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ABSTRACT

The collapse phenomenon of long, thick-walled tubes subjected to axial tension and external
pressure is investigated. A combined experimental and analytic approach is adopted. The

diameter to thickness ratio (D/t) of the tubes studied is in the range 10-40.

A series of collapse tests are conducted using thick-walled, small diameter tubes of two
different materials. Careful measurements of geometrical and material parameters are carried
out before each collapse test. Tension-Pressure collapse envelopes are obtained for tubes of
different D/t and loading paths. Collapse tests involving initially ovalized tubes are also carried

out. The results show that collapse strength is strongly influenced by initial ovality.

A two-dimensional model is used for predicting the collapse strength. The limit point
behavior of a long tube with initial geometric imperfections has been modeled. The tube is
assumed to be under generalized plane strain conditions and the possible variations of material
and geometric parameters along the length are not considered. Hill’s anisotropic plasticity
theory involving a quadratic yield function is used to model the anisotropies in yield shown by
drawn tubes. A power law creep model is employed to assess the effect of primary creep on

collapse strength.

The interaction between collapse pressure and tension is found to depend on both material
and geometric parameters. The yield behavior of the tube material strongly affects the collapse
phenomenon. Initial ovality of the tube is shown to be a very important geometric parameter
that influences collapse strength. The effect of primary creep on collapse is shown to be not

very significant, for the type of materials used (304 stainless steel and 6061-O aluminum).
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Chapter 1

GENERAL INTRODUCTION

1.1. Motivation.

Thick-walled tubular components are often used as structural members in many practical
engineering applications. They appear as heat exchanger components in conventional power
plants and nuclear reactors, as high pressure containers in the chemical industry and as deep
submersibles. In oil well drilling, the drill string itself consists of many lengths of tubes
connected together. Oil casings are tubular structural parts used as protective conduits for the
downhole production machinery while drilling for oil. They are also very widely used in the
exploration and extraction of oil and natural gas in the offshore areas. Very often these tubular
parts are subjected to combined loads which include an effective external pressure loading.
Such loading conditions can lead to the catastrophic collapse of these components called a
plastic instability failure. For developing a better and simpler design process for these
structural parts, it is important to have a better understanding of the collapse phenomenon under

combined loading.

The oil and gas industries are currently involved in increased exploration of the offshore
areas in deeper water. Marine pipelines are widely used in this continuing exploration process
and also for the extraction of oil, natural gas and other minerals. In shallow waters, the most
important parameters in the design of a pipeline are based on optimizing the internal flow and
minimizing the corrosion problems. At greater water depths, the external pressure which
increases linearly with the depth becomes the main concern. These offshore pipelines are
subjected to extreme loading conditions during both their installation and operation. Feasibility
studies conducted by the oil and gas industries [1] have shown acceptable costs for exploration
and extraction at water depths up to 10,000 ft. The design of a pipeline under such severe
conditions is guided by the collapse strength of the pipe under the combined loading of external

pressure and axial tension, or bending.

In Figure 1.1, the conventional pipe laying technique used in water depths up to 3,000 ft., in

which the line is payed into the water in an " S " configuration from a lay barge, is shown. For



water depths above 3,000 ft., another pipe laying method in which the line that leaves the lay
barge takes a " J " configuration as shown in Figure 1.2 is used. Figure 1.3 represents the latest
generation of floating production systems (FPS) and tension leg platforms (TLP), which house
production risers bringing oil and natural gas to the platform from various drill sites on the sea
floor. In all these examples, long strings of line pipe coming down from an installation at sea
surface to the sea floor are shown. It can be clearly seen that the weight of the pipe string
results in an axial tensile load distribution in which it is a maximum at the surface level going
to a minimum at the bottom. The ambient pressure acting on the pipe is proportional to the
water depth. At some intermediate section away from the bottom, depending on the pipe
geometry and specific weight [2], the worst combination of external pressure and tension is
expected to occur. Based on the configuration of the pipe string, certain locations are also
subjected to high bending moments. The movement of the sea level installation with the winds,
currents and waves, further causes small amplitude cycling of the load states on the pipeline,
thus accelerating its deterioration. In such environments, a local collapse pattern can develop at
the weakest location on the line if the loads are large enough. The propagating nature [3-6] of
the collapse at ambient pressures much lower than the initiation pressure makes the problem
more challenging. Collapse results in the flattening of the tube and high circumferential strains
develop along the sides of the tube. This can in turn lead to fracturing of the tube resulting in

severe environmental impacts.

For deep water applications, in order to withstand the higher pressures, tubular structures of
lower diameter to thickness ratio ( D/t ) are required. Thick-walled tubes characterized by low
D/t values exhibit inelastic collapse failure. This study was motivated by the need to develop a
predictive tool for the collapse of thick tubés under the combined loading of axial tension and

external pressure.

1.2. Definition of Collapse.

An ideal, geometrically perfect tube subjected to axial tension and external pressure will
exhibit a bifurcation type instability. At this bifurcation load, the tube response changes from
an axisymmetric mode to a non-axisymmetric mode. It has been shown [7,8] that a thick-

walled tube under external pressure is an imperfection sensitive structure. This sensitivity to



imperfections can be demonstrated [9,10] by a postbuckling analysis of the perfect tube.
Presence of initial geometric imperfections, in the form of wall thickness variations and out-of-
roundness of the tube, changes the response of the tube to a limit point type behavior. This
means that when a load controlled situation exists, the tube will collapse when the loads reach
the limit point value. As the structure is imperfection sensitive, the imperfections lower the
limit load to below the bifurcation load. In the case of a thick-walled tube, this situation is

schematically shown in Figure 1.4.

It was found that the collapse envelope under combined tension and pressure is not very
sensitive to the order in which loads are applied. For an initially imperfect tube, the role of
tension is such that the tube section when subjected to external pressure will undergo larger
non-axisymmetric displacements before reaching a limit pressure of lower value. The extent of
this interaction depends on the material and geometric properties of the tube. This response is
illustrated in Figures 3.2a and 3.2b. These Figures represent the limit point load-displacement
behavior of an initially imperfect tube characterized by a typical set of geometrical and material

parameters observed in the experiments.

1.3. Research Background.

The problem of collapse of thick-walled tubes under external pressure alone has been
extensively studied. The classical result for the buckling of a thin elastic ring, which is
essentially same as a long circular cylinder with no end effects, was developed by Levy [11], in
1884, and by Bryan [12], in 1888, through different approaches. Southwell [13], in 1915,
developed simple expressions for the pressure at which yielding occurs to approximate the
collapse pressure of a geometrically perfect tube. Timoshenko [14], in 1933, included the effect
of imperfections on collapse strength by deriving the pressure at which yielding begins at the
inner wall of an initially ovalized tube, to approximate the collapse pressure. Investigations that
followed [15-17] assessed the importance of parameters such as inelastic material properties and

initial geometric imperfections.

For combined axial tension and pressure loading, some of the earliest experiments were
conducted by Edwards and Miller [18] in 1939. They covered a D/t range of 22 to 11 to

develop an empirical design criterion for oil well casing under combined loading. Their



experimental results applied a loading path of T—>P (see Figure 2.12). They did not measure
the initial geometric imperfections of the specimen. In spite of this, later investigators seem to

have used this data widely in supporting their design criteria for combined loading.

In 1959, Stuiver and Tomalin [19] carried out a group of collapse tests under combined
pressure and axial loads. Their specimens covered a D/t range of 28-23. They used tubes of
nearly perfect geometry obtained by careful machining of their specimen, but did not address
the influence of imperfections on the collapse strength. The experimental results were then used
to check the possibility of using the yield envelope under combined loads as an approximate
collapse envelope. Lubinski [20], in 1975, in a very similar vein, addressed the possibility of
using the yield envelope based on distortional energy theory as the collapse envelope under

combined loading for the design of oil well casings.

An elastic bifurcation analysis, to get the critical loads of a thick tube under the combined
loading of tension, pressure and bending, was developed by Fabian [21] in 1977. Shallow shell
equations were used in the analysis, which took into account the variation of strain through
thickness. The results from the initial postbuckling analysis clearly showed the imperfection

sensitivity of the tubes.

The current approach for the design of casings, line and drill pipes under combined tension
and pressure, as recommended by the American Petroleum Institute (API) [22], defines the yield
envelope as the collapse strength envelope. This may be considered meaningful only in the
limited cases where the collapse strength is proportional to the yield strength. Also, this
procedure is not applicable for design, when axial tensile loads exceeding the yield tension of
the tube are present. Kyogoku et al. [23], in 1981, reported a series of tests on full size
commercial casings and used the results to support the API design equations. Along similar
lines, Tamano et al. [24], in 1982, reported another series of experiments on commercial grade
casings to check the API recommendations. However their test specimen had a length to
diameter ratio of 7, and is not considered long enough to eliminate any end effects on collapse
strength. These test results suggested that, for commercial casings, the API recommended

design formula gives conservative estimates for collapse strength.



Huang and Pattillo [25,26] suggested the use of a tangent modulus approach to obtain the
bifurcation loads. They used thin shell equations to derive an expression for the critical
pressure when axial tension also is present. They noted the difference in collapse envelopes
predicted with the incremental and deformation theories of plasticity. Bifurcation loads
obtained using deformation theory gave better agreement with the experiments. Later, Pattillo
[27] reported a new formulation in which the effect of initial geometric imperfections in the

form of an ovality was included.

1.4. Objective and Scope.

Most of the previous studies on the collapse under combined loads concentrated on
generating empirical equations for design purposes. The simplest way to predict the critical
load of a thick-walled tube is to approximate it with the tube’s bifurcation load. This obviously

implies neglecting the effect of initial geometric imperfections on the collapse strength.

The purpose of the present investigation is to use a combined experimental and analytic
approach to study the collapse phenomenon of thick-walled tubes under external pressure and
axial tension. The diameter to thickness ratio ( D/t ) range studied is 10-40. This D/t range is
also of interest to the oil industry. The possibility of using a simple two dimensional model to
predict the collapse strength is investigated in detail. A series of collapse experiments under
combined tension and external pressure loading were carried out using different materials and
different loading paths. The test data thus obtained were then used to check the accuracy of the
model. An anisotropic material model was implemented for better predictions of the collapse
strength, The deteriorating effect of initial ovality imperfections on collapse strength was
established. The effect of primary creep on the collapse strength was also studied. A simple
model was developed to assess this effect for tube materials that show less dominant creep
characteristics. The model was then used to study the sensitivity of the collapse strength to the

various parameters involved.

