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ABSTRACT

An analytical model is developed that leads to better understanding of the
response of fluid-filled tanks whose bottom may separate from and lift off the foun-
dation, during base excitation. First, the hydrodynamic problem is solved in closed
form, for the most general motion of the structure. This eliminates the fluid
response unknowns and therefore only the structural degrees-of-freedom need to
be considered. Then, application of Hamilton’s Principle in the structural domain
sets up the system equations of motion. During this procedure, the uplifting
behavior is modeled by an appropriate rotational spring, placed between the foun-
dation and the bottom of the tank. Equivalent springs are also used for modeling
the ground/structure interaction. Moreover, shell flexibility and liquid sloshing

effects are also incorporated and investigated.

Using this model, results are obtained and compared with experimental data.
This comparison reveals some interesting effects of the base uplift on the system
response. Ground flexibility is found to reduce the effective beam-type stiffness of
the structure, but this reduction is much smaller than the substantial stiffness
reduction induced by the possibility of uplifting. For the cases examined, the
stiffness reduction due to the base uplift changes dramatically the dynamics of the
system, which in turn alters the developed hydrodynamic loads, through the
fluid/structure coupling process. Also, the shell flexibility effects - which can be
important for the anchored tank case - are found to be negligible for an unanchored
tank. Knowledge of the structural response leads to direct calculation of the hydro-
dynamic loads and consequently to prediction of failure. Buckling phenomena
observed experimentally at the top and the bottom of scale model tanks are studied

and explained.
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Chapter 1

GENERAL INTRODUCTION

1.1. Motivation.

Circular cylindrical tanks are extensively used structures for the storage of
liquids. This is due to the fact that they are easy and economical to fabricate and
they are structurally efficient in sustaining the hydrostatic pressure caused by the
contents. This hydrostatic pressure is carried by tensile membrane stresses while
bending stresses are significant only in local areas where changes in tank geometry

occur.

A tank designed only for statical content loads can be quite thin in the sense
that the radius-to-thickness ratio can be very high. Values of this ratio in the range
400-800 are the common case. As long as the membrane stresses remain tensile
and below the allowable stress, the strength of the shell is not an issue. However, if
compressive stresses are generated due to operational or environmental loads, a

buckling failure may occur.

High compressive membrane stresses can be developed in fluid-filled ground-
supported tanks during strong earthquakes. Severe loading can lead to stress or
buckling failures and subsequent loss of contents. This, apart from the economical
losses, may result in disastrous consequences if flammable liquids or hazardous

substances are released.

The earthquake loads in a storage tank are caused by the mass of the tank itself
and the contents being accelerated by the ground motion. For most tanks the loads
caused by the contents are much greater than the loads caused by the tank struc-
ture. This is not true for tanks with low fluid levels which is not an important case

since the combined loads are then so small that failure is not of concern.



Content loads basically depend on earthquake intensity, direction (horizontal,
vertical) and frequency content, on tank and soil flexibility and on tank base fixity.
Depending on the base fixity, the tanks are divided inté anchored and unanchored.
A fixed base tank requires a fairly substantial foundation and attachment mechan-
ism in order to carry successfully the considerable overturning loads that occur
during an earthquake. This implies high constructional cost which is the main rea-

son why most of the tanks in the field are not properly anchored.

The calculation of the earthquake induced loads is more complicated in unan-
chored tanks due to the fact that these tanks lift off the ground around the perime-
ter, if the ground shaking is sufficiently high. This uplifting causes severe loading
on the sidewall/bottom joint as well as high bottom plate stresses. It also consider-
ably reduces the effective beam-type stiffness of the tank, as verified by relative
data from static tilt tests [35,37]' and results of the present analysis. This reduces
the frequency of the predominant response mode of the tank and changes the
behavior and motion of the tank, which in turn affects the distribution of the fluid

pressures through the fluid/structure coupling effects.

Depending on the height to diameter ratio, the tanks are divided into tall and
broad. If the diameter of the tank is less than its height the tank is called tall. In
the opposite case the tank is called broad. From field observations, tall tanks are

more susceptible to earthquake damage.

Tank failure modes due to ground motion {1-5,25,30] are quite diverse in nature.
Most common are buckling and failure at joints. Buckling at the bottom of the tank
usually appears in two patterns. The first one is the typical diamond-shaped post
buckling mode which occurs because the tank is subjected to axial membrane stress
resulting from the overturning moment (Figure 1.1). The other one is the so called
"elephant’s foot" bulge (Figure 1.2). This is an outward bulge observed most or all

the way around the shell bottom. Its almost axisymmetrical shape makes many

1. Numbers in brackets correspond to references.



investigators believe that vertical acceleration is the cause. Similar patterns have
also begn observed in places of the tank where shell courses of different
thicknesses are connec'ted (Figure 1.3). Buckling is also observed at the top of the
tank (Figure 1.4). Its pattern is similar to those observed for shells under external
pressure (one half wave in the axial direction and several waves in the circumferen-
tial direction of the shell). As it is proved in this work, the required external pres-
sure is created by negative hydrodynamic pressures developed near the liquid free
surface which locally overcome the hydrostatic pressure, during sufficiently strong

earthquake excitation.

Joint or seam failure usually occurs at the sidewall/bottom connection or at the
sidewall/roof connection. This latter failure is believed to be caused by the slosh-
ing waves impacting the roof. Complete collapse of tanks has also been observed.
This is probably due to a stress or buckling induced rupture at the base followed
by rapid loss of the tank contents (Figure 1.5). The resulting partial vacuum causes

a buckling collapse of the entire tank.

Connection failures are quite common on unanchored tanks. This, again, leads to
rapid loss of contents and perhaps tank buckling due to inadequate venting. Tank
connections that can accommodate uplift of unanchored tanks can be designed but
considerable uplift must be considered. The uplift of a large tank (R= 50 ft) of the

order of 14 inches has been observed [3] (Figure 1.6).

1.2. Historical Background.

Over the past 50 years a large number of studies have been conducted on the
dynamic response of liquid storage tanks. The earliest studies were due to Jacob-
sen et al. [6,7], who reported analytical and experimental results on the hydro-
dynamic pressure developed in rigid tanks subjected to horizontal base motion and

anchored to a rigid foundation.

In the late 1940s and in the 1950s, during intensive work and fast evolution in

aerospace technology, a number of studies were devoted to the investigation of the



dynamic behavior of fuel containers [56,59]. These analytical developments and
studies examined the influence of the containers’ vibrational characteristics on the
flight control system of space vehicles by considering the container to be rigid and
focusing on the dynamic response of the contained liquid. By considering the exact
solution for simple geometries, it was pointed out that the fluid/container system
can be represented by a simplified discrete model whose parameters are deter-
mined as functions of the liquid depth to tank radius ratio. These parameters were
found by requiring duplication of forces and moments at some important point -

usually center of mass or base - of the system.

In 1957, based on results of the above works, Housner used an approximate
simplified approach, avoiding the complexities of the exact solution, and developed
formulae for models of containers having two-fold symmetry. This analysis, which
easily identifies the base shear and overturning moment [8,9], found widespread
application in practice and comprises the basis of today's seismic design codes for

liquid containers.

The research in the aerospace industry was vigorously pursued with attempts to
incorporate the tank flexibility and nonlinear sloshing effects analytically [53-
55,57,58,60]. Comprehensive lists of investigations on the dynamic behavior of fuel
tanks of space vehicles, up until 1966, can be found in [51,52]. On the other hand,
seismic analysis methods for ground-supported tanks evolved slowly until the 1964
Alaska earthquake. The response and the large-scale damage of modern design
storage tanks during that earthquake brought into question the adequacy of the
seismic design procedures and demonstrated the need for more realistic and reli-
able design. Also, the fast evolution of the digital computer technology and the
parallel development of appropriate numerical methods had significantly enhanced
solution capability by that time. These factors, in addition to helpful knowledge
which came out of investigations in related aerospace areas, profoundly influenced
the subsequent research in the field. Experiments and more refined analytical and

numerical analyses were carried out.



First, the accuracy of the tank rigidity assumption was assessed by a number of
investigators. In 1969, Edwards [11] considered the interaction between the con-
tained liquid and the elastic tank wall by employing the finite element method in
modeling the flexibility of the tank wall. Application of this analysis to a broad
tank, allowing no cross-section distortions, and comparison of the results with
those obtained from the corresponding mechanical analog revealed that the tank
flexibility effects were important for the case examined. Arya, Thakkar and Goyal
[12] used a different approach to study the dynamic characteristics of elastic fluid
containers. Their analysis was based on an energy method treatment by Baron and
Skalak [10] who utilized the idea of the virtual mass of the liquid and used the
mode shapes of the empty shell as generalized coordinates for the coupled system.
A similar type of analysis was used by Wu, Mouzakis, Nash and Colonell [14] who
did not utilize the virtual mass idea but instead used a series expression for the
liquid potential function as well as for the shell displacements. At about the same
time, Hsiung and Weingarten [13] applied the finite element method to investigate
the free vibrational characteristics of fluid/shell systems by discretizing both the
shell and the fluid. Shortly after, Shaaban and Nash [15] investigated the seismic
response of partially filled ground-supported anchored cylindrical containers.
Again, finite elements were used to descretize both the shell and the fluid. Later,
Balendra [16] extented this work by inéluding an elastic axisymmetric dome
attached to the top of the tank. A common conclusion of all these works was that
the response of the coupled system can be determined through superposition of
the motions of the shell and the liquid neglecting the liquid free surface waves
together with the sloshing of the liquid in a rigid tank. This means that the liquid

sloshing is not much affected by the tank flexibility, for an anchored tank.

During the same time, another approach was presented by Veletsos [19] for for-
mulating the tank flexibility. First he neglected the fluid sloshing and assumed that
the tank cross-section does not deform during vibration. By then prescribing the

axial variation of the tank deflection he actually represented the system by a single



degree-of-freedom oscillator. A more complete formulation as well as an extension
of that work was presented by Veletsos and Yang [20,21]. The hydrodynamic pres-
sure distribution and the loads at the base of the tank corresponding to several
assumed axial modes of vibration were presented and it was concluded that the
flexibility effects may be important depending on the system characteristics and the

seismic excitation.

In all the previous works, the beam-type modes were mainly treated since the
tanks were considered to be perfect and anchored to a rigid foundation. Then,
according to classical linear analysis, only those modes can be excited during hor-
izontal base excitation. However, shaking table and static tilt experiments con-
ducted at U.C. Berkeley by RW. Clough et al. [33-37], showed that the out-of-
roundness modes had significant amplitudes. Those experiments dealt with both
anchored and unanchored tanks and they also examined the effects of other param-
eters on the tank response. Such parameters were the roof type, water depth, exci-
tation type and intensity, effect of initial shell imperfections and the stiffness of the
foundation material. In addition to dynamic pressure, water surface displacements,
membrane strains, radial and tangential tank displacements, base uplift displace-
ments were also measured. In an effort to explain the out-of-round response, Velet-
sos and Turner [22] presented an analysis and they concluded that this response is
probably due to the interaction between the initial shell imperfections and the pres-

sure exerted by the contained liquid.

In 1980, Haroun [24] presented a discretization scheme in which the shell wall
wés modeled by finite elements but the fluid region was treated as a continuum,
thereby reducing the number of unknowns of the problem. Apart from the flexibil-
ity effects for anchored tanks, he also examined the effect of the initial hoop
stresses due to hydrostatic pressure, the roof effect and the effect of coupling
between liquid sloshing and shell vibrations. A study on the foundation flexibility
effect concluded that the fundamental frequency of deformable containers [26] was

reduced. Soil/structure interaction effects were also examined analytically by



Daysal and Nash [17] and experimentally by Cambra (36] and by Manos and Clough
[37].

Except for some analysis included in [20] and some experimental results
reported in [34] all the above works ignored the vertical loading effects. Some
current studies, though, tried to identify the effects of such an excitation. The most
significant effect appears to be the increased fluid pressure which in turn causes a
higher hoop stress in the tank wall. Marchaj [39] developed a simple analysis trying
to stréss the importance of the increased hoop stresses due to the vertical excita-
tion, in the design of liquid containers. Kumar [23] presented analytical results on
the subject while Haroun and Tayel [27] extended the work in [24] to include the
vertical excitation component for anchored tanks. Both approaches yielded eigen-
frequencies and mode shapes for partially filled tanks and concluded that liquid
sloshing and liquid compressibility effects are negligible for the most commonly

used liquids.

Most of the above mentioned effects were studied simultaneously by other
investigators, mainly in Europe and Japan [40,43-47], but the refinements and
developments which came out of these considerations have not found extensive
application in seismic design procedures. A common characteristic of all these
works is that they are concerned with tanks anchored to their foundation. How-
ever, many of the tanks in the field are essentially unanchored, since proper anchor-
ing is expensive. Some information on damage of unanchored and/or not
sufficiently anchored tanks can be found in [1-3,5,25,30]. The analytical formulation
of the dynamic behavior of tanks which lift off their foundation during strong
ground motion is quite complicated and inherently nonlinear. As a result, only
some experimental results were published on the subject at the beginning. This is
so, despite the fact that the uplift of the tank causes important changes in the tank

behavior under strong seismic motion.



Results from tests with unanchored tanks were first conducted at U.C. Berkeley
by R.W. Clough et al. [33-38]. According to these results, the response of the unan-
chored tank is dominaied by the uplift mechanism. Also, in some cases {34,37,38],
the compressive axial membrane stresses at the shell bottom were measured to be
considerably higher than the correspondingv allowable code value, without any sign
of failure. More recently, Shih and Babcock performed scale model tests for both
anchored and unanchored tanks in an effort to gain a better understanding of the
response and the appropriate failure criterion [28,29]. For the anchored case it was
observed that the buckling is predominantly influenced by the response of the
beam-type fundamental mode, while the higher order shell modes even with lower
frequencies seemed to be unimportant. Also, the buckling stress was considerably
higher than that proposed by codes using a "knockdown" factor. Much higher
stresses were developed in unanchored tanks than in anchored tanks, for the same
loading conditions. The buckling was again found to be highly influenced by the
response of the rocking mode of the tank. The results of these experiments pro-

vide good information and data for comparison with analytical works.

During the course of the present investigation, some works have been reported
in an effort to analytically formulate various aspects of the behavior of unanchored
tanks. In 1985, Ishida and Kobayashi presented a four degree-of:-freedom mechani-
cal model in an attempt to approximately analyze the rocking response of tanks
[42]). The rocking motion of the tank is modeled by a rotational spring, placed at
the tank bottom. This spring is supposed to take into account both the foundation
flexibility effects and the partial uplift at the tank bottom, simultaneously. The
properties of such a spring are obtained under certain assumptions for the founda-
tion and the bottom plate properties as well as for the distribution of the vertical

forces at the tank base.

At the same time, Auli, Fischer and Rammerstorfer presented an approach which
allows for an approximate modeling of the vertical restraining action of the base

plate and foundation on the shell [41]. This is done by representing the bottom



plate and the foundation action on the shell with axial springs, placed all around
the lower edge of the shell. These springs havernonlinear characteristics, derived
either analytically - by considering strips of the bottom plate - or by employing
finite element methods. The second approach is more comprehensive since it
includes the membrane action in the base plate, it incorporates the foundation flexi-
bility by modeling it as a Winkler foundation and it accounts for an elastic-plastic
material behavior of the plate and the shell. In both cases, axisymmetric conditions
are considered by making the assumption that the deformation of the uplifted
region varies slowly in the circumferential direction. The uplifted area and the
compressive axial membrane stresses at the shell bottom are computed for two
tanks. In those calculations, the hydrodynamic pressure -developed for the
anchored tank cases was used. However, as it is shown by results of the present
analysis, this is completely unjustified. The uplift changes dramatically the
behavior of a tank and consequently the developed hydrodynamic loads. Finally, it
was concluded that the buckling of those tanks is unaffected by the shell geometri-
cal imperfections and that the critical axial compressive stress is about the same as

the classical buckling value.

Similar analytical concepts were developed by Peek [31], independently. How-
ever, since for some cases - broad, roofless tank - the modeling with nonlinear
springs was not satisfactory, the solution of the two-dimensional contact problem
was attempted, using a finite difference energy method. Both methods were
developed for static lateral loads on the tank. The membrane stresses were found
to carry most of the load on the uplifted portion of the base plate. Apart from the
characteristics of the nonlinear springs modeling the base uplift, other important
quantities like the loads and stresses in the bottom plate as well as the stresses in
the shell wall can be computed by this analysis. Such results are presented in [31]
for static tilt tests with tanks tested by Peek as well as by others [29,35,37]. Com-
parison of the analytical and experimental results revealed that the computed

stresses are in good agreement with the experimental values and that in some cases
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these stresses exceed those calculated by current design codes by more than a fac-

tor of two.

1.3. Design Procedures.

Design procedures [48-50] consider one axis lateral ground acceleration. Most
procedures first find the tank overturning moment caused by the tank mass and the
pressures exerted on the tank wall by the fluid contents. This latter calculation
includes the impulsive and convective terms assuming a rigid tank anchored on a
rigid foundation and may consider a correction due to tank wall flexibility. This
correction is derived from anchored tank analysis but is used for both anchored
and unanchored tanks. The calculations are based on a specified response s;;ec-
trum for the sloshing and tank flexibility correction and a maximum acceleration for

the impulsive type load. Also, there is no consideration for the ground flexibility

effects and the vertical ground excitation component.

Once the overturning moment is found, the anchored and unanchored design
procedures differ. For the anchored tank, the tank wall stresses are found from the
moment using structural mechanics considerations. These stresses are compared to

the allowable stresses using either a stress or a buckling limitation.

The unanchored tank presents more difficulty to the designer. First, the resis-
tance to tank overturning is calculated, despite the fact that overturning prior to
other failure has never been observed. This calculation is based upon an empirical
model where tank resistance to overturning is provided by the tank shell and a por-
tion of the tank contents [48]. This portion depends on the width of the bottom
annular ring which may lift off the foundation. The calculation of this width ignores
the membrane stresses developed in the bottom plate upon large amount of uplift.
In some experiments, the uplift length was measured to be more than three times of
that predicted by this model [38]. Next, the axial stresses in the tank wall are calcu-
lated using much the same empirical model used for the overturning calculations.

This model assumes that the stresses approach infinity at overturning so a stress or
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buckling failure always precedes overturning. The stresses resulting from this cal-
culation are compared to the allowable stress in the same manner as for the
anchored tank. This method of stress calculation is not supported by tests or ana-

lyses.

1.4. Objective and Organization of the Present Investigation.

Most of the previous studies on the subject have focused on the dynamic
response of rigid or flexible tanks, anchored on a rigid foundation and subjected to
horizontal base excitation. Recently, some works have dealt with the formulation of
the ground flexibility [17,26], the vertical excitation effects [23,27,39] and some

aspects of the uplifting phenomenon [29-38,41,42,46].

The objective of the present work is to create - based upon observations and
results provided by previous investigations - a simplified analytical model for the
dynamic behavior of fluid-filled tanks, that will lead to a better understanding of
the response and consequently the failure mechanisms of unanchored tanks. For
these tanks, the difficulty associated with the exact analytical modeling of the non-
linear uplifting phenomenon implies directly the need for simplified approaches.
The present model formulates this uplift behavior, determines the tank response
under base excitation and identifies the hydrodynamic loads on a tank so that
failure analyses can then be performed. The work is mostly concerned with the
formulation of the behavior of unanchored tanks. However, the response of
anchored tanks is also easily obtained from this analysis, as a special case. For this
case, special attention is paid to the formulation of the ground/structure interac-

tion effects.

