
The Effects of a Planar \Vall 

on the Low Reynolds Number 11otion 

of Solid Particles, Drops and Bubbles 

Thesis by 

Edward Paul Ascoli 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1988 

(Submitted May 27, 1988) 



-ii-

Acknowledgement 

I would like to thank my research advisor Professor L. Gary Leal. His 

patience and his confidence in my abilities has been invaluable. 

The members of the Leal, Herbolzheimer and Brady groups have been an 

invaluable source of information, comraderie and support. These and other 

friends have made the bad times bearable and the good times all the more 

enjoyable. Last, but certainly not least, very special thanks to Kathy Lewis. 



-iii-

Abstract 

This thesis focuses on the low Reynolds number interaction of solid parti­

cles, deformable drops and bubbles with a rigid plane boundary. In chapters 

I, II and III we use a numerical technique which employs a boundary integral 

equation reformulation of Stokes system. In particular, the kernels in the inte­

gral reformulation derive from the Green's function corresponding to a no-slip 

planar boundary. Motion is assumed axisymmetric about the line perpendicular 

to the plane and through the drop or particle center. 

\Ve consider the solid particle case in chapter I. Particle velocity is pre­

scribed and the resultant hydrodynamic force on the particle calculated. The 

results are discussed in the context of near and far field asymptotic theories as 

well as existing numerical techniques. 

In chapter II deformable drop motion via buoyancy is examined and the 

time evolution of drop shape is obtained. Interfacial tension is assumed constant. 

Emphasis is placed on the details of drop "dimpling". In particular, at the initial 

stages of dimpling, pressure variation normal to the wall is found to be significant 

in the film trapped between the drop and the wall. Thin-film analytic theories 

neglect this variation in pressure. The consequences of neglect of this pressure 

variation are discussed. 

In the appendix to chapter II we develop a thin-film asymptotic theory for 

the buoyancy driven motion of a bubble toward a planar wall. The consequences 

of this theory are related to the results of chapter IL This work is still in progress, 

and for this reason it is relegated to an appendix. 

Thermocapillarity provides the mechanism for drop motion and deformation 

in chapter III. Surface tension is allowed to vary with temperature and the drop 

is placed in a non-constant temperature field. The effects of physical parameters 

on drop evolution are discussed. 

Chapter IV is a digression from low Reynolds number wall effects. Here 

we examine a numerical technique developed by Ryskin and Leal for generating 
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boundary-fitted orthogonal coordinate grids. Specifically, we present a proof of 

the existence of a boundary-fitted orthogonal grid for the case when the ratio of 

"scale factors" is of product form. 
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Thesis Introduction 

The bulk of this thesis focuses on the low Reynolds number interaction 

of solid particles, deformable drops and bubbles with a rigid plane boundary. 

In chapter I we consider the solid particle case. Particle velocity is prescribed 

and the resultant hydrodynamic force on the particle calculated. The results of 

chapter I are of importance in a wide variety of particle sedimentation processes. 

In particular, all real systems are externally bounded by rigid walls or free 

surfaces. When these external boundaries are located at finite distances from 

the particle, they can have significant effects on the particle motion. 

In chapter II deformable drop motion via buoyancy is examined and the 

time evolution of drop shape is obtained. This work is of interest in the field 

of coalescence. Understanding the interaction of a deformable drop with a pla­

nar wall is a first step toward understanding how two drops coalesce or how a 

drop interacts with an interface. In this regard, the experimentally observed 

phenomenon known as "dimpling" is crucial. A dimpled configuration is one in 

which the film trapped between the drop and the planar wall (or second drop, 

or fluid-fluid interface) is thinner near the rim than at the center. Details of 

the drainage of this "trapped" fluid are necessary to understanding coalescence. 

A multitude of researchers have developed analytic theories to model the dim­

pling and drainage phenomenon. These analytic theories are based upon the 

assumption that the trapped film is sufficiently thin to apply a lubrication 

type analysis; this assumption is examined in detail. 

Thermocapillarity provides the mechanism for drop motion and deforma­

tion in chapter III. With recent advances in space technology, materials process­

ing in space is rapidly becoming a reality. In the low-gravity environment of 

outer space, thermocapillary migration is a potential mechanism for separation 

techniques. 

We employ a numerical method to examine wall interactions in chapters 

I-III. Specifically, we use a numerical technique based upon a boundary integral 
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reformulation of Stokes equation. In particular, the kernels in the integral re­

formulation derive from the Green's function corresponding to a no-slip planar 

boundary. By employing the wall Green's function we totally eliminate the need 

to numerically truncate and discretize the planar wall. This simplification has 

significant consequences in terms of numerical accuracy and speed. 

Chapter IV is an independent digression from the theme of this thesis; here 

we examine a numerical technique developed by Ryskin and Leal for generating 

boundary-fitted orthogonal coordinate grids. 



-vii-

Table of Contents 

Aknowledgement ........................................................................................................ 11 

Abstract ....................................................................................................................... 111 

Thesis Introduction .......... .. .......... ...... ........ ........ ............ ........ ..................................... v 

Chapter I: Low-Reynolds number hydrodynamic interaction of a solid parti-

cle with a planar wall ............................................................................................... . 

In trod uc ti on 

Formulation 

1 

2 

4 

(a) Theory ........................................................................................................... 4 

(b) Formulation for particle translation in an otherwise quiescent fluid ......... 9 

(c) Implementation ............................................................................................. 11 

Numerical Results ...................................................................................................... 13 

(a) Sphere near a plane wall .............................................................................. 13 

(b) Ellipsoids near a plane wall ......................................................................... 16 

Conclusions ......................... .... ........................ .. .......... .................... .......... ................. 20 

Appendix .................................................................................................................... 21 

(a) The Integrals C/'"' and C/'"' ........................................................................... 21 

(b) Small k expansions ...... ...... ........................ ............ ...... ...................... .... ....... 22 

(c) The Singular Contributions .......................................................................... 23 

References ... .. .. .. . . .. .... .. .. .. .. .. .... .... .. .... .. .. ...... .. ...... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . 24 

Figure Captions ............. ........................ ............................ .... ...................... ............... 25 

Table Captions ....... .............. ............................................ ............................ ............... 28 



-viii-

Figures 30 

Tables .......................................................................................................................... 54 

Chapter II: Buoyancy-driven motion of a deformable drop toward a planar 

wall at low Reynolds number .................................................................................... 71 

Introduction 

Formulation 

72 

76 

(a) Equations and boundary conditions ............................................................. 76 

(b) Implementation ............................................................................................. 86 

Numerical Results ...................................................................................................... 89 

(a) Preliminary testing ........................................................................................ 89 

(b) Results . .. .. .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .... .. .... .. .... .... .. .. .. .. .. .. .... .. .... ...... .. . 92 

(c) Discussion ............................................................................................................. 99 

Appendix A ................................................................................................................ 102 

(a) The matrices P, Q and the vectors S and \V .............................................. 102 

(b) The Integrals C/m and C/m 

(c) The Singular Contributions 

Appendix B: The thin film trapped between a bubble and a planar wall 

Introduction 

Formulation 

Discussion .......................................................................................................... . 

References ................................................................................................................. . 

Figure Captions ......................................................................................................... . 

Appendix Figure Captions ........................................................................................ . 

104 

107 

110 

111 

113 

122 

125 

127 

131 



-ix-

Figures 132 

Chapter III: Thermocapillary motion of a deformable drop toward a planar 

wall ............................................................................................................................. 173 

Introduction 

Formulation 

174 

176 

(a) Equations and boundary conditions ................................ .... ............ .......... ... 176 

(b) Implementation .......... ...... .... .. ................ ...................... .... .... .... .... .............. ... 184 

Numerical Results ...................................................................................................... 188 

Conclusions ........................................................................................... ........ ..... 192 

Appendix ............................................................................................................ 193 

(a) The integrands P, Q and w ........................................................................ 173 

(b) Solution of equation (29) ............................................................................. 195 

References ............... .... .. .... ...... .. .......... .......... ................ .. ...... .......................... .... ....... 197 

Figure Captions ............................................................................. ............................. 198 

Figures ......... ............ ........ .. .... .. .. .. .... ...... .................... ......... ................... ..................... 200 

Chapter IV: A note on distortion functions for the strong constraint method 

of numerically generating orthogonal coordinate grids ............................................ 213 

Abstract ....................................................................................................................... 214 

Introduction 

Formulation 

215 

218 

The Proof ... ............ .......... .. ........................ .. ............ .. .... ..... ..... .. .......... ................ ....... 220 

Conclusions ........... .... ................................................................................................. 224 

Acknowledgements .................................................................................................... 225 

References . .. . . .. .. .. . . .. .. .. .. .. .. .. .. .. ... . .. .. .. .. .. .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . .. .. .. .. .. .. .. .. . 226 



-x-

Figure Captions 227 

Figures ......... ............ .......... ................................................ .. ................ ....................... 228 

Thesis Conclusions ................................................ .............................. ....................... 229 



-1-

Chapter I 

Lmv-Reynolds number hydrodynamic interaction 

of a solid particle 

with a planar wall 

E.P. Ascoli, D.S. Dandy, and L.G. Leal 

Dept. of Chemical Engineering 

California Institute of Technology 

Pasadena, California 91125 



-2-

Introduction 

Knowledge of the hydrodynamic resistance of a solid body moving slowly 

through a viscous liquid is of importance in understanding a wide variety of low 

Reynolds number sedimentation phenomena. The majority of slow viscous flow 

resistance calculations have focused on situations where the fluid media extends 

to infinity in all directions. In all real situations, however, the fluid is externally 

bounded by rigid walls or free surfaces. When these external boundaries are 

located at finite distances from the particle, they can have significant effects 

on the particle motion. A variety of authors have theoretically considered the 

effects of walls on the creeping motion of small solid particles for specific cases 

where the particle and wall geometries are simple. In particular, Brenner (1961) 

used bipolar co-ordinates to obtain "exact" corrections to Stokes drag for a solid 

sphere moving perpendicular to a solid wall for the full range of wall to sphere 

distances. \Vakiya (1957) considered slow viscous flow past ellipsoids between 

two parallel walls. For more general geometries, asymptotic theory has been 

developed using the method of reflections when the particle is, in some sense, 

far from the wall. For example, Brenner (1962, 1964) and Cox and Brenner 

(1967) have considered the problem of an arbitrary particle in the limiting case 

that the ratio of particle dimension to the distance from bounding walls is small. 

At the other extreme, when the particle-to-wall distance is small compared to 

the particle dimension, classical lubrication theory (Cox, 1974 and Reynolds, 

1901) has been applied. 

For more general cases, it is most convenient to adopt a numerical method. 

In particular, for low Reynolds number flows governed by the creeping motion 

equations, the most efficient approach is the boundary integral method pio­

neered by Youngren and Acrivos (1975) for uniform flow past a solid particle of 

arbitrary shape in an unbounded fluid medium. In their technique, the creeping 

flow problem was formulated as a system of linear integral equations of the first 

kind for the distribution of stokeslets over the particle surface. The unknown 
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densities of the stokeslets were exactly the desired particle surface stress forces. 

Subsequent numerical discretization of the integral system yielded an algebraic 

system which was easily solved for the particle surface stress forces. 

The formulation of Youngren and Acrivos could also be applied to the case 

of a solid particle moving near a planar wall. Due to their choice of the stokes let 

as the fundamental singular solution, however, surface stress forces would need 

to be determined at the planar wall as well as the particle surface. In general, this 

would necessitate truncation of the planar wall to a finite region, with subsequent 

distribution of elements on this finite region. The present work considers an 

alternative boundary integral formulation of the problem, with the fundamental 

singular solution, or more accurately the Green's function, selected to eliminate 

the need for determination of surface forces on the planar wall. The formulation 

will be sufficiently general to allow calculations for arbitrary particles in any 

base flow that satisfies Stokes equations and the no-slip condition on the planar 

wall. For simplicity, however, the method is illustrated for the specific case of 

axisymmetric ellipsoidal particles moving perpendicular to the planar wall in an 

otherwise quiescent fluid. 
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Formulation 

(a) Theory 

We consider the slow motion of a solid particle in the vicinity of an infinite, 

no-slip, planar boundary. The suspending fluid is assumed to be Newtonian with 

constant density. The problem is shown schematically in figure 1. The analysis 

presented here is based upon the creeping motion approximation in which the 

inertial terms in the equations of motion are neglected entirely. The governing 

equations, in dimensionless form, are thus: 

The boundary conditions are 

u--+ 0 as l\x!/ --+ oo, 

u = 0 for x E P = {x E R 3
: x = (x,y,z) and z = 0} 

and on the surface of the particle 

u = U8 (X 8 ) (specified) 

(1) 

(2) 

(3) 

(4) 

(5) 

For the case of a solid particle moving in an otherwise quiescent fluid, u 8 is con­

stant on the surface. For the case of an imposed base flow at infinity, Ub, Pb, 

satisfying Stokes equation and the no-slip condition on the planar wall, the vari­

ables u and p in equations (1-5) are to be interpreted as disturbance variables, 

i.e. the actual flow variables minus the base flow. 

In the boundary integral method, equations (1) and (2) and the correspond­

ing boundary conditions (3-5) are recast into an equivalent integral formulation. 

The current application of the technique differs from previous applications (gen­

eral details of the boundary integral formulation may be found in Ladyzhen­

skaya, 1963) primarily in the choice of the so-called "fundamental solution" for 
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the system. The transformation of equations (1-5) into integral form is accom­

plished using the Greens formula for the Stokes system: 

where 

l ((v 2 u - vp) · w-(v2w + v q) · u)dV = 

xEO 

f ( n · T · w - n · :E · u) dS lan 

T =(vu+ (vu)r) - pl 

:E = (vw + (vw)T) + qI 

(6) 

(7) 

(8) 

Equation (6) is valid for any sufficiently smooth fields u, p and w, q such that 

u and w are solenoidal. Here 0 is a subset of R 3 and BO is its boundary with 

outer normal n. This formula, which relates the Stokes operator to its adjoint 

operator, is derived by direct application of the divergence theorem and algebraic 

manipulation. Solutions to appropriately selected adjoint operator systems may 

be superposed using equation (6). 

Thus, in the "classical'' boundary integral formulation, Youngren and Acrivos 

(1975, 1976), Lee and Leal (1982), Rallison and Acrivos (1978) all used the fun­

damental solution corresponding to a point force in an unbounded Newtonian 

fluid, i.e. the solution of 

0 = v c .yi (x, c) 

subject to the simple additional conditions 

.yi (x, c) ' q_i (x, c) -> 0 llxlf , II ell _, oo 

This "fundamental solution" is the so-called stokeslet solution 

V~· = _ -2._{bij + TiTj} 
i 87r r r 3 

AJ _ 1 { Tj} q -- -
47r r 3 

f) = 2_ { TkT/Tj } 
kl 47r r5 

(9) 

(10) 

(11) 
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where r = ( € - x). Physically, v{ is the ith component of the velocity at e 
due to a unit force, or stokes let, applied at the point x in the direction ej. The 

quantity -qi is the corresponding pressure. Superposition is performed using 

equation ( 6) by identifying w with vi (x, e), :E with ±i and q with q_i. The 

result is the system of integral equations: 

- (u(x))i = { n · T(e) · vi(e,x) dSe - { n · ±i(e,x) · u(c) dSe lao lao 
x E n for J = 1 , 2, 3 

(12) 

The first integral in equation (12) is termed the single layer potential and has 

density f = n · T. Similarly, the second integral is called the double layer 

potential with density u. Equation (12) provides an integral representation for 

the solution of Stokes equation in terms of the values of the surface stress and 

velocity on an. However, equation (12) is, strictly speaking, only valid for x E n 

but, in fact, the single layer potential is continuous at the boundary while, the 

double layer potential suffers a jump across the boundary given by 

(13) 

Here nc = R 3 /(nu an) is the exterior ton and its boundary an. Thus at the 

boundary, eqn(12) may be written as 

-~ (u(xs))i = fa
0 

(n · T(c) ·vi(c,xs) - n · ±i(€,xs) · u(c)) dSe 

X 8 E Bn 
(14) 
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Note that the problem has not actually been solved but instead recast as a system 

of integral equations. The normal tractions, f, are not known at the boundaries. 

The value of this boundary integral reformulation lies in the fact that knowledge 

of the boundary velocity (via boundary conditions) then allows direct calculation 

of the normal tractions via (14). The formulation (14) was used by Youngren and 

Acrivos (1975) to calculate the drag forces on solid particles in an unbounded 

domain. In that case, 11 corresponds to the unbounded fluid and ao to the 

surface of the particle. 

However, when this "standard" formulation is applied to the current prob­

lem, depicted in figure 1, then necessarily an= Sp+P. In this case, the normal 

tractions must be calculated both on the body surface and on the planar wall 

P. Although the unknown normal tractions can be determined numerically, the 

planar wall must necessarily be truncated at a f in£te distance from the axis of 

symmetry, and the "remaining" portion of the wall discretized. 

A more efficient path used in the following sections of this paper is to choose 

a fundamental solution, or more correctly a Greens function, that includes the 

no-slip boundary condition at the wall. Thus, instead of (11) we use the solution 

of the system 

\7 eqi (x, E) + \7~vi (x, E) 

\7 e . vi (x, E) 
(15) 

(16) 

as the fundamental solution or Green's function to be superposed via (6). The 

solution to this system is discussed by Blake (1971) and stems from the work of 
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Oseen(l927). It is 

(17) 

(18) 

2- { TiTjTk - RiRjRk - ~. [- X3 8· R. 
47r rs RS 2x3 J Rs ik J 

+ k (R·o. , 8_ ·R ) + Ri83jRk _ sRiRjRke3] }· 
Rs i Jk ' tJ k Rs R7 

(19) 

wherer = (E1-x1,6-x2,E3-x3)T, R = (6-xi,6-x2,e3+x3)T, r = 
[(6 - x1) 2 + (E2 - x2) 2 + (6 - x3) 2]112

, R = [(6 - x1) 2 + (6- x2) 2 + (6 + 
x3)2] 

112
, and R3 = E3 + x 3 . The quantity ~j has value +1 for j = 1, 2 and 

-1 for j = 3 Note that the Greens function (17-19) consists of the fundamental 

solution (11) plus terms due to the presence of the wall. It corresponds to the 

velocity, pressure and stress fields for a point force in the fluid in the presence of 

a plane wall, upon which the no-slip condition has already been applied. Given 

the geometry of figure 1, the analog of equation (12) for this Greens function is 

-(u(x))j = r (n. T(E) . vi(E,x) - n. :E3.(E,x) . u(E)) dSe 
j Sp (20) 

x E D for j = 1 , 2, 3 

In this expression, n is the normal vector pointing inward to De. Due to condi­

tion (16), the surface integration in (20) is over Sp and not Sp+ Pas would be 

the case if the fundamental solution (11) were used. The additional wall terms 

are well behaved for x E Sp. As a result, each term above involving the kernel 
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vi is continuous for x E Sp. The terms involving the kernel 1:f suffer a jump 

across Sp but this discontinuity stems directly from the r terms i.e. the terms 

present in the fundamental solution (11). Thus, the jump condition follows from 

eqn(l3) and is 

lim { { n · 1:f(e,x) · u(e) dSe} 
xED-+x, } Sp 

X 8 E Sp (21) 

Thus, in terms of the Greens function (17-19) the system to be solved is: 

-! 1:f(xs,e). Us(e). ndSe + J vj(xs,e). f(e)dSe 
Sp Sp 

X 8 E Sp 

(22) 

This is the primary result of this section. Equation (22) provides a relationship 

between the unknown tractions f on the particle surface and the particle velocity 

for arbitrary particle-wall geometries and base flows. 

(b) Formulation for particle translation in an otherwise quiescent 

fluid 

For the case in which the particle translates in an otherwise quiescent fluid, 

the result (22) can be simplified further. In this case, u(x 8 ) = U 8 is a constant 

for X 8 E Sp. Modifying the arguments of Ladyzhenskaya (1963) it can be shown 

that for a constant vector, C 

{ ~1c. 2 J 
-C· J 

xED 
x E Sp 
x E De 
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Using this fact, we obtain a linear integral equation of the first kind for f 

X 8 E Sp (23) 

For the case of axisymmetric motion, i.e., U 8 -ez with the particle 

oriented such that it possesses axisymmetry about the z axis, these equations 

simplify further. Here, the particle is a body of revolution with the z- axis being 

the axis of revolution. For convenience, a cylindrical coordinate system is em­

ployed with p = J x 2 + y 2 • There are several ways in which the particle surface 

may be represented. The simplest (used by Youngren and Acrivos, 1975) is to 

define the particle surface as (p(z), z) for (} E [O, 27r), the functional dependence 

of p on z being given. This representation implicitly limits the types of surfaces 

which can be considered to those for which p is a single valued function of z. 

An equally simple, but more general representation, which avoids this potential 

problem, is to parametrically define the surface as (p(s),z(s)) for(} E [0,27r), 

wheres is a parametric independent variable. This was the approach taken here. 

The dependence of the integrands on (} in this system is known explicitly, 

and integration with respect to this variable may be performed. Although the 

resulting integration yields quite complex expressions, the net result is the re­

duction of the integration domain from two dimensions to one. The resulting 

equation for the unknown surface stress components, fp and fz, is 

X 8 E Sp 

where p( s) and z( s) are the derivatives of p and z with respect to s and 

-87rQ11 = Cf1 
- Cf1 + PPo(Cg2 

- cg2
) + (p 2 + p;)(cg 1 

- cg 1
) 

+ PPo(Cgo - cg0
) - 2z0 z[cg1 

- 3{(p 2 + p;)C~1 + PPo(C~2 + C~0)}] 

87rQ 12 

(24) 
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A 00 2 A 00 + 2z0 z(C3 - 3R3 C5 ). 

Here the integration variable e has been written as (p, z) and (Po, Zo) corre­

sponds to x, the fixed point in the integration. Also, r3 = z - Zo and R3 = z + Zo. 

The expressions c;m and c;m are defined as: 

and 

where 

and 

nm _ sin X COS X d c - ~- x 
2 1

7r • n 2 m 2 

P - IP I 2 o [ 1 - k 2 sin 2 x YI 2 

2 !'Ir 
,r;12 0 

I 

k2 

/R 

k1 

sin n 2x cosm 2x d 
I x, 

[ 1 - kk sin 2 x Y 2 

(p + Po) 
2 + r~ 

4PPo 

I 

(P + Po) 
2 + R~ 

4PPo 

/R 

(25) 

(26) 

Expressions (25-26) for c;m and c;m have been analytically evaluated, and the 

results of the integrations are given in the appendix. 

( c) Implementation 

System (24) may be discretized and numerically solved . The approach 

taken here is that used by Youngren and Acrivos(1975) , i.e., the method of 

Krylov-Bogoliubov (Kantorovich and Krylov, 1963 ). Specifically, the particle 

arc, which is given by (p(s),z(s)), for s E [s 0 ,s1], is divided into N elements. 

This is accomplished by dividing the interval [ s0 , sf] into subintervals, l::.sj, with 

centers Sj U = 1, ... , N). Each parametric value Sj corresponds to a point on 
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the arc Xj = (p(sj),z(sj)) and each !:Hj corresponds to a segment or element 

of the arc. The elements are assumed to be sufficiently small that the local 

normal tractions f P and f z may be assumed constant within each element. The 

resulting discretized system is: 

( ~1) " - t { [L, Q(x;, <(s)) p(s) (P'(s) + i 2 (s)) 
112 

ds] 

(27) 

This is a linear system of 2N equations in the 2N unknowns fp(xj), fz(Xj) where 

(1 S j S N). Each coefficient 

(28) 

for j /:: i was evaluated by gaussian quadrature. ·when J. = i, and s = Si then 

~(s) =Xi, and the function Q becomes unbounded. In this case, the region Asj 

is subdivided into three smaller regions, one of which is centered at the singular 

point Sf and is Arng = [sj - ~' Sj + ~]. The constant Eis assumed small enough 

that over A jing the arc may be accurately approximated by the tangent line 

through the point Xf. Following Lee and Leal (1982), the singular contribution 

to equation (27) from over the interval Ajing can be approximated analytically. 

The details of the singular contribution are given in the appendix. In the remain­

ing two portions of the singular element, As j, accurate Rhomberg integration 

was performed. The linear system was solved using a standard matrix inverter. 



- 13 -

Numerical Results 

Axisymmetric flow calculations were performed on the class of ellipsoidal 

particles given by (figure 2a) 

or equivalently, written in parametric form 

z =zgap + b [sin (?rs - ; ) + 1] 

7f 
p =acos(?rs - -) 

2 

s E [O, 1] 

The parameters a, b and Zgap have been made dimensionless with respect to 

the length, l, which is the radius of a sphere of equivalent volume. This nondi­

mensionalization provides a relationship between a and b. In fact, if a = b /a 

then b = a 213 and a = a- 1/ 3 . Thus a and Zgap , the minimum particle to wall 

distance, are the only geometric variables in the system. The case of a sphere is 

recovered by setting a = 1. The parametric variable s was chosen for simplic­

ity, and in fact 7f s corresponds to the angle shown in figure 2b. A non-optimal 

strategy of constant element width, .6.s, was employed. In all cases, the particle 

drag was normalized with respect to the theoretical values for an unbounded 

fluid (Lamb, 1945). The normalized drag force is denoted by .\. 

