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ABSTRACT

Continuum treatments of martensitic phase transformations are capable of
accounting for a variety of important surface effects attributable to the spatially
localized interaction of coexisting material phases. Such phenomena are thought
to play a critical role in deterfnining the size, shape, and stability of nucleated
embryos as well as to affect the conditions under which nucleation events occur.
These issues are examined within a purely mechanical context wherein the special
properties are modeled as traction and energy fields defined on a two-dimensional
abstraction of the interface region. Materials that undergo martensitic phase
changes are modeled as having a hyperelastic character in both the bulk and in-
terface. The characterization of such bodies is examined in detail and a represen-
tation theorem is presented for describing the interfaces of isotropic, hyperelastic
media. A class of isotropic, nonlinearly hyperelastic bulk material is introduced
that is capable of modeling the dilatative component of martensitic phase trans-
formations. Such materials are considered within a noninertial setting referred to
as The Cylinder Problem. This problem provides a means of exploring a variety
of surface effects, and a criterion for nucleation based on energy is presented to-
wards this end. Here nucleation events are modeled as deterministic, temporal
shocks that are global in spatial extent. The fundamental development presented
does more than capture the desired surface effects. It shows how they are related
to specific assumptions regarding interface and bulk constitution. Four different

interface characterizations are presented that serve to illustrate this.
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1. INTRODUCTION

1.1. Martensitic Phase Transitions.
A given material may exist in different states, and changes of state,
or phase transformations, may be induced by sufficiently altering the

material environment.

This statement seems reasonable because it reflects a wealth of physical expe-
riences wherein the properties of a substance are observed to abruptly change.
A common example is the liquid-to-vapor phase transformation of a fluid in re-
sponse to heating—a thermally induced reaction—or a drop in pressure—the same
reaction but now mechanically induced.

The process by which a material accomplishes a change of phase is called
a phase transition. Transitions are therefore associated with the formation and
growth of a new phase partitioned from the original phase by an interfacial region,
and these interfaces may be either sharp or diffuse, depending on the nature of
the reaction. If no cracks, voids, or slippage are associated with an interface, it
is referred to as coherent.

The present investigation focuses on non-diffusive transitions that involve
two solid phases of a material separated by a sharp, coherent interface. These
martensitic processes are most common in Fe-C systems, but are found in Ni-Tj,
Ag-Cd, Au-Cd, Cu-Zn, Cu-Zn-Al, Cu-Al-Ni, In-T1 and other alloys as well.}'! In
addition, ceramic materials such as partially stabilized zirconia (ZrQ;) exhibit
this type of phase transition.!-?

In recent years the materials science community has developed a wide vari-

ety of products whose working properties rely on martensitic phase transitions.

1.1 For a basic text of work in this area see NisHIYAMA[1978]. For investigations of specific
systems see, for example, KRISHNAN & BRowN[1973]; CHANG[1952]; AHLERS[1986]; OT-
suka, TAKAHASHI & SHIMIZU[1973]; GRUJICIC, OLSON & OWEN[1985]; BURKART &
ReaD[1953].

1.2 See PORTER & HEUER(1977]; BuDiaANsKY, HUTCHINSON & LAMBROPOULOS[1983];
LaMmBropPoOULOs[1983]; RUF & Evans[1983].
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These include shape-memory materials!® like the Nitinol and Tinel alloys that
are used to make, among other things, Cryofit couplings and heat-to-shrink fas-
teners. Shape-memory materials also constitute an important cémponent of the
emerging discipline of smart materials and systems. Here smart refers to the
idea that a component is able to sense its environment and actuate an appro-
priate self-control procedure. Vibration suppressors, structural damage warning
devices, and robotic muscle are potential applications that are currently being
investigated.!-*

Another technology based on martensitic phase transitions is that of transfor-
mation-toughened materials.!'? Here ceramic beads of, for instance, partially
stabilized zirconia are embedded in a ceramic matrix. High stress regions near
cracks cause the beads to change phase; this is found to inhibit further crack
growth. The fracture toughness of the composite is thus increased.

The number of existing and potential uses for martensitic materials has mo-
tivated a number of theoretical investigations attempting to better understand
these phase transitions through modeling from a continuum physics perspective.
Such a macroscopic viewpoint is only one means of gaining insight into the na-
ture of martensitic phenomena and is certainly not intended to supplant atomistic
approaches. The utility of embracing such a treatment to investigate complex phe-
nomena is well established, however, as summarized in the following appraisal of
Conyers Herring:!-3

These concepts, besides being simpler and neater to work with than

those of atomistic theory, have the great advantage that they often lead

to soundly based conclusions independent of any detailed assumptions

regarding the atomic mechanisms of the phenomena being studied. Of-

course, this does not mean that the user of macroscopic concepts should

1.3 DELAEY, KRISHNAN, Tas & WARLIMONT[1974a,b,c] provide a review of the shape-

memory effect.
14 AmaTO[1992); ROGERS, LIANG, & FULLER[1991]; WANG & ROGERsS[1991].
15 HerRING[1952] p.70.
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think no atomistic thoughts! It merely means that he should, wherever
possible, use such thoughts as a guide to his intuition in formulating

macroscopic laws and deciding the range of their validity.

1.2. Continuum Models of Martensitic Phase Transi-
tions. In the simplest sense, the various phases of a body may be identified
by their differing material properties.!®* More detailed consideration of phase
transitions involves a number of subtleties, however, and even a precise definition
of phase is elusive. Continuum physics provides a foundation for investigating
such phenomena and offers a criterion for distinguishing various phases of a ma-
terial. Here phases refer to disjoint domains of a single energy functional that
characterizes the material of interest.!-” This is in line with the intuitive picture
that individual phases are just differing configurations of a single substance and
provides a means of distinguishing variation in a given phase from a phase tran-
sition. The classical example of this type of méterial description is that for the
Van der Waals fluid.}® From the continuum perspective, an interface is coherent
if the multiphase configuration can be described as a continuous deformation of
some homogeneous reference state.

Material constitution generally imposes severe restrictions—phase segrega-
tion requirements—on the ways coherent coexistence can be accommodated. Only
certain environments will support multiphase states, and the shape of each phase
is often restricted as well.}-° The interface between phases may accrete—that is,
move relative to the underlying material so as to effect a transfer of mass from one
phase to another. However, it is not a free boundary because of the phase segrega-

tion requirements, and certain materials may call for supplementary information

16 GreBs(1928] p.96.

1.7 G1BBs{1928] p.31, COLEMAN & NoOLL[1959] p.103, FospDIick{1986] p.137. A different view-
point is taken by ESHELBY[1961] and RoBIN[1974], among others, wherein each phase is
characterized by a distinct constitutive law.

1.8 gee, for instance, CALLEN[1960] Ch. 9.

19 Rosaxis[1991).



regarding interface position.

Continuum investigations of martensitic phenomena have proved both chal-
lenging and productive. ERICKSEN[1975], and from a completely different per-
spective, KNOWLES & STERNBERG[1975, 1977, 1978], pioneered such work, and a
rich line of research ensued. Within special settings, ABEYARATNE[1980, 1981] and
Fospick & MacsiTHIGH([1983] studied the existence and uniqueness of elastostatic
solutions with discontinuous deformation gradients in incompressible hyperelas-
tic materials. JAMES[1979] considered stability issues within a one-dimensional
static setting and GURTIN[1983], extending this development, found necessary con-
ditions for equilibrium with piecewise homogeneous solutions for a clé.ss of hyper-
elastic materials. JAMES[1981, 1986a,b], PARRY[1980], and KINDERLEHRER[1984,
1988] investigated piecewise homogeneous equilibria associated with mechanical
twinning. necessary and sufficient conditions for general hyperelastic materials
to sustain a loss of ellipticity were derived by Rosakis[1990]. The existence of
two-phase equilibria involving inhomogeneous, two-dimensional anti-plane shear
deformation was studied by SILLING[1988a,b] and by FRIED[1991a]. A nonlinear
elasticity framework was used by Rosakis[1991] to account for observed shapes of
embedded phases in shear transitions of anisotropic material. Non-convex strain-
energy densities have been successfully used to model transformation-toughening
in ceramic composites by Bupiansky, HuTcHiNsON, & LaMBROPOULOS[1983],
SILLING[1987], and ABEYARATNE & Ji1aNG[1988a,b] and by BaLL & JaMES[1987]
to study fine phase mixtures. SILLING[1988c| provided numerical studies of in-
terface dynamics. Phase-boundary interactions with acoustic waves were studied
by JaAMES[1980] and PENCE[1991]. The dissipative nature of martensitic phase
transitions was considered by KNowLES[1979], YaTomI & NisHIMURA[1983], and
ABEYARATNE & KNOWLES[1987a,b], and was placed within a fully thermodynam-

ical framework by ABEYARATNE & KNoOwLES[1990a).

Within nonlinear constitutive settings, there may be a number of states of

a body satisfying given boundary conditions. Such a lack of uniqueness may,
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for instance, be manifested in a range of possible interface positions. This issue
was addressed by ABEYARATNE & KNOWLES[1987a,b, 1988] within special settings
where a lack of solution uniqueness was established. Motiva.ted‘by the internal
variable work of RI1CE[1971, 1975] in plasticity, they suggested a class of supple-
mentary kinetic relations and found them sufficient to guarantee the uniqueness
of solutions. Kinetic relations were then used by ABEYARATNE & KNOWLES[1989,
1990b,c] to study one-dimensional phase-boundary dynamics, by JIANG[1989] to
model creep in a thermoelastic setting, and by FrRIED[1991b, 1991c] to study the
stability of planar phase boundaries. ABEYARATNE & KNOWLES[1990a] discuss

the role of kinetic relations within a thermodynamical framework.

1.3. Surface Effects and Phase Transitions. The continuum
models described above do not capture certain key phenomena, known as surface
effects, associated with phase transitions. These phenomena are attributable to
the spatially localized interaction of coexisting material phases. Such properties
are particularly relevant in situations where the interface curvature is very large—
as in the initial formation of a new phase embryo.!-1?

One such surface effect is the existence of a jump in the traction exerted
on either side of an interface. An example of this for fluids is that the pressure
inside a vapor bubble is higher than that of its surrounding liquid, but in solids
it is reasonable to think that interfaces may resist shear as well since this is a
characteristic of the bulk phases on either side.

A second important effect attributable to special interface properties is the
occurrence of supercritical phenomena.}-!! It is found that conditions capable of
initiating a phase change with planar interface geometry cannot produce a phase

embryo with a highly curved boundary. If the relevant environmental parameter

is temperature, for instance, a phase change might not occur until the body is

110 cHALMERS[1964] Ch. 3.

1.11 DUNNING[1969] p.3, gives a brief historical survey of supercritical phenomena. Also see
the discussions of PIPPARD[1981] pp.114-115; MULLER[1985] p.251; and CHALMERS[1964]
p.62, p.85.
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superheated above its normal transition temperature. Likewise, for mechanically
induced reactions, a body may require straining beyond that known to induce
phase changes when inhomogeneities allow the formation of low éurvature inter-
faces.

It is observed that symmetry properties associated with an interface should
influence the shape of a phase embryo, and this is especially true when the nucleus
is so small that bulk effects do not dominate. The surface properties of an interface
can thus play an important role in the determination of embryo shape.

A final surface effect of interest in this work pertains to the stability of newly
formed nuclei. It is observed that the stability of multiphase equilibria may de-
pend upon the embryo size as well as on conditions at the system boundary. This
behavior, and often the existence of such equilibria themselves, are attributable
to localized properties at phase interfaces.!-12

Continuum treatments of phase transitions may be modified to account for
these important surface effects. Interface properties are modeled by fields defined
on the interface itself, which are collectively referred to as interfacial structure.
Here the interface is usually treated as a surface.!''® Balance principles are pos-
tulated that restrict the way in which bulk and surface fields may interact, and
a characterization of the body via constitutive response functions completes the
development. Though this provides a mathematically tractable model, it requires
physical motivation, especially in regard to what types of interfacial fields should
be included and the way in which they should interact.

1.4. Material Surfaces in Fluids and Solids!* The develop-

ment of continuum theories of interfacial structure has its roots in considerations

112 UpRICHT, SCHMELZER, MAHNKE & SCHWEITZER[1988]; PIPPARD[1981].

1.13 A different approach is to treat the interface as a thin bulk region. See SLATTERY[1990]
or ALTs & HUTTER[1988a,b,c] for investigations of how these differing approaches may be
resolved.