In the following chapter, the respénse of a fluid inside a cylindrical tank is exam-
ined for the most general motion of the tank. The corresponding hydrodynamic
pressure and base loads are obtained analytically, in closed form. Finally, a
simplified model for the behavior of a rigid tank undergoing both translation and

rocking is developed.



-12 -

The third chapter is devoted to the derivation of a set of equations describing
the behavior of the coupled fluid/stucture/ground system. Special attention is paid
to the formulation of the base uplift but effects due to ground and shell flexibility
and liquid sloshing are also included. Beam-type deformatiobn - but allowing for cir-
cumferential straining and in-plane shearing of the cylindrical shell - and horizontal

base excitation are assumed.

Numerical results from the application of this analysis, are presented in chapters
4 and 5. In chapter 4, results for anchored tanks are derived, so that comparison
with results of previous investigations can be done. In addition, effects due to
ground flexibility are primarily considered. Also, buckling phenomena observed at
the top of a fluid-filled tank are explained. A strange dynamic response of this tank,
encountered during the nonlinear ground/structure interaction formulation, is also

examined and investigated.

In the last chapter, results are obtained for unanchored tanks. The effect of the
base uplift on the system dynamics is first examined. Then, the coupling between
the sloshing and structural modes and the shell flexibility effects in an unanchored
tank are considered. Finally, an explanation is provided for previously performed
buckling experiments [29]. In those experiments, the tanks were subjected to either
harmonic or transient base excitation and theiAr behavior was very different depend-

ing on their base fixity condition only.
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Chapter 2

FLUID RESPONSE IN A CYLINDRICAL TANK

2.1. Introduction.

A basic step in the analytical formulation of the fluid/structure interaction,
occurring in a liquid storage tank during dynamic excitation, is that of determining
the fluid response associated with a given structural response. It is more con-
venient to analyze the fluid response problem separately, before the general formu-
lation of the coupled problem. In this way, the physics and the fundamental param-
eters governing the fluid behavior can be examined and presented more efficiently,

which then results in a better understanding of the complete problem.

For the purposes of the present work, the fluid is assumed to be ideal (inviscid,
incompressible) and the flow irrotational. The fluid velocity field is then expressed
in terms of a scalar potential function &, satisfying the Laplacian throughout the
fluid domain. Considering small amplitude surface waves, conservative body forces
and matching the appropriate fluid and structural velocities the boundary value
problem for ¢ is set. Then, the solution for ¢ is found for the most general case of
tank motion, the corresponding hydrodynamic pressure is obtained and the resul-
tant hydrodynamic base shear and overturning moment are also determined. In

each case, the so-called "impulsive" and "convective" terms can be easily identified.

In the formulation of the boundary value problem for &, the structural velocities
are assumed to be known and the derived hydrodynamic pressures and loads are
functions of these velocities. To completely determine the fluid as well as the
structural response, the coupled fluid/structure interaction problem must be con-
sidered, in the general case. This task is the subject of the next chapter, while in
the end of this chapter a simplified mechanical model is presented, which easily

identifies the resultant hydrodynamic loads at the bottom of a rigid cylindrical tank,
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undergoing both translation and rocking.

2.2. Mathematical Formulation of the Fluid Behavior.

The geometry of the system under consideration is shown in Figure 2.1. The
tank has radius R and contains a liquid of density p;,, up to a level H. Its base is
assumed to follow the ground motion, whose displacement along the x-axis has his-
tory x,(t). Polar coordinates r, ¢, z are used for the space description of the system
variables and U,, Uy U, are the corresponding velocities in the radial, circumferen-

tial and axial direction. Symbol t stands for the time variable,

For the considered system and the most commonly used liquids, the viscosity
and compressibility liquid effects are believed to be negligible. Then, if the flow is
originally irrotational, it will remain so and the fluid velocity field can be expressed

by:

<

=V
the continuity equation reduces to
T =0

and for conservative body forces, the equilibrium equations can be represented in

an integrated form by a single scalar (Bernoulli) equation

od P 1
— 4 — 4+ = YCPTVD - G = F(1) ,
YR o +5 (1)
where
92 1 o 1 92 92 o
ar? roor o p2 5p2  9z2 P g )

¢ is a scalar function known as the "velocity potential,” g is the gravity accelera-
tion, P is the total pressure and is a function of space and time, P, is the external
pressure on the fluid surface and F(t) is a time function coming out of the integra-

tion of the equilibrium equations.

Assuming small amplitude surface waves - compared to their wavelengths -

Bernoulli's equation reduces to:



d(b P*Po
) +
at Pl

+4g1=0,

where F(t) is absorbed into & and j;=z-H. Then, imposing the

kinematic free surface condition

o9& _ oy at z=H ,
0z ot

the linearized Bernoulli’s equation, at z=H, takes the form

92d 1 H(P-P,) od

0[2 + 2 at 0z

Neglecting free surface tension effects, the last equation becomes

d?+ ({—(D=O on z=H .
ote 0z

linearized

Finally, matching of the normal velocities of the fluid and the structure in their

common area requires that:

U, = Z—‘:i _ fr0t) at z=0
U, - % — h(fhzt) at r=R
(

where f, h are the corresponding normal velocities at the bottom and the wetted

cylindrical part of the structure, respectively.

With ® determined, the fluid velocity field is given by

od 1 9d J
U’—dr ' Uﬁ*r 0 UZ_(‘)Z

the free surface displacement by
dr D = - 2 220000
g ot

and the pressure distribution in the fluid domain by

P(ri.2.t) = P, + pg(H-2) — py %(rﬂ,z,t)

(2.3)
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Clearly, the pressure consists of two parts. The hydrostatic part
Py =P, + p1g(H-2) (2.4)
and an additional (hydrodynamic) part, resulting from the fluid motion

oP
ot

Py =—p (2.5)
2.3. Solution of the General Fluid Response Problem.

First, the velocity potential ¢ and the structural velocities can be expanded in
Fourier Series in the #-direction. Utilizing the linearity of the system and the ortho-
gonality properties of the sine and cosine functions in the considered domain, it
becomes clear that instead of the initial system, only the following problem for

each Fourier component of ¢, f and h, say &,, f, and h,, respectively, has to be

solved:
T2, (rz,t) =0  in the fluid domain (2.6)
t"‘?‘l)n (/‘\Pn
—~+9g—=0 on z=H (2.7)
/'][“ iz
ah,
e f.(r.t) at z=0 (2.8)
ad,
- = h,(z,1) at r=R (2.9)
Jr

Then, assuming the initial conditions
d,=db, =0 at t=0 (2.10)
and using standard separation of variables techniques, it is found (Appendix A) that

the general solution of this problem has the following form:

,(r.2.0) = (£ [ay(0) & 4 Bu(O] + N1k 5) [Ane(D) cOS (K, £) 4
s=1

. —.H r z
B C k —g— / — a I ]
+ Boy1) sinh(kns £ + Iy 77) Cosl0) cos(r, )1

where J, is the Bessel function and I, is the modified Bessel function of the first

kind of order n and
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Jn(kns) =0
Ny = ST

Decomposing h, in the form
h,(z,t) = a,(t) z + h,(z.1)

and applying the boundary conditions of the system, the time functions a,, b,,

A, B,s and C,, are determined to be as follows, for zero initial conditions:

R ot hzdz . (a,(t)=0=b,(1))

nH

°o“~— T

a,(1) = %RHH,,(I) Cb(1) =

H
2 h, z
Cos(l) = NN ﬂ) {hn(z‘t) cos(\g —ﬁ) dz
s Inlhs 7y
B (1) = 2R? —rstD = 0l Jn(Kns)

kns (knzs_nz) JS(kns) COSh(/’ns)

t
Ans(8) = Dpg(8) — g [ [En(7) + Dypi(7)] sine,(t—7) dr

with

k2 )" v
bns([) = [ = ]f an(knx “ﬁ) fn(rv[) dr

R3 |5
2 na,(t) B, (1)
E,. (1) = A
A0 fins (kZ2i—=1%) ], (ko) sinh(y,) " sinh(ju,;)
) + b,(0)] + d,
D.(1) = 2 n [a,(t) + b,(0)] + ds(1)
(kr?s_’”z) .’n(knx) COSh(//ns)
o Bne, B
dns<t): /_: <_l)p 2 Cnp(t)
p=\ 1+ ('\p//‘ns)
_ H 2 _ o Kns
fins = K ( R) and Wi =4 R tanh(y,,) .
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2.4. Fluid Response for Some Special Cases.

For the scope of this study, the solution of the fluid response problem is only
needed for some simplbe cases. In all these cases n=1 and the form of the solution
is much simpler than the form of the general solution. For this reason and for their
practical importance, these solutions are given next, by dropping the n=1 subscript

- except for J, and I, - for simplicity.

2.4.1. Tank with Flexible Cylindrical Shell. In this case, assuming a rigid bot-
tom plate and radial velocity for the cylindrical part of the form w,,(z) ¢;,(t) cosf, it
is:
f(rf,t) =0 and h(f,z,t) = w,,(2) ;(t) cosh .

Then, it easily follows from the general solution that

2 R o /‘m t t
G,(1) = R“'"’ ‘ (; L A1) = DD — oy [ Dy(7) sinwy(1=7) dr
(’\5 ﬁ) 11(’\3' ﬁ) e
where
] H
mo = 7 | Wn(2) dz (2.11)
1 H
Oms = 77 [ Wn(2) cOS(N -—Zﬁ) dz  (s=1,2, ---) (2.12)
t © | (=1)" oy,
D,(t) = — 2R Stms (1) Spe =00 +2x—(-)(J (2.13)

(k2=1) Ji(ks) cosh(pug) = 7™ 7 T TS 1e (/)2
The velocity potential in this case has the form:

b, (r.0,2,0) = cOSH 1¥ 0y Up(0) + iU;(ks é) As(1) cosh(y, %) +

s=1

r Z.,
+ 1O 7) G(1) cos(s il

while the hydrodynamic pressure is given by:
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Pm(ri.2.0) = = pjRcost | f,,(r.z) &\ (2) + }O_Cj[fm,(r,z) A, (D1

s=1

with

Z

s H) - fms(r:Z)

“d
s=1

14 o
fm(r.2) = R (mo + N2 (s Fo(F) cOs(N

]I(ks—;)cosh(;zsﬁ)

(kg=1)] (ks)cosh(y,)

Fms(r2) = Cs Fi(r.2) | Fulr.z) =2

LOG—)
Cms = Sms‘ , }’5(}’) = H

O ) 1)

Aps(t) = [« C0(5) sinoy(t=7) d7

2.4.2. Tank Rigid Body Translation along the x-axis.

(2.14)

(2.15)

(2.16)

In this case, assuming

that the ground displacement is x,(t) along the x-axis, the solution can be obtained

from the previous solution, by just letting w,,(z) = 1 and (t) = x,(1). Then, the pre-

viously obtained formulae are further simplified (since

s = 0) and the velocity potential is given by:

Re

lr0.2.0) = cost 7 xy(0) + VUitks £) Ad) cosh(n, Eli

s=1

while the associated hydrodynamic pressure by:

P.(ri,z,t) = — pRcost | f(r.z) x,(0) + ,\:[ fes(r.z) A (O]

s=1

with

t
X () = <y [ x,(7) sinwy(t—1) dr

o

(ki-=1) J(k,) cosh(yuy)

A(t) = — 2R

firz) =& - N fulrz) . fulr2) = Furz)

S§=

and all others

N mo = l

(2.17)
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t

Ault) = [ wy x,(7) sinwg(t—7) dr. (2.18)

(o]

2.4.3. Tank Rigid Body Rotation about the y-axis. If the tank rotates about the

y-axis so that;
f(r6,t) = —crdt)cost and h(hz,t) =z &t) cost ,

it easily follows from the general solution that

_ = 2(c+]) RR L) , 1s(8) = pig A1)

B. = ) -

0= 1) Tk coshiny 0 2R LRI itk coshin)
with

v f A7) sinw(t—7) d7 .

o

(c+1) — cosh(uy)
sinh(yu,)

/_’s(t) = //s(t) +
Then, the velocity potential is given by:

&.(r0,2,1) = coshirzi(t) + Scjj,(kj %)[Ax(t)cosh(/ls —f{—) + Bs(t)sinh(/ls—z-—;—)]}

s=1

and the corresponding hydrodynamic pressure is:

Pi(rhz,t) = — pjRcosh | f.(r,z) R&(t) + i[ fas(r.z) RA,(D]! (2.19)

s=1

with

. zZ
/lscosh(//sf,-) - (C+1)smh(/ls—/ls-ﬁ)
- R J1(kg) ks (kZ—1) cosh(uy)

- (c+1) — cosh(u,) + pis sinh(yi)
Fistri2) = Cos fo(r2) . cas = K. sinh(1,)

t
Au(t) = [ oy &(7) sinwy(t=7) dr . (2.20)

Clearly, the case c=1 corresponds to the rigid body rotation of the tank through an
angle o(t) about the y-axis. On the other extreme case, when ¢=0, only the cylindri-

cal shell undergoes the rocking motion, while the bottom plate remains horizontal.
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2.4.4. Discussion. At this point it is noted that in all the cases examined the
hydrodynamic pressure is proportional to cosf. Also, the dependence of this pres-
sure on the time functions associated with the corresponding tank mode is fairly
standard. Namely, in all these cases, the hydrodynamic pressure is comprised of
two distinct parts. One part which is directly proportional to the acceleration of
the mode plus another part which is given in terms of an infinite series involving
the same time function but in an integral form. In the relative literature, the first
part is - not so properly - called "impulsive.” Physically it is caused by the part of
the fluid moving in unison with the tank. The second part, which is known as "con-
vective" pressure, represents the sloshing at the free surface of the liquid. This
part contains integral terms involving the sloshing frequencies and the time func-

tion associated with the tank deflection pattern.

In order to get some of the flavor of what is included in the various spatial func-
tions appearing in the pressure expressions, Figures 2.2-2.3 are presented. The
depicted distributions are computed at r=R and are given as functions of z/H and
for H/R= 0.5, 1, 2, 4, which covers the range of practical interest. The correspond-

ing distributions for the flexible modes were obtained by assuming

w,(2z) = sin[(2m—l)% .

while for the deformation of the bottom plate the value c=1 was chosen. One
difference between the impulsive and the sloshing terms is that the former are
important all over the wetted surface, while the latter are usually important only
near the free surface of the liquid. Also, the sloshing effects become less important

as the tank becomes taller and as the order of the sloshing mode increases.

Finally, it is noted that interpreting what is shown in these figures, one must
bear in mind that the pressures on the shell wall are obtained after multiplication

of the normalizing constants and the corresponding time functions.
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2.5. Hydrodynamic Loads at the Tank Base.

Knowledge of the pressure distribution on the shell wall and the bottom plate
leads to straightforward computation of the resultant loads induced by the fluid
motion, at any point of the shell. In the majority of the ‘cases, the most severe
stressing and failure occurs at the bottom of the tank. Therefore it is of practical
importance to identify the loads there in order to be able to find the corresponding

stress distribution and to predict possible failure at the bottom of the tank.

Clearly, if P(r,0,z,t) is the pressure distribution inside the tank, the resultant

shear force at the base of the tank is found from:
H
Q(t) = | [ P(Rf,z.1) cos# R dbf dz ,
o o

while the resultant moment with respect to point O and along the y-axis is given by:
M(t) = M(t) + Mu(t) ,

where
H 21

M(t)= [ [ P(RO.z,t) z costl R dO dz

o 0

is the moment exerted through the cylindrical part of the tank and

27
My(t) = [ [ P(r.0.0,t) ¥? cost dbl dr

Q%——

is the moment exerted from the fluid on the bottom plate.

Because of the form of the pressure P and the orthogonality properties of the
cosine and sine functions in 0<#<2wr, it is obvious from the above formulae that
only the cosf modes contribute to the resultant loads on the tank. Using results of
the previous section, the resultant shear force at the bottom of the tank, during

rigid body translation x,(t) along the x-axis, is found in the form:

Q1) = — My 1q, %,(0) + N [de Au (0] (2.21)

s=1
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where m; = p(7R?H) is the mass of the contained liquid. The corresponding

moments are given by:

M () = — mH 13, x,(t) + iwm Al (Ol . (2.22)
. s=1

M() = = miH 175, Xp(0) + 3 [ Au(D]! (2.23)

Similar expressions are derived for the resultant base loads for the case of rigid
body rotation &(t) about the y-axis and for the case where the radial velocity of the
shell is of the form w,,(z)¢,,(t) cosf. In these cases the subscript x in the above
expressions for the base loads is replaced by ¢ and m, respectively. The q, .3and ~'s
appearing in these base loads expressions are functions of the ratio H/R and the
corresponding tank mode. Their explicit forms are given in Appendix B. The impul-
sive and convective parts in all the obtained relations for the hydrodynamic loads
can again be readily identified. As far as the role of the important relative system

parameters is concerned, Figures 2.4-2.6 help in illustrating the following points.

First, the sloshing effects are generally important only for relatively small values
of the ratio H/R. As this ratio increases the impulsive terms become dominant, as
expected intuitively. Also, from all the sloshing modes, usually only the first one
may be of practical importance for realistic values of H/R. Finally, by comparing
Figures 2.5-2.6, it is seen that the moments exerted by the liquid at the bottom of
the tank are small compared to the moments exerted at the shell, for large H/R.
The form of the flexible modes in obtaining the corresponding base loads was the
same as that assumed for calculating the pressure distributions and c=1 was chosen

again.

2.6. Simplified Mechanical Model for a Rigid Tank.

Apart from the ground displacement history x.(t), all the other time functions
involved in the pressure and resultant loads expressions - as presented in the pre-
vious section - are yet to be found. Once these time functions are determined, the
histories of the hydrodynamic loads on the structure become completely known,

since their spatial dependence is already known.
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In the general case, these time functions - and others associated with the struc-
tural response - may be determined by considering the coupled fluid/structure sys-
tem. This task is not always that straightforward. One way of approaching the cou-
pled problem is presented in the next chapter of this work. However, for the case
of a rigid cylindrical tank, one can follow a simplified approach. Namely, as is
shown next, one can substitute the contained liquid in a rigid tank by a number of
oscillators whose position and dynamic characteristics can be analytically obtained
by requiring the same base loads from both the container and the corresponding
mechanical model, when they exhibit the same motion. Historically, this was the
way the problem was approached at first [59,56,55,52,9,8]. Due to its simplicity and
the clear physical interpretation it provides, this simplified model found
widespread application in practice and a version of it - accounting for rigid body

translation only - still comprises the basis of today's seismic design codes.

2.6.1. Base Loads for a Rigid Tank. By allowing a rigid tank to transiate by
x,(t) along the x-axis and rotate through a small angle &(t) about the y-axis, the

developed resultant base shear and base moment are given by

Q1) = Q(1) + Q1)  and M(t) = M, (1) + M,(t) .
respectively. Using the corresponding formulae for the base loads and applying the
identity

20
Y

s=I

1 y_1
k2(k2—1) | 8 '

after some trivial algebraic manipulations one can rewrite the base loads as:

Q) = — m, [x,(1) + h, &(1)] - Sm, (A () + hy An(D)] (2.24)
s=1
MO = = mohy %,(0 = I, 50 = Smyh (A0 + hy A0 (225)

s=1

with
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RS Dl
ol
hTO - rrnn(l, {é_ * %(%)2 B 2(%)2‘2[kSZII(S:;rlqEIICSc)):h(Z/IS)} (2:28)
s my 2 (Ryz |1 Sinjh(/'.:») — cosh(y,) + 2 (2.29)
H mq H ks (ki—1) cosh(y)

i a2 S

An immediate obvious consequence is that

2.6.2. Mechanical Model for a Rigid Tank. Consider now the mechanical sys-
tem shown in Figure 2.7. [t consists of a rigid body, having mass m, and moment of
inertia [, with respect to point 0, together with an infinite number of oscillators
with masses m, (s= 1, 2, ..). The rigid body is attached rigidly to the tank wall at a
distance h, from the base, while each mass m;, is attached at a height h, from the

base through a spring of stiffness K,, where

ks
K, = m;.} = m.g 7 tanh(yi) (2.31)

Then, if y.(t) is the displacement of the s’ oscillator relative to the tank wall, its
equation of motion is

my (X, +y,)+ Ky, =0 (2.32)
where

x(1) = X, (1) + h, &(t) .