(a) Sphere near a plane wall 

For the special case of a sphere, "exact" values of >. are given by (Brenner, 

1961) 

>. = ~ sinh(w) f n(n + 1) { 2sinh[(2n + l)w] + (2n + 1) sinh(2w) - l} 
3 n=I (2n - 1)(2n + 3) 4sinh2 [(n + ~)w] - (2n + 1)2 sinh 2 (w) 

where w =In (zgap + 1+)z5ap+2zgap ) 

(29) 
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Table 1 lists the results from expression (29) as well as numerical results obtained 

here with 10, 20, 30 and 40 elements on the surface of the sphere. Even for 10 

elements, the numerical and theoretical results are in excellent agreement. For 

all values of Zgap in the range 100 to 0.25 the error is less than 0.5 percent 

for 10 elements, less than 0.09 percent for 20 elements, 0.05 percent for 30 

elements and less than 0.03 percent for 40 elements. For smaller values of Zgap 

the accuracy deteriorates for all numbers of elements because the magnitude of 

the local stresses and stress gradients increase dramatically on the wall side of 

the sphere as Zgap decreases. Large stress gradients lead to a breakdown of the 

constant-within-each-element assumption and so degrade numerical accuracy. 

The evolution of the local surface stresses as the sphere approaches the 

wall is plotted in figures 3a and 3b for the 40 element case. An increase in the 

number of elements in the small Zgap case improves the overall accuracy. This 

is demonstrated by the fact that with 40 elements and Zgap = 0.1 the error in 

the normalized drag is 0.265%, as compared with 2.93 percent for 10 elements. 

In the closest case of Zgap = 0.05 with 40 elements the error in drag is only 1.13 

percent. 

For the sake of comparison, sphere calculations were also performed us­

mg the classical boundary integral technique with the Stokeslet fundamental 

solution. This entailed integration over the planar wall. The planar wall was 

discretized by truncating at a radial distance denoted by Pt and placing N wall 

elements in the interval from p = 0 to Pt· Nsphere elements of constant bt..s width 

were used on the sphere surface. On the wall, elements of constant as well as 

non-constant width, bt..p, were employed. The non-constant width elements were 

selected so that the bt..p was small near p = 0 and increasing in size to p = Pt· * 

* There are an infinite number of choices for such a non-constant distribution 

of elements. The current choice was made arbitrarily and for simplicity. If 

Pj = Pt( %:a~/) 2 then the jth element is the interval [(Pj-l + Pj)/2, (Pj+I + 

Pj)/2] for j = 2, 3, ... Nwall - 1. The first interval is [O, (p 1 + p2 )/2] and the last 
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The results are given in tables 2-5 where the numerical values for various combi­

nations of Nwal/, Nsphere and Pt are compared to the exact solutions of Brenner. 

Although the accuracy obtained is quite good when the sphere is far from the 

wall for the majority of the cases considered, accuracy degrades rapidly as the 

sphere approaches the wall. As expected, when the sphere is near the wall the 

accuracy is best when the wall elements near p = 0 are smallest since smaller 

elements are capable of resolving the large variation in wall surface traction. 

Thus for both constant and non-constant width elements the best accuracy near 

the wall for a given N wall occurs when Pt is smallest. 

The Stokelet and Greens function methods are best compared on the basis 

of total number of elements, Ntotal, where Ntotal = Nwall + Nsphere for the 

Stokes let case and Ntotal is taken to be the number of elements, N, on the 

particle surface for the Green's function method. Overall, for the same Ntotal the 

Greens function results are far superior in accuracy to the Stokeslet results. In 

particular, the Greens function results for N = Ntotal = 30, with few exceptions, 

are more accurate than any of the Stokeslet results for Ntotal = 60 (N wall = 30, 

Nsphere = 30). It is anticipated that the accuracy of the Stokeslet method 

may be improved by distributing more, smaller width elements near p = 0 

on the wall. Nevertheless, such redistributions are ad hoc and of unlimited 

variety. Further, such redistribution of points on the sphere surface for both the 

Greens function and Stokeslet methods could also undoubtedly lead to increased 

accuracy. Employing the Greens function entirely eliminates the need for ad 

hoc choices of wall element distributions and wall truncation distances. For 

the solid sphere problem Brenner's exact solution is known and the dependence 

of the accuracy of the Stokeslet method on the parameters N walZ, Pt and the 

distribution of elements can be determined. In any realistic problem the choice 

interval is [(PNwall-1 +PNwall-2)/2,pt]· Zj=O for all intervals. This distribution 

corresponds approximately to a linear increase in the b..p width moving outward 

along the wall. 
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of these parameters may be difficult or unmotivated. 

Figure 4 compares the computational time for the Greens function and the 

Stokeslet methods as a function of Ntotal· When Ntotal is small the Greens func­

tion method is approximately 11/2 times slower than the Stokeslet method. The 

longer computational time of the Greens function method for the same Ntotal 

is a direct consequence of the increased complexity of computing the Greens 

function kernels compared with the Stokeslet kernels. For larger Ntotal , the 

time required to invert either the Stokeslet or Greens function linear systems 

for the same Ntotal ( which is approximately the same since both systems are 

2Ntotal x 2Ntotal in size) becomes more important and the ratio of computa­

tional times tends toward 1. Note, however, that for comparable accuracy the 

Greens function method requires less than 1/2 the total number of elements that 

the Stokeslet method requires. Thus, for a given level of accuracy the Green's 

function method is actually substantially faster than the Stokeslet method. All 

computations were performed on a Sun 3/160 workstation with a floating point 

accelerator. Absolute computational times were on the order of minutes (for in­

stance, Stokeslet method calculations with Ntotal = 60 took approximately 240 

cpu seconds, Ntota1=40 took 100 cpu seconds, Ntotaz=20 took 25 cpu seconds 

and Ntotaz=12 took 10 cpu seconds). 

(b) Ellipsoids near a plane wall 

Calculations were carried out for ellipsoids with axes ratios a of 0.0625, 

0.125, 0.25, 0.5, 2, 4, 8 and 16. The parameter Zgap ranged from 0.05 to 100. 

Computations were terminated for small Zgap when calculated local stresses grew 

large and differed significantly in neighboring elements (this generally occured 

when the computed value of).. was of the order of several hundred). 

Brenner (1962) developed an asymptotic theory for the case when an ar­

bitrarily shaped particle is in motion far from the wall. More specifically, if 

Req is the equivalent radius of the particle (defined such that 67r µU Req is the 
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force exerted on the particle when falling with velocity U in the absence of the 

wall) then Brenner's asymptotic theory is valid for Zc def Zcenter/ Req ~ 1 where 

Zcenter is the dimensional z-axis distance to the center of the particle. This 

asymptotic theory predicts an expression of the form 

,\ = 1 
1 - _£__ + 0 (z - 3 ) 

8zc C 

(30) 

Note that Zc = (zgap + a 213
) rJ-- and for ellipsoidal particles Req is derived from 

.tf.eq 

the general expressions (Lamb, 1945): 

Req 8 

l 3( a413 Ko + /30) 

and 
f3oa2/3 - 2 

Ko= 
o:,2 -1 

al/3 a+ Ja2 -1 
/30 = ln( ) Vo. 2 -1 a-vG-1 

for a 2 - 1 > 0 

2a 113 r. a 
/30 = V ( - - arc tan( V ) ) 

1 - o:,2 2 1 - o:,2 
for c? - 1 < 0 

Numerical results for the ellipsoid and sphere cases are compared with the 

large Zc theory in figures 5a-13a and in addition the ellipsoid numerics and large 

Zc theory are tabulated in tables 6-13. The most remarkable observation from 

these comparisons with the large Zc theory is that the numerical results agree 

quantitatively with the large Zc theory for values of Zc as small as 5., while 

qualitative agreement extends to even lower values of Zc, including the sharp 

upturn in ,\ for Zc = ~. However, it is clear that the far-field results cannot 

literally capture the singularity in ,\ and other detailed behaviour for very small 

z9 ap ( or zc). For this purpose, a more appropriate asymptotic analysis is via 

lubrication theory for flow in a thin film. 

Using classical lubrication assumptions Cox ( 197 4) developed an asymptotic 

theory which is valid for the case in which Zlub d::J bzgap/ a2 = Zgapa413 < < 1. 

This theory predicts 

,\ = 
1 

R + O(ln(zzub)) 
a 4! 3 9z1ub 

(31) 
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Explicit in Cox's lubrication theory is the assumption that as Z/ub ---+ 0 the 

approaching surfaces come together in single point contact. Thus, Cox's theory 

is not valid for the case of a disk approaching a planar wall with the face of the 

disk parallel to the wall. In fact, the case of a disk of radius R approaching a 

planar wall in this manner was analyzed by Reynolds (1901) who predicted: 

(32) 

where Zgap is the dimensional gap distance. Notice that as Zgap ---+ 0 equa­

tion (31) predicts .\ increasing effectively as 1/ Zgap while equation (32) predicts 

1/ z.;ap· Necessarily, when single point contact will occur (as in all ellipsoid 

cases considered in this paper) then equation (31) predicts the correct limit­

ing behavior for sufficiently small Zgap· Nevertheless, ellipsoids with sufficiently 

small values of o: resemble disks with radii R = bl, and we may thus expect 

Reynolds result, equation (32), to provide a reasonable approximation for some 

intermediate Zgap distances, and sufficiently small values of o:. For these ellip­

soid cases, equation (32) may be written as 

o:8/3 
A = -4 (_R_e_q )-3-

l Zzub 

{33) 

Numerical results for small Z/ub values are plotted m figures 5b-13b together 

with the asymptotic formula (31) and, where relevant, (33). For the case o: = 1, 

we also show Brenner's analytic theory for a sphere (equation 29). 

The results for o: = 1, 2 and 4 clearly approach the lubrication asymptote. 

On the other hand, for o: = 8 and 16, we were not able to capture the approach 

to asymptotic behaviour because computations were terminated for Zgap = 0.05 

and in these cases this corresponds to Z/ub values well outside the range of validity 

of Cox's lubrication theory. 

The numerical results for a < 1 demonstrate the transition between Reynolds' 

result for the disk (33) and the lubrication theory (31) at "intermediate" values 

of Z/ub for small o:. In particular, as a decreases from 0.5 to 0.0625, we see that 
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the numerical results agree closely with (33) over a significant range of Zzub be­

fore (presumably) reverting to the lubrication asymptote for even smaller values 

of Zlub· 

It should be noted, in all of the comparisons between our results and Cox's 

lubrication theory, that the latter is based on the implicit assumption that there 

exist extremely localized regions of high stresses and stress gradients near the 

point of smallest gap. Due to resolution difficulties, the current numerics break 

down when localized high stresses and stress gradients occur. Despite this fact, 

the numerics is able to provide information indicating trends, asymptotes and 

approximate regions of validity of Cox's lubrication theory. In particular, the 

numerics clearly indicate that Reynolds lubrication theory is a better approxi­

mation than Cox's theory for small a cases (0.125 and 0.0625 in particular) and 

intermediate Z/ub values. 
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Conclusions 

The wall Greens function formulation of the boundary integral method for 

low Reynolds number flow was carefully tested against the analytic results of 

Brenner for the translation of a solid sphere toward a plane wall, and was found 

to yield highly accurate results up to dimensionless gaps of 0.05. \Vhen compared 

to the boundary integral formulation using the Stokeslet fundamental solution, 

the Greens function formulation was found to be more accurate for the same total 

number of elements. In fact, the Greens function method required approximately 

half the number of elements that the Stokeslet method required to maintain the 

same level of accuracy. Although, the Greens function formulation was slower 

computationally for the same Ntotal the requirement of less elements to maintain 

the same level of accuracy easily compensates timewise for this disadvantage. 

The solid ellipsoid results compared extremely well with the far-field asymptotic 

results of Brenner for distances as small as Zc = 5. The current numerics as well 

as Brenner's analytic theory for a sphere (equation 29) ,indicate an upper bound 

of Z/ub = 0.05 for the range of predictive validity of Cox's lubrication theory for 

the particle geometries considered here. Although as Z/ub -+ 0 Cox's lubrication 

theory necessarily predicts the correct limiting behavior of >., for the near disk­

like ellipsoids having o: values of 0.25, 0.125 and 0.0625, the numerics indicate 

that Reynolds lubrication theory for a disk is a more accurate approximation 

for intermediate Z/ub, values in the range of 0.05 < Zlub < 0.1. 



- 21 -

Appendix 

(a) The integrals c;m and c;m 
Using standard integral tables, the integrals denoted by c;m and c;m can 

be reduced to expressions involving the complete elliptic integrals of the first 

and second kind given by: 

K(k) = 2 {o1r dx 
Jn [l - k2sin2 xJ1 12 

E(k) = 2 fo1r dx 
[1 - k2 sin2 x ]

312 

The final expressions for c;m are: 

C oo - 4 K 
1 - 11/2 

c~l = c~O - k2~1/2 (K - E) 

ci0 = A 

4 
E 

k213/2 

C o1 _ 4 [ K 1 + k2 
J 

3 - 2 - E 
k213/2 fc2 

20 16 [ A 2 J C 3 = 
4 312 

(1 + k )K - 2E 
k I 

Gil - Cjo + k6323/2 [(k2 - 8)E + (8 - 5k2)K] 
3 I . 

coo _ 4 12(1 + k2
) E J 

s - 3k21s/2 L fc2 - K 

c~ 1 = A

4 
[(1 + k2 )K - ;_(k2 + k4 )E] 

3k2k215/2 k2 

C 20 _ 16 [1 + k2 
E J 

s - 3k41s/2 k,2 - 2K 

co2 = coo _ c20 
p p p 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(Al2) 
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where 

k2 = 1 - k 2 

The corresponding expressions for c;m are obtained from the above by replacing 

I with /R and k with kR. 

(b) Small k Expansions 

When k and/or kR --t O, numerical inaccuracy necessitates the use of 

asymptotic expansions for the expressions c;m and c;m. These asymptotic 

expansions are obtained by performing a generalized binomial expansion in k 2 

on the integrands given in Eqs. (2S)and (26). The results, accurate to O(k 4 ) as 

k----+ 0 are: 

coo= ~( ~k2) 
1 ,1;2 1 + 8 (A13) 

col - - 7rk2 
1 - 411/2 (A14) 

coo - 27r ( 3 k2) - -- 1+-~ 
3 13/2 8 (AlS) 

01 37rk2 
C3 = - 413/2 (Al6) 

c20 _ 7r ( 3 2) (Al7) 3 - 372 1 + -k 
I 8 

co3 97rk 2 
(A18) 3 1613/2 

coo 27r ( 5 2) (Al9) 5 5fi. 1+ -k 
I 8 

COl _ 57rk 2 
(A20) 5 - - 415/2 

20 7r ( 5 2) C5 = 5(i. 1 + -k 
I 8 

(A2l) 

Again,the corresponding expressions for c;m are obtained from the above by 

replacing/ with /R and k with kR. 
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(c) The Singular Contributions 

The numerical integration breaks down as ~ --+ x since the kernel becomes 

unbounded in this case. To include this integrable singular contribution it is 

necessary to approximate the integral analytically. This is accomplished by 

Taylor series expanding the singular terms about the point (Po, z 0 ) in (26). The 

details involved in carrying out these expansions are analogous to those used by 

Lee and Leal ( 1982), the differences being only in the choice of parametrization 

of the surface. It is important to note, however, that only those terms in the 

kernel Q stemming from the fundamental solution (11) must be considered, since 

R ::/=- 0 for z > 0. Hence we consider the integral 

j s;+€/212rr {f f·r 
a= p[,0 2 + .z 2J112 

- + - 3 r}dOds 
s;-€/2 o r r 

j
s;+€/2 

= s;-€/2 P [,02 + .z2] i/2 ds {i [t Pcf1 + (P2 + P;) f Pcg1 (A21) 

+ PP of p( ego + Ci2
) + fzr3(pCi 1 + PoCi0

] 

+ k [fzCf 0 + fpr3(pCf 0 + PoCf 1
) + fzr~Ci0 ] }, 

where Si is the value of the arclength parameter of the ith node, and i and k are 

the cartesian base vectors. After carrying out the expansions, the i component 

of the integral is 

ai ,...., 2E {1 Zo [ ·2 PoZo I [ .o; + 2.z; 
Po + z;] 1/2 + Po [p; + z;] 1/2 

[P; + z~] 1/2 ln ( 16EPo [P; + z~] 1/2)] } ' 

(A22) 

and the k component is 

2E {i PoZo [ z; 
Po [P; + z;] 1/2 + fzo [P; + z;] 1/2 

+ [•2 + •2Jl/2(l _ l _E_[•2 + ·2]1/2)]} Po Zo n 16po Po Zo ' 

(A23) 

where the subscript o denotes evaluation at the singular point. 
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Figure captions 

Figure 1: Schematic of the general problem. 

Figure 2: (a) Ellipsoid geometrical parameters. (b) The parametrization variable 

s. 

Figure 3: (a) Evolution of the z component of the local surface tractions as Zgap 

decreases; -- Zgap = 100; ·········· Zgap = 10; - - - - Zgap = 1; - -

- Zgap = 0.05. (b) Evolution of the p component of the local surface 

tractions as Zgap decreases; --- Zgap = 100; ·········· Zgap = 10; - - - -

Zgap = 1; - - - Zgap = 0.05. Note that in figure (b) the Zgap = 100 

curve and the Zgap = 10 curve are visually indistinguishable. In both 

figures (a) and (b) the arbitrary constant due to pressure has been 

chosen so that f P = 0 at s = 0.5. 

Figure 4: Comparison of computational time between the wall Greens function 

technique and the Stokeslet fundamental solution technique. Trat rep­

resenting the ratio of computational times, (Greens method)/ (Stokeslet 

method), is plotted against Ntotal. 

Figure 5: (a) Large Zc results: 0 numerical results for a = 16 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small Z/ub results: 0 numerical results for a = 16 and 40 elements 

; solid line represents Cox's lubrication theory as given by eqn(31). 

Figure 6: (a) Large Zc results: 0 numerical results for a = 8 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small Z/ub results: 0 numerical results for a = 8 and 40 elements 

; solid line represents Cox's lubrication theory as given by eqn(31). 

Figure 7: (a) Large Zc results: 0 numerical results for a = 4 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small Z/ub results: 0 numerical results for a= 4 and 40 elements 

; solid line represents Cox's lubrication theory as given by eqn(31). 
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Figure 8: (a) Large Zc results: 0 numerical results for a = 2 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small zzub results: 0 numerical results for a = 2 and 40 elements 

; solid line represents Cox's lubrication theory as given by eqn(31). 

Figure 9: (a) 0 numerical results for the sphere case (a = 1) with 40 elements; 

solid line represents the theoretical predictions of Brenner (1961) as 

given by eqn(29); dashed line represents Cox's lubrication theory as 

given by eqn(31). (b) 0 numerical results for the sphere case with 

40 elements;solid line represents the theoretical predictions of Brenner 

(1961) as given by eqn(29); dashed line represents the far-field asymp­

totic predictions as given by eqn(30). 

Figure 10: (a) Large Zc results: 0 numerical results for a = 0.5 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small Z/ub results: 0 numerical results for a= 0.5 and 40 elements 

; solid line represents Cox's lubrication theory as given by eqn(31). 

Figure 11: (a) Large Zc results: 0 numerical results for a= 0.25 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small Z/ub results: 0 numerical results for a = 0.25 and 40 

elements ; solid line represents Cox's lubrication theory as given by 

eqn(31); dashed line represents Reynolds lubrication theory given by 

eqn(33). 

Figure 12: (a) Large Zc results: 0 numerical results for a= .125 and 40 elements 

; solid line represents the asymptotic predictions as given by eqn(30). 

(b) Small Z/ub results: 0 numerical results for a = 0.125 and 40 

elements ; solid line represents Cox's lubrication theory as given by 

eqn(31); dashed line represents Reynolds lubrication theory given by 

eqn(33). 

Figure 13: (a) Large Zc results: 0 numerical results for a = 0.0625 and 40 

elements ; solid line represents the asymptotic predictions as given by 



- 27 -

eqn(30). (b) Small Zzub results: 0 numerical results for a:: = 0.0625 

and 40 elements ; solid line represents Cox's lubrication theory as given 

by eqn ( 31); dashed line represents Reynolds lubrication theory as given 

by eqn(33). 
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Table captions 

Table 1: A comparison of numerical results using the wall Greens function with 

the theoretical results of Brenner ( eqn(29)) for the case of a sphere. 

Results for number of elements, N, equal to 10, 20, 30 and 40 are 

shown. 

Table 2: A comparison of numerical results generated using the Stokeslet funda­

mental solution and Nsphere = 6, N wall = 6 with the theoretical results 

of Brenner ( eqn(29)) for the case of a sphere. (a) constant width wall 

elements, (b) non-constant width wall elements 

Table 3: A comparison of numerical results generated using the Stokeslet fun­

damental solution and Nsphere = 10, Nwall = 10 with the theoretical 

results of Brenner (eqn(29)) for the case of a sphere. (a) constant width 

wall elements, (b) non-constant width wall elements 

Table 4: A comparison of numerical results generated using the Stokeslet fun­

damental solution and Nsphere = 20, Nwall = 20 with the theoretical 

results of Brenner (eqn(29)) for the case of a sphere. (a) constant width 

wall elements, (b) non-constant width wall elements 

Table 5: A comparison of numerical results generated using the Stokeslet fun­

damental solution and Nsphere = 30, Nwall = 30 with the theoretical 

results of Brenner ( eqn(29)) for the case of a sphere. (a) constant width 

wall elements, (b) non-constant width wall elements 

Table 6: A comparison of numerical results with the asymptotic theory of Bren­

ner (eqn(30)) for N=40 and a= 16. 

Table 7: A comparison of numerical results with the asymptotic theory of Bren­

ner (eqn(30)) for N=40 and a= 8. 

Table 8: A comparison of numerical results with the asymptotic theory of Bren­

ner (eqn(30)) for N=40 and a= 4. 
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Table 9: A comparison of numerical results with the asymptotic theory of Bren­

ner ( eqn(30)) for N=40 and a= 2. 

Table 10: A comparison of numerical results with the asymptotic theory of Bren­

ner (eqn(30)) for N=40 and a= .5. 

Table 11: A comparison of numerical results with the asymptotic theory of Bren­

ner (eqn(30)) for N=40 and a= .25. 

Table 12: A comparison of numerical results with the asymptotic theory of Bren­

ner (eqn(30)) for N=40 and a= .125. 

Table 13: A comparison of numerical results with the asymptotic theory of Bren­

ner ( eqn(30)) for N =40 and a = .0625. 
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N~'°"' • 6 N-. 11 ·6 

~ A. A. Error A. Error 
(analytic) Xrrw.cau "' 25. Xr:rw.cau "" 50. 

-~ 
1.011263 1.015590 0.428 1.018810 0.746 100. 

75. 1.015024 1.018660 0.358 1.023150 0.801 
50. 1.022553 1.026260 0.363 1.032010 0.925 

I 
25. 1.045196 1.052580 0.706 1.056430 1.07 
10. 1.113503 1.125140 1.05 1.125940 1.12 
9. 1.126194 1.138050 1.05 1.138890 1.13 
8. 1.142068 1.154130 1.06 1.154960 1.13 

I 7. 1.162491 1.174800 1.06 1.175150 1.09 
6. 1.189737 1.202420 1.07 1.200600 0.913 
5. 1.227889 1.241260 1.09 1.232290 0.358 
4. 1.285087 1.299680 1.14 1.269840 -1.19 
3. 1.380204 1.394650 1.05 1.308740 -5.18 
2. 1.569205 1.556630 -0.801 1.336160 -14.9 
1. 2.125536 1.790740 -15.8 1.331850 -37.3 
0.75 2.489273 1.841520 -26.0 1.324160 -46.8 

I 
0.5 3.205390 1.875680 -41.5 1.314010 -59.0 

I 0.25 5.305324 1.885720 -64.5 1.301850 -75.5 I Ubl 11.45916 1.878580 -83.6 1.294010 -88.7 
I o.os 21.58ss2 1.874220 -91.3 1.291440 -94.0 

Table 2(a). 
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L Nmi.cre"" 6 N_,n"' 6 

1
1~z=gap====A==1===="=A==-~--=- - Error 

(analytic) Xirw.cau = 25. 
>------+---- ~--- ----·--· 

100. 1.011263 1.015480 0.417 
75. 1.015024 1.018490 0.341 
50. 1.022553 1.026000 0.337 
25. 1.045196 1.052360 0.685 
10. 1.113503 1.125430 1.071 
9. 1.126194 1.138440 1.087 
8. 1.142068 1.154660 1.103 
7. 1.162491 1.175500 1.119 
6. 1.189737 1.203290 1.139 
5. 1.227889 1.242210 1.166 
4. 1.285087 1.300720 1.216 
3. 1.380204 1.399000 1.362 
2. 1.569205 1.598540 1.869 
1. 2.125536 2.185370 2.82 
0.75 
0.5 
0.25 
0.1 
0.05 

2.48927 3 2.566520 3.10 
3.205390 3.403570 6.18 
5.305324 7.652900 44.2 

11.45916 30.20205 164. 
21.5858 35.74634 61.0 

A Error 
Xzn=au"' 50. 

