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SUMMARY

Interfefometer measursments are given of the flow fields near
two=dimensional wedge and circular arc sections at zero angle‘of at-
tack at high subsonic and low supersonic velocities. Both subsonic
flow with local supersonic zone and supersonic flow with detached’
shoek wave have been investigated. Pressure distributions and drag
coefficients as functions of Mach number have been obtained. The
wedge data are compared with the theoretical work on flow past wedge
sections of Guderley and Yoshihara, Vincenti and Wagoner, and Cole.

It is shown that the local Mach number at any’point on the sur-
face of a finite three-dimensional body or an unswept two-dimensional
body, moving through en infinite fluid, has a stationary value at
Mach number one and, in fact, remains nearly constant for a range of
speeds below and above Mach number one. On the basis of this concept
and the experimental data, pressure distributions and drag coeffi-
cients for the wedge and circular arc sections are presented through-

out the entire transonic range of velocities.
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I. INTRODUCTION™

1. Difficulties of Theory and Experiment in the Transonic Range

of Velocities

The difficulties inherent in studying transonic flow are well
known. Theoretical analysis is made difficult by the non-linearity
of the differential equations of compressible fluid motion. This
non-linearity leads to a change-over in type of the differential
equations from elliptic to hyperbolic when transition is made from
subsonic to supersonic speeds. Since the essential feature of tran-
son;c flow is this mixed subsonic-supersonic character, it is obvi-
ous that no linearization of the differential equations (at least in
the physical plane) can adequately describe the flow.

Wind tunnel studies in the transonic range are made difficult
by the large lateral extent of the perturbation flow field around
bodies in this range. This means that models which are small com-
pared to the test section must be used. Even then there is still a
range of speeds from just below M, =1 to just above M= 1 where
the model and/or its support configuration are "choked," that is,
where local supersonic zones embedded in the subsonic field extend
from the model to the tunnel walls, or, in the supersonic case, where
embedded subsonic zones extend to the tunnel walls, or shock waves,
reflected from the walls, impinge on the model. Some progress has

been made recently in modifying wind tunnel test sections so as to

*Some of the results of these experiments have already been reported
in Ref. 1.



minimize these effects, but, on the whole, the majofity of .good test.
data in the range very close to M. = 1 has so far come ffam‘free
flight tests. Some good transonic data are available, however, from
transonic bump tests made in wind tunnels (Ref. 2). Using small
models usually results in low Reynolds numbsers so that difficulty is
often experienced in extrapolating data to full size Reynolds numbers;
this seems to be particularly true of the transonic speed range since
the effects of boundary layer - shock wave interactions seem to be
quite large there (Refs. 3 and 4).

In this paper it is shown that in meny instances tests need not
be made in the regilon very close to M, = 1 since the flow in this
range can be inferred from testing below and above this range and us-
ing an interpolation based on ths fact that the local Mach number at
any point on the surface of unswept two-dimensional bodies and finite

three-dimensional bodies has a stationary wvalue at M= 1.
2. Existence of Potential Transonic Flows

G. Guderley has made a detailed investigation of the possibility
of smooth transonic flows (that is, subsonic flows with an embedded
supersonic zone in which no shock waves appear) {(Ref. 5). He pro-
poses that such smooth flows are exceptional, that they are discrete
cases occurring for only particular body shapes at particular free
stream Mach numbers. Any perturbation of the shape with the lach
number held constant (or vice versa), Guderley claims, would result
in a shock appearing in the flow. This bears an analogy to the well

known Busemann supersonic biplans which theoretieally has no shocks



(and hence no drag) at a discrete value of free stréam Mech number
and angle of attack (Ref. 6, p. 154), Guderley's proposél is still
controversial (for example, see the paper of W. Re. Sears who has
made a eritical survey of the work to date on the existence of tran-
sonic potential flows (Ref. 7)).

It is obvious that the potential flow must break down for a
given body shape at some Mach number less then one. The argument
whether this breakdown occurs precisely when a supersonic region first
appears on the body or at a slightly higher Mach number seems somewhat
academic, (although very interesting) since it is well known experi-
mentally that the drag rise Mach number (that is, the Mach number
where noticeable shocks first appear) is very close to the critical
Mach number (that is, the Mach number when sonic velocity first ap-
pears on the body) for most bodies without surface slope discontinu-
ities.

Kuo (Ref. 8) proposes that supersonic compression is unstable to
disturbances, that is, a supersonic region on a body in subsonic flow
must end in a shock with no compression occurring in the supersonic
flow ahead of the shock. There seems to be ample experimental evi-
dence to show that this is not strictly true since, for example, the
compression region of a A -shock is clearly supersonic. However, the
A -shock configuration is believed to be a phenomenon associated with
laminar boundary layer - shock wave interaction; with tuybulgnt bound -~
ary layer (a condition more closely approaching non-viscous flow)
hardly any noticeable supersonic compression occurs before the shock

ending the supersonic zone (see Ref. 9).



K Choice of Models

Two-dimensional flow is much simpler to handle than axially sym-
metric flow both in theoretical work and in interferometry. Hénce it
was decided to study two-dimensional flows despite the well known
difficulties in approximating two-dimensional flow in a wind tunnel.

Due to the considerations mentioned previously it was decided %o
test very small models which would be of such a shape that viscous
influences would not materially affect the flow over them. This led
to the choice of half airfoils, wedges and circular arc sections fol-
lowed by straight sections. These models have favorable pressure
gradients on their surfaces over most of the transonic range so that
boundary layer separation, if it does occur, will only occur due to
shock wave influence. Furthermore, such separation will occur down-
stream of the part of the body being studied and hence will not af-
fect the measurements. Certain viscous effects will still be evident
however, for instance, the effective rounding off of the shoulders
and leading edges of the wedge models.

Both theoretical advantages and practical need make the study of
thin sections desirable. Consequently the semi-wedge angles chosen
were 4 1/20, 7 l/?o, and 10° (a 26.6° wedge was also used in order %o
make a comparison with some available theoretical work on a wedge of
this angle). The circular arc section chosen was .essentially the
front half of an 8.8% thick biconvex circular arc airfoil, followed
by a straight section. MNodels of sections much thinner than this,
with the same chord lengths used, run into structural difficulties

and also the ratioc of boundary layer thickness to model thickness



becomes large enough to cause considerable deviation from non-viscous

flow.,
4. Transonic Flow Theory and Experiments

The investigations of wvon Kérmén, Busemann, Guderley, Prankl,
and meny others have contributed significantly to methods of approach
which can be used to study itransonic flow (Refs. 10-15). The detailed
numerical celculations for specific cases made by Maccoll and Codd,
Emmons, Drougge, Drebinger, Guderley and Yoshihara, and Vincenti and
Wagoner (Refs. 16-22) have helped to dispel the idea of a "sonic bar-
rier." Recently J. D. Cole at GALCIT has given an analysis of the
flow past wedge sectibns at high subsonic speeds (Ref. 23). By com-
bining the results of Guderley and Yoshihare's, Vincenti and Wagoner's,
and Cole's calculations the flow past thin wedge sections can be given
completely through the transonic range permitting a comparison with
the present experiments. Some of the investigations mentioned above
will be discussed in more detail further on in the present paper.
Available experiments in the trensonic range on thih.wedge sec-

tions are surprisingly few. Pack (Ref. 24) describes some interfero-
metric experiments on 10° and 20° semi-angle wedges made at Braun-
schweig after the war. His subsonic data appear to be good but the
flow in the supersonic interferograms eppears to be very non-uniform
and not very closely two-dimensional; only one supersonic Mach number
was tested where detached shocks occured. His conclusion that the
P/, distributions on the surface of the 20° semi-angle wedge are

very much the same for M, = 0.803 and M_,= 1.40 is interesting but the



statement that this agrees with the theoretical pre&ictions of Maccoll
and Codd is incorrect since they indicated that the P/Fé 4distribu-
tions would be nearly the same.

Griffith at Princebon has just recently pubiished the results of
some very carefully done experiments on flow past wedge sections of
semi-angles of 7°, 10°, 20°, 30°, 45°, and 90° (and several other
shapes) with detached shock waves (Ref. 25). These experiments were
done in & shock tube and interferograms are presented of the flow
fields. The experiments clearly show that the shape of the detached
shock and its debtachment distance from the sonic point on a wedge de-
pend only on the body thickness and the Mach number (not the wedge
angle) when the Mech number is well below the shock attachment Mach
number. This is in genéral agreement with Busemenn's considerations
in his paper on detached shock waves (Ref. 11).

Liepmann, Ashkenas, and Cole (Ref. 9) made some careful pressure
measurements on the surfaces of 6% and 12% biconvex circular arc air-
foils at zero angle of attack at high subsonic speeds in connection
with studies of shock wave - boundary layer interaction. Some of the
results of their tests are combined here with corresponding low super-
sonic tests from the present investigation to indicate the behavior
of the pressure distribution on circular arc airfoils at zero angle

of attack through the entire transonic range.