A detailed description of the experimental setup and procedures is given in Chapter 2.
Some of the details of the problem formulation and the assumptions involved are given in
Chapter 3. In Chapter 4, the accuracy of the model is assessed by comparing the numerical

predictions with the experimental results. The sensitivity of collapse strength to material



parameters, geometric parameters and residual stresses in the initial configuration is evaluated
using the model. The results of this parametric study are given in Chapter 5. In Chapter 6, the

effect of primary creep on collapse strength is studied.



Chapter 2

COLLAPSE EXPERIMENTS AND EXPERIMENTAL RESULTS

In this chapter, the details of the experimental procedure are described, and the results
obtained are illustrated with tables and figures. Thick-walled tubes of small diameter were used
to prepare the specimens in the collapse tests. The experimental facility developed for these
tests had a pressure rating of 10,000 psi and a tensile load capacity of 20,000 1bs. The setup
allowed very fine control over the loads so that different combinations of axial tension and
pressure for collapse could be tested. The experimental effort consisted of initial ovality
measurements, material property testing and collapse testing. The details are explained in the

following sections.
2.1. Description of Experiments.

2.1.1. Initial Ovality Measurements. The collapse strength of a long tube is strongly
influenced by its initial geometric imperfections, especially its initial ovality. An experimental
rig was therefore developed to measure these initial imperfections with sufficient accuracy. A
photograph of the setup is shown in Figure 2.1. The concept applied in this imperfection
measuring device was developed by Arbocz and Babcock [28,29]. The setup could
accommodate test specimens of up to 45 inches in length and the accuracy of displacement

measurements was within 3x1073 inches (~ 0.001 mm).

A test specimen was first prepared by bonding an appropriate length of the tubing to the end
plugs as shown in Figure 2.9. A schematic of the test specimen is given in Figure 2.10. The
specimen was then mounted between two centers in the setup. A high resolution Linear
Variable Differential Transducer (LVDT) was used for out-of-roundness measurements. Its
spring loaded probe (see Figures 2.1, 2.2) touched the tube surface, as the tube was rotated
about an axis between the two centers. One of the centers was attached to a disk which carried
a tape with black and silver stripes along its circumference. This disk rotated with the tube and

the angular position of the tube relative to some initial fixed axis was determined with the help



of a light emitting diode - photo sensitive diode combination. This diode circuit generated a
short duration square pulse, every time a silver graduation passed by it and triggered the data
acquisition system. The voltage readings corresponding to radial movements of the LVDT
probe were recorded with this setup at 140 points around the circumference. These

measurements were repeated at different axial locations along the specimen.

Referring to Figure 2.2 the data obtained with each circumferential scan could be interpreted

as giving the outer radius of the tube R (6) as a function of the angular position 6.

R®)=RO)+ (V(®©)-V©O)K 2.1

where

R(@©) = Zero setting position of the LVDT probe
V(0) = Voltage output at angular position 6
K = Calibration constant of LVDT (inches (cm)/volt)

The measured data R (8) was then fitted with a Fourier series as

m
R®)=A, + Y (A,sinn 6+ B, cosn 6) . 2.2)

n=1

Since the collapse behavior of long tubes is studied, the most significant imperfection is the
two wave imperfection. Here it is termed ovality and is quantified in two ways by
A," = (D max—D min)/ 2D or by the amplitude of the second harmonic in the fitted Fourier series
A,” =2(A? + B$)V%/D. If ovality has to be quantified in the field, then the first measure
given by A,” is easier to obtain. In the event that the tube section has only a two wave

imperfection, the above two definitions coincide.

The term A ;sin® + B cos0 represents the rigid body part, which is an error in the data for
R (6). This error was due to the axis of rotation of the tube being different from the axis of the
tube. This contribution was removed from R (8) and the true initial deviation from circularity

was obtained. Other errors in the measurements could be minimized by using a pointed probe



and by making sure that it was directed towards the axis of rotation while performing the
measurements. Since these measurements were not used to construct the axial imperfection
profiles of the tube, it was not necessary to establish a reference axis along the length of the
specimen, relative to which the zero reading of the LVDT (for each circumferential scan) could

be obtained.

Figure 2.3 gives a typical case of a measured profile and the deduced true imperfection
profile. It can be seen that in this case the tube section had a predominant three wave
imperfection. These measurements were taken at 5 to 10 locations along the length of each
specimen. The variation of imperfection profile and ovality along the length of the specimen as
observed in a typical case is given in Figure 2.4. In this figure, imperfection profiles at 5
locations along the length of the specimen are given in which the Section O is the tube

midsection and any two successive sections are separated by a distance of 4 inches (10 cm).

In Tables 1-8, the initial ovality measures A,” and A,” for each of the tubes tested are also
given. These values correspond to sections nearest to where the collapse pattern appeared, for
which circumferential scans were taken. It was observed that, in most of the test specimens, the
collapse pattern appeared close to that section which gave the largest initial ovality value.
These measurements showed that the initial ovality of the tubes tested was quite small. The
closeness of the two measures A,” and A,” suggest that the tube section had a predominantly
two wave initial shape. Some of the specimens showed initial shapes corresponding to higher
wave numbers and this is illustrated by differing A, and A,” measures. The data also showed

that the ovality variation along the length on any test specimen was fairly small.

2.1.2. Material Property Testing. Tensile specimens were machined from both ends of
each tube in the lot from the supplier. The setup as shown in Figure 2.5 was used to pull each
specimen up to 3% strain (at a strain rate of ~ 107 per second), and the stress-strain behavior
was recorded. A comparison between results obtained with strain gages (0.09 inch gage length)
and an extensometer (1 inch gage length) on the same specimen is shown in Figure 2.6. At
strain levels below 0.5%, where yielding occurs, the two curves were found to be very close to
each other. At higher strain levels (above 1%), the difference seems to increase. Due to

possible slip of bond between the strain gage and specimen, the data from the extensometer
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should be considered to be more reliable at higher strain levels. This data also showed that the
extensometer could be reliably used for the testing of material properties, especially the yield
behavior, the most important part of the analysis comparison. Once this reliability was

established, most of the stress-strain tests were carried out using the extensometer.

The 304 stainless steel and aluminum 6061-O materials showed a smooth stress-strain
behavior. Each of these experimental curves could be well fitted with a 3 parameter Ramberg-

Osgood relation defined by

-0 21!:—1
E—E{1+7(oy) } 2.3)

The parameters E - Young’s modulus, n - hardening parameter, o, - Ramberg-Osgood yield
stress were obtained from a least square fit. Figures 2.7a and 2.7b present experimental stress-
strain curves with the best Ramberg-Osgood fit. The material properties of the various tubes

tested are listed in Table 9.

For higher strains, well above the 2% - 3% level, a modified fit [16] was used for the 304
stainless steel material. In this modified fit, which is illustrated in Figure 2.8, the Ramberg-
Osgood fit is used up to a strain of 1.5%. Above this 1.5% strain level, the stress-strain curve is
approximated with a straight line which is tangential to the Ramberg-Osgood fit that ends at a

strain of 1.5%. The slope of this straight line part is given by

dc E

de ~ 3n o "7
[1+7(g) J

2.4)

where 6" = 6,159, For higher strains, the modified fit approximates the stress-strain behavior

of the material much better than the Ramberg-Osgood fit.

If the tube material is isotropic then a stress-strain curve obtained from an axial tensile
specimen as described above will completely characterize the material. Very often

manufacturing processes, such as rolling and drawing render the tube anisotropic. This will



-11-

show up as a different yield behavior in the axial and hoop directions. A simple way of
characterizing these anisotropies was developed in Reference 31. In Appendix B, the measuring

and modeling of these anisotropies is described in detail.

2.1.3. Collapse Testing. A series of collapse tests were conducted using seamless, cold
drawn, 304 stainless steel and 6061-O aluminum tubes. Small diameter tubing which covered a
D/t range of 10 to 40 was used for the tests. 304 stainless steel material was chosen because of
its commercial availability and its similarity to the material behavior of typical pipe line grade
steel. The annealed 304 stainless steel that was used showed very high ductility and it was
found to creep at high stress levels. The 6061-O aluminum material was chosen for its relatively
low tendency to creep and its better isotropic characteristics with respect to yielding. These tests
gave a data base for correlation with analysis on the collapse of thick walled pipes under

combined loading.

A picture of the test specimens is given in Figure 2.9, and the schematic of a test specimen
is shown in Figure 2.10. The specimen consisted of an appropriate length of the tubing bonded
to end plugs with high strength epoxy ( such as the CYANAMID BR 38 & BR 95 adhesives ).
This resulted in a length of about 20 times the diameter of free tube between the end plugs.

These end plugs were designed to give proper gripping in applying axial tension to the tubes.

The threaded plug "a" bonded to one end of the tube connected with the pressure chamber
(see Figure 2.10). The plug "b" at the other end had a projecting surface of very fine surface
finish, for sealing purposes. These end plugs slide-fitted into the tubes with sufficient clearance
for making the epoxy joints, and they were reusable. They were separated from the specimen

after the collapse test by heating with a welding torch and burning the epoxy at the joints.

The part of the end plug "b" that projected from the tube had the same diameter as the tube
itself in each specimen. This helped to avoid any axial loading of the tubes through the applied

external pressure.

The test chamber consisted of a thick cylinder with end caps as schematically shown in
Figure 2.11. End cap "A" had internal threads that connected with plug "a". End cap "B" had a

through hole of very fine surface finish and also the grooves for the seals. When assembled
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only the end plug "b" projected out of the pressure chamber through end cap "B". To deal with
the high testing pressures, very close tolerances were provided between plug "b" and end cap
"B". "O" rings with teflon backup rings were used for sealing purposes. Face seals were also

accommodated at the threaded joints between end caps "A" and "B" and the cylinder.

