
DYNAMIC CRACK PROPAGATION 

IN ELASTIC-PLASTIC SOLIDS 

Thesis by 

Xiaomin Deng 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1990 

(Submitted May 3: 1990) 



-11-

@1990 

Xiaomin Deng 

All Rights Reserved 



-111-

To my parents, my wife, my family 

and my motherland, China 



-lV-

ACKNOWLEDGEMENTS 

I would like to thank my thesis advisor, Prof. Ares J. Rosakis, for his steady 

support and great guidance during the entire course of this study. I am very grateful 

to Prof. John F. Hall for his excellent lectures and stimulating thoughts on the finite 

element method. I am deeply indebted to Profs. Wolfgang G. Knauss and James 

K. Knowles, and to the late Profs. Charles D. Babcock, Jr., and Eli Sternberg for 

many helpful discussions on the general subject of Solid Mechanics. I must also 

thank Prof. Thad Vreeland for his encouragement and interest throughout my stay 

at Caltech, and Prof. G. Ravichandran for his many valuable suggestions regarding 

this work. Further, I wish to express my sincere appreciation to the members of 

my thesis examining committee, Prof:;;. J.F. Hall, W.G. Knauss, J.K. Knowles, 

A .. J. RosakiR and T. Vreeland, Jr., for patiently reading my thesis and for their 

constructive comments on the thesis. 

Thanks are also to the entire Solid Mechanics Group of the Graduate Aeronau­

tical Laboratories. In particular, I greatly appreciate the many seemingly endless, 

useful discussions with Drs. Sridhar Krishnaswarny, R. Narasimhan, Hareesh V. 

Tippur and Alan T. Zehnder. The help of Mr. Carl Schulthcisz is gratefully ac­

knowledged. 

I am thankful to our secretary Theresa Thalken for her cheerfulness and mis­

cellaneous help, to Jean Anderson and Pat Gladson of the Aeronautics Library for 
~ 

their excellent work and help, and to our Lab technician Ken Wang for his various 

assistance. 

I am very grateful to many wonderful American people I have met on and off 

campus during my stay at Caltech. Their friendship and understanding have made 

me, a student from China, felt like at home during those past years. I am especially 

grateful to Mrs. Ruth Hadley and Dr. Carmer Hadley for their parental love and 

encouragement. 



-v-

I would further like to express my gratitude to all my Chinese friends in the 

states, at home and in other countries, and to all my fellow Chinese students at 

Caltech, in particular, to Dr. Zhikun Hou. They have been very supportive, helpful, 

and entertaining. 

The Josephine de Karman Fellowship, the Li Ming Fellowship, and the Chinese 

Government Scholarship are· gratefully acknowledged. I am also thankful to the 

National Science Foundation for financial support for attending a summer institute 

at the San Diego Supercomputer Center. 

The present work was carried out with the funding of the Office of Na val Re­

search, Contract Nos. N00014-85-K-0596 and N00014-90-J-1340, and the National 

Science Foundation, Grant No. MSM-84-51204. The finite element computation 

was performed on the SCS-40, Cray X/MP and Cray Y /MP computers of the San 

Diego Supercomputer Center. Link to the computer network was provided by the 

Caltech Campus Computing Organization. 

Finally and most importantly, I wish to thank my parents and other members 

of my family for their constant love and care for me. I am especially indebted to 

my wife, Jingyan, for her love, patience and support. 



ABSTRACT 

The present finite element study addresses several issues of interest pertaining 

to the phenomenon of dynamic crack propagation in elastic-plastic solids. Three 

classes of materials, namely elastic-perfectly plastic materials, linear hardening ma­

terials and power-law hardening materials, arc considered. The materials are as­

sumed to obey the von Mises yield criterion and the associated flow rule. 

Under conditions of Mode I, plane stress, steady state and small scale yielding, 

we investigated the structures of the near-tip stress and deformation fields. A 

preliminary asymptotic analysis for crack-tip stress and velocity fields in elastic­

perfectly plastic solids was provided to reveal and explain some special features 

of the crack tip fields observable only in the case of rapid crack propagation. We 

studied the theoretical basis of a fracture criterion based on the dynamic stress 

intensity factor for crack growth in materials which fail in a locally ductile manner. 

We explored the behavior of crack tip fields under non-K-dominance conditions 

and its effects on the dynamic fracture toughness vs. crack propagation speed 

relationship. 

An Eulerian finite element scheme is employed. Finite element meshes with 

extremely small elements near the crack tip are carefully designed. The ratio of 

the crack tip plastic zone size to that of the element nearest to the crack tip is of 

the order of 1.6 x 104
• In order to overcome numerical difficulties associated with 

4 

crack-tip strain singularities and the use of small near-tip elements, an efficient 

stress integration algorithm is devised. The existing stress state determination 

. procedure is modified to prevent the occurrence of negative plastic flow and to 

avoid mistakenly treating elastic unloading as plastic flow. The above measures are 

proven to be essential for the convergence of the numerical solution. 
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CHAPTER 1 

INTRODUCTION 

All engineering structures contain or will develop cracks, either as natural de­

fects or as a result of fabrication and assembly processes. A short crack may grow 

through mechanisms such as fatigue, corrosion cracking, etc., and might, under cer­

tain circumstances, become unstable. An unstable crack propagates dynamically in 

a structure, with a speed usually in the range of 20 ~ 60% of the material elastic 

shear wave speed. For a structure made of 4340 steel, for example, the crack speed 

would be on the order of one thousand to two thousand meters per second. This 

rapid separation of material would seriously damage the integrity and function of 

the structure, and even lead to complete structural failure. 

Interest in dynamic crack propagation has been increasing. For the most part, 

this is because structural designs which preclude crack instability under all con­

ditions can be far too costly, and there are, in addition, applications where the 

larger-scale unstable extension of a crack would have catastrophic consequences. It 

is recognized that fracture failures of structures, such as transmission pipelines, off­

shore oil production platforms 1.wclded ships, railroad tracks, aircraft and spacecraft, 

bridge girders, pressurized containers, and nuclear reactor pressure vessels, etc., can 

be prevented by stopping propagating cracks before the structural integrity of the 

unit is completely lost. It is therefore important for the engineers, when designs 

preventing crack instability are impossible or inadequate, to configure structural 

systems in favor of the timely arrest of unstable cracks. Careful scientific study 

of crack arrest phenomena is thus indispensible. Crack arrest is intimately related 

to the behavior of the running crack immediately preceeding the arrest. Precise 
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treatments of crack arrest phenomena must then start from analyses of propagation 

events and propagation criteria. 

It is under this impetus towards understanding crack growth and arrest phe­

nomena that we undertook the present investigation. We present in this thesis the 

result of a detailed finite element study on dynamic crack propagation in elastic­

plastic solids, under Mode I plane stress and steady state conditions. Finite element 

computations were conducted under small-scale yielding conditions.with and with­

out far-field K-dominance to be defined later. 

In this study, we intend to address several important issues relevant to dy­

namic crack propagation pheonomena. First of all, we will try to reveal features 

of the asymptotic structures of crack tip stress and deformation fields, both for 

quasi-statically growing cracks and for dynamically propagating cracks. We do this 

for three classes of elastic-plastic solids, namely, elastic-perfectly plastic materials, 

power hardening materials and linear hardening materials. 

In carrying out the computation, we adopted an Eulerian type finite element 

formulation (Dean and Hutchinson, 1980), which is based on a weak form of the in­

tegral representation of the virtual work principle. The so-called Tangent Predictor­

Radial Return method (see Schreyer, Kulak and Kramer, 1979) is modified to cal­

culate stresses in the plastic range by numerically integrating the elastic-plastic, 

incremental constitutive law, such that the computed stress state automatically sat­

isfies, for elastic-perfectly plastic and linear hardening materials, the yield condition 

at the end of a strain increment. Furthermore, the existing procedures implement-

. ing the stress integration algorithms are improved to eliminate the occurrence of 

negative plastic flow, and to avoid mistakenly treating elastic unloading as plastic 

flow. Numerical errors due to the appearance of negative plastic flow may cause 

deterioration of the numerical solution with oscillations and even divergence, which, 

for example, can be encountered in elastic-plastic computations for crack growth 
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problems. 

Secondly, we will investigate the issue of fracture criteria for dynamic crack 

growth. Instead of directly assuming the dependence of the fracture toughness or 

the critical stress intensity factor on the crack tip velocity, we employ a crack tip 

local criterion and then abstract from numerical data such a dependence; which is 

compared with good agreement to experimental measurements performed on metal­

lic materials. 

Finally we will explore what happens to the findings of the above studies when 

small-scale yielding conditions with I<-dominance do not hold. A parametric study 

will be conducted concerning the influence of the nonsingular terms in the elastic 

far-field on quantities such as the size and shape of the crack tip active plastic 

zone, the near-tip stress and deformation field variations, and the dynamic fracture 

toughness vs. the crack propagation speed relationship. 

In section 1.1 of this chapter, a brief review will be given regarding elastody­

namic analyses of crack propagation phenomena, which forms the basis of our later 

discussions. Section 1.2 is concerned with a commonly used concept in linear elas­

tic fracture mechanics, namely the concept of small-scale yielding, and with issues 

regarding its extension to the case of dynamic crack propagation. Observations 

about discrepancies among experimental results related to fracture criteria are then 

discussed in section 1.3. Finally in section 1.4 the overview of this thesis is given. 

1.1 ELASTODYNAMIC ANALYSES 

Most of the work done in the area of dynamic crack propagation has as­

sumed that materials are homogeneous and that they are linearly elastical ( although 

isotropy is not generally assumed in the literature, it is assumed during the course of 

our discussion). Early investigations concentrated on theoretical analyses of prob­

lems of special geometries, loading conditions and/or crack propagation patterns. 
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The pioneering work of Yaffe (1951) was concerned with the problem of a Mode 

I crack of fixed length translating steadily through a body subjected to uniform 

remote tension. The steady motion of a semi-infinite Mode I crack was then ana­

lyzed by Craggs (1960). Some years later, Nilsson (1972) studied the case of steady 

propagation of a Mode I crack, along the centerline of an infinitely-long, finite-width 

strip subjected to uniform edge displacement conditions. 

While the above considered only steady state situations, analyses were also 

performed for transient problems under the constraint of constant crack velocity 

(Broberg, 1960; and Baker, 1962). Studies by Kostrov (1966) and by Eshelby (1969) 

on Mode III nonuniform crack extension problems lifted the restriction of constant 

crack speed. The plane strain problem of crack growth at nonuniform rates under 

general loading conditions was treated by Freund (1972a, b, 1973, and 1974). 

X2 

Xz 

L -+-- v = da(t)/dt 

CRACK 

O' 0 

I- a(t) -I 
~ 

FIGURE 1. 1. 1 A diagram of crack propagation, where ( x~ ,x;) is a fixed reference 
coordinate system, (x 1 ,x2 ) is a moving system with origin at the 
crack tip, and (r,8) is the associated polar coordinate system. 

As more particular problems were solved ( see reviews by Freund, 1976; Rose, 

1976; Sih and Chen, 1977; and Chen and Sih, 1977), it was discovered that while the 

problems studied may involve either steady state or transient state, and may vary 

in geometry, loading and crack speed conditions, their solutions share a common 
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asymptotic feature near the crack tip. That this is true for all growing cracks with 

smooth trajectories is demonstrated by general elastodynamic near-tip asymptotic 

analyses of the stress and deformation fields (see Rice, 1968a; Sih, 1970; Freund 

and Clifton, 1974; Nilsson, 1974; Achenbach and Bazant, 1974; Burgers, 1980; 

Freund, 1980; and Nishioka and Atluri, 1983). The stress state, in a local polar 

(r,8) coordinate system fixed at the crack tip (see Fig.1.1.1), can be expressed as 

(for definitions of order symbols see Erdelyi, 1956) 

K<fv(t) N 
Uij = ~ ~ij(B,v) + 0(1), (N = I,II,III) as r---+ 0, 

211-r 
(1.1.1) 

for pure Mode I, Mode II and Mode III fracture cases, respectively. Here ~f'J 
( i, j = 1, 2, 3) are known universal functions of 8 and crack velocity v, and Kj, 

Kj1 and Kfu are the dynamic stress intensity factors in Mode I, Mode II and 

Mode III respectively, representing the strength of the singular stress field. The 

stress intensity factors uniquely characterize the singular stress field which is then 

usually called the K-field. Moreover, they are also a measure of the energy release 

rate (the energy power supplied to the crack tip region per unit fracture area). 

Indeed, as shown by several investigators (Broberg, 1967; Atkinson and Eshelby, 

1968; Eshelby, 1969; Kostrov and Nikitin, 1970; Sih, 1970; Achenbach and Brock, 

1971; and Freund, 1972c) the energy release rate at the crack tip is proportional to 

the squares of the stress intensity factors, with universal coefficients dependent only 

on the instantaneous crack speed v. Attempts are then made to introduce fracture 

criteria based on the stress intensity factors. In the Mode I case, for example, it 

is often postulated that during crack propagation the instantaneous value of the 

stress intensity factor is equal to a function of crack tip speed,. which is a material 

property. The criterion takes the form 

(1.1.2) 

Here the stress intensity factor Kf(t) represents the driving force of the crack mo­

tion, and is determined by the history of the geometric and loading conditions of a 
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specific problem up to the present time t. On the other hand, the quantity K1n, a 

material property, represents the resistance of the material to the crack motion, and 

its functional dependence on v can only be determined through experiments. I<1v, 

together with its velocity dependence, is termed the dynamic (propagation) fracture 

toughness. Care must be taken not to confuse K1n with the dynamic (initiation) 

fracture toughness I< Id· 

Note that K1n is usually used to denote the plane strain toughness, but will be 

used in this study, unless otherwise stated, as a generic symbol for dynamic fracture 

toughness. Occasionally, under plane stress conditions, I<1n will be replaced with 

KJc, the plane stress dynamic fracture toughness. Similarly, J{ will be used as a 

generic notation for the stress intensity factor. 

1.2 THE SMALL-SCALE YIELDING CONCEPT 

The autonomous, universal structure of the asymptotic singular K-field at a 

propagating crack tip, and the hypothesis of the critical stress intensity factor cri­

terion (1.1.2) form the basis of the current dynamic fracture mechanics. This is 

evidenced by the large number of publications devoted to the theoretical and nu­

merical evaluation of stress intensity factors, and to the experimental determination 

of the dynamic fracture toughness of materials. However, it is the very underlying 

assumptions, which lead to the near-tip singular stress field, that are violated at 

the crack tip. As we know, linear clastodynamic analyses predict infinite stresses 

and strains at the crack tip which real materials cannot sustain. Plasticity and 

large strains must come into effect. Also as the crack tip traverses rapidly through 

a body, material points near the path of the crack tip experience large strain rates. 

Thus for rate sensitive solids, rate effects have to be considered. Plasticity and rate 

sensitivity produce large energy dissipation which in turn generates a large amount 

of heat, raising the crack tip temperature up to as high as several hundreds to sev­

eral thousands of degree centigrade (see Fuller, Fox and Field, 1975; Weichert and 
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Schoenert, 1978; and Zehnder and Rosakis, 1990b ). As a result, material properti­

ties at the crack tip may change during fast crack propagation. It then seems clear 

that, if the concept of the K-field and the critical stress intensity factor criterion 

(1.1.2) are to provide any applications at all in engineering practice, the influence 

zone of the crack tip nonlinearity and/or inelasticity effects must be confined to a 

tolerable region. 

It is fortunate that for quasi-static fracture initiation and slow stable (short 

range) crack growth, such crack tip confining regions do often exist in practical 

applications. The rationale for admitting the singular stress distribution at the crack 

tip is thus explanable in terms of the so-called small-scale yielding (SSY) concept 

(Rice, 1967, 1968a, b ). In this concept, it is assumed that, in the vicinity of the 

crack tip, the potentially large stresses are relieved by plastic fl.ow in a region whose 

size is much smaller than the crack length or any other characteristic geometric 

scale. It is further assumed that the plastic zone is engulfed all around by an elastic 

region which is dominated by the singular K-field. The success of the linear elastic 

analysis of quasi-static fracture problems, or as is usually called, the linear elastic 

fracture mechanics (LEFM), is virtually based on the SSY assumption. This is 

because when the SSY assumption is met, as it is in many engineering applications 

involving quasi-static fracture, the stress intensity factor K totally characterizes the 

stress and strain fields for the localized fracture process, and the energy release rate 

calculated from the K-field represents the actual energy release rate. The critical 
• 

stress intensity factor criterion for (quasi-static) crack initiation is thus based on a 

strong physical ground. 

However, the situation is physically different for propagating cracks. When 

a crack propagates, the crack tip plastic flow leaves a wake of residual plasticity 

behind. While the plastic effect may be confined to a small region almost every­

where around the crack tip, it will always extend far behind the tip along the two 

crack surfaces. As a result, SSY is not strictly applicable, and the stress intensity 
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factor loses its physical meaning, i.e., it is no longer strictly a measure of the energy 

release rate. Nonetheless, there are many engineering situations where the SSY 

concept may still apply, if it is extended to allow for the existence of plastic wakes 

along crack faces. Thus it is of great importance that we investigate the following 

questions: First, under the extended SSY conditions (i.e., when the K-field does 

dominate the crack tip surrounding area except near the crack surfaces), will the 

stress intensity factor still be the characterizing parameter for the localized fracture 

process? Second, if the answer to the first question is negative, will the stress in­

tensity factor approximately characterize the fracture process? What are the major 

influences on the accuracy of the approximation? Finally, if the stress intensity 

factor is not related to the fracture process at all, what will be the replacing pa­

rameters? Obviously, in the search for answers to the above questions, analyses 

incorporating crack tip nonlinear and inelastic behaviors are necessary. 

1.3 EXPERIMENTAL OBSERVATIONS 

Concerns for the elastodynamic treatment of crack propagation phenonmena 

also arise because of experimental observations. Many discrepancies have been 

noticed, not only between experimental results and theoretical predictions or as­

sumptions, but also among experimental results themselves. Pioneered by Post et 

al.(Post, 1954; and Wells and Post, 1958) on the measurement of stress field around 

a propagating crack, early experiments were able to show that observed crack ter­

minal speeds are of the order of 0.5~0.8 of the Rayleigh wave speed, instead of the 

theoretically predicted Rayleigh wave speed itself (see Schardin, 1959; and Bowden, 

Brunton, Field and Heys, 1967). The validity of this is demonstrated by many 

later experiments. The emphasis here however, is on the measurement of the dy­

namic fracture toughness K1v(v). Due to the advent of better optical techniques, 

many experiments on fast crack propagation were conducted during the past few 

years. Unfortunately, the discoveries are not always encouraging. While experimen-
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tal results by Kobayashi and Dally, 1977, 1980; Bilek, 1980; Kanazawa, Machida, 

Teramoto and Yoshinari, 1981; Brickstad, 1983; Rosakis, Duffy and Freund, 1984; 

and Zehnder and Rosakis, 1990a support the idea of a unique material dependent 

K 1v vs. v relationship, those by Kobayashi and Mall, 1978; Brickstad and Nilsson, 

1980; Ravi-Chandar, 1982; Kalthoff, 1983; Ravi-Chandar and Knauss, 1987; and 

Takahashi and Arakawa, 1987 do not find such a uniqueness. 

This uniqueness versus nonuniqueness question has become one of the current 

key issues of dynamic fracture mechanics. An point to note here is that, before 

we jump to any definite conclusions, we must be assured that all experimental re­

sults are intepreted adequately. Since almost all the experiments are conducted 

on thin plates of relatively small dimensions, and conditions of plane stress and 

K-dominance are assumed, care must be taken that the underlying assumptions 

for the experiments are not violated. This subject has recently been studied ex­

tensively by Krishnaswamy and Rosakis (1990a) and Krishnaswamy, Rosakis and 

Ravichandran (1990). Naturally the question of the existence of a plane stress K­

dominant region will account for some of the observed discrepancies. However, the 

difference in the micromechanics of material decohesion should be responsible for 

many of the observed phenomena. As pointed out by Broberg (1968, 1971), a frac­

ture process zone exists at the front of a crack tip, where material inhomogeneities 

such as microcracks and microvoids may nucleate, grow and coalesce. For different 

materials, the operative microfracture mechanism within the process zone will be 
~ 

different. Namely, for materials which behave ductilely at the crack tip, void growth 

and coalescence are predominant, whereas for materials which behave in a brittle 

. manner, the growth and coalescence of microcracks will be dominant (see Broek, 

1968; Ashby, 1979; Curry and Knott, 1980; and Ravi-Chandar and Knauss, 1984). 

A closer examination of the experiments tells us that most of the experiments in 

favor of the uniqueness idea are conducted on materials such as metals which fail 

in a locally ductile manner, while those against it are usually .conducted on more 



brittle materials such as polymers. 

Advances in the understanding of crack propagation in materials which fail in 

a locally ductile manner have been obtained through some recent numerical studies. 

In a combined theoretical and numerical study of Mode III elastic-plastic crack prop­

agation problems, Freund and Douglas (1982) used a critical plastic strain criterion 

(McClintock, 1956, 1958; and McClintock and Irwin, 1964) and obtained theoreti­

cal K vs. v curves which resemble those from experiments showing unique KI v( v) 

relations. In a separate investigation on the problem of Mode I elastic-plastic crack 

propagation under plane strain, Lam and Freund (1985) used a different fracture 

criterion, i.e., the critical crack opening angle criterion (Rice and Sorensen, 1978; 

and Rice, Drugan and Sham, 1980), and again obtained theoretical K vs. v curves 

with the same qualitative tendency. It should be noted here that these criteria are 

mostly suited for metals that fail in a locally ductile manner. 

Although above comparisons are made between theoretically generated K vs. 

v curves for Mode III (anti-plane strain) and Mode I plane strain, and experimental 

results which are more closely related to Mode I plane stress, they do strongly 

indicate that it is indeed possible to explain experimental observations in terms of 

material local behaviors at the crack tip. 

1.4 OVERVIEW OF CURRENT STUDY 

The need for the study of nonlinear and inelastic behaviors at the crack tip 

now becomes apparent. It comes from the fact that so much effort has been spent 

· on the elastodynamic treatment of crack propagation problems that more funda­

mental analyses are necessary to back it up. In addition, it is motivated from the 

expectation that a better understanding of the crack propagation phenomena can 

only be gained through the use of more realistic analyses. 

Thus far substantial work on elastic-plastic analyses of crack propagation prob-
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lems have concentrated on anti-plane strain and plane strain cases (see reviews in 

later chapters), from which we see steady effort has been made by the scientific 

community in order to understand the onset of ductile crack growth, the slow sta­

ble crack extension and the dynamic crack propagation from the point of view of 

material elastic-plastic behaviors at the crack tip. It is fair to say that quite a 

good understanding has been obtained through this effort, although many issues do 

remain open. 

On the other hand, however, plane stress elastic-plastic analyses for growing 

cracks are still in a much less developed state, despite the fact that many experi­

ments of this kind are performed on relatively thin plates and results are interpreted 

under plane stress conditions. This may be partly because the field equations for 

elastic-plastic studies in plane stress are somewhat more involved, hence analyses 

become more complicated, and perhaps partly because of the doubt on the practi­

cal importance of plane stress analyses near the crack edge where three-dimensional 

effects are present. 

Nonetheless, we believe, our undertstanding of elastic-plastic crack tip fields 

would not be complete if the equivalent plane stress or generalized plane stress 

cases were not investigated, again, due to the fact that many engineering structures 

are made of thin sheets, and that almost all experiments are performed on thin plate 

specimens, of which many assume plane stress conditions. Furthermore, because 

of the complicated three-dimeilsional character of the stress and deformation fields 

near the crack edge, plane stress solutions cannot be ruled out in favor of plane 

strain counterparts, until a complete three-dimensional picture is clearly obtained. 

On the other hand, although some advances have been made in three-dimensional 

analyses(see, for example, Rosakis, Ravi-Chandar and Rajapakse, 1988), which 

are usually impossible to cope with analytically and are very costly to perform 

numerically, conclusive results await the emergence of accurate two-dimensional 

analyses and/or accurate three-dimensional experimental measurements, at least in 
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the sense of numerical calibrations of computer codes. 

As we mentioned above, analytical and numerical investigations of dynamic 

crack propagation phenomena in elastic-plastic solids under plane stress conditions 

are rare. For example, analytical solutions are usually valid only at the crack tip, 

called the asymptotic solutions, or valid along the prospectively crack line, called 

the crack-line solutions. Yet due to the fact that analytical solutions often involve 

complicated mathematics and sometimes many simplifying assumptions, numerical 

solutions are indispensible for checking the correctness of analytical solutions. Be­

sides, in situations where analytical solutions are not available or when certain key 

parameters characterizing crack tip fields are not obtainable through local analyses, 

full field numerical computations are extremely appealing. 

In this thesis we present the results of a detailed finite element investigation 

of the problem of dynamic crack propagation in elastic-plastic solids under Mode 

I plane stress and steady state conditions. Investigations were conducted under 

smaU-scale yielding conditions with and without elastic far-field !<-dominance (see 

chapter 7). The materials are assumed to obey the h fl.ow theory of plasticity 

and its associated fl.ow rule. The ratio of the crack tip plastic zone size to the 

size of the element nearest to the crack tip is of the order of 1.6 x 104 • This high 

spatial resolution of the near-tip mesh was chosen to allow for the investigation of 

the asymptotic structure of fields very near the propagating crack tip. Results are 

reported for a wide range of Mach numbers ( the ratio of crack speed to material 

elastic shear wave speed), and are compared with available analytical and numerical 

solutions, and with experimental measurements. 

In Chapter 2 we describe the Eulerian-type finite element formulation of the 

problem and give details of our finite element mesh design and specifications. 

A stress integration algorithm is proposed, which improves the popular Tangent 

Predictor-Radial Return algorithm in that the calculated stress state satisfies au-
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tomatically, for elastic-perfectly plastic and linear hardening materials, the yield 

condition at the end of a strain increment. Moreover, the existing solution proce­

dures implementing the stress integration algorithms are modified to eliminate the 

occurrence of negative plastic fl.ow, and to avoid incorrectly treating elastic unload­

ing as plastic fl.ow. At the end of this chapter, we discuss how the finite element 

results are to be post-processed and presented in the current study. 

An important aspect of fracture mechanics research is the investigation of the 

asymptotic structure of crack tip local fields, and the identification of controlling 

parameters which hopefully reflect the gross behavior of the crack tip fracture pro­

cess zone and are to be used in fracture criteria. Hence Chapters 3, 4 and 5 are 

concentrated on near-tip stress and deformation fields for elastic-perfectly plastic 

materials, for isotropic linear hardening materials and for isotropic power-law hard­

ening materials, respectively. Detailed discussions will be performed concernmg 

comparisons with available crack tip asymptotic solutions. 

In Chapter 6, we study fracture criteria for elastic-plastic solids. Theoretical 

Kfc (the dynamic plane stress fracture toughness) versus v (the crack propagation 

speed) curves are generated based on a local fracture criterion near the crack tip and 

are compared, with good agreement, to experimental measurements corresponding 

to dynamic crack· growth in thin 4340 steel plates, whose material characteristics 

match those of the calculations. 

~ 

In Chapter 7 we investigate the effects of non-K-dominance on the near-tip 

elastic-plastic fields and on Kfc versus v relations. This study would substantiate 

. the findings of previous chapters and is revelant to the subject of proper interpre­

tation of experimental results since under laboratory conditions K-dominance may 

not al ways exist. 

Finally Chapter 8 summarizes the main findings of the current study and con­

cludes with comments and suggestions. 
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CHAPTER 2 

NUMERICAL PROCEDURE 

2.1 INTRODUCTION 

Two types of finite element formulations are usually used in the investigations 

of crack growth phenomena, especially in circumstances where crack tip .stress and 

deformation fields and fracture criteria are of main concern. 

In the first formulation, the crack tip advances along the prospective crack line 

in a stationary finite element mesh. In order to govern the procedure, it is necessary 

to assume a fracture criterion a priori. If the crack tip is made to advance by untying 

the crack tip finite element node, the procedure is called a nodal release procedure 

(see Andersson, 1973; de Koning, 1977; and Sorensen, 1978, 1979). If, on the 

other hand, it is done by deforming the crack tip elements such that the crack tip 

shifts ahead, it is called a moving element procedure ( see, for example, Atluri and 

Nishioka, 1985). 

Nodal release procedures are commonly used for problems involving stable crack 

growths in elastic-plastic solids. For example, Andersson (1973) and de Koning 

(1977) devised such procedures for quasi-static crack growth in Mode I plane stress 

by assuming a constant crack tip opening angle criterion, whereas Sorensen (1978, 

1979) applied such procedures for stable crack growth in Mode III using a critical 

plastic strain criterion, and in Mode I plane strain using a critical stress intensity 

factor criterion. 
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In the second formulation, which is of an Eulerian type, the whole finite element 

mesh translates with the crack tip, or relatively speaking, materials convect through 

the mesh downstreamwise. However, in order to compensate for the loss of infor­

mation about previous crack growth, a steady state condition must be assumed and 

the boundary conditions must be hypothesized. This formulation was originated by 

Dean and Hutchinson (1980) for steady state quasi-static crack growth in Mode III 

and in Mode I plane strain, and was adopted later by Freund and Douglas (1982) 

for steady state dynamic crack propagation in Mode III and by Lam and Freund 

(1985) for steady state dynamic crack propagation in Mode I plane strain. 

One of the shortcomings of the Eulerian-type formulation is that it can only be 

used in problems involving steady state crack growth and where conditions such as 

small-scale yielding can be assumed. Yet compared with the advancing tip formu­

lation, it has many advantages. First of all, the Eulerian formulation does not need 

a fracture criterion assumed a priori, which makes the formulation more flexible 

in this sense. Secondly, due to mathematical difficulties, analytical crack tip stress 

and deformation fields are usually obtained asymptotically under steady state condi­

tions. Hence, direct comparisons between those two types of solutions are possible. 

Thirdly, in the advancing tip formulation, the crack tip shifts ahead in a discrete 

manner, according to an experimental input or a process devised artificially. This 

may cause fictitious oscillations in numerical results, and more importantly, incon­

sistencies may arise in the sense that different tip-shifting procedures may yield 
~ 

different results. This possibility is especially true for dynamic crack propagation 

where wave motions are inevitable. Finally, due to a steady state-peculiar solution 

. procedure used in the Eulerian formulation, which will be discussed later, solutions 

can be obtained for a group of elastic-plastic materials once and for all, including 

elastic and elastic-perfectly plastic materials as special cases. 

The Eulerian-type finite element formulation is employed in the current study, 

which will enable us to investigate the steady state crack tip stress and deformation 
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fields as well as fracture criteria at the same time. The numerical formulation of 

this study and some related issues are presented in detail in the following sections. 

2.2 GOVERNING EQUATIONS 

In this section, the governing equations are presented for dynamic crack prop­

agation in elastic-plastic solids under Mode I plane stress, steady state, and small­

scale yielding conditions. All field quantities will be referred to a Cartesian rect­

angular coordinate system and its associated polar coordinate system as shown in 

Fig. 1.1.1. The origin of the coordinate system is fixed at, and translates with the 

crack tip (hence the name Eulerian-type for the finite element formulation to be 

discussed in section 2.3). 

For convenience, it is assumed hereafter, unless otherwise stated, that all phys­

ical quantities are denoted by hatted symbols. The usual indicial notation and its 

associated conventions will be used. The following nondimensional quantities are 

then introduced: 

£ = i./(K/ao)2
, 

1L = fr/(K 2 
/ Eao), 

(2.2.1) 

where i_, fr, ft.,§. and v are respectively the position vector, the displacement vector, 

the stress tensor, the strain tensor, and the crack propagation velocity, J{ is the far­

field dynamic stress intensity factor specified by the small-scale yielding conditions, 

a 0 is the initial yield stress in tension, m is called the Mach number, E is the 

Young's modulus, c:0 = a 0 / E is the initial yield strain in tension, c8 = -Jµ}p is 

the elastic shear wave speed, µ = E /2( 1 + v) is the elastic shear modulus, v is the 

Poisson ratio, and pis the mass density of the material. 
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Under steady state conditions, it is required that the crack propagates at a 

constant speed, and that the material time derivative or the time rate of any field 

quantity, say q, is replaced by the spatial gradient -v8q/8x1 • In light of this, the 

field governing equations for crack growth in homogeneous isotropic elastic-plastic 

solids can be presented in normalized form as follows. 

The equation of motion can be written as 

(2.2.2a) 

(2.2.2b) 

where v7 = f-i ;x;, with f.i being the unit base vector of the Cartesian coordinate 

system, and the superscript "T" denotes the transpose of a vector or a tensor. The 

infinitesimal strain-displacement relation can be expressed as 

(2.2.2c) 

For an isotropic homogeneous material obeying the J2 fl.ow theory of plasticity 

and the associated flow rule, the Huber-von Mises yield criterion 

(2.2.3a) 

is assumed, where S and J2 are respectively the deviatoric stress tensor and its 

second invariant, defined respectively by 
~ 

(2.2.3b) 

(2.2.3c) 

u is the current yield stress in tension and is usually called the flow stress, and €~ 

is the effective plastic strain given by 

(2.2.3d) 



-18-

where t_P is the plastic strain rate tensor. The dependence of the fl.ow stress a on c! 

is called the hardening rule, which describes the hardening behavior of the material. 

If a is a constant, then it models an elastic-perfectly plastic solid. 

From the above relations, the associated flow rule can be written as 

(2.2.4) 

where ..\ is called the plastic strain rate proportionality coefficient, or simply the 

plastic multiplier or the fl.ow factor, and it takes zero value for elastic stress states 

and is nonnegative for currently yielded stress states. 

Now the Prandtl-Reuss strain rate decomposition assumption states that 

(2.2.5a) 

with the elastic strain rate tensor le related to the stress rate tensor a- through 

(2.2.5b) 

where C, normalized by the Young's modulus E, is the fourth-order elasticity mod­

ulus tensor of the solid, with the usual primary and secondary symmetries. 

Generally, the set of nonlinear elastic-plastic equations (2.2.3-5) can be lin­

earized to yield the classic small strain incremental stress-strain relationship ( see, 

for example, Deng and Rosakis, 1990) 

(2.2.6a) 

where cep is the fourth-order elastic-plastic tangent stiffness tensor defined by 

(2.2.6b) 

where "0" is the tensor outer product operator, and A is a material parameter 

given by 

2 da~ A= -a- -S-S. 
3 de! 3- -

(2.2.6c) 



If (2.2.3a) is used, it is seen that 
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A= ~0-2 d:. 
9 dee 

(2.2.6d) 

Note that the derivative ~ depends on the specific material model employed. 
e 

In this study, we consider three groups of material models, namely elastic­

perfectly plastic materials, linear hardening materials, and power-law hardening 

materials. The materials are characterized by their uniaxial stress-strain relations, 

which are extended to multiaxial stress states through the use of the flow stress, 

the effective plastic strain, and the effective stress O"e which is defined as 

(2.2.7) 

The elastic-perfectly plastic model works for very low and nonhardening ma­

terials. Its uniaxial stress-strain relation is expressed in normalized form by 

a= {c, 
1, 

if O"e :::; 1; 
if O"e 2': 1. 

(2.2.8a) 

The uniaxial stress-strain relation for strain hardening ( or equivalently work 

hardening for J2 flow theory (see Bland, 1956) solids are more complicated, but 

can generally be very well-approximated by means of polygonal lines ( see Phillips, 

1951 ), the simplest of which is described by the linear hardening model. Portrayed 

by two straight lines, the o--c curve is expressed as 

if O" e :::; 1; 
if O" e 2': 1, 

where cf is, in the uniaxial case, the same as the plastic strain .defined by 

c~ = c - a, 

(2.2.8b) 

a is the hardening parameter of this bilinear material such that O :::; a :::; 1 and it is 

defined by 
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Et being the slope of the hardening line. It is noted that a = 1 and O correspond 

to the elastic and elastic-perfectly plastic cases respectively. 

A more realistic model for hardening materials was first proposed by Ludwig 

(1909) and later modified by Ramberg and Osgood (1943), which is widely known 

as the power-law hardening material model and is supported by many experiments 

on metals. In this model, the uniaxial stress-strain relation is described as 

(2.2.8c) 

where the exponent n is the hardening parameter such that O:::; n < +oo. When n is 

set to zero it models elastic materials, and at the limit n -----+ oo, the elastic-perfectly 

plastic case is recovered. 

Under small-scale yielding conditions, the crack tip far-field for dynamic crack 

propagation is characterized uniquely by the dominant singular elastic K-field. The 

explicit two-dimensional field variations are given, for example, by Freund (1976) for 

Mode I plane strain. As first noted by Bishop (1952), dynamic elastic solutions for 

plane strain always have counterparts in plane stress. Hence without any difficulty, 

we list below the normalized singular stress and displacement distributions: 

where 

2a1a8 
u1 = 4(1 + v)B[vr,,cos(Bl/2) - 2 Fscos(Bs/2)], 

1 + as 

u2 = 4(1 + v)a1B[-vr,,sin(0z/2) + 2 
2 Fssin(Bs/2)], 

1 + as 

B = (1 + a;)/ D...fi;, 

(2.2.9a) 

(2.2.9b) 

(2.2.9c) 

(2.2.9d) 

(2.2.9e) 
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and q being the elastic longitudinal wave speed. Note here that the only difference 

between the elastic solutions for plane strain and for plane stress lies in the value 

of the ratio ( c8 / q )2 , which is expressed in terms of the Poisson ratio as 

where 

~ { v, for plane stress; 
v = v/(l - v), for plane strain. 