I1. APPARATUS AND METHODS
1l Wind Tunnel

The measurements were made in the GALCIT 4 x 10 inch Transonic
Wind Tunnel. For a description of the tunnel and the flexible nozzle
employed see Ref. 26. The tunnel can be run at both subsonic and low
supersonic velocities with continuous Mach number variation through
use of the flexible nozzle and a veriable second throat nozzle down-

stream of the test sechtion.
2. Models

The models used were "half airfoils" followed by straight sec-
tions. Four of the models were wedges (semi-angles 4.53°, 7.56°,
10.00° and 26.57°) followed by straight sections and the fifth was
half of a biconvex circular arc airfoil (8.80% thick) followed by a
straight section (see Fig. 1). The distance from the leading edge
to the point where the straight section begen was of the order of 1/4
inch for all five models. The models were m#de of tool steel and
were very carefully machined and lapped so as to give exact cylindri-
cal surfaces. Two pressure orifices on opposite sides of the airfoil
were placed exactly the same distance from the leading edge to aid in
setting the model to zero angle of attack by balancing these pres-
sures on an alcohol U-tube. Due to the very short chord lengths ver-
nier protractor measurements of the opening angles of the leading
edge were of doubtful accuracy, so the &ngles were measured by let-

ting the leading edge split a beam of parallel light and measuring



the position of the reflected spots on a wall in back of the model.

In this menner the angles could be measured Lo * 0.03°,
3 Interferometer

The interferometer used in this investigation is described in
Refs. 27 and 28. Omne of the main features of this interferometer 1is
that both light beams are passed through the test section; ons over
the model and the other shead of the model in the uniform flow field,
that is, where the velocity is nearly the free streém\velocity. The
advantages of this are: 1) the fringe shifts are in relation to the
free streem density and 2) the effects of the side wall boundary
layers are approximately cancelled out since both beams traverse
nearly the seme boundary layer at each side window. This leads to
improved accuracy when the interferograms are evaluated on the basis
of the absolute value of the fringe shift from no-flow conditions.
For these tests finite fringe interferograms were used and another
method of evaluation was devised which is much simpler and more ac-
curate than the above mentioned techmique. Infinite fringe interfero-
grams, while they give the constant densibty contours immediately, are
less accurate than the superimposed finite fringe interferograms be-
cause any optical inaccuracies in the system cause the contour fringes
to be distorted. These inaccuracies are calibrated out in the super-
imposed finite fringe interferograms. Also there are times when ons
does not know whether the density incrememnt between contours of an
infinite fringe interferogram is positive or negative; this trouble

does not arise with the finite fringe interferograms. A typical



finite fringe interferogram is shown in Fig. 2. ' , o
4. Method of Evaluation of Interferogrems

The method of evaluation used here depends on two techniques:
a) photographic superposition of disturbed and undisturbed interfero-
grams and b) fringe identification by a pressure measured on the
model.

Direct photographic superpositiocn of a "no-flow" finite fringe
interferogram on a "with-flow" finite fringe interferogram gives rise
to dashed shadowy lines (the dashes being where the dark fringes of
one picture cross the light fringes of the other); see Fig. 3 for an
example of this type of picture. These shadowy lines can easily be
shown to be lines of constent density for two-dimensional flow, and
are the same contours as would be obtained on an infinite fringe in-
terferogram mede with perfect opticel surfaces. The increment in
density between these shadowy lines is a constant dependent only on
the span of the model end the wave length of the monochrometic light
being used. This is easily shown since the difference in optical
path lengths of the light rays between two adjacent constant density
contours must be ome wave length of the light being used. For two-
dimensional flow the difference in optical path length will simply
be JAn , where / is the span of the model and An is the differ-
ence in index of refraction between the two light paths. Thus

Lan = ) (1)
But the relation between index of refraction and density in a gas is

given by
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n~1=kp (2)
where 4 = Gladstone-Dale constant (a function of the light frequency

and type of gas). Therefore

A
7 (3)

where /o = difference in density between two adjacent constant den-

8ity contours. For these experiments

0 Al
5461 A (Mercury green line)

A =
k = 0.1162 £t.5/slug
A = 3.50 inches
4p
50 75: = 0,0250 per fringe shift, where @, = 0.00211

slugs/ft. was the usual tunnel stagnation density

The advantage of photographic superposition is not only in time
saved but also in increased accuracy of evaeluation. Any slight
changes in fringe spacing or fringe orientation with respect to the
"no-flow" interferogram which occur befors the "with-flow" interferc-
grem is taken can be almost exactly cancelled out by causing the two
superimposed interferograms to coincide exactly in a region where it
is known the flow was uniform, since in such regions there should be
no isopycnic contours. This 1is particularly easy to do for super-
sonic flow if a portion of the flow field ahead of the nose shock
wave is included in the interferogram. For subsonic flow care must
be taken to include enough of the flow field ahead of the model in
the interferogram to have some of the nearly undisturbed flow field
for comparison; this was quite simple to do for the small, thin models

used in these tests.
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The actual superposition technique used here wes to first make e
print (3 1/2 times enlarged) of the "with-flow" interferégrém. This
print was then placed under the enlerger and the "no-flow" interfero-
gram negative was put into the enlarger. By changing the enlargement
scale and moving the "with-flow” interferogram under the enlarger the
fringes were made to coincide exactly in the regions of uniform flow.
The constant density contours could then be drawvn in on the print.
Alternatively the first print could be made on transparent paper
(Ansco Reprolith Ortho was used) and when the superposition was ac-
complished a piece of photo-sensitive paper was slipped under the
transparent print and a print of the two interferograms was obtained.
This was the technique used for Fig. 3.

In order to identify the density values with the fringes a pres-
sure tap was placed on the model in a region where the pressure gradi-
ent wes expected to be large. From the pressure reading the density
at the pressure tap was cslculated using reservoir fluid properties
(taking into account entropy changes through shock waves). The pres-
sure tap will always lie between two fringe contours or on a contour,
so that, by knowing the density increment between fringe contours,
the values of the density on the adjecent contours can be obtained by
interpolation. The whole interferogram is determined once the density

is known on one contour (except for the shifts through shock waves).
5. Interferometer Sensitivity

It is interesting to note that the interferometric method has

its greatest sensitivity in the transonic renge. As we pointed out
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previously, the density increment between two adjaceht contour fringes

is a constant

A
AP= %7

Now in any part of the flow field where the stagnation density is

constant along a streamline,

/
P (. T 2\ -/ 4
£ 2L (@)
so
dp 7
(X gy T
o (1+ > m*) Mdm (5)

Hence the increment in Mach number between adjacent contour fringes
is given approximately by
R
AR A

+ 5 M
‘(’ z M) A , 4p A
= since —— =

M k”[?o 62 kf?o

AM (8)
This function has a minimum at M= \Egi; which is M = 0.941 for air
(¥ =1.4). A graph of this function is shown in Fig. 4. Note that
the Mach number increment per fringe for these tests was always
closely equal to 0.05.

Similarly, the expression for the increment in pressure coeffi-
cient between adjacent contour fringes is approximately

(v Lty
2

: A
Z)Cp = (7)
mk 1+ %MZ)?E{T ol

,’———!

For M close to M, , this expression has a minimum at A@n=~VZ{%;

which is 1.832 for air.
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6. Side Wall Boundary Layer Effect on Approximatiﬁg Two-Dimensional

Flow

A close approximation to two-dimensional flow over the‘wﬁole
span of the model was required since the interferometer integrates
the value of the density from wall to wall. In a non-viscous fluid,
letting the model extend from wall to wall would theoretically give
two-dimensional flow over the whole span, If the model did not span
the whole tunnel, the flow would correspond to that past a model of
infinite span with periodic gaps in it where the gaps were equal %o
twice the distance from the edge of the model to the wall., The ef-
fect of the side wall boundary layers, for a model that does not span
the tunnel, is roughly to decrease the size of this gap. Approxi-
mately the gap size would be decreased by twice the displacement
thickness of the wall boundary layer. By making the gap between the
edge of the model and the wall approximately equal to the wall bound-
ary layer displacement thickness, one might hope to clossely approxi-
mate two-dimensionel flow over the span. This phenomenon is, of
course, very much more complicated than this, particularly in the
supersonic case where the shock waves interact with the well boundary
layer. However, by taking circular cylinder and wedge models and
varying the gap size in increments of l/iﬁth of an inch, it was found
that the detached bow wave became closely two-dimensional when the
gap size was 1/4th of an inch (that is, there was no blur shead of
or behind the shock pictures) which is almost exactly the boundary
layer displacement thickness when messured without a model in the

test section. When the gap was 3/16th of an inch the shock was
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blurred ahead of the main shock and when the gap was 5/16th of an
inch it was blurred behind the mein shock. These tests wﬁré further
substantiated by some schlieren pictures, which Mr. Welter G. Vincenti
of the NACA Ames laboratory kindly made availsble to us, showing a
view looking down on a wedge model so that the leading edge of the
detached shock appeared as a line; by varying the model span a dis-
crete value of the span was found where this line was almost exactly
parallel to the leading edge of the model, while for just slight vari-
ations from this gap size the shock was curved forward or backward.
Fig. 2 shows a finite fringe interferogram of the circular arc sec-
tion with & detached shock where the definition of the shock wave was
unusually sharp. This is strong, but of course not conclusive, evi-
dence that the flow was closely two-dimensional over most of the span.
Further evidence that the flow differed from two~dimensional flow

only slightly is given in the next section.
7. Side Wall Boundary Layer Effsct on Interferogram Evaluations