The following motivational sketch of the development of continuum theories of surface and
interfacial structure is by no means intended to include all of the important contributions

that such a vast development necessarily entails.
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of the localized surface properties of materials not involved in a change of phase.
It is often reasonable to model such boundaries as distinct, lower-dimensional
bodies themselves—that is, as material skins with their own conétitutive proper-
ties. These regions are referred to as material surfaces. Common to all such work
is the allowance for a surface energy. This has a compelling molecular motivation
since atoms in layers nearest to the surface have a different bonding arrangement
than those in the material bulk.

Consider a wire frame suspending a liquid film.!-1% Suppose that the film has
a constant energy per unit area, 74, and is in equilibrium with area, A. Hamil-
ton’s principle—energy stationarity with respect to virtual system changes!-16—
dictates that such an equilibrium can exist only if d(yA)/dA = 0. For the molecu-
larly motivated assumption that « be constant for such a fluid film, this condition
implies the existence of an unbalanced surface tension in the film, equal in mag-
nitude to the surface energy, which disallows an equilibrium configuration unless
the wire frame offers a reactive tension of equal magnitude. This is found to
be the case experimentally. Thus, Hamilton’s principle motivates an adoption of
surface traction as a primitive field which, for fluid films, is just a surface ten-
sion. Certainly this is not how the concept of surface tension was derived since

its advent actually proceeded any idea of surface energy,!-!”

but the approach
has proved productive in establishing the utility of additional surface primitives.
Application of this idea to such a film sandwiched between two fluid bodies yields

the classic Gibbs-Thomson relation:1-18

AP = 2H~,

See ADAMSON[1967] Ch. 1; PORTER & EASTERLING[1981] Ch. 3. Here the film is used
to illustrate a two-dimensional continuum, though in reality it is two fluid surfaces sand-
wiching a thin layer of bulk fluid.

To quote Gibbs on the matter: ” For the equilibrium of any isolated system it is necessary
and sufficient that, in all possible variations in the state of the system which do not alter
its entropy, the variation of its energy shall either vanish or be positive.”

G1BBs[1928] p.56.

SHUTTLEWORTH([1950] gives a brief historical sketch of surface tension and surface energy.
118 Gipps[1928] p.229.

1.17
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where AP is the difference in pressure across the film and H is its mean curvature.

A more complex situation arises in solid-material membranes, where atom-
istic considerations suggest that surface stress should be tensorial in nature. In
fluids, atoms are free to migrate to and from the surface so that shear stresses
cannot be supported. Solids, however, do not have this property and the atom
migration necessary to maintain unchanged surface energy happens only very
slowly. Surfaces may be modeled as conserving their mass with deformation
measured relative to some arbitrary reference state. SHUTTLEWORTH[1950] and
HERRING[1951a,b] supposed the surface energy of such a membrane to be a func-
tion of the deformation gradient, Fy, and they applied Hamilton’s principle to find
that the membrane boundary must support a surface stress, T, = v1, + dvy/dF,,
as a necessary condition for equilibrium. Here 1, is the identity tensor for the sur-
face. Thus for solid surfaces, the tensile contribution from surface energy is only
a part of the total tensorial stress. In association with this is a straightforward

vectorial generalization of the Gibbs-Thomson relation.!-1?

Such reasoning has been used extensively in early treatments of material
surfaces!-?® and eventually led to the formation by GURTIN & MURDOCH[1975] of
a complete dynamical theory of material surfaces with both surface energy and
surface stress taken as primitives. This theory was used to consider stress on the
surface of crystals by GURTIN & MURDOCH[1976]. MOECKEL[1975] independently
developed the same approach but considered only fluid constitutions. His work,
however, embraced a fully thermodynamic description of material surfaces by
introducing a surface heat flux and surface entropy field. MurDOCH[1976] later
extended his earlier work to include these thermal effects. MULLER[1985] gives
a detailed presentation of the complete theromodynamic theory and studies a

number of fluid surface applications.

119 gee, for instance, discussions in CAHN[1980] and CAHN & LARCHE[1982].
1.20 por examples, see ApaM[1941]; HERRING[1951a,b]; SCRIVEN[1960]; ARIS[1962]; and
LANGER[1989].
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1.5 Phase Interfaces in Deformable and Non-deformable
Media. While similar in many respects to material surfaces, phenomena, asso-
ciated with interfaces between phases of a material are more corr;plex because of
the potential for accretion and the constraints of phase segregation. Accretion
embodies a new type of material interaction, and it is not obvious what new fields
are necessary in order to account for observed phenomena. MOECKEL[1975] took
the stance that accreting interfaces should be treated in the same manner as de-
forming material surfaces—an approach discredited in later investigations, which
benefited from considerations of energy stationarity. Accretion represents a kine-
matic process distinct from classical notions of motion and calls for a non-classical
notion of both traction and power expenditure where interfacial properties are ac-

counted for.

Non-deformable media

The first efforts to develop a model of the structured accreting interface fo-
cused on temperature-induced transitions in non-deformable media. This greatly
simplified investigations because only one kinematic process was involved, and
work was primarily focused on solidification and melting—the Two-phase Stefan
Problem.!-?! Based on the assumption of constant interfacial energy, a variational
argument involving virtual accretion and the Gibbs-Thomson relation gave the

22

classic capillarity relation?-?2:

A6 = 2Hh,

where A6 is the departure of interface temperature from the melting temperature
associated with a planar interface, H is the interface mean curvature, and h is a
material constant. The physical interpretation is that on the boundary of a con-

vex solid phase, particles have weaker bonds than on a flat interface.!?® Thus,

1.21
1.22

RUBENSTEIN[1971].

Due to THOMSON[1886]. See also the discussion of DUNNING[1969] pp.8-10. Though some-
what confusing, this equality is commonly referred to as the Gibbs-Thomson relation as
well.

123 CHALMERS[1964] pp.63-64.
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the thermal energy required to remove atoms from curved surfaces is smaller, and
consequently the corresponding equilibrium temperature is smaller than for a flat
interface. Within the statical theory, the capillarity relation provides supplemen-

tary information regarding interface geometry.!-24

FERNANDEZ-D1az & WiLL1aMS[1979] and later GURTIN[1986] developed ax-
iomatic ’frameworks that accounted for interfacial structure in phase transitions of
non-deformable media. Gurtin showed that within a fully dynamical theory, if the
interface produces no entropy, then the capillarity relation can be derived under
a specific set of constitutive assumptions. As in the statical setting, this relation
provides information characterizing the interface morphology. The isentropic as-
sumption, while implicit in variational considerations of equilibrium, takes the
form of a balance postulate in Gurtin’s dynamical theory. An important feature
of the energy balance postulated is the explicit accounting of surface energy out-
flow that is due to interface motion relative to the subbody considered. This

would later be accounted for via an accretive stress field.

Experimental evidence showed the capillarity relation to be too simple to ac-
count for an observed dependence of interface temperature on solidification melt-

ing rate.!-?5

CanN, HiLLic & SEARS[1964] proposed several relations between
accretive velocity and the departure of interface temperature from its static value
on the basis of molecular considerations. Independently, VoroNKkoV[1965] pro-
posed that a constitutively determined relation should exist between the accretive
velocity of the phase boundary and melting temperature. With an empirical re-

1.26

quirement for such a kinetic relation'*® established, a large number of investiga-

tions focused on its implications in problems previously considered using only the

1.24 Applications abound. For examples see CHALMERS[1964]; MULLINS & SEKERKA[1963,
1964]; DELVES[1974].

1.25 See related discussions in CAHN, HILLIG & SEARS[1964]; CHALMERS[1964] Chapter 2.4.
1.26 The term kinetic relation was proposed by ABEYARATNE & KNOWLEs{1988] within the
context of displacive phase transitions. CAHN, HILLIG & SEARS[1964], for instance,
refer to a kinetic law while VISINTIN[1987,1989] uses the term kinetic response function.

Neither VORONKOV([1965] nor GURTIN[1988a] assign a name to this type of relation.
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capillarity relation.!*” GURTIN[1988a] generalized his earlier theory by giving up
isentropic interfaces in favor of the assumption that a kinetic relation is a required
part of the characterization of a material. He showed that under riea.r equilibrium
conditions, his rather general kinetic relation reduces to the linear form typically

utilized in earlier works.

An additional development in the theory that appeared in Gurtin’s work
was the allowance for a mechanical energy flux within the interface. This flux
is distinct from the energy-outflow term introduced earlier. Within a reasonble
constitutive setting, restrictions imposed by entropy imbalance allowed the flux
to be expressed as a traction expending power in association with the motion of
anisotropic interfaces. This interpretation pointed towards a fundamentally new
concept of work associated only with accretion, and not with particle motion. The
idea is in line with the earlier developments of CAEN & HoFFMAN[1972, 1974], in
turn based on the investigations of HERRING[1951a,b], who adopted a capillary

traction to account for interface orientation effects.

Though well motivated physically, the introduction of a kinetic relation is ad
hoc insofar as it is not derivable from axiomatic foundations. Based on the premise
that there must exist a general balance framework from which a kinetic relation
could be derived, GURTIN[1988b] abandoned his earlier, constitutive procedure
in favor of an Accretive Force Balance. This new balance principle, representing
bulk-interface interaction, provides a relation between conditions at the interface
and accretive velocity that is independent of material constitution. An accretive
stress expends power in association with accretion. The normal component of
this stress corresponds to the capillary traction of CAHN & HoFFMAN[1972, 1974].
Power expenditure associated with the tangential component of the accretive
stress is an alternate way of accounting for the outflow of surface energy that

is due to the relative motion of the interface with respect to the subbody under

127 Gee, for instance, CORIELL & PARKER[1966]; VISINTIN[1987,1989]; XIE[1990]; STRAIN
[1988, 1990].
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consideration. The theory was applied to study the evolution of interfaces in an

isothermal environment by ANGENENT & GURTIN[1989].

Deformable media

In considering phase transitions involving both accretion and deformation,
physical intuition suggests a marriage of the developments from material surfaces
and non-deforming interfaces. CAHN[1980] and CAHN & LARCHE[1982] examined
deforming, accreting interfaces within the context of spherical symmetry and
isotropic media. ALEXANDER & JOHNSON[1985, 1986] generalized their variational
approach to include dependence of interfacial energy on surface orientation but did
not properly account for virtual accretion. LEO & SEKERKA[1989] continued the
development and provided a correct method of accounting for accretive variation.
In allowing interfacial energy to depend on orientation, surface deformation, and
temperature, they identified a traction associated with the resistance to rotations
of the interface during accretion. This was then shown to be directly related to
the capillary traction of Cahn and Hoffman’s investigations of non-deformable
bodies. GURTIN & STRUTHERS[1990] incorporated these results into a complete
thermodynamical theory of phase transitions in deformable media. Their work
draws on Gurtin’s earlier development for non-deformable media and includes
an accretive force balance. Interfacial structure includes a deformational traction
akin to that associated with material surfaces and an accretive stress that accounts
for both surface energy outflow and power expenditure due to anisotropic interface
accretion. The resulting theory has been successfully applied in an investigation

of melting-freezing waves.!-28

1.6. Scope of the Present Work. Comprehensive continuum mod-
els that account for localized interface properties have yet to be used to study a

number of interesting surface effects that may exist in martensitic phase transi-

tions, and experimental data suggest that such a continuum investigation is in

1.28 GuRTIN[1990].
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order. Solid material surfaces, for instance, have long been known to support sur-
face stresses so that it is physically reasonable to suppose that solid-solid phase
interfaces may indeed generate a traction jump whose effect is signiﬁcant in high
curvature regions. Another important surface effect, supercritical phenomena,
has been experimentally documented in martensitic reactions through the small
particle’ experiments of CEcH & TURNBULL[1956]. Finally, on the basis of investi-
gations of phase transitions in fluids, it is likely that special interface properties
play an important role in determining the size, shape and stability of martensite
nuclei. Most materials science investigations of martensitic phase transitions do
make some attempt to account for surface energy, though this is done in an ad
hoc manner. The development presented here does more than capture the desired
surface effects. It shows how they are related to specific assumptions regarding

interface and bulk constitution.

For simplicity, attention is restricted to martensitic transitions that are me-
chanically induced, and a theoretical development is presented that does not ac-
count for temperature effects. The theory is a modified version of that developed

by GURTIN & STRUTHERS[1990] and discussed in the previous section.

Materials that undergo martensitic phase changes are modeled here as hyper-
elastic in both bulk and interface response to deformation. The characterization
of such bodies is examined in detail, and a representation theorem is presented
for describing the interfaces of isotropic, hyperelastic bodies in terms of the two

fundamental scalar invariants of the deformation gradient of the surface.

