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ABSTRACT

A detailed finite element analysis of crack initiation and stable crack extension
is performed under Mode I plane stress, small-scale yielding conditions. A small
strain, J; incremental plasticity theory is employed and both elastic-perfectly plastic
materials and power law hardening materials are considered.

Some issues pertaining to the stationary plane stress crack problem, such as
the range of dominance of the asymptotic stress and deformation fields and the
amount of non-proportional loading near the crack tip are addressed. Special at-
tention is devoted to the perfectly plastic idealization, by performing a separate
singular finite element analysis, to clarify some details about the asymptotic fields
near the stationary crack tip. The full-field numerical solution is used to simu-
late synthetic (optical) caustic patterns at different distances from the crack tip,
which are compared with experimental observations and with asymptotic analytical
results.

A nodal release procedure is used to simulate quasi-static crack extension. It
is found that the asymptotic angular extent of the active plastic zone, surrounding
the propagating crack tip, is from 6 = 0 to about § = 45° for the perfectly plastic
case. The near-tip angular stress distribution within the active plastic zone is in
good agreement with the variation in a centered fan, as predicted by a preliminary
asymptotic analysis by Rice, for the perfectly plastic case. It is also observed that
the o,, stress component has a strong radial variation within the active plastic zone.
The angular extent of active yielding around the moving tip increases with hard-
ening, while its maximum radial extent ahead of the tip decreases. Clear evidence
of an elastic unloading region following the active plastic zone is found, but no sec-
ondary (plastic) reloading along the crack flank has been numerically observed for

any level of hardening.
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The crack tip opening profile during growth is obtained for various levels of
hardening. A ductile crack growth criterion is employed to investigate the nature
of the J resistance curves under plane stress. Finally, the influence of hardening on

the potential for stable crack growth is examined.
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CHAPTER 1
INTRODUCTION

1.1 REVIEW OF PAST WORK

Stationary cracks under monotonic loading

In linear elastic fracture mechanics, the stress intensity factor which is a
measure of the intensity of the singular stress and strain fields near the crack tip
plays a central role in characterizing the onset of crack growth. However, an ap-
proach based on the stress intensity factor is limited, since most structural ma-
terials, particularly low to intermediate strength metals undergo plastic flow near
the crack tip. The fact that yielding near the tip may take place over a large size
scale has compelled investigators [2.8-2.10]! to examine the continuum fields near
a monotonically loaded stationary crack tip based on a plasticity theory.

The J integral [2.12] is a measure of the intensity of the near-tip fields from
the small strain, deformation plasticity analyses of [2.8-2.10]. Thus, the earlier
approach, based on the stress intensity factor, has been generalized in terms of the
J integral for describing the onset of crack growth [2.25,2.26] under conditions that
are largely unrestricted as to the extent of crack tip yielding. However, due to
effects that are not modelled by a small strain deformation plasticity theory, the
above approach could have serious limitations. This could be due to the presence
of strong non-proportional loading and finite strain effects near the crack tip.

Several investigators who have addressed the above issues, primarily by using
numerical methods, have focussed their attention on conditions of Mode I plane

strain. Levy et al.[2.13], Rice and Tracey [2.2] and Tracey [2.16] investigated the

1 Numbers in square brackets indicate References listed at the end of a particular

chapter.
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range of dominance of the singular fields of [2.8-2.10] for Mode I plane strain, by em-
ploying accurate finite element methods. While these analyses made use of a small
strain, incremental plasticity theory, McMeeking [2.27] studied the above problem
within the context of a finite strain theory. Shih and German [2.28] and McMeek-
ing and Parks [2.29] have considered the dependence of specimen configuration on
the dominance of the plastic singular fields. An important outcome of these studies
was to provide crucial information to an experimentalist about the size requirements
of specimens used in fracture toughness testing under plane strain conditions, to
ensure J dominance.

As far as fracture under plane stress conditions is concerned, comparatively
much less information is available in the literature regarding the above issues. A
pfeliminary numerical investigation was conducted by Hilton and Hutchinson [2.30)
under plane stress for both small- and large-scale yielding conditions, with the view
of determining J or some equivalent plastic intensity factor directly from the nu-
merical solution. Shih [2.14] applied the method of [2.30] to study combined Mode
I and Mode II fracture problems under plane stress and plane strain. Both these
studies employed a deformation plasticity theory and also enforced the plastic sin-
gular fields of [2.8-2.10] in a small circle near the tip, without an a priori knowledge

of the range of validity of these fields.
Quast-statically propagating cracks

The J integral has been applied by some investigators to analyze small amounts
of quasi-static crack growth and to determine the point at which crack advance
becomes unstable. The rationale for using such an approach stems from the sub-
stantial tearing resistance of most ductile materials, in the sense that appreciable
increases in J are required for small amounts of crack growth. The above method is

semiempirical and is limited in scope. A fundamental understanding of the asymp-



totic fields during quasi-static crack growth is required to deal with more extensive

amounts of crack growth, by employing a near-tip fracture criterion [3.17,3.3].

The main progress in understanding the asymptotic fields at the tip of a growing
crack has been limited to elastic-perfectly plastic materials and to anti-plane shear
and plane strain conditions [3.19,3.3,3.4]. Rice et al.[3.3] proposed a ductile crack
growth criterion, based on the attainment of a critical crack opening displacement,
to examine the extent of stable crack growth under plane strain conditions. Subse-
quently, an experimental investigation by Hermann and Rice [3.28] has supported

the validity of using such a fracture criterion.

Amazigo and Hutchinson [4.9], and more recently Castanieda [4.10], have per-
formed asymptotic analyses for steady-state crack extension in a linear hardening
solid under anti-plane shear and Mode I (and also Mode II) plane strain and plane
stress. However, the use of a linear hardening law and certain complications in
the perfectly plastic limit have curtailed the applicability of the results of [4.9] and
[4.10]. Gao and Hwang [4.11] have conducted a preliminary investigation about the
near-tip fields in a material governed by a more realistic power hardening law. They

confined their attention to Mode I plane strain.

Finite element studies, simulating crack growth, have been useful in establishing
the validity of the asymptotic results of such investigations as [3.3] and [3.19] for
perfectly plastic materials and also in examining the influence of hardening on crack
growth. Several investigators [3.10-3.15) have carried out finite element analyses for

quasi-static crack growth under anti-plane shear and Mode I plane strain.

On the other hand, as far as plane stress crack growth is concerned, much
less work has been performed. A preliminary investigation has been conducted by
Rice [3.2], concerning the asymptotic nature of the stress and deformation fields

near a growing crack tip in an elastic-perfectly plastic material under plane stress
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conditions. A complete asymptotic solution for this problem, however, has thus far
remained elusive. A steady-state finite element analysis has been carried out by
Dean [3.16] for plane stress crack growth in a linear hardening solid (including the

perfectly plastic case).
1.2 MOTIVATION FOR PRESENT WORK

As the above review clearly indicates, our presenf knowledge of the mechanics
of plane stress fracture is somewhat limited. Some important issues regarding the
stationary crack problem, which were mentioned above, such as the range of dom-
inance of the asymptotic fields and the amount of non-proportional loading near
the tip, have not been examined in plane stress. This clearly warrants a detailed
numerical analysis along the lines of [2.2,2.16] and [2.27-2.29] to firmly establish a
conceptual understanding of plane stress fracture. The practical relevance of such
an investigation, as far example to thin aircraft and spacecraft structures, provides
further motivation.

In addition to the above considerations, a detailed numerical study of plane
stress fracture is compelling because of the possibility of a direct comparison with
optical experimental methods such as caustics. In recent years, this method has
shown great promise towards applications in ductile fracture [2.17,2.22,2.23]. A
knowledge of the plastic singular fields is of primary importance in facilitating a
proper interpretation of the experimental data [2.23].

The issues pertaining to the quasi-static crack growth problem under plane
stress are also not completely resolved. It is well known that stable crack growth
can be particularly extensive in thin plates, as has been observed, for example, by
Broek [3.25]. Nevertheless, the absence of an asymptotic solution in plane stress,
similar to [3.19] or [3.3], has impeded a complete understanding of this important

phenomenon. The numerical analysis by Dean [3.16] is not very detailed (see Chap-
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ter III), and certain issues pertaining to the near-tip fields have not been examined.
This provides an impetus for a detailed numerical investigation, similar to {3.10] in

plane strain, to study the asymptotic fields during plane stress crack growth.
1.3 OUTLINE OF PRESENT WORK

In this work, an elaborate finite element analysis, with a very fine mesh eluci-
dating the details near the crack tip, is carried out to simulate Mode I plane stress,
small-scale yielding conditions. Computations are performed for materials obeying
a small strain, Jo incremental plasticity theory with no hardening and an isotropic
power law hardening.

In Chapter II, the analysis of a monotonically loaded stationary crack is per-
formed. Detailed results are obtained for the plastic zones, stress and strain fields
and crack opening displacements. Also, the path independence of the J integral is
examined. Caustic patterns are simulated from the full-field numerical solution at
a wide range of distances from the crack tip and are compared with experimental
observations [2.23].

In Chapter III, the results obtained in Chapter II are used to simulate stable
crack extension for an elastic-perfectly plastic material. Besides examining the
extent of active yielding and the asymptotic fields, we plot stress characteristics near
the tip from the finite element results, which could provide greater insight regarding
the expected nature of the asymptotic solution for this problem. A ductile crack
growth criterion [3.3] is used to investigate the nature of the J resistance curves
under plane stress. These results corroborate experimental observations of a larger
potential for stable crack growth under plane stress, as compared with plane strain.

In Chapter IV, the effect of isotropic power law hardening on the active plastic
zone and near-tip fields is investigated, and comparisons are made with the results

obtained in Chapter III for the perfectly plastic case. Also the influence of hardening
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on the potential for stable crack growth is examined.



7.

CHAPTER 1I
MONOTONIC LOADING OF
A STATIONARY CRACK UNDER PLANE STRESS

2.1 INTRODUCTION

The stress intensity factor is a measure of the intensity of the stress and strain
fields near a crack tip in linear elastic fracture mechanics. However, fracture in
most structural materials, particularly low and intermediate strength metals is often
accompanied by plastic flow near the crack tip, invalidating the assumptions of linear
elasticity theory. Under certain circumstances, the stress intensity factor can still
be used to characterize the onset of crack growth, provided that the plastic zone
is contained well within the region of dominance of the singular elastic field. This
situation is often referred to as “small-scale yielding.” But when plastic flow takes
place over large size scales, one is compelled to seek continuum solutions for crack
problems within the context of an elastic-plastic theory.

Hutchinson [2.8,2.9) and Rice and Rosengren [2.10) performed the asymptotic
analysis for stress and deformation fields near a monotonically loaded stationary
crack tip in a power law hardening material obeying a deformation plasticity the-
ory. The fact that the value of the J integral [2.12] provides a measure of the
intensity of the near-tip field in this asymptotic solution has prompted some inves-
tigators [2.25,2.26] to propose a criterion for the onset of crack growth based on
the attainment of a critical value for J. This proposal has been complemented by a
wide range of experimental data [2.25,2.26).

In order to characterize fracture initiation based on this single macroscopic
parameter, it is imperative that the plastic singular fields of [2.8-2.10| should dom-
inate over a length scale that is large as compared to the fracture process zone. In

this region, microstructural processes such as void nucleation and growth, micro-
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cracking, etc. take place. The fracture process zone is often believed to coincide
with the region near the tip, wherein finite strain effects are significant. In ad-
dition to the above issues, another important factor that has to be considered is
the possibility of non-proportional loading near the tip, which would render the
deformation plasticity theory (on which the analysis of [2.8-2.10] is based) to be

physically inappropriate.

The above issues have been examined by several investigators through nu-
merical methods predominantly under the tensile plane strain mode of fracture.
Accurate finite element studies with crack tip elements making use of special in-
terpolation functions to account for the plastic strain singularity of [2.8-2.10] were
conducted by Levy et al.[2.13] and Rice and Tracey [2.2] for the perfectly plastic
case and by Tracey [2.16] for hardening materials. These studies modelled Mode I
plane strain, small-scale yielding conditions and employed an incremental plasticity
theory. They confirmed the validity of the dominant fields of [2.8-2.10] in a region
quite close to the crack tip. McMeeking [2.27] performed a finite element calculation
to model crack tip blunting based on a finite strain incremental plasticity theory

under plane strain, small-scale yielding conditions. He observed that finite strain

- effects become important only for distances from the tip of the order of 2 or 3 times

the crack opening displacement é; (which will be defined in Sec.(2.4)). Strong path

dependence of the J integral was also noticed within this region.

Shih and German [2.28) investigated the range of dominance of the plastic sin-
gular fields of [2.8-2.10] for a wide variety of specimen configurations and material
properties from contained yielding to fully plastic conditions. They employed a
small strain incremental plasticity theory and confined their attention to Mode I
plane strain. McMeeking and Parks [2.29] also investigated configuration depen-

dence within the context of a finite strain theory similar to [2.27] under large scale
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yielding. Thus, substantial work under Mode I plane strain conditions has been per-
formed to provide a better understanding of the mechanics of crack tip state and
also to specify size requirements for specimens used in fracture toughness testing to

ensure J dominance.

However, very little information is available in the literature pertaining to the
above issues under Mode I plane stress, despite its practical importance to struc-
tural problems. A preliminary numerical investigation was carried out by Hilton
and Hutchinson [2.30] under plane stress, small- (and large-) scale yielding condi-
tions in which the singular fields of [2.8-2.10] were imposed in a small circle near the
~ crack tip. The value of J or some other equivalent plastic intensity factor was de-
termined along with the nodal displacements from the finite element solution. Shih
[2.14] applied the method of [2.30] to study combined Mode I and Mode II fracture
problems under both plane strain and plane stress. Both these studies [2.30,2.14]
employed a deformation plasticity theory and considered power-hardening materi-
als. Also, the validity of the asymptotic solutién of [2.8-2.10] was assumed over a
length scale, which was not known apriori, although this was contained well within

the plastic zone in these numerical simulations.

Some of the issues mentioned above, pertaining to the range of dominance
of the asymptotic fields and the amount of non-proportional loading near the tip,
which have received considerable attention in the plane strain problem, have not
been examined in plane stress. Thus, detailed numerical work along the lines of
[2.2,2.16] and [2.27-2.29] is required to firmly establish a conceptual understanding
of fracture under plane stress conditions. This is usually more complex than in plane
strain, primarily because the equations of plane stress plasticity are somewhat more

involved [2.11].

In addition to the above considerations, a detailed numerical study of plane
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stress fracture is important because of the possibility of a direct comparison with op-
tical experimental methods such as caustics. This method, which has been employed
to determine the stress intensity factor in linear elastic fracture problems [2.20], has
recently been extended to applications in ductile fracture [2.17,2.22]. A knowledge
of the range of dominance of the plastic singular fields is of primary importance to
facilitate a proper interpretation of experimental data [2.23]. Also, information from
full-field numerical solutions would be crucial in analysing the caustics obtained in

regions outside the range of dominance of any particular asymptotic field.

In this work, an elaborate finite element investigation, with a very fine mesh
elucidating the details near the crack tip, is undertaken to simulate Mode I plane
stress, small-scale yielding conditions. No attempt has been made in this part of the
work to incorporate the expected singularity in the strains by using special crack tip
elements. Computations have been performed for materials obeying an incremental
plasticity theory with no hardening and with a power-law hardening. In Sec.(2.2),
the numerical formulation, the finite element scheme, etc. is outlined. In Sec.(2.3),
stationary crack tip fields under plane stress [2.8-2.10] are reviewed. In Sec.(2.4),
detailed results are presented for the plastic zones, stress and strain distributions,
and crack opening displacement. Also, the path independence of the J integral is

examined.

In Sec.(2.5), caustic patterns are simulated from the numerical solution at a
wide range of distances from the crack tip and are compared with experimental
observations [2.23] and asymptotic results [2.17,2.21]. In Sec.(2.6), an additional
numerical analysis, employing singular elements near the crack tip, is performed for
the perfectly plastic case in order to examine the asymptotic stress and deformation
fields. The issue of sensitivity of the numerical results to the near-tip mesh design is

thus investigated. It is found that the dominant strain field near the tip for perfect
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plasticity is completely different from the limit of the singular solution of [2.8-2.10]
for materials with low hardening. On the other hand, the numerical results for the
near-tip stress field are in good agreement with the slip line solution of Hutchin-
son [2.9]. In the light of this observation, it is suggested that the configuration
dependence of crack tip deformation should be investigated under plane stress in
the spirit of [2.27-2.29]. Such an analysis could be complemented by experimental

results based on caustics.

2.2 NUMERICAL ANALYSIS

Formulation

The Mode I plane stress, small-scale yielding problem [2.1] was modelled by
considering a crack in a domain R, which was entirely represented by finite elements
as shown in Figs. 2.1a and b. Only the upper half-plane was considered because of
Mode I symmetry. All field quantities are referred to with respect to an orthonormal
frame {e,,e,,eq} centered at the crack tip. The leading term in the displacements

of the linear elastic asymptotic solution,

r A
Uy = K] ﬁua(a) y (22.1)

was specified as boundary conditions on the outermost boundary S of the domain.?

The loading was applied through the Mode I stress intensity factor Ky, which occurs
as an amplitude factor in Eqn.(2.2.1).

The maximum extent of the plastic zone surrounding the crack tip was at all

times within 516 of the radius of the outermost contour S, so that the small-scale

yielding condition was preserved. All plastic deformation was confined within the

! Throughout this chapter, Greek subscripts will have the range 1,2, while Latin

subscripts will take values 1,2,3.
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active region shown in Fig. 2.1a, which has a total of 1704 four-noded elements and
3549 degrees of freedom. The large region surrounding this active mesh has a total
of 40 rings with 56 elements in each ring and remained elastic throughout the entire
computation. The constant stiffness of this region was statically condensed using
a ring-by-ring static condensation procedure that involved a partial forward Gauss
reduction at each stage.

The cutout in Fig. 2.1a is a fine mesh region near the crack tip, which is shown
in detail in Fig. 2.16. This mesh was designed to have small rectangular elements
paralle]l to the crack plane instead of being focussed at the crack tip. No attempt
has been made to incorporate the singularity of the plastic strains by using special
crack tip elements in this analysis (see Sec.(2.6) and Rice and Tracey [2.2]). This
was because the stress and strain fields at the end of the stationary load history
were used as initial conditions for simulating stable crack extension, which will be
reported in Chapters IIland IV. The radius R4 of the active mesh and the radius
of the outermost boundary S are about 385 times and 3400 times the size L of the
smallest element near the crack tip, respectively.

The Mode I symmetry conditions that are given by

0’12(131,232 = 0) =0
, >0, (2.2.2)
uz(.’Cl,Iz = 0) =0

were imposed by attaching stiff springs in the z, direction to the nodes ahead of
the crack tip. Traction-free conditions were imposed on the crackflank.

The type of element used was the four noded isoparametric quadrilateral, which
was formed from four constant strain triangles with static condensation of the in-
ternal node. This element was suggested by Nagtegaal et al.[2.3] to relieve artificial
mesh-locking effects that occur under nearly incompressible conditions in plane

strain. However, this problem does not arise in plane stress because there is a non-
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zero out-of-plane strain component €33, which is determined in terms of the in-plane

strain components €4g.
Material Idealization

The materials that were numerically modelled were the elastic-perfectly plastic
solids and isotropic power-hardening solids. A small strain incremental plasticity
theory was employed along with the Huber-Von Mises yield condition and the asso-
ciated flow rule. The Huber-Von Mises yield condition for isotropic hardening takes
the form,

f(o,e?) = F(a) — a%(e?), (2.2.3)

where F(g) = 2S.S and & = | (%éfjéfj) 24t is the accumulated equivalent plastic
strain. In the above, S is the deviatoric stress tensor and &(eP) is defined by the

following power hardening rule:

& _ (i)n _9 (2.2.4)

€0 Jo Jo
For the elastic-perfectly plastic case, ¢ takes the constant value of og, the yield
stress in uniaxial tension. In Eqn.(2.2.4), ¢ is the yield strain in uniaxial tension.
Within the context of the small strain flow theory of plasticity, the total strain

rate tensor can be decomposed into elastic and plastic parts:
€= ¢° 4 év. (2.2.5)

The stress rate tensor ¢ is related to the elastic strain rate tensor ¢° through a

constant, isotropic, positive definite elasticity tensor C as,

G=Ceé. (2.2.6)

P is normal to the yield surface and the flow rule

The plastic strain rate tensor €
takes the form,

F, = A8, (2.2.7)
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where A > 0.