A result of the method of interferogram eveluation described
above is that the effect of the side wall boundary leyer is approxi-
metely cancelled out, since the over-all fringe shift from no-flow
conditions is unimportant, only the relative fringe shifts from a
point of known density being used. This is strictly true only if the

integrated side wall boundary layer density defined by

8

where Yy 1is the direction perpen-
S pdy dicular to the tunnel wall and (8)
° y=¢ is the wall

is the same over the entire field of view of the interferometer.
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Obviously, this can never be exactly true since the‘pressure field
caused by the model, the boundary layer growth, and the éhoék Wave -
boundary layer interaction all tend to change this value. An indi-
cation that all these effects might be small was obtained from the
model tests where pressureswere measured at two points on the model
in the center of the span, where the flow is closely two~-dimensional;
the demsity increment between these two points on the model was com-
pared with the density increment given by the interferogram. The
standard deviation from zero of the difference between these two in-
crements over the whole range of test Mach numbers was about 1% of
the stagnation density. Also, the values of pressure drag coeffi-
cient obtained interferometriecally for the attached shock wave cases
checked the oblique shock theory very closely, and it is well knowm

that the oblique shock theory checks experiment quite well.
8. Determination of Free Stream Mach Number

An interesting result of the method of evaluation just described
is that the free stream Mach number in subsonic flow can be determined
from the interferogram and the measured pressure on the model, pro-
vided a large enough field of view shead of the model is obtained in
the interferogram. This can be done by noticing that a certain num-
ber of compression contours appear around the leading edge and then
expansion contours follow these toward the back part of the airfoil;
the center fringe corresponding to free stream density can then be
traced out into the flow field (see Figs. 9 and 10 of the 10° wedge

in subsonic flow). The exact value of the density can be determined
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on this fringe as described previously and hencs, kﬁowing.the stagna-
tion density in the settling chamber, the effective free stream Mach
number can be determined from the isentropic flow relations. It is
believed that this effective Mach number is a good approximation to
the free flight free stream Mach number and would give the same flow
a5 that measured in the wind tunnel for the very smell models used in
these tests.

This method is more accurate at high subsonic speseds that at low
speeds since more contour lines are obtained on the airfoil at the
higher speeds (see above). The estimated accuracy in determining

free stream Mach number in this way was * 0.0l for the range of sub-

sonic Mach numbers tested.

The free stream Mach numbers for the supersonic tests were ob-
tained by calibrating the flexible nozzle jack settings versus Mach
number with a static pressure probe in the center of the tunnel. The
probe was traversed up and downstream in the region where the models
were to be tested and an average Mach number was obtained there. The
standard deviations from this average value were of the order of
2 0.005 in Mach number for the renge of supersonic Mach numbers

tested.
9, Wind Tunnel Choking

In all the subsonic testing the embedded supersonic zone was not
allowed to touch the upper or lower walls. In one or two of the low

supersonic tests there was a question whether the embedded subsonic

zone touched the ceiling or not. In case it did, it is well knowm
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that in such cases the detached shock changes its curvature near the .
ceiling so as to come in nearly normal to the walls. Sinﬁelthe
models were so very small (1/16" thick compared to the 10" height of
the tunnel) it is believed that the effect of this on the pressure

distribution was negligible.
10. Reynolds Number

The value of the Reynolds number for all of these tests was ap-
proximately 60,000 based on the chord of the model. The boundary
layer on the models was laminar and no effort was made to trip the
boundary layer to make it turbulent. The compression region in the
shocks shown in the high subsonic flow interferogreams is believed to

be associated with the laminar boundary layer, as mentioned previously.
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II11, THEORETICAL WORK ON TRANSONIC FLOW
1. Relaxation Calculstions

In 1946 J. W. Maccoll presented a paper (Ref. 29) where he de-
scribed a relaxation calculation of the compressible flow past e 20°
semi~angle wedge followed by a straight section at Mach numbers of
0.7 and 1.5. The flow field in both cases contained both subsonic
and supersonic velocities. His main assumptions were: 1) sonic ve-
loeity occurs at the shoulder and 2) the streamlines of the flow are
perpendicular to the sonic line (that is, the line where sonic ve-
locity occurs in the flow). The first assumption can be shown to be
correct (see Ref. 23) so that indeed it is not an assumption. The
second assumption, as Maccoll realized, was only approximately cor-
rect for M_ = 1.5 and certainly quite incorrect far asway from the
wedge at M_ = 0.7 (since the assumption leads to an infinite super-
sonic region above the wedge). In effect his solution at M_.= 0.7
was "choked" in the sense that the back part of the body could have
no influence on the front part. It is well kmown that for bodies at
high subsonic speeds a finite closed supersonic region occurs in the
flow, so that the sonic line mskes all angles possible with the
streamlines, including 0°. The method of solution used was to assume
positions of the shock wave and sonic line, calculate the residues in
the relexation net using the isentropic flow equations (an approxima-
tion since flow behind a curved shock is not isemtropic) then readjust
the shock wave and sonic line location, calculate again, ete., iterat-

ing until the solution closely repeabted itself. Mamccoll found that
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the ;50%' distribution on the wedge surface at Moo=’1.5 was nearly
identical with the p/p distribution at M, = 0.7. This ied him to
propose that the pressure in the transonic region, on bodies with
distinet cormers, varied as the stagnation pressure and he presented

a drag curve through M= 1 for the 20° semi-angle wedge calculated on
this basis.

G. Drougge in 1948, following Maccoll, calculated the flow past
a Pinite cone of 45° semi-angle with detached shock wave at M, = 1.80
and M., = 2.15, using the same assumptions as Maccoll (Ref. 19). He
also made experiments on this cone and found the agreement with his
theory rather good. He made several tests at lower supersonic Mach
numbers also, and found that the p/p ~ distribution on the cone sur-
foce did remain nearly constant except as the Mach number became close
to the attachment Mach number.

J. Drebinger in 1950 showed how to calculate, by relaxation tech-
niques, the flow past finite cones and wedges with detached shocks,
eliminating the isentropic flow assumption end the assumption on the
streamlines being perpendicular to the sonic line (Ref. 20). He cal-
culated a specific example; a 26.6° semi-angle wedge at M__= 1.440
and checked the calculated shock wave shape and position experimen-
tally. His calculations showed that, even for the detached shock
cass, the stresmlines differed from being perpendicular to the sonic
lines by angles as large as 30°, His calculation was checked in de~-
tail experimentally in these tests and agreement was found to be ex-

cellent.
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2. Transonic Perturbation Theory

By assuming that the velccity component parallel to the free
stream dirsction differs only by a2 smell guantity, « , from a* , the
critical velocity, and keeping only the highest order terms in the
differential equation, the equations of two-dimensionsal irrotatioﬁal

fluid motion are reduced to

2
ren) L 24 L2 L,
a* ox 2y
2 2v ()
U
—_— - — =0
Yy 2%

It was from these equations that von Karman and Guderley independently
arrived at the transonic similarity laws (Refs. 10 and 5). For two-
dimensional steady flow past sections whose shape functions are the

same, these laws imply that
mi-1 - s MmE -y
(y+1) tlc %3 [(5@/) ¢/c)¥3 (10)

where M is the local Mach number on the surface of the section. The

similerity in pressure and drag coefficients is then

Vi 2 '
o+ Moc -
(540" Cp ; { / } (11)

(¢/c) 73 [(7+/) t/c]™
(¥ /)’ C ME -y

-+ D _ o -

(t/c) 3 - /7{ [(s+1) /] 3% (12)

We shall call these guantities reduced local Mach number, reduced
free stream Mach number, reduced pressure coefficient and reduced
drag coefficient, respectively, using symbols ¥ , Z_,, 5b and Eb -

By interchanging dependent and independent variables in the
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perturbation equations the problem becomes linear

_2y 2
gL+l =0 T = (5e1) —
2V U a* (15)
where ’
2V sl AR

and by eliminating % by differentiation, the Tricomi equation is

obtained

azy 2%
—:é + —————2&2 =0 (14)

v

u

The main difficulties with this hodograph (u, Vv ) plane are: =) the
mapping of physical boundaries into the hodograph plane is in general
not known until the solution to the problem is known so that it is

not known where to apply the boundary conditions in the hodograph
plane and b) the mapping is often multi-valued, complicating the solu-
tion. Two interesting cases are known where these difficulties are
avoided. They are: a) the free jet, studied by Tschaplygin in 1905
end b) the finite wedge, studied recently by Guderley and Yoshihera,
Vincenti and Wagoner, and Cole., These latter studies came to the
author's attention after the present experimental study of the finite
wedge in transonic flow had begun and served to meke the study more
interesting since the data could then be compared with the theoretical

results.
3. Theoretical Studies of Transonic Flow Past Thin Wedge Sections

G. Guderley was apparently the first to formulate the problem of
the thin finite wedge in the hodograph; he and H. Yoshihara found an

approximate solution to the problem of the flow past a thin double
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wedge profile at zero angle of attack at Mach number one using the
transonic perturbation equations (Ref., 21). -

W. G. Vincenti and C. B. Wagoner considered the thin double wedge
profile at zero angle of attack for low supersonic reduced Mach num-
bers where the shock wave is detached (Ref. 22). Their solutions were
effected by relaxation calculations in the hodograph plane. BHere the
bow shock wave and the sonic line are fixed boundaries (their posi-
tions ars not known originally in the physical plane) and the bound-
ary condition on the shock is the slope of the streamlines (or y =
constant lines). This boundary condition was first shown by Busemann,
who aptly called the configuration a "hedge hog."