A class of isotropic, nonlinearly hyperelastic bulk materials is introduced that
is capable of modeling the dilatation component of martensitic phase changes.
The materials are considered within a non-inertial context referred to as The
Cylinder Problem. This setting provides a means of exploring a variety of surface
effects, and a nucleation criterion is presented towards this end that is based
on system energy. Here nucleation events are modeled as deterministic, temporal

shocks that are global in spatial extent. Such a model is in line with the continuum
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viewpoint in that it is utilized to better understand the relationship between
macroscopic material properties and observed material response to loading. This
work is intended to be synergistic with investigations that consider martensitic
nucleation from a statistical perspective.!-2°

Four different interface characterizations are presented that illustrate how
various interface properties and surface effects are related. Interfaces with a
bonding energy nature, for instance, yield no traction jump, while fluid-like and
membrane-like interfaces do. The latter two interface constitutions, in conjunc-
tion with the phase segregation constraints, imply the existence of a lower limit on
embryo size that the system can support independent of any nucleation criterion.
For all three interfaces, however, the embryo size at the instant of formation must
be finite, and it is found that the number and stability of two-phase equilibria
are affected in each case. The Cylinder Problem is also capable of exhibiting
supercritical phenomena, which in this mechanical context, is referred to as su-

perstraining.

129 gee the excellent review article of THADHANI & MEYERS{1986] as well as the more recent
work of ROITBURD[1990].
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2. PRELIMINARIES

Within a purely mechanical theory of phase transitions, phase interfaces are

associated with kinematic singularities that partition the body of interest. For

clarity of presentation, a theory is presented for which there exists at most one

such partition in a given body. Since the theory is well understood in the absence

of phase transitions, only processes associated with the presence of an interface

are considered.?:

2.1. Notation and Definitions.

RN

YN, uvN

EN

Unit(V¥)
Lin(VN, M)
Lin™ (YN, VM)
Lin i (VN,uM)
Sym(V")
Sym™* (VM)
Unim(VV,u™M)
Orth(VN,uM)
Orth (VN,u™)

set of all N-tuples of real numbers

N-dimensional inner product spaces

N-dimensional Euclidean space

set of all unit length elements of VN

set of all linear maps of VN —»YM

set of all non-singular elements of Lin(VV, VM)

set of all elements of Lin(V¥,U") with positive determinant
set of all symmetric elements of Lin(VY, V")

set of all positive definite elements of Sym(V)

set of all elements of Liny (VV,U") with unit determinant
set of all orthogonal elements of Lin(VN, U)

set of all orthogonal elements of Lin (VN ,U")

The inner product of a,b € V¥ is denoted by <a,b> or a-b.
The outer product, c ® d € Lin(V¥, VM), of ¢ € VN and d € VM is defined by

(c@de=<d,e>c Vce VN, Vd,ecV™, (2.1.1)

2.1 The preliminary concepts developed in Sections 2.1-2.4 are presented in more detail by
GURTIN & MURDOCH([1975]; GURTIN[1988a]; and GURTIN & STRUTHERS[1990]. An at-

tempt is made to use notation consistent with these works wherever possible.
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The vector product of f,g € V¥ is denoted by (f A g) € V¥ and is the unique

bilinear operator satisfying

fAg=—-gAf
(fAg)-(fAg)=(f-f)(g-g)—(f-g)° (2.1.2)
f-(fAg)=0.

The transpose of A € Lin(VN, VM) is denoted AT and is defined by
(Ab)-c=b-(A%c) Vbe V", VceV¥, (2.1.3)

The inner product on Lin(VN,VM) is defined by

A - B :=Trace(AB")
YA,B € Lin(VN, VM) (2.1.4)
=(A,B)

so that all of the sets of linear transformations defined are endowed with an inner

product space structure. The norm of a € EEY is given by
la]:=va-a Vae EV, (2.1.5)

In general, scalar fields are denoted by lower-case letters, vector fields by lower-
case bold type, and tensor fields by bold-type, upper-case letters. A superscript ’~’

denotes partial differentiation with respect to the second argument of a function.

Surface, S a subset of IE® locally diffeomorphic to IEZ.
Surface Normal, n(x) either of the two unit vectors perpendicular
to a surface at the point x.

Tangent Space, n*(x), of S at x  best linear approximation to S at x.

Surface Boundary, 08 the closed curve that delineates the edge of
a surface.

Superficial Scalar or Vector Field scalar of vector field defined on S.

Tangential Vector Field superficial vector field with values in n*(x).

Superficial Tensor Field field on S with values in Lin(n*(x), E®).
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Tangential Tensor Field field on § with values in Lin(n*(x), n*(x)).

Boundary Bi-normal, m(x) the outward pointing unit vector perpendic-
ular to 8S at x but within the tangent
space of § at that point.

Projection Map, P, of S tensor field on § with values in Lin(E?, n*(x))
defined by P(x)a = a — (a- n(x))n(x)
Vx € S,Vace E3.

Inclusion Map, I, of S tensor field on § with values in Lin(n*(x), E?)
defined by I(x)a=a Vx€ S, Vace€n*(x).
P(x)I(x) = 15, the tangent space identity
map at x, while I(x)P(x) = 1 — n(x) @ n(x).
Also, I = P7.

2.2. Bulk and Surface Gradients. Let g: EX S EN. ThenVx ¢
IEX the gradient of g at x, denoted Vg(x), is the unique element of Lin(IEX, EN)
such that

}li{% <g(x + kk) — (Vg(x)) hk) =g(x) Vke EX. (2.2.1)

Now consider a superficial scalar field, g, defined on S instead of JEX. Let ¢
parameterize S—that is, ¢ : [E? — S diffeomorphically. Then there exists f :
IE? — E! given by the composition, f := go$, which allows the gradient of
superficial field ¢ to be defined as

Vo(x) := (Vf)o(V$)™. (2.2.2)

It is straightforward to show that this definition of the gradient of a superficial
scalar field is independent of the parameterization, ¢, of S. The idea is extendable
to superficial vector and tensor fields as well.?2 For emphasis, denote by V, the

surface gradient of a superficial field on §. Note that if w, b, and A are superficial

22 An introductory text that covers these issues is GUILLEMIN & PoLLACK[1974].
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scalar, vector, and tensor fields, respectively, then
Vs w(x) € n*(x)
V. b(x) € Lin(n*(x), E®) | (2.2.3)
Vs A(x) € Lin(n*(x), Lin(E?, E?)).
If b or A is tangential as well, then the codomain of their gradients is nt instead

of 3. |

2.3. Smooth, Superficial Fields and Surface Divergence.
Let w : § - IR be a map such that V; w is defined on §. Then w is smooth on S,
denoted by w € C'(S) or sometimes by w : § <+ IR. The extension to superficial

vector and tensor fields is completely analogous.

Suppose b is a smooth, superficial vector field on §. Then V; -b := Trace (PVS b)
on § is the surface divergence of b.
Suppose C is a smooth, superficial tensor field. Then the surface divergence of C
is given by |
(V:-C)-k=V,-(C"k) Vke E> (2.3.1)
The tangential tensor field L := —PV n provides curvature information in-
trinsic to the surface and is therefore called the curvature tensor. It can be shown
that L is symmetric and that the scalar field H := 1Trace(L) gives the surface
mean curvature. A corollary to the Stokes Theorem, useful for surface consider-

ations is the

Surface divergence theorem:

Let f be a smooth, superficial vector field on §. Then

/Vs-fdA= /f-mdL—/2H(f-n)dA. (2.3.2)
S o8 S

2.4 Surface Motion. Consider a one-parameter family of surfaces, S(t),
defined over some open time interval, 7. Let

Sr:={(x,t)|xeS(t), teT}

(24.1)
(08)r :={(x,t)|x € BS(t), teT}
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define the surface and surface-boundary trajectories. Let ¢ : U C E2 xT — S, be
a one-parameter family of surface parameterizations. Denote by ¢4 the restriction
of ¢ to U x T. If there exists a ¢ such that ¢ is defined on UxT and g is
defined on OU x T, then the surface is said to be smoothly propagating. It can be

shown that while the interface andredge velocities
V(x,t) :=¢(¢7(x,1),1)
Va(x, 1) :=a (471 (x,1),1)

depend on the choice of parameterization, ¢, the normal and intrinsic edge speeds,

Voi:i=V:n on &7

(2.4.2)

(2.4.3)
Vm:=V-m on 087,

are independent of parameterization. V,n is the normal velocity of S. V,,m is

the intrinsic, tangential edge velocity of §. On the surface boundary, the sum of

these two velocity fields is referred to as the intrinsic edge velocity of S.
Consider a normal trajectory of S through x € S(¢y),to € 7. This is a

smooth, t-parameterized curve, z, in IE? such that
z(t) € S(t), P(z(t))z(t)=0, VteT. (2.4.4)
The normal trajectory is used to define a time derivative following S by
g(x,1) := %y(Z(ﬂ),ﬂ) : (2.4.5)

p=t
where z is the normal trajectory of St through x € S(t). A classical result is that

f=—-V,V,. (2.4.6)

This derivative also finds application in the

Surface transport theorem:

Let ¢ be a smooth, superficial scalar field on a smoothly propagating surface,
S. Then

% gdA = / [§—2HgV,] dA + / gVmdL VteT. (2.4.7)
S S(t) 88 (t)
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2.5 Latticed Bodies and Interfaces.?? A collection, B, of ele-

ments, p, is a body if there is a set, (2(B), of continuous bijections, X', such that:

(i)  the gradient of the induced map between any two elements has positive
determinant where it is defined;

(ii)  B) contains all continuous bijections of its elements.

A lattice, L(B), of a body, B, is a set of elements of Q(B) such that:
(i)  the gradient of the induced map between any two elements is smooth;

(ii) £(B) contains all smooth bijections (diffeomorphisms) of its elements.

A latticed body is any body along with one of its lattices. The view is taken
that a body must be provided with a lattice—a preferred group of reference
configurations—in order to identify phase interfaces kinematically.

A two-phase deformation with respect to K € Q(B) is a configuration,
X € Q(B), such that the induced map between K and X is arbitrarily smooth
everywhere except possibly on a partitioning surface. This surface, S, is called
a phase interface. A two-phase motion, Xr, is a one-parameter family of two-
phase deformations, X(t) € Q(B), with ¢ ranging over an open interval, 7. It is
admissible if there exists a reference configuration, X € Q(B), such that

(i)  each element of X; is a two-phase deformation with respect to K;
(i) Sz is a smoothly propagating surface.
For a latticed body to undergo an admissible, two-phase deformation, it must be

admissible with respect to one, and hence all, of the elements of its lattice.

Consider the two-phase deformation, shown in Figure 1, with induced map,
¥, and bulk deformation gradient, F := Vy defined where y is smooth. Then the
surface in the deformed configuration of the body,

S:={yly=y(x), xeS}, (2.5.1)

23 Here the development departs somewhat from that of GURTIN & STRUTHERS[1990].
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is referred to as the deformed interface with {f, m} and P its surface orienta-
tions and projection map. The restriction of ¥ to S, denoted ¥, is the invertible
deformation map of the surface with an associated 3urface-deforﬁzation gradient,
F := V,§ defined on §. Note that F(x) € Liny (n*(x), i*(y)), y = ¥(x), even
though F is not defined on S. It is often convenient to use the linear transforma-

tion representing the surface gradient of y:

F:=V,y=F'I=F"1, (2.5.2)

where
F?= %mg [F(x+in(x))] Vx€S. (2.5.3)

~

Thus,

F=PF, F:=FP+(F)ngn, (2.5.4)
and it is easy to show that

F =1F, (2.5.5)

Note that JF' € Lin™(n*, E?).
The orientations of the undeformed and deformed interfaces may be related

using the determinants of the deformation-gradients,

J :=Det(F)
Det(F) (2.5.6)

j :=Det(F) = Frn|’

where F may be either F* or F- in the second equality. The relations are

n= —{F'Tn, m=

; F-Tm, (2.5.7)

.

where F may be either F+ or F~ and where h is the determinant of the gradient

of the restriction of ¥ to 9S.

Define the material and spatial velocity fields, v and v, respectively, as
v(x,t) :=§'(x’t)

(2.5.8)
V(y,t) :=v(y~'(y, 1), 1)
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If V is a surface velocity of S7, then the induced interface velocity
Vi=(F+)V+v? ‘ (2.5.9)

is a surface velocity for Sy—the interface trajectory associated with deforming
interface S. As Equation (2.5.9) indicates, the definition of V does not depend

on the side of S used, and in fact,
V=F.V+v. VYce|[0,1] (2.5.10)

where
F.:=cFt+ (1 -¢)F~
(2.5.11)
vei=evt + (1 —c)v™.
Let K7 and X3 be lattice elements related by the linear transformation G :
K1(B)—Kq(B). If V; is an interface velocity for the motion with respect to Ky,
then V, = GV, is an interface velocity for the motion with respect to K, with

V; and V; inducing the same interface trajectory, Sr.
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3. BALANCE POSTULATES

3.1. Primitive Fields. Consider a latticed body, {B,L£}, and an ad-
missible two-phase motion, Xy. Let R(t) := X (t; B) represent the region occupied
by B for all t in 7, with S; the deformed interface trajectory partitioning R(t)
over T. Define the bulk trajectory as

Rr={(y,t)|y e R(t), teT}.
Stipulate that for every such motion the following smooth fields exist:3:!

