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ABSTRACT

This thesis is concerned with vortices in steady two dimensional inviscid in-
compressible flow. In the first three chapters, separated vortex flows are con-
sidered in the context of inviscid flow past two dimensional airfeils for which
the action of the vortex is to induce large lift. In the fourth and last chapter, we

consider vertices in uniform flow in the absence of any physical bodies.

In chapter I, we consider two configurations of vortices for flow past a flat
plate with a forward facing flap attached to its rear edge. In the first case, case
(a), we consider a potential vortex in the vicinity of the airfoil, while for case (b),
we consider a vortex sheet coming off the leading edge of the plate and reattach-
ing at the leading edge of the flap such that the region between the vortex sheet
and the airfoil is stagnant. For caée (a), the Schwarz-Christoffel transformation
is used to find exact solutions to the fiow problem. It is found that by suitably
placing a potential vortex of appropriate strength it is poésible to satisfy the
Kutta condition of finite velocity at both the leading edges of the plate and the
flap in addition to satisfying it at the trailing edge, provided the plate flap com-
bination satisfies a geornetric constraint. The action of the potential vortex is to
create a large circulatory region bounded by the airfoil and the streamline that
separates smoothly at the leading edge of the plate {(due to the Kutta condition)
and reattaches smoothly at the leading edge of the flap (from the Kutta condi-
tion again). The circulation induced at infinity for such a flow and hence the lift
on the airfoil is found to be very large. For case (b), where the vortex sheet loca-
tion is unknown, a hodograph method is used to find exact seolutions. It is found
that once a geometric cons’g;raint is satisfied, flows exist for which the Kutta con-
dition is satisfied at the trailing edge of the plate-flap combination. As in (a),

large values of lift are obtained. However, in both cases {(a) and (b), the adverse
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pressure gradient of top of the flap is recognized as - a source of potential

difficulty in the experimental realization of the calculated flow.

In chapter II, successive modifications are made to the airfoil considered in
chapter 1. Exact solutions are once again obtained by a variation of the hodo-
graph method of chapter 1. The lift for these airfoils is found to be significantly
larger than the one in chapter I. Because the trailing edge is no longer a stagna-

tion point, it is felt that these flows may be easier to realize experimentally.

Chapter III is concerned with the so-called Prandtl-Batchelor flow past thé
plate-flap geometry of chapter 1. The flow consists of an inner region which has a
constant vorticity. The region outside of the airfoil and the vortex sheet coming
off the leading edge of plate and reattaching at the leading edge of the flap (asin
chapter 1) is once again irrotational. The common boundary between the exte-
rior flow and the inner flow, i.e. the vortex sheet, is unknown a priori and is
determined by continuity of préssure, which translates into a nonlinear boun-
dary condition on an unknown boundary. By extending the function theoretic
approach of complex variables to this problem, we reduce the entire problem
into one of determining one unknown function of one variable con a fixed domain
from which everything else can be calculated. This is then solved numerically.
Our calculations provide what we believe to be the first such calculation of a
Prandtl-Batchelor flow. The calculations also provide a more realistic model for

the vortex sheet flow considered in chapter I.

Chapter IV deals with a steadily translating pair of equal but oppoesite vor-
tices with uniform cores and vortex sheets on their boundaries, moving without
the presence of any physical boundary. The sclutions were found for such flows
using the function theoretic¢ approach introduced earlier in chapter III for flows
where the velocity on the vortex sheet is not a constant. The solutions form a

continuum between the hollow vortex case of Pocklington (1898) and those of
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Deem & Zabusky (1978) and Pierrehumbert (1980) who consider uniform core
with no vortex sheet. The iterative scheme for numerical calculation, however,
turns out to have severe limitations, as it fails to converge for the cases with no
vortex sheet or when the vortex sheet strength is small. In the last section of the
chapter, a more traditional approach due to Deemn & Zabusky is taken to calcu-
late a pair of touching vortices with uniform core and no vortex sheet on the

boundary and an error in Pierrehumbert’'s (1980) calculations is pointed out.

In appendix I, we point out some errors in Pocklington's paper on thjz
motion of a hollow vortex pair. The errors are corrected and the results are

found to be then in agreement with results using the method in chapter IV.
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Chapter I

Vortex Induced lift on a plate with a

forward facing flap. |



1.1i. Introduction

Aerodynamicists have long been concerned with increasing the lift on an
aircraft without paying the price of large drag. Smith (1975) summarizes some
of the efforts of past researchers in designing airfoils with high lift characteris-
tics. One of the major hurdles in the design of high lift wings is the lack of full
understanding of flow past wings. In general, such flows are very complex exhi-
biting compressibility, viscosity and three dimensional features which atfe
beyond the scope of theoretical techniques available today. .In the limit of zero
viscosity and compressibility, however, the steady state equations for fluid
motion past simple geometries simplify substantially to allow analytical solu-
tions in some cases. Based on solutions to the two dimensional inviscid
incompressible potential flow equations for which the vorticity is confined to a
vortex sheet around the body and possibly a point vortex, the lift and other
such characteristics of a whole class of airfoils can be calculated. An extensive
literature exists on such solutions in two dimensions {see Thwaites, 1980 for
example), where the methods of complex variables can be readily applied. The
proximity of such calculations to real characteristics of an airfoil depends on
how well the flow assumptions are satisfied. We now examine these assumptions

one by one.

The assumption of a two dimensional flow precludes consideration of highly
swept wings or low aspect ratio wings. Only flows past high aspect ratio wings
with small cross-wise variations in the wing shape may be expected to be
approximately two dimensional. The assumption of incompressibility restricts
us to low speed airfoils for which the Mach number is small compared to unity.
The zero viscosity assumption is more delicate since it is well known that even

for fluids with very small viscosity the approximation of the actual flow by a



totally inviscid flow is not uniform. For large Reynolds number (low viscosity),
there exists a small region around any body, known as the boundary layer,
where the. effect of viscosity is important because of large velocity gradients
(Prandtl,1904). However, the boundary layer shrinks to zero size with increasing
Reynolds number and therefore the inviscid flow solutions might be expected to
provide the outer solution to the actual high Reynolds number flow past a body.
It turns out, however, that this is true only for a few cases such as uniform flow
past a streamlined body where the boundary layer. stays attached to the body.
The drag in such cases arises as a skin friction from the boundary layer and
therefore is not determinable from the inviscid potential flow. Since the skin
friction goes to zero in the limit of infinite Reynolds number, the prediction of
zero drag for inviscid flow is consistent with the actual features of steady
infinite Reynolds number limit of attached flows. Unlike the drag prediction, the
inviscid soluti@né allow the possibility of an arbitrary circulation around the
body which leads to an arbitrary lift force. The well known Kutta condition of
finite velocity, which is justified from experimental study of actual flows, is used

to determine this unknown circulation and therefore the lift.

For most flows, however, the boundary layer does not stay attached because
of conditions of large positive pressure gradient streamwise which causes the
boundary layer equations to become singular (Goldstein,1948). This effect is
illustrated in figure 1.1, where the uniform flow past a flat plate is experimen-
tally studied for different angles of attack. As the angle of attack is increased
beyond a few degrees boundary layer separation occurs on top of the plate. The
separation bubble gets larger with increasing angle of attack and eventually
extends far beyond the airfoil. For flow past other thin airfoils these features
remain generally unchanged even though careful designing of the shape retards

separation to some extent. The Kutta lift on a flat plate airfoil per unit span



based on attached inviscid potential flow is 7 sina p U I, where « is the angle of
attack, ¢ the length of the plate, p the fluid density and U the magnitude of the
uniform stream at infinity. Therefore the nondimensional lift coefficient
(1 = 2 msina and increases with the angle of attack. In the past, considerable
efforts were made to realize an attached potential flow at large angles of attack
so that the prediction of large lift coefficient comes true. Such efforts have
included installation of active mechanisms such as blowing and suction on top
of the wing or inclusion of slots and slats besides careful designing of the wing
shape so as to have desired pressure profile on the wing surface (see Thwaites,
1960 for example). These efforts have had some success, but the theoretical
limits of lift characteristics and the lift to drag ratio that is expected from
attached inviscid flow is far from being realized. The boundary layer invariably
separates at large angles of attack causing vorticity in the boundary layer to be
convected to the main stream leading to large values of drag and loss in lift.
This condition known as stall leads to loss of control of the aircraft and usually
occurs around 15° for conventional thin airfoils. It remains a big stumbling
block in the design of efficient VTOL or STOL aircrafts. In recent years, there
have been some studies of the problem of generating high lift at low angles of
attack by creating a flow in which there is a vortex attached to the wing. Based
»n experiments with gliders, W.Kasper (see J.Cox,1973) claimed that very high
lift could be generated by designing wings that have an extensive vortex region
on top of the wing. Boundary layer separation still occurs, but the hope is that
the vortex may allow or cause it to reattach, preventing the formation of a large

wake and loss of lift.

The first task, of course, is to demonstrate the existence of ideal flows with
the required property of a separating and reattaching streamline. Rossow

(1978) considered an incompressible inviscid two dimensional flow model where



a vortex-sink combination is placed behind a leading edge flap so as to cause the
separated boundary layer to reattach close to the trailing edge of the wing. This
forms a large separation bubble on top of the wing resulting in high values for
the lift coefficient. Inspired by Kasper's claim, Saffman and Sheffield {(1977) con-
sidered a flow with a point vortex over a flat plate and Sheffield (1978) studied
the case of the Joukowski airfoil. As with Rossow's model, the vortex creates a
large eddy region on top of the wing leading to high values of the lift coefficient.
Saffman and Sheffield, however, present no clues as to how the point vortex flow
could be realized though evidence of stability to two dimensional disturbances is
presented.

In this chapter, we study inviscid, incompressible, steady two dimensional
flows past a flat plate AO of length I, with a forward facing flap OB of length [,
attached at O such that the angle AOB equals 8. At infinity, the flow asymptotes
to a uniform stream of magnitude U making an angle o« (angle of attack) with
AD. Two cases are considered here :

(a) A point vortex of strength « in equilibrium in the flow situated at a point
(Z5.Y,), With smooth separation and reattachment at A and B and a stagnation
point at O, i.e. Kutta conditions at all edges, (fig 1.2a). Besides O there is one

other stagnation point on the lower plate at P, which is unknown apriori.

*(b) A vortex sheet AB of constant strength g per unit length, which
separates at A and reattaches at B (fig. 1.2b) such that the region between the
vortex sheet and the airfoil is stagnant. Point P on AO is another stagnation

point besides O.

It is hoped that for case (a) the installation of a flap at the trailing edge will

allow the experimental realization of the high lift characteristics demonstrated

¢ This case was previously considered by Hurley and Skeat (1857) using a different method.
We were in ignorance of their work at the time this flow was initielly calculated.



earlier by Saffman and Sheffield, while for case (b) the attachment of a flap may
serve as a natural mechanism for reattaching a separated boundary layer thus
forming an extensive vortex region on top of the airfoil as originally suggested
by Kasper. The results show the possibility of achieving high lift if the flow

models considered here can be physically attained.
1.2. The point vortex case

1.2.1. Formulation of the problem

For the inviscid, incompressible two dimensional flow being considered,
since the vorticity is confined to isolated points, we may introduce the complex
velocity potential W(z) = ¢ +1 9, where ¢ is the velocity potential and ¥ is the
stream function, each of which are harmonic functions of (z,y), the physical
coordinates (as in fig.1.2a). W is an analytic function of z except at isolated
points were flow singularites exist. The uniform flow at infinity at an angle a with
respect to the z-axis admits #(z) whose asymptotic behavior as z - « is given

by

W(z)» Uz e ®+ %—g—logz + 0(1) (1.1)
where I' is the clockwise circulation at infinity and U is the magnitude of the

free stream. Further, in the neighborhood of the point vortex located at z =z,,

wiz) - —g—f?log(z —z,) + O(1) (1.2)
where « is the clockwise circulation of the point vortex. At the plate-flap boun-
dary we have the requirement that it be a streamline

Im W = constant (1.8)
For given U and « and plate-flap geometry there is a four parameter family of
solutions W(z) depending orll ', €, Re z, and Im 2, for which (1.1), (1.2) and (1.3)
can be satisfied. However, we are looking for flows as sketched in fig.1.2a where

the point vortex at z, is in equilibrium in the flow and the velocities are finite at



A, B and O. These impose five independent real conditions on four real parame-
ters and is therefore impossible to satisfy unless a geometrical constraint is
imposed on the plate-flap combination. It will be seen that if «a, 8 are considered
as known, there is a specific I3/1; which allows a flow of the type considered. All
the other nondimensional features of the flow including '/ UL, «/ ULy, z,/1,,
Y,/ 1, and the location of the stagnation point P relative to the plate are deter-

mined in terms of a and § once the geometric constraint is satisfied.

1.2.2. Method of solution

The exterior of the geometry AOB in the physical z-plane can be mapped on

to the upper half plane (fig 1.4 ) by the Schwarz-Christoffel transformation

_ ¢ (¢=¢1) &R/ ($—¢5) (E=Eg) /T
z——a‘{}‘d( (l+{2)2

where ¢, 0, &, ¢, are reals corresponding to the points A, O, B, O {fig.1.2a) in the

(1.4)

clockwise sense, and o is a positive real number when ¢, is positive. Since
numerical calculations revealed ¢; to be always positive for the geometries con-
sidered, from here onwards we will assume ¢4 to be positive and a to be a real
positive number. The image of 2 =« is ¢ =i. The real numbers &, {3, & and a

are determined from:

" 5 dz

—'ll——ﬂ,‘{;d( EE (15)

¢
—lgetB = —ajdg“ g% (1.8)

0

1 _ 1 (1-g/7m) _

Ged TR e (e (L.7)
(1 (3 + (1—ﬁ/ﬂ') 64 =0 (18)

+
(1+&67  (1+&9) (1 + &)
Equations (1.5) and (1.8) follow from the geometry of the body. Equation (1.7)

and (1.8) follow from the requirement that the transformation be 1-1 which
demands that the residue of the integrand in {1.4) at the point ¢ =1 must van-

ish. It may be shown after a little algebra that (1.5) through (1.8) guarantee that



the point ¢, is mapped to O on the outer side of the plate-flap combination while

integration of dz along the real axis from ¢ = —e to ¢ = +e equals zero. There-

d¢

fore these two necessary conditions need not be imposed in addition to the four
equations (1.5) through (1.8).

The Riemann mapping theorem guarantees the existence of a unique map-
ping as described and therefore we are assured that (1.5) through (1.8) can be

solved to obtain {;, &, & and a.