J. D. Cole has recently given a simple epproximate analytical
solution to the flow past a thin wedge at zero angle of attack fol-
lowed by a straight section at high subsonic speeds, M__ <1 {Ref. 23).
His solution satisfies the Tricomi squation, and the boundary condi-
tions on the wedge and at infinity but not the boundary conditions on
the sonic line. Effectively his solution gives a finite vertical
sonic line from the shoulder which is also & limiting line. Cole has
indicated that this solution is the singular part of the solution in
the hodograph, and as such is most likely the main part of the solu-
tion. It is interesting to note that the drag curve slope and curﬁe-
ture at M., = 1 obtained from Cole's solution agree exactly with the
values obtained from the simple physical considerations of the next
section. Also, the pressure distribution on the wedge at M =1
agrees within 1 or 2% with that obtained by Guderley and Yoshihara.

Since the back half of a double wedge profile has only a very
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weak influence on the pressure distribution on the front half for
M., >1 (only through the "last Mech wave" from the shoulderlpoint to
the sonic point on the detached shock), it is reasonable to take the
solution of the double wedge at M_ =1 and use the front half solu-
tions in connection with Cole's results for M, £1 for the wedge fol-
lowed by & straight section and thus have a solution for the latter
semi~infinite body completely through the transonic range. By using
linearized subsonic theory and the shock-expansion supersonic theory,
the zero angle of attack flow is obtained for all possible values of
Moo

Tsien and Baron (Ref. 30) have shown that the shock-expansion
theory cen be expressed in the transonic similarity form for thin
bodies in pure supersonic flow near M..= 1.

von Karmsn (Ref. 10) has indicated also how linearized subsonic
and supersonic flow results may be written in the transonic similar-
ity form since, from the Prandtl-Glauert similarity,

in linearized

t/c x [ 2
Cp= —pimas f(-é— N ?y) (15)
! Mg subsonic theory

_ t/c x —y in linesrized
o= oz #c W) { (18)

¢ supersonic theory

and from the expressions for reduced pressure coefficient and Mach

(X+1) /s

nunmber, multiplying both sides by , these equations may also

(t/c) %3

be written as:

13 ’
(tle) %3 1-m& (C A [(zmt/c]%’ o
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(Z+/)l/36p !?y+/) ’If/C M -/ ¢ ] .y
e S\ T T g( Z [(2(-/-/)-——] -——) (167)
(te) 72 M2 -/ [(y +) 'ﬁ/C] Tty +1) 210 12 c ¢/
but
. (xw)l/a Cp
» (t/c) %%

M-t
[(2@-/) t/cj 73

= [(s#1) ] & y

so we may write Egs. (15) and (16) in transonic form

& -F(Z L5 (a7)
G=6 (=L, {52) (18)

The subsonic pressure distribution and drag coefficient curves
have been calculated here from Cole's analytical expressions and,
combined with the results of Guderley and Yoshihara, Vincenti and
Wagoner, and Tsien and Baron, the curves for reduced pressure and
Mach number distribution and reduced drag coefficienﬁ* are given in
Figs. 5 to 8 for the finite wedge followed by a straight section.

It can be shown that Cole's solution for large negative wvalues of

E_. goes over exactly into the linearized subsonic solution (see

*The reduced drag coefficient given in Fig. 8 is that for the half

wedge and is equal to ’

50=§’5pd(—§—)

[=]
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Appendix 1). The reduced pressure coeffisient curve for & _= -2.02

in Fig. 7 is so nearly identical for both solutions that they can not

be told apart (except that Cole's solution goes to pr at i =/

while the linearized solution goes to - o ). This is to be expected

since the transonic perturbation equations are not restricted to tran-

sonic flow but apply equally well to completely subsonic and completely

*
supersonic flow. The transonic equation can be written in the form

2 2 2
2 2
(/“/V/oj) Y .29 _ OH)Me 29 279

22%  ayz o, % »al (19)

. ~ oY 29

where ¢ is the perturbation potential such that w=U + 2 V=5
Y

Thus it is clear that for completely subsonic or completely supersonic
flows the term on the right is negligibly small but becomes of para-

mount importance in transonic flow.

*This was pointed out to the author by Dr. Milton Van Dyke of the
NACA Ames Laborsatory.
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IV. CHARACTERISTIC FEATURES OF TRANSONIC FLOW PAST

WEDGE AND CIRCULAR ARC SECTIONS
l. Characteristic Free Stream Mach Numbers

(a) Critical Mach FNumber

The Mach number at which sonic velocity first appears on the
wedge is M_ = O (within the inviscid theory) since subsonic flow can
not turn a sharp corner. Due to the fact that the boundary layer
rounds off the corner, and perhaps also due to the spatial resolution
limitations of the interferometric method, sonic velocity was not
found there experimentally until approximstely %.,= -0.80 for the
wedges.

The critical Mach number for a half circular arc airfoil followed
by a straight section can be obtained approximately from linearized

subsonic theory. This theory gives the surface pressure distribution

as
-4 (/) 2/c
Cp = __._.L..z.. {/_ (,-%) o6 7’7‘} (20)
1T~ 1~Mpo /c
which yields
- /626 () s Lo ores ( Avpendix 2
o, = -ﬁ;EijET_n at =078 see Appendix 2) (21)
This equation can also be written in transonic similarity form by
/3
/
multiplying both sides by %gfjéa;- (as shown in the previous section):
c

CPM//V. = - ’ -, (22)

Now, within the transonic perturbation theory

~

Co=-2 (£ ~Foo) (23)
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Hence

Cop = 28 O (za)
Equating E%WM to Eﬁw we obtain the critical reduced Mach number

g“‘c&’ =-0.87/
For the thickness ratio t/c = 0.088 used in these tests, this predicts
& critical Mach number of 0.834 at x/c = 0.783. Experimentally the
critical Mach number was found to be 0.825 and occurred somewhere be-
tween x/c = 0.75 and 0.95 (the pressure distribution was very flat in
this range). It is interesting to note that the experimental Moo ,
was higher for the wedges than for the circular arc profile of the
same thickness ratio. This was probably dus to a combination of three
effects: 1) The boundary layer for the same Reynolds numbers used
here was fairly thick in comparison to the dimensions of the model and
thus it "rounded off" the shoulder more than would be the case at
higher Reynolds numbers. 2) The height of the supersonic zone, even
for an ideal non-viscous flow past thin wedges, appears to be quite
smell until the free stream Mach number is quite close to one. This
is apparent from Cole's theory snd also from the argument in Ref. 1

that the height of shocks in the supersonic zone must be of the form

T g3 ‘o

o

ol t 1/3 h / ~
e <] =

3) The spatial resolution of the interferometric method may not have

been sufficient to detect very small supersonic zones near the

shoulder. There is also a large refraction error near the shoulder

due to the high density gradients which tends to obscure details of

the flow there.
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(b) Shock Attachment Mach Number

The shock attaclment Mach number depends only on the oéening
angle of the profile at the leading edge and can be predicted guite
precisely by oblique shock theory. If & is the semi-opening angle

then it can be shown that approximately, for thin profiles,

,g _ M:’A‘/ - 3
<4 [(x+1) 0] 4 ¥

(see Appendix 3) (25)

If ¢/c is the thickness ratio of the eircular arc section, &= 2(¢/k) .
Hence for the circular arc profile

3

— (26)

5. =
{¢c) Mach Number at which Sonic Velocity Appears Behind an
Oblique Shock
This Mach Number, Aﬂms s, is just slightly higher than Aﬁéqand
egain is a function only of the opening angle. These values can also
be found quite precisely from oblique shock theory, and approximately

in similarity form can be given as

2
Mwﬁ_/ //

3
Bpoe = =———=— =2 for the wedge (see Appendix 3 27
s~ Ten et ge ( pp )y (27

and
g, =2 for the circular arc section (28)
Ze Characteristic Values of the Local Mach Number

(a) Mach Number at Leading Edge
The Mach number at the leading edge is zero (a stagnation point)

for all free stream Mach numbers less than the attachment Mach number.
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(b) Mach Number at the Shoulder of the Wedge

The Mach number at the shoulder of the wedge just befofe the turn
is always one. This is easily seen in the case of flow with detached
shock since the only characteristic distance of the finite wedge is
the distance from the leading edge to the shoulder which must deter-
mine the shock detachment distance and if the sonic point occurred a-
head of the shoulder, the shoulder could not influence the shock posi-
tion. Subsonic flow camnot turn a sharp corner so the flow must
therefore reach Mach number one right at the corner. In the case of
subsonic free stream flow the argument is not as simple (see Ref. 23}.