By using Eqns.(2.2.3)-(2.2.7) the constitutive law for material currently expe-

riencing elastic-plastic deformation can be obtained as,

Ciququsmncmnkl
SrtCrtquuv + %62}1

0ij = Ciyriéer = | Cijht — €ki - (2.2.8)

In the above, H = 4Z and can be obtained from (2.2.4) for hardening solids and is
set equal to zero for perfect plasticity.
In the present analysis, (2.2.3) and (2.2.8) were used along with the plane stress

constraint, which requires

03; =0 . (2.2.9)
By using (2.2.9) in (2.2.8), we can obtain an expression for éss in terms of éqg.

Finste Element Scheme

A displacement based finite element method was employed in the analysis. The
finite element equations were derived from the principle of virtual work. At a time

(t + At) this takes the form,

/ ot + At).6edA = / T(t + At).6uds . (2.2.10)
R dR

Here o(t + At) represents the Cauchy stress tensor, which satisfies equilibrium at
time (t + At) and T(t + At) the imposed traction vector on the boundary JR.
Also, 6u represents the virtual displacement vector that vanishes on the part of
the boundary where the displacements are specified and é¢ is the associated small
strain tensor.

After linearizing about the equilibrium configuration at time t and introducing
the finite element approximation, we obtain the following incremental equilibrium

equations in matrix form (Bathe et al.[2.4]):

KpAU = F(t + At) — P(t) . (2.2.11)
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Here AU = U(t + At) — U(t) is the vector of nodal point displacement increments.
Also, Kp = fR E'FQEdA is the tangent stiffness matrix corresponding to the config-
uration at time t, B, the strain displacement matrix (¢ = B U) and D, the material
constitutive matrix. D will be equal to C for purely elastic response and C” for
elastic-plastic material response. F(t + At) is the vector of externally applied nodal
point loads at time (t + At) and P(t) = [ BT ¢(t)dA is the vector of nodal point
forces equivalent to the element stresses at time t.

In the present analysis, time is only a convenient variable that represents differ-
ent levels of load intensities. An iterative Newton-Raphson procedure [2.4-2.6] was
employed in the solution of the incremental equilibrium equations (2.2.11). This

method is summarized in Appendix A.
Stress Computation

As was observed above, the finite element scheme solves the displacement equa-
tions of equilibrium in an incremental fashion. Hence, the constitutive laws pre-
sented earlier that deal with_ stress and strain rates were used approximately to
relate small finite increments in stresses and strains. An explicit integration proce-
dure also known as the Tangential Predictor-Radial Return method was employed
~ to integrate the incremental stress-strain law. As shown by Schreyer et al.[2.7], this
method, if used with subincrementation (as in the present analysis), is very accurate
for plane stress conditions.

It is important to recall that the requirement of plane stress imposes a con-
straint for the out-of-plane strain increment Aezz in terms of the in-plane strain -
increments Aeys. Due to this constraint, it is more convenient to perform com-
putations with stress and strain tensors instead of with their deviatoric parts as
is normally done in plane strain. The method of stress computation is outlined in

Appendix A.
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Solution Strategy

As noted earlier, the loading was applied through the Mode I stress intensity
factor Ky, which enters the far-field displacement boundary condition (2.2.1). An
initial load step was performed in which K; was small enough to ensure that all
the elements remained elastic. K; was then scaled to cause incipient yielding in the
element nearest to the crack tip.

Subsequent load steps were performed by increasing K; by 5-10% of the in-
cipient value at a time and iterating for convergence to equilibrium. FEach load
step required typically 3-4 iterations before converging to an accepted equilibrium
configuration. Yielding was continued till the plastic zone surrounding the crack
tip had a maximum extent of about 50 or 100 times the smallest element size L in

order to guarantee sufficient resolution near the crack tip.

2.3 STATIONARY CRACK TIP FIELDS

Power-Hardening Solids

Hutchinson [2.8,2.9] and Rice and Rosengren [2.10] investigated the asymptotic
stress and strain fields near a monotonically loaded stationary crack tip in an elastic-
plastic solid. The dominant singular term of their analysis will be referred to as
"~ HRR in the sequel. In their work, a J, deformation plasticity theory and a power-
law hardening idealization similar to (2.2.4) were assumed.

The HRR analysis employs a small strain formulation and assumes a separable

form in polar coordinates r and 8, for the dominant term of the solution, to obtain,

J
oo€olnr

n¥i )
} 545(0,m)

. , r—0. (2.3.1)
P J B
€f; ~ €0 [Uoﬁo[nr} eij(H,n)

In (2.3.1), 0o and €g are the yield stress and strain in uniaxial tension and n is

the hardening exponent. The angular factors &;;(f,n) and €fj(0,n) depend on the
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mode of loading and on the hardening exponent. The dimensionless quantity I,,
which is defined in [2.8], decreases from 5 for n = 1 to about 2.6 for n — co under
plane stress. J in (2.3.1) is the value of Rice’s [2.12] J integral.
For plane deformations, the J integral is defined for any path of integration I'
by [2.12],

J = /(Wm — voi5uj,1)ds , (2.3.2)
r

where W is the local stress work density, v; a unit vector normal to I' and u; is
a particle displacement vector. For our purposes, I' will denote an open contour
surrounding the crack tip. The integral (2.3.2) has the well-known property of
path independence for a wide class of solids, including materials that obey the
deformation theory of plasticity. Under small-scale yielding conditions, J can be

evaluvated from contours taken in the far-field (K dominated) elastic region as,
J=— (2.3.3)

for plane stress. It is important to note that J enters (2.3.1) as an amplitude factor
and hence provides a unique measure for characterizing fracture initiation at the
crack tip.

The main limitation of the HRR analysis is the unknown range of dominance
(e.g., with respect to maximum extent of the plastic zone) of the singular solution.
This issue is important since this range of dominance should be large as compared
with the fracture process zone and the region near the crack tip where the small
strain plasticity theory breaks down. From the experimental standpoint, this infor-
mation is crucial in the proper interpretation of experimental data based on optical
measurements [2.17,2.23].

Also, the discrepancy between the deformation theory and the more appropri-

ate incremental theory of plasticity has to be assessed from the context of crack tip
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fields. In addition, another serious limitation that will be pointed out later occurs
when the limit n — oo is taken. This is associated with the change in nature of the
governing equations in the limit as the perfect plasticity case is approached.

The above issues will be investigated from the point of view of the plane stress
full-field numerical solution presented here. This solution simulates small-scale
yielding conditions and employs an incremental plasticity theory.

Perfectly Plastic Solids: Stress Field

For perfectly plastic solids, the following important assumptions regarding the

asymptotic nature of the stress field are usually made,

o5 (r,0) ~ 07(0)

do;;(r,0) doy;
'—]a—a— ~ o} (0) = ’E[éi , r—0. (2.3.4)
Jdo;
~o(1
or o(1)

It is important to bear in mind that the field equations for perfect plasticity are
hyperbolic 2, while those for hardening solids are elliptic.

Equation (2.3.4) can be used to obtain asymptotic forms of equilibrium equa-
tions and the Von Mises yield condition (Rice and Tracey [2.2]). These can be
employed to show that only two types of asymptotic plastic sectors can exist near

the crack tip. These are as follows for plane stress.
i) Centered Fan Sector

In this sector, radial lines are stress characteristics and the asymptotic stress

field has the following form,
0;,.(0) = 1o cos(8 — b)

0gg(0) = 275 cos(0 — by) ; (2.3.5)

076(0) = 1o sin(8 — o)

2 For perfectly plastic solids under plane stress, the governing equations for the

stresses could be hyperbolic, parabolic or elliptic [2.11].
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where 6o is an arbitrary constant angle and 7o is the yield stress in pure shear.
i1) Constant Stress Sector

In this sector, the Cartesian components of the stresses are constant,

025(0) = bag - (2.3.6)

The constants b,p are related by the yield condition. Straight lines along which the
direct components of the stress deviator Sop vanish are stress characteristics (Hill
[2.11]).

Hutchinson [2.9] assembled a solution for the near-tip field comprising of a
combination of the above sectors as shown in Fig. 2.2. The region marked A is a
centered fan sector extending from 6 = 0° to § = 79.7°, while the regions B and C
are two constant stress sectors, which occupy the angles from § = 79.7° to § = 180°.
The stresses in Sector A are as given by (2.3.5) with 6o = 0. In particular, it should

be noted that the stresses ahead of the crack tip (§ = 0) are given by

071 = 7o 059 = 279 01, =0. (2.3.7)

There is also a discontinuity in the o,, stress component between the two constant

stress sectors B and C, which is admissible as long as the crack remains stationary.
Perfectly Plastic Solids: Deformation fields

As noted by Rice [2.12] in the case of plane strain, singularities in strains result
when slip lines focus at a point as in centered fan sectors. The displacements u; (or
the rates 4; in a proper incremental formulation [2.11]) are functions of angle 8 as
the crack tip is approached within centered fan sectors resulting in a discrete crack

opening displacement at the tip. The following assumptions are often made [2.2]
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8,=79.7°; 8,=151.4°

Figure 2.2. Analytical asymptotic field near a stationary crack tip in a perfectly
plastic solid under plane stress represented by stress characteristics.
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about the displacements u; (or the rates ;) within centered fan sectors,

ui(r,0) ~ ui(9)

aui(T,H) , B du;?
59 ~wll) =50, r—o. (2.3.8)
Bui
= ~ o(1)

Since radial lines are stress characteristics in the fan, €f, is nonsingular while
r -p r P . 1 . .
eb, (or éb,) and €7y (or é¥,) are singular as O(;) when the crack tip is approached

within the fan. Thus, it is possible to write

620 ~ €Q
r—0 (2.3.9)

P A ANA
€ro €o

within fan sectors. The angular factors é0,(0) and é’,(6) are non unique and cannot
be determined from a local analysis. They depend on a solution to the entire
boundary value problem. However, from the flow rule ,

P P 2 Q..
e o (ki) S (2.3.10)
t 2 T0

—

the following relation can be obtained between ¢b, and é?,,

(2.3.11)

provided Sgg # 0. Although this equation strictly applies for the strain rates in an
incremental theory, it can be used to relate the total strains if the stresses remained
constant at a material point from the time it- was enveloped by the plastic zone.
Hence, it is expected to hold approximately between the asymptotic angular strain
factors é,(9) and €7,(6).

The dominant HRR solution for the stresses (2.3.1) approaches the limiting

slipline distribution of perfect plasticity as the hardening exponent n — co. But as
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has been observed by Levy et al.[2.13] and Rice and Tracey [2.2] for plane strain,
one cannot in general expect the HRR singular solution for the strains as n — oo to
be the dominant solution for perfect plasticity because of the non-uniqueness noted
earlier.

On the other hand, the strain components are (in general) non-singular in
the constant stress sectors and the same displacement results if the crack tip is
approached along different radial lines in these sectors.

An expression for the near-tip J integral can be obtained from the asymptotic
form (2.3.9) following Rice’s [2.12] plane strain analysis. Taking the contour I' in

(2.3.2) to be a circle of radius r, one can write (2.3.2) as,

iy
J:'f‘/ {WCOSH_O-rr[Errcosa—(GTO“w)Sina]

o7 (2.3.12)
— o're[(erg + w) cos § — €g¢ sin 0} }dﬁ .
In the above equation, w is the rotation, and
1
W= —€rg + 0<——>, r—0. (2.3.13)
r
Also,
(+)
€rr = 0 —
,
) , r—0, (2.3.14)
W =WP?P 4 0<—>
,
where

gl' 2 1/2
WF = / GdeP = 0P =~ ao<§efjefj> )
0

Taking r — 0in (2.3.12) and using the asymptotic equations (2.3.5), (2.3.9), (2.3.13)

and (2.3.14), one obtains

202\ [© 2
Jtip = <_.U.9..> / {2[(6?8)2 - (659)2] Y2 s 8 + &8, sin 20
0

(2.3.15)
+ &b, sin? H}dﬂ :

where * is the maximum angular extent of the fan.
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2.4 RESULTS AND DISCUSSION

The computations were performed for two levels of power hardening, n = 5 and
9 and also for the elastic-perfectly plastic case, which is referred to as n = oo in the
following discussion of the results. It should, however, be noted that the elastic-
perfectly plastic calculation was performed with H = 846% = 0 in the constitutive
Equation (2.2.8). The ratio of the Young’s modulus to the yield stress in pure shear
(E/70) was taken as 1400 for the two cases of power hardening and as 350 for the

elastic-perfectly plastic calculation. The Poisson’s ratio was taken as 0.3 for all

cases.
Plastic Zones

The plastic zone surrounding the crack tip is shown in Fig. 2.3 for the three
values of hardening exponent n. The crack tip is situated at the origin of the
coordinate axes that have been made dimensionless by the parameter (K; /00)2.
This parameter has the unit of length and also contains a measure of the far-field
loading. Hence, the size of the plastic zone is expected to scale with respect to this
parameter under small-scale yielding conditions. A point in the figure represents a
yielded integration station within an element. It should be noted that the plastic
zone becomes less rounded and spreads more ahead of the crack tip with decreasing
hardening (increasing n).

These plastic zones agree well in shape but are slightly smaller in size as
compared with the results of Shih [2.14], who employed a deformation plastic-
ity theory and used a singular element near the crack tip. The maximum ex-
tent of the plastic zone that occurs ahead of the crack tip (§ = 0) is about
rp, = 0.22(K1/00)?, 0.25(K1/00)”® and 0.29(K;/a0)® for n = 5, 9 and oo,
respectively. For comparison, Shih’s [2.14] calculation indicates an r, of about

0.32(K;/00)? for n = 25, and Tada et al.[2.15] report 1, = 1(Ki/00)? for n = oo
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Figure 2.3. Plastic zones surrounding the crack tip for three levels of hardening:
n=>5,9 and oo.
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based on an approximate calculation. The slightly larger size of the plastic zone
obtained by Shih could be due to the imposition of the HRR singular solution in a
small circle around the crack tip in his analysi;. The present computation introduces
no such a prior: constraint.

In Fig. 2.4 the numerically obtained plastic zone for n = 9 is compared with
the visual evidence of permanent plastic deformation observed on the surface of a
thin compact tension specimen [2.23]. The material used in this experiment was a
4340 carbon steel with a power-hardening exponent of 9 in uniaxial tension. The
experimental and numerical plastic zones agree well in shape and also in size when
the load levels in the experiment were small and there were no boundary interaction

effects (contained yielding).
Radial Distribution of Stresses

The distribution of the normalized opening stress, o22/70, along the x; axis
ahead of the crack tip and within the plastic zone is shown in Fig. 2.5. The centroidal
values of stress in the row of elements ahead of the the crack tip have been used in
making this plot. Advantage has again been taken of the self-similarity noted earlier,
with the distance from the crack tip being measured in terms of the dimensionless
variable Xl/(KI/Uo)2. The finite element results agree to within 1% with the HRR
asymptotic stress distribution (2.3.1), which is shown by the solid lines in the figure,
in the range 0 < x; < 0.08(K1/00)2. For example, at x; = 0.018(K1/00)2, the ratio
of the finite element to the HRR asymptotic stress is 3.13/3.14, 2.66/2.67 and
1.999/2.0 for n = 5,9 and oo, respectively.

The values given by the HRR distribution for o5 are higher than their finite
element counterparts by about 8% at the elastic-plastic boundary. This is in marked
contrast to the corresponding result in plane strain [2.16], where strong deviation of

the finite element solution from the HRR distribution was reported even for small
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Figure 2.5. Radial distribution of opening stress ahead of the crack tip. The solid

lines represent the HRR asymptotic distribution.
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distances from the crack tip. Also, it should be observed from Fig. 2.5 that there is
only slight dependence of 029 on n for x; > 0.15(KI/00)2. The finite element values
differ by less than 10% (with respect to n) in this range.

The radial variation of all the normalized stress components ahead of the crack
tip within the plastic zone for the elastic-perfectly plastic case is shown in Fig. 2.6.
The finite element values near the crack tip are in excellent agreement with the
asymptotic slipline solution of Hutchinson (Fig. 2.2).. At x; = 0.01(K[/0’0)2, o011
and oy are 0.987, and 1.9997), respectively, which compares very closely with the
values of 7o and 279 given by the slipline solution (Eqn.(2.3.7)). Also Fig. 2.6
indicates that the oy stress component has a strong radial variation ahead of the
crack tip, with a value at the elastic-plastic boundary of about 1.407. This suggests
curving of the leading boundary of the fan at moderate distances from the tip.

The plane-stress Huber-Von Mises yield surface can be represented by an ellipse

in principal stress space in the following parametric form [2.11],

w
01 = 27p cos(w — 6)

09 = 279 cos(w + %) . (2.4.1)

w = w(r,0)
For 01 > 02, the angle w varies in the range 0 < w < w. The governing equations

for the stresses are hyperbolic if § < w < %’i, parabolic if w = £ or %’5, and elliptic

if0 <w< gor %—r- < w < 7m. The value of w(r — 0,0) corresponding to the
asymptotic stresses (2.3.7) is &» Whereas the stresses at the elastic-plastic boundary
ahead of the crack tip give w(r,,0) ~ . Thus, while the stress state ahead of
the crack is parabolic near the tip, it appears to be elliptic at the elastic-plastic
boundary.

It is important from the viewpoint of optical experimental methods (such as

caustics) [2.17,2.23] to determine the effect of the crack tip plastic zone on the stress
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and deformation fields in the surrounding elastic region, in order to properly inter-
pret the experimental data. To examine this effect, we show the radial distribution
of stresses in the ray ahead of the crack tip on an expanded scale in Fig. 2.7 for
the two levels of hardening, n = 5 and 9. The stresses given by the singular elastic
solution (K field) are shown for comparison by the solid line in the figure. It is
found that the o, stress component obtained from the numerical solution is higher
than that given by the singular elastic field at the elastic-plastic boundary (r = r)
by more than 30%. However, the stress distribution undergoes a rapid transition
outside the plastic zone and differs from the K; field by less than 8% for r > 1.5rp.
Also, the stress distribution in the surrounding elastic region seems to be quite

insensitive to the hardening level.
Radial Distribution of Plastic Strains

The radial variation of the normalized plastic strains €},/ey and €5;/€eo with
respect to normalized distance ahead of the crack tip is shown in Fig. 2.8 for the two
levels of power hardening. The HRR solution for the asymptotic strain distribution
(Eqn.(2.3.1)) is shown by the solid lines in the figure. The finite element solution,
although slightly smaller than the HRR distribution near the crack tip, appears to
indicate the correct singular behaviour in the range r < 0.3r},. It should be recalled
that a very detailed mesh was used near the crack tip (Fig. 2.1b), and that the
plastic zone was quite large as compared with the smallest element size (at least
50 times) at the stage when these results were taken. These factors compensate to
some extent for the incorrect modelling of the singularity (2.3.1) by our using linear
shape functions for the crack tip elements.

The radial variation of the normalized plastic strains ahead of the crack tip for
the elastic-perfectly plastic case is shown in Fig. 2.9. The solid line in the figure

is the limit of the HRR dominant singular solution for €}, /¢ for large n, which is
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given by [2.14,2.17],

~ , =0, r—0, (2.4.2)
r

p |HRR "
622J 0.97,

€0

7+ 0O

. 1/K\*
Ty = — | —= 1 .
b m A\ Op

The finite element solution for the strains seems to indicate the correct % variation

where

near the crack tip (r < 0.04(K;/00)?) but is about 3.3 times the values given by
(2.4.2).

As has already been noted in Sec.(2.3), the HRR singular strain solution as
n — oo, cannot (in general) be expected to provide the dominant solution for per-
fect plasticity because of the non-uniqueness in strains associated with the non-
hardening case. This discrepancy has also been observed in Mode I plane strain by
Levy et al.[2.13] and Rice and Tracey [2.2]. In this connection, it should also be
mentioned that Knowles [2.18], in working on the finite anti-plane shear field near
a crack tip in an incompressible elastic solid, with a similar power law behaviour
has made an important observation. He found that the first- and second-order
terms in the asymptotic expansion for the displacements tend to become of equal
importance, as one approaches the equivalent of the “perfectly plastic” case in such
solids. This raises the question of whether the limit as n — oo of the most singular
term in the asymptotic solution can be considered separately, without examining
the limiting behaviour of the higher-order terms of the expansion.