Once ¢4, {3 and ¢, and o are determined from these four equations as func-
tions of 1;, I; and G, it is convenient to consider the complex velocity potential W
as a function of ¢ It is easy to show that in general a dipole singularity in an ori-
ginal plane corresponds to a dipole singularity in a conformally transformed
plane, though its complex magnitude is not invariant. Also, a point vortex
remains a point Vorfex with the same magnitude of circulation under conformal
mapping. The sense of the circulation gets reversed when the location of the vor-
tex is at a finite point in one plane and at infinity in the other. Thus, in the
upper half ¢ plane, we have a point vortex at ¢, with clockwise circulation «,
where ¢, is the map of z = 2,. The uniform stream and the circulation at 2 = =
corresponds to a dipole and a point vortex at z = e, Therefore, at ¢ =1, the
image of 2z = o, there is a dipole of complex magnitude # and a point vortex
with clockwise circulation —I' . Since there are no other singularities in the
upper half {-plane and the real axis is a streamline, where Im # = 0 without any
loss of generality, we conclude that

M M il’

(é—fb) - ({"!-’L) - -é_‘}'-f— ( log((—'i) "IOg(f'H"))
ik

+ 22 (log(¢ — ¢,) ~ log(¢ ~ %) ) (1.9)

Consideration of the leading behavior of W in the neighborhood of ¢ =1 and

w(g) =—

comparison with the behavior at 2 = = asin (1.1) gives



HM=falU(-§&) i ™ (i=g) i) mete (1.10)
where equations (1.1), (1.4) and (1.9) were used. The Kutta condition of finite

velocity % at A, B and O implies

aw _
d{
dz

at &=¢y, &3, &4 since —is zero at those points. The Blasius theorem for force in

ag

an irrotational flow implies that for the point vortex to be in equilibrium at

0 (1.11)

zZ =2,

c AW dWw\? ,dz 7', _
f(dz dz-—f(df) (d( d¢é=0 (1.12)
for a closed contour around z =z, or ¢ = ¢, and no other singularity. Equation

(1.11) leads to three real equations.

oM _H___ g_{ 11
(=) (&G +)P Rm (G —1) (G +1)
cdie[ 11
Y6 - (G —1)] ' (1.13)

for j = 1,3,4. Equation (1.12) implies

0= 4inde ik i(f-me _ ik _ i{f -1k
(1 + foz) (60 - (1) ﬂ-é-o ((o - (3) ﬂ'(é‘o - 64)
anM A 2il 2T ik

T A Py L Ay Bl (AR B Foer 2 M
In both {1.13) and (1.14), it is to be understood that ¥ has the value given by
(1.10). Altogether (1.11) and (1.12) contain five independent real equations for
the four real unknowns T\, k, &, and 7, (&, = £, +in) if the shape of the airfoil
and the magnitude and direction of velocity at infinity are regarded as given.
The system is over determined in general and we expect no sclution to exist
unless some condition is satisfied between the variables ¢, {3 and ;. It is clear
from (1.10) and (1.13) that the value of U and a is irrelevant to the question of

existence of solutions since each of them just scales I' and « linearly. From (1.5)

and (1.8), it follows that the absolute magnitude of i,, {; are unimportant.
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Indeed, we could set both U and I, to unity without any loss of generality. The
ratio l3/1; and the angle § determines ¢, ¢3 and &, and therefore a a relation
between Ip/1, and § must exist for a solution of the desired type at given angle

of attack «.

l
We choose to regard the angles o and 8 as given and the ratio l—z— as a
1

further physical unknown along with the strength and position of the free vor-
tex and the circulation at infinity. Then the mathematical system consists of
nine real equations from (1.5), (1.6), (1.7), (1.8), (1.18) and (1.14) for ¢y, {a, €4, a‘g‘,

lg

I« €01 Nas 1,

for given o and £, U and [; being set equal to unity. We were

unable to prove rigorously that solutions exist and numerical methods were

ermployed to find solutions. Now we present details of the solution procedure.

For fixed o and B, an initial guess for lp was taken. Using (1.5) through (1.8)

the variables ¢, ¢35, ¢! and al@;]ln” were calculated using Newton iteration.
Note that the choice of the variables in the Newton iteration was made because
¢4 could become infinitely large at the same time as a shrinks to zero. The ini-
tial guess in the Newton iteration is easy to make for the limiting case I,, [;
equal to unity and B equalling 7 since an exact integration can be done in (1.4)
’for this case giving {3 = —1, {3 = 1, {4 = = and a = 2. Continuation in the parame-
gter g and Iy allows us to find the proper initial guess for any iz and g that we
may want. Once ¢, {5, & and a are determined, the first two equations in {1.13)
and the two real equations in (1.14) are used to determine &, n,, I' and & by
using Newton iteration, where ¥ is determined from (1.10). The right hand side

of the third equation in (1.13) is used to determine the residual corresponding

to I, used.

The pfocedure described in the previous paragraph is repeated for different

l; in a Newton iterative procedure until convergence is obtained, i.e. until the
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residual corresponding to some I, is smaller than the desired level of accuracy.

1.2.3. Number of stagnation points

In this section, we will prove that for the flow we are considering, there
could be no stagnation points away from the boundary and that there is only
one stagnation point P on the airfoil boundary besides O (from the exterior *

and the interior).

Consider the contour integral

dz

£ |t d® W, di¥
C 2mi dgz® dz

where the contour C is chosen as in Fig.1.3 C is composed of a circular contour
Cr of radius F around z = 0, straight segments 5, S; drawn very close to each

other such that they do not pass through any singularity or zero of the function

g and straight segments L;, 7 = 1.2,.. coinciding with parts of the airfoil

<

boundary. Further there are small £ radius arcs of circle detours wherever %

is zero or infinite. In our case because of the Kutta condition the velocity is
finite everywhere. We will consider the contributions from each of the segments
in the limit of zero g, infinite R and paths S; and S, overlapping. Since C is a
closed contour, it is clear that the above path integral is real. Thus, as far as the
contribution from each path segment that is a constituent of C, we will only be
concerned with the real part since all the imaginary parts are bound to cancel
each other out. In the limit of overlapping paths the contributions from S, and
Sz cancel each other out since there are no singularities in between them.

Clearly the real part of the contribution of any straight segment L;, where

j =1.2,. is zero since %—Z—K undergoes no change in its argument between the two

ends of L;. At A or B, because of the Kutta condition

* 0 is'a stagnation point from the exterior because of the Kutta condition.
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aw
T S toi(z —zap)+

We will consider only the case of g, not equal to zero, since the case g, =0 can

be treated as a limiting case of one of the zeroes of* % ceinciding with A or B. It

is easy to see on local expansion of the integrand that the contribution from
each ¢ circle at A or B equals zero in the limit of zero &. For calculation of the

integral contribution from C, , we notice that for 2 in the neighborhood of zero

2!

from the interior,

aw n/B-1
- Kz (1+ 0(2))

and therefore the integrand becomes -2-3—1-_%—- (/78 —1)( -i—-+ 0 (1)) and hence

the contribution from C,, equals — -é—- + 'é@ﬂ— in the limit of zero &. Similarly

expanding the integrand in the neighborhood of z =0 from the exterior we

obtain the contribution from C,, equalling -—-égﬁ—. For small semicircular detours

around each simple zero of —3—2: on the boundary, it is easily seen from local

av

I that the contribution equals —é—. Using

expansion  of

W=Uz +logz + 0(1) at infinity, the contribution from the infinite circle Cp is
easily shown to be zero. Summing up all the different contributions to the path

Jintegral and equating it to the number of zeroes minus number of poles of the

function %zﬂ inside the contour, one obtains

N -1=-tn -+
The only non-negative integral values of N;, the number of interior stagnation
points and ng, the number of stagnation points on the boundary besides O
(from the exterior and the interior) are 0 and 1 respectively. Thus we have

proved that there can be no interior stagnation points and that there is only

one stagnation point P on the boundary besides O. For the flow being con-
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sidered, it is found numerically that the stagnation point is always on the plate

AO from the exterior.

1.2.4. Results for the point vortex case

Values of I/ Ly, lp/1; are plotted against « in figures 1.5 and 1.8 respec-
tively for five different § values. For the purpose of comparison, the correspond-
ing value of I/ (I;) for a flow without any free vortex but with Kutta condition
satisfied only at O is presented in Fig.1.7. We use the notation I} for T
corresponding to such a flow. The right ends of each of the curves in (1.5) and
(1.8) represent the limiting case of the stagnation point P coinciding with 0. We
did not consider the case of the stagnation point P occurring on the flap. That
case was considered uninteresting since it corresponds to an unrealistic physi-
cal flow. Table 1.1 show different quantities of interest for three values each of g
and o. We did not cénsider the details of solution for g greater than 90 degrees,
though solution exists even in that range. When f§ approaches 180 degrees, solu-
tion ceases to exist. For instance, when o = 5.7 degrees, no solution was found
for B greater than 160 degrees. For larger angles of attack « this limit is smaller.
Failure of solutions to exist for g close to 180 degrees is consistent with Safiman
and Sheffield’s findings about the impossibility of satisfying Kutta conditions at
both the leading and trailing edge of a flat 2-D airfoil with an equilibrium free
vortex in its vicinity.

Fig.1.5 shows that the I'/ Ul, obtained for our geometry is generally about
an order of magnitude bigger than that for a flat plate with attached flow for
which Kutta condition is satisfied at the trailing edge for which I'/ [1; =  sin a.
Comparison with fig. 1.7 shows that the lift is larger in the case of a point vortex
than without one even When‘ the leading edges A and B are allowed to have physi-
cally unrealistic infinite velocities. The difference is greater for greater values of

B. The actual streamlines have been drawn for the case § = 90° and a = 15° in
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fig.1.8. The square of the ratio of velocity on the flap to the free stream velocity

is plotted against the distance from B as a fraction of I, in fig.1.9 for four

different combinations of a and 8. From the local expansion of g—? around
. . aw . .

¢=¢ and a similar expansion of a——%— it can be shown that

aW _ . ‘ . .

o K(z +1ze™)? + ... and therefore the infinite gradient in fig (1.9) at the

left end point is expected. At the right end of the curve, ie. at z =0,
%—g = K 2f/®"F) + ... and thus there is an infinite gradient on the right end of

each of the plots in fig.1.9, which is not visible in the scale used for g = 90°.
From Bernoulli's principle, the plots in fig.1.9 can be interpreted as pressure
plots and therefore generally large adverse pressure gradients at the reattach-
ment point B and the trailing edge O can be expected for an attached flow of this
type, which suggests that some boundary layer mechanisms has to be installed

to realize such a flow experimentally.
1.3. The vortex sheet case:

1.3.1. Mathematical formulation of the problem

We now study the flow sketched in figure 1.2b. As in case (a), P is a stagna-
’tion point on the plate AO. Since the region inside APOBA is stagnant, the velo-
}city on the separating streamline must be a constant g, say, which is also the
vortex sheet strength. As in case (a), we may introduce the complex velocity
potential #(z) defined in the region exterior of APOBA and its boundaries. Once
again the asymptotic behavior as z »= is given by equation (1.1). However, there
are no other singularities of W(z) in the exterior region. Equation (1.3) is valid
on the boundary APOBA. The location of the vortex sheet BA is not known a

priori and has to be determined as part of the problem.
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1.3.2. Solution procedure

Consider the conformal map £ (z) that maps the exterior of the region ABOA
in the physical z-plane into the interior of the semicircle (fig.1.10) such that the
boundary point B is mapped to -1, O to 0 and A to +1 where BO and AO
correspond to the sides of the airfoil and the circular part AB to the vortex
sheet, and £, (0 <f,< 1) corresponds to the unknown stagnation point P on the
plate AC. By the Riemann mapping theorem, there exists a unique £(z). Further
the conformal map

T=—5(t+1/t) (1.15)
maps the interior of the semicircle into the upper half 7 plane. Now, consider
the velocity potential # as a function of 7. From equation (1.1) it follows from
investigating the dominant behavior of #(z) and the circulation at z = = that

W(T) » =M/ (T—T.) —il'/(27) log(T—T.) (1.18)

as T- T, ( image of z =), where ¥ is the complex magnitude of the dipole. Since

there are no other singular points in the upper half plane and the real 7 axis
corresponds to a streamline it follows that

M__ W aiT

(T-T.)  (7-T.) Bm

where #,(7T) is analytic in the entire T plane and real on the real axis. Since

W(T) = - [Log(T—T.) ~ log T-T.)| + W(T) (1.17)

g—Z——>0as ’.7’—>m=am51-riz

a7 T2 is finite there because of the Kutta condition at 0, we

1.
a7 is real on the real

aw W,
have ETT——»Das T - =, Hence aT

- 0 as T = o Further

8
arT

axis and therefore can be extended to the whole 7-plane. Since is a

bounded analytic function which tends to zero at infinity, it must be identically

zero. Therefore, using equations (1.17) and (1.15) we obtain

aw _ (1 ——tz)[ 4Ht2 . 4HE?
dt 2 (t—ta)P(1—tta)?  (t —£.)2(1~tE.)?

AT(tu—E) (1 ~t ofu) ]
7(t —t o) (t —£ ) (1 —tt ) (1~tE,) '

(1.18)
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where {., is the image of 2 = = in the £-plane and is related to T. through {1.15).
. Lo dW . . . .
Now, consider the complex velocity 4. as@ function of t. Extending an idea in

BirkhofT and Zarantonello {1957) we define Q(¢) by

d qtﬁ,,,(p ~t) _a
dz (1-tt, )

(1.19)

where the arguments are chosen so that -—-m<arg( %—g—) <1

-n<arg(l—t1t,)<0 and ~w=<arg(f, —t)<0 for £ in or on the semicircle
(fig.1.10). It will be seen in section 1.3.3 that there are no interior stagnation
points and that there is only one stagnation point P besides 0. Thus Q(t) is ana-

lytic in the interior of the unit semicircle and continuous up to the boundary

since av is continuous as well. For the flow being considered, a’rg( =fon

dz

BO, 0 on OP and equals —r on PA. Hence considering the argument of both sides
n (1.19) we find

Im (Q) = 0 (1.20)
everywhere on BOPA, which implies ()(#) can be continued as an analytic func-
tion everywhere in the interior of the unit circle in the £ -plane with

0(t) = () (1.21)
defining Q for Im ¢ <0. Therefore

, Ut)Y=ag+a, t +as t? +... (1.22)
‘with a; real and the power series convergent for |[f| < 1 Again from the absolute

Re{{})

value of equation (1.19) on the unit circle, we have e =1, implying

e (Q) =0 (1.23)
on the unit circle. (1.2R) and the above implies that O = 0. Hence

AW _ g tsm Aty —1)

- dz (1—1 £y (1.24)
dz _ dW , dW . .
since —-= =/ - it follows from equations (1.18) and (1.24) that
1—tt 4HtR 4M T2
Ei_z_.:(l _t2) LB/ ( P) [ . —+ _ —
dt Ry(ty —£) L (£ ~t)P(1~tt)? (¢t —t.)*(1—tfn)
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it ) (1t F.) ] (1.25)

(=t )t —E)(1—tt ) (1~tE.)

where i is the image of 2z = = in the £-plane and is related to T, through (1.15).

v

Stagnation points at £ =0 and { ={, imply that %tK: 0 at those points, and

therefore

a2 . 4M tE B LT(t o=t ) {1t ufs) 1 26)
(tp—t)?(1=tpt)?  (Lp~tu)*(1~tpu)?  7(tp—tu)(tp ~t)(1~tpte)(1~tptw)
T =t ) (11—t o o)

4AM+4M = L
Tt ol o

(1.27)
Also, the condition that the relation between 2z and £ is 1-1 means that there

should be no residue for % at £=t., which implies from (1.25) that -

T 2Mt5[ 8 t, 1 ]
2~ 1-t2 L wt, (1-t,t.) * (tp—t.) (1.28)
Besides, we have from geometric considerations
_/i' 92 gt =1 (1.29)
dt ! '
4z 4y =1, ¢ 8
r dt =lye (1.30)
where -?—5— is given by (1.25). From (1.24), we also have
. t,—t )
o tﬁ"“ ( B hind )
Ue g (50 (1.31)

Equations (1.26) through (1.31) constitute eight real relations for the eight
real unknowns [, g, &, Re t., Im t., Re ¥, Im M and Iz, where l,, 8, U and « are
treated as known. It was not possible to show rigorously that solutions to these
systermn of equations exist. Numerical procedure described in 1.3.4 was used in
solving them. Once these constants are found the entire flow is determined.
Integration of equation (1.25) on the arc of the serm‘circlé locates the vortex

sheet.

It may be noted at this point that it is far from obvious that z (¢) defined by

(1.25) is the correct mapping function which maps the semicircle into the
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exterior of our geometry as desired. Here we will demonstrate the necessary
properties of such a mapping function which are not immediately obvious on

inspection of equation (1.25):
(1) is finite everywhere on the unit semicircle and has simple zeroes at

t =1, -1, and a zero at t = 0 where %?—=Kt’“5"”(l+0(t)).