At the shoulder the flow around the corner is locally a centered
Prandtl-Meyer fan starting from M = 1. The Mach number just behind
the corner is thus determined only by the wedge angle and is indepen-
dent of the free stream Mach number. Behind this point the flow will
recompress to the free stream Mach number through a shock or series
of shocks, for free stream Mach numbers less than the attachment Mach
number., The expression for Mach number Mg, behind an expsnsion from

M = 1 through an angle & is
2 - 37 \/’Tﬁ -/ [Z )
8:’ ”)7; TAN ~\/‘;+—/ MpM =/ = 7An MPM (29)

Expanding the right hand side in powers of ﬂﬁwgw-d (assumed small)

the first non-zere term yields

2 - 3/2
2 (Mpy~!)
9 — ——— which is in transonic similarity form (30)
80
Moy . (3>2/3
ZpMs [(7_1'/)912/3— 7 (31)
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V. PRESSURE DISTRIBUTION ON BODIES MOVING THROUGH -

AN IWFINITE FLUID AT SPEEDS NEAR MACH NUMBER ORE

1. Stationary Value of Local Mach Number at Free Stream Mach

HNumber One

During the course of these investigations it was found that for
the wedge and circular arc sections the local Mach number distribu-
tions on these sections at very high subsonic speeds (above Aﬂ”ce butb
below choking Mach number) and at very low supersonic speeds (where
the detached shock wave was a chord length or so ahead of the section)
were nearly identical. In trying to understand why this should be so,
the following explanation was derived: 1) At low supersonic speeds
the bow shock wave is detached a great distance shead of the profile
and a subsonic flow region is embedded in the flow field between the
shock and the sonic line. The part of the shock directly ahead of
the profile is nearly normal over quite a distance (of course, the
slope of the shock asymptotically tends to the slope of the Mach wave
of the free stream flow at large distances lateral to the flow direc-
tion). H. Nagamatsu (Ref. 33) has previously indicated this and
points out that the flow past the profile should be closely approxi-
mated by assuming the profile is in a high speed subsonic flow where
the velocity distribution at infinibty is slightly non-uniform, the
minimum velocity being directly ahead of the profile and egqual to the
velocity behind the normal shock, and then increasing in both lateral
directions. 2) Now the normal shock near Mach number one is nearly

symetrical in the sense that the Mach number bshind the shock is just
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as much below one as the Mach number ahead is above one. ~This fol-

lows from the normal shock relation:

2 M2y A@ = Mach number ahead
I 24 (32)
I+ (M*-7) M, = Mach number behind
T+
so near i = 1;
/_Mze = M¢z“’ (33)
or
1= My = M, -1 (34)

Therefore if M _ =1 +¢ where € is small, the flow past the profile
is nearly the same as the flow past the profile at M_,= 1 -~ ¢ since
the Mach number behind the central part of the detached shock wave is
almost exactly 1 - ¢ . It follows therefore that the local Mach num-
ber distribution on the profile surface must have a stationary value
at M= 1, and furthermore vary only slowly in the neighborhood of

M,,= 1. Mathematically this means

Im

de Mm____o

It should be noticed that this argument is based on two assump-

* 1) The detached bow wave moves very far ahead of the profile

tions:
as the flight Mach number decreases toward one. 2) The radius of
curvature of the detached bow wave at points directly ahead of the
profile becomes extremely large as the flight Mach number decreases

toward one.

Examining these assumptions it would seem that the same

*It is believed that these are not actually assumptions but are cap-
able of demonstration if one assumes a smooth variation of drag
through Mach number one. Purther considerations of this point will
be published in the near future.
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reasoning should apply to any finite three-dimensionél body- in an in-
finite fluid traveling at speeds near Mach number one, excepf that
now two radii of curvature at points on the detached bow wave ahead
of the body must be assumed to become large as the flight Mach number
decreases toward one. The detached bow wave is so far away from the
body at speeds just slightly above Mach number one that the body ap-
pears as only a very small object in relation to the radii of curva-
ture of the bow wave, and hence, it would appear as though the shape
and attitude of the body could have no appreciable effect in changing
the argument presented above.

The reasoning should also apply to sn infinite yawed cylinder
(whose cross-section may be finite or, if the angle of attack is zero,
may extend infinitely far downstream) provided that the Mach number
considered is the component of the Mach number normal to the genera-
tors of the cylinder.

These arguments are for steady flight speeds. Large accelera-
tions through sonic flight speed could conceivgably modify the phenom-
enon. Thus it is difficult to judge whether or not the available
flight test data confirms the concept or not since nearly all such
data comes from missile tests that involved large accelerations (or
decelerations) through sonic flight speeds. The transonic "bump”
tests of Weaver on sweptback wings (Ref. 2) would seem to support our
conclusicns since they show drag coefficient maxima very near Mach
number one, a necessary consequence of the concept for finite three-
dimensional bodies and finite unswept two-dimensionel bodies as we

shall now show.
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2. Slope of Pressure and Drag Coefflcient Curves at Moo= 1

Eq. (35) enables one to calculate the slope of the pressure and

drag coefficient curves at Mach number one as follows:
P"Poc

Cp = (36)
y 7
y-1 R
p /+ P MEN -1
= Y2 ( -7 . -/ for isentropic flow (37)
o0 /{_ M
2
50
2¢
£s =2 lem:/ usi am_ =0 (38)
Mool ppop=y 7" [add M7 PP

Now for a two-dimensional body the pressure drag coefficient (based
on the chord) is given by the contour integral
-/ A A
=78 o (:7)ds (39)
where

unit vector in stream direction

o~
[

3>
]

unit normal to profile pointing outward

ds

i}

element of length along profile contour
so if angle of attack is constant and M _, is changing
ZCp¥

/ M=
o =-..§>(4 B} w’)z.,qu (40)
My Moo =/ < X+l ¥/

but % {-h ds =0 for a closed contour, so

dcp
Mo,

- 2

{ o (41)
Moo =1

For the front part of a profile (defined as that part ahead of

the maximum thickness) the usual definition of a drag coefficient is
b
Cn = / A (42)
DF = Co ¢t hds
a
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b

where 3 means the comter-clockwise line integral from the point
a o
of maximum thickness on the upper surface to the point of meximum

thickness on the lower surface: thug

b
dor| L[ “”'Mw/): 5
Moo | Mp=1 € a(l‘“ ¥+ g
S0
IdCpy 4 t
Mg | Moo=y 2t/ T s % 5oy Corl - (43)
where
¢t = maximum thiclkness of profile
o« = angle of attack of profile
Similarly the drag coefficient for the rear part is
a
! A A
Coe ='“E'S‘Cp L' h ds (44)
b
50
dCDe _ 4 4
dMg Moo=/" X+l C cos A= X +/ CD'? Moo =1 (45)

For the tests on wedge and circular arc sectioms followed by
straight sections we shall often use the concept of drag coefficient
of the front part of the section.

For bodies of revolution (which includes spheres, cone-cylinders,
etc.) the pressure drag coefficient (based on maximum cross-sectional

area) at zerc angle of attack is
/

2
Cp = g Cp d(——;—) (46)
%4 =0 .
where :

= maximum radius of body

E)
A4 = length of body
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x = distance from nose along axis

Therefors
_2 -
dlp - CD[MOQ-—-/
de MOO=/ = b’-f‘/

as before in the two-dimensional case. However, for front and back

drag coefficients we have

R
2
Cop= \ o c/(—/é—> (a7)
r=0
50
dcp 4
YCoe = - =
M| gy I CDFIMK,.__ (482)
o=
end similarly
dCpp 4
Moo Moo= 7V X+l CD’Q' Moo=/ (48v)

and these differ from two-dimensional values obtained above in Egs.
(43) and (45) by not involving the fineness ratio of the body (this
is of course due to the different reference areas for drag coeffi-
cients).
For the general finite three-dimensional body the pressure drag
coefficient is given by
cD=~7/ SS cp (0-n) do (49)

S
where A 1is some reference area of the body and § is the surface of

the body. It follows as it did previocusly that

dc, 2

= c
dam,, %4/ 0‘%:/

Moo=/ -

3. Slops of the Drag Coefficient Curve at M= 1 in Transonic

Similarity Parameters for Two-Dimensional Flows

Within the transonic approximation
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Cp=-2(E-%5,) | {50)
S50
dlp JE
e =7 (dg’m —/) (51)
d
Now M -0 implies that 25 -0 hence
el (52)
d5.lr .
Now tg“" o
—~ / ~ A 1 5
50
i,
=0 54
75| £ -0 (54)

Similarly it is easy to show that

dCp
- = 2 (85)
95| g =0
and
dc
o8 --2 (56)
dgoo %m.—.o

4.  Other Data Showing the Slow Variation of Local Mach Number

Near M o= 1

As we have mentioned previously, J. W. Maccoll in 1946 had al-
ready proposed the slow variation of local Mach number near M = 1

i}

on "bodies having distinct corners.” It appears that this latter re-
striction is not necessary. Maccoll's proposal was based on rether
slim evidence and it 1is believed that hers, on the basis of the argu-

ment presented concerning the normel shock, the principle is explained

more convincingly. Also the experimental evidence given here and by
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Drougge (Ref. 19), Bleakney and Griffith (personal cémmunication},
Weaver (Ref. 2), and by some NACA reports, tends to bear éut.the con-
clusions of slow variation of loecal Mach number on bodies near M..= 1.
This fact is sometimes slightly obscured in the NACA reports be-
cause pressure coefficient was plotted instead of p/p, or local Mach
number. However, constant Mach number lines were sometimes drawn on
these plots and there the evidence shows up strongly (see for example
Ref. 39, Figs. 7-11, pp. 36 and 37). The relative constancy of local
Mach number distribution near M, = 1 for airfoils at angle of atback

is also shown clearly in Figs. 8, 9, and 10 of Ref. 3l.
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VI. ON COMPARING THEORY AND EXPERIMENT

In Refs. 1 and 22 discussions were presented on the philosophy
of comparing experiments with approximate theoriss, and we shail not
repsat their discussions here, except to mention that in some of the
theoretical curves presented here the vaelues have been shown with a

certain spread which results from using a pressure coefficient equal

U~ Upo
u

to -2 -W—a—(fi or -2 (the former value is the one that fits into
transonic similarity theory, the latter value is the one more commonly
used in perturbation analysis).

