0 19213 Euler .OS 0-1000 .218 1S .0197 .87 148. 
s60 .01 1.0 19213 Euler .OS 0-1000 .21 72.6 .019 .84 290 
s21 .01 1.25 19213 Euler .02 0-400 .22 115 .022 .S64 294. 
s28 .01 1.2S 192/3 Euler .01 0-200 .21 117 .02 .S36 .436 
s61 .01 2.0 192/3 Euler .OS 0-1000 .2 2.96e2 .028 .2 296. 
s29 .01 2.S 19213 Euler .01 0-200 .21 476. .041 .134 301. 
sl7 .01 2.S 19213 Euler .1 0-800 .20 450. .03 .128 288. 
sl6 .01 s. 19213 Euler .I 0-800 .24 1.7e3 .OCJ .038 272. 

Table 4.11 The variances of the sheared sedimenting suspensions. C is the concen­

tration, "'( is the dimensionless shear rate, N is the number of particles used, dt is 

the step size, Tis the length of the run, lrzz, l~1,, and l~.r: are the velocity variances 

in the :z:, y, and z directions, respectively, and pc is the predictor-corrector method. 

Vu 
(Ea)2 

4.34 
l.l 
1.1 

.288 

.288 

.304 

.272 

.272 

.272 

.300 

.272 

.301 

.272 

.015 

.076 

.056 

.013 

.028 

.027 
.0192 
.0144 

.... .... 
~ 



Run c "( N Method ck T v ... 
u.2 

s62 .01 8.0 192/l Euler .o.s 0-1000 .2.S 
sS6 .01 10.0 19213 PC .OS 0-1000 .32 
s63 .01 10 19213 Euler .OS 0-1000 .274 
s7 .01 13.3 19213 Euler .I 0-300 .JS 
s8 .01 ll.3 19213 Euler .l 0-800 .25 
s9 .01 13.3 19213 Euler .OS 0-800 .32 

slO .01 13.3 19213 Euler .1 0-800 .33 
sll .01 ll.3 19213 Euler .1 0-800 .34 
s20 .01 ll.3 19213 Euler .1 0-800 .34 
sl .01 17.8 13.S/3 Euler .I 0-800 .43 
s4 .01 17.8 135/3 Euler .1 0-800 .42 
s.S .01 17.8 13S/3 Euler .1 0-1600 .41 
s6 .01 17.8 135/3 Euler .OS 0-800 .41 
sl4 .oos 10.6 19213 Euler .I 0-800 .17 
slS .oos 10.6 19213 Euler .1 0-800 .22 
sS7 .oos 10.0 19213 Euler .o.s 0-1000 .19 
sl8 .02 16.8 19213 Euler .1 0-800 ,(/) 
sl9 .02 16.8 19213 Euler .1 0-800 .66 
s6S .03 .s 19213 Euler .OS 0-1000 .37 
564 .03 I. 19213 Euler .OS 0-1000 .346 
sSS .03 10. 19213 Euler .OS 0-1000 .54 

Table 4.11 continued. 

vr\ Vu v ... 
u. u.2 (Ea)2 

4.8el .226 .016 
7.83el .46 .0128 
7.66el .34 .01 
l.2e4 .S6 7.9e-3 
l.3e4 .S6 7.2e-3 
l.3e4 .S6 7.2e-3 
l.4e4 .SS 7.Se-3 
l.4e4 .S7 7.7e-3 
l.4e4 .S6 . 008 
J.3e4 .97 S.4e-3 
l.4e4 .98 S.3el 
l.3e4 .96 S.3e-3 
l.3e4 .96 S.3e-3 

l.28e4 .174 .061 
l.le4 .197 .077 
J.le4 .183 .008 
l.4e4 1.72 . 01 
l.4e4 1.7 .01 
9.1 .032 S.92 
36.2 .038 1.38 
3.7el .94 .02 

Vn 
(Ea)2 

303. 
llS 
306 
271 
298. 
294. 
316. 
316. 
316 . 
164 
177 
177 
177. 
4S6. 
392. 
440 
198 . 
198 
146. 
145 
148 

Va 
(Ea)1 

.0141 

.0184 
.013 
.0126 
.0127 
.0123 
.0124 
.013 
.0128 
.012 
.012 
.012 
.013 
.006 
.007 
.007 
.024 
.024 
.Sl2 
.152 
.038 

.... .... 
00 
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Run c N Method cit T r,.. T .,,_,. 

q50 .0025 64 Euler .005 0-100 .4(1.2) .5(1.) 
q51 .0025 64 Euler .oos 0-100 .3(1.2) .4(1.) 

q62 .005 I1 Euler .005 0-200 .6(1.0) .4(1.8) 
q63 .005 I1 Euler .005 0-200 .3(1.5) .4(1.0) 
q48 .005 64 Euler .005 0-100 .5(.8) .5(5) 
q49 .005 64 Euler .oos 0-100 .4(1.) .5(1.2) 
q56 .005 125 Euler .005 0-100 .5(1.) .5(1.8) 
q57 .005 125 Euler .oos 0-100 .4(.9) .4(1.) 

q43 .01 64 Euler .005 0-100 .6(1.6) .4(1.1) 
q44 .01 64 Euler .005 0-100 .6(1.0) .5(.8) 
q4S .01 64 Euler .oos 0-100 .6(1.1) .7(2) 
q60 .01 64 Euler .005 0-100 .4(1.6) .4(2.4) 

q64 .02 I1 Euler .005 0-200 .4(.82) .4(2.4) 
q65 .02 I1 Euler .oos 0-200 .6(1.6) .6(1.6) 
q46 .02 64 Euler .005 0-100 .5(1.0) .5(1.1) 
q47 .02 64 Euler .oos 0-100 .4(.7) .5(1.8) 
q54 .02 125 Euler .005 0-100 .4(1.) .5(-) 
q55 .02 125 Euler .005 0-100 .4(1.) .5(2.) 

q42 .03 64 Euler .005 0-100 .6(3.2) -
q52 .03 64 Euler .005 0-100 .5(1.7) .6(1.1) 
q53 .03 64 Euler .005 0-100 .5(.9) .6(2.3) 
q61 .03 64 Euler .oos 0-100 .5(1.3) .4(3.3) 
q41 .03 64 PC .01 0-100 .9 .9 
q58 .OS 64 Euler .oos 0-100 .4(2.7) .8(2.6) 
q59 .OS 64 Euler .oos 0-100 .3(1.3) .6(2.0) 

Table 4.12 The radial distribution correlation times of the quiescent sedimentin~ 
suspensions. The values in the parentheses are Tz and the values not enclosed 

by the parentheses are Ti. The correlation times are in units of Tl· C is the 
concentration, N is the number of particles used, dt is the step size, T is the length 
of the run, and pc is the predictor-corrector method. 



Run 
s23 
s24 
s25 
s26 
s27 
s41 
s42 
s43 
644 
s45 
s46 
&51 
s53 
s54 
s60 
s21 
s28 
s61 
&29 
s52 
s62 
s56 
s63 
s57 
s65 
s64 
s55 

c 'Y N Method dt T T!" T~ud> Tpd 
.01 .125 192/3 Euler .01 0-200 1.0(3.4) - .214(.73) 
.01 .25 192/3 Euler .01 0-200 1.6(2.8) - .17(.3) 
.01 .25 192/3 Euler .01 0-200 1.7(3.1) - .18(.3) 
.01 .5 192/3 Euler .01 0-200 1.8( 4.3) - .10(.23) 
.01 .5 192/3 Euler .01 0-200 2.0(5.3) - .11(.28) 
.01 .5 192/3 PC .02 0-200 1.3(2.7) - .07(.14) 
.01 .5 192/3 Euler .02 0-200 1.3(3.8) - .07(.14) 
.01 .5 192/3 PC .05 0-200 1.7(3.2) - .091(.17) 
.01 .5 192/3 PC .1 0-200 2.7(-) - .145(-) 
.01 .5 192/3 Euler .05 0-200 1.1(2.9) - .06(.16) 
.01 .5 192/3 Euler .1 0-200 1.1(3.7) - .06(.20) 
.01 .5 192/3 Euler .05 0-1000 1. 7(8.2) 1.5(-) .09(.4) 
.01 .5 192/3 Euler .05 0-1000 1. 7(7.3) 1.8(-) .09(.39) 
.01 1.0 192/3 Euler .05 0-1000 2(11) 1.2(6.0) .05(.3) 
.01 1.0 192/3 Euler .05 0-1000 2.1(9) 1.9(9.0) .06(.24) 
.01 1.25 . 192/3 Euler .02 0-400 . 6(1.7) - .013( .036) . 
.01 1.25 192/3 Euler .01 0-200 . 2.3(3.6) - .049(.077) 
.01 2.0 192/3 Euler .05 0-1000 1.6(8.1) 2.5(5.4) .02(.11) 
.01 2.5 192/3 Euler .01 0-200 1.3(2.4) - .014(.03) 
.01 4.0 192/3 Euler .05 0-1000 2.0(3.0) 2.5(-) .013(.02) 
.01 8.0 192/3 Euler .05 0-1000 1.7(5.3) 2.5(8.5) .006(.018) 
.01 10.0 192/3 PC .05 0-1000 1.4(3.6) 4.(-) .004(.01) 
.01 10 192/3 Euler .05 0-1000 2.0(3.3) 2.0(3.6) .005(.009) 

.005 10.0 192/3 Euler .05 0-1000 1.6(3.6) 1.5(5.5) .003(.006) 
.03 .5 192/3 Euler .05 0-1000 2.0(9.1) 2.0(11.) .22(1.0) 
.03 1. 192/3 Euler .05 0-1000 1.6(5.7) - .089(.32) 
.03 10. 192/3 Euler .05 0-1000 1.8(3.0) 1.5(5.5) .01( .017) 

Table 4.13 The radial distribution correlation times of the sheared sedimenting 
suspensions. The values in the parentheses are Tz and the values not enclosed by 
the parentheses are Ti. Tpd and T <pd> are in units of T1, while T' pd and T' <pd> 
are in units of Th. C is the concentration, 'Y is the dimensionless shear rate, N is 
the number of particles used, dt is the step size, T is the length of the run, and pc 
is the predictor-corrector method. 