The testing procedure started with careful thickness and diameter measurements of the tube,
before bonding in the end plugs. This was followed by imperfection measurements at 5 to 10
locations along the length of the specimen. The average thickness and diameter values along
with the initial ovalities for each of the tubes tested are also listed in Tables 1-8. A series of
collapse tests which involved two different loading paths were conducted. The loading path in
which the specimen was first subjected to a given axial tension and then pressurized until
collapse is denoted by TP (see Figure 2.12). The other loading path used, consisted of
loading the specimen to a certain external pressure and then increasing the axial tension until
collapse is denoted by P—>T (see Figure 2.12). Some tests using initially ovalized tubes to

study the sensitivity of collapse strength to initial ovality were also carried out.

The experimental setup is schematically represented in Figure 2.13. The pressure chamber
stands vertically in the setup (see Figure 2.14). A hydraulic cylinder fixture was used to pull
the specimen from the top. A 62- Series Moog Servovalve system was used to manipulate the
axial loading. A picture of the servo-hydraulic system is shown in Figure 2.15. A diaphragm
type pump (see Figure 2.16) driven by high pressure air was used to pressurize the chamber. A
synthetic fluid-water mixture was used as the pressurizing fluid to minimize any rusting. The
bleed valve was initially kept open as the fluid was pumped in to remove all air. For tests
involving the loading path P—T, an accumulator was used in series with the pump to keep the

pressure steady (see Figure 2.16).

For collapse tests involving initially ovalized tubes, the specimens were crushed between 2
parallel plates of a press (see Figure 2.17) to induce the initial ovality. The loading plates had a
dimension of about 14 diameters, and the induced ovality on test specimens varied in the range
of 0.05% to 4.0%.
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In the second test series with 6061-O aluminum tubes, strain gages were used to measure
circumferential and axial strains at suitable locations on the specimen. Film type strain gages of
0.25 inch gage length were used for this purpose. A picture of a test specimen with the strain
gages attached is shown in Figure 2.18. The locations for these gages were chosen in
accordance with the initial imperfection profile on the specimen. A coating was applied on the
strain gages for proper insulation from the pressurizing fluid during the collapse test. This
coating had a soft and rubber like consistency, so that its strengthening effect on the tube was
minimal. The pressure chamber was modified for this test series to run the lead wires attached
to the gages from inside the chamber to the outside through a connector to prevent any leakage
during pressurization. Since the strain gage response is sensitive to lateral pressure, it was
calibrated, and a correction was applied to all the strain gage readings. This calibration is given
in Figure 2.19, and it suggests that, for the pressure range of interest, the sensitivity to lateral

pressure of the gages used is small.

Collapse of the tube was characterized by a sudden drop in the pressure. Axial elongation
of the tube during loading was measured with an LVDT. A data acquisition system was used to
monitor and record axial tension, pressure, axial elongation and strain gage readings until
collapse. Results from a typical collapse test are given in Figures 2.20a and 2.20b. The results
of these collapse tests are tabulated in Tables 1-8. The data is also plotted in Figures 4.3-

4.5,4.8-4.9 with appropriate normalization.

2.2. Experimental Results and Discussion.

The collapse strength of a number of tubes under biaxial loading was obtained using the
procedure described in the earlier section. 45 test specimens of 304 stainless steel material,
with a D/t range of 10 to 40 were tested applying the loading path T—P. The testing
procedure was such that further loading was stopped when collapse was detected through a
sudden drop of pressure. This left a local collapse pattern, (see Figures 2.21 and 2.22), which
extended over a length of about 3 to S diameters. It was observed that for most of the specimen
the collapse pattern appeared close to the location which had the maximum initial ovality.
Specimen of lower D/t values tested at very high axial tensile loads, showed no collapse failure

within the load-displacement capability of the test setup. These data points are referred to as
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experimental points with no collapse in Tables 3 and 4. The loads reported in these cases
correspond to the highest ones at which the axial elongation reached the maximum value that
was possible in the setup. Also, the initial ovalities given for these data points are the

maximum values observed along the length of tube.

In the collapse data for 304 stainless steel tubes of D, /t = 18.2, given in Table 3, the
experimental point that represents the no collapse point registered a pressure which is much
higher than the collapse pressures corresponding to slightly lower tensile loads. Other
experimental results obtained in this study as well as the results from the model studies suggest
that for the materials considered, such a substantial increase in pressure withstanding capability
when tension is slightly increased is unreasonable. During the experiments involving high
tensile loads, tubes of low D/t showed a pronounced tendency to elongate axially under
increasing pressure. It is suspected that during this experiment, due to large axial elongation of
the specimen, some interference occurred between the tube part of the specimen with the seals
and the end cap B (see Figures 2.10 and 2.11). This would result in increased frictional
resistance between the specimen and the pressure chamber. If this had in fact happened, the
tube would experience axial unloading with the total tensile load taken by the specimen
remaining the same. With a sufficient reduction in the tensile load on the tube, it would be able

to withstand much higher external pressure.

In a second series of experiments, 13 tests were conducted on initially ovalized tubes of
D,/t =27 and 304 stainless steel. The loading path used was T—P. The specimen were
crushed between two parallel plates in a hydraulic press, to induce the initial ovality. The
results are given in Tables 5,6 and Figures 4.8-4.9. These results clearly show the detrimental
effect of initial ovality on the collapse strength. The initial ovalities reported for the above two
series of experiments correspond to axial locations nearest to where the collapse pattern

appeared, for which circumferential scans were available.

A third set of 7 collapse tests were conducted with 304 stainless steel tubes of D, /t = 27.2
applying the loading path P—T. An accumulator was used in series with the pump to keep the
pressure steady while increasing the axial tension. This resulted in the collapse pattern

extending over the full length of the specimen (see Figure 2.23). The initial ovality reported for
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these tests corresponds to the maximum value observed along the length of the tube. These
tests were carried out to study the effect of loading path on the tension-pressure collapse
envelope. The experimental results for the two loading paths, as well as the theoretical
predictions, show that the effect of load sequence on collapse is not significant. These results

are given in Table 7 and Figures 4.5a, 4.5b.

Another set of experiments with 6061-O aluminum tubes was conducted applying different
loading paths. Since this material had a low yield stress and modulus compared to 304 steel,
the measured collapse pressures were much lower. By using strain gages the strain response of
the specimen at different locations of interest could be measured until collapse. These results
are used to study the circumferential strain (and hence the displacement) behavior with load and
to check how uniformly the specimen is deforming along the length. The load-strain response
thus measured could be used to compare with the predictions from the model (see Figures 4.12
and 4.13). The collapse data for the Aluminum tubes are given in Table 8. In Figures 4.11a and
4.11b, the experimental results for the collapse envelopes for D,/t=12.2 are compared with the

theoretical predictions.

For each long tube in the lot from the supplier, tensile coupons were cut out from either end
of the tube. 4 to 6 stress-strain tests were conducted for each tube. The average values of
material parameters from these stress-strain curves from each tube is termed a material group.
The various material groups are listed in Table 9. This shows how material parameters for cold

drawn tubes of the same material and heat treatment can vary.

Tests were conducted on some of the tubes to characterize the anisotropic parameters. The
details of these test procedures are given in Appendix B. The results of these tests are also

given in Table 9. They show that for cold drawn tubes the anisotropy can be very significant.

All the axial tensile data reported in Tables 1-8 were subjected to a frictional correction.
Figure 2.24 shows a schematic of the setup used to measure the frictional resistance at the seals,
through which the test specimen projected out of the pressure chamber. A certain length of
tube was bonded with end plugs of type "a" (see Figure 2.10) at both ends. The force required

to slide this specimen through the seals at a slow and steady rate was measured for a wide range
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of pressures. The seals used consisted of "O" rings made of a very hard type of rubber and
teflon backup rings. This combined with the very fine gap between the sealing parts allowed
for very little extrusion of the seals under increasing pressure. Hence, the frictional force
measured was found to fluctuate within 10% variation for the range of pressures tested. These
measurements were repeated to verify the range of these fluctuations and finally an average

value of the force measured was applied as a frictional correction.
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Chapter 3

ELASTIC-PLASTIC COLLAPSE: FORMULATION AND PREDICTED RESULTS

The problem studied here is the instability of long tubes under external pressure and axial
tension. For tubes of D/t range 10-40, the collapse strength under biaxial loading is strongly
influenced by the initial geometric imperfections and the yield behavior. A two dimensional
formulation of the problem is given here. This effort is an extension of the previous work done
on the problem of inelastic collapse under external pressure [8,16,30]. The numerical scheme
developed in [30] is used here. Some of the details on the formulation and numerical

implementation are given in Appendix A.

3.1. Problem Formulation.

The analysis models a long tube of mean radius R, and mean wall thickness t, under
external pressure P and axial tension T (see Figure 3.1a). The most significant imperfection for
a long tube which collapses into a two wave mode under load is the two wave imperfection
called the ovality. The imperfection profiles measured, showed a predominant two wave mode

shape on most of the specimens. Hence, numerical results are obtained for a tube of initial

R
geometry which includes an ovality defined by —133 =(1-A’,c0s20) (see Figure 3.1b).

o

However, any initial geometric imperfection of the tube could be included in the numerical

analysis with minor modifications. The tube considered is under generalized plane strain

w,
conditions, and the initial ovality A’, = R—D is not allowed to vary along the length of the
g

tube. The formulation is general enough to model the effect of anisotropic material behavior on
collapse strength. The effect of residual stresses (in the initial configuration of the tube), on the

collapse strength can also be studied with this model.

A principle of virtual work type procedure is applied here to derive the nonlinear
equilibrium equations. These equations are then solved using the Newton-Raphson method.
For a tube with initial geometric imperfections, a limit load type of behavior characterizes the

response. In this case, the equilibrium load-displacement profile is solved using an incremental
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procedure, and the limit load is taken as the critical load. A tube having a perfect initial
geometry would exhibit a bifurcation instability.