In connection with the idea presented in Ref. 1 of extrapolating
experimental date to zero thickness in order to compare with results
from transonic perturbation analyses, it is interesting to note that
the characteristic Mach numbersmentioned in Section IV cen be pre-
sented in powers of the thickness of the wedge (or equivalently in

powers of the wedge angle), the first term of which gives the transonic

similarity expression; two of these values are

T = —-/Y'—f:f—’—:———:?l/g [H hhbis (-—2—>V3'9% + 0 (6%)] (s7)
5" (154116 % 24 3

2
. Mo =/ '(é—)z/g[ 4y 3(~/+/))
" Tang® ‘2 L7 é’m/)( z

2/

92/3+0(e 75/3)] (58)

{see Appendices 4 and 5)
In transonic perturbation theory the terms in € on the right hand
side are neglected. This can lead to fairly large errors for even
moderately large values of & since the approach to =0 is non-

linear and
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dZoas dEPM
ge T

oo &8 B0 o (59)

Judging from this one might expect that quantitative agreement of
transonic perturbation analyses with experiment would not be so good.
However, in comparing two similar shapes with only slightly different

thickness ratios by transonic similarity considerations one would ex-

pect fairly good agreement.
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VII. EXPERIMENTAL RESULTS
1. Flow Field Near the 10° Wedge

Figs. 9 through 15 show interferograms of the flow past the 10°
semi-angle wedge for fourteen Mach numbers from 0.700 to 0.892 and’
1.207 to 1.465 (the interferograms for the 4 1/2° and 7 1/2° wedge
were very similar and hence are not shown here). Notice that the
lines of constant density in the subsonic flow interferograms are
roughly elliptical in shape as predicted by the theory (see Appendices
1 end 2). A supersonic flow region was first detected between
Mo = 0,700 and 0.794 (the sonic line is shown as & dashed line in the
figures) and a shock emanating from the corner appears in the super-
sonic zone at M., = 0.794. As the Mach number was increased, this zone
grew larger and a shock appeared at the rear of it, while the shock
emanating from the corner weakened and disappeared. This rearward
shock was of the typical A type associated with a laminar boundary
layer, and the interferograms clearly indicated the separation of the
boundary layer ahead of this shock. The similarity between the flow
field at M, = 0.892 and at M= 1.207 (Figs. 10 and 11) is striking;
the base of the rearward shock has moved quité far back on the wake
of the blunt treiling edge at M _,= 1.207 but in the vincinity of and
shead of the sonic line the two flelds are nearly identical except for
the detached shock wave which appears about 1 1/2 chord lengths ahead
of the wedge at M, ,= 1.207. As the Mach number was increased above
1.207, the detached shock moved in closer to the leading edge and

finally "attached” at a Mach number quite close to the theoretical
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attachment Mach number of M_,= 1.418., Notice that the process of at-
tachment is very continuous. The effect of the boundary layer is quite
noticeable in the last few interferograms: this can be roughly ac-
counted for by considering the boundary layer to change the shape of
the body by its displacement thickness, then considering a non-viscous
flow past this revised shape. On the wedge the boundary layer will
not grow as rapidly as on a flat plate due to the favorable pressure
gradient and, in fact, the effect of the strong expansion around the
corner is known to cause an almost complete collapse of the boundary
layer there. As the bow shock wave gets close to attachment the ve-
locities in the subsonic region behind it are getting very close to
sonic velocity and hence the flow in this region is very sensitive %o
any slight curvature of the "revised shape” of the wedge. This ac-
counts for the shift of the base of the sonic line forward to the
leading edge as the shock approaches attachment. The non-viscous
theory would indicate that the sonic line would always begin at the
corner and, at a Mach number just slightly above the shock attachment
Mach number, the whole subsonic region would become sonic; then, with
increasing Mach number, the flow behind the shock would be completely
supersonic. As observed, the boundary layer effect is to make the
wedge have a curved surface and the sonic line actually moves slowly
from the corner to the nose. Even with attached shock wave at

M= 1.465 the flow behind the shock is not quite uniform (as non-
viscous theory would indicate it should be) due to the effective

curved surface caused by the boundary layer.



42

2. Local Mach Number Distributions on the Three Thin Wedges

Figs. 16 through 18 show the wvariation of local Mach number dis-
tribution on the surfaces of the 4 1/2°, 7 1/2°, and 10° semi-angle
wedges with free stream Mach number. This should be compared with
Fig. 5 which shows the corresponding theoretical curve in terms of
the transonic similarity parameters. The general behavior of the theo-
retical and experimental curves is quite definitely in good agreement.
Particularly noteworthy is the slow variation of the local Mach number

distribution near free stream Mach number one.
3. Pressure Coefficient Distributions on the Three Thin Wedges

The slow variation of the Mach number distribution in the range
near M = 1 is obscured when the results are plotted in terms of pres-
sure coefficient, since the pressure coefficient changes a great deal
if local Mech number is constant while free stream Mach number changes.
A better parameter for presenting trensonic pressure distributions
would be p/p, ( p/p in case of dstached shock). Typical Cp distri-
butions are shown in Figs. 17 and 18 for the 7 1/2° wedge (the results
for the 10° and 4 1/2° wedges were very similar and hence they are not
presented). The points shown were where the fringes intersscted the
body in the interferograms. Since for a wedge the drag coefficient is
proportional to the average Cp , the drag rise is evident in the sub-
sonic distributions as the point where (Cp=p moves rearward with in-
creasing free stream Mach number. Linearized subsonic theory (which
predicts Cp=0 ) locates the Cp=0 point at x/c = 50%. Fig. 7

shows theoretical reduced Cp distribubions at various reduced free
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stream Mach numbers. Again the qualitative agreemeﬁt of these curves

with experiment is evident.
4.,  Shock Detachment Distance for the Three Thin Wedges

Fig. 21 shows the shock detachment distance versus reduced free
stream Mach number for the three thin wedges and includes the theo-

retical values from Ref. 22. Here Vincenti and Wagoner's values for
gcmlle =74° %

EWAIQ:OO
sonic perturbation value of detachment reduced Mach number agree with

%, have been multiplied by in order to make the tran-
the value from oblique shock theory for the 7 1/2° wedge: the reason
for this was discussed in Section VI, namely the difficulty of com-
paring transonic perturbation theory guentitatively with experiment.
Notice how rapidly the shock wave moves away from the wedge as Mach

number is decreased toward one.

5. Drag Coefficient Variation with Mach Number for the Three Thin

Wedges

It was shown in Ref. 1 that the viscous effects on the wedge
tend to compensate each other at the leading edge and the shoulder so
that the over-ell pressure drag is nearly the same as if the flow were
inviscid. Thus it would be expected that the pressure drag coeffi-
cients obtained by integrating the experimental pressure distributions

would check the inviscid trensonic perturbation theory. The reduced

*In terms of Mach number, for the 7 1/2° wedge the shock theory pre-
dicts attachment at M, = 1.33 (Z004y= 1.68) while the transonic per-
turbation theory predicts M, = 1.25 (B, = 1.19).



drag coefficient used here was
!
~ ~ X
Cp = S ¢ 9(Z) (60)
3 ,

which is, in essence, the reduced drag coefficient of the upper (or
lower) half wedge. This was done since the wedge model was regarded
as the front half of a double wedge profile and hence the value given
here is the part of the reduced drag coefficient contributed by the
front half of such an airfoil ( Cp, as on Eq. (42), page 32), based
on the chord of the double wedge profile, which would be twice the
chord of the model used here. Of course, this viewpoint is valid
only for supersonic free stream Mach numbers.