(11} ——is negative for 0 < { <1 and argument of —— dt =—fBfor -1 <t <0

Proof of (i): Clearly from (1. 25) —_— could be infinite on the unit semicircle
only at £ =0 and £,. Since the expression within the square parantheses is zero

at those points, it follows that — dz

17 ——1s finite everywhere on the unit semicircle and

is zero at { = 0 where %= Kt1=8/7 (1 + 0(t)). It is shown in section {1.3.3)

that gé[ can have simple zeroes only at £ = +1, —1 and at two other points on

the real axis, which is imposed in our case at ¢ =, and £ =0 ( in equations

(1.28) and (1.27) ). Thus ?i-i_ in (1.25) cannot have any zeroes in the interior of

the unit semicircle and can have simple zeroes only at £ = +1 and -1.
Proof of (ii): Clearly from (1. 25) —— is real for 0 <{ <1. Since the square

‘parantheses term in (1.25) is zero at £ =, and £ =0 only, it follows that %!-2—

must be entirely positive or negative on the positive real axis of the semicircle,

However, since equations (1.29) and (1.30) are imposed, we are assured that %?—

is negative for 0 <t <1. Since the square parantheses expression in (1.25)

changes sign at £ = 0, it follows that argument of ——- equals —f on the negative

d
real axis of the unit semicircle. Thus conditions (i) and (ii) are indeed satisfied

by z (t) defined by (1.25)
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1.3.3. Number of stagnation points

Consider the contour integral

1 dBW , dw)
-idt eni dt? © dt )

for a contour € as shown in figure (1.11 ). Small ¢ radius arc detours are made

whereever %Eni equals zero on the boundary of the unit semi-circle. Since the

integral is real, we will only be concerned with the real contribution of each seg-
ment that makes up C. Clearly the real contribution of the integral from each

of the straight segments ; is zero since this is simply the difference in the argu-

ment of %_%V_ across the straight segment. Using local expansion of ngW around

each simple zero * in the same fashion as in 1.2.3, we find that the contribution

from each semicircular detour C; around a simple zero of %—?’- equals —%—. For

s . . . 1
each quarter circular contour around £ = +1 and -1, the contribution is —¢. As

far as integral contribution from the circular arc C; is concerned, it is con-

_ 42
venient to factorize % = glt—ztlg (t). It can be seen that g () is real on the

unit circle and undergees no sign change if we assume that %—?L has no zeroes

on C,. The case of one or more zeroes of %tn—’- on C; will not be discussed here

though only minor modifications are required in the logic for the end results

quoted here to be equally valid. Thus the integral contribution from C, is simply
_ 4R
the change in the argument of g—l—ﬁé—)— between the end points of C, divided by

2 m and equals — %— in the limit of zero £. Collecting all the path contibutions to

the closed contour integral and equating it to the number of zerces minus

number of poles of %Zz—inside the contour, we obtain

*The case of multiple zeroes at a point is easily handled as a limit of coalescing zeroes.
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where A is the number of interior simple zeroes and ng is the number of simple

zeroes besides +1 and -1 of the function %—?f— The only non-negative integral

possibilities for N; and n; are N; =1 ng =0 and N, =0, n; = 2. Since we impose

Kutta condition at the trailing edge O, which requires %}W- to be zero at £ =0, it

follows that we could only have the second of the two possibilities, i.e. there are
no interior zeroes and there are two simple zerces besides +1 and -1 on the

boundary of the unit semicircle. From general consideration of the properties ot

the Riemann mapping function z {¢), it follows that %?— is regular at ¢t = £, and

%i— = Kt17#7 (1 + 0(t) ) in the neighborhood of t = 0. Therefore simple zeroes

of %?i at t =0 and £ = £, correspond to stagnation points at O and P as origi-

nally assumed. Also there are no interior stagnation points in the flow.

1.3.4. Results for the vortex sheet case

For given o and B, equations (1.26), (1.27) and {1.31) were used to calculate
t., g/ U and f, where M/T" was eliminated by using (1.28). Newton iteration was

used for that purpose and after some trial and error converged solutions

obtained. Integrating %’— %% , which is known, I/ U, is calculated from (1.29).

'Equation (1.30), then determines l5/1; and the location of the stagnation point
P is determined by integrating (1.25) from 0 to £,. Thus all the constants

characterizing the flow were determined.

Values I'/ ULy, l3/1; and g/ U are plotted against « in figures (1.12), (1.13)
and (1.14) for five different values of 8. The right end point of each of this curves
correspond to the stagnatio‘n point P coinciding with O. Beyond that, the stagna-
tion point P moved over to the flap. As the angle of attack a-0 both I'/ UI; and

lp/ 1y went to zero. In view of the low values of the lift no effort was made to
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calculate details of the curves in {1.12) through (1.14) for « less that 3 degrees.
No numerical sclution could be found for « <0 suggesting nonexistence of solu-
tion in that range. As with the case of peoint vortex, the values of I/ Ul; and
hence the lift coefficient is large. The square of the ratio of velocity on top of
the flap and the velocity at infinity is plotted against the distance from B as a
fraction of I, for different combinations of o and g in figure 1.15. As for the
point vortex, there is infinite pressure gradient at B and O, which is not visible in
the scale used for plot in cases where § = 90° However, the infinite pressure gra;

gz

aw - _
3F and T around £ = —1

dient can be shown analytically by locally expanding

and £ = 0. Such an expansion also shows that the free-streamiline curvature at
B in infinite. The large adverse pressure gradient regions are, however, quite
localized in the neighborhoods of B and O for small a and 8. The actual stream-
lines are plotted the cases o =30° §=90° and a = 15° B8 =30° in figures 1.15
and 1.16. Table 1.2 lists the various quantities of interest for different combina-
tions of o and 8. Our results were found to be in agreement with Hurley and
Skeat (1957), who found an analytical solution to this flow using a different

method which makes adhoc assumptions about the flow in a hodograph plane.

1.4. Discussion and conclusion

We ;considered potential flows past a two dimensional geometry, one in the
presence of a point vortex and the other in the presence of a vortex sheet. Very
high values of lift coefficients were found compared to the usual lift on a thin
wing. The predicted drag in this model is zero. In order to experimentally realize
such high lift coefficents with large though not infinite lift to drag ratio, one
must, however, make sure that the flow remains attached. This would be difficult
to ensure because, as we noted earlier, an adverse pressure gradient exists for

the potential flow on top of the flap and this is especially large near B and O. Dr.
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M. Gharib (personal communication) has suggested that by suitably tailoring the
end B to have a curved segment with finite curvature that matches the curved
streamline curvature close to the end of the straight segment, it may be possi-
ble to avoid the locally large adverse pressure gradient at B, while retaining the
same flow features as the one calculated. Hurley and Ruglen (1958) used blowing
to maintain an attached flow. Intense blowing however has the disadvantage of
having to expend a lot of energy, besides inducing large drag, and earlier experi-
ence (Smith,1975) has shown that it is not very cost efficient. From the pressure
profile, it seems that attached flow for moderately small # may be achieved pré-
vided the locally large gradient at O does not have a global separation effect, as
it might have. Blowing or any such mechanism is unlikely to be of much help as
far as flow separation near O is concerned since the the infinite pressure gra-
dient is an artifactvof Kutta condition at the trailing edge for nonzero 8. Once
the flow separates near O, it could have a tearing effect by which separation
might occur far ahead of 0. In the next chapter, we will deal with this separa-

tion problem by introducing a slightly modified geometry where the trailing edge

is not a stagnation point and the pressure gradient is finite.
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Fig.1.1: Films showing the boundary layer separation. In (a), a flat plate is held
at o = 2.5°. The laminar boundary layer separates and reattaches on the upper
surface for Reynolds number equalling 10% In (b), the flow at angle of attack

a = 20° is shown. Separation zone is far more extensive. ONERA photograph

(Werle, 1974).
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Fig.1.2b: Sketch of flow with vortex sheet.
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d?
2

Fig.1.3: Closed contour C chosen for integration of ——-1«—- dz .
_mi  dW

dz
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Fig.1.4: The upper half ¢-plane. There is a dipole of complex magnitude M and a
counter clockwise circulation I' at & = 4, while a point vortex with clock wise cir-

culation « sits at ¢ = ¢,. The real axis is a streamline.
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Fig.1.10: The t-plane.

A Im(t)
b-i\
Jetg
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d*y
. . 1 di? o A
Fig.1.11: Closed contour C for inegrating o ai The contour coincides with
dt

the unit semi-circle except for small ¢ arc of a circle detours.
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Values of constants characterizing point vortex flow.

a=6° |a=18°|a=30° a=6° |a=19°a=30° a=6° |a=15° a=30°.
B=30°18=230° 8=30°|F=60°|f=60°|8=60°/8=90°18=90°|8 =90°

s u, 1.415 | 2,176 | 3273 | 2.840 | 3.859 | 5.259 | 4530 | 5888 | 7.659
1./ 1, 0.736 | 0.822 | 0.894 | 0.556 | O:674 | 0.805 | 0.437 | 0.598 | 0.802
L, /Ly 0.999 | 0.975 | 0747 |0.999 | 0.928 | 0.6806 | 0973 | 0.807 T 0.3680
k/ Ul 3.206 | 4.425 | 6261 |5470 | 7.069 | 9.297 | 7.839 | 9.921 |12.67

£ -0.0179 {-0.0139 |-0.0087 |-0.0665 |-0.0456 |-0.0255 [-0.1237 |-0.0746 | -0.0317
0 0.0696 | 0.0768 | 0.0806 | 0.1565 | 0.1581 | 0.1596 | 0.2386 | 0.2328 | 0.2310

Re z, /1, -0.703 |-0.762 |-0.805 {-0.589 {-0.639 |-0.690 |-0.521 {-0.550 | -0.580
Im z, /i 0.181 | 0.198 | 0212 | 0.298 | 0.336 | 0.377 | 0.395 | 0.459 0.544
Re M / U 11|-0.4469 |-0.4579 |-0.5219 |-0.5981 |-0.6248 |-0.6827 |-0.6452 |-0.7051 | -0.7895
Im M/ UlL,|-0.3886 |-0.4074 |-0.3580 |-0.1943 |-0.2307 {-0.1983 | 0.0025 |-0.0615 | -0.0564

& -0.4852 |-0.4127 |-0.3615 {-0.7439 |-0.6336 |-0.5430 |-0.9909 |-0.8106 | -0.6687

$s 0.1874 | 0.2203 | 0.2515 | 0.2688 | 0.3156 | 0.3683 | 0.3364 | 0.411 | 0.4985
it 0.2730 | 0.1764 | 0.1008 | 0.3959 | 0.2650 | 0.1456 | 0.4909 | 0.2996 | 0.1277

a [t 2.033 | 2.185 | 2.299 1.857 | 2.038 | 2.329 | 1.646 1.991 2.346
5! -2.061 {-1.736 {-0.998 |-1.340 | 0.986 [-0.572 |-0.757 |-0.562 |-0.265

Table 1.1. Different quantities of interest for the point vortex case.
I, stands for the distance OP in the physical plane,
while ¢ =¢, corresponds to P.

Values of constants characterizing point veortex flow.

a=6|a=15 [a=30° a=6° |a=15"|a=30°| a=6° |a=15°|a =30°
B=30°| B=130° [B=30°|F=60°|8=60°|8=60°|8=90°]8=90°8=90°

ry u, 0.9947 | 1.7670 | 2.8787 | 1.5460 | 2.6273 | 4.1283 | 2.1499 | 3.6168 | 5.6760
la/ 1y 0.2648 | 0.4880 | 0.6971| 0.1463 | 0.3309 | 0.5691 | 0.1223 | 0.3041 | 0.6139
I,/ & 0.9803 | 0.83078 { 0.7102 | 0.9756 | 0.8767 | 0.9789 | 0.9493 | 0.7876 | 0.3695
g/ U 1.6874 | 2.3009 | 3.1825| 1.80981 | 2.4573| 3.1218 | 2.1192 | 2.6664 | 3.1797
tp 0.7233 ] 0.5079 | 0.3034 | 0.7089 | 0.5030 | 0.2875 | 0.6726 | 0.4503 | 0.2015
Re t. 0.1880, C.0977 | 0.0503| 0.2908 | 0.1693 | 0.0864 | 0.3391 | 0.1980 | 0.0821
Imt. 0.3226 | 0.2985 | 0.2845| 0.3796 | 0.3835 | 0.3803 | 0.4118 | 0.4370 | 0.4457

Re M / ¢ 1,1-0.0934 |-0.1667 |-0.2242 |-0.0830 {-0.1531 [-0.2231 |-0.0835 |-0.1578 |-0.2450
Im M/ ql,]-0.3266 {-0.3274 |-0.2376 |-0.1907 {-0.2027 [-0.15620 {-0.1377 |-0.1430 {-0.0902

Table 1.2. Different quantities of interest for the Vor{'ex sheet case.
I, stands for the distance OP in the physical plane.



Chapter II

Lift on T-shaped Wings and Kasper

type wings
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2.1. Introduction

In the last chapter, we demonstrated the theoretical possibility of high lift
by the action of a free vortex and a vortex sheet located on top of a flat plate
with a flap. In the conclusion, it was noted that near the trailing edge O there is
a pronounced pressure gradient for moderately small § and that this problem is
unlikely to be removed by installation of any boundary layer control mechanism
since the Kutta condition translates into infinite pressure gradient at O for the
geometry considered. This would then make separation inevitablie. Here, we con;
sider two classes of of airfoils where the flap is extended to include a tail. For
these geometries, the Kutta condition at the trailing edge will imply a finite
nonzero velocity with finite pressure gradient. The question remains whether
such modified geometries continue te entertain the possibility of inviscid
separated vortex flows found in chapter I. In this chapter, we answer this ques-
tion in the affirmative for separated flows where the vorticity is confined to a
vortex sheet and the region between the vortex sheet and the wing is stagnant.
The existence of point vortex flows corresponding to case (a) of Chapter I is not
addressed here and is therefore an open problem, though there seems to be lit-

tle doubt that there exists such a flow.

Here, we propose to study the inviscid incompressible two dimensional
potential flows past two classes of wings which are successive modifications of

the geometry considered in the first chapter:

(a) T-shaped wings (fig.R.1a): A flat plate AO of length I; with a flap BQ
attached to it at O such that <504 = §, and the lengths B0 =13 and 08 =13 A
vortex sheet of strength g is located between A and B such that there is no flow
on the inner side of the sheet. The Kutta condition is satisfied at @ and there is a
stagnation point P on the plate AO. It may be shown using analytical arguments

almost identical to those in 1.3.3 that if the Kutta condition is satisfied at Q,
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then there is one and only one such stagnation point P. Since the flow is stag-
nant on the inner side of the vortex sheet, it follows from continuity of pressure

across the vortex sheet and Bernoulli's equation that g is a constant.

(b) Kasper-type wings (fig 2.1b): A flat plate GO of length I, with two flaps GA
and BQ attached at G and O and inclined at angles 7 and § with respect to the
flat plate GO. AG, BO and OQ are of lengths 1, , {2 and lj respectively. This
geometry resembles the Kasper wing (Cox, 1973). As with (a), there is a vortex
sheet of constant strength g leaving A and reattaching at B so that the flow or
the inner side of the vortex sheet is stagnant. As in (a), the Kutta condition is
satisfied at Q and there is one stagnation point P on the plate GO. The velocity at

the leading edge G is infinite in general.

As in chapter I, since the flow is a two-dimensional potential flow we may
introduce the complex velocity W (z) as an analytic function of =z, where
z =z +i y, z and y being the physical coordinates as in figures 2.1a,b. The
asymptotic behavior of the complex velocity potential at 2 =<, where
z =z + 1y, is given by

W(z)»>U =z e + il logz / (2m) (2.1)
where U is the free stream velocity, « is the angle of attack with respect to the
z-axis and T the clockwise circulation induced at z = = from the Kutta condition

"E‘equirement at Q.

The results of this chapter show that these flows are not possible for arbi-
trary geometry. In the case of T-shaped wings, for given values of cx g and I3/1,
over a certain range, there exists a specific {p/{; that would allow a flow of the
type desired and that once the geometric constraint is satisfied, IV ULy, q/ U
and the location of the staghation point P relative to the plate AO are all deter-
mined in terms of a, 8 and l3/l;. For the Kasper type wings, a §. 7, g/l and

1./1, over a certain range determine lp/1,. Once the constraints are satisfied, a
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flow exists for which I'/ Ul;, and g/ U are determined. In both cases, the lift
coefficient (7 based on length !, which is 2['/ Ul,, is an order of magnitude
higher than the lift on a flat plate with the Kutta condition satisfied at the trail-
ing edge. For the T-shaped case, (; can be significantly larger than the Kutta lift
on a bent wing formed by attaching 0OQ to plate A0 (where 0Q and OA are as

shown in fig.2.1a ) with identical values of «, § and is/1,.