----+----! 
1.018690 
1.023010 
1.031910 
1.056490 
1.126320 
1.139300 
1.155600 
1.176710 
1.205120 
1.245240 
1.305390 
1.403730 
1.596800 
2.292810 
2.937180 
4.742860 

13.30720 
115.2971 

0.734 
0.787 
0.915 
1.08 
1.15 
1.16 
1.18 
1.22 
1.29 
1.41 
1.58 
1.70 
1.76 
7.87 

18.0 
48.0 

151. 
906. 

Table 2(b). 
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N&DMr• = 10 N- 11 = 10 

Z1ap I- A Error J. Error 
(analytic) XMulcaU :: 25. Xtnuleau = 50. 

100. 1.011263 1.008330 -0290 1.011540 0.027 
75. 1.015024 1.011400 -0.357 1.015860 0.082 
50. 1.022553 1.018990 -0.348 1.024650 0205 
25. 1.045196 l.045130 -0.006 1.048880 0.352 
10. 1.113503 1.117210 0.333 1.117560 0.364 
9. 1.126194 1.130050 0.342 1.130260 0.361 
8. 1.142068 1.14()()30 0.347 1.146180 0.360 
7. 1.162491 1.166540 0.348 1.166740 0.366 
6. 1.189737 1.193830 0.344 1.194300 0.386 
5. 1.227889 1.231980 0.333 1.233000 0.416 
4. 1.285087 1.289180 0.319 1.290090 0.389 
3. 1.380204 1.384720 0.327 1.377360 -0.206 
2. 1.569205 1.576370 0.457 1.505340 -4.07 
1. 2.125536 2.083520 -1.98 1.637900 -22.9 
0.75 2.489273 2.320080 -6.76 1.654970 -33.5 
0.5 3.205390 2.612240 -18.5 1.658980 -48.2 
0.25 5.305324 2.937680 -44.6 1.647910 -68.9 
0.1 11.45916 3.139810 -72.6 1.634120 -85.7 
0.05 21.58582 3.208300 -85.1 1.628570 -92.5 

Table 3(a). 
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Nmi.u."' 10 Nwa}I == 10 

Zgap A. A. Error A. Error 
(analytic) XL'Wleatt := 25. xt:nuicai• = SO. 

100. 1.011263 1.008260 -0.297 1.011460 0.019 
75. 1.015024 1.011300 ..0.367 1.015770 0.073 
50. 1.022553 1.018820 -0.365 1.024570 0.197 
25. 1.045196 1.044970 -0.022 1.048880 0.352 
10. 1.113503 1.117260 0.337 1.117840 0.389 
9. 1.126194 1.130130 0.350 1.130600 0.391 
8. 1.142068 1.146180 0.360 1.146570 0.394 
7. 1.162491 1.166760 0.367 1.167120 0.398 
6. 1.189737 l.194180 0.373 1.194560 0.405 

I 5. 1.227889 1.232540 0.379 1.233040 0.420 
4. 1.285087 1.290050 0.386 1.290850 0.448 
3. 1.380204 1.385750 0.402 1.387280 0.513 
2. 1.569205 1.576420 0.460 1.580980 0.750 
1. 2.125536 2.142720 0.808 2.172760 222 
0.75 2.489273 2.520320 1.25 2.563390 2.98 
0.5 3.205390 3.294110 2.77 3.327460 3.81 
0.25 5.305324 5.750570 8.39 6.182470 16.5 
0.1 11.45916 13.27579 15.9 25.47089 122. 
0.05 21.58582 21.02722 -2.59 27.62877 28.0 

Table 3(b). 
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N,nJ.J,.. • 20 N-11·20 
z,ap A. A. Error A. Error A. Error 

(analytic) Xv-: .... ., 25. x,,,_,...,, • SO. %~·100. 

100. 1.011263 1.005340 -0.586 1.008550 -0268 1.011310 0.005 
75. 1.015024 1.008420 -0.651 1.012870 -0212 1.015470 0.044 
50. 1.022553 l.OlfmO -0.639 1.021630 -0.090 1.023340 0.077 
25. 1.045196 1.042100 -0.296 1.045780 0.056 1.046120 0.088 
10. 1.113503 1.113980 0.043 1.114390 0.080 1.114270 0.069 
9. 1.126194 1.126790 0.053 1.127060 0.077 1.126930 0.065 
8. 1.142068 1.142760 0.061 1.142900 0.073 1.142810 0.065 
7. 1.162491 1.163260 0.066 1.163270 0.067 1.163320 0.071 
6. 1.189737 1.190540 0.067 1.190430 0.058 1.190820 0.091 
5. 1.227889 1.228680 0.064 1.228440 0.045 1.229440 0.126 
4. 1.285087 1.285790 0.055 1.285470 0.030 1286430 0.105 
3. 1.380204 1.380630 0.031 1.380790 0.042 1.373560 -0.481 
2. l.569205 l.568760 -0.028 1.572100 0.184 1.501380 -4.32 
1. 2.125536 2.126090 0.026 2.078760 -220 1.633810 -23.1 
0.75 2.489273 2.496450 0288 2.316190 -6.95 1.650860 -33.7 
0.5 3.205390 3.212790 0.231 2.607630 -18.6 1.654870 -48.4 
0.25 5.305324 4.881460 -7.99 2.933810 -44.7 1.643760 -69.0 
0.1 1 I.45916 7.284840 -36.4 3.136340 -72.6 1.629750 -85.8 
0.05 21.58582 8.783280 -59.3 3.204850 -852 1.623890 -92.5 

Table 4(a). 
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N.-...~ .. 20 N-u • 20 
z,ap A. A. Error A. Error A. Error 

(analytic) ~.-25. Zv-cau .. SO. x......c,,,. .. 100. 

100. 1.011263 1.005310 -0.589 1.008510 -0.272 1.011290 0.026 
75. 1.015024 1.008370 -0.656 1.012820 -0.217 1.015460 0.043 
50. 1.022553 1.015940 -0.647 1.021590 -0.094 1.023330 0.076 
25. 1.045196 1.042010 -0.305 1.045780 0.056 1.046140 0.090 
10. 1.113503 1.113970 0.042 1.114490 0.089 1.114490 0.089 
9. 1.126194 1.126800 0.054 1.127190 0.088 1.127190 0.088 
8. 1.142068 1.142780 0.062 1.143080 0.089 1.143080 0.089 
7. l.162491 1.163300 0.070 1.163520 0.089 1.163530 0.089 
6. 1.189737 1.190620 0.074 1.190790 0.089 1.190810 0.090 
5. 1.227889 1.228820 0.076 1.228980 0.089 1.229030 0.093 
4. 1285087 1286060 0.076 1.286240 0.090 1.286370 Q.100 
3. 1.380204 1.381200 0.072 1.381500 0.094 1.381850 0.119 
2. 1.569205 1.570230 0.065 1.570960 0.112 1.572140 0.187 
1. 2.125536 2.126880 0.063 2.130670 0.242 2.137710 0.573 
0.75 2.489273 2.491240 0.079 2.498970 0.390 2.515210 1.04 
0.5 3205390 3.210330 0.154 3.231620 0.818 3.290070 2.64 
0.25 5.305324 5.344480 0.738 S.463540 2.98 S.757460 8.52 
0.1 11.45916 12.07906 S.41 13.84710 20.8 15.27464 33.3 
0.05 21.58582 24.72773 14.6 30.57144 41.6 36.88208 70.9 

Table 4{b). 
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N&Dlwm"' 30 NwoJ1"' 30 

z,"" I. A. Error I. Error I. Error 
(analytic) .x,,_....., - 25. .%~·50. .%,,__. - 100 . 

100. 1.011263 1.004810 -0.638 1.008020 -0.321 1.010770 -0.049 
75. 1.015024 1.007900 -0.702 1.012330 -0265 1.014930 -0.009 
50. 1.022553 1.015500 -0.690 1.021090 -0.143 1.022790 0.023 
25. 1.045196 1.041570 -0.347 1.045230 0.003 1.045570 0.036 
10. 1.113503 l.l 13410 -0.008 1.113840 0.030 1.113760 0.023 
9. 1.126194 1.126220 0.002 1.126520 0.029 1.126410 0.019 
8. 1.142068 1.142190 0.011 1.142380 0.027 1.142230 0.014 
7. 1.162491 1.162690 0.017 1.162770 0.024 1.162580 0.008 
6. 1.189737 1.189970 0.020 1.189960 0.019 1.189740 0.0003 
5. 1.227889 1228130 0.020 1.228010 0.0~0 1.227860 -0.002 
4. 1.285087 1.285290 0.016 1.285000 -0.007 1.285370 0.022 
3. 1.380204 1.380240 0.003 1.379710 -0.036 1.381670 0.106 
2. 1.569205 1.568640 -0.036 1.568270 -0.060 1.566050 ..().201 
1. 2.125536 2.121690 -0.181 2.131500 0.281 1.935660 -8.93 
0.75 2.489273 2.483940 -0.214 2.487960 -0.053 2.054850 -17.5 
0.5 3.205390 3.207130 0.054 3.089850 -3.60 2.166220 -32.4 
0.25 5.305324 5.347030 0.786 4.141040 -21.9 2.250720 -57.6 
0.1 11.45916 10.288800 -10.2 5.206130 -54.6 2.280410 -80.1 
0.05 21.58582 14.86634 -31.1 5.719160 -73.5 2.285870 -89.4 

Table S(a). 
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N..,,i.u,"' 30 Nwa11"' 30 
z,ap A. A. Error A. Error A. Error 

(analytic) .1'.ir.o.c..u - 25. .t:rr-c..u - so . ~-100 . 
100. 1.011263 1.004790 -0.640 1.007990 -0.324 1.010750 -0.051 
75. 1.015024 1.007860 -0.706 1.012300 -0.268 1.014920 -0.010 
50. 1.022553 1.015440 -0.696 1.021060 -0.146 1.022780 0.022 
25. 1.045196 1.041510 -0.353 1.045220 0.002 1.045580 0.037 
10. 1.113503 1.113400 -0.009 1.113880 0.034 1.113890 O.Q35 
9. 1.126194 1.126220 0.002 1.126570 0.033 1.126580 0.034 
8. 1.142068 1.142200 0.012 1.142450 0.033 1.142460 0.034 
7. 1.162491 1.162700 O.Q18 1.162870 0.033 1.162880 0.033 
6. 1.189737 1.190010 0.023 1.190110 0.031 1.190120 0.032 
5. 1.227889 1.228200 0.025 1.228260 0.030 1228270 0.031 
4. 1.285087 1.285420 0.026 1.285440 0.027 1.285480 0.031 
3. 1.380204 1.380520 0.023 1.380540 0.024 1.380640 0.032 
2. 1.569205 1.569440 O.Q15 1.569500 0.019 1.569850 0.041 
1. 2.125536 2.125380 -0.007 2.125960 0.020 2.128290 0.130 
0.75 2.489273 2.488790 -0.019 2.490180 0.036 2.495210 0.238 
0.5 3.205390 3.204310 -0.034 3.208820 0.107 3.223820 0.575 
0.25 5.305324 5.305440 0.002 5.339160 0.638 5.437470 2.49 
0.1 11.45916 11.56424 0.917 12.03615 5.04 13.49018 17.7 
0.05 21.58582 22.63316 4.85 25.79175 19.5 32.16383 49.0 

Table 5(b). 
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0. = 16. 

Zgap A. z, A. 
(numerical) (asymptotic) 

100. 1.01435 74.777 1.01527 
75. 1.01914 57.199 1.02006 
50. 1.02832 39.621 1.02922 
25. 1.05308 22.043 1.05378 
10. 1.10978 11.496 1.10848 
9. 1.11824 10.793 1.11637 
8. 1.12814 10.090 1.12549 
7. 1.13991 9.386 1.13617 
6. 1.15417 8.683 1.14884 
5. 1.17184 7.980 1.16411 
4. 1.19446 7.277 1.18286 
3. 1.22476 6.574 1.20646 
2. 1.26837 5.871 1.23705 
1. 1.34110 5.168 1.27828 
.75 1.36965 4.992 1.29093 
.5 1.40751 4.816 1.30478 
.25 1.46549 4.640 1.32002 
.1 1.53117 4.535 1.32992 
.05 1.57603 4.500 1.33336 

Table 6. 
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a= 8. 

Zgap 'A. Zc 'A. 
(numerical) (asymptotic) 

100. 1.01207 89.886 1.01267 
75. 1.01615 68.278 1.01675 
50. 1.02410 46.671 1.02470 
25. 1.04646 25.064 1.04699 
10. 1.10290 12.100 1.10251 
9. 1.11197 11.236 1.11127 
8. 1.12280 10.371 1.12167 
7. 1.13598 9.507 1.13421 
6. 1.15240 8.643 1.14964 
5. 1.17346 7.779 1.16908 
4. 1.20156 6.914 1.19432 
3. 1.24125 6.050 1.22843 
2. 1.30296 5.186 1.27705 
1. 1.41896 4.321 1.35196 
.75 1.46892 4.105 1.37747 
.5 1.53981 3.889 1.40698 
.25 1.66105 3.673 1.44149 
.1 1.82506 3.544 1.46515 
.05 1.96295 3.500 1.47361 

Table 7. 
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~· 

a.= 4. 

Zgap A. Zc /.. 
(numerical) (asymptotic) 

100. 1.01071 101.844 1.01117 
75. 1.01436 77.008 1.01483 
50. 1.02157 52.173 1.02204 
25. 1.04246 27.338 1.04292 
10. 1.09928 12.437 1.09945 
9. 1.10896 11.444 1.10902 
8. 1.12074 10.450 1.12064 
7. 1.13538 9.457 1.13502 
6. 1.15408 8.464 1.15330 
5. 1.17884 I 7.470 1.17730 
4. 1.21337 6.477 1.21021 
3. 1.26542 5.483 1.25812 
2. 1.35293 4.490 1.33432 
1. 1.54041 3.497 1.47436 
.75 l.63163 3.248 1.52984 
.5 1.77322 3.000 1.60003 
.25 2.05364 2.752 1.69164 
.1 2.53087 2.603 1.76139 
.05 3.04164 2.553 1.78788 

Table 8. 
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I O'. = 2. 

Zgap A. Zc 'A 
(numerical) (asymptotic) --

100. 1.01075 106.311 1.01070 
75. 1.01429 80.149 1.01424 
50. 1.02134 53.986 1.02128 
25. 1.04218 27.823 1.04214 
10. 1.10217 12.126 1.10266 
9. 1.11287 11.080 1.11301 
8. 1.12609 10.033 1.12629 
7. 1.14280 8.987 1.14301 
6. 1.16477 7.940 1.16507 
5. 1.19490 6.894 1.19502 
4. 1.23849 5.847 1.23824 
3. 1.30731 4.801 1.30606 
2. 1.43323 3.754 1.42789 

I 1. 1.74818 2.708 1.71081 
.75 1.92492 2.446 1.85157 
.5 2.23158 2.184 2.06186 
.25 2.96188 1.923 2.41007 
.1 4.58656 1.766 2.75545 
.05 6.77456 1.714 2.91152 

Table 9. 
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0: = .5 

Zgap I. Zc I. 
(numerical) (a~ymptotic) ,-

100. 1.01336 88.224 1.01292 
75. 1.01771 66.306 1.01726 
50. 1.02644 44.388 1.02600 
25. 1.05306 22.470 1.05270 
10. 1.13646 9.320 1.13729 
9. 1.15254 8.443 1.15373 
8. 1.17288 7.566 1.17466 
7. 1.19939 6.689 1.20218 
6. 1.23535 5.813 1.38341 
5. 1.28687 4.936 1.29520 
4. 1.36657 4.059 1.38341 
3. 1.50544 3.182 1.54679 ,., 

1.80346 2.306 1.95279 ..... 
I 

1. 2.83343 i.429 4.70040 
.75 3.61590 1.210 14.2601 
.5 5.36885 0.991 -
.25 11.70260 0.771 -
.1 35.25879 0.640 -
.05 78.14056 0.596 -

Table 10. 
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a. = .25 =:] 
-

Zgap I-. Zc '). 

(numerical) (asymptotic) 

100. 1.01566 72.919 1.01567 
75. 1.02096 54.761 1.02097 
50. 1.03168 36.604 1.03171 
25. 1.06473 18.446 1.06495 
10. 1.17243 7 .551 1.17506 
9. 1.19379 6.825 1.19737 
8. 1.22107 6.099 1.22619 
7. 1.25710 5.372 1.26487 
6. 1.30680 4.646 1.31950 
5. 1.37954 3.920 1.40254 
4. 1.49545 3.193 1.54388 
3. 1.70634 2.467 1.83820 
2. 

I 
2.19247 1.741 2.82674 

I. 4.14864 1.015 -
.75 5.85589 0.833 -
.5 10.17695 0.651 -
.25 29.15676 0.467 -
.1 115.89697 0.361 -

Table 11. 
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O'. = .125 

Zgap 'A Zc 'A 
(numerical) (asymptotic) 

100. 1.01880 58.675 1.01955 
75. 1.02545 44.043 1.02621 
50. 1.03896 29.410 1.03977 
25. 1.10271 14.778 1.08240 
10. 1.22426 5.999 1.23081 
9. 1.25345 5.414 1.26231 
8. 1.29113 4.829 1.30376 
7. 1.34151 4.243 1.36077 
6. 1.41211 3.658 1.44413 
5. 1.51755 3.073 1.57759 
4. 1.69024 2.487 1.82572 
3. 2.01721 1.902 2.44756 
2. 2.82202 1.317 6.86285 
I. 6.55029 0.731 -
.75 10.22585 0.585 -
.5 20.58526 0.439 -
.25 74.75567 0.292 -

Table 12. 
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a= .0625 

Zgap A. Zc A. 
(numerical) (asymptotic) 

100. 1.02249 46.744 1.02466 
75. 1.03093 35.076 1.03314 
50. 1.04817 23.409 1.05049 
25. 1.10271 11.741 1.10597 
10. 1.29578 4.741 1.31116 
9. 1.33633 4.274 1.35727 
8. 1.38921 3.807 1.41944 
7. 1.46081 3.340 1.50780 
6. 1.56266 2.874 1.64332 
5. I 1.71775 2.407 1.87752 
4. 1.97840 1.940 2.37983 
3. 2.49057 1.474 4.22706 
2. 3.83087 1.007 -
1. 10.88625 0.540 -

.75 18.58634 0.424 -

.5 42.29466 0.307 -

.25 185.11381 0.190 -
Table 13. 
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Introduction 

The slow viscous motions of deformable drops are of interest in processes 

such as coalescence, emulsion formation, mixing and separation. Further, in 

"real" systems bounding surfaces are obviously present and little is known about 

the effects of such bounding surfaces on deformable drops. Haberman and Sayre 

(1958) obtained approximate solutions for a spherical drop traveling in steady 

motion along the axis of a tube. Bart (1968) solved the problem of the slow 

unsteady settling of a fluid sphere toward a flat fluid interface. However, in 

each of these analyses, the assumption of spherical (or near-spherical) shape is 

a fundamental limitation. 

A multitude of investigators have theoretically considered the effects of a 

planar wall on drops and bubbles when the separation distance between the 

wall and the drop or bubble is very small. In these investigations, the focus has 

been on the dynamics of the thin film between the bounding wall and the drop 

or bubble, without attempting to resolve the dynamics that lead to the thin­

film configuration. Experimentally, (Hartland (1967, 1969), Platinakov (1964)) 

"dimpled" configurations (i.e. shapes in which the film between the drop or 

bubble and the wall is thinner near the rim than at the center) have been ob­

served for a wide range of parameters. Theoretically, the analyses have been 

based upon the lubrication approximation in an attempt to model the dynam­

ics of film-drainage. Unfortunately, many of the simplifying assumption made 

have been ad hoc, and largely unmotivated. Several of the most important 

assumptions are listed below. 

(I) The film has been assumed sufficiently thin that the lubrication approxi­

mation is valid (Frankel and Mysels (1962), Hartland (1969), Dimitrov and 

Ivanov (1978), Lin and Slattery (1982)). Specifically, if h is a measure of 

the film thickness and R is a measure of the radial extent of the film then 

h / R « 1. This is the key assumption underlying film-drainage theory. 

In particular, it has been implicitly assumed that the lubrication approx-
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imation has not neglected the necessary physics to predict the onset and 

evolution of dimpling. 

(II) Viscous effects in the drop have generally been neglected. In particular, 

focus has been placed on the two limiting cases of "fully mobile" ( zero 

tangential stress) and "fully immobile" interfaces (no-slip applied at the 

fluid-fluid interface). (Frankel and Mysels (1962), Hartland (1969), Dim­

itrov and Ivanov (1978), Lin and Slattery (1982)). 

(III) Gravitational effects in the film have frequently been neglected ( Hartland 

(1969), Dimitrov and Ivanov (1978), Lin and Slattery (1982)). 

(IV) In addition to assumption (I), a wide variety of geometrical assumptions 

have been made: 

(a) The film has been assumed to be nearly a plane parallel to the wall. (Dim­

itrov and Ivanov (1978) 

(b) "Dimpled" configurations have been assumed as initial film shapes. For 

instance, the dimple has been assumed to consist of two parabolas with the 

radius of curvature at the apex varying with time in the central parabola 

and constant in the peripheral parabola (Hartland and Robinson (1977)). 

( c) The drop has been assumed nearly spherical outside of the film region (Lin 

and Slattery (1982), Dimitrov and Ivanov (1978)). 

( d) At the edge of the film, geometrical details of drop shape have been assumed 

nearly invariant with time (Dimitrov and Ivanov (1978) Lin and Slattery 

(1982)). 

The list of thin film investigations referenced above is by no means complete 

but it is exemplary. 

In this paper we present an efficient numerical scheme for determining the 

buoyancy driven motion of a deformable viscous drop normal to a planar no-slip 

surface. The complete time evolution of drop shape from spherical far from 

the wall to highly deformed near the wall is studied. No limitation on "film" 

thickness is made. Viscous effects in the drop phase are not neglected. Gravity 
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is not neglected. The only geometrical assumptions are that the motions are 

axisymmetric and the drop is initially spherical far from the wall. 

Being numerical in nature, the current scheme is subject to numerical er­

rors as well as time limitations. For this reason, the results obtained pertain 

strictly to the initial stages of thin film formation. Nevertheless the dynamics 

of dimple formation are captured. The goal of the study is to explore the listed 

film-drainage assumptions using a complete numerical scheme. In addition, this 

study is intended to provide information and insight into the details and mecha­

nism behind dimple formation. Drop shapes obtained with the current numerical 

scheme may potentially be used as starting configurations for thin film analytic 

theories. 

The technique that we use is based on the well known boundary integral 

method which has already been used successfully in a variety of applications. 

Youngren and Acrivos applied the method to calculate the slow viscous fl.ow 

past a single solid particle (1975). Later, Youngren and Acrivos (1976) applied 

the technique to calculate the steady-state deformation of an inviscid drop in an 

extensional fl.ow, and Rallison and Acrivos (1978) considered viscous drops in 

an extensional fl.ow. Lee and Leal (1982) and later Geller, Lee and Leal (1986) 

used the boundary integral method to calculate the motion of a solid sphere 

normal to a deformable interface. Recently, Chi (1986) considered the motion 

of a deformable drop normal to a deformable fluid-fluid interface, also using 

the boundary integral method. The current application of the method differs 

from these previous studies in the choice of the so called fundamental solution 

of the Stokes' system. Previous work implemented a fundamental solution orig­

inating with Odqvist (1930) and discussed by Ladyzhenskaya (1963). Here, a 

fundamental solution (or more appropriately a Green's Function) presented by 

Blake (1971) will be employed. This Green's function is appropriate for systems 

involving an infinite, planar, wall and was successfully used by Ascoli, Dandy 

and Leal (1988) to determine the hydrodynamic resistance on a solid particle 
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in creeping flow moving in the presence of a planar wall. Its use in the present 

application represents a significant simplification and numerical timesaving over 

the previous boundary integral formulations. 
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Formula ti on 

(a) Equations and boundary conditions 

We consider the slow motion of a deformable drop normal to a no-slip, 

infinite, planar surface (figure la). Fluid 1, which composes the drop, and fluid 2, 

in which the drop is suspended are both assumed to be Newtonian with constant 

density. In addition, the fluids are assumed to be immiscible with an interface 

characterized by a constant surface tension. All motions and deformations are 

assumed axisymmetric about the z-axis, which passes through the drop center 

and is normal to the planar wall. Gravity is assumed to act along the z-axis, 

toward the wall if fluid 1 is more dense than fluid 2, or away from the wall if fluid 

1 is less dense than fluid 2. The analysis presented is based upon the creeping 

motion approximation in which the intertial terms in the equations of motion 

are neglected entirely. The cor~esponding small Reynolds numbers (Re 1 , Re 2 ) 

of the system are 

Ua « 1. 