In order to resolve the issue further, a separate finite element calculation for
the perfectly plastic case was performed under plane stress, small-scale yielding
conditions using a focussing mesh with singular elements near the crack tip, similar
to the work of Rice and Tracey [2.2]. The results of this investigation will be

reported in Sec.(2.6). Finally, it should be noted that the region ahead of the crack
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tip, wherein the % variation of the plastic strains was observed (r < 0.04(K1/00)2),
corresponds to the region of dominance of the asymptotic stress field (see Fig. 2.6).

Beyond this range, the front boundary of the fan may tend to curve and the %

variation for the plastic strains may no longer be valid [2.1,2.7].
Crack Opening Displacement

The opening displacement between the crack faces as a function of position
along the crack flank is shown in Fig. 2.10 in the nondimensional form, é/(J/o¢)
versus Xl/(KI/UO)Z, for the three cases, n = 5,9 and co. The linear elastic solution
corresponding to n = 1 is also plotted for comparison. J in this plot is the far-field
value given by (2.3.3). From the figure, it can be observed that the amount of blunt-
ing at the crack tip increases with decreasing hardening (or increasing n). There
is a discrete opening displacement at the tip for the perfectly plastic idealization
because of reasons stated in Sec.(2.3).

On the other hand, the near-tip crack opening profile for the hardening cases,

computed on the basis of the HRR analysis, has the form [2.8,2.10],
6 = 2ug(r,m) ~ (2r(6t)n)#, r—0. (2.4.3)

In this expression, 6;, which can be written as

J ~
6t = ——6t(€(),n) 5 (244)
ao

can be approximately interpreted as the opening distance between the intercept of
two 45° lines drawn back from the crack tip to the deformed profile. This definition -
was suggested by Tracey [2.16] as a measure of the crack tip displacement for a
hardening material, since 6(r = 0) = 0 in this case, as can be seen from (2.4.3).
Shih [2.19] has obtained the values for St(EQ,TL) from the HRR solution for both

plane stress and plane strain. It is found [2.19] that 5t is strongly dependent on
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n and weakly on ¢g. Also, as n — oo, 6; becomes independent of ¢y and takes the
value of 1.0 for plane stress.

From the present finite element calculation, the value of 6, /(J/0o) was obtained
by extrapolating the near-tip crack profile to r = 0 for the non-hardening case and
by fitting the form (2.4.3) to the near-tip profile for the hardening cases. Shih [2.19]
has also computed the values of é;/(J/oo) for several values of n from his finite
element solution of [2.14], which as noted earlier employed a deformation plasticity

theory. These results are summarized in the following table.

Table 2.1: Values of 6:/(J/o0) for plane stress

oo/E n=>5 n=9 n =25 n =00
HRR 0.0012 0.40 0.63 0.89 1.0*
Present Solution 0.0012 0.37 0.57 0.85
Shih [2.14,2.19] 0.38 0.86

*(extrapolated)

The slightly smaller values for 6;/(J/0o) obtained by the present solution, as
compared to HRR for the hardening cases, can be accounted partially by some
discrepancy between flow theory and deformation theory as explained below. But
the difference between the present perfect plasticity calculation and the HRR non-
hardening limit is because the latter is unable to provide complete information
regarding the most singular term for the strains in the asymptotic solution for
perfect plasticity, as described above. This discrepancy has also been observed in
plane strain. The published numerical results [2.19] for 6;/(J/0o) under plane strain,

small-scale yielding conditions for the perfectly plastic case range from 0.63-0.66,

whereas the HRR non-hardening limit is 0.78.
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J integral calculations

In order to assess the difference between the present incremental formulation
and the deformation plasticity theory, we checked the path independence of the J
integral. The J integral (2.3.2) was computed for the hardening materials along
several contours surrounding the crack tip, which passed through the centroids
of the elements. The near-tip contours enclosing the crack tip were rectangular,
while the far-field contours were circular, in keeping with the structure of the mesh
(Fig. 2.1). The integrand in (2.3.2) was calculated, using the averaged values of
stresses and strains at the centroids of the elements lying in the contour path,
and the integration was carried out numerically using Gauss quadrature. It was
found that very near the crack tip (r < 0.04r,) there was a small amount of path
dependence. However, after some distance away from the crack tip, the calculated

J value was virtually indistinguishable from the remotely applied value (2.3.3).

For a contour with an average radius T = O.OlZ(KI/oo)z, the ratio of the cal-
culated J value to the remotely applied J was 0.96 and 0.95 for n = 5 and 9, re-
spectively. For contours with average radius ¥ > 0.05(K;/00)?, the calculated J
value was smaller than the applied J by less than 1%. While the 5% difference
for the near-tip contours is within the realm of errors in the discretization proce-
dure and in the numerical integration of (2.3.2), it also suggests small amounts of
non-proportional loading experienced by a material particle from the time it was
enveloped by the plastic zone. For the elastic-perfectly plastic material, our accu-
rate numerical solution of Sec.(2.6) was used to estimate the near-tip J integral,
and its discussion will be deferred till then.

In order to further check for discrepancy between the two plasticity theories, we
calculated €, /¢ for the hardening materials at the centroids in the row of elements

ahead of the crack tip by substituting the averaged stresses in these elements into
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the expression given by the Jo deformation theory. The plastic strain given by
the J, deformation theory was about 5% higher at r = 0.012(K;/00)® than the
corresponding value given by the incremental formulation that was reported earlier
(Fig. 2.8). This difference progressively diminished as the distance from the crack

tip increased, and it was less than 1% for r > O.I(Kl/ao)z.

2.5 NUMERICAL SIMULATION OF CAUSTICS

Introduction

The optical experimental method of caustics has been applied to the study of
linear elastic fracture problems and to the direct measurement of the stress intensity
factors [2.31,2.20,2.21]. This method was recently extended to the measurement of
the J integral in ductile fracture [2.17,2.22] on the basis of the validity of the plane
stress, HRR asymptotic solution.

Under conditions of small-scale yielding, the singular elastic field dominates
well outside the plastic zone. Inside the plastic zone, very near the crack tip, the
HRR field dominates. In the transition region between these two fields, no analytical
solution is available. This limits the applicability of caustics, and the conditions
under which the results reported in [2.17,2.22] are valid are uncertain. Also, errors
may be caused in the measurement of K; based on the caustics obtained from the
elastic region surrounding the plastic zone. This is because the crack tip plastic
zone affects the caustic patterns, and an analysis based on the K; fleld may be
erroneous.

In this section, the full-field numerical solution under small-scale yielding is
used to generate simulated caustic patterns. The numerical caustics are compared
with the corresponding patterns observed from experiments [2.23]. The analysis

of caustics based on the numerical results is not limited by the assumption of the
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validity of any particular asymptotic field. Finally, qualitative and quantitative
comparisons of the simulated caustics, obtained at various distances from the crack
tip, are made with the corresponding results based on the near-tip HRR analysis

and the remotely applied K; field.
The Method of Caustics

Consider a set of parallel light rays normally incident on a planar, reflective
specimen that has been deformed by tensile loading. Due to the deformed shape
of the specimen, an envelope in space called the “caustic surface” is formed by the
virtual extension of the reflected light rays (Fig. 2.11). The intersection of this
surface with a plane located at a distance zo behind the specimen is called the
“caustic curve,” and it bounds a dark region called the “shadow spot.”

Let (x1,%x2) be a coordinate system on the specimen surface centered at the
crack tip and (X;,X3), a system translated by a distance z; behind the specimen
surface. Then the mapping of a point (x1,x2) on the specimen surface to a point
(X1,X2) on the plane at zo due to reflection of a light ray may be described by
[2.21], '

dus(xy,x2)

Xo = Xo + 229 (2.5.1)

OxXq

The locus of points on the specimen surface at which the Jacobian determinant of

the mapping (2.5.1) vanishes is called the “initial curve.” While points on the initial

curve map onto the caustic curve, all points both inside and outside the initial curve

map outside the caustic. The position of the initial curve may be varied by changing
Zo.

For a stationary crack under small-scale yielding conditions, if the initial curve

is chosen to fall well outside the plastic zone and within the region of validity of the

K, field (large values of zp), then the resulting caustic curve will be an epicycloid

(Fig. 2.12a). In such a case, Kj is related to the caustic diameter D (which is the
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field for n=9.
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maximum width of the caustic in the X, direction) by [2.20,2.21],

ED5/2

= e 2.5.2
10.7Zol/h ( )

I

where h is the specimen thickness. The initial curve is circular and its radius rg is
given by

ro = 0.316D. | (2.5.3)

On the other hand, if the initial curve is chosen to fall well inside the plastic
zone and within the region of dominance of the HRR field (very small values of zo),
then its shape as deduced in [2.17] will no longer be circular. In such a case, the
radius ro of the point on the initial curve that maps to the maximum value of X,

on the caustic curve is given by
ro = 0.385D (2.5.4)

for a hardening exponent n of 9. Also, the value of the J integral may be obtained
from the caustic diameter D as [2.17],
n-+1

(72 E " 3n+?2
J=58,2 D, 2.5.5
" E [UoZOh] ( )

where S, is a numerical factor dependent on n. Caustic curves thus obtained from
the HRR field for several values of the hardening exponent are given in [2.17]. A

typical caustic for n=9 is shown in Fig. 2.12b.
Results and Discussion

The discrete values of the out-of-plane displacement us obtained from the nu-
merical solution at the centroids of the elements were smoothed using a least-squares
finite element scheme as advocated by Hinton and Campbell [2.24]. The surface

thus generated is shown in Fig. 2.13 for a material with a hardening exponent of
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9. Caustic patterns were simulated by mapping light rays point by point from this

smoothed surface using Equation (2.5.1) for different values of zo.

The sequence of caustics simulated from the finite element solution for different
values of z is shown in Fig. 2.14 for a material with n = 9. The parameter ro/ry,
in the figure is the ratio of the initial curve size to the maximum plastic zone
extent. The initial curve size ro was estimated approximately by using Equation
(2.5.4) for caustics from within the plastic zone and by Equation (2.5.3) for caustics
from outside the plastic zone. It is seen from the figure that for ro/rp = 0.19, the
simulated caustic agrees in shape with the caustic predicted by the HRR field,
which is shown in Fig. 2.12b. When ro/rp = 1.3, the numerically simulated caustic,

Fig. 2.14f, agrees with the caustic predicted using the elastic, K field (Fig. 2.12a).

A sequence of photographs of caustics [2.23] obtained from the tensile loading
of a thin compact tension specimen of 4340 carbon steel is shown in Fig. 2.15.
The experimental details, specimen dimensions, etc. are described in [2.23]. On
comparing Figs. 2.14 and 2.15 we see that in both cases there is a transition from
an “HRR caustic” to an “elas‘tic caustic” as fT" goes from 0.19 to 1.4. The transition
away from the HRR caustic appears to take place slightly sooner in the numerical
model (around X2 = 0.3) than in the experiment (around {® = 0.35). However, the

P P

general trend is similar in both cases.

It is found that both the numerical and experimental caustics retain the shape
predicted by the K| field even for ro/r,, as small as 1.0. Thus, the effect of the plastic
zone cannot be judged by mere observation of the caustic shape. The reason for the -
invariance in shape of the caustics is explained by examining the angular variation
of the sum (o + 022), of the direct stress components (as given by the numerical
solution), at different distances outside the plastic zone as shown in Fig. 2.16. It is

seen that the sum (011 4 022) generally follows the angular distribution given by the
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Figure 2.16. Angular distribution of (01, + 022) for different distances from the
tip. The solid line is the distribution given by the K field.
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K field, which is shown by the solid line in the figure even for ro/rp, as small as 1.2.
However, the individual stress components show more deviation from those of the
K field for small values of ro/r,. This observation is important, since the caustic
shape depends on the angular variation of the out-of-plane displacement component
uz, which in the elastic region, is proportional to (01 + 022) under plane stress.
Thus, it is not surprising that the caustic shape resembles the “elastic caustic” for
ro/1rp as small as 1.0.

The numerical caustics were simulated for a fixed value of K; (or the far-field
value of J as given by (2.3.3)) by varying zo in the optical mapping Equation (2.5.1).
The relationship between the diameter D of the simulated caustics and the remotely
applied J value is shown in non-dimensional form in Fig. 2.17. The inverse of the
abscissa in the figure is an indication of the initial curve size or the distance from the
crack tip at which the information about the deformation field is being scrutinized.
Thus, a very small abscissa value (large zg or small J) implies that the initial curve
is far away from the tip. A very large abscissa value, on the other hand, implies that
the curve is very near the tip, probably within the range of dominance of the HRR
field. The bars on the numerical results indicate the uncertainty in determining the
initial curve due to discretization of the finite elements.

The solid line in the figure represents the variation of caustic size in the Kj
dominated region as given by (2.5.2) with v = 0.3. The dashed line gives the
relationship for the caustics from the HRR-dominated region (2.5.5). As can be
observed from this figure, the numerical results approach the elastic relation (2.5.2)
for small abscissa values and the relation (2.5.5) obtained from the HRR solution

for large values of the abscissa. In the intermediate region there is a transition from

one distribution to the other.



-51-

I Numerical J
— Linear Elastic
--- Asympiotic,HRR

1 . 1

0 5 0 5 20 25 30 35

JE ( E )l/z
0'8 0o Zod

Figure 2.17. Relationship between caustic diameter and the J integral as obtained

from the numerically simulated caustics.
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2.6 SINGULAR FINITE ELEMENT ANALYSIS

Introduction

In this section, a detailed investigation of the perfectly plastic case will be
presented, with the view of examining closely the discrepancy between the numerical
results for the near-tip strains and the corresponding term of the HRR solution
(non-hardening limit), which was noted in Sec.(2.4). For this purpose, a singular
finite element analysis similar to the plane strain work of Rice and Tracey [2.2] was
carried out under Mode I plane stress, small-scale yielding conditions. A ring of
focussed isosceles triangular-shaped elements was used near the crack tip in this
computation. This mesh design is different from the fine mesh employed in the
earlier analysis (Fig. 2.15). Thus, the issue of sensitivity of the numerical results
presented earlier in Sec.(2.4) to the near-tip mesh design was also examined through

this section of the present chapter.
Numerical Scheme

The near-tip elements that were employed here provide a capability for non-
uniqueness of displacement at the crack tip [2.2,2.13], which is the fundemental
feature of the 1/r plastic strain singularity within centered fan regions (Sec.(2.3)).
This was acheived by treating the triangular elements at the crack tip as degenerate
isosceles trapezoids that have a total of four nodes (one at each vertex) with two
nodes coinciding at the crack tip (Fig. 2.18). The coincident nodes at the crack
tip were constrained to move as a single point till the load level at which incipient
yielding was detected in one of the near-tip elements. A special shape function [2.2]
was used up to this load level to provide the crack tip elements the capability to
model the 1/4/t dominant elastic strain singularity. Subsequently, the coincident
nodes were allowed to move independently and the crack tip elements modelled the

1/r plastic strain singularity.
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Figure 2.18. Typical near-tip element used in the singular finite element analysis.
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The mapping of a four-noded rectangle to a triangle (Fig. 2.18) can be described

b
L 00 a0 (80—
S 4 B 4 ; h (2.6.1)
Xl(l +&(1+n)
o} 4 3

with the constraint x' = xi. Here (¢,n) is the natural coordinate system for the
element and (x;,x;) is a global coordinate system centered at the crack tip. The
inverse mapping of (£,7) in terms of a local Cartesian coordinate system (s,t), and

a local polar coordinate system (r, ) for the element is given by (Fig. 2.18),

2
£==-1
S0
s tany (2.6.2)
= (to/so) tana
The elastic singularity element has the shape function [2.2],
. 1 1- 1 1 1
u=u"{1- 1+¢ +gk( ) +£+gl( i) e (2.6.3)
2 2 2 2 2

Here u' represents the unique displacement of the crack tip nodes i and j. The above
element correctly models the \/r variation in the leading term for the displacements
of the linear elastic solution. Also, displacement compatibility is satisfied along the
edges i-l and j-k (n = £1) with the adjacant singular elements and along the edge
-k (¢ = 1) with the conventional four-noded isoparametric element that is joined
there.

As was first pointed out by Levy et al.[2.13], the mapping of any four-noded
isoparametric element to a triangle leads to a 1/r strain variation provided that
the coincident nodes are permitted to have different displacements. The crack tip

displacement for such an element is given by (Fig. 2.18),

u(—1,n) = (o ;Ej) +n(gi;gj) : (2.6.4)
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Following the notation of (2.3.9) and neglecting the elastic strains that are

bounded, it can be shown from (2.6.4) that

- B [ secy ; . i :
&y = o <2tana> [~(uS —u)) tany + (ug — ujt)}
E [ seci , (2.6.5)
oo B P Py
€ro s (4 tan a> [(us us) + (u, — w) tan z”

where ugs and u; are the displacement components in the local (s,t) Cartesian co-
ordinate system and i is the angle measured in the local (r,%) polar coordinate
system (Fig. 2.18) for the element. It should be noted that the right-hand side of
(2.6.5) is a first-order finite difference approximation to €5,(¢) and €%,(¢). Also, it
should be noted that if the two coincident nodes displace as a single point, so that
u' = u, then this element behaves as an ordinary constant strain triangle.

The mesh employed in this analysis was similar to the one used by Levy et
al.[2.13]. Only the upper half-plane was considered because of symmetry. The active
mesh consisted of 20 rings with radii of L, (1.5)*L, (2.0)’L, ..., (9.5)*L, (10.0)’L and
115L. These were divided by 25 rays at equal angular intervals of 7.5°, giving a
total of 525 nodes (including 25 coincident crack tip nodes) and 480 elements in
the active mesh. The region outside consisted of 14 rings with 24 elements in
each ring and always remained elastic. Static condensation was employed in this
region as described in Sec.(2.2). The radius of the outermost boundary S on which
the displacement boundary condition (2.2.1) was specified was 645L. The loading
process was stopped when the maximum plastic zone extent was about Tlg of the
radius of the outermost boundary S, so that the small-scale yilelding condition was
preserved. The symmetry condition (2.2.2) on the § = 0 ray and the traction-free
condition on the § = 7 ray were enforced.

Every near-tip element was composed of three subelements [2.2], each extend-

ing to one-third of the height of the element. A nine-point numerical integration
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scheme was employed to integrate the element stiffness matrix, with integration
stations at (&,n = ~§,O, —;—) and weighting factors of é of the area of the element.
For the isoparametric elements outside the innermost ring, the two-by-two Gauss
quadrature scheme was used. The solution strategy was the same as that described

in Sec.(2.2) with the additional modifications mentioned earlier in this section.
Results and Discussion

It can be shown by substituting the dominant term of the elastic solution for
the stresses into the plane stress Von Mises yield condition that incipient yielding
will occur at an angle of arccos(é) 7 70.5°. Also, the value of the load parameter,
K¢ /(oo \/Zr?;), calculated from the analytical solution is 0.866 for initial yielding at
a radius of ry. Incipient yielding occurred in the present finite element computation
in the subelement between 67.5° and 75° with a mean angle of 71.25°. The value of

/(o0 \/ﬁf;) was 0.83, which is in good agreement with the analytical prediction.

The radial distribution of stresses along the ray ahead of the crack tip at incip-
ient yield is shown in Fig. 2.19 in the nondimensional form, o /7o versus r/(K1/00)2.
The stresses given by the finite element solution are in excellent agreement with the
dominant elastic solution, which is shown by the solid line in the figure. Also, the
angular distribution of stresses within the crack tip elements compared closely with
the analytical solution.

The plastic zone at the end of the stationary load history is shown in nondi-
mensional coordinates in Fig. 2.20. This compares very well, in overall features,
with the plastic zone obtained in the earlier analysis (Fig. 2.3). The maximum
plastic zone extent is about r, = 0.28(K;/0o)” ahead of the crack tip. In the sub-
elements nearest to the crack tip, yielding spread only from 8 = 0 to 75°, which is
in approximate agreement with the centered fan region of Fig. 2.2.