Bulk Mass Density

p: (Re\&r)=PRy
Bulk Energy Density

W (7?7 \57)—>R
Cauchy Stress

T: (R;\S;)—Lin(E? E?)
Interface Energy Density

w: Sy—R
Deformational Surface Siress

T: (y,t) € 8; - T(y,t) € Lin(d*(y,t), E?)
Accretive Surface Stress

A

C: (y,t) € 8r — T(y,t) € Lin(d*(y, 1), E?)

3.2. Balance Postulates. Let P, be the bulk trajectory associated
with an arbitrary subbody of B under the previous motion, X;, as shown in
Figure 2. Denote by Q7 the partitioning subinterface trajectory associated with
Pr. The boundary of @ is denoted by Q. Let 7 be the outward unit normal to
OP—the boundary of P. Interface normal, fi, and bi-normal, m, are as defined

3-1 The theory presented here is a modified version of that developed by GURTIN & STRUTH-
ERs[1990].



—924—

in Chapter two. The following postulates are imposed on all such subregions
and motions and constitute the axiomatic foundation of a mechanical theory of

dissipative phase transitions:

Mass Conservation

Momenta Balance

% pvdV = / T dA + / TmdL
P(t) 8P(t) 8Q(t)
% /yAﬁ\‘/dV= / yATodA + / y ATmdL
P(2) aP(t) 8Q(t)

P(P(t)) = Tv-vdA+ / Tm-VdL + / Cm (V—v*)dL
9P(t) 8Q(t) 8Q(t)
+ / Em- (V- v-)dL
8Q(1)

Parameterization Invariance
The power, P, expended at the boundary of P is invariant with respect

to the parameterization of @ for all times in 7.
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Objectivity
W, w, T, T, and C exhibit Galilean objectivity as defined in Appendix
A |

By Cauchy’s theorem, the momenta balances imply that T is symmetric. A
curvilinear triangle version of the theorem shows that T is symmetric as well,
and is therefore representable as a tangential tensor field as defined in Chapter
two. Henceforth T is taken to be a tangential. Note that requiring T and T to
be symmetric together with conservation of linear momentum implies the angular
momentum balance.

The presence of two distinct interfacial stresses taxes physical intuition, and
this issue is addressed at several points in the ensuing development. The defor-
mational stress, T, expends power in association with the absolute movement of
the interface. Even during a two-phase motion for which no new material changes
phase, this stress may expend power. In contrast, the accretive stress, é, expends
power in association with the relative motion of the interface with respect to the
underlying material—a process often referred to as accretion. In the limiting case
(not covered by this theory) of a phase transition occurring with no material de-
formation, the accretive stress may still expend power. This stress is the Eulerian
counterpart to that presented by GURTIN & STRUTHERS[1990] and is related to
the capillary tractions of both LEO & SEKERKA([1989], CAHN & HOFFMAN[1972]
and HOFFMAN & CAHN[1974]. Its physical significance for hyperelastic materials

is elucidated in Chapters four and five with interfaces.

3.3. Referential Formulation. The derivation of local field equations is
facilitated by re-expressing all primitive fields as quantities defined on an arbitrary
element of the body lattice. To this end, define the following fields on such a

reference configuration:

Referential Mass Density p:=Jp
Referential Bulk Energy W:=JW
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Piola-Kirchhoff Stress S:=JTF-T
Referential Interface Energy w = JW
Referential Deformational Surface Stress  § := jITF-7, ;T = PSkr

Referential Accretive Surface Stress C =25 ((FT ))éf"T,

where F, f‘, 7, and J are as defined in Section 2.5 and

(8G0) = lim S{8(x +hn(x)) + $(x — hn(x))} Vx €S, (3:3.1)

Using these fields, the Linear Momentum Balance and the Mechanical Dissi-

pation Imbalance can be expressed as

C%/pvde/SudA+ / SmdL (3.3.2)
P ap 89(t)

and

dt J 2

d d d [1
E‘/de_’_d_t /wdA+— —pv-vdV
P Q(¢) P

(3.3.3)
_<_/Su-vdA+ / Sm- [F.V +v.] dL + / Cm - VdL,

aP 8Q(1) aQ(1)

with F, and v, defined by Equation (2.4.16).
The localizations of the linear momentum balance away from and local to

the interface are

V-8 =pv
. (3.3.4)
[pv]lVe + [Sn] =-V; - S.
Here
[4(x)] := }li{r(l){¢(x + hn(x)) — ¢(x — hn(x))} Vx€S. (3.3.5)

Analogous localizations for the dissipation imbalance are made after considering

the field restrictions imposed by the principle of parameterization invariance.
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3.4. Implications of Parameterization Invariance. Use of

the Surface Divergence Theorem gives

/ém-VdL: /Vs-(éTm-me)dA, (3.4.1)
89(t) Q(t)

and application of the Product Rule then yields

/ém-VdL= /[—C-LVn—CTn-ﬁ+(VS-C)-nVn]dA+ / Cm-mV,, dL.

aQ(t) (1) 9Q(t)
(3.4.2)

Now consider the second term in the referential dissipation inequality,

Sm- [F.V +v.] dL. (3.4.3)
8Q(1)

By the Surface Divergence Theorem this is equal to

/ V- [STFenV,]dA + / Vs - [§7v]dA + / Sm- [FemV,,]dL
(1) Q(t) 9Q(t)
= / Sm . (F.m)V;, dL — / [(FS) L+ (V-S): (Fen)]VadA (3.4.4)
2Q(t) (1)
+ /{(ép)-ﬁc— (STF.n) -ﬁ+(Vs-§)-vc}dA.
Q(1)

The Mechanical Dissipation Imbalance is now expressible in a form amenable
to application of the Invariance Lemma®? given in Appendix B. The result is
a restriction imposed on the primitive fields by the Parameterization Invariance
Postulate, which comes in the form of the

Tension-Energy Theorem:3-2

F*S + PC = wl;. (3.4.5)

32 Due to GURTIN & STRUTHERS[1990].
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Equations (3.3.3) and (3.4.2-3.4.5) then combine to give a form of the Mechanical

Dissipation Imbalance that is consistent with the Parameterization Invariance

Postulate:
d d d 1
E/de-i—d_t / wdA+E/§pV-VdV
P 0Q(1) P
< /{é-f‘c—éc-r‘i+Vs-§-vc}dA+/Sv-vdA
() apP
+ / wVm dL + / [(V-S) - (Fen) + (% - €) - n— 2Hw]V,, d4,
89(1) (1)
(3.4.6)
where
a.:= (S"F.+ C")n. (3.4.7)

3.5. Referential Localizations and Interface Driving Trac-
tion. Application of the Surface Transport Theorem and Linear Momentum
Balance to Equation (3.4.6) yields the

Reduced Dissipation Imbalance

d : . 3
— [WdV < [S-FdV+ | [(V-S) (Fn)+ (V- C)-n]V,d4
a[ves] /

o (3.5.1)
_ / [3-8-F +4a,- 8.
()
Localized away from the interface, this implies that
S F-W>0. (3.5.2)
The implication local to the interface is
fVu=[8-S-F. +a,-8 >0, (3.5.3)

where

fe=Wl-(S) - [F1+ (%-8) - (Fa) + (%-€)-n  (354)
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is the interface driving traction.3-?

Equations (3.3.4), (3.4.5), (3.5.2), and (3.5.3) along with the Angular Mo-

mentum localizations,
SF* = FS”
(3.5.5)

A~

SFT = ST,
comprise the local field equations for the mechanical theory of dissipative accre-

tion.

3-2 Equation (3.5.3) was first derived by KNOWLES[1979] within a setting devoid of surface
effects. GURTIN & STRUTHERS[1990] derived Equation (3.5.3) in its present form, but
their work differs from the present development in that a more extensive set of system
postulates leads to a local balance principle with the form of Equation (3.5.4).



~30—

4. HYPERELASTIC MATERIALS WITH INTERFACES

4.1 Material Constitution. The mechanical theory summarized by Equa-
tions (3.3.4), (3.4.5) and (8.5.2 — 3.5.5) is incomplete since a means of character-
izing the bulk and interface of a given material has yet to be provided. This is
established by providing constitutive relationships between the primitive fields
and the process kinematics. Though the form of such relations may be quite gen-
eral, attention for the remainder of this work is restricted to hyperelastic materials

with interfaces. For such materials, there exist energy response functions, W and

W such that .
W =W(F)
_ (4.1.1)
S = oW (F)
and
w = W(F,,n)
SP = 3,%(F.,n) (4.1.2)
a. = —0,w(F., n),
with . )
W :Ling (E* E>)S R
(4.1.3)

@(+,n) :Ling (E3 E*) S R Vn e Unit(E?),
and where 0, ¢ refers to the partial derivative of ¢ with respect to its 1* argument.
The symbol ¢ refers to the derivative of a function, ¢, of a single argument. Here
and in the following development, P and I are treated as elements of Lin(IE®, n*)

and Lin(n*, IE®), respectively, defined by
Pb=b—(b-n)n, I=P7, Vbe E® (4.1.4)

The projection and inclusion maps, P, I, associated with the deformed surface
normal, n, are treated analogously.

For such materials, Equation (3.5.2) is strictly satisfied, implying that the
bulk material does not dissipate energy. The interface is still dissipative, however,

with Equation (3.5.3) reducing to

fVa20, (4.1.5)
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where the driving traction, f, is given by Equation (3.5.4). The power expended
in association with accretion is thus the only way that hyperelastic materials can

dissipate energy as is clear from both Equation (4.1.5) and the fact that

E+K-P= / fVn. dA. (4.1.6)
29Q(1)
Here E, K, and P are as defined in the Mechanical Dissipation Imbalance.
The interface response functions of Equations (4.1.1) and (4.1.2) can be ex-
pressed in a more useful form, using the following*-!
Lemma 4.1:

Consider a function, W, defined by

W(F,f,n) =0(FP +fQ®n,n)

(4.1.7)
Vn € Unit(E?®), VfeE? VI €Lin™(n*, E?).
Then
0, w(F,f,n) =0,9(FP + f ® n,n)I
(4.1.8)
O, w(F,f,n) =0, %(FP + f ®n,n)n.
Lemma 4.1 and Equation (4.1.2), imply that
S = 8,w(F,f,n) (4.1.9)
and that
8,0(IF,f,n) = 0. (4.1.10)

The surface fields are thus dependent only upon n and JF. This implies that the
original dependence of the surface energy on F, could just as well have been F*
or F~. Preference has not been given to the bulk on either side of the interface
in describing the interfacial fields.

A final step in the material characterization is to express the referential

accretive stress, C, in terms of the surface energy response function, w. This

41 GURTIN & STRUTHERS[1990].
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is facilitated by introducing Dnw, the partial derivative of & with respect to n

following the interface—identified as the unique element of n* such that

Dud(F,m) - = 75 FQ(K(), ), 13))| .
Vk: RS Unit(E®), k(0)=n, k(0)=a,

where

Q : Unit(E?) x Unit(E?) — Orth, (I, E®)
is the bilinear map defined by
Q(e,fle=1f, Qe,flg=g V{e,f} € Unit(E?) x Unit(E®),
with g-e =g-f = 0. Then it can be shown that*-2
Dnw(F,f,n) = 8,0(FP+f®n,n)+[0,5(F, f, n)]"f — F70,5(F,f,n). (4.1.12)

Since

C=IPC+n®Cn, (4.1.13)

Equations (3.4.5) and (3.4.7) plus the fact that PI = 1, combine to give
C=wI-IF"S +n® (i — S"F.n). (4.1.14)
Equations (4.1.2), (4.1.7), (4.1.9) and (4.1.10) then give that
C = (F,f,n)I — IF7,%(FF,f,n) — n ® Dois(F, £, n). (4.1.15)

Dropping the dependence of W on its second argument by virtue of Equation
(4.1.8) then gives the following characterization of hyperelastic materials with

interfaces: .
W =W(F)
i (4.1.16)
S = OW(F),

+-2 GURTIN & STRUTHERS[1990].
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and
w = w(IF, n)

S = 8,%(JF,n) ‘ (4.1.17)
C = w(F,n)I — IF78,%(JF,n) — n ® Daw(F,n).
Note that the system response is independent of the scalar, ¢, introduced in

Equation (3.3.3).