For zero initial conditions, the solution of (2.32) is given by:



with

while the corresponding base moment is equal to
(KS ys) hx = — Mg hs /:rs([) -

Now, choose the parameters (masses, moment of inertia, heights, springs) of the
considered mechanical system from equations (2.26-2.30). Then, it is clear that this
mechanical system is equivalent to the initial rigid tank/liquid system, in the sense
that it reproduces the same base loads, when subjected to the same x,(t) and &(t)
motions. From the above derivation it is obvious that the rigid body (m,, I,) in the
model represents the impulsive part of the base loads, while each oscillator
represents that part of the base loads, which is associated with a corresponding

sloshing mode.

In order to get an idea of how the various elements of the derived mechanical
model depend on the parameter H/R, Figure 2.8 presents graphically what is con-
tained in equations (2.26-2.31), for a practical range of values of H/R. Obviously,

these elements depend only on H/R and not on the motion of the system.

Clearly, the sloshing effects can be important for small values of H/R, while the
impulsive effects dominate for large H/R, as expected. Also, for all practical pur-
poses, only the first sloshing mode seems to be important. The higher sloshing
modes may be important only through resonance, which does not seem to be of
severe nature in real systems [57]. The results on Figures 2.8.a and 2.8.c are identi-
cal to similar ones obtained in reference [20], even though the corresponding equa-

tions appeared in different forms.
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Finally, it is noted that the symbol /., in Figure 2.8.b, represents the centroidal

moment of inertia of the rigid mass, i.e.,

I.=1, - myh?

C C

and that there is no centroidal moment of inertia associated with the sloshing

masses.

2.6.3. Equilibrium Equations for the Rigid Mechanical System. In the previous
section it was shown that the liquid contained in a rigid cylindrical tank can be sub-
stituted by a simple mechanical model. This model can be further simplified by

ignoring the contribution of all the sloshing modes but the first one.

Ground flexibility and base uplift phenomena are two practical reasons for a
tank to rotate on its base when subjected to a horizontal excitation. In such a case
and when the flexibility effects of the cylindrical part of the tank can be neglected,
the real system may be approximately represented by the simplified model shown

in Figure 2.9.

[n that system, the elements m,, I,, m, and K, represent the liquid impulsive and
first sloshing mode, while m,, m,, m, and I,, I, I are the mass and the centroidal
moments of inertia of the roof, the shell and the foundation respectively. Symbols
h,, h, represent the roof and shell center of mass distances from the tank base,

respectively.

The equations of motion for the simplified discrete model can be derived by
employing Lagrance’s equations:

doTy Y _p
dt dg; ogq; 7

where T is the kinetic and V the potential energy of the system, g, are the general-
ized coordinates and F; the corresponding generalized forces. In the considered

case
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ar=Y,. 92=0 . while F =0 and F=M,,
where y, is the displacement of the oscillating mass m, relative to the tank wall
and M, is the moment exerted by the ground on the bottom of the tank. If the fol-

lowing notation is used
h=h+ h, ,

where h, is the vertical distance between the bottom of the tank and the ground
point G, which purely translates by x,, then, by assuming small ¢, the kinetic energy

of the considered system is given by:

. — . 1 . . . . .
T(t) = 5 m(x; + o+ y)? + —2~mo(xg + h &% + %Icéz + —;—m,c(xg + hd)? +

1
2

R LY R LR YRR W NCA L YR

while the potential energy can be expressed as

V(t) = —ZLKIYIZ —- Mgy o — g(’ncvﬁ()+’nIEI*}'mrEr'*'msEy"mehf)%Oz ,

where h; represents the distance of the foundation mass center from the point G.

Therefore, the equations of motion of the system are:
mx);\+mxh\<3+’<|Y1~m19<§=—m1)'<.g (2.33)
l,b+mh y —mgy, —gm,o—M, =—myx, (2.34)

where
Iy = (mohZ 4+ 1) + mh? + (m.h2 1) + (meh2 + 1) + (mchf + 1f)

m, = mol'-{o + mlh—l + m,ﬁ, + msi;{s + }'nfhf .

In many cases the ground/structure interaction is modeled by placing a rota-

tional spring of stiffness k; at the bottom of the tank, so that

My=—kso .

Then, the equations (2.33, 2.34) can be written in the following form:
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MX+Kx=—x5() [ (2.35)
with
m mh, K, —-m,g
M= {mlhl 1y K -mg ki—gm,

)’1(1)] _[ml

m
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Chapter 3

RESPONSE OF CYLINDRICAL LIQUID STORAGE TANKS UNDER BASE EXCITATION

3.1. Introduction.

A set of equations is derived here, which describes the dynamic behavior of
cylindrical liquid storage tanks under horizontal ground excitation. In the present
work, the structure consists of a flexible cylindrical tank with a roof and a bottom
plate, resting on a flexible ground through a rigid foundation. Portion of the bot-

tom of the tank may separate and lift off the foundation during ground motion.

In the next section the variables and parameters associated with the system
response are defined. The third section is devoted to the introduction of the
mathematical problem which describes the behavior of the real system. Then, in the
fourth section, the method of approach is chosen and an outline of the procedure
for the derivation of the equations for the coupled system is presented. In the fifth
section, the various assumptions in modeling the behavior of each structural com-
ponent are clearly stated. In the sixth section, Hamilton’s Principle is employed and
the formulation of the base uplift is completed. In the final three sections, the for-
mulation of the liquid sloshing effects is performed and the equations of motion
are explicitly derived and set in matrix form. A damping matrix is also appropri-

ately chosen for the system.

3.2. Definition of System Parameters.

The system under consideration is shown in Figure 2.1. The tank has radius R,
length L, thickness t; and is partly filled with a liquid of density p;, up to a level H.
It is covered above by a rigid roof of mass m,, centroidal moment of inertia I/, and
‘centroid located at a height H, from the horizontal plane z=0, and supported below

by a thin flexible plate.
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Ground motion is assumed to be aligned with the horizontal x-axis and to have a
known displacement history x,(t). This motion is transferred to the tank through
its foundation, which is assumed to be rigid but to rest on flexible ground. Apart
from the point G, which is located along the vertical z-axis and purely translates by
x,(t) with the ground, all the other points in the foundation rotate about G through
the angle ¢((t), in addition to the x,(t) translation. The foundation has mass my,
centroidal moment of inertia I, and its centroid is a vertical distance h; above
point G. Finally, h; and h,, are the vertical distances of the plane z=0 and the bot-
tom plate centroid above point G, while m, and [, represent the mass and the cen-

troidal moment of inertia of the bottom plate, respectively.

Figure 3.1 illustrates the definition of the foundation rotation and the uplifting
angles. Under dynamic excitation the foundation rotates through the angle ¢ (1)
about the y-axis, in addition to the x,(t) translation. Also, part of the bottom plate
may lift off and lose contact with the foundation. This is assumed to happen in
such a way that the bottom periphery of the cylindrical part rotates an additional
small angle ¢,(t) about the y-axis and simultaneously translates by R¢,(t) along the
z-axis. Therefore, the bottom section of the cylindrical part is assumed to rigidly
translate by [x,(t) + h,¢¢(t)] along the x-axis and by R¢,(t) along the z-axis, while it
rotates through a total angle &(t) = é,(t) + ¢,(t), about the y-axis. Finally, polar
coordinates r, 4, z and time t are used for the description of the, system variables
and u,, uy u, are the structural displacements in the radial, circumferential and

axial direction, respectively.

3.3. Discussion of the Mathematical Formulation of the Coupled System.

For the considered system, the structural behavior drives and affects the liquid
response, which in turn affects the structural response by developing and exerting
on the structure appropriate hydrodynamic pressures. This coupling between the
structural and the fluid response is reflected in the mathematical description of the

system.



- 32 -

The equations of motion of the structure can be represented in short and con-

venient operational form as follows:
N(W) = f(x,, P)

where u is a vector containing the various structural displacements as components
and f is a forcing vector depending on the ground acceleration and the liquid pres-
sure. This pressure P is found from the equations describing the liquid dynamic
behavior, as presented in chapter 2. Obviously, this pressure depends on the struc-
tural motion, which in turn depends on the liquid pressure, as indicated by the
above form of the structural equilibrium equations. To complete the mathematical
formulation of the problem the various matching, boundary and initial conditions

should also be considered.

Writing the equations of motion for the structure in operational form prevents
one from seeing their difficult and non-cooperative nature even for completely
linear formulations. What makes the problem really hard, though, is the fact that
when the structure is allowed to lift off the foundation, the formulation becomes
unavoidably nonlinear (contact problem). In addition, the deformation of the bot-
tom plate during uplift can become so large that linear bending theory is no longer

adequate in modeling the behavior of the bottom plate.

According to the above, the behavior of the system, in the general case, is
rigorously governed by a nonlinear system of coupled partial differential equations.
Then, if a theoretical approach is sought, one must employ approximate methods in
developing and solving the governing equations. The choice of an appropriate

method is the subject of the next section.

3.4. Choice and Outline of Method of Approach.

The most popular approximate techniques used for obtaining finite-dimensional
field equations for the considered system are those employing finite element or
other energy type methods. These methods take care of the difficulties associated

with the geometry of the problem by appropriate spatial discretization. Then, the
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only remaining independent variable - for the dynamic problem - is the time vari-
able and consequently the initial system of partial differential equations is reduced

to a more manageable system of a finite number of ordinary differential equations.

The basic difference between the finite element and the other commonly used
energy methods lies in the form and use of the functions for the geometric discreti-
zation. In the finite element method these (trial) functions are confined into small
portions of the domain while in the other energy methods they cover the whole
domain. This implies that the finite element approach may generally result in larger
and therefore more time consuming and expensive numerical systems. On the
other hand, the other energy methods are more risky since the accuracy of their
results depends more directly on how close the assumed displacements are to the
real geometrical pattern. However, for the problem at hand, previous analytical and
experimental investigations [20,26,29,37] have given fairly good ideas for the
expected modes. Finally, the energy methods provide a better insight into the cou-
pling of the various modes through the procedure of developing and solving the

equations of the system.

In the present work, considering the above and also some important numerical
difficulties (extra degrees-of-freedom, ill-conditioning of stiffness matrix and slow
convergence) encountered in the solution of contact problems using current finite
element formulations, an energy type method was chosen as most appropriate for
the spatial discretization of the structural domain, while the equations in the fluid
domain are solved analytically. This approach results in a compact system of equa-
tions, since the fluid degrees-of-freedom are thus eliminated from the formulation.

The general solution procedure follows the next three steps:

a. First, the form of the structural displacements is assumed. These displacements
contain the proper rigid body terms, as well as terms accounting for the shell
flexibility and the uplifting motion of the tank. The flexible parts of these dis-

placements are expanded in series forms as explained in the next section. Each
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term of these series is a product of a term with assumed spatial dependence
multiplied by a term of unknown time dependence. These time dependent
functions then, together with the foundation rotation 6 (1) and the uplifting
rotation o,(t), when they are included, comprise the set of unknowns of the

problem.

b. Using the assumed displacements as boundary conditions, the equations
describing the fluid behavior are solved exactly and the corresponding hydro-
dynamic pressure is obtained in closed form by the methods of the previous
chapter. This pressure is expressed in terms of the time dependent functions
of the structural displacements. Then, the pressure on the wetted surface is
treated as an external load to the structure, representing the liquid’s action on

the structure.

c. In the final step, Hamilton's Principle is applied in the structural domain and the
system equations are generated in the classical matrix form. Solution of these
equations results in the determination of the time dependent functions of the
system, which then completes the solution for the coupled response problem,
since the spatial dependence for both the structural and fluid variables is

already known.

Having found the pressure distribution for a given base excitation history, one
can directly predict possible buckling failure at the top of the tank, near the liquid
free surface. Also, one can calculate the corresponding resultant loads at the base
of the tank. However, prediction of failure at the bottom of the tank - which is the
most frequently observed damage pattern for the tanks in the field - is still not an
easy, straightforward task when uplifting occurs. In such a case, the failure at the
tank bottom can only be predicted from a reasonable estimation of the stress distri-
bution corresponding to the calculated base loads and the use of an appropriate

failure criterion.



- 35 -

3.5. Behavior of the Structural Components.

Apart from the fundamental assumptions made for the behavior of the system,
some additional assumptions are needed here. They are associated with the
energy-based nature of the chosen approach and they refer to the form of the struc-
tural displacements. These assumptions are given next for each structural com-

ponent.

3.5.1. Displacement Form for the Cylindrical Shell. The cylindrical shell is

modeled as a thin shell whose middle surface displacements are of the following

form:
u(0,z,t) = [x,(1) + hyé (t) + zd(t) + ui(z,t)] cosd (3.1)
ug(0,z,t) = — [x4(t) + hyo (1) + z&(t) + u§(z,t)] sind (3.2)
u,(#,z,t) = Ro, (1) + [-RN1) + ui(z,t)] cosb (3.3)

The first three terms in u,, u, and the first two terms in u, represent the rigid
body part of these displacements, as explained in section 3.2. The other terms in

the above expressions represent the flexible part of the shell displacements.

Generally, the cylindrical shell displacements can be decomposed into appropri-
ate modes in the circumferential and axial direction. Each of these geometrical pat-
terns is characterized by two numbers (n,m), which represent the number of the full
circumferential and half axial waves of the mode (Figure 3.2). Obviously, the
axisymmetric n=0 shell modes - except for the rigid body translation R¢, term in u,
- are not included in this formulation. These modes are primarily excited during
vertical ground motion, which is not considered in this analysis. The effects of the
n>1 modes are also neglected here, for the following reasons. First, using linear
analysis for a perfect tank anchored on a rigid foundation it can easily be shown
that these modes are not excited under horizontal base excitation. For unanchored
and/or imperfect tanks, some of the n>1 modes may be excited but they produce
no resultant base moment and shear. Thus, since the ultimate objective of this

work is prediction of tank failure, which appears to be caused by loads which
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mostly result from the n=1 modes [28,29], it is thought that the effect of the n>1

modes can be neglected.

As far as the flexible parts of the displacements are concerned, they are

expanded in the following forms:

N1 N2 N3
udz,t) = N [w,(2) SOl us(zt) = 3 [vi(2) $n (0] ug(z, ) = N [u,(2) ¢ (0D)] (3.4-6)
m=1 m=1 m=1

where N1, N2 and N3 are appropriately chosen integers, depending on the accu-
racy needed for each case. In the present work, the functions w,, v,, and u,, are
chosen based upon both experimental and theoretical observations and results pro-
vided by previous investigations on the subject [20,26,29,37]. What remains to be

determined is the corresponding time functions ¢,,, ¢, and ¢,,.

Summarizing, the displacements of the cylindrical shell are chosen so that the
initial continuous system is represented by an appropriate finite (N1+N2+N3)
degree-of-freedom system. When w,, ¢, # v,, &,,, the corresponding mode contains

circumferential straining.

3.5.2. Displacement Form for the Roof. For the purposes of this investigation
it is easy to include into the formulation the effects of a rigid roof. Based upon the
displacements of the cylindrical shell, the corresponding displacements for the roof

are immediately obtained:
u,rf.zt) = [xg(t) + hy o p (1) + 26(1) + ué(L,t)] cos#

uy(r8,z,t) = —[x,(t) + hyé (1) + (1) + ug(L,)] sind

u,(r0.t) = Ro,(t) + é (- RA(1) + us(L,1)] cosh .

When the assumption of rigidity of the roof is not sufficiently accurate, the roof

must also be modeled as a flexible component.
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3.5.3. Displacement Form for the Bottom Plate. When the tank is not allowed
to lift off its foundation the formulation of the bottom plate behavior is trivial. But,
if uplifting effects are of concern, the formulation becomes much harder. This is so

because of two fundamental reasons.

First, even for small amounts of uplift, one has to deal with a contact problem.
To apply the correct boundary conditions one must first determine the amount of
uplift, which changes in a nonlinear fashion with the applied loads. On the other
hand, for relatively large amounts of uplift the deformations of the bottom plate
become so large that its behavior cannot be adequately modeled by linear bending
theory. The plate carries the external transverse loading partly by bending but
mostly by in-plane membrane stresses [31]. This behavior is then analytically

described by a coupled system of nonlinear partial differential equations.

To avoid the difficulties associated with the exact formulation of such a complex
behavior, an approximate approach will be followed. According to this approach,
the effects of the part of the bottom plate displacements which is due to uplift are
modeled by placing a nonlinear rotational spring between the cylindrical shell and
the foundation. Details on how this spring is chosen and how it fits within the for-
mulation are given in subsection 3.6.4. Then, if the trial functions for the cylindri-

cal shell are chosen so that:
w,(0) = v,,(0) = u,,(0) =0 , m=12,---

and the extra subscript u denotes the part of the displacements due to uplift, the

total bottom plate displacements are given by:
u,(r.0,t) = [x,() + hy ¢ (0] costl + u,(r..t) (3.7)
uy(rf,t) = — [x;(t) + hpd (1)) sind + uy,(r,0,t) (3.8)

u,(r0,t) = — roé p(t) costl + u,,(r.6,1) (3.9)
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3.5.4. Ground/Structure Interaction. It is well-known that the dynamic
response of a structure supported on flexible ground can be significantly different‘
from the response of the same structure supported on a rigid ground. However, the
formulation of the general ground/structure interaction problem is still associated
with considerable difficulties and uncertainties. Analytical solutions are available
for some simple cases, in most of which a rigid circular or rectangular footing is
considered to rest on a homogeneous, isotropic, linearly elastic, semi-infinite body
which undergoes small strains [61-63]. Based on results of such solutions, the
ground/structure interaction modes can be represented by discrete systems whose
parameters, relating corresponding generalized forces and displacements, are func-
tions of the frequency of excitation. Since this frequency dependence complicates
the analysis, some studies examined the possibilities of approximating these func-
tions by constant values within the frequency range of interest [e.g., 64]. This
further approximation often may be justified since in real situations the shape of
the foundation, the depth and conditions of embedment, the variations of the
ground properties, the large strain ground behavior under strong earthquakes and
other important parameters may depart significantly from the theoretical assump-

tions.

In the present study, the ground/structure interaction is modeled by placing two
springs at the point G of the foundation. One of them is infinitely rigid and avoids
any sliding of the foundation with respect to the ground along the x-axis. The
other one is a rotational spring, allowing for rocking of the foundation and the
whole structure by an angle 6 ,(t) about the y-axis. It is believed that in this way,
the important aspects of the ground/structure interaction are clearly modeled

within the framework of this approach.
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3.6. Equations of Motion for an Unanchored Fluid-Filled Tank.
After modeling the behavior of each component, the equations describing the
dynamic behavior of the overall system can be derived by using Hamilton’s Princi-

ple in the following form:
OT + OW = oU (3.10)

where T is the kinetic energy, W is the work done by the "external” forces, and U is
the strain energy of the system. Introducing displacements in the above, one can

write:

0T = — [pududV , oW = oW, + oW, , W, = [boudV , oW, = [ réudsS .