The radial stress distribution ahead of the crack tip within the plastic zone also



-57-

2‘0 ¥ T T T T T T
T
1.5 fo ]
o8
4 s —f%g- Numerical
o
IO‘ * % 12 b
T
o °S
T0 — Lirear Elastic
0.5+ 1
OO'S!.I....; 1 > - -3 : ; :
‘0.5 1 1 L 1 L Y 1
0 5 10 15 20 25 30 35 40
r
(KI/O‘O)
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appeared similar to the variation reported earlier in Fig. 2.6. In the subelement
nearest to the crack tip that occupies the angular range from 8 = 0 to 7.5°, the
stresses oq; and oq9 reached the constant values 0.997¢ and 1.9997;, respectively,
which agrees very well with the analytical asymptotic limit (2.3.7). Once again, a
strong radial variation in the o;; stress component was observed along the § = 0

ray, with a value at the elastic-plastic boundary of 1.407¢.

The angular distribution of the normalized stress component ogg/79, within
the subelements nearest to the tip, is shown in Fig. 2.21 along with the slip line
solution (solid line) of Hutchinson [2.9]. The finite element solution shows good
agreement with the analytical distribution in the angular range 0 < 6 < 80°, which
corresponds to the centered fan region in Fig. 2.2. This was typical of the other two
stress components g,¢9 and o,, as well, with o,, showing more deviation from the
analytical solution as § — 80°. This result is consistent with the fact that the two
constant stress sectors in Fig. 2.2 were not detected by the finite element solution.
Also, the numerical result suggests that within the fan, the focussing of the slip

lines may occur very close to the crack tip in the angular range 65° < 6 < 80°.

The normalized crack tip opening displacement 8;/(J/0oo), where J is the re-
motely applied value of the J integral, was calculated based on the crack tip node
lying on the § = 7 ray. It increased from zero at incipient yield (K; = K7) to a con-
stant value of 0.84 at K ~ 3.5K{. This value did not change during the subsequent
part of the loading process. The variation in 6;/(J/0o) during the initial phase
of the loading process occurred since the plastic zone was not fully developed. It
should be noted that this quantity is in excellent agreement with the value reported

in Table 2.1, which was calculated on the basis of the earlier analysis.

The displacements of the crack tip nodes were substituted into Eqn.(2.6.5),

with 1 = 0 (corresponding the mean angle of the near-tip element), to determine
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the angular factors é},(0) and é%,(0) of the dominant 1/r strain singularity (2.3.9).
In order to compare with the dimensionless angular factors €fj(0,n) given by the

HRR analysis (Eqn.(2.3.1)) for large n, we normalized the functions &,(8) and

€2,(0) obtained from the present finite element calculation for the perfectly plastic

case as follows,

gge(g) - 659(0) -1,

(K1/o0)
éo(0)

(Kr/oo)® "

Here I, is taken as 2.6 corresponding to n — oo in the HRR solution. The functions

(2.6.6)

ére(0) =

thus obtained are shown along with the HRR distribution for n=25 (which is given
in [2.14]) in Fig. 2.22. It can be seen that the two angular functions are completely
different. It is interesting to note that the numerical solution for the perfectly
plastic case under small-scale yielding conditions gives vanishingly small values for
the angular factors of the dominant —i— strain singularity for 8 > 45°, although the
slip line solution of Fig. 2.2 shows a centered fan extending from § = 0 to about
80°.

It is found that the angular factors &, and ér,, obtained from the numerical

solution, satisfy almost exactly the following relation,

sin @

Era(0) = E5,(0) (2.6.7)

cosf’

which is analogous to Eqn.(2.3.11), as applied to the accumulated near-tip plastic
strains. Also, as was observed from the near-tip strain distribution (Fig. 2.9) of
the earlier analysis, it is again found from the present computation (Fig. 2.22) that.
€0,(0 = 0) for the perfectly plastic case is about 3.3 times the corresponding value
given by the HRR analysis for large n.

The near-tip value of the J integral was calculated by substituting éf,(6) and

€P,(0) obtained above into Eqn.(2.3.15). The integral in (2.3.15) was estimated

r
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numerically, and it was found that Ji;, is about 0.95 times the remotely applied J
value. This is somewhat different from the development in plane strain where Tracey
[2.16] reported Jy;,, to be about 0.8 times the applied J value. But later, Shih [2.19]
found Ji;p to be 0.96 times the applied J from his finite element calculation under
plane strain, small-scale yielding conditions for the perfectly plastic case based on
a different type of singular element.

If the near-tip J computed above from the present analysis is used to normalize
the crack tip displacement &, it is found that 6, = 0.88(J,/00). Hence, it is
concluded that 6;/(J/oo) for the perfectly plastic case under plane stress, small-
scale yielding conditions could vary from 0.84-0.88.

In closing, it is observed that all the results given above by the present accurate
numerical computation are in good agreement, in every respect, with the earlier
analysis, which employed a nonfocussing mesh with nonsingular elements near the
crack tip. The earlier analysis relied purely on the fineness of the mesh and a large
plastic zone to the smallest element size ratio to provide sufficient resolution near

the crack tip.
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CHAPTER II1
STABLE PLANE STRESS CRACK GROWTH
IN ELASTIC-PERFECTLY PLASTIC SOLIDS

3.1 INTRODUCTION

A slow, stable crack extension phase is often observed [3.25-3.28] in elastic-
plastic materials prior to catastrophic failure during which a steady increase in
applied load is required to propagate the crack. The primary reason for this is
the reduced singularity in the strains that results when the crack propagates into
material that has already deformed plastically. Unlike the case of elastic materials,
a complete refocussing of the strains at the tip of the extended crack is prevented
in elastic-plastic materials, due to the permanence of plastic deformation.

Several investigators have contributed in providing an understanding of the
mechanics and the practical implications of stable crack growth by using both an-
alytical and numerical techniques. Problems that have received wide attention are
crack extension in elastic-perfectly plastic materials under the conditions of anti-
plane shear and Mode I plane strain. Chitaley and McClintock [3.19] constructed
an asymptotic analytical solution for steady, quasi-static crack growth under anti-
~ plane shear conditions. Following preliminary investigations by Rice [3.1,3.7], Rice
et al.[3.3] assembled an asymptotic solution for cracks growing in an incompressible
elastic-perfectly plastic material under Mode I plane strain. The solution for this
problem was also found independently by Slepyan [3.23] and Gao [3.24]. Finally, the
asymptotic analysis of Drugan et al.[3.4] accounted for crack growth under Mode
I plane strain in elastic-perfectly plastic materials without the restriction of elastic
incompressibility.

However, by contrast not many asymptotic solutions are available for cracks

growing in strain-hardening materials, primariiy due to the difficulty involved in the
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analytical treatment of the governing equations. Amazigo and Hutchinson [3.20]
performed an asymptotic analysis for steady-state crack extension in a linear hard-
ening material under anti-plane shear and Mode I plane strain and plane stress.
Castafieda [3.18] has recently extended the analysis of [3.20] to include the possi-
bility of secondary reloading and has also treated Mode II plane strain and plane
stress. Nevertheless, some questions pertaining to Mode I plane strain and plane
stress, in the limit as the perfect plasticity case is approached, are left unanswered

by [3.18] (see for example Sec.(3.4) of the present chapter).

Finite element studies simulating crack growth, by using a nodal release pro-
cedure, were conducted by Sorensen [3.15] under anti-plane shear and by Sorensen
[3.14] and Sham [3.10] under Mode I plane strain. Dean and Hutchinson [3.11] and
Lam and McMeeking [3.12] have used a Eulerian finite element formulation to study
steady-state crack advance in the above cases. The effects of anisotropic hardening
and corner formations on the yield surface were also included in the investigations

of [3.11] and [3.12].

On the other hand, remarkably little work has been performed regarding crack
growth under Mode I plane stress, notwithstanding its practical importance, as,
for example, to thin aircraft structures. Also, a study of plane stress crack growth
is compelling, because of the possibility of direct comparison with experiments
based on the optical method of caustics, which in recent years has showed great
promise towards applications in ductile fracture [3.29,3.30]. A preliminary analysis
has been performed by Rice [3.2], concerning the asymptotic nature of the stress and
deformation fields near a growing crack tip in an elastic-perfectly plastic material
under plane stress conditions. A complete (all-round) asymptotic solution for this
problem has thus far remained elusive. Achenbach and Dunayevsky [3.31] have

recently investigated the variation of the plastic strain field along a ray ahead of
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the tip, based on the assumption of the validity of the asymptotic value for the stress

field [3.2] up to the elastic-plastic boundary (see Sec.(3.4) for further discussion).

As far as numerical modelling is concerned, a steady-state Eulerian finite ele-
ment study has been conducted recently by Dean [3.16] for plane stress crack growth
following the approach of [3.11]. However, as noted in Sec.(3.4) of this chapter, the
analysis of [3.16] is not very detailed, and certain issues pertaining to the near-
tip stress and deformation fields, which would provide greater insight about the

underlying mechanics, have not been examined.

In the present investigation, a very detailed finite element study that provides
great resolution near the crack tip, has been carried out to model stable plane stress
crack growth under continuous increase in external load, by using the nodal release
procedure [3.10,3.14]. Attention is restricted to elastic-perfectly plastic materials
in the present analysis. This is a continuation of an earlier work [3.9] (see Chapter
1), which analyzed the monotonic loading of a stationary crack under plane stress,

small-scale yielding conditions.

In Sec.(3.2), the numerical technique used in [3.9] is summarized and the nu-
merical simulation of crack growth is described. In Sec.(3.3) the results of the
analytical investigations for plane strain crack growth are reviewed and the differ-
ences with plane stress are noted. In Sec.(3.4) detailed numerical results for the
near-tip stress and deformation fields, plastic zone, etc. are presented and compar-
isons are made with existing analyses mentioned earlier. Also, stress characteristics
near the crack tip are plotted from the finite element results, which could provide

some clues regarding the expected nature of the analytical solution to this problem.

In Sec.(3.5) an effort is made to fit a known asymptotic form [3.2,3.3] to the
numerically obtained crack profile. Also, the critical displacement criterion intro-

duced by Rice and Sorensen [3.13] and Rice et al.[3.3] for continued crack growth
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is employed to predict the nature of the J resistance curves under plane stress. It
is observed that stable crack growth under plane stress could be far more extensive

than plane strain.

3.2 NUMERICAL ANALYSIS

Formulation

The numerical modelling of the Mode I plane stress, small scale yielding prob-
lem was discussed in detail in [3.9] (see Chapter II), where the analysis of a mono-
tonically loaded stationary crack was performed. In the present investigation, the
results obtained in [3.9] will be used as initial conditions to simulate stable crack
extension. Some of the features about the numerical analysis that were described
in [3.9] will be briefly outlined in this section. In the present chapter {e;,e5,€3}
will represent an orthonormal frame centered at the crack tip and translating with
it, while {e,’,e,’,e5'} will be a fixed orthonormal frame situated at the position of
the stationary crack tip.

The upper half of a domain R containing a crack and represented entirely by
finite elements is shown in Figs. 3.1e¢ and b. The leading term in displacements of

the linear elastic asymptotic solution,

T~
Uy = Kry/ E;ua(e) ) (3.2.1)

was specified as a boundary condition on the outermost contour S of the domain.!

The loading was applied through the Mode I stress intensity factor Ky or equivalently

through the far-field value of the J integral. All plastic deformation was contained

1

within a distance from the crack tip, which was less than g5 of the radius of S.

1 Throughout this chapter, Greek subscripts will have range 1,2, while Latin

subscripts will take values 1,2,3.
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Figure 3.1. Finite element mesh: a) Outer mesh b) Fine mesh near the crack tip.
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The active region of Fig. 3.1a has a total of 1704 four noded quadrilateral
elements and 3549 degrees of freedom. The quadrilaterals were formed from four
constant strain triangles with static condensation of the internal node. Static con-
densation was also employed in the large region surrounding the active mesh, which
always remained elastic. The cutout of Fig. 3.1a, which is a fine mesh region near
the crack tip, is shown in detail in Fig. 3.1b. The small square elements near the
crack tip have a size L, which is about §é~5 of the radius R4 of the active region

and about '37{1'66 of the radius of S.

Constitutive Assumptions

The material model that was considered here was that of an isotropic elastic-
perfectly plastic solid. A small strain incremental plasticity theory was employed
along with the Huber-Von Mises yield condition and the associated flow rule. The
total strain rate tensor is assumed to be decomposed into elastic and plastic parts,
and the constitutive law for material currently experiencing plastic deformation is
given by [3.9],

Ciqu Spq StmnCmnkl
Srtcrtuu Suv

0ij = Ciriért = | Cijktl — €kl - (3.2.2)

Here C}jxi is the isotropic, positive definite elasticity tensor, and S;; is the deviatoric
stress tensor. In the present analysis, the yield criterion and the constitutive law

(3.2.2) were used along with the plane stress condition,

O3; = 0. (3.2.3)

On using Eqn.(3.2.3) in Eqn.(3.2.2) a constraint for égz in terms of é,p can be
obtained. The ratio of the Young’s modulus to the yield stress in pure shear (E/7o)

was taken as 350 and the Poisson’s ratio (v) as 0.3 in the computation.
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Finite Element Scheme

A displacement based finite element method was employed and inertia effects
were neglected in the analysis. The incremental finite element equilibrium equations
were derived from the principle of virtual work by linearization [3.21]. These equa-
tions were solved for each time step using the iterative Newton-Raphson method
which is summarized in Appendix A. An explicit integration procedure also known
as the Tangential Predictor-Radial Return method was employed together with
subincrementation to integrate the incremental stress-strain law. (See Appendix A

for details.)
Solution Strategy

The plastic zone at the end of the stationary load history in [3.9] had a maxi-
mum extent, which occurred ahead of the crack tip, of about 100 times the smallest
element size L. Subsequently, twenty one-element crack growth steps were simulated
using the nodal release procedure [3.10,3.15], as described below. The stiff spring
that was attached to the crack tip node in the z; direction, in order to enforce
the symmetry condition (uz = 0), was removed and was replaced by the point load
acting on it. This point load was subsequently relaxed to zero in twenty increments,
at the end of which a traction-free element surface emerged, and the crack advanced
by one element length L.

The externally applied load through the far-field J integral (or Ki) was in-
creased simultaneously during the above nodal release procedure (as in [3.10]), in
order to model stable crack extension in a continuous manner. For this purpose,
a simple J versus crack growth (Aa) history with a constant slope as shown in
Fig. 3.2 was used. In this figure, the value of J has been made dimensionless by
the amount Ji, which caused incipient yielding in the element nearest to the crack

tip during the monotonic loading of the stationary crack [3.9]. Also, T = 0%%% is
0
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_76-

the nondimensional Paris tearing modulus. Following eighteen one-element crack
growth steps at T=5, two crack growth steps at four different T values of 0, 5,
15 and 20 were simulated. The last two steps were thus carried out in order to
study the effect of different rates of increase of external load on crack displacement

increment, as will be discussed in Sec.(3.5).

3.3 ASYMPTOTIC FIELDS NEAR PROPAGATING CRACK TIPS

General Considerations

For elastic-perfectly plastic materials the following assumptions are often made

[3.1-3.4] about the asymptotic nature of the stress field,

aij(r,0) ~ 03;(6)

doy(r,0) - doj;
50 i (0) = a0 (> r—0. (3.3.1)
Gaij
~ o(1
or o(1)

Asymptotic forms of equilibrium equations and yield condition can be obtained by
using the assumption (3.3.1).. These in turn can be employed to ascertain the types
of plastic sectors which compose the near-tip deformation field.

The asymptotic stress distribution o7, () within these sectors can be derived
completely except for some unknown constants [3.2]. These may be determined
when an all-round asymptotic solution is sought by assembling plastic and elastic
unloading sectors appropriately satisfying continuity conditions [3.5,3.6], boundary
conditions and material stability postulates. A detailed discussion of the continuity .
conditions across quasi-statically propagating surfaces in elastic-plastic solids under
plane stress [3.6] is presented in Appendix C. The movement of the asymptotic

stress field through the material with the advancing crack tip induces an elastic

strain increment that is incompatible. Thus, a plastic strain increment is induced
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as well. Rice [3.1] demonstrated that the associated displacement increments (or

material particle velocities) have a log(r) singularity as the crack tip is approached.
Plane Strain

Rice et al.[3.3] assembled a near-tip solution for quasi-static crack advance
under plane strain in an incompressible material (v = 0.5). This solution is essen-
tially the Prandtl field [3.7] together with an elastic unloading sector following the
centered fan. This was added to eliminate the negative plastic work that would
otherwise occur at the trailing boundary of the fan. The asymptotic form of the

deformation rates within the fan is summarized below [3.2],
0. . R

v, ~ (5 —4v)—asinfIn| —

(5= a0) Basinomn( )

v9~—(5—41/)%d{~%—c050} ln<§> , r—0. (3.3.2)

PNwEil E
Dy V2 E2rn r

Here v, and vy are the material particle velocities and ij is the plastic part of the

strain rate tensor. Also, a is the crack velocity and R is an arbitrary length scale
which is undetermined from the asymptotic analysis. The asymptotic form of the

plastic strains is given by,
R
Gapl(0) ln(—), r—0. (3.3.3)

P o G
b w2 E

The angular factors G,g(0) are fully determined from an asymptotic angular inte-

r

gration of D 5 [3.2,3.4]. It should be noted that the dominant log(r) term of (3.3.3)
is much weaker than the 1/r plastic strain singularity near a monotonically loaded

stationary crack tip [3.7].
Motivated by the above, Rice et al.[3.3] proposed the following form for the

near-tip crack opening rate during stable plane strain crack advance,

.ol R
§ ~ ﬁ——+ﬁ%’aln<7>, r—0. (3.3.4)

Go
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In the above equation, o and 3 are constants and R is a length dimension, which

is expected to scale with the plastic zone size under small-scale yielding conditions,

p-s( ) (3.3.5)

Here J is the remotely applied value of the J integral which under small scale yielding

so that

conditions is given by,

2
J=(1- u2)KI (plane strain)
, F (3.3.6)
Ki (plane stress) .
E

The constant 3 in (3.3.4) can be obtained from an all-round asymptotic solution
[3.3,3.4], whereas the constants o in (3.3.4) and s in (3.3.5) are undetermined from
the asymptotic analysis.

The second term in (3.3.4) arises because of the log(r) dominant singularity in
the material particle velocities. The first term in (3.3.4) encompasses the assump-
tion that the higher-order terms in velocities are bounded and linear in load rate
(J for small scale yielding). Also, for @ = 0, the right hand side of (3.3.4) reduces
to the correct expression for the discrete crack opening rate that is observed during
the monotonic loading of a stationary crack [3.7]. An asymptotic integration of
(3.3.4) can be carried out to obtain the near-tip crack opening displacement during

stable crack growth (when crack length a increases continuously with J) as follows,

ar dJ 0o eR
b~ —— — e 0 3.3.7
ooda+ﬂrE1n<r)’ T ( )

where e is the base of the natural logarithm. As opposed to the monotonic loading
of a stationary crack, Eqn.(3.3.7) implies that the opening displacement at the crack
tip is equal to zero during crack growth. However, as can be noticed from (3.3.7),

the crack profile during growth exhibits a vertical tangent at the tip.
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Plane Stress

The general features outlined above for plane strain apply to plane stress as
well, with some modifications. No all-round asymptotic solution that satisfies all
the boundary and symmetry conditions and that does not violate material stability
postulates has yet been assembled for this case. However, Rice [3.2] has performed
a preliminary asymptotic analysis and has demonstrated that only two types of
plastic sectors can exist near the crack tip. These are centered fan sectors in which
radial lines are stress characteristics (sy, = 0) and constant stress sectors in which
the Cartesian components of stress o3, are constant (not functions of angle 6).
The asymptotic stress and deformation fields within the above plastic sectors and
in elastic unloading sectors have been derived in [3.2].

The asymptotic fields within a centered fan sector are summarized below as-

suming that it adjoins the 6§ = O ray (similar to the stationary crack tip solution

(3.8]):
o, =T19cosf, Ogg = 219 cos 0.9 = Tosinb (3.3.8)
v, ~ B%dsinz 0 ln<-§—)
v ~ 3%@F(0) 1n<§>
) B , r—0, (3.3.9)
D, ~ 3%% cot 8(sin 20 — F(0)) 1n<7>
DP, ~ 3%%(5111 20 — F(0)) 1n<§>
where
F(6) = |sin 0|*1/2/0 (sin )"/ cos 2¢d¢ . (3.3.10)
0

Both D?, and D}, are singular as & log(r) in plane stress, whereas only D?; ex-

hibits this singularity in plane strain (Eqn.(3.3.2)). R in the above equations is an

undetermined length dimension.
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Rice [3.1] has demonstrated that if Eqn.(3.3.9) for the plastic strain rates D},
is valid on the § = 0 ray, then an integration with respect to r can be carried out
to obtain

& ~ %%Gij In? (-}}) §=0, r—0, (3.3.11)
where,
Gi11=0 Gi2=0
(3.3.12)
Gao =2 Gaz = —2
It should be observed that the plastic strains (on the § = 0 ray) are singular
as logz(r) in plane stress, whereas in plane strain the plastic strains in the fan
have a log(r) dominant singularity from (3.3.3). The stronger log®(r) dominant
plastic strain singularity in plane stress (which also occurs in anti-plane shear)
arises because the crack propagates into a centered fan region unlike in Mode 1
plane strain.