4.2 A Remark on the Accretive Stress, €. Recall that the lo-
cal power expenditure associated with Cis given by Cm-V. For hyperelastic

materials, then, Equation (4.1.17); implies that
Cm-V = {& - [(FT0,%)m] - m}Vy, = [(Dpb) - m] V.. (4.2.1)

The first term represents power expended in extending the interface boundary via
tangential accretion. The second term represents a power expenditure accompa-
nying changes in interface orientation in association with normal accretion. As is
shown in the following chapter, this latter power expenditure is zero for isotropic
media, implying that it is material anisotropy that offers such a resistance to

accretive reorientations of an interface.

4.3 A Kinetic Relation for Interfaces. The mechanical theory of hy-
perelastic materials summarized by Equations (3.3.4), (3.5.4), (4.1.5) and (4.1.16-
4.1.17) is still incomplete. As shown by ERICKSEN[1975] and ABEYARATNE &
KNOWLES [1987(a,b), 1988, 1989] for the case of no surface effects, there ex-
ist settings for which the interface location cannot be determined uniquely for
prescribed boundary data. Abeyaratne and Knowles suggest that this may be
interpreted as a constitutive deficiency. Motivated by the internal variable work
of RICE[1971, 1975] and the form of Equation (4.1.5), they offer a simple remedy
in the form of a constitutive relation between the driving traction, f, and the

accretive velocity of the interface, V,,:

) ) (4.3.1)
V:R-R, V(f)f>0 VfeR
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Equation (4.3.1); is referred to as a kinetic relation with the inequality restrict-
ing V imposed by the dissipation imbalance, Equation (4.1.5). Supplementing the
system postulates and material constitution with such a relation has been shown,
in certain settings, to resolve the uniqueness problem.*# Though developed with-
out considering surface effects, the rationale for adopting a kinetic relation is still
valid within the setting of interfacial structure. Such a constitutive remedy is

therefore adopted in the present work. %+

43 ABEYARATNE & KNOWLES[1988, 1989, 1990(a,b,c)].
44 GURTIN & STRUTHERS[1990] have derived an equation with the form of Equation (4.3.1)
from a more elaborate set of balance postulates.



35—

5. MECHANICAL SYMMETRY FOR HYPERELASTIC
MATERIALS WITH INTERFACES

' 5.1. Mechanical Equivalence. Consider two lattice elements, X,
and K3, with respect to which a body is hyperelastic, that are related by linear
transformation, H, where Xy = HK;. These two reference configurations are said

to be mechanically equivalent if first,
pl(x,t) = pg(HX,t) Vx € R](t)\sl(t), YteT (511)

and, second, they are characterized by the same response functions:

W, =W,
(5.1.2)

~

’lbg = wi.

By virtue of the construction of referential fields given in Section 3.3, the
following formulae relate mass density and energy fields independent of any con-

stitutive considerations:

pa(x,t) = Det(H)pl (Hx,t)

Wa(x,t) = = tl(H)Wl(H 1y VXERNS(), VieT (5.1.3)
and
wa(x,t) = II-IT::-E—%’;Q—le(Hx,t) Vx €Sy(t), VieT. (5.1.4)

Equations (5.1.1)—(5.1.4) collectively imply that two reference configurations are
mechanically equivalent if and only if

Det(H) =1

W,(F) = Wy (HF) VF € Liny(E® E®), Vn e Unit(E>).
_ H™n

wl(F, n) ||HTn|w1 (FH IHT ")

(5.1.5)
Define the Material Symmetry Group, G., of a latticed body with respect

to lattice element, K, to be the set of all lattice elements that are mechanically
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equivalent to K. If G = Unim(E3, IE®), the material is called a fluid. If G, =
Orth, (IE3, IE?), the material is called a solid.

The kinetic relation does not play a role in determining the mechanical equiv-
alence of two lattice elements. An appropriate change of configuration formula
can, however, be established. Let Jy and j5 be the bulk and surface determinants

associated with the linear transformation, H. Then

Ve = Ja —=ym (5.1.6)
Ju
and
fa=Jduf1 (5.1.7)
so that
Vg(f) = —Vl(f) Yfe€R. (5.1.8)
Ju Ju

5.2 Material Isotropy. A standard result in classical continuum mechanics
is that hyperelastic materials are isotropic with respect to a given reference config-
uration if and only if the bulk energy can be represented by a function of the three
fundamental scalar invariants of the Right Cauchy-Green Tensor, C := FTF, or

its square root, U. These scalar invariants are defined as
I;(U) := Trace(U)
L(U) = %[(Trace(U))z ~Trace(U?)] VU eSym*(E%),  (5.2.1)
I3(U) := Det(U)

so that in the absence of surface fields, a hyperelastic material is isotropic if and

only if it is characterized by
W =Wy, I, I5)
S = (BW + L13;W)FU™! — (8;W)F + (I8, W)F~T (5.2.2)
= 71;(61‘7" + L8 W)V — -1-.1;(02W)V2 +(8:sW)1,

where

I .= It(U)=1x(V), U:=+FTF, and V :=VFFT. (5.2.3)
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Material isotropy also imposes restrictions on the interfacial response func-
tions and these are now investigated. One such restriction is on the accretive

surface stress, C, and is a direct result of the following importarit
Proposition 5.1:

Material isotropy implies that D, = 0.
Proof:

By Equation (5.1.5), isotropy implies that

w(F,n) = %(FQ,Q"n)

5.2.4
VQ € Orth,.(E® E*), VF €Lliny(E? E*), Vn e Unit(E?). ( )
Recalling Equation (4.1.11), let
Q = Q(k(B),n)
for some
k : RS Unit(IE?), k(0) = n.
Then,
Q" (k(8),n)n = k(8) (5.2.5)
so that Equation (5.2.4) implies that
#(FQk(B) ), k(5)) = 6(F,m) V. (5.2.6)
Therefore,
¢ 5(Fa(k k(B)) =2 a(F
59(FAKE), ), k) =P, n

=0.

Thus, by the definition of Dy given by Equation (4.9),



-38-

Attention is next turned to the representation of interface fields in terms of
the scalar invariants of the surface deformation gradient. A superficial, isotropic,

scalar function, ¢, is characterized by the property that

¢(QTﬁQ, n) =¢(ﬂ’ n)

) A (5.2.7)
VU € Sym™(n*), VQ € Orthy(n*,n').

Such functions admit an equivalent representation in terms of the two fun-
damental scalar invariants of their first argument—a property expressed in the
following

Representation Theorem for Superficial, Isotropic, Scalar Functions:

If ¢ is a superficial, isotropic, scalar function, then there exists a function,

é:1x Unit(.E:*) ~— IR such that

¢(ﬁ’ n) =$(Z(ﬁ)’ J(ﬂ)a n)

) (5.2.8)
VU € Sym*(nt), Vn € Unit(E?),
where
I:= {(Cl,Cz) |(¢1,¢2) € By, (42— ¢}) < 0} (5.2.9)
and A .
i(U) :=Trace(U)
(5.2.10)

7(0) :=Det(0).
This is proved in Appendix C and is used to establish a key result presented as
the

Interface Representation Theorem:

Hyperelastic materials whose bulk is characterized by Equation (5.2.2)
are isotropic if and only if the interface energy can be represented by a

function ¥ : 7 — IR, such that

W(F,n) =w (1(0.), J(ﬁ))

. (5.2.11)
VF € Lin"*(n*, [E®), Vn e Unit(E?),
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where

U:=VFTF = VF7F. (5.2.12)

Proved in Appendix C, this theorem, in conjunction with its counterpart from
classical elasticity theory, imply that a necessary and sufficient condition for a
hyperelastic material to be isotropic is that Equations (5.2.2); and (5.2.11) be
satisfied. Note that the interfaces of such bodies are completely characterized by
the two scalar invariants of the surface-deformation gradient without regard for
interface orientation.

Equation (4.17), gives the referential deformational surface stress, S, as a
function of @ so the above result can be used to express S in terms of . This is

accomplished in Appendix C, with the result that
S = 1{0,6(i,5)FU" + jO.0(3, j)F~T}, (5.2.13)

where the arguments of ¢ and j are U, which have been suppressed for the sake
of clarity. Proposition 5.1, the Interface Representation Theorem, and Equation

(4.1.17)3 then allow C to be expressed as
C = I{-014(i, j)U + [(i, j) — O2d (i, )] Ls }, (5.2.14)

where, again, the arguments of ¢ and j are U and have been supressed for the
sake of clarity.
The following is a summary of the interfacial characterization of isotropic,

hyperelastic materials:

w = (4, j)

S =T{(8,w)FU! + (jo,0)F-T}

.1 A (5.2.15)
= ]-.(alua)v + (8210)1,

C=I{-(8,0)U + (& — j8,%) L},

where

(5.2.16)
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5.3 Further Insights Regarding C. Proposition 5.1 gives additional
insight into the role of the accretive stress. Recalling the comments of Section
4.2, it may be concluded that any work performed by € to reorient the interface
must be due to material anisotropy, since this work is always zero for isotropic
bodies. LEO & SEKERKA[1989] conclude that such a work term should be present
for aniéotropic hyperelastic materials and the idea is also in line with the earlier
work of CAHN & HOFFMAN[1972] and HOFFMAN & CAHN[1974] who espoused
the utility of adopting a capillary traction vector to account for anisotropic effects
in non-deformable media. In fact, consideration of such a work term can be traced
back to HERRING[1951a,b].

The tangential component of C has a physically meaningful relation with the
symmetry exhibited by the interface and is embodied in the following

Fluid-Surface Theorem:

(A) For a hyperelastic material with unimodular mechanical symme-

try:
(a) w =&, a constant;
(b) € =0; and
(¢) T=05l,.

(B) For a hyperelastic material with a constitution such that C = 0:
G, a constant; and

1..

~~
)

Nt
&
il

~~
o

~—
=N
Q!

(C) For a hyperelastic material with a constitution such that @ = 7,

a constant:
(a) € =0;and
(b) T=251,.

Part (A) is due to GURTIN & STRUTHERS[1990], while Parts (B) and (C) are

new and are proved in Appendix D. In conjunction with the Tension-Energy
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Theorem, they imply that an interface exhibits a fluid nature—that is, surface
energy and surface tension characterized by the same scalar constant—if and
only if € = 0. Thus, € accounts for special properties of solid-soiid interfaces not
associated with their fluid counterparts. Its tangential component is non-zero for
all solid-like interfaces, and its normal component is non-zero only for anisotropic

interfaces.



42—

6. SLOW, DILATIVE PHASE TRANSIiTIONS

6.1 Dilatation in Martensitic Phase Transitions. Chapters
three through five present a continuum mechanical model of coherent phase
growth for hyperelastic materials. For the remainder of this work attention is
restricted to phase transitions that evolve at such a slow rate that inertial effects
may be considered negligible. These are referred to as slow processes. Under this
restriction, the theory is applied to study the dilatational aspects of martensitic
phase transitions. Of particular interest is the affect of surface properties on these
processes, so a class of isotropic materials is considered that can also sustain slow

phase transitions without interfacial structure being taken into account.

Though it is common to idealize martensitic phase changes as occurring in
response to shear,®! this imposes severe restrictions on the interface properties
that may be modeled because of the requirement that any traction jump, -V, - S,
that is generated be in the direction of the shear. Otherwise, the surface fields
would result in an unbalanced force. However, there is also a volume change asso-
ciated with martensitic phenomena that, in fact, dominates the material response
in certain settings.®? Since the traction jump condition for pure dilatation al-
lows a number of reasonable interface constitutions to be considered, the dilatant
aspects of martensitic phase transitions are focused on in lieu of embracing more
generalized kinematics. This simplified setting still admits an investigation of the
relationship between surface properties and surface effects. The results may then
be used to draw conclusions about what happens under more complex deforma-
tions and may be applied directly to better understand those transitions where

dilatation dominates.

6-1 ABEYARATNE[1980, 1981]; JaMES[1981]; TRUSKINOVSKII[1987]; FOsDICK & MacSITHIGH
[1983}; GURTIN[1983]; ABEYARATNE & KNOWLES[1987a]; SILLING[1988b]; JIANG[1989];
FRrIED[1991a,b,c]; Rosakis[1991].