Ua 
Re2 = « 1. 

l/2 

The characteristic length, a, is the radius of a sphere of equal volume and v 1 , v 2 

are the respective kinematic viscosities of fluid 1 and fluid 2. The characteristic 

velocity, U, is the terminal velocity of an equal volume spherical drop in the 

absence of a wall and is given by the Hadamard (1911) and Rybczynski (1911) 

result 

where ). = µif µ2 is the ratio of dynamic viscosities while p 1 and p 2 are the 

respective fluid densities. The governing Stokes equations are then: 

(1) 
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for the drop, and similarly 

(2) 

for the surrounding fluid. Here, velocities are made dimensionless with U and 

lengths with a. Fluid 1 and Fluid 2 pressures and stresses are made dimensionless 

with µ 1U/a and µ 2 U/a respectively. The boundary conditions are 

as llxll ___,. oo, (3) 

with the no-slip condition at the wall, 

u 2 = 0 for x E P = { x E R 3 
: x = ( x, y, z) and z = 0} ( 4) 

and continuity of velocity and stress at the drop interface x E 81: 

def I 
U1 = U2 = U 

(1) (2)· n { (1 + ~,\) } def (,\ n · T - n · T ) = - - \7 · n - nz 3 = J' 
Ca (1 + ,\) 

(5) 

(6) 

The vector n is the outer normal to the drop surface. The pressues p 1 and P2 are 

modified pressures * which represent the pressure contribution in the fluid due 

solely to motion. Gravity thus enters the problem through equation (6). The 

term in curly braces in (6) gives the contribution due to gravity. Ca = µ2U /1 
is the capillary number. 

Given a drop configuration at dimensionless time t, (time made dimension­

less with respect to a/U) equations (1-6) determine the instantaneous velocity 

field. The drop surface, SI. is assumed to deform in accordance with the in­

stantaneous interface velocity field, thus, determining a new drop configuration. 

* If P represents absolute pressure in a fluid of density p then modified 

pressure, p, is defined asp = P- pgw where w measures distance in the direction 

opposite to gravity. Here, w corresponds to ±z, the sign is determined by the 

direction in which gravity acts. 
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In this manner, the time evolution of the drop is determined.The kinematic 

condition used to deform the drop surface is 

(7) 

In other words, the drop surface is deformed pointwise along the normal with 

the normal projection of the surface velocity. 

Equations (1) and (2) and the corresponding boundary conditions will be 

recast into a boundary integral formulation. Ascoli, Dandy and Leal (1988) 

presented the boundary integral formulation appropriate for the case where an 

infinite, no-slip, planar wall is present. There, the formulation was applied to 

determine the hydrodynamic resistances on solid particles in creeping flow near 

a no-slip planar wall. Here, the formulation is extended to the two fluid problem. 

Briefly, the reformulation begins with the Green's formula for the Stokes 

system: 

l ((\7 2 u - \7p) · w-(\7 2w + \7 q) · u)dV -

where 

f ( n · T · w - n · :E · u) dS lao 

T = (\7u + (\7u) T) - pl 

:E = (\7w + (\7w) T) + ql 

(8) 

(9) 

(10) 

Equation (8) is valid for any sufficiently smooth fields u, p and w, q such that 

u and w are solenoidal. Here fl is a subset of R 3 and an is its boundary 

with outward normal n. This formula relates the Stokes operator to its adjoint. 

'When appropriate adjoint operator problems are solved, their solutions may 

be superposed via equation (8) to yield the desired integral formulation. In 

particular, consider the following adjoint operator problem: 

\7 eqj (x, c) + \7~vj (x, c) 

\7 e . vj (x, c) 
(11) 
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vi(x, ~) = 0 (12) 

The solution to this system is discussed by Blake (1971) and stems from the 

work of Oseen (1930). It is 

(13) 

where 

fi = _ ~ { Dij + rirj} 
i 87r r r 3 

"J _ 1 { Tj} q -- -
47r r 3 

I;J - - t J ,.. · 3 { rkr ·r · } 
ik - 47r r5 

and 

R;:;3J} 

wherer = (6-x1,6-x2,t3-x3)T, R = (t1-xi,tz-Xz,6+x3)T, r = 

[(ti - x1) 2 + (t2 - Xz) 2 + (6- x3) 2]1 12
, R = [(e1 - x1) 2 + (6- x2) 2 +(es+ 
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x3 ) 2 ]
112

, and R3 = €3 +x3 • The quantity t::..i has value +1forJ=1, 2 and -1 

for J. = 3. Here vi., qi and E~·k is the classical "fundamental solution" to Stokes 

system employed by previous researchers . This fundamental solution satisfies 

the system 
o (x - €)ei = \7 eiii (x, €) + \7~vi (x, E) 

o = \7 c .yi (x, E) 

llx!l , 11€11 --too 

(14) 

Physically, v{ is the ith component of the velocity at E due to a unit force, or 

Stokeslet, applied at the point x in the direction ei. The quantity -qi is the 

corresponding pressure. 

The Green's function (13) can be viewed as the fundamental solution to 

Stokes equations plus additional terms to account for the presence of the planar 

wall. Solution (13) is superposed via equation (8) by identifying w with vi (x, €), 

:E with :Ei and q with qf (x, E) yielding the integral equation: 

-(u(x))f = fa
0 

(n · T(E) · vi(x,E) - n · :Ei(x,E) · u(E))dse 
(15) 

x E 0 for J = 1 , 2, 3 

For the geometry of figure la, equation (15) may be written for each fluid giving 

x E 01 

(u2(x))i = f (n · T( 2)(E) · vi(x,E) - n · :Ei(x,E) · u 1(E))dse 
ls1 +P 

x E 02 (16) 

Here Sr and S1 + P are the boundaries of fluid 1 and fluid 2. Due to conditions 

(4) and (12) the contribution from the planar wall P in equation (16) is zero 

and thus 
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(17) 

If the fundamental solution set vi' qi' ti had been used in the formulation 

instead of the Green's function (13) then a term of the form 

would be present. 

The pressures in the inner and outer fluid domains may be obtained by first 

applying .6.~ to each of the equations in (17). Using the governing equations 

(1) and (2) this allows the gradients of the pressures to be written in terms 

of surface integrals. Integrating yields the pressures to within constants. The 

results are: 

(18) 

(19) 

The terms fh and Pz are the constants of integration. In particular, Pz corre­

sponds to the pressure in the outer fluid as z --+ oo. The kernels 'W and <I> are 

given by 

(20) 

(21) 
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The next step in the formulation is to write equations (17) for points x = 

X 8 E SI. The limit x ---t X 8 E SI is a singular limit in the sense that the 

portions of the kernels yJ. ( e' x) and :Ei ( e' x) corresponding to the fundamental 

singular solutions vi, f:J. become unbounded. The remaining portions of the 
Aj ~ j 

kernels, v (c,x) and :E (e,x) corresponding to the wall corrections are well 

behaved for x E S1 . It is well known (Ladyzhenskaya (1963)) that 

is continuous as a function of x across SI while 

lim { { n · f:i(x, e) · u(e) dSe} 
xE01 -+X• } Sr 

(22) 

These facts imply that 

is continuous across S 1 while 
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(23) 

In view of jump conditions (23), equations (17) may be re-written for Xs E SI 

as 

- ~,\(u 1 (xs))j = >.. fs
1 

(n · T(
1)(E) · vi(xs, E) - n · :Ei(xs, E) · u 1 (E))dse 

(24) 

~(u1 (xs)). = r (n. T( 2)(E). vi(xs,E) - n. :Ej(xs,E). u 1 (e))dse 
2 J j Sr 

(25) 

Subtracting equation (25) from equation (24) and using condition (6) gives 

and 

(27) 

where f(i) def n · T(i) for i = 1, 2. Due to condition (12), all integrations are 

over 81 alone. From a numerical point of view this is a major simplification. 

There is no need to solve for unknown normal tractions on the plane wall. 

There are several ways in which the drop surface may be represented. 

One possibility is to define the surface as (p(z),z) for 0 E [0,27r), where 

p = J x2 + y2 and 0 are cylindrical coordinates. However, this representation 

implicitly limits the types of surfaces which can be considered to those for which 

pis a single valued function of z. Alternately, a spherical coordinate system could 

be employed, with p sphere = J x 2 + y 2 + z 2 and polar angle </> measured from 

the z-axis, to give a representation (Psphere(</>),<f>) for 0 E [0,21f) and</> E [0,7r). 

Again this representation is limited to those surfaces which yield single val­

ued functions p sphere ( </>). An equally simple, but more general representation 
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which avoids this potential problem is to parametrically define the surface as 

(p(s),z(s)) for 0 E [0,27r), wheres is a parametric independent variable lying 

in the interval [s 0 , sf]. This is the approach taken here. In particulars is chosen 

to be normalized arclength. 

In terms of the functions p(s) and z(s) which define the surface, the com­

ponents of the unit normal to the surface are 

and the curvature is 

'V·n 

z 

(,02 + z2) 1;2 

p 

(,02 + z2) 1;2, 

. .. . .. 
_ z + pz - pz 

P (P2 + z2) 1;2 (P2 + .z2) 3/2. 

where dots indicate differentiation with respect to the variable s. 

(28) 

(29) 

Due to axisymmetry, the integral representation of the problem, equation 

(27), can be further simplified. The dependence of the integrands on () is known 

and integration with respect to () can be performed. Although the resulting 

integration yields quite complex expressions, the net result is a reduction of the 

integration domain from two dimensions to one. The results are 

(30) 

and 

! (u~(x)) 
2 u~(x) 

,\ - 1 1 Bf (U J ( C)) A 

,\ + 1 Bo P(x, c) . u!(c) ds 

1 !Bf (.tp( c)) A 

-(.\+1) so Q(x,c)· .tz(c) ds 
(31) 
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where 

( ) 
1/2 

ds = ds p p2 + z 2 
• 

The components of the matrices P and Q are listed in the appendix. 

This system provides a relationship between the velocity of the fluid 1/fiuid 

2 interface, the interfacial stress and the interfacial curvature. Given the the set 

of surface variables p, z, p, z, jj, and z at time t, this system allows calculation of 

the instantaneous interfacial velocity and stress. Once the interfacial velocity is 

determined, the interface is deformed in accordance with the kinematic condition 

(7). 

At any instant, once the interfacial velocities and stresses are known, ve­

locities and pressures in the interior of the fluid domain may be calculated from 

the 0-integrated forms of equations (17) and (18): 

(32) 

u2(x2) jsf (u 1(e)) A 

- So P(x2, e) . u~( e) ds 

t ("')(<)) (33) 

+ So Q(Xz, e) • Jl2)(e) dS X2 E 02, 

P1 (xi) - P1 !Sf T (u~(e)) A 

+ So " (Xi, e) • U~( e) ds 
(34) t ('C•l(E)) 

- So S(x1, e) . 1JI)(e) ds X1 E Oi, 

P2(x2) - p~ js1 (u 1(e)) A - Bo W(x2, e) . u~( e) ds 

(35) r ("'l(E)) + Bo S(x2,e). 112)(e) ds X2 E 02, 

The components of the vectors W and S are given in the appendix. 
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(b) Implementation 

System (30, 31) may be discretized and numerically solved . The approach 

taken here employs the method of Krylov-Bogoliubov (Kantorovich and Krylov, 

1963 ) . Specifically, the particle arc (p( s), z( s)), s E [ s0 , sf] is divided into N 

elements. This is accomplished by dividing the interval [s 0 , sf] into subintervals, 

!:l.s.i, with centers Sj (J' = 1, ... , N). Each parametric value, Sj, corresponds to a 

point on the arc Xj = (p(s,i), z(s,i)) and each !:l.s.i corresponds to a segment or 

element of the arc. The elements are assumed to be sufficiently small so that the 

local normal tractions f~ 1 ), f~ 1 ) and velocities u~, u~ may be assumed constant 

within each element. The resulting discretized system is: 