2.2. The method of solution

The method used in chapter I for case (b) needs only minor changes t'b
accomodate flows past the geometries considered here. As in Chapter I, we con-
sider the conformal map £(z) that maps the region exterior of APOQBA in case
(a) and AGPOQBA is case (b) in the physical z-plane into the interior of the semi-
circle such that the boundary point B is mapped to -1, O to 0 and A to +1. The
arc of the semicircle in the t-plane corresponds to the vortex sheet between A
and B, f, corresponds to P and {5 to Q and f¢ to G ( for case b ), where 0 < ¢, <1,
—1 <ip=0 and {, =iz <1. The values of £,, {y and fe are unknown apriori. By

the Riemann mapping theorem, there exists a unique ¢{z) as described. Now,

consider the complex velocity %g— as a function of {. Following the same argu-

ments as in 1.3.2, we arrive at

AW _ ermlte =) (5 —1)
@z =9 Ty Ut @2

where « =0, 7/m — 1 for cases (a) and (b) respectively and the arguments are

chosen so that -wm<arg %g— <m, -m<arg(t, —t) <0, -m<arg(tg —t) <0,

- <arg(1-tty,) <0 and -m < arg(l-ttg) <0 for t in or on the semicircle.
Further, if we consider # as a function of ¢, the arguments in 1.3.2 can be

reproduced identically to obtain once again

aw _ (1-t?) [ 4t + 4M EE
dt 2 (E—t)P(1—tt )2 (t —f.)2(1—tE.)?
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DTt ot o) (1~ F)
Com(E—t)(t —E)(1—tt ) (1—tf.) ] (2.3)
dz dw aw

Since s EE—/ I it follows from (2.2) and (2.3? that

dz 2\ 4~
S =] - t B/
It (1-£%)

(to—t)™* (1—ttp>[ 4Mt? . 4WiZ
2q(1—ttg)™ (tp—t) L (£t )B(1-tt)?  (t —F.)3(1—-tE.)2

ATt wT o) (1t wlw)
~7T(t“tw)(t'—t“w)(l-—ttm)(l—tﬂ)] (24)

where £, is the image of 2 = = in the {-plane. Since %—?— =0att = tpand t =1y

because of stagnation point or Kutta condition, whatever the case may be, we

have
4R . 4 £ _ Tt —E ) (1t L) (2.5)
(tp—t )P (1~tpta)? (=T (1=tplu)?  m(ty—tu )ty —Fu)(1—tpt)(1=tyta)
4R , 4} £ ATt et o) (1~t ot ) (2.6)

(tg—tu)P(l—tgtu)? (to—tm)i(1—tgfu)? mltg—tw)(to—tw)(l—totu)(1=tgtu)
Also the condition that the relation between z and £ be 1-1 means that there

should be no residue for Z’—? at t = t.. Using (2.4), this implies

jL:ZMtS[_ g kte kg 1 _ to ] (2.7)
2rm 1—t2 L mt. (l—tgte) (fo—t=) (fp —tw) (1 —fp ta) A

Besides (2.7), for the T-shaped wing, geometrical conditions imply

1
foﬁ"-l%dt =1, (2.8)
0
: E%—dt = 1g e Hm ) (2.9)
¢ 0
/. Trdt =lee (2.10)

¢ dz
dz o - _ .
j: - dt =1, (2.11)
U dz ;
=24t = 1getT (2.12)
OtG dt
92 gt =1y e itnB) (2.13)
to di
e dz _ —ip
[ ==dt =lye (2.14)
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where %'%— is given by (2.4). From (2.2) and consideration of the velocity at z = e,
we have

(tc—tw)x (tp - tw)
(1=tg tu)® (1 —1tp ta)
For the T-shaped wing case, (2.5), (2.8), (2.7), (2.8), (2.9), (2.10) and (2.15)

Ue—-’i(x - qt.ﬁ/"

(2.15)

constitute nine real relations to determine the nine real quantities T, q, £, g,
Ret., Imt., Re M, Im M and I, if I, I3, U, B and o are treated as known. For
the Kasper wing case, (2.5), (2.6), (2.7), (2.11), (2.12), (2.13), (2.14) and (2.15)
determines ten real unknowns I, @, &,, £y, f¢, Re f., Imto, Re M, Im M a.nd i, if
Ly, I3, 14, B, U, « and T are considered as known. Thus the flow is completely
determined if these equations can be solved. We were unable to prove rigorously
that solutions exist for these systems of equatibns, but numerical procedures,
employed as described in the next section, solved the above equations to deter-
mine all the unknowns that characterize each of the flow in (a) and {(b).

As in the vortex sheet case of Chapter I, it is not clear that the function
z (t) defined by (R.12) has indeed the required properties for it to map the ¢
plane into the z plane as desired. However, almost the same arguments as in the

last chapter can be made to argue that (2.12) indeed defines the correct map-

ping function.

2.3. Numerical procedure

Since each of [; and U scales the dimensional variables linearly, they were
set equal to unity without any loss of generality. For case (a), it was convenient
for the numerical calculations to consider £, rather than I3 together with the
angles # and « as known. Equations (2.5), (2.8) and (2.15) contain four real
equations for the four real unknowns t4, g/ U, Re t, and Im {, where #/T is
eliminated by using (2.7). These are just algebraic equations and were con-

veniently solved by Newton iteration. Once £y, g/ U and t. are determined,
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equation (2.7) then determines #/I' One numerical integration in (2.8) deter-
mines '/ Ul;. The lengths l; and I3 are determined in terms of !, from the
integrations in (2.9) and (2.10).

For case (b), once again we considered £, rather than I3 together with 8, «,
T and I4 as known. In additiori to (2.5), (2.8) and (R.15), the following equation

obtained from (R.11) and {2.12)

Iy ¢ dz _ 1 U d
?—Z[‘F dt = Fftc |5 dt (2.16?
determines the five real unknowns £, {gz, ¢/ U, Ret, and Im f,, where /T i

again determined from (2.7). Integration in (2.11), (2.13) and (2.14) determines

the remaining unknowns I'/ UL, {5/ and I3/;.

2.4. Results for the T-shaped wing

Numerical solutions were found for a wide range of geometries and angles
of attack. For fp =0, i.e.lz = 0 the results of Hurley and Skeat were reproduced
which provided a check on the code. No convergence in the iteration scheme
could be obtained for a < 0 suggesting that solutions do not exist in that range.
The continuous curves in figures (2.2), (2.3) and (2.4) show the values of the the
lift coefficient C; =21/ UL, vs lg/l; for different a and § values. There is a steep
rise in {7y at the left end of each of the curves which is not visible in the scale
used in each of the plots. The right end of each of the curves in these figures
correspond to the maximum value of l3/l, for which the flow sketched in
fig.2.1a exists. It corresponds to the stagnation point P coinciding with 0. No
efforts were made to study solutions for which the stagnation point P was
located on the tail 0Q. The broken lines in each of figures (2.2), (2.3), (2.4) shows
the Kutta lift coefficient on a bent wing formed by attaching 0Q to OA where
their lengths are i3 and {,. The C; for the T-shaped wing is considerably larger

than the the lift on this bent wing for large values of 8. Figures (2.5), (2.6) and
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(2.7) show plots of I/l against L3/, again for different o and 8 values. Figures
(2.8), (2.9) and (2.10) show the corresponding values of g/ U and the ratio of
magnitude of trailing edge to main stream velocity, | ¢ g| / U (in broken lines ).
Figure (2.11) is a plot of the actual streamlines when lg/1; = 0.2027, § = 80 and
a = 15 degrees. For this case, thé values of I'/ UL,, Iz/1) and g/ U are 3.919,
0.3747 and 2,977 respectively while the stagnation point P is located where the
length OP equals 0.6979 I,. The magnitude of the velocity at the trailing edge Q
was 0.1548 g. The square of the ratio of velocity on the flap to the free stream
velocity at infinity is plotted against the distance from B as a fraction of I, in
fig.2.12. From Bernoulli's principle, these plots may be interpreted as pressure
plots. The pressure gradient is infinite at B as for the geometry of Chapter 1.
However, trailing edge Q has a finite velocity and a relatively small pressure gra-
dient. Comparing fig.2.12 with fig.1.15, we find that the shape of the pressure
profile is only locally affected near the trailing edge and that the average pres-

sure gradient is not affected significantly by the addition of the tail.

2.5. Results for the Kasper-type wings

Solutions were found for a range of values of o, §, 7, I3/!; and 14/, This
is a five parameter family of solutions. Here, we only present solutions for the
case g =30°, T=75° and ly/1, =0.14. Figure (2.13) shows the values of lift
Loefﬁcients (; as a function of I3/, for three different angles of attack. As with
the T-shaped wing case, no solution could be found for a < 0. The right end of
each of the curves corresponds to £, equalling zero, i.e. stagnation point P and O
coincides for those cases. Figures (2.14) and (2.15) shows corresponding values
of I/, and q/ U against I3/l for different o. Comparing figures (2.13), (2.14)
and (2.15) with figures (22) (2.5) and (R.B) shows that the flow is relatively
insensitive to the leading edge flap for small {,/1;. Figure (2.18) is a plot of the

actual streamlines for the case 8=60°, «a=15° T=75° [/1,=0.14 and
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ls/fl = 0.2253. The corresponding values of ['/ U1,, Lz/!; and g/ U were 3.88B1,
0.3723 and 3.0R27 respecitvely. The large values for the lift coefficients provides a
theoretical basis for Kasper's claim that by designing a wing as suggested, one

could indeed obtain very high lift.

2.6. Conclusion

Exact solutions have been obtained for t;wo~ dimensional inviscid incompres-
sible flows past T-shaped wings and Kasper type wings which mdy be of relevance‘
to the actual high Reynolds number subsonic flows past these geometries. 'Ih'fe
addition of the tail improves the lift coefficent 'dramatically besides getting rid
of the infinite pressure gradient at the trailing edge. Comparison with the pres-
sure profile for the zero tail case of chapter 1 reveals however that the nonzero
velocity at the trailing edge has only a local effect on the pressure profile. The
pressure gradient éontinues to be infinite at B and the average pressure gra-
dient over the plate BQ is not changed significantly. Nonetheless, the removal of
locally large pressure gradient at the trailing edge makes it easier for the flow to
be experimentally realized for moderately small g since suitable tailoring of the
flap end B as mentioned in chapter I combined with blowing on the upper sur-
face of BQ may wipe out large adverse pressure gradient regions near B. Thus, it
may very well be possible to install some effective mechanism so as Lo avoid the
separation problem. Indeed, the separating strearnline can be expected to
become a turbulent mixing layer and suction may have to be applied at B to pro-
duce smooth reattachment, which could be combined with blowing over the
upper surface. It should be noted that the shear layer is convex to the high velo-

city side and may therefore be expected to be relatively stable.

Professor E.0. Tuck {communication with Prof. P.G. Saffman) has com-
mented that the solutions are akin to constant pressure airfoils investigated

many years ago in attempts to delay the boundary layer separation (see, e.g.
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Thwaites 1960). The free streamline can in the content of inviscid theory be
replaced by a solid boundary and our solutions can therefore be regarded as
providing a class of thick airfoils on which the pressure gradient is zero over a

significant part of the upper surface.
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Chapter III

Prandtl-Batchelor Flow past a flat plate

with a forward facing flap



-70 -

3.1. Introduction

In the last two chapters, we presented two dimensional potential flows past
airfoils for which the vorticity was confined to a point vortex or a vortex sheet.
For flows with a vortex sheet, the region between the vortex sheet and the airfoil
was assumed stagnant. In an actual flow, we expect such a region to contain
recirculating fluid. Such a recirculation not only changes the interior flow but
affects the exterior flow as well since the vortex sheet location is determined
from the continuity of pressure and this involves velocities on either side of th:;
vortex sheet. In an attempt to refine the flow model considered in chapter I for
the infinite Reynolds number limit of a separated flow that reattaches on a suit-

ably placed flap, we introduce constant nonzero vorticity w in the region previ-

ously assumed stagnant.

The flow model, therefore, consists of an exterior potential flow, as in
Chapter I and i, and an inviscid but rotational region with constant vorticity
between the vortex sheet and the airfoil, where the vortex sheet location is
determined from continuity of pressure. Such flows, in general, have been
called Prandtl-Batchelor flows since the the Prandtl-Batchelor theorem
(Batchelor,1956a) about the uniformity of vorticity in a region with steady
closed streamlines in the limit of zero viscosity applies. Batchelor (1958b) sug-
gested a closed wake model of boundary layer separation involving such a flow
with two counter rotating eddies in the wake. Since then, there has been a
number of attempts at calculating inviscid two dimensional flows past bodies
with one or two standing eddies of uniform verticity separated from the exterior
irrotational fiow by vortex sheets. However, success to date has been somewhat
limited.

Dzugaev (1982) presents an approximate calculation of Prandtl-Batchelor

flow past a normal flat plate in a channel based on the assumption that the vor-
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tex sheet strength is a constant, but the details are sketchy and it is not clear to
us that the solution is consistent. Also, D.I. Pullin (personal communication
with Prof.Saffrnan) reported failure to calculate such a flow past a finite flat
plate placed normal to a uniform unbounded stream. Herwig (1982) discusses
Prandtl-Batchelor flow over a cavity using asymptotic methods, but arrives at
no definite conclusions about the existence of such a flow. The procedure that
has been used for numerical calculations is to solve two nonlinear coupled
integro-diffierential equations for the two unknown functions, the vortex sheet
strength and the location of the streamline separating the rotational from the
exterior irrotational flow. There are however difficulties with such an approach.
Very little can be derived analytically about the nature of singularities of the
separating streamline curve at the separation and reattachment points or the
local behavior of the vortex sheet strength in those neighborhoods. Besides,
there are problems associated with numerically integrating singular integrands
efficiently. Failure to obtain solutions does not therefore mean that ;olutions do
not exist and the existence of Prandtl-Batchelor flows in the presence of bodies
has remained an important open question in high Reynolds number incompres-
sible flows (see Saffman (1981) for examble). It is worth noting that there have
been successful calculations of Prandti-Batchelor flows in the absence of physi--
cal bodies. For instance, Sadovskii (1971) considers vortex regions in a potential
stream with a vortex sheet on the boundary and finds a one-parameter family of
solutions for different jumps of the Bernoulli's constant across the vortex sheet.
Deem and Zabusky {1978) and Pierrehumbert (1980) have calculated steady
motion past pairs of uniform vortex regions of equal and opposite vorticity with

no vortex sheet imbedded 1n an irrotational flow.

Therefore, our calculations in this chapter not only provide a more realistic

model for large Reynolds number flow past an airfoil considered earlier in
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chapter I, but also address the question of existence of Prandtl-Batchelor flows.
Figure 3.1 illustrates the flow being considered. The separating streamline and
hence the vortex sheet goes from A to B dividing the fiuid flow region into an
outer irrotational one (region I) and an inner inviscid but rotational region
(region 1I) with vorticity @ . Our method of calculation is very different from the
integral equation approach and is an extension of the function theoretic
approach of complex variables which has been used successfully in problems
where the velocity on the separating streamline is a constant. Our numerica:{_
evidence suggests strongly that Prandti-Batchelor flows indeed exist, at least for
asymmetrical geometries of the type considered here up to some critical value
of the vorticity w . The existence of symmetrical Prandtl-Batchelor flows with
two counter rotating eddies remains an open question and the possibility of gen-
eralizing the method used here to such flows is presently under consideration. It
is also found that exterior flow is only affected in a small way by the recircula-
tion. This justifies the use of free-streamline solutions for determination of lift

on airfoils as considered in chapters I and II.