In plane stress, the material particle velocities have a log(r) singularity anal-
ogous to plane strain (see Eqns.(3.3.2) and (3.3.9)). Hence one expects the crack
obening rate during stable plane stress crack advance to have the same functional

form as (3.3.4). Also the Equations from (3.3.4) to (3.3.7) and the accompanying

discussions are expected to apply for stable plane stress crack growth.

3.4 RESULTS AND DISCUSSION

Plastic Zone

The active plastic zone surrounding the crack tip is shown in Fig. 3.3a in mov-
ing coordinates that have been made dimensionless by the self-similar parameter
(Kl/ao)z. For comparison purposes, the plastic zone corresponding to a station-
ary crack under plane stress conditions, which was obtained in [3.9], is shown in

Fig. 3.3b. In Fig. 3.3a, the current crack tip is at the origin of the coordinate system,
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Figure 3.3. a) Active plastic zone surrounding the propagating crack tip and b)
Plastic zone corresponding to the stationary crack [3.9].
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and this result was obtained at the end of twentieth crack growth step. A point
in the figure represents an actively yielding integration station (currently on the
yield surface in stress space) within an element. It can be seen from the figure that
a large elastic unloading region follows the active plastic zone. The active plastic
zone appears to occupy an asymptotic angular extent from 6 = 0° to about 45°,

which will be verified later.

The elements behind the active plastic zone, which are close to the crack plane
and which occupy the angular range from # = 45° to 180°, have unloaded elastically.
These elements have previously experienced plastic yielding during the passage
of the crack tip. The present numerical solution does not exhibit any secondary
(plastic) reloading along the crack flank. This is in contrast to plane strain, where

a secondary plastic region was found, extending behind the moving crack tip [3.10-

3.14].

As can be seen from Fig. 3.3a, the trailing boundary of the active plastic zone
seems to have a kink, resulting in a shape similar to that observed in anti-plane
shear [3.11,3.15]. The parallel between plane stress and anti-plane shear has been
recognized earlier, from the presence of an intense deformation zone (centered fan)
ahead of the moving tip in both cases. In the present computation, the kink in the
active plastic zone developed during the first few crack growth steps and persisted
with subsequent crack advance. Also, the overall features of the plastic zone did

not change much after the first few crack growth steps.

The maximum radial extent of the plastic zone, which occurs directly ahead of
the growing crack tip (§ = 0), is R, ~ O.28(K1/00)2, which is about the same as
the stationary problem (Fig. 3.3b). Also, on comparing Figs. 3.3a and b, it can be
seen that the plastic zone for the propagating crack is similar in overall shape and

size to that obtained for the stationary problem at points away from the crack tip.
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However near the tip the two plastic zones seem to deviate in shape, primarily due
to elastic unloading behind the trailing boundary during crack growth. As pointed
out by Rice [3.2], strong changes in plastic zone shape near the tip and a tendency
to reestablish a shape similar to that for the stationary crack at points away from
the tip are expected during the initial stages of crack growth. This can also be
observed in the results for both anti-plane shear [3.15] and plane strain [3.10].
Finally, it is noted that the plastic zone of Fig. 3.3a compares well with the
steady-state result obtained by Dean [3.16], from an Eulerian finite element for-
mulation, except for the presence of the kink. However, the present finite element
solution is more detailed, since it has a larger ratio of plastic zone to smallest el-
ement size of over 100 as compared to about 35 in Dean’s computation. Also,
unlike Dean’s work, the initial phase of crack growth was simulated here under

continuously increasing external load.

Radial Distribution of Plastic Strain

The radial distribution of normalized plastic strain, €}, /€o, with respect to nor-
malized distance, r/(KI/oo)z, ahead of the current crack tip is shown in Fig. 3.4.
Results are presented for various levels of crack growth under steadily increasing
value of far-field J at T=5. The solid line in the figure is the plastic strain distri-
bution ahead of a monotonically loaded stationary crack tip, which was obtained
in [3.9]. It can be seen that the plastic strain converges rapidly during the first
few crack growth steps to an invariant distribution. For example, at a distance
of O.OI(KI/O())Z ahead of the moving crack tip, the plastic strain dropped by 32%
during the first five crack growth steps and by 17%, 8% and 3% during the sixth to
tenth steps, eleventh to fifteenth steps and sixteenth to twentieth steps, respectively.
Such rapid convergence was also observed in the numerical simulation of anti-plane

shear crack growth by Sorensen [3.15].
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Figure 3.4. Radial distribution of plastic strain ahead of the propagating crack
tip for various levels of crack growth.
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As can be seen from Fig. 3.4, the plastic strain distribution ahead of the tip
during growth exhibits a weaker singularity than in the stationary problem. This
is due to the dominant log?(r) singularity, which is expected to occur during plane
stress crack growth, as compared to the 1/r distribution for the stationary crack.
This fact is the origin for the stable crack extension phase [3.1,3.17] observed in
elastic-plastic materials (preceding instability), when crack growth occurs under
steadily increasing external load.

Finally, it is important to note that due to increase in external load (as in the
present analysis) with crack growth, a term of order log(r) will have to be added to
the leading log?(r) term for the plastic strains ahead of the tip in (3.3.11) [3.1]. For
crack growth at large values of T, this higher-order term may be important even
for moderate distances from the tip, and hence the log?(r) term may dominate only

very near the tip.
Crack Profiles

The self-similar development of the crack opening profile for various levels of
crack growth at T = 5 is shown in Fig. 3.5 in the nondimensional form 6/(J/0o)
versus x,/(K1/o0)®. The stationary crack profile obtained in [3.9] is also plotted
in the figure for comparison. As can be seen from the figure, the crack profile
changes from a blunted form at the end of the stationary load history to a sharp
shape during crack growth. This is because of the lessened strain concentration
that results when the crack propagates into material that has already deformed
plastically. In Sec.(3.5) this numerically obtained profile will be used to estimate

the parameters o, 3, and s in the asymptotic Equation (3.3.7).
Radial Distribution of Stresses

The radial variation of the normalized stress components, 045/70, versus nor-

malized distance ahead of the crack tip at the end of the twentieth release step is
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Figure 3.5. Development of crack profile for various levels of crack growth.
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shown in Fig. 3.6. The centroidal values of stresses in the row of elements ahead
of the tip have been used to construct this plot. The numerically obtained stresses
very near the crack tip approach the asymptotic distribution given by Eqn.(3.3.8)
which assumes that there is a centered fan ahead of the tip. For example, from the
finite element results at r = O.Ol(KI/aO)Z, the values of o;; and oq; are 0.997; and
1.99970, in excellent agreement with the values 79 and 27q, respectively given by
(3.3.8).

It can be seen from Fig. 3.6 that the oy stress component exhibits a strong
radial variation with a value of 1.407; at the elastic-plastic boundary. The value of
11 differs from the asymptotic limit by less than 5% in the range r < 0.04(Ky/o0)”.
This stress variation compares closely with that for the stationary crack [3.9]. As
noted in [3.9], it suggests possible curving of the leading boundary of the fan at
moderate distances from the tip. This will also be discussed later in connection

with Fig. 3.8.
Near-tip Angular Distribution of Stresses

The angular variation of the normalized polar stress components at a distance
of 0.01(K;/0o0)” from the moving crack tip (which is within .04R,) is shown in
Fig. 3.7a. The centroidal values of stresses in the elements lying on a rectangular
contour surrounding the moving crack tip, which is shown as an inset in the figure,
have been used to construct this plot. The angular variation along the above contour
of the Von Mises equivalent stress, 0.4, = (%sijsij)l/z which has been normalized
by oo, i3 shown in Fig. 3.7b.

As can be seen from Fig. 3.7b, 04y becomes less than oo for 6 > 45°, which
suggests that the asymptotic angular extent of the active plastic zone is about 45°.

This agrees well with visual observation of Fig. 3.3a. However, from published

results for crack advance under both anti-plane shear [3.11,3.15] and plane strain
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[3.10], where the asymptotic angular extent of active yielding was overestimated
by finite element solutions, one is led to interpret the above conclusion with some
caution. Also, from Fig. 3.7b, it can be seen that 0.4, does not become equal to o¢
as 0 approaches 180°, which implies that no secondary (plastic) reloading has been

detected by this numerical solution.

The angular distribution of stresses (Fig. 3.7a) within the actively yielding
region is in good agreement with the variation in a centered fan, as predicted by
Eqn.(3.3.8). For example, in the angular range 0° < 8 < 45°, the values of osp and
0,9 as given in Fig. 3.7a differ from that obtained using Eqn.(3.3.8) by less than 1%
and 4%, respectively. However, the value of 0,, shown in Fig. 3.7a agrees with that
given by Eqn.(3.3.8) to within 8% in the angular range 0° < 8 < 25° and deviates
substantially for 25° < 6 < 45°. The reason for this discrepancy will be explained
later in this section. Also, the angular stress distribution of Fig. 3.7a compares quite
well with the finite element results of Dean [3.16]. However, as pointed out earlier,

the present computation is considered to be more detailed than Dean’s analysis.

The recent asymptotic analysis of Castafieda [3.18] for steady, quasi-static crack
growth in a linear hardening material is unfortunately not definitive about the
asymptotic angular extent of the primary plastic zone in the limit as the perfect
plasticity case is approached. He obtains a primary plastic angle of about 53.2° and
49° when the ratio E;/E of the tangent modulus to the elastic modulus is 0.001
and 0.0001, respectively. Also the presence of a secondary reloading zone and its
angular extent (which is extremely small) are not completely conclusive from his
results, in the limit as E;/E tends to zero. The prediction of a very small reloading
angle is, however, not inconsistent with the present numerical results, since such a

tiny reloading zone cannot possibly be detected by a finite element scheme.

Nevertheless, the angular factors 07, (6) of the dominant r° term for the stresses
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given in [3.18] for E;/E = 0.001 agree closely with the present numerical solution of
Fig. 3.7, except for the o,, component, which seems to deviate in the angular range
from @ = 25° to about 100°. Also, the stress distribution in [3.18] for Ey/E = 0.001
suggests yielding in compression for  very close to 180°. While the present results
do indicate a region near the crack flank where o,, is negative (see Fig. 3.7), no

yielding in compression has been observed.
Stress Characteristics

The two families of stress characteristics within the active plastic zone, near
the propagating crack tip, are shown in Fig. 3.8, using nondimensional crack tip
coordinates. The dashed line in the figure is the boundary of the active plastic zone.
The characteristics were plotted using the averaged stresses within the elements, as
described in Appendix B. The dotted line in the figure separates a region near the
tip, in which the equations for the stresses are hyperbolic, from a region outside,
in which they are elliptic. At each point on the dotted line, the condition for
parabolicity of the governing equations for the stresses (See Appendix B, second of
(B.2)) is satisfied. As can be seen from the figure, the two families of characteristics
become mutually tangential to each other at every point along this dotted line, as
it curves upwards from the § = 0 ray. However, it is not clear whether the elliptic
region extends all the way upto the crack tip as a wedge of vanishingly small angular
extent, as 7 — 0 along the § = O ray, although there is some evidence to suggest
this possibility.

Two important observations should be made from this figure. Firstly, it can be
seen that a family of characteristics focusses at the crack tip in the angular range
from 6 = 0° to about 25°, beyond which the characteristics seem to intersect the
crack plane slightly behind the tip. This is probably because of the fact that, due

to discretization, the crack tip is not precisely sensed in the finite element solution
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leading, according to the terminology of [3.15], to a “fuzzy crack tip phenomenon.”

This was also observed in anti-plane shear by Dean and Hutchinson [3.11], who
found that the active plastic zone obtained from their steady-state finite element
solution extended from 6 = 0° to about 60°, while the characteristics focussed at
the tip only for angles less than 20°. For comparison, the analytical asymptotic
solution of Chitaley and McClintock [3.19] in anti-plane shear crack growth has a
centered fan region from 8 = 0° to 19.69°, followed by a large elastic unloading

region and a tiny secondary reloading zone.

Secondly, the radial family of characteristics in Fig. 3.8 bend downwards (to-
wards the § = 0 ray) even for small distances (r > 0.01(K/00)?) from the tip. These
two factors probably account for the strong discrepancy in the o,, stress compo-
nent, between the finite element solution and the analytical asymptotic expression
Eqn.(3.3.8), in the angular range 25° < § < 45°.

Finally, the strong radial variation in the stresses ahead of the crack tip
(Fig. 3.6), combined with the observation of the change in nature of the governing
equations as the distance from the crack tip is increased (Fig. 3.8), seems to disagree

with the assumption of a constant stress field ahead of the tip made in [3.31].

3.5 DUCTILE CRACK GROWTH CRITERION

Prediction bf Asymptotic Crack Profile

In this section, a value for the parameter 3 in the asymptotic crack opening rate
(3.3.4) will be obtained by fitting the analytical asymptotic form to the numerically
obtained values. The method employed is similar to that used by Sham [3.10] in
stable plane strain crack advance. Also, the linearity of the higher-order term in

(3.3.4) with respect to J will be verified from the numerical solution.
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To that effect, the crack opening rate 6 is written as

. L
(5~aa—l§{f<%>+ﬂln<?)}, r—0, (3.5.1)

where L is the smallest element size and is a convenient length scale and a is the
crack length. Under small-scale yielding conditions, the function f({) can be shown

to have the following form (see Sec.(3.3) and also [3.3,3.10]),

7(8) = atray + o Z108), (35.2)

where the quantity EJ/oZ has the dimension of length and is a measure of the plastic

zone size. In the above equation, J, which is the remotely applied value of the J

integral, and the nondimensional Paris tearing modulus T = %%‘—i— are functions of
Q
the crack length a. If g(T) is a linear function of T as was assumed in Sec.(3.3),

then comparison of Eqn.(3.5.2) with Eqns.(3.3.4) and (3.3.5) gives,
g(T) = aoT + Blns, (3.5.3)

where o and s will be takerr as constants for limited amounts of crack growth.
The crack displacement increment at a fixed material point (z),0), when the

crack grows from a; to az, can be obtained by integrating (3.5.1) as follows [3.10],

E Aé(z),a) az — I} el ay — el
———— ~ AF | - | . (3.5.4
%0 L o L ag — T L " ay — ( )

In the above equation, e is the base of the natural logarithm and

Ab(2),a) = b6(z),az) — 6(z7,a1)

‘az/L . 355
AF:/ F(¢)ds (3.5.5)
a,/L

The values of 8 and AF were obtained as the slope and axis intercept of a least-

squares straight line fit to £ )] for successive one-

AS(z), L
() " In(E

versus Af :Lf"w ln(a—_—;,l—

element crack growth steps.
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The representative straight line fits for crack growths under four different values
of T of 0, 5, 15 and 20, which were simulated for the twentieth release step, is
shown in Fig. 3.9. The first node behind the crack tip has been omitted and the
data corresponding to the next five nodes have been plotted in this graph. The first
node was omitted because it was observed that the crack tip element undergoes
excessive rotation during the nodal release procedure. This conclusion was reached
by performing a sensitivity study as described below. The average value of 3 based
on the first six nodal points behind the crack tip was obtained as 2.1. On omitting
the first node, it was found that a better straight line fit can be made to the data
corresponding to the next five nodal points (as in Fig. 3.9), which, however, gave
a substantially lower average value of 3 of 1.7. The straight line fits underwent
\.fery little change on omitting the first and second nodes behind the tip, giving an
average value of § of 1.67. On the basis of the above study, it is concluded that
correct estimate for 3, based on the crack displacement increments obtained from
the finite element solution is around 1.70.

The excessive rotation of the crack tip element during the nodal release pro-
cedure was also observed in plane strain. For example, Rice and Sorensen [3.13]
obtained estimates for 3, from the finite element solution of Sorensen [3.14] for
stable plane strain crack growth, as 9.5 and 4.8, based on the crack displacement
increments of the first and second node behind the crack tip, respectively. The sec-
ond estimate is in much closer agreement to the theoretical value of 5.46 [3.4]. The
high estimate for § based on the data corresponding to the first node is probably a
consequence of the nodal release procedure used to simulate crack extension.

The value of AT obtained from the axis intercept can be taken approximately

as

AF Mf(%) , (3.5.6)
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where

(a1 + a2)
—

a =

The value of f(%), which was computed from the above equation, was used along
with the mean value of J during crack growth from a; to a2 in Eqn.(3.5.2) to
determine g(T). The values of g(T) obtained as above for crack growth simulations
under four different values of T during the twentieth release step are plotted against
T in Fig. 3.10. It can be seen that a very accurate straight-line fit can be made to
the numerically obtained points validating the assumption of linearity of g(T) with
respect to T made in Sec.(3.3).

On employing Eqn.(3.5.3) (with § as 1.7), we obtained the values of « and s
as 0.82 and 0.60 from the slope and axis intercept of the straight line fit (Fig. 3.10),
respectively. From the analysis which included the first node behind the crack tip
to determine # and AF (giving 3 as 2.1), the values of o and s were estimated as
0.82 and 0.24, respectively.

The value of @ computed above is thus completely insensitive to the determi-
nation of A and is also in good agreement with the corresponding estimate from the
opening displacement of the stationary crack, which was 0.85 as reported in [3.9].
The value of s, on the other hand, seems to be extremely sensitive to the accuracy
in determining 8. This can also be observed in plane strain from the scatter in
published numerical results for § and s [3.10-3.14].

Finally, the asymptotic crack profile as given by (3.3.7) is plotted in nondi-
mensional form for crack growth at T=5.0 in Fig. 3.11 with the the parameters
o, and s taken as 0.82, 1.7 and 0.6, respectively. The values obtained from the
finite element solution are also plotted in the figure for comparison. It is found that
the predicted asymptotic crack profile is very close to the numerical solution in the

range r < 0.04(K;/00)*.
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Fracture Criterion

Motivated by the critical plastic strain criterion of McClintock and Irwin [3.17],
Rice et al.[3.3] proposed that a geometrically similar near-tip crack opening profile
should be maintained for continued crack growth. The near-tip crack displacement

(3.3.7) during continuous crack extension can be written as

5:ﬂ<%>rln<§>, r—0, (3.5.7)

p = Re1+Ta/B) (3.5.8)

where

In the above equation, R = sEJ/o2 for small-scale yielding and T is the tearing
modulus. The crack growth criterion stated above requires that the parameter p,
which uniquely characterizes the near-tip crack profile, be constant for continued
crack extension.

Thus, on estimating p from Jic and T, which are the values of the far-field
J and the tearing modulus T at the onset of crack growth, it is possible for us to
obtain the following differential equation for J as a function of crack length a [3.3],

E dJ(a) 8. ([ J
i - Pm( ). 3.5,
T ol da 0 aln<J[c> (3:5.9)

By our using J = Ji¢ and a = ao as initial conditions, the above equation can be

integrated to give

Q=0 _ @ (am/p) .M?‘_I:Q}_, { (L».?@.H 5.
(BJrclod) B (G -] es

where E;{.} is the exponential integral function.
A family of plane stress resistance curves generated from (3.5.10) correspond-
ing to several values of Ty with « and f taken as 0.82 and 1.70, respectively, is

shown in Fig. 3.12. The abscissa of the figure is the extent of crack growth, made
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dimensionless by the quantity 0.3EJ;c /02 which is approximately equal to the max-
imum plastic zone extent at initiation. The flat portion of the curves corresponds
to steady-state crack growth when no further increase in externally applied J is
required to propagate the crack. Setting %i— = 0 in (3.5.9) gives J corresponding to

steady-state as

JSS :cheaTU/ﬁ .o (3511)

Comparison of Fig. 3.12 with the corresponding plot for plane strain given in
(3.3] shows that the amount of stable crack extension in plane stress is far more
extensive than in plane strain. This is because the ratio a/f in plane stress, as
computed in the present investigation, is 0.82/1.70, which is about 4.40 times larger
than the corresponding ratio of 0.6/5.46 in plane strain [3.4,3.10]. Thus, for Tg = 5,
the ratio Jss/Jic calculated from (3.5.11) is 11.2 and 1.73 for plane stress and plane
strain, respectively.