3.1.1. Constitutive Relations. To study the collapse behavior of thick tubes with a D/t
range of 10-40, it is important to properly model the inelastic behavior of the material. In
general, the load paths followed by the material points in the tube cross section under biaxial
loading are not proportional. Hence, an incremental method is incorporated to solve the
equilibrium equations which represent a two-dimensional state of stress. Only the axial stress,

o,, and the circumferential stress, Gy, are included, and the radial stresses are neglected.

Very often tube manufacturing processes, such as rolling and drawing, introduce
anisotropies in the tube. These will show up as differing yield behavior in the axial and hoop
directions. A simple way to characterize these anisotropies was developed in Reference 31.
The effect on collapse strength by such anisotropies is modeled with Hill’s anisotropic plasticity
theory. In this theory, the yield function represents an initially anisotropic yield surface

uniformly expanding [32].

In this framework the yield function is given by

12
1 1 1
f(Gij)={03—(1+S_2“§"2‘)0xoe+FGg} = O¢ smax ’ (3.1)
6 r 6
Goo G, . . .
where Sg= and S, = are the anisotropic parameters. O, gy = O, max (€F) is the

ox ox

maximum value of 6, in (4.9), and G, ., is made to go along the uniaxial stress-strain curve in

the axial, (x), direction.

The appropriate definitions for equivalent stress and plastic strain increments [32] are given
by
0 N r2 S 0

11 1 12
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and



-19-

1 of of
P=— | = o
del I [ p dcs,,,,,] 3 ; . 3.3)

An expression for the equivalent plastic strain increment can be obtained from the work

equality o,def = o;;def.

The relation between stress and strain increments is given by

1 AB?2 —v AAB
deg ETH: E THz | (doe
{dex}= > MB 1 42 {dcx} ' G
E HX E HZY

where
A=2<5,¢—(1+L2 12)09
2] r
and
2 1 1
B=—0g-(1+—-—)
sz ° sg s

H is derived from a uniaxial stress-strain curve in the axial ( x-axis ) direction as

do,
B def

T =40}

and
A=0 if f(cij+d6ij)_0emx <0
A=1 if f(cij+d0ij)—ce,max=0
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For the current load step, the stress and strain increments induced are found iteratively by
applying the equation (3.4). In applying this constitutive model, one needs to know the stress-
strain behavior of the tube in the axial direction along with the anisotropic parameters Sg and S,
to completely characterize the tube material. By giving a value of unity to Sg and S, , the above

plasticity model reduces to the classical J, theory with isotropic hardening.

Experiments to characterize the anisotropic parameters were carried out for some of the
tubes. Some of the details on the experimental procedure and the interpretation of the data are
given in Appendix B. The results from these tests ( see Table 9 ) showed that the values for the

parameters Sg and S, are very nearly equal.

3.2. Numerical Results.

It has been shown that a two-dimensional model with an anisotropic formulation is feasible.
The experimental data base, obtained with procedures explained in the previous chapters,
verifies the suitability of the analysis. The radial stresses and shear strains in the tube cross
section are neglected in the formulation. These are the usual shell theory assumptions, and it
has been shown that this results in relatively small errors. For example, it is shown in
Reference [33] that the effect of neglecting shear strains on the collapse of an elastic ring under

external pressure is less than 5% for D/t as small as 10.

The response of a tube of perfect circular section is characterized by a bifurcation point.
Presence of initial geometric imperfections in the form of thickness variations and initial ovality
change the response to a limit load type of behavior. The effect of thickness variations up to
10% of mean wall thickness on the collapse strength (under external pressure) is shown to be
insignificant in Reference 30. The thickness variations measured on the test specimen were less
than 5% of the mean wall thickness. The measured initial imperfection profiles show that most
of the specimens have a predominant two wave mode shape. Hence, numerical results were
obtained, considering only the initial ovality imperfections. Collapse strength is found to be
highly influenced by the initial ovality of the tube, and the analysis is capable of modeling this
effect. In Figures 3.2a and 3.2b, the limit point load-displacement behavior as predicted by this
model for a typical case is given. These figures also illustrate the interaction between axial

tension and pressure, the extent of which depends on the material and geometric properties of
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the tube.

The variations of geometric and material properties along the axial direction are not
considered in this analysis. For a long string of tubing sitting on the ocean floor, a two
dimensional formulation based on the assumption of generalized plane strain conditions seems
to be very reasonable. In chapter 5, an assessment of the importance of various material and

geometric parameters is given.
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Chapter 4

COMPARISON OF EXPERIMENTAL RESULTS AND NUMERICAL PREDICTIONS

The solution procedure described in the previous chapter is used to predict the collapse
strength, for correlation with the experimental results. For convenience, the experimental
results are divided into seven groups. For each of these groups, analytic predictions based on
average material and geometric parameters were obtained. For those groups of tests for which
no anisotropic measurements were carried out, an average value was assumed for the
anisotropic parameters (Sg =S, = 0.85) to get the anisotropic predictions. In Figures 4.1-4.5,
4.8-4.9 and 4.11, predictions based on isotropic and anisotropic material behavior are correlated
with experimental results. The material and geometric parameters used for the predictions are
referred to by a group number (S1-S8) in these figures. These eight parameter groups used in
the predictions are listed in Table 10. The anisotropic parameters used to obtain these

predictions are given in the figures.

In Figures 4.1-4.4, results for the loading path T—P for four different D,/t (304 steel) are
given. In spite of using average material and geometric parameters, there is good agreement
between the predicted and experimental collapse envelopes. Predictions for the tension-pressure
collapse envelopes, based on the anisotropic formulation, are in better agreement with the
experimental results. The 304 stainless steel material was found to creep during the experiments
in which the loads were high enough to yield the material. Tubes of D,/t values 18.2 and 12.2
showed no experimental collapse at high tensile loads within the displacement capability of the
test setup. The agreement between experimental and predicted axial strain values at collapse
was found to be very good for higher D,/t tubes. For tubes of lower D,/t, experimentally
obtained axial strains were found to be higher than the predictions. Some of this discrepancy
could be attributed to the creep behavior shown by the 304 steel, and this has been established
through a model study in Chapter 6.

Figures 4.2a and 4.3a give the tension-pressure collapse results for D,/r=24.5 and

D,/t=18.2. It is observed that at higher axial loads, (above T,./T,” =0.9 for D,/t=24.5 in
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Figure 4.2a and above T./T,”=0.8 for D,/t=18.2 in Figure 4.3a), experimental collapse
pressures are not significantly affected by increasing the axial tension. The theoretical
predictions given in Figures 4.2a and 4.3a do not show such a flat collapse pressure-tension
behavior at higher axial loads. These predictions are obtained by using Ramberg-Osgood
representation for the stress-strain behavior of the material. From Figure 2.8, it can be seen that
the Ramberg-Osgood fit does not give a good approximation of the stress-strain behavior for
304 steel at higher strains. The modified fit given in Figure 2.8 approximates the stress-strain
behavior better than the Ramberg-Osgood fit at higher strains. Hence, predictions for tension-
collapse pressure interaction curves were obtained with the modified fit representation of the
stress-strain behavior. In Figure 4.2¢c, the experimental results compared with predictions based
on Ramberg-Osgood fit and Modified fit representations for the stress-strain curve are shown. It
is observed that, (see Figure 4.2c), the tension-pressure collapse envelope predicted with the
modified fit follows the shape of the experimental profile better. These results also suggest that
the shape of the tension-collapse pressure profiles are very sensitive to the shape of the stress-

strain curves.

In Figures 4.5a, 4.5b, results for the loading path P—>T for a D,/t = 27.2 (304 steel) are
given. Predictions given in these figures are based on average material and geometric properties
of the tubes. Predicted tension-pressure collapse envelope based on the measured anisotropies
compares better with the experiments (see Figure 4.5a). Experimental results correlated with
predictions based on the two loading paths are given in Figures 4.6, 4.7. The experimental
results given in these plots are obtained from specimens which had initial ovalities in the range
0.0002-0.004 (see Tables 3, 7). These results show that, for tubes of lower initial ovalities,
collapse envelopes are hardly affected by changing the loading paths.

For the two groups of tests involving ovalized tubes (304 steel), the predictions compared
with the experimental results (given in Tables S5, 6) are shown in Figures 4.8-4.9. Collapse
pressure predictions based on anisotropic material behavior are found to be very good (see
Figures 4.8a, 4.9b). The agreement shows that the high sensitivity of the collapse strength to
imperfections is modeled reliably by this analysis. From the Figures 4.8a and 4.9a, one can see

that an ovality of 1% reduces the collapse strength by 40% for both high and low axial tensile
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loads tested.

Initial studies, using a constitutive model which can handle different values for S and S,
showed that collapse strength is more sensitive to Sg than S,. It can be noted from Table 9 that
the values measured for S¢ and S, are either equal or very nearly equal. In the predictions for
the experiments involving those material groups with slightly differing Sq4 and S,, it was

assumed that S, was equal to the measured S ¢ value.

An assessment of the current API design formula for collapse strength under combined
pressure and tension is given in Figure 4.10. The tension-pressure collapse envelope
represented by this formula consists of a polynomial fit between the lowest predictable collapse
pressure and the yield tension. For clarity, a value for collapse pressure in the API formula was
assumed to be the basic collapse pressure (zero axial tension) from the model. Figure 4.10

clearly illustrates how this API estimate becomes conservative at higher tensile loads.

Experimental results for 6061-O aluminum tubes are given in Table 8 and Figures 4.11-
4.13. In Figures 4.11a and 4.11b, the correlation between experimental collapse envelope and
predictions based on the two loading paths is given. The tension-pressure collapse profiles
given in Figure 4.11a support the earlier conclusion that the effect of load sequence on collapse
is not very significant. The agreement between experimental and predicted axial strain response
at collapse for 6061-O tubes of D,/t=12.2 is found to be good (see Figure 4.11b). A similar
comparison for 304 steel tubes of D,/t=12.2 shows a large discrepancy between experimental
and predicted axial strain response at collapse (see Figure 4.4b). The improved agreement
between experimental and predicted tension-axial strain at collapse profiles (see Figure 4.11b)
for 6061-O tubes of D, /t=12.2 is attributed to the relatively low tendency of 6061-O material to

creep.