62 See, for instance, BUDIANSKY, HUTCHINSON & LaMBROPOULOS[1983]; LAMBROPOU-
L0s[1983]; SILLING[1987]; ABEYARATNE & JIANG[1988a,b].
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6.2 Loss of Ellipticity Under Pure Dilatation. For hyperelas-
tic materials without interfacial structure, a necessary condition for a body to

support slow phase transitions is that the bulk linear momentum balance,
V. [oW(F)] =0, (6.2.1)

lose ellipticity for some deformations. For isotropic materials, (strong) ellipticity

is lost under a pure dilation if and only if
{°W(A1)a®Db]} - [a®b] Va,b e Unit(E?), (6.2.2)

where ) is the isotropic stretch associated with the deformation. Using the results
of HOGER & CARLSON([1984] to facilitate evaluation of 832W (A1), it may be shown
that Equation (6.2.2) is equivalent to |

By W — %alw + 4020, W — -;-azvff + X495 >0
1

A

o (6.2.3)
O W + 0, W > 0,

where

W = W(3),3)%,)3).

If either of these equalities is violated for some interval of stretches, X, then

Equation (6.2.1) loses ellipticity under the associated pure dilatations.

6.3 Two-phase, Dilative Solids. Consider a particular class of

isotropic, hyperelastic materials whose bulk is characterized by

I3
W, L, I3) = 2u [Il -3+ /h(J)dJ], g >0, (6.3.1)
1

where the constant p is the shear modulus at infinitesimal deformations, and & is

a smooth, constitutive function satisfying

B(l) = -1, K(1)> -z- (6.3.2)
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Equation (6.3.2); ensures that the reference configuration is stress-free, while the
inequality of (6.3.2), guarantees that the (infinitesimal deformation) Poisson’s
ratio is in the range (—1,1). The stored energy response function of Equation
(6.3.1) was considered by HAUGHTON[1987] but not within the context of discon-
tinuous deformation gradients.

For such materials, Equation (6.2.3) reduces to the strong ellipticity condi-
tions of

>0, R'(J) > 0. (6.3.3)

The first of these is satisfied by construction, and so a necessary and sufficient
condition for Haughton materials to lose ellipticity in pure dilation is that & lose
monotonicity over a portion of its domain. A subclass of the Haughton materials
that is of particﬁlar interest is the Two-phase, Dilative (2-PD) Solids, for which
h loses monotonicity over a single,intermediate interval of dilations as shown in

Figure 3 and summarized by

h: R— R_
R'(J)>0, Je€(0,J)
(6.3.4)
R'(J)<0, JE€(J,)
R'(J)>0, J>Jy
and
R(J)=h"(J)=0
h(J;) € (-1,0)
(6.3.5)
1113}) h(J) = —oo0.

Such materials have a monotonic response to shear, a non-monotonic response to
dilatation, and the shear and dilatation components of a deformation are uncou-
pled in the sense that the shear response is independent of h. If it were not for
the I; dependence of W, the bulk material would exhibit unimodular symmetry
and be a generalization of the classical Van der Waals fluid. The low and high
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intervals of J for which A is monotone-increasing delineate the low ang high di-
latation phases of such materials. Of particular interest in this work are settings
wherein a single interface separates these low and high dilatation phases.

For 2-PD Solids, Equation (5.2.13) allows the stress to be expressed as

S = 2u[FU™* + Jh(J)F~]

T= 2u[%v + h(N1], (6.3.6)

where

J = Det(F) = I;(U).

Since h(Jy) < —1, it follows from Equation (6.3.5) that these materials can sus-
tain permanent deformations since there exist non-trivial deformations for which

the assocliated stress is zero.

6.4 A Reduced Form for the Driving Traction. For hyperelastic
materials involved in slow processes, the driving traction, f, defined by Equation

(3.5.4), may be expressed as

f=n:[Pln+(V-C)n
: ) (64.1)
=n-[P]n+2Hw - FTS.L -V - (Dy,w),
where L and H are the referential curvature tensor and mean curvature, respec-

tively, and
P(F):= W(F)1 - FTOW(F), VF € Lin,(E* E?) (6.4.2)

is the Eshelby Energy-Momentum Tensor.®® Note that the interface deforma-
tional stress, S, does not affect the form of (6.4.1), while the accretive stress, C,
does. This result is relevant to subsequent discussions of the role of interface prop-
erties in determining phase equilibria. When restricted to isotropic, hyperelastic

materials, Proposition 5.1 and Equation (5.2.15) give that

f=n-[Pln+2Hd - [(8,%)0 + j(82%)1] - L. (6.4.3)

63 EsHELBY[1956, 1970].
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By virtue of Equations (6.4.1) and (6.4.3), the driving traction for 2-PD Solids is
given by

J

f=2u [U h(¢)d¢ — Jh(J)Il +2u[I; — (Un) - n]

) (6.4.4)

+ 2H[b — jOatd] — (8,w)U - L.

6.5 Two-phase, Linearly Dilative Solids. An important subclass

of 2-PD Solids are those characterized by a piecewise linear response function, h:

M) =BT =1)=1, T €[]
J) =BT = Jo) + BUmn — 1) =1, J €[], o] (65.1)
h(J) = B(J = Je ), J € [Juy Jonaz)
with )
J e :=JU—J,,,-,.+1+—ﬂ-,
57 (6.5.2)
B = —p T
(=%)
and

Be (g, ﬁ) (6.5.3)

This is illustrated in Figure 4, where the commonly occurring quantity,
I'i=J — Jom,

is also shown. Equation (6.5.3) ensures both that Poisson’s ratio is within the
proper interval for infinitesimal deformations and that h takes on only negative
values. Such materials are referred to as Two-phase, Linearly Dilative (2-PLD)

Solids.

The associated form of the driving traction from Equation (6.4.4) is

f==Bu{J? =T +T(J + )} +2u[l; — (Un) - n]

) (6.5.4)
+ 2H[w — jO1] — (8,0)T - L
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fOI‘ J+ E [Jrnm7 JL]) J_ E [JU’Jmaz)j

and
f=Bp{Jt - J2+T(Jy + L)} +2u[; — (Un) - n] 655
+2H[b — jOyw] — (Bi0)T-L
for J, € [Joy Jmaz)y - € [Jomin, JL)-
Here J, and J_ refer to the local values of det(F) on either side of the phase
interface. Under the conditions of Equation (6.5.4), f > 0 implies that locally,
any transition favors the high dilatation phase. f > 0 in Equation (6.5.5) implies

the converse.



—48-

7. THE CYLINDER PROBLEM FOR 2-PLD SOLIDS

‘ 7.1 Temporal Shocks. Interest is now focused on the consideration
of a nucleation event—that is, the onset of a martensitic phase transition during
which the bulk deformation loses spatial smoothness across some surface. Within
the context of slow processes, such nucleation events are considered to occur over
very small intervals of time.

A standard approach in modeling phenomena wherein relevant fields vary
greatly over some small dimension is to approximate the transition region as a
discontinuity. Such an idealization is used in the present work with time as the
dimension of interest. The nucleation event is treated as a discontinuity or shock,
global in spatial extent, in relevant field quantities across a nucleation instant.

Two issues arise as costs of embracing such an idealized theory of phase
nucleation. The first is that the Mechanical Dissipation Imbalance does not apply
at nucleation instants, since it is a rate relation. The second issue concerns the
absence of nucleation conditions linking pre- and post-nucleation stages and from
which the onset time of a phase transition may be determined. Thus, within
the context of this simplified theory there exist axiomatic deficiencies directly
attributable to the treatment of the formation of a nucleus as occurring at a
single instant. As an alternative to developing a more elaborate set of postulates,
a constitutive remedy is suggested using a nucleation criterion as a means of

accounting for these deficiencies.

7.2 Problem Setting. An ideal setting to explore many of the features
of the mechanical theory of nucleation and growth is that of a cylindrical nu-
cleus forming within a solid cylinder under axially and radially symmetric load-
ing conditions. Here the problem is essentially one-dimensional, yet there exists
a meaningful notion of interface curvature, and this admits a number of non-
trivial manifestations of the interfacial structure. The Cylinder Problem is used

to consider an idealized transition process that occurs in response to eztensional
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boundary loading. This is accomplished by first considering the slow motion of
a cylinder composed of a 2-PLD Solid without any interface—that is, in a con-
figuration such that either the high- or low-dilatation phase is I;resent, but not
both. Attention is then focused on the analogous situation for two-phase mo-
tions involving a single interface, first without any surface effects and then under
a variefy of surface constitutions. In each case an analysis is presented which
exhibits all the possible states in which the body can exist. This turns out to
be a convenient way of considering the effect of various cylinder loading pro-
grams on the nucleation and growth of new phases. A key element here is the
phase segregation constraints, referring to the requirement that at every point in
a low-dilatation phase, J € (J,u, J.), and everywhere in a high-dilatation phase,
J € (Jy, Jomas)- After each process has been investigated independently, the single-
and two-phase motions are linked via a nucleation event, and it is here that the
nucleation criterion put forth is investigated.

Throughout this application, the reference configuration is taken to be a
cylinder with positions given by radius ¢ € [0,Q]. The map 7:[0,Q] x T — R,
describes the cylinder motion over time interval 7. When an interface exists, it
is described by either its referential location, ¢ = s(¢), or its actual location at
5(t) := 7(s(t),t). Figure 5 illustrates this problem geometry. The normal interface

velocity is given by V,, = 3, and the following expressions can be derived:

2H = —-1-, 2H = —i

e e et Cl

Under the cylinder motion prescribed, the bulk linear momentum localiza-

(7.2.1)

tion, Equation (6.2.1), can be simplified using Equation (6.3.6);:
V.S =2uV- [FU™" + Jh(J)F~7]
(7.2.2)
=2u[R(J)V- (JF-!) + JF“V(h(J))].

But V- (JF~') = 0 for such cylindrical motions, so that Equation (6.2.1) becomes

2uJF-'V(h(J)) = 0. (7.2.3)
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Since ¢ > 0, J > 0, and F is invertible, this is equivalent to

h(J(g,t)) = h(t), : (7.2.4)

where % is some scalar function of time on 7.
Now consider the linear momentum jump condition, Equation (3.3.4),. For

slow processes, this reduces to
[Sn] = -V, - 8. (7.2.5)
Under cylindrical motions, with S given by Equation (5.2.15),
Y, -8 = 2H [0, + 8,%]n. (7.2.6)
With S given by Equation (6.3.6); the jump in traction can be expressed as
[Sn] = 2;Lj|[h(])]p. . (7.2.7)
Thus, the linear momentum jump condition reduces to the scalar equation

2p3[R(D] = A, (7.2.8)

where .
J1:==(% -S)-n
(7.2.9)
=-2H [Blu“; + 0211‘;] .
Finally, consider the driving traction given by Equation (6.4.4). Under the cylin-
der motions

[Il—Un-n]=0

and

U-L = 2Hj.

The driving traction can therefore be expressed as

J

f=2u [[/ R(¢) d¢ — Jh(J)]] + 42, (7.2.10)

1



where

_ (7.2.11)
=2H [tD — j (619 + 0,w)].

41 and 4, embody the surface effects produced by the deformational and accretive
interface stresses, respectively. Equations (7.2.4), (7.2.8), and (7.2.10), along
with Equation (4.3.1) and the kinematic stipulation that all deformations be

continuous, give the following system summary for slow, two-phase cylindrical

motion of a 2-PD Solid:

M)_;KQ_Q = J(t), g€ [0,s(t)

T(qt)qﬂ = Ja(t), q€ [s(t),Q)
_ &

[h(’])] - Z#j

s=V(), V(Hf=0

(7.2.12)

f=2u [UJ h(¢)d¢ — Jh(J)]] + A2,

where J; and J,, are functions of time to be determined by the loading conditions,
and 4; and 4, are defined in Equations (7.2.9) and (7.2.11). Here the subscripts
12 and m refer to the inclusion and matriz, respectively.