Here, S represents the surface of the structure and V the corresponding enclosed
volume. The 6W, term represents the virtual work due to the body forces, b. This
term is left out of the formulation since its contribution is usually negligible com-
pared to that of the 6W, term, which represents the virtual work done by the exter-
nal surface tractions t on the surface S. In the present case, these tractions result
from the pressure exerted on the wetted surface of the structure by the contained
liquid. Here, the radial displacement of the cylinder is of the form given by equa-
tion (3.1) while the vertical displacement of the bottom plate is expressed by equa-
tion (3.9). Therefore, the associated hydrodynamic pressure can be written as
N1
Py =P, +Pr+P,+ > P, .
m=1

The component P, is given by equation (2.17) - but with a time function
[x,(1)+h, 0 ((1)] instead of simply x,(t) - and represents the hydrodynamic pressure
due to rigid body translation of the tank along the x-axis. Py is the pressure result-
ing from the rigid body rotation ¢ ((t) about the y-axis, due to the ground flexibility.
It is given by (2.19) but with ¢ ((t) instead of &(t) and with f,, f., replaced by f,
and ff. The latter functions are obtained by setting c=1 in the expressions for f,
and f,,, respectively. The term P, results from the uplifting motion of the struc-
ture and is determined as explained in the next subsection, while the last term

represents the pressure due to the tank flexibility. The components P,, of the sum
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are found from equation (2.14) for each flexible radial mode of the shell.

Next, due to the length of the resulting expressions, each term of (3.10) is exam-

ined and developed separately.

3.6.1. Virtual Work. Here, the virtual work done on the surface of the struc-

ture is
oW = oW, + oW,
where
H 21
oW, = [ [ P(Rf.z,t) ou,(f.z,t) Rd0 dz
o o

is the virtual work done on the wetted cylindrical part of the tank and
R 27

W, = — [ [ P(r.0,0,0) du,(r.0,0) rdt dr

l O

is the virtual work done on the wetted surface of the bottom plate.

At this point some difficulties arise, since the uplifting part u,, of the bottom
plate's vertical displacement is unknown. This has two important consequences.
First, the virtual displacement éu,, - which is part of the virtual displacement result-
ing in oW, - is undetermined. Also, the pressure component P, associated with the
uplifting motion of the tank is unknown. In order to overcome these difficulties, it
is first observed that in the above calculation for ¢W,, only the cosf component of
the total pressure P will survive the required f-integration and will eventually con-
tribute to OW., since the virtual displacement appearing in the corresponding
integrand is proportional to cosf. This implies that only the cos# component of P,
and therefore of u,, is of importance in determining ¢W.. A reasonable and con-

venient choice for this component of u,, is
u(r0t) = - cro,(t) cost

where c is a constant. Clearly, c=1 means that the bottom plate participates com-

pletely in the rocking motion of the structure due to uplift, while ¢=0 means that
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the bottom plate remains flat and only the shell undergoes the rocking motion due
to uplift. What happens in reality js something in between these two extreme cases.
Using the above assumption for the displacement u,,, the hydrodynamic pressure
due to uplift can be decomposed as

Puzﬁu'*‘APu ’

where P, represents the cosf component and AP, contains the rest of P,. The P,
component is found from (2.19) but changing the notation from (1), fa(r.2),
fas(r.z) to &,(t), f,(r.z) and f,.(r,z), respectively. These then allow the computa-
tion of oW, as follows:

H
OW, = — 7pR? [ 1 f(R.2) [x,(1) + hyd s (D) + fr(R2) RO () + fu(R.Z) RO,(1) +

+ S UFa(R2) T (0] + SUF(R2) ALON(Z+h)06 ((8) + 206,(0) + dug(z.0)] dz .
s=]

m=|
Next, using (3.9), the virtual work oW, done at the bottom plate area S, is further

decompaosed in two parts, as

with

oW, = f P(r,0,0,t) [—roo ((t) cost] dS and oW, = f P(r,0,0,t) Su,,(r.0,t) dS ,
s,

Sy u
where S, is the uplifted area of the bottom plate. For the calculation of the virtual
work oW, due to the rocking of the bottom by ¢ ((t), only the cosf/ component of P -
and therefore of P, - is needed again. Using the previously assumed form for the
cosfl component of u,,, it is then found that:

R
OWi = — 7p [ 1 FAr0) [Ka(O) + hgd o0 + F(r.0) RO (1) + fu(r.0) ROL(D) +

o N n(r.0) (0] + SSUTr0) A(O1) 72 dr (R06)
m=I s=I

In the above expressions, the sloshing components of all the structural modes have

been combined together in the form
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Py (r,0,z,t) = —p;Rcosl i[fs(r,z) A (),

s=1
with
t

A1) = ws [ n5(7) sinw(t—7) dr

o

N1
(1) = xg(t) + (hg/R+Cfs)R¢ f(t) + CusR&, (1) + 2 [Cmsll"m CH) e

m=1l
where ¢,; = ¢4, and cy, is obtained by setting ¢ = 1 in the expression for c4. Also,

from equation (3.4) it easily follows that:

N1
(5“,?(2,[) = 2 [Wm(z) bd'm(t)] .

m=1
The virtual work W, done on the bottom plate due to uplift, can not be determined
directly here, since the displacement u,, which is required for this calculation, is
unknown. This part of the virtual work is treated approximately as explained in

section 3.6.4. Combining the components of the virtual work

oW, = oW, + 6W; + OW, (3.11)

3.6.2. Kinetic Energy of the System. Substituting the displacements of the
cylindrical shell from equations (3.1-3.3), the virtual kinetic energy of the shell is

found to be:

L
6T, = — R [ pst; [(xy + hydf + 2d + up)(hyod ¢ + 266 + 6uf) +
(]

+ (X, + hybs + 26 + uf)(hyod ¢ + 266 + buf) +

+ (=R + ug)(~Rdb + 6ud)) dz — m(RS,)(R6S,) .
The kinetic energy of the foundation is expressed by:

: 1 . . .
Tp= o mp(e+ hpop v 1,8
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Therefore,
. o hy y [y . s
0Tp=—=me(xy + hpdy) = (Rooy) — ~R—2 (RAf) (ROGy) .

Similarly, for the kinetic energy of the bottom plate, ignoring that of the uplifted

part, it is found that:
o .I. hb Ib ./.
bTb = — mb(Xg + hb()l') —Rq (R (\(bf) — —R—2 (R()f) (Rh(ﬁl) .

Finally, the kinetic energy of the roof is represented by:

T, = %mr{[kg + hgdp + Ho o+ us(LOP + (R + %1,,55,? :
where
u,(0,L,t) — u,(mL,t) 1
= = — — (l 4
Oy R R[ Rd + ug(L,0)] .
Therefore,
8T, = — mdx, + hyd, + H.é + ud(L0) [hyod s + Hood + sug(L,t) +

1,
(RO (ROG,) — —= [ RS + Ll (L, 0)] [=R0O + ous(L,t)] .

Since the kinetic energy of the system equals to the sum of the kinetic energy of its

components:

0T = 8T, + 0T + 0Ty + 0T, (3.12)

3.6.3. Strain Energy of the System. In this case, the total strain energy U of the
system consists of three parts: the strain energy U, of the shell, the strain energy
U, of the bottom plate due to uplift, and the energy Uy developed from the interac-

tion between the foundation and the ground.

The strain energy for the cylindrical shell is obtained in Appendix C. Employing

equations (3.1-3.3), it is then found that:

TREt, ) 5t — uf) + 2 oug v sug
* _ug) duf — u
200-17) 4 ro Tz Yoz

U, =

C

) +
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20, o ey o (HE 21 dug .
+ = (uf — ug) & + — M(uf — uj) +
R (uj " 0z ) R oz r i)
us aug us aug
+ (1—v + — o(—= + dz +
( ) R 0z ) o R 0z )

FREt3 L [o2ue  o2ue

)+ %(uf —ug) ug - ug) +

12(1—=2) 5 | 02?2 0z2
5927,€ 32),;e
L e 0 ocuy v r e e
+ > (“H - “1') b( (‘)22 ) + RZ f)zz O(uﬁ - ur) +

) oug oug  oug oug
2(1 7l,) » ¥ - = 2 ) (3( ¥ - [ ) dZ
R? 0z 0z 0z 0z

As expected, the rigid body terms have completely disappeared from the strain
energy of the shell. According to the way the ground/structure interaction formula-
tion was modeled in section 3.5.4, if M is the moment exerted between the founda-

tion and the ground, then
(5Uf = Mf b(ﬁf .

Lack of knowledge of the total displacements prevents the explicit calculation of
the virtual strain energy of the bottom plate. This energy is approximately formu-

lated and included in the following subsection. Obviously,

oU = 8U, + oU; + dU, (3.13)

3.6.4. Uplift Formulation and Static Tilt Tests. As becomes clear through the
procedure of applying Hamilton’s Principle, some terms in the energy expressions
can not be formulated directly. This is a consequence of the fact that the uplifting
part of the displacements of the bottom plate is unknown. Those energy terms
which have not been formulated yet include the virtual work oW, done on the bot-
tom plate area due to the uplifting motion, the virtual kinetic energy of the uplifted
bottom plate and the virtual strain energy 6U, of the bottom plate. Although the
kinetic energy of the uplifted part of the bottom plate seems to be negligible and
can be ignored for the present case, the other two terms are thought to be impor-

tant and are modeled approximately as explained below.
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Using relations (3.10)-(3.13) and dropping the oW, term, Hamilton’s Principle can

be expressed for the general dynamic case in the following form
OT + (OW, + OWp + oW,) = (0U. + 0Uy + 0U,) -
However, this expression cannot generate the system equations yet, since the terms

oW, and oU, are unknown. Collecting these two terms together and defining the vir-

tual quantity 0V, by
oV, = oU, — oW, (3.14)
the extended form of Hamilton’s Principle can be rewritten as
oV, =0T + (W, — oU.) + (0Wy — dUy) (3.15)

Direct analytical calculation for the 6V, term in the above equation requires the
solution of the contact problem at the base of the tank for any time instance. In
that calculation, nonlinear strain-displacement relations should be used for the
behavior of the bottom plate. These difficulties can be overcome here following
approximate approaches. Namely, critical examination of experimental results
[29,35,37] suggests that the uplifting behavior at the base of the tank may be
described by placing an appropriate rotational spring between the bottom plate and
the foundation. The characteristics of that nonlinear spring can actually be derived
once and for all from static considerations, for example from static tilt tests, as

explained below.

Since these tests are static, 6T is absent for the case of the tilt tests. By assum-
ing a rigid foundation, the oW, and oU, terms also disappear. Then, carrying the
bar symbol as a distinction between the quantities corresponding to the static tilt

tests and similar quantities for the dynamic case, equation (3.15) takes the form:
oV, = oW, — oU, .
From previously performed static tilt tests [35], it is found that the flexible com-

ponents of the shell displacements are negligible compared to the corresponding

rocking component due to uplift. If this is the case, then
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oW, = [ Pu(RM.2) (2068, cost) dS

‘SC
where P, is the hydrostatic pressure exerted on the wetted cylindrical part, of sur-

face S., of the tilted tank. If one defines the overturning moment with respect to

the center of the bottom plate by

= P (R.0.z) z cosl dS
5,

and if oU, is left out, then it follows that

V, = M. 6, (3.16)
Finally, by assuming that
oV, = 8V, (3.17)
and using (3.16), the equation (3.15) can be rewritten as
M 06, = 0T + (W, — oU,) + (¢W; — dU/) (3.18)

The equations (3.16) and (3.17) require that for the static tilt tests the shell flexibil-
ity effects should be negligible and that the pressure distribution and the deforma-
tion at the bottom plate should be close to those developed during the dynamic
base excitation. The available information suggests that these assumptions are
sufficiently accurate at least for tall tanks but there are no experimental results to
support the above assumptions for broad tanks. Therefore, the validity of these
assumptions should also be checked for the case of broad tanks and proper

modifications must be imposed, if needed.

Knowledge of the relation between the moment M. and the system parameters -
especially the angle ¢, - allows one to proceed from (3.18) to generate the equa-
tions of motion of the system in matrix form. The required relation between the
moment M. and the uplifting angle ¢, can be obtained from static tilt tests or

estimated analytically [31,32,41].
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3.7. Governing Equations for the Coupled System.
Using the expressions developed in section 3.6 for the various terms of (3.10),

the equations governing the behavior of the overall system can be set in the form:
My + Ky+ k() +p(t) = - x,(0) [ (3.19)
where the vector y contains the unknown time functions in the following order:
MO =10, v - dnn € s T o Réf'- Rd“(t)]r .

The above equations are first found in scalar form. The i scalar equation is
obtained by assuming all the components of y to have zero variation, except for the
ith component. Following common nomenclature, M is termed the mass matrix, K is
the stiffness matrix and f multiplied by —zzg(t) is the corresponding forcing vector.
The vector k(y) has all of its components zero, except for the last two which depend
on the rotational degrees-of-freedom. Finally, the vector p(t) contains the sloshing
terms, which are identified as those terms of the equations involving the spectral

accelerations A,(t) for time functions.

Following the classical notation used for the elements of matrices and vectors,
the first subscript of each element indicates the row while the second subscript -
when present - indicates the column in which the element belongs. The elements of

the various matrices and vectors appearing in (3.19) are presented in Appendix D.

3.8. Sloshing Formulation.

As a consequence of the approach used, all the sloshing terms are isolated and
included in the vector p(t), as noted in the previous section. Since these terms con-
tribute only to the hydrodynamic pressures and the variations in Hamilton’s Princi-
ple apply only to the displacements, the sloshing formulation is not as straightfor-
ward as it is for the components of ). In order to incorporate the sloshing effects,
the definition of the spectral acceleration is used. For example, if the s" sloshing
mode is to be included in the analysis, an extra degree-of-freedom y, should be

introduced together with the additional equation:
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’/c + y; + '»‘«‘52 y. =0,
where the time function .(t) is defined in section 3.6.1. Then, since for
¥,(0)=0=y,(0) the associated spectral acceleration can be expressed by:

Ayt = 1,0 + yi(0)

the corresponding terms of p(t) are appropriately added into the mass matrix of the

system.

3.9. Choice of Damping Matrix.
After modeling the sloshing effects, an appropriate damping matrix D is chosen
as explained in Appendix E and the behavior of the system is finally found to be

governed by the following matrix equation:
MX+Dx+Kx+kx)=-x,(0 f (3.20)
where
x=[0 xal”

and the vector x,, contains the included sloshing degrees-of-freedom. The matrices
M, K and the vectors k and f contain the same elements as the corresponding ones

in (3.19) plus the added components due to sloshing.

In the case of a nonlinear system, a damping matrix is chosen according to the
analysis presented in Appendix E, after appropriate linearization of the vector k in

equation (3.20).
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Chapter 4
RESULTS FOR ANCHORED TANKS

4.1. Introduction.

The subject of this chapter is the investigation of the dynamic response and
buckling of anchored tanks. Special consideration is given to the ground/structure
interaction problem, which has not yet received much attention. For the response
problem, the analysis developed in the previous chapter is used; it is only necessary
to exclude the uplifting degree-of-freedom (6,=0). In all the cases examined it is

assumed that
. VA
Wp(2) = Vp(2) = U,(2) = sm[(2m—l)2—L] (4.1)
which is suggested by previous investigations [20,26].

As a first step, the free vibration analysis is performed for two tanks (one broad
and one tall), for which\there are results provided by previous studies. Of special
interest is the chosen form of the shell displacements, as given by (4.1). Secondly,
the sloshing effects are considered and the coupling between the various sloshing
modes and the structural modes is examined. Next, the effects of a rigid roof and
the ground/structure interaction are studied. More results are presented in the
sixth section, where buckling phenomena observed at the top of fluid-filled tanks
are explained. This explanation uses analytical results applied to a previously
tested model tank. The exact modeling of this specific tank required a nonlinear
ground/structure interaction formulation. The nonlinear formulation led to some
interesting new results, as far as the long-time response of the system is concerned.

These results are presented in the last section of this chapter.
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4.2. Free Vibration of Anchored Tanks.

For linear analyses, knowledge of the frequencies and modes of a structure
allows the complete determination of its response to any excitation. For this rea-
son, calculation of frequencies represents a reasonable first step in investigating

the dynamic characteristics of a structure.

In many cases, a continuous structure is discretized into a finite degree-of-
freedom system, for which only the lowest frequencies are predicted correctly.
Depending on the frequency content and the spatial distribution of the excitation
one then has to choose the required number of modes to be considered for any
case of interest. For a liquid storage tank designed to withstand earthquake loads,
usually only the first few modes contribute significantly to the overall tank

response and therefore the highest modes are not of concern.

In this section, the lowest three frequencies are obtained for two tanks examined
previously by other investigators [11,14-16,24]. Both tanks are assumed to be
anchored on rigid ground. These tanks are made of steel, with Elasticity modulus
E= 3x107 Ib/in?, Poisson ratio = 0.3, density p,= 0.733x103 Ibsec?/in* and thick-
ness t,= 1 in. The first one has radius R= 60 ft and length L= 40 ft (broad), while
the second one is a tall tank with R= 24 ft and L= 72 ft. In all cases, water is the

contained liquid.

First, a check on the accuracy of the assumed spatial form of the shell modes is
performed. From computer experiments it is found that the best accuracy for each
case is obtained by choosing N1=N2=N3=N. Results for the dependence of the first
three frequencies on N are shown in Table 4.1 for the broad tank full of water. It is
observed that a good estimate for «, is obtained even for N=1 and that the conver-
gence of the other two frequencies is rapid as N is increased. In the last row of that
table, the corresponding results of reference [24] are presented. Those results were
obtained using 48 degrees-of-freedom and compare well with the results of the

present analysis, using 15 degrees-of-freedom.
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Table 4.1 Frequency Convergence for the Full Broad Tank

[Hz]
N ] «?2 «3
1 740 80.78 114.19
2 6.35 13.43 79.83
3 6.29 1145 17.39
4 6.20 11.39 15.17
5 6.18 11.22 15.16

Ref.[24] 6.18 11.28 15.10

In Table 4.2, a comparison is made between the results of the present analysis
(N=5) and those of reference [24] again, for different H/L values and for the broad
tank. Table 4.3 shows similar results, but for the tall tank. Clearly, good agreement
is obtained in all the cases examined. It is noted that favorable comparison
between the results of other investigations [11,14-16] is also reported in [24]. All
these comparisons verify the validity and effectiveness of the method presented
here. In addition, these comparisons indicate that the assumed spatial modes of the
shell (modes of a shear beam of same length L, as the tank) are probably very close
to the exact ones, at least for the case of anchored tanks. Finally, the data of Tables
4.2 and 4.3 also demonstrate another standard characteristic of anchored fluid-filled
tanks. That is, the higher the level of the liquid the lower the system frequencies.

This may not be necessarily true for the case of unanchored tanks.

4.3. Sloshing/Structural and Sloshing/Sloshing Coupling.
The sloshing formulation is discussed in section 3.8. The s sloshing frequency

of any single structural mode can be computed from the formula

2 _ 9k H
<5 =g tanh(k; R) (4.2)

which is derived in section 2.3. When more than one tank mode is present some

coupling occurs, which changes the sloshing frequencies.
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Table 4.2 Frequency Comparison for the Broad Tank
W [HZ] wh [HZ] «w'3 [HZ]
H/L  Present  Refer. Present Refer. Present Refer.