(36) 

~~~t{[j .P(xi,~)ds] 
J=l !::J.sJ 

N A: i ki {[L, Q(x,, e) . (~~:~D dS]} 
(37) 

Each coefficient 

A/ d~ [ls· P(xi, ~) ds] 
J 

(38) 

B/ def [ls· Q(xi, e) ds l 
J 

(39) 

and inhomogeneous term 

( 40) 

for j =/= ican be easily evaluated by standard numerical integration schemes. 

Here Gaussian quadrature was used. For j = i and s = Si then e(s) = Xi, 
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and the functions P and Q become unbounded. In this case, the region D..sj is 

subdivided into three smaller regions, one of which is centered at the singular 

point Sj and is D..jing = [sj- ~' Sj + ~]. The constant, Eis assumed small enough 

that ov~r D.. jing the arc may be accurately approximated by the tangent line 

through the point Xj. Following Lee and Leal (1982), the singular contributions 

to (38-40) from over the interval D..tng can be approximated analytically. The 

details of the singular contribution are given in the appendix. In the remaining 

two portions of the singular element D..sj accurate Rhomberg integration was 

performed. 

Equations (36) and (37) are linear systems in stress and velocity. The 

structure of these systems is best shown as follows. Denoting 

and 

(bp(x;))d"'t[J Q(x;,€). (.Tp(x;))ds] 
bz(Xi) j=l t:..sj fz(Xj) 

cl A def 
A1 

2 
A= 
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u d.!) 

Ai 
Az 
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Ai 

u~(x 1 ) 
ui(xi) 
u~(x2) 
u~(x2) 

u~(XN) 
u~(XN) 

bp(xi) 
bz(xi) 
bp(x2) 
bz(x2) 

Af) AN 
2 
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leads to the linear system 

>. - 1 A 

--A·U 
>. + 1 

1 
>. + 1 b. 

( 41) 

( 42) 

( 43) 

( 44) 
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Rearranging, the desired result may be obtained: 

u = _1_(~,\-l.A-1)-lb 
.\+1 2.\+1 

( 45) 

In a manner analogous to Equations ( 42) and ( 43) we can construct a matrix 

B (with components B{ ) and column vector f. Then using the matrix A and 

vector U from above, Eq. (36) can be written for the system of equations as 

u = -2::8 · J + 2.A · u. ( 46) 

Rearranging Eq. (46), the stress can be found by solving the system 

( 47) 

Given the details of the initial shape and curvature, then matrices A and 

B can be evaluated along with the vector b and equation ( 45) yields the surface 

velocity. If desired,the resulting velocities may be used in equation (47) to 

determine the unknown stresses. This procedure amounts to solving two linear 

systems both of size 2N by 2N. Note that this is more efficient than solving the 

single 4N by 4N system. Once a shape and velocity distribution at time t is 

known, equation (7) is used to determine a new shape and subsequent velocity 

distribution. Equation (7) is discretized as follows: 

p(s, t + .0.t) = p(s, t) + np(s, t) [u~(s, t) np(s, t) 

+ u!(s, t) nz(s, t) J .0.t 

z(s, t + .0.t) z(s, t) + nz(s, t) [u~(s, t) np(s, t) 

+ u!(s, t) nz(s, t) J .0.t 

(48) 

Equation (48) determines a new set of surface locations (p(sj),z(sj)) for j = 
1, ... ,Nat time t+.0.t. Cubic splines are used to determine p(s), p(s), p(s), z(s), 

z(s), z(s) for s E [so, SJ]· The t + .0.t velocities are then calculated using these 

shape details and the process is repeated, marching forward in time. 
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Numerical Results 

(a) Preliminary Testing 

As an initial test of the use of the wall Green's function, drag calculations 

were performed on solid ellipsoids moving axisymmetrically toward the wall. 

Agreement with existing theory was excellent. For further details the reader is 

refered to Ascoli, Dandy and Leal (1988). 

Hadamard (1911) and Rybczynski (1911) theoretically determined veloc­

ity and stress fields for the case of uniform flow past a spherical drop. The 

current case of a drop approaching a planar wall degenerates to the Hadamard­

Rybczynski case when the drop is sufficiently far from the wall. Figure (2) 

shows a typical comparison between the theoretical predictions of Hadamard­

Rybczynski and numerically generated results for a spherical drop with center 

located 1000 radii away from the wall. For the numerical results 31 elements 

were used. Surface velocities and local surface stress forces for >. = 3 are plotted 

against ¢> / 1f where ¢> is the angle made with the horizontal through the sphere 

center. Agreement is excellent. 

In the present problem, the drop moves under the influence of a constant 

bouyancy force and thus the drag on the drop should remain constant with the 

velocity of the drop changing as the wall is approached. Surface integration of 

equation (6) (and application of the divergence and surface divergence theorem) 

indicates that the exact solution of equation (31) does indeed incorporate a 

constant bouyancy force. Here equation (31) is solved numerically and surface 

tractions are obtained via equation (30) from the velocities obtained from (31). 

The constraint of constant buoyancy force is not applied explicitly or directly 

in equation (30). Thus, the constancy of this computed value may be used as 

a check of the accuracy of the technique for all ranges of drop to wall distance. 

The numerically computed drag is normalized by the theoretical drag on an 

equal volume spherical drop in the absence of a wall (the Hadamard-Rybczynski 

result). Ideally, then, the numerically computed normalized drag should equal 
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1.0 throughout the range of computations. 

Thirty-two surface elements were used in the calculations reported below. 

This number was chosen based on preliminary testing with 12, 22, 32, 42, and 48 

elements. Testing indicated that 12 elements were inadequate to resolve highly 

deformed shapes. With 12 elements, jagged corners in the spline fit of the surface 

were noticeable near the planar wall where high deformations occurred. Clearly, 

these jagged corners were not physical but were instead artifacts of insufficient 

numerical resolution of the surface. The poor spline fit was accompanied by 

inaccurate values of drag. Twenty-two elements were found to be adequate for 

all but the most deformed drop configurations, where calculated drag values 

differed by up to 10% from the theoretical normalized value of 1.0. Forty-two, 

forty-eight and thirty-two elements produced smooth drop shapes that were 

visually indistinquishable. A slight improvement in accuracy of the drag values 

(of the order of 0.1% and 0.3% respectively) was noted for 42 and 48 points 

when the drop shape was highly deformed. However, this gain in accuracy was 

significantly outweighed by the increase in computation time required for the 

larger number of points. 

In the course of computations, errors m drop volume, though extremely 

small at each given time/shape calculation, were found to accumulate. Typi­

cally a calculation using 32 elements beginning with a spherical drop shape 15 

radii away and terminating with a highly deformed drop within one undeformed 

radius of the wall was found to have a total accumulated error in volume of the 

order of 5%. With a timestep of 0.005 and a run time of approximately 20 di­

mensionless time units this corresponds to roughly 0.00125% error in volume per 

iteration. The accumulated errors were found to be largest for drops with the 

highest deformation. The amount of accumulated error varied with the number 

of elements, being least with the largest number of elements. Again, although 

slightly improved accuracy in volume was obtained by using 40 and 48 elements, 

the additional computational time did not warrant the use of more than 32 el-
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em en ts. Instead, for all the results presented below, a periodic renormalization 

of the length scaling was performed during the computations to maintain a 

constant drop volume. 

Preliminary testing was performed to determine the distance from the wall 

at which the assumption of a spherical starting shape is reasonable. For this 

purpose, spherical drop shapes were assumed starting with the center of mass, 

Zcenter = 25, and run until Zcenter reached 15 undeformed radii. During these 

tests, the center of mass velocity, Vcenter, differed from the normalized value of 

one by as much as 6.4 % for Ca= 3, >. = 0.3. However, the maximum deviation 

in radial distance from a spherical shape 

for this case was less than 2%. For Ca= 1 and Ca= .3, the maximum deviation 

from a spherical constant radius was less than 0.85% and 0.25% respectively 

for the >. values considered. These results indicate that a starting position 

of Zcenter=15 with a spherical initial shape is an excellent assumption for the 

Ca=0.3 and 1 cases and a reasonable assumption for Ca=3. 

Hartland (1969) performed a series of experiments involving drops of golden 

syrup containing potassium iodide falling under the influence of gravity through 

sextol phthalate towards a planar wall. Although the intent of his experiments 

was to study the later stages of dimple formation when the golden syrup drops 

are extremely close to the wall, his photographic results for the early stages of 

dimple formation provide experimental details of the gross shape of the entire 

drop to which the current numerics may be compared. Hartland's physical 

parameters for the high viscosity golden syrup drop (p 1 = 1.580 gm /cc,p 2 = 

1.069 g/cc,µ1 =175 poise, µ2 = 137 poise,/= 23.6 dyne/cm, with drop volume 

of .25cc ) give U = 0.234 emfs, Ca= 1.358,).. = 1.478, and Re 1 = 8.25 x 10-4, 

Re2 = 7.13 X 10-4 • Numerical results are shown in Figure (3) for the case of 

Ca = 1, >. = 1 with Zaxis = 0.155. This is the smallest value of Zaxis obtained 

numerically for these parameters. Hartland's photograph corresponds to Zaxis 
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between 0.153 and 0.128. The agreement in gross shape detail is exceptional. 

(b) Results 

Thirty-two elements with a time step of 0.005 were employed in the calcu­

lations presented. Each run was terminated when the calculated value of the 

normalized drag differed from 1 by more than 2%. Results are reported here for 

,\ of 3, 1 and 0.3, with Ca equal to 3, 1 and 0.3 for each ..\. For all calculations 

the initial shape was taken to be spherical, with the sphere center at 15 radii 

from the wall as indicated above. 

The calculated drop shapes are shown in figures (4-12) for all nine combi­

nations of ,\ and Ca. The elapsed time between each shape shown is 1 dimen­

sionless time unit (i.e. the time increment required for the undeformed drop in 

an unbounded fluid to translate a distance equal to its own radius). 

Dimpling was observed for all values of Ca and ..\ considered. Shape evolu­

tion naturally divides into two regimes: evolution prior to the point of dimpling 

and evolution after a dimple has formed. The transition configurations, i.e. the 

numerically determined film configurations at the timestep immediately prior 

to the formation of a dimple, are shown in figure (13). These transition con­

figurations all display a small, approximately fiat region at the wall side of the 

drop near p = 0. In each case, the dimple first forms in this fiat region, at a 

relatively small radial distance from the z-axis. The apex of the dimple then 

moves radially outward. 

The pertinent questions at this point are 1) what role do Ca and ,\ play in 

determining the configurations shown in (13), 2) why does a dimple form once 

configurations (13) are established and 3) what effect do Ca and ..\ have once a 

dimple has formed. 

Increasing Ca results m an overall increase in deformability of the drop 

throughout its entire range of motion. This is obvious from figures ( 4-12). 

In addition, increasing capillary number results in "onset" of dimpling farther 

from the wall. This statement may be made more precise by defining Zcenteri 
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the z-axis location of the drop center of mass and Zaxis, the distance along 

the z-axis from the plane to the nearest axis point of the drop (figure 1 b). At 

the instant when dimpling is first numerically observed, Zaxis and Zcenter are 

largest for Ca= 3. The Zcenter and Zaxis values when dimpling is first observed 

both decrease with decreasing Ca. This is easily seen in figures (13) for the 

configuration immediately prior to dimpling. 

The depth of the dimpled region, and the location of the "center" of the 

dimple are best discussed in terms of Zmin and Pmin (figure lb). Zmin denotes 

the minimum distance along the z-direction between the drop and the plane wall, 

while Pmin denotes the radial distance in cylindrical coordinates to the position 

on the drop at which Zmin occurs. Once a dimpled configuration has formed, for 

a given Z axis, the depth of the dimple Z axis - Zmin increases with increasing Ca. 

In particular, for Ca= 0.3 dimpling is barely noticeable at the point where the 

calculation was terminated. However, at a given Zaxis location, as Ca increased 

to 1 and 3, the depth of the dimple region increased dramatically. This effect is 

illustrated in figures 14 and 15 for the case .\ = I. 

Increasing Ca also produces an increase in the deviation from sphericity at 

the side of the drop farthest from the wall. In fact, for Ca= 3.0, flattening and 

eventual indentation of the side of the drop farthest from the wall was observed. 

The effect of Ca on the normalized center of mass velocity is much less than 

what might be anticipated from the large effect that Ca has on the drop shape. 

Vcenter plotted versus Zcenter is shown in figure 16 for the case .\ = 1. Deviation 

from the non-deforming spherical results (solid line) is small. Far from the wall, 

these deviations are due to blunting of the wall side of the drop (and subsequent 

shift of the drop center of mass away from the wall). Near the wall, deformation 

allows a mechanism of motion which the spherical drop is not allowed. 

Conversely, fixing Ca, what is the effect of.\ variation? Calculated shape 

details are remarkably insensitive to.\. For Ca fixed at 0.3 and.\ varying, figures 

( 4), (7) and (10) are nearly indistinguishable as are the corresponding configu-
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rations shown in figure (13). For Ca fixed at 3 and 1, very slight configurational 

differences are observed. In particular, figure (13) demonstrates that increasing 

>. corresponds to slightly larger values of Zaxis and Zcenter immediately prior 

to dimpling. Even after dimpling has occurred, the effect of varying >. in the 

Ca = 1 and 3 cases is relatively small. The general trends in the dimpled con­

figuration are shown in figures (17) and (18). The Pmin value where the dimple 

is first formed is insensitive to >. ( figure 18, where the dark circle denotes this 

value). The shapes of the curves in figures 17 and 18 are remarkably similar for 

different >.. In short, the "dynamics" is roughly the same for each >.. Once again, 

the value of>. determines the starting (Zaxis values where the curves begin. 

Variation in >. does have a significant effect on the normalized center of 

mass velocity. This is demonstrated in figure (19). At a given Zcenter location, 

drops with higher viscosity relative to the suspending fluid show a larger wall 

interaction (corresponding to lower Vcenter ). This effect diminishes significantly 

in the latest stages of deformation when the drop is closest to the wall. Thus, 

the major effect of >. is to set the relative rate at which the drop evolves, up to 

the point of dimpling. 

Thus far, the gross geometrical details of deformation and the relative rate 

at which this deformation takes place have been correlated with Ca and >.. A 

careful examination of the velocity and modified pressure fields provides addi­

tional insight into the dynamics of dimple formation. 

Equations (32-35) allow computation of velocity and pressure fields in the 

two fluid domains. Figure 20a shows the velocity field obtained for Ca= 1, >. = 1 

in a dimpled configuration. Here the velocity is calculated relative to a fixed wall. 

Figure 20b shows the analogous velocity field, with velocity measured relative to 

the center of mass of the drop. Figures 21 and 22a,b show the velocity fields for 

the dimpled configurations with parameters Ca= 0.3, >. = 1 and Ca= 3, >. = 1 

respectively. These figures indicate that, once a dimple is formed, the largest 

relative motion occurs in the immediate vicinity of the dimple. The downward 
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motion of the film at p = 0 is small in comparison to the downward motion of 

the dimpled region. In short, the dimples increase in depth (Zaxis - Zmin) with 

time. 

It is instructive to focus on the velocity fields in the film region immedi­

ately prior to the dimple formation. Figures 23 and 24 show the radial and 

z-components of the velocity in the film for Ca = 1 and >. = I. At the next 

numerical timestep a dimple has formed at the radial position marked by the 

vertical line at the wall. From these plots it is easily seen how a dimple will 

form in terms of velocity field variation. Near p = 0 the face of the drop nearest 

the wall is aprroximately fiat. The downward component of velocity increases 

as one moves radially outward. Athough this increase in downward velocity is 

small, near p = 0 the surface is nearly fiat and thus only a slight increase in 

downward velocity is required to form the dimple. 

Stokes equations are physically a balance between the forces due to modified 

pressure and the forces due to flux of momentum. Momentum fluxes correspond 

to velocity variation. We have examined the velocity fields. The next step is to 

consider the modified pressure fields. 

Film drainage theory employing the lubrication approximation stresses the 

importance of variation in pressure with radial distance. Variation of pressure 

with z is neglected. The velocities calculated at the surface of the film are 

directly related to the assumed variation in pressure. As a consequence, the 

evolution of the film shape is critically dependent on the assumed variation in 

pressure. What do the numerically calculated pressure fields look like after 

a dimple has formed? Figures 25-27 show calculated modified pressure fields 

corresponding to the configurations of figures 20-22. The most obvious variation 

in pressure occurs at the outer edge of the film region. Here p 2 rapidly decreases 

radially outward. Equivalently, 8lp is negative and large in absolute magnitude. 

In each case, P2 in the film region decreases with z at a fixed p location. In other 

words, 8J; is negative in the film region. For the significantly dimpled case of 
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Ca= 3, al; is positive from p = 0 outward to the dimple and negative radially 

beyond the dimple. For the Ca = 1 and Ca = 3 cases, where the dimple is in 

its infancy compared to the Ca = 3 case, al; is negative throughout the film 

region. For Ca = 3, al; and al: are extremely small in the nearly stagnant 

central flow region. For the other cases al; and al1 are roughly of the same 

order of magnitude near p = 0. al; grows rapidly more negative near the edge 

of the film region, while here al: is small in magnitude in comparison. 

What do the pressure fields look like, immediately prior to dimple for­

mation? Figure 28 shows the modified pressure for the Ca = 1, >. = 1 case 

immediately prior to dimple formation. The largest pressure variation is at the 

edge of the drop, where pressure rapidly decreases radially outward. In contrast, 

for this configuration, the dimple first forms at p = 0.125 where radial pressure 

variation is small relative to pressure variation with z. This is flagrantly at odds 

with thin film lubrication analysis. 

How does the pressure field vary as the drop approaches the wall? In 

particular, how does al: vary near the center of the drop, as the drop approaches 

the wall? The evolution of pressure fields as the Ca= 1, >. = 1 drop approaches 

the wall is shown in figures 29-31. For each plot, a radial distance is fixed 

and pressure is calculated for z-values beginning at the wall and up to the 

drop surface. Each curve in the figures then corresponds to a different Zcenter 

location. These figures illustrate the fact that for small p and large Zcenter al: 
is positive near the drop surface. As Zcenter decreases (i.e. the drop moves 

toward the wall) al: becomes negative over the entire film height. As the drop 

moves closer to the wall alz eventually decreases in magnitude. 

Summarizing, pressure variation with z may be negligible in the latest stages 

of dimple formation. In contrast, when the dimple first forms, pressure variation 

with z is not small relative to pressure variation with p. 

The significance of a negative al1 when the drop is in the configuration 

depicted in figures 23 and 24 may be seen from an elementary analysis of Stokes 
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equation in fluid 2. 

vVriting system (2) in radial coordinates yields (velocities and pressures 

refer to fluid 2): 

8p = !_(.!_8pvp) + 8 2
vp] 

ap ap p 8p 8z 2 

ap = .!_!_ (p avz) + 82vz 
az p 8p 8p ()z2 

1 8pvp avz 
---+-=0 
p ap az 

The continuity equation may be used to rewrite each of the momentum equations 

as: 

Integrating these equations from 0 to p and from z0 to z gives 

z 

avz , 8vp _ J Bpd F( ) --1-- - z+ p 
8p az ap 

( 49) 

Zo 

(50) 

Finiteness at p = 0 implies G = 0. Further, pressure is harmonic (apply the 

divergence operator to the Stokes equation and use continuity to confirm this 

result). Thus 

1 a ( ap) a2p 0 
= pap Pap + az2 

Differentiating equation (50) with respect to z and applying l 
8
8 p() to equation 

p p 

( 49) then using the harmonicity of pressure leads to the two results that 

1 a ( ) ap P Bp pF(p) = 8z /z=zo 
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The first result is an obvious consequence of axisymmetry. Solving (once again 

assuming finiteness at p = 0) gives 

This equation applies in any rectangle [O, p] x [z0 , z] contained in the fluid 2 

domain. In particular, applying this equation on the line z = zo, p E [O, pf J 

where z 0 is a small distance below the film depicted in figures 23 and 24 and pf 

is the radial location where dimpling first occurs results in: 

Pf 

8(-vz) I - - OVp I - _!_ J op I d 
'.'.l z=zo ,p=pf - '.'.l z=zo ,p=pf P '.'.l I z=zo P 
up uz Pf uz 

(51) 

0 

Physically, this equation represents a force balance. It may be re-written as 

The left side is the z component of the force due to pressure exerted on the 

faces of and infinitesimal cylinder of radius p and height !::..z. The right side 

corresponds to the momentum flux forces across the infinitesimal perimeter. 

Figure 23 indicates that 8
8v; lz=zo ,p=PJ will be nearly zero or small and pos­

itive. Dimpling at pf can only occur in this configuration if 8 
( -;;;z) Jz=zo ,p=PJ is 

positive. Assuming that z 0 is sufficiently close to the film surface that continuity 

of velocity will ensure what happens at (pf, z0 ) is representative of what hap­

pens at the film surface, (p fl z film), then it is absolutely necessary that ~ J z=zo 

be negative in a region near the drop surface. 

This analysis indicates that z pressure variation is a key ingredient to the 

initial formation of a dimple. This has direct impact on the range of validity 
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of the lubrication assumption. In particular, lubrication theory where z pres­

sure variation is neglected is inadequate to resolve the initial stages of dimple 

formation. In the later stages of deformation, after a dimple has formed (and z 

pressure variation has diminished) lubrication theory may provide a valid rep­

resentation of the dynamics of the problem. 

( c) Discussion 

The current numerics compares well with the Hadamard-Rybczynski (1911) 

results when the drop is far from the wall. For a highly deformed configuration 

configuration near the wall, the numerics compares well in gross detail with the 

experimental results of Hartland. Numerical accuracy degrades rapidly when 

the drop is extremely close to the wall. For this reason, numerical results were 

not obtained in the latest stages of dimple formation and film drainage. Never­

theless, the initial stages of dimple formation are captured. 

The assumptions relevant to film drainage theory listed in the introduction 

may now be assessed. 

(I) Films have been assumed thin in the sense that E d.2' h/ R ~ 1. This assump­

tion has been used to neglect various terms in the equations of motion in the 

context of "lubrication" or boundary layer approximations. It is anticipated 

that the simplifying approximations made in these theories are increasingly 

accurate as f. ___,. 0. Taking h to be Zaxis at the instant the dimple forms 

and R to be the undeformed radius of the drop (for the numerical cases 

shown, this choice of R provides a reasonable measure of the radial extent 

of the film region), at the onset of dimpling, the current numerics predicts E 

in the range 0.1 to 0.3. These values of E are by no means vanishingly small. 

In particular, based on the assumption of vanishingly small E, lubrication 

theory neglects z pressure variation in the film region. This assumption 

is incorrect at the initial stages of dimple formation. In fact, a decrease 

in pressure with z in the film region has been shown to be crucial to the 

formation of a dimple. For the range of Ca and .A values considered here 
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E is not sufficiently small at the onset of dimpling for lubrication theory 

to be accurate. In the later stages of dimple evolution, as f. decreases in 

magnitude, lubrication theory may provide a valid approximation. 

(II) Jones and Wilson (1978) applied thin film arguments to the related problem 

of a drop approaching a deformable interface. They considered the film as 

composed of a dimple region and a central film region. Tangential stress 

in the central film is of the order of µ 2iit/ h while the stress in the drop 

is of the order µ 1ut/ R. Viscosity ratio, A., is assumed to be 0(1) while 

E = h/ R is assumed small. Continuity of velocities indicates Ut in the 

central film and in the drop are of the same order. The conclusion Jones 

and Wilson reach is that the tangential stresses cannot match to leading 

order and thus ~'; = 0 The drop viscous contribution to the tangential 

stress does not come into play. In the dimple region this analysis breaks 

down. Here the appropriate length scaling in the drop is h (the order of 

size of the dimple) and the drop tangential stress is of the same order as 

the film tangential stress. Thus Jones and Wilson conclude that viscous 

effects in the drop must be considered in the dimple region. Immediately 

prior to dimple formation, their argument indicates 8
8v; = 0 throughout the 

film region. Figure 23 indicates that 8
8v; is small at the interface in in the 

central region of the film. This may be deceptive since in the initial stages 

of dimple formation equation {51) indicates that an accurate estimate for 
8
8vz at the interface may be crucial. Thus, it is difficult to clearly assess the 

error of this approximation. 

(III) The dimensional equivalent of equation {6), when rescaled, provides the 

necessary information to determine when gravity effects may be neglected 

relative to surface tension effects. Scaling p with R and z with h, leads to 

the parameter 

Roughly speaking, M is the ratio of gravitational effects to surface tension 
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effects. M « 1 indicates gravity is negligible relative to surface tension. 

Only in the limit Ca « 1 will M be small. None of the numerical cases 

considered here approach this limit. 

(IV) Drop deformation increases with increasing Ca. Thus the assumption of 

spherical drop shape outside the film region is limited to Ca« 1. Similarly, 

outside of the dimpled region invariance of drop shape is limited to the small 

Ca regime. 

Dimple evolution is observed to occur in several stages. Initially a configu­

ration is established in which the drop is nearly fiat at the central region of the 

film, then gradually sloping upward at the edge of the film. In this configuration, 
8J: is observed to be negative near p = 0. A negative value of 8li has been 

shown to be crucial to the observed increase in downward velocity as one moves 

radially outward. It is this increase in downward velocity that forms the initial 