Fig. 22 shows the reduced drag coefficients for the three thin
wedges plotted versus reduced Mach number. It is seen that the re-
sults give nearly a universal curve, which they should if the tran-
sonic similarity law is true, but that there are systematic variations
with wedge angle. This is to be expected based on the discussion of
Section VI. The vertical lines thru the experimentel points indicate
estimated accuracy of the data. This figure should be compared with
Fig. 8, the theoretical reduced drag coefficient variation with re-
duced Mach number. It is obvious that the qualitative agreement of
theory and experiment is good. In Fig. 23 the theory and experiment
are compared directly for the three thin wedges. Here the theorebti-
cal drag coefficients are shown with a vertical spread, the upper
values for M_ >1 corresponding to the use of the pressure coefficlent

Cp= :;Eﬁﬁiegﬁﬂ end the lower values to the use of the pressure coeffi-
a
-2 (- Ups) s . . .
cient Cp= —F—+ The situation is vice versa for M_,<1l. From
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this figure it is evident that the transonic perturbation theory gives

a good approximetion to experiment.
6. Flow Field at Moo= 1.44 for the 26.6° Wedge

Fig. 24 shows the experimental and theoretical constant velocity
lines in the subsonic region behind the detached shock wave for a
26.57° semi-angle wedge at Moo= 1.44. The theoretical analysis was
made using relaxation calculations by J. Drebinger (Ref. 20) using the
flow eguations with entropy variation behind the shock taken into ac-
count. The experimental constant velccity lines were determined from
the isopyenic lines of the inbterferogram by taking into sccount the
leteral stagnation pressure gradient behind the curved shock. The
isopyenic lines near this strong shock wave were probably slightly in
error due to the "smearing out" of the pressure discontinuity across
the shock in the side wall boundary layers. It is seen that the agree-
ment between theory and experiment on detachment distance and constant
veloecity contours near the wedge is good.

Flg. 25 shows the surface pressure distribution from Ref. 18 and

the present experiments. Again it is seen that the agreement is good.
7. TFlow Field Near the 8.8% Circular Arc Section

Pigs. 26 through 32 show interferograms of the flow past the 8.8%
circular arc section for fourteen Mach numbers from 0.718 to 0.936
and 1.11 to 1.500.

Supersonic velocity first occurred at M..= 0.825 (see page 27)

and in Fig. 27 a nearly symmetric supersonic zone is shown at
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Moo= 04848, HNo shock waves were apparent in this zﬁne although a
sensitive schlieren apparatus might have shown some weak shocks there.
At Moo= 0.890 the supersonic zone has grown rapidly and now terminates
in the A -shock configuration. Further increase of Mach number to
Moo= 0.935 (Fig. 28) shows the supersonic zone increasing laterally
and the terminating shock moving rearward into the wake of the body.
Fig. 28 also shows the density distribution at M_ = 1.11 (the detached
shock wave was just out of the field of view of the interferometer)
and it is interesting to nobte the similarity between the flow field at
M_o= 0.935 and M_,= 1.11. It would appear as though the shock ter-
minating the supersonic zone at M_, = 0.935 had moved rearward to form
the trailing edge shock (which is actually in the wake here due to

the blunt trailing edge) and the supersonic zone had grown laterally
until the sonic line joined with the detached shock far away from the
body at M, = 1, thus causing an embedded subsonic zone in the super-
sonic flow with further increase in Mach number.

With further increase of Mach number above M _,= 1.11, Figs. 29
through 32 show that theidetached shock again approached the leading
edge and the embedded subsonic zone decreased in size wntil finally
the shock "attached" somewhere between M = 1.400 and M_ = 1.450

(the theoretical value being M., = 1.423).
8. Local Mach Number Distributions on the 8.8% Circular Arc Section

Fig. 33 shows the local Mach number distributions for the 8.8%
circular arc section as obtained from the experiments at various free

stream Mach numbers. Again it is apparent that the variation of
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local Mach number distribution near M= 1 is very siow; and indeed, .
the distribution for My, = 1 could be interpolated from thislfigure
with good accuracy.

Fig. 34 is a cross-plot of the data of Fig. 33 except that here
the data are given in transonic similarity parameters. This figure
shows contours of constant reduced local Mach number on a reduced free
stream Mach number versus chordwise position curve. The dotted lines
represent subsonic local Mach numbers, the solid lines supersonic
local Mach numbers. Note again the slow variation of local Mach num-

ber distribution with free stream Mach number near sonic velocitby.

9. Pressure Coefficient Distributions on the 8.8% Circular Arc

Section

Figs. 35 and 36 show the pressure coefficient distributions on
the 8.8% circular arc section for various free stream Mach numbers.
The points shown are where the fringes intersected the body in the
interferogrem. Again the presentation in this manner obscures the

interesting fact observed in Fig. 33.

10. Drag Coefficient Variation with Mach Number for the 8.8% Circular

Arc Section

Fig. 37 shows the experimental determination of the drag coeffi-
cient of the front part of the 8.8% circular arc section. This again

is of the nature of a fore-drag coefficient, and, as shown in Eq. (43),
4 T 2

77 T el Plye
M= 1; this is how the subsonic data has been joined with the

it should have a positive slope equal %o at
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supersonic data., The vertical lines through the expérimental points -
again indicate estimated accuracy of the data. TFor the cass of at-
tached shock the pressure distribution can be calculated using charac-
teristics theory and the shock polar; however, a close approximation
is obtained by considering the flow behind the shock wave to be
Prandtl-Meyer flow (this yields, approximately, parabolic shaped bow
and trailing edge shock waves, see Ref. 34). From this pressure dis-
tribution the drag was calculated and is shown in Fig. 37. Taking
into account the "reflected" characteristics from the shock wave would
give more compression end increase the drag coefficient so that it
would agree better with the experimentel values at M..= 1.450 and
1500 shown in Fig. 37.

Note that the tests were made at low enough supersonic speeds

to definitely get below the drag coefficient maximum at M £ 1.20.

11. Loecal Mach Number Distributions on a 12% Biconvex Circular Arc

Adirfoil

Fig. 36 shows local Mach number distributions from Ref. 9 for
high subsonic speed flow over a 12% biconvex circular are asirfoil
(with turbulent boundary layer). The data for the 8.8% circular arc
section at two supersonic speeds have been scaled according to the
transonic similarity laws to the 127 case and are shown for the front
half of the 12% airfoil in Fig. 38. The back half for these two cases
has been faired in using a Prandtl-Meyer expansion which should be ap-
proximately correct (a more accurate debermination could have been

made using characteristic theory and the shock polar). At M_ = 1.58,
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the theory indicates that the shock is attached witﬁ sonic -speed Just
behind the shock on the leading edge, so that the diatribution can be
obtained by standard methods mentioned above; again the Prandtl-Meyer
expansion approximation was used for the distribution at Ma,=’1.58 on
Fig. 38,

The behavior of the Mach number distribution is similar to those
shown previously, except in this case the movement of the shock ter-
minating the local supersonic zone is shown. Apparently little change
in local Mach number distribution occurs between M_,= 0,936 and |

Mooz 10290

12. Drag Coefficient Variation with Mach Number for a 12% Biconvex

Circular Arec Airfoil

The data of Fig. 39 were converted to pressures which were inte-
grated to give the pressure drag coefficient for the various free
stream Mach numbers, In addition the drag of the front and back
halves are shown separately. The drag coefficient variation between
Moo= 0.96 and M o= 1,20 was based on oonstané local Mach number dis-
tribution at velues interpolated between the curves for M= 0.936
and Moo= l.29. ’The date were faired intc the curves for attached shock
wave calculated on the Prandtl-Meyer expansion basis. It is seen that
the fore-drag coefficient has & maximum after M, = 1 while the drag
coefficient of the rear part has a meximum before M= 1. The over-
all airfoil has a meximum drag coefficient just before M= 1 in order
for the curve to have the slightly negative slope at M= 1 given by

Eq. (41), page 32.
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VIiiI. CONCLUSIONS

The transonic similarity theory of von Karman and Guderley was
checked and found to be in good agreement with experiment for thin
wedge profiles near Moo= 1.

The results of theoretical calculations using transonic perturba-
ticn theory made by Guderley and Yoshihara, Vincenti and Wagoner, and
Cole for a wedge in transonic flow were checked experimentally at high
subsonic and low supersonic speeds for three wedges of different an-
gles and were found to be in good agreement with experiment.

The flow field and the surface pressure distribution for a 26.6°
semi-angle wedge at M, = 1.44 were obtained experimentally and were
found to be in excellent agreement with the theoretical calculations
of this flow made by Drebinger.

The pressure distributions and drag coefficients for an 8.8% cir-
cular arc section followed by a straight section and for a 12% bicon-
vex circular arc airfoil were presented completely through the tran-
sonic range. It was shown that some difficulty arises in comparing
two-dimensional transonic perturbation theory with experiment, since
this theory neglects terms of order (t@)zﬁ and higher; for even mod-
erate thickness ratios this will cause noticeable deviations from more
exact theory.