The above crack growth criterion can also be interpreted as the attainment of
a critical opening angle, dc /1., at a small microstructural distance r., behind the
crack tip. Following Rice et al.[3.3], it is then possible for us to examine the fracture

criterion from the microstructural viewpoint. Thus, (3.5.7) and (3.5.9) imply that

T, = l( b > - gln(%) . (3.5.12)

a\ €T Qa r.og

Substituting (3.5.12) into (3.5.11) gives

Jss _ €T Ow/8-1)
= e\'m , 3.5.13
Jic  sdic/oo ( )

where A, is a microscale parameter given by,

oc

€oT¢c

Ay = (3.5.14)
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If one makes the additional assumption, as in [3.11], that the value of the crack tip

displacement at initiation é;¢ is equal to éc, then

J
Src = bc = o= (3.5.15)
0o

Finally, substitution of (3.5.15) into (3.5.13) yields

JSS o @ (/\m/ﬁ"l)
Sy : (3.5.16)

where A, is the microscale parameter defined in (3.5.14) .

The variation of Jss/Jic with respect to A, as given by Eqn.(3.5.16), is plotted
for both plane stress and plane strain in Fig. 3.13. The values of the parameters
a and 3 were taken as mentioned earlier, and s was taken as 0.60 for plane stress
from the present analysis and 0.12 for plane strain from [3.10]. The curve for plane
stress compares well (for A,, < 10) with the corresponding result obtained by Dean,
using a different method from his steady-state numerical solution [3.16]. Also, the
vast discrepancy noted earlier, in the potential for stable crack growth under plane
stress as compared to plane strain, can be seen from this figure. This corroborates
experimental observations of larger potential for stable crack growth under plane

stress [3.25-3.27|.
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CHAPTER 1V
INFLUENCE OF ISOTROPIC HARDENING
ON QUASI-STATIC PLANE STRESS CRACK GROWTH

4.1 INTRODUCTION

A slow, stable crack extension phase is often observed in elastic-plastic ma-
terials [4.18-4.20| prior to catastrophic failure, during which a steady increase in
applied load is required to propagate the crack. Unlike the case of elastic materials,
a complete refocussing of the strains at the tip of an extended crack is prevented in
elastic-plastic materials due to the irreversible nature of plastic deformation. The
lessened strain concentration at the tip that results during crack extension is the
primary reason for stable crack growth in elastic-plastic solids. Thus, as empha-
sized by Rice [4.3], the reversible elastic strain increments are destabilizing, since
their incompatibility induces additional plastic strain increments at the tip of the
advancing crack.

The main progress in understanding the stress and deformation fields at the tip
of a growing crack has been limited to elastic-perfectly plastic materials. Also, at-
tention has been focussed primarily on the study of anti-plane shear and plane strain
crack growth. Chitaley and McClintock [4.21] found an asymptotic solution for a
crack growing quasi-statically in an elastic-perfectly plastic material under anti-
plane shear conditions. Rice et al.[4.5], Gao [4.7] and Slepyan [4.8] independently
assembled an asymptotic solution for crack growth in an incompressible elastic-
perfectly plastic material under Mode I plane strain. Drugan et al.[4.4] extended
the analysis of [4.5] to account for elastic compressibility.

However, the singularity fields at growing crack tips in hardening solids are
not completely understood. Amazigo and Hutchinson [4.9] presented an asymp-

totic analysis for steady-state crack extension in a linear hardening solid under
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anti-plane shear and Mode I plane strain and plane stress. Castafieda [4.10] has re-
cently extended the analysis of [4.9] to include the possibility of secondary (plastic)
reloading and has also treated Mode II plane strain and plane stress crack growth.
Nevertheless, the use of a linear hardening rule and some complications regarding
the perfectly plastic limit have curtailed the applicability of the results of [4.9] and
[4.10].

Gao and Hwang [4.11] performed a preliminary investigation about the near-
tip fields for a crack growing in a material governed by a more realistic power
hardening law. The main feature of their solution was an interaction between the
elastic and plastic strain rates, which was emphasized by Rice [4.3] for the perfectly
plastic case. They considered an incompressible elastic-plastic material under Mode

I plane strain and proposed the following form for the dominant near-tip solution,

B\ \ =1
05 ~ 0;;(0) <ln<~}—z—)>
r
. R\ =1
efj ~ eif(ﬁ) <ln<—r—>>

where R is an undetermined length dimension and n is the hardening exponent.

r—0, (4.1.1)

For the specific problem which they considered, Gao and Hwang showed that 0%(0)
is essentially the same as the asymptotic stress field for the perfectly plastic case.
Thus, far large n,.their dominant solution for the stresses, uniformly approaches the
perfectly plastic field of [4.5,4.7,4.8]. Nevertheless, some issues still remain to be
resolved, before the near-tip behaviour in power hardening solids during quasi-static
crack growth can be well understood.

Finite element studies using a nodal release procedure were conducted to sim-
ulate crack extension under anti-plane shear by Sorensen [4.12] and Mode I plane
strain by Rice and Sorensen [4.13] and Sham [4.14]. Dean and Hutchinson [4.15]

and Lam and McMeeking [4.16] employed a Eulerian finite element formulation to
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investigate steady-state crack advance in the above cases. Besides isotropic hard-
ening, the influence of corner formation on the yield surface and the Bauschinger

effect were studied in [4.15] and [4.16].

As far as crack growth under Mode I plane stress is concerned, comparatively
much less progress has been made. A preliminary investigation has been performed
by Rice [4.4], concerning the nature of the asymptotic stress and deformation fields
near a crack growing in an elastic-perfectly plastic material under plane stress.
However, a complete asymptotic solution for this problem has not yet been found.
This has greatly impeded a conceptual understanding of the mechanics of quasi-

static crack growth in thin plates.

A steady-state Fulerian finite element study has been conducted recently by
Dean [4.17] for plane stress crack growth in a linear hardening material (including
the perfectly plastic case), following the approach of [4.15]. But the analysis of
[4.17] is not very detailed, and certain issues pertaining to the near-tip stress and
deformation fields have not been examined. In order to resolve these issues, we
performed a detailed finite element analysis to simulate stable crack extension under
plane stress in an elastic-perfectly plastic material [4.2] (see Chapter III). Besides
revealing certain interesting features about the near-tip fields, the analysis of [4.2]
predicted that the extent of stable crack growth under plane stress, based on a
ductile crack growth criterion [4.5,4.13], could be far more extensive than plane
strain. This corroborates experimental observations (see for example [4.18]), of a
greater potential for stable crack growth under plane stress as compared with plane

strain.

In this work, a detailed finite element analysis similar to [4.2] is undertaken to
model crack growth under plane stress in isotropic power hardening solids. This is a

continuation of an earlier work [4.1] (see Chapter II), which analyzed the monotonic
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loading of a stationary crack. Two crack growth histories (see Sec.(4.2)) are sim-
ulated in the present investigation to study the mechanics problem of quasi-static
crack extension and also the initial phase of stable crack growth under small-scale
yielding, as would be observed in an experiment (as in [4.20]). The influence of
hardening on the active plastic zone and near-tip stress and deformation fields is
investigated, and comparisons are made with the results obtained in [4.2] for the
perfectly plastic case.

A ductile crack growth criterion, based on the attainment of a critical crack
opening displacement at a small microstructural distance behind the tip (which was
used in [4.2]), is employed to study the effect of isotropic hardening on the potential
for stable crack growth under plane stress. As in anti-plane shear and Mode I plane
strain [4.15,4.16], it is found that predictions based on a perfectly plastic model
could be unconservative, when the material actually possesses some hardening. In
view of this observation, it is suggested that the influence of corner formation on

the yield surface and kinematic hardening should also be examined for plane stress.

4.2 NUMERICAL ANALYSIS

Formulation

The numerical modelling of the Mode I plane stress, small-scale yielding prob-
lem was discussed in detail in [4.1] (see Chapter II), where the analysis of a mono-
tonically loaded stationary crack was performed. In the present investigation, the
results obtained in [4.1] will be used as initial conditions to simulate quasi-static
crack extension. Some of the features about the numerical analysis that were de-
scribed in [4.1] will be summarized in this section.

The upper half of a domain R containing a crack and represented entirely by

finite elements is shown in Figs. 4.1a and b. The leading term in the displacements
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of the linear elastic asymptotic solution was specified as a boundary condition on
the outermost contour S of the domain (see Fig. 4.1a). The loading was applied
through the Mode I stress intensity factor Kj or equivalently through the far-field
value of the J integral. All plastic deformation was contained within a distance
from the crack tip which was less than ?}6 of the radius of S.

The active region in Fig. 4.1a has a total of 1704 four noded quadrilateral
elements and 3549 degrees of freedom. The quadrilaterals were formed from four
constant strain triangles with static condensation of the internal node. Static con-
densation was also employed in the large region surrounding the active mesh, which
always remained elastic. The cutout in Fig. 4.1a, which is the fine mesh region near
the crack tip, is shown in detail in Fig. 4.16. The small square elements near the

1

crack tip have a size L, which is about szz of the radius R4 of the active region

and about 574—%—0- of the radius of S.

Constitutive Assumptions

The material model that was considered here was that of an elastic-plastic
solid with an isotropic powér law hardening behaviour. A small strain incremental
plasticity theory was employed along with the Huber-Von Mises yield condition
and the the associated flow rule. The Huber-Von Mises yield condition for isotropic

hardening takes the form,
f(g,e?) = F(g) — a%(e?) (4.2.1)

where F(o) = gg._s_, and € = [ (%e’?jgf].)l/zdt is the accumulated equivalent plastic
strain. In the above, S is the deviatoric stress tensor, and &(€?) is defined by the

following power hardening rule,

& _ <i>n A (4.2.2)
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Here oo and € are the yield stress and strain in uniaxial tension.
The total strain rate tensor is assumed to be decomposed into elastic and
plastic parts, and the constitutive law for material currently experiencing plastic

deformation is given by [4.1],

. . CiinaSpaSmnCmnkl | .
Oij = Cijklekl — Cijkl _ ypg-pg~ymn ;n_nz €kl » (423)
Srtcrtquuv + '§U H
Here Cjyj; is the isotropic, positive definite elasticity tensor and H = C‘iig, , which

can be obtained from (4.2.2). In the present analysis, the yield criterion and the

constitutive law were used along with the plane stress condition,
O3; = 0. (424)

On using Eqn.(4.2.4) in (4.2.3), a constraint for éz3 in terms of é, may be obtained.
The computations were performed for two levels of hardening, n =5 and 9.
The ratio of the Young’s modulus to the yield stress in pure shear (E/79) was taken

as 1400 and the Poissons ratio as 0.3 in the calculations.
Finite Element Scheme

A displacement-based finite element method was employed and inertia effects
were neglected in the analysis. The incremental finite element equilibrium equa-
tions were derived from the principle of virtual work by linearization [4.1]. These
equations were splved for each time step using an itcrative Newton-Raphson ap-
proach, which is summarized in Appendix A. An explicit integration procedure
also known as the Tangential Predictor-Radial return method was employed to-
gether with subincrementation to integrate the incremental stress strain law (see

Appendix A for details).
Solution Strategy

In this study, two simple crack growth histories were simulated employing the

nodal release procedure [4.2,4.14]. In the first case, the maximum plastic zone
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extent at the end of the stationary loading process [4.1] was slightly more than 50
times the smallest element size L. Subsequently, twenty one-element crack growth
steps were simulated using the nodal release procedure [4.2], holding the externally
applied load fixed. This is shown in the Fig. 4.2 for both cases of hardening, n = 5
and 9 as the lines designated by a zero value for the nondimensional Paris tearing
modulus, T = %g—% In this figure, the value of J has been made dimensionless
by the amount J;, which caused incipient yielding in the element nearest to the tip

during the monotonic loading of the stationary crack [4.1]. Also, the extent of crack

growth Aa has been made dimensionless by the smallest element length L.

The purpose of this investigation is to examine the nature of the near-tip stress
and deformation fields for the mechanics problem of quasi-static crack growth with-
out the influence of increase in applied load. Following Rice [4.3], this would cor-
respond to a hypothetical situation in which a cracked specimen is initially loaded
by clamping portions of its boundary and imposing displacements, which is then
followed by crack extension by saw-cutting ahead under fixed boundary displace-

ments.

However, in an actual situation, after initiation, a crack will generally grow sta-
bly in an elastic-plastic material for an extent typically of the order of a few plastic
zone sizes, during which the applied load will have to be increased to propagate
the crack. A steady-state condition will then be reached, after which no further
increase in applied load will be required for additional crack growth. In the second
load history, stable crack extension was modelled (in a continuous manner) by si-
multaneously increasing the applied load during the nodal release procedure as in
[4.2]. This was accomplished by simulating fifteen one-element crack growth steps
under T = 1.5, as shown in Fig. 4.2, following the stationary loading process [4.1].

The maximum extent of the plastic zone was over 100 times the smallest element
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length, L. Only the material with n = 9 was considered in this investigation.

The analysis of [4.2] predicts a ratio Jgsg/Jic, of the value of J at steady-state
to that at initiation, of around 2 for a perfectly plastic material, when the value
of the tearing modulus at initiation, Ty, is 1.5. Hence a constant value of T of
1.5 was chosen, so that this history could be viewed as the initial phase of stable
crack extension under contained yielding conditions, as would be observed in an
experiment (as in [4.20]).

In the following section, detailed results will be presented initally for n = 5 and
9 corresponding to the first load history. At the end of the section, comparison
between the results for the two load histories will be made for the material with

n=09.

4.3 RESULTS AND DISCUSSION

Active Plastic Zones

The active plastic zone surrounding the propagating crack tip after the twen-
tieth crack growth step is shown in Fig. 4.3 for n = 5 and 9, in moving coordinates
that have been made dimensionless by the self-similar parameter (Ky/oo)?. The
plastic zone obtained in [4.2| for stable plane stress crack growth in an elastic-
perfectly plastic material is also shown for comparison.! The current crack tip is at
the orign of the coordinate system, and a point in the figure represents an actively
yielding integration station within an element.

A large elastic unloading region can be seen following the active plastic zone. No
secondary (plastic) reloading along the crack flank has been observed for any level

of hardening from the present numerical solution. The asymptotic angular extent of

1 Throughout this chapter, results given as n = co will correspond to the per-

fectly plastic crack growth analysis of [4.2] (see Chapter III).
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the active plastic zone, 0, decreases with decreasing hardening (increasing n). The
values of 8, are approximately 65°, 55° and 45° for n = 5,9 and oo, respectively. The
maximum radial extent of the active plastic zone, R, which occurs directly ahead

of the crack tip, increases with decreasing hardening. The values of R, are about

O.22(KI/00)2, O.24(K1/00)2 and 0.28(K1/00)2 for n = 5,9 and oo, respectively.

Comparison of Fig. 4.3 with the plastic zone surrounding the stationary crack
[4.1] shows that the active plastic zone becomes more acute (sharper) with the onset
of crack growth. The results for the stationary problem in [4.1] show rounded plastic
zones for the hardening cases, with yielding spreading beyond 90° near the crack
tip. Strong changes in the near-tip plastic zone shape occurred during the first few
crack growth steps, and then the overall features were unaltered with subsequent
érack advance. The maximum radial extent of the plastic zone, Ry, given above for
the propagating crack, is about the same as in the stationary problem [4.1] for all

levels of hardening.

A kink in the trailing boundary of the active plastic zone (Fig. 4.3) appears
to develop for materials with low hardening, and it becomes pronounced for the
perfectly plastic case. The reason for this development could be related to the
- change in nature of the governing equations (from elliptic to hyperbolic), in the
limit as the perfectly plastic case is approached. Such a behaviour can also be
observed from tﬁe plastic zone shapes given by Dean and Hutchinson [4.15] for
crack growth under anti-plane shear in a linear hardening material. The similarity
between the present plane stress plastic zone shapes and the anti-plane shear results
of [4.15] stems from the presence of an intense deformation zone ahead of the crack

tip in both cases.

The active plastic zones of Fig. 4.3 and the corresponding results obtained by

Dean [4.17] for steady-state crack growth under plane stress in a linear hardening
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material have essentially the same features. However, one difference seems to be
the absence of the kink in the active plastic zone for the perfectly plastic limit
in Dean’s solution. Nevertheless, the present solution is more detailed than that
of [4.17], because it has a larger ratio of plastic zone to smallest element size as
compared with that in [4.17]. Also, unlike [4.17], the initial phase of crack growth

was modelled in the present analysis.
Radial Distribution of Plastic Strains

The radial distribution of the normalized plastic strain, €5,/€, with respect
to normalized distance, r/(KI/ao)2, ahead of the propagating crack tip is shown in
Fig. 4.4 for a material with n = 9. Results are presented for various levels of crack
growth at a fixed applied load, along with the plastic strain distribution ahead of
a monotonically loaded stationary crack tip, which was obtained in [4.1]. As can
be seen from this figure, the plastic strain ahead of the moving crack tip converges
rapidly during the first few crack growth steps to an invariant distribution. For
example, at a distance of r = 0.013(K;/0o)* ahead of the moving tip, the plastic
strain dropped by 30% during the first five crack growth steps and by 8%, 3% and
1.5% during the sixth to tenth steps, eleventh to fifteenth steps and sixteenth to
. twentieth steps, respectively.

Such rapid convergence was typical of the other hardening case (n = 5), as
well as the perfectly plastic material [4.2]. The weaker singularity in the plastic
strains near the tip during crack growth, as compared with the stationary problem
in Fig. 4.4, is due to the fact that the crack propagates into material that has already
deformea plastically [4.3]. The radial distribution of the plastic strains ahead of the
tip at the end of the twentieth release step is shown in Fig. 4.5 for the two levels of

hardening, n = 5 and 9.
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Figure 4.4. Radial distribution of plastic strain ahead of the propagating crack
tip for various levels of crack growth under fixed applied load for a material with

n=9,
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Radial Distribution of Stresses

The radial distribution of the normalized opening stress, 032 /70, ahead of the
moving crack tip is shown in Fig. 4.6 for n = 5 and 9, along with the perfect plasticity
solution of [4.2]. As can be seen from this figure, the stress components become
more strongly singular with increasing hardening. The perfect plasticity solution
of [4.2] for 032 tends to a bounded value of 1.9997¢, as the crack tip is approached
along the § = 0 ray, and is in excellent agreement with the preliminary asymptotic
result of Rice [4.4]. This asymptotic limit was the same as that obtained by the

numerical solution near the stationary crack tip [4.1].

The stress variation for the hardening materials in Fig. 4.6 also differs only
slightly from the stationary crack distribution of [4.1], for moderate to large dis-
tances from the tip. For example, at a distance of r = 0.018(K;/0o)? ahead of the
tip, the ratio of the opening stress for the propagating crack to that for the sta-
tionary problem is 3.04/3.13 and 2.58/2.66 for n = 5 and 9, respectively. Also, as
pointed out in [4.1], the stress distribution (Fig. 4.6) appears to be relatively insensi-

tive to the hardening level for distances from the tip exceeding about 0.15(K;/c0)®.

In order to study the influence of the crack tip plastic zone on the stress field
in the surrounding elastic region, the radial stress distribution ahead of the moving
crack tip is shown on an expanded scale for n =5 and 9 in Fig. 4.7. The singu-
lar elastic solution (K; field) is also indicated by the solid line in the figure, for
comparison. The distribution of stresses outside the plastic zone is almost identical
to the corresponding result obtained for the stationary problem in [4.1]. The o33
stress component obtained from the numerical solution differs strongly (by more
than 30%) from that given by the K; field at the elastic-plastic boundary (r = R}).
But a rapid transition in the stress distribution takes place immediately outside the

plastic zone and, as in [4.1], the stresses agree closely with those of the K field for
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r > 1.5R,.
Near-tip Angular Distribution of Stresses

The near-tip angular distribution of the normalized polar stress components is
shown in Fig. 4.8 for n = 5 and 9 along with the perfect plasticity solution of [4.2].
The centroidal values of stresses in the elements lying on a rectangular contour
surrounding the moving crack tip, with an average radius of 0.018(K1/00)2 (which
is within 0.08R,,), have been used to make this plot. The angular variation along
the above contour of the Von Mises equivalent stress, 0.4, = (—g—sijsij)l/z, which
has been made dimensionless by og, is also shown in the figure.