T<Pd> 
-
-
-
-
-
-
-
-
-
-
-

.1(-) 
.10(-) 

.03( .16) 

. 05(.24) 
-
-

.033(.07) 

-
.02(-) 

.008(.03) 
.011(-) 

.005(.01) 
.002(.009) 

.22(1.2) 
-

.008(.03) 

..... 
t-.) 
0 



Run c N Method dt T r:;, Tll, T:!, r::, TC, r:;, 

qSO .0025 64 Euler .oos 0-100 1.8 .2 .2 2. .2 .2 
qSl .0025 64 Euler .oos 0-100 1.4 .I .2 1.6 .2 .2 
q62 .oos 27 Euler .oos 0-200 2. 0. 0. 2.0 0. 0. 
q61 .oos 27 Euler .oos 0-200 t.S 0. 0. .s o. o. 
q48 .oos 64 Euler .oos 0-100 1.8 .4 .4 3.8 .2 .2 
q49 .oos 64 Euler .oos 0-100 1.8 .4 .2 1.8 .2 .2 
q.56 .oos 12S Euler .oos 0-100 2.8 .2 .2 3. .-2 .2 
qS1 .oos 12S Euler .oos 0-100 l.4 .2 .3 2. .2 .2 
q41 .01 64 Euler .oos 0-100 1.2 .4 .4 1.7 .3 .2 
q44 .01 64 Euler .oos 0-100 2. .4 .4 2. .2 .3 
q4S .01 64 Euler .oos 0-100 1.4 .2 .4 l.7S .2 .2 
q60 .01 64 Euler .oos 0-100 I. 0 0 l.S 0 0 
q64 .02 27 Euler .oos 0-200 2. 0. 0. .8 0. 0. 
q6S .02 27 Euler .oos 0-200 4.2 0. 0. 2. o. 0. 
q46 .02 64 Euler .oos 0-100 I.I .4 .4 1.2 .2 .2 
q47 .02 64 Euler .oos 0-100 2.4 .3 .2 6. .2 .3 
qS4 .02 12S Euler .oos 0-100 1.8 .8 .4 1.8 .2 .2 
qSS .02 12S Euler .oos 0-100 1.4 .2 .4 1.8 .2 .2 
q42 .01 64 Euler .00.5 0-100 s .s .6 7 .6 .6 
q.52 .01 64 Euler .oos 0-100 2.2 .2 .2 2. .2 .3 
qS1 .01 64 Euler .oos 0-100 1.4 1. .3 2.S .3 .2 
q61 .03 64 Euler .oos 0-100 .2 o. 0. l.S 0. 0 . 
q41 . 01 64 PC .01 0-100 3.8 .6 .4 4. .2 .2 
qS8 .OS 64 Euler .oos 0-100 l. 0. .4 I. .s 0. 
qS9 .OS 64 Euler .oos 0-100 3. 0. 0. 2.S .s .s 

Table 4.14 The velocity and variance correlation times (Ti) of the quiescent sedi­
menting suspensions. The ·correlation times are in units of Tf. C is the concentration, 
N is tl1e number of particles used, dt is the step size, T "is the length of the run, 
and pc is the predictor-corrector method. 

~ 
~ 
~ 
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Run c N Method dt T T=- Tll, T!!,. T~ T"f1' T:!i 

qSO .0025 64 Euler .005 0-100 2.2 .2 .2 4 .2 .2 

qSl .0025 64 Euler .005 0-100 3. .1 .2 3.4 .2 .2 

q62 .005 27 Euler .005 0-200 3. 1.S 1.5 3.5 .s 0 
q63 .005 27 Euler .005 0-200 4.S .3 1.1 5.5 .s .2 
q48 .005 64 Euler .005 0-100 3.2 .4 .4 3.8 .2 .6 
q49 .005 64 .Euler .005 0-100 3.8 .4 .2 3.4 .2 .2 
q56 .005 125 Euler .005 0-100 2.8 .2 .2 3. .2 .2 
q57 .005 125 Euler .005 0-100 4. .2 .3 4.2 .2 .2 

q43 .01 64 Euler .005 0-100 2.6 .4 .4 4. .3 .2 
q44 .01 64 Euler .005 0-100 9. .4 .4 4. .2 .3 
q45 .01 64 Euler .005 0-100 1.4 .6 1. 3. .2 .2 
q60 .01 64 Euler . 005 0-100 8.S 1. 1 • 5 0. .s 
q64 .02 27 Euler . 005 0-200 7.S .4 1. 11 • .2 o. 
q6S .02 27 Euler .005 0-200 5.0 2.0 1.0 5.S .2 .4 
q46 .02 64 Euler .005 0-100 2. 1.4 1.2 2. .2 .2 
q47 .02 64 Euler .oos 0-100 5.0 • 3 .2 6 • .2 .3 
qS4 .02 125 Euler .oos 0-100 3. .8 .4 3.8 .2 .2 
qS5 .02 125 Euler .oos 0-100 3. .2 .4 3.2 .2 .2 

q42 .03 64 Euler . oos 0-100 s . .s .6 7. .6 .6 
q52 .03 64 Euler .oos 0-100 - 1.1 1. 4. .2 .3 
q53 .03 64 Euler .oos 0-100 8.2 1. .3 - .3 .2 
q61 .03 64 Euler .oos 0-100 - .s . 4 . .5 o . 
q41 . 03 64 PC .01 0-100 3.8 .6 .4 7 . .2 .6 

q58 .OS 64 Euler .005 0-100 2. .s .s 6. 1.5 .4 
q59 .OS 64 Euler . oos 0-100 4 . 1. 2.5 4. .s 2.4 

Table 4.15 The velocity and variance correlation times (T.z) of the quiescent sedi­
menting suspensions. The correlation times are in units of Tz. C is the concentration, 
N is the number of particles used, dt is the step size, T is the length of the run, 
and pc is the predictor-corrector method. 
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Run c y N Method dt T T~ ~ r.:. T:! ~ r.:,. 

s23 .01 .125 19213 Euler .01 0-200 7.0 48 1.0 7.0 10 3.0 

s24 .01 .25 19213 Euler .01 0-200 - 1.0 1.6 3.0 16 6.0 
s2S .01 .25 19213 Euler .01 0-200 6.0 64 2.0 2.S 32 1.S 

s26 .01 .s 19213 Euler .01 0-200 3.0 36 9 2.0 24 3.8 
s27 .01 .s 19213 Euler .01 0-200 s.o 40 4.0 3.S 24 7.8 
s41 .01 .s 19213 PC .02 0-200 13. 40 2.0 3.8 S6 S.8 
s42 .01 .s 19213 Euler .02 0-200 7.5 36 2.0 s.o 30 8.8 
s43 .01 .s 19213 PC .OS 0-200 3.5 16 7.5 3.6 14 14 
s44 .01 .s 19213 PC .1 0-200 9.S 90 4.S 6.4 S.2 7.6 
s45 .01 .s 19213 Euler .OS 0-200 12 16 s.s 7 SS 10 
s46 .01 .s 19213 Euler .1 0-200 7.5 SS S.4 1.S 1S 1S.S 
s51 .01 .s 19213 Euler .OS 0-1000 6.S 270 9.S 3.0 10s 8.0 
s53 .01 .s 19213 Euler .OS 0-1000 - 3.8 4.S 13. 170 6.S 

s54 .01 1.0 19213 Euler .OS 0-1000 14. 135. 11 3.0 300 25 
s60 .01 1.0 19213 Euler .OS 0-1000 7. us 11 1.5 250 12 

s21 .01 1.25 19213 Euler .02 0-400 s.o 70. 13. 4.0 40. -
s28 .01 1.25 19213 Euler .01 0-200 3.0 68. 18 4.0 44. 17 

s61 .01 2.0 19213 Euler .OS 0-1000 S.6 115 - 3.0 1SO -
s29 .01 2.5 19213 Euler .01 0-200 3.5 30. 2.0 2.0 28 3.S 

s62 .01 8.0 19213 Euler .OS 0-1000 4.5 UiO. 1.6 2.S 150 3.0 

s56 .01 10.0 19213 PC .05 0-1000 7. 160. 3.0 3.0 190. 6.8 
s63 .01 10 19213 Euler .05 0-1000 4.5 - - 2.0 195 l.S 
s57 .005 10.0 19213 Euler .OS 0-1000 S.5 so. 17. 2.9 - 6.S 

s65 .03 .5 19213 Euler .05 0-1000 l~. 112. 4.0 2.S S2 S.6 

564 .03 1. 19213 Euler .OS 0-1000 s.s so. 17.0 2.9 - 6.S 

sSS .03 10. 19213 Euler .OS 0-1000 7.8 40 1.6 2.S - 1.2 

Table 4.16 The velocity and variance correlation times (Ti) of the sheared sediment­
ing suspensions. The correlation times are in units. of Th· C is the concentration, 
-y is the dimensionless shear rate, N is the number of particles used, dt is the step 
size, T is the length of the run, and pc is the predictor-corrector method. 
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Run c "( N Method dt T r.: m T~ r,:. T~ 

s23 .01 .125 19213 Euler .01 0-200 2.S 4 1.0 1.5 2.0 

s24 .01 .25 19213 Euler .01 0-200 3.0 10 1.5 1.4 16 
s25 .01 .25 19213 Euler .01 0-200 2.S 10 1.5 2.0 24 