Analysis [24] Analysis [24] Analysis [24]

1.0 6.18 6.18 11.22 11.28 15.16 15.10
0.8 7.19 7.24 12.93 12.96 16.93 17.07
0.6 8.74 8.79 15.16 15.37 23.19 20.05

Next, the coupling between the sloshing modes themselves as well as between
the sloshing and the structural modes is investigated. Numerical results are
presented in Table 4.4 for the case of the tall tank examined in the previous sec-
tion, but with shell thickness t,=0.43 in. and H= 72 ft (for sloshing to occur
assume here that L>H). Then, comparison with similar results presented in {24} can

again be made.

The first four modes, listed in the first column of Table 4.4, represent sloshing
modes, while the last two modes correspond to the two lowest structural modes. In
the second column the values of the first four sloshing frequencies, obtained from
(4.2), are shown. The next two columns contain the two lowest structural frequen-
cies of the system according to results from the present analysis with N=3 and
similar results from reference [24], with 48 degrees-of-freedom. The last two
columns present the frequencies of the coupled system as obtained by applying the

present analysis and as presented in {24}, respectively.

First, comparing the results of the present analysis and those of [24] good agree-
ment is again observed. Also, at least for this case (tall tank, anchored on rigid
ground) the coupling between the sloshing and the structural frequencies seems to
be negligible. This is expected because of the large difference between the sloshing
and structural frequencies and is in support of those analyses which consider
separately the structural and sloshing responses in similar cases. Qualitatively

similar results are also obtained for the forced vibrations of a tall tank but
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Table 4.3 Frequency Comparison for the Tall Tank
«w'y [HZ] ) [HZ] w3 [HZ]
H/L Present Refer. Present Refer. Present Refer.

Analysis [24] Analysis [24] Analysis [24]

1.0 5.39 5.31 15.69 15.64 23.50 23.24
0.8 7.12 7.05 18.85 18.76 27.08 26.99
0.6 9.72 9.64 22.46 22.45 31.45 30.57

anchored on a flexible foundation, examined in section 4.6.

Some numerical difficulties arise when the sloshing modes are included. Accord-
ing to the formulation presented in section 3.8 these modes introduce nonsym-
metries in the mass matrix. Also, a problem arises from the fact that the frequen-
cies of the sloshing modes are very small compared to the frequencies of the struc-
tural modes. Because the more structural degrees-of-freedom included, the higher
the highest eigenvalues, the code used in the present work for the extraction of the
eigenvalues presented problems after inclusion of a critical number of structural

modes.

4.4. Roof Effects.

The analytical formulation of the effects of a rigid roof at the top of the shell is
presented in section 3.5.2. Here, some numerical results are obtained for the case
of the lal model tank whose dimensions and material properties are given in Table
4.5. In all the examples N=3 is chosen and the first three frequencies of the system,
including water up to a height H= 0.8 L, are shown in Table 4.6 for various values of

the roof mass m, and the roof centroidal moment of inertia /,.

The obtained results indicate that the larger the roof the lower the frequencies

of the system, as expected.
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Table 4.4  Sloshing Effects on System Frequencies [Hz]
Mode Eqn. (4.2) No Sloshing Coupled System

Present Reference Present Reference

Analysis [24] Analysis [24]
1 0.2501 - - 0.2540 0.2497
2 0.4256 - - 0.4189 0.4254
3 0.5385 - - 0.5436 0.5384
4 0.6306 - - 0.6289 0.6307
5 3.654 3.559 3.658 3.557
6 10.580 10.450 10.582 10.433

4.5. Linear Ground/Structure Interaction.

Generally, the response of a structure supported rigidly can be quite different
from the response of the same structure when mounted on flexible ground. To
examine when the ground flexibility is important for fluid-filled tanks, a parametric
study is carried out for a specific tank. The tank data are found in Table 4.5 for the
lal model. In this study the rotational spring which is used in formulating the
ground/structure interaction problem - as explained in section 3.5.4. - is assumed to

have a linear moment versus rotation relationship of the form

First, by choosing N1=2 and N2=N3=1 the frequencies .; of the system are
found for the case where the tank is anchored on a rigid ground (¢ ;=0). Then, the
rotational degree-of-freedom ¢ is introduced into the formulation and the new fre-
quencies «’; of the system are found for various values of the stiffness k;. The
results from this study are shown in Figure 4.1, in which the vertical axis represents

the frequencies ../, for a range of values of the parameter
which appear on the horizontal axis. In all the calculations the value of the cen-

troidal moment of inertia of the foundation is kept constant (/,= 0.037 Kgm?). A

small number of degrees-of-freedom was chosen here to avoid lengthy
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Table 4.5 Dimensions and Material Properties of Model Tests [Ref. 28, 29]

Elasticity Modulus, E 5.07 x 10° N/m?
Poisson’s Ratio, v 0.3
Shell Radius, R 6.35 cm
Shell Length, L 26.67 cm
Thickness of Shell Wall | 0.0051 cm

t 1 0.0076 cm
Thickness of Bottom Plate a 0.0051 cm

ty b 0.0076 cm
Density, p, 1390 Kg/m?3
Roof Mass, m, 0.0085 kg
Roof Moment of Inertia, /, 8.6 x 107 kg/m?

Foundation Moment of Inertia, [;  0.037 kg m?
Distance between Foundation

Centroid and Tank Bottom, hg 0.013 m

The classification of tank models:
Tank # lal means: t; = 0.0051 cm; t, = 0.0051 cm; Ring #1

0.0076 cm; Ring #2

Tank # 1Ib2 means: t; = 0.0076 cm; t,

computations. As a result, only the first frequency is expected to be calculated
correctly and therefore the frequencies of the higher modes are studied in a quali-

tative sense only.

Figure 4.1.b shows details near the point A of Figure 4.l.a. Considering the
behavior of .'; as ;f varies, it is observed that for i>1 and for ;f< wi_p, it is
«i ~wi— » while for ;f > wj, «; ~w; . Forintermediate values of ;f, the frequency
.'; changes rapidly between the two limiting values «;_, and «;. The distribution of
‘i and .';,, when Sf ~ «; is similar to that obtained for a two degree-of-freedom
system in which the oscillators have a large difference in their "masses.” Finally, for
the lowest mode (i=1) the frequency increases from 0 and tends to ., as S,

becomes greater than ..
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Table 4.6 Roof Effect on System Frequencies [Hz]

m, [Kg] 0 85x10-3 0085 0425
I, [Kgm?) 0 10-° 10-4 103
" 42.1 41.8 395 314
w> 127.8 127.1 117.7 87.8
w3 346.3 2959 178.5 146.5

By looking at the variation of the rocking component of the eigenvectors as ;f
varies, the following points are observed. For the first mode when Jf ~ 0, the rock-
ing component dominates but decreases as ::',» increases. For the i mode (i>1), the
rocking component increases very slightly as :'f is increased from O to «;_,. Then it
increases rapidly in the transition region of ./, up until ;f ~ w; ; for larger values
of ff it again starts decreasing. So, every mode attains a maximum rocking com-
ponent in the transition region of the corresponding frequency. This rocking com-
ponent decreases progressively as i increases and becomes negligible - for large i -

compared to the other elements of the eigenvectors.

Since the first two modes are the most important in determining the response of
the structure, clearly if .«:'f < > the ground flexibility is going to affect the response
of the system considerably. The effects are substantially greater in the case where
J,- < wy. In many cases of practical importance, the frequency range of excitation is

also less than w,.

4.6. Buckling at the Top of a Tank.

The purpose of this section is to provide an explanation for the cause of the
earthquake induced damage observed at the top of liquid storage tanks which has a
pattern similar to that shown in Figure 4.2. Damage of this type has been thought
to be caused by fluid sloshing. Applying the analytical procedures developed in
chapter 3 shows that this type of damage is due to a net external pressure, which

causes local buckling at the top of the tank.
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Under static conditions, the stresses in the tank wall are dominated by the hoop
stress caused by the hydrostatic pressure. During ground motion, combination of
the constant hydrostatic pressure and the hydrodynamic pressure can produce a
negative resultant pressure over part of the tank area near the free surface of the
fluid. This can then result in local buckling of the tank under sufficiently large

ground acceleration.

Next, analytical results are obtained for a case where such damage was observed
during experiments. For that case the required data are available and therefore
comparison can be made between the analytical and the experimental values. Using
these results, the mechanism which causes buckling at the top of a liquid storage

tank during ground excitation is explained.

4.6.1. Test Data. The tank tested was made of Mylar A sheet, with material
properties and dimensions as appear in Table 4.5 for the lal model, and contained
water up to a height H= 0.8 L. The tank was anchored on the table of a 30 Ib shaker
which was supposed to produce a single directional, horizontal, harmonic excitation

at the base of the tank, with acceleration of the form
)}'g(t) =a, sinwt .

For the chosen test case, the acceleration amplitude at buckling was measured to be
0.38-0.40 g, while the forcing frequency was « = 20 Hz. It must be pointed out here
that if the prototype tank is fabricated from steel - which is the most common case
- the geometry and the pressure of the prototype tank should be scaled by a factor
of 41, the excitation level for the model and the prototype should be the same,
while the periods of time should be scaled by 6.4. More details of the experimental
set-up and results can be found in [28,29]. During the test, buckling occurred at the
top - as well as at the bottom - of the tank. The observed pattern at the top of the
tank consisted of one half wave in the axial direction and a short wavelength in the
circumferential direction, as shown in Figure 4.2. This pattern suggested that the

buckling was caused by external pressure at the tank wall. This hypothesis is
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verified below, using the previously developed analysis.

4.6.2. Explanation of Buckling Mechanism. Since the tank top was open to the
atmosphere, the pressure difference between the external and the wetted cylindrical

surface of the tank wall can be written as
Pex = pig(H-2) + P4(R.0,z,1) (4.3)

If a linear analysis is performed and only the impulsive fluid effects are included,

then the hydrodynamic pressure at the tank wall can be generally expressed as
PiR0,z.t) = — a, F(z) sin.t cosf (4.4)

where

h, _ _ N1 _
F(z) = pR ! f(R,Z)(1 + 7" Ros) + f(RZ) Ros + D [fm(R.Z) &t .

m=1
The barred quantities are components of the vector x, which is determined from the

solution of (3.20) and is defined by
x(1) = (@gsinet) X .

From equation (3.20), the m™ component of ~;is found to be as follows

= Ny M=) (X)) m
Xm = L

ol e x) (w02 =1

The total number of degrees-of-freedom of the problem is N and the notation (.,.)
represents the ordinary Euclidean inner product in an N-dimensional vector space.
The eigenvectors of the matrix M~'K and of its transpose, corresponding to the
same eigenvalue .7, are denoted by x; and y;, respectively. Obviously then, F is a
function of z and is known for a given system and forcing frequency w«. Looking
back at (4.3), it is observed that the first (hydrostatic) term of that equation
depends on z only, while the amplitude of P, depends linearly on the amplitude a,
of the ground acceleration. Therefore, it is seen that increasing a, can cause the
hydrodynamic pressure to overcome the hydrostatic pressure locally. This means

that the external pressure Pry, can become negative on parts of the wetted tank wall



- 59 -

close to the liquid free surface, where the hydrostatic pressure is relatively small.
Since such a pressure creates local compressive hoop stresses, it can then be
expected that sufficiently large amplitudes of the ground acceleration will result in

local buckling at those places of the tank.

4.6.3. Comparison of Analytical and Experimental Results. Initially, the
analysis predicted the lowest structural frequency of the system to be 41.9 Hz,
which is higher than the corresponding experimental value. This suggested the
importance of the flexibility of the shaking table on the response of the system. To
consider this effect, an equivalent, constant, rotational stiffness k; is chosen for the
conditions of the test, as follows. First, a value is assumed for k; and a linear
analysis is performed, yielding the lowest structural response frequency ., for the
corresponding system. Then, this value .., is compared to the corresponding fre-
quency from the experimental results, which was about 28 Hz [29]. Choosing
k= 3000 Nm, N=2 (so that the total number of included degrees-of-freedom of the
system is N=7), the lowest structural frequency of the system is computed to be
27.6 Hz. For comparison purposes it is added here that choosing values of 2500
and 3500 Nm for ky, produces values of 25.8 and 29 Hz for .|, respectively. From
these calculations, k; = 3000 Nm is chosen as the most reasonable equivalent
stiffness for the case under consideration. Clearly, the effect of the base flexibility
resulted in the reduction of «,, which is typical and expected in such cases. Some

more results on the subject are presented in section 4.7.

Next, in order to determine the critical amplitude a. of the ground acceleration
which can buckle the top of the tank, the BOSORS5 computer code was used [65].
This code can determine the bifurcation buckling load for shells of revolution
under arbitrary but axisymmetric loading. For the cases where this load is an exter-
nal pressure, the number of waves of the buckling pattern is unknown in the cir-
cumferential direction only. Therefore, for the determination of the bifurcation

load, an eigenvalue problem is set up in the form
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[K(n) + \,Ke(m)] g, =0 (4.5)

where K is the stiffness matrix for the shell, K; is the "load-geometric” matrix, )\, is

the eigenvalue and g,, the eigenvector corresponding to n circumferential waves.

For the present case, the critical acceleration amplitude a. is determined for
quasi-static buckling conditions. This means that the buckling time scale is
assumed to be much smaller than the response time scale of the system, which
implies that static buckling analysis is sufficient, although the loads on the structure
are time-dependent. The critical value a, is computed by iterations, as follows. A
value is chosen for a, and the external pressure Pgy is obtained from (4.3), at #=0°.
Then, this pressure, which is a function of z only, is applied as an axisymmetric
external pressure and an eigenvalue problem is set up in the form of (4.5). Since
the matrix K; is computed for external pressure Pry corresponding to the assumed
a,, the critical amplitude a, is identified as that value of a, which results in a
minimum eigenvalue of unit magnitude. In this case, following suggestions of the
code, Pgy is uniformly divided by one thousand, so that the calculations due to non-
linear geometrical effects are kept to a minimum. Then, the a. is chosen as that

value of a, which gives rise to a minimum eigenvalue with magnitude one thousand.

Results of such iterations are given in Figure 4.3. Using these results the critical
ground acceleration amplitude is found to be a. = 0.423 g, which compares favor-
ably with the experimental value. The eigenvalues corresponding to a, = 0.42 g for
different circumferential wave numbers n are shown in Table 4.7. Obviously, the
minimum eigenvalue corresponds to n=13 waves. This result justifies the fact that
axisymmetric loading was used for the buckling calculations, although the hydio-
dynamic part of Pry varies as cosf in the circumferential direction. Clearly, in this
case, the pressure can be considered as almost constant over the distance of one
circumferential wavelength, which is enough for local buckling to occur. The
corresponding normalized displacements of the computed buckling pattern are of
the form shown in Figure 4.4. Comparing with Figure 4.5, it is seen that the largest

amplitudes of the displacements occur near the free surface of the liquid, where Pg,
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Table 4.7 Buckling Load vs. Circumferential Wave Number (a, = 0.42 g)
n 12 13 14 15 16.
N 1058 1033 1035 1051 1078

is non-positive.
Another remark is associated with the choice of the appropriate boundary condi-

tions for the buckling calculations. Since the tank was anchored to its foundation,

the bottom end of the tank was assumed to be clamped, i.e.,

ou,

u, = =uy=u,=0, atz=0.

az
The top of the tested tank was fitted with a light-weight plastic plate in order to
simulate a roof and there was some uncertainty in choosing the corresponding
boundary conditions. The numbers in Table 4.7 are obtained for boundary condi-

tions

ou,
U =—=Ng;y=N,=0, atz=1L
Az

in the prebuckling state, while for the buckling analysis the ou,/9z=0 condition at
z=L is changed to M,=0. Changing the chosen boundary conditions at the top to

other reasonable sets, results in virtually no change in the numbers in Table 4.7.

Knowledge of the critical base acceleration amplitude allows for the direct calcu-
lation of the corresponding Pry and its components. Figure 4.5a represents the dis-
tribution of Pry at r=R and #=0°, versus z. For small z the hydrostatic pressure
dominates and results in a positive external pressure which is an almost linear
function of z. However, near the free surface, the hydrodynamic component
becomes dominant and creates negative external pressure, as expected. Between
the free surface and the top of the tank the pressure is zero, since there is no liquid
there. In Figure 4.5.b the impulsive components of the hydrodynamic pressure are
plotted in the same manner. It is seen that the parts due to rigid body translation
and rotation dominate the part which is due to the tank flexibility. The most dom-

inant component results from the rigid body translation, but obviously the other
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two components are not negligible at all in this case. The numerical results also
indicate that from the flexible modes of the tank only the first one (m=1) contri-

butes significantly to the hydrodynamic pressure.

To illustrate the effect of the liquid sloshing on the system, the first sloshing
mode is included in the formulation and the computed results are compared to
those obtained by neglecting the sloshing. In the first column of Table 4.8 the nor-
malized amplitudes of the acceleration for the rocking mode and the m=1 flexible
mode are given for the case where sloshing is not included in the computations. In
the second column the same amplitudes are given, computed for the same system
but including the first sloshing mode. Obviously, the effect of the sloshing on the
structural modes tends to reduce Pgy but it is negligible in the considered case. The
corresponding spectral acceleration of the sloshing mode - normralized by a,, again
- is also negligible. This is expected since the first sloshing frequency for the sys-
tem is 2.68 Hz, which lies far away from both the forcing and the structural fre-
quencies. In the third column of the Table 4.8, the same amplitudes are given after
introducing 5% critical damping for all the modes. No significant change is
observed since the forcing frequency is not close to any of the system frequencies.
Finally, the amplitudes are given in the last column for the same system but includ-
ing 25 (N=8), instead of 7, degreés-of—freedom. The numbers show that the
difference due to the extra degrees-of-freedom is not large, indicating that the
chosen spatial dependence of the structural modes is quite satisfactory for the

present case.

Table 4.8 Effect of Sloshing, Critical Damping and Total Number of Degrees-of-Freedom.
N=7,¢=0  N=7,¢=0 N=7,¢=0.05 N=25, ¢=
No Sloshing Sloshing No Sloshing No Sloshing
&y /a, 0.678 0.671 0.671 0.769
Ré/a, 0.204 0.202 0.201 0.214
A/a, - - 0.040
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4.7. Nonlinear Ground/Structure Interaction.

Use of linear analysis, when applicable, is convenient in clarifying and explaining
various aspects of a phenomenon. This was the case for the problem attacked in
the previous section. There, by modeling the tank/shaking table interaction using
an appropriately chosen linear spring and utilizing a linear formulation for the
fluid/structure interaction problem, it was eventually feasible to carry out a com-
pletely linear response analysis for the system. However, an attempt to measure
the rotational stiffness of the shaking table, resulted in a nonlinear moment versus
rotation relationship, as shown in Figure 4.6. This behavior is probably due to lack

of good contact between the bearings of the table and their supporting shafts.

To examine the accuracy of the results obtained from the linear analysis and also
to study possible qualitative changes in the response, the tank/table interaction
was modeled by using a trilinear spring, whose characteristics are obtained from
Figure 4.6 to be as follows:

Kibp. 16,0 <6,
M= koo s + (k\—k)besan(é ), 16,1 > o,

with k;= 0 Nm, k,= 9400 Nm, and é.= 10~ rad.