The assertion made earlier, that no secondary (plastic) reloading was observed
(as 8 — 180°) for any level of hardening, is confirmed from this figure. Also, elastic
unloading occurs for angles # greater than about 65°, 55° and 45° for n = 5,9
and oo, respectively, although it is not obvious from this figure for the hardening
cases. The near-tip angular stress variation for the hardening materials appears to
be qualitatively similar to the perfectly plasfic case. This seems to agree with
the assumption made by Gao and Hwang [4.11], regarding the invariance with
respect to hardening, of the angular distribution of the asymptotic stress field (see
Eqn.(4.1.1)). As noted in [4.2], the stress variation within the active plastic zone
for the perfectly plastic case is in very good agreement with the distribution in a

centered fan, as predicted by Rice [4.4].
Crack Opening Profiles

The normalized crack opening displacement, 6/(J/0o), versus normalized dis-
tance, x; /(K1/00)?, along the crack flank is shown in Fig. 4.9 for the two hardening
cases, n = 5 and 9, when the crack grows under fixed applied load. This profile was
obtained after twenty crack growth steps and was self-similar in normalized form,

in the sense that it was almost identical for different levels of crack growth (as in
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Figure 4.9. Numerically obtained crack opening profiles for quasi-static crack
growth under fixed applied load for n=5 and 9. The dashed line is the linear elastic
asymptotic solution and the solid line is the asymptotic crack displacement for

steady-state crack growth in a perfectly plastic solid, as predicted by the analysis
of [4.2]. :
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[4.2]). The crack opening profile for a linear elastic material is also shown by the
dashed line in the figure.

The steady-state asymptotic opening profile for a crack growing in a perfectly
plastic material, as predicted by the analysis of [4.2], is indicated by the solid line

in the figure. This is given by [4.2],

6

Tjoo) = fn 1n<§;> , (4.3.1)

where

n=r/(Ki/oo)".

In the above equation e is the base of the natural logarithm. In [4.2], the parameters
B and s which occur in (4.3.1) were estimated as 1.70 and 0.60, respectively, from a
best-fit to the near-tip crack displacement increment, obtained from the numerical
solution for the non hardening case.

It can be noticed from Fig. 4.9 that the crack profiles vary considerably with the
hardening level. This was also observed by Dean [4.17] from his steady-state solution
for plane stress crack growth in linear hardening solids. This also appears to be
true for the crack profiles obtained under anti-plane shear by Dean and Hutchinson
[4.15]. However, the crack profiles under Mode I plane strain show comparatively
less variation with the hardening level, at least near the crack tip [4.15]. Also, as
opposed to the blunted shapes obtained for the stationary problem [4.1], the crack
opening profiles during growth (Fig. 4.9) exhibit a sharp shape. This is directly

traceable to the permanence of plastic deformation [4.3].

Ductile Crack Growth Criterion

Rice and Sorensen [4.13] and Rice et al.[4.5] proposed that a critical opening
displacement, § = ., should be maintained at a small microstructural distance, r,

behind the crack tip for continued crack growth. If one employs the above criterion
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for initiation and continuation of crack growth as in [4.15], it is possible to examine
the potential for stable crack growth from the microstructural viewpoint. To this
end, the self-similar crack profiles shown in Fig. 4.9 for crack growth under fixed
applied load were taken as steady-state profiles and were used to generate a plot
of 6/(eor) versus r/(Kss/0oo)?. This is shown in Fig. 4.10b for the two cases of
hardening, n = 5 and 9. The opening displacement for the stationary crack given
in [4.1] was used similarly to obtain the variation of é/(eor) versus r/(Kic/oo)? as
shown in Fig. 4.10a.

For a given value of the microscale parameter Ay = 6c/(€orc), the value of
re/(Kss/0o0)? can be obtained from the abscissa of Fig. 4.10b corresponding to
steady-state crack growth. The value of r./(Kic/00)* may be obtained similarly
from Fig. 4.10a for initiation of crack growth. These two quantities can be used to
compute the ratio of Jgs/Jic = (KSS/KIC)Z, corresponding to the chosen value of
the microscale parameter Ap,. The variation of Jss/Jic versus ¢ /(eorc), calculated
as indicated above for n = 5 and 9, is shown in Fig. 4.11. On comparing Figs. 4.10a
and b, it can be seen that the influence of hardening on the relationship between
Jss/Jic and éc/(eorc) arises mainly due to the results in Fig. 4.10b, corresponding
to steady-state crack growth. The effect of hardening on the variation of 6/(¢or)
with respect to r/(KIC/oo)2 at initiation is not so significant, as can be seen from
Fig. 4.10a.

For comparison purposes, the variation of Jss/Jic with respect to 6c/(€eore) for
the elastic-perfectly plastic material, which was deduced in [4.2] from the steady-
state aéymptotic crack profile (4.3.1), is also shown in Fig. 4.11 by the solid line.

This relation is given by [4.2],

J
S8 = L Ow/B-1) (4.3.2)

J[C S/\m

where Ay, = 6¢:/(eor.) and the parameters «, § and s were estimated in [4.2] as 0.82,
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Figure 4.10. Variation of 6 /(eor) with normalized distance along the crack flank
for a) the stationary problem [4.1] and b) quasi-static crack growth under fixed
applied load.
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Figure 4.11. Influence of hardening on Jss/Jic in Mode I plane stress, as pre-
dicted by the critical displacement criterion, for continued crack growth. The solid
line is the perfect plasticity result of [4.2].
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1.70 and 0.60, respectively. It can be seen from Fig. 4.11 that in the range A,,, > 8.0,
the ratio Jss/Jic may increase significantly with a decrease in hardening. For
example, corresponding to a value of A, = 9.5, the ratio Jss/Jic is 5.8, 8.3 and 14.1
for n = 5,9 and oo, respectively. Thus, the potential for stable crack growth may be
grossly overestimated by a calculation based on the perfect plasticity idealization,
when the material actually possesses some hardening. Hence, predictions about the
extent of stable crack growth based on the perfectly plastic model (as made in [4.2])
may be unconservative for a hardening material when the microscale parameter
exceeds a value of about 8. A qualitatively similar conclusion was reached in anti-
plane shear and Mode I plane strain as well, by Dean and Hutchinson [4.15].

In the light of the above observation, one is compelled to examine the effects
of kinematic hardening and corner formation on the yield surface, which may occur
during the nonproportional loading experienced by a material particle near the crack
tip. It is not clear to what extent these factors will affect the potential for stable
crack growth under plane stress conditions. Dean and Hutchinson [4.15] found that
the influence of corner formation was not as significant as strain hardening from their
numerical results for anti-plane shear crack growth. However, Lam and McMeeking
[4.16] observed that both corner formation and kinematic hardening further reduced
the potential for stable crack growth in Mode I plane strain. Thus, in this sense,
even the results based on a smooth yield surface with isotropic hardening may be

unconservative. It is suggested that such effects should be investigated in Mode I

plane stress.
Comparison of results for the two Crack Growth Histories

In order to study the influence of increase in applied load, as would be observed
in an experiment during the initial phase of stable crack extension, a crack growth

history at a constant value of T = 1.5 was also simulated in this work (Fig. 4.2).



Only the material with n = 9 was considered in this investigation.

The active plastic zones obtained for this crack growth history compared very
closely with that shown in Fig. 4.3, both in shape and size. During the first few
crack growth steps, the active plastic zone assumed the sharpened shape of Fig. 4.3,
which did not change with subsequent crack advance. The values of 6, and R, were
about 55° and O.24(K1/00)2 as reported earlier, based on the first crack growth
history (at fixed applied load).

The plastic strains ahead of the moving crack tip exhibited a tendency to
converge rapidly to an invariant distribution during the first few crack growth steps
as in the earlier analysis (Fig. 4.4). The normalized plastic strains ahead of the tip
at the end of the fifteenth crack growth step under T = 1.5 is shown in Fig. 4.12
énd is compared with the result given in Fig. 4.5 for crack growth at T = 0. As
expected, the plastic strains for T = 1.5 are slightly higher due to the influence of
increase in applied load with crack growth.

The radial distribution of stresses ahead of the propagating crack tip for the two
histories is shown in Fig. 4.13 in the nondimensional form, o,45/70 versus r/(KI/ao)z.
The effect of the increase in applied load on the stress field seems to be less significant
than that on the deformation field. Also, the near-tip angular stress distribution for
the two histories were almost identical. Finally, the nondimensional crack opening
displacement, 6/(J/0¢), as a function of position on the crack flank, xl/(KI/ao)z,
is shown in Fig. 4.14 for T = 0 and 1.5. Due to the increase in applied load, the

crack opening displacement for T = 1.5 is higher than that for T = 0.
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tip for the two crack growth histories that were simulated for n=9.
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APPENDIX A
EQUILIBRIUM ITERATION AND STRESS COMPUTATION

Newton-Raphson method for equiltbrium iteration

It was observed in Sec.(2.2) that an iterative Newton-Raphson method was used
in the solution of the incremental equilibrium Equations (2.2.11). This procedure

is summarized below for the k*® equilibrium iteration of the (t + At)th time step.

1) The externally applied load is increased and F(t + At) is calculated.

2) The tangent stiffness matrix K&7!(t + At) and the vector PE 1t + At) =
Jx BTok=1(t + At)dA are calculated. For the first iteration of the time step
(k=1), the above vector is computed from the converged solution at the end of
the previous time step as, P°(t + At) = g BT o(t)dA.

3) The following matrix equation is solved by Gauss elimination:
KSIAUX = F(t + At) — PE71 = AR".

4) The nodal displacements and element strains are updated as follows,
UK(t + At) = U (¢ + At) + AU"
e5(t + At) = BUN(t + At) .

For the first iteration of the time step (k=1),
U'(t + At) = U(t) + AU .

5) In order to prevent fictitious (numerical) elastic unloading of elements in some
parts of the plastic zone during the subsequent iterations (k > 1) of the time
step, a path independent scheme is used in this numerical scheme to update

element stresses. The stresses are estimated by integrating from the values
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at the end of the previous accepted equilibrium configuration to the current
iteration of this time step by using the cumulative strains as follows [2.4],
F (+At)
gk(t+At):g(t)+/ D de.
e(t)
An explicit method was employed to evaluate the integral in the above equation.
6) The Euclidean norm of the out-of-balance force vector AR (see Step(3)) and

the internal energy increment are checked for convergence by comparing with

the corresponding values at the start of the iteration process as [2.5],
|ARN|| < 65| ARY|
AU*.AR* < é6gAU'. AR,

where 6p and 6 are small, preset tolerances.

If convergence is not achieved, control is returned to Step(2) to perform the

next iteration.

If convergence is achieved, control is returned to Step(1) to perform the next

time step.

Explicit Integration of Incremental Constitutive law

The method of stress computation mentioned in Sec.(2.2) is outlined for an

isotropic hardening solid below.

1) After solving the finite element equilibrium equations for the nodal displace-

ment increments AU, the strain increment Ae is obtained as
Ae=BAU,

where B is the strain-displacement matrix.

2) An elastic estimate Ac® for the stress increment is computed as

Ac® = C Ae.
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A trial stress state ¢ = ¢ + Ag¥ is calculated from the stress state ¢° at
the beginning of the iteration. Here ¢ is taken to be inside the yield surface
(Fig. A.1) for the sake of definiteness.

IfF(c®) — (60)2 < 0, where 6° is the value of & at the beginning of the iteration,
then the elastic behaviour assumption holds and the remaining steps in this
method are omitted. Otherwise, the yield surface has been crossed during the
trial stress incrementation (Fig. A.1).

The contact stress state ¢© is obtained as
0®=0"+qA0",

where 0 < q < 1 and F(¢®) — (60)2 = 0. This condition for the Von Mises yield
function leads to a quadratic equation in q. It should be observed that the path
from ¢° to ¢© constitutes fully elastic material response.

A stress state o1 is obtained as

In this equation, F, is taken as the normal to the yield surface at the stress
state 0. Also, A is evaluated corresponding to the stress state o©.

The yield surface is updated as
of =5 + H(g")AeP,

where Ae® = 2AXg° and H(5°) = {Z |0, which can be obtained from (2.2.4)
for hardening solids and is set equal to zero for perfect plasticity.
Due to the finite nature of the time step, the stress state T obtained in Step(6)

will not (in general) lie on the updated yield surface. o7 is then simply scaled
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integration of the incremental constitutive law.
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as follows,

5-F

/3aTaT
2SijSij

The path from ¢© to o constitutes elastic-plastic material response.

T

1
!

g

In order to minimise the error due to the use of finite increments, the excess
stress o® — ¢© is divided into m subincrements, and steps (6) to (8) are carried

out m times with the subincrements.
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APPENDIX B
CONSTRUCTION OF STRESS CHARACTERISTICS

In plane problems involving elastic-perfectly plastic solids, the state of stress
within regions that are currently experiencing plastic deformation is governed by
the two equilibrium equations and the yield condition. Thus, with the prescrip-
tion of tractions on the part of the boundary, the stress state becomes statically
determinate within plastically deforming regions in the sense that the stresses can
be determined without reference to the deformation. It is important to observe
that, unlike the case of incompressible plane strain, the solution for stresses within
the plastic zone in a plane stress problem may involve regions of hyperbolicity,
parabolicity and ellipticity.

In Sec.(3.4), the averaged stresses inside the elements within the active plastic
zone, which were obtained from the finite element solution, were used to construct
stress characteristics as shown in Fig. 3.8. The procedure employed here to construct
stress characteristics follows the general principles outlined by Kachanov [3.22] and

is summarized below.

The plane stress Huber-Von Mises yield surface can be represented as an ellipse

in principal stress space in the following parametric form,

m
01 = 27y cos(w — E)

09 = 275 cos(w + -g) , (B.1)

W = w(zl,xz)

where 15 is the yield stress in pure shear. For o; > o9, the angle w varies in the

range 0 < w < 7. It can be shown [3.22] that the equations for the stresses are
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hyperbolic, parabolic and elliptic, if
3—4dcos’w >0
=0, , (B.2)
<0
respectively.

We first checked the condition (B.2) within each element inside the active
plastic zone, using the stresses obtained from the finite element solution. The
result of this investigation is shown in Fig. 3.8, where the dotted line separates
a region near the tip where the stress state is hyperbolic from a region outside
where the stress state is elliptic. At each point of the dotted line the condition
for parabolicity (second of (B.2)) is satisfied, and this line has been obtained by
appropriate interpolation between elements.

Inside hyperbolic regions, the slopes of the two families of characteristic lines

and the Riemann invariants along the characteristics can be obtained as [3.22],

dx
d_2 = tan(p — ¥) for a lines
1
dx , (B.3)
etz tan(p + n for B lines
dSEl
and
0 — p = constant = £ for a lines
(B.4)
0+ = constant =7 for 0 lines

In the above equations, ¢(z;,z3) is the angle made by the first principal stress

direction with the z; axis, and the function ¥(z;,z2) is defined by,

T 1 cot w
=_- -z B.5
Y 5 2a,rccos( 7 ), (B.5)

where w is obtained from (B.1) as

(01 + 02)

2\/§7‘0 .

COSW =

(B.6)
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Also, the function Q(w) in (B.4) is defined by

T . 2cosw 1 4cosw + 3
N(w) = 1 + arcsin — Zarctan —_—

V3 ={w)

1 ) 4cosw — 3
4 reren Y(w) ’

(B.7)

where
Y(w) =vV3—4cos?w. (B.8)

5m
5 -

The values of {}(w) range from 0 to —7 as w varies from T to

From the average stresses within the elements that lie inside the hyperbolic
region, the slopes of the two families of characteristics were determined by using
Eqn.(B.3). Two small straight lines were drawn at the centroid of each element
corresponding to the two characteristic directions. The two families of continuous
characteristic lines were then plotted by suitably interpolating between the elements
such that the appropriate Riemann function £ or n as defined in (B.4) remained

approximately constant along each line. The net of characteristics thus constructed

is shown in Fig. 3.8.
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Appendix C
QUASI-STATIC PROPAGATION OF DISCONTINUITY SURFACES

C.1. INTRODUCTION.

A variety of problems of physical interest involving the deformation of elastic-
plastic solids may require the admission of discontinuities in the gradients of
stresses and velocities (weak discontinuities) or in these quantities themselves
(strong discontinuities). Such discontinuities may occur within regions that are
currently deforming plastically or at elastic-plastic boundaries. These possibilities
_have recelved wide attention for rigid - perfectly plastic solids in plane strain (Hill
[C.3]) and in generalized plane stress (Hill [C.1]) in the presence of either the
isotropic Huber-von Mises or Tresca yield conditions in the plastic range. It is well
known that for such solids, strong discontinuities in stress and velocity cannot be
simultaneously present, and that velocity jumps occur across characteristic sur-
faces. It has been noted by Hill [C.1] that when a rigid-plastic generalized plane-
stress theory is employed in the study of the extension of thin plates, two types of
strong discontinuities must be considered. These arise because of the neglect of
elastic deformation and the averaged nature of generalized plane stress. A con-
sideration of thg second of these factors has led to the mathematical idealisation of
the experimentally observed phenomenon of localised necking in thin sheets (Nadai

[C.8]).

In a recent paper [C.6], Drugan and Rice investigated strong discontinuities
across quasi-statically propagating surfaces in elastic-plastic solids under general
three-dimensional conditions when all displacement components are assumed to be
continuous. One important conclusion of the work reported in [C.6] is that all
stress components are always continuous, a result that follows from certain

material stability postulates.
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Pan [C.7] has also discussed quasi-statically moving strong discontinuities for
elastic-perfectly plastic Huber-von Mises materials under generalized plane stress.
He assumes that a strong discontinuity can be replaced by a transition layer of elas-
tic material in which all stress components are assumed to vary continuously. He
subsequently argues that all stress components are continuous across propagating
surfaces, by using the specific nature of the Huber-von Mises locus and arriving at a

contradiction,

In the present work, we reexamine quasi-static discontinuities for the more gen-
eral case of an anisotropic hardening solid, using an integral form of the maximum
plastic work inequality and the usual assumptions in the theory of generalized
plane stress (Sec.(C.2)). It is demonstrated in Sec.(C.5) that the use of the maximum
plastic work inequality leads to full stress continuity for a broad class of solids,
which includes some hardening materials and anisotropic behavior. Pan’'s assump-
tions and the limitations of his approach are discussed in Sec.(C.5). A complete
analysis of all possible velocity jumps, including sliding discontinuity and localized

necks, is carried out in Sec.(C.6) with some generality in constitutive behavior.

C.2. THE GENERALIZED PLANE-STRESS PROBLEM.
Consider an elastic-plastic body occupying an open cylindrical region R of height
h (see Fig. C.1). Let the boundary 4R of the above region be composed of two

Lraclion-free planar surfaces Sy and S, and a lateral surface L.

Consider further a fixed orthonormal coordinate system {o',e},e5e3} such that e;

is parallel to the generators of R.

generalized plane stress conditions require that the height of the cylinder (also
referred to later as the thickness of the cylindrical plate) be small as compared with
any other dimension of the cylinder, and that the prescribed tractions t be such

that:
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L
il
<o

oy 0O3; = 0 on Sl and 52

and

i
e

ts te = to(x1.x2) on L. (C.2.1)

Here o;; are the components of the symmetric Cauchy stress tensor, Greek subscript
have the range 1, 2 while Latin subscripts take the values 1, 2, and 3. (This conven-

tion will be adopted through the following development.)

In what follows, field quantities such as g, ¢, y, and v will represent thickness
averages of the stress and strain tensors and the displacement and velocity vectors,

respectively. It is also assumed that,

03i = O ohn R. (C.Z.Z)

The above assumptions result in solutions of the generalized plane stress prob-
lem which, in general, will not satisfy the exact three-dimensional field equations as
discussed in detail by Timoshenko and Goodier [C.5] and Hill [C.3]. This is because
some of the compatibility equations are not generally satisfied, and errors are
involved in using the averaged quantities in the constitutive law and the yield con-
dition. However, if the plate thickness is sufficiently small, the generalized plane

stress solution is expected to provide an accurate approximation.

Let ¥ be a planar surface, parallel to the x,—x; plane, dividing the region R in

two open subregions Rt and R~ such that

R=RtUR- U2
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We will define the normal n(X) to ¥ at a point X€ X as the outward normal of the

closed subregion R™(R* = R* U X) at the same point X

In what follows, the surface ¥ will be viewed as a potential surface of strong
discontinuities (discontinuities in stresses and strains) and will be allowed to

translate quasi-statically with a normal velocity Vn.