(2.2.lOa) 

(2.2.lOb) 

For the purpose of later computations, we give the displacement spatial deri­

tives with respect to x 1 as follows: 

(2.2.lla) 

(2.2.llb) 

Finally, it is reminded that the actual equations for plane stress problems must 

· be simplified in conjuction with the following conditions 

(i=l,2,3), (2.2.12) 

from which the out-of-plane strain c33 can be computed. For clarity of discussion, 

those derivations are omitted here. 
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2.3 FINITE ELEMENT FORMULATION 

The mechanics problem of a crack advancing in a plate under small-scale yield­

ing conditions can be formulated with the help of the boundary layer concept (Rice, 

1967, 1968a, b). It is argued that mathematically the solution for the ab?ve prob­

lem can be obtained by treating a new problem, namely that of a semi-infinite crack 

propagating in an infinite plate, for which the stress state described by Eq.(2.2.9) 

is achieved as r --? oo. Since numerically it is difficult to model an infinite region, 

usually a region of finite size is instead considered. As pointed out by Dean (1983), 

a size larger than ten times that of the crack tip active plastic zone will suffice to 

produce reasonable results. In fact, one can study directly a region which just en­

compasses the crack tip and its active plastic zone by utilizing a modified variational 

principle (Hilton and Hutchinson, 1971; and Sham, 1983), which, while it saves some 

degrees-of-freedom for a finite element computation, makes the formulation of the 

problem much more complicated. 

Eulerian Formulation 

Now suppose the region under consideration occupies a domain V with bound­

ary B, which is composed of two sets of sub-boundaries: Bt where traction is 

specified and Bu where displacement is prescribed. Assume further that liJJ. is the 

virtual displacement vector, and that li§. is the associated infinitesimal virtual strain 

tensor given by 

From the principle of virtual work, we have 

[ lig_. u dV = [ liJJ. T · [- ( m
2 

) ~

2

;] dV + [ liJJ. T · i dBt, (2.3.la) lv lv 2 l+v ux1 } 8 t 

where t. is the boundary traction vector and is related to the singular stress fields 

Eq.(2.2.9) through 

t = u n - - _, 
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11 being the outward unit normal vector of the boundary surface. 

When the divergence theorem is applied to the first term on the right-hand 

side of Eq.(2.3.la), the weak form of Eq.(2.3.la) is obtained as 

where n 1 is the first component of 11· Note here that the admissibility condition 

for the virtual displacement, i.e., 811:. = 0 on Bu, has been used in deriving (2.3.lb). 

This weak form is the basis of our finite element formulation. 

From the decomposition assumption in Eq.(2.2.5a) and the Hooke's law ex­

pressed in Eq.(2.2.5b), it is true that 

Hence we obtain 

Substitution of Eq.(2.3.2b) into Eq.(2.3.lb) readily produces 

1 m 2 88u T 8u 
[&·Cc-----=---=-] dV= 

v - - - 2(1 + v) 8x1 8x1 
~ 

(2.3.2a) 

(2.3.2b) 

(2.3.3) 

After performing the usual finite element discretization procedure, a system of 

nonlinear algebraic equations can be derived as 

(2.3.4) 
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where K 8 and K d are respectively the global stationary, elastic stiffness matrix of 

the finite element system, and the contribution due to dynamic or inertia effects, 

U is the unknown global nodal point displacement vector, Ft and Fu are respec­

tively the global force vector due to specified boundary tractions and boundary 

displacements, which collectively form the stationary, elastic force vector, and F d 

and F P are respectively the contributions to the global force vector due to dynamic 

and plastic effects. Note that the nonlinearity of the system of equations comes 

only from the last force vector which is due to the accumulated plastic strains. 

All those global vectors and matrices are assembled from their counterparts for all 

the elements according to the standard assembly procedure. If we assume for a 

generic element that it occupies a domain ye whose boundary Be is consisted of 

the traction boundary Bf and the displacement boundary B!, where superscript 

"e" denotes a quantity for the element, then the aforementioned counterparts for 

this element will be 

(2.3.5a) 

(2.3.5b) 

(2.3.5c) 

(2.3.5d) 

(2.3.5e) 

(2.3.51) 

where N is the usual finite element shape function matrix, B is the associated 

geometric matrix, U~ is a vector composed of zeros for degrees-of-freedom with 

unknown nodal displacement values, and specified values for degrees-of-freedom 

with prescribed nodal displacements. All the integrals are calculated numerically 

by means of the Gauss Quadrature, i.e., they are approximated by summations over 
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Gauss integration points of their values at each Gauss point multiplied by a Gauss 

weighting value. 

The system of equations (2.3.4) is solved for the unknown nodal displace­

ment vector U using the solution procedure first proposed by Dean and Hutchinson 

(1980), which is peculiar to the steady state Eulerian formulation. Since the force 

vector of the system in Eq.(2.3.4) is unknown a priori due to the presence of the 

unknown plastic strains, it is solved essentially by initializing and updating §.P and 

hence F P' and by iterating through Eq.(2.3.4). For completeness, the solution pro­

cedure is described as follows. 

We choose a material hardening model, say the linear hardening (or pow-law 

hardening) model, start with a value for the hardening parameter a ( or n) which 

corresponds to the elastic case, i.e., a= 1 (or n = 1). This renders g,_P and hence 

FP zero, which makes (2.3.4) solvable immediately and a solution for U can be 

obtained. 

We then gradually change the value of the hardening parameter such that a 

material with less strain hardening is under consideration, i.e., we gradually decrease 

a (or increase n). For each such new material, the solution for the:previous material 

is used as the initial guess, and iteration is performed until a certain convergence 

criterion is met. 

At each iteration step, th.e displacement solution for the previous step is used 

to obtain the strain distribution for the current iteration. Under steady state con­

ditions, since the material time derivative for any field quantity is transferred into 

· the negative spatial derivative of this quantity with respect to x1 and multiplied 

by the crack velocity v, then the history of this field quantity for any particular 

material particle is stored instantaneously along a horizontal line from the crack 

front boundary to the back boundary. To this end, strain history, or more precisely 

the strain rate distribution, can be calculated from the strain distribution computed 
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previously. Hence stresses and plastic strains can be obtained by integrating the 

incremental constitutive law in Eqs.(2.2.3) through (2.2.5) from the leading edge of 

the finite element mesh along horizatal lines downstreamwise. 

Mesh Specifications 

It is appropriate at this moment to describe briefly our finite element mesh de­

sign and its specifications, before further discussions about stress state determina­

tion and iteration procedures are mentioned. Shown in Fig. 2.3.1 in our normalized 

coordinates is a schematic of the finite element meshes used in the present compu­

tation. The domain of interest is modelled by a rectangle, where the middle point 

of its bottom boundary coincides with the current crack tip position. The crack 

surface lies along the bottom from the lower left corner to the crack tip, and accord­

ingly the line from the crack tip to the lower right corner represents the symmetry 

plane. The length of the domain is twice its height which, with the normalization 

for the coordinates, is 4.5, which is about 15 times larger than the active plastic 

zone size. 

The rectangular domain is discretized by a network of horizontal and vertical 

lines, whose intervals decrease rapidly towards the bottom line and the center ver­

tical line, resulting in increasingly small elements near the crack tip. The divided 

areas are simply represented by four-noded isoparametric rectangular elements with 

2 x 2 Gauss integration points, although it is noted in plane strain that it is best to 

subdivide the quadrilateral element into four triangular ones and then to condense 

out the degrees-of-freedom corresponding to the inner element node (N agtegaal, 

Parks, and Rice, 1974), in order to avoid element stiffening or locking (see Malkus 

and Hughes, 1978) due to material incompressibility caused by large plastic strains. 

This type of finite element meshes gives rise to horizontal lines composed of Gauss 

quadrature points, along which stress integrations are to be performed. 
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FIGURE 2.3.1 A coarse representation of the finite element mesh used in the present 
computation. 

Two meshes of high resolutions are used in our computation. They are different 

in that the numbers of the horizontal and vertical lines of the mesh networks and 

the variations of the intervals between those lines are different. In the finer mesh, 

the network of lines results in 4050 elements with 4186 nodes, and the ratio of the 
~ 

plastic zone size to that of the smallest near-tip element is on the order of 1.6 x 104 • 

In the slightly coarser mesh, there are 1800 elements, and the plastic zone size 

· is about 0.8 x 104 times the size of the smallest near-tip element. Comparisons 

between numerical results obtained from those two meshes demontrate very good 

agreement, which will be discussed in later chapters. 

The boundary conditions are prescribed in accordance with the small-scale 

yielding assumption. At the front and the top boundaries, the far-field displacement 
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distribution in Eq.(2.2.9d, e) are specified, whereas at the back, where displacements 

are altered to a large extent due to the existence of residual plasticity in the wake, 

traction conditions correspending to the stress field in Eq.(2.2.9a, b, c) are applied, 

with necessary updating near the plastic wake. And as usual, the traction-free 

condition and the symmetry condition are used respectively at the bottom before 

and behind the crack tip. 

Stress State Determination 

For displacement-based finite element formulations, which is the case in the 

current study, stresses are calculated by integrating Eq.(2.2.6a) numerically, along 

a path in the strain space. It should be realized that, due to the discretization 

process involved in a finite element computation, strain rates can not be obtained 

exactly. Rather, they are approximated by finite strain increments. 

In order to choose an appropriate algorithm for the integration of stresses, 

or as is usually said for the determination of stress state, the following factors 

should be considered. From the viewpoint of accuracy and convergence of numerical 

solutions, we tend to use small time steps and fine element meshes, in the hope of 

better following the true strain history. The fine mesh requirement is particularly 

important in our case where, due to the use of the Eulerian formulation, the time 

history of any field quantity is converted into a spatial variation, which is stored 
• 

along horizontal lines parallel to the direction of crack propagation. On the other 

hand, cost considerations force us to do just the opposite. In order to compromise in 

· both ways, we have to find an efficient as well as accurate stress state determination 

algorithm. 

There are several algorithms at our disposal, such as the Radial Return method 

(Wilkins, 1964),the Tangent Stiffness method (Marcal, 1965), which is commonly 

combined with a radial return at the end of an increment, and is accordingly called 
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the Tangent Predictor-Radial Return method (see Schreyer, Kulak, Kramer, 1979), 

and the Secant Stiffness method (Rice and Tracey, 1973; and Tracey, 1976). 

The Secant Stiffness method is attractive, in that the calculated stress state 

at the end of a strain increment satisfies automatically the yield condition. How­

ever, when it is applied to hardening materials (see Tracey, 1976), an assumption 

regarding the slope of the uniaxial stress-plastic strain curve, f:i: , must be made, 

irrespective of the actual material behavior. For example, for linear hardening ma­

terials, the slope is a constant, while the assumed or calculated value varies. 

The Tangent Stiffness method, or its modified version, the Tangent Predictor­

Radial Return method, are the easiest to implement in plane stress. The disadvan­

tage is that, at the end of an increment, the calculated stress usually does not lie on 

the yield surface when it is currently yielded. Rather, a radial return to the yield 

surface must be performed to avoid greater error accumulations in the future. 

In order to achieve the fine points of the above two methods, the Tangent 

Predictor-Radial Return method is adopted in this study, but with proper modifica­

tions. Note that the method is based on the linearized stress-strain rate relationship 

in Eq.(2.2.6a), which is obtained through the differential form of the yield condition 

in Eq.(2.2.3a), or the consistency condition as it is usually called (see, for example, 

Deng and Rosakis, 1990). Modifications are obtained by improving the consistency 

condition when the strain increments, and hence the stress increments, are not in-
• finitesimal. The detail is presented in the following, with rates replaced by finite 

increments. For convenience, the derivations are obtained in terms of deviatoric 

. stress and strain tensors, and under general three-dimensional conditions. 

Without loss of generality, consider a currently yielded stress state a, and a 

strain increment 6.~ which is in a plastic path. Then by definition, we have 

(2.3.6a) 
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where the deviatoric stress tensor .S.. is defined in Eq.(2.2.3b ). The exact consistency 

condition for continued yielding for a finite stress increment, which is the yield 

condition at the end of the increment, can be written as 

, (2.3.6b) 

The deviatoric stress increment tensor b.S is calculated through the elastic response 

of the material 

(2.3.7a) 

whereµ is the elastic shear modulus normalized by the Young's modulus E, and f, 

is the deviatoric strain tensor defined by 

, (2.3.7b) 

The effective plastic strain increment b.c~ is given by 

(2.3.Sa) 

where the plastic strain increment tensor b.§.P is described by the associated flow 

rule as 

(2.3.Sb) 

with b.A being the nonnegative, finite flow factor. 
~ 

Substitution of Eq.(2.3.Sb) into Eq.(2.3.Sa) and Eq.(2.3.7a) yields 

(2.3.9) 

(2.3.10) 

where use is made of Eq.(2.3.6a) and the fact that b.t:l = b.e due to the plastic 

incompressibility, which is implied by Eqs.(2.3.Sb) and (2.2.3b ). 
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It is noted here that the conventional Tangent Stiffness method, or the Tan­

gent Predictor-Radial Return method, are obtained if the consistency condition in 

Eq.(2.3.6b) is linearized both in 6S and in 6c!. To improve the approximation of 

this condition, its left-hand side is kept complete, while its right-hand side is ex­

panded in Taylor series form, which is then used with first few terms. In the present 

study, the first three terms are retained, giving us a second-order approximation. 

In doing so, with the help of Eq.(2.3.9), we are left with 

where a is the current flow stress, which is evaluated at the current effective plastic 

strain c!. 

Then, Eqs.(2.3.6a), (2.3.10) and (2.3.11) can be solved for 6>.. to arrive at the 

expression 

where 

6>.. = 2µ(.S.. + µ6§.) . 6§. 
b(l + Jl - ~i) ' 

Note that the strain increment should be small enough, such that 

ac 
1 -- > 0 b2 - . 

(2.3.12a) 

(2.3.12b) 

(2.3.12c) 

(2.3.12d) 

(2.3.12e) 

Now the substitution of Eq.(2.3.12a) into Eq.(2.3.10) will yield the modified 

incremental deviatoric stress-strain relation 

(2.3.13) 
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where I is the fourth-order identity tensor. Eqs.(2.3.12a) and (2.3.13), which will be 

used in this study with radial return, form the stress integration algorithm, called 

here the Modified Tangent Predictor-Radial Return method. It can be seen that, 

when applied to elastic-perfectly plastic, or linear hardening materials, this method 

gives a stress estimate which satisfies automatically the yield condition at the end of 

an increment. Hence no radial return is needed. When it is adopted for power-law 

hardening solids, it still gives a better approximation to the consistency condition 

than the original tangent stiffness-based methods. In such a case, radial return is 

still necessary. Note that in actual numerical computations, 6.S can be calculated 

more efficiently by using Eq.(2.3.10) directly if 6.>.. is calculated first. 

Remember that for a general initial stress state O' and strain increment 6.g_, a 

contact stress state !Le must be determined, and used in place of O' in equations 

(2.3.6-13). It is done as follows. Suppose that the stress state fl. is inside the yield 

surface, and that the stress state denoted by 

called the trial stress state, is outside the yield surface. Then there exists a transi­

tional stress state, called the contact stress state, which is determined through the 

transition parameter R, such that 

lies exactly on the yield surface. Care must be taken in order to obtain the correct 

value for R, which will be discussed explicitly later in the iteration procedure. 

A final point to note is that large strain increments will be encountered near 

the crack tip, where large strain gradients exist due to strain singularity at the tip. 

In fact, due to this singular behavior, it is generally true that the finer the mesh is, 

the larger the increments will be, unless the rate of the decreasing grid size, when 

the crack tip is approached, is no less than that of the strain gradient. One way to 
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improve on this is to use subdivision of the strain increment, and to integrate the 

subincrements one by one to obtain the final stress state for the total strain incre­

ment. Actually, the necessity of subdividing the strain increment 6.~ is observed 

by many investigators, as discussed by Marques (1984). With subincrementation 

the stress integration is performed for each subincrement 6&/ M, where· M is the 

subincrementation number determined according to a certain rule. Taking into 

consideration the fact that plastic strain updating is essential in the present finite 

element formulation, M is chosen in this case to be proportional to the normalized 

effective plastic strain increment which is estimated with original strain increment, 

such that for each subincrement, the estimated effective plastic strain increment is 

small compared to the initial yield strain t:0 • 

Iteration Procedure 

We present in this subsection the detailed procedure for the iteration of the 

system of equations (2.3.4), which can be rewritten as 

(2.3.14) 

where I<= I< 8 + I<d, F =Ft+ Fu+ Fd, and FP = FP. Note that the only term 

that needs to be updated in Eq.(2.3.14) is FP, which accounts for the plasticity 

effects. Theoretically speaking, since the small-scale yielding condition is not exactly 

satisfied along the crack flank- due to the existence of the residual plasticity wake, 

tractions and displacements at the trailing edge of the finite element mesh must 

be updated accordingly. In such a case, the part of F which is contributed from 

the back boundaries must be updated too. For convenience of discussion, we shall 

include this part in FP. It is discovered from our computations that while the 

updating of Ft at the back hardly affects the fields at the crack tip area, the 

updating of F d ( or Fu if one chooses to use the displacement boundary conditions 

there) does make substantial difference, especially for higher crack speeds. 
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Now let T E [O, 1] be a generic hardening parameter, which equals (1 - a) 

for bilinear materials and (1 - ¼) for power-law hardening materials. At the limit 

T = l, the elastic-perfectly plastic material model is assumed. Solutions are first 

obtained for T = 0 and then for increasing discrete T values, until T = l if it 

is desired, according to the solution procedure described at the begining of this 

section. 

At each iteration step, the spatial distribution of the stress field is calculated 

through 

(2.3.15a) 

The stress increment 6Q. is computed by the Modified Tangent Predictor-Radial 

Return method we proposed, in connection with the subincrementation technique 

discussed above, from the strain increment 6§. defined by 

(2.3.15b) 

Convergence at each T-step, i.e., at each T value, is said to have been reached 

at the (k + l )-th iteration, if the following criterion is met simutaneously for every 

choice of i, j, and a: 

(2.3.16a) 

(2.3.16b) 

(2.3.16c) 

standard 2-norm, and € is the error tolerance which is a small positive number. 

The stress and strain norms are summed over all Gauss integration points, and 

the displacement norm is summed over all nodal points. € is taken to be around 

1.0 x 10-4 in the current computation. 
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Now suppose that J{ and F have been calculated and that a displacement 

solution Uk at the k-th iteration is just obtained for Eq.(2.3.14), the (k + 1)-th 

solution can then be determined according to the following procedure: 

1. Set F{+1 to zero. 

2. Start loop over elements. 

3. Form nodal displacement vector ue for the current element. 

4. Start loop over Gauss integration points. 

5. Compute strain~= B ue and strain increment 6.~ for the current Gauss point. 

6. Assuming elastic behavior, compute the trial stress increment 6.Q.T and the trial 

stress state 

T A T 
a = !Z.prev + L.:;.Q_ 

for the current Gauss point at the location (x 1 , x 2 ), where the subscript "prev" 

denotes the stress state at the previous Gauss point, which is at the location ( x 1 -

6.x 1 ,x2 ). Compute their corresponding deviatoric tensors 6.ST and ST. 

7: Check the value of the yield function F(aT,e~) according to Eq.(2.2.3a). Note 

that at this moment, the current yield surface is represented by a, through the 

hardening rule a(e~), where a and e~ are respectively the flow stress and the effective 

plastic strain at the previous Gauss point. If F :SO then jump to step 16, otherwise 

continue. 

8. If the stress state at the prev10us Gauss point a 1s on the y1· eld surface -prev 

denoted by a, then check the ~ign of the inner product 

If the product is nonnegative, set the elastic portion parameter R to zero and go to 

next step, otherwise determine R from 
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However, if the previous stress state is inside the yield surface, R should be calcu­

lated from 

where 

R = -b + Jb
2 + ac' 

a 

9. Compute the contact stress fl..c = fLprev + R · 6uT, the excess stress 6Q.Exc = 

uT - u 0 = (1-R)6uT, and the portion of strain increment where plasticity occurs 

6£Exc = (1 - R)6£. 

10. Estimate subincrementation number M, and compute the trial stress' subincre­

ment du= 6uExc/M and the strain subincrement d£ - 6£Exc/M. 

11. Start loop over subincrements. 

12. Compute for the current subincrement 6Am using the stress state Sl..m-l of the 

previous subincrement and the strain subincrement d§., or the trial stress subincre­

ment du. 

13. Compute for the current subincrement the stress state Sl..m according to our 

Modified Tangent· Predictor-Radial Return method. 

14. Compute for the current subincrement the effective plastic strain subincrement 

(d€~)m, the effective plastic sirain (€~)m = (€~)m-1 + (d€~)m, and the fl.ow stress 

um through the hardening rule. 

15. End loop over subincrements. 

16. Compute plastic strain e for the current Gauss point, and add its contribution 

to F; = Ive BT C £p dVe. 

17. End loop over Gauss integration points. 

18. Assemble F1+i. 

19. End loop over elements. 
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20. Solve K U k+I = F + Ff+1 for U k+I. 

21. Check convergence according to the criterion in Eq.(2.3.16). 

It is worth pointing out that step 8 in the above procedure is an improved 

version of those in wide use today. With the check on the sign of the inner product, 

negative 6,.).. values, which is physically wrong, can be avoided, and elastic unloading 

will not be mistakenly treated as plastic fl.ow (Deng and Rosakis, 1990). This 

measure is particularly important in circumstances where complex.loading and/or 

large increments are involved. As mentioned earlier, for example, in the current 

investigation large strain increments are inevitable due to large strain gradients 

near the crack tip. Moreover, as the crack propagates, or equivalently, as the stress 

integration sweeps the crack tip from its front to its back, severe nonproportional 

loading will be experienced by the material particles passing by the crack tip. 

2.4 POST-PROCESSING 

It is known for displacement-based finite element formulations that best ac­

curacy for stress calculation is achieved at Gauss integration points, rather than 

at nodal points. Hence, stress and strain values are usually computed at Gauss 

points, although displacements are obtained at nodal points. For practial applica­

tions, however, values at locations other than Gauss points are often desirable. In 

such circumstances, the finite element results are manipulated in a certain manner 
~ 

in order to obtain desirable approximations. 

In the present study, for example, the value of a field quantity at the centroid 

of an element is taken to be the average of the values at all the Gauss points of the 

element. Hence, due to the special arrangement of our finite element network, field 

variations can be observed directly along horizontal and vertical lines composed of 

element centroids, if the above averaging procedure is employed. Yet, field variations 

along circular and radial lines, which are centered at the crack tip, are not readily 
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available. For that, we need a general but consistent post-processing algorithm, 

which converts Gauss point values of field quantities into nodal values. We then 

can use standard procedures to interpolate those nodal values for every element to 

yield approximations at desired locations. 

Global Least Square Smoothing 

There are generally two types of post-processing algorithms, namely local 

smoothing and global smoothing, among which are those using least square fit­

ting techniques (Hinton, Campbell, 1974; and Majorana, Odorizzi, and Vitaliani, 

1985). A local smoothing is performed on each single element, which usually pro­

duces nonunique values at a common node, such that the nodal value is obtained by 

averaging those values from all the elements sharing the node. On the ot'her hand, 

global smoothing is performed on all elements at once, which, although usually more 

expensive, generates unique nodal values. 

In the current study, a global smoothing algorithm proposed by Hinton and 

Campbell (1974) is adopted. This approach uses a global least square fitting, result­

ing in a system of linear algebraic equations, with the nodal values as unknows and 

the Gauss point values as sources. The coefficient matrix for this algebraic system 

depends only on the interpolation functions to be used with the nodal values, and 

it can be factorized, stored and used over and over again for the smoothings of all 
• 

the field quantities of many problems with the same finite element mesh. The sav­

ings are even greater if one uses the same interpolation functions for the smoothing 

· procedure as those for the original finite element computations, provided that the 

Gauss point values of those functions are stored. In fact, this is exactly the situation 

with which we are dealing, since we use the same finite element discretization and 

the same interpolation functions for all materials and all crack propagation speeds. 

The global smoothing approach with least square fitting is described as follows. 
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Suppose that g(;r_) is a field quantity which is a function of position ;r_, G is a vector 

composed of all the unknown nodal values of g(;r_), and Ge is the unknown nodal 

value vector of g(;r_) for a generic element with domain ve. Then g(;r_) can be 

approximated by 

(2.4.1) 

where N(;r_) is a vector composed of the shape functions used in the original finite 

element computation. The principle of least square fitting states that G is such that 

the functional 

(2.4.2) 

is minimum, where the sum is over all elements, and q(;r_) is an approximation for 

g(;r_) appropriately interpolated or extrapolated from the Gauss point values of g(;r_). 

The minimum is achieved when 

oil! 
8G =O. (2.4.3) 

From Eqs.(2.4.1) through (2.4.3), the following system of linear algebraic equa­

tions can be obtained for G after performing the standard finite element discretiza­

tion process: 

I< G = F, (2.4.4) 

where J{ and F are assembled from their counterparts for all elements, namely those 

(2.4.5a) 

(2.4.5b) 

Note that when the Gauss points for the original finite element computation are 

used for the evalution of Eq.(2.4.5b ), q(;r_) can be replaced by the the original finite 

element results at these Gauss points. 
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Numerical Data Presentation 

After the nodal values for field quantities are obtained using the global least 

square smoothing approach described above, we can begin to interpolate those 

quantities within an element with the shape functions for the original finit,e element 

computation. In this subsection, we will illustrate how the numerical dafa is to be 

presented in this study. 

When referred to a polar coordinate system (r, 8) centered at the crack tip, 

the stress and deformation fields for a propagating crack in an elastic-plastic solid 

are generally dependent on both r and 8. Even in the case of an elastic-perfectly 

plastic material for which the stresses are asymptotically independent of r, numeri­

cal discretization errors will inevitably introduce fictitious r-dependence, especially 

at locations away from the crack tip. Hence it is desirable to present angular field 

variations along circular lines around the crack tip, other than along rectangular 

paths as is usually done in the literature. 

In the current study, all data for angular field variations are extracted from 

finite element locations along a semicircle of radius 0.2033 x 10-3 (K/a0 )2 for the 

finer mesh, which is about one thirteen-hundredth of the active plastic zone size, 

and of radius 0.6411 x 10-3(K/a0 )
2 for the coarser mesh, which is about one four­

hundredth of the active plastic zone size. This circular path lies at least five elements 

away from the crack tip. 
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CHAPTER 3 

ELASTIC-PERFECTLY PLASTIC SOLIDS 

3.1 INTRODUCTION 

The subject of crack growth in elastic-perfectly plastic solids has attracted very 

much attention during the last 30 years or so. Particularly, studies for crack tip 

stress and deformation fields, which form the basis of further fracture analyses, are 

among the favorites of many investigators. Those studies have greatly promoted our 

understanding of many ductile fracture phenomena, such as the increased material 

resistance to continued crack extension, and the effect of inertia on dynamic crack 

propagation. Yet this subject is far from closed. As of today, for example, many 

of the available analyses only offer partially complete solutions. In some instances, 

the solutions are inconclusive. In the worst case, solutions are just not available, 

the Mode I quasi-static crack growth under plane stress being one example. 

In the following, a comprehensive literature survey is given first, covering all 

anti-plane strain, plane strain and plane stress or generalized plane stress cases. It 

highlights certain common patterns or characteristics of available solutions. Critical 
~ 

reviews are given for some key issues which are of most concern here. 

Numerical results are then presented for the current full field finite element 

investigation of Mode I crack growth in elastic-perfectly plastic solids in plane stress 

under steady state and small-scale yielding conditions. quasi-static crack growth 

is discussed first, followed by treatment on dynamic crack propagation. In the 

quasi-static case, we concentrate on comparisons with the results of similar studies, 

namely with finite element solutions by Dean (1983), Luo, Zhang and Hwang (1984), 
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and Narasimhan, Rosakis and Hall (1987a). In the dynamic case, details are given 

regarding the evolutive variations of the crack tip active plastic zones, the stress and 

the deformation fields, with respect to crack propagation velocities. The so-called 

crack-line solution by Achenbach and Li (1984a, b, c), and the recent asymptotic 

solution by Gao (1987) will be discussed. All computations are performed with 

the Poisson ratio v = 0.3. All logarithmic values used in figures are based on the 

natural number e. 

Anti~Plane Strain 

Hult and McClintock (1956) were the first to study crack tip fields in elastic 

plastic solids. They considered the problem of a quasi-statically loaded Mode III 

stationary crack in an elastic-perfectly plastic material. They found that' the crack 

tip plastic zone is located at the front of the crack tip and that strains in the plastic 

zone are as singular as ~ as r ---+ 0, where r is the radial distance from the crack tip. 

This .strong singularity results in a nonzero crack opening displacement at the crack 

tip (Rice, 1968a). Under small-scale yielding conditions, the plastic zone shape is a 

circle in contact with the crack tip and with a diameter of R0 = ~ (Rice, 1966, 
. 71"TO 

1968a), where I<u1 is the stress intensity factor in Mode III and To is the yield stress 

in shear, and the effect of yielding is to shift the elastic singularity ahead as if the 

crack tip were at the center of the plastic zone (Irwin and Koskinen (1963)). Hult 

(1957) and McClintock (195&, 1963, 1965) also studied the strain distribution at 

the front of a quasi-statically growing crack tip, again in an elastic-perfectly plastic 

solid, whereas Rice (1968a) was the first to give a complete expression for the strains 

along the crack line under steady state conditions. His result was confirmed, under 

SSY conditions, by the crack line solution of Achenbach and Dunayevsky (1984). A 

full field solution under steady state and SSY conditions, including the plastic zone 

shape, was given by Chitaley and McClintock (1971) with some errors noted by Rice 

(1973), Broberg (1975) and Gao (1980). Chitaley and McClintock showed that the 
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plastic zone ahead of the crack, the primary plastic zone, can be approximated by 

a centered fan composed of radial stress characteristic lines, with an angular span 

(measured from the crack line) of 0p · 19.69° and a radial linear span of Rp .:_ Ro, 

and that at the crack flank there is a reverse loading zone, the secondary plastic 

zone, with an angular span of 08 .:_ 0.37°. While the [ln( ~ )] 2 
strain singularity 

just ahead of the crack tip obtained by the above investigators was verified by the 

asymptotic analysis of Rice (1982) from the point of view of a general formulation, 

and by the finite element (FEM) full field analyses to be discussed below, the shape 

and size of the plastic zone given by Chitaley and McClintock were not confirmed 

by any of them. Sorensen (1978) performed a FEM computation utilizing a nodal 

release procedure to simulate the crack growth process, and found that the results 

rapidly converge to a steady state solution after a few node releases, but that Rp 

is 4% smaller than Ro, and that 0p is about 45°. No secondary plastic zone was 

detected. Dean and Hutchinson (1980) used an Eulerian-type FEM formulation 

peculiar to steady state problems, obtained a Rp which is 10% larger than R 0 , and 

0p .:_ 60°. They reported that the primary plastic zone could be characterized by 

a centered fan with all the stress characteristic lines emanating from the crack tip 

only for 101 < 20°. No secondary plastic zone was noticed either. Steady state FEM 

studies of this problem with finer meshes were conducted by Douglas (1981) and 

Lam (1982), whose results essentially agree with each other, showing that Rp is 

about 13% smaller than Ro and 0P · 55°. Besides, Douglas's calculation shows a 

small region of reversed plastic flow in the wake along the crack· faces. His result 

also suggests that the characteristic line direction at any point within 20° of the 

x1 -axis is nearly radial, thus confirming Dean and Hutchinson's earlier finding. It is 

interesting to note that no complete numerical angular stress and strain variations 

were ever reported. Nevertheless it can be concluded that the strain distribution 

along the crack line is clearly understood, but the exact shape and size of the 

plastic zone remain elusive. A FEM calculation with higher spatial resolution may 

be necessary. 
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The investigation of Mode III dynamic crack propagation in elastic-plastic 

solids was pioneered by Slepyan (1976), for a steadily growing crack in an elastic­

perfectly plastic solid. His asymptotic results, which show continuous angular stress 

and strain distributions, as verified by other investigators utilizing different solu­

tion schemes ( Achenbach, Burgers and Dunayevsky, 1979; Achenbach, Dunayevsky, 

1981a, b; Gao and Nemat-Nasser, 1983a; and Lin, 1985), show features distinct 

from quasi-static analysis. It is seen that the crack tip is preceded by a centered fan 

plastic sector and trailed by another plastic sector of uniform stress, with no elastic 

unloading sector in between, and the angle separating the two sectors is given by 

(3.1.1) 

where m is the ratio of crack speed to the elastic shear wave speed. The centered fan 

is composed of radial characteristic lines which do not coincide with the principal 

shear lines when crack speed is nonzero ( Achenbach, Burgers and Dunayevsky, 1979; 

Achenbach, Dunayevsky, 1981a, b; and Douglas, Freund and Parks, 1981). While 

the strain component c: 13 is bounded everywhere for fixed crack speed, and the 

component c:23 is as singular as lnr at the crack tip, they both become infinite at 

fixed distance when m goes to zero. In particular, in the centered fan sector, 

_ ro ( 1 - m) l ( R) 
€23 - ---- n - , 

µ 2m r 
as r -t 0, (3.1.2) 

where µ is the shear modulus, and R is an undetermined constant by the asymptotic 
• 

analysis, on the same order as the plastic zone size Rp measured along the crack 

line. The crack tip opening displacement, expressed by 

(3.1.3) 

increases rapidly as m decreases. It is important to note that, as m approaches zero, 

the dynamic asymptotic solution does not tend to the quasi-static limit. First, to 

name a few examples, no elastic sectors appear in the limit; second, the strains 
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and crack tip opening displacement are not defined ( for fixed r ), instead, they be­

come unbounded. An explanation for this inconsistency is as follows: The dynamic 

asymptotic solution has only a limited range of dominance around the crack tip, and 

the dynamic zone shrinks onto the crack tip as m--+ 0. This is clearly demonstrated 

by the crack line solutions discussed below. Dunayevsky and Achenbach (1982a), 

Freund and Douglas (1982), Achenbach and Li (1984b ), and Achenbach, Li and 

Nishimura (1985) using different methods, managed to obtain exact solutions along 

the crack line in the active plastic zone, valid up to the plastic boundary. The crack 

line solution is shown to reduce to the correct dynamic asymptotic form, for any m 

in the range O < m < 1, if the distance x ahead of the crack tip is such that 
2,n 

(
__:_)(l+rn) 1 R ~, 

p 
(3.1.4) 

and tend to the correct limit as m approaches zero for any fixed point on the 

crack line (Freund and Douglas (1982)). From the last expression, it is indeed 

observed that the size of the dominamce zone of the dynamic asymptotic solution 

becomes vanishingly small as m becomes smaller and smaller. This means that the 

current dynamic asymptotic solution cannot capture the full feature of the crack tip 

fields for low and intermediate crack speeds and hence is of limited use as far as a 

fracture criterion is concerned. Rather, in order to characterize crack propagation 

transitional behavior from low speeds to higher ones, the full field solution, or 

at least an asymptotic solution including higher order terms, which recovers the 

quasi-static one as crack speed goes to zero, should be used in a fracture criterion . 
• 

However, higher order asymptotic analyses are extremely difficult, if not impossible, 

to perform, and full field solutions can usually only be obtained numerically. In this 

· sense, crack line solutions have their advantages. 

Numerical investigations of this problem are rare, in spite of their importance 

as a check for asymptotic solutions and as a means to relate local quantities to global 

ones. A full field finite element analysis, under SSY and steady state conditions, 

was provided by Douglas (1981). The strain distribution at crack front is shown to 
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agree quite well with the exact crack line solution. The active plastic zone, scaled 

by K~l', is found to shrink in the crack line direction and to grow in height, as the 
TO 

crack speed increases. However the theoretically anticipated all around plastic zone 

feature is not revealed, instead, the plastic zone is sited ahead of the crack. Further, 

in contrast to the behavior described by Eq.(3.1.3), the crack tip profile: seems to 

be invariant to crack speeds (Douglas, Freund and Parks, 1981 ). This situation 

may exist because the range of the dynamic asymptotic solution is too small and 

the mesh used is not fine enough to capture the dynamic behavior. It is also quite 

possible that this may be attributed to the nature of the numerical procedure used. 

In this procedure, field quantities are integrated along stream lines parallel to the 

crack faces, from positive x1 to negative x1 locations, a scheme peculiar to the 

FEM formulation used for steady state problems. Large errors are carried over to 

the crack flank when integration sweeps the crack tip region where large 'errors are 

inevitable due to the discretization process. The effect of these carry-over errors 

are most pronounced just behind the crack tip. Thus information extracted from 

elements or nodal points just behind the crack tip, e.g., the crack tip opening angle, 

must be interpreted with caution. This is an important point which has not been 

given enough attention. As we mentioned at the beginning of this paragraph, no 

other numerical studies, especially of the angular stress and strain distributions 

were available, either as checks for the asymptotic analyses, or as checks for the 

accuracy and reliability of the numerical schemes themselves. 