The pressure-hoop strain response obtained in two cases is given in Figures 4.12 and 4.13.
In the first case, results for a 6061-O tube of D ¢/t=21.4 that showed very small variations of the
imperfection profiles along the length are given. In the second case, a 6061-O tube of
D,/t=12.2 that showed a relatively large variation of the imperfection profile along the length is

chosen to illustrate the pressure-hoop strain results. The strain measurements were obtained
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using strain gages of gage length 0.25 inches.

The following designation for the locations on the tube surface is chosen to better represent
the results. Referring to Figure 3.1b, the location corresponding to angle 6 = 90° or 6 = 270° is
denoted by 6p,,x. The location corresponding to 6 = 0° or 6 = 180° is denoted by 0,,;,. These
two locations, 0,,,, and 0.,;,, represent the circumferential points of interest in the hoop strains-
pressure measurements. For the geometry of interest, a local collapse pattern (see Figure 2.22)
extends over a length of 3-4 diameters (4-5 inches). The axial location corresponding to the
middle section of a local collapse pattern is denoted by "L". A location which is "x" inches to
one side of "L", along the length of the tube is designated by "L+x". A point "x" inches to the
other side of "L" is denoted by "L-x".

In Figures 4.12a, the comparison between measured and predicted hoop strain-pressure
response at axial location "L" and circumferential locations 6,,, and 0., for a tube of
D,/t=21.4 is given. For this tube of D,/t=21.4, a well defined limit point type of pressure-hoop
strain behavior could not be measured due to some problems with data acquisition. The
agreement between measured and predicted response is reasonable, with the model over
predicting the collapse pressure by more than 30% (see Figure 4.12a). In Figure 4.12b, the
strain response for different axial locations at the circumferential position 6, is given in
comparison with the theoretical prediction. The initial ovality measured at each of the axial
locations is also given in Figure 4.12b. It is observed that (see Figure 4.12b) the variation in
the initial ovality along the axial direction is negligible. The agreement between the measured

hoop strain-pressure response at different axial locations is good (see Figure 4.12b).

In Figure 4.13a, the measured hoop strain-pressure response for axial location "L" and
circumferential points 0,,,, and 0, for a tube of D,/t=12.2, is compared with the predictions.
The measured strain response given in Figure 4.12a clearly illustrates the limit point type of
behavior shown by initially imperfect tubes. Measured strain response for different axial
locations at the circumferential position 0., is given in comparison with the theoretical
prediction in Figure 4.13b. The initial ovalities corresponding to different axial locations
reported in Figure 4.13b suggest the relatively larger variation of the initial imperfection

profiles along the length of the tube. The measured strain responses at different axial locations
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(see Figure 4.13b) suggest that the pressure-hoop strain response is very sensitive to the initial
imperfection profile. These results (see Figures 4.12-4.13) also suggest that for a tube of
relatively small variation of initial imperfection profiles along the length the assumption
invoked in the two-dimensional model, that the tube ovalizes uniformly under the action of the

loads, is reasonable.



-27-

Chapter §

PARAMETRIC STUDY

The solution procedure that was developed and the various assumptions that were involved
are described in detail in Chapter 3. In this section, a parametric study is conducted to establish
the sensitivity of collapse strength to various material and geometric parameters. A tube of

D,/t=18.2 was chosen for obtaining the numerical results.

5.1. Initial Ovality.

Collapse strength is found to be highly sensitive to initial geometric imperfections of the
form of an ovality. Load-displacement responses under combined loading for different initial
ovalities are given in Figures 5.1a, 5.1b. In Figure 5.1a, the pressure-displacement response for
a tube of D,/t = 18.2, under a loading path of T—P is shown. The tension-displacement
response of the same tube for a loading path of P —T is given in Figure 5.1b. These Figures
illustrate how the limit load (which represents the collapse strength) is lowered when the initial

ovality imperfection is increased.

For example, one can see from Figure S.1a that the limit pressure is reduced by 25% when
the initial ovality is increased from 0.0008 to 0.01. For a tube of D,/t = 18.2, under the loading
path T—P, the collapse pressure-initial ovality dependence is illustrated in Figure 5.2. The
results, plotted in Figure 5.2, clearly show the detrimental effect of initial ovality on collapse
strength under combined loading. These results also suggest that the rate at which collapse
pressure reduces with initial ovality ( slope of the collapse pressure-ovality curve ) decreases
with increasing initial ovality. From the Figure 5.2, one can see that for low initial ovality
imperfections ( for A,” less than 0.005 ) this rate is higher at higher axial tension. For higher
initial ovality imperfections ( for A,” above 0.01 ), this rate is lower at higher axial tension.

The results shown in Figures 4.8a and 4.9a for tubes of D,/t=27, also suggest similar behavior.

The sensitivity of collapse strength to initial ovality imperfections depends also on the

geometric parameter D/t. Predicted collapse pressures ( T=0 ) for tubes from a range of D/t
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values for 3 different values of initial ovalities are plotted in Figure 5.3. These results show
that thinner tubes are more sensitive to initial ovality imperfections than thicker tubes in the
D,/t range 10-40. For example, one can observe in Figure 5.2 that by increasing the ovality
from 0.0008 to 0.03 the collapse pressure for a tube of D,/t =40 is reduced by 51%. Whereas
for a tube of D,/t=18.2 and same material properties the collapse pressure is reduced only by
40%.

5.2. Material Parameters.

Collapse strengths are obtained by varying the material parameters n - the hardening
parameter, ¢’, - the yield stress and Sg, S, - the anisotropic parameters. Stress-Strain Curves
as represented by the Ramberg-Osgood Fit for three different values ( n=5.0, 10.0, 40.0 ) of the
hardening parameters are given in Figure 5.4. Stress-Strain representation for n=5.0 in the
Figure 5.4, can be be interpreted as the behavior of a brittle material. On the other hand, the
curve for n=40.0 typically stands for a very ductile material. Collapse pressures ( T=0 ) for
these three stress-strain curves for a range of D/t values are plotted in Figure 5.5. For clarity,
the collapse pressures are plotted in their absolute values (psi). It is observed ( see Figure 5.5 )
that collapse pressures for relatively thinner tubes (D, /t above 20) are not significantly affected
by chosing these three stress-strain representations. Relatively thicker tubes (D,/t below 20)
are more affected by this choice , with the stress-strain represented by n=5.0 giving a higher
collapse pressure. In Figure 5.6, tension-pressure collapse envelopes for the three different n
values are given. Absolute values of the collapse pressures are used in this plot. These results
illustrate how the collapse envelope is affected by the shape of the stress-strain curves. From
Figure 5.6, one can observe that by having a material of high hardening parameter collapse

strength is more affected by axial tension.

For thicker tubes, ¢’,, the yield stress, tumns out to be the most important material
parameter. Stress-Strain curves for three different yield stresses are shown in Figure 5.7.
Predicted collapse pressures for these three different stress-strain behaviors , for a range of D/,
are plotted in Figure 5.8. These results show that collapse strength of thicker tubes are more
affected by changing the yield stress. The effect of varying the yield stress on the tension-

pressure collapse envelope is illustrated in Figure 5.9.
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The constitutive model used is the Hill’s anisotropic plasticity theory. In this model,
anisotropy is characterized by two parameters Sg and S,. By giving a value of unity to S¢ and
S, , the above plasticity model reduces to the classical J, theory with isotropic hardening.
Collapse pressures for a range of D /¢, for three sets of Sg= S, values are given in Figure 5.10.
These results suggest that by changing the anisotropic parameters which effectively changes the
yield stress collapse strength of thicker tubes are more affected. Predicted tension-pressure
collapse envelopes for three sets of S¢= S, values are plotted in Figure 5.11. Figure 5.12

illustrates the sensitivity of collapse pressure to Sg = S, values.

5.3. Residual Stresses.

Manufacturing processes which do not involve complete annealing leave residual stresses in
the tube. If a small length of the tube is taken and cut open axially, the presence of residual
stresses will show up as an opening or closing up tendency of the tube. The exact nature of the

residual stress distribution depends on the type of manufacturing process involved.

A parametric study was conducted assuming the elasticity solution of pure bending of a

curved bar [34] for the residual stress distribution. The hoop stress distribution is given by

RR? R;
Co=—4k | — ———In(=) + RAn(L) + RAN(—) +R>—R? | (5.1)
r? R; R r

where R;<r <R,R, = R~-t/2 and k is a constant.
The maximum value of 64 appears on the tube inner wall (r=R;) given by

O =— 4kR? [(75—)2 - 2(%—)2 m(%) -1 J , G-2)

O is referred to as the bending residual stress at the tube inner wall. In the parametric study,
oy is varied, and the stress distribution is obtained from the above equations. In the solution

procedure, these are treated as the initial stresses in the tube cross section.

Collapse stress sensitivity to og for different D/t is well illustrated by Figure 5.13. These

results suggest that for tubes of lower D/t values, the effect of residual stresses is insignificant.
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In Figures 5.14 and 5.15, tension-pressure collapse envelopes predicted by including residual
stresses are given. They (see Figures 5.14, 5.15) show that the effect of including residual

stresses becomes negligible at higher tensile loads.

5.4. Loading Path.

For tubes of lower initial ovalities considered, changing the loading path had little effect on
the collapse envelope. The collapse envelope obtained for the loading path P—T seems to fall
below the one for the load path T—P. This difference is illustrated by the results in Figures
4.6,4,7 and 4.11.

5.5. Other Parameters.

Material and geometric parameters which are not considered in the above sections have
negligible influence on the collapse strength. Thickness variations up to 10% of the mean wall
thickness are shown to have negligible effect on collapse strength under external pressure [30].
For the D/t range of 10 to 40 considered, collapse occurs in the post yield region of the
material, and the effect of varying E, the Young’s modulus, becomes less pronounced towards
the lower D/t range. The effect of creep behavior of the tube material on the collapse strength
is addressed in detail in Chapter 6. In essence, the effect of primary creep at room temperature

on collapse strength is shown to be not very significant for the type of materials used.
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Chapter 6

AN ASSESSMENT OF THE EFFECT OF PRIMARY CREEP ON COLLAPSE

Collapse of a long and thick-walled tube subjected to external pressure and axial tension,
made of a material that shows elastic-plastic and primary creep behavior is addressed in this
chapter. Elastic-plastic behavior is modeled with the classical J, incremental theory of
plasticity. An equation of state approach with a power law is used to model the primary creep.
A subincremental scheme has been adopted for the proper modeling of the primary creep
behavior. The initial strain method is used in the numerical implementation of the creep

behavior.