... 

s26 .01 .s 19213 Euler .01 0-200 3.0 24 1.5 l..S 4 
s27 .01 .s 19213 Euler .01 0-200 3.0 16 2.0 2.0 12 
s41 .01 ..s 19213 PC .02 0-200 . 3.2 20 1.0 1.0 22 
s42 .Ol .s 19213 Euler .02 0-200 3.0 8 1.0 1.0 22 
s43 .01 .5 19213 PC .OS 0-200 2.S 6 .8 .6 4 
s44 .01 .s 19213 PC .1 0-200 2.S 20 2.9 2.S l.S 
s45 .01 .s 19213 Euler .OS 0-200 3.3 8 1.2 5.0 55 
s46 .01 .s 19213 Euler .1 0-200 3.0 35 2 2.S 15 
s51 .01 .5 19213 Euler .OS 0-1000 3.0 2.S 25 2 90 
s53 .01 .s 19213 Euler .OS 0-1000 4.0 1.5 22 2.S 150 

s54 .01 1.0 19213 Euler .05 0-1000 3.5 30 .2 2. 300 

s21 .01 1.25 19213 Euler .02 0-400 3.0 20 2.0 2.0 23 
s28 .01 1.25 19213 Euler .01 0-200 3.0 22 2.0 2.S 44 
s60 .01 1.0 19213 Euler .OS 0-1000 1.9 18 2.1 1.5 250 

s61 .01 2.0 19213 Euler .05 0-1000 2.5 25 2.0 1.9 110 

s29 .01 2.S 19213 Euler .01 0-200 3.5 16 1.5 2.0 28 

s62 .01 8.0 19213 Euler .05 0-1000 2 80 1.6 2.2 150 

s56 .01 10.0 19213 PC .05 0-1000 2.2 155 3.0 2.9 230 
s63 .01 10 19213 Euler .05 0-1000 2.0 50. 2.5 1.5 320 

s51 .005 10.0 19213 Euler .05 0-1000 3.5 300 2.7 2.S 350 

s65 .03 .s 19213 Euler .05 0-1000 2.9 11. 2.S 2.0 20. 

s64 .03 1. 19213 Euler .05 0-1000 3.0 5. 3.2 2. 130. 

s55 .03 10. 19213 Euler .05 0-1000 2.S 25 1.6 2. 320 

Table 4.17 The velocity and variance correlation times (T") of the sheared secliment­
ing suspensions. The correlation times arc in units of T1a. C is the concentration, 
-y is the dimensionless shear rate, N is the number of particles used, dt is the step 
size, T is the length of the run, and pc is the predictor-corrector method. 

r:;.. 

1.5 

4.0 
1.5 

2.S 
4.0 
1.2 
1.2 
1.2 
2.8 
5.1 
2.S 
s.s 
3.S 

9 

4.0 
2.0 
8.2 

3.S 

1.5 

1.S 

2.9 
1.5 

2.0 

3.1 

6.5 

1.2 



Run c 
23 .01 
24 .01 
25 .01 
26 .01 
27 .01 
41 .01 
42 .01 
43 .01 
44 .01 
45 .01 
46 .01 
51 .01 
53 .01 
54 .01 
60 .01 
21 .01 
28 .01 
61 .01 
29 .01 
62 .01 
56 .01 
63 .01 
57 .005 
65 .03 
64 .03 
55 .03 

"'( N Method dt T r:.~ r::, T .. 
' ... r::. 

.125 192/3 Euler .01 0-200 .54 .86 .214 .32 
.25 192/3 Euler .01 0-200 .32 1.07 .161 .15 
.25 192/3 Euler .01 0-200 .27 1.07 .161 .21 
.5 192/3 Euler .01 0-200 .161 1.29 .08 .08 
.5 192/3 Euler .01 0-200 .161 .86 .107 .107 
.5 192/3 PC .02 0-200 .17 1.07 .05 .05 
.5 192/3 Euler .02 0-200 .17 .43 .05 .05 
.5 192/3 PC .05 0-200 .13 .32 .04 .03 
.5 192/3 PC .1 0-200 .13 1.07 .155 .134 
.5 192/3 Euler .05 0-200 .18 .43 .011 .27 
.5 192/3 Euler .1 0-200 .16 1.87 ' ,107 .13 
.5 192/3 Euler .05 0-1000 .16 1.3 .13 .11 
.5 192/3 Euler .05 0-1000 .21 .78 .12 .13 

1.0 192/3 Euler .05 0-1000 .094 .80 .005 .054 
1.0 192/3 Euler .05 0-1000 .051 .48 .056 .04 
1.25 192/3 Euler .02 0-400 .064 .43 .043 .043 
1.25 192/3 Euler .01 0-200 .064 .47 .043 .054 
2.0 192/3 Euler .05 0-1000 .033 .33 .027 .025 
2.5 192/3 Euler .01 0-200 .038 .17 .016 .02 
8.0 192/3 Euler .05 0-1000 .007 .27 .005 .007 
10.0 192/3 PC .05 0-1000 .006 .42 .008 .008 
10 192/3 Euler .05 0-1000 .005 .13 .007 .004 

10.0 192/3 Euler .05 0-1000 .006 .51 .0046 .004 
.5 192/3 Euler .05 0-1000 .. 323 1.2 .28 .22 
1. 192/3 Euler .05 0-1000 .167 .28 .18 .11 

10. 192/3 Euler .05 0-1000 .014 .139 .009 .01 

Table 4.18 The velocity and variance correlation times (Ti.) of the sheared sediment­
ing suspensions. The correlation times are in units of r1. C is the concentration, 
"I is the dimensionless shear rate, N is the number of particles used, dt is the step 
size, T is the length of the run, and pc is the predictor-corrector method. 

Tl!, 
.428 
1.7 

2.57 
.21 
.64 
1.18 
1.18 
.21 
.08 

2.95 
4. -

4.8 
8. 
8. 

6.69 
.49 
.94 
1.47 
.3 
.5 
.62 
.85 
.85 
2.2 
7.2 
1.78 

r:;, 
.32 
.43 
.16 
.13 
.21 
.06 
.06 
.06 
.15 

.273 

.134 
.29 

.187 
.24 
.22 
.49 

.043 

.047 

.016 

.005 

.008 

.004 

.004 
.34 
.36 

.007 

.... 
t-:> 
(Tl 



Run c y N Method dt T r::, 

s62 .01 8.0 19213 Euler .OS 0-1000 .007 

sS6 .01 10.0 19213 PC .OS 0-1000 .006 
s63 .01 JO 19213 Euler .OS 0-1000 .oos 
sS7 .oos 10.0 19213 Euler .OS 0-1000 .006 
s6S .03 .s 19213 Euler .OS 0-1000 .323 

564 .03 1. 19213 Euler .OS 0-1000 .167 

sSS .03 10. 19213 Euler .OS 0-1000 .014 

Tahle 4.18 continued 

Tl/1 r:;, r::,. 

.27 .oos .007 

.42 .008 .008 

.13 .007 .004 

.SI .0046 .004 
1.2 .28 .22 

.28 .18 .11 

.139 .000 .01 

Tll, 

.s 

.62 

. 8S 

.8S 
2.2 

7.2 

1.78 

r::, 

.oos 

.008 

.004 

.004 
.34 

.36 

.007 

.... 
~ 
O> 



Run c l N Method cit T r:.; T!/1 r::, r::,. TU, r::, 

s23 .01 .12S 19213 Euler .01 0-200 l.S 10.3 .214 1.S 2.14 .64 

s24 .01 .2S 19213 Euler .01 0-200 - 1.07 .17 .32 1.7 .64 
s2S .01 .2S 19213 Euler .01 0-200 .64 6.8 .21 .27 3.4 .16 

s26 .01 .s 192/3 Euler .01 0-200 .64 7.7 1.93 .43 S.l .81 
s27 .01 .s 19213 Euler .01 0-200 1.07 8.S7 .8S7 .1S S.1 1.67 
s41 .01 .s 192/3 PC .02 0-200 2.78 8.S7 .43 .81 12. 1.24 
s42 .01 .s 192/3 Euler .02 0-200 1.6 7.7 .43 1.07 6.4 1.88 
s43 .01 .s 192/3 PC .OS 0-200 .7S 3.43 1.61 • 77 3 . 3. 
s44 .01 .s 192/3 PC .I 0-200 2.03 19.3 .96 1.37 1.11 1.63 
s4S .01 .s 19213 Euler .OS 0-200 2.6 3.43 1.18 l.S 11.8 2.14 
s46 .01 .s 192/3 Euler .I 0-200 1.6 18. 1.16 1.61 16.l 3.3 
sSI .OJ .s 192/3 Euler .OS 0-1000 1.4 S7.9 2.04 .64 22.S 1.7 
sS3 .01 .5 192/3 Euler .OS 0-1000 - .81 .96 2.76 36.4 1.4 

sS4 .01 1.0 192/3 Euler .OS 0-1000 .375 3.6 .29 .08 8.0 .61 
s60 .01 1.0 192/3 Euler .05 0-1000 .187 3.08 .29 .04 6.7 .32 

s21 .01 1.2S 192/3 Euler .02 0-400 .107 1.5 .278 .086 .86 -
s28 .01 1.2S 19213 Euler .01 0-200 .064 1.46 .386 .086 .94 .36 

s61 .01 2.0 192/3 Euler .OS 0-1000 .075 l.54 .04 2 - ... 
s29 .01 2.5 19213 Euler .01 0-200 .0187 .161 .Oll .Oll .IS .0187 

Table 4.19 The velocity and variance correlation times (T") of the sheared sediment­
ing suspensions. The correlation times are in units of Tf. C is the concentration, 
"Y is the dimensionless shear rate, N is the number of particles used, dt is the step 
size, T is the length of the run, and pc is the predictor-corrector method. 