At first, the results from the nonlinear analysis were quite surprising. Namely,
since the excitation is a harmonic function of time, one might expect the system to
have a periodic steady-state response. Instead, a strange and complicated history
was obtained for all the components of the system. Since the system is nonlinear, a
direct time integration numerical scheme (backward differentiation of order 1 to 5)
was employed in obtaining its response. For this reason, as a first step the possibil-
ity of an improper choice of the damping matrix was examined. This matrix is
chosen according to section 3.9. Comparing the steady-state response of several
linear cases, identical results were obtained from both the modal analysis and the
direct time integration. Also, running the nonlinear case even for relatively large
time periods (more than 250 forcing periods) did not produce a periodic steady-

state response. These checks provided evidence that what was observed was not
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due to improper choice of the damping matrix.

The behavior of the system was not well understood at the beginning. Since it
was not clear if this kind of behavior was a result of a possible failure of the
numerical scheme, or if it was something inherent and characteristic of the dynam-
ics of the nonlinear system, it was decided to isolate and study more carefully the
nonlinear component of the system alone. Some interesting observations from this
study are presented in the next subsection. Then the results from the tank problem

follow.

4.7.1. Complicated Dynamics of a Simple Nonlinear Oscillator. In this subsec-
tion, some unusual results are discussed, obtained from the study of a single
degree-of-freedom oscillator whose behavior is described by the following equa-

tion:
X+ 2¢ o x+ k(x) = Asin.t .
The restoring force of this oscillator has the general form:

5
X, X < x,

k(x) = OIX 4+ (Wi—w)xesgn(x), x| > x, .

The nonlinearity of the restoring force takes the form of a piecewise linear function
of x. This means that the system behaves as a different, but always linear, oscillator
for Ixl < X, x > x,, and x < —x. and an analytical solution can be obtained for any
of these three intervals. However, the complete response history cannot be
obtained in closed form since the determination of the instances of time at which
the displacement x takes the value x. or —x. requires the solution of a transcenden-
tal equation. Therefore, the response of the system is obtained according to the
following mixed analytical/numerical procedure. Any time the solution x crosses
the x. or —x. line in the x-t plane, the appropriate form of the oscillator equation is
first chosen, depending on which x-interval the solution enters. Then, the
corresponding values of x and x at the cross-point are used as initial conditions and

the complete time history (homogeneous plus particular solution) is utilized in
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closed form, just up until the next crossing of x and x. or —x. happens. The value
of t. - and therefore of x. - at each cross-point is iteratively obtained to a specified

numerical accuracy.

After checking the adequacy and accuracy of this numerical scheme in linear
cases (w;=w>), the nonlinear problem (.;;=.») was attacked. Several cases were
examined by varying such parameters as .}, .» ., A, ¢« and the initial conditions.

Some of the observed interesting points are discussed next.

For cases with ., ~ ., relatively small or relatively large forcing amplitudes A
and large ¢, a periodic steady-state was obtained, which could contain appropriate
subharmonics and/or ultraharmonics, as typically expected for nonlinear systems.
The most unusual behavior encountered for a system exhibiting a periodic steady-
state response was that obtained for a system with ., = 4 Hz, .» = 65 Hz, .. = 60
Hz, ¢ = 0.05, x,.= 0.9x10™> m, A= 5 m/s? and .. = 100 Hz. Experimenting numerically
with that system it was found that depending on the initial conditions, the steady-
state could have a symmetric or asymmetric form with a positive or negative offset.
Of course, the dependence of the steady-state on the initial conditions is typical for
nonlinear systems but the offset and the nonsymmetric response were not initially
expected for the system under study. Partial explanation for this behavior is pro-
vided by the corresponding phase-planes of the system. Figure 4.7 shows the his-
tory of the displacement x and the phase-plane for the time between 0.5 and 1 sec
for two cases with the only difference being in the initial displacement. In the first
case X,= —1.5x107> m; while in the second case x,= 3.5x107> m. In both cases
)'<(,= 0. For the same system a symmetric steady-state response was also obtained

for various other initial displacements x,.

The response was even more complicated for cases with large differences
between .-, and .». From the results of numerical experiments it was found that
keeping .» constant at a sufficiently high value and decreasing .-, produced the

same kind of strange behavior encountered previously in the solution of the
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nonlinear tank response problem. This behavior was obtained after decreasing .,
below a critical value - usually well above zero. Also, for a fixed .|, increasing «»
resulted in strange long-time behavior above a critical minimum value for ..
Results for a specific case with parameters as given in the previous paragraph but
with zero initial conditions, A= 1 m/s? and .= 20 Hz are presented next. For
~>= 65 Hz and for values of .., greater thén about 27 Hz a periodic steady-state was
obtained. But for .| < 26 Hz no periodic steady-state could be obtained for the
system, for the first 5 sec (100 forcing cycles.) On the other hand, for .,=4 Hz a
periodic steady-state was obtained for ., < 56 Hz. For higher ., the observed
response history - up to 100 forcing cycles, again - was non-periodic. It is worth
mentioning here that the character of the long-time solution kept changing gradu-
ally from harmonic to periodic and eventually to non-periodic, by increasing the
difference between ., and «». Also, the response history was found to depend
largely on the initial conditions. Slight perturbations in the initial conditions
resulted in very different forms of the solution. Another characteristic of the sys-
tem was the numerical difficulty in obtaining the correct solution for such cases.
The system considered in the general form satisfies all the theoretical requirements
(continuity and Lipschitz condition)‘for the existence of a unique solution. But dur-
ing the numerical experimentation some extra difficulties were experienced with
this specific system. Namely, by changing the accuracy required of the numerical
iterations in determining the crossing times, the form of the solution kept changing,
even after complete exhaustion of the double-precision computing capabilities (cal-
culations with 16 significant figures). The fact that the system was known to have a
unique solution led to further experiments utilizing quadruple computing precision
(33 significant figures). This numerical accuracy proved to be sufficient in finding a
solution - in the examined time range - which did not change form with further
increases in the required accuracy for the numerical calculations and iterations.
This solution is shown in Figure 4.8.a. A period of two seconds (40 forcing cycles)
was chosen, because it was thouhgt initially that this period of time would be long

enough for a periodic steady-state solution to form, if one existed.
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A complete analytical explanation for such complicated behavior does not seem
to be straightforward. Only some qualitative arguments are presented next. By
considering the stability of periodic solutions for the general system, the variation
equation is found to resemble a Hill-Meisner equation. For the Hill-Meisner equa-
tion it is known that increasing the parameter (wj{—u3)/.? increases the possibilities
for loss of stability of an existent periodic solution, which is consistent with the
observed phenomena during the numerical experimentation. Some characteristics
of the solution such as the non-periodic long-time response and the large sensi-
tivity to the initial conditions suggest that the system under consideration may
experience what is called "chaotic behavior' for some combinations of its parame-
ters. So far, such behavior has been observed experimentally and numerically for
other systems [67-70]. Specifically, the case of chaotic behavior of an oscillator
with a bilinear spring is examined in (66]. The results presented here are not exten-
sive; they are meant to be only a source of information and stimulation for future

studies on the subject.

Similar results were obtained by studying the one degree-of-freedom system
with the numerical code which performs the direct integration for the structural
system. Namely, in the cases with periodic steady-state solutions, identical results
were obtained with the numerical scheme using the analytical solution. Also, loss
of stability of a periodic solution was observed for about the same values of the
parameters of the system. Of course, the solutions with no steady-state had
different appearances in the two different methods because of the different implica-

tions of the imposed numerical accuracy for the two cases.

All these observations provide evidence that the observed strange behavior of
the nonlinear system is something inherent in the system itself. Looking at the
phase-plane of the system which exhibited non-periodic steady-state, as shown in
Figure 4.8.b for the time period between the 3rd and 4th seconds of the excitation,
one observes that although not periodic, the response is always of bounded ampli-

tude and that it loosely follows some ordered pattern. The displacement history
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corresponding to that period of time is shown in Figure 4.8.c. Similar behavior was
encountered for even longer periods of time. Figure 4.8.d shows the Fourier spec-
trum for the response between 6 and 10 sec. The nonperiodicity of the solution in
that time interval is indicated by the fact that the spectrum is distributed broadly
over wide frequency bands. Over long periods of time, the trajectories densely fill
the area of the phase-plane shown in Figure 4.8.b. If, instead of drawing the whole
trajectory, one plots a single point of it on the phase-plane every forcing period, the
so-called Poincare map is obtained. Figure 4.8.e shows the Poincare map for the
system, for the time between 5 and 55 sec (100-1100 forcing cycles). This map pro-
vides an additional indication for the nonperiodicity of the long-time solution.
What is nice about this map is that the shape of the obtained strange attractor was
found to be independent of the initial conditions and the accuracy of the numerical
calculations, which is not the case for the solution itself. Also, this map indicates
the boundedness of the solution. Finally, it is worth mentioning that the same sys-

tem exhibited a periodic steady-state for ¢ = 0.15.

Some additional interesting points are also stressed in the following subsection,
where the structural system already examined in section 4.5 is restudied by per-
forming nonlinear analysis. It is found that the various components of the
response, although non-periodic again, follow simpler patterns than the response of

the similar one degree-of-freedom system examined in the present subsection.

4.7.2. Nonlinear Response Analysis and Buckling. The study of the one
degree-of-freedom oscillator, presented in the previous subsection, provided
confidence in the appropriateness of the numerical scheme chosen to perform
direct time integration in obtaining the nonlinear response of the structural system.
This allowed the analysis for the structural system examined in section 4.5 to be
taken further, by incorporating the nonlinear tank/shaking table interaction

behavior.
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First, the time histories for ¢, ¢4, and ¢, are shown in Figure 4.9 for the time
period between 2.5 and 3 seconds (50-60 forcing periods). A subhaernic of order
4 and an ultraharmonic of order 5 dominate these response histories and the solu-
tion does not seem to be far away from being periodic. Ho;vever, it is not periodic,
which can be readily seen by looking at the phase-planes for the ¢, > and R
degrees-of-freedom, as shown in Figures 4.9.d-f. These were obtained by plotting
the corresponding displacement and velocity values for the time between 2.5 and 3
seconds. The subharmonic and ultraharmonic components in the response are
clearly present in these figures. The motion for each degree-of-freedom seems to
follow very close patterns but the fact that the trajectories in the phase-planes are
thick, dense lines illustrates that the motion is not periodic; it does not repeat itself
exactly. Similar phase-planes were obtained for time periods up to 15 seconds (300
forcing cycles). The above results were obtained for N=2 and for ground accelera-
tion a, = 0.42 g. This was the critical value obtained in section 4.5 for buckling at
the top of the tank. The pressure distribution in the area with negative P, was also
found for this case and the results are shown in Table 4.9 and compared to the
corresponding results from the linear analysis. This comparison indicates that the
constant value for the stiffness of the rotational spring modeling the shaking table
flexibility is quite satisfactory in this case. The history of Pgy at r=R, z= 0.92 H and
= 0° is shown in Figure 4.10.a. Similar patterns were obtained for all the other

points considered.

Finally, the history of the moment at the tank bottom, resulting from the pres-
sure from the fluid on the cylindrical shell is shown in Figure 4.10.b. It is important
to note that the value of the moment which results from assuming the shell to be a
flexural beam, with maximum bending stress equal to the classical buckling value

for the considered shell, is computed to be 1.6 N/m?.
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Table 4.9 External Pressure Pg, [N/m?] versus z / H

z/H  Linear Analysis Nonlinear Analysis

0.96 -85.8 -85.0
0.94 -97.7 94.4
0.92 -98.4 -94.3
0.90 -94.2 -87.0
0.88 -84.0 -73.9
0.86 -65.0 -56.2
0.82 -20.9 96

0.78 31.4 48.6



Chapter 5
RESULTS FOR UNANCHORED TANKS

5.1. Introduction.

Most of the analytical studies performed on the behavior of fluid-filled tanks
during base excitation have focused on the response of anchored tanks. On the
other hand, most of the storage tanks encountered in the field are essentially unan-
chored. Even when some type of anchoring is provided, the connection between
the base of the tank and its foundation is usually insufficient to prevent tank lift-off
during strong earthquakes. This fact has repeatedly been made clear in reports of
earthquake response [l:?)]. In these cases, the connections or the tank foundation
itself cannot resist and support earthquake loads of the order of magnitude of
those loads which cause buckling at the bottom of an anchored tank. Simpie
analysis shows that the connections usually provided will fail under much lower
loads than those causing buckling, giving rise to tank uplift before tank buckling

can occur.

For an unanchored tank the analytical modeling of its behavior during base exci-
tation is inherently nonlinear and as a result of the associated difficulties, not much
analytical work has been reported on the subject so far. However, experimental stu-
dies have shown that an unanchored tank develops much greater axial membrane
stresses at the bottom than an anchored one under the same loading conditions.
Results presented in [29] showed that in some cases the buckling at the bottom of
an unanchored tank can appear for amplitudes of the ground acceleration an order
of magnitude less than those for an anchored tank. This is due to the different
mechanisms by which the earthquake loads are developed, carried through and
resisted by anchored and unanchored tanks. Since the overall behavior is more

complicated for unanchored tanks, special care should be taken in their design.



The complete problem for the behavior of unanchored tanks under base excita-
tion can be split into three parts. The first one is the determination of the response
and the developed loads, the second deals with the calculation of the resulting
stresses in the structure and the third problem is associated with the choice of an
appropriate failure criterion. Each of these parts requires a much more elaborate

and sophisticated analysis than that required for an anchored tank.

In this chapter, the analysis developed in the second and third chapters of this
thesis is applied to cases examined previously experimentally. There are no analyt-
ical results available for comparison. In the following section, results from static
tilt tests are obtained in order to derive the characteristics of the rotational spring
modeling the uplift behavior of unanchored tanks, as presented in section 3.6.
Then, the dependence of the dynamics of an unanchored tank on the stiffness of
this spring is examined parametrically. In the fourth and fifth sections some
preliminary results are obtained for the structural and the sloshing behavior of an
unanchored tank, by using a linearized spring for the uplift formulation. Some use-
ful results are obtained before the full nonlinear analysis is applied. In the last two
sections, analytical results are obtained and compared with available experimental

data, for unanchored tanks with harmonic or transient base excitation.

5.2. Static Tilt Tests with Unanchored Tanks.

Studying the experimental results presented in [29] one observes that the
behavior of the same tank can be very different depending on the fixity of its base.
As a specific instance, it is revealed that for the tank lIb2 (see Table 4.5) the lowest
n=1 frequency is reduced from about 32 Hz in the anchored case to about 8 Hz for
the unanchored case and for base accelerations resulting in buckling. Such a
dramatic change in the fundamental frequency is observed also in simpler but simi-
lar structures, by changing the base fixity. For example, consider a flexural beam,
which is free at the top and is supported by a rotational spring at the bottom. Per-
forming the corresponding eigenanalysis (see Appendix F), it is found that the

dependence of the first eigenvalues on the spring stiffness parameter « is as shown
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in Figure 5.1. For relatively large » the beam frequencies do not change very much
with » and they are very close to those of a clamped/free beam, while for ~=0 the
eigenvalues of a simply-supported/free beam are obtained, as expected. For inter-
mediate values of the stiffness « there is some effect in all the frequencies, which is
very pronounced for the fundamental frequency. Clearly, for small values of x, a
great change in the fundamental frequency of the beam can result from changing

the stiffness of the spring.

Results of static tilt tests indicated that an increase in ¢, results in a substantial
decrease of slope in the relationship between the moment M, and the uplifting
angle ¢,, as shown in Figure 5.2. The data for this figure are taken from [37]. The
relationship obtained in this case, together with the results of the eigenanalysis of
the beam model discussed above, are in qualitative agreement with the results of
the dynamic experiments. Also, the nonlinear relation between M, and 4, reflects
the fact that the base uplifting is nonlinear in nature. These observations triggered
the development of the present analytical model for the behavior of unanchored

tanks.

To identify the system parameters important in obtaining the required relation
between the base overturning moment M, and the corresponding uplift angle &,
from static tilt tests, some simple dimensional analysis is performed. Assuming a
rigid roof, ignoring the bottom ring parameter and assuming that the whole tank
structure is made of the same material, the following ten additional parameters
seem to be important: E, v, R, L, t,, t,, p,, o). H, g. Then, according to Buckingham’s
7-theorem, there are 9 dimensionless, independent quantities required to express
the relation among the system variables for static analysis. This relation may be

written as follows:
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If all these parameters have the same values in both the scale model and the
corresponding prototype, then the response of the prototype can be exactly
predicted by the observed results of the scale model test. However, it is not possi-
ble to obtain general results for the M_./¢, relationship by conducting simple exper-
iments. For the purposes of the present work and in order to obtain analytical
results for the dynamics of the IIb2 tank, static tilt tests were performed for this
specific tank. During these experiments the tank was filled with water up to given
levels (7.5, 8.5 and 9.5 in) and the uplifting displacement & - see Figure 3.1 - was
measured for various tilting angles. The results of these experiments are shown in

Figure 5.3.

During the course of this work, a companion study was concerned with the
analytical formulation of the static response of unanchored tanks with lateral loads
caused by setting the tank on a tilted plane [31,32]. That study, as well as [41], can
provide the required M,/é, curve analytically, which then implies that the complete

response behavior can be obtained analytically for any case of interest.

5.3. Uplift Spring and Tank Dynamics.

A parametric study was carried out to examine the dependence of the frequen-
cies of an unanchored tank on the equivalent stiffness k, of the rotational spring
modeling the uplift behavior. Using the lIb2 tank as a model, with water height
H=3R, N1=2 and N2=N3=1, the frequencies «; (i=1 to 4) are first computed. Then,
the uplift degree-of-freedom was introduced into the analysis by assuming a linear

relation between M, and ¢,. That is

M. =k, d, .

This formulation does not model exactly the behavior of an unanchored tank, since
the real resistance to uplift does not possess constant stiffness. Also, due to the
small number of the included degrees-of-freedom in this case, only the first fre-
quency is expected to be computed correctly. However, some preliminary studies
can be performed this way and an insight into the physics of the real problem can

be gained before the complete nonlinear analysis is attempted.
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The frequencies of the new system - including uplift - are denoted by ., (i=1 to
5) and the results of the parametric study are presented in Figure 5.4. The most
important characteristics of the system are the dramatic dependence of the lowest
frequency on k,, for relatively small values of k, and also the fact that .., — _; as
I?“ — . The transition in the values of the first three frequencies is similar to what
is observed in Figure 5.1 and is quite different from what is shown to happen in Fig-
ure 4.1. This is expected here, since in the present case there is no "mass" associ-

ated with the bottom spring, while for the case presented in Figure 4.1 there was.

At least for the system examined, the real values of the rotational spring
stiffness (30-500 Nm) are found to lie in the range where the fundamental structural
frequency is drastically affected by changes in the stiffness k,. Thus, one may
expect this to have an important effect on the dynamics of the system, for excita-
tions with a typical frequency content. This is shown to be the case in sections 5.6

and 5.7.

5.4. Shell Flexibility Effects in Unanchored Tanks.
Some preliminary results are discussed here, referring to the free and forced
vibrations of an unanchored tank. The IIb2 tank is again used as model in obtaining

these results.

Table 5.1 gives the two lowest structural frequencies of the system for three
different water levels. Constant values are used for the stiffnesses of the springs
modeling the uplift of the tank and linear analysis is performed. For a given water
level two values are chosen for k,, these are the highest and lowest stiffnesses
measured from Figure 5.3. The calculations are done including the degree-of-
freedom due to the ground flexibility, with l?fz 3000 Nm. Also, the degrees-of-
freedom accounting for the shell flexibility are included (N=3) or exluded (N=0)
from the formulation. A considerable difference is observed in the computed
values of the fundamental frequency .-, by using the lowest or the highest value of

k,. Comparing the computed and experimental values [29], it is observed that - at
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least for the case H=3R, for which the frequency range between 2-20 Hz was exam-
ined during the tests - the lowest frequency resulting from the lowest k, comprises
a lower bound for the range of the resonant frequencies of the structure. Next, it is
seen that the higher the fluid level H the lower the .|, which is in qualitative agree-
ment to what happens with the anchored tanks. However, .» remains almost con-
stant with changes of H. Finally, by choosing zero or nonzero N no significant
changes are observed in the values of .-, and .». This indicates that the shell flexi-
bility effects may be unimportant when considering the response of unanchored

tanks of similar dimensions.