3.2. Mathematical Formulation.

In region 1, the flow is irrotational and therefore, as before, we may intro-
duce the complex velocity potential W(z) =@ +i¥, where & is the velocity
potential, ¥ is the stream function and z =z + 7y , with z and ¥ as shown in Fig
3.1. Once again as 2 =

W(z) > Uz e™® + il logz /(2m) (3.1)
U a, T being respectively the magnitude of free stream velocity, the angle of
attack with respect to plate OA and the clockwise circulation induced at infinity
by the requirement of finite velocity (Kutta condition) at O. There is a stagnation
peint of the exterior irrotational flow at P on the plate DA and it can be shown

as in chapter I, that there are no other stagnation points besides P and 0. ABOA
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is a streamline on which /m ¥ = 0 without any loss of generality. In region II the

streamfunction satisfies

VR = (3.2a)
and on the boundary AOBA

¥v=0 (3.2b)

The location of the vortex sheet AB is determined by the pressure condition

dW 2 _ s _ .2
|25 - (vey2 = ¢ (3.3)
where aw and VW are evaluated on the vortex sheet from the outside and the

dz
inside respectively. g° is a constant which is twice the jump in the Bernoulli's
constant across the boundary between region I and 11
As before, consider the conformal map £(z) of the exterior region I into the

interior of the unit semicircle; A, B, O and P in the z-plane correspond to 1, -1, 0

. . . aw
and i, in the £ plane, where £, is an unknown to be determined. We regard P

as a function of t and introduce the analytic function Q(¢) defined by

AW _ e Ep—t) g
dz - Ty ¢ (34)

where 0< arg () <m, —n< arg (f,—t) <0 and —n< arg (1—£, t) <0 for ¢ in or on the
unit semicircle. The arguments of 1.3;2 in chapter I may be duplicated to show
§hat

Q) =ag+a,t +ayt?+- - (3.5)
with ag,ay,... all real and ) analytic in the interior of the unit circle and continu-
ous upto the boundary. Unlike the vortex sheet case of chapter I, however, Q{t)
is no longer a constant. Now, if we consider W as a function of ¢, the relevant

arguments of 1.3.2 can be repeated once again to give

aW _ (1-t?) [ 4HER 477 F2
= - + — —
dt R (t—t)?(1—tte)®  (f ~t)R(1~tE)?

ATt o) (1=t b )
] oo

TRt —t ) (E—E) (1t )1
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where t = { is as before the image of 2 = . From (3.4) and (3.8) we obtain

' 1-tt aMtR 4M E2
92 o0y g2y R/ (1 ~tty) [ 5 T
di Rq(tp—t) L (t—t.)2(1—tt)? ~ (t—F.)3(1—tf.)?
il(taf)(1td) ] (3.7
T £ ) (E —E ) (1 ~tt ) (1 —tE.)
From the knowledge of the velocity at infinity , we have the condition
£,
g™t = qtﬁ/n‘ ( ) e a(t ) (3.8)

(1-tpta)

Also, from the requirement that %—i— has no residue at £ =£,, ,which is necessary

for the 2 ~¢ mapping to be one to one,we have

il _ eMtE,[ 8 t, ]
2 1-tE L mt.  (Ttpt.) (4 = 2t (3.9)

The geometric constraints are

Fdz :
—-dt = 1, (3.10)
dz —ig

B C2 dt =1l,e (3.11)

where %—t— is given by equation (3.7). Further, as in chapter I, the stagnation

peoints at P and O imply that ﬂ =0att =1%; and t = 0. This means that

412 , 4] E2 _ Tt et o) (1t ot ) (3.12)
(o=t 2 (1=tpta)?  (tp—tu)*(1=tpta)? 1ty —ta)(tp—E)(1=tpta)(1~tpla)
_ AT(t—E)(1—tuEL)
4AM+4M= e (3.13)

If Q(t) were known inside the unit semicircle, then equations (3.8) through
(3.18) would constitute eight real relations between the twelve real quantities
IN'g, t,, Reto, Imit,, ReM,Im M, lg, I, B, U and « . If we nondimensionalise
all our variables using U and {,, we are left with ten nondimensional unknowns
and eight real equations. There would then be a two parameter family of solu-
tions for the flow in the region I and its boundary and specification of those

parameters completely determines the flow for given (. It may be noted at this
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point that z(¢) defined by (3.7) indeed has all the requisite properties for it to
map the interior of the unit circle into the exterior 2-plane as sketched in figure
4.1. The proof of this statement goes along the same lines as the one sketched in
chapter I, section 1.3.2 since the presence of nonzero () in (3.7) does not alter
any of the arguments presented before. However, ({f) cannot be specified at
will but has to be determined so that the interior flow in region II satisfies (3.3)
on the vortex sheet. It will be seen later that the magnitude of the constant vor-
ticity w . provided it is not too large, together with two of the parameters, say a

and B, determine ()(t) and all the other constants.

The case w = 0 corresponds to the free streamline case of chapter I since
(3.3) reduces to constancy of velocity on the vortex sheet, As we have seen in
chapter I, 1 =0 for this case and the problem is completely determined by

specification of the parameters ¢ and 8 .

For the general case with w#0, the determination of ((¢) is more compli-
cated since the velocity in region Il has to be taken into account in the pressure
condition (3.3). For a vortex sheet location corresponding ‘to

t =e for 62 [0,7], (3.8), (3.4) and (3.5) imply

Qg +0,COS 6+ agcos 20+ -+ = é—ln (1 + (V¥)R/g®) (3.14)
The problem now reduces to determining the right hand side of (3.14) and its
gFourier cosine expansion with respect to 6 in terms of o4, 2, -+ and the
parameters. In the next section, we describe how the inner velocity and hence

the right hand side of (3.14) is determined for given ag, @y,... and T\ g, &,, t.. M

and I,.

3.3. Determination of the velocity in region Il on the vortex sheet

For given ag,a;, - - and T, g, %, te. M, lp , we integrate (3.7) ., using

z(1) = =1, to determine z(e*%) , the location of the vortex sheet, and therefore
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the boundary of region II. We are then left with the problem of computing the
velocity V¥ on the free streamline , where ¥ satisfles equations (3.2a) and
(3.2b). Since determination of the velocity on the vortex sheet boundary of
region 1l by the usual finite difference or finite element schemes in the physical
plane is likely to be inaccurate in view of the infinite curvature expected at A
and B, we employ conformal mapping of region 1l into a more suitable region.
It is convenient to separate ¥ into a particular solution ¥, and a harmonic func-
tion ¥, . Since w is a constant, this can be easily done. ¥, remains a harmoni'g:
function in the conformally transformed plane. Then the problem is reduced to
determining the normal derivative of a harmonic function from given boundary
data in a 'nice’ domain. For the purpose of mapping, we introduce the complex

variable z; = —z + iy (see footnote) defined in region Il of the physical plane. It

is convenient to take the particular solution ¥, defined by

Wy, = %‘

since this vanishes on the solid boundaries. The harmonic function ¥, in the

(Imz;)? — %—(Imzi)(}?ezi)tanﬁ (3.15)

decomposition ¥ = ¥, + ¥, satisfies ¥, = — ¥, on the boundary.

Consider the conformal map &(z;) that maps the z; plane interior of the
boundaries AOBA into the unit semi-circle {Fig.3.2), such that Bis mapped to -1,
Ais mapped to +1 and O to @ on the real axis. The value of g is fixed automati-
cally in the numerical conformal mapping procedure to be described later. The
vortex sheet AB is mapped to the semi-circular boundary. The details of the
mapping 2z;(@) will be dicussed in the next section. We now consider ¥, as a har-
monic function in the & plane which satisfies boundary conditions as follows:

Ya(et) = = ¥p(zi(e™)) (3.16)
where ¢ ¢ [0,7] and @ =p e ** in the @ plane . From (3.15) , ¥, is zero on the

This unconventional choice of complex variable allows region Il to be mapped to the interior
of the semicircle of fig.3.2
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real diameter and so for @ £[—1,1] we have
(@) =0 (3.17)
Using the Schwarz reflection principle , we extend the domain of existence of ¥,
to the entire unit @-circle with boundary condition (3.16) applied to ¢£[0,r],

while

Y (e*) = ~¥, (e 7¥) (3.18)
extends the boundary data to the lower half segment of the circumference
where ¢ £ [—m,0]. On the vortex sheet , the velocity [V¥] equals the normal
derivative of ¥ in the z; plane. Now, the outward normal direction on the vortex
sheet in the 2; plane corresponds te the radiaily outward direction on the cir-
cumference of the unit semicircle in the @ plane . Therefore, on §=e *¥, the

magnitude of the velocity is given by

- !dQ”a\If . 8%, |

o )
dz; dz;
m(g=2) Re{@=—1)
=Imz; l dziiQ - g-tanﬁ l dz:iQ Imz;
d@ ag
dz; | &Y 1 Im(Q t;z; )
+iEQL! F;——- é-tanﬁ Rezi __FE:M (3.19)
dg

Now, (3.16) and (3.18) determine the harmonic function ¥, on the boundary of

&
0

the unit circle from which the Fourier coefficients of the following expansion are

determined
. +W .
(e*) = L e ¥ (3.20)
It is easily seen that the normal derivative
o¥y, e .
5 (07 = LIkl v ¢ (3.21)

dz;
Using z;(®) and lgél as determined in the following section, (3.21) provides a
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complete determination of IV‘I'I in (3.19) in terms of ¢ . The apparent singulari-
ties at =0 and m are actually removable since ¥ and therefore —g% are odd 2m-

periodic functions of ¢ and hence vanish at 0 and . It is to be noted that in
(3.14) we need [(V¥)P as a function of 6 and not ¢, as given by (3.19). However,
for each 6, (3.7) locates (z(6),y(6)) on the physical vortex sheet and therefore
the corresponding position in the z; plane. The conformal map §(z;) provides
the re‘lation ¢(z;(6)) needed to determine the velocity as a function of 6. The

details of this correspondence and its usage are discussed in section 3.6.

3.4. Mapping into a semicirle in the Q-plane

As mentioned before, we wish to find @(z;) that maps the z; plane into a
semicircle with A mapped to +1, B to -1 and O to some suitable point @ on the
real diameter of the @ plane. Initially , we carry out a series of explicit transfor-
mations starting with the 2z; plane and finally ending up with a geometry which is

close to a semicircle. With choice of appropriate branches , the transformations

are

Wi(z) = (2F -s)/E (3.22)

~ L
Wl W) = —1 — %—log(-— W, +i(1 ~ W2)E) (3.23)

S /8 s /8

(r sinz— + Wo) —(r sinz—— Wa)
WS( WE) = 3 /6 & /6 (3'24)

(r sing + Ws) +(r sin-z— - Wa)

where s; = 3( 1 —15/#) , E = - (1 +1§/8) . r is chosen to be the radius of the
circular arc shown in dotted line in Fig 3.3b , which together with the real axis
encloses our region of interest in the W, plane. The angle between the circular
arc and the real axis is 6/2 . Figures 3.3 a, b & ¢ shows the approximate shapes
of the region of interest afte:r each of the transforms (3.22) through (3.24). The
transformation (3.24) converts the circular arc and the real axis of Fig.3.3b into

a unit semi circular boundary . If 7 sin(8/2) is chosen close to 1, the transfor-
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mation (3.24) gets rid of the large curvature of the boundary of the region of
interest in the W, plane near the real axis. The choice of r and § is made so as
te make the shape of the boundary in the W3 plane as nearly semicircular as

possible.

Consider now function W3(&®) that maps a semicircle into this nearly semi-
circular region with the origin 0 of the @ plane mapped to 0 in the ¥ plane , -1
to -1 and +1 to +1 . We realize that W3(@) also maps the unit circle about the
origin in the & plane into the nearly circular geometry of the W3 plane formeg
by extending the original nearly semicircular region through reflection on the
real axis . Henceforth , the nearly circular region of the W3 plane will be called
the extended Wj region. If Wg=R, e and @=e¥ , —w <v, p<m , characterize
corresponding points on the bdundary of the extended Wj region and the unit

circle respectively, then the integral equation satisfied by v(p) is

R : :
Up) —¢ = é;;f cot (=) log(R (v(e) do', (3.25)
-
where the integral is in the principal value sense. This equation , commonly
known as Theodersen's integral equation , is very easily solved numerically in
Fourier space by an iterative technique as discussed by Henrici (1979). It
requires two Fourier transforms and one £, evaluation per iteration. Once the
iterations converge, we obtain the complex Fourier series for log(R, (v{(¢)))

f'Which allows us to find the coefficients of the Fourier cosine series in ¢ as well,

since it is an even periodic function. Thus, we can write

log( R, (v(9))) = ?bncosnso : (3.26)

from which it follows that

W d
log [-——3-] =36, Q" (3.27)
@) %
since the left hand side of (3.28) is the real part of the analytic function

W3
1 —
og[ ’

evaluated at the boundary of the unit circle. Thus we have arrived at a
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power series expression to describe the mapping function Wa(@) that maps the
circle in the € plane to the extended #3 region and therefore the semi-circle
into the original near semi-circular region éf the W3 plane. Inverting the rela-
tions in the equations (3.22) through (3.24), and using (3.27) we arrive at z;(Q)
from which @(z;) is known in principle . The velocity is therefore determined
from the inside of the vortex sheet for a given vortex sheet location. Equating

the coefficients of cos n6in (3.14) the coefficients ag, a,,... are determined.

Here, we justify the mapping of‘region Il into a semicircle to determine thf;
velocity on the vortex sheet. We remarked in the introduction about problems
in the calculation of Prandtl-Batchelor flows due to singularities of the separat-
ing streamline curve at the separation and reattachment points. In general, the
separating streamline curvature at the separation and reattachment points is
infinite. Infinite curvature causes infinite velocity gradients at those points lead-
ing to numerical inaccuracies if a direct scheme { such as finite differences) is
used to calculate the flow in region II on the vortex sheet boundary. The com-
monly used technique of conformal mapping into a circle does not get rid of the
problem either, because the boundary data assumed by the harmonic decompo-
sition ¥;,, as introduced in section 3.3, is not a smooth function of the angle on
the circle. Mapping into a semicircle with the separation and reattachment
points at the two ends of the real diameter, as we have done, gets rid of the
problem of accurately calculating the velocity close to the separation and reat-
tachment points. Infinite velocity gradients in the physical plane present no obs-
tacles since the numerically calculated velocities seem to be smooth functions
of both ¢ and & in [0,m]. This smoothness can be expected from further argu-
ments in the following section. Thus, the numerical calculation of velocity in

region II is easily facilitated even in the neighborhood of A and B by using the

conformal mapping into the &-plane as described.
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Further, from plausibility arguments in the following section supported
later by numerical evidence, (2 is analytic for ¢ in or on the unit circle and thus
we find that our function theoretic approach for determination of the exterior
flow is quite suitable even when the free streamline boundary in the physical

plane has infinite curvature.

3.5. Smoothness of function ({f) and ¢ (6)

Here we present plausibility arguments to show that the solution Q (£) to
the flow problem posed is an analytic function of ¢ for |{|< 1 a consequence of
which is that ¢ is a smooth infinitely differentiable function of 6. We proceed by
presenting a conjecture which we were unable to prove rigorously; nonetheless,
we believe it to be true and present reasons for doing so. It will be followed by a
few lermmas and a theorem which are proved. Based on the assumption that the
conjecture is true, we use the lernmas and the theorem to arrive at our conclu-

sion.

Conjecture 1 :
let (z,y(x)) be a point on the vortex sheet, Define analytic function f (@) by

the relation

(3
*

dzi

25 - (1-@)@-a)" ! (@) (3.28)

1
(i) If y(z) is an analytic function of (—z —1,)? in the neighborhood of A and

has the form

Yy =(-z -1)¥ [cotc, (~z ‘ll)é—*‘cz(“x =4,)+ ] (329

then f is analytic at & =1.
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(ii) If an expansion similar to (3.29) holds near B with {(—z —, ) and y replaced
by the distances from B along OB and direction perpendicular to OB respectively,

then f is analytic at @ = ~1.

Arguments supporting conjecture :
We will only present arguments in support of (i) since arguments to support (ii)
followr exactly along similar lines. If we assume f to be analytic at £ =1 and
expand the right hand side of equation (3.28) in powers of (§ — 1), integrate the
expansion and take the real and imaginary parts of the resulting expression for
@ = %%, then elimination of ¢ results in (3.29). For arbitrary cg, ¢y, ..., it seems
to be possible to find the corresponding fg, f1. etec. in the assumed analytic
exparnsion

F@=fo+f1(@-1)+ - (330)
around & =1 with fo nonzero. However, we were unable to show that {3.30) is
the only allowable form of f(&) in the neighborhood of @ =1 in order that
(3.29) is valid around A. We could not think of any kind of nonanalyticity of f at

@ = 1 for which (3.29) could be valid.

lemma 1:

Q(t) is assumed analytic in |£| < 1. Then for (z,y(z)) on the vortex sheet location
found by integrating (3.7)

(i) Equation (3.29) is valid on the vortex sheet in the neighborhood of z = -1,
where z =z + iy (z).