dimple. Lubrication theory neglects the observed variation of pressure with z. 

As a consequence, lubrication theory will not be valid in the initial stages of 

dimple formation. 

In the later stages of dimple growth (here observed for Ca = 3 ) , velocity 

at the central region of the film is dramatically smaller than near the dimple. 

Here fluid is "trapped" by the dimple and corresponding pressure fields indicate 

that pressure increases moving radially outward to the dimple, then decrease 

radially beyond the dimple to the stagnant fluid value. The quantity, 8/; , is 

seen to decrease in magnitude in the later stages of dimple evolution. It is for 

this latest stage of dimple evolution that the lubrication assumption of negligible 

pressure variation with z may be valid. 
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Appendix A 

(a) The matrices P, Q and the vectors S and W 

In section 2 it was shown that after integrating analytically in the axial 

direction, the integrands reduce to the form 

(Al) 

and 

(A2) 

The elements of the matrices P and Q along with the vectors S and W are: 

47r 
3P11 = pp;np(C~3 - 6~3) +Po [Pnz(r3Cf 2 

- R36~2 ) 

+ np(2p 2 + p;)(c~2 
- 6~2 )] + pnp(2p~ + p 2 )(C~ 1 

- 6~ 1 ) 

+ nz(P 2 + p;)(r3C21 
- R36f 1) + PPo [Pnp( Cf0 

- 6f0
) 

00 A 00 ] { A 01 A 00 + nz(r3C5 - R3C5 ) - 2x3 -x3np(pC5 + poC5 

{ 

A 02 A 01 }] [ 2 A 03 + z 2ponpC5 + (2pnp + nzR3)C5 + l0x3z pp 0 npC7 

+ Po {pnzR3 + np(2p 2 + p;) }6~2 + {pnp(2p~ + p2
) 

2 2 } A 01 A 00] + nzR3(p + P0 ) C1 + PPo(Pnp + nzR3)C1 

(A3) 

(A4) 
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47fp 2 ( c02 R c"'02) I 2 ( col R c"'Ol) -3 21 = Ponp r3 5 - 3 5 -r PPonp r3 5 - 3 5 

+ Ponz(r~C~ 1 
- R~C~1 ) + p2np(r3C~0 - R3C~0 ) 

+ pnz(r~C~0 - R~C~0) + 2x3 [-x3npR3C~0 

+ znz(p 0C~ 1 + pC~0) + p;npC~2 

A 01 A 00] + Po(2pnp + nzR3)C5 p(pnp + nzR3)C5 

00 A 00 [A 01 + PPo(C3 - C3 ) - 2x3z C3 

- 3{(p 2 +p;)c~ 1 + PP0(6i2 +6~0)}] 

8nQ12 = p(r3C~ 1 
- R3C~ 1 ) + Po(r3C~0 - R3Cg0

) 

+ 2x3 [p6g 1 + Po6g0 + 3zR3 (pC~ 1 + PoC~0) J 

87rQ21 = Po(r3Cg1 
- R36g 1

) + p(r3cg0 
- R36g0

) 

-8JrQ22 = C~o - C~o + r~cgo - R~cgo 

+ 2x3z(6g0 
- 3R~6~0). 

1 [ 00 A 00 01 A 01 A 00 A 01] S1 = -
4

7r p(C3 - C 3 ) + Po(C3 - C 3 ) + 6pf.3R3C5 + 6p 0 f.3R3C 5 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(A12) 



-104 -

-3 00 3 " 00 2 " 00 
+pnz( z-r3C5 + 2R3C5 - 15esR3C 7 ) 

-3 01 3 "01 "01) 
+2pp0 np( z-C5 + 2C5 - 15~3R3C7 

-3 01 3 "01 2 "01) +ponz(-r3C5 + -R3C5 - 15~3R3 C7 + 
2 2 

2 -3 02 3 "02 "02 "01 "oo] +p0 np( z-C5 + 2C5 - 15~3R3C7 ) + 3ponz6C5 + 3pnz~3C5 

(Al3) 

1 [ 1 00 1 "00 "00) (-3 00 3 "00 2 "00) W2 = - nz(-C3 +-C3 -3x3R3C5 +pnp -r3C5 +-R3C5 -156R3C 7 
7f 2 2 2 2 

+ n (-3 r2coo + ~R2coo - 15t" R3Coo) 
z 2 3 5 2 3 5 ..,.3 3 7 

-3 01 3 "01 2 "01 
+ponp( z-r3C5 + 2R3C5 - 156R3C 7 ) 

(A14) 

The symbols c;m and c;m represent various elliptic integral functions, and 

these will be listed in the next section. The point (p, z) corresponds to the 

location of integration, and (p 0 , x 3) is the singular point. Also, r3 = z - x 3 and 

R3 = z + X3. 

(b) The Integrals c;m and c;m 
The elliptic integral arise from analytic integration of the trigonemetric 

functions appearing in the surface integrals. All of the elliptic integrals shown 

in the previous section are of the form 

and 

cnm = _2_ 11!" sinn 2x cosm 2x dx 

P - 1Pl2 o [1 - k 2 sin2 x]P12 

2 11!" 
,';/_2 0 

sin n 2x cosm 2x d 

[1 - k~ sin 2 x]P12 x, 

(A15) 

(Al6) 
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I = (P + Po) 
2 + r5 

k2 = 4PPo 
I 

/R = (p + Po)
2 + R5 

2 4PPo 
kR = 

/R 

Using standard integral tables, all integrals of the form shown in Eq. (A15) or 

(A16) can be reduced to the two functions 

K(k) = 2111" dx 
[1 k2 • 2 J 1/2 - sm x 

E(k) = 2111" dx 
[1 k 2 • 2 J 3/2. - sm x 

The elliptic integrals appearing in Eqs. (A3)-(A14) are listed below: 

c~1 = cfo - k2~1;2 (K - E) 

coo = A 4 E 
3 k213/2 

col - 4 [ 1 + k2 J 
3 - k213/2 2K - k2 E 

20 16 [ A 2 J 
C3 = k413/2 (1 + k )K - 2E 

c03 = cOI - c20 + 32 [(k2 - 8)E + (8 - 5k2)K] 
3 3 3 3k613/2 

c~o = A 4 [2(1; k2) E - K] 
3k215/2 k2 

c 01 = A

4 
[(1 + k2)K - ? (k 2 + k4 )E] 

5 3k2k215/2 k2 

Cio = 16 [1 + _k2 E - 2K] 
3k415/2 _k2 

(A17) 

(A18) 

(A19) 

(A20) 

(A21) 

(A22) 

(A23) 

(A24) 

(A25) 
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(A26) 

(A27) 

: [;_(-6+9k 2 -19k4+8k6 )E + 2(3k2+2k4)K] 
15k2k4;1 /2 k2 

(A28) 

c 20 = A 

16 I ;_(k2 + k4 )E - (1 + k2 )K] (A29) 
7 15k2k4;7/2Lk2 

c~ 1 
- c?0 + A 

32 
[-;_(8 - 13k2 + 3k4)E + (8 - 9k 2)K] 

1sk2k0;1/2 k2 

(A30) 
coo _ c20 

p p (A31) 

where 

k2 1 - k 2 

- small k expansions -

A numerical difficulty arises when p and/or p 0 --+ 0, because even in double 

precision arithmetic, terms in numerators do not cancel as fast as denomenators 

go to zero. In reality, all of the elliptic integrals listed above approach constant 

values as k --+ 0, and to reflect this fact, it is necessary to do a generalized bi­

nomial expansion in k 2 on the integrand in Eq. (11). The result of the expansion 

in an infinite series in powers of k 2 ; we have truncated the series at the O(k 4 ) 

term, under the assumption that the remainder is vanishingly small. Thus in 

the limit ask--+ 0, the integrals in Eqs. (A17)-(A31) reduce to the following: 

coo = ~ (1 + .!.k2) 
1 ;1/2 8 (A32) 

COl - 7rk2 
1 - - 4;1/2 (A33) 

coo= ~(1 + ~k2) 
3 ;3/2 8 (A34) 
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co1 - - 37rk2 
3 - 413/2 (A35) 

c20 _ 3 - 7r ( 3 2) 
3/2 1 + -k 

1 8 
(A36) 

co3 97rk 2 
(A37) 3 1613/2 

coo -5 - 27r ( 5 2) f:fi 1 + -k 
1 8 

(A38) 

CO!_ 57rk 2 

(A39) 5 - - 415/2 

20 7r ( 5 2) c 5 = i5/2 1 + 8k (A40) 

co3 l57rk2 
(A41) 5 1615/2 

coo - 27r ( 7 2) (A42) 7 - 772 1 + -k 
1 8 

col - - 77rk2 
7 - 417/2 (A43) 

c20 _ 7r ( 7 2) (A44) 7 - 772 1 + -k 
I 8 

c~3 
217rk2 

(A45) 
1617/2 

( c) The singular contributions 

As mentioned in §2, the numerical integration breaks down when e ----+ x 

since the kernel becomes unbounded in this case. To include this integrable sin­

gular contribution it is necessary to approximate the integral analytically. This 

is accomplished by Taylor series expanding the singular terms about the point 

(p 0 , z 0 )in Eqs(A3-A10). The details involved in carrying out these expansions 

are analogous to those used by Lee and Leal(1982), the differences being only in 

the choice of parametrization of the surface. It is important to note, however, 
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that only those terms in the kernels Q and P stemming from the fundamental 

solution to Stokes system must be considered, since R =j:. 0 for z > 0. 

- the single layer -

Here we consider the integral 

(A46) 

+ PP of p( ego + cg2) + f zr3(pcg 1 + Po ego] 

+ k[lzCf0 + lpr3(pcg0 + Pocg 1
) + lzr~cg0]}, 

where Si is the value of the arclength parameter of the ith node, and i and k are 

the cartesian base vectors. After carrying out the expansions, the i component 

of the integral is 

2 {i PoZo 
E Zo [ • 2 + • 2] 1/2 

Po Zo 

·2 2. 2 I [ Po + Zo 
+ Po [. 2 + .2]1/2 

Po zo 

[·2 + ·2]1/2] (-E [•2 + •2]1/2)]} Po Zo n l6po Po Zo ' 

(A47) 

and the k component is 

ak ,...._,, 2 {1 PoZo f [ z~ 
E Po [• 2 + .2]1/2 + Zo [• 2 + .2]1/2 

Po Zo Po Zo 

+ [·2+ .211/2(l-J _E_[·2+ •2]1/2)]} 
Po ZoJ n l6po Po Zo ' 

(A48) 

where the subscript o denotes evaluation at the singular point. 

- the double layer -

The singular contribution to the double layer takes the form 

(A49) 
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After carrying out the expansions, the i component of the integral is 

(A50) 

and the k component is 

f. Uz { z0
2 

+ 0 - + 
3 (,O~ + zdsq) Po 

(A51) 

4 ·2 } + Zo ( • 2 · 2) ( · ·· ·· · ) 
( 

.
2 

+ .
2
)2 Po - Z 0 PoZo - PoZo • 

Po Zo 
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The thin film trapped between a bubble and a planar wall 
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California Institute of Technology 
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Introduction 

In chapter II we numerically examined the buoyancy driven axisymmetric 

motion of a deformable drop toward a planar wall. Focus was placed on the phe­

nomenon known as dimpling. In particular, immediately prior to dimpling, the 

drops were found to be nearly fiat at the central region of the interface nearest 

the wall. A dimple developed, within this fiat region, at a small radial distance 

from the axis of symmetry (taken to be the z-axis). In these initial stages of 

dimpling, each instantaneous configuration was accompanied by a decrease in 

modified pressure with z near the dimple region. This decrease in modified pres­

sure with z was shown to be crucial in establishing the momentum fluxes which 

inevitably lead to dimple formation. In the later stages of dimple evolution, 

modified pressure variation with z in the dimple region decreased in magnitude 

relative to radial pressure variation. 

A multitude of "film drainage" theories have been developed to describe 

the shape evolution of the film trapped between the drop and the planar wall 

(consult Chapter II for further details). These theories have one key geometri­

cal assumption in common. The height of the film is assumed to be vanishingly 

small relative to its radial extent. This assumption has been invoked to justify 

the lubrication approximation. In turn, the lubrication approximation neglects 

variation of modified pressure with z. The results of Chapter II indicate that the 

necessary physics for predicting initial dimple formation for intermediate ranges 

of physical parameters is lost when modified pressure variation in z is neglected. 

The authors suggest that initial dimple formation takes place for geometrical 

configurations where the film is not sufficiently thin to warrant neglect of varia­

tion in pressure with z. In the later stages of dimple evolution, where variation 

in modified pressure diminishes, the lubrication assumption will be valid. 

Lubrication theory is an asymptotic theory, where the small parameter is 

the ratio of film height to radial extent. As applied in existing film drainage the­

ory, only the leading order result is sought. In principle, higher order corrections 
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in the small parameter may be obtained. Presumably, higher order corrections 

extend the domain of validity of the approximate solutions to larger values of 

the small parameter. The obvious question is: Can higher order corrections 

predict the details of initial dimple formation? Unfortunately, careful scaling 

and non-dimensionalization of the governing equations has not been done. In 

addition, film drainage theory has been complicated by peripheral assumptions 

(i.e. neglect of gravity in the film and ad hoc geometrical closure conditions at 

the outermost edge of the film). 

In this study, we will focus on the film trapped between a bubble and a 

planar wall. Bubbles form dimples (Platikinov (1964), Derjaguin and Kussakov 

( 1939)) , and the overall geometrical features are roughly the same as for drops. 

The bubble assumption allows neglect of the complications due to circulation 

in the enclosed phase. We will develop a coherent asymptotic thin film theory 

in the small parameter, E, the ratio of film height to film radial extent. We 

assume that in initial film shape (for which E is "small" ) is provided as an 

initial configuration. The analysis will include the effects of gravity in the film. 

Higher order corrections in E will be obtained and the question of initial dimple 

formation examined in this context. 
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Formulation 

We consider the slow viscous motion of a deformable bubble normal to a 

planar wall (figure Bl). Gravity will be assumed to act upward along the z­

axis. The motion is assumed axisymmetric. Stokes equations govern the motion 

in the outer fluid. In dimensional form, the Stokes equation are ( bar denotes 

dimensional variables): 

8th = [!__ (! 8rvr) + 8
2
vr] 

Br µ Br r Br a-z2 

1 8rvr Bvz 
---+-=0 
r Br a:z 

For convenience we will work with modified pressure, p less the the constant 

bubble pressure fib. Thus, define 

Then the stokes equations become 

8p = [!__ (! 8rvr) + 8
2
vr] 

Br µ Br r Br a :z2 

8p - µ [!!__ (ravz) + 8
2
vz] 

a:z- rar ar a:z2 

Let G denote a measure of the height of the film and R denote a measure of 

its radial extent. In addition, let U denote a measure of the magnitude of the 

z component of velocity. We rescaling z with G, p with R and Vz with U. The 

continuity equation implies that 

O(vr) = RU/G 

Rescaling Vr with RU /G and defining the small parameter €. = G / R yields 

G€.
2 

8p = €. 2 !__ (! 8rvr) + 82vr 
µU Br Br r Br 8z2 (Ela) 
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GE
2 

Bp = E
4 !__ (r Bvz) + E2 B

2
vz 

µU Bz r Br Br Bz2 
(Blb) 

1 Brvr Bvz 
---+-=0 
r Br 8z 

(Blc) 

The corresponding boundary conditions are no-slip at the planar wall and force 

equilibrium at the interface. Thus, at the planar wall 

Vr = Vz = 0 

For a bubble, a force balance at the interface becomes 

/E grG2p 
n · T = µUn "\1 8 • n + µU gn (B2) 

Here, the dimensional stress is defined as 

The corresponding dimensionless stress is 

- 2 
T = T = r - GE Ip 

µU/G µU 

The function, g = g ( r), is the interface height and is made dimensionless with 

respect to G. The vector, n, is the outward normal to the bubble and is given 

by 
Eg 

nr=-----
(l + E2g2) ~ 

-1 
nz= -----

(1 + E2g2) ~ 

The term "\1 8 • n is the dimensionless surface gradient operating on the normal 

to the interface: 

The force balance (B2) at the interface has a tangential and normal component. 

Dotting the tangent vector, t, into equation (B2) shows: 

n·T·t=O 
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The tangent vector, t, can be expressed in terms of the normal vector as tr= -nz 

and tz = nr. Expanding the tangential component of the interfacial force balance 

gives 

(B3) 

At the interface, the normal component of the force balance is 

and this expression may be expanded: 

/E2 [ iJ g ] grG2p 
= -u l. + ~ + u g µ r(l + E2g2) 2 (1+E2g2)2 µ 

(B4) 

A scaling for pressure has yet to be determined. The characteristic pressure 

scale, Pc, will take the form Pc = a~. The exponent q must be determined from 

the governing equations. 

We will assume the following regular asymptotic expansions 

00 

Vr = LEjVr(j) 

f =0 

00 

Vz = LEiv)j) 

j=O 

- 00 

p = E. = LEjp(j) 
Pc . 

0 J= 

No-slip at the planar wall gives 

at z = 0, j 2".: 0 

Equation (B3) immediately gives the result that 

Bvr (O) 
---=0 

Bz 

(B5a) 

(B5b) 

(B5c) 

(B6) 

(B7) 
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We now determine q. In particular, we may assume q :s; 2, otherwise equations 

{Bla,b) give p(o) = constant. Pressure is indeterminate to within a constant, 

and so this is a trivial leading order result. The only choice for q which gives 

nontrivial zero order solutions satisfying equations (Bla, b, c), (B6) and (B7) is 

q = 2. Thus Pc = {;~ . 

With this pressure scaling, equations (Bla, b) become 

Bp = E2 !__ (~ Brvr) + B2
vr 

Br Br r Br Bz2 
(B8a) 

(B8b) 

Using the assumed expansions for pressure and velocity (B5a, b, c) in equation 

(B8a) leads to 
ap(O) B2Vr(O) 

Br az2 

Bp(l) a2vr(1) 

Br 8z 2 

and for j 2'.: 2 

Similarly for the z-momentum equations (B8b): 

and for f 2'.: 4: 

Continuity gives for j 2'.: 0 

Bp(o) Bp(1) 
--=--=0 

Bz Bz 

B2v/O) 

Bz 2 

B2v (1) z 

Bz 2 

I BrvrU) Bv)i) 
0=- +--

r Br Bz 
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Expanding equation (B3) for small € gives: 

_ [ Loo ( )i 2j+3·2j+2] (~ k{Bvz(k) Bvr(k+ 2
)} _!_ Bvr(O) ! Bvr(l)) o - -t+z -1 € g L .. / a + a + 2 a + a r z € z € z 

j=O k=O 

This equation gives the following results to 0(1) , O(t), O(t2
) and to 0(E3

) 

respectively 
8v (I) 

r = 0 
az 

Bvz(O) 8v (2) 8v (O) 8v (O) 

Br ;z + Zg ;r - Zg ;z = O 

(
av (l) av (3)) (av (l) av (l)) 

_ z + r + Zg r _ z = O 
Br Bz Br Bz 

av (4 ) av C
2) (av (o) av C

2)) (av <2
) Bvz< 2

)) _ r _ z + Zg2 z + r + Zg r ___ _ 
Bz Br Br Bz Br Bz 

-Zg 3 (8vr(O) _ Bvz(O)) = O 
Br Bz 

One additional scale is yet to be determined. We have assumed Vz is scaled 

with U, but have left U unspecified. We did not use boundary condition (4) 

to determine the scaling for pressure. This boundary condition provides the 

necessary information to determine U. Examining this boundary condition in­

dicates that for p(o) to be non-trivial (non-constant) necessarily one or both 

f h - :l£ d {J - G2gre - 3 2 Rz ~ b f d 1 ( o t e terms a1 - µU an 1 - µU - E £i2 u must e o or er ~ 

U 00 = ~gr ta2 

is the steady velocity of a spherical bubble of equivalent volume 

radius a moving in the absence of a wall due to gravity). Three cases arise. 

Defining M = Pi. = 3 R
2 

Ca where Ca = µU= then a 1 a2 00 00 "f 

Case 1M~1 

This balance indicates that gravity is negligible compare to surface tension. 

In particular, a 1 = 0( €~) and this determines U = 1;4

• 

Case 2 M ~ 1 
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Surface tension effects are negligible compared to gravity effects. Thus, 

/31 = oc?2) and this determines u = 3E 4 ~: UCX). 

Case 3 M = 0(1) 

The effects due to gravity are of the same order as the effects due to surface 
4 

tension. For convenience, we set U = 2f 
All three cases may be conveniently considered at once in the following 

analysis. First, we define f3 = E2 /3 1 and a= E2 a 1 • Then case 1 corresponds to 

f3 = 0, a = 1. Case 2 corresponds to f3 = 1, a= 0. While, case 3 is obtained by 

setting f3 = M, a= 1. 

The normal stress balance at the interface becomes: 

=~(-{Jg+ a(~+ g))+ 
E2 T 

2 (3 g
5 

15 ·4··) +Ea --+ -g g 
4 T 4 

4 ( 15 g 7 105 6 ) 6 +Ea --- - -g g + O(E) 
8 T 8 

Balancing terms to orders O(E- 2), O(E- 1), 0(1),0(E) and 0(E2) respectively, 

we find 

p(o)(r) =-a(~+ g) - f3g 

p(l) = 0 
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(2) 2ov)o) - (1 g3 + 3 ·2··) p - - O'. - - -g g 
oz 2 r 2 

All of the necessary relations are now determined. We may easily solve the 

r.esulting systems to first order. 

v z (o) = - z3 _!_ !£ (r dp(o)) + z2 _!_ !£ (rg dp(o)) 
6 r dr dr 2 r dr dr 

0 z2 dp(O) dp(O) 
Vr() = --- - zg--

2 dr dr 

For the case lv1 = 0(1), higher order terms are easily calculated: 

Vr(l) = Vz(l) = p(l) = 0 

Vr (2) = z 4 d (1 d ( dp(o))) z 3 d (1 d ( dp(o))) z2 
dH(r) 

-- -- r-- +-- -- rg-- +- +zK(r) 
12 dr r dr dr 3 dr r dr dr 2 dr 

v)2 ) = zs _!_!£(r!£(_!_!£(rdp(o))))- z4 _!_!£(r!£(~!£(rgdp(o)))) 
60 r dr dr r dr dr 12 r dr dr r dr dr 

_ z3 ~!£ (r dH) _ z
2 
~!£ (r dK) 

6 r dr dr 2 r dr dr 

p( ) = -(z + g 2
)-- r-- + (z + g)-- rg-- +a: -- + -g 2g 2 -1 2 1 d ( dp(O) ) 1 d ( dp(O)) ( 1 g

3 
3 ) 

2 r dr dr r dr dr 2 r 2 

-1 g2 d ( dp(O)) g d ( dp(O)) 
H(r) = --- r-- + -- rg--

2 r dr dr r dr dr 

(
1 ·

3 
3 ) g .z .. +a: -- + -g g 

2 r 2 

K(r) = -3ov)
0
)(r,g) + 2g(OVr(O)(r,g) - ov)

0
)(r,g))- gdH 

or or oz dr 
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3 3 ( d (1 d ( dp(O)))) K(r) = --g - -- r--
2 dr r dr dr 

2. d2p(O) (7 g2g . 2) dp(O) 
-7gg - --+Sgg --

dr2 2 r dr 

gg g gg •2("') 3 ... 2 (3 . 2.. 1 . 3 3 ) 
-o: 2-r- - 2~ + 2gg g + ggg 

p(3) = v/3) = Vz (3) = 0 

And for (J' 2: 4): 

z 

(i) BvzU-
2

) J 1 a ( BvzU-
4
)) d II ( ) 

p = + -- r z + i r 
8z r Br Br 

0 

z . 
z 2 J av (J- 2 ) 

v (i) = zV.(r) +-IT ·(r) + z dz 
r J 2 J ar 

0 

The functions IIj(r) and Vj(r) are determined by the conditions at the interface. 

In particular to 0( Ei- 2 ) in the normal stress balance the term p(j) occurs and 

all other 0(1J-2) terms have indices less than j. Thus IIj, and consequently 

pU) are determined by this equation and the solutions at previous orders. Note 

that 

The tangential stress balance to 0 ( Ej- l) contains the term 8 § ~il and all other 

terms have indices less than j. Thus, this equation determines Vj in terms of 

previous order solutions. It is easily seen that jth order pressures and velocities 

for J odd are zero in this expansion. 
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For the extreme cases of M ~ 1 and M ~ 1 some knowledge of the size of 
4 

M relative to €is required. For M ~ 1, U = 1; 

and if M = O(Ev'.>) then for 'ljJ > k ~ 0 the above expansion will be valid for 

j = 0,1, ... ,k. 

Similarly, for M ~ 1, U = 3€4 ~: U00 

and if ~ = O(Ev'.>) then for 'ljJ > k ;:::: 0 the above expansion will be valid for 

j=0,1, ... ,k. 

In the context of the quasi-steady assumption, these velocities and pressures 

are assumed to apply instantaneously and may be used to deform the film region 

of the interface. The film region of the interface is given by the locus of points 

g(r) - z = 0. Necessarily the convected derivative of the function g(r) - z = 0 

must be zero, thus 
a- a-o = ~+v _!!__v at r ar z 

Defining the characteristic time tc = g gives 

Employing the zero order solution: 

Bg /3 2 (. 2 gg 1 -) 2. ((···) § g ) -- = - g g + - + -gg + ag g g + - - -at 3r 3 r r 2 

ag3 (("'') 2 (g') g g ) 0( 2) +- g +----+- + € 3 r r 2 r3 
(B9) 

Higher order corrections to this equation are readily obtained from higher order 

velocity results. 
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Discussion 

For the case M « 1 (i.e. f3 = 0 and a= 1), equation (B9) exactly matches 

the results of Hartland (1969). Unfortunately, Hartland used this equation to 

study drops for which the parameter M was 0(1). Similarly, Lin and Slattery 

(1982) employed Hartland's (M « 1) result to study bubbles (or "fully mobile" 

drops). They employed the results of Derjaguin and Kussakov (1939) which im­

plicity assume M = 0(1). Specifically, Derjaguin and Kussakov (1939) studied 

the approach of small air bubbles in water toward a glass plate and showed that 

a dimple is formed in the base of the bubble with a barrier ring at a radius 

\Vhere Vb is the bubble volume. Using this expression to determine M yields 

M = ~- This indicates that both gravity and surface tension effects are equally 

important for the cases considered. Lin and Slattery (1982) used the results of 

Derjaguin and Kussakov to determine fundamental geometrical parameters in 

their analysis. 

The present results, with gravitational effects included, are new. In addi­

tion, the higher order corrections are new. The scaling arguments leading to 

these results are concise and straightforward in contrast to the scaling argu­

ments that have appeared in the literature (i.e. Lin and Slattery (1982) who use 

a small Reynolds number argument to neglect various terms in Stokes equation). 

There are several deceptive aspects to the solution obtained. First, the 

thin-film solution contains no constants or free parameters, to any order in E. 

This suggests that the thin film solution is entirely determined and details at 

the edge of the film region are inconsequential. This is not the case. Equa­

tion (B9) requires derivatives of g(r) to at least the fourth order at the edge 

of the film. Although an initial film configuration will allow determination of 

these derivatives at the initial instant, subsequent shape evolution will critically 

depend on how these derivatives change in time. 
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Where is the edge of the film? The preceding analysis has assumed that g(r) 

is expandable in a Taylor series in small €. This expansion will decay rapidly in 

convergence when curvature of the interface becomes 0(1). In particular, the 

edge of the film region is typified by 0(1) curvature and rapid increase in g(r) 

with r. Chapter II has demonstrated that drops with 0(1) capillary number 

show significant variation in geometrical detail at the edge of the dimple region. 

The same effect is expected for bubbles. A detailed examination of the edge of 

the dimpled region is indicated. The authors are currently attempting a detailed 

theoretical analysis of the edge of the dimpled region. 

What do these results indicate about the details of the interior region of 

the film? We have taken the approach that an initial film configuration will 

be provided and its evolution in time may then be analyzed via equation (B9). 

What does equation (B9) predict for simple starting configurations? Suppose, 

as an initial configuration, that the entire film region is fiat (i.e. g( r) = 1) In this 

case, to all orders int:, the pressures will be constant. Derivatives of the leading 

order pressure solution drive the velocities to all orders. As a consequence, 

no motion will occur in the film region. Similarly, in the interior of any region 

where the interface is locally fiat, no motion will be predicted. It is possible 

that equation (B9) will predict 0(1) velocity fields (we have scaled velocity in 

anticipation of 0(1) velocity variation) when only minute deviations from a fiat 

interface occur. This possibility is not only unappealing but seems unlikely as 

well. 

Zero velocity for a nearly fiat interface does not agree with the observations 

or predictions of Chapter II concerning the initial formation of a dimple for 

the drop case. Further, variation of pressure with z enters the inner solution to 

order E2 • Like velocity variation, the order t: 2 pressure variation in z will be non­

zero only if the film is not fiat. Further, this pressure correction is 0( t: 2) and is 

therefore small compared to the leading order pressure term (which contains no 

z pressure dependence). Once again, the obvious suggestion is that the ordering 
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of terms which arises by necessity in a lubrication based analysis is inappropriate 

in the earliest stages of dimple formation. 
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Figure Captions 

Figure 1: (a) Schematic of the problem. (b) An illustration of the quantities 

Zcenten Zaxis, Zmin, and Pmin· 

Figure 2: a) 0 : numerical up calculations for a spherical shape with>.. = 3; Solid 

line is Hadamard-Rybczynski analytic results; b) 0 : numerical Uz 

calculations for a spherical shape with ,\ = 3; Solid line is Hadamard­

Rybczynski analytic results; c) 0 : numerical f P calculations for a 

spherical shape with,\ = 3; Solid line is Hadamard-Rybczynski analytic 

results; d) 0 : numerical f z calculations for a spherical shape with 

,\ = 3; Solid line is Hadamard-Rybczynski analytic results. 

Figure 3: Comparison with the experimental results of Hartland (1969) The left 

half of the figure corresponds to the numerical results for Ca = 1, >.. = 1, 

and Zaxis = 0.155. The right half of the figure is an experimental 

photograph for Ca= 1.358, >.. = 1.478 and a Zaxis value between 0.153 

and 0.128. 

Figure 4: Evolution of drop shape for Ca= 0.3 and >.. = 0.3. The dimensionless 

time between shape curves is 1. 

Figure 5: Evolution of drop shape for Ca = 1 and ,\ = 0.3. The dimensionless 

time between shape curves is 1. 

Figure 6: Evolution of drop shape for Ca = 3 and >.. = 0.3. The dimensionless 

time between shape curves is 1. 

Figure 7: Evolution of drop shape for Ca = 0.3 and >.. = 1. The dimensionless 

time between shape curves is 1. 

Figure 8: Evolution of drop shape for Ca= 1 and>..= 1. The dimensionless time 

between shape curves is 1. 

Figure 9: Evolution of drop shape for Ca = 3 and >.. = 1. The dimensionless time 

between shape curves is 1. 
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Figure 10: Evolution of drop shape for Ca = 0.3 and ,\ = 3. The dimensionless 

time between shape curves is 1. 

Figure 11: Evolution of drop shape for Ca= 1 and,\ = 3. The dimensionless time 

between shape curves is 1. 

Figure 12: Evolution of drop shape for Ca= 3 and,\ = 3. The dimensionless time 

between shape curves is 1. 

Fig'ure 13: Drop configurations at the timestep immediately prior to dimpling. 

Figure 14: Zmin vs. Zaxis for ,\ fixed at 1 and Ca varying. Solid line corresponds 

to Zmin = Zaxis (i.e. no dimpling) ........... Ca= 0.3; - - - - Ca= 1; -

- - Ca= 3. 

Figure 15: Pmin vs. Zaxis for ,\ fixed at 1 and Ca varying. Solid line corresponds 

to Pmin = 0 (i.e. no dimpling). ·········· Ca= 0.3; - - - - Ca= 1; - -

- Ca= 3. 

Figure 16: Vcenter vs. Zcenter for .A fixed at 1 and Ca varying ........... Ca= 0.3; -

- - - Ca = 1; - - - Ca = 3. Solid line corresponds to the results of 

Bart ( 1968) for a spherical drop (Ca = oo limit). 

Figure 17: Zmin vs. Zaxis for Ca fixed at 3 and .A varying. Solid line corresponds 

to Zmin = Zaxis (i.e. no dimpling). ·········· .A= 0.3; - - - - .A = 1; - -

- ,\ = 3. 

Figure 18: Pmin vs. Zaxis for Ca fixed at 3 and ,\varying. Solid line corresponds 

to Pmin = 0 (i.e. no dimpling). ·········· ,\ = 0.3; - - - - ,\ = 1; - -