.... 
t-:> 
'-1 



Run c l N Mclhod dt T 

s62 .01 8.0 19213 Euler .OS 0-1000 

sS6 .01 10.0 19213 PC .OS 0-1000 
s63 .01 10 19213 Euler .OS 0-1000 
sS7 .oos 10.0 19213 Euler .OS 0-1000 

s6S .03 .s 19213 Euler .OS 0-1000 

s64 .03 1. 19213 Euler .OS 0-1000 

sSS .03 10. 19213 Euler .OS 0-1000 

Table 4.19 continued 

r:, Tl/1 r::, 
.01S .87 .oos 

.019 .429 .008 

.012 - -.OOS 

.000 .084 .029 

1.78 12.S .44 

.306 2.78 .947 

.043 .22 .000 

T:! T!I, 

.008 .so 

.008 .SI 

.S22 .004 

.oos -
.28 S.8 

.16 .36 

.01 1.78 

T:.:, 

.01 

.018 

.011 

.62 

-
.007 

..... 
t-) 
00 
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Run c N Method dt T D:a D" Da 
U,a U,a U,a 

q6 .01 64 Euler .0005 0-100 5.1 .24 .44 

q7 .01 64 Euler .0005 0-100 5.4 .18 .14 

q3 .01 64 Euler .001 0-100 5.1 .18 .24 

q4 .01 64 Euler .001 0-100 6.0 .18. .24 

q5 .01 64 Euler .002 0-400 5.4 .13 .13 

q43 .01 64 Euler .005 0-100 4.S .12 .16 

q44 .01 64 Euler .005 0-100 6.2 .15 .16 

q45 .01 64 Euler .005 0-100 7.7 .16 .13 

q60 .01 64 Euler .005 0-100 6.7 .15 .16 

qlO .01 64 PC .001 0-100 5.4 .16 .16 

qll .01 64 PC .001 0-100 9.6 .17 .18 

q29 .01 64 PC .001 0-100 6.0 .16 .17 

q30 .01 64 PC .001 0-100 6.0 .14 .12 

qSt .01 64 Euler .001 0-100 4.8 .15 .016 

q9t .01 64 Euler .001 0-200 4.S .15 .12 

qt .01 27 Euler .001 0-100 4.4 .08 .1 
q2 .01 27 Euler .001 0-100 3.SS .08 .08 

q12 .01 125 Euler .001 0-50 S.9 .27 .22 
ql3 .01 125 Euler .001 0-50 6.6 .27 .18 

ql4 .01 125 Euler .001 0-50 6.2 .26 .22 

q16 .01 125 PC .001 0-50 6.9 .26 .18 

q15t .01 125 Euler .001 0-50 s.o .2S .22 

q21i .01 64 Euler .001 0-52 7.8 .14 .17 

q22i .01 64 Euler .001 0-50 4.8 .13 .10 

q23:i: .01 125 Euler .001 0-100 5.4 .17 .17 

Table 4.20 The diffusion coefficent for the quiescent sedimenting suspensions. C is 

the concentration, N is the number of particles used, dt is the step size, T is the 

length of the run, Dzz, Dyy, and Dz.: are the diffusion coefficients in the :i:, y, and 

z directions, respectively, and pc is the predictor-corrector method. 

t runs performed with an initial configuration which has a deficit of close pairs. 

+ runs performed using the PAV method. 
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Run c N Method dt T D: D» Da 
U,a U,a U,a 

q50 .0025 64 Euler .005 0-100 7.3 .17 .21 
q51 .0025 64 Euler .oos 0-100 8.0 .lS .24 

q17 .005 64 Euler .001 0-100 6.6 - -
ql8 .oos 64 Euler .001 0-100 7.8 .12 .13 
q19 .oos 64 Euler .001 0-100 8.4 .2 .16 
q48 .oos 64 Euler .oos 0-100 7.6 .12 .23 
q49 .005 64 Euler .005 0-100 11.0 .lS .14 

q20t .005 64 Euler .001 0-200 11.S .13 .16 

q62 .005 27 Euler .005 0-200 4.1 .11 .ms 
q63 .005 27 Euler .005 0-200 3.2 .1 .(]7 

q56 .005 125 Euler .005 0-100 14.0 .21 .18 
q57 .005 125 Euler .005 0-100 14.0 .19 .21 

q46 .02 64 Euler .005 0-100 3.9 .12 .12 
q47 .02 64 Euler .005 0-100 S.9 .16 .17 

q64 .02 27 Euler .005 0-200 2.S .14 .13 
q6S .02 27 Euler .005 0-200 3.1 .11 .13 

q54 .02 125 Euler .005 0-100 6.2 .19 .21 
qSS .02 125 Euler .005 o.-ioo 6.9 .22 .23 

q42 .03 64 Euler .005 0-100 4.0 .13 .13 
q52 .03 64 Euler .oos 0-100 S.7 .13 .IS 
q53 .03 64 Euler .ODS 0-100 6.0 .13 .16 
q61 .03 64 Euler .oos 0-100 4.7 .14 .12 
q3S .03 64 Euler .002 0-100 4.S .11 .13 
q40 .03 64 PC .002 0-100 5.0 .14 .17 

q41 .03 64 PC .01 0-100 4.S .2 .2 
q34 .03 64 PC .01 0-100 3.S .15 .17 
q37 .03 64 Euler .01 0-100 4.4 .18 .12 

qS8 .OS 64 Euler .DOS 0-100 4.S .12 .IS 
q59 .OS 64 Euler .005 0-100 2.9 .09 .09 

Table 4.20 continued. 
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Run c 'Y N Method dt T D: D,, Da 
u.a u.a u.a 

s23 .01 .125 19213 Euler .01 0-200 7.7 110 .12 

s24 .01 .25 19213 Euler .01 0-200 3.5 800 .1 
s25 .01 .25 19213 Euler .01 0-200 4.25 - .09 

s26 .01 .5 19213 Euler .01 0-200 2.3 - .065 
s27 .01 .5 19213 Euler .01 0-200 2.6 2200 .rn 
s41 .01 .5 19213 PC .02 0-200 2.4 - .rn 
s42 .01 .5 19213 Euler .02 0-200 4.5 - .(17 

s43 .01 .5 19213 PC .OS 0-200 - - .063 
s44 .01 .s 19213 PC .1 0-200 - - .065 
s4S .01 .5 19213 Euler .OS 0-200 - - .C172 
s46 .01 .5 19213 EqJ.er .1 0-200 - - .08 
sSl .01 .5 19213 Euler .OS 0-1000 3.0 3600 .C176 
s53 .01 .5 19213 Euler .OS 0-1000 6.0 3900 .rn 

sS4 .01 1.0 19213 Euler .OS 0-1000 3.0 l.8e4 .06 
s60 .01 1.0 19213 Euler .OS 0-1000 2.3 1.7e4 .04 

s21 .01 1.25 19213 Euler .02 0-400 2.43 - .OS6 
s28 .01 1.25 19213 Euler .01 0-200 . . .04 

s61 .01 2.0 19213 Euler .OS 0-1000 1.3 . .049 

s29 .01 2.5 19213 Euler .01 0-200 .38 . .048 
sl7 .01 2.5 19213 Euler .1 0-800 .SS . JXJ7 

sl6 . 01 s . 19213 Euler .1 0-800 . . . 

Table 4.21 The diffusion coefficients for the sheared sedimenting suspensions. C 
is the concentration, 'Y is the dimensionless shear rate, N is the number of parti­
cles used, dt is the step size, T is the length of the run, Dun Dyy, and D:u are 
the diffusion coefficients in the :z:, y, and z directions, respectively, and pc is the 
predic«;>r~orrector method. 
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Run c 'Y N Method dt T D,.,, D.,, D,,. 
u.a u.a u.a 

s62 .01 8.0 19213 Euler .OS 0-1000 .24 - -
sS6 .01 10.0 19213 PC .OS 0-1000 - - .07 
s63 .01 10 19213 Euler .OS 0-1000 .2 - .029 

s7 .01 13.3 19213 Euler .1 0-300 - - -
s8 .01 13.3 19213 Euler .1 0-800 .42 - .06 
s9 .01 13.3 19213 Euler .OS 0-800 .62 - .025 

slO .01 13.3 19213 Euler .1 0-800 - - .06 
sll .01 13.3 19213 Euler .1 0-800 - - -
s20 .01 13.3 19213 Euler .1 0-800 - - -
s3 .01 17.8 13S/3 Euler .1 0-800 .2 - .OS6 
s4 .01 17.8 13S/3 Euler .1 0-800 .36 - .03 
s5 .01 17.8 13513 Euler .1 0-lfOO .2S - .03 
s6 .01 17.8 13S/3 Euler .OS 0-800 .3S - .026 

sl4 .005 10.6 19213 Euler .1 0-800 .12 - .01 
sl5 .005 10.6 19213 Euler .1 0-800 - - -
sS7 .005 10.0 19213 Euler .OS 0-1000 .80 - .08 

sl8 .02 16.8 19213 Euler .1 0-800 .81 - .06 
s19 .02 16.8 19213 Euler .1 0-800 .43 - .OS 

s65 .03 .5 19213 Euler .OS 0-1000 3.S fOO .092 

s64 .03 1. 19213 Euler .05 0-1000 2.1 3.4e3 .068 

sSS .03 10. 19213 Euler .OS 0-1000 .46 - .024 

Table 4.21 continued. 
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Run c N Method dt T 'Da 'D., 'D~ 
u.a. u.a. u.a. 