(i) Expansion similar to (3.29) is valid at point B ,ie z = -l e™® where
(-=z —1,) and ¥ in equation (3.29) are replaced by the distances from B along

OB and the direction perpendicular to OB.
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Proof of lemma 1 :

We will only carry out the proof for case (i) since the proof of (ii) follows along
similar lines. Locally expanding (3.7) in the neighborhood of ¢ =1, integrating
and considering the real and imaginary parts of the resulting expansion for

t = e we arrive at {3.29) upon eliminating 6.

lemma 2 :
If O (t) is assumed to be analytic for [t[< 1 and f (@) defined by (3.28) assurmed

analytic in |@| < 1, then ¢ is an analytic function of 6, where ¢t = ¢*® and @ = &%*.

Proof :

From local expansion of 2; (&) using (3.28) and inversion, we obtain {§ — 1) to

i
be an analytic function of (2; —1,)®. From expansion and integration of {3.7) in

the neighborhood of £ = 1, we obtain (z + [, );_to be an analytic function of £ in
the neighborhood of £ = 1. Substituting @ = ¢*® and ¢t = e%® we obtain ¢ as an
infinitely differentiable function of 6. Carrying out a similar expansion and
integration at B, we arrive at the conclusion that ¢ is analytic function of 6
around &= as well. Analyticity at other 6 values in [0,7] follow readily from
regularity of mapping functions z; () and 2(t) on the free streamline away

from the separation and reattachment points A and B.

lemma 3 :
If the assumptions of lemma 2 hold, then [V calculated in (3.19) is a smooth

infinitely differentiable function of ¢ and hence of ¢in [0, 7].

Proof:
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From known regularity principles of solution to poisson's equation, it is clear
that the only places where [V¥| could fail to be infinitely differentiable are 8 = 0
and 6= We only carry out the proof for differentiability at 6 = 0 since the
proof for differentiability at = 7 is very similar.

dz.
Since &—Z—;— is an analytic function of &€ in the neighborhood of § =1

(because f is so0), inspection of (3.19) reveals that all the terms with the possi-

o,
ble exception of —5;'1— are smooth functions of ¢. Now ¥, satisfies boundary data

in {3.16) which are smooth in the variable ¢ in the interval [0, 7]. From Schwarz
reflection principle, it follows that the same is true for the boundary data of ¥,

in the ¢ interval [-m,0]. Thus the fourier coefficients in (3.20) and (3.21) decay

a¥
exponentially with k for large k and therefore _5,—;— in (3.21) must be an analytic

oy,

o
[&/

function of ¢. Since ¥, and therefore are 2 m-periodic odd functions of g, it

. dz; |71 0V, .
follows that they vanish at 0 and 7 and therefore the term la—Q—l B contin-

ues to be an analytic function of ¢ in the interval [0, w]. It follows therefore
that [V¥] is a smooth function of ¢ around ¢ = 0. From previous lemma, it foliows

that it is also an analytic function of e at 0.

Theorem 1:
We assume conjecture 1 to be true. An iterative scheme described below is used

to determine O :

For given analytic n-th iterate O, we find constants T s, ete. using equa-
tions (3.8) through (3.13). Equation (3.7) then determines the boundary of

region II and (3.19) used to calculate the velocity V¥, where z; (@) is determined
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as in section 3.4, Equation (3.14) then determines the coefficients ag, a,, etc.
for the next iterate Q™+,

Then if Q™) is analytic is the compact set || <1, then so is the next iterate

Q(n +1).

Proof of theorem:

If 0™ is analytic up to the unit circle, lemma 1 holds and therefore we obtain
the expansion (3.29) for (z, y(z)) on the vortex sheet location in the neighbor-
hood of A Similar expansion holds at B as mentioned earlier. From conjecture 1,
it follows that f is analytic in the neighborhood of § =1 and & = —1. From
regularity of the Riemann mapping function z; (@) at points on the upper half
semicircle other that A and B, it follows that f is analytic in the entire upper
half unit circle including its boundaries. Since f - is real on the real axis, it fol-
lows that f is analytic in the entire unit circle including its boundary. Lemma 3
then implies that |[V{] is an analytic function of @ in [0, 7] and therefore from
(3.14), we obtain the coefficients of the next iterate 0**1) to be analytic in the

compact set as desired. Thus the theorem is proved.

Now a sequence of analytic function converging in the max. norm sensein a
compact set | £ | < 1 converges to an analytic function in the same set. Thus if
there is convergence of the sequence Q™) as n - =, the resulting solution Q (f)
will be analytic. We were unable to prove the convergence of the sequence Q®)
rigorously. Numerical calculations as presented in the following sections how-
ever suggest that indeed there is such a convergence and so from theorem 1,
the solution (1 is analytic up to the unit circle, As a corollary, we have ¢ to be an

infinitely differentiable function of 6 in the closed interval [0, 7] if conjecture 1
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is assumed to be true since lemma 2 holds.

3.6. Numerical Procedure

We use an iterative scheme to find solutions to our equations, as sketched
in the last section. We start with an initial guess of N coefficients ag, a; oy
and obtain an approximate Q(¢) by truncating (3.5). For w small, the guess for
(1 and hence these N coefficients is zero. For bigger values of w, we use values of
the coefficients obtained from the converged solution for slightly smaller w. In
the following, we describe the procedure used to find the (n+1)st iterate given

the nth iterates a§, a}~ af-, and therefore ("{¢).

We use (3.8) through (3.13) to determine I I3, q, M, t., £, consistent with
Q=00*, where U, l,, &, 8 are considered known and fixed. Newton iteration is
used for that purpose . Equation (3.7) then determines z(8) = z(6) + iy (6) and
hence z,{(6) = —-x(é) +1iy(6) on the vortex sheet for N, points where
6 = (k—=1)n/(N; —1), k=1,2,... N;. and N, is chosen of the form N;=1+2 N,
where ! is any positive integer. A subset of these ¢ values of the form
6k, = (((B7 =)L +1)—-1)n/(N; —1) obtained for k=Rj -1}l +1 for
§=1,2, -+ N are the & values at which velocities will be calculated and (3.14)
used to find the N coefficients a; . A little simplification shows that
6k, = (j —1)n/N + n/(2N) and are therefore points at which the N calculated
velocities can be fast Fourier transformed to obtain the Fourier cosine series of
(3.14). We avoid calculating velocities at € = 0 and w, where (3.19) has numeri-
cally awkward removable singularities. Now, we find the images 7, (V) '’ in the
W3 plane fof these N; points in the z; plane, using equations (3.22) through
(3.24). The v values in the Ws-plane image of the subset of z; points character-

ized by the angles 6k, are denoted by Vi, Reflection on the real axis provides us

with a set of N, —2 new points on the near-circular boundary of the extended
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Wz region . All together, we then have 2N, —2 points at which R,(v), vi are
known. For large enough N,;, this provides a very accurate description of the
function R,(v) for arbitrary v through cubic spline.interpolation. We then take
N3 points on the unit circle of the extended &-plane, evenly spaced in the angu-
lar variable ¢, and carry out the process of solving Theodersen's integral equa-
tion (3.25) exactly as described by Henrici (1979). In the process, we obtain the
first %—Na b, coefficients in (3.26). The b, coefficients define W3(@) in (3.27). We
then start with N; uniformly spaced points on the circumference of the unit §-
circle with @, = e #mi(m =1/ Nz gor m=1, 2,... No. We calculate Ws(&y,), z:(Ws(@,))
using (3.22), (3.23), (3.24) and (3.27) at those points. Using (3.15), (3.18), {3.18)

we calculate ¥, at those boundary points and use them in {3.20) and (3.21) to

vy,

find —5;— at N points. At the (é—Nz — 1) points Which lie entirely in the upper
. | dz; .
half @ semi-circular boundary , we calculate 20 using (3.22), (3.23), (3.24) and

(3.27). These, together with values of other terms in (3.19) already calculated
provide the velocities at the (3Ng — 1) points on the upper half semicircle If
Vm, m=1, 2,..., (5Nz — 1) denote the angular positions of the images of those §
peints in the W3 plane , we use these to interpolate velocities at the N points v j
through cubic splines. Because of the correspondence of Vi, with N uniformly
épaced out points in the 6 variable as discussed earlier, we therefore arrive at
the velocities from the inner side of the vortex sheet at the physical z locations
corresponding to N equispaced points in the 6 variable. This is exactly as desired
since (3.14) allows calculation of the {n+1)st iterate for ag, ay,... ay_; by fast
Fourier transforms as in Henrici (1979) .

Thus we have a full description of the iteration scheme. It may be noted

that the use of spline interpolation in the variable v is suitable because , as

argued in the last section , the velocity is a smooth function of ¢ and 6.
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3.7. Numerical results and discussion

The object of the present work is to demonstrate the existence of Prandtl-
Batchelor flows and we only present results here for the case g = 1.5 radians,
o = 0.3 radians, although solutions do exist for a range of 8 and a. Future cal-
culations for other values of parameters would be dictated by practical interest

and necessity. It appears that for these values 8 and «, solutions e;dst when the
. . . N wly . .
vorticity in region II is in the range 0< --—U——S 10. The iteration procedure

described in the last section was used to solve for Q{f). When the successive cal-

culated values of the coefficients ag @, @y-, and other constants were within

1078 of each other, convergence was assumed. Initially, in our calculations, we
used N, =385, N =64, N; =4096, N3 =512 . Changing each of N;, N, N, Nj,
made little difference in the converged numerical values. For instance when
N, =385, N =4B, N, = 2048, N3 =512, the calculated values of the constants
[/7(1,U), ¢/ U, etc. and the values that () assumed on a host of different points
on the f-circle were identical to the originally obtained values upto seven

significant figures. Thus we conclude that the calculations have a seven digit

accuracy.

The values of different quantities obtained from calculation are presented
in Table 1 for four different values of vorticity o . The streamlines are shown in
figures Sa and 5b for the cases wl,/U =8 and wl;/ U = 10. The results suggest
that the vortex sheet moves outwards and hence the value of I; needed to
assure reattachment at B increases with wl;/U. It is of interest to note that
la/1l; and the location of the free streamline does not depend critically on
wly/ U. This means that as far as the exterior flow is concerned the free stream-
line flows calculated in the ‘earlier' chapters present reasonably accurate values
of lift and other such characteristics of the exterior flow in the limit of infinite

Reynolds number if the flow remains attached on top of the flap.
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The extensive use of fast Fourier transforms and spline interpolation
avoided the use of any integrations in the calculation of the velocity in region II,
and therefore we believe that the method is comparatively very efficient com-
pared to the integro-differential equation techniques used by others who tried
calculation of these type of flows. For each value of wl,/ U, the entire calcula-
tion took between 10 to 20 minutes of CPU time on a VAX 11/750. We obtained
numerical convergence in our iteration scheme upto wl;/ U = 10. For larger
values the rate of convergence slowed down considerably suggesting that there
was a critical value of wl;/ U above 10 for which there will be no convergence in
the iteration scheme. For wl,/ U = B, the method needed 8 iterations to produce
a seven figure accurate result. A different set of values for N;, N, Nz, N3 made
small differences in the convergence rates provided those integer values were

large enough.

3.8. Conclusion

We have presented calculations of a so called Prandtl- Batchelor flow for
flow past a flatplate with a flap attached at its rear edge . This is to our
knowledge the first such fully consistent calculation of a Prandtl-Batchelor flow
past a physical body. For given angle of attack and angle between the plate and
Phe flap . there exists a one-parameter family of such flows, depending on the
;ssumed vorticity in the recirculating region of the flow. If the flow is the zero
viscosity limit of a Navier-Stokes solution, it is expected that only one such value
of the vorticity will be consistent with the fitting of boundary layers. This ques-
tion appears to be rather difficult and is not addressed here. Alternatively, the
ratic; Lo/ 1, over a certain range, could be supposed Lo be given in addition to the
angles a and B, and the value of w could be regarded as determined by the

requirement that the streamline that separales at A reattaches at B.
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Our method provides an accurate and reasonably efficient method of calcu-
lation of two dimensional Prandtl-Batchelor flows that incorporate possible
singularities at the separation and reattachment points. The function theoretic
approach taken allows us to reduce the entire exterior flow problem with unk-
nown boundary into one function of one complex variable on a fixed domain.
Further, this function was shown to be a smooth function up to the boundary of
a circle and this facilitates its numerical calculation without much trouble. The
procedure is general and could possibly be applied to other two dimensional

geometries of interest an example of which is presented in the next chapter.
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B O A Re W

BL. O 1A Re Wy

—

Fig.3.3 : W), W, and W, planes shown in (a),(b) and (c) respectively. 7 denotes
the radius of the circular arc that, together with real axis, encloses the

geometry of interest in (b). 6/2 is the angle between the circular arc and the

real axis.
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Table 3.1 : Values of quantities of interest for four different values of vorticity,

each for a=0.3 and 8=1.5 radians.

TABLE 3. !

ol /U =0 | /U =4 | wly/U =8 wly/U =10
/UL, 3.774983 3.832852 4040451 |* 4243180
q/U 2738574 2.669800 2400910 2.097837
Re t. 0.1756735 | 0.1733073 | 0.1652458 | 0.1578012
Im t. 0.4323535 | 0.4343188 | 0.4418190 | 0.4491662
Re M /ql, | -0.1703347 | -0.1772941 | -0.2088818 | -0.2466787
Im M /gl | -0.1449536 | -0.1491897 | -0.1677087 | -0.1937230
£ 0.4187071 | 0.4180502 | 0.4172719 | 0.4190171
I 0.3445048 | 0.3522005 | 0.3791436 | 04044527
o 0.0 0.0183422 | 0.0986727 | 0.2006016
a, 0.0 -0.0039603 | -0.0241488 | -0.0538812
as 0.0 -0.0187831 | -D.07768793 | -0.1388259
as 0.0 -0.0024419 | -0.0125488 | -0.0280788
a, 0.0 0.0045878 | 0.0162928 | 0.0208911
as 0.0 0.0023665 | 0.0009788 | 0.0152202
ag 0.0 -0.0004840 | 0.0001409 | 0.0022880
a, 0.0 -0.0008054 | -0.0021805 | -0.0017057
ag 0.0 -0.0002034 | -0.0011002 | -0.0012923
ag 0.0 0.0001294 | -0.0000245 | -0.0002768
ag 0.0 0.0000974 | 0.0001879 | -0.0000072
oy 0.0 0.0000102 | 0.0001080 | 0.0000330
Qi 0.0 -0.0000222 | 0.0000034 | -0.0000109
a3 0.0 -0.0000107 | -0.0000121 0.0000058
Qg 0.0 -0.0000009 | -0.0000151 | -0.0000083
Qs 0.0 0.0000027 | -0.0000030 | 0.CO00015
Qg 0.0 0.0000004 | -0.0000043 | -0.0000088
Ty 0.0 -0.0000001 | 0.0000002 | -0.0000027
o 0.0 -0.0000008 | -0.00000=23 | -0.0000066
Qg 0.0 -0.0000001 | 0.0000000 | -0.0000014
(o 0.0 -0.0000003 | -0.0000018 | -0.0000041
Qo 0.0 0.000CC00 | -0.0000002 | -0.0000008




Chapter IV

A steadily translating vortex pair with equal but

opposite vorticity.
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4.1. Introduction

The dynamics of a steady translating pair of equal but opposite vortices
have been considered previously by Pocklington (1898) and more recently by
Deem & Zabusky (1978) and Pierrehumbert (1980). Pocklington found exact
solutions for the case of a pair of hollowed vortex, while Deem & Zabusky and
Pierrehumbert consider uniformly distributed vortex cores with continuity of
velocity at the boundary. Such a study is of relevance to the vortex pair formed
by roll up of vortex sheets shed by a jumbo jet. Besides, their study furthens
understanding of vortex interactions, which have in recent years, been con-

sidered crucial to better understanding of turbulence.

In this chapter, we consider a pair of vortices with opposite vorticity such
that the tangential velocity is discontinuocus at the boundary, i.e. the uniform
vortex core is surrounded by vortex sheet. Thus the solutions we are seeking
form a continuum between the cases considered by Pocklington and Deem &
Zabusky and Pierrehumbert. In the special case of a stagnant core, our method
of solution is found to give the same results as found by applying Pocklington's
method. However, some numerical values quoted in Pocklington's paper do not
agree with ours. In Appendix I, the disagreement is shown to be due to errors in
Pocklington's calculations. In the last section of this chapter, we present
?Corrections to the results of Pierrehlimbert for a pair of touching vortices with
equal and opposite vorticity. The letter to the Physics of Fluids (Safiman and
Tanveer,1982) presenting the correction is reproduced without any

modifications.