6.1. Introduction.

Many structural components are made of materials that show time dependent load-
displacement relationship under service conditions. For most of the metals, this behavior
invariably shows up at higher temperatures. Creep is a generic term that stands for this time
dependence of load-displacement relationship shown by the material in a deformed body, and
extensive investigations have been carried out in order to better understand and predict creep
behavior. It has been realized [35] that, depending on the material, a different mechanism may

be responsible for the creep behavior.

Very often it becomes necessary to carry out creep calculations, of structural components to
make sure that they are failsafe in the expected service period. In the case of a long tube with
initial imperfections under external pressure and tension, creep will result in increasing its non-
axisymmetric deflection or ovalization with time. The objective of the following formulation is
to assess the effect of primary creep behavior on the collapse strength or the load carrying

capacity of the tube.

Many creep theories are in use today, and they have been reviewed by many authors: for
example, Rabotnov’s assessment of various creep theories [36], Nickell's survey [37] on the

implementation of creep models in some of the widely used numerical codes, and Hoff’s survey
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[38] on the creep buckling of plates and shells. Many of the investigations in the literature on
creep buckling address the problem of columns, plates and shells under axial compressive

loading.

Hoff et al. [39] also studied the collapse of a thin-walled tube under external pressure. They
modeled a shell of sandwich construction with initial imperfections. Their results showed
growth of ovalization of the shell with time until collapse occurs after a finite time designated
as the critical time. By modeling only the secondary ( steady state ) creep behavior, a relatively
simple scheme to obtain the critical time is obtained. Some observations on the effect of initial

imperfections in the form of an ovality on the critical time are also presented in Reference 39.

Bushnell [40] has implemented a scheme to analyze shells of revolution involving plasticity
and creep behavior in a computer program named BOSOR. Some of his suggestions have been

followed in the following formulation.
6.2. Creep Formulation.

6.2.1. Creep Law. An equation of state approach in which the creep strains are represented
by a power law, as shown in equation (6.1), is adopted to model [40] the creep behavior. The
coefficients A, m and n in the equation can be obtained through constant stress creep tests or by

constant total strain relaxation tests on uniaxial specimens.

eg=Aoc)t 6.1)

where €/ is the equivalent creep strain as defined in equation (6.2) and ¢z, the effective time.

12
g = [% 37 Eicj] . (6.2)

6.2.2. Flow Rule. For relating to multiaxial states of stresses and creep strains, a flow rule
very similar to the ones in plasticity theory is applied here. A yield locus, f (c;;), associated
with the J, invariant, as given in equation (6.4), is assumed here, and the creep strain rate at
any instant is taken to be normal to this yield locus. The normal to the above yield locus

(equation 6.6) is proportional to the deviatoric stresses, and this results in modeling the creep
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strains as incompressible. The definition for the J, invariant is given by

1
.12=5 S[j Sij . (63)
By simplifying the expression for J,, the yield locus and the equivalent stress are given by

12
f (6)=(3 Jz>”2={of—o, O +o§} . (6.4)

Once the equivalent creep strain rate is known, its components can be obtained as follows:

S,j = 8: n; ’ (6.5)

where n;; is the unit normal to the yield locus f (c;;) given by

172
=Y [df df] . (6.6)

/" doy; Opn Opn

6.2.3. Hardening law. The instantaneous creep strain rates are related to the stress states
through a hardening rule. Extensive studies on creep behavior in metals {36] have led to the
development of the two simple hardening models, namely the strain hardening model and the
time hardening model. In the strain hardening model, for isothermal cases, the creep strain rate

at any instant is given by a function of the stress, G, , and the accumulated creep strain, €£.

e.=f(0,,&) . 6.7)
This is very similar to the hardening laws that are used in the plasticity theories. The
accumulated creep strain can be considered as the strain hardening parameter.

In the time hardening model, creep strain rate is given by a function of the stress, G,, and

time, ¢.
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eE=f(0,.1) . (6.8)

Existing results [37,38] suggest that the strain hardening model is better suited than the time
hardening model for modeling creep in metals. The time hardening model is shown [37,38] to
be good for modeling steady state ( secondary ) creep, and its functional form makes the
numerical implementation very convenient. In this formulation, the strain hardening model
modified [40] with an element of the time hardening approach is used. This modification made
the numerical implementation more convenient, and its effect on the accuracy of the strain
hardening model can be made minimal. In the subsection 6.2.6, the details of implementing

this modified approach are given.

6.2.4. Adequacy of the above creep model. It has been shown [37,38] that, for metals,
strain hardening theory performs better than other models in predicting both creep and
relaxation experimental results as well as tests under step changes in stress. But, predictions
based on strain hardening theory showed increasing deviation from experimental results when
considerable plastic deformation occurred. This model, without proper modifications, is also
not suitable if total reverse loading occurs. However, the agreement between experimental
results and the predictions based on time independent constitutive theory, as described in the
earlier chapters, suggest that the effect of creep on collapse strength is not very significant.
This prompted the use of a simple creep law to model the less dominant creep behavior shown
by materials such as 304 stainless steel for assessing the magnitude of the influence of creep.
The results from this model could be seen as a first order estimate for the effect of creep on
collapse strength. If the effect appeared to be large, an analysis with a more precise creep law

would be essential.

6.2.5. Subincremental Scheme. Proper modeling of primary creep requires the use of very
small time steps. If the timestep, At, prescribed is found to be large, it is subdivided into

smaller timesteps, dt’, through an iterative scheme,

Ar=3 st . (6.9)

Each subincrement is chosen in such a way that it results in a change in equivalent stress and
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total strain within a certain prescribed limit as given below.

do!
— < Kk° (6.10)
ol
and
del < K& (6.11)

where 6~ is the equivalent stress at the material point corresponding to the previous time
step (i—1), do! and de; are the changes in the equivalent stress and equivalent creep strain
during the current time subincrement, dr‘. The limit values, K® and K¢, are obtained through
numerical convergence studies. In the examples presented in this section, these values were K °
= 0.01-0.02 and K¢ = 0.0002-0.0005. A subincremental procedure, described as above, leads to
a large number of iterations to satisfy the material behavior and thereby makes the method more

reliable.

6.2.6. Numerical Procedure. In this framework, the incremental change in total strain at
any material point during an interval dt’ consists of three components, namely the elastic, the

plastic and the creep parts.

del = (ded) +(deP) +(ded) . (6.12)

The plastic part is modeled with the associated J, incremental theory with isotropic hardening

and the creep part is modeled with an initial strain method as described below.

Let dr' be a subincrement chosen at a material point where the stress and the accumulated
creep strain corresponding to the previous time step (i-1) are 6~ and (€£)“~". From equation

(6.1) for the creep law, the value for the effective time, 2,8V, can be obtained as

1/
€ |

—_— 6.13
A (@fy" ©1

11 =
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Since ¢, is obtained from the accumulated creep strain, €/, it can be considered as the strain
hardening parameter. During the time subincrement, dr’, the equivalent stress and creep strain

at the material point change to their new values as defined below.

ol = ol + do} . (6.14a)
€)' = €Y + @edy . (6.14b)

It is assumed that the creep strain increment, (d ee“)i , during the interval dr’ can be obtained
ol + ol

from a constant stress creep curve corresponding to (%). This procedure is illustrated

in Figure 6.1. Using the creep law, in equation (6.1), and the hardening rule, the creep strain

increment could be written as

i @i-n1" n
S+ - a0y gi 1" _ [ ,a-n)"
)+ dt t, . (6.15)
J

(def = A >

The use of an effective time, ¢, , based on the accumulated creep strain in equation (6.15) shows
the strain hardening approach adopted in this procedure. However, the way in which the time
increment, dr’, has been used, in equation (6.15), to define the creep strain increment illustrates
the modification on the strain hardening method with an element of the time hardening law.
This modification helps to define the creep strain increment explicitly and makes the numerical
implementation convenient. It can be observed that (see Figure 6.1) by using a time
subincrement that complies with the conditions (6.10) and (6.11) and is therefore small, the

hardening law applied in equation (6.15) becomes closer to a strain hardening law.

Creep strains are implemented through an initial strain method. The creep strain rate at any
instant depends on the stresses at the material point. At the beginning of each iteration for the
interval dt’, an approximate value for the creep strain increment can be obtained from equation

(6.15) using the stress G/.
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6.2.7. Load-Time History. In practice, the loads of external pressure and tension are
gradually applied on the tube reaching their final values after a certain period of time. The
structure is expected to deform, exhibiting elastic, plastic and creep behavior during this period.
Numerical results were obtained with the following load-time history formulation. The loads
were first applied on the structure instantaneously without invoking any inertial effects . After
application, the loads were kept constant and the structure was allowed to creep for a time
period of interest, t. This load-time history was illustrated in Figure 6.2. Even though any
load-time history could be simulated in this numerical scheme, this particular time history is
used for its convenience in representing the results. The results using this time history are

expected to predict a larger effect of creep on collapse strength than will actually occur.

6.2.8. Collapse Criterion. The response of a tube with initial imperfections shows a load-
displacement behavior with a limit point. Loads which consist of pressure and tension are
applied to the tube based on the time history as described above. In Figure 6.3, the graphical
representation of the equilibrium load-displacement curves with limit points is given. In these
plots, the load A axis represents external pressure or pressure and tension and the displacement,

d, is a measure of the non-axisymmetric deformation such as ovalization.

In Figure 6.3, the curve denoted by O A, B represents the load-deflection behavior of the
tube without creep. The load A, corresponding to the limit point B is the prediction for the
collapse strength if no creep exists. If the tube exhibits creep behavior when subjected to a
load-time history as described above, then the curve O Ay B represents the instantaneous (
time t=0 ) response of the structure. For a load A (see Figure 6.3), the displacement
corresponding to point A gives the instantaneous response. If the structure is left to creep for a
period of 7, with loads held at A, the displacement changes to a value corresponding to the point
A.. Now the load A can be varied and the load-deflection curve O A, B, is constructed. This
curve O A, B, is interpreted as the equilibrium load-displacement behavior of the tube

corresponding to time ¢,.