q43 .01 64 Euler .005 0-100 4.7 .15 .15 
q45 .01 64 Euler .005 0-100 7.5 .17 .13 
q60 .01 64 Euler .005 0-100 8.5 .18 .17 
q50 .0025 64 Euler .005 0-100 7.5 .18 ........... .19 
q51 .0025 64 Euler .005 0-100 7.8 .14 ..22 
q48 .005 64 Euler .005 0-100 7.5 .12 .26 
q49 • 005 64 Euler .005 0-100 12 • .14 .14 
q62 .005 27 Euler .005 0-200 - . .09 
q63 .005 27 Euler .005 0-200 3.6 .1 .08 
q56 .005 125 Euler .005 0-100 12. .22 .18 
q57 . 005 125 Euler .005 0-100 13 • .21 ..22 
q46 .02 64 Euler .005 0-100 3.2 .ll .14 
q47 .02 64 Euler .005 0-100 5.5 .15 .2 
q64 .02 27 Euler .005 0-200 3.0 .14 .11 
q65 .02 27 Euler .005 0-200 3.0 .10 .14 
q54 .02 125 Euler .005 0-100 7.9 .19 .21 
q55 .02 125 Euler .005 0-100 6.1 .2 ..22 
q52 .03 64 Euler .005 0-100 5.8 .15 .15 
q53 .03 64 Euler .005 0-100 5. .14 .14 
q61 .03 64 Euler .005 0-100 - .14 .12 
q58 .05 64 Euler .005 0-100 5.2 . .15 
q59 .OS 64 Euler .005 0-100 3.9 - .12 

Table 4.22 The diffusion coe:fficent with restart for the quiescent sedimenting sus­
pensions. C is the concentration, N is the number of particles used, dt is the step 
size, Tis the length of the run, Dzz, Dyy, and Du are the diffusion coefficients in 
the :i:, y, and z directions, respectively, and pc is the predictor-corrector method. 
t runs performed with an initial configuration which has a deficit of close pairs. 
+ runs performed using the PAV method. 
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.; 

Run c 7 N Method dt T 'D: 'Dy 1)= 
U,a U,a U,a 

s51 .01 .5 192/3 Euler .05 0-1000 3.25 - .08 
s53 .01 .s 192/3 Euler .05 0-1000 3.6 - .07 
s54 .01 1.0 192/3 Euler .05 0-1000 2.1 - .05 
s60 .01 1.0 192/3 Euler .05 0-1000 - - .04 
s61 .01 2.0 192/3 Euler .05 0-1000 1.2 - .04 
s62 .01 8.0 192/3 Euler .05 0-1000 - - -
s56 .01 10.0 192/3 PC .OS 0-1000 - - .11 
s63 .01 10 192/3 Euler .OS 0-1000 - - -
s57 .005 10.0 192/3 Euler .05 0-1000 - - .13 
s65 .03 .5 192/3 Euler .05 0-1000 3.6 590 .09 
s64 . 03 1 • 192/3 Euler .OS 0-1000 - - -
s55 . 03 10 . 192/3 Euler .05 0-1000 .27 - .02 

Table 4.23 The diffusion coefficent with restart for the sheared sedimenting suspen­
sions. C is the concentration, ""( is the dimensionless shear rate, N is the number 
of particles used, dt is the step size, Tis the length of the run, Du, DYY• and Du 
a.re the diffusion coefficients in the x, y, and z directions, respectively, and pc is the 
predictor-corrector method. 
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Run c N Method dt T 'ts t, 'ts 

q6 .01 64 Euler .0005 0-100 1.0 .178 .39 
q7 .01 64 Euler .0005 0-100 .91 .IS .12 
q3 .01 64 Euler .001 0-100 .86 .16 .21 
q4 .01 64 Euler .001 0-100 .96 .15 .20 
q5 .01 64 Euler .002 0-400 .87 .116 .116 
q43 .01 64 Euler .005 0-100 .67 .10 .134 
q44 .01 64 Euler .005 0-100 .93 .13 .14 
q45 .01 64 Euler .005 0-100 1.12 .13 .11 
q(J() .01 64 Euler .005 0-100 .94 .12 .13 

qlO .01 64 PC .001 0-100 1.68 .14 .13 
qll .01 64 PC .001 0-100 3.47 .14 .15 
q29 .01 64 PC .001 0-100 1.64 .13 .14 
q30 .01 64 PC .001 0-100 1.54 .12 .1 

q8t .01 64 Euler .001 0-100 .8 .13 .13 
q9t .01 64 Euler .001 0-200 .76 .14 .11 

ql .01 27 Euler .001 0-100 1.16 .11 .13 
q2 .01 27 Euler .001 0-100 .86 .11 .11 

q12 .01 125 Euler .001 0-50 .72 .16 .13 
ql3 .01 125 Euler .001 0-50 .74 .18 .12 
ql4 .01 125 Euler .001 0-50 .76 .17 .15 

ql6 .01 125 PC .001 0-50 .97 .18 .12 

ql5t .01 125 Euler .001 0-50 .71 .167 .15 

q21+ .01 64 Euler .001 0-52 .95 .09 .11 
q22+ .01 64 Euler .001 0-50 .64 .087 .en 
q23+ .01 125 Euler .001 0-100 .8 .11 .11 

Table 4.24 The correlation times derived from the diffusion coefficients and the 
variances for the quiescent sedimenting suspensions in units of T1. C is the concen­
tration, N is the number of particles used, dt is the step size, T is the length of the 
run, and pc is the predictor-corrector method. 
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Rwt c N Method dt T ts T, 'ts 

qSO .0025 64 Euler .D05 0-100 .81 .13 .16 
q51 .0025 64 Euler .D05 0-lDO .8 .11 .18 
ql7 .D05 64 Euler .DOl 0-lDO .93 - -
ql8 .005 64 Euler .DOI 0-lDO .73 .1 .11 
q19 .D05 64 Euler .DOI 0-lDO 1.01 .169 .135 
q48 .D05 64 Euler .D05 0-lDO .92 .10 .194 
q49 .D05 64 Euler .D05 0-lDO 1.32 .13 .12 

q20t .D05 64 Euler .DOI 0-200 1.39 .11 .14· 

q62 .D05 '1:1 Euler .D05 0-200 .79 .13 .092 
q63 .oos '1:1 Euler .D05 0-200 .63 .12 .086 

q56 .DOS 125 Euler .DOS 0-lDO 1.23 .126 .11 
q51 .oos 125 Euler .oos 0-lDO 1.22 .ll .l'rl 
q46 .02 64 Euler .oos 0-lDO .87 .128 .128 
q47 .02 64 Euler .DOS 0-lDO 1.14 .17 .181 

q64 .02 '1:1 Euler .oos 0-200 .82 .21 .2 
q6S .02 '1:1 Euler .oos 0-2DO .98 .167 .2 

q54 .02 125 Euler .D05 0-lDO .82 .13 .14 
q55 .02 125 Euler .D05 0-lDO .92 .15 ·.is 
q42 .03 64 Euler .D05 0-lDO .8 .13 .13 
q52 .03 64 Euler .D05 0-lDO 1.13 .13 .14 
q53 .03 64 Euler .D05 0-lDO 1.11 .13 .15 
q61 .03 64 Euler .oos 0-lDO .94 .14 .12 
q35 .03 64 Euler .002 0-100 .96 .11 .13 
q40 .03 64 PC .002 0-lDO 1.07 .14 .169 

q41 .03 64 PC .01 0-100 1.04 .21 .2 
q34 .03 64 PC .01 0-100 .81 .16 .16 
q37 .03 64 Euler .01 0-100 .94 .17 .12 
q58 .05 64 Euler .D05 0-lDO 1.18 .12 .168 
q59 .05 64 Euler .005 0-lDO .9 .1 .1 

Table 4.24 continued. 



Run 
&23 
&24 
125 
&26 
127 
&41 
&42 
&51 
153 
s54 
s60 
&21 
s61 
s29 
sl7 
s62 
163 
s8 
&9 
&3 
s4 

·s5 
&6 
'14 
157 
sl8 
119 
&65 
164 
s55 

c "'( N Method dt T Ta Tu T, T' 
~ 

T!, 

.01 .125 192/3 Euler .01 0-200 .43 1.3 .094 2.0 6.1 

.01 .25 192/3 Euler . 01 0-200 .21 2.2 .08 1.96 20 • 

.01 .25 192/3 Euler .01 0-200 .22 . .07 2.0 . 

.01 .5 192/3 Euler .01 0-200 .H . .05 2.6 . 

.01 .5 192/3 Euler .01 0-200 .16 1.66 .05 3.0 31 

.01 .5 192/3 PC .02 0-200 .14 . .05 2.6 . 

.01 .5 192/3 Euler .02 0-200 .27 . .06 5.0 . 

.01 .5 192/3 Euler .05 0-1000 .19 2.55 .06 3.5 . 

.01 .5 192/3 Euler .05 0-1000 .14 2.67 .055 2.6 4.98 

.01 1.0 192/3 Euler .05 0-1000 .184 3.2 .041 6.9 119 

.01 1.0 192/3 Euler .05 0-1000 • 15 3.13 .028 5.6 117 . 

.01 1.25 192/3 Euler .02 0-400 .15 . .034 7.0 . 