While the relevance of the calculations of vortex pair with vortex sheet on
- their boundary to physicaily observed phenomena remains doubtful at best
because there seems to be no physical mechanism for its creation, the calcula-

tions carried out here present yet another instance where the function theoretic
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appreoach of complex variables can be exploited for studying flows where the
velocity on the vortex sheet (the separating streamline) is not a constant. Gen-
erally, the method used here is similar to the one used in Chapter Il for the cal-

culation of Prandtl-Batchelor flows.

4.2. Mathematical formulation

In the frame of reference of a steady translating two-dimensional vortex
pair, the velocity at infinity approaches a constant U. All the calculations are
carried cut in this frame. We are then considering a steady inviscid incompressi-
ble flow past a vortex pair. The center of mass of the vortex pair is chosen as the
origin of the coordinate system and the y-axis is aligned with the line joining the
center of masses of each of the vortex. The uniform stream at infinity is aligned
along the positive z-direction. Since the flow is symmetric about the z-axis, it
suflices to consider the flow only for ¥ positive. Further, we will only consider
vortices with fore and aft symmetry, i.e. the flow is symmetric with respect the y
axis as well. The existence of asymmetric vortex solutions is an open question
and is not addressed here. Thus, it is enough to consider the flow only in the
first quadrant of the z-plane (z =z + 1 y)as in fig.4.1. As in the flow in chapter
1II, we have an exterior irrotational region I and an inner rotational but inviscid
region II with constant vorticity w. For region I, we may introduce the complex
velocity potential W =& + i ¥, where & and ¥ are the velocity potential and the
stream function respectively, each of them being harmonic functions of z and
Y. The uniform flow at infinity implies that as z - =,

Wiz)=> Uz + 0(1) (4.1)
Without any loss of generality, we may choose the stream function ¥ = 0 on the
z-axis and the velocity potential ® = 0 on the y-axis for y = y,, where y4 is the
y-value for the point A in fig.4.1. Therefore, on the curved boundary of the exte-

rior flow in the first quadrant which coincides with the right half of the upper
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vortex boundary
¥ =1, (4.2)
where ¥, is a negative constant. At point B, we denote the corresponding ¢ by
$,, where 9, is positive number. Clearly from considerations of flow symmetry
again, we have ® = ¢, on the imaginary z-axis for 0 <y <vyp. For region II,
inside the vortex in the upper half plane, the stream function ¥ satisfies
V¥=uw (4¢.3)
where w is a positive constant. Equation (4.2) is once again satisfied on the right

half of the upper vortex boundary, while

o _

=0 (4.4)
holds on the y-axis for ygp <y <y,4. Clearly ¥ satisfying (4.4) is extendable to
the entire vortex with ¥ satisfying (4.2) everywhere on the vortex boundary
while (4.3) is satisfied everywhere in the vortex interior. As in chapter III, the

pressure condition for the determination of the vortex boundary becornes

l%—zqu —(V¥)? = g* (4.5)
where g® is a constant equalling twice the jump of the Bernoulli’s constant
across the vortex sheet. Before considering procedures to solve this boundary
value problem with an unknown boundary, we proceed to show that if there exist
'\P and W(z) that satisfy equations (4.1) through (4.5), then there will be one
;stagnation point in region I at D (as in fig.4.1), a point on the boundary of the

region.

4.3. Number of stagnation points

Consider the contour integral

' 1 dE W aw
J; [zm 422 4z | % (4.8)

where C is a closed contour in fig (4.2). Since the integral is simply the number
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of zeroes minus the number of poles of the analytic function Z—Zwithin the con-

tour C, it is real and therefore we will restrict our attention to the real part of
the contribution from each segment that is a constituent of C since the ima-
ginary parts are bound to cancel each other out. C is composed of straight seg-
ments Ly, Ly, L3, Ly, curved segment C, coinciding with the vortex boundary and
a circular arc Cg of radius F. Besides C consists of detours of circular arcs of

radius & wherever g—g— equals zero. We will consider contribution from each seg-

I
E3

ment in the limit of £ - 0 and £ -,

Clearly the real contribution from each of the straight line segments equals

aw

between the ends of L;,
dz

zero since there is no change in the argument of

where 7 = 1,....4. As in chapter [, it is easy to see that for each of the small ¢

s s . - . 1
semi-circular detours around a simple zero *, the real contribution equals -3

v

The real contribution from C, is é— since the argument of % changes from 0O to

7 as we move along C, from A to B. The real contribution from Cp is zero since
the integrand is seen to decay faster than 1 / K as K - =, Summing up all the

different contributions from each segment composing the contour € and equat-
ing it to the number of zeroes minus the number of poles of %, we obtain

t g s = N (4.7)

where ng and N; are the number of boundary and interior stagnation points. We
find that the only nonnegative integral value possibility for n; and N, is nng = 1

and N, = 0. Thus, there is one stagnation point on the boundary of region I at D.

4. 4. Method of solution

The method of solution is very similar to that in chapter IIl. As before, we

* For multiple zeroes at a point, we only need to multiply —-Lby the multiplicity of the zero.
P P 2 y
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map £ (z) of region I in the z-plane into the interior of the unit semi-circle such
that z = = is mapped to 0, A is mapped to +1, and B is mapped to -1. The points
corresponding the origin C and the stagnation point D are at £ = ¢ and d respec-

tively, where each of them is a negative number. These are unknown a priori and

will be determined as part of the problem. Consider % as a function of £. We

introduce the analytic function (I by the relation
aw _ (t =d) .o

dz  (1-fd) "
Considerations of the argument of both sides of the above equation on the real

(4.8)

axis shows that Im Q = 0 on the real f-axis and therefore () is extendable to the
entire unit circle from Schwarz reflection principle. Thus we may write (0 in a
taylor series expansion involving £. We do not do so, instead, for convenience of

numerical calculations we introduce

~  (t+ 1)

ECEEES)

where f, is a real number in the open interval (-1,1), chosen suitably as

(4.9)

described later. Since { () maps the unit circle into the unit circle with -1 and
+1 getting mapped to -1 and +1, ( is an analytic function of £ on the unit circle
and hence

Q) =ag+a, f +azto+ - (4.10)

¥ . . ™~
‘where ag.,a;, - are all reals and the power series is convergent for any ¢

inside the unit circle. From continuity of % it follows that the power series is

convergent even on the unit circle.
Now, we wish to find W as a function of £. This is more easily facilitated by
introducing the conformal map T (f) defined by
T=—2(t+1/t) (4.11)
which maps the unit semi-circle into the upper half plane. We now consider ¥ as

a function of 7. If we consider the flow boundaries of region I in the W-plane
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shown in fig.4.3, we find from Schwarz-Christoffel transformation
aw

a7
where K is an unknown real and C and D are real constants related to ¢ and d

=K(T+1) 2 (T —1)"§"<T—c)“§‘(:r-p) (4.12)

through (4.11). Using (4.11) and (4.12), we find

ZZV S KR —d) (1=t d) (£ —c) T (l—ct)F (4.13)

where K is just a positive constant. Since %;— = %—?L/ -(%VF it follows that
—i - 2 -0 :
dz _ 1 K(1l—-dit)e (4.14)

L L
t3R(t —c)? (1 -t c)?
The condition that the vortex pair combination be a steady one implies that
there be no total force on each of the vortices. From Blasius theorem, the forces

along z and y directions F; and F, are given by

. 1 dw |
F,——sz_a—mj{?:(E-z—)zdz (4.15)
for C a closed contour around a vortex. From symmetry considerations, we find
that 77, the force along the x-direction will be automatically zero for any vortex
boundary with the assumed symmetry. Hence we only have to impose the

requirement that 7, on the upper vortex equals zero, which implies

el (¢ -—d)z

Re| [do — (4.16)
0 ta(t——c) (1—tc)a

where t = ¢ %® From (4.8) and the knowledge of velocity at ¢ =0 (i.e. = tp), we

have
U=-d et (4.17)
Further, from geometric considerations
. ‘dz
—iyg= _/' ot (4.18)

For given (), equations {4.16), (4.17) and (4.18) constitute three real equations to

determine the three unknowns ¢, d and K for given U and yp. It is easy to see
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that U and yp are only linear scaling factors and that their absolute values have
no bearing on the values of any nondimensional quantities that characterize the
flow. Hence, each of them were set equal to unity without any loss of generality.
Thus the problem is completely determined in terms of () and hence the

coefficients ag, @y, ' -

For the special case w = 0, i.e. the case of hollow vortices, the pressure con-
dition (4.5) becomes on the circumference of the unit t semi-circle
g = e Rel (4.19)
Since Im (2 = 0 on the real diameter, it follows that Q is identically a constant
equalling log g, where g, in this case, also equals the magnitude of the velocity
of the vortex boundary. Thus in terms of a single parameter g, we may deter-
mine the constants d, ¢ and K describing the hollowed vortex flow by solving
equations (4.16) through (4.18). The case of the hollow vortex pair was con-
sidered earlier by Pocklington and his method of solution involves extensive use
of properties of elliptic functions.
For the general case w#0, the determination of Q(#) is more complicated
since the velocity in region II has to be taken into account in the pressure condi- »
tion (4.5). For a vortex boundary point corresponding to £ = e *® for ¥ £[0,n] ,

(4.5), (4.8) and (4.10) imply

Qg+ a; cosB+ ag cosB+ -+ = +1In (g? + (V¥)?R) (4.20)

Thus the velocity on the inner side of the vortex sheet VW needs te be deter-
mined as a function of ¥ in order that the coefficients in the expansion of (4.20)
may be determined for given g. The problem now reduces to determining the
right hand side of (4.20) and its Fourier cosine expansion with respect to 3 in
terms of ag, @,, . In the next section, we describe how the inner velocity
and hence the right hand side of (4.20) is determined for given ag, a,,... and ¢, d

and K.
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4.5. Determination of the velocity in region Il on the vortex sheet
For given ag, a,,.... and ¢, d and K, we integrate i—; using equations (4.9),

(4.14) and using =z (—1) =1 yp, to determine z (e 1.79) the location of the vortex
boundary for B¢ [0,7r]. Using reflection on the y axis, the other half of the vor-
tex boundary is located. We are then left with the problem of computing the
velocity [V¥| on the inner side of the vortex sheet where ¥ satisfies {4.3) in the
interiér and (4.2) on the boundary. Since the vorticity w equals a constant, it is
convenient to separate ¥ into a particular solution ¥, and a harmonic functio;1
¥,. Conformal transformation of the interior of the vortex into a full circle
then converts the problem into one of determination of a harmonic function
from given boundary data on a circle. For the purpese of such conformal map-
ping, once again as in chapter lII, we introduce the complex variable

z; = —x +1 vy defined in region II of the physical plane and its reflection on the

y-axis. We take particular solution ¥, defined by

w1, = %—(Imzi — ) (4.21)
where ¥ = 5 (Y4 + ¥5)

Consider the conformal map &(z;) that maps the z; plane interior of the
vortex into the unit circle so that A gets mapped to -1, B gets mapped to +1.
The third degree of freedom in the Riemann mapping function is automatically
decided by the conformal mapping procedure to be described later in which
some point in the imaginary 2; axis is mapped to the origin of the @-plane. The
details of the the mapping function 2;(@) will be discussed in the next section. It
will be seen that the real diameter in & plane corresponds to the imaginary 2;-
axis between B and A. We now consider ¥, as a function in the @ plane which

satisfies boundary conditions as follows:

¥ (e ™) = =¥y (2; (e *¥)) (4.22)
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where ¢ & [~m,7] and @ = p e*? in the @-plane. As in chapter III, we can express

dz,
the velocity in terms of z; (@), —* and the normal derivative of ¥, in the @-

e

plane. For our choice of ¥, this becomes

dz.
Im(Q dzé;) +|dzi AT

dz; @' op
F

for @ = e on the unit circle boundary. Now (4.2R) determines the data for the

V¥ = (Ime; -y ) (4.23)

harmonic function ¥, on the boundary of the unit circle. Using (3.20) and (3.21)

¥y,
dp

of chapter III, in (4.23) is determined. Thus determination of z; (@) and

dz;
—= as described in the following section allows us to compute the right hand

ag

side We note that in (4.20) we need [(V¥)P as a function of B and not ¢, as given
by (4.23). However, for each ¥, (4.14) and (4.9) determines (z(%).y (%)) on the
physical vortex sheet and therefore the corresponding positicn in the z; plane.
The conformal map &(z;) provides the relation ¢(z;(%)) needed to determine the
velocity as a function of B The details of this correspondence and its usage are

discussed in section 4.7.

4.6. Mapping into a circle in the §-plane

‘ As mentioned before, we wish to find §(z;) that maps the z;-plane interior
?of the vortex into a circle with A mapped to +1, B to -1 and some point on the
imaginary 2z; axis to the origin. This will be done here by first mapping the vortex
boundary in the 2; plane into a near circle through some explicit readily inverti-

ble transformations. The mapping from the near circle to an exact circle is then

done by solving Theodersen's integral equation exactly as in the last chapter.

Since the shapes of each of the vortices is likely to be elongated as for the
case of uniform vortex core with no vortex sheet (see Pierrehumbert, 1980 )

with large curvature close to the major axis when the distance between the the
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vortices is small, we carry out some explicit transformation to get rid of large
curvatures. However, for both the hollow vortex or the uniform vortex limit the
vortex shape is not quite symmetric about a straight line parallel to the z axis
passing through the center of mass of a vortex (especially for small separation
of the vortices). Thus the transformation (3.24) cannot be immediately applied
to wipe out regions of large curvature. In order to make the geometry more sym-
metric about its centerline, a bilinear transformation is introduced as follows:

(i 2 +yo)

(zi - Zc)

where y, = ;—( Y4 +yp ) and 2, is as shown in fig. 4.4. Fig.4.5a shows t;he approxi-

Wy (=) = (4.24)

mate shape of the boundary in the ¥;-plane. Once a more symmetric boundary

is obtained we further transform

o8 n/é .6 n/é
: : ) (r sin -+ W) —(r sin - - Wi : )
WolWy) =—1 w78 w8 4.25
(r sing— + W) +(r sin-g—— W)

Fig.(4.5b) shows the approximate shape of the transformed boundary with
appropriate choice of = and 4. This is nearly circular with the real axis
corresponding to the imaginary axis in the z;-plane. If W, = B, e*” and @ = e'¢,
—m <v, p<m , characterize corresponding points on the vortex boundary in the
Ws plane and the unit circle respectively, then as in chapter IlI, Theodersen's
integral equation (3.25) is satisfied by v(¢). Asin chapter III, the solution to this
integral equation is conveniently found in the Fourier space and once the itera-
tions converge we obtain the complex Fourier series for log (R, (v (¢)) ) which
allows us to find the coefficients of the Fourier cosine series in ¢ as well, since it

is an even periodic function. From such a series, we obtain the coefficient &, in

W o
log {—i]zzan" (4.28)
@) %
inverting the relations in the equations (4.24), (4.25) and using (4.28) we arrive

at 2;(@) from which @(z;) is known in principle . The velocity is therefore
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determined from the inside of the vortex sheet for a given vortex sheet location.
Equating the coefficients of cosn® in (4.20) the coefficients ag, a;,... are deter-

mined in the same way as in chapter III..