- ,\ = 3. 

Figure 19: Vcenter vs. Zcenter for Ca fixed at 1 and,\ varying. .. ........ ,\ = 0.3; - -

- - ,\ = 1; - - - ,\ = 3. Solid line corresponds to the results of Brenner 

(1961) for a solid sphere (>.. = oo limit). 

Figure 20: a) Velocity field for Ca = 1, ,\ = 1, Zcenter = 0.615. The horizontal 

arrow below the wall corresponds in length to /
0 
U and thus indicates 

scale. Velocities are measured relative to an origin fixed on the wall. 
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b) As above, except velocities are measured relative to an origin fixed 

at the center of mass of the drop. 

Figure 21: Velocity field for Ca = 0.3, ). = 1, Zcenter = 0.787. The horizontal 

arrow below the wall corresponds in length to 1
1
0 U and thus indicates 

scale. 

Figure 22: Velocity field for Ca = 3, ). = 1, Zcenter = 0.477. a) The entire film. 

The horizontal arrow below the wall corresponds in length to 1
1
0 U and 

thus indicates scale. b) The central region of the film. The horizontal 

arrow below the wall corresponds in length to 1 ~0 U and thus indicates 

scale. 

Figure 23: The p-component of velocity for Ca= 1, ). = 1, Zcenter = 0.757. The 

next numerical timestep corresponds to the first formation of a dimple. 

The vertical line below the wall corresponds to the radial location at 

which the dimple initially forms. The horizontal arrow below the wall 

corresponds in length to / 0 U and thus indicates scale. 

Figure 24: The z-component of velocity for Ca= 1, ). = 1, Zcenter = 0.757. The 

next numerical timestep corresponds to the first formation of a dimple. 

The vertical line below the wall corresponds to the radial location at 

which the dimple initially forms. The horizontal arrow below the wall 

corresponds in length to 1
1
0 U and thus indicates scale. 

Figure 25: a)Pressure for Ca = 1, ). = 1, and Zcenter = 0.615 plotted against 

radial distance. .......... z = 0.01; - - - - z = 0.06; - - - z = 0.12. 

b )The shape and z-values corresponding to a). 

Figure 26: a)Pressure for Ca = 0.3, ). = 1, and Zcenter = 0.787 plotted against 

radial distance. .......... z = 0.01; - - - - z = 0.05; - - - z = 0.087. 

b)The shape and z-values corresponding to a). 

Figure 27: a)Pressure for Ca = 3, ). = 1, and Zcenter = 0.477 plotted against 

radial distance. .......... z = 0.01; - - - - z = 0.065; - - - z = 0.11. 

b )The shape and z-values corresponding to a). 
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Figure 28: a)Pressure for Ca = 1, >. = 1, and Zcenter = 0. 757 plotted against 

radial distance. The next numerical timestep corresponds to the first 

formation of a dimple at p = 0.125. ·········· z = 0.01; - - - - z = 0.1; -

- - z = 0.17. b)The shape and z-values corresponding to a). 

Figure 29: Pressure for Ca = 1, >. = 1, and p = 0.01 plotted against verti­

cal distance. Each curve corresponds to a different Zcenter location. 

.......... Zcenter = 0.615 (Zaxis = 0.1549); - - - - Zcenter = 0.6918 

( Zaxis = 0.1756); - - - Zcenter = 0.757 (Zaxis = 0.1970); 

Zcenter = 1.320 (Zaxis = 0.5221); _,,_,,_,, Zcenter = 1.192 

(Zaxis = 1.028). 

Figure 30: Pressure for Ca = 1, >. = 1, and p = 0.26 plotted against verti­

cal distance. Each curve corresponds to a different Zcenter location. 

.......... Zcenter = 0.615 (Zaxis = 0.1549); - - - - Zcenter = 0.6918 

( Zaxis = 0.1756) j - - - Zcenter = 0.757 (Zaxis = 0.1970); 

Zcenter = 1.320 (Zaxis = 0.5221); -··-··-.. Zcenter = 1.192 

(Zaxis = 1.028). 

Figure 31: Pressure for Ca = 1, >. = 1, and p = 0.5 plotted against verti­

cal distance. Each curve corresponds to a different Zcenter location. 

.......... Zcenter = 0.615 (Zaxis = 0.1549); - - - - Zcenter = 0.6918 

( Zaxis = 0.1756); - - - Zcenter = 0.757 (Zaxis = 0.1970); 

Zcenter = 1.320 (Zaxis = 0.5221); -··-··-.. Zcenter = 1.192 

(Zaxis = 1.028). 
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Appendix Figure Captions 

Figure B 1: Schematic of the problem. 
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Introduction 

It is well documented that drops and bubbles can migrate in a fluid as a 

result of interfacial tension gradients (Young et al. (1959), Trefethan (1969)). 

Interfacial tension gradients can be induced at a drop or bubble surface by 

temperature variations, variation in surfactant concentration and variation in 

surface charge distribution. Interfacial gradients on a drop surface give rise to 

tangential stresses which, by viscous traction, result in fluid motion. Here only 

thermocapillary migration, i.e. motion due to temperature variations will be 

considered. The phenomenon of thermocapillary migration is more than a labo­

ratory curiosity. In particular, the phenomenon has received recent attention in 

the context of materials processing under reduced gravity conditions. For exam­

ple,thermocapillary migration is potentially an alternate mechanism to gravity 

for removal of gas bubbles in glass that is processed in space ( Meyyappan et al. 

(1981)), Weinberg (1978)). Even in the presence of gravity, thermocapillary mi­

gration may act to eliminate gas bubbles in glass sealing and enameling. Also, 

thermocapillary migration may be of importance in mixing and combustion of 

fuel droplets. 

Thermocapillary migration was first experimentally demonstrated by Young 

et al. (1959), who also theoretically determined the thermocapillary migration 

velocity of a spherical drop in an unbounded fluid medium. A variety of exper­

imental and theoretical work on this subject has been done in the last 20 years 

and the interested reader is referred to Subramanian (1981) for a summary. 

The focus in the current work is on the interaction of a thermocapillary 

driven drop and an infinite, no-slip, planar surface. This interaction is of im­

portance since many of the envisioned applications of thermocapillary migration 

involve walls and solid surfaces. Meyyappan et al. (1980) theoretically consid­

ered the thermocapillary migration of a bubble in motion normal to a plane 

surface. Later Meyyappan et al. (1986) extended the analysis to include mo­

tions in an arbitrary direction with respect to the plane surface. Both analyses 



- 175 -

assume a spherical shape and are restricted to bubbles (negligible viscosity and 

thermal conductivity in the enclosed phase relative to the suspending phase). 

The assumption of a non-deforming spherical shape is an approximation appro­

priate only for the restrictive case when the surface tension is large and surface 

tension variation across the drop or bubble is small. The current numerical work 

is sufficiently general to include the effects of viscosity and thermal conductivity 

in both phases. Further, the bubble or drop is allowed to deform in accordance 

with the physics of the problem. 

The solution technique used here is based on the well-known boundary 

integral method that has been successfully used in a variety of related appli­

cations [ Youngren and Acrivos(1975, 1976), Rallison and Acrivos (1978), Lee 

and Leal (1982), Chi (1986), Ascoli (1987), Ascoli, Dandy and Leal (1988 a)]. 

In the present case, a fundamental solution (or more appropriately a Green's 

Function) presented by Blake (1971) will be employed. This Green's function is 

appropriate for systems involving an infinite, planar, no-slip boundary. Its use 

in the present application represents an extension of the work of Ascoli, Dandy 

and Leal (1988 b). These workers used the wall Green's function to determine 

the dynamics of a drop moving normal to a planar wall. Surface tension was 

assumed constant, and gravity was the driving force for motion. Variation in 

surface tension due to a linear temperature gradient is easily incorporated into 

the boundary integral formulation. 
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Formulation 

(a) Equations and boundary conditions 

We consider the slow motion of a deformable drop normal to a no-slip, 

infinite, planar surface as sketched in figure 1. The following assumptions will 

be made: 

(i) Fluid 1, which composes the drop, and fluid 2, the suspending fluid, are as­

sumed to be immiscible. The physical properties of both fluids are assumed 

constant with the exception of interfacial tension. Thus, the fluids are as­

sumed to be Newtonian with dynamic viscosities µ 1 and µ 2 (and kinematic 

viscosities v 1 and v2 ), and incompressible with densities p 1 and p2 • The 

ratio µif µz will be denoted by >.. In addition, k1 and kz, the respective 

thermal conductivities, will be assumed constant and their ratio kif k 2 will 

be denoted by 8. Finally, the respective constant thermal diffusivities will 

be denoted as a 1 and az. 

(ii) On the drop surface, interfacial tension is assumed to depend linearly on 

temperature. In dimensional form this statement is equivalent to 

where Xs denotes a point on the drop surface, / is the dimensional surface 

tension, T is the dimensional temperature and ~ is assumed to be negative 

and constant. T w denotes the constant wall temperature, which is used here 

as a reference value. In terms of dimensionless parameters, a= 1/1(Tw), 

w = a!GI ~J,/1(Tw), 8 = (T - Tw)/aJGJ, the variation in surface tension 

with temperature is given by 

(iii) The motion is driven by an external temperature field, which is charac­

terized by a constant gradient in the z-direction far away from the drop. 

Thus 

T2--+ Tw + Gz' as z'--+ oo 
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where T2 is the dimensional temperature in fluid 2 and z' is the dimensional 

z- coordinate. Non-dimensionalizing, this is written as 

as z~oo 

where ei =(Ti -Tw)/a!GI (i = 1,2) and z = z'/a. G is assumed negative. 

The characteristic length scale, a, is the radius of a sphere of volume equal 

to the drop volume. 

(iv) Gravity is assumed to be negligible. Note that the effects of gravity could 

be easily incorporated into the formulation and are neglected here for sim­

plicity. 

(v) The analysis presented here is based upon the creeping motion approxima­

tion in which the intertial terms in the equations of motion are neglected 

entirely. The corresponding small Reynold's numbers (Re 1 , Re 2 ) of the 

system are 

« 1. 

The characteristic velocity, U, (subsequently used for non-dimensionalization) 

is the terminal thermal migration velocity of an equal volume spherical drop 

in the absence of a wall and is given by ( Young et al. 1959) 

(vi) The Peclet numbers of the system are assumed small where 

This assumption is equivalent to neglect of thermal convection relative to 

thermal diffusion. 
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As a result of the assumptions in the system, all motions and deforma­

tions will be axisymmetric about the line which passes through the drop center 

and is normal to the the planar wall, assuming that the starting drop shape is 

axisymmetric. 

The assumptions of small Reynolds numbers reduces the momentum equa­

tions to the Stokes equations, which have been derived in dimensionless form 

elsewhere, and are restated below: 

(Ia) 

for the drop, and 

(lb) 

for the surrounding fluid. Pressure Pi is made dimensionless with µ~U ( i = 1, 2). 

With the assumption of constant fluid densities, the continuity equations 

in dimensionless form are 

(2a) 

(2b) 

The thermal energy equation, for small Peclet numbers, reduces to Laplace's 

equation for dimensionless temperature 

(3a) 

(3b) 

The boundary conditions in the outer fluid are 

02 -----+ -z as z -----+ oo (4) 

02 = 0 for x E P = { x ER 3 
: x = (x, y, z) and z = 0} (5) 

u2 -----+ 0 as Jxl -----+ oo, 

u2 = 0 for x E P 

(6) 

(7) 
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The boundary conditions at the drop surface, x E S 1, are: 

def 
81 = 82 = 81 (8) 

o(n . \781)-n ·\782 0 (9) 

U1 = def 
U2 = UJ (10) 

{ 
( 2 + b)( 1 + ~ >.) } [- r7 • r7 ] d!f 1 lw I an v 8 n + v sa -

(11) 

Here, n is the outer normal to the drop surface, \7 8 is the surface gradient 

operator and T(l) and T(2 ) are the respective stress tensors. Substituting the 

assumed form for a into equation (11) gives 

(>.n·T(l)_n·T(2)) = {(2 + 5)l~I+ ~,\)} [-(l+w81)n'V 8 ·n+w'V 8 81] d,;j 1 

(12) 

The dimensionless parameters w, ,\, and 8 control the system. It is useful to 

define an effective capillary number as Ca= Uµ 2 /"t(Tw)· This capillary number 

provides a measure of the relative importance of viscous effects to surface tension 

effects. Ca is not a free parameter but is determined by the system parameters 

w, ,\ and 8. In terms of these parameters 

Ca= Jwl 
(1 + ~,\)(2 + 8) 

The expression in curly braces in equation ( 12) is thus 1 /Ca. 

Condition (12) provides the driving force for both the deformation and 

motion of the drop. Meyyappan et al. (1980) considered the special case of a 

spherical bubble and in doing so neglected the normal component of equation 

(12). It may be noted that if only the tangential component of equation (12) is 

included in the analysis, only the second term in square braces in (12) is present 

and the magnitude of the parameter w disappears from the non-dimensionalized 
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problem. Thus, once a spherical bubble shape is assumed, the magnitude of the 

parameter w no longer plays a role in the dimensionless problem *. 
Finally, the drop surface, 81, is assumed to deform in accordance with the 

instantaneous interface velocity field to determine a new drop configuration. 

The kinematic condition used to deform the drop surface is 

(13) 

Thus, the drop surface is deformed with the normal projection of the surface 

velocity. 

Equations (la,b), (2a,b) with conditions (6), (7) and (12) constitute the 

hydrodynamic portion of the problem. Equations (3a,b) and conditions (4), 

(5), (8) and (9) constitute the thermal portion of the problem. The thermal and 

hydrodynamic problems are coupled since boundary condition (12) links stresses 

with temperature. 

Both the thermal and hydrodynamic problems will be cast into a boundary 

integral formulation. Ascoli, Dandy and Leal (1988 a, b) presented the bound­

ary integral formulation that is especially designed for the case where an infinite, 

no-slip, planar wall is present. There, the formulation was applied to determine 

the slow viscous flow of a deformable drop moving under the influence of gravity 

normal to a no-slip planar wall. Interfacial tension was assumed to be constant. 

Here interfacial tension gradients are responsible for the motion and are eas­

ily incorporated into the formulation. The final results for the transformation 

of equations (la,b) and (2a,b) including conditions (6), (7) and (12) into the 

boundary integral form are 

* In fact, w plays no role for any problem which assumes a fixed drop shape 

and subsequently neglects the normal component of equation (12). 
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and 

(15) 

where f(i) d!J n · T(i) for i = 1, 2 and appropriate jump conditions have been 

applied. The vector c is the position vector on the surface, S 1, and integration 

is performed with respect to this variable. The vector X 8 corresponds to a fixed 

position on the surface. The kernels :Ei and vi are given by 

where 

and 
~i 
V· i 
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wherer = (e1-X1,e2-X2,e3-x3)T, R = (e1-X1,6-x2,6+x3)T, r = 

[(6 - x1) 2 + (6 - x2) 2 +(fa- x3) 2]112 , R = [(6 - x1) 2 + (6 - x2) 2 + (6 + 

X3) 2] 112 ' and R3 = e3 + X3. The quantity b.. i has value + 1 for J = 1, 2 and -1 

for J = 3. This choice of kernels eliminates the need to include the wall in the 

domain of integration. For details of the derivation of equations (14) and (15), 

the reader is referred to Ascoli, Dandy and Leal (1988 a,b). 

The thermal problem is recast into boundary integral form via a classical 

Green's function analysis for Laplace systems. The final result is 

where 

1 ( 1 1) cI>(x, ~) = - - - -
47r R r 

is the classical Green's function for the Laplace equation which vanishes identi­

cally on the planar wall. Its use in the present case again simplifies the analysis. 

In particular, there is no need to include the wall in the integration domain. 

The drop surface was parametrized by (p(s),z(s)) for e E [0,27r), where 

s is normalized arclength lying in the interval [O, 1 ]. The advantages of this 

representation are discussed in Ascoli, Dandy and Leal (1988 b). In terms of 

this parametrization, the components of the unit normal to the surface are 

z 
np 

(P2 + .z2) 1/2 
(17) 

p 
nz = 

(1P + .z2) 1;2' 
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and the curvature is 

where dots indicate differentiation with respect to the variable s. 

Due to axisymmetry, the dependence of the integrands on () in this system is 

known and an initial integration with respect to this variable can be performed. 

Although the resulting integration yields quite complex expressions, the net 

result is the reduction of the integration domain from two dimensions to one. 

The results are 

and 

where 

+ 1:1 

P(x 8 , e) · (::) ds 

-1:1 

Q(xs, e) . (~:) ds 

,\ - l 18

' (u ) -,- P(xs, e) · P ds 
A+ 1 So Uz 

1 18

1 (f.) - ( ,\ + 1) s 
0 

Q ( x s, e) · ~ ds 

( ) 

1/2 
ds = ds p ;? + i 2 and Xs E 81 

(18) 

(19) 

(20) 

The vector UJ has been written as the column vector (up,uz)T, Y as (Yp,Yz)T 

and f(l) as (fp, fz)T. Due to the parametrization, the position vector on the 

surface, e, is now written as e(s) = (p(s), z(s)) for s E [O, 1]. The form of Was 

well as the components of the matrices P and Q are listed in the appendix. 

In principle, equations (18-20) are sufficient to determine temperature, ve­

locity and stress at the surface of the drop. Equation (13) allows subsequent 

motion of the drop via the instantaneous shape and surface values of velocity. 
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(b) Implementation 

System (18-20) may be discretized and solved numerically. The technique 

is standard and is described in detail elsewhere (Ascoli, Dandy and Leal (1988 

a, b), Youngren and Acrivos (1975)). Briefly, the particle arc (p( s), z( s)), s E 

[s 0 , sf] is divided into N elements. This is accomplished by dividing the interval 

[s 0 , s 1] into subintervals, !lsj, with centers Sj U = 1, ... , N). Each parametric 

value Sj corresponds to a point on the arc Xj = (p(sj),z(sj)) and each b.sj 

corresponds to a segment or element of the arc. The elements are assumed to 

be sufficiently small that the local normal tractions fp, f z, the velocities up, Uz 

and the temperature 8 1 may be assumed approximately constant within each 

element. The resulting discretized system is: 

(21) 

(22) 

E>1(x;) ~ -(1! 0 )z; + 
2~; 6

1
) t { [L, W(x;, €)ds] E>1(x;)} (23) 

If a drop shape is known, each coefficient 

(24) 

(25) 

(26) 
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and the inhomogeneous term 

(27) 

for f -=f. i can be easily evaluated by standard numerical integration schemes. 

When J
0 

= i and s = Si, then e(s) = Xi· In this case, the integrands in (24-

27) become unbounded. Although each singularity is theoretically integrable, 

a direct numerical evaluation leads to obvious problems. Hence, we follow the 

lead of our earlier boundary integral studies, and approximately evaluate the 

singular contribution analytically in a small neighborhood of the singular point. 

The details of this singular contribution are discussed in Ascoli, Dandy and Leal 

(1988 a, b). 

Our goal is to begin with an initial drop shape and determine all subsequent 

drop shapes and interfacial values of velocity and temperature. Each of the 

terms (24-27) requires the instantaneous shape for evaluation. In addition, (27) 

requires knowledge of the instantaneous temperature field. Thus equations (21-

23) are coupled through both shape and temperature. Equations (21-23) are 

instantanous, i.e. time does not appear explicitly. In the context of the quasi­

steady assumption, time evolution enters the problem through the kinematic 

condition (13). 

An iterative scheme has been employed here to solve the system (13) and 

(21-23). At time t, a starting shape is assumed to be known either as a con­

sequence of the initial condition (i.e. a spherical drop far from the wall) or by 

the shape at the previous timestep, t - !lt. An explicit, discretized version of 

equation (13) is used to obtain an initial guess, (p 0(s),z0(s)) for shape at time 

t. 

p0(s, t + !lt) = p(s, t) + np(s, t) [up(s, t) np(s, t) 

+ Uz(s, t) nz(s, t) J !lt 

z0 (s, t + !lt) z(s, t) + nz(s, t) [up(s, t) np(s, t) 

+ Uz(s, t) nz(s, t) J !lt 

(28) 
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This equation is applied at each of the locations Sj and p0 and z 0 fit with cubic 

splines. Given (p0(s),z0(s)), equation (23) is an N x N linear system in the 

unknown surface temperatures. This system may be solved directly giving an 

initial guess for the surface temperature field, 0~(xj) for J = 1, ... , N. These 

discrete values of surface temperature are fit with a cubic spline. Knowledge of 

the distribution e~(s) allows immediate calculation of u~(xj) and u~(xj) from 

the resulting N x N linear system (22). An implicit form of equation (13) is 

then employed to obtain the next approximation to shape (p 1 (s),z 1(s)) at time 

t + f::..t: 

pv+ 1(s, t + f::..t) = p(s, t) + n~+ 1 (s, t + f::..t) [u~(s, t + f::..t) n~+ 1 (s, t + f::..t) 

+ u~(s, t + f::..t) n~+ 1 (s, t + f::..t) J f::..t 

zv+ 1(s, t + f::..t) z(s, t) + n~+ 1 (s, t + f::..t) [u~(s, t + f::..t) n~s, t + f::..t) 

+ u ~ ( s, t + !:::.. t) n ~+ 1 
( s, t + !:::.. t) J !:::.. t 

(29) 

The normal vector ( n~+I, n~+I) is defined in terms of the (pv+I ( s), zv+l ( s)). 

Thus, equation (29) is a nonlinear algebraic system for (pv+I (sf), zv+I (sj)), 

J = 1, ... , N. This system is solved via Newton's method (details are given in 

the appendix). The v + 1 approximation to shape is then used to calculate the 

v + 1 approximation to velocity and temperature. This process is continued 

until the solution set (p 1 ,z 1 ,u~,u;,e~) differs from the l-1 solution set by less 

than a prescribed tolerance at the locations s J., J. = 1, ... , N. This converged 

solution set will be denoted by (p, z, up, Uz, 01). The converged values of shape 

and velocity satisfy the following implicit equation: 

p(s, t + f::..t) = p(s, t) + np(s, t + f::..t) [up(s, t + f::..t) np(s, t + f::..t) 

+ Uz(s, t+f::..t)nz(s, t+f::..t)]!:::..t 

z(s, t + f::..t) = z(s, t) + nz(s, t + f::..t) [up(s, t + f::..t) n~s, t + f::..t) 

+ Uz(s, t + f::..t) nz(s, t + f::..t) J f::..t 
(30) 
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This process is repeated for the next time step. 
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Numerical Results 

All calculations were begun with a spherical starting configuration at a cen­

ter of mass distance of 5 undeformed radii from the wall. In this configuration, 

calculated surface velocities, center of mass velocities and surface temperatures 

were well within 1 % of the theoretical values predicted by Young et al. ( 1959). 

Computational time increases considerably with increasing number of elements. 

For this reason, calculations were begun with twenty two elements. When the 

drop center of mass reached approximately 3 radii, additional elements were 

added so that the total number of elements was thirty-two. Between 4 and 25 

iterations in LI (equation (29)) were required for convergence of the velocity and 

temperature fields. Increased deformation corresponded to an increase in the 

number of iterations required. The Newton's method step, applied to equation 

(29) for fixed LI required between two and four iterations for convergence. A 

single numerical run took between 4000 and 6000 cpu minutes on a Sun 3 / 160 

workstation with a floating point accelerator. 

If exactly satisfied, equation (19) guarantees that the net force exerted by 

the suspending fluid on the drop will be zero (this is easily seen from the defi­

nition of J"). However, since the numerical solution is subject to discretization 

errors, the numerically calculated net force on the drop due to the suspending 

fluid will not be exactly zero. The normalized deviation from zero thus provides 

a consistency check and measure of numerical error. Equation (18) allows the 

surface stresses to be calculated, and subsequently the suspending fluid force on 

the drop to be determined. This force was normalized by the mean magnitude 

of local calculated surface stresses. When this normalized force deviated by 10% 

from zero, calculations were terminated. Typically, this normalized force was of 

the order of 1 % or less when the center of mass of the drop was more than one 

undeformed radii from the wall. In the very latest stages of deformation, this 

normalized force increased dramatically. 

Shape calculations are shown in figures 2-7. The elapsed time between 
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plotted shape curves is ! dimensionless time unit (i.e. the time required for a 

spherical drop to translate ~ of a radii in the absence of the wall). In all cases, 

deformation begins by blunting of the drop at both the side nearest and the side 

farthest from the wall. Coincident with this blunting is an overall widening of 

the drop. Maximum deformation of the drop occurs at the side nearest the wall. 

In the last stages of deformation shown, the side of the drop nearest the wall 

flattens. For the bubble cases .\ = 8 = 0.01 and w = -1, -3, and -9 a "dimple" 

(i.e. a configuration where the minimum z-distance between the and the wall 

occurs at a value of p > 0) is noticeable. 

Deformation is best discussed in terms of the effective capillary number, Ca. 

For .\ = 8 = 0.01 and w = -0.3, -1, -3 and -9 the respective, effective capillary 

numbers are 0.147, 0.490, 1.47, and 4.41. Capillary number is a measure of the 

relative importance of viscous effects to surface tension effects. Thus, larger 

capillary number corresponds to increased deformation of the drop in a given 

flow situation. The parameter w is a measure of the variation of surface tension 

across the bubble or drop. Large jw I corresponds to large variation in surface 

tension and thus greater potential for deformation. Consequently, Ca increases 

with increasing jwj. Greater deformation for increasing capillary number is easily 

seen in figures 2-5. This trend is further demonstrated in figure 8. 

For .\ = 8 = 0.01, normalized velocity of the bubble center of mass , Ve, 

is plotted versus center of mass location, Zc, in figure 9. Due to the choice of 

non-dimensionalization the velocity,Vc, is normalized by U, the velocity for a 

spherical bubble in the absence of a wall. The trends in dimensional velocity 

are easily implied from the definition of U. This figure demonstrates the relative 

trends in velocity and in particular the trends due to interaction with the wall. 

For Zc in the range 1.3 to 2.5, Ve values are smaller than those predicted by 

Meyyappan et al (1980) for a spherical bubble. In this region, bubble defor­

mation begins. Blunting of the bubble side nearest the wall and widening of 

the bubble corresponds to a shift in center of mass location away from the wall. 
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This phenomenon results in a lower Ve value. As expected, the largest deviation 

from the spherical bubble Ve predictions occurs for the largest Ca. 

In the range Ze < 1.3, the deformable bubbles have Ve values greater than 

the non-deforming spherical bubble, the largest Ve deviation occurring for the 

bubble with the highest Ca. In this range, stress forces at the side of the 

spherical bubble nearest the wall increase dramatically. These forces oppose the 

downward motion of the spherical bubble thus reducing Ve. For the deforming 

bubbles, a similar phenomenon occurs. In this case, the downward velocity of 

the interface region nearest the wall decreases relative to the edge and back 

of the bubble. As a result, the bubble flattens and broadens near the wall. 

Flattening and broadening of the bubble corresponds to a motion of Ze toward 

the wall. This deformation results in a larger Ve value than for the spherical 

bubble. Once again, the degree of deformation increases with increasing Ca. 

Thus, Ve increases with increasing Ca. 

The difference between the maximum and minimum temperatures on the 

bubble surface provides an indication of the interaction between temperature 

effects and deformation. This maximum temperature difference, DT max (nor­

malized by 3 I GI/ ( 2 + o), the maximum temperature across a spherical drop in 