It wes showm from some physical arguments that the local Mach
number distribution on bodies traveling through an infinite fIuid has
a stationary value at Meo= 1. This was verified experimentally for
the case of two-dimensional flow. It was shown that this concept im-

plies a drag coefficient maximum just below M= 1 for all bodies in
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steady flight. This fact can be used Lo obtain thenvariation of
local Mach number distribubtion on bodies completely through the tran-
sonic range of velocities from wind tunnel tests, provided small
models are used so that tests can be carried well above critical Mach

number and to low enough supersonic Mach numbers sc that the bow

shock wave is detached a chord length or so.
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APPENDIX 1

ASYMPTOTIC REPRESENTATION GF COLE'S SOLUTION FOR

LARGE NEGATIVE VALUES OF REDUCED FREE STREAM MACH NUMBER |

Cole's solution for the high subsonic velocity flow past a thin

wedge (Ref. 23) is given as follows (in Cole's notation)

<0
Zzz,\l/‘? siwH A (V,=V)
Yo

y(z,v;2)) = ( 7/ SH v, Jovys (22) I-y, (A2,)) AdA  (61)

o0
% o

_ CosH A (Vy-v)

x(zv,z)= 1-2, z VO%W

o

Tofp (72) Tyg(22,) 2dA  (62)

where the centerline of the wedge is at y =0 , leading edge at

x =¢ , shoulder at « =, , and

Iz %
2, 2 _2 7. u
z=5 (-m; .._3—[ (w/).Z;J
¥z ¥,
z,=—§,—(/—Mof) =-23— [—(D’ﬂ) %’f ¢ (63)
v, = (¥+/) 8

and other notation is the same as the present paper.

Using the standard methods of partial fraction expansion we may

write
SIvH A (Vo"v) v i v )Iz\/oz
—— = e+ 2 swintt—) —m—ms————
S/NH AVO VO ZI (n V°> Az\/o2+n2ﬂ2 (64)
Nn=
cost A(Vy-V) J B > ( v AVo
SWH AV, AV, = @03 Vo) Aty 2 n?n? (65)

Substituting these into the integrals above and making use of the

integrals



56

r

5 ~o<2_7.y3(ocz')/<_y3(o<@) s p>7>0
Ty (A@) Tgy (A7) dn = (66)
PRy #) Iy, (K@) 5 ¥>B>0

0(_/)%
v
+N
Py >
Ay

and
-

oo —42]2/3@(?’)/(.% @) B’ ¥>0
o

/sl2+°<2
K Kz/g (ot NI ys(=B) 5 4>p> 0

We can write Eqs. (61) end (62) as

! oo
z(f_ii’yﬁ Z ntt am/(:m (nn- )/(, (n7 _Z_').
/ 7% n=l ﬁé s V|2 #1270
~ I :
Y=V y= (68)
'
—2~—2-i> inn 5/A/(nﬂ:—‘—/—>/< 22N 10 (e 2L 0
5 vy L K y) T ()5 2>z

/+2<Z) ( ) Z nte cos(nm— >Iz/3(nn* Zo> WG 6);z,>z>0

o (69)**
~2(-Z-’> ( ) Z nt cos (ﬁfl‘ )kz/g(”ﬂ )I 73(’7” ““) y 252, >0

Yo

Making use of the asymptotlc formulae

/ z
]ﬂ(z)g‘?;; e +--.  8s Z —= oo (70)
~ [n‘ 4 .
Ky(z) = E’E e F e as Z ——— o0 (71)
and the simple summations
o -an S TR
e n = 72
El St x 2 cosHa ~2cos MK (72)
& - ' nx-e
> e A0 os nx = —22 e (73)

2 CosH a~-2cos TTX

3
1}

*G. N, Watson "Bessel Functions," Cambridge Univ. Press for Eq. (67).
Eq. (66) is obtained by differentiation of Eq. (67) with respect to ¥ .

Wk
Figs. 5, 6 and 7 were calculated from this equation for v=0o ,
for the cases E__ <0 »
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we can write Egs. (68) and (69) for large values of z and- z, as

] 1 V
el @)z eyt ey - (72)
Y zZ\3 7AA n(z-2,) v 5 252 oo
CosH ———— - cosnt—
o Y
+M(z2-2))
v
’/+/ 2\ cosmy -e Yo
2(2,) 7 (z-2)) v y F e
COSH i - COSTE —
X 2 4 ) o (75)
-n(z-z,)
'/é v RSN
! Z) CosTt; ~ e Vo
i Gy > , Z>Z,—= oo
% cosw 22D cos o ——
v, Yo

Eliminating v between Eqs. (74

) and (75) for z,>Z o0 we find

and for =z >z,—» oo simply replace =« by x-/

in Bq. (76). Thus the lines of

center on y=0 , with ratio of

( 3=, vz B
=)
which is precisely the solution

theory (see Appendix 2).

— 12 - “ —n(z-z) -2
(_.Z..) e Vo
Z/
w +
y 2swn TEE)
+ Vo =/
(E)//é Z \ile (76)
z, (?z’,)
Y3 - n(z-z
z(?_ﬁ)/ R ACE ) 2 ome TEEZ
2 Vo Vo

,and Z-2, by z, -2
constant Mach number are ellipses with
semi-axes equal to

1-mk 17)

given by the linearized subsonic

Now, in the notation of the present paper

7T<Z~Z,)

el
3

Vo

[(—5)3/2 e~

snd since E-%,, is small on the wedge and since
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’Cvpzﬁz(g'-goo)

we can write that
~ o NYe
n(z-z,) 2w - Yz ; Cp
Vo 7 B) -/

hence,

n(z-2) _ 27 , _ %% 3 _©p -
- 3 ( gm) I:af‘ P t o } /:l

Yo

g0, approximately

o Cp V! M

w(z-z,) | 1 Yo ~
._______::——.-2—(..200) CP—: 2 P

) Z,Z,— oo (78)
Vo

Similarly, for large z and =z, it follows that

Zl/é,

(_Z_) =/ 4, Z,z,—= oo for z-Z, small (73}
/

Substituting Eq. (78) and (79) into Eq. (16) we get the exact linear-
jzed subsonic solution for constant velocity lines (see Appendix 2).
Therefore on the wedge { y =0 ), from Egs. (76), (78), and (79), we
have approximately for large z end 2,

= ¥ /

17T —~ LA ~
/ —2_ \F%oa yel -'E \I_goc Cp

& -

X+

!
N 8o Cp
e -

Solving this for Cp we find

lad 2
Cp ‘\"sz '--"7‘{ Loe %
or

-26 2%
T LOoG (80)
Mo x-!

which is precisely the linearized subsonic solution for flow past a

Cp =

wedge (see Appendix 2). Thus Cole's solution far away from Moo= 1

tends exactly to the linearized subsonic solution.
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APPENDIX 2

LINEARIZED SUBSQONIC AND SUPERSONIC FLOW PAST WEDGE

AND CIRCULAR ARC SECTIONS
1. Linearized Subsonic Flow Past a Wedge

Let the wedge centerline be on y=¢0 , with leading edge at
x =0, shoulder at x=c . Then the incompressible flow problem is
to find an analytic function w-iv such that v=0 on y=0 except
for O<x<c where v=yo and y-(v=0 ot infinity. Such a func-
tion is
] z/c

U- LtV = —— [66 e
7 (Z/c) -~/ (81)

where
Z = x+Ly
U/ = free stream velocity

Thus on y=0 ,

Co = -2U _ ~-208 K/C
P = = = T L% g (82)

Using the Prandtl-Glauert transformetion, for linearized subsonic

flow we have

Co = cr -28 xlc
it MR T we) (82)

or in transonic similarity notation

~

2 /e
LoG
- ‘goc

N e 7 . (84)
For +the incompressible case the lines of constant pressure in the

fluid will be where
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z/c tant
= gonstan
(z/0)-1 S
but these are circles with centers at
~-TCp
e
'x - "7ZCP 9 y = 0 (85)
/-e ©
and radii -7 <p
2 @
e
- 1TCp
i-e €

In the Prandtl-Glsuert Transformation, the y disbtance is stretched

2

by the factor -/-M, as is the pressure coefficient so the lines of

constant pressure (and hence dansity) are ellipses with ratic of axes

equal to wﬁ-ﬂ&f

given by the equation

L

2

-2 1 CoV-Moo>
26
X+ =
2
<, \} -M
Y 25K 'E;JE?%“JE“
+
/ /
7 3
cp~/-M, n CoN M
2-mE 5//\///-275 ~—&1£———°-1 e — ——&5———-

Linearized Supersonic Flow Past a Wedge

(86)

From the Ackeret theory the pressure coefficient in superscnic

flow is proportional to slope and for the wedge yields simply

26
£z
or
& 2 = (88)

Zoo
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3. Linearized Subsonic Flow Past a Circular Arc Section

For the circular arc section, the slope of the surface varies
almost linearly with distance from the zero slope point along the' axis
of the profile. TFor the section shown in Fig. 1 then, with centerline
on y=0 , leading edge at 2 =0 , and zero slope point at « =¢ , the
incompressible flow problem is agairn to find an analytic function

u-(v such that on y=0 , v=0 except for O<x< ¢ where
= zu—g(/——i—) where ¢ is the helf thickness at X=c and

u-{yv=¢ at infinity. Such a function is

: 2U t [rz z/c
mir = g 2| i) o i ] (89)

On the wedge { y=0 , 0 <z<c ), them

7 N K/
s, U 7 c E/' c)"o6 1= (%/c) ’L/] (%0)

so the linsarized subsonic solution is

4 t
n ¢ % zlc i
Cp =~—/:.\/___-A—/]—~;§— [(/—?> LoG mv"/J (91)
or
~ 4 |, = 2/c
e = wmu/'?‘) 8 Ttz *’} (92)

The minimum Cp is obteined by differentiation, and one finds that

n/C /

p 0 at the poin