.01 2.0 192/3 Euler .05 0-1000 .09 . .027 6.7 . 

.01 2.5 192/3 Euler .01 0-200 .024 . .016 2.2 . 

.01 2.5 192/3 Euler .1 0-800 .04 . .003 3.7 . 

.01 8.0 192/3 Euler .05 0-1000 .01 . . 3.0 . 

.01 10 192/3 Euler .05 0-1000 .01 . .001 3.7 . 

.01 13.3 192/3 Euler .1 0-800 .02 . .001 9.9 . 

.01 13.3 192/3 Euler .05 0-800 .026 . 0.0 12.9 . 

.01 17.8 135/3 Euler .1 0-800 .006 - .001 4.0 . 

.01 17.8 135/3 Euler .1 0-800 .01 - 0.0 6.6 . 

.01 17.8 135/3 Euler .1 0-1600 .008 . 0.0 5.3 . 

.01 17.8 135/3 Euler .05 0-800 .011 . 0.0 7.3 . 
.005 10.6 192/3 Euler .1 0-800 .006 . 0.0 3.6 . 
.005 10.0 192/3 Euler .05 0-1000 .035 . .007 2.1 -
.02 16.8 192/3 Euler .1 0-800 .025 . .001 9.9 . 
.02 16.8 192/3 Euler .1 0-800 .014 . .001 5.5 . 
.03 .5 192/3 Euler .05 0-1000 .26 1.84 .08 2.33 16.5 
.03 l. 192/3 Euler .05 0-1000 .17 2.62 .002 3.1 47. 
.03 10. 192/3 Euler .05 0-1000 .02 . .001 3.6 . 

Table 4.25 The correlation times derived from the diffusion coefficients and the vari­
ances for the sheared sedimenting suspensions in units of r,.. C is the concentration, 
-y is the dimensionless shear rate, N is the number of particles used, dt is the step 
size, T is the length of the run. 
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Figure 4.1 The effect of step size on the radial distribution for a 13 quiescent 
sedimenting suspension using the Euler integration scheme. (a) is step size of 0.001, 
(b) is step size of 0.005, ( c) is step size of 0.01, and ( d) is step size of 0.1. 
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Figure 4.2 The effect of step size on the radial distribution for a 1 % quiescent 
sedimenting suspension using a predictor-corrector integration scheme. (a) is step 
size of 0.001, (b) is step size of ().005, (c) is step size of 0.01, and (d) is step size of 
0.1. 
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Figure 4.3 The effect of step size on the radial distribution for a 33 quiescent 
sedimenting suspension using the Euler integration scheme. (a) is step size of 0.002, 
(h) is step size of 0.01, (c) is step size of 0.02, and (cl) is step size of 0.1. 
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Figure 4.20 The phi distribution averaged over all r for run q45. See table 4.6 for 
the simulation parameters. (a) is the initial distribution, and (b) is the distribution 
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Figure 4.22 The phi distribution for run q45. See table 4.6 for the simulation 
parameters. (a) is the initial distribution, and (b) is the distribution averaged over 
the entire run for r = 3.0a tor= 3.5a. (c) is the initial distribution, and (d) is the 
distribution averaged over the entire run for r = 3.5a tor = 4.0a .. 
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Figure 4.23 The phi distribution averaged over all r for run s62. See table 4. 7 for 
the simulation parameters. (a) is the initial distribution, and (b) is the distribution 
averaged over the entire run. 

l 

..... 
en 
0 



a. . 
2 

1.5 

--e. .._.. 1 
Q, 

0.5 

o. 
-1 -.5 o. 

4' (w} 

c 
2 

1.5 

2 

1.5 

~ .._.. 1 
Q, 

0.5 

o. 
0.5 1 

2 

1.1 

-1 -.5 

b 

o. 

4' (ir} 
<i 

0.5 

- -:!:. 1 
Q, 

0.5 

o. 
-1 -.5 o. 0.5 1 

4> ( w) 

:!:. 1 
Q, 

0.5 

o. 
-1 -.5 o. 0.5 

4> (ir) 

Figure 4.24 The phi distribution for run s62. See table 4.7 for the simulation 
parameters. (a) is the initial distribution, and (b) is the distribution averaged over 
the entire run for r = 2.0a tor= 2.5a. (c) is the initial distribution, and (d) is the 
distribution averaged over the entire run for r = 2.5a to r = 3.0a. 
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Figure 4.28 The theta distribution for run q45. See table 4.6 for the simulation 
parameters. (a) is the initial distribution, and (b) is the distribution averaged over 
the entire run for r = 2.0a to r = 2.5a. ( c) is the initial distribution, and ( d) is the 
distribution averaged over the entire run for r = 2.5a t'! r = 3.0a. 

1 

.... 
C) 

I (11 

1 



2 

1. !i 

---CZ:. 1 .__.. 
~ 

0.5 

o. 

2 

1.5 

........... 
CZ:. 1 ...._.. 
~ 

0.5 

o. 

(a) - 2 
(b) 

1.5 

-CZ:.. 1 .__ --..-- " " ---... 
~ -

0.5 
. 
-o. -Trrr I I ' ' I I I I I I I I 

o. 0.2 0.4 o., o.a 1 o. 0.2 0.4 O.G o.a 
8 [11"]- 8 [7r] 

(o) (d) 
2 

~ I I I I 
1.5 ----........... -CZ:. 1 -1-~-.- .. ...._.. 

~ ---
0.5 

_, ___ , ___ 
----llll'r o. ,.,,,..,, .-. I I , •• I I I I I I I I I I 

o. 0.2 0.4 0., 0.8 1 o. 0.2 0.4 O.G o.a 
6 [7r] 6 [7r] 

Figure 4.29 The theta distribution for run q45. See table 4.6 for the simulation 
parameters. (a) is the initial distribution, and (b) is the distribution averaged over 
the entire run for r = 3.0a tor= 3.5a. (c) is the initial distribution, and (d) is the 
distribution averaged over the entire run for r = 3.5a to r = 4.0a. 
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Figure 4.30 The theta distribution averaged over all r for run s62. See table 4. 7 for 
the simulation parameters. (a) is the initial distribution, and (b) is the distribution 
averaged over the entire run. 
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Figure 4.31 The theta distribution for run s62. See table 4. 7 for the simulation 

parameters. (a) is the initial distribution, and (b) is the distribution averaged over 

the entire run for r = 2.0a tor= 2.5a. (c) is the initial distribution, and (d) is the 
distribution averaged over the entire run for r = 2.5a to r = 3.0a. 
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5 The Effects of Hydrodynamic Dispersion on the Interpretation of Sed­

imentation Data 

5.1 Introduction 

The results from our simulator show that for both the sheared and quiescent 

suspensions, the sedimentation velocities vary with c rather than with d, and that 

the particle distributions do not have a length scale which depends on ac- ~. The 

results from our simulator also show that the suspensions behave diffusively and 

that one difference between the quiescent and sheared sedimenting supsensions is 

in their diffusion coefficients. We have pointed out that the diffusive nature of the 

suspension causes the interface between the suspension and the clear fluid region 

to spread, and thus the interface velocity is less than the sedimentation velocity 

in the bulk of the suspension. Therefore, in interpreting the sedimentation data, 

equating the measured interface velocity with the bulk sedimentation velocity is 

invalid. This may account for the different observed concentration dependences of 

the sedimentation velocity for sheared and quiescent suspensions, and for suspen­

sions of Brownian particles. We will examine whether this is the case by usmg 

the macroscopic continuity equation to model the spreading of the interface. From 

this equation, the concentration profile as a function of time is determined. We 

will assume a value of the opaque concentration, the volume fraction at which the 

suspension appears opaque, and follow a point in the suspension with this concen­

tration (i.e., the interface) as the suspension settles. The rate of fall of this interface 

is the apparent sedimentation velocity. \Ve can then compare this value with those 

of the experiments. 

5.2 The Solutions of the Continuity Equation and the Interface Velocity 

The variation of the particle concentration (c) in the x direction (direction of 

sedimentation) and in time (t) is controlled by 

ac + acU(c) = !_ V(c) a(c) 
at· ax ax ax' ( 5.1) 

where U(c) 1s the average particle velocity and V(c) is the diffusion coefficient 

for a suspension with concentration c. To simplify this problem we will choose a 
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reference frame moving with the velocity U(co) where c0 is the bulk concentration. 

We nondimensionalize concentration with c0 , velocity with [Us - U( c0 )] , diffusion 

coefficient with V( c0 ), length by the thickness of the interface (li), and time by the 

time it takes for the concentration profile to become fully developed (Ts). Equation 

(5.1) becomes 

ac + Ts(Us - U(co)) ac(U(c) - U(co)) = V(co)Ts !_V(c) a(c). (
5

.
2

) 
at li ax if ax ax 

Near the interface, all three terms are equally important (i.e., all the coefficients are 

0( )) d h .r t t 1 '.D(co) d l t al '.D(co) 1 , an t erewre we expec T 8 o equa (U.-U(co))2 an i o equ (U.-U(co))' 

Equation ( 5.2) simplifies to 

ac + ac(U(c) - U(co)) _ !_Ve ac 
at ax - ax ax' (5.3a) 

t ~ 0 c = 0 at x < 0 (5.3b) 

= 1 at x > 0, 

t > 0 c = 0 at x = -oo (5.3c) 

= 1 at x = oo. 

The conditions for t > 0 is an idealization of a sedimenting suspension. A real 

suspension is finite in size, and the boundary condition should read, 

t>O c=O 
-U(co)t 

at x= --­
li 

(5.3d) 

At short time -U(co)t is small, but as the experiment progresses this ratio grows l; 

and the approximation (5.3c) improves. In table 5.1 we list the ratio of -U(c0 )t 

(denoted by le) to li. This ratio is greater than 40, which suggests that (5.3c) is a 

reasonable model for at least the latter part of the experiment. 