For 2-PLD Solids with a high dilatation inclusion, this system reduces to

g, )(e,t) _ Ji(t) € [Jyy Jma)s g € [0,5(2))

q
’"(L’t)# = Jn(t) € [Jrns &), g € [5(1),Q)
Jo—J=_D4n (7.2.13)

2pB3
[7]=0, #0,t)=0

s=V(), VHf=0
f=—Bu[J2 - 2+ T + )] + 2.
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Likewise, for 2-PLD Solids with a low dilatation inclusion, Equation (7.2.12)

is expressible as

’"_(%'(qt) = J(t) € [Joar &), g € [0,5(1)

@)@ _ 5 )€y, Tual, q€ [s(0),Q)

~

Jm — Ji=T+ 2:;]. (7.2.14)
[[]=0, #0,¢)=0
s=V(f), V(EHf=z0

f=BulJ2 =2+ Ty + )] + 42

7.3 Single-phase Solutions. Consider the cylinder problem wherein
only one phase is present. For clarity, take time to be fixed and suppress temporal

arguments. Then the relevant system is just
TPaN-1)
—"(Q);" @ _ 5,  #o)=o, (7.3.1)

with Jy the constant dilatation of the cylinder to be determined from the boundary

data, and this equation can be solved to give
1
"(q) =¢Jg - (7.3.2)

Since interest is focused on the system response to various loading programs, the
radial stress component, 7, is evaluated:
7:=T(f(1))n-n

Q

=2y[§ " h(J(1))], (7.3.3)

where R := 7(1) gives the position of the outer radius of the cylinder and h(J) is
given by Equation (6.4.1). Since Jo = (R/Q)?, the cylinder deformation can be

re-expressed with respect to R:

7(q) = % Vq€(0,Q], (7.3.4)
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so that given R, there exists a unique deformation defined by Equation (7.3.4).

T = 2#[62 (gz)] | (7.3.5)

so that under the extensional loading of interest, there exists an invertible rela-

Moreover,

tionship between radial stress, 7, and the cylinder boundary, R. These results are
summarized by the system macroscopic response™! of Figure 6, where the set of
all possible low- and high-dilatation solutions are plotted on the R, 7-plane. As
is clear from the picture, if the material phase is prescribed and either R or 7 is
given, then any solution that exists is necessarily unique. Note that the phase
segregation constraints determine the range of boundary data over which each

phase can exist.

7.4 Two-phase Solutions: No Surface Fields. Now consider the
analogous situation but with a single interface at ¢=s and no surface fields. For
definiteness, suppose that the inner region is in the high-dilatation phase. Again,

interest is focused on extensional loading at a fixed time. Under these conditions,

Equation (7.2.13) implies that
fo)=et, qel0s)
#(g) = [s*% + (4" — s)n]?}, g€ (s, Q)]
J=Jn+T
f=Bul[20n — Ty — Joa
s=V(), V(Hr=zo

J:' € [']mwn JL]7 Jm € [JU’Jmnz]’ s € [O’Q]
Then there exist (Jp,, $) parameterizations of all the possible (R, 7) pairs that the

(7.4.1)

cylinder can support:

R(s, d) = [Q%J + Ts?)? )
Q V(s,Jm) €11 (7.4.2)
h Jm ’
T

71 ABEYARATNE & KNOWLES[1988].

F(8yJm) = 2U | =————
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where
f.[ = {(8, Jm)IS € [0, Q], Jm € [Jrrun’ JL],R Z 1} (743)

and is shown in Figure 7.

As for the single-phase case, the system macroscopic response for two-phase
solutions provides a means of characterizing the system behavior under all possible
conditions of loading. In the two-phase setting, the response plot is constructed

by mapping II into the R, 7-plane via the functions R and 7. It can be shown

that T
O1R(s,Jp) = ——r >0
R(s, Jn)
Q2
2R(s, Jm)
r's@
0h7(s,Jn) = —2u| ———
17'(3 ) ”[R‘*(S,Jm)
Q3
" 2R3(3, Jm)

82R(S, Jm) =
(7.4.4)
| <o

&ﬂ&40=m{ +ﬂ] > 0.

This map of II is invertible, since

e (3R 3R) _ e
o017  OqF R(S, Jm)

> 0, (7.4.5)
and its image is shown in Figure 8, where the monotonicity of all curves shown
in the figure hold in general. Note that on this macroscopic response, curves of
constant s are monotone-increasing, while curves of constant J,, are monotone-
decreasing. Significantly, the left and right borders, L} and L}, of the macroscopic
response region are composed of portions of the single-phase responses.

The set of parameters used to generate Figure 8 is listed next to the plot and
gives a transition dilatation of 5%. This is approximately the amount of volume
expansion experimentally measured by PORTER, EVANS & HEUER[1979] for the
unconstrained transition of partially stabilized zirconia.

A key element of the analysis of phase nucleation and growth turns out to be

how the sign of the interface driving traction varies over the macroscopic response

region. It may be shown that the region is partitioned by a single curve into one
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area, where f > 0 and another, where f < 0. Since a state is called Maxwell if its
associated driving traction is zero, a condition that holds at every point on the
partition, it is referred to as the Mazwell curve.”-?

Since f = 0 implies that J, is fixed at
1
In = §(JL + J i) (7.4.6)

Equations (7.4.4); and (7.4.4)2 give that the curve is monotone-decreasing, as
shown in Figure 9, and it may be shown that all curves of constant driving traction
have this feature.

Now consider a slow, two-phase motion for the system. At each instant
the associated state must be within the macroscopic response region, so that
any motion may be associated with a curve through this region. For a given
loading history, the actual curve traced out is determined by the kinetic relation
of the material, Equation (7.2.14)¢, with the set of admissible curves restricted
by Equation (7.2.14)7. Specifically, this inequality stipulates that a phase embryo
cannot shrink in the region where f > 0 and cannot grow in region where f <
0. This is summarized in Figure 10, where an admissible two-phase motion is
illustrated. Note that while the kinetic relation controls the rate of phase growth
in response to loading, the dissipation inequality implies that hysterisis is involved
in any cyclic process of the type depicted. The area enclosed by the hysteresis
curve represents the net work that must be performed on the cylinder during the

course of one such loading cycle.

7.5 Nucleation Events. Both single- and two-phase solutions have been
analyzed in the absence of surface fields, and a nucleation criterion linking the two
solution sets is now presented. A time-position diagram of the transition process
is given in Figure 11 where, as shown, a nucleation event may produce an embryo

of finite size. Some information must be identified, however, which serves to link

"2 ABEYARATNE & KNOWLES[1988].
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the states before and after a nucleation event. Characterization of the boundary
conditions of the system during nucleation is one means of providing such linking
data. The region exterior to the cylinder is referred to as the loading device, and

interest is focused on devices endowed with an energy, E;,(t), such that
E.,(t) = Ep (R(t),M(t)) VteT, (7.5.1)

with A continuous and Ej, smooth. Such loading devices are called conservative
if they store all energy expended in deforming their boundaries. Thus, for A fixed,
the rate at which work is done by the cylinder is equal to the rate at which energy
is absorbed by such a loading device. Use of Equation (4.1.17) then gives that

%{E(t) +E, (R(t),Ao)}= —2msf$ (7.5.2)
for all slow processes, so that interfacial accretion or a change in the loading pa-
rameter, A, are the only ways in which the total system energy can change for
conservative loading devices. Here E is the sum of the bulk and surface ener-
gies associated with the body. Conservative loading devices provide information
linking pre- and post-nucleation states because any discontinuous change in total
energy will neccessarily be associated with the formation of an interface.

Define the nucleation energy associated with the cylinder under conservative

loading as
B(t) := {E’(t("')) + Ew(t“'))} —{E(#t) + Ep ()}, (7.5.3)

where, at t = t(-), the cylinder exists in a single-phase state, and at ¢t = t(*) the
cylinder exists in a two-phase state with a single, closed interface at 5(¢*’). B
is a generalization of the classical thermostatics notion of availability associated
with fluids under soft and hard loading.”3

For a given state at t = =), B(¢) may be computed over the space, T, of

all possible two-phase states compatible with the loading conditions. A given

7-3 gGee, for instance, ADKINS[1968] Ch.10.
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two-phase state is called critical if the associated value of B is a local extremum
with respect to variations in interface position consistent with any constraints
imposed by the loading device. If the extremum is a maximum, i;he critical state
is referred to as mazimizing, whereas minimizing critical states are associated

with local minima in the nucleation energy.

7.6 A Nucleation Criterion. The following criterion is offered as a
means of determining when and how a nucleation event occurs for hyperelastic

materials and conservative loading devices involved in slow processes:

A nucleation event will occur at ¢ = ¢, if and only if there exists a
maximizing critical state such that

(i) B(t.) < By, By > 0, a material constant; and

(i1) there exist no smaller maximizing critical nuclei.
When these conditions are both satisfied, the critical state will be

achieved at t = t{P,

The energy, B, associated with the formation of such a critical state is referred
to as the nucleation barrier. As a result of embryo production, the total energy
of body plus loading device increases by this amount. This suggests that for
B(t.) > 0, the physical process modeled as a nucleation shock produces rather
than dissipates energy. The nucleation criterion allows energy barriers below a
prescribed magnitude to be overcome, implying that it is physically reasonable
for the total energy to have to undergo (small) excursions—that is, to fluxuate—
in order to conceive a phase embryo. By may be interpreted as the maximum
magnitude of such fluxuations and in this way is related to the thermal activation
of the system.”* This simple model of nucleation therefore accounts for a system

energy that rapidly fluxuates by a prescribed constant, and this could be easily

74 See the relevant comments of MULLER[1985] p.21 and PIPPARD[1981] pp.98-99. Statis-
tical mechanics considerations of martensitic nucleation are undertaken by THADHANI
& MEYERS[1986] and ROITBURD[1990].
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generalized. Suppose, for instance, that the bulk and surface energy response
functions had a very small stochastic element. Then nucleation events—that
is, system fluxuations to critical states—would be probablistic.u Here, however,
emphasis is placed on modeling the conditions under which nucleation occurs
and not on the probability that these conditions are realized. As the subsequent
investigation shows, a number of important surface effects are captured by this

simple system.

7.7 The Nucleation Problem: No Surface Fields. The proposed
nucleation criterion provides a means of modeling the onset of a phase transition
in The Cylinder Problem. This is illustrated for three types of loading devices

that differ in the quantities that are temporally continuous accross a nucleation

shock:
(SL£)  Soft Loading: [7]* =0;
(HL) Hard Loading: |[R] t =0
(ML) Specialized, Mixed Loading: [A]*™ =0,
where

Ep = ZE(A* - R*)?, 7=¢(A\*-R?®), c=constant.

Here

[¢]t‘ = }llir%){‘ﬁ(t* + h) — ¢(ts — h)}, (7.7.1)

with ¢ the temporally continuous quantity and ¢ = ¢, the nucleation instant.
The mixed loading device may be interpreted as a hyperelastic, unit volume
annulus with inner and outer radii of R and A, respectively, characterized by the

stored-energy function

W(J) = §j2. (7.7.2)

Here J is the determinant of the annulus deformation. This is shown in Figure
12 and serves to illustrate that the nucleation model is not restricted only to soft

and hard loading.
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Under a given loading condition and prenucleation dilatation, the set, T,
of two-phase states to which the cylinder can nucleate represents a curve on
the macroscopic response plot. This is shown in Figure 13(a,b,<;) with soft and
hard loading associated with horizontal and vertical lines, respectively, and mixed
loading given by monotone-decreasing curves of slope = —2cR. Since the curves
of constant interface position, s, are monotone-increasing, (Equations (7.4.4), 4
and Figure 8), any given set, I', may be parameterized by s. Thus, there exists
a function, B(s,Jp), that delivers the nucleation energy as a function of pre-
nucleation dilatation, Jy, and postnucleation interface position, s. By Equation
(7.5.2),

01B(s, Jo) = —2nsf, (7.1.3)

and, since B(0, Jo) = 0 by construction, the nucleation energy increases from
zero as $ increases from s = 0, is maximized at the first intersection of T" with
the Maxwell curve, then decreases with increasing s until the next Maxwell curve
intersection is reached, and so on. This is illustrated in Figure 14 for the case
of soft loading. Equation (7.7.3) also implies that all critical states are Mazwell
so that, in particular, two-phase states associated with nucleation are always
Maxwell.

As shown in Appendix E,
821§(s, Jo) <0 (774)

under all three types of loading conditions. The nucleation energy therefore de-
creases for fixed s as the prenucleation dilatation, Jy, is increased. Profiles of B
are provided in Figure 15 for soft and hard loading. Note that under soft loading
B always has an extremum at the origin and at most one other extremum, which
is always a maximum. For sufficiently large prenucleation dilatation, the two ex-
trema coincide at s = 0. Hard loading also has an extremum at the origin and at
most one other extremumn—which is always a minimum. Again, the two coincide

at s = 0 for sufficiently large prenucleation dilatation. The mixed loading case
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may take on the qualitative features of either hard or soft loading depending upon
the magnitude of c—the load parameter.

With the nucleation energy completely characterized, it is sfraightforward to
apply the criterion of the previous section to model a nucleation event. Suppose,
for example, that the cylinder is initially in its single-phase, stress-free state and
then a soft-loading program is intitiated so that the cylinder begins to expand
(Figure 16(a,b,c)). As it does, a maximizing critical state develops and eventually
reaches a point where the nucleation barrier is equal to By. A nucleation event
then occurs. At Jo = 3(J; + Jua), (Equation (7.4.6)), the nucleation barrier is
zero so that this is the largest prenucleation dilatation that can be achieved under
soft loading.