For a load A (see Figure 6.3), the tube will collapse at time ¢, if the point A, happens to be

a limit point characterized by the slope of the load-displacement curve going to zero.
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d\
— =0 . .
45 (6.16)
It can be seen that by gradually increasing the load A to a value such as A, the corresponding
equilibrium point B, becomes a limit point satisfying condition (6.16). The load A, is defined
as the collapse load of the tube corresponding to time z.. A, can also be interpreted as either
the minimum load that should be put on the structure so that it just collapses by time ¢, or the

maximum load the structure can carry so that it collapses just after time ..

6.3. Numerical Predictions.

In the earlier chapters, results from a series of experiments with 304 stainless steel tubes
were discussed. During the experiments, this material was found to creep especially at loads
close to yield loads, prompting collapse strength predictions for a creep model using creep
properties of 304 stainless steel tubes. Experimental results reported by Krempl [41] on the
creep behavior of 304 steels at room temperature were used. The coefficients of the power law

for creep were obtained through a least square fit on these experimental results.

The equilibrium equations are obtained in the same way as described in the earlier chapters
using the principle of virtual work method. The tube is assumed to be under generalized plane
strain conditions, showing uniform ovalization under the action of the loads. The difference in
the numerical procedure from the previous sections is in the constitutive part. Once the
geometry and the material properties are known, collapse loads corresponding to a suitable time

1., can be obtained according to the procedure outlined in section (6.2.8).

Load-deflection response for a tube of D, /t = 24.5 under external pressure { T=0 ) is given
in Figure 6.4. The equilibrium curves for time periods ¢, = 60 and 300 seconds are given in
this figure in comparison with the no creep equilibrium ( ¢, = 0 ) response. These equilibrium
curves clearly illustrate, how the limit point pressure shifts with the inclusion of creep. The
corresponding pressure-axial strain response given in Figure 6.5 shows, how the axial strain at
collapse increases when creep is included. The effect of creep on predicted tension-pressure
collapse envelope is shown in Figure 6.6 for this tube of D,/t = 24.5. These results show that
the effect of creep on collapse strength is not very significant, and that this effect becomes

negligible at higher tensile loads.
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Chapter 7

DISCUSSION AND CONCLUSIONS

The results from a combined experimental and analytical study on the collapse strength of
thick tubes under combined loading are presented here. Collapse tests involved tubes of D/t
range 10 to 40. Tension-pressure collapse envelopes were obtained for different loading paths.
Collapse tests involving initially ovalized tubes were also carried out. The analytic tool
developed models a long tube under generalized plane strain conditions. A suitable plasticity
model and nonlinear kinematic relations were applied in the formulation. For a tube having
initial geometric imperfections, the limit point load displacement response is solved, the limit

loads being the collapse loads.

The analytic results obtained were correlated with the experimental results. The analysis
was also used to conduct a parametric study and assess the collapse load sensitivity to various

parameters. The main conclusions of the study are as follows:

1. Accurate prediction of the tension-pressure collapse envelope depends on how well the
material and geometric parameters are measured. Presence of axial tension reduces the
collapse pressure. The extent of this reduction of collapse pressure by tension depends
strongly on the stress-strain behavior of the tube material. Tubes of lower D/t tested at
high axial loads, show no collapse failure within the axial displacement capability of the

test setup.

2. The study conducted with tubes of low initial ovalities shows that changing the loading

sequence has very little effect on the tension-pressure collapse envelope.

3. For tubes of lower D/t, collapse occurs after the tube has deformed well into the plastic
regime. Results show the yield stress of the tube material to be the most important
material parameter. Characterizing any anisotropy in material yielding that is present

becomes important for thicker tubes.
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Initial ovality is a very important geometric parameter which reduces the collapse

strength. The analysis also demonstrates the high sensitivity to initial ovality.

The analysis shows that residual stresses can affect the collapse strength of higher D/t

tubes. Higher tensile loads reduce this effect on collapse strength.

Effect of primary creep on collapse strength is not very significant for the type of

materials considered. Higher tensile loads reduce this effect.
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Appendix A

PROBLEM FORMULATION AND NUMERICAL IMPLEMENTATION

A two dimensional formulation of the elastic-plastic collapse problem is given. The
numerical scheme developed by Yeh and Kyriakides [30] is applied with appropriate
modifications. The initial geometry of the tube considered includes an ovality, and it is defined
by Rg=R, (1 — A’,cos20) (see Figure 3.1b). The tube is assumed to be under generalized
plane strain, ovalizing uniformly along the length under the action of the loads. The equilibrium
equations are derived by applying the principle of virtual work method. These nonlinear
equations are solved using an incremental procedure in which the Newton-Raphson method is

applied.

A.l. Kinematics.

A small strain large deflection theory is adopted in the formulation, and this gives the
capability to compute the postbuckling response, involving large deflections. Shear
deformations are neglected by applying the Kirchoff assumption of plane sections through the
thickness remain plane. The tube cross section is allowed to develop membrane strain, e. The

strain-displacement relations used [42] are given by

& =¢e+z K (A.1a)
and
& =€ , (A.1b)
where
vi+w 1 vidw, 1 v—w',
= -+ — (— + = (— R
e(Ro)z(R,,)z(Ro)
. v’ |2 (A2)
K. =2= S 11— X2y ,
s ( R02 ) { ( Ro ) }
(= QQ v and w are displacement variables, and z is the through thickness coordinate as

29
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shown in Figure 3.1a.

A.2. Principle of Virtual Work.

The virtual work relation used in its incremental form is given by

[(s+o)eav-w=0 , (A.3)
|4

where (') stands for increment, and ¢ and € are the stress and strain tensors. The first term,
which is an integral over the tube cross section, represents the increment in the strain energy.

The second term, W, stands for the incremental work done by the external forces.

For the problem of a long tube subjected to external pressure and axial loading, this
equation reduces to the following expression. Hence, for a segment of unit length applying the

symmetry about the line through 6 = 0 and 8 = &t (see Figure 3.1b),

T t/2 . .
2R0J J (Cge; + 0, €, ) dzdO

0 -2

_— w o v W v w

- B - e )
+PR,,£ (4t g )W+ (= 5 )V = GG W'+ (50" | a8
T (2 f .
—2R,,£ _,I,Z(MRot)e‘ dzd0=0 (A4)

where

6=6+6 P=P+P T=T+T
w

V=v+v

In this equation, the first term stands for the increment in the strain energy obtained from the
biaxial state of stress in the tube cross section, the second term gives the incremental work done
by the external pressure [42], and the third term defines the incremental work done by the axial

tension. The sign convention adopted in equation (A .4) is consistent with Figure 3.1a.
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A.3. Numerical Solution Procedure.
The displacements v and w are assumed to be given by the following trigonometric series

(see Figure 3.1a).

N N
w=R, ¥ a,cosn® and v=R, Y b,sinn® . (AS5)
n=0 n=2

These expressions are substituted in equation (A.4). Since the increments a,, b,, éx are
arbitrary, the virtual work expression (A.4) gives rise to 2N+1 nonlinear equations represented

by

fW.U,0,0)=0 (A.6)
where
U=(a,b,&) 0=(P,T)
U=(d,b,&) and Q=(,T)

The material behavior is modeled with the constitutive relations as detailed in Chapter 3.
Once the material and geometric parameters are known, the solution procedure is started by
initializing the state of stress and strain at the Gaussian integration points. The elastic small

deflection solution of Reference 43 is used to initiate the iterative procedure.

The Newton-Raphson method is used to solve for Q for a given (U, @, Q) or for Q for a
given (U, O, _Q ) from the set of equations (A.6). For each load step, the converged solution
corresponding to the previous load step is used as the initial guess. The stability of the
converged solution at each stage, in the load incrementing mode, is determined by the change in
sign of (A.7)

of
det [ 8& } . (A7)

In solving for the limit point, the load incrementing mode gives convergence problems in the

numerical procedures. Hence, a switch to displacement incrementing mode is highly desirable,
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and the maximum load obtained by increasing the displacements is taken as the critical load.

This numerical procedure is explained in more detail in Reference 44.
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Appendix B

ANISOTROPIC CHARACTERIZATION IN TUBES

Processes such as cold rolling and drawing on plates [45] are known to introduce
anisotropies. Hence, the measured stress-strain relation may depend on the orientation of the
uniaxial test specimen with respect to the direction of rolling or drawing. In cold or hot drawn
tubes, these anisotropies will show up as different yield behavior in the axial and
circumferential directions. Collapse strength of thick-walled tubes is strongly influenced by the
yield behavior of the tube material. If anisotropies in yield exist, then it becomes important to
characterize them for a better prediction of the collapse strength. Hill’s anisotropic plasticity
model is adopted to model this material yield behavior. A simple way of characterizing the
anisotropic parameters in this model is developed in Reference 31. Following this procedure,

tests were conducted on some of the tubes to measure the anisotropy.

The yield function in Hill’s theory reduces to the following form (see Chapter 3) for the

biaxial state of stress in the tube cross section.

12
1 1 1

f(cij)={ox2_(1+'§'2'_ S2)0x00+ 82 662} =ce,max(£ep) . (B-l)
3] r 3]

The parameters Sg and S, in this equation quantify the anisotropy in the tube. They are given

GCoe Oor
and S, =

ox ox

by S¢=

, where 6,,, 6,4 and o, are the initial yield stresses in the axial,

circumferential and radial directions.

B.1. Experimental Procedure.
Three test specimens are cut from the tube in which each of them have a length of 6 to §

times the diameter, and the following tests are conducted (see Figure B.1).
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B.1.1. Uniaxial test. Thin strips are machined from one of the specimens and stress-strain
tests are carried out by following the procedure in Chapter 2(2.1.2). This gives the stress-strain

behavior of the tube in the axial direction.