To solve (5.3), the sedimentation velocity and diffusion coefficient are needed. 

For the sedimentation velocity we have chosen 

U( c) = Us(l.O - /3c ). (5.4) 
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This is the form of the sedimentation velocity obtained in our simulations, and it is 

also the form reported for the Brownian and sheared suspension experiments. For 

the diffusion coefficient we have chosen 

1J( c) = Do c0
• (5.5) 

From our simulator we find that a is between - ~ and - ~. There is also a possi­

bility that the diffusion coefficient is independent of concentration at low volume 

fraction because it is the product of the variance and the correlation time. At low 

concentration, the former varies with d while the latter varies with c-~ (section 

4.2). We examined three cases, a = 0, a= ~ and a= -~ to give us insight into 

the sensitivity of our results to the form of the diffusion coefficient. For the sedi­

mentation velocity and diffusion coefficient given by (5.4) and (5.5), li is D(co) 
U, {3c~ - "' ' 

and T 8 is u2~~c~)-a. The continuity equation now becomes 
• co 

oc oc( c - 1) a a oc -+ = -c -. at ax ax ax (5.6) 

Before proceeding to solve (5.6), let's examine the ratio of li to l11. The lat­

ter is the difference between the distance the interface travels if all the particles 

settle with Us and the distance the interface travels if all the particles settle with 

velocity Ua(l.O - /3c). The ratio of li to l11 is the ratio of the error in the experi­

mental data due to the spreading interface to the deviation from Stokes's velocity 

due to hindered settling. If the discrepancy among the experimentally measured 

sedimentation velocities is due to the spreading of the interface, then ,'~ will be 

larger for those experiments which show a sedimentation velocity which depends 

on d (suspensions of large particles), than for those experiments which show a c 

dependence (sheared suspensions, and suspensions of Brownian particles). In table 

5.1 we have tabulated this ratio for several experiments. In determining this ratio, 

we have used a value of 5.0 for /3 because this is the value found experimentally 

for Brownian particles, and it is similar to the /3 obtained from our simulations of 

non-Brownian particles. The length, l!!i., is estimated from /3c 0 le. The first two ex­

periments used small Brownian particles, and their sedimentation velocities showed 
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a c dependence. The third experiment is Lynch's sheared sedimenting suspension 

experiments, and its sedimentation velocity also showed a c dependence. The fi­

nal two experiments involved the quiescent sedimentation of suspensions of large 

particles. Their velocities depended on d. For each experiment we have listed 

its hydrodynamic diffusion coefficient, which is 6U8 a for a quiescent sedimenting 

suspension, and 0.6U8 a for a sheared suspension. These values are obtained from 

our simulations. For the first two experiments, we also included the Brownian dif­

fusion coefficient, and in determining the interface thickness for these two cases, we 

have used the larger of the two. The ratio of ,'~ for these experiments shows the 

predicted trend. 

One additional point to notice from table 5.1 is that the interface of a sediment-

ing Brownian suspension does not spread as much as the interface of a suspension 

of large paticles. This is counterintuitive because one imagines that small particles 

tend to diffuse great distance rapidly. However table 5.1 shows that this distance is 

small compared with the distance settled by the particles. The suspensions whose 

interfaces spread the most contain large particles, the kind which are not normally 

thought to be diffusive. 

For a equal to zero, ( 5.6) simplifies to Burger's equation. The solution given 

by Whitham (1974) is 
1 

c=l----
1 + hez' 

2 - erfc (! z+t) 
2 v't 

h = erfc(!z+t) ' 
2 v't 

c= 
Co 

t 
i= 

'D 

z == 
x - (1 - fJco)t 

(5. 7a) 

(5.7b) 

(5.7c) 

(5.7d) 

(5.7e) 
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The steady state solution is, 

c=l----
1 

(5.8) 

Concentration profiles for several times are given in figure 5.1. We will use these 

profiles later to determine the interface velocity. 

When o: is ~, we solve ( 5.4) numerically using the following finite difference 

method. The infinite domain of xis first mapped on to a domain between -1 and 1 

by the transformation, 
y 

(5.9) x=---
l- y2. 

Equation (5.4) now becomes, 

8c ( 1 - y 2 ) 2 8c( c - 1) -+--------
at 1 + y2 ay 

(1 - y2)2 !___ (c~ (1 - y2)2 8c) 
1 + y 2 8y 1 + y 2 8y ' 

(5.10) 

c = 0 at y < 0 

= 1 at y > 0, 

t > 0 c = 0 at y = -1 

= 1 at y = 1. 

In ( 5.10) the two first order derivatives are replaced with their central difference 

approximations. To improve accuracy and stability, the diffusion term is approxi­

mated using the three-time-level method. In this scheme the second order derivative 

is replaced by the average of the central differences at the previous time step, present 

time step, and the next time step. Since the three-time-level method requires in­

formation at the next time step, this technique is an implicit scheme. Also because 

it needs information at the previous time step, this method is not self starting. To 

overcome the latter difficulty, the solution for the first time step is obtained using 

a Crank-Nicholson method. After the first time step has been taken, we convert 

to the three-time-level method. \Vhen the equation is finite differenced, we find 

that the values of the diffusion coefficient are needed between grid points, Since 
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the concentration between grid points are not determined, the diffusion coefficients 

are approximated by the average of the diffusion coefficients at the adjacent grid 

points. Furtherm?re, to maintain the linearity of the resulting set of finite difference 

equations, the diffusion coefficient is obtained using the values of the concentration 

at present time. In figure 5.2, the concentration profiles at dimensionless time of 4 

obtained using three combinations of D.y and D.x (D.y of 0.04 and D.t of .001, D.y 

of 0.02 and D.t of 0.001, and D.y of 0.02 and D.t of 0.0001) are presented. There is 

good agreement between the three profiles. In generating the concentration profiles 

used in determining the apparent sedimentation velocity, we have used a D..y of 0.04 

and a D.t of 0.001. Several concentration profiles are presented in figure 5.3. The 

concentration profiles differ from those of a = 0 case in that the slope for c > ~ 
is smaller, and for c < ~ is larger. This is to be expected because the diffusion 

coefficient is larger for c > ~ and smaller for c < ~ in the a = l case. 

When a is - ~, the problem becomes more complex. The diffusion coefficient 
1 

c- s approaches infinity as concentration reduces to zero. The problem, however, is 

still well defined because < 11~~
2

/ and :; both tend toward zero as c reduces to zero 

and the diffusion term remains bounded. However, numerically, unless the finite 

difference scheme accurately reproduces the rate at which :; and < 11~YY
2

/ approach 

zero, and d approaches infinity, the product of these terms may not be bounded. 

Unfortunately when we attempt to apply the three-time-level method on (5.13), we 

find that the finite difference scheme upsets the delicate balance between the terms 

c- ~, < 11~Y:j2, and :; . At short time, the solution oscillates wildly with time. After 

the initial period, the solution does stabilize for a while, but at long time a kink 

develops in the concentration profile. These aberrant behaviors indicate that the 

three-time-level method is inadequate. To overcome this problem we rewrite c- ~ ~; 
2 

as ~ 8~: . In this form, c- ~, and ~; are explicitly coupled together, and when we 

finite difference this term, the balance is maintained. Equation (5.10) becomes 

ac + (1 -y2
)

2 8c(c- 1) = ~ (1 - y
2

)
2 ~ ((1 - y

2
)

2 a(d)). 
at 1 + y2 oy 2 1 -t- y2 8y 1 + y2 oy 

(5.11) 

To avoid a complicated set of coupled nonlinear equations, we used an explicit finite 
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difference scheme to solve (5.11). The time derivative is approximated by a forward 

difference, and the spatial derivatives are approximated with a central difference. To 

examine the stability of this algorithm, we return to (5.6). It is generally believed 

(Ames 1977) that the stability requirement of an explicit scheme for an equation of 

the form 

lS 

or for our problem, 

8c 
8t 

D.t 1 ncn-1 __ < 
D.x2 - 2' 

2 1 D.t 1 
-c-s -- < 
3 D.x 2 - 2 

(5.12) 

(5.13) 

(5.14) 

Since the initial profile is a step function, c is 0 for x less than O, an,d the explicit 

scheme is unconditionally unstable. However after several iterations, c is no longer 

zero, and one can choose a b.b.zt2 which will satisfy the stability requirement. The 

error introduced during the initial period of time can be viewed as perturbing our 

initial distribution. In practice we have found that for small time steps (10~ 7 ), after 

50 iterations, the profile has not deviated significantly from a step function. The 

stability requirement does not restrict D.t as severely as (5.13) seems to suggest. 

When we transform x into they coordinate, and use a uniform D.y, we in effect are 

using a variable D.x in x space. As x approaches -oo, the concentration is small but 

the D.x which we use is large. In essence we have used a variable step size explicit 

scheme to solve (5.13). We start the integration with step size of 10-8
, and then 

adjust D.t using the criteria 

Max [c - k D. t ] ~ 1, 
D.xZ all grid points 

(5.15) 

Furthermore we have limited the maximum value of D.t to 10-4 . The D.x we used 

is 0.02. Typically, after a dimensionless time of 0.05, D.t of 10- 5 is sufficient. To 

examine the effect of the choice of the initial step size and the maximum permitted 

D.t, we determined the concentration profile at a dimensionless time of 0.5 using 
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an initial !:J.t of 10-s and a maximum flt of 10- 5 , and compared this profile with 

that obtained using an initial flt of 10- 7 and a maximum !:J.t of 10-4 • The results 

are shown in figure 5.4. The two show good agreement. For generating the concen­

tration profile we used an initial flt of 10-s and a maximum flt of 10-4 • Several 

concentration profiles are shown in figure 5.5. 