Table 5.1 Lowest Two Structural Frequencies for Various Water Levels H [in],
Uplift Spring Stiffness k, and Shell Flexibility dof
Lowest k, Highest k,

H «[Hz] “>[HZ] «[Hz] wH[HZ)

N=3 N=0 N=3 N=0 N=3 N=0 N=3 N=0
75 6.23  6.27 4555 4556 18.27 19.20 48.69 49.24
85 524 527 4553 45,55 1569 1654 48.65 49.25
9.5 463 4.67 4554 4556 15.17 16.21 49.69 50.78

Table 5.2 Normalized Acceleration Amplitudes for Different Water Levels H and Shell
Flexibility Degrees-of-Freedom (.. = 10 Hz, Lowest k,,)
H=7.5in H=8.5in H=9.5in
N=3 N=0 N=3 N=0 N=3 N=0
Rd,/a, 0894 0910 0.668 0677 0549 0.558
Rd}'{/ao 0.011 0.012 0.009 0.009 0.008 0.008
&/a,  0.029 - 0.024 - 0.023

To investigate further the validity of the above finding, the response of the same
tank to harmonic base excitation with amplitude a, and forcing frequency .. was
examined. For forcing frequencies typically expected, it was again found that the

shell flexibility has no substantial effect on the dynamics of the unanchored tank.



- 77 -

Results from an example of such behavior are shown in Table 5.2. The values of the
relative acceleration associated with the uplift, ground ﬂexi‘bility and the first radial
shell mode, obtained for critical damping ratio 0.05 and normalized by a,, are
shown in this table, for various water levels. The forcing frequency for this particu-
lar example is .= 10 Hz, while the lowest value is used for k, in each case. Clearly,
the uplifting degree-of-freedom is completely dominant in all the cases presented.
Also, the results are almost unaffected by consideration of the shell flexibility. The
same behavior is also observed after performing a nonlinear analysis for the sys-

tem, as explained in sections 5.6 and 5.7.

5.5. Sloshing and Structural Coupling.

In this section, the coupling occurring between the structural and the sloshing
modes of an unanchored tank is examined. The analysis developed is applied to
the 1Ib2 tank, partially filled with water up to a level H= 7.5 in. The various sloshing
modes are incorporated into the formulation according to the relevant analysis
presented in section 3.8. Results for this case are shown in Table 5.3. In this case
the degrees-of-freedom due to the uplift and the ground flexibility are included
with equivalent spring constants k, = 30.8 and I?,- = 3000 Nm, respectively. The
lowest two sloshing and structural frequencies are obtained. The second column of
Table 5.3 contains the first sloshing frequencies as computed by equation (4.2),
while the third column contains the first two structural frequencies when no slosh-
ing mode is included in the formulation. Finally, in the last column the same fre-
quencies are shown after including in the formulation both the sloshing and the

structural modes together.

These results are similar in nature to those obtained for the anchored tank exam-
ined in section 4.3. Namely - despite the fact that the lowest structural frequency is
substantially reduced in an unanchored tank due to the uplift effect - there is very
little coupling between the sloshing and the structural modes. Again, it must be

pointed out, however, that the examined tank is relatively tall.
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Table 5.3  Frequencies [Hz] for H= 7.5 in and k,= 30.8 Nm
Mode Eqn.(4.2) No Sloshing Coupled System

1 2.684 - 2.558
2 4.568 - 4.532
3 - 6.269 6.629
4 45.557 45.557

5.6. Harmonic Buckling Tests.

An explanation is provided here for the behavior of an unanchored tank during
experiments reported in [29]. According to the results of those experiments the
unanchored tanks appeared to respond in a rocking mode when subjected to base
excitation. During the harmonic tests, resonance type phenomena were observed
for much lower frequencies than the resonant frequency of the same tank but

anchored.

Results obtained by appiying the anaiysis to the case of the iIb2 tank with H=3R
are discussed next. In interpreting the results for a real tank, the frequencies of the
model tests should be divided by 6.4 in order to obtain the frequencies for a proto-
type tank made of steel. Values for the springs modeling the uplift and the
ground/structure interaction derived from the experimental results are utilized,
while c=1 is also chosen for all the cases examined here. First, using the experi-
mental values for the ground acceleration amplitude a,. as presented in Figures
5.14 and 5.16 of [29], the corresponding moments at the bottom of the tank are
computed for any forcing frequency ... The results are shown in Figure 5.5. The
broken horizontal line in that diagram represents the moment for which buckling
started at the bottom of the tank during the static tilt tests presented in section 5.2.
The continuous line represents the l.noment causing collapse of the tank. This last
value is obtained from static tilt test results reported in [29]. Next, it is assumed
that the buckling in the dynamic case starts at the tank bottom for the same value
as in the static case (0.71 Nm here). Then, iterations are performed by changing the

amplitude g, until the computed moment at the tank bottom has an amplitude of
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0.71 Nm, for any .. The results of this procedure are shown in Figure 5.6. In that
figure, the x’s indicate the experimental data presented in [29], while the continuous
line represents the computed results, using the present analysis. The broken line,
which is apparent at the low frequencies only, represents ihe results obtained by

the same analysis after excluding the sloshing modes from the formulation.

During the numerical iterations, for values of .. between 6 and 9 Hz, some jump
phenomena were observed. Namely, small changes in a, resulted in large
differences in the moment amplitudes. This is expected for a soft nonlinear mode,
such as the uplift mode, and provides the reason why the computed moments using
the experimental a, value are relatively inaccurate for those frequencies. Next,
judging from the difference between the continuous and broken lines in Figure 5.6,
it is observed that the sloshing effects are important only when the forcing fre-
quency is very close to the sloshing frequency. Also, it becomes clear that the
behavior of the system for .. > 4 Hz is governed by the uplift and not the sioshing
effects. Finally, although near the fundamental frequency the sloshing response
cannot be captured and described by linear analysis, it seems that at least the bot-
tom moment can be adequately computed. In the calculations only the fundamental
sloshing mode was included, except for ..= 4 Hz which is close to the frequency of
the second sloshing mode, where this sloshing mode was also included for better

accuracy.

All the above results were obtained by using only two structural degrees-of-
freedom. These were the degrees-of-freedom modeling the uplift and the ground
flexibility. Including degrees-of-freedom due to shell flexibility caused virtually no
change in the results. This important feature of the behavior was also captured by
the linearized analysis presented in section 5.3 and is in agreement with experimen-
tal observations, according to which the predominant response mode was rocking

of the tank.
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Examining in more detail the response histories of the system components, the
sloshing effects are found to be important for .. = 2.5 to 5 Hz. In the range .= 7 to
12 Hz, the uplift combonent is dominant, while for the rest of the frequencies the
acceleration R(,"},, was always important and comparable to a,. Furthermore, the
strange behavior observed during the nonlinear ground/structure interaction, dis-
cussed in section 4.7, shows up in this case also. Figure 5.7 shows the time his-
tories of RJ, and R{‘}, for the case with « = 20 Hz, a, = 2.06 g and for the time
period between 2.5 and 3 sec. The phase-planes corresponding to these degrees-
of-freedom are also presented in Figures 5.7.c-d. However, in this case and for 5%
critical damping, a periodic steady-state was obtained, after about 100 forcing
cycles. For 2% critical damping, a periodic steady-state was obtained after about
200 forcing periods. Next, trying to simulate better the experimental procedure, the
analysis was run for the same case but with a ground acceleration amplitude of the
form a,(1—e3"). This means that the base amplitude increases gradually and
reaches the value 0.95a, after the first second of excitation. The phase-planes for
this case are shown in Figure 5.7.e-f, while the moment at the bottom of the tank is

shown in Figure 5.7.g.

Comparing the analytical and experimental results, good agreement is observed
over all the frequency range examined, indicating the applicability and the
effectiveness of the present analytical model. The largest discrepancy is observed
for .« > 17 Hz. However, the values of the overturning moments which are com-
puted by using the experimental values for the critical base accelerations are not
significantly different from the critical moment which results in buckling of the
shell bottom under static conditions. For example, the moment calculated with the
experimental a, value for .« = 20 Hz is 0.60 Nm, which is not far from the measured
statical critical value of 0.71 Nm. One possible reason for the difference between
the experimentally and analytically determined critical base accelerations might be
the different stress concentration developed at the bottom of the tank for various

forcing frequencies. By assuming the shell to behave as a flexural beam with
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maximum stress equal to the classical buckling value for the shell, the critical
moment at the bottom is found to be 3.56 Nm. This value is 5 times larger than the
experimentally measured buckling moment, indicating a large stress concentration

at the bottom of an unanchored tank, even in the static case.

5.7. Transient Buckling Tests.

Results on the behavior of unanchored tanks subjected to transient base excita-
tion are also presented in [29]. These results are similar in nature to those
presented in the previous section for the harmonic case and show once again that
the behavior of the same tank can be quite different depending only on the base

fixity.

Using the same model tank (IIb2) and the analytical procedures of the previous
section, results are obtained for a base excitation with acceleration history as
shown in Figure 5.8. These results are presented in Figure 5.9. The x’s in Figure 5.9
indicate the experimental values obtained for an unanchored tank, from [29], while
the nearby continuous line represents the results by application of the present
analysis. The dots indicate experimental results from [29] again but refering to the
anchored case, while the nearby continuous line represents analytical results
obtained by [24] for that case, using the classical buckling criterion. Comparing the
results for the anchored and unanchored case a large difference is again observed.
As explained in the previous section, two important factors are believed to be
responsible for this. First, the base loads result from a different response mechan-
ism which causes different pressure distribution on the tank walls. The other rea-
son is the large stress concentration which is expected for unanchored tanks, due

to partial contact of the tank bottom with the ground.

The results obtained by the present analysis are again in good agreement with
the experimental data. Including sloshing in the formulation does not have any
important effects in the case considered. The amplitude of the critical ground

acceleration was found to be virtually unaffected by inclusion of the sloshing
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modes in the formulation. Figure 5.10 shows the computed history for the moment
at the bottom of the tank for the case of H= 7.5 in and ground amplitude
a,= 2.5 m/s%. The maximum moment for this case occurs at a time when the ampli-
tude of the base acceleration is also close to its maximum. However, this is not the
general case. In some cases the peak in the moment occurred well before the
acceleration peak. It is also observed that although the excitation is transient - with
most of its energy content concentrated between 0-20 Hz - the tank responds in a
frequency which is close to its resonant frequency. That is about 9 Hz, as deduced
from Figure 5.6. Finally, the effects of shell flexibility, which were neglected for

these calulations, seem once more to play no significant role.
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Chapter 6

SUMMARY AND CONCLUSIONS

Fluid-filled tanks (oil, water, wine, etc.) are extensively used structures, which
sustain effectively the loads caused by their contents during static conditions, but
they are subjected to severe loading during strong earthquakes. This can lead to
stress or buckling failures and subsequent loss of contents. In order to design such
structures properly, the response of the tank and its contents under base excitation
must be known. Most of the previous studies on the subject have focused on the
response of tanks which are anchored to their foundation. However, the proper
anchoring of a tank is expensive and most of the tanks in the field are essentially
unanchored. This complicates the analysis, since the bottoms of these tanks usually
separate from and lift off their foundations during ground motion, before failure

occurs.

The objective of the present work is to create an analytical model which
describes the dynamic response of unanchored tanks and predicts the hydro-
dynamic loads developed by the motion of the system. This analysis includes the
effects due to the flexibility (both membrane and bending) of the shell wall, the
liquid sloshing and also the base rocking that occurs in the field as well as in exper-
imental simulations, due to ground flexibility. In developing this analysis, the phy-
sics of real tank behavior is first critically examined, through results and observa-
tions of previous investigations. The nonlinearities of the system, due to loss of
contact and due to the large displacements developed at the base of the tank dur-
ing uplift, are then appropriately médeled in an approximate but simple way. Also,
the fluid response problem is solved in closed form, resulting in a compact system
of equations of motion, which includes only structural and sloshing degrees-of-

freedom as unknowns.
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This analysis is used to determine the hydrodynamic loads acting on the struc-
ture, during various base excitation conditions matching experimental work, in
which buckling occurred. First, buckling observed at the top of an anchored fluid-
filled tank is examined. It is found that the induced hydrovdynamic pressure may
overcome the hydrostatic component and produce a negative resultant pressure in
areas near and below the fluid free surface. This negative pressure produces
compressive hoop stresses which can lead to local buckling, during sufficiently
strong ground accelerations. It is also found in this case that ground flexibility
results in a reduction of the response frequencies of the system. Good correlation

between the analytical and the experimental results is obtained.

Next, buckling observed at the bottom of an unanchored tank is examined. Once
again, the analytical results agree favorably with the experimental data. These
results show that there is a dramatic change in the dynamic characteristics of an
unanchored fluid-filled tank compared to the same tank with anchoring. The
effective stiffness of the beam-type deflection of the tank is substantially reduced
when the tank is allowed to lift off its foundation. This reduces the frequency of
the predominant response mode of the system, which in turn affects significantly
the hydrodynamic pressure distribution through the fluid/structure coupling
mechanism. When the tank is anchored and subjected to typical base excitation, the
hydrodynamic pressures are mostly due to the rigid body translation of the tank
and partly due to the shell flexibility. For an unanchored tank, however, it is found
- for the ranges of the forcing frequencies considered - that in addition to the pres-
sure due to the rigid body translation of the tank, there is a considerable pressure
component resulting from the rocking of the tank due to the uplift, and practically
no contribution from the shell flexibility. This - together with the fact that a large
stress concentration is expected for the axial membrane stresses at the shell bot-
tom - explains why there can be a tremendous difference between the ground
acceleration causing buckling, depending on the anchorage. For example, in the low

frequency range of the tests, where it is now known that the uplifting effects are
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dominant, there is an order of magnitude difference between the values of a, caus-
ing buckling in the same tank, depending on whether it is anchored or unanchored.
This indicates how erfoneous it can be to calculate hydrodynamic loads assuming
the tank to be anchored and then use the same loads for the case where the tank is

unanchored, as is done by the current seismic codes [48-50], or others [25,41].

As indicated by results obtained from harmonic and transient base excitation,
the sloshing effects are important only when the excitation has frequencies close to
the frequency of the fundamental sloshing mode. It is also found for the cases con-
sidered, that the effects of the shell flexibility were negligible. The rocking mode
due to uplift dominates the response of the unanchored tank, which is in agreement
with previous experimental observations [29,34]. If this is the general case, this
result is, indeed, of practical value, since it implies that the behavior of an unan-
chored tank can be studied by ignoring the effects of shell flexibility, at least for
some practical geometries. Then, simplified models can be developed, which will be

useful for design purposes.

The agreement between the analytical and experimental results indicates the
applicability and effectiveness of the analysis developed in this thesis. However,
there is more to be done on the subject. For example, the available experimental
data refer to tall tanks. Results of this analysis should also be obtained and com-
pared with experimental results for broad tanks, where the shell-type vibrational
modes - especially the n=2 modes - may have an effect on the dynamics of unan-
chored tanks. These modes produce no resultant loads (moment and shear) at the
base of the tank, but they may contribute to them indirectly, through the nonlinear
coupling with the beam-type modes of the structure. The choice of the rotational

spring, modeling the base uplift, may also be more complicated for broad tanks.

Another topic of practical interest is the analytical consideration of the effects of
the vertical component of the ground excitation for an unanchored tank. The

uplifting motion of the tank results - apart from the rocking - in a vertical
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displacement of the tank, also. This, together with possible coupling of the axisym-
melric_ shell modes with the beam-type modes, may have some important effects on
the response of the system. These effects are expected to be pronounced in cases
where the vertical component of the base excitation is relatively large and contains

energy in important frequency ranges.

Finally, a topic which deserves further attention is the effect of large changes of
the stiffness, occurring at the base of the tank, on the dynamic behavior of the sys-
tem. Large changes in the structural stiffness may result in chaotic behavior of the
structure. Such stiffness changes were found to happen in this work, due to the
rotational flexibility of the shaking table and due to base uplifting. Although the
former reason is associated with specific conditions of the experimental work cited,
the latter is expected to be the general case for unanchored tanks. For such tanks,
apart from the effects of the dramatic reduction of the frequency of the predom-
inant response mode, one should also investigate the effect on the response to a
real earthquake of a structure which is characterized by the possibility of exhibiting
chaotic behavior. It is of practical importance to find out if this effect appears
within the duration of an earthquake and how large or small is this effect compared
to other unknowns about the problem, including the frequency content of the exci-
tation. The study of the one degree-of-freedom oscillator with trilinear stiffness
may help in understanding and explaining at least some aspects of the response of
an unanchored tank. Thus, more extensive and comprehensive analyses should be
carried out for this problem, in order to determine combinations of parameters for
which this system possesses at least one stable periodic solution, for harmonic
excitation. Then, it would be interesting to investigate the characteristics of the

instability, for other combinations of the parameters.
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Appendix A
SOLUTION OF SET OF EQUATIONS (2.6)-(2.10)

A.l. Separation of Variables.

Seek solution of the form:
®,(r.z,1) = R,(r) Z,(2) T, (1) .
Substituting in equation (2.6) it is found that:

1 4 , dR, 2

1
V§n dr (r dr ¥ * Z, dz?

=0 (A.1)
Since the last term depends only on z, while the first two terms are functions of r,

the last term must be equal to a constant ¢, that is:

1 d’z,
Zn dZZ

=Cy -
Depending on the sign of this constant one must consider the following three cases:

a. ¢,=0. Then,
Z,(z) = A, z + B,

and equation (A.1) becomes:

with solution:
R,(r) =E, r" + F, r .
Requiring bounded solution at r=0, choose F,=0.
b. ¢, = - I2 < 0. Then,

Z,(z) = C, cos(l,z) + D, sin(l,z)
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and equation (A.l) becomes
d, dR,

W(r dr

2
) — (12r + TR, =0,
14
with solution
R.(¥) = G, 1,(I,¥r) + H, K,(I,r) ,

where [/, and K,, are the modified Bessel functions of the first and second kind,
respectively, of order n. Since K, has a logarithmic singularity at r=0, choose
H,=0. Also, to make use of the orthogonality properties of the trigonometric

A
functions in 0<z<H, choose: [, = —=

,with \,,=2sm and s=1,2, ..

. ¢, = k2> 0. Then,
Z,(z) = P, cosh(k,z) + Z, sinh(k, z)

and equation (A.1) becomes

with solution
En(”) = Un Jn(knr) + Vn Yn(knr) ’
where J,, and Y, are the Bessel functions of the first and second kind, respec-
tively, of order n. To avoid the logarithmic singularity of Y, at r=0, choose
V,=0. Then,
En(r) = Un .]n(knr) .
Applying the boundary conditions (2.8), (2.9) in homogeneous form:

Z,(0)=0 — Z,(z)= P, cosh(k,z)

kHS’
R

So, if k,, are the roots of J,(-) = 0, it must be k, = . Finally, assuming har-

monic time dependence for the solution, i.e., T, (t) = W, sin(w,t), it follows from

(2.7) that:
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wi = gk, tanh(k,H) .