Now consider the analogous case with hard loading as shown in Figure
17(a,b,c). As the outer radius is extended from R = @, there is initially no maxi-
mizing critical state. At Jo = 1(J; + J,ua ), however, s = 0 becomes a maximizing
critical state, and since the associated nucleation barrier is zero, a nucleation
event occurs. The case of nucleation under hard loading is thus somewhat degen-
erate in that independent of the magnitude of By, a temporally smooth, (s = 0),
nucleation event occurs at Jy = %(JL + J,un ). This result is significantly altered

by the inclusion of interfacial properties as illucidated in subsequent chapters.

7.8 Embryo Stability. Consider the embryo nucleated under soft-loading
conditions. If the nucleus size is perturbed out at constant load, then the driv-
ing traction becomes positive. Since f3 > 0 by Equation (7.4.1)g, the embryo
cannot decrease in size. Likewise, any perturbation to a smaller nucleus cannot
be followed by growth. Since perturbations of the embryo have permanent reper-
cussions, the soft-loaded embryo is unstable. In a completely analogous manner,
it may be shown that embryos formed via hard loading are stable. In terms of
the nucleation energy, maximizing critical states are always unstable while min-
imizing critical states are always stable. Subsequent results demonstrate that

certain interface properties affect both the number and type of such equilibrium
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states—one of the primary surface effects that the model is designed to capture.
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8. THE CYLINDER PROBLEM: INTERFACES WITH
BONDING ENERGY

8.1 Two-phase Solutions: Interfaces with Bonding Energy.
Suppose that the interface is endowed with a constant value of surface energy
per unit referential area. Then the total interface energy can be varied only
through accretion. This characterization has the atomistic interpretation that
surface energy is a function of only the number of bonds that exist across the
interface between atoms on either side. An illustration of this bonding energy

interpretation is shown in Figure 18.

For a bonding energy constitution, Equation (4.1.17) gives that

~ ~

C =0l T=0 (8.1.1)

Here 0 = w(i,7) is the constant value of referential interface energy. Surface
properties modeled by bonding energy therefore cause no traction jump at the
interface since V, -S = 0. These properties have a purely energetic manifestation,
and this is fundamentally different from the classical case wherein surface energy
generates a deformational surface tension of equal magnitude.®-! Here the bonding
energy generafes an accretive surface tension of equal magnitude and is thus
an ideal constitution for investigating the effect of accretive stress on the phase
transformation process in isotropic materials.

The macroscopic response is now constructed with such an interface under
the kinematic and bulk constitutive assumptions of the previous chapter. The
relevant system is summarized by Equation (7.2.13), where now Equations (7.2.9)

and (7.2.11) give that

1=0, H42=2Ho=-—-. (8.1.2)

8.1 guch an interface constitution is considered in Chapter nine.
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Equation (7.2.13) then reduces to

#q)=qJf, qel0,s]

#(g) = [’ +(¢* — s*)ml?, ¢ €[5,Q)]
Ji=Jn+T

f = BuL 2dn = Jy = Joa] = =

s=V(f), V(Hfzo0

Ji € Umims 2y I € [Jors ], S € [0, ]

(8.1.3)

This implies that R, 7, and II, defined in Chapter seven, are unaffected by such
an interfacial constitution, so that the macroscopic response region is unaffected
as well.

The Maxwell curve, however, is significantly altered by the presence of in-
terface bonding energy. The slope of the Maxwell curve may be expressed as a

function of s and it is found that

3 oQ?
SlopeMW < 0, s” > 4,8/&‘2
(8.1.4)
3 oQ?
SlOpeMW >0, s°<« W

Moreover, the Maxwell curve now intersects the top border of the response region
rather than its left border, as is the case where no surface effects are present. The
value of interface position, s, associated with this left end of the Maxwell curve
is given by

(o) . o

S 1 Bul'(Jy, — Jrru'n)'

The presence of interface bonding energy therefore precludes the existence of a

(8.1.5)

Maxwell state with interface position equal to zero. Moreover, embryos that
are sufficiently small are unable to grow because of the dissipation inequality
restriction on the sign of the growth rate. These results are illustrated in Figure

19. Equations (8.1.4) and (8.1.5) imply that a necessary and sufficient condition
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for the Maxwell curve slope to change sign is that
o< %F%(‘]L - nwj)% ' (816)

Reference is often made to the Gibbs free energy in association with phase
transitions. Within a purely mechanical context, the bulk stored energy, W(F),
coincides with the Helmholtz free energy of the material at a fixed temperature.
The Gibbs function is then taken to be the Legendre transform,®? G, of W so
that

G(F) := W(F) — W(F) - F. (8.1.7)

Without surface fields, Equations (3.3.4)2 and (3.5.4) imply that for hyperelastic

materials involved in slow processes, a given state is Maxwell if and only if
[G] =0. (8.1.8)

This is commonly referred to as the Mazwell Rule and is, in many cases, a neces-
sary condition for the existence of two-phase equilibria.®-* Within the context of
The Cylinder Problem, though, Maxwell states satisfy
[Cl=-(%-C€)-n
(8.1.9)
= - ’3/2_

For 43 # 0, the Gibbs function must suffer a jump across phase interfaces under
conditions of equilibrium—that is, under circumstances where the driving traction

vanishes.®* Maxwell states in the cylinder problem with bonding energy satisfy
[G] = % (8.1.10)

This result has a graphical interpretation on a plot of the stress response function,

h. With no surface fields, the driving traction vanishes if and only if the areas,

8-2 SEwELL[1969].
83 gee for instance, CALLEN[1960]; PIPPARD[1981]; JAMES[1981]; GURTIN[1983].
8:4 Por related work regarding interfacial energy and the Maxwell Rule, see FONSECA[1989].
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A; and A,, of Figure 20(a) are equal, which occurs for J,, = %(JL + Join). With
constant referential energy, however, the driving traction is a function of embryo

size and
o

This result is shown in Figure 20(b).

8.2 Nucleation with Bonding Energy. The nucleation criterion
of Section 7.6 is now applied to link single- and two-phase states for the cylinder
problem with interface bonding energy. Analogous to the case with no interfacial
structure, it may be shown that the set, I', of two-phase states to which the
cylinder can nucleate from a given single-phase dilatation is parameterizable by
s. Therefore, there exists a function, B(s, Jo), giving the nucleation energy with
interfacial structure taken into account. By construction, E(O, Jo) = 0 and by
Equation (7.5.2),

01B(s, Jo) = —2nsf, (8.2.1)

with f given by Equation (8.1.3)4. As is the case with no surface fields,
82B(s,Jo) <0 (8.2.2)

under all three types of loading, and this is proved in Appendix E. Finally, the
surface energy increases B by 2wos over the case with no surface effects taken
into account. Profiles of B are provided in Figure 21 for soft and hard loading.
Note that for soft loading the surface energy forces the maximizing extremum to
be associated with non-zero values of s. A manifestation of surface energy under
hard loading is the presence of a new maximizing extremum associated with non-
zero values of s. The mixed loading case may take on the qualitative features
of either hard or soft loading, depending upon the magnitude of c—the loading
parameter.

Consider how bonding energy affects the nucleation process under soft load-

ing as shown in Figure 22. Under increasing boundary traction, the nucleation
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barrier decreases, and a dilatation may eventually be reached for which the nu-
cleation barrier is equal to By. If so, then a nucleation event occurs. Since the
surface energy increases B by 27os, a higher value of dilatation is now required to
initiate a nucleation event as compared to the case without surface effects. This
is the mechanical analogue of the more classical supersaturating and supercool-
ing phénomena. attributed to surface properties in association with concentration-
and temperature-induced transformations, respectively. This type of supercritical
surface effect is therefore referred to as superstraining and is illustrated in Figures
22(c) and 23(c).

The effect of constant, referential surface energy on nucleation is even more
interesting under hard loading as illustrated in Figure 23. As the cylinder bound-
ary is extended, a maximizing and minimizing critical state pair develop. Through
further extension, the associated nucleation barrier drops and may eventually de-
crease to By. If the nucleation energy associated with the larger minimizing criti-
cal state is non-dissipative, a nucleation event will occur. Otherwise, the cylinder
extension must continue until both conditions are met. (This special case is illus-
trated in Figure 24.) Under such hard loading, nucleation events always require

superstraining and are associated with embryos of finite size.

8.3 Embryo Stability. In Section 7.8 the stability of embryos was
examined in the absence of surface effects, and the effect of bonding energy on
this stability analysis is now considered. As may be seen by inspection of Figure
22(c), all embryos formed under soft loading are unstable, as was the case with no
surface properties taken into account. Hard- and mixed-loaded embryos, however,
are now unstable as well, as shown in Figure 23(d). Such nuclei either shrink and
disappear, or grow out to the larger, stable, critical state. This is a key surface
effect associated with the transformation process. The existence of such unstable
nuclei has in fact been discussed by a number of authors.®> Here the result is

extended to continuum models of martensitic phase transformations, and unlike

8.5 ULBRICHT, SCHMELZER, MAHNKE & SCHWEITZER[1988]; PIPPARD[1981].
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the previous investigations, the current analysis is not restricted to only hard and

soft loading.
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9. THE CYLINDER PROBLEM: INTERFACES WITH A
FLUID NATURE

9.1 Two-phase Solutions: Fluid-like Interfaces. Suppose that

the interface is endowed with a constant value of surface energy, &, per unit actual

area. By Part (C) of the Fluid-Surface Theorem of Chapter five,

¢=0, T=051, (9.1.1)

and the interface is said to have a fluid nature. This is an appropriate billing from
two different perpectives. Taken alone, the surface displays unimodular symmetry
and thus, as discussed in Chapter five, meets the interfacial-symmetry demands
of a fluid. Secondly, this constitution implies the existence of a deformational
surface tension equal in magnitude to the surface energy, which is a measured
classical result for the surface of fluids. The interface properties modeled by a
fluid-like interface induce a traction jump of magnitude 2H & in a direction normal
to the interface, thus capturing the fluid surface effect focused on by the Gibbs-
Thomson relation of Chapter one. Despite is fluid pedigree, this interface is often

used in continuum models of martensitic phenomena.®!

The macroscopic response is now constructed for such an interface consti-
tution under the kinematic conditions and bulk constitution of The Cylinder
Problem. The relevant system is summarized by Equation (7.2.13), where now

Equations (7.2.9) and (7.2.11) give that

f1=-2Hc=-, H=0. (9.1.2)

@ | QI
>

9.1 gGee, for instance, PORTER & EASTERLING[1981, Chapter 6]; THADHANI & MEYERS([1986].
Exceptions are ROITBURD[1990] and MULLER & Xu[1991].
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Equation (7.2.13) thus reduces to

7(q) = qJ.-%, g €10,s]
#(q) = [ + (¢ — ¥ ult, g€ [5,Q]

Ji=Jp +T — —=

2uBJ s (9.1.3)
f=—BulJs - J2+T(Jy + J.)]

s=V(f), VHfz0
J; € [er'n)JL], Jm E [JU, Jmaz]a S e [O,Q]

Unlike the case of interface bonding energy, the presence of a constant, actual
interface energy significantly affects the macroscopic response region. Equation
(9.1.3) implies that there exist (Jn, s) parameterizations of all the possible (R, 7)
pairs that the cylinder can support. The set of all (Jn,s) pairs consistent with

the phase segregation constraints is denoted by II and is constructed using

3(Jiy Jom) 1= — V' i € oy Ty I € [Ty i]  (9.1.4)
and
Ju(s) 1= T + —— : Vs € [3(Jv, ), Q). (9.1.5)
2uB i s
Then

II:= {(Jm,s) In € (Jn(s), &), Vs€[3(h,h),Q], R> 1}. (9.1.6)

This set of (Jin, s) pairs is exhibited in Figure 25, and its image under the following

maps is the macroscopic response region sought:

B(s, Jm) = [Im(@% — 57) + 525, Jum)]

V(s,Jn fI, 9.1.7
%(s,Jm):=2u[R(SQJ)+h<Jm) (8 Jm) € &-L.D

where J; is defined on i by

J(y Jm) = 87, Tm)-
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It can be shown that

Blﬁ(s,Jm) >0
82R(s,J) >0 Y (s, Jm) €11
817'(8, Jm) <0

Moreover, provided that either

7% < (2uBQ) I (L — Joi) 20y — Jp + Jia (28T, — 1) (9.1.9)
or
Ju
2 9.1.10
e A O A Ay (9.1.10)
is satisfied, then
By7