To determine the rate of fall of the interface, we first obtained the concentration 

profiles at regular intervals of time. After choosing an opaque concentration, (i.e., 

the interface) we find from these concentration profiles the location of the interface 

at regular time interval. The slope of the interface position versus time curve (IPTC) 

gives the rate of fall of the interface. 

The concentration at which the suspension becomes opaque is low. Makhlouf 

(1988) had observed an interface at 0.1%. Oliver (1961) reported sedimentation ve­

locity for concentration of 0.33%, and Buscall et al. (1982) reported sedimentation 

velocity for a volume fraction of 0.5%. These velocities were obtained by measuring 

the rate of fall of the interface, and therefore we conclude that an interface can be 

observed at these low concentrations. We have determined the apparent sedimen­

tation velocity assuming that the suspension becomes opaque at 0.1 %, 0.5% and 

1.0%. 

The concentration profiles are nondimensional. To compare the theoretical 

results with experiments, we restore units to the concentration profiles using (5.7c) 

through (5.7e). This transformation depends on the parameters /3, Us, V(c0 ) and 

a. f3 was chosen to be 5.0, and the remaining parameters were chosen to model an 

actual experiment. To model Lynch's quiescent sedimenting suspension, we chose 

Us to be lmm/min, a to be 50 µm, and V( co) to be 6U8 a for a 1 % suspension. 

Lynch did not measure the diffusion coefficient; the value 6Usa comes from the 

results of our simulations of a 1 % suspension. For a equal 0 case, a typical IPTC is 

shown in figure 5.6. It is for a 3% suspension, and each of the curves in the graph 

is for a different opaque concentration. Figure 5.6 shows that the interface velocity, 

i.e., the slope of the curve, decreases with decreasing opaque concentration. An 

argument against our explanation that it is the spreading interface which causes 
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the discrepancy among the experimental data is that if the spreading interface is 

important, then the IPTC should show significant curvature. This is because the 

slope of the curve, which is the interface velocity, is equal to the bulk sedimentation 

velocity (a constant), minus the velocity due to the spreading interface which decays 

to zero with time. If the latter is important then significant curvature should be 

observed. The fact that the experimentally obtained IPTC show no curvature 

implies that the spreading interface is unimportant. Figure 5.6 however shows that 

this is not true; the IPTC shows only a slight curvature (which can be hidden by 

the scatter in the experimental data), and yet, as we shall see, the interface velocity 

deviate significantly from the bulk sedimentation velocity. 

In figures 5. 7 through 5.9 the interface velocity dependence on c is shown. In 

obtaining the interface velocity, we need to decide over which portion of the curve 

to measure the slope. This is because the curvature of IPTC changes with time, 

and hence the interface velocity will depend on which portion of the curve is used. 

In Lynch's experiments, the suspension was allowed to stand for awhile after mixing 

had stopped before the interface positions were recorded. His experiments typically 

lasted between ten and twenty minutes. To mimic this, we discard the inital part 

of the curve and also the part of the curve beyond twenty minutes. The interface 

velocity is obtained from measuring the slope of the remaining portion of the curve. 

Since the length of the initial period we should discard is not known, we chose three 

lengths of time and observed how the interface velocity is affected by the choice. 

Figures 5. i, 5.8, and 5.9 are obtained from discarding the first two minutes, the 

first four minutes, and the first seven minutes of the IPTC, respectively. Varying 

this time increases the interface velocity at high bulk volume fractions, but it does 

not affect the interface velocity at low volume fraction significantly. From these 

figures we observe that for an opaque concentration of 0.1 % the interface velocity 

falls close to the (1 - c-i) correlation. For an opaque concentration of 0.5%, the 

interface velocity still deviates significantly from the correlation (1. - 5.0c ), but 

for the opaque concentration of 1.0%, the deviation is negligible. We repeated the 

same set of calculations for a equal ~ and - ~. Figures 5.10 through 5.12 show 
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the interface velocity dependence on concentration for a equal } , and figures 5.13 

through 5.15 show the interface velocity dependence on concentration for a equal 

-} . (For each a .we again obtain three velocity curves corresponding to measuring 

the slope between two minutes and twenty minutes (figures 5.10, 5.13), four minutes 

and twenty minutes (figures 5.11, 5.14), and seven minutes and twenty minutes 

(figures 5.12, 5.15).) The interface velocity for a equal -} is slightly higher than 

for a equal 0 case, but otherwise the two are similar. The interface velocity for a 

equal } is slightly lower than for a equal 0 case, but again the two are similar. It 

thus appears that the interface velocity is insensitive to the value of a, at least for 

a between - } and } . 

In chapter 4, we pointed out that the simulator underestimates the diffusion 

coefficient. ·we therefore doubled the diffusion coefficient and examine how this 

affects the interface velocity. We only performed this study for a equal 0. Figures 

5.16 through 5.18 show that the interface velocity is lower than when the diffusion 

coefficient is 6U8 a, especially at large volume fractions. For an opaque concentration 

of 0.13, the interface velocity lies below the (1 - d) correlation. 

We next turn our attention to Lynch's sheared sedimenting suspension experi­

ment. The particle radius again is 50 µm and the Stokes velocity is lmm/min. From 

our simulator the diffusion coefficient is 0.6U8 a. The interface velocity dependence 

on concentration is shown in figure 5.19. The interface velocity does not deviate 

from the bulk sedimentation velocity. 

Finally, we model a suspension of small particles. In particular, we will examine 

the experiments of Chen , and Schachman (1955 ). In their experiments, they used 

0.13 µm particles with Us of 5.6x10- 3 mm/min and a Brownian diffusion coefficient 

of l60.0U8 a. The experiments were terminated after the particles had settled over 

one centimeter which translates to 36 hours. Figure 5.20 shows the interface velocity 

dependence on concentration. There is little deviation from the bulk sedimentation 

velocity. 

5.3 Conclusions 

We have found that interface spreading is negligible for suspensions of Brownian 
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particles, and for sheared suspensions. For these two cases, the interface velocity 

and the bulk sedimentation velocity are the same. For a quiescent sedimenting 

suspension of large particles, this is not true. \\ie have found that the interface 

velocity differs from the bulk sedimentation velocity not only in the magnitude but 

also in its is dependence on concentration. For this case the two velocities should 

not be equated. These results, however, hinge on the opaque concentration which 

is not known with precision, and therefore these conclusions should be considered 

tentative only. In the future, when sedimentation velocity measurements are made, 

one needs also to ascertain that the interface spreading is negligible so as to avoid 

misinterpreting the sedimentation velocity data. 



Brownian Hydrodynamic Thickness Total Distance 
Experiments a Diffusion Diffusion of Settled 1,11; I; 114 

Coefficient Coefficient lnterf ace ( I;) by Interface (/,) 
(µm) (cm 2/s) (cm 2/s) (cm) (cm) 

Chen and 
Schachman .13 1.6x 10-1 6x 10-10 .002 1 500. .04 

(1955) 
Buscall 1.55 l.4x 10-¥ 3x 10-• .001 2 2000. .01 
(1982) 
Lynch 

(sheared) 51 - 1.8x 10-5 . 003 2 667 • .03 
(1985) 
Lynch 

(quiescent) 51 - 1.Sx 1cr .03 2 67. .3 
(1985) . 

Oliver 80 - 4.Sx 1C11 .OS 2 40. .s 
(1961) 

Table 5.1 Relative importance of interface spreading to hindered settling. a is the 
particle radius, and la is the difference in the distance traveled by the interface if 
it moves with U6 , and if it moves with U,(l - /3c). 
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Figure 5.14 This is the concentration dependence of the sedimentation velocity. 
The diffusion coefficient varies with c- ! , and is equal to 6U8 a at a concentration 
of l %. The slope is taken from the interface versus time curve between the t=4.0 
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correlation (l.0 - d ). The + symbols arc for an opaque concentration of 0.1 %. 
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Figure 5.15 This is the concentration dependence of the sedimentation velocity. 
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Figure 5.16 Concentration dependence of the sedimentation velocity. The diffusion 
coefficient is independent of concentration, and is equal to 12Uda. The slope is taken 
from the interface versus time curve between the t=2.0 and t=20.0. The solid line 
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Figure 5.17 Concentration dependence of the sedimentation velocity. The diffusion 
coefficient is in<lependent'of concentration, and is equal to 12U8 a. The slope is taken 
from the interface versus time curve between the t=4.0 and t=20.0. The solid line 
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t=2.0 and t=20.0. The solid line is the correlation (1.0 - 5.0c). The dotted line is 
the correlation (1.0-c!). The+ symbols arc for an opaque concentration of0.1%. 
The * symbols are for an opaque concentration of 0.5%. The & symbols are for an 
opaque concentration of 1.0%. 
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Figure 5.20 Concentration dependence of the sedimentation velocity for a Brownian 
suspension. The diffusion coefficient is independent of concentration, and is equal 
to 160U.a, the Stokes's velocity is 5.6x10- 3 , and the particle radius is 0.13Jlm. The 
slope is taken from the interface versus time curve between the t=2.0 and t=20.0. 
The solid line is the correlation (1.0-5.0c). Th<? dotted line is the correlation {1.0-

c! ). The + symbols arc for an opaque concentration of 0.1 %. The * symbols a.re for 
an opaque concentration or 0.5%. The & symbols am for an opaque concentration 
of l.0%. 
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