Summarizing, after proper rearrangement of the constants - which in this case
can be functions of time because of the form of the differential equation - the gen-

eral solution of the set of equations (2.6-2.10) is written in the following form:

@, (r.z.0) = (£)" [a,(1) 5 + bp(D] +

+ 3 Un(Kne ) [Ans(D) cOSh(kns 2) + Brs(t) sinh(ky, £)] +
s=]
¥ z . z
+ ln(’\ns —) [Cn.v(t) COS(>\ns 7{—) + Dns(t) SIn(’\ns 7_[‘)]} (AZ)
where

In(kns) =0

Nps = 28T n=0,1.2,---
. 72 _ gan ﬂ

and wj, = R tanh(k, R) .

A.2. General Solution.

Before attempting to determine the unknowns in the expression for the general
solution ¢,, as given by (A.2), some appropriate changes are first performed. In
order to associate all the sloshing effects with one term of the solution, it is found
appropriate to substitute z by (z-H) in the argument of sinh. Also, in order to avoid
any confusion - as it will become obvious when applying (2.9) - it is convenient to

decompose the function h, as:
h,(z,t) = o,z + h,(z,t) .
Finally, D, can be set equal to zero, by expanding h,(z,t) evenly in [-H,0] and taking

\ns=sm. Then, ¢, can be rewritten as:

Bp(r.2.0) = ()" [an(t) £ + bu()] +
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- S Un(Kns L) [Ans(8) cOSh(kng Z) + Byy(t) sinh(kn =) +
s=1 R R R

+ O\ ) Caslt) cosOV 51 (A.3)
with Ny = ST.

Application of (2.9), leads to the following equation:

% (a, —f; ; 1O\ ) C,; cos()\, %) —a,z + h(z.t) .
Choosing
(t) o, RH
a,\l) = n (A.4)
and using the orthogonality properties of the cosine function in {-H,H]:
R "o
bp(t) = { hu(z,t) dz (A.5)
2 -
Cns(t) = fh (Z )COS(\ “_) dz (A6)
N (O By o
s 'hn s H
for n=1,2,.. and
ao(t) = bo(t) = 0. (A7)

The need for decomposing h,, is now clear. Otherwise, there would be a problem

V4

in determining a,(t), since z has its own Fourier components in the jcos(\, ﬁ)}

sequence. Next, the boundary condition (2.8) is applied, which results in:

( f} UnKnp %) By €O5(Kny S0 = £,(r0)

ra
R H PR

Then, making use of the following properties of the Bessel functions:
RZ

R , 2 k,%s

frjn(kns E)Jn( np R) dr = 0,

o

)J (kns), for s=p
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R

2
[t Jalhens %) dr = £ 1, (k)
[ ns
P Rn+
[t bk ) dr = =5 * ling 1K) = 11 1y
o ns
v . ) O ) 0 30)
f r]n(kns —) [n(/\p ——) dr = R? .]n(kns)
o R H k2 \ E 2
ns + (/ p H)

where J,(k,s)=0, it is found that:

bns — ¥y n kns
B,(1) = 2R (B = n{8) Jn{kns) (A.8)

nc (kns‘nz) Jg(kns) COSh(kns %)

Ds() = ( (Kps ~;—> Falr.t) dr

Application of (2.7) results in:

) [A,,,, cosh(k )

(%Y’ (G + B+ 922+ SiUn(k

H T it g " R

H k .
2 Ans + 905 Bapl + (<12 10\, ) Capl =0

Knp .
+ g% sinh(k,, 2

Finally, applying the properties of the Bessel functions given above for j,',(k,,p) =0
this equation can be rewritten as:

A.ns + W'EsAns = D”ns(t) - WnsEns(t)
where,

2 nay(t) B, (t)
tne (KZ—112) Jyy(Kns) SINAGins)  SINA(fiy)

Ens() = (A.9)

n [a,(0)+b, (O] + d, (1)
Ol = = 2 %) Julks) cOS (1) 10

. Oy 1) 1 1) o
dns( ) =\ (_ )p Cn 7([) and Hns = kn ey
p=1 l+<’\p//lns) t R

Using the initial conditions (2.10), it is then found that:
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t

Ans(t) = Dns(t) — Why f [E,,S(T) + Dns(r)] Sinu,‘ns(l——r) dT (Al l)
with,

L ~ .

Whs = T tanh(u,s) , N\, =sr and J,(k,) =0 .

Therefore, the time functions in the form (A.3) of the general solution ¢, are deter-

mined to be as given by equations (A.5-A.11).
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Appendix B
EXPRESSIONS FOR TANK BASE MOMENT AND SHEAR

oo R tanh()
q,\':l_Lq“' Axs .

T TH K (k1)
3, = 1 901.&3)6 DAy = Z(E)z s szh(ﬂf) — cosh(uy) + 1
2 2 H k¢ (ki=1) cosh(yy)
~ =Ry R, 5
e = ( ZH) SLI Ixs » Tixs = (H) kg (ki—1) cosh(uy)
go= LR S g
$= 2R T aH T Zes e o5 = Cos G
H R R & | (i—c=1)sinh(u,) + (c+2)pu,
R R i v Jag = Cag i
@ 3R + 4H (H Z:‘[ kS3 (k5~l) cosh(y,) Dps = Cps
£)2 <>o1 (c+1)sinh(jg)—y o
ke H s=1 k3 kZ 1) Cosh(/l‘.) ips = Laos ixs

Am = Omo — qus v Ams = Sms xs
s=1

20 s ¥(R) Ims = Sms Dxs

COSA,—1 ;
—‘XST— = Ims

Tims = Sms Tixs

R o0
Tm = n;mo(m)z + 2 20

s=1

1-r(R) }

A2

The symbols appearing in the above expressions are defined in chapter 2.
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Appendix C

STRAIN ENERGY OF A CIRCULAR CYLINDRICAL SHELL

The strain energy of a circular cylindrical shell is given by:
t)‘

f (Uz €z + Opty + Ty ,z;;) dr Rdb dz .
—t5/2

ot r\J

L
1
c=5{

If the shell stresses are linearly related to the strains by Hooke's law, then,

E ,
0, = —= (€,4v€)) , 0y = (eg+re,) and o,y =

E ,
112 1-12 ©2(1+v) Teb -

The strains ¢,, ¢y and =,y in an element at a distance z from the middle-surface of
the shell wall are related to the middle-surface principal strains ¢, ¢; and ~,, and to
the changes of the curvatures and twist k,, k> and k,» by the expressions:

€2 =€ +2zki . =¢+2zk; and =70+ 22Ky, -

Then, assuming constant shell thickness ¢, over the length L, the strain energy

expression can be rewritten as:

R L 27 1_1/
U= 77— 2(1_[/2) {{(6 2+ €5+ 2ue 165 + —— ) df dz +
REtS }Zfﬂ[kf + k3 + 2vk ky + 2(1=0)k$,) db dz (C.1)
24(1 uz) 5 o

The first integral term in the above expression represents the stretching energy of
the shell, while the second term represents the bending energy of the shell. Keep-
ing only the linear terms in the formulae relating the middle-surface strains to the

corresponding displacements one can write:

ou, (duf; ) Oy 1 du,
€ — 4+ u , Vo= — 4 — —
0z 27 + 2= N YR o

€y =
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o%u, 1 ouy,  d%u, 1 duy  d2u,
: = — (— - and k= — (—
022 2 (s ) 12 (

ki=- R2 PYE R ‘0z  o9zob

) .

Substituting into (C.1), the final form of the shell strain energy is found to be:

REt, °7  ou, 1 Ouyg
U=—">[]I P+ (4 u)+
C2(1-1?) ” oz m 2

2v du, (au,, ) 1_,,(c?u9 1 ou,
o0 TH T TV %2 TR Tog

R oz

2] df dz +

REt3 L°T r‘)zu,)z 1(02u, duy
L=

+ —_ T
24(1=1?) 5 o 0z R4 062 a0

)? +

2v 9%u, 9%u, ~ 0u,,) . 2(1_,,)(82u, dug

T R2 22 Vo EY, R2 ' 98zd0 oz

)l df dz .
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- Appendix D

ELEMENTS OF MATRIX EQUATION (3.19)

The elements of the mass matrix of equation (3.19) are found, as explained in
section 3.7, to have the following form:

H L

My, = mR? fwi(2) f{(R.2)dz + R [p t;wi(z)w(2)dz + wi(L)w (L) m
o o

r
T

H H

m,H,
My s, = PIR? [wi(2) fu(R.2)dz + [pstizw(2)dz + wi(L)

r
™R

H H
My, = piR? [wi(z) fr(R.2)dz + pihy R [wi(z) f(R.Z)dz +
o o

L
m,(H,+h,)
+ [pst(z+hy)wi(2)dz + w,-(L)——'——'F—g—
A T
md,lfj = mEJU.' = m,['i(j = m(j,j,l, = mél\.j = m(jgl =0

L L
mee, = R Jrstvi(2)vi(2)dz Mege = [ost(z+hy)vi(z)dz
o o

L L
mes, = [pstizvi(2)dz . mg =R [pstsui(z)u;(z)dz + ui(L)u (L) ,r,;z
o o
L lr
Mty = Moy, = m(,d’f = m¢’f(,' =-R {pstsui(z)dz - ul(L)—ﬂ'R—z
L m,.H,

Mo, = PRH®; + [potzw(2)dz + will)—
o

L
- m
Mp g, = Moy, + mRH2~; + hylpRHg; + fﬂsfsWi(Z)dZ + Wi(L)ﬁr"]
. o

L L

m,H,(H,+h)+1,
Maop= ,;,H2(R:,3,~+hg,3x) + % fpstsz(z+hg)dz + R fpstsdz + ]
0 o

7R?
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L

h
+—2q.) + R [pstdz +
o

m'f’f‘f‘u = /)IRHZ(,/3u+A/u H

L

m H (H,+h,)+I
+ 722— [pst(z+hy)zdz + ( g

mR?

h, h h £
Mgy o, = pRH[3 p+ 1f+—(3 +) + (Qf+‘l‘§—61x)} + R fpstdz +

L 2 2
2 ) mgh f+lf+mbh5+lb+m,(hg+H,) +1,
+ 7 _‘]:ps(s(z+hg) dz + 2
(mg+m)R*+m H2+1,

L L
mgy s = pRH?3, + 2 fpstszzdz + R fpstsdz + >
utu R 3 o TR

The 4, ~and g's are defined in section 2.5 and their explicit forms are given in
Appendix B. The subscript f indicates quantities which are evaluated by letting c=1,
while the subscript u indicates quantities evaluated for arbitrary c. Generally, the

notation used in the above expressions and those that follow, is consistent with

that adopted chapters 2 and 3.

The elements of the stiffness matrix K are similarly found to be:

L

M fW(z)w (z)dz + DR fW (2)wj(z)dz +

W =
Sy

L L
L [wizyw(2)dz = ¢ D [lw(@w()ew (2w, (2)dz

ke, = Q‘EC%D‘ fW(Z)V,(Z)dZ + == fw (2)vj(2)dz - Z(IR’/)D f wi(z)vj(z)dz
L
ki =2vC [ wilz)uj(z)dz
kee, = 3—’%+—D [r(2vy@dz + (1- n&Cr2D fV(z)vJ(z)dz
L L

keo, == 2vC [vi(2)u2)dz + (1-1)C [v(z)u;(z)dz
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L ol
kes, = 2RC fui(zyu(z)dz + (1—1/)-1-2— fuz)u(z)dz .

In all the above, prime stands for differentiation with respect to z, while:

Et, Et}
C=———and D=——"7—
2(1=1?) 12(1-17)

are parameters associated with the membrane and the bending rigidity of the shell,

respectively. Clearly, for the elements of K, k;; = kj;.

Next, for the components of the vector k, it is found that: k;=0, except for k.

and kg , which are given by:

The sloshing vector p(t) is expressed by:

p(t) = pR2H Sp; A(0)]

s=1

where the components of the vector p, are given by

H
[ Fo(R.2) wi(z)dz

— 1
(ps)ljri = 7_1"

(P, = (Be);, = O

(p_s)q&f = (Hf'-'}xs + hgqxs + H’Yxs) / R

(Es)d)u = % ﬁxs

where j,, 7, and g,, are defined in section 2.5 and the spectral acceleration A(t) in

section 3.6.1.

Finally, the components of the forcing vector can be written as:
H L

m,
fo,=mR? [ f((R2)W(z)dz + R [pstwi(Z)dz + w,-(L)—;—
o o

L
fe,=R [pstvi(z)dz . [, =0
o
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h L meh c+myhy,+m,(h,+H,)
f¢f=p;RH2(/3x+vx+’ﬁqx)+ 2 [pstz+hy)dz + . :R —
o

L
m.H
f¢ :leHZﬂx+2 fpstdez + —
u 2 ™R

Clearly, the assumed spatial functions (w,,, v,,, u,,) appeaf only in the expres-

sions of those elements in the equations of motion which are associated with the

corresponding degrees-of-freedom v,,, &, and ¢,,.
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Appendix E

DAMPING MATRIX FOR: M x + K x = f

For this system, a damping matrix D is chosen here in such a way that normal
modes are preserved in the linear case, when the mass matrix M is not symmetric

(M % MT), but nonsingular, so that the matrix
A=M1K

can be defined. Then, if x; y; are the eigenvectors of A and its transpose AT,
respectively, corresponding to the same eigenvalue \;=w? and if the ordinary

Euclidean inner product is used, it is found that
(Axpy)=NXiy)=& ATy)=N(xny)) -
These imply that
Ni=A )X y) =0
and so, for the case of distinct eigenvalues
YT X==C (E.1)

where X and Y are matrices containing as columns the eigenvectors x; and vy,

respectively, while C is a diagonal matrix with diagonal elements

G =Xy -
Using the definition
A Xi = NiX;
it is easily found that
KX=MXA (E.2)

where A is the diagonal matrix containing the eigenvalues X; in its diagonal. Next,

letting
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l

x=Xot), Y=MTZ,
choosing
D=MXDX! (E.3)
multiplying both sides of
Mx+Dx+Kx=f
by ZT and using (E.1), (E.2) it is finally obtained that
MX[o+Daoa+Aadl=f .
Clearly then, if D is chosen as a diagonal matrix, the last matrix equation can be
decomposed into a system of uncoupled, scalar, second order ordinary differential

equations.
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Appendix F

FREE VIBRATIONS OF A BEAM ON A ROTATIONAL SPRING

Consider a flexural beam with length L, constant cross-section of area A and
moment of inertia I with respect to the y-axis, Elasticity modulus E and mass den-
sity p. The beam displacement in the transverse z-direction is denoted by w(x,t),
where x is the longitudinal axis and t stands for time. If this beam is supported at
the end x=0 by a rotational spring of constant stiffness k and is free at the other
end x=L, the equation of motion and the corresponding boundary conditions for no

external load are as follows:

Jtw ?w
EI = —pA —— (F.1)
ax*? / at?
d?w 3w 3w aw
w(0,t) = (L,t)y= ——(L,t) =0 , EI 0,t) = k =—==(0,t) .
ax* ax3 9x2 X

Employing separation of variables, a solution for (F.1) is obtained in the follow-

ing form:

w(x,t) = [Asin(3x) + Bcos(3x) + Csinh(3x) + Dcosh(ix)] e’?

where A, B, C, D are constants and 3% = % W2

Applying the boundary conditions it is eventually found that the following equa-
tion must be satisfied for a nontrivial solution w to exist:
r[1 + cos(p)cosh(p)] + plcos(p)sinh(p) — sin(p)cosh(p)] = 0 (F.2)

where

k=k/k, p=(w*S, k=ElL, <=

Then, the eigenvalues . of the system are found from (F.2) for every k.
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Figure 1.3 Buckling at a Middle Section of a Tank

Figure 1.4 Buckling at the Top of a Tank (Niigata, Japan, 1964)
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Figure 1.6 Uplift at the Tank Bottom (San Fernando, 1971, Ref. [3])
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Figure 2.2.bImpulsive Pressure on Tank Wall (Rocking)
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Figure 2.2.c Impulsive Pressure on Tank Wall (n=m=1 Shell Mode)
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Figure 2.3.a Convective Pressure on Tank Wall (Translation, s=1)
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Figure 2.3.b Convective Pressure on Tank Wall (Translation, s=2)
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Figure 2.3.c Convective Pressure on Tank Wall (Rocking, s=1)
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Figure 2.3.d Convective Pressure on Tank Wall (Rocking, s=2)
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Figure 2.3.e Convective Pressure on Tank Wall (n=m=1 Shell Mode, s=1)
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Figure 2.3.f Convective Pressure on Tank Wall (n=m=1 Shell Mode, s=2)
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Figure 2.4.bNormalized Base Shear vs H/R (Rocking)
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Figure 2.4.c Normalized Base Shear vs H/R (m=1 Shell Mode)
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Figure 2.4.d Normalized Base Shear vs H/R (m=2 Shell Mode)
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Figure 2.5.a Normalized Base Moment at Shell Wall vs H/R (Translation)
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Figure 2.5.b Normalized Base Moment at Shell Wall vs H/R (Rocking)
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Figure 2.5.c Normalized Base Moment at Shell Wall vs H/R (m=1 Shell Mode)
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Figure 2.5.dNormalized Base Moment at Shell Wall vs H/R (m=2 Shell Mode)
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Figure 2.6.a Normalized Base Moment at Tank Bottom vs H/R (Translation)
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Figure 2.6.b Normalized Base Moment at Tank Bottom vs H/R (Rocking)



-121-

LIQUID HEIGHT, H ~» TANK RADIUS, R

Figure 2.6.c Normalized Base Moment at Tank Bottom vs H/R (m=1 Shell Mode)
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Figure 2.6.d Normalized Base Moment at Tank Bottom vs H/R (m=2 Shell Mode)
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Figure 2.8.a Normalized Masses of Equivalent Model vs H/R
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Figure 2.8.b Normalized Moment of Inertia of Equivalent Model vs H/R
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Figure 2.9 Simplified Model for a Fluid-Filled Tank
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Figure 3.2 Vibrational Modes of a Cantilever Cylindrical Shell
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Figure 4.2 Buckling at the Top of a Model Tank (Ref. [28,29])
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Figure 4.4.a Buckling Mode, Radial Displacement vs Distance along the Shell Length
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Figure 4.10.a External Pressure at r=R, z=0.92H and §=0°
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Figure 4.10.b Moment at the Tank Bottom
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Figure 5.2 Moment vs Uplift Rotation for Tank of Reference [37]
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Figure 5.3 Base Moment, M, vs Uplifting Distance, 6
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Figure 5.6 Critical Buckling Acceleration vs Excitation Frequency



-145-

(m/s?)

T ¥

-28 /NN SN SN B S B MR B R S T T T T T T T T
2.5 2.6 2.7 2.8 2.9 3
TIME LCsec] :

Figure 5.7.a History of Acceleration of Uplift dof
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Figure 5.7.b History of Acceleration of Foundation Rocking dof
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Figure 5.7.c Phase-Plane for the Uplift dof (t= 2.5-3 sec)
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Figure 5.7.d Phase-Plane for the Foundation Rocking dof (t= 2.5-3 sec)
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Figure 5.7.e Phase-Plane for the Uplift dof (t= 2.5-3 sec, a,(1-e73"))
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Figure 5.7.f Phase-Plane for the Foundation Rocking dof (t= 2.5-3 sec, a,(1-e=3t))
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Figure 5.8 Normalized Base Acceleration History for the Transient Model Tests of
Ref. [29], with Simulated Earthquake Excitation
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Figure 5.9 Critical Buckling Acceleration vs Water Depth (Transient Model Tests
with Simulated Earthquake Excitation [29])
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