the absence of the wall) is plotted in figure 10. Once again, due to the nor­

malization, this figure provides relative trends and interaction effects due to the 

wall. For a spherical bubble (>.. = o = o) DT max decreases with Ze due to inter­

actions of a non-conducting sphere with the wall (Meyyappan et al (1980)). In 

addition, deformation is observed to decrease the z-extent of the bubble. DT max 

decreases as a consequence of this deformation. 

Capillary number decreases with increasing >.. or o. An increasing value of 

o corresponds to increased conduction in the drop relative to the outer fluid. 

This reduces the temperature difference across the drop and subsequently the 

driving force for motion and deformation. Similarly, increasing >.. corresponds 

to increased viscous effects in the drop relative to the outer fluid. The relative 
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ease with which the drop fluid circulates decreases with increasing .A. The ther­

mocapillary motion derives from the motion of the interface between the drop 

and the outer fluid. This interface motion is reduced when circulation within 

the drop increases in difficulty. As a consequence, the overall magnitude of the 

motion is damped by increased drop viscosity relative to outer fluid viscosity. 

This may be seen directly from the definition of U, the velocity of a spherical 

drop in the absence of the wall. For A= 1, 8 = 0.01, w = -1 and A = 1, 8 = 1, 

w = -1 the respective capillary numbers are 0.199 and 0.133. Figure 11 shows 

the degree of deformation for these cases relative to the case A = 0.01, 8 = 0.01, 

w = -1 (Ca = 0.49). As expected, the degree of deformation increases with 

increasing Ca. 

Figures 12 and 13 demonstrate the effects of increasing A and 8 on Ve and 

DT max· Increasing A corresponds to increased damping of the velocity fields. 

Consequently, interaction between the wall and the velocity field generated by 

the drop will be reduced. The net result is a normalized center of mass veloc­

ity which is higher (closer to the value predicted in the absence of the wall). 

An analogous statement applies to the DT max results. Note that 8 = 1 cor­

responds to an exactly linear temperature field throughout fluid 1 and fluid 2. 

Therefore, the 8 = 1 result corresponds to a reduction in DT max entirely due to 

deformation. 
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Conclusions 

Thermocapillary migration of a deformable drop has been shown to depend 

on the viscosity ratio,>., the thermal conductivity ratio, 8, and the dimensionless 

rate of change of surface tension with temperature, w. In particular, these 

parameters combine to form an effective capillary number 

Ca= lwl 
(I+ ~>.)(2 + 8) 

Increasing Ca corresponds to increased deformation at a particular center of 

mass location. In particular, deformation increases with increasing lwl and de­

creases with increasing >. and 8. Equivalently, the distance at which wall in­

teractions become significant increases with lw I and decreases with increasing 

>. and 8. In all cases considered, wall interactions were found to be significant 

only for Zc < 3. 
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Appendix 

(a) The integrands P, Q, and W 

After integrating analytically in the axial direction, the integrands reduce 

to the form 

and 

The elements of the matrices P and Q along with the scalar W are: 

47r 
3P11 = pp;np(Cf3 - Cf3) + Po [Pnz(r3Cf2 - R3Cf2) 

+ np(2p2 + p;)( Cf2 - C~2) J + pnp(2p; + p2)( Cfl - Cfl) 

+ nz(P2 + p;)(r3Cf1 
- R3Cf 1

) + PPo [pnp( Cf0 - Cf0) 

00 A 00 J { A 01 A 00 + nz(r3C5 - R3C5 ) - 2x3 -x3np(pC5 + PoC5 

{ 

A 02 A 01 }] [ 2 A 03 + z 2ponpC5 + (2pnp + nzR3)C5 + l0x3z pp0 npC7 

+ Po {pnzR3 + np(2p2 + p;) }C$2 + {Pnp(2p; + p 2
) 

2 2 } A 01 A 00] + nzR3(p + P0 ) C1 + PPo(Pnp + nzR3)C1 

(Al) 

(A2) 

(A3) 

(A4) 
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( 2 0 01 R2CA 01) 2 ( 0 00 R CA oo) + Ponz r3 5 - 3 5 + P np r3 5 - 3 5 

+ pnz(r~cg0 - R~6g0) + 2x3 [-x3npR36g0 

Ao1 Aoo 2 Ao2 + znz(p 0 C 5 + pC5 ) + p0 npC5 

Ponp(r~C~ 1 - R~C~ 1 ) + pnp(r~C~0 
- R~cg0) 

+ nz(r~C~0 
- R~6~0 + 2x3 [-x3R3nz6g0 

Cfl - Cfl + PPo(cg2 - cg2) + (p2 + p~)(cg1 - cg1) 

+ PPo( ego - Ci0
) - 2X3Z [ Ci1 

- 3{ (p2 + p~)C~1 + PPo( 6~2 + C~o)} J 

8nQ21 = Po(r3cg1 - R36g1) + p(r3cg0 
- R36g0

) 

+ 2x3 [Pocg1 + p6g0 
- 3zR3(po6g 1 + pC~0 )] 

(AS) 

(A6) 

(A7) 

(AB) 

(A9) 

(AlO) 

(All) 

The point (p, z) corresponds to the location of integration, and (p 0 , x3 ) is the 

singular point. Also, r3 = z - X3 and Rg = z + X3. The symbols c;m and c;m 
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are defined by 

cnm p 
2 lrr 

Jp/2 0 

sin n 2x cosm 2x dx 

[1 - k2 sin2 xY
12 (A12) 

and 

cnm 2 lrr sin n 2x cosm 2x d 
p 

,r;12 0 [ 1 k2 . 2 y12 x, - Rsm x 
(A13) 

where 

I (p + Po)
2 + r~ 

k2 4ppo 

I 

and 

/R (p + Po)
2 + R~ 

k1 
4PPo --
/R 

Using definitions (A12) and (A13), c;m and c;m may be written in terms of 

elliptic integrals of the first and second kind. Expressions for c;m and c;m 

may be found in Ascoli, Dandy and Leal (1988 a, b ) . 

(c) Solution of Equation (29) 

In practice, equation (29) is solved by first writing the unknown normal 

components ( n~, n~) in terms of derivatives of (pv, .zv): 

((pv)2 + (zv)2) 1;2 

pl/ 

Using the superscript "old" to denote the converged result at the previous 

timestep, this gives 

(Al4) 

These equations may be applied for s = Si, i = 2, ... , N - 1. 

(Al5) 
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The derivatives (pl/' zV) for each node location, i, i = 2, ... , N - 1, are given in 

terms of the cubic spline coefficients ar and bi as 

(A16) 

(A17) 

\\There hi =Si - Si-l and for i = 2, ... , N - 1 the cubic spline coefficients satisfy 

( hi-1) ~ + 2 hi+hi+l v+ ~ -~[(Pi+1-Pi) + (Pf-1-Pi)] =O 
h . ai-1 h· ai ai+l h· h· h· 

t t t i i-1 

(A18) 

(Al9) 

At i = 1 and i = N , z = 0 and p is determined by the choice of the parametriza­

tion in s thus 

1 ( l/ l/) h 1 (bl/ bl/) Q = -h Z2 - Z1 - - 2 + 2 1 
1 6 

1 ( v v ) h N -1 ( bv bv ) 
Q = -h-- ZN - ZN-1 + -- 2 N + N-1 

N-1 6 

. 1 l/ h 1 ( I/ I/) 
Pl= -h P2 - - a2 + 2a 1 

1 6 

. 1 v hN-1 ( v v ) 
PN = - hNPN-1 + -6- 2aN + aN-1 

In addition, at i = 1 and i = N, p = 0 and 

zr = z~ld + (u~-l)i.6.t 

z.N = zfjd + (u~- 1 )N.6.t 

(A20) 

(A21) 

(A22) 

(A23) 

There are 4 x N - 4 unknowns, p~+l and zf+ 1 for i = 2, ... , N -1 and a~+l and 

b~+l for i = 1, ... , N. Using (A16) and (Al 7), equations (A14) and (A15) provide 

2 x N -4 relations. Equations (A16) and (Al 7) also provide 2 x N -4 relations. 

Equations (A20-A23) provide the final conditions necessary to determine the 

unknowns. Newton's method was used to solve this non-linear system. 

Note that /;1 and PN are assumed known at this stage. These values are 

only known approximately. In practice, they are estimated and relaxed from the 

previous v iteration. 
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Figure captions 

Figure 1: Schematic of the problem. 

Figure 2: Evolution of "bubble" shape. .A = 8 = 0.01, w = -9. Elapsed time 

between subsequent shapes is ! dimensionless time unit. 

Figure 3: Evolution of "bubble" shape. .A = 8 = 0.01, w = -3. Elapsed time 

between subsequent shapes is ! dimensionless time unit. 

Figure 4: Evolution of "bubble" shape . .A = 8 = 0.01, w = -1. Elapsed time 

between subsequent shapes is ~ dimensionless time unit. 

Figure 5: Evolution of "bubble" shape . .A = 8 = 0.01, w = -0.3. Elapsed time 

between subsequent shapes is ~ dimensionless time unit. 

Figure 6: Evolution of drop shape. .A = 1, 8 = 0.01, w = -1. Elapsed time 

between subsequent shapes is ! dimensionless time unit. 

Figure 7: Evolution of drop shape . .A = 8 = 1, w = -1. Elapsed time between 

subsequent shapes is ! dimensionless time unit. 

Figure 8: Comparison of "bubble" shapes . .A = 8 = 0.01 and Zc = 1.1. 

undeformed sphere; ·········· w = -0.3; - - - - w = -1; - - - w = -3; 

-··-··-·· w = -9. 

Figure 9: Ve versus Zc for .A= 8 = 0.01. ·········· w = -0.3; - - - - w = -1; - -

- w = -3; -··-··-·· w = -9. undeformed spherical bubble 

results given by Meyyappan et al. (1980); 

Figure 10: DTmax versus Zc for .A= 8 = 0.01. ·········· w = -0.3; - - - - w = -1; -

- - w = -3; -··-··-·· w = -9. 

Figure 11: Comparison of shapes at Zc = 1.1. undeformed sphere; 

.......... .A = 8 = 0.01, w = -1; - - - - .A = 1, 8 = 0.01, w = -1; 

- - - .A= 8 = 1, w = -1. 

Figure 12: Ve versus Zc ·········· .A = 8 = 0.01, w = -1; - - - - .A = 1, 8 = 0.01, 

w = -1; - - - .A= 8 = 1, w = -1. 
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Figure 13: DTmax versus Zc .......... ).. = O = 0.01, w = -1; - - - ).. = o = 1, 

w = -1. 
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Abstract 

In the strong constraint method of Ryskin & Leal a boundary-fitted orthogonal 

coordinate grid is constructed by solution of the covariant Laplace equation on a 

unit square. The ratio of the diagonal elements of the metric tensor is specified 

as input to the method, thereby providing control over spacing of the resultant 

coordinate grid. In this note a proof is presented for the existence for orthogonal 

mappings generated by the strong constraint method. 
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Introduction 

The emergence of large scale computing facilities in the last two decades 

has made it possible to solve problems that had previously been considered as 

intractable. In particular, the complicated partial differential equations which 

arise in areas such as fluid dynamics, optics, structural analysis, and quantum 

chemistry can now be solved efficiently using either finite difference or finite 

element techniques. An important advance in the application of finite difference 

techniques has been the development of methods to construct boundary-fitted 

curvilinear coordinates so that solutions can be obtained on domains of quite 

general shape without loss of any accuracy in the application of boundary con­

ditions. An extensive survey of research in grid generation was done in an early 

paper by Thompson et al (1974), and more recently by Eisman (1985). There 

is a broad spectrum of coordinate grid types that can be created, either analyt­

ically or numerically; these grids can be orthogonal, nonorthogonal, conformal, 

or non-conformal. 

The most common approach to numerically construct curvilinear coordinate 

grids is to solve an elliptic partial differential system, usually subject to Dirichlet 

conditions at the four boundaries. The solution of the two equations is a set of 

points x(E,TJ), y(E,TJ) which represent a discrete mapping between the physical 

(x,y) space and the curvilinear (computational) (c,?J) space. For example, the 

set of points (x(c,1Jo),y(€,1Jo) corresponds to a coordinate line of constant 17 = 

r;o in (x, y) space. Of the elliptic PDE techniques, one that has proven to be 

extremely powerful in the study of free surface flow problems in fluid dynamics 

is a method due to Ryskin & Leal (1983) (henceforth referred to as R&L). 

This method was developed for the construction of boundary-fitted orthogonal 

curvilinear coordinate systems in 2D, with the mapping defined by the covariant 

Laplace equation, and constraints imposed on the components of the metric 

tensor to insure orthogonality and to control grid spacing. Its power for the 

solution of free surface flow problems is primarily due to the the method of 
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implementation that R&L refer to as the strong constraint method. 

The strong constraint method is a one-step method of mapping a discrete set 

of points evenly distributed inside a unit square in a ( e, 1]) curvilinear coordinate 

domain onto a discrete set of points in ( x, y). The two coordinate grids are 

related via the metric tensor, and to insure orthogonality of the generated grid 

the off-diagonal components of the metric tensor are required to be zero. The 

diagonal components of the metric tensor - referred to as the scale factors by 

R&L - are defined by 

h, = [ ( :; )' + ( :n T 
h. = [ (:~ r + (:~rr 

(la) 

The ratio hri(e,17)/he(e,11) is called the distortion function and is denoted by 

f ( e, 77). In the strong constraint method of R&L the distortion function is 

allowed to vary with position in the domain, and, in fact is specified on the 

(e,ry) domain [0,1] x [0,1) as input to the method. In contrast, the ratio of the 

diagonal components would be unity for a comformal mapping. 

The system to be solved for the mapping functions x( e, 77) and y ( e, 77) on a 

unit square in ( e' 17) is 

a ( ax) a (1 ax) 
ae 1 ae + ary J a11 0 

(lb) 
a ( By) a (1 By) 

ae 1 ae + 817 f 01] 
= 0. 

Particular to free surface problems in conjunction with the strong constraint 

method is the boundary condition on the above mapping system which is applied 

at the free surface ( e = 1): here he is specified. This boundary condition is of 

neither Neumann or Dirichlet type and it, in part, reflects the functional coupling 

of x and y along the free boundary. 

Roughly speaking, a particular value of the distortion function f ( fo, 77 0 ) 

corresponds to the ratio of the sides of an infinitesimal rectangle in the (x, y) 
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plane which is the image of an infinitesimal square in the ( e, r]) plane about the 

point ( fo, rJo). Thus, f is a measure of the stretching of the coordinate grid 

from a conformal mapping to an orthogonal one. However, since an arbitrary 

stretching of an orthogonal grid can produce a highly skewed, non-orthogonal 

grid, it is not obvious that an orthogonal mapping should exist for all choices of 

f ( e, rJ). The lack of criteria for choosing an f that will insure the existence of an 

orthogonal map is the most important limitation of the strong constraint method 

of orthogonal mapping. In the present note, we show that for a restricted class 

of distortion functions, the strong constraint method can be looked upon as a 

two-step process for which the first step is stretching of the ( €, rJ) coordinate 

lines to an intermediate set of coordinates, and the second step a conformal 

map of the intermediate coordinates to (x, y). As might be anticipated, a group 

of distortion functions which allow this interpretation are those which stretch e 
along itself independent of rJ, and rJ along itself independent of €, and so, in a 

manner analogous to classical separation of variables, a product form for f, that 

is, J ( e, rJ) = q> ( e) 0 ( rJ), suggests itself. The following analysis shows that if f is 

of a product form, then the mapping equations, Eq. (lb), with their associated 

boundary conditions comprise a well-posed problem and that the existence of 

an othogonal coordinate grid is guaranteed (subject, of course, to discretization 

error in the numerical implementation ) . Necessary restrictions on q> and 0 will 

be discussed. 
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Formulation 

The strong constraint method splits a free boundary problem via Picard 

type iterations into two distinct sequences of components: (a) dynamic flow 

problems, and (b) coordinate grid generation problems. In terms of finite differ­

encing, at each iteration a coordinate grid is generated for which the free surface 

corresponds to a coordinate line. In turn, the dynamic flow component provides 

updated information concerning the shape of the free boundary. 

For illustrative purposes, consider the problem of flow past a deformable 

drop or bubble described by R&L. In terms of the natural cartesian variables 

(x, y) the external flow domain is of infinite extent. In R&L, as well as in 

this paper, a preliminary conformal transformation is performed (see Fig. 1). 

The fluid interface r in (x, y) space is transformed to f* in (x*, y*), so that 

infinity in (x,y) is transformed to the origin in (x*,y*), and this simple trans­

formation replaces the unbounded coordinates (x, y), eliminating the need for 

truncation of the domain. The bounded domain (x*, y*) is then mapped via 

the grid generation method of R&L onto a unit square in which ( E, '17) are the 

working variables. Computation of the dynamic portion of the problem takes 

place in this unit square. The coordinate line E = 1 corresponds to the free 

surface r *, while E = 0 corresponds to the origin in the (x*, y*) space. The 

coordinate '17 is of "angular" type ( E is of radial type) and is required to satisfy 

periodic constraints, so that (€,O) and (€, 1) correspond to the same point in 

(x*, y*). Relative to the system (x*, y*) the coordinate grid generation problem 

may be mathematically formulated as follows: the covariant Laplace equations 

for the mapping functions x* ( E, '1}) and y* ( E, 17) are 

0 

(2) 
= 0. 

Due to the connection between the system of Laplace equations and the Cauchy­

Riemann equations in conformal mapping, it is evident that one can write an 
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analogous set of equations: 

Bx* By* 
1 ae = a77 

Bx* By* 
a77 = - / ae · 

As mentioned before, the distortion function f is specified as input in the strong 

constraint method, along with the scale factor he(l,77) for 77 E [0,1). Here, 

hi = [(°:e· )' + (a:; rr 
h~ r ( ~:-r + ( %-rr 

The curve defining the free surface is 

r* = {x*(l, 77), y*(l, 77) 77 E [O, 1) }. 

Due to periodicity, 

(x*(e,1),y*(e,1)) (x*(e,o),y*(e,o)) e E [o, 1], 

and the origin is defined by 

(x*(0,77),y*(0,77)) (0, 0) 77 E [O, 1). 

Finally, we require that 

y*(l,O) = 0. 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

Conditions (3d) and (3e) are imposed to make the mapping concrete, such that 

Eq. (3d) fixes a particular translation of the coordinates, and Eq. (3e) fixes the 

"starting point" of the angular type coordinate 77. 

To reiterate, in this framework, the information provided by the dynamic 

problem at the most recent step is a new set of values for he ( 1, 77). The variable 

f, referred to as the distortion functon in R&L is to be specified in advance by 

the implementer, and is incorporated into the method to provide control over 

grid spacing. Little guidance toward the choice off is available. Further, R&L 

do not discuss the question of the existence of solutions to Eq. (2) relative to the 

choice of f. This note demonstrates the existence of solutions to Eq. (2) for a 

restricted class of f's, specifically the case when f is of a special separable (that 

is, product) form in the variables e and 77. 
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The Proof 

It must be shown that there exists a path between the unit square m 

the (e,77) domain and the desired domain Din the (x*,y*) plane. This will 

be accomplished by breaking the path up into three steps (see Fig. 2), with 

the first step being a change of variables r = f 1 ( e) and e = f 2 ( 77)' from a 

unit square in the ( e' 77) computational domain to a rectangle in a circular 

cylindrical-type (r, B) coordinate domain (maintaining the radial sense of e and 

the angular sense of 77). The functions f 1 ( e) and f 2 ( ri) are assumed to be one­

to-one and smooth *, and are normalized and shifted for convenience so that 

fi(O) = 0, fi(l) = 1, h(O) = 0, and h(l) = 27r. Beyond these elementary 

restrictions f 1 and f 2 are arbitrary. The function f 1 represents a stretching 

or shrinking of the coordinate e' independent of T]' and likewise, 12 causes a 

stretching or shrinking of TJ independent of C· The functions Ji and h will 

be used to construct the distortion function f. In this context then, freedom 

in choosing f 1 and h corresponds to control over grid spacing. As mentioned 

above, the coordinate variables r and () are circular cylindrical-type, and so the 

rectangle in (r, B) can be transformed to a unit disk in ( u, v) space using the 

relations u = r cos() and v = r sin(). The motivation for carrying out these two 

coordinate transformations (from (e,TJ) to (r,B) to (u,v)) arises from complex 

variable theory, where the Riemann mapping theorem guarantees the existence 

of a conformal map connecting a given, non-trivial two-dimensional domain to a 

unit disk. We have an analogous situation here except that for the strong con­

straint method the actual domain D in (x*, y*) is not known, since the boundary 

f* of Dis itself unknown. What is known instead is he(l,77). 

Consider a particular choice for f, namely 

f( c ) = !i(e) !Hri) 
~,ri J{(e) ' (4) 

* In theory, f 1 and h should be C 00 but in numerical implementation this 

restriction may be relaxed. 
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For this choice of distortion function, Eq. (2) on the unit disk reduces to 

B2x* B2x* 
Bu2 + av 2 0 

(5) 
a2y* a2y* 
-- + = 0. 
Bu2 Bv 2 

This choice of distortion function f ( e' 1]) is a product of the functions f 1 ( e) In ( e~ 
and /~ ( rJ), and the form may appear confusing at first glance due to the term 

Ji in the numerator. However, this term is present because it is the necessary 

"length" factor required when dealing with angular and radial type coordinate 

systems. 

The form of Eq. (5) suggests that we seek an analytic function F of the 

form F(w) - F(u +iv) = x* + iy* on the closed unit disk u 2 + v 2 :::;; 1. This 

function maps the unit disk onto the domain D. Direct manipulation shows 

that specification of he (1, 'f}) is equivalent to specifying IF'I, the norm of the 

derivative of the analytic function, on the boundary of the disk. As a result of 

the Cauchy-Riemann equations 

Bx* 
Bu 

By"' 

av 

Eq. (5) is identically satisfied. 

Bx* 
av 

By* 
Bu' 

Further, Eqs. (3a)-(3d) reduce to the very simple constraints 

F(O) = O 

and 

arg{F(l)} = 0. 

(6a) 

(6b) 

The analytic function F( w) is required to be invertible, so in addition to the 

above two constraints we impose /F'/ # 0 on the closed disk. 

As mentioned earlier, if f * (or equivalently, the value of F on the bound­

ary of the disk) is known, then the Riemann mapping theorem guarantees the 

existence of the conformal mapping F( w), and therefore the existence of an or­

thogonal mapping between (e, rJ) and (x,y). Here instead we have /F'/ specified 



- 222 -

on the boundary, and it is necessary to prove the existence of F ( w). This is 

carried out as follows: first, define the function 

G( u +iv) = log(F') = ln IF'I + i arg{F'}, 

where the k = 0 branch of the log has been selected. The function F is assumed 

analytic on the disk, implying that F', and therefore G *, is also analytic on the 

disk. As a result, specification of !F'I on the boundary (of the disk) is equivalent 

to specification of ffi{ G} on the boundary. Poisson's formula immediately gives 

ffi{ G} in the interior of the disk ( r < 1): 

ffi{G(rei 8
)} = ~ 12

rr 
1 ~ r

2 

) 
2 

ffi{ G(ew)} da. (7) 
27r 0 1 - 2r cos - a + r 

Then, ~{ G} = arg{F'} is determined in the disk via the Cauchy-Riemann 

equations for G 

08'{ G} 
UV 

offi{G} 
OU 

o8'{G} 
OU 

offi{ G} 
UV 

and subsequent direct integration, and further, arg{ F'} 

(8) 

s(u,v)+c1 

S ( u + iv) + c1 , where c 1 is a real constant resulting from the integration. The 

total derivative F'(w) is then recovered as F' = IF'I exp[i(S+ci)]. Analyticity 

of F' implies the existence of a Taylor series representation in the disk 

(9) 

where w = u + iv. A subsequent complex integration of F' ( w) yields F ( w) to 

within a second complex constant, c2 : 

(10) 

Application of condition (6a) yields c2 = 0, and the real constant c1 represents 

the rotational orientation of the mapping and is fixed by condition ( 6b). There­

fore, the mapping F( w) does exist subject to the constraints mentioned above. 

* Since IF'I =/: 0 on the disk, G is well defined. 
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Thus, by a route involving two coordinate transformations and one conformal 

map, we have shown that an orthogonal mapping between ( ~' 1]) and (x, y) does 

exist, and that it is determined by specification of he(l, 77) along with a special 

product form for the distortion function /. 
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Conclusions 

The purpose of the strong constraint method is to generate an orthogonal 

coordinate system by imposing suitable boundary conditions on the computa­

tional ( e, 17) domain, in conjunction with specification of the distortion function 

f ( E, 17). The boundary conditions reflect the periodicity of the angular coordi­

nate direction and the fact that the image of a boundary line in the ( ~, 17) space 

is the origin in the (x", y*) coordinate plane. In addition, along the coordinate 

line E = 1 (corresponding to the free surface in physical space) the distortion 

function he is specified. 

One very important consideration is the relationship between the choice of 

f and the existence of an orthogonal mapping. It is intuitive that an arbitrary 

stretching of a conformal map will yield a non-orthogonal mesh, or mapping, 

and further that a solution to Eq. (2) may not even exist for certain choices of 

f. In this note we have shown that if f is of a special product form, represented 

by Eq. (4), and if he is specified at one boundary, then an orthogonal mapping 

does exist between ( ~, 77) and ( x, y). 
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Figure Captions 

Figure 1. Schematic representation of the transformation path between the finite aux­

illiary domain and a unit square in the computational domain. 
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Thesis Conclusions 

In chapter I we developed a boundary integral technique based upon the wall 

Green's function. This numerical technique provided a method of calculating 

the hydrodynamic force on a solid particle in motion near a planar wall. The 

numerical results agreed exceptionally well with the exact results for the case of 

a sphere moving normal to the wall. The Green's function method was shown 

to be far superior in accuracy to the Stokeslet method, for the same number 

of elements. Although, for the same number of elements, the Green's function 

method required slightly more computation time than the Stokeslet method, for 

the same level of accuracy the Green's function method was as fast if not faster. 

For axisymmetric motion of ellipsoidal particles, far field asymptotic results 

agreed suprisingly well with the current numerical results. In particular, the 

"far-field" asymptotic theory was shown to be accurate for wall to particle center 

distances as small as five or six hydrodynamic radii. When the particle was 

extremely close to the wall, the numerical results were compared to lubrication 

theory. Cox's lubrication theory was found to have an extremely limited range 

of validiy. In addition, for wall to particle gaps just outside the range of validity 

of Cox's theory, Reynolds' lubrication theory for a flat disk was found to provide 

a reasonable approximation for nearly "disk-shaped" ellipsoids. 

We found in chapter II that buoyancy driven drop deformation increased 

with increasing capillary number. The viscosity ratio, ..\, determined the "rate" 

of motion but was relatively unimportant in determining degree of deformation. 

Dimpling was observed numerically for all cases considered (i.e. Ca = 0.3, 1, 3 

for ..\ = 0.3, 1, 3). At the instant when dimpling was first observed, the pres­

sure in the trapped film was found to decrease in the direction normal to the 

planar wall. This variation in pressure was shown to be necessary for the initial 

formation of a dimple. Film-drainage theories employ the lubrication approxi­

mation based upon the assumption of an extremely thin film. The lubrication 

approximation neglects pressure variation normal to the wall. As a consequence, 
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we have shown that film-drainage theories employing the thin film assumption 

cannot capture the initial details of dimple formation. 

In chapter III we examined the thermocapillary motion of a deformable 

drop or bubble toward a planar wall. Deformation of the drop or bubble was 

found to increase with increasing effective capillary number. Specifically, in­

creasing magnitude of the parameter, w, the dimensionless variation of surface 

tension with temperature, corresponded to increased deformation. In contrast, 

increasing viscosity ratio, >., or thermal conductivity ratio, b, corresponded to 
• 

decreasing deformation. 

Finally, in chapter IV we presented a proof of the existence of a boundary­

fitted orthogonal grid for the case when the ratio of "scale factors" is of produc­

tion form. 