4.7. Numerical Procedure

The procedure used for numerical calculation is quite similar to the one in
chapter llI. However, it differs in some details. For purposes of clarity, we
describe the entire procedure without reference to chapter Il even though some
steps are exactly the same as in the last chapter. We start with an initial gues‘g

of N coefficients ag, 2 ay-; and obtain an approximate Qﬁ) by truncating

(4.10). For each ¢ and w, we use a value of £, such that the coefficients in the
series expansion (4.10) decay rapidly. As w and g are changed, t, is adjusted so
that the coefficients of Q in (4.10) continue to decay rapidly. No fine tuning was
done, but the degree of freedom offered by arbitrary choice of ¢, in the interval
(-1, 1 ) helped tremendously in some cases as far as the decay rate and hence
the number of terms in {4.10) needed to describe Q to the desired level of accu-
racy. For fixed g and w small, the guess for (? and hence agis In g. The guess for
all other coefficients is zero. For bigger values of w corresponding to the same
g. we use values of the coeflicients obtained from the Fourier transform with
‘respect to B of the boundary values of converged solution Q) for slightly smaller
;co. Note that an initial guess of ag, 2;,... equalling the converged values of these
coefficients for slightly different w or g may be unsatisfactory because of greatly
differing values of £, used in the two cases. In the following, for fixed ¢ and w,
we describe the procedure used to find the (n+1)st iterate given the nth iterates

n
Ug.

a? a}., and therefore Q*(%).
We use (4.18), (4.17) and (4.18) to determine K, ¢ and d for given values of
@g, @,,... and hence ) where (4.9) is used to find £ for given f. This determina-

tion is easily made by first using (4.17) to determine d. Since equation (4.16) is
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independent of K, the left hand side is a nonlinear implicit function of one vari-
able ¢. Newton iteration was used for sclving (4.18). Once d and ¢ are deter-
mined, only one integration in needed to determine K from (4.18). Equations
(4.14) and (4.9) then determines 2(¥=z(@)+iy(¥d and hence
2{(8) =—z(B) +iy(® on the vortex sheet for N; points where
G, = (k—1)n/(N,~1), k=1,2,.. N;. and N, is chosen of the form N;=1 + NI,
where I is any positive integer. A subset of these & values of the form
'ékj =(7j -1l na/(Ny—1)for j=1,2,- - N+ 1 are the ¥ values at which veloci{—

ties will be calculated and (4.20) used to find the N coefficients a; . The uniform

spacing of 'é,cj over a semicircle allows usage of fast Fourier transform for the

calculation of Fourier cosine series coefficients of the function on the right hand
side of (4.20) once the the velocity V¥ is calculated at those points. Now, we find
the images B, (1) ™* in the W, plane for these N, points in the z; plane, using
equations (4.24) through (4.25). The v values in the Wp-plane image of the sub-

set of 2; points characterized by the angles 'ékj, are denoted by Ve, Reflection on

the real axis provides us with a set of N; —2 new points on the near-circular
vortex boundary in the W-plane. All together, we then have 2/N,—2 points at
which Rw(u;c) vy are known. For large enough N;, this provides a very accurate
description of the function £, (v) for arbitrary v through cubic spline interpola-
tion. We then take N3 points on the unit @-circle, evenly spaced in the angular
variable g, and carry out the process of solving Theodersen's integral equation
(3.25) exactly as described by Henrici (1979). In the process, we obtain the first
> N3 b, coefficients in (4.26) . The b, coeflicients define Wa(@) in (4.28). We
then start with N; uniformly spaced points on the circumference of the unit @-
circle with On =€ Bmlm=1)/ Nz for m=1,2,.. N;. We calculate Wy(@,,), z;(#.{&,.))
using (4.24), (4.25) and (4.26) at those points. Using (4.21) and (4.22) we calcu-

0¥

late ¥, at those boundary points and use them in (3.20) and (3.21) to find T
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at Np points. At the (3 Np + 1) points which is part of the upper half § semi-

dz

circular boundary including those on the real axis, we calculate E—L using

(4.24), (4.25) and (4.26). These, together with values of other terms in (4.23)
already calculated Provide the velocities at the (é"Ng + 1) points on the upper
half semicircle If v,, m=1,2,..., (;—NZ + 1) denote the angular positions of the
images of those & points in the W3 plane , we use these to interpolate velocities
at the N + 1 points Vi through cubic splines. Because of the correspondence
of Vi, with N + 1 uniformly spaced out points in the 6 variable as discussed eaiﬁi—
lier, we therefore arrive at the velocities from the inner side of the vortex sheet
at the physical z locations corresponding to N + 1 equispaced points in the 6
variable from which the first N coefficients of the Fourier cosine series in (4.20)

are determined.

4.8. Numerical results and discussions.

The values of the coefficients completely characterizing the flow for the hol-
low vortex is listed against parameter g in table (4.1). The corresponding shape
of the upper half vortex is shown in fig.4.6 where yg were set equal to the same

value.

Table (4.2) lists the various quantities of interest corresponding to several
edifferent w with ¢ held fixed at 3.0. The corresponding vortex geometries is
shown in figure 4.7. The iteration scheme failed to converge when © was
increased beyond some critical number, 9 being the critical value corresponding
g = 3.0. Small values of ¢ and w correspond to the small separation between the
vortices. It was considered interesting to find out whether there exist very
elongated vortices without vortex sheet in the limit of zero separation between

the vortices. Unfortunately, our method of solution did not shed any light on

this possibility because the iteration scheme failed to converge even for
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relatively small w when g/ U approached the limiting value of 1.

However, we believe the reduction of the entire exterior flow with unknown
boundaries inte one unknown function (0 of one.variable on a fixed domain
opens a lot of possibilities and deserves to be investigated further. As a possibil-
ity, Newton iteration could be be applied for the determination of Q to find
whether vortices can continue to get elongated as their separation is reduced, a
question raised by Saffman (1979). More generally, the function theoretic
approach introduced in the last two chapters offers great hopes for solving %
wide class of flows with vortex sheet and distributed vorticity, problems which
may otherwise be considered almost intractable.

In the following section, we calculate a pair of touching vortices with no vor-
tex sheet. The calculation is done using centour dynamics technique due to

Zabusky.
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Fig.4.1: The flow region in the first quadrant of the z-plane (physical plane)
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Fig.4.3 : The flow region in the W-plane.



-115-

y=Im Z;

Zi=1y, Maximum value
of Re zi on the

/VCFTEX

center of
T circle

Z2=Z,

Fig.4.4: The dark solid lines show the upper vortex boundary in the 2; -pléne. A
circle is drawn such that it passes through y; = 3 (¥4 + ¥5) and points on the
vortex boundary for which the real part of the 2; are maximum and minimurm.

z. denotes the is the location of the other intersection point of the circle with

the y-axis.
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Fig.4.5: The shape of the vortex in the W; and W planes.
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Values of constants characterising hollowed vortex pair|
g/ U=17% g/ U=2.0 g /U =3.0
c -0.9899599898 -0.6996368 -0.847143
d -0.688235 -0.500000 -0.333333
K 6.383068 5.088503 3.905521
Table 4.1,

Physical properties of Vortex pair forg / U = 3.0, : !
wyp/ U=0|wyp/ U=1 | wyp/ U=3| wyg/ U =9.0
Y,/ T -0.0982" -0.1019 - -0.1197 - -01812
wS/ T 0.0000 0.2219 0.5008 0.7489
(S/ ™Y2/ yem 0.8893 0.6693 0.5860 0.4436 .
Y/ Ya 0.3017 0.3041 0.3280 0.4134
Yem 7/ Ya 0.8375 : 0.6402 0.8573 0.70486
Zs / Yem 1.8023 1.8773 1.8033 1.7494
Ys / Yem 2.1083 2.1040 2.0981 2.0895
4 Uy /T 0.9319 0.9413 0.9701 0.9925
S/ (2S) 4.2728 4,4613 5.5581 9.3386
T/ (pI®) 0.1721 0.1784 0.2084 0.2623

Table 4.2. T'is the total circulation around the upper

half vortex, S the area of each vortex, z, and y, are

the z and y intercept values of the separating streamline,
S; the total area enclosed by the separating streamline,
v.m the y value of the center of mass and T the total
kinetic energy in a frame of reference where the vor-
tices move with velocity U.
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The touching pair of equal and opposite unifcrm vortices

P.G. Saffmanand S. Tanveer

Depariment of Applied Mathematics, California [astitute of Technology, Pusadena, California 91125

{Reccived 16 July 1982; accepted 13 August 1982)

The shape and speed of a pair of touching finite area vortices are calculated and an error in

previous work corrected.

Pierrehumbert! presents steady-state solutions for two-
dimensional finite area veriex pairs of equal and opposite
uniform vorticity in an inviscid incompressible fluid. He
claims that as the gap between the vortices decreases, the
shapes approach a limit in which the pair touch along the
.axis of symmetry with acusp at each end. The purpose of this
letter is to point out that Pierrechumbert’s analysis is incom-
_plete and that there exist solutions without cusps, the vortex
boundary beingperpendicular to the axis as sketched in Fig.
1, although the curvature is infinite. We have recalculated
the shapes and find, however, that apart from the behavior
near the axis, our shape and his are in good agreement (see
Fig. 2 and the calculated speeds also agree to two significant
figures. .
The flow can be reduced to rest by superposing a veloe-

ity U equal and opposite to the speed of the pair. The axis of -

symmetry is a streamiine and it is sufficient to consider the
flow in the upper half-plane. We shall also assume fore and
aft symmetry. {The existence of nonsymmetrical solutions is
an open qucstion.) To consider the shape near the end 4 of
the axis of symmetry, take pclar coordinates 7, & centered on
A. The stream function ¢ satisfies V2 = 0 in region I and
V% = —w in region II. Take the local expansions in the
form

w0~y =(27)" (P Inrsin 26 + 6 cos26). .. .
+arsin20 +ﬁ(( 7 In rsin 28 — 67* cos 28 )

“(lmrP+ 672 :
+ 0~ /(in ), : {1)
@7y =(27)7 (P In rsin 26 + 67 cos 20) N
— [P sin? @~ I cos 26 + arfsin 20
2 lnrsin 20 — 07 cos 26 )
+BZ( (lnrf +6°
+ O/ (In ). . : {2)

It is easily verified that &, and ¢, satisfy the differential .

equations. Further ¢y, =0, ¢, = Oon 8 = 0, m, respectively,
The velocity has to be continueus on the boundary of the
VOries, te, Uy = vy, =0 and (¢, /I0)} = (i, /30) when
@ = G| say (continuity of pressure is then automatically

192% Phys. Fluids 25(11), November $982

0031-9171/82/111929-0251.90

satisfied). A ittle algebra shows that these equations are szt-
isfied to O (~/In r) accuracy if the boundary is taken 1o be

l=r/2—a/l4lnr)+ y/In P + ..., {3

provided 8, — B, = w/8 and y = 7/8 + ja=". The assump-
tion that theleading order term for ¥, and ¢y, is 7 In r sin 28
can be checked by lozal expansion around 4 of wiz) given in
Eq. (5), provided the slope of the boundary at 4 is nonzero.
Plerrehumbert’s argument for the nonexistence of solutions
with nonzero slope overlooked the possibility of logarithmic
terms. ’ o

The equation to be solved for the determination of the
vortex boundary is )

Im{uiz)] =0, o (@)
wherel ' : '

Q(z) N S liz = 2)Infz ~ 2')
49 Jc. .

+ iz + nz + 2147 E

+ [z = 2Z)Infz =2} + [z + 7)lnfz + 2142, (s)
and C is the anticlockwise contour in the first quadrant of
Fig. 1. Deem and Zabusky? first used a similar formula to
determine vortex boundares. Equation (4) is 2 nonlinear in-

FIG. L. Sketch of flow geometry and coordinate system for touching vortes
pair.

© 1982 Amernican insttute of Physics 1929
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(a)

(b}

FIG. 2. Comparison of Pierrehumbent’s’ solution {a} and present solution
{b} for vortizes of the same width.

tegral equation for the vortex boundary. The only length

__scale in the problem is (U /@). Given U and w, the flow and

vortex boundary are complctely determined and in particu-
lar the area S of cach vortex is given by

S=kU¥o?, ) {6)
where k is a constant to be determined.

Weintroduce polar coordinates R, @ centered on 0 (Fig.
1). We constructed numerical solutions by writing R as:

N~
Rip)= X R, cosi2ag}, )
RO

whcrcais related to the actual angle @ by

@ =7 — 0.5 sin(25). ®)

Equzmon (4) was then satisfied at the points <p] = jm/2N;
J=1,2,...N. Thestretching Eq. (8) concentrated the colloca-
tion points close to the axis. Notice also that dp /d;a 0at
@ =0 and therefore a Fourier cosine serics in @ does not
preclude cases with cusps on the axis. Approximating the
integrals in Eq. (5) by sums then reduces £q. (4) toset of ¥

1330 Phys. Fluids, Vol. 25, Mo, 11, Novernber 1982

nonlincar cquations in the N unknowns Ry, R,,...Ry_ ;-

- Since, irrespective of the vortex boundary choice, the imagi-

nary part of w{z) given by Eq. (5)is closc to zero near the axis,
we chose

Im(/;w{R(-gEJ)cxp[iqz(};l)}])—_-o (%

for j = 1,...,N as our modified nonlincar system, where the
numbcrs/} were made appropriately big for points close to
theaxis. In this way, scnsitivity of the left-hand side of Eq. ($)
*to the boundary curve near the axis was ensured. The system
was solved by Newton iteration. Here N = 20 was found
sufficient to give R {z) 1o 6 sigxiiﬁcam figures. Qur numarical
results support the analytical result that @~7/2— 7/
{4 In rincard. Forr = 1.3 107 *inunitsof / /e, -Zterm
approximation gives & = 1.689 and numecrical ealculation
_yiclded © == 1.697. Comparison over a range of 7 between
1073 to 102 revealed about the same kind of agreement.
Forsmaller 7, theagreement wasa little worse for the quanti-
ty (6 — m/2) because of limitations of numerical accuracy.
The value of k in Eq. (6) was found to be 37.11. Plerrehum-
bert’s value is 37, inferred from his nuinbers.

Saffman and Szeto® argued that this solution v.nh
touching vortices may be isolated and not the limit of 2 vor-
tex pair. This question still remains open.

This work was supported by the U. S. Department of
Energy (Office of Basic Encrgy Sciences) and the Office of
Naval Research.

'R. T. Pierrehumbert, J. Fluid Mech 99, 129 {1930).
*G. S. Deem and N. Zabusky, Phys. Rev. Lett. 40, 859 {1978).
’P. G. Safman and R. Szeto, Phys. Fluide 23, 2335 (1930).
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APPENDIX 1

Here, we point out a few errors in the paper by Péckhngton (1898). In this ap-
pendix we use exactly the same notation as in Pocklington. Rather than repeat-
ing all the arguments, we will refer the reader to Pocklington's paper and as-
sume familiarity with it.

Up to equation (3) on page 181, we found no errors except for a possible
misprint in the first paragraph on page 181, where it is mentioned that + k, —L
corresponds to G' and C'. Actually, it is + 1/ k, —1/ k that corresponds to
those two points. A more serious error occurs in first paragraph on page 182,
where it is mentioned that points D", and F', B" and H", A" or I" correspond to
points £ =1, —1,f{ = +a, —a and { = = respectively. A correct statement would
be, if D" exchanged places with 7' and B" with H" in the above statement in
Pocklington. This is less likely to be a printing error, since based on the above
incorrect assumption, the statement on page 182 regarding the imaginary part
of (I diminishing by mi follows. Actually, the imaginary part of Q increases by i
as ! increases through the value a. Clearly the statement about D" being
mapped to £ =1, ete., could not be correct since the flow region in the Q plane
tand the £- plane would not be oriented properly for a conformal mapping to
gexist. The consequence of these errors, fortunately, is minimal and eventually,

all the major derived equations, namely (4), (5), (8). (7) and the expression for

%?W- on the last line of page 182 are correct.

On page 18? of the paper, it is claimed that corresponding to k = sin89°,
the velocity of vortex translation V is 0.97 U, where U is the velocity of the vor-
tex boundary. Also, it is mentioned that figure 7 corresponds to this value of k.

Both of these claims are incorrect. Using values of K and £ as given in
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2

Abramowitz and Stegun (1970), we calculated a® and substituting into

1

V/U=(Ra®*~-1-2a (a®—-1)%), we found V/U (U/q by the notation of
chapter IV) to be 1.0/ 2?80’72 and not 0.97. Further, for this value of V/ U, it
was found by applying the method of chapter IV that the vortex boundary
corresponding &£ = 89° is as given in fig.7 below. Pocklington's method was not
applied because the numerical values of the Jacobi Zeta function was not readily
available for the argument k& = sin 89°. However, the two methods were found to
produce identical shapes of the vortex for k =sin 88°, for which

V/U=10/ 3.13439.

Fig. 7
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