Plane Strain 

Elastic-plastic fields around a sharp crack tip, for the case of in-plane frac­

ture modes, were first investigated independently by Rice (1967, 1968a) and by 

Cherepanov (1967). Under Mode I plane strain and contained-yielding conditions, 

they noticed that the well-known Prandtl slip line solution (see Hill, 1950) can 

be used to represent the near-tip field for a stationary crack in a nonhardening 
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solid. According to this solution, plastic yielding sectors fully surround the crack 

tip, among which are two constant stress sectors, one at the front and the other 

at the back, and one centered fan sector in between. The stresses are found to be 

bounded and continuous, and are completely determined by the equilibrium and 

yield conditions. Rice further pointed out that strains can have singularities only 

in the centered fan sector where, in particular, €rr and €99 are bounded, and Er8 

varies as ~. Moreover, analogous to the Mode III case, there is a finite, discrete 

crack opening displacement at the tip. Similar slip line solutions were also obtained 

by Hutchinson (1968b) for Mode II plane strain, and by Shih (1973) and Dong 

and Pan (1988) for mixed Mode I and Mode II plane strain. For all the cases, the 

angular strain variations are nonunique and cannot be determined by a local anal­

ysis. That is, they depend on the solution to an entire boundary value problem. It 

should be noted here that by using the slip line solutions elastic incompressibility 

is implied. Consequently, slip line solutions are in general valid only in the immedi­

ate vicinity of a crack tip, where plastic strains are presumably dominant and the 

incompressibility condition is expected to be very well-approximated. 

The first study on the asymptotic elastic-plastic fields around an in-plane ex­

tending crack was made by Rice (1968a). He considered the case of a Mode I 

plane strain crack growing quasi-statically and steadily in an incompressible elastic­

perfectly plastic solid. In this preliminary investigation, he discovered that, if the 

Prandtl slip line field is assumed, then in the centered fan sector strains and velocity 
1 

components all vary as ln( ~) as the tip is approached, where R is an undetermined 

constant by the local analysis. His results were then extended to nonsteady condi­

tions by Rice (1973) and Cherepanov (1974), and to elastically compressible mate­

rials by Rice and Sorensen (1978), but with the same Prandtl slip line field. It was 

later found, independently by Slepyan (1974) (for Tresca solids), Gao (1980) and 

also Gao and Hwang (1981a), and Rice, Drugan and Sham (1980), that the centered 

fan sector cannot be joined by a constant stress plastic sector at its rear boundary, 
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rather, an elastic unloading sector must be placed in between, if the nonnegative 

plastic work principle is to be satisfied. The origin of this negativeness of plastic 

work comes from the discontinuity in the velocity component Vr along the common 

radial boundary where the two concerned plastic sectors connect each other. While 

Vr -+ +oo as r -+ 0 along the centered fan side, Vr is necessarily bounded along 

the constant stress side. Hence when the boundary is crossed from the centered 

fan to the other side, the positive shear stress component O'r8 does infinite amount 

of negative work. The correct assembly of crack tip sectors for the case of Poisson 

ratio v = 0.5 is as follows: A constant stress sector at the crack front, followed by 

a centered fan sector, then joined by an elastic sector and finally trailed by another 

constant stress sector. Slepyan's solution covered the cases of both Mode I and 

Mode II and general v, for materials obeying the Tresca yield condition and its 

associated flow rule, which coincides with the von Mises yield condition and the 

Prandtl-Reuss flow rule when v = 0.5. Also found in Rice, Drugan and Sham's 

work, for von Mises solids, is an approximate solution for the case of v =/ 0.5 un­

der general non-steady-state conditions, with the same type of assembly of sectors, 

and with the assumption that the deviatoric stress component s 33 -+ 0 as r -+ 0 

in all plastic sectors. In a later study, Rice (1982), for the v =/- 0.5 case, made 

some corrections to the previous one and noticed the need for plastic sectors with 

s33 =/ 0, which are neither constant stress sectors nor can be represented in terms 

of slip lines. He also gave a general formulation for the investigation of asymptotic 

structures of near-tip stress aH.d deformation fields around quasi-statically advanc­

ing cracks, for materials of arbitrary yield condition and of the associated flow rule 

type, including anisotropic response. As pointed out by Gao (see Gao (1983)), the 

assembly of crack tip sectors for v = 0.5 cannot be used for general v cases, due to 

the fact that there will be a small zone in the elastic sector right behind the cen­

tered fan, where the von Mises yield condition is violated. He then proposed that 

the elastic sector be placed between two plastic sectors of s33 =/ 0 type, one joining 

the centered fan, the other connecting the crack flank. Following Gao's observa-



-49-

tion, Drugan, Rice and Sham (1982) were able to obtain a complete solution for 

non-steady-state crack growth, which has the feature that all stress components are 

continuous and bounded, resulting in a discontinuity in the velocity component Vr 

at()= 'i where the constant stress sector at the crack front meets the centered fan. 

Due to the mathematical complexities involved, the angles separating the different 

sectors were determined via a numerical procedure. An incorrect value in the cal­

culated angles was noticed by Hwang and Luo (1988), resulting from an algebraic 

error in the computation (Rice, 1989, private communication). Nonetheless the 

main features of the crack tip fields are now understood to be as follows. Stresses 

are continuous and resemble very much the Prandtl slip solution, an indication that 

the growing crack is characterized by strain fields more than by stress fields. The 

dominating singularity of the accumulated crack tip strains are due to contributions 

from the centered fan plastic sector only, which starts at () = 'i. Hence the strains 

are as singular as ln( ~ ), in and behind the centered fan, and are less singular than 

that at the crack front, where R is a constant length scale undetermined by the 

asymptotic analyses. Thus it is observed again that maximum strain concentration 

does not occur ahead of the crack tip. 

Finite element studies of Mode I plane strain quasi-static crack growth in 

elastic-perfectly plastic solids were usually performed under small-scale yielding 

conditions and for v = 0.3. Two types of formulations were frequently used. The 

first one, introduced originally by Andersson (1973), involves progressively unload-
• 

ing nodes ahead of the crack tip in conjunction with a certain pre-assumed crack 

growth criterion, thus simulating a crack advancing from its stationary state, which 

. is customarily referred to as the nodal release approach. The advantage of this ap­

proach is that the transient process of crack extension can be revealed, and usually 

a steady state can be reached at the end after some node releases. The second 

procedure, the so-called steady state or Eulerian formulation mentioned before, was 

first used by Dean and Hutchinson (1980). In this formulation, it is assumed that a 
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steady state has been reached such that the crack speed and the loading parameters, 

etc., are all invariant to the crack growth, hence a mesh moving with the crack tip 

can be used, and all field quantities can be computed according to some convection 

rules required by the steady state condition. In this case, no criterion is assumed a 

priori. 

Sorensen (1979) performed a FEM computation by utilizing a nodal release 

procedure according to the achievement of the static similarity solution of Tracey 

(1976), with hypothetical load histories which might be found in service, reflecting 

the different K levels required to obtain appropriate similarity solutions. A mesh 

size of about 20 times the maximum extent of the active plastic zone is used to 

approximate the small-scale yielding condition. The smallest element size is about 

one-eleventh of the maximum active plastic zone size. His results show that the 

crack tip stress distribution is similar to that of the Prandtl slip line solution, 

and the crack tip profiles in the steady state reveal a vertical tangent at the tip. 

However, no near-tip elastic unloading sector is discovered in this study, which 

may be attributed to the coarse mesh used. In much the same way, Sham (1983) 

conducted a FEM study, but with a much finer mesh, particularly around the 

crack path. He adopted a modified variational principle developed by Hilton and 

Hutchinson (1971) to model the small-scale yielding condition, hence allowing the 

plastic zone to spread very close to the mesh boundary, concentrating degrees-of­

freedom in the plastic zone region, thus making full use of the computer capability. 
~ 

The smallest element size is about one one-hundredth of the maximum extent of the 

active plastic zone. As expected, his results agrees very well with the theoretically 

. predicted stress distributions and crack opening profile. Particularly, a well-defined 

elastic unloading sector, which moves with the advancing crack tip, was clearly 

shown at a loaction anticipated by the asymptotic analysis. 

The steady state formulation was employed by Dean and Hutchinson (1980), 

and by Lam (1982) (see also Parks, Lam and McMeeking, 1981, and Lam and 
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Freund, 1985) in their finite element studies. They used meshes whose spatial 

resolutions are about the same as that of Sham, i.e., the smallest element size 

is about one one-hundredth of the maximum extent of the plastic zone. Their 

results are essentially in agreement with available asymptotic analyses, as far as 

stress distribution is concerned. However, there is no clear wedge-shaped elastic 

unloading region shown in their results, although some indications for the existence 

of a trailing elastic sector was present in the solutions of Lam et al. (Parks, Lam and 

McMeeking, 1981; and Lam, 1982). An apparent reason for this disagreement with 

the prediction of asymptotic analyses is that the mesh refinements used by these 

investigators are not sufficient to reveal the details around the tip region. However, 

considering the fact that unloading was detected by Sham's results which employs 

a mesh of similar finess at the tip but with a different formulation, it seems that 

this can, to some extent, be attributed to the steady state formulation itself. As we 

have pointed out in the discussion for Mode III crack growth, in the steady state 

formulation, errors are carried over from the crack tip to regions along the crack 

flank, which are most pronounced immediately behind the tip. It can be seen from 

the results of Dean and Hutchinson that, the traction-free condition along the crack 

faces is not very well satisfied, in comparison with Sham's results. It appears that 

in order to reduce this error, a mesh of high spatial resolution near the crack tip 

has to be used. 

quasi-static solutions are valid when inertia effects are negligible. The inclusion 
• 

of dynamic terms in the equations of motion, which accounts for the inertia effects, 

may produce crack tip fields distinct from the quasi-static counterparts, as has been 

clearly seen for the Mode III case. Many investigators have offered solutions for 

steady state dynamic crack growth of Mode I plane strain cracks in elastic-perfectly 

plastic solids. Slepyan (1976) and Achenbach and Dunayevsky (1981a, b) obtained 

solutions for Tresca materials obeying associated flow rules for the case of small m, 

the Mach number for crack propagation defined as the ratio of crack tip speed to 
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the elastic shear wave speed of the material. Their solutions agree with each other 

when m -+ 0 as far as in-plane stress distribution is concerned, and are otherwise 

different. Lin (1985) found a solution for general m values, which recovers those by 

Slepyan and by Achenbach and Dunayevsky in the limit m = 0. The main features 

of the above solutions are that plastic sectors are all around the crack tip and that 

stresses and strains are continuous and bounded. In contrast, Gao and Nemat­

Nasser (1983a) provided a solution which predicts totally different behaviors, for 

an incompressible material obeying the von Mises yield condition and the Prandtl­

Reuss flow rule, which coincide with the Tresca yield condition and its associated 

flow in this special case, i.e. Poisson ration v = 0.5. Later Gao (1985) repeated the 

above asymptotic analysis for general v. Their results show that certain stress and 

strain components possess discontinuities along a radial line whose position depends 

on the value of m, and that strains have logarithmatic singularities everywhere 

around the tip. No elastic unloading sectors were found either. As pointed out by 

Lam and Freund (1985), however, if discontinuities in the stress components are 

ruled out, then the analysis of Gao and Nemat-N asser will yield a generalization 

of the Achenbach and Dunayevsky result which is valid for arbitrary values of m. 

Further effort has been made by Leighton, Champion and Freund (1987) in order 

to "identify a discriminating feature among the proposed asymptotic solutions." 

They reconsidered the problem for the special case of v = 0.5. In their analysis, a 

proof is given as to the boundedness of the hydrostatic stress (i.e., the rriean stress), 

and hence of all the other stresses. They argued that, if the principle of maximum 

plastic work is to be satisfied, then the stresses have to be continuous around the 

propagating crack tip, which necessarily results in the boundedness of velocity and 

strain components. But as to the general v cases, such a discriminating feature has 

not yet been firmly established. Under small-scale yielding conditions, a full field 

finite element computation of the Eulerian-type was performed by Lam and Freund 

(1985) for the case of v = 0.3 with the von Mises yield condition and the Praridtl­

Reuss flow rule, for a wide range of Mach numbers. They reported that for an 
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extremely small crack speed, namely m = 10-6 , the finite element results show close 

agreement for stresses, except for o-33 , with those of Achenbach and Dunayevsky, 

which alone, we think, does not necessarily mean that the solution of the later 

authors is more reasonable than others (see remarks in the next paragraph). The 

numerical results of Lam and Freund also clearly indicate the possibility·of elastic 

unloading behind the primary active plastic zone, particularly for the higher crack 

speeds considered, which is a puzzling phenomenon contradictory to the asymptotic 

predictions. It seems, however, that this cannot be attributed to the possibility that 

the range of validity of the asymptotic solutions is small, since, for example, as m 

increases, the range of validity grows and the deviation of the numerical calculation 

away from the analytic solution should decrease rather than increase. 

A few observations, along with some remarks, can be made regarding the above 

investigations. Firstly, in the limit m = 0, the dynamic crack tip fields do not tend 

to the quasi-static ones, which shows again the restricted applicability of asymptotic 

analyses for rapidly propagating cracks, as has demonstrated for the Mode III case. 

Secondly, the asymptotic solutions by Achenbach and Dunayevsky and by Lin used 

the Tresca yield condition and its associated flow rule, and assumed that the stress 

component o-33 was the intermediate principal stress, which was not known a priori. 

If this is true, then the relation o-33 = v(o-11 + o-22 ) will hold. However, a close 

examination reveals that this assumption, hence the resulting solutions, are valid 

only for a certain range of v values. As shown by above solutions, the plastic 
• 

sectors, both at the crack front and at the crack faces, are constant stress sectors 

where o-12 = 0 from the symmetry conditions along the crack line and from the 

. traction-free conditions along the crack flank. Consequently both 0-11 and 0-22 are 

principal stresses there. Hence the Poisson ratio v must be such that o-33 is between 

o-11 and o-22 , otherwise the solution is not valid. For small m values, for example, 

the asymptotic solutions hold only if v > 2 (l~1r) + O(m2
) ..:.. 0.3793 + O(m2

). 

This observation can be used to explain the comparisons between the asymptotic 
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solutions and the finite element results of Lam and Freund (1985), who reported, for 

the case of v = 0.3 and m very small ( essentially the quasi-static value), that while 

their in-plane stresses agree quite well with the asymptotic solutions of Achenbach 

and Dunayevsky, the o-33 component differs very much from each other, with their 

numerical value being closer to the Prandtl solution. This is not surprising since as 

m -+ 0, all the available dynamic asymptotic in-plane stresses tend to the values of 

the Prandtl field, and the numerical solution tends to the quasi-static one, which 

closely resembles the Prandtl solution, as discussed before. Besides, the asymptotic 

value for o-33 is obviously much smaller than o-11 and o-22 , for an angular region from 

the crack line to about 0 = 100°, as seen from Fig. 2 of the paper by Lam and 

Freund. On the other hand, it seems that Slepyan in his solution noticed the need 

to modify the solution when the aforementioned assumptions were violated, but he 

didn't resolve this issue. Thirdly, in order to identify the right asymptotic solution, 

full field, high resolution numerical computations must be conducted and strain and 

velocity variations should be compared with available asymptotic solutions. 

Although not of great practical importance, solutions for the Mode II crack 

growth would be the_oretically very appealing as they might provide insights for the 

equivalent Mode I case. However, the situation for Mode II case here is even more 

puzzling than the Mode I case just discussed. As far as the current authors are 

aware, there are only two asymptotic solutions, proposed for elastically incompress­

ible media. Following the work of Slepyan (1976) for Mode I, Lo (1982) obtained 
• 

a Mode II solution, which predicts all around plastic sectors at the crack tip, with 

bounded and continuous stress variations. While the strain components 6 11 = -622 

are finite at the tip, the component 6 12 is as singular as lnr. As the Mach number 

m -+ 0, the stresses approach those of the slip line solution of Hutchinson (1968b) 

for a stationary crack. But just as for the Mode I case, the solution by Gao and 

Nemat-Nasser (1984) shows very different features. In the first place, there is an 

elastic unloading zone behind the crack. Secondly, stresses and strains again pos-
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sess angular discontinuities. Thirdly, all strains are as singular as lnr. Finally, in 

the limit m = 0, stresses approach a solution for a stationary crack tip, which is 

different from that of Hutchinson in that the elastic sector at the crack flank still 

exists. No full field solutions are available for comparison. 

Plane Stress 

An analysis for elastic-plastic fields around a stationary crack tip in an elastic­

perfectly plastic solid under plane stress conditions was performed by Hutchinson 

(1968b ). He constructed a stress characteristic line field, with a centered fan sector 

in front of the crack tip and two constant stress sectors behind it. As in the plane 

strain case, strains can have singularities only in the centered fan, with eee and 

€re varying as ~' and €rr bounded. Note here that, as in the case of, Mode III 

and Mode I plane strain, the ~ strain singularity would produce a nonzero crack 

opening displacement at the crack tip (see, for example, the finite element results 

of Narasimhan and Rosakis, 1988). In contrast to the plane strain case, however, 

the stress component arr is discontinuous across the radial line which separates the 

two constant stress sectors. Similar stress characteristic line solutions were also 

obtained by Shih (1973) for Mode II plane stress, by Shih (1973), and Dong and 

Pan (1989) for mixed Mode I and Mode II plane stress. Just as for the plane strain 

case, the angular strain variations are nonunique and cannot be determined from 

a local analysis. That is, they depend on the solution to an entire boundary value 
• 

broblem. It should be noted here that, by using the stress characteristic solutions, 

elastic incompressibility is implied. Consequently, stress characteristic line solutions 

are in general valid only in the immediate vicinity of a crack tip, where plastic strains 

are presumably dominant and the incompressibility condition is expected to be very 

well-approximated. 

For quasi-static plane stress crack growth in elastic-perfectly plastic solids, a 

preliminary analysis was given by Rice (1982) regarding the structure of possible 
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elastic and plastic sectors around the crack tip. He demonstrated that only two 

types of plastic sectors are possible: a constant stress sector where the Cartesian 

components of the stress tensor are constant, and a centered fan sector in which 

the polar. components of the stress tensor can be expressed as 

(3.1.5) 

where To is the yield stress in shear and 81 is an arbitrary constant. He also showed 

that the velocity components are necessarily logarithmically singular in the centered 

fan with amplitudes determined by the stress distribution in Eq.(3.L5). However, 

it seems that there is no successful assembly of complete crack tip fields for Mode 

I crack growth, although Ponte Castaneda (1986) succeeded in assembling a crack 

tip field for a Mode II crack. Achenbach and Dunayevsky (1984), Achenbach and Li 

(1984c) and Guo and Li (1987) proposed crack line solutions based on the assump­

tions that the stress component o-22 , and hence o-11 , are uniform along the crack line 

up to the elastic plastic boundary, and that the plastic solutions can be matched to 

an appropriate elastic solution, which may not be unique, at the boundary. Their 

solutions suffer from the fact that the constancy assumption of o-22 and o-11 along 

the crack line is not valid, as is shown by the finite element studies to be discussed 

below, by the perturbation analysis of Krishnaswamy and Rosakis (1990b) and our 

numerical results to be presented in this chapter. 
1 

Much understanding of the subject has been gained through some recent finite 

element investigations performed by Dean (1983), Luo, Zhang and Hwang (1984), 

and Narasimhan, Rosakis and Hall (1987a), under small-scale yielding conditions. 

All the investigators studied the elastic-perfectly plastic case. While Dean and Luo 

et al. used the Eulerian-type formulation for steady state crack growth, Narasimhan 

et al. adopted the nodal release procedure to simulate a crack advancing from its 

stationary state. They presented results regarding the plastic zone shape, stress dis-
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tributions and crack opening profiles. Narasimhan et al. also gave the tensile plastic 

strain variation along the crack line, and investigated the regions of hyperbolicity 

and ellipticity for elastic-perfectly plastic solids, with some evidence showing that 

inside the active plastic zone ahead of the crack, an elliptic region may extend all 

the way up to the crack tip as a wedge of increasingly small angular extent as the tip 

is approached along the crack line. This finding can probably explain the intriguing 

situation encountered by asymptotic analyses. These studies did not discuss the 

angular dependence of strain components. 

No asymptotic solutions for dynamic crack propagation in elastic-perfectly plas­

tic solids were available until recently. Applying the method used for the quasi-static 

case, Achenbach and Li (1984a, b) proposed a crack line solution for steady state 

Mode I crack growth under similar assumptions, namely that o-22 and o-11 are uni­

form along the crack line up to the elastic plastic boundary, etc. Again, this solution 

suffers from the fact that the underlying assumptions are not valid, as shown by 

our finite element results to be presented in this study. Gao (1987) gave a solution 

with full angular stress and strain continuity. It is shown that the crack tip is sur­

rounded by two plastic sectors, one ahead of the crack and the other behind it, and 

one elastic sector in between, and that strains possess ln( ~) singularity at the tip, 

where R is a constant undetermined by the asymptotic analysis. No confirmations 

have been made as to the appropriateness of this solution. 

3.2 QUASI-STATIC CRACK GROWTH 

The subject of crack tip asymptotic fields for quasi-static crack growth under 

conditions of Mode I plane stress and small-scale yielding was previously investi­

gated, using the finite element method, by Dean (1983), by Luo, Zhang and Hwang 

(1984), and Narasimhan, Rosakis and Hall (1987a). In order to capture the main 

features of their results and to interpret them correctly, it is noted here that those 

investigations are both similar and different in many ways. 



-58-

First of all, the numerical formulations are different. Dean, Luo et al. studied 

steady state crack growth, and accordingly they employed the Eulerian finite ele­

ment formulation originated by Dean and Hutchinson (1980). Narasimhan et al., on 

the other hand, looked into the transient fracture process of a crack beginning from 

its stationary state. Hence, they adopted a nodal release procedure first introduced 

by Sorensen (1979), which simulates stable crack growth by progressively releasing 

crack tip element nodes according to the achievement of critical stress intensity 

factor values. 

Yet the above fact does not prohibit comparisons between results from the two 

different numerical formulations, although care must be exercised. As indicated by 

the results of Narasimhan et al., the transient solution near the crack tip rapidly 

converges to a steady one, after the nodal release procedure is carried out several 

times. The same is reported by Sorensen (1979) for Mode I plane strain. In fact it 

can be shown analytically that the stress and deformation fields at the crack tip are 

asymptotically in a steady state, provided that crack growth is quasi-static, or that 

the partial time derivatives in the crack tip moving Cartesian coordinate system are 

bounded. This would mean that solutions from different numerical formulations are 

comparable near the crack tip, and that whether they are comparable away from 

the tip-region depends on the extent the transient computation is carried out. 

Secondly, it is noted that the finite element meshes used by those investigators 

are not of the same fineness .• It is helpful to bear in mind that the ratio of the 

active plastic zone size to that of the smallest crack tip element is about 35 in 

Dean's computation and about 140 in the other two computations. It is expected 

that a finer mesh will usually yield a higher accuracy. 

Finally, the validity of comparisons between results of those different studies 

mentioned above will depend very much on the way the results are post-processed 

and presented. For example, an angular variation of a field quantity around the 
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crack tip should be extracted from the numerical data along a circular path centered 

at the tip and the magnitude of the variations will generally depend on the radius 

of the path, whether it is due to the true radial dependence of this quantity, or due 

to the existence of the finite element discretization error. It is worth recalling that 

rectangular paths are used for stress distributions in the above presentations. 

In our study, we followed Dean's method and employed a near-tip mesh of high 

spatial resolution, with the ratio of plastic zone size to the smallest element size 

on the order of 1.6 x 104
, which is much finer than the previous ones. We also use 

circular paths for angular field variations. Thus we tend to believe that our solution 

represents a better approximation for steady state crack tip fields. For this reason 

and because of the fact that not all field quantities of interest were published in the 

earlier studies, we feel it is beneficial to document our results here. 

The Active Plastic Zone 

The active plastic zone is located at the front of the crack tip and it spreads 

out along the prospective crack line, as shown in Fig. 3.2.1. Its size Rp, measured 

along 0 = 0°, is about 0.265( I</ a 0 )2, where a 0 is the initial yield stress in tension, 

and I< is the stress intensity factor indicating the current load level. Its height 

Hp · 0.084(I</ao)2 is measured from the crack line. The angular span 0p of the 

active plastic zone, measured from the crack line again, is approximately 45° . 
• 

Also shown in Fig. 3.2.1 is the active plastic zone obtained by Dean (1983), 

utilizing the same finite element solution scheme. It is seen, however, that his result 

gives a larger plastic zone shape. In particular his Rp is as large as 0.31(K/a0 )2, 

even greater than that for a stationary crack, which is about 0.29( I</ a 0 )2 according 

to a recent detailed finite element study by Narasimhan and Rosakis (1988). Both 

Luo et al. and Narasimhan et al. reported Rp to be around 0.28(I</a0 )
2

. Note that 

the results of Narasimhan et al. were obtained at the end of the twentieth node 



N -0 

~ -...... 
N 

X 

-60-

Plastic zone shape 

.20 -----------------------------. 

.15 

.10 

.05 

Current study 
------- Dean 

.00 ---~------------------~---~--

- . 05 ___ ...._ ____________________ __._ ______ _ 

-.05 .00 .05 .10 .15 .20 .25 .30 .35 

FIGU.RE 3.2.1 The shape of the crack tip active plastic zone compared with that 
by Dean (1983) in normalized coordinates, with the origin located at 
the crack tip. 

release where the crack has advanced quasi-statically a distance of 0.04( K / ao )2. 

In other words, as the crack extends, the active plastic zone shrinks along the 

prospective crack line. The same is observed in the Mode III case where Sorensen 

(1978) noted that Rp is about 4% smaller than the stationary value at the end a 

of few node releases. If we recall that the results by Sorensen and by Narasimhan 

et al. were for a transient crack, and that the active plastic zone size is not a 

local issue, we may then assume that Rp for the steady state case should be even 

smaller. This is indeed manifested by the Mode III calculations of Douglas (1981) 

and Lam (1982), whose solutions show that Rp should be about 13% smaller than 

the stationary counterpart. Considering the similarities between Mode III and Mode 

I plane stress fracture, as pointed by McClintock and Irwin (1964), it is plausible 
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to expect a similar result in plane stress. It is also interesting to notice that Rp 

obtained by Dean and Hutchinson (1980) for steady state quasi-static Mode III 

crack growth is also much higher (10% ) than its stationary value, contrary to the 

findings of more detailed studies by Douglas and Lam as mentioned above. 

The 45° angular extent of the active plastic zone at the crack tip is confirmed 

by the results of Dean, Narasimhan et al. This seems to be expected since very near 

the crack tip, the elastic-plastic boundary angle appears to be a local quantity, thus 

it should be close to the steady state value. Strangely, however, the angle shown by 

Luo et al. is almost 90°, which we think is due to numerical errors. 

Angular Field Variations 

In order to examine the angular variations of field quantities and to' minimize 

the effects of any real or numerically created radial dependence, data regarding 

the angular variations of field quantities are extracted from near-tip finite elements 

along a circular path of radius approximately 2.0 x 10-4 (K/a0 )2, which is about 5 

elements away from the crack tip. 

The angular variations of the crack tip stress field are shown in Fig. 3.2.2a for 

the effective stress and the polar stress components, and in Fig. 3.2.2b for Cartesian 

rectangular stress components. Comparisons with finite element solutions by Dean, 

by Narasimhan et al., and Luo et al. are included . 
• 

It is seen from Fig. 3.2.2a that while the angular variations of stress components 

aee and are are quite similar to those of the stress characteristic line solution by 

Hutchinson (1968b), the arr component behaves very differently. In Hutchinson's 

solution, which is for a stationary crack, there is a discontinuity in arr at an angle of 

about 150°. Moreover, his solution reveals that arr reaches -a0 at the traction-free 

crack surface, and thus the stress state there is actively yielded. However, in the 

present quasi-static crack extension case, no discontinuity and no reverse loading 
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FIGURE 3.2.2c Angular variations of the effective stress and the polar stress compo­
nents in their original normalized forms for low-hardening bilinear 
solids (Ponte Castaneda, 1987a). 

at the back of the crack tip are observed, although the present numerical solution 

does clearly indicate a compressive zone for arr along the crack flank. 

Further, in accord with observations from the active plastic zone shape, it is 

found that the effective stress ae deviates from 1.0 or the value of the yield stress 

at approximately 0 = 45° where elastic unloading takes place. It is also obvious 

that there is a tendency of reverse plastic loading at the back of the crack tip, but 
., 

it seems that this tendency is not strong enough to reach yielding. 

Overall comparisons as shown in the figures tell that agreement is best with 

those of Narasimhan et al., good with Dean's, and bad with the ones by Luo et 

al. Actually the comparison is almost perfect with Narasimhan et al. for a00, aro 

and for arr, except that arr of the latter authors' solution prematurely flattens out 

near the crack surface. As to Dean's solution, it is seen that C!rB obviously deviates 

at the crack surface from the traction-free condition and that at the same time C!rr 
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FIGURE 3.2.4c Angular variations of the Cartesian velocity components in their 
original normalized forms for low-hardening bilinear solids (Ponte 
Castaneda, 1987a). 

tends to zero. It is of our opinion that this is due to the possibly large discretization 

error accumulated at the crack tip and carried over to the area behind the crack 

tip. At this stage, we would like to call your attention to the fact that we utilized a 

much finer mesh than the previous investigators, and that our data are drawn from 

a circular path much nearer to the crack tip. Besides, the results by Luo et al. and 

Narasimhan et al. are for a rectangular path about l.Ox 10-2(K/lT0 )
2 away from the 

crack tip, which inherently adds some radial dependence to the stress variations. It 

is also helpful to point out that the low-hardening limit solution by Ponte Castaneda 

(1987a) for bilinear elastic-plastic materials (see Fig. 3.2.2c) strongly resembles our 

solution, particularly for lT rr near the crack flank and in the range 0 E (20°, 80°) 

where it heads down and then rises. Note that for comparison purposes, the finite 

element results from a slightly coarser mesh (see section 3.3 for more detail) and 

along a farther circular path whose normalized radius is r/(K/lTo)2 = .6411 x 10-3 

is also included in Fig. 3.2.2a. Excellent agreement between the two finite element 
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solutions is observed, as is expected. 

Angular plastic strain variations are shown in Figs. 3.2.3a and 3.2.3b,with 

strains being normalized by Eo, the initial yield strain in tension. From the dis­

tributions of polar components we observe for most of the angular range that the 

in-plane components behave in a sinusoidal-like fashion and that the effective plastic 

strain c? and the out-of-plane component €~3 are fairly flat. This behavior becomes 

apparent if the variations of the rectangular components are first examined. From 

Fig. 3.2.3b it can be seen that while the 1-1 and 1-2 components are almost iden­

tically zero, the 2-2 component is predominantly large and it undergoes only small 

percentage changes for most of the angular ranges. A simple tensorial transforma­

tion will then give rise to the observed phenomena in Fig. 3.2.3a. Note that the 

plastic strains outside the active plastic zone are the residual plastic strains deter­

mined at the elastic-plastic boundary. The rapid rising part of c~2 , and hence €~ 

and c~3 , near the crack flank are due to the accumulated plastic strains at the crack 

tip, which theoretically may be unbounded if the strains are singular at the crack 

tip in the active plastic zone. 

We present in Figs. 3.2.4a and 3.2.4b the results of the velocity field normalized 

by v£0 , where v is the crack speed. From Fig. 3.2.4a we see that the tangential 

component vo starts at 0 = 0 with zero value, apparent due to the symmetry 

condition, and ends negatively at 0 = 1r, whereas the radial component Vr starts 

negatively and ends with zero .. , But the rectangular velocity component distribution 

tells a more interesting story. It is seen that v1 is always negative and v2 is always 

positive, and that both v1 and v2 increase initially and then level off at about 

0 = 30°, with v2 having a much larger absolute value after 0 · 15°. Actually in 

the elastic zone, which is about 45° to 180°, the Cartesian components should have 

asymptotically logarithmic singularities with constant coefficints (see, for example, 

Rice, 1982 or Ponte Castaneda, 1987a). In fact, it can be shown that the coefficient 

for v1 must be zero if there is no reverse yielding along the crack flank. Therefore the 
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slight velocity variations in the elastic zone are due to their bounded or less singular 

terms. Note also that the Cartesian velocity component variations are qualitatively 

very similar to those of the asymptotic low-hardening solutions for bilinear solids 

(Ponte Castaneda, 1987a) as shown in Fig. 3.2.4c. 

Radial Field Variations 

Radial stress variations along the prospective crack line are shown in Fig. 

3.2.5a, covering the elastic-plastic transitional region, and in Fig. 3.2.5b with a 

detailed view of the crack tip zone. Note that the radial distance is normalized by 

( K / o-0 )
2 . At the crack tip it is seen that o-11 and o-22 take values very close to To 

and 2To respectively, where To is the initial yielding stress in simple shear. This 

finding is somehow in agreement with the asymptotic results in Eq.(3.1.M if 01 is 

taken to be zero as suggested by Rice (1982). Away from the tip 0-11 is found to 

increase monotonically all the way up to the elastic-plastic boundary, whereas 0-22 

slightly decreases. This result contradicts the assumption employed by many crack 

line solutions (Achanbach and Dunayevsky, 1984; Achenbach and Li, 1984c; and 

Guo and Li, 1987) that o-22 , and hence o-11 , are identically constant in the plastic 

zone along the crack line. It is also observed that further away from the elastic­

plastic boundary, but in the elastic region, o-11 and o-22 tend to coincide with each 

other, which means they are, as expected, approaching the far-field singular elastic 

solution. A comparison to the results of Narasimhan et al. is made in Fig. 3.2.5b ., 

with very good agreement. 

Figs. 3.2.6a and 3.2.6b are for the crack line plastic strain distributions. It 

is found in Fig. 3.2.6a that c:~2 and hence c:~ greatly exceed c:f 1 in magnitude and 

possess logarithmic-like singularities as the crack tip is approached. This singular 

behavior is more clearly demonstrated by the log-scale plot in Fig. 3.2.6b where 

a linear relation exists in the crack tip region, which strongly suggests that both 

c:~ and c:~2 vary as lnr as the crack tip is approached. Luo et al. (1984) also 
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discovered such a singular tendency. As to the 1-1 component, a horizontal line is 

observed in Fig. 3.2.6b, which indicates that c:f 1 almost has no lnr dependence. 

The 1-2 component is found to be identically zero as is expected from the symmetry 

condition. 

Presented in Figs. 3.2. 7a and 3.2. 7b are the velocity component variations 

along the crack flank. It is seen from Fig. 3.2.7a that while v1 is almost invariably 

zero, v2 behaves singularly near the crack tip. The log-scale plot in Fig. 3.2.7b tells 

that this is a logarithmic singularity as can be predicted by a simple asymptotic 
., 

analysis. 

Finally we proceed to examine the crack opening displacement profile as shown 

in Fig. 3.2.8, where the opening displacement 8 ( twice of the vertical displacement 

component u2 ) is normalized by K 2 /Ea0 with E being the Young's modulus. Note 

that while in the stationary case there is a blunt opening at the crack tip, here in the 

quasi-static case we observe a sharp crack opening. This conclusion is also confirmed 

by Dean (1983) except that he predicted a somewhat larger crack opening profile as 
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shown in Fig. 3.2.8. Analytically, since velocities possess lnr singularity, the crack 

profile should then behave like rlnr as the crack tip is approached, and hence it 

intersects the crack surface with a right angle. Our numerical results, however, do 

not show such an infinite slope at the crack tip, which is probably due to the finite 

element discretization error. 

Asymptotic Analysis 

There is as yet no successful assembly of crack tip asymptotic fields for quasi­

static Mode I plane stress crack growth in elastic-perfectly plastic solids. We sum­

marize here some observations and try to shed light on this somewhat illusive prob­

lem. 

First of all, when a constant stress sector is adjacent to a centered fan sector, 

its velocity components must be less singular than those in the centered fan, i.e., 

less singular than lnr, if the maximum plastic work principle is to be satisfied. This 

can be derived from the constitutive law, and from the fact that along the interface 

boundary, the deviatoric polar stress component Brr equals zero at the centered fan 

side and hence also at the constant stress sector side. This is because the maximum 

plastic work principle requires that the stresses be continuous across the boundary 

(see, for example, Narasimhan and Rosakis, 1987). Hence, it can be shown that 

plastic strains in such a constant stress sector cannot have logarithmic singularities . . , 

Secondly, a constant stress sector cannot immediately follow a centered fan 

sector if the maximum plastic work principle is employed. Just as in the plane 

strain case, if a centered fan sector is followed by a constant stress sector, then 

when the boundary between the two sectors is crossed as the crack extends, the 

positive shear stress er re does infinitely negative work as r goes to zero, which is in 

violation of the maximum plastic work principle. This is because the radial velocity 

component Vr tends to be infinitely positive on the centered fan side as the crack 
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tip is approached. Whereas due to the reduced singularity of Vr on the side of the 

constant stress sector, the magnitude of Vr tends to be much less there. Hence 

the difference in Vr from the centered fan to the constant stress sector is infinitely 

negative as the crack tip is approached. 

Thirdly, a constant stress sector is not likely to exist at the crack front and 

be followed by a centered fan sector, since otherwise the plastic strains would not, 

as we discussed above, possess a logarithmic-like singularity when the crack tip is 

approached. It is, however, demonstrated by our detailed numerical results that 

they should behave logarithmically. 

Finally, if a centered fan sector is to exist at the crack front, it appears that it 

is valid along the crack line only at the limit r = 0. In other words, the centered-fan 

field variations, and the strain rate distribution in particular, do not hold on any 

length scale away from the crack tip. As shown by our finite element solution, the 

asymptotic values for O'rr and 0-99 at r = 0 along the crack line are r0 and 2r0 

respectively, and o-r8 = 0 due to the symmetry condition, whereas away from the 

crack tip, it is clearly seen that O'rr rises above ro and 0'88 steadily decreases from 

2r0 , which means that the stresses are in an elliptic plastic state (see Kachonov, 

1974). Since a parabolic characteristic line is a line along which the two principal 

stress. values are equal to ±r0 and ±2r0 respectively, it is then expected that the 

parabolic line (see results by Narasimhan, Rosakis and Hall, 1987a), which divides 

the centered fan in the hyperholic state from the parabolic state, terminates at the 

crack tip and is only tangent to the crack line there. A higher order asymptotic 

analysis by Krishnaswamy and Rosakis (1990b ), in connection with the finite el­

ement analysis of Narasimhan, Rosakis and Hall (1987a), also demonstrates this 

point. One of the immediate consequences of this is that it may prohibit an inte­

gration of strain rates to obtain plastic strains along the crack line. In other words, 

instead of obtaining a ln2 (r) plastic strain singularity along 0 = 0 as suggested by 

Rice (1982) and Narasimhan, Rosakis and Hall (1987a), we would only get a lnr 
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singularity, which seems to agree with our numerical observations. 

3.3 DYNAMIC CRACK PROPAGATION 

Published studies on the stress and deformation fields around a rapid,ly propa­

gating crack tip in an elastic-perfectly plastic solid under plane stress or generalized 

plane stress conditions are rare. Achenbach and Li (1984a, b) proposed a crack line 

solution for Mode I steady state which assumes that a-22 and hence &11 are constant 

along () = 0 from the crack tip up to the elastic-plastic boundary, which is then 

used to extract a theoretical I<f c vs. v curve, where I<f c is the plane stress fracture 

toughness, and v the crack tip speed. However, to interpret their findings correctly, 

it is necessary to verify the assumptions which form the very basis of their analysis. 

There are no such verifications available as of today. 

Gao (1987) on the other hand obtained an analytic Mode I solution valid asymp­

totically in the crack tip area. Due to the mathematical complexities involved in 

the analysis and due to the limited data presented in his paper, it is difficult to 

judge with confidence whether this solution is unique or appropriate. Besides, from 

the experience of Mode III fracture, it is suspected that any first-order asymptotic 

dynamic solution would only have a restricted near-tip domain of validity which de­

creases rapidly as the crack tip velocity goes to zero. This poses a problem when one 

is interested in getting a crack-velocity dependence for a certain physical quantity, 

say for the dynamic fracture tbughness. 

It is apparent then that detailed full field numerical studies will greatly help to 

· resolve the issues mentioned above. To our best knowledge, the results presented 

in the following document the first published effort to investigate numerically the 

stress and deformation fields under plane stress conditions. 

Two mesh designs with slightly different near-tip mesh refinements were used 

in our study. The finer mesh, which has a ratio of plastic zone size to the smallest 



-76-

near-tip element size on the order of 1.6 x 104, is employed to study a typical 

dynamic case, namely the case form= 0.3, where mis the ratio of the crack tip 

speed to the material elastic shear wave speed. The slightly coarser mesh is used, for 

cost considerations, to carry out computations for the whole range of m values from 

0.0 to 0.4, where m = 0 describes the quasi-static crack growth. The evolutionary 

variations of field quantities with respect to m are thus obtained. 

The Active Plastic Zones 

The variation of the active plastic zone shapes with respect to the Mach number 

m is shown in Fig. 3.3. la, where the coordinates are nondimensionalized through 

the usual normalization (K/a0 )2, with K being the dynamic stress intensity factor, 

and a0 the initial yield stress in tension. It is observed that as m or the normalized 

crack speed increases, the active plastic zone shrinks along the crack line from size 

0.265(K/a0 ) 2 at m = 0.0 to 0.255(K/a0 )
2 at m = 0.4, and it spreads out from 

size 0.084(K/a0 )
2 to about 0.15(K/a0 ) 2 in the direction perpendicular to the crack 

line, whim almost doubles the quasi-static value. The near-tip angular extent of the 

active plastic zone also grows as m becomes larger, actually from 45° at m = 0.0 

to about 90° at m = 0.4, as shown by an expanded view of the crack tip zone in 

Fig. 3.3.lb. From this figure, a secondary active plastic zone, or a reversed yielding 

zone, is clearly revealed for m = 0.35 and 0.4 near the crack flank. The variations 

of the angular extent of the primary near-tip active plastic zones with respect to 

m is shown in Fig. 3.3. lc. This type of plastic zone arrangement is very similar to 

the findings of Douglas (1981) for Mode III dynamic crack propagation, utilizing 

the same finite element technique as used in this study. While the asymptotic 

solution by Slepyan (1976) for Mode III predicts an allaround plastic zone, which 

is not confirmed by Douglas's investigation, Gao's Mode I plane stress asymptotic 

solution anticipates an elastic unloading sector behind the primary active plastic 

zone, which is somewhat consistent with our numerical results. 
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FIGURE 3.3.lc The variations of the angular extent of the near-tip active plastic 
zones with respect to the normalized crack speed. 

Angular Field Variations 

As in the quasi-static case, our angular field variations are obtained from finite 

element data extracted from locations about 5 elements away from the crack tip 

along a circular path with a distance to the tip of 0.2033 x 10-3 (K/a0 ) 2 for the 

finer mesh, which is about one thirteen-hundredth of the plastic zone size, and of 

0.6411 x 10-3 (K/a0 ) 2 for the coarser mesh, which is about one four..:hundredth of ., 

the plastic zone size. 

In conjunction with the above observed reverse yielding phenomenon, the an­

gular effective stress distribution presented in Fig. 3.3.2a gives details regarding 

the evolutionary tendency toward a secondary active plastic zone at the back of the 

crack tip, where ae, the effective stress, regains its yielding value a 0 for m = 0.35 

and 0.40. The asymptotic solution by Gao (1987) shows, however, that the sec­

ondary active plastic zone exists for all values of m from 0.0 to 0.3. Especially, he 
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found that the angular extent of this reverse yielding zone increases as m decreases, 

which is strongly contrary to our findings. 

Fig. 3.3.2a also tells that the effective stress deviates from a 0 at about 0 = 45° 

form= 0.0, and 90° form= 0.4, thus confirming our earlier discoveries pertaining 

to the angular extent of the primary active plastic zones at the crack front. Again 

Gao's results predict different active plastic zone angles, which, in his calculations, 

are always larger than 90°. 

Next we discuss the 0-dependence of other stress components as shown in Fig. 

3.3.2b. First we want to point out that the symmetry condition at the crack front 

and the traction-free condition at the back are well satisfied. We emphasize this 

because with the Eulerian-type finite formulation we employed, stresses are obtained 

through integration of the incremental constitutive law, along lines parallel to the 

crack line, from crack front downstream to the area behind the crack tip. When 

the integration sweeps the crack tip, the inevitable large discretization error at 

the crack tip is carried over to regions behind. It is then expected that most 

discretization errors are accumulated along the crack flank and the momentum­

balance iterations are mostly carried out to minimize the error there. Hence the 

satisfaction of the boundary conditions at the crack surface is a major indication of 

a converged numerical solution. 

It is then seen from Fig. 3.3.2b that the changes of aoo with respect to 0 are 

smooth for all values of m, and that while the changes in O"rr and O"rO are smooth for 

lower m values, a kink develops for higher m values, notably for the case of m = 0.4 

at 0 · 90°, where the boundary between the active plastic zone and the elastic 

unloading zone is located approximately. This seems to agree qualitatively with the 

analytic predictions by Gao (1987), although quantitatively large differences exist. 

The angular variations of the Cartesian rectangular stress components are 

shown in Fig. 3.3.2c, for the typical case of m = 0.3. It is found that o-22 and 
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0-12 are respectively always positive and negative except near the crack surface, 

whereas o-11 changes sign when 0 reaches approximately 135°. 

Next the plastic strain variations are illustrated. Remember that the plastic 

strains outside the active plastic zones are the residual plastic strains. Fig. 3.3.3a 

shows the 0-dependence of the polar components of the plastic strain, the effective 

plastic strain and the out-of-plane plastic strain for m = 0.3. It is seen that the 

polar components exhibit, just as in the quasi-static case, sinusoidal-like behaviors, 

while €~ and c:3 remain fairly flat for most of the 0 ranges and rise up near the 

crack flank, which are apparently due to the residual plastic strains accumulated at 

the crack tip ( theoretically they should tend to infinity if the plastic Strains in the 

active plastic zone are singular). The sinusoidal-like behaviors are in fact present in 

all our calculated cases, whose progressive changes are shown in Figs. 3.3.3b, 3.3.3c 

and 3.3.3d, respectively, for cfr, c:0 and €~0 . 

This phenomenon is easily explained if the angular variations of the Carte­

sian rectangular plastic strain components are examined. It is discovered from Fig. 

3.3.3e, for the case of m = 0.3, that throughout the angular range, the 2-2 compo­

nent is dominantly larger than the 1-1 and 1-2 components, which means that the 

effective plastic strain, through its definition, and the out-of-plane plastic strain, 

through the plastic incompressibility, are dominated by €~2 • Hence, they behave 

like c~2 as seen from the figures. The predominance of the 2-2 Cartesian component 

certainly also accounts for the,. sinusoidal behaviors of the polar components, which 

becomes clear if a tensorial transformation is performed. It is also worth mention­

ing that as the crack speed goes up, the magnitude of c~2 decreases and that of c:f 1 

increases. 

The angular variations of the velocity field around the crack tip are shown in 

Fig. 3.3.4a for the polar components and in Fig. 3.3.4b for the Cartesian compo­

nents. It is observed that Vr starts negatively at 0 = o0 and ends at values close to 
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zero, whereas vo starts at zero, as expected due to symmetry conditions, and ends 

at negative values. For all m values we considered, both Vr and vo curves go up 

steadily (i.e., with positive slopes) initially and then fall down consistently all the 

way to the crack surface. The Cartesian components also share the initial positive 

slope characteristic and remain that way approximately up to the elastic-plastic 

boundary where they level off until they meet the crack surface. 

We would like to emphasize the observation that at 8 = 180°, v 1 is very close to 

zero form< 0.3, and it apparently becomes nonzero as m becomes larger, especially 

for m = 0.4, which, in our opinion, has to do with the fact that as m becomes larger, 

a secondary active plastic zone develops along the crack flank. We will show in the 

subsection of asymptotic analysis that if there is no reverse plastic reloading zone at 

the back of the crack tip, then v1 is less singular than lnr, whereas v2 is as singular 

as lnr in the elastic unloading zone including 8 = 180°, which implies that the 

magnitude of v1 there is extremely small when compared with that of v2. However, 

if there is a plastic reloading zone at the back of the crack tip, then both v1 and v2 

shouid possess the same lnr singularity as r approaches zero, but the coefficient for 

the v1 singularity is not necessarily zero. 

Radial Field Variations 

Many interesting characteristics can be observed from the radial distributions ,, 

of stress and deformation fields, which are also very important for the studies of 

fracture criteria and for the search for appropriate asymptotic solutions. 

Fig. 3.3.5a describes form= 0.3 the crack front stress variations with respect 

to the normalized radial distance and covering regions both inside and outside the 

plastic zone. It is obvious from the figure that outside the plastic zone (note that 

the plastic zone size is about 0.26(K/o-0 )2), both o-11 and o-22 become smaller as the 

distance from the crack tip becomes larger, and eventually they intersect each other 
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FIGURE 3.3.5a The radial dependence of the stress components at crack front along 
the prospective crack line for v / Cs = .3. 

and then change their relative magnitudes as required by the dynamic asymptotic 

K-field specified on the crack front boundary. While inside the plastic zone, it is 

seen that as the distance increases, o-11 increases sharply whereas o-22 only decreases 

slightly, and that 0-11 has a crack tip asymptotic value clearly greater than r0 , i.e., 

greater than its quasi-static counterpart, whereas o-22 has an asymptotic value about 

2r0 which is almost the same as the quasi-static value. 

A more detailed asymptotic view of the radial stress distributions along the 

crack line is presented in Figs. 3.3.5b and 3.3.5c for all cases of crack propagation 

speeds we considered. It is discovered that while o-11 increases as m goes up (see 

Fig. 3.3.5b), o-22 actually decreases, although slightly, as m goes up. 

At this point we would like to point out a strong inconsistency of the solution 



-88-

Mach nuimer 11 • v/c9 Alonge• o• 
3.-----,.------.---....... ------------.-----, 

022/T1 
2 r-------=~---------....... .._...,,.__ ----........ 

Ou/T, 

1 L-. .,,,..~,-~·--~~--:...~·"'+fil::-'j']. [l--~·,i=i•-iI:.'=~·~---~--~•,...,..,l'll· -]! ... ~-,.·=!:f·i:!--~· -~2lli<l-l---: ___ =-_=-_=-_=-_=-_=--~:::~:~~7. 
m •.2 
II •.25 
II •.3 · 

a11/T1 -----·-··-·· m •.36 0 ------""--'-----------__ -__ -__ -_-___ -_-__ -.-.-... ,----

-1 ____ ,__ __ ___, _______________________ _ 

.00 .05 .10 .20 .25 .30 

FIGURE 3.3.5b The radial dependence of the stress components at crack front for 
various normalized crack speeds. 

Mach nUlber m • v/c5 
2.1 .-------.----~ . .--------------.------, 

Alonge• o• 

• ,t 
"' 1.9 

m •.O 
------- m •.1 "' b --·--·--· m •.2 
•··---·--·· m •.25 
-----·-·-· m •.3 

1.8 -··-··-··-·· m •.36 
·-··---··-··· m •.4 

1. 7 ____ __., ____ _._ ____ ..._ ___ ___. ____ _ 

.00 .02 .04 .06 .oe .10 

Xs/(K/a0 ) 1 

FIGURE 3.3.5c The radial dependence of the 2-2 stress component at crack front 
for various normalized crack speeds. 



-89-

vies• .3 Alonge• o• 
25..-----,,-------.----------------------, 

20 

15 

-5 ___ ___, _____ __. ______________ ...... ___ ..... 

.00 .05 .10 .15 

Xs/(K/a0 ) 2 

.20 .25 . 30 

FIGURE 3.3.6a The radial dependence of the plastic strain components at crack 
front for v / Cs = .3. 

vies• .3 Along 8 • 451 

25 ..-----,,-------.----------------------, 

20 

15 

5 
' ' ', ........... 

-5 ___ ___,....._ __ __. ___ __. ___ __._ ________ _. 

.00 .05 .10 .15 

r/(K/a0 ) 2 

.20 .25 .30 

FIGURE 3.3.6b The radial dependence of the Cartesian plastic strain components 
along the radial line 0 = 45° for v / Cs = .3. 



-90-

by Gao (1987) with our numerical findings. It can be seen from Fig. 3 and Fig. 4 

of Gao's paper that the value of o-11 at () = o0 for m = 0.3 is smaller than r0 , or 

smaller than that for m = 0 ( also refer to Fig. 5 of his paper). 

Our numerical solutions also showed approximate linear radial variations of 

both 0-11 and 0-22- Note also that the 1-2 component of the stress field is always 

zero, satisfying the symmetry condition at () = 0°. 

The strong r-dependence of the 1-1 stress component noted in Figs. 3.3.5a and 

3.3.5b are apparently in disagreement with the assumption made in the crack line 

solutions by Achenbach and Li (1984a, b ), namely the assumption that a 22 (r) and 

hence o-11 ( r) are constants in the plastic zone. The assumption is introduced in 

their series expansion solution in order to increase the number of equations to equal 

the number of unknowns. 

The radial dependence of crack tip plastic strains is shown in Fig. 3.3.6 through 

Fig. 3.3.9. First of all, the typical variations along the radial lines () = o0 and 45° 

are depicted in Figs. 3.3.6a and 3.3.6b respectively for m = 0.3, where we see that 

very near the crack tip, the 2-2 plastic strain component, and hence the effective 

plastic strain, demonstrate much stronger radial dependence than the 1-1 and 1-2 

components, which confirms our earlier observations from their angular variations 

(see Fig. 3.3.3e). However we cannot rule out the possibility that c:f1 and c:f2 are 

singular as r -+ 0, although their magnitudes will be very small compared to the 

magnitude of £~2 • 

The radial variations of the 1-1 plastic strain component for various m values 

· are illustrated in Figs. 3.3. 7a and 3.3. 7b. It is clear from Fig. 3.3. 7a that £~\ 
does show large slopes near the crack tip, especially for larger m values, which 

indicates a somewhat singular behavior. In fact in the log-scale plot illustrated 

in Fig. 3.3. 7b, where data are from the fifth to the eighth elements away from 

the crack tip, approximate linear relations are observed, which strongly suggests 
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a logarithmic singularity. Another characteristic of the 1-1 component variation 

is that its magnitude tends to flip over to lower values as the normalized distance 

increases, which is shown in both figures. 

The evolutionary radial variation of the plastic strain component c:~2 along the 

crack line is shown in Fig. 3.3.8a. One of the characteristics of this variation is that 

as m increases, the magnitude of this dominant plastic strain component decreases. 

It is observed that strong singularity exists at the crack tip. Actually, the straight 

lines observed in Fig. 3.3.8b strongly indicate that c:~2 behaves as lnr as the crack 

tip is approached. 

This logarithmic strain singularity for dynamic crack propagation in elastic­

perfectly plastic solids were also reported for Mode III ( see, for example, Slepyan, 

1976) and Mode I plane strain (Gao and Nemat-Nasser, 1983a; and Gao, 1985). 

It is noted here that in the incompressible plane strain case, a proof is offered 

by Leighton, Champion and Freund (1987) stating that stress discontinuities are 

not permissible if the maximum plastic work principle is to be satisfied. Hence they 

showed that velocity or strain singularities of the lnr type are not permitted for this 

special case. Gao (1987), in his Mode I plane stress asymptotic solution, assumed 

directly that strains and consequently velocities behave as lnr as r -* 0. 

Since the plastic strains are dominated by c:~2 near the crack tip, it is expected 

that the effective plastic strain behaves as c~2 near the tip. Figs. 3.3.9a and 3.3.9b 
., 

verify this. Here it is worth pointing out that since c~ is a measure of plastic 

straining, then from Fig. 3.3.9a, it can be said that as crack speed increases, plastic 

. straining at the crack front becomes less severe. This reduced plastic straining 

phenomenon in fact has been found, as reviewed in the introduction section, in all 

three fracture modes, and from stationary cracks to extending cracks. Thus if a 

certain loading is to be maintained for a certain plastic straining, it is then obvious 

that for a higher level of plastic straining, the loading level must also be raised. Thus 
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to achieve the same plastic straining level at the crack front, a higher loading must 

be applied for a crack to run with a higher speed. We will disscuss this observation 

in more detail in Chapter 6, where fracture criteria are investigated. 

The radial distributions of the Cartesian velocity components are presented 

in Fig. 3.3.10 for v2 and in Fig. 3.3.11 for v1 , which are of more interest in the 

sense that asymptotic solutions are usually obtained in terms of velocities instead 

of strains. Note that the normalized velocities are plotted against the logarithmic 

values of the normalized distance, along two radial lines, namely along 8 = 45° and 

135°. It is discovered that while v2 behaves, especially for lower m values, as lnr 

at the crack tip, its strength becomes much smaller for higher m values. Yet, inter­

estingly enough, the opposite is observed for v1 . For small m values, approximately 

horizontal lines are observed, which indicates no or little lnr dependence, whereas 

as m increases, the linear curves are found to increase their slope significantly, which 

indicates strong lnr dependence. 

Also of some interest are the radial variations of the velocity field along the 

crack flank, which is shown in Fig. 3.3.12. It is seen that the magnitude of v2 

decreases rapidly as the distance from the crack tip increases, but it is not clear 

from our results if v2 will tend to zero as the distance continues to increase. The 

v1 component is found to equal approximately zero at all distances from the tip. 

The lnr-velocity singularities indicated by the above finite element results and 
., 

the changes of their magnitudes with respect to the crack propagation speed will 

be further discussed in the subsection on asymptotic analysis. At the same time, it 

. is worth pointing out that the asymptotic analysis given by Gao (1987) assumed, 

to start with, that strain field has lnr singularity. Hence he essentially assumed 

a velocity field with lnr singularity. Morover, from the form of the velocity field 

he used, it can be derived that only the velocity component v1 (r, 8) will have the 

assumed lnr singularity, whereas the velocity component v2 (r, 8) is bounded in his 
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FIGURE 3.3.12 The radial dependence of the velocity components along the crack 
flank for various normalized crack speeds. 

solution. This feature seems contradictory to our numerical findings, which will be 

explained later in an asymptotic analysis. 

Finally we present the results for the crack surface profiles during crack prop­

agation. The global view of the vertical displacement component u 2 , which is half 
., 

the crack opening displacement, is illustrated in Fig. 3.3.13a for different crack 

speeds. It is noted here that in the normalized coordinates, the magnitude of u2 

. . 
· increases as m increases. 

The question at this point is whether this tendency will reverse, that is, how 

small r should be in order to see the decrease of u2 for increasing m. In a similar 

numerical study for Mode I plane strain crack propagation by Lam and Freund 

(1985), it is reported that for m values from 0.0 to 0.4, the reversing point is at 
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FIGURE 3.3.13b A detailed view of the radial dependence of the displacement com­
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r = 0.05( K / uo )2 behind the crack tip. However for the plane stress case, we did 

not find such an early reversing point. As depicted in Fig. 3.3.13b, no reversing 

tendency is detected even on a length scale about one one-hundredth smaller than 

that used by Lam and Freund, except for m = 0.4 where a small deviation is noticed. 

Now let's pay attention to the slope changes of the crack tip openings for 

different m values. From Fig. 3.3.13b, it can be seen that while for small m values 

the opening profiles bend down near the crack tip, they are approximately straight 

lines for higher m values, whose slopes are actually rather insensitive to the crack 

speeds. Similar numerical results are also reported for the Mode III case (Douglas, 

Freund and Parks, 1981 ). This seems to indicate a tendency that the crack opening 

displacement possesses a linear radial dependence asymptotically at the tip as the 

crack speed becomes higher, or as the dynamic effect grows larger. 

Asymptotic Analysis 

In the above we presented the result of the current finite element study on crack 

tip stress and deformation fields for dynamic crack propagation in elastic-perfectly 

plastic solids under conditions of Mode I plane stress, steady state and small-scale 

yielding. Detailed comparison with the asymptotic solution by Gao (1987) was 

perfomed. 

It was observed that the asymptotic near-tip field by Gao involves many char­

acteristic behaviors often contradictory to the findings of the present full field nu­

merical study. It is noted in Gao's analysis that it is directly assumed that the 

strain field, and hence the velocity field, possesses lnr-singularities at the crack tip, 

and that the stresses are bounded and can be treated as functions of B only. The 

result of the present finite element solution very near the crack tip seems to confirm 

the logarithmic behavior of the strain and velocity fields. However, the particular 

form adopted for the velocity field in Gao's asymptotic analysis implies that only 
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the velocity component v1(r, 0) has lnr-singularity at the crack tip or r = 0, whereas 

the velocity component v2(r, 0) is bounded, which seems contrary to our numerical 

result. 

It is our purpose here to discuss a preliminary asymptotic analysis regarding 

the near-tip radial dependence of the velocity field and of the crack opening displace­

ment. Certain features of the numerically determined crack tip field and differences 

with Gao's asymptotic solution will be interpreted accordingly. No direct assump­

tions about the singularity of the velocity field and the boundedness of the stress 

field will be made, although assumptions of other types are still necessary. 

Now suppose a crack is propagating steadily (see Fig. 1.1.1) under Mode I 

plane stress conditions in an elastic-perfectly plastic solid obeying the von Mises 

yield criterion and the associated flow rule. From the steady state condition, it is 

necessary that the crack tip velocity v be a constant and that for any field quantity, 

say q, its material time derivative be computed from the spatial gradient -vfJq/fJx 1 • 

For a actively yielded stress state O'ij, the yield condition requires that 

(3.3.la) 

where r 0 is the yield stress in simple shear and Sij is the deviatoric stress tensor 

component given by 

(3.3.lb) 

It is understood here that Latin indices have range one to three while Greek indices 

have range one and two, and that the standard indicial notation and its associated 

conventions are used. The plane stress condition simplifies the above equations with 

(3.3.2) 

Immediately from Eq.(3.3.la), it is seen that Sij must be bounded. Since a 33 = 0, 

then from Eq.(3.3.lb), O"kk = -3s33 . Hence O"kk is also bounded. Consequently, it 

can be concluded from Eq.(3.3.lb) that aij must be bounded. 
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To investigate the asymptotic structure of the crack tip field, let's consider a 

generic sector at the crack tip. Suppose the sector is confined by two straight radial 

Hnes from the crack tip. We further assume that all limits taken below exist in this 

sector such that operations on the order symbols are permissible within this sector. 

Next define ai;(0), a function of 0 at the crack tip, as follows 

(3.3.3a) 

and let 

(3.3.3b) 

Then the stress state ai;(r, 0) near the crack tip can be expressed as 

(3.3.3c) 

Hence from Eqs.(3.3.3a) and (3.3.3b ), it is true that limr ...... o D"i;(r, 0) = 0, or 

that,. using the order symbols (see, for example, the textbook by Erdelyi, 1956), 

a-i;(r, 0) = o(l) as r-+ 0. Then we must have 0:~i = o( ;) as r-+ 0, since otherwise 

if 8!;; = O(l) as r -+ 0, we would have D"i1·(r, 0) = O(lnr) as r-+ 0, which violates 
vr r . 

our original conclusion. 

Now it is established that a::i = o(-;) as r -+ 0, then r 0;:i = o(l) as r -+ 0 

1. aa-;; 0 H f E (3 3 3 ) 1· au;j O U . th b or Imr ...... o r or = . ence rom q. . . c , 1mr ...... o r ar = . sing e a ove 

results and the following ident'ities 

(3.3.4a) 

8( ) _ . 
0 

8( ) cos0 8( ) 
OX2 - sin or + r 80 ' (3.3.4b) 

it can be proved that 

00-ij -- 0(-1) ( ) a=l,2 asr-+0. 
OX 0 r 

(3.3.5) 
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In order to investigate the singularity of the velocity field v0 (r, 0) at the crack 

tip, a study of the basic equations are necessary. Under steady state and plane 

stress conditions, the equation of motion in the crack tip moving coordinate system 

will be 
oa0 (3 ov0 -- =-vp--, 
0Xf3 OX1 

(3.3.6) 

where v is the crack propagation speed and p is the mass density of the material. 

Similarly, the constitutive law can be written as 

(3.3.7a) 

(3.3. 7b) 

(3.3.7c) 

where E is the Young's modulus, v is the Poisson ratio, and A is the plastic flow 

factor such that it is zero for an elastic stress state and it is nonnegative for an 

actively yielded stress state. 

From Eqs.(3.3.5) and (3.3.6) it is clear that 

ova = 0(-!_) as r -+ o. 
ox1 r 

(3.3.8a) 

It is our purpose here to show that 

(3.3.8b) 

for all elastic sectors and for plastic sectors where a 22 =/- 2an. 

First of all, for a sector in an elastic stress state, A = 0. Then noting Eqs.(3.3.5) 

and (3.3.8a), it is clear from Eqs.(3.3.7b) and (3.3.7c) that Eq.(3.3.8b) holds. 

Secondly, in a plastic sector where a 22 =/- 2an, it can be shown from Eqs.(3.3.5), 

(3.3. 7a) and (3.3.Sa) that A = 0( ~) as r approaches zero. Substitution of A into 

Eqs.(3.3.7b) and (3.3.7c) will then readily yield Eq.(3.3.Sb). 
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In fact, the results of the present finite element study seem to suggest that the 

crack tip is surrounded completely by these two types of sectors, as shown in Fig. 

3.3.14. Nevertheless, if both Eqs.(3.3.8a) and (3.3.8b) hold, then from the chain rule 

av" = av" ax13 and the identities ax1 = cos() and ax 2 = sin() it can be concluded 
8r 8xfJ 8r 8r 8r ' 

that 

. Ova = 0( ~) as r ---+ 0. 
or r 

(3.3.9) 

Consequently, Va = 0( lnr) as r ---+ 0. Without loss of generality, Va can then be 

written as 

va(r,8) = 9a(8)lnr + la(r,8) + ha(8) + o(l), as r---+ 0, (3.3.10) 

where 9a and ha are bounded funtions of 8, and la is singular at r = 0 yet less 

singular than lnr. 

along r/(K/a0 ) 1 • .2033e-3 v/c5 • .3 
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aul'lD, 

-1.0 ....._ __ ......., ___ +...__ __ ___. ___ _._ ___ ..._ __ __, 

0 30 60 90 

e 
120 150 180 

FIGURE 3.3.14 Angular variations of 0-11, 0-22 and 0-22/2 for v/cs = 0.3, normalized 
by o-o. 

Now it is claimed here that 9a must be a constant and that la must be a 

function of r only. This is true since otherwise from Eqs.(3.3.10) and (3.3.4) we 
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would have 

8v0 = -sin08g0 lnr _ sin08J a.!_+ O( .!_ ), 
8x1 80 r 80 r r 

(3.3.lla) 

8v0 n8g0 lnr n8fa 1 O(l) -- = cosu---- + cosu-- - + - ' 
8x2 80 r 80 r r 

(3.3.llb) 

as r approaches zero. Note that 89aJB) =/- 0 and that aJfJ;,B) is singular:at r = 0. 

Hence Eq.(3.3.11) would mean that ~~; is more singular than ~ as r -t 0, which 

contradicts Eq.(3.3.8) . 

. At the moment we have showed that if the limits as r -t O taken in the above 

deductions exist, if operations on the order symbols are permissible, and if the crack 

tip is only composed of, as indicated by the results of the present finite element 

analysis, elastic sectors and those plastic sectors within which a22 =/- 20-11, then the 

velocity field can be expressed as 

v0 (r,0) = c0 lnr + f 0 (r) + h0 (0) + o(l), as r -t 0, (3.3.12) 

where the coeffcicients c1 and c2 are constants. Further, if velocity continuity is 

enforced, both c2 and f 2 would be identically zero as required by the symmetry 

condition v2 = 0 at 0 = 0. 

The velocity field expressed in Eq.(3.3.12) with c2 = 0 and f O excluded is 

the one essentially assumed in Gao's asymptotic analysis. On the other hand, our 

finite element results reveal that the velocity component v2 possesses lnr-singularity, 
,; 

which is apparent from Fig. 3.3.10 at least for v/cs ::; 0.35. An inconsistency seems 

to exist. To this end, the following explanation is suggested. 

First note that in Fig. 3.3.10, there are indeed signs that the lnr-singularity 

of the velocity component v2 is dying out as m or v / c8 increases, as evidenced by 

the tendency of the declining magnitude of slope of the straight lines in Fig. 3.3.10. 

Secondly, discoveries from Mode III dynamic crack growth have demonstrated that 

the dominance zone of a first-order dynamic asymptotic solution is very small such 
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that it decreases rapidly as v / Cs decreases. In other words, characteristics of the 

leading asymptotic behavior of the crack tip fields can be clearly detected for a 

certain finite element mesh only at a sufficiently large crack propagation speed. 

This would mean that the numerical results for v / Cs < 0.35 ( and for r 2: 0.2033 x 

10-3 (K/u0 )2) are essentially the solution for quasi-static crack growth or a mixture 

of both quasi-static and dynamic fields. 

Moreover, if Eq.(3.3.12) is taken to be valid and c2 and Ji are set to zero in order 

to satisfy the symmetry conditions at 0 = 0°, then the crack opening displacement 

(which is twice the vertical displacement u 2 at 0 = 180°), which can be obtained 

by integrating v2 with respect to r along 0 = 180°, would be linearly dependent on 

r or the radial distance to the crack tip. This linear behavior indeed seems to exist 

for crack propagation speeds higher than certain value ( e.g., the curve for m = 0.4 

in Fig. 3.3.13b). 

Recall that for crack propagation at low speeds, no plastic reloading has been 

detected along the crack flank (see Fig. 3.3.1). At the same time, it is noticed that 

the slope of the straight lines in Fig. 3.3.lla or the coefficient for the lnr singularity 

of the velocity component v1 is approximately zero for small m values. To explain 

this behavior, it will be demonstrated in the following that the elastic (unloading) 

sector behind the· crack front plastic sectors must be ended ( near 0 = 180°) with a 

trailing plastic sector, or otherwise, the coefficient for the lnr-term in v1 must be 

zero. 

In fact, suppose the elastic unloading sector extends all the way down to the 

crack surface. Then, since it is in an elastic sector, Eq.(3.3.7a) becomes 

(3.3.13) 

which can be integrated with respect to x1 to yield 

(3.3.14) 
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where P(x2) is a function of x2 resulted from the integration. 

Now from equation Eq.(3.3.12) v1(r, 0) = c1lnr + 0(1) as r-+ 0. Since it has 

been shown that the stresses must be bounded, then from Eq.(3.3.14), the quantity 

c1 lnr + P( x2 ) must bounded. Thus in order to cancel the nonboundedness of this 

quantity at r = 0 due to the lnr-singularity, the function P( x2 ) must be such that 

where P(x2) is bounded. Hence, the quantity -c1lnlsin01 + P(x2) or c1lnlsin01 

must be bounded since by definition P( x2 ) is already bounded. This will necessarily 

require that c1 = 0 since otherwise the whole term will not be bounded due to the 

fact that lnlsin01 -+ oo as 0-+ 180°. This proves the previous claim. 
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CHAPTER4 

LINEAR HARDENING SOLIDS 

4.1 INTRODUCTION 

For quasi-static crack growth in isotropic, linear hardening elastic-plastic solids, 

Amazigo and Hutchinson (1977) performed asymptotic analyses in Mode III and in 

Mode I plane stress and plane strain through separable form solutions. By assuming 

the existence of an active plastic zone at the crack front, and by neglecting the 

possible reverse plastic loading along the traction-free crack surface, they were able 

to obtain angular variations of the crack tip stress and plastic strain rate fields, and 

to determine their order of singularities at the crack tip. 

The above analyses were generalized in Mode III by Dunayevsky and Achen­

bach (1982b) for low hardening materials so as to approach the elastic-perfectly 

plastic solution when hardening disappears, and were extended in Mode III and 

Mode I plane stress and plane strain to include a secondary plastic zone along the 

crack flank by Ponte Castaneda (1987a), who also studied the Mode II plane stress 
,; 

and plane strain cases. Ponte Castaneda (1987b) also introduced a novel method 

for obtaining an approximate amplitude factor of the near-tip singular field and 

· approximate crack tip active plastic zone shapes. 

Finite element studies under steady state and small-scale yielding conditions 

were carried out by Dean and Hutchinson (1980) in Mode III with comparisons 

to the asymptotic results of Amazigo and Hutchinson (1977), and Dean (1983) in 

Mode I plane stress. Both of the studies gave explicit results regarding the crack 



-109-

tip opening displacement variations and the effect of hardening on the shape of the 

crack tip primary active plastic zone. 

For nonisotropic hardening materials, the effect of yield surface vertices was 

considered by Lo and Peirce (1981) in Mode III, with a phenomenological J2 corner 

theory of plasticity (Christoffersen and Hutchinson, 1979). An analysis for Mode 

I plane strain, steady state quasi-static crack growth was performed by Zhang, 

Zhang and Hwang (1983) to study Bauschinger-like effects for anisotropic linear 

hardening solids. Finite element computations for steady state, quasi-static crack 

growth conducted by Lam (1982) and Lam and McMeeking (1984) in Mode I plane 

strain also investigated the effect of kinematic hardening with a bilinear stress strain 

relation. 

Under dynamic crack propagation conditions, the asymptotic quasi-static solu­

tion of the variable separable type by Amazigo and Hutchinson (1977) were extended 

for isotropic linear hardening materials to include inertia by Achenbach and Kan­

ninen (1978) in Mode III, and Achenbach, Kanninen and Popelar (1981) in Mode I 

plane stress and plane strain. It is noted that both of the above studies neglected 

the possible reverse plastic loading along the crack flank, which may yield large 

errors when this secondary plastic zone is large. 

In the following, we will report the results of a very detailed finite element 

investigation of the crack tip fields for cracks growing in isotropic, linear harden-
,; 

ing solids, under conditions of Mode I plane stress, steady state and small-scale 

yielding. We will compare the solutions of this study to available asymptotic and 

. numerical counterparts in the literature. Detailed discussions regarding the evolu­

tionary variations of the field quantities with respect to the crack propagation speed 

and the effect of linear strain hardening on the crack tip fields will be presented. 

All computations are carried out for the case of the Poisson ratio v = 0.3. All 

logarithmic values used in figures are based on the natural number e. 
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4.2 QUASI-STATIC CRACK GROWTH 

Quasi-static crack growth in linear hardening solids under Mode I plane stress 

and steady state conditions has been investigated through asymptotic analyses using 

separable solutions of assumed form by Amazigo and Hutchinson (1977) and by 

Ponte Castaneda (1987a), and through a finite element analysis of the Eulerian type 

under small-scale yielding conditions by Dean (1983). Explicit resuHs were obtained 

by Amazigo and Hutchinson and Ponte Castaneda regarding the singularities and 

angular variations of the crack tip asymptotic stress and velocity fields, and by Dean 

regarding the shape of the crack tip active plastic zone and the radial dependence of 

the crack opening profile. In the following subsections, comparisons of the present 

numerical solution with those mentioned above will be perfomed whenever possible. 

The Active Plastic Zones 

Approximations for the shapes of the crack tip active plastic zones under small­

scale yielding conditions have been given by Dean (1983) and by Ponte Castaneda 

(1987b ). While the approximation by Dean is from a finite element analysis very 

similar to ours, the one by Ponte Castaneda is the result of matching trial functions 

to the near-tip elastic-plastic asymptotic fields and to the elastic far-fields, with 

parameters optimized through the use of a variational compatibility· statement. 

Comparisons with the results ·'Of the previous two investigations are shown in Fig. 

4.2.1 for a= 0.25 and 0.1, where a is the hardening parameter. Note that in Ponte 

Castaneda's calculation, Poisson ration v = 0.5 is used, instead of v = 0.3 which is 

used by Dean and by the present study. It is seen from Fig. 4.2. la, as in the case 

of perfect plasticity discussed in Chapter 3 ( see Fig. 3.2.1), Dean's result gives a 

plastic zone larger than ours. Considering the fact that the current study employed 

a near-tip finite element mesh much finer than Dean's, it is felt that the current 

study gives a better approximation for the crack tip active plastic zone. 
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FIGURE 4.2.2 The effect of hardening on the shape of the crack tip active plastic 
zone in normalized coordinates, with the origin located at the crack 
tip. 

As to the comparison with Ponte Castaneda's result, it is seen from Fig. 4.2.lb 

that both calculations agree well on the size of the active plastic zohe along the 

prospective crack line, and on the angular extent of the active plastic zone. Yet 

Ponte Castaneda's approximation estimated a much higher value for the height of 

the active plastic zone than ours. However it should noted that Ponte Castaneda's 

result also gave a large plastic zone size in Mode III, but in the horizontal direction 

rather than in the vertical direction. Nonetheless, due to the use of different Poisson 
,; 

ratio values, it is difficult to draw definite conclusions from the above comparison. 

The effect of hardening on the shape of the crack tip active plastic zone is 

illustrated in Fig. 4.2.2. It is found that as the level of strain hardening decreases 

(i.e., as the hardening parameter a decreases), the size of the active plastic zone 

increases from 0.168(K/o-0 )
2 at a= 0.5 to 0.209(K/o-0 ) 2 at a= 0.1 in the horizontal 

direction, and it decreases from 0.179(K/o-0 ) 2 at a= 0.5 to 0.140(K/o-0 ) 2 at a= 0.1 

in the vertical direction. 
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Estimation for the angular extent of the active plastic zone or the angle at which 

elastic unloading occurs is very sensitive to the contour value used in estimating 

the shape of the active plastic zone. Consequently, this subject will be temporarily 

dropped until the angular variation of the stress field is discussed. Moreover, it 

is worth mentioning that there are no signs of the existence of secondary active 

plastic zones at the back of the quasi-statically growing crack tip for the hardening 

parameter values discussed here. This observation will be further studied in the 

next subsection. 

Angular Field Variations 

We present the crack tip stress and velocity field variations in this subsection. 

First of all, a comparison of stress variations is made with the asymptotic solutions of 

Ponte Castaneda (1987a) which was carried out for the value of the Poisson ratio v = 

0.5. As shown in Fig. 4.2.3, where O"rr, aee and are are the polar stress components, 

a e is the effective stress and a is the flow stress denoting the current yield surface, 

the comparison demonstrates very good agreement between the analytical results 

(for Poisson ratio v = 0.5) and the finite element results (for v = 0.3). Furthermore, 

the asymptotic analysis of Ponte Castaneda predicts that elastic unloading occurs 

at an angle around 73.65° (see Fig. 4.2.3) right at the angular position where 

the effective stress becomes smaller than the flow stress. On the one. hand, this 

comparison suggests that the Poisson ratio v has little effect on the stress variation 
.; 

near the crack tip where the elastic part of the strains is negligible compared to 

its plastic counterpart. On the other hand, this good agreement indicates that the 

· present finite element mesh is fine enough to capture the asymptotic behavior of the 

crack tip stress and deformation fields. Consequently, the findings of this numerical 

study can be interpreted with greater confidence. 

The effect of hardening on the angular stress variations are demonstrated 

through the progressive changes of stress components with respect to the linear 
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FIGURE 4.2.3 Angular variations of the polar stress components, the effective stress 
ae and the fl.ow stress a for a = 0.1, normalized such that ae = 1 
at 0 = 0°, with comparisons to the asymptotic solution by Ponte 
Castaneda (1987a). 

hardening parameter a, as shown in Fig. 4.2.4 where all stress quantities are nor­

malized such that a e = 1 at 0 = 0°. The general tendencies of the stress variations 

are consistent with the asymptotic solutions by Amazigo and Hutchinson (1977), 

which was later elaborated by Ponte Castaneda (1987a) as discussed earlier. More­

over, the numerical solution seems to show that the slopes of arr at 0 = 0°, and 

a 88 at 0 = 0° and 180°, are very close to zero for all a values computed. Substan­

tial compressive radial stresses behind the crack tip are observed for all a values 

studied. Consequently, as in the elastic-perfectly plastic case, a tendency of reverse 

loading exists at the back of the crack tip. However, it is clear.from our numerical 

solution, as indicated by the relative magnitudes of the effective stress a e and the 

fl.ow stress a, that this tendency is not strong enough for the stress state at the 

back of the crack tip to regain yielding. This is consistent with existing analytical 

solutions. For example, according to the asymptotic solution of Ponte Castaneda 

(1987a), plastic reloading occurs only for a ~ 0.01 and at an angle very close to 
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() = 180°. Hence, the plane stress solution by Amazigo and Hutchinson (1977), in 

which the possibility of plastic reloading behind the crack tip is neglected, is indeed 

a very accurate approximation. It can be further observed from Fig. 4.2.4 that the 

value of the circumferential stress component is very close to zero near the crack 

flank from()= 165° to 180°. It is noted that the symmetry condition at 0 = 0° and 

the traction-free condition at 0 = 180° are very well satisfied, which is a major sign 

indicating the convergence of the numerical solution. 

It is also worth pointing out that the angular extent of the crack tip active 

plastic zone or the angle at which elastic unloading occurs can be estimated from 

the position where the effective stress O'e deviates from the flow stress a. To do 

that numerically, an error tolerance for the relative difference of the effective stress 

O'e with respect to the flow stress a must be specified. For example, we can set the 

tolerance to be the value such that for a = 0.1, the numerically estimated angle 

value equals the analytically obtained angle value by Ponte Castaneda. It is found 

that this tolerance is approximately 0. 77 x 10-2 • Accordingly, the angle for the 

active plastic zone is estimated to be 77.9° for a = 0.5 and 72.4° for a = 0.05. 

We have compared these estimations for different a values with those of Ponte 

Castaneda's asymptotic analysis. Very good agreement is found despite the fact 

that the present finite element computation is carried out for Poisson ratio v = 0.3 

and the asymptotic solution is for v = 0.5. 

The angular variations otthe Cartesian velocity components for a= 0.1, with 

comparisons to the results of Ponte Castaneda (1987a), are shown in Fig. 4.2.5 

where the velocity quantities are normalized such that v1 = -1 at 0 = 0°. The com­

parison between the numerical solution and the analytical solution demonstrates, 

as in the case of stress variations, that a rather good agreement is achieved. This 

fact confirms an earlier observation that the angular variations of the stress and 

deformation fields do not depend strongly on the Poisson ratio at locations very 

near the crack tip. 
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FIGURE 4.2.5 Angular variations of the Cartesian velocity components for a= 0.1, 
normalized such that v1 = -1 at 0 = 0°, with comparis~ns to the 
asymptotic solution by Ponte Castaneda (1987a). 
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The dependence of the angular velocity variations on the linear hardening pa­

rameter a is illustrated in Fig. 4.2.6 with normalizations mentioned above. It is 

observed that v1 always stays negative whereas v2 stays positive. At 0 = 0°, the 

slope of v2 is found to increase as a decreases. At locations outside the crack tip 

active plastic zone, i.e., for 0 values approximately larger than 70°, the magnitude 

of v2 is always about three times larger than that of v1 • 

Radial Field Variations 

The radial variations of the stress components are presented here for 0 = 0°, 

i.e., along the prospective crack line, which are plotted in Fig. 4.2.7 in their original 

normalized forms and in Fig. 4.2.8 in double-logarithmic coordinates. Note that all 

data are taken from five elements away from the crack tip and that only one data 

point is extracted from each element. 

It is clear from Fig. 4.2. 7 that both o-11 and o-22 possess strong singularities at 

the crack tip, and that the magnitudes of the stress distributions decrease as the 

hardening parameter a decreases. Straight lines are found in Fig. 4.2.8, where the 

data point on the left is closest to the crack tip. Apparently, it can be concluded 

from Fig. 4.2.8 that the stresses behave as rs as r -+ 0, with the singularity 

parameters being negatively valued. Both the absolute value of s, i.e., the slope of 

a straight line, and the magnitudes of the stress components are found to decrease as 

a decreases, which means that, the crack tip stress field is less singular for materials 

with less strain hardening. At the same time, it is discovered that the straight lines 

in Fig. 4.2.8 start to curve up at locations away from the crack tip, especially for 

· smaller a values. In other words, the range of linearity in these plots become smaller 

as a becomes smaller, which seems to suggest that the dominance zone of the rs 

singularity diminishes as hardening disppears. The magnitude of o-22 is found to be 

consistently larger than that of o-11 . 
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FIGURE 4.2.11 The crack opening displacement b ( twice of the vertical displacement 
u2 along the crack surface) in its normalized form, compared with 
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The radial dependence of the plastic strain components along () = 0° is shown 

in Figs. 4.2.9 and 4.2.10. As in the case of stress variations, the plastic strain 

components are found to be strongly singular at the crack tip. It is seen from Fig. 

4.2.9 that the magnitude of c:~2 is always larger for smaller a values, whereas for c:f 1 

the opposite seems to show up very near the crack tip. Judging from the tendency 

illustrated in Fig. 4.2.lOa, it seems true that as the crack tip is approached, c:f1 

will take on smaller values for smaller a. It is also observed that the magnitude 

of c:~2 is much larger than that of c:f 1 , which is especially true for lower a values. 

Again, approximately straight lines are observed in Fig. 4.2.10 where the plastic 

strain variations are plotted in double-logarithmic coordinates, which indicates that 

plastic strains have the same type of singularities at the crack tip as the stresses, 

i.e., they behave as rs (s < 0) as the crack tip is approached. Moreover, the absolute 

values of the slopes of the straight lines are found to decrease as a decreases, thus 

confirming our earlier findings from Fig. 4.2.8 that the singularities of the crack tip 

fields become weaker as a decreases. 

As discussed earlier in the introductory section, Amazigo and Hutchinson 

(1977), and later Ponte Castaneda (1987a), indeed were able to obtain asymp­

totic solutions with stress and velocity singularities of the form rs (s < 0). In 

these investigations, a solution with the above-mentioned singularity was assumed 

directly. This assumption resulted in a system of ordinary differential equations in 

() subject to appropriate boundary and continuity conditions. The ODE system was 
., 

then solved numerically for the angular variations of the stress and velocity fields 

and for the value of the singularity. 

To compare with the analytical solution regarding the s-values for various a­

values, a least square fitting is made to our finite element result at the crack front, 

with data extracted from the sixth to the tenth elements assuming that the crack 

tip coincides with the lower-left node of the first element. This type of estimation 

is performed for each stress component, and the mean value for s is taken to the 



-125-

final estimation. The comparison is given in Table 4.2.1, where s 1 is the estimation 

from 0-11, s2 is the estimation from o-22, Sa is the average of s1 and s2, and Sr is 

the reference value for Poisson ratio v = 0.5 from the asymptotic solution by Ponte 

Castaneda (1987a), and € is the percentage relative difference of Sa with respect to 

Table 4.2.1 Values of the singularity parameter s at m = 0.4 

(.\I s1 S2 Sa Sr . € (%) 

.5 -.412 -.416 -.414 -.420 1.4 

.3 -.346 -.352 -.349 -.357 2.2 

.2 -.297 -.303 -.300 -.310 3.2 

.1 -.223 -.228 -.225 -.237 5.1 

It can be observed from the table that the differences between the finite element 

results and the asymptotic results are indeed very small. As to the magnitude of the 

difference in s, it is seen that as a decreases, the magnitude tends to increase, which 

somehow reflects the shrinked region of dominance of the leading stress singularity, 

and hence the increased error by approximating the stress curves as straight lines 

in the double-logarithmic coordinates. 

The size of the r 8 stress singularity dominance zone can be estimated by setting 

a relative error tolerance between the original numerical data and the fitted data. 

For e:xample, by requiring that the relative error be within 5%, we have obtained 

such estimations along () = 0°, which are shown in Table 4.2.2. In the table, the size 

of the dominance zone is normalized by the horizontal size of the crack tip active 

plastic zone. Computation is performed for both of the nonzero stress components 

and the actual maximum relative error is shown beside each ratio. It can be observed 

consistently that the stress component o-22 has a much larger dominance zone than 

the stress component 0-11. Moreover, the size of the dominance zones for both 

stress components is found to decrease rapidly as a or the level of strain hardening 
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decreases. Nonetheless, it seems that the rs stress singularity has a surprizingly 

large dominance zone at the crack tip. 

Table 4.2.2 Ratio of the rs stress singularity dominance zone 
size to the active plastic zone size along 0 = 0° 

a for 0-11 €(0-11) (%) for 0-22 €( 0-21) (%) 

.5 .640 4.9 1.43 4.4 

.3 .234 4.6 .838 4.8 

.2 .170 5.0 .467 4.6 

.1 .0939 4.4 .247 4.7 

Finally we present the results of the crack opening displacement for steady 

state quasi-static crack growth. For a = 0.25, a comparison with that of a similar 

finite element investigation by Dean (1983) is shown in Fig. 4.2.11. Note that the 

crack opening displacement 8 is twice of the vertical displacement u2 of the crack 

surface. It is seen that, as observed for crack growth in elastic-perfectly plastic 

materials discussed in Chapter 3 (see Fig.3.2.8), the crack opening profile predicted 

by Dean is slightly larger than that of the current study, which may be due to the 

fact that a coarser mesh is employed by Dean. 

The dependence of the crack opening profile on the linear hardening parameter 

a is depicted in Fig. 4.2.12. It is discovered, as expected, that the magnitude of u2 

decreases as a decreases, which is apparently due to the fact that as a decreases, 
,; 

the material in question becomes "softer." 

4.3 DYNAMIC CRACK PROPAGATION 

Dynamic crack propagation in linear hardening solids under Mode I plane stress 

and steady state conditions has been investigated through asymptotic analyses using 

separable solutions of assumed form by Achenbach, Kanninen and Popelar (1981 ), 

in a manner similar to the one by Amazigo and Hutchinson (1977) for quasi-static 
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crack growth. Explicit results were obtained regarding the singularities of the crack 

tip stress and velocity fields, and the asymptotic angular variations of the stress 

components in the active plastic zone. In the following subsections, comparisons 

of the present numerical solution with the asymptotic solution of Achenbach et al. 

will be perfomed whenever possible. 

The Active Plastic Zones 

Shown in Figs. 4.3.la and 4.3.lb is the effect of hardening on the shape of the 

crack tip active plastic zone for m = 0.3 and m = 0.5, where m is called the Mach 

number and is defined as the ratio of the speed of crack propagation, v, to that 

of the elastic shear wave, Cs, It is found that the existence of a secondary active 

plastic zone behind the crack tip is detected by the present finite element' study for 

a = 0.05 at m = 0.5, although there is no sign of such a reloading zone for any 

linear hardening parameter at the lower Mach number m = 0.3. 

As in the case of quasi-static crack growth (see Fig. 4.2.2), it is found that as 

the linear hardening parameter a decreases, the active plastic zone elongates in the 

direction of crack propagation, and it shrinks slightly in the direction perpendicular 

to that of crack propagation at v / Cs = 0.5. For example, at v / Cs = 0.3, the width 

and height of the active plastic zone change, respectively, from 0.l 77(I</a0 ) 2 and 

0.202(I</a0 ) 2 at a= 0.5 to 0.221(I</a0 ) 2 and 0.164(I</a0 ) 2 at a:-- 0.1. 
. ~ 

Moreover, it is observed from Fig. 4.3.la that at v/cs = 0.3, the near-tip 

angular extent of the crack front active plastic zone almost remains the same as a 

or the level of strain hardening decreases. Recall that in the case of quasi-static 

crack growth ( see Fig. 4.2.2), the situation is very similar. However, at v / Cs = 0.5 

which is the highest crack speed we have investigated, it can be seen clearly from 

Fig. 4.3.1 b that as a decreases, the angular extent of the crack fron active plastic 

zone is actually increasing. 
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FIGURE 4.3. la The effect of hardening on the shape of the crack tip active plastic 
zone at v / Cs = 0.3, plotted in normalized coordinates with the origin 
located at the crack tip . 

N ..... 
• 
~ .... 
' N 
X 

. 30 

.25 

.20 

. 15 

.10 

.05 

.00 

Reverse Yielding 
Zone 

♦ 

GI• ,4 

------- GI • .2 

-. 05 ____ __,_ _ ___. __ ...._ ___ __._ _ __, __ ..__ _ _.__ _ __. 

-.15 -.10 -.05 .00 .05 .10 .15 .20 .25 .30 .35 

Xs/(K/a1 ) 2 

FIGURE 4.3.lb The effect of hardening on the shape of the crack tip active plastic 
zone at v / Cs = 0.5, plotted in normalized coordinates with the origin 
located at the crack tip. 



• ..... 
0 

~ --' • X 

-129-

Mach nud>er 11 • v/, u • .4 
. 30 r----.---,----,.--.----.---,----,.--~-""T""--, 

.25 

. 20 

. 15 

. 10 

.05 

.00 

., 

· ... 
<--';----.. '•· .. , 
\ ... ', 
\ .... ', \ ' · . 

'\\ 
\ ... 
~-... 
\ ... 
\ ·· .. 
I •,, 

\ \ 
I ; 
I \ 

II • .0 
m • .3 
II• .5 

-. 05 ....__........_ _ __._ _ ___. __ .____........_ _ __.._ _ ___. __ ....._ _ _._ _ __, 

-.15 -.10 -.05 .00 .05 .10 .15 .20 .25 .so .35 

Xs/(l</a0 ) 2 

FIGURE 4.3.2a The effect of crack propagation speed on the shape of the, crack tip 
active plastic zone for a = 0.4, plotted in normalized coordinates, 
with the origin located at the crack tip. 

• 

Mach nud>er m • v/c5 u • .05 
.so r----r---.---...--~--r---.---...--T---,----, 

.25 
,· 

.20 
f 

.. •·-······· 

II• .0 
II • .3 
• - .4 
• - .5 

'; .15 

~ --'). .10 
X 

.05 
., 

Reverse Yielding 
Zone 

• . 00 _________________ u..,._ _____ _ 

-.05 ____ __,_ ____ _._ _ __,_ __ - ____ __. ______ _, 

-.15 -.10 -.05 .00 .05 .10 .15 .20 .25 .so .35 

Xs/(l</a0 ) 2 

FIGURE 4.3.2b The effect of crack propagation speed on the shape of the crack tip 
active plastic zone for a = 0.05, plotted in normalized coordinates, 
with the origin located at the crack tip. 



-130-

vi;• .4 
2 r----~---"""T"---"'T"'"---~----,,---..--

• - .3 Cll'rent study along r/lK/a1 ) 1 • ,20338-3 

.., 
0 .... 

t) 
"'~ .... ---- au 

-1 CUrrent study 
------- Achenbach et al. 

-2 
0 30 60 90 120 150 180 

8 

FIGURE 4.3.3 Angular variations of the polar stress components, the effective stress 
and the fl.ow stress for a = 0.3 and v / c8 = 0.4, normalized such 
that the effective stress a e = 1 at () = 0°, with comparisons to the 
asymptotic solution by Achenbach, Kanninen and Popelar (1981 ). 

As explained previously for quasi-static crack growth, the determination of 

the angle separating the active plastic zone and the elastic unloading zone is very 

sensitive to the contour value employed in estimating the shape of the active plastic 

zone. N ontheless, _a rough estimation of the unloading angle can be made from the 

angular variation of the stress field which is to be discussed. 

The evolutionary variations of the crack tip active plastic zone with respect 

to the crack propagation speed is illustrated in Fig. 4.3.2a for a = 0.4 and in 

Fig. 4.3.2b for a = 0.05. It is seen that for a = 0.4, a typical value for materials 

with relatively high level of strain hardening, the active plastic zone expands at the 

crack front as m increases, whereas in the limiting case of a = 0 (i.e., for elastic­

perfectly plastic materials), the plastic zone actually shrinks, although slightly, at 

the crack front (see Fig. 3.3.la). In fact, this tendency is already evident for the 

low-hardening case of a = 0.05 shown in Fig. 4.3.2b, where it is observed that as m 
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increases, the size of the active plastic zone along the crack line first increases and 

then decreases. As to the height and the angular extent of the active plastic zone, 

the same tendency is exhibited for all the cases, namely that as m increases, both 

the height and the angular extent increase, except that the percentage of increase 

is much higher for lower hardening materials. 

Another feature of the active plastic zone worth mentioning is that, at higher 

crack propagation speeds and for lower levels of strain hardening, for example, at 

m = 0.4 and 0.5 for a = 0.05 ( see Fig. 4.3.2b ), secondary active plastic zones are 

indeed detected by the present finite element solution. It is noted, however, that 

reversed plastic reloading is limited to an area very close to the crack flank. The 

same feature is discovered for elastic-perfectly plastic solids (see Fig.3.3.1). 

Angular Field Variations 

In Fig. 4.3.3 the angular variations of the Cartesian stress components, <J'ij 

(i, j -:- 1, 2), the effective stress <J'e and the flow stress u for a= 0.3 and m = v/ c8 = 
0.4 are plotted against the angular position 0. Shown in the same figure are the 

results of an asymptotic analysis by Achenbach, Kanninen and Popelar (1981) for 

the same linear hardening values yet for m ~ 0.403 ( or /3 = 0.25 in their paper). 

For comparison purposes, all stress quantities are normalized such that u e = 1 at 

0 = 0°. It is clear that the two solutions agree very well in the angular variations of 

the stress field. The solution by Achenbach et al. stops at the angle at which elastic 

unloading takes place, which is found by them to be around 85.8°. In the numerical 

solution, as discussed for the quasi-static case, this angle should be determined from 

the angular position where u e deviates from u. Using the error tolerance 0. 77 x 10-2 , 

it is estimated to be around 81 °, which is slightly smaller than the one predicted by 

Achenbach et al .. However, if one recalls that a slightly higher m value is used by 

Achenbach et al., and considers the fact that the elastic unloading angle increases as 

m increases (see Fig. 4.3.2), it can be concluded that the estimate from the present 
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numerical solution is reasonable. 

Using the same error tolerance, the effect of hardening and inertia on the 

angular extent of the crack tip active plastic zone can be estimated. For example, 

at crack propagation speed v / Cs = 0.3, it is found that the angle changes slightly 

from 78° for a = 0.5 to 80° for a = 0.05. Whereas at v / Cs = 0.5, it changes from 

82° for a = 0.4 to 92° for a = 0.05. On the other hand, for the strain hardening 

level a= 0.4, the angle is estimated to be 76° at v/cs = 0 and 82° at v/cs = 0.5. 

The effect of hardening on the angular stress variations are demonstrated in 

Fig. 4.3.4 for v / Cs = 0.3 and in Fig. 4.3.5 for v / Cs = 0.5. It can be seen that at 

the lower crack propagation speed, the stress variations are not much different from 

their quasi-static counterparts (refer to Fig. 4.2.4). However, at the higher crack 

propagation speed, and for a= 0.1 and 0.05, which correspond to very low strain 

hardening, the variations develop a feature distinct from both of their quasi-static 

counterparts and their higher hardening counterparts. 

It is clear from Fig. 4.3.5 that kinks, or in other words, strong signs of slope 

discontinuities in the stress components arr and are, appear at locations approx­

imately where elastic unloading takes place. This feature has also been observed 

for dynamic crack propagation in elastic-perfectly plastic solids at high speeds ( see 

Fig. 3.3.2 of the present study and the asymptotic solution of Gao, 1987). This 

observed discontinuity in the slopes of the stresses, if not attributed to numerical 

errors, may probably explain .,an interesting situation encountered by Achenbach, 

Kanninen and Popelar (1981). In carrying out the integration of a set of ordinary 

. differential equations in their asymptotic analysis, they reported that for different 

values of the hardening parameter a, there exist corresponding different limiting 

crack speeds above which their numerical integration algorithm failed to converge. 

In connection with the existence of a secondary active plastic zone behind the 

crack tip, it is apparent from Fig. 4.3.5b that for the linear hardening parameter 
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FIGURE 4.3.4a The effect of hardening on the angular variations of the polar stress 
components O'rr and a-99 for v/c8 = 0.3, normalized such that the 
effective stress a e = 1 at 0 = o0
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FIGURE 4.3.4b The effect of hardening on the angular variations of the polar stress 
component O'r8, the effective stress O'e and the flow stress a for 
v / C8 = 0.3, normalized such that a e = 1 at 0 = 0°. 



.., .... 
t) 

-134-

along r/(Kla.) 1 • .6411e-3 v/, • .5 

1.5 .--------------------------, 

1.0 

.5 

.0 

-.5 

:::::~~-. "-:--:-,.;~.:_o-::-;~. ____ __0rr , .. - .-· ~ ·, 

-----·--· 
···---·--·· 
-----·-·-· 

Cl• .4 
Cl• .3 
Cl• .2 
Cl• .1 
Cl• .05 

·~·' s ·, 

-~'-, ·,_ ~---, 
' ~-

...... _ a 
s.-~'::-:--'.!·-·-· .... ~,._;..; ~ 

-1.0 
0 30 60 90 120 150 180 

e 
FIGURE 4.3.5a The effect of hardening on the angular variations of the polar stress 

components <Yrr and <roe for v/c8 = 0.5, normalized such that the 
effective stress u e = 1 at 0 = 0° . 

.., .... 
t) 

-.5 ..__...,__ ....... __ ..._ _ _.__ ....... __ .,__ _ _._ _ ___. __ ......__ ..... 
0 20 40 60 80 100 120 140 160 180 200 

e 
FIGURE 4.3.5b The effect of hardening on the angular variations of the polar stress 

component <Yro, the effective stress <Ye and the flow stress u for 
v / C8 = 0.5, normalized such that u e = 1 at 0 = 0°. 



• 
~ ..., .... 
0 

-135-

Mach IUliler • • v/c,, along r/(K/a,) 1 • .64Ua-3 GI• .4 
10 r------,-----r----,r-----.-----.------. 

9 

5 
4 
3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 

0 

• -.o 
------- II •.25 
--·--·--· II •.4 
·················· II •.5 

30 60 90 

9 

120 150 180 

FIGURE 4.3.6a The effect of crack speed on the angular variations of the polar stress 
components O"rr and aee for a= 0.4, plotted in normalized form. 
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a= 0.05 at the crack speed v/cs = 0.5, the effective stress ae rises up at 0 ~ 180° 

and joins the curve for the fl.ow stress a, which means reversed plastic loading there. 

Shown in Fig. 4.3.6 and Fig. 4.3. 7 are the dependence of the angular stress 

variations on the crack propagation speed for, respectively, a = 0.4 and 0.05. A 

very interesting phenomenon can be observed at 0 = 0°. From Fig. 4.3.6a, in which 

a = 0.4, it is seen that, as m increases, CTrr increases and aoo decreases. However, 

from Fig. 4.3.7a, in which a = 0.05, it is seen that, as m increases, <Irr decreases 

although aoo still decreases. Yet from our discussions for the limiting case of a = 0, 

i.e., for crack propagation in elastic-perfectly plastic solids, the tendency discussed 

above in the case of a= 0.4 is observed again (see Figs. 3.3.2b and 3.3.5b, c). 

The angular variations of the crack tip velocity field for various strain hardening 

levels and crack propagation speeds are presented in Fig. 4.3.8 with normalizations 

such that v1 = -1 at 0 = 0° for each value of a, and in Fig. 4.3.9 with the standard 

normalization defined in Chapter 2 such that the relative magnitudes of the velocity 

components at different crack propagation speeds can be observed. 

For v/cs = 0.3 (see Fig. 4.3.8a), it is seen that the variations of the Cartesian 

velocity components are very much the same as those for quasi-static crack growth 

(see Fig. 4.2.6). Yet for v/cs = 0.5 (see Fig. 4.3.8b), for which dynamic effects are 

expected to be stronger, it is observed that the angular variations undergo large 

changes, especially for very lower hardening materials. Specifically, the velocity 

curves tend to deviate from th~ general trends exhibited by the quasi-static solution. 

For example, the transition of the curve for the v2 component from the actively 

. yielded plastic zone, where its slope is positive, to the elastic unloading zone, where 

its slope is closer to zero or slightly negative, becomes more abrupt, or in other 

words, better defined. 

This observation can be further demonstrated from the evolutionary changes 

of the velocity field with respect to the speed of crack propagation, for two typical 
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hardening parameter values a= 0.4 and a= 0.05, shown respectively in Figs. 4.3.9a 

and 4.3.9b. It is found for both a values that the values of v1 and v2 are, respectively, 

consistently negative and nonnegative for the complete range of 0 values, and that 

as m increases, the slope of v2 at 0 = 0° decreases, and the magnitude of v1 at 

0 = 180° increases. However, although for a = 0.4 the magnitude of v1 at 0 = 0° 

and that of v2 at 0 = 180° respectively decreases and increases as m increases, the 

trend seems to reverse for a= 0.05 and form values larger than a certain value. 

Radial Field Variations 

The effect of hardening on the radial variations of the stress field along the 

prospective crack line are illustrated in Fig. 4.3.10 and Fig. 4.3.12 for v / Cs = 0.3 

and 0.5, respectively. It is observed that, as a decreases, the magnitu9-es of a11 

and a 22 decrease. Moreover, as r approaches zero, where r is the radial distance , 

to the crack tip, the stresses are found to rise rapidly. These observations strongly 

indicate that the stresses are singular at the crack tip yet the singularity decreaes 

as a decreases. In fact, the double-logarithmic plots in Fig. 4.3.11 and Fig. 4.3.13 

reveals approximate straight lines near r = 0, which strongly suggests crack tip 

stress singularities of the type rs with s < 0. Meanwhile, there are signs that as a 

increases, some of the straight lines in the double-logarithmic plots become curved, 

which can be viewed as an evidence of the shrinkage of the range of dominance of 

the rs stress singularities. Nevertheless, this rs-singularity region is found to exist 
,; 

for a even as low as 0.05 and for v / Cs as high as 0.5. 

More interesting features of the stress variations at the crack front can be 

discovered from the influence of crack propagation speed on those quantities. First 

of all, it it can be seen from Figs. 4.3.14 and 4.3.15 for a = 0.4 and from Figs. 

4.3.16 and 4.3.17 for a = 0.05 that, as m = v/cs increases, the magnitude of a22 

decreases. Whereas, as already observed from the angular variations of the stress 

field, the magnitude of a 11 increases for a = 0.4, yet it decreases for a = 0.05. 
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FIGURE 4.3.13a The radial variations of the stress component 0-11 for v/cs = 0.5, 
along the prospective crack line in normalized double-logarithmic 
coordinates. 
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FIGURE 4.3.13b The radial variations of the stress component o-22 for v / Cs = 0.5, 
along the prospective crack line in normalized double-logarithmic 
coordinates. 
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FIGURE 4.3.14b The radial variations of the stress component 0-22 for QI = 0.4, along 
the prospective crack line in the normalized coordinates. 
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along the prospective crack line in normalized double-logarithmic 
coordinates. 

Mach nllli>er 11 • v/, Ill• .4 along e • o• 
2.5 -------~---~---------------

2.0 

-0 1.5 
~ 

N 
N 

1:) --.9 1.0 

.5 

~~ ·-,,~ 
'· 

'....:~~ 
" . ..... ~ 

m •.O 
ID •.25 
ID •.4 
ID •.5 

.o ._ __ ....,_ ___ .__ __ ....,_ ___ .__ __ ....,_ ___ .__~ _ _, 
-8 -7 -6 -5 -4 -3 -2 -1 

Log(Xs/CK/a0 ) 2 ) 

FIGURE 4.3.15b The radial variations of the stress component o-22 for a = 0.4, 
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FIGURE 4.3.16b The radial variations of the stress component o-22 for a = 0.05, 
along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.l 7a The radial variations of the stress component o-11 for a = 0.05, 
along the prospective crack line in normalized double-logarithmic 
coordinates. 
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FIGURE 4.3.l 7b The radial variations of the stress component o-22 for a = 0.05, 
along the prospective crack line in normalized double-logarithmic 
coordinates. 
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However, in the limiting case of a= 0, the magnitude of an increases again as m 

increases (see Fig. 3.3.5b ), as discussed in Chapter 3. Moreover, by comparing the 

double-logarithmic plots in Fig. 4.3.15a and with those in Fig. 4.3.17a, it can be 

concluded that both the hardening parameter a and the Mach number m = v / Cs 

affect the singularity and its range of dominance of the crack tip stress field: It seems 

that, as a decreases and as m increases, the range of dominance for the rs-type stress 

singularity shrinks, and at the limit a= 0, as demonstrated by results presented in 

Chapter 3 for elastic-perfectly plastic solids, stress singularity disappears or stresses 

are bounded (see Fig. 3.3.5). 

As discussed earlier, the current problem is also studied asymptotically by 

Achenbach, Kanninen and Popelar (1981 ), who assumed a priori that both the stress 

and the velocity fields possess rs ( s < 0) singularities at the crack tip. A solution of 

this kind was indeed obtained by solving a system of ordinary differential equations 

resulting from a separable form of solution with the assumed rs-dependence. 

.5 

.3 

.2 

Table 4.3.1 Values of the singularity parameter s at m = 0.4 

Sz 

-.402 -.406 -.404 -.411 

-.328 -.333 -.331 -.339 

-.271 -.276 -.274 -.282 

E (%) 

1.7 

2.4 

2.8 

To compare with the above analytical solution regarding the s-values for various 

a~values, a least square fitting-is made to our finite element result at the crack front, 

with data extracted from the sixth to the tenth elements if the crack tip is supposed 

to reside at the lower-left corner of the first element. This type of estimation is 

performed for each stress component, and the mean value for s is taken to be the 

final estimation. The comparison is given in Table 4.3.1, where s 1 is the estimation 

from a 11 , s 2 is the estimation from a 22 , Sa is the average of s1 and s2, Sr is the 

reference value from the asymptotic solution of Achenbach, Kanninen and Popelar, 

and € is the relative difference of sa with respect to Sr in percentage. 
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FIGURE 4.3.18a The radial variations of the plastic strain component c:f1 for v/cs = 
0.3, along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.18b The radial variations of the plastic strain component t:~2 for v / C 8 = 
0.3, along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.19b The radial variations of the plastic strain component c~2 for v / Cs = 
0.3, along the prospective crack line in double-logarithmic coordi­
nates. 
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FIGURE 4.3.20a The radial variations of the plastic strain component cf 1 for v / Cs = 
0.5, along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.20b The radial variations of the plastic strain component c~2 for v / Cs = 
0.5, along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.2la The radial variations of the plastic strain component cf 1 for v / Cs = 
0.5, along the prospective crack line in double-logarithmic coordi­
nates. 
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FIGURE 4.3.21 b The radial variations of the plastic strain component c:~2 for v / Cs = 
0.5, along the prospective crack line in double-logarithmic coordi­
nates. 
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FIGURE 4.3.22a The radial variations of the plastic strain component cf 1 for a = 
0.4, along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.22b The radial variations of the plastic strain component c~2 for a = 
0.4, along the prospective crack line in the normalized coordinates. 
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FIGURE 4.3.23a The radial variations of the plastic strain component c:f1 for a = 
0.4, along the prospective crack line in double-logarithmic coordi-
nates. 
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FIGURE 4.3.23b The radial variations of the plastic strain component c:;2 for a = 
0.4, along the prospective crack line in double-logarithmic coordi­
nates. 
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FIGURE 4.3.24a The radial variations of the plastic strain component ef1 for a = 
0.05, along the prospective crack line in the normalized coordi-
nates. 
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FIGURE 4.3.24b The radial variations of the plastic strain component €~2 for a = 
0.05, along the prospective crack line in the normalized coordi-
nates. 
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FIGURE 4.3.25a The radial variations of the plastic strain component c{'.1 for a = 
0.05, along the prospective crack line in double-logarithmic coor­
dinates. 
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FIGURE 4.3.25b The radial variations of the plastic strain component c~2 for a = 
0.05, along the prospective crack line in double-logarithmic coor­
dinates. 
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FIGURE 4.3.26a The radial variations of the effective plastic strain Ef for a = 0.4, 
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FIGURE 4.3.26b The radial variations of the effective plastic strain c~ for a = 0.05, 
along the prospective crack line in the normalized coordinates. 
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It can be observed from the table that the differences between the finite element 

results and the asymptotic results are small. It is observed that as a decreases, the 

relative difference between the numerical estimation and the analytical value tends 

to increase. This is reasonable since as a increases, the region of dominance of the 

asymptotic solution shrinks, and the error in approximating the stress curves by 

straight lines in the double-logarithmic coordinates increases. 

As discussed in the case of quasi-static crack growth, the size of the rs stress 

singularity dominance zone can be estimated by setting a relative error tolerance 

between the original numerical data and the fitted data. For example, by requiring 

that the relative error be within 5%, we have obtained such estimations along 0 = 0°, 

which is shown in Table 4.3.2. In the table, the size of the dominance zone is nor­

malized by the horizontal size of the crack tip active plastic zone. The computation 

is performed for both of the nonzero stress components and the actual maximum 

relative error is shown beside each ratio. It can be observed consistently that the 

stress component o-22 has a much larger dominance zone than the stress component 

o-11 . Moreover, the size of the dominace zones for both stress components is found 

to decrease rapidly as a or the level of strain hardening decreases. Nonetheless, it 

seems that the rs stress singularity has a surprizingly large dominance zone at the 

crack tip. 

Table 4.3.2 Ratio of the rs stress singularity dominance zone size 
to the active plastic zone size along 0 = o0 at m = 0.4 

.5 

.3 

.2 

.997 

.321 

.199 

t:(0-11) (%) 

4.9 

4.7 

4.4 

1.36 

1.23 

.605 

t:(0-22) (%) 

4.3 

4.0 

4.7 

Plastic strain variations along ray 0 = 0° are discussed in the following, as 

shown in Figs. 4.3.18 through 4.3.25, regarding the singularities of the plastic 

strain components at the crack tip and the effects of strain hardening and crack 
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propagation speed on the magnitude of those components. 

First of all, just like in the case of stress variations, it is generally observed that 

as the distance to the crack tip approaches zero, the magnitudes of the plastic strain 

components rise up rapidly, which suggests the existence of strain singularities at 

the crack tip. Further, the straight lines observed from the double-logarithmic plots 

strongly indicate that the plastic strains have the same type of singularities as the 

stresses. That is, as r -+ 0, the plastic strains behave as rs with s < 0, where r is 

the distance to the crack tip. 

Moreover, it is consistently seen that, for the same a and v/cs values and at 

the same normalized distance to the crack tip, the 2-2 plastic strain component, 

c:~2 , is predominantly larger than the 1-1 component, c:f1 , although the magnitude 

of relative dominance seems to decrease as a increases or as v / Cs increases. 

For dynamic crack propagation at a typical intermediate speed v / Cs = 0.3, it 

is clear from Figs. 4.3.18a and 4.3.19a that at locations very close to the crack tip, 

the magnitude of c:f1 tends to become smaller as a decreases, and that further away 

from the crack tip, it tends to becomes larger for smaller a values. It is also found 

that the 2-2 plastic strain component always has higher values near the crack tip 

for lower a values. However, at the higher crack speed v/cs = 0.5, judging from 

the tendencies shown in Figs. 4.3.20 and 4.3.21, it seems that both c:f 1 and c~2 will 

have smaller magnitudes as a decreases. 

The effect of crack propagation speed on the plastic strain field is illustrated 

below. For all cases investigated, it is discovered that as m or v / Cs increases, the 

magnitude of c~2 is seen to decrease (see Figs. 4.3.22b through 4.3.25b ). At the 

same time, it is found that as m increases, although the magnitude of c:f1 for a= 0.4 

also increases (see Figs. 4.3.22a and 4.3.23a), it reverses this tendency at a certain m 

value for a= 0.05 (see Figs. 4.3.24a and 4.3.25a). However, sincec~2 is always much 

larger than cf 1 near the crack tip, the effective plastic strain, by definition, would 
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be dominated by, and hence behave as c~2 • That is, as the crack speed increases, 

the level of effective plastic strain will decrease ( see Fig. 4.3.26). Thus, just like in 

the case of dynamic crack propagation in elastic-perfectly plastic solids discussed in 

Chapter 3, this behavior can be used to explain experimental observations on many 

metallic materials, namely that at a higher crack propagation speed, the material 

resistance to fracture is higher. Hence, we can interpret the above behavior as 

follows. At a certain fixed load level characterized by the value of the far-field 

stress intensity factor K, the level of plastic straining represented by the effective 

plastic strain is lower for higher crack propagation speeds at the same location ahead 

of the crack tip. In order for the level of plastic straining at a higher crack speed to 

be the same as that at a lower crack speed, the loading level for the former must be 

raised. Consequently, continued fracture will occur at a higher loading level for a 

higher crack speed, if fracture is characterized by the attainment of a critical plastic 

strain level at a certain distance ahead of the crack tip. 
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FIGURE 4.3.27a The effect of strain hardening on the radial variation of the vertical 
displacement u2 along the crack surface for v / c8 = 0.3, plotted in 
its normalized form. 
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FIGURE 4.3.27b The effect of strain hardening on the radial variation of the vertical 
displacement u2 along the crack surface for v / c8 = 0.5, plotted in 
its normalized form. 
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FIGURE 4.3.28a The effect of crack propagation speed on the radial variation of 
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plotted in its normalized form. 
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FIGURE 4.3.28b The effect of crack propagation speed on the radial variation of 
the vertical displacement u2 along the crack surface for a = 0.05, 
plotted in its normalized form. 
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FIGURE 4.3.28c A detailed view of the effect of crack propagation speed on the 
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surface for a = 0.05, plotted in its normalized form. 
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Finally we present the results of the present finite element study regarding 

the effects of strain hardening and crack propagation speed on the crack opening 

displacement. As in the case of quasi-static crack growth, it is found that the 

magnitude of the vertical displacement component u2 in the normalize coordinates 

decreases as a decreases for all the crack speeds we investigated (see Fig. 4.3.27). 

Moreover, for a typical high hardening material, e.g., for a = 0.4, it is discovered 

that the magnitude of u2 increases as the crack speed increases (see Fig. 4.3.28a). 

However, for a low hardening material, e.g., for a = 0.05, the previous tendency, 

although it still holds far away from the crack tip as shown in Fig. 4.3.28b, is 

reversed very near the crack tip, as can be seen clearly from Fig. 4.3.28c. This 

feature has been more clearly observed in Mode I plane strain for elastic-perfectly 

plastic materials by Lam and Freund (1985) even at a distance about one-hundred 

times larger than the present one. As will be discussed in Chapter 6, by 'using this 

behavior and a critical crack tip opening angle criterion, they were able to explain 

the phenomenon of increased material resistance to continued crack propagation 

at higher speeds. Note that they were able to detect this feature by the same 

finite element method as used here from a near-tip mesh much coarser than the one 

employed here, with which, as discussed in Chapter 3 (see Fig. 3.3.13) we were not 

able to conclusively make a similar statement for elastic-perfectly plastic materials 

in Mode I plane 'stress. However, if this feature is an inherent characteristic of 

the dynamic crack tip fields (which, in fact, should be true if crack growth is to 

be achieved when a constant critical opening angle is retained, and if the material 

fracture toughness is to increase if the crack propagation speed is increased), then 

perhaps it can be more clearly revealed in plane stress for higher hardening materials 

and for elastic-perfectly plastic materials using a mesh much finer than the present 

one. 
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CHAPTER 5 

POWER-LAW HARDENING SOLIDS 

5.1 INTRODUCTION 

For isotropic power hardening solids, asymptotic analyses for steady state, 

quasi-static crack growth were given by Gao and Hwang (1981b) in Mode III, and 

by Gao, Zhang and Hwang (1983) in Mode I plane strain. After exploring the 

possibilities of series solutions with logarithmic expansion as well as with power 

expansion, they concluded that the near-tip stress and plastic strain singularities 

are of the logarithmic type. Specifically, if the hardening exponent is n ( n > l ), 

then the stresses are as singular as [ln(R0 /r )]2/(n-l) in Mode III, and as singular 

as [ln(R0 /r)]1l(n-l) in Mode I plane strain. As to strains, their singularities are of 

the order [ln(Ro/r)](n+l)/(n-l) for the xi-component and [ln(Ro/r)]2n/(n-l) for the 

x2-component in Mode III, and of the order [ln(R0 /r )tl(n-l) for all components in 

Mode I plane strain, where Ro is a length scaling parameter which is not obtainable 

through asymptotic analyses. It is noted however that no quasi-static asymptotic 

solutions in Mode I plane stress are available. 

For dynamic crack propagation in isotropic power hardening solids, similar 

steady state asymptotic analyses were conducted by Gao and N emat-N asser ( 1983b) 

in modes I and II plane strain ( for incompressible materials only) and in Mode III, 

and by Zhang and Gao (1988) in Mode I plane stress. By assuming a certain form 

of displacement expansions, they were able to derive the same stress and strain 

singularities as for Mode I plane strain quasi-static crack growth. Moreover, they 

argued that angular stress and strain field variations in Mode I and Mode II for 

hardening materials are the same as those for elastic-perfectly plastic materials. 
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On the other hand, full field numerical investigations regarding crack tip stress 

and deformation field singularities and angular field variations for crack growth in 

power hardening materials are rare. 

For quasi-static crack growth in Mode III and Mode I plane strain, finite el­

ement studies were performed by Dean and Hutchinson (1980) under steady state 

and small-scale yielding conditions, and for isotropic hardening materials obeying 

the J2 fl.ow theory and for nonisotropic hardening materials obeying the J2 cor­

ner theory (Christoffersen and Hutchinson, 1979). Results were reported for the 

shape of the crack tip active plastic zone, for the variation of the crack opening 

displacement behind the crack tip, and for the distribution of the strains at the 

crack front. 

A more detailed finite element investigation of crack tip stress and strain fields 

for steady state, quasi-static crack growth in Mode I plane strain was later conducted 

by Lam (1982). Angular variations of the stress and plastic strain fields, as well as 

the radial variations of the hoop stress, are described in this study. 

Under Mode I plane stress conditions, a similar analysis for steady state, quasi­

static crack growth was provided by Luo, Zhang and Hwang (1984). Explicit results 

for isotropic power hardening solids are reported for the shape changes of the crack 

tip active plastic zones with respect to the hardening exponent. 

While in the above fl.nit~ element studies the Eulerian-type formulation ini­

tiated by Dean and Hutchinson (1980) was employed, a nodal release procedure 

(Sorensen, 1978) was adopted in a more recent finite element analysis performed 

by Narasimhan, Rosakis and Hall (1987b ). In their study, crack tip fields for quasi­

static crack growth in Mode I plane stress under small-scale yielding conditions are 

investigated with a fracture criterion assumed a priori. In particular, numerical 

results are given for the shape of the crack tip active plastic zone, for crack opening 

displacements, for angular stress variations, for radial stress distributions at the 
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crack front, and also for certain plastic strain distributions at the crack front. 

Hence, it is seen that, as far as the crack tip fields are concerned, no numerical 

analyses for dynamically propagating cracks are available as of today. It is the 

purpose of this chapter to report the results of a detailed finite element study, 

under conditions of steady state, Mode I plane stress and small-scale yielding, for 

isotropic power hardening materials obeying the J2 flow theory of plasticity. 

It is worth pointing out that, due to lack of well-established fracture criteria as 

well as special difficulties involved in such finite element computations, numerical 

studies of crack tip fields are usually performed under small-scale yielding condi­

tions, which is also true of the present investigation. 

In this chapter, results of the present study are presented both for quasi-static 

crack growth and for dynamic crack propagation, with comparisons to or discussions 

about available asymptotic and numerical solutions. The effects of hardening and 

inertia on crack tip fields are addressed in detail. All computations are carried out 

for the case of the Poisson ratio v = 0.3. All logarithmic values used in figures are 

based on the natural number e. 

5.2 QUASI-STATIC CRACK GROWTH 

The Active Plastic Zones 

We begin our discussion on crack tip active plastic zones with a comparison to 

the result of a finite element study by Narasimhan, Rosakis and Hall (1987b) for 

n = 5, where n is the hardening parameter. It is noted that the plastic zone from 

the solution of Narasimhan, Rosakis and Hall for stable crack growth is obtained 

( from a nodal release procedure) at the twentieth nodal release and is found in an 

approximate steady state, hence comparable with our steady state solution. Shown 

in Fig. 5.2.1 are the active plastic zone shapes from the current study and from that 
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CUrrent study 
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FIGURE 5.2.1 The shape of the crack tip active plastic zone for n = 5, compared 
with that by Narasimhan, Rosakis and Hall ( 198 7b) in n:ormalized 
coordinates, with the origin located at the crack tip. 
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FIGURE 5.2.2 The effect of hardening on the shape of the crack tip active plastic 
zone in normalized coordinates, with the origin located at the crack 
tip. 
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of Narasimhan, Rosakis and Hall which was reproduced from their original plot. A 

good agreement is observed. 

The progressive changes of the crack tip active plastic zone with respect to 

the power hardening parameter n for quasi-static crack growth is illustrated in Fig. 

5.2.2 in a normalized coordinate. As the level of strain hardening decreases (i.e., as 

n increases), the plastic zone is seen to expand in the direction of crack growth and 

to shrink in the direction perpendicular to crack growth. Specifically, its horizontal 

size changes from 0.175(K/a0 ) 2 at n = 2 to 0.229(K/a0 ) 2 at n = 10, whereas its 

vertical size changes from 0.l 77(K/a0 ) 2 at n = 2 to 0.128(K/a0 )
2 at n = 10. It is 

observed that the angular extent of the active plastic zone decreases as n increases 

(we will discuss this point further in the next subsection). No secondary active 

plastic zone is found behind the crack tip. 

Angular Field Variations 

We present the crack tip stress and velocity field variations in this subsection. 

First of all, as shown in Fig. 5.2.3, a comparison of stress variations for n = 5 

is made with the finite element solution of Narasimhan, Rosakis and Hall from a 

nodal release procedure. Since the stress values from the two solutions are taken at 

different distances from the crack tip, all stress quantities are normalized such that 

the effective stress a e equals one at 0 = 0° in order to minimize differences due to 

strong radial dependence. It ·is noted that although the overall tendencies of the 

two solutions are similar, the actual magnitudes of the angular variations are quite 

different, which can be explained as follows. First note that for hardening materials, 

as will be discussed later, stresses are singular at the crack tip. Hence, numerical 

values must be extracted from locations along circular paths around the crack tip 

in order to reveal any realistic angular variations. To this end, it is worth pointing 

out that while data from the present study are obtained along a circular path, those 

from that of Narasimhan, Rosakis and Hall are from a rectangular path which will 
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certainly introduce radial dependence into the angular variations. Recall that in 

the case of crack growth in elastic-perfectly plastic solids, as discussed in Chapter 3 

(see Fig. 3.2.2a), a similar comparison with Narasimhan, Rosakis and Hall's study 

shows very good agreement, it seems that this strong radial dependence introduced 

in Narasimhan, Rosakis and Hall's solution is a major factor responsible for the 

disagreement in the present comparison. 

Secondly, it is noted that the present study is much more detailed than the 

other one in the sense that the present study employed a mesh with the ratio of 

the active plastic zone size to that of the smallest near-tip element on the order 

of 16,000, whereas the study by Narasimhan, Rosakis and Hall used a mesh with 

the ratio only on the order of 385. Moreover, the data of the present study are 

taken from locations very close to the crack tip, specifically, from a distance about 

0.2 x 10-3 (K/u0 ) 2 away from the crack tip, while those from that of Narasimhan, 

Rosakis and Hall are from a distance of about 0.2 x 10-1 (K/o-0 ) 2 away from the 

crack tip. In this light, we believe that the result of the present study is a better 

approximation for the crack tip fields. The advantage of a very detailed finite 

element mesh near the crack tip will be elaborated further when we discuss the 

radial dependence of the crack tip fields. 

The effect of hardening on the angular stress variations are demonstrated 

through the progressive changes of stress components with respect to the power 

hardening parameter n, as shown in Fig. 5.2.4 where all stress quantities are nor­

malized such that u e = 1 at 0 = 0°. The overall variations are very similar to 

those for linear hardening materials which are presented in Chapter 4. It is seen 

· that the slopes of O"rr at 0 = 0°, and 0-00 at 0 = 0° and 180° are very close to 

zero. Large compressive radial stresses behind the crack tip (see Fig. 5.2.4a) are 

observed for all n values investigated, which indicates a tendency of reverse plastic 

loading there. However, judging from the relative magnitudes of the effective stress 

u e and the flow stress u ( see Fig. 5.2.4b ), it is clear that this tendency is not strong 
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FIGURE 5.2.3 Angular variations of the polar stress components, the effec,tive stress 
a e and the fl.ow stress a for n = 5, normalized such that a e = 1 at 
0 = 0°, with comparisons to the solution by Narasimhan, Rosakis 
and Hall (1987b ). 

enough to reach yielding. Of course, this may also suggest that if yielding is actually 

achieved in a region along the crack flank, it must be extremely small such that the 

present numerical solution (although already very detailed) is not able to detect its 

existence. 

We would like to point out that the traction-free condition aee = 0 and are = 0 

at 0 = 180° and the symmetry condition a re = 0 at 0 = o0 are very well satisfied 
' 

by our numerical solution, which is a major sign of its convergence. In fact, it is 

seen that aee is close to zero along the crack flank for quite an angular range. 

By definition, the angular extent of the crack tip active plastic zone or the 

angle at which elastic unloading occurs can be estimated from the position where 

the effective stress a e deviates from the fl.ow stress a. To do that, as discussed in 

Chapter 4 for the case of linear hardening, an error tolerance must be specified for 

the relative difference of a e with respect to a. For example, using the error tolerance 
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FIGURE 5.2.4a The effect of hardening on the angular variations of the polar stress 
components arr and a99, normalized such that the effective stress 
ae = 1 at 0 = o0
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FIGURE 5.2.4b The effect of hardening on the angular variations of the polar stress 
component are, the effective stress ae and the flow stress a, nor­
malized such that a e = 1 at 0 = o0
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0. 77 x 10-2 from Chapter 4, it is found that this angle changes from 70° for n = 2 

to 55° for n = 10. 

'" > 
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FIGURE 5.2.5 The effect of hardening on the angular variations of the Cartesian 
velocity components, normalized such that v1 = -1 at () = 0°. 

The effect of power-law strain hardening on the angular variations of the veloc­

ity field is demonstrated in Fig. 5.2.5 where the velocity components are normalized 

such that v1 = -1 at 0 = 0°. It is found that, just like the case of linear hardening, 

the slope of the velocity component v2 at () = 0° becomes larger as the level of 

hardening becomes smaller or ,as the power hardening parameter n becomes larger. 

Besides, it is observed that the value of v1 is always negative while that of v2 is 

always positive. In the elastic unloading sector which begins, for example for n = 2, 

· at approximately () = 55°, the magnitude of v 2 is consistently about three times 

greater than that of v1 . 

Radial Field Variations 

The radial variations of the stress components are presented here for 0 = 0°, 
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i.e., along the prospective crack line, which are plotted in Fig. 5.2.6 in their original 

normalized forms and in Fig. 5.2. 7 in special logarithmic coordinates. Note that all 

data are taken from five elements away from the crack tip and that only one data 

point is extracted from each element. 

It can be seen that while the rapid changes of the magnitudes of the stress 

components ( see Fig. 5.2.6, especially for lower n values or for higher hardening 

materials), indicate the existence of stress singularities at the crack tip, the approx­

imate straight lines observed in Fig. 5.2. 7 strongly suggest that the singularities are 

of the type [ln(Ro/r)] 8 (s > 0), where Ro is a length scaling parameter. It is also 

found that as n increases, both the value of s or the slope of the straight lines and 

the magnitude of the stress components decrease, which simply means that stress 

singularities at the crack tip are weaker for materials with less strain hardening. In 

any case, the magnitude of a 22 is found to be larger than that of au. 

At this moment we would like to make more comparisons with the solution of 

Narasimhan, Rosakis and Hall and demonstrate the need of a detailed finite element 

mesh near the crack tip. Shown in Figs. 5.2.8a and 5.2.8b are the comparisons for 

the radial dependence of stress components au and a 22 , and the radial dependence 

of the plastic strain component c~2 , respectively, along the ray 0 = 0°. It is clear 

from the comparisons that the solution of Narasimhan, Rosakis and Hall, for ex­

ample, for the variation of au, missed the characteristic singular feature of the 

near-tip field, although its agreement with the present study at locations away from 

the crack tip is very good. This again confirms our earlier explanations regarding 

angular stress variations that the disagreement is caused by the singular radial de­

pendence of the stress components and the use of a rectangular path for the sample 

data points in the solution by Narasimhan, Rosakis and Hall. In fact, in the case 

of ideal plasticity ( see Fig. 3.2.5b) when the stresses are bounded at the crack tip, 

the solution of Narasimhan, Rosakis and Hall does agree very well with that of the 

present study. 
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FIGURE 5.2.6a The radial variations of the stress component o-11 along the prospec­
tive crack line in normalized coordinates. 
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FIGURE 5.2.6b The radial variations of the stress component o-22 along the prospec­
tive crack line in normalized coordinates. 
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FIGURE 5.2. 7a The radial variations of the stress component a 11 along the prospec­
tive crack line in special logarithmic coordinates. 

along e • o• v/c5 • o 
2.2 ,----------.-------.------.-------

--

2.0 

1.8 

1.6 

• 1.4 
~ ... 
b' 1.2 ..... 
Q ,3 1.0 

.8 

.6 

.4 

n•2 
---~--- n • 4 
--·->!r•--· n • 10 

Crack tip at Log(Log((K/a,) 1/Xt)) • • 

-&---e---e- ____ e-__ _ 

-o----__ -e ___ _ 

_....--~-- -e--~ .....e---

-----·--·-A-·--·-6-·--·*-·----·--,,•--·-,,-·--A·--·lr-·-lr·--A 

.2 _____________ ......_ _____ ......_ _____ _, 

1.4 1.6 1.8 2.0 2.2 

Log(Log((K/a0 ) 2/X1 )) 

FIGURE 5.2. 7b The radial variations of the stress component a 11 along the prospec­
tive crack line in special logarithmic coordinates. 



-177-

along e • o• n • 5 vies • o 
2.5 r------,,-----,----,.---....... -----r----, 

2.0 

0 

~ ..,1.5 .... 
t) 

1.0 

current study 
----e--- Narasiman !Ind Rosakis 

.5 .._ ______ ..._ __ __. ___ __. ___ _,_ ___ ....... ___ _, 

-.1 .0 .1 .2 

Xd(K/a0 ) 2 

.3 .4 .5 
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Narasimhan, Rosakis and Hall (1987b). 
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FIGURE 5.2.9a The radial variations of the plastic strain component c~\. along the 
prospective crack line in normalized coordinates. 
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The effect of hardening on the radial dependence of the plastic strain compo­

nents are shown in Figs. 5.2.9 and 5.2.10 for the case of 0 = o0 • Just like stress 

variations, it is seen from Fig. 5.2.9 that the plastic strain components behave 

singularly as the crack tip is approached. Further, fairly straight lines are observed 

in Fig. 5.2.10 where special logarithmic coordinates are employed, which strongly 

indicates strain singularities of the type [lnr(R0 /r)] 8 (s > 0) at the crack tip r = 0, 

where Ro is a length scaling parameter and the exponent s for strain singularities 

are in general different from that for stress singularities. It is clear thats decreases 

as n increases, which means that strain singularities at the crack tip become weaker 

for materials with weaker level of strain hardening. 

Moreover, from Fig. 5.2.9 alone, it seems that very near the crack tip, the 

magnitude of£~\ decreases as n increases, whereas that of £~2 increases. However, 

tendencies demonstrated by the straight lines in Fig. 5.2.10 suggest that both plastic 

strain components will take smaller values very near the crack tip as n increases. It 

is also clear from the figures that the magnitude of £~2 is always much larger than 

that of c:f 1 . 

As discussed earlier in the introductory section, some investigators indeed 

were able to obtain asymptotic solutions with assumed singularities of the type 

[ln(Ro/r)] 8 (s > 0) for quasi-static crack growth although not under Mode I plane 

stress conditions. For example, it is found that stresses and strains behave, re­

spectively, as [ln(R0 /r)]1f(n-I) and [ln(R0 /r)]n/(n-I) in Mode I plane strain, which 

gives explicit values of the exponents for stresses and strains. 

It is recalled here that in the case of linear hardening, we have numerically 

estimated the values of the exponent for stress singularities of the type r 8 
( s > 

0) for different levels of strain hardening, and we have compared those values to 

available asymptotic approximations with satisfying agreement. Unfortunately, we 

are not able to repeat the same calculation here for power hardening materials. 



-181-

This is because, for a singularity of the form [ln(R0 /r)] 8
, a numerically estimated 

value of s, for example, calculated from the slope of the straight line in logarithmic 

coordinates ( see Fig. 5.2. lOb ), will in general depend on the value of the unknown 

parameter Ro, although theoretically the value of s is independent of the choice 

of Ro. This numerical difficulty is not encountered in the case of linear hardening 

when singularities are of the form r 8 
( s < 0). 

Table 5.2.1 Values of the Length Scaling Parameter Ro 

Ro/(K/ao)2 

n for an for a22 for cf1 for c~2 

2 .165 .0769 .205 .0416 

4 .0814 .0312 .520 .0233 

5 .0793 .0281 .945 .0220 

8 .0892 .0265 5.34 .0216 

10 .0990 .0259 13.2 .0219 

On the other hand, if s is known, say, from an asymptotic analysis, then we can 

estimate the value of Ro from a numerical solution. However, due to the fact that 

practically a numerical solution cannot be obtained at arbitrarily small distances 

from the crack tip, estimations of Ro from data for different stress and plastic strain 

components will be different. Nonetheless, we have computed, for each nonzero 

stress and plastic strain component at 0 = 0°, an estimation of Ro from data taken 

from the sixth to tenth elements if the element at the crack tip is considered as 

the first one. Since, to the author's best knowledge, no asymptotic study for quasi­

static crack growth in power hardening solids is available in Mode I plane stress, 

we will assume that the asymptotic result for Mode I plane strain can be applied 

here. Hence, s is set to 1 / ( n - l) for stress singularities and to n / ( n - l) for plastic 

strain singualrities, where n being the power hardening parameter. Results of this 

calculation are shown in Table 5.2.1. 
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FIGURE 5.2.11 The crack opening displacement 8 ( twice of the vertical displace­
ment u 2 along the crack surface) in its normalized form, compared 
with the finite element solution by Narasimhan, Rosakis and Hall 
(1987b). 

Finally we would like to present results regarding radial variations of the crack 

opening displacement 8, which is twice of the value of the vertical displacement u2 

along the crack surface. For n = 5, a comparison is performed as shown in Fig. 

5.2.11. As in the_ case of linear hardening when a comparison is made with that 

of Dean (see Fig. 4.2.11), the current comparison with the result of Narasimhan, 

Rosakis and Hall shows again that the crack opening profile predicted by the present 
'• 

study is slightly smaller. Once again we think that this difference is mainly due 

to the fact that a much finer mesh is employed in the present study and hence the 

present solution gives a better approximation. 

Shown in Fig. 5.2.12 is the radial dependence of the vertical displacement along 

the crack surface for various hardening levels. It is seen that the radial variation of 

u2 takes similar forms for different values of n. Moreover, as n increases, the crack 

opening is found to decrease accordingly. 
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FIGURE 5.2.12 The effect of strain hardening on the radial variation of the vertical 
displacement u2 along the crack surface, plotted in its normalized 
form. 

5.3 DYNAMIC CRACK PROPAGATION 

The Active Plastic Zones 

Shown in Figs. 5.3.la and 5.3.lb are the progressive variations of the crack 

tip active plastic zone with respect to the hardening parameter n in normalized 

coordinates, for the case of dynamic crack propagation at speeds v . 0.3cs and 

0.4cs, respectively, where Cs is the elastic shear wave speed of the material. It is 

found that secondary active plastic zones along the crack flank are detected by the 

present numerical study at v / Cs = 0.4 for both n = 4 and 10, although no such 

reverse yielding zone is observed for any hardening level we studied at v / Cs = 0.3. 

Similar to the case of quasi-static crack growth, it can be seen that as n in­

creases, the crack tip active plastic zone elongates horizontally or in the direction 

of crack propagation, and it shortens vertically or in the direction perpendicular to 

that of crack propagation. For example, at v / Cs = 0.3, it is found that the size of 
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FIGURE 5.3.la The effect of hardening on the shape of the crack tip active plastic 
zone at v / Cs = 0.3, plotted in normalized coordinates with the origin 
located at the crack tip . 
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FIGURE 5.3.2a The effect of crack propagation speed on the shape of the crack tip 
active plastic zone for n = 5, plotted in normalized coordinates, 
with the origin located at the crack tip. 
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the crack front active plastic zone changes horizontally from about 0.182(K/ao)2 for 

n = 2 to about 0.232(K/a0 ) 2 for n = 10, and vertically from about 0.187(K/a0 ) 2 

for n = 2 to about 0.152(K/a0 ) 2 for n = 10. 

Moreover, at v/cs = 0.3, the near-tip angular extent of the plastic zone 1s 

found to decrease as n increases, which is basically the same as in the case of quasi­

static crack growth. However, at v/cs = 0.4 when inertia due to high-speed crack 

propagation is strong, the tendency described above is reversed. In fact, it can be 

seen from Fig. 5.3.lb that as n increases, this near-tip elastic unloading angle also 

increases, although slightly. This point will be further noted when we try to give 

an estimation of this angle from angular variations of near-tip stress quantities. 

The effect of inertia or crack propagation velocity on the shape of the crack 

tip active plastic zone is illustrated in Fig. 5.3.2a for n = 5 and in Fig. ·5.3.2b for 

n = 10. It is first noted that a secondary active plastic zone or reverse yield zone is 

detected by the present finite element solution at Mach number m = 0.4 (m = v/cs) 

for both n = 5 and 10, which can be viewed as a sign of stronger dynamic effect at 

a higher crack speed. 

Recall that in the case of ideal plasticity (refer to Fig. 3.3.la of Chapter 3), the 

size of the crack front active plastic zone slightly shrinks along the prospective crack 

line as m increases. However, this is not the case for hardening materials. Just like 

for linear hardening materials, the crack front plastic zone for crack propagation in 

power hardening materials expands both horizontally and vertically as m increases. 

Yet it can be seen that the extent of its horizontal expansion diminishes (see Fig . 

. 5.3.2b) as n increases or as the elastic-perfectly plastic limit is approached. 

Angular Field Variations 

Angular variations of the polar stress components, the effective stress and the 

flow stress are plotted in Fig. 5.3.3 for v / Cs = 0.3 and in Fig. 5.3.4 for v / Cs = 0.4 
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with normalizations such that a e = 1 at 0 = o0 • At the lower crack propagation 

velocity v / Cs = 0.3, the variations are not very much different from those for quasi­

static crack growth. It is seen that although relatively high compressive arr values 

are found behind the crack tip (see Fig. 5.3.3a), reverse plastic yielding is not 

detected which is clear from the gap between ae and a (see Fig. 5.3.3b). However, at 

the higher crack speed v / Cs = 0.4 when stronger inertia effect is expected, features 

not observed from quasi-static fields begin to show up as the level of hardening 

decreases or as n increases. First of all, it is clear from Fig. 5.3.4a that a sudden 

change of slope or a kink has developed in arr for n = 10 at a location where 

approximately G'e deviates from a or where elastic unloading first takes place (see 

Fig. 5.3.4b ). In fact a sign of kinking can already be seen for n = 4. Besides, 

corresponding to the appearance of the kink near the elastic-plastic interface, a 

secondary active plastic zone is also developed along the crack flank, which can be 

seen from the fact that ae = a near 0 = 180° for n = 4 and 10 (see Fig. 5.3.4b). 

The existence of this reverse loading zone behind the crack tip has been discussed 

earlier (see Fig. 5.3.2). 

In the first-order asymptotic analysis of Zhang and Gao (1988), it is concluded 

that angular field variations do not depend on the power hardening parameter n 

since very near the crack tip the values of the plastic strains are so high that the ef­

fective stress and strain relationship are basically that of an elastic-perfectly plastic 

material. Hence, they argued that the angular field variations should be the same 

as those for elastic-perfectly plastic materials. To this end, we would mention that 

there is only one such first-order asymptotic analysis for elastic-perfectly plastic ma­

terials available as of today, which was given by Gao (1987) and has been discussed 

in Chapter 3. In this asymptotic analysis for steady state dynamic crack growth, 

a kink indeed exists at the elastic-plastic interface in the angular stress variations, 

which we have observed in our numerical solutions at high crack propagation speeds 

for elastic-perfectly plastic materials ( see Fig. 3.3.2b ), for low-level linear harden-
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ing materials ( see Fig. 4.3. 7) and for the above discussed low-level power hardening 

materials ( see Fig. 5.3.4 ). 

However, there seem to be more differences than similarities between the results 

of the present study and those of the asymptotic analysis of Gao in regard to angular 

stress variations. In the case of ideal plasticity, we attributed the differenc:es to the 

lack of enough dominance zone of first-order dynamic asymptotic solution at low 

crack propagation speeds, which was first discovered by Freund and Douglas (1982). 

Naturally, if this was the right reason, it will also hold for hardening materials with a 

low level of hardening since then the materials are expected to show characteristics 

similar to those of nonhardening materials. Yet, in the present case where the 

asymptotic analysis of Zhang and Gao has suggested that the angular field variations 

be the same for power hardening and nonhardening materials, the lack _of enough 

dominance zone at a high level of strain hardening for the effective stress strain 

relation to be approximated by that of a nonhardening material may be another 

major factor. Theoretically speaking, this approximation is valid only at the limit 

the effective plastic strain approaches infinity, or at the limit r = 0 assuming strain 

singularities exist at the crack tip. 

As in the case of linear hardening, the angle at which elastic unloading takes 

place may be founded by estimating the location where the effective stress u e de­

viates from the flow stress u. By taking the same error tolerance in the inequality 

u e < u as in the case of linear-hardening, i.e., 0. 77 x 10-2 , the following estimations 

can be made. At crack speed v / Cs = 0.3, the elastic unloading angle is calculated 

to be, respectively, 76.9° and 72.4° for n = 2 and 10, from which we see the angle 

decreases as n increases. However, at v / Cs = 0.4, the angle is found to be, respec­

tively, 82.3° and 85.9° for n = 2 and 10. That is, as n increases, the angle also 

increases, which confirms our earlier observation on this point (see Fig. 5.3.lb ). 

The effect of inertia or crack propagation speed on the angular stress variations 
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FIGURE 5.3.3a The effect of hardening on the angular variations of the polar stress 
components arr and aoe for v/cs = 0.3, normalized such that the 
effective stress a e = 1 at 0 = o0

• 

..., .... 
t) 

along r/(K/0,) 1 • .20338-3 v/c9 • .3 
2.0 -----,...--------.---....... --------, 

1.5 

.5 

.o 

n•2 
------- n • 4 
·················· n • 10 

-.5 ..._ __ __.,__ __ ___. ___ _._ ___ __,_ ___ __,_ ___ _. 

0 30 60 90 

9 

120 150 180 
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FIGURE 5.3.5a The effect of crack speed on the angular variations of the polar 
stress components o-rr and 0-00 for n = 5, normalized such that the 
effective stress o-e = 1 at 0 = 0°. 
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can be more clearly seen from Fig. 5.3.5 for n = 5 and Fig. 5.3.6 for n = 10. 

Note that all stress quantities are normalized by the initial yield stress a 0 • Hence, 

comparisons between magnitudes of stress quantities corresponding to different m 

values can be performed. For example, as m increases, a is found to decrease for 

all 0 values. At the same time, the magnitude of the compressive radial stress arr 

near 0 = 180° also increases such that a e, at at m = 0.4, reaches the value of a 

behind the crack tip, resulting in the observed reverse plastic loading. 

The angular variations of the crack tip velocity field for various strain hardening 

levels and crack propagation speeds are illustrated in Fig. 5.3. 7 with normalizations 

such that v1 = -1 at 0 = 0°, and in Fig. 5.3.8 with the standard normalization 

so that the magnitudes of the velocity components at different crack speeds can be 

compared. 

At the crack speed v/c8 = 0.3 (see Fig. 5.3.7a), it is seen that the variations 

of the Cartesian velocity components are very much the same as in the case of 

quasi-static crack growth (see Fig. 4.2.5). Yet at v/c8 = 0.4 when dynamic effect 

is expected to be stronger, it is obsesrved that the angular variations show very 

different features (see Fig. 5.3.7b). For example, the transition of the curve for 

the v2 component from the actively yielded plastic zone, where its slope is positive, 

to the elastic unloading zone, where its slope is closer to zero or slightly negative, 

becomes more abrupt or better defined. This behavior is more clearly demonstrated 

in Figs. 5.3.8a and 5.3.8b for n = 5 and 10, respectively. 

Nevertheless, the following observations can be made for all cases studied. First 

of all, throughout the angular range, v 2 stays positive while v1 stays negative. Sec­

ondly, the velocity curves tend to rise up in the angular range corresponding to the 

active plastic zone, and they tend to flatten out in the angular range corresponding 

to the elastic unloading zone. Thirdly, as n and v / c8 increase, both the slopes of 

the velocity curves tend to become zero. Finally, the magnitude of v2 is about three 
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times larger than that of v1 most of the time. 

Radial Field Variations 

The effect of hardening on the radial variations of the stress field ~ong the 

prospective crack line is illustrated in Fig. 5.3.9 for v/cs = 0.3 and in Fig. 5.3.11 

for v/cs = 0.4. It can be seen that, as n increases or as the level of hardening 

decreases, the magnitudes of o-11 and o-22 decrease. Moreover, as r approaches 

zero, where r is the radial distance to the crack tip, the stresses are found to rise 

rapidly. These observations strongly indicate that the stresses are singular at the 

crack tip, yet the singularity decreases as n increases. In fact, when the stress 

variations are plotted in special logarithmic coordinates, as shown in Figs. 5.3.10 

and 5.3.12, the stress curves appear to be straight lines. This suggest~ that the 

crack tip stress singularities are of the type [ln(R0 /r)] 8 (s > 0), where Ro is a 

length scaling parameter. 

It is worth pointing out again that any asymptotic expression at r = 0 with 

leading singularity term of the type [ln(R0 /r)] 8 is ill-conditioned. This comes from 

the fact that when r approaches zero, the choice of R0 is in fact not unique or it can 

be any length scale. To state it more precisely, for any given length scale R, a range 

for r near zero can be found such that the leading singularity in the asymptotic 

expression can be changed f~om [ln(R0 /r)] 8 to [ln(R/r)] 8
• This ill-conditioning 

may result in complicated and confusing numerical problems. 

For example, in Figs. 5.3.10 and 5.3.12, r is normalized by(K/o-0 ) 2 which may 

not be the right length scaling parameter. If the scaling parameter Ro corresponding 

to the correct singularity powers for the range of numerical data being processed is 

very different from the one we used, we would then observe curved lines, although 

the curved lines resulted from such a bad choice of length scaling do not change the 

fact that the singularity is still given by [ln(R0 /r)] 8
• 
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Furthermore, as briefly mentioned in the case of quasi-static crack growth, if 

we have a set of data representing a behavior of the form [ l n( Ro/ r)) 8 and try to 

estimate s or the slope of the straight line in special logarithmic coordinates ( see, 

for example, Fig. 5.3.lOb), we will find that the slope will strongly depend on the 

choice of Ro if the range of r for the set of data is not close enough to zero such 

that the effect of Ro can be neglected. 

More features of the radial variations of stress components at. the. crack front 

can be discovered by examing their dependence on the crack propagation speed. 

At n = 5, it can be seen from Fig. 5.3.13, that very close to the crack tip the 

magnitudes of a 11 and a 22 both decrease as m increases. Whereas at n = 10, the 

magnitude of the stress component a11 increases as m increases, which resembles 

the feature found in the case of ideal plasticity (see Fig.3.3.5b ). 

Some inconsistent behaviors of the stress component a 11 can be observed from 

Fig. 5.3.14a and especially from Fig. 5.3.16a, where it is seen that the stress lines are 

curved for n = 5 (although slightly), and particularly for n = 10 at m-:-- 0.3 and 0.4. 

There are several possibilities for these unusual behaviors. Besides numerical errors 

occurring in the finite element computation, they may be due to the normalization 

we used, which, for the range of distance to the crack tip, may not correctly represent 

the leading asymptotic term as discussed earlier. There may also be a lack of enough 

dominance zone near the crack tip. 

; 

Shown in Figs. 5.3.17 through 5.3.20 are the variations of the plastic strain 

components along the prospective crack line for some typical values of the power 

. hardening parameter n. 

First of all, as in the case of radial stress variations, it can be generally observed 

that the magnitudes of the plastic strain components rise up rapidly as the distance 

to the crack tip approaches zero, which suggests the existence of strain singulari­

ties at the crack tip. Further, the straight lines shown in the special logarithmic 
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coordinates in Figs. 5.3.18 and 5.3.20 strongly indicate that the plastic strains have 

the same type of singularities as the stresses. That is, as r -+ 0, the plastic strains 

behave as [ln(Ro/r)] 8 (s > 0), where r is the distance to the crack tip and Ro is a 

length scaling parameter. 

Moreover, it is consistently seen that, for the same values of the hardening 

parameter n and the normalized crack propagation velocity v/cs, the magnitude 

of the plastic strain component e~2 is always much larger than that of the strain 

component ef 1 , especially at lower v / Cs values. 

From the tendencies demonstrated in the figures, especially those plotted in 

special logarithmic coordinates, it can be seen that at locations very close to the 

crack tip, the magnitudes of both ef1 and €~2 tend to decrease as n mcreases. 

Whereas further away from the crack tip, the opposite is observed. 

As discussed earlier, a first-order asymptotic analysis for steady state dynamic 

crack propagation in Mode I plane stress has been given by Zhang and Gao (1988). 

Using series expansions, they were indeed able to obtain a solution with stress and 

strain singularities of the type indicated by our full field numerical solution, namely 

[ln(R0 /r)] 8 (s > 0). They have also explicitly given the value of sin terms of the 

power hardening parameter n, which is 1/(n - 1) for all stress components and 

n / ( n - 1) for all strain components. Note that the length scaling parameter Ro is 

not obtainable from an asymptotic analysis. In fact, as we argued earlier, the choice 

for Ro is not unique. Unfortu~ately, for the same reason, it seems that one cannot 

determine the values of Ro ands from numerical fitting, since to do so would require 

. that any numerical or experimental data be obtained at distances arbitrarily close 

to the crack tip, which in reality is not feasible. 

The effect of crack propagation speed on the plastic strain field will be discussed 

below. For all cases investigated, it was discovered that as m or v/cs increases, the 

magnitude of €~2 is seen to decrease ( see Figs. 5.3.21 b through 5.3.24b). Whereas 
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at the same time, it is found that as m increases, the magnitude of c:f1 first increases 

and then at a certain m value it decreases (see Figs. 5.3.21a through 5.3.24a). How­

ever, since c:~2 is always much larger than c:f 1 near the crack tip, the effective plastic 

strain, by definition, would be dominated by, and thus behave as c:~2 • That is to say, 

as the crack speed increases, the level of effective plastic strain will decrease ( see 

Fig. 5.3.25). Hence, as in the case of dynamic crack propagation in elastic-perfectly 

plastic solids discussed in Chapter 3, this behavior can be utilized to explain ex­

perimental observations on many metal specimens, namely that at a higher crack 

propagation speed, the material resistance to fracture is higher. Thus the above 

behavior can be interpreted as follows. At a certain fixed load-level characterized 

by the value of the far-field stress intensity factor J{, the level of plastic strain­

ing represented by the effective plastic strain is lower for higher crack propagation 

speeds at the same location ahead of the crack tip. In order for the level, of plastic 

straining at a higher crack speed to be the same as that at a lower crack speed, the 

loading level for the former must be raised. Consequently, continued fracture will 

occur at a higher loading level at a higher crack speed, if fracture is characterized 

by the attainment of a critical plastic strain level at a certain distance ahead of the 

crack tip. 

Finally we present the results of the present finite element study regarding 

the effects of strain hardening and crack propagation speed on the crack opening 

displacement. As in the case of quasi-static crack growth, it is found that the 

magnitude of the vertical displacement component u 2 in the normalized coordi­

nates decreases as n increases for all crack speeds we investigated (see Fig. 5.3.26) . 

. Moreover, for typical power hardening materials, e.g., for n = 5 and 10, it is found 

that the magnitude of u2 becomes larger as m increases (see Fig. 5.3.27) at dis­

tances far away from the crack tip. Whereas at locations very near the crack tip, 

the previous tendency does not hold any longer. Instead, it is seen that the above 

tendency begins to reverse, that is, as m increases, the magnitude of u2 tends to 
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FIGURE 5.3.26a The effect of strain hardening on the radial variation of the vertical 
displacement u2 along the crack surface for v / Cs = 0.3, plotted in 
its normalized form. 
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in its normalized form. 
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surface for n = 5, plotted in its normalized form. 
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decrease (see Fig. 5.3.28), which has also been observed for linear hardening solids 

( see Fig.4.3.28c ). This feature has been more clearly observed in Mode I plane 

strain for elastic-perfectly plastic materials by Lam and Freund (1985) even at a 

location about one-hundred times farther away from the crack tip than the present 

one. As discussed in Chapter 6, by using this behavior and a critical cracktip open­

ing angle criterion, they were able to explain the phenomenon of increased material 

resistance to continued crack propagation at higher speeds. Note that they were 

able to detect this feature by the same finite element method as used here from a 

near tip mesh much coarser than the one employed here, with which, as discussed 

in Chapter 3 (see Fig. 3.3.13) we were not able to conclusively make a similar state­

ment for elastic-perfectly plastic materials in Mode I plane stress. However, if this 

feature is an inherent characteristic of the dynamic crack tip fields ( which, in fact, 

should be true if crack growth is to be achieved when a constant critical opening 

angle is retained, and if the material fracture toughness is to increase if the crack 

propagation speed is increased), then perhaps it can be revealed in plane stress for 

higher hardening materials and for elastic-perfectly plastic materials using a mesh 

much finer than the present one. 
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CHAPTER6 

FRACTURE CRITERIA 

6.1 INTRODUCTION 

It is fair to say that the history of fracture mechanics is a history of searching 

for fracture criteria. Griffith (1920, 1924), in his pioneering work on the rupture of 

brittle materials such as glass and quartz, stated that fracture would occur when 

the released elastic strain energy from a cracked system, due to an infinitesimal 

crack growth, compensates the surface energy needed for the creation of the new 

crack surface. It is well known that the appearance of this Griffith energy criterion 

marks the beginning of fracture mechanics. 

The Griffith criterion is, however, applicable to ideally elastic materials only. 

This very fact hindered its use on metals for almost 30 years, until Irwin (1948) 

and Orowan (1949) independently modified this criterion to include work done in 

plastic deformation at the crack tip. 
' 

The energy balance criterion is, however, only a necessary condition for fracture 

initiation. Its satisfaction merely means that it is energetically favorable for the 

crack to grow, but whether the crack grows or not depends on whether the stress 

and deformation states in the immediate neighborhood of the crack tip permit such 

crack growth. To this end, the Griffith criterion is not sufficient, which may also 

be one of the main factors for the long silence of research activities in fracture 

mechanics. 
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Fracture mechanics began to prosper when Irwin (1956) defined the concept of 

a strain energy release rate, or a crack extension force. This strain energy release 

rate, which is usually denoted by G, differs from the Griffith's elastic strain energy 

release in that it is determined from the stress and displacement fields in the vicinity 

of the crack tip, rather than from a global energy consideration. Since, as· observed 

by Irwin, the value of G measures the intensity of the crack tip stress field, so long 

as the influence of plastic deformations accompanying fracture extension is limited 

to the close neighborhood of the crack tip, it is expected that when G reaches a 

critical value, Ge, crack extension occurs, which is the strain energy release rate 

criterion, or simply the G-criterion. 

The G-criterion is further substantiated by the general analyses of Irwin (1957) 

and Williams (1957) on the crack tip stress and strain fields for elastic materials. 

It is found that the near-tip singular fields are uniquely characterized by a loading 

parameter I<, the so-called stress intensity factor, and that G is proportional to the 

square of I<. Due to the wide availability of handbooks and testing methods on 

stress intensity factors, a fracture criterion based on I<, or the I<-criterion, is now 

in vast application. Naturally, it is noted, that the G-criterion and the J<-criterion 

are equivalent. 

Although the concept of energy balance is universally valid, the G-criterion and 

hence the J<-criterion are applicable only to problems where plasticity is localized 

in the crack tip area. This necessitates the search for alternate fracture criteria. 

A fracture criterion, which holds for even larger scale plastic deformations, is 

. established through the discoveries of a path-independent integral, the so-called ]­

integral (Rice, 1968b ), and the HRR-singularity (Hutchinson, 1968a; and Rice and 

Rosengren, 1968). For nonlinear elastic power-law solids or elastic-plastic solids 

under proportional loading conditions, where the deformation theory of plasticity 

can be employed, the HRR-singularity states that the stress and deformation fields 
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at the crack tip are uniquely determined by the value of the J-integral. Under 

conditions of monotonic loading and small-scale yielding, it is shown that J=G by 

virtue of the path-independence of the J-integral. This fact rationalizes the use of 

G and hence K as fracture-controlling parameters, since G and hence K, through J, 

still measure the intensity of the crack tip stress and strain fields under the, specified 

conditions. The generality of the J-integral warrants the popular applications (for 

the onset of crack extension) of the fracture criterion based J (see Broberg, 1971; 

Begley and Landes, 1972; and Landes and Begley, 1972). 

It is a well-established fact that a phase of stable crack growth in elastic-plastic 

solids exists in many applications following the onset of crack extension (see, for ex­

ample, Broek, 1968; Rice, 1975; and Broberg, 1975). Fracture control for such cases 

is accomplished by means of fracture criteria used in fracture initiation, through the 

concept of Resistance-Curves (ASTM STP 527, 1974). Under small-scale yielding 

conditions, there are the KR-curves and GR-c11,rves, which characterize the increase 

of material resistance to continued crack extension. Fracture conditions under which 

such stable crack extensions occur are usually termed the K-controlled, or the G­

controlled conditions. Similarly, J-controlled fracture conditions also exist. It is 

observed (Paris, Tada, Zahoor and Ernst, 1977; Hutchinson and Paris, 1979; and 

Hutchinson, 1979, 1983) that under certain restrictions, a short range of J-controlled 

slow stable crack growth exists in an approximate sense, although as a crack ex­

tends materials near the crack tip experience nonproportional plastic deformation, 

which renders inappropriate the deformation theory of plasticity, and hence the 

HRR-singularity and the path-independence of the J-integral. 

The aforementioned fracture criteria, when used for the onset of crack growth 

in elastic-plastic solids under proper constraints, or for continued crack growth in 

ideally brittle solids, have clear physical meanings and sound theoretical bases. Un­

der elastic-plastic stable crack growth conditions, however, these criteria themselves 

do not tell the sources of increased material resistance to continued fracture. Be-
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sides, these criteria cannot be extended without more fundamental studies to cases 

beyond their limits, such as cases involving dynamic crack propagation. 

There is as yet no universal fracture criterion for crack growth in elastic-plastic 

solids, i.e., fracture criteria in such instances are, broadly speaking, problem-specific. 

In the case of dynamic crack propagation, in particular, a generally accepted frac­

ture criterion does not even exist, although a criterion based on the dynamic stress 

intensity factor has been proposed. Besides, as discussed later, different. fundamen­

tal criteria have to be used for Mode I plane strain, and for Mode I plane stress and 

Mode III, the anti-plane strain case. 

In this chapter, two types of fracture criteria for continued crack growth in 

elastic-plastic solids are discussed, namely the ones based on the plastic strains at 

the crack front, and the ones based on the crack opening displacements behind the 

tip. These criteria make use of the stress and deformation field quantities very near 

the crack tip. Therefore, the use of these criteria depends on the availability of 

solutions of the crack tip elastic-plastic fields, which raises some mathematical and 

experimental difficulties. The common problem with this type of criteria is that 

the critical values for crack growth to occur do not allow calculations of fracture 

stress or critical crack size. But at the same time, it is theoretically advantageous to 

assume criteria ofthese kind, since these criteria are based on local crack tip fields, 

and hence they are more fundamental than criteria based on indirect quantities such 

as the stress intensity factor I< or the ]-integral. 

6.2 CRITERIA BASED ON PLASTIC STRAINS 

Orowan was the first to suggest a fracture criterion based on plastic strains 

at a crack front. He stated that for ductile fracture "the simplest assumption is 

that the crack propagates if the plastic strain at its tip reaches a critical mag­

nitude." ( Orowan, 1949.) However such a over-simplified criterion will not work 
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because of the existence of theoretical singularities of plastic strains at the crack 

tip in elastic-plastic solids. 

A fracture criterion, which avoids the difficulties associated with the strain sin­

gularity at the crack tip, was proposed by McClintock (1956, 1958) and McClintock 

and Irwin (1964). It is suggested that fracture would occur when the crack front 

plastic strain level at a characteristic distance away from the crack tip reaches a 

critical value. The characteristic distance is on the order of grain or subgrain size 

and should be determined experimentally. 

This critical plastic strain criterion has its bearings from micromechanical ex­

perimental observations. As discussed by Puttick (1959), Glennie (1972), Cox and 

Low (1974), and Andersson (1977), ductile fracture, where fibrous and shear-type 

fractography is observed, is always accompanied by void growth and coalescence 

within the crack front fracture process zone. These micromechanical activities are 

grossly reflected as measurable large strains in the region adjacent to the fracture 

process zone. Thus the critical strain criterion has sound physical grounds. 

Due to experimental difficulties, the McClintock-Irwin criterion is not employed 

frequently in practical applications. For example, it is impossible to actually mea­

sure the critical value of the plastic strain corresponding to the separation of ma­

terial, at least not with current experimental techniques and facilities. However, 

its theoretical potentials should not be overlooked. In fact, this criterion has been 

used successfully to study the, effects of inertia on a rapidly moving crack (Freund 

and Douglas, 1982). When combined with numerical methods, this criterion offers 

. many advantageous properties over those based on era.ck tip opening displacements 

( see discussions later). 

6.3 CRITERIA BASED ON DISPLACEMENTS 

Fracture criteria based on displacements were first introduced for the initiation 
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of crack growth in the presence of large plastic deformation. It was proposed by 

Wells (1961, 1963, 1965) that crack growth in elastic-perfectly plastic solids occurs 

when the crack tip opening displacement 8, usually known as CTOD or COD, 

reaches a critical value 8c, where 8c is a material constant which may depend on 

the environment and the thickness of the plate in question. 

This fracture criterion is consistent with the theoretical discoveries that 8 is 

nonzero at a stationary crack tip for an elastic-perfectly plastic solid (see, for ex­

ample, Rice, 1967, 1968a), and with the experimental observations of crack tip 

blunting. Under conditions where the ]-integral is applicable, it can also be shown 

that J is directly proportional to 8. For example, in the case of Mode I plane stress, 

the application of the Dugdale model (Dugdale, 1960), the Tresca yield criterion 

and the path-independency of the ]-integral, would readily produce that J = ao8, 

where o-0 is the initial yield stress in tension. 

Problems arise when the above defined criterion is used for hardening materials, 

simply because 8 at the crack tip is zero for such materials, as shown by the HRR­

field (Hutchinson, 1968a; and Rice and Rosengren, 1968). An extension of the 

8-criterion was then proposed by Rice (see Tracey, 1976), through an properly 

redefined 8 value at the crack tip. 

For continued crack extension, it has been proposed (Andersson, 1973; and 

de Koning, 1977) that the slope of the crack tip opening profile, or the crack tip 

opening angle which is usually termed CTOA, be used as a parameter characterizing 

the fracture process. In fact it is observed ( for example, see Kanninen, Popelar and 

Broek, 1981) that CTOA is approximately a material constant during stable crack 

growth. 

Theoretically, however, it can be shown that for advancing cracks the crack 

surface intersects the crack tip at a right angle, which renders the above-defined 

CTOA meaningless. A modification of the critical crack tip opening angle criterion 
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was suggested by Rice and Sorensen (1978). They assumed that fracture initiation 

and continued crack growth can occur if a critical opening b = be is maintained at 

a small characteristic distance rm behind the tip, where rm is a micromechanical 

length scale. This criterion is found to be very useful in interpreting theoretical 

asymptotic results ( see discussions later). 

There also exists a different modification of the CTOA criterion. Known as 

the critical opening angle criterion, or COA in short, the criterion assumes that 

continued crack growth is realized when a certain averaged crack tip opening angle is 

maitained at a constant level (see Shih, deLorenzi and Andrews, 1979; and Kanninen 

et al., 1979). 

Methods based on fracture criteria of the CTOD, CTOA, or COA types are 

now in broad application, especially where large-scale yielding is involved. -Yet there 

are still many important issues remaining to be answered. A practical difficulty, as 

we noted, is the definition of these quantities. Later we will also point out more 

difficulties encountered when a criterion of this kind is used in conjunction with 

numerical results. Our emphasis here is, however, on the micromechanical aspects of 

those criteria. As we know, a critical plastic strain criterion at the crack front would 

in a gross sense represent the micromechanical activities in the fracture process 

zone, namely the activities of void nucleation, growth and coalescence. But what 

is the connection between the crack tip opening profile and those micromechanical 

behaviors at the crack front?, Although there is yet no complete answer to this 

key-note question, we would like to draw attention to an argument offered by Rice 

(1968a) and Rice and Johnson (1969). 

It is observed for stationary cracks that, in contrast to the cases of Mode III 

and Mode I plane stress, maximum strain concentrations for elastic-plastic materi­

als do not occur directly ahead of a Mode I plane strain crack tip (see Rice, 1967, 

1968a). This situation is more pronounced for nonhardening materials, where sin-
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gular strains appear only in the centered fan sector, which is 45o away from the 

prospective crack line, whereas at the crack front strains are bounded. In fact this 

phenomenon is typical of Mode I elastic-plastic fields around plane strain, sharp 

crack tips, including growing cracks (see Drugan, Rice, and Sham, 1982). A ques­

tion then arises as to how ductile fracture occurs if there is no strain concentration 

at the crack front. This paradox was investegated by Rice (1968a), and Rice and 

Johnson (1969), who attributed this to the negligence of crack tip blunting due 

to finite strain effect during progressive loading. They argued that, a crack tip 

blunting of size bt, the discrete or nonzero crack tip opening displacement, would 

modify the near-tip slip line network, so as to produce an intensive straining region, 

spreading ahead over a length scale about twice that of bt. It then seems plausible 

that crack growth would occur when the size of the intensive straining region, and 

hence the crack tip opening displacement, reaches a critical value. In this light, 

a ductile fracture criterion based on the local crack opening profile, rather than 

on crack front strains, seems more appropriate for Mode I plane strain problems. 

However there are no similar analyses for growing cracks. 

6.4 THEORETICAL Kfc vs. v CURVES 

There are many issues regarding the use of I{ as a fracture-characterizing pa­

rameter for dynamic crack propagation, not only due to experimental discrepancies, 

as discussed in the introductory chapter, but also due to the fact that K, under 

small-scale yielding conditions, no longer holds its many fine properties as in the 

case of fracture initiation. Because of the existence of residual plastic wake behind 

the crack tip, I{ loses its simple relation to the energy release rate G, which is 

somehow the physical ground for the K-criterion for fracture initiation. Also be­

cause of the plastic wake, the singular K-field will not exactly surround the crack 

tip elastic-plastic zone, and it is not clear whether I{ still characterizes the frac­

ture behavior at the crack tip. To summarize, directly assuming the validity of 
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the K-criterion for dynamic crack propagation in elastic-plastic materials has no 

solid theoretical ground. However, as we know, there have been vast investments 

in developing and standardizing K-measurement techniques and instruments, and 

well documented data are widely available. It is therefore of vital importance to 

carefully investigate the validity of the K-criterion from a more fundamental point 

of view, and to properly assess its accuracy and reliability as a practical fracture 

criterion. 

It is our purpose in this section to demonstrate, instead of directly assuming, 

the legitimacy of the K-criterion for dynamic crack propagation in solids which fail 

in a locally ductile manner through the use of more fundamental fracture criteria 

such as those discussed earlier. In particular, we will utilize the McClintock-Irwin 

critical plastic strain criterion to extract theoretical Kfc vs. v curves from our 

numerical full field solutions for Mode I plane stress crack tip fields in elastic­

perfectly plastic solids, where Kfc is the critical dynamic stress intensity factor, 

and vis the speed of crack propagation. Good agreement with experimental results 

on 4340 steel will be demonstrated. We will also point out the source of difficulty, or 

impossibitity to be more accurate in some circumstances, to extract such a I<fc vs. v 

relation from a crack tip opening displacement based fracture criterion. Theoretical 

implications of this phenomenon will be addressed. 

As mentioned in the previous sections, fracture criteria based on G, K, or J 

alone cannot explain the sour;ce of increased material resistance to contined frac­

ture. And hence it is impossible to theoretically generate resistance curves, such 

as GR(L\a), KR(L\a), and JR(L\a) curves (L\a being the amount of crack growth), 

using these criteria without invoking more fundamental assumptions. 

The 6-based fracture criterion is usually used in plane strain where, as discussed 

before, the crack tip plastic straining is not, according to the small strain theory, 

concentrated directly at the crack front. Under contained yielding conditions, it 
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has been a long endeavor to correlate the crack tip opening profile b'( r) to the 

value of the ]-integral, and to predict stable crack growth theoretically, where r 

is the distance to the crack tip. Note that J is defined here in the elastic region 

surrounding the crack tip plastic zone and is, under small-scale yielding conditions, 

related to K through 

(6.4.1) 

with E' = E for Mode I plane stress and E' = E/(l - v2
) for Mode I plane strain, 

where E is the Young's modulus. It is shown by the asymptotic analysis of Rice, 

Drugan and Sham (1980) for elastic-perfectly plastic materials that the relation 

between b'( r) and J can be described in the following rate form during crack growth: 

8 = ai /a0 + (3a(a0 /E)ln(R/r), (6.4.2) 

where a is the crack speed, (3 is a constant known from the asymptotic analysis 

((3 = 5.462 for v = 0.3, for example), a is a dimensionless quantity, and R is a 

length scale undetermined by the asymptotic analysis, but can be approximately 

obtained from a full field finite element analysis. For a continuously growing crack 

(i.e., when dJ /dais finite), Eq.(6.4.2) can be integrated to get the profile very near 

the tip as 

b' = (ar/a0 )dJ/da + ((3ra0 /E)ln(eR/r), (6.4.3) 

where e = 2. 718 is the natural number or the base of the natural logarithm. It is 

clear from Eq.(6.4.3) that b' =' 0 at r = 0 for a advancing crack, and that the crack 

faces meet the tip at a right angle with the crack line. Hence the crack growth 

criteria based on the crack tip opening displacement at r = 0, or on the crack tip 

opening angle at r = 0, cannot be used here, rather, a criterion based on a critical 

value of b' at r =/= 0 must be adopted. Rice and Sorensen (1978) proposed such a 

criterion by assuming that fracture initiation and continued crack growth can occur 

if a critical opening b' = he is maintained at a small characteristic distance rm behind 

the tip, which can be viewed as a critical crack opening angle criterion. Thus from 
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Eq.(6.4.3), it is required that 

(6.4.4) 

It was noted by Rice, Drugan and Sham (1980) that the critical crack opening angle 

criterion can be rephrased in a manner which makes no reference to the "microscale" 

parameters rm and he. This was done by rearranging Eq.(6.4.3) into the form 

(6.4.5) 

where 

(6.4.6) 

with T = (E/u5)dJ/da being the tearing modulus (Paris, Tada, Zahoor, and Ernst, 

1977). Thus, equivalently, the criterion for crack growth with a geometrica~ly similar 

profile very near the tip is that p, after attaining its critical value Pc at the onset 

of crack extension, remains constant during stable crack growth. 

A relation between be and J of the type in Eq.(6.4.4), which is extracted from 

asymptotic analyses and crack growth criteria, can be used to describe the process 

of stable crack growth. The description is, however, not complete without the 

values of a and R, which are obtainable only through a full field analysis, such as a 

finite element computation. For example, under small-scale yielding conditions, it is 

observed from finite element calculations (Sham, 1979, 1983; Dean and Hutchinson 

1980; and Parks, Lam and McMeeking, 1981) that 

R = sEJ/uJ, (6.4.7) 

where s is obtained from crack opening profile through numerical fitting. Unfor­

tunately, s is found to vary widely in the range of 0.11 ~ 0. 78 from one study to 

another. We believe that this somewhat random behavior is mainly due to the 

inevitably large crack tip discretization errors, especially for the Eulerian-type fi­

nite element formulations employed by the latter two investigators. Nonetheless 
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if Eq.(6.4.7) is assumed, stable crack growth under small-scale yielding conditions 

would yield from Eq.( 6.4.6) 

dJ/da = (/3/a)(a~/E)ln[pa~/(seEJ)], (6.4.8) 

with p determined from its constancy 

(6.4.9) 

where he is the critical J value at crack initiation. Eq.(6.4.8) is the governing 

equation for stable crack growth under small-scale yielding. Its prediction that J 

increases with continued fracture agrees with experimental observations. 

The Rice-Sorensen critical crack tip opening angle criterion is more recently 

applied to extract theoretical I<fc vs. v curves for Mode I plane strain dynamic 

crack propagation by Lam and Freund (1985). Under steady state and small-scale 

yielding conditions, they employed the Eulerian-type finite element formulation 

originally proposed by Dean and Hutchinson (1980) for quasi-static crack extension. 

From crack opening results very near the crack tip, they were able to generate the 

crack speed dependence of the critical dynamic stress intensity factor, which are 

qualitatively very similar to the experimental findings of Rosakis, Duffy, and Freund 

(1984). 

The application of this criterion to our Mode I plane stress case is however not 

successful. Data for the critical dynamic stress intensity, or the dynamic fracture 

toughness I<fc, obtained from laboratory tests performed on thin metal plates, 

which fracture in a locally ductile manner, exhibit a monotonic rising tendency as 

the crack speed v increases (see, for example, Rosakis, Duffy, and Freund, 1984; and 

Zehnder and Rosakis, 1990a). In order to predict such a tendency with the Rice­

Sorensen criterion, it is necessary for the so-defined crack tip opening angle 8(r)/r, 

when plotted against the normalized toughness value I<fc/ I<ss with I<ss being the 

quasi-static steady state value, to have lower values for higher crack speeds when 
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the normalized toughness is fixed. Another requirement is that when the same plot 

is used, the quantity Kfc/ K88 should have lower values for lower crack speeds when 

the opening angle is fixed. We notice that such a tendency is indeed observed for 

Mode I plane strain (see Fig. 6 of the paper by Lam and Freund, 1985). Yet this is 

not the case in Mode I plane stress for elastic-perfectly plastic materials, ·although 

our finite element mesh is much finer than that employed by Lam and Freund. 

In fact, we did not observe such a tendency even on a scale about one-hundredth 

finer than that of the previous two authors. The same situation is also reported by 

Douglas, Freund and Parks (1981) for Mode III. 

The difficulty in applying the critical crack tip opening angle criterion to Mode 

III and Mode I plane stress can in one way be attributed to numerical errors accumu­

lated near the crack tip. One such error is simply due to the lack of enough spatial 

resolution near the crack tip. This leads to the usual finite element discretization 

error which alone would blur the real behavior of the crack tip opening profile. To 

this end, it is emphasized here that the mesh we employed has a ratio of plastic 

zone size to the smallest element size on the order of 1.6 x 104, which is already 

a very high resolution. Another source of numerical error is somewhat peculiar to 

the Eulerian formulation in which updated stresses are obtained through numerical 

integrations of the incremental constitutive law from crack front to crack back. This 

integration, after sweeping the crack tip, carries large discretization errors to the 

areas behind the crack tip, which is most significant immediately near the tip. The 

crack tip opening profile, which is to be used in a fracture criterion, happens to be 

most inaccurate there. 

Another factor contributing to this difficulty may come from the asymptotic 

nature of the crack tip fields in Mode I plane stress and Mode III. Take the Mode III 

case for example, the asymptotic solution for dynamic crack propagation by Slepyan 

(1976) predicts a crack tip opening as expressed in Eq.(3.1.3). It was pointed out 

in the introduction section in Chapter 3 that the asymptotic result, which although 
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it gives the desired property that 8(r )/r decreases as the crack speed (normalized 

by the shear wave speed) increases, was not confirmed by the full field numerical 

solution of Douglas, Freund and Parks (1981). Recall the discovery of Freund and 

Douglas (1982) that the region of dominance of the dynamic asymptotic solution 

decreases rapidly as the crack speed goes to zero, it is very possible that the region 

in which the desired property of the crack opening displacement exists in order to 

apply the critical angle criterion is extremely small such that no numerical study 

of reasonable cost can detect such a presence. Considering the similarities between 

Mode III fracture and the fracture in Mode I plane stress, and the fact that we have 

already used a very fine finite element mesh near the crack tip, it is believed that 

this difficulty, or impossibility , to use the critical crack opening angle criterion to 

extract Kfc vs. v curves is due to the asymptotic nature of the Mode I dynamic 

plane stress crack tip fields. In fact, when the crack speed is higher, i.e., when 

the dominance zone of the dynamic asymptotic crack tip field is larger, the above­

mentioned desirable crack opening property is indeed observed ( see Figs. 3.3.13b, 

4,3.28 and 5.3.28), which somewhat verifies our previous belief. 

The aforementioned difficulty thus leaves us only one choice, that is to use 

the plastic strain based fracture criterion, or the McClintock-lrwin critical plastic 

strain criterion to be more specific. In light of this, we would like to recall some 

consistent observations regarding the change of magnitudes of plastic strains from 

various solutions discussed in Chapter 3. 

It is observed by many that for stationary cracks, strains have ~ singularity 

at the crack tip for all three fracture modes. For advancing cracks, the singularity 

· changes at crack front from ln2 (r) for quasi-static crack growth to ln(r) for dynamic 

crack propagation in Mode III. In Mode I plane strain for the case of Poisson ratio 

v = 0.5, plastic strains possess logarithmic singularity at least in the centered 

fan sector for quasi-static crack growth, yet they are less singular for rapid crack 

extension. Thus it may be concluded that crack growth reduces the level of plastic 
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straining at the crack tip if the same load level is maintained. 

Likewise in Mode I plane stress, as depicted in Figs.3.3.8a and 3.3.9a, the 

magnitudes of plastic strains at the crack front decreases as the crack speed increases 

if the stress intensity factor is fixed at the same level. In other words, to maintain 

the same strain level at the same point ahead of the crack, greater stress- intensity 

factors must be maintained for higher crack speeds, which is the behavior observed 

in Mode I fracture for many metals. Note that since strain rate sensitivity is not 

considered in the above dynamic analyses, inertia alone is expected to be responsible 

for such behaviors. 

Thus under small-scale yielding conditions, monotonically rising Kfc vs. v 

curves can be obtained from a full field, or simply a crack line solution, if the 

critical plastic strain criterion is assumed. The first successful application of this 

criterion was performed by Freund and Douglas (1982) for Mode III dynamic crack 

propagation in elastic-perfectly plastic solids. Their theoretical curves are qual­

itatively very similar to the findings of Rosakis, Duffy, and Freund (1984) from 

experiments conducted on thin, high strength steel plates and assuming general­

ized plane stress conditions. From both theoretical and practical points of view, it 

would then be very interesting to observe such a good correlation between theory 

and experiments under approximately the same type of constraints, basically the 

plane stress or generalized plane stress conditions. 

The radial dependence of the effective plastic strain at the front of a Mode I 

plane stress crack tip is illustrated in the usual normalized form in Fig. 6.4.1 in 

much detail for crack velocities ranging from zero to forty percent of the elastic 

shear wave speed of the elastic-perfectly plastic material. We note that the effective 

plastic strain c~ is normalized by c:0 , the initial yield strain in tension, and that 

the radial distance X 1 along the prospective crack line is normalized by (K/a0 )2, 

where K is the generic critical dynamic stress intensity factor and ao is the initial 
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FIGURE 6.4.1 The radial dependence of the effective plastic strain at the crack front 
along the prospective crack line. 

yield stress in tension. The procedure we used to extract the Kfc vs. v curves from 

numerical results is outlined as follows. First a critical plastic strain value is chosen 

and a horizontal line corresponding to this value is drawn on the plot, which inter­

sects the various effective plastic strain distribution curves at different normalized 

radial locations. If we denote the intersection location for the quasi-static curve 

by Xi/(I<88 /ao)2, where I<88 is the critical stress intensity factor for steady state 

quasi-static crack growth, and denote the intersection location for a generic m value 

(m being the ratio of crack tip speed to the shear wave speed) by Xi/(Kjcf ao)2, 

where Kfc is the critical dynamic stress intensity factor corresponding to Mach 

number m, we would obtain for each m the ratio of (I<fc)2 to (I<ss) 2
, and hence 

the value I<fc/ I<ss, by dividing the second location by the first, since it is assumed 

that the critical plastic strain value is achieved at the same physical location X 1 for 
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FIGU.RE 6.4.2 Theoretical I<fc vs. v curves in their normalized forms for various 
critical plastic strain levels. 

all m. 

We would like to point out at this stage that the procedure we discussed above 

is different from the one employed by Freund and Douglas. Specifically, their proce­

dure needs to use results for stationary cracks (which may not always be available), 

whereas ours doesn't. Another advantage of the present procedure is that com­

parisons with dynamic experimental results are made easier and clearer. In fact, 

since all curves start at the value one at m = 0 because of our normalization, the 

experimental data can be similarly normalized without relying on the availability 

of the fracture toughness value for the onset of crack extension. 

The resultant theoretical toughness curves are shown in Fig. 6.4.2 for c:f ( the 

critical plastic strain value) ranging from llc: 0 to 19c:0 . It is found that as the 
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value of the critical plastic strain increases, the toughness curve becomes steeper 

for higher m values, while at the same time the curve remains fairly flat for lower 

m values, where m is the ratio of the crack velocity to the shear wave speed. 
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FIGURE 6.4.3 Comparison of the theoretical Kfc vs. v relation for cf /co = 15 with 
the experimental results by Rosakis, Duffy and Freund (1984), and 
Zehnder and Rosakis (1990a). 

Comparisons with experimental data are made in Fig. 6.4.3. Note that the 

results by Rosakis, Duffy and Freund (1984) and Zehnder and Rosakis (1990a) 

are obtained from experiments conducted on thin 4340 steel specimen of different 

geometries and under different loading conditions. The 4340 structural steel is 

heat-treated however to yield effective stress-strain relations which can be described 

approximately as elastic-perfectly plastic. The theoretical crack velocity dependence 

of the dynamic fracture toughness is obtained with the critical effective plastic 

strain equal to 15c0 • It is seen from Fig. 6.4.3 that the one-parameter theoretical 

curve fits the whole experimental data amazingly well. This fact seems to strongly 

suggest that under small-scale yielding conditions the K-criterion can still be used 

to characterize dynamic crack propagation in materials which fracture in a locally 
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ductile manner. 

If the above calculation is performed between a quasi-static solution and a sta­

tionary solution using the same critical plastic strain value, then the ratio between 

the fracture toughness for fracture initiation and the toughness for steady state 

quasi-static crack growth can be obtained. For example, if we use our quasi-static 

solution and the solution by Narasimhan and Rosakis (1988) for the stationary case, 

the fracture initiation toughness will be approximately 0.62 times the quasi-static 

value Kss, if c~/co is taken to be 15. 

Finally we would like to point out that by applying the above-described proce­

dures theoretical Kjd vs. v curves of the same character can be obtained for both 

linear hardening materials and power-law hardening materials. However, it is well 

known that void growth and coalescence in hardening solids will generally depend 

on the level of mean stress as well as on the level of effective plastic strain. It is 

clear from our finite element results that for hardening materials both of the quan­

tities vary significantly with respect to the crack propagation velocity due to stress 

as well as strain singularities at the crack tip. Hence it appears that a properly 

modified critical plastic strain criterion, namely a criterion which includes the ef­

fect of mean stress or the triaxiality, must be used for dynamic crack propagation in 

hardening solids in accordance with observed physical phenomena. A modification 

of such form was provided by McClintock (1968) and was used for Mode I plane 

strain quasi-static crack growth in a demonstrative manner by Lam (1982), who 

in his thesis pointed out some difficulties in applying this criterion. It is felt by 

the current author that more studies are needed as to the appropriateness of this 

modified criterion before we employ it in an actual computation and interpret the 

results accordingly. 
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CHAPTER 7 

EFFECTS OF NON-K-DOMINANCE 

7.1 INTRODUCTION 

This chapter is concerned with the effects of the nonsingular stress terms of 

the elastic far-field around a crack tip on the active plastic zone, ori the near-tip 

elastic-plastic fields and on the dynamic fracture toughness vs. crack propagation 

speed relationship. 

In the classic small-scale yielding concept (Rice, 1967, 1968a, b ), it is assumed 

that the near-tip elastic-plastic zone is surrounded by an elastic annulus within 

which the stress state is dominated by the singular K-field, which is often referred 

to as the K-dominance. Under the K-dominance condition, the near-tip elastic­

plastic stress and deformation fields are uniquely characterized. by the stress in­

tensity factor K, and their distributions can be obtained by solving an equivalent 

mathematical boundary layer problem such that as the distance to the crack tip 

approaches infinity, the K-field is realized (Rice, 1967, 1968a, b). 

However, the K-dominance condition is not always achieved in practice, espe­

cially under laboratory conditions when tests on small cracked specimens often do 

• not facilitate its existence. In such cases, a boundary layer solution based on the 

singular term alone certainly is not guaranteed to yield satisfatory results. 

In the early seventies, Larsson and Carlsson (1973) had discovered that K­

dominance does not always exist for fracture specimens of various types under 

static loads even within the ASTM (1970) limits specified for small-scale yielding. 



-241-

They found that solutions for those test specimens from plane strain elastic-plastic 

finite element analyses differ from each other by 10 to 30 percent in near-tip field 

quantities such as the plastic zone size, which implies that a boundary layer solution 

based on K only will provide very inaccurate results in such cases. However, at a 

suggestion by Rice (see Larsson and Carlsson, 1973; and Rice, 1974), they were 

able to bring the boundary solution for the crack problem into agreement with the 

solution for a specific specimen by adding a T-term or the constant stress term­

the first nonsingular term-in the Williams's expansion (Williams, 1957) to the 

boundary layer formulation. 

More recently, the issue of K -dominance was studied by Krishnaswamy and 

Rosakis (1990a), and Krishnaswamy, Rosakis and Ravichandran (1990) concern­

ing the experimental measurement of the dynamic stress intensity factor using the 

method of caustics, which had been one of the main experimental techniques em­

ployed in the investigation of dynamic crack propagation phenomena. They showed 

that this method at its present stage is not capable of accurately measuring the dy­

namic stress intensity factor due to the lack of K-dominance near the crack tip dur­

ing dynamic crack propagation. Consequently, new techniques, such as the Coher­

ent Gradient Sensor (CGS) being developed (Tippur, Krishnaswamy and Rosakis, 

1990a, b ), must be sought in order to determine the dynamic stress intensity factor 

through measurements of the nonsingular terms as well as the singular term in the 

crack tip elastic field. 

As of today, major interest in the effect of the nonsingular stress terms has 

been focused on the T-term only since the work of Larsson and Carlsson discussed 

earlier. This is mainly due to the fact that the T-term is closely related to the stress 

biaxiality at the front of the crack tip, which has found applications in fatigue crack 

growth (Leevers and Radon, 1982; Smith and Pascoe, 1983; and Brown and Miller, 

1985). Theoretical and numerical approaches have since been developed for the 

evaluation of the elastic T-term (Leevers and Radon, 1982; Cardew, Goldthorpe, 



-242-

Howard and Kfouri, 1985; and Kfouri, 1986). A static plane stress finite element 

study of the biaxial stress effects on the elastic-plastic crack tip displacement fields 

was completed not long ago by Nicoletto (1988). 

In previous chapters, several aspects of steady state dynamic crack propagation 

in elastic-plastic solids under Mode I plane stress and small-scale yielding conditions 

have been explored in great detail. To substantiate the earlier findings regarding the 

near-tip asymptotic field variations and the theoretical dynamic fracture toughness 

versus crack propagation speed relationship, as well as to assess the influence of 

the nonsingular stress terms in these areas, a modified boundary layer formulation 

with a multiterm elastic far-field is performed with the finite element method. The 

result of this investigation is documented in the following. 

7.2 MULTITERM BOUNDARY LAYER FORMULATION 

For steady state dynamic crack propagation in linearly elastic solids under 

Mode I plane deformation conditions, the stress field near the crack tip can be ex­

pressed in terms similar to a Williams's series expansion (Williams, 1957) composed 

of eigen-functions as (see Radok, 1956; and Nishioka and Atluri, 1983) 

,T· • - Kf f· ·(0 v) + Tc1 · c · + ~ C r<n-2)l2g- · (0 v) viJ - ~ zJ , v iVIJ ~ n iJn , , 
v2~r n=3 

(7.2.1) 

where aij are stress components, r and 0 are the polar coordinates at the crack tip 

(see Fig. 1.1.1), fii(0,v) and 9ijn(0,v) are known universal functions of 0 and the 

crack propagation speed v, T is a constant dependent on v, and {jij is the Kroneker 

{j symbol. In the following, we shall refer the first term in Eq.(7.2.1) as the singular 

term or the K-term, the second term in Eq.(7.2.1) as the first nonsingular term or 

the T-term, the first term under the summation symbol as the second nonsingular 

term, and so on. Hence a finite element study with multiterm boundary layer 

formulation will be defined as one which uses one or more nonsignular terms as 

well as the K-term of the crack tip elastic field as its boundary condition. It is 
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still required here that the size of the crack tip active plastic zone be small when 

compared to the size of the domain under consideration. A problem so formulated 

will be referred here as one which is under conditions of modified small-scale yielding 

without K-dominance. 

To make a parametric study of the effects of the nonsingular stress terms on 

dynamic crack propagation phenomena, parameters representing the relative dom­

inance of the nonsingular terms with respect to the K-term must be defined at a 

certain distance from the crack tip. In the present study, the effects of the first 

two nonsingular terms will be investigated. Using the notations and normalizations 

defined in Chapter 2, the first three leading terms of the stress and displacement 

field can be written as follows 

_ B{ [( 2 _ 2 )cos(0if2) _ 4a1as cos(Bs/2)] 
o-11 - 1 + 2a1 as r,;:-: l 2 r;:-

y r1 + as yrs 

(7.2.2a) 

(7.2.2b) 

_ n{ [sin(0i/2) _ sin(Bs/2)] 
0-12 - 2a1 r,;:-: r;:-

y r1 yrs 

[
sin(0,/2) sin( Bs/2)]} 

-2an2 (L/ fo) - (L/ Fs) ' (7.2.2c) 
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(7.2.2d) 

[(1 + 2a2 - a2)- 4aqa,] ( 2) . . 
l s 1+a~ [ ( r1 ) . 0 1 + as ( rs ) . 0 ] +11 ( 2 2 ) - IT sin 1 + IT sin s 

4 a 1 - as y L 2a1as y L 

3/2 2 3/2 } 

+ ~2 
[-(~ )sin(30tf2) + 1 +a;(~ )sin(30s/2)] , (7.2.2e) 

where the relative dominance parameters 11 and 12 are defined as the ratio of 

the value of the first and the second nonsingular terms, respectively, of the stress 

component a11 to that of the I<-term of a11 at location 0 = 0° and r = L( I</ ao )2, 

with L being a dimensionless constant. For the definitions of all other symbols, see 

section 2.2 of Chapter 2. 

Similarly, displacement spatial derivatives with respect to x1 can be e>btained 

as follows: 

+.1!_ [(1 + 2aj - a;) - ~] (1 - a;) 

v'L , 4(a; - a;) 

[
cos(01/2) 2a1as cos(0s/2)]} 

+12 (L/ fo) - 1 + a; (L/ Fa) ' (7.2.3a) 

[ 
sin(0tf2) 201 sin(0s/2)]} 

-12 O[ -
(L/fo) 1 + a; (L/Fs) . 

(7.2.3b) 
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In the current computation, the dimensionless constant L is chosen as the 

normalized finite element mesh size which is 4.5 as seen from Fig. 2.3.1. Hence, the 

parameters 11 and 12 are actually defined for o-11 at the lower right corner of the 

rectangular domain. To ensure non-K-dominance, the maximum values of 11 and 

12 must be on the order of one. Moreover, for the particular mesh size employed 

in the boundary layer calculation, it should be checked that the K-term will not 

become dominant again within any elastic annulus around the crack tip with an 

inner radius about ten times the size of the active plastic zone. 

In the study of Larsson and Carlsson (1973), the ratio of the T-term to K/y'a 

1s estimated for several common test specimens under stationary conditions for 

a = (0.15)-2 (K/o-0 )2. From these estimations, corresponding 11 values can be 

obtained at a distance to the crack tip of r = 4.5( K / o-0 )
2 • The result is shown in 

Table 7.2.1. 

Table 7.2.1 Values of 11 at r = 4.5(K/o-0 ) 2 for various specimens 

Case 

Center-cracked specimen 

Double edge-cracked specimen 

Bend specimen 

Compact tension specimen 

1'1 

-0.470 

-0.115 

0.0263· 

0.232 

An estimation for the value of the second nonsingular elastic term. was recently 

obtained by Tippur, Krishnaswamy and Rosakis (private communication, 1990) 

using a newly developed optical technique, the method of coherent gradient sensing 

· (Tippur, Krishnaswamy and Rosakis, 1990a, b). From their static test data for 

three-point bend specimens made of PMMA, the 12 parameter is estimated to be 

around 0.1 at the distance we defined earlier, namely at r = 4.5(K/o-o)2. 

Considering the above factors, we decide to make a parametric study with both 

11 and , 2 varying within the range of [-1.0, 1.0]. The effects of the T-term will be 
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studied first for the eight sets of 11 values: -1.0, -0.8, -0.6, -0.4, 0.4, 0.6, 0.8 and 1.0. 

Then, the combined effects of the two leading nonsigular terms will be investigated 

for the four extreme sets of (1'1 , 12) values: (-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0) and 

(1.0, 1.0). 

A Poisson ratio v = 0.3 is used in all calculation. Due to the large number 

of computations, the coarser finite element mesh, which has a ratio of the active 

plastic zone size to that of the smallest near-tip element on the order of 0.8 X 104 , 

is employed here. Most discussions will be confined to the case with a typical crack 

propagation speed v = 0.3c8 for a typical linear hardening material with hardening 

parameter a= 0.4 as well as for nonhardening materials when a= 0. All angular 

field variations are along a circular path of radius r/(I</a0 )
2 = 0.6411 x 10-3 which 

is five elements away from the crack tip. Note that the same circular path has been 

used under I<-dominance conditions. Radial field variations are presented along the 

prospective crack line, with one data point taken from each element starting from 

the fifth element, if the element at the crack tip is considered as the first one. 
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FIGURE 7.3.la The effect of 11 on the shape of the crack tip active plastic zone for 
a = 0 and v / c8 = 0.3, plotted in normalized coordinates. 
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FIGURE 7.3.lb The effect of 1'l on the shape of the crack tip active plastic zone for 
a = 0.4 and v / c8 = 0.3, plotted in normalized coordinates. 

7.3 EFFECT ON THE ACTIVE PLASTIC ZONE 

The effect of the T-term or 11 alone on the crack tip active plai:;tic zone is shown 

in Fig. 7.3.1. For convenience of discussion, let Rp and Hp denote, respectively, 

the horizontal and vertical extent of the active plastic zone size. In the case of a 

nonhardening solid when the linear hardening parameter a = 0 (see Fig. 7.3.la), 

it is seen that, compared with the K-dominance case 11 = 0, the overall size of 

the active plastic zone for 1'l = 1 is bigger, while that for 11 = -1 is smaller. In 

the hardening case a = 0.4 (see Fig. 7.3.lb), however, the variations are more 

complicated. For 1'1 = 1, Rp is much larger than that for 11 = 0 whereas Hp is 

found to be approximately the same as that for 1'l = 0. For 1'l = -1, Rp is smaller 

than that for 1'l = 0 and Hp is much larger than that for 1'l = 0. A more detailed, 

more continuous description of the variations of Rp and Hp with respect to ,1 for 

both a= 0 and 0.4 is presented in Fig. 7.3.lc. 
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of the crack tip active plastic zone with respect to "(1 for a = 0 and 
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FIGURE 7.3.2b The effect of , 2 at 'YI = 1 on the shape of the crack tip active plastic 
zone for a = 0.4 and v / Cs = 0.3, plotted in normalized coordinates. 
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FIGURE 7.3.3b The effect of , 2 at , 1 = -1 on the shape of the crack tip active 
plastic zone for a = 0.4 and v / Cs = 0.3, plotted in n~rmalized 
coordinates. 

Shown in Figs. 7.3.2 and 7.3.3 are the combined effects of the first two non­

singular elastic far-field terms or , 1 and , 2 on the crack tip active plastic zone for 

, 1 = 1 and , 1 = -1, respectively. It is consistently observed that the overall size 

of the active plastic zone at the two fixed , 1 values respectively increases as '"'(2 

increases both for nonhardening materials and for hardening materials. 

From the above findings it can be said that the shape as well as the size of 

the crack tip active plastic zone are quite sensitive to the relative values of the 

nonsingular elastic terms with respect to that of the singular term. Hence, any 

. estimation based on the K-term alone should be interpreted carefully. 

7.4 EFFECT ON THE ANGULAR FIELD VARIATIONS 

The effect of , 1 alone on the angular stress variations is shown in Fig. 7.4.la and 

b for a = 0 and a = 0.4, respectively, at crack propagation v / Cs = 0.3. It is observed 
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that, along the same circular path r = 0.6411 x 10-3 (K/a-0 ) 2 around the crack tip as 

used under K-dominance conditions, the stress curves are almost identical, which 

indicates that the T-term on the remote elastic boundary has little influence on 

the crack tip asymptotic stress field. This point can be further demonstrated from 

Figs. 7.4.2a and 7.4.2b where the combined effect of , 1 and , 2 is illust:rated for 

a = 0 and 0.4, respectively. Little difference is found among the stress variations 

corresponding to different , 1 and , 2 values except for the case of a = 0 ( see Fig. 

7.4.2a) where the a-11 and a-22 curves for , 1 = 0 and , 2 = 0 are singled out. Yet it 

must be noted that even in this case the differences are small and that the stress 

curves for all other , 1 and , 2 values almost coincide with one another. 

along r/(K/o,) 1 • .6411e-3 Cl • 0 

1.5 ...-------~----..-----------.-----, 
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-1.0 ------------------------------
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FIGURE 7.4.la The effect of , 1 on the angular variations of the polar stress com­
ponents for a = 0 and v / C8 = 0.3. 

The nonsingular elastic terms are observed to have larger influence on the 

angular plastic strain variations when compared to those of stresses, as shown in 

Figs. 7.4.3 and 7.4.4. For example, with the addition of the T-term to the far-field 

boundary, the relative differences in the magnitude of the effective plastic strain are 
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FIGURE 7.4.lb The effect of 11 on the angular variations of the polar stress com­
ponents for a = 0.4 and v / Cs = 0.3. 
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FIGURE 7.4.2a The combined effect of 11 and 12 on the angular variations of the 
polar stress components for a = 0 and v / Cs = 0.3. 
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FIGURE 7.4.2b The combined effect of 'YI and ,'2 on the angular variations of the 
polar stress components for a = 0.4 and v / c8 = 0.3. 

found to be less than ±3%. Moreover, with the addition of both of the nonsingular 

terms to the far-field elastic boundary, the relative differences are within the range 

of -0.42% to -7.9%. However, it is discovered that the actual 0-dependence of the 

plastic strain components are very much the same in all the cases. 

It is also worth pointing out that the plastic strain curves corresponding to 

the same 'YI values are found to be very close to each other. This tendency can be 

even more clearly seen from the angular velocity variations to be discussed below. 

In fact, those curves coincide with each other according to their 'YI values. This 

· behavior seems to suggest that the effect of 'YI is dominating compared to that of 

The effect of the nonsingular elastic terms on the angular variations of the 

Cartesian velocity component v2 is consistently very small, as demonstrated in 

Figs. 7.4.5 and 7.4.6. However, it is interesting to note that the effect of 'YI and ')'2 
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FIGURE 7.4.3a The effect of ')'l on the angular variations of the effectiye plastic 
strain and the polar plastic strain components for a = 0 and v / C 8 = 
0.3. 
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FIGURE 7.4.3b The effect of ')'l on the angular variations of the effective plastic 
strain and the polar plastic strain components for a = 0.4 and 
v/cs = 0.3. 
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FIGURE 7.4.4a The combined effect of "/l and "(2 on the angular variations of the 
effective plastic strain and the polar plastic strain components for 
a= 0 and v/c8 = 0.3. 
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FIGURE 7.4.4b The combined effect of "(1 and "(2 on the angular variations of the 
effective plastic strain and the polar plastic strain components for 
a= 0.4 and v/c8 = 0.3. 
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FIGURE 7.4.5a The effect of 'YI on the angular variations of the Cartesiai:i velocity 
components for a = 0 and v / Cs = 0.3. 
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FIGURE 7.4.5b The effect of 'YI on the angular variations of the Cartesian velocity 
components for a = 0.4 and v / Cs = 0.3. 
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FIGURE 7.4.6a The combined effect of 11 and 12 on the angular variatio,ns of the 
Cartesian velocity components for a = 0 and v / Cs = 0.3. 
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FIGURE 7.4.6b The combined effect of 11 and 12 on the angular variations of the 
Cartesian velocity components for a = 0.4 and v / Cs = 0.3. 
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on the other velocity component v1 appears to be, depending on the value of ,1, 

just lowering or raising the magnitude of v1 by an equal constant amount. Recall 

that during steady state crack propagation, v1 = -v ~u, = -vc:11 , then the above 
uX1 

observation can be translated as follows. When , 1 = 1 or when a constant tension 

is added parallel to the x1 direction, the whole body is stretched accordingly in this 

direction, which corresponds to a positive increment in c:11 or a negative decrease 

ln V1. 

7.5 EFFECT ON THE RADIAL FIELD VARIATIONS 

Radial variations of the stress and plastic strain fields will be discussed only 

along the prospective crack line since they are of most interest there. Shown in Fig. 

7.5.1 are the variations of the stress components with respect to the first non-K­

dominance parameter 11 for the case of a = 0. As expected, the magnitude of the 

1-1 stress component o-11 is increased (or decreased) globally from the K-dominance 

solution for , 1 = 1 ( or for , 1 = -1) which corresponds to the case that a tension 

( or compression) is added to the K-field on the far-field elastic boundary. At the 

same time, the 2-2 stress component o-22 is found to vary with an opposite tendency 

(compared to that of o-11 ) inside the active plastic zone whose boundary is located 

approximately at a normalized distance of 0.26 from the crack tip. This opposite 

behavior of the stress components is apparently due to the requirement of the yield 

condition with a constant yield stress at a = 0. However, for a = 0.4 when the 

yield stress is dependent on the effective plastic strain due to strain hardening, the 

magnitudes of the two stress components are found to be increased or decreased 

· at the same time (see Fig. 7.5.2), which is because the magnitude of the effective 

plastic strain is also increased or decreased at the same time as shown later ( see 

Fig. 7.5.6a). 

The combined effect of 11 and 12 on the radial stress variations can be observed 

from Figs. 7.5.3 and 7.5.4 for a= 0 and a= 0.4, respectively. It is discovered that 
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the magnitudes of the two stress components show the same increasing/ decreasing 

tendencies depending on the value of 'Yl only. In fact, the stress curves of both 

o-11 and o-22 corresponding to the same 'Yl value, but different 12 values, are found 

to coincide with each other inside the active plastic zone even at locations not far 

away from the elastic-plastic boundary (see Fig. 7.5.3a). This observat·ion once 

again suggests that the elastic T-term is the dominating nonsingular term. 

Nonetheless, it can be concluded that at locations closer to the crack tip (see 

Figs. 7.5.lb, 7.5.2, 7.5.3b and 7.5.4), the stress values corresponding to different 'Yl 

and 12 values are approximately the same. 

The effect of ')'l alone on the plastic strain variations along the ray 0 = 0° is 

depicted in Fig. 7.5.5. For a = 0, the magnitudes of the effective plastic strain 

c~ and the plastic strain component c~2 are found to increase at 'Yl = -1 and 

to decrease at ')'1 = 1 when compared with their counterparts' values under K­

dominance conditions. Meanwhile, as expected, the plastic strain component cf 1 

behaves in just the opposite way. For the case of a = 0.4 (see Fig. 7.5.5b ), however, 

the magnitude of c~ is seen to increase as ')'1 increases although cf 1 and £~2 still 

show the same behavior as in the case of a= 0. 

Again, as in the case of stress varaitions, it is discovered that the combined 

effect of 'Yl and ')'2 on the radial plastic strain variations is mainly influenced by ')'1 , 

which is shown in Fig. 7.5.6. 

It is also noted that, in any case, the effect of ')'1 and 12 becomes smaller as 

the distance to the crack tip becomes smaller. 

Finally in the section the effect of the nonsingular elastic terms on the crack 

opening displacement will be described. In Fig. 7.5.7, the normalized vertical 

displacement along the crack surface is plotted against the normalized distance to 

the crack tip for the case of a = 0. It is first seen that unlike the case of stress and 
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FIGURE 7.5.la The effect of 'Yi on the radial variations of the stress components 
for a= 0 and v/c8 = 0.3, plotted in the normalized coordinates. 
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FIGURE 7.5.lb A detailed view of the effect of 'Yi on the radial variations of the 
stress components for a = 0 and v / c8 = 0.3, plotted in the normal­
ized coordinates. 
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FIGURE 7.5.2 A detailed view of the effect of , 1 on the radial variations of the stress 
components for a = 0.4 and v / Cs = 0.3, plotted in the normalized 
coordinates. 
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FIGURE 7.5.3a The combined effect of 11 and 12 on the radial variations of the stress 
components for a = 0 and v / Cs = 0.3, plotted in the normalized 
coordinates. 
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FIGURE 7.5.3b A detailed view of the combined effect of 'YI and "(2 on the radial 
variations of the stress components for a = 0 and v / Cs = 0.3, plotted 
in the normalized coordinates. 
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FIGURE 7.5.5a The effect of 11 on the radial variations of the effective plastic strain 
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in the normalized coordinates. 
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a = 0 and v / Cs = 0.3, plotted in the normalized coordinates. 
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strain variations, the effect of 11 alone is found to be very small even at locations 

quite far away behind the crack tip (see Fig. 7.5.7a). Furthermore, when the 

second nonsingular elastic term is also added to the boundary, the magnitude of u2 

immediately changes. It is observed that whether it increases or decreases depends 

on the value of 12 instead of that of 11 as in the case of stress and strain variations, 

which appears to suggest that 12 is dominating here. Specifically, at 12 = 1, the 

magnitude of u 2 is decreased whereas at 12 = -1, it is increased, which seems to 

have some physical sense. Nevertheless, as the crack tip is approached, as shown in 

Fig. 7.5.7c, the effect of the nonsingular elastic terms is seen to disappear. 

The effect of 11 and 12 for the case of a = 0.4 is very similar to that of a = 0 

described above, except that the changes of u2 due to the addition of nonsingular 

elastic terms to the remote boundary are smaller (see Fig. 7.5.8). 

7.6 EFFECT ON THE I<fc vs. v RELATIONSHIP 

In Chapter 6 we have devised a scheme, after Freund and Douglas (1982), to 

generate, from the finite element data for the effective plastic strain, theoretical I<fc 

vs. v curves (see Fig. 6.4.2) by assuming a critical plastic strain fracture criterion 

(McClintock, 1956_, 1958; and McClintock and Irwin, 1964). Further, by setting the 

critical value of the plastic strain cf to fifteen times that of the initial yield strain 

co, we demonstrated that the one-parameter theoretical I<f c vs. v relationship was 

able to characterize the main features of the experimental measurements performed 

by Rosakis, Duffy and Freund (1984), and Zehnder and Rosakis (1990a) on thin 

· 4340 steel plate specimens (see Fig. 6.4.3). 

To assess the influence of the nonsingular elastic terms on the theoretically 

generated I<Jc vs. v relationship, the scheme devised in Chapter 6 is repeated here. 

The result of this investigation, using finite element solutions for elastic-plastic 

materials, is given below. 
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First of all, the effect of the T-term is examined through a parametric study of 

,1 in the range of [-1, 1]. Plotted in Fig. 7.6.1 are the variations of Kfc/ Kss with 

respect to ,1 at various normalized crack propagation speeds m, where Kss is the 

steady state fracture toughness for quasi-static crack growth under K-dominance 

conditions. It is found that the relative deviation from the K-dominance is usually 

under 4% except that in the cases of m = 0.1 and 11 = 1, m = 0.25 and 11 = 1 and 

m = 0.3 and , = -0.8, it reaches, respectively, 14%, 6% and 9%. 

Secondly, when the Kfc vs. v relationship is plotted in Fig. 7.6.2 using the same 

data, it is discovered that the experimentally observed monotonic rising tendency 

of Kfc with respect to v for metal specimens is preserved. 

Thirdly, when the second leading nonsingular elastic term is also added to the 

far-field elastic boundary, the finite element result predicts a further deviation of the 

normalized toughness values from those obtained under K-dominance conditions, 

yet with the Kf c vs. v relationship still possessing the same characteristics, as 

illustrated in Fig. 7.6.3. In this case, the maximum relative deviation has been 

increased up to 22% which occurred for m = 0.1, 11 = 1 and 12 = 1. 

Nonetheless, if the theoretically predicted Kfc vs. v data are plotted together 

with experimental data, as shown in Fig. 7.6.4, it can be seen that the scattering 

of the numerical data points due to non-K-dominance is still much less pronounced 

than those of the experiments. Considering the fact that the present parametric 

study has already covered quite a large parameter value range compared with real 

values for some conventional test specimens (see discussions in section 7.2), it seems 

that the lack of K-dominance alone cannot account for the observed vast range of 

experimental data scattering. Instead, other factors such as the reliability of the 

crack propagation velocity measurement (Tippur, private communication, 1990) 

must be pursued. 

In comparing the prediction of the finite element computation with the ex-
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perimental measurements, two important points must be noted. One is that when 

K-dominance does not exist, the experimental Kie data in Fig. 7.6.4 are not the 

real values of the stress intensity factor. Instead, they include contributions from 

other nonsingular elastic terms. Yet the data from the numerical calculations rep­

resent the real values of Kie under the assumed conditions. The other point is that 

the parameters ,1 and ,2 in the finite element computation are defined at a fixed, 

normalized distance from the crack tip, which in fact corresponds to different phys­

ical distances for different Kfc values. That is to say, an exact no~-K.:dominance 

condition is actually characterized by one more parameter, namely the physical lo­

cation where the relative values of the nonsingular elastic terms are defined. To 

this end, the present investigation only studied the effect of non-K-dominance for 

a set of sample points in the parametric space composed of the relative dominance 

parameters ,1 and ,2 as well as the physical distance from the crack tip. -
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CHAPTER 8 

SUMMARY 

The present finite element study addresses several issues of interest pertaining 

to the phenomenon of dynamic crack propagation in elastic-plastic solids. Under 

conditions of Mode I, plane stress, steady state and small-scale yielding, we investi­

gated the structures of the near-tip stress and deformation fields for three classes of 

commonly used elastic-plastic material models. A preliminary asymptotic analysis 

for crack tip stress and velocity fields in elastic-perfectly plastic solids was provided 

to reveal and explain some special features of the crack tip fields observable only in 

the case of rapid crack propagation. We studied the theoretical basis of a fracture 

criterion based on the dynamic stress intensity factor for crack growth in materials 

which fail in a locally ductile manner. We explored the behavior of crack tip fields 

under non-I<-dominance conditions and its effect on the dynamic fracture tough­

ness vs. crack propagation speed relationship. The main findings of this study are 

summarized in the following. 

8.1 PLASTIC ZONES AND CRACK TIP FIELDS 

To start with, observations which are common in all cases investigated will be 

summarized. First of all, it is found that both the crack propagation speed and the 

level of strain hardening have a major influence on the size and shape of the active 

plastic zone at the front of the crack tip. As m or the ratio of the crack speed to 

that of the elastic shear wave increases, the height and the angular extent of the 

plastic zone increase accordingly, usually quite substantially, which is true for all 

materials studied. Comparatively, the size change in the horizontal direction or the 
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crack growth direction is much smaller; and whether this size increases or decreases 

depends on the hardening property of the material. For materials with weak or no 

strain hardening, the horizontal size decreases as m increases. Yet for materials 

with strong hardening behavior, this size is found to increase to a larger extent as 

m increases. On the other hand, materials with lower level of strain hardening will 

always have plastic zones with sizes larger in the horizontal direction and smaller 

in the vertical direction. 

As to the angular variations of the near-tip stress and deformation fields, it 

is discovered that a compressive stress state always exists behind the crack tip in 

the direction parallel to that of crack propagation. For all angular ranges, the 

magnitude of the 2-2 plastic strain component is always much larger than those of 

the other two in-plane components, which is responsible for the sinusoidal behavior 

of the polar components. Meanwhile, the vertical component of the velocity field 

remains positive whereas the other component remains negative with a much smaller 

magnitude. 

Radially, the near tip asymptotic fields possess very different singularities at 

the crack tip. For elastic-perfectly plastic solids, the finite element solution very 

near the crack tip strongly suggests that the strain and velocity fields behave as 

lnr as r --+ 0, where r is the distance to the crack tip. The stresses are bounded 

at the crack tip with crack front values close to those predicted asymptotically for 

quasi-static crack growth, with slight changes for different m values. Strong yet 

approximately linear variations along the prospective crack line are observed for 

the radial stress component. For linear hardening elastic-plastic solids, the stress 

and strain singularities at the crack tip are of the type r 8 (s < 0) withs strongly 

dependent on m, but weakly on the Poisson ration v. However, for power-law 

hardening elastic-plastic materials, the singularities at the crack tip are of the type 

(lnr) 8 (s > 0), wheres takes different values for stress and strain fields. 
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Throughout the present study for various elastic-plastic solids, an interesting 

phenomenon has been consistently observed. Depending on the degree of strain 

hardening, there seems to exist a transitional crack propagation speed for a given 

elastic-plastic material. At speeds lower than this value, the crack tip active plas­

tic zones and the near-tip stress and deformation fields show features resembling 

those for quasi-static crack growth. At speeds higher than this value, however, 

characteristics distinct from those of quasi-static crack growth are developed. 

For all hardening or nonhardening materials, the crack tip active plastic zones 

are usually found to exist only at the crack front. However, at crack speeds suf­

ficiently large, secondary yield zones will appear along the crack flank. At the 

same time, kinks will show up in the angular field variations at locations where ap­

proximately elastic unloading starts to occur. Further, the value of the horizontal 

Cartesian component of the velocity field along the crack flank starts to deviate 

from zero. 

It is suggested that if the above behaviors at high crack speeds are the essential 

features of the dynamic asymptotic crack tip field, then it can be said that the size 

of the dominance zone of this asymptotic field at the crack tip is extremely small. 

8.2 THE FRACTURE CRITERION BASED ON I< 

A property found for crack growth in all elastic-plastic materials is that at a 

certain normalized distance at the crack front, the magnitude of the effective plastic 

strain decreases as m increases. Assuming the validity of a plastic strain based local 

fracture criterion, which has its bearings from the micromechanical characteristics 

of void growth and coalesence in ductile fracture, a theoretical dynamic fracture 

toughness vs. crack propagation speed relationship can be derived from the above 

effective plastic strain variations. Comparisons with experimental measurements, 

which are obtained through the use of the fracture criterion directly based on the 
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far-field dynamic stress intensity, show very good agreement, which strongly indi­

cates the legitimacy, at least approximately, of this K-criterion for dynamic crack 

propagation in materials such as metals which fail in a locally ductile manner. 

8.3 EFFECTS OF NON-K-DOMINANCE 

For the non-K-dominance parameters ")'i and 12 ( defined in Chapter 7) in the 

range of [-1, 1], which is large compared to values from some commonly used test 

specimens, it is observed that the crack tip active plastic zone changes rather sub­

stantially both in size and shape from one extreme parameter value to the other. 

Yet the effect of the nonsingular terms in the elastic far-field on the near tip angular 

stress varaitions is found to be negligible. Those terms seem to affect the near-tip 

angular variations of the plastic strain field only in their magnitudes-with small 

changes-but not in their 8-dependence. The major influence of non-K-dominance 

on the angular variations of the velocity field is observed for the Cartesian com­

ponent parallel to the direction of crack growth as if its magnitude is increased or 

lowered by a small constant amount. 

The general tendency of the effects of the nonsingular elastic terms on the stress 

and plastic strain fields is seen to be mainly characterized by the first term or the 

T-term. However, the crack opening displacement appears quite insensitive to the 

existence of the T-term. Nontheless, as the crack tip is approached, all the effects 

due to the nonsingular elastic terms seem to disappear. 

The dynamic fracture toughness vs. crack propagation speed relationship is 

affected by the nonsingular elastic terms only quantitatively. W.ith the T-term 

alone, the relative deviation of the normalized dynamic fracture toughness I<f cf Kss 

from that under I<-dominance conditions will occasionally reach its maximum value 

which is about 14%. With both nonsingular terms, the maximum relative deviation 

can take values in the neighborhood of 22%. However, it is noted that even in the 
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worst case the qualitative behavior of the Kfc vs. v relationship is preserved. 

It must be pointed out that the extent of scattering of the experimental data 

points in the Kj c vs. v plot is much larger than that predicted from the present 

finite element computation with non-K-dominance parameters larger than values 

for some commonly used test specimens. This observation may suggest that factors 

other than the lack of K -dominance in experimental measurements must be pursued 

in order to further our understanding in this and related areas. 

8.4 CLOSING COMMENTS 

In this study attention is focused on the plane stress approximation of dynamic 

crack propagation phenomena in elastic-plastic materials. Although We were able 

to reveal features similar to those observed from experiments, the findings of this 

investigation must be interpreted cautiously. Due to complicated three-dimensional 

features involved near a crack edge, ultimate understanding of fracture behavior 

awaits properly formulated full scale three-dimensional modeling. 
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