Since the approximate theory of generalized plane stress treats the thickness of
the plate as vanishingly small, Hill [C.1] points out that every quantity whose gra-
dient is of order (1/h) in a zone of breadth comparable to h should be modelled as a
discontinuity. Thus, the experimentally observed formation of necks (Nadai [C.8]) in
thin plates subjected to tension (rapid variation of thickness of the plate in narrow
zones) would be modelled as discontinuities in the out-of-plane displacement com-

ponent us.

The jump in a field quantity g(x), across the surface ¥, will be denoted by:

(gl = g*(X) — g~(¥) where
(C.2.3)

g=¥ = lim gxten(Xx)) xe¥ and >0

C.3. SMOOTHNESS CONSIDERATIONS.
All field quantities will be referred to, with respect to an orthonormal frame
{0,e1.5,¢3} translating with the surface ¥ and such that O € ¥, ¢; = ¢3 and ¢,=n; see

Fig. C.2.

In-plane displacement components u, are required to have the following

smoothness properties:

u,c C(R) and

u, € C(R-%), (C.3.1)
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Ju .
with the understanding that TX—(i need not be continuous across . Then, according
C Jij

to the Hadamard compatibility relations [C.2] for jumps in the derivatives of a con-

tinuous function,

au,

=\, ng on 3 (C.3.2)

(’)Xﬁ

where ), are arbitrary functions of position on . The out-of-plane displacement
component u; will in general be allowed to suffer a jump across %, as discussed in

Sec(C.2). Thus:

us € CY{R*) n CYR), (C.3.3)

with the understanding that on ¥, uz and its gradient need not be defined. On the
other hand, [u3], the jump in the limiting value of u; from R~ to R*, will be assumed

to be a continuous and continuously differentiable function of position on .

It is now possible to extend the Hadamard compatibility relations (C.3.2) for the
treatment of jumps in the derivatives of discontinuous functions. This extension
was first discussed by Thomas [C.4]. The following simpler version was later pro-

vided by Hill [C.2],

Uy M §
o%, ]_ A3 H; + ox, on 3%, (C.3.4)

where )\; is an arbitrary function of position on ¥ and ¢ is an arbitrary continuous
function, together with its gradient on X and in one neighborhood, say R*, with the

additional restriction that
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(,’):[U3] on .

One choice of ¢ in R* would be to consider ¢ continued analytically along the nor-

mals. Any other choice would merely change A3, which is given by

Relations (C.3.2) and (C.3.4) allow definition of jumps in the strains across 2, con-

sistent with the assumptions of the approximate theory of generalized plane stress.

Within the contexts of a small strain formulation,

€ij = _é_(ui.j + Ujj), (C.3.5)

and the jumps in the in-plane strain component ¢,; can be expressed by (C.3.2) as:

[ens) = %—(xanﬁ \sny) on L. (C.3.6)

On the other hand, the jump in the out-of-plane strain component ¢33 can be

expressed by (C.3.2) and (C.3.4) as:

[e33] = Nsnz + ,8('/) on %, (C.3.7)
93

where ¢ ¢ CY(R") and ¢=[u;] on X.
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C.4. MATERIAL IDEALIZATION.
within the context of the small-strain flow theory of plasticity, the total strain

rate tensor can be decomposed into elastic and plastic parts:

=+ onR, (C.4.1)

where the dot denotes differentiation with respect to time. The elastic strain rate
tensor ¢¢ is related to the stress rate tensor ¢ through a constant, positive definite
four-tensor H (the inverse of the elasticity tensor ). H is assumed to possess the
usual major and minor symmetries. For an anisotropic elastic-plastic solid, ¢ is

given by:

¢~Hg onR (C4.2)

T .
Il

Attention will be focussed on the class of materials obeying Drucker’s stability pos-
tulate. A particular form of this postulate known as the maximum plastic work ine-

quality can be expressed as:

(c-7a)-&F>0. (C.4.3)

Y f(o.e")=0, and f(¢",e")<0, where f(g,c") is the yield function. An important impli-
cation of the above postulate is the normality of the plastic strain rate & to the

yield surface leading to a flow rule of the form,

LYeN
-]

1l
>
o

(C.4.4)

where 3>0 and P=V,f. X and P are scalar valued and symmetric tensor valued
functions of ¢, respectively. In the following section, an integral form of (C.4.3) will

be used in conjunction with Equations (C.4.1) and (C.4.2), as well as the
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compatibility conditions for the jumps in total strains (C.3.6), (C.3.7) to define the
jumps in the stresses and the plastic strains produced during the passage of a

discontinuity X through a material point.

C.5. STRESS CONTINUITY ACROSS THE PROPAGATING SURFACE.

In this section it will be demonstrated that all stress components are continuous
across the surface %, propagating quasi-statically th‘rough the thin plate. it will be
shown that this is true even if the out-of-plane displacement u; suffers a discon-
tinuity across >. The following proof is based on the maximum plastic work ine-
quality and the positive definiteness of H. It is an adaptation for plane stress of the
proof given by Drugan and Rice [C.6] for the general three-dimensional case. In the
present analysis, only the in-plane displacement components u, are assumed con-
tinuous, and the proof is adapted to suit the assumptions of the theory of general-
ized plane stress. Also, unlike the discussion by Pan [C.7] and consistent with the
assumptions of generalized plane stress [C.1], our discussion treats necks as jumps

and not as narrow transition layers.

If inertia terms are neglected, the balance of linear momentum requires that

across the quasi-statically moving surface 2. the traction be continuous. Thus

With respect to the local orthonormal coordinate frame {O,¢e;,e,,e3} moving with %,

n;=0y; and the above conditions become:

(01l =0 on % (C.5.1)

Equations (C.2.2) and (C.5.1) imply that the only stress component that can suffer a
non-trivial jump is o,,. The plastic work WF accumulated discontinuously at a

material point due to the passage of the surface ¥ is given by:
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WP— [ g-dd. (€5.2)

It should be observed here that some error is invelved in using the averaged stress
and strain quantities of generalized plane stress in the above integral. The above
integral is evaluated according to the assumptions of Sec.(C.2). On applying Equa-

tion (C.2.2), we find that the plastic work accumulation in (C.5.2) reduces to

3f

WP = f Tup d ((Ijﬁ. (C53)
Cf/?
Using (C.5.1), the above becomes:
57
WP = —oylef)) - 20p,leld + [ 0ppd b (C.5.4)
&

Also, by using the fact that ny = 6,4 (C.3.6) implies that:

622 =0 on ¥ or [&] =—1cf,] on X (C.5.5)

By setting d¢f = d¢ — d¢¢, using the continuity of ¢,; across ¥ (C.5.5) and integrating
by parts, (C.5.4) becomes
€52

WP = ‘(711[(11)1] - 2017[4’7] — f Topd 5. (C.5.6)

53

The integral in (C.5.6) can now be evaluated by using equations (C.2.2), (C.5.1), and

the constitutive law, to give:
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52

1
f 032§y = — = Hap00(0F + 052)[02,]. (C.5.7)
3 2

In addition, from (C.2.2), (C.5.1), and (C.5.5),

(D) = — [¢52] = — Hyppologn] on 2 (C.5.8)

Thus, Equations (C.5.6) and (C.5.7) give:

1
WP = — 011[(}1)1] - 2012[<le - “‘2‘(0?2 + 053) [(52]

or,

It should be observed that the restrictions imposed on the path in stress space in
the evaluation of the integral in (C.5.6) are the plane stress conditions and the con-
tinuity of tractions across X. This effectively implies a straight line path in stress

space from o3 to o5>.

The integral form of the plastic work inequality (C.4.3) can now be used by set-
ting ¢’=¢* where f(g*e’) < 0. Thus, g* is constrained to remain always at or inside
the yield surface during passage of ¥. Thus, by our using (C.2.2), (C.5.1), and (C.5.9):

&

i (0i — off)def; = - —;— (032 + o)lcdal + olcho] > 0
GU%

which, by (C.5.8), gives
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L 00 65 <0 or = (1055])% Hyp2<0. (C5.10)

1
2 2

(C.5.10) now requires that [0,,] = 0, since H;,;,>0.

Remarks
The following remarks are relevant:

1. Under generalized plane stress conditions, all stress components are continu-
ous across the slowly propagating surface %, even if the out of plane displace-

ment u; suffers a discontinuity.

2. The present discussion applies to general anisotropic elastic-plastic hardening
solids obeying a flow rule of the associated type. The proof of full stress con-
tinuity is based on an integral form of the maximum plastic work inequality and

the positive definiteness of the elastic potential.

3. An earlier discussion by Pan [C.7] is limited to elastic- ideally plastic solids of a
Huber-von Mises type under generalized plane stress conditions. His argument,
which does not make use of the maximum plastic work inequality, follows from
Hill's [C.3] statement that the stress state from o3, to 03, can be bridged only by
a succession.of elastic states. This assumes a smooth variation of stresses in a
"transition layer.” Such an assumption is questionable for generalized plane

stress since, as pointed out in Sec(C.2), any field quantity whose gradient is
O(%) in a zone of breadth comparable to h should be modelled as a discon-

tinuity. Even if this assumption is accepted, Pan's argument clearly does not
apply to arbitrary yield surfaces or general hardening solids. For instance, in
elastic-perfectly plastic <olids characterized hy a Tresca yield condition when

the neck (discontinuity in u3) coincides with a principal stress direction and
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01, = * 0,, the stress component o,, can have any value between 0 and * o, and
still lie on the yield surface (Hill [C.3]). Hence, X in equation (C.4.4) is not neces-
sarily zero in the transition from ¢* to ¢~ (Hill [C.1]), and the argument fails.
Also, for any type of hardening solid, the consistency condition requires the
stress state to lie on the yield surface during the process from ¢* to ¢~ and no

elastic unloading is possible.

C.6. DISCONTINUITIES IN STRAINS AND VELOCITIES.

In this section, the earlier result pertaining to continuity of stresses across 2 will
be used to provide restrictions on the nature of admissible jumps in strains and
material particle velocities across ¥ for a general anisotropic hardening solid.
Attention will then be turned to plastically incompressible, generally anisotropic,
elastic-perfectly plastic solids with smooth but otherwise arbitrary yield surfaces.
Specialized results will be given for Huber-von Mises solids at the end of the dis-

cussion.

General Considerations:

The jumps in the in-plane velocity component v, are given ([C.2], [C.6]) by:

on 3, (C.6.1)

where Vn is the normal velocity of Y. Making use of (C.3.2) and (C.3.6) the velocity

jumps may be expressed as:

[(vi]l = = V[enld
[vyl = — 2V [e},] ON = (C.6.2)

Full stress continuity and (C.4.2) require the elastic part of the strains to be
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continuous across 3,

[51=0 on X (C6.3)

The above, and Equation (C.5.8), therefore imply

[(fl=0 onX. (C.6.4)

As a result, the expression for the positive plastic work accumulation in (C.5.9)

becomes

WP = e U]][GI;I] - 20'12[6532] Z 0, (C65)

and the jumps in the velocity components v, and v, are given by:

vil=-V [‘fll :

[vo] = — 2V [B,] O > (C.6.6)

The plastic work WP can now be expressed in terms of velocity jumps as follows:

WP = S(oulvil + onlval) > 0. (C.6.7)

No specific restrictions on the constitutive model other than the general assump-
tions made in Sec.(C.4) have been imposed in the derivation of Equations (C.6.1)-

(C.6.7).
For the specific class of plastically incompressible solids:

[ef3l = = [e])] = [5] on &, (C.6.8)
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which, by use of Equation (C.6.4) simplifies to:

(3] = — [fy)] on X (C.6.9)

Equation (C.6.9) serves to determine the jump in the out-of-plane plastic strain com-
ponent «§; in terms of the jump in the in-plane plastic strain component ) for

plastically incompressible solids.

If the displacement component us happens to be continuous across X as in [C.6],
then ¢33 and hence ¢f3 would also be continuous. Equations (C.6.8) and (C.6.6) will
then imply that ¢f, and v, should also be continuous across ¥. Thus, it follows that
for a plastically incompressible solid, when the surface ¥ does not coincide with a
neck (jump in u3), only a sliding velocity discontinuity (jump in v;) is permissible.
Elastic-Perfectly Plastic Solid

For such solids, the yield surface is represented by

floy=0 on R, (C.6.10)

where f(o) depends symmetrically on ¢ and ¢7. It will also be assumed here that

the yield surface is smooth (has a continuous normal).
Under such circumstances the flow rule takes the following form:

P=XP onR, (C.6.11)

U
it

where A>0 is an undetermined scalar function of position, and

P(g) =V, flo) onR (C.6.12)
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is a symmetric tensor-valued function of ¢. Under conditions of generalized plane
stress, Equations (C.6.10) and (C.6.12) should be used in conjunction with the con-
straint (C.2.2). Inside regions that are currently deforming plastically, it can be
shown from the two in-plane equilibrium equations, the yield condition and the
plane stress assumption (C.2.2) that along stress characteristic directions the direct

components of P,; should vanish (Hill [C.3]).

It is also clear that, P;; should be continuous across ¥ from assumed smoothness
of the yield surface and the requirement of full stress continuity. Then, from

(C.6.11) the jumps in the plastic strain component ¢f; becomes

[65] =—n PjonZ, (C.6.13)

—
where 5 = f d >0 is an undetermined scalar function of position on 2.
A
Since [cf,] = 0 across X, Equation (C.6.13) implies that either =0 or P,,=0 or
both. If =0, (C.6.13) requires all strain components to be continuous. Thus, the
necessary condition for non-trivial jumps in strains to exist across X is that Py,

should vanish on Y. In other words, © should coincide with a stress characteristic

divection of its plastic side.

This condition is less restrictive than the necessary condition for non-trivial
jumps in the plastic strain components derived by Drugan and Rice [C.6] when all
displacements were continuous across . The corresponding necessary condition

derived in [C.6] states that P,,=P33=P,3=0 on .
From the above, the following important observation can be made:

Consider at least one side of ¥ (which coincides with a neck, say R*) to be

currently deforming plastically. If in addition, ¥ coincides with one of the stress



- 165 -

characteristic directions, say direction A (see Fig. C.3), then the velocity component

along the other characteristic direction B, is continuous across .. Thus,

Vel =0 on % (C.6.14)

The above result follows by first observing that since ¥ coincides with a stress

characteristic direction, P,, vanishes on ¥. Also, if the other characteristic direction
makes an angle ¢ ((5;&:—275) with the x; axis, then by the fact that Pgg=0 and the

transformation relation, we have

Pll
2P12

tan § = — for Py, = 0. (C.6.15)

In addition, combining (C.6.6) and (C.6.13) and noting that P,,=0, we see that the fol-

lowing is true:

vil = —P~1-l—[v2] on 3. (C.6.16)

The velocity jump [vg] along the other characteristic direction will be given by:

[vg] = cos([v,] + [v,]tand), 6= * —g—

which vanishes by use of (C.6.15) and (C.6.16). This general result was also noted
by Pan [C.7] for the special case of an isotropic Huber-von Mises solid and it also

holds for stationary necks in a rigid-plastic solid (Hill [C.1]).

If in addition P,=0, both the stress characteristics merge along % (é:r%) and as

a result 3 becomes a "parabolic line.” Equations (C.6.6) and (C.6.13) then imply that
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if P ,=0,

v, =0 on ¥.

(C.6.17)

Thus, when ¥ coincides with a "parabolic line,” the tangential velocity is continuous

and only the normal velocity has a jump.

When ¥ coincides with a neck and the two characteristic directions do not merge

along 3 (see Fig. C.3), then the accumulation of plastic work (C.6.7) due to the pas-

sage of ¥ becomes:

o P 201,P
WP — _1‘;( 11 112;12 12712 1,150
Also, the fact that a,-j&,-}; > 0 implies that
Uij PU 2 O .

By (C.2.2) and P,,=0 along %, (C.6.19) becomes:

011P1+ 2012P12 2> 0.

Inequalities (C.6.18) and (C.6.20) result in

1 [val
Vv 2P, >0, P;,,=0.

(C.6.18)

(C.6.19)

(C.6.20)

(C.6.21)

When the two characteristics merge along (5=t£ and P,,=P,,=0), it follows from

2
(C.6.7) and (C.6.17) that
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%i [v,] > 0. (C.6.22)

Isotropic Huber-von Mises solids

The above results can now be specialized for an isotropic elastic-perfectly plas-
tic solid that obeys the Huber-von Mises yield condition. For such a solid, the yield

condition states

f(o) -S—12=0 onR, (C.6.23)

N[r—-ﬂ
W

i

where =0~ —%-trg} is the deviatoric stress tensor and 7, is the yield stress in

pure shear. For such a solid,

Pl@) =V, flg)=3 onR (C.6.24)

All the results and corresponding remarks from (C.6.3)-(C.6.22) hold for this solid

with P replaced by S. In particular, (C.6.16) takes the form (Pan [C.7]):

[vil [vo]l if S0, (C.6.25)

R 1
2517

and (C.6.18) reduces to

2
(22 [v,] > 0. (C.6.26)
012

wr =

<|-
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Summary of Results
The results of Sec.(C.6) can now be summarized as follows:

a. For a general anisotropic hardening solid that is also plastically incompressible,
the following is true: When the propagating surface > does not coincide with a
neck (full displacement continuity), only a jump in the tangential velocity com-

ponent (sliding discontinuity) is admissible.

b. If, however, the solid is perfectly plastic, ¥ coincides with one characteristic
direction (P,,=0). In addition, full displacement continuity together with plastic
incompressibility also give P33=P;;=0. This states that the direction normal to
Y is also a characteristic direction. Unlike plane strain, this occurs under plane
stress condition only under exceptional circumstances (Hill [C.3]). In particular,
for Huber-von Mises solids this is true when the surface coincides with a plane
of maximum shear stress, and the latter is equal in magnitude to the yield

stress in pure shear.

c. For a general anisotropic elastic-perfectly plastic solid, when a surface coincides
with a neck (discontinuity in us3), both tangential and normal velocities have
jumps. This requires that the neck should lie along one characteristic direction.
Then the component of the velocity along the other characteristic direction (not
generally perpendicular to ) is continuous (see Equation (C.6.14)). Thus, necks
cannot form if the plastically deforming side of the surface is in an elliptic state

of stress.

d. For an elastic perfectly plastic solid, if in addition to (c), P;,=0, both the charac-
teristics merge along the neck, and this results in a parabolic stress state. Then,
the tangential velocity is continuous and only the normal velocity has a jump.
For the special case of a Huber-von Mises solid, P,=S,,=0, and the characteris-

tic surface coincides with a principal stress direction.
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C.7. REMARKS AND APPLICATIONS.

The jump conditions discussed here have some relevance to the stress and strain
fields near the tip of a quasi-statically growing crack in an elastic-plastic solid
under generalized plane stress conditions. For instance, in the elastic-perfectly
plastic Huber-von Mises material (Rice [C.9]) a "constant stress” (asymptotic) plastic
sector cannot occur directly behind a "centered fan" plastic sector because the con-
dition for positive plastic work accumulation (C.6.21) will be violated at the inter-
face. This renders the asymptotic solution for the plane stress stationary crack by
Hutchinson [C.10] unacceptable when the crack begins to grow. From the prelim-
inary asymptotic analysis by Rice [C.9], it then follows that only an "elastic unload-
ing" sector can occur behind the centered fan. Hutchinson'’s stationary crack solu-
tion also has a jump in the in-plane stress component between two constant stress

sectors. This is also inadmissible when the crack begins to propagate.

No solution for this problem, which satisfies all the conditions set forth in the
present work, has yet been constructed. An open question that arises, for which
detailed experimental and numerical studies may provide an answer, is whether
necking occurs near the ;growing crack tip. Otherwise, except in special cir-
cumstances (e.g., a fan angle of 90°), no strong discontinuities near the growing
crack tip can be admitted. In view of the fact that the (fully yielded) stationary
crack tip solution [C.10] has a strong discontinuity, one wonders whether the condi-
tion of full continuity in both stress and velocity near the propagating crack tip

may be too restrictive to satisfy.
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Figure C.1. Elastic-Plastic body with discontinuity surface X.
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Figure C.2. Local coordinate system transiating with the surface.
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Figure C.3. Moving discontinuity surface and characteristic directions of the plas-

tically deforming side.