B.1.2. Lateral pressure test. A servo-hydraulic setup [31] is used to carry out an internal
pressure test on one of the specimens (see Figure B.1). Strain gages are bonded on the
specimen to measure the axial and circumferential strains. Since pure lateral pressure does not
lead to axial loading of the specimen, the stress state [34] in the tube cross section away from

the edges is given by

2PD}?

©-ph "o

c,=0,0=

where P is the pressure, D the tube outer diameter and D; the tube inner diameter. Using
equation B.2, the stress-strain relation in the hoop direction is obtained from the measured

pressure-hoop strain response.

B.1.3. Hydrostatic pressure test. In this test, the specimen is sealed at the ends and
internally pressurized to generate a hydrostatic state of loading (see Figure B.1). This loading
can also be obtained with a hydraulic test setup as described in [31]. The pressure loading in
this test results in developing both axial and hoop stresses. Strain gages are used to measure the
axial and hoop strains. The stress state in the tube section is given by

PD? 2PD?

O, =—,0=———=
* D?-D}?

557 ®.3)

The parameters Sg and S, are obtained from the pressure-strains data as follows.

B.2. Deriving the Anisotropic Parameters.

From the uniaxial test results, o,,, which is the initial yield stress in the axial direction, is
obtained. The initial yield stress in the hoop direction o, ¢ is obtained from the measured hoop
stress-strain behavior. These two initial yield stresses define the parameter S In Figure B.2a,

stress-plastic strain relations obtained from uniaxial and lateral pressure tests for a typical case
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are given. In this example, the value of Sg is found to be 0.77.

The results from the hydrostatic pressure test are used to derive an equivalent stress-strain
relation. Applying equation (B.3), the stresses 6, and oy are obtained. The definition of the

equivalent stress here is

1 1 ) 12
— 2 _ - — a2
C, —{Gx a1+ 52 S,z) 0, Cg + S&ce} . (B4)

An incremental change in pressure leads to changes in the stresses given by d o, and dog. The
corresponding change in plastic strains, d€f, is then defined according to equation (3.3) in
Chapter 3. Once the def} are known, the equivalent plastic strain is obtained from the work
equality o;;def} = o,def. From this work equality, the definition for the equivalent plastic

strain increment becomes (after some algebraic manipulations)

24 12
dEe = {?} s (B.S)
where
A=t @epP+@ep?+a+— - ydepaeg
Y S S7
and
1 1 1 1.1 1.2
B=—4———— —(— - —
s¢ S22 2(592 Srz)

Once the parameters Sg and S, are known, by using equations (B.4) and (B.S), the pressure-
strains data from the hydrostatic pressure test are reduced to get the equivalent stress-strain

(6, — €P) behavior.

The iterative procedure, through which the parameters Sg and S, are obtained, is illustrated

in Figure B.2b. By assuming that the tube material is isotropic, (Sg = S, = 1), the hydrostatic
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pressure test results are used to get a 6,-€f relation. The axial and the hoop stress-strain curves
are also reduced to get the corresponding o, -2 relations (see Figure B.2a). These three stress-
strain curves obtained in a typical case are also shown in Figure B.2b. If the material is
isotropic, these three equivalent stress-plastic strain curves will match. If the material is not
isotropic, then the anisotropic parameter Sg¢ is obtained from the axial and hoop stress-strain
curves as described above. Once Sg is known, the value for S, is varied until for some value of
S, the resulting ¢, -2 curve derived from the hydrostatic test data matches the G, -€£ relation in
the axial direction. In the sample results given (see Figures B.2b), the values for S¢ and S, are

found to be 0.77 and 0.85 respectively.
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No. 1 Dto A" A’ Material | P, T, &
(inches) Group (psi) | @bs) | (%)
1 0.0365 | 36.71 | 0.0006 | 0.0006 M-1 923 0 -
2 0.0364 | 36.81 | 0.0007 | 0.0007 M-2 823 | 2177 -
3 0.0365 | 36.70 | 0.0002 | 0.0003 M-3 852 | 3054 | 0.15
4 0.0364 | 36.80 | 0.0005 | 0.0006 M-2 780 | 3530 | 0.22
5 0.0366 | 36.61 | 0.0017 | 0.0017 M-2 608 | 4239 -
6 0.0366 | 36.59 | 0.0014 | 0.0014 M-3 502 | 4847 | 0.50
7 0.0365 | 36.68 | 0.0001 | 0.0002 M-3 495 | 5231 | 0.93
8 0.0363 | 36.91 | 0.0004 | 0.0005 M-2 559 | 5440 | -
9 0.0365 | 36.71 | 0.0006 | 0.0007 M-1 450 | 6039 | 1.96
10 | 0.0366 | 36.60 | 0.0003 | 0.0004 M-1 452 | 6267 | 2.33
11 0.0365 | 36.66 | 0.0004 | 0.0005 M-3 416 | 6334 | 2.29
12 0.0365 | 36.70 | 0.0004 | 0.0006 M-2 388 | 6670 | 2.89
Table 1. Collapse Data with Material and Geometric Parameters
for 304 Steel Tubes (D,/t =38.3,T — P).
DO
No. t ; A" A’ Material | P, T, £
(inches) Group (psi) (1bs) (%)
1 0.0491 2445 | 0.0013 | 0.0014 M-6 2649 0 -
2 0.0491 2445 | 0.0012 | 0.0013 M-6 2608 1539 | 0.11
3 0.0524 | 22.85 | 0.0008 | 0.0017 M4 2573 | 3990 -
4 0.0492 | 2441 | 0.0011 | 0.0012 M-6 2085 | 4699 | 0.40
5 0.0495 | 24.24 | 0.0008 | 0.0009 M-6 2044 | 4755 0.39
6 0.0488 | 24.61 | 0.0009 | 0.0009 M-5 1713 6031 0.71
7 0.0488 | 24.62 | 0.0006 | 0.0009 M-5 1188 | 7999 | 2.17
8 0.0524 | 22.85 | 0.0005 | 0.0016 M4 1770 | 8011 0.82
9 0.0490 | 2452 | 0.0013 | 0.0013 M-5 1058 8967 3.06
10 | 0.0488 | 24.61 | 0.0001 | 0.0003 M-5 1089 | 9433 | 4.53
11 0.0491 24.46 | 0.0004 | 0.0005 M-6 1021 | 10255 | 5.94
12 0.0488 24.62 | 0.0016 | 0.0017 M-5 1035 | 11120 | 7.94
Table 2. Collapse Data with Material and Geometric Parameters

for 304 Steel Tubes (D,/t =24.5, T — P).




D
No. t t" A,” A,” | Material | P, T, Exe

(inches) Group (psi) (Ibs) (%)

1 0.0634 | 18.75 | 0.0002 | 0.0002 M-8 3672 0 -

2 0.0642 | 18.52 | 0.0301 | 0.0321 M-7 1972 0 -
3 0.0642 18.53 | 0.0005 | 0.0011 M-7 3355 2042 0.16
4 0.0639 18.62 | 0.0004 | 0.0008 M-7 2813 5017 0.65
5 0.0633 18.80 | 0.0004 | 0.0008 M-8 2554 5829 0.96
6 0.0639 18.62 | 0.0007 | 0.0008 M-7 2267 7262 1.85
7 0.0634 18.75 | 0.0005 | 0.0011 M-8 1726 9465 3.17
8 0.0634 18.76 | 0.0006 | 0.0006 M-8 1640 | 9936 3.72
9 0.0638 18.65 | 0.0002 | 0.0006 M-7 1673 | 10606 | 5.24
10 0.0634 18.76 | 0.0002 | 0.0002 M-8 1676 | 11064 | 5.38
11* 0.0634 18.76 | 0.0006 | 0.0007 M-8 3229 | 11369 | 8.83

Table 3. Collapse Data with Material and Geometric Parameters
for 304 Steel Tubes (D,/t = 18.2, T — P).
D,
No. t . A’ A’ Material | P, T, €

(inches) Group (psi) (1bs) (%)

1 0.0953 12.12 | 0.0003 | 0.0004 M-10 7483 0 -
2 0.0954 12.10 | 0.0002 | 0.0003 M-9 7130 | 2040 0.59
3 0.0953 12.12 | 0.0002 | 0.0002 M-9 6632 | 5043 1.42
4 0.0954 12.11 | 0.0004 | 0.0004 M-9 6325 8023 3.32
5 0.0953 12.11 | 0.0003 | 0.0004 M-10 6593 9989 5.21
6 0.0954 12.10 | 0.0002 | 0.0002 M-10 6513 | 10499 | 5.72
7 0.0952 12.13 | 0.0004 | 0.0004 M-10 6441 | 10506 | 5.97
8 0.0953 12.11 | 0.0007 | 0.0007 M-9 6146 | 10910 | 4.95
9 0.0953 12.11 | 0.0004 | 0.0004 M-10 6439 | 12015 | 741
10* 0.0954 12.10 | 0.0002 | 0.0005 M-9 6109 | 14084 | 8.92

Table 4. Collapse Data with Material and Geometric Parameters

for 304 Steel Tubes (D,/t =12.2, T = P).

* Experiments (no collapse)
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D
No. t to A" A’ Material | P, T, €xc

(inches) Group (psi) | (Ibs) (%)
1 0.0491 24.45 | 0.0012 | 0.0013 M-6 2608 | 1539 | 0.11
2 0.0441 27.17 | 0.0041 | 0.0041 M-11 1715 | 1370 | 0.08
3 0.0463 | 25.90 | 0.0069 | 0.0071 M-11 1717 | 1490 | 0.06
4 0.0440 | 27.23 | 0.0092 | 0.0091 M-11 1528 | 1390 | 0.07
5 0.0460 | 26.09 | 0.0180 | 0.0196 M-11 1140 | 1442 | 0.06
6 0.0434 | 27.64 | 0.0382 | 0.0412 M-11 869 1388 | 0.05

Table 5. Collapse Data for Initially Ovalized 304 Steel Tubes
D,/t =267, T—> P, T./T’, =0.160)
D,
No. t - A" A’ Material | P, T, €

(inches) Group (psi) | (bs) (%)
1 0.0524 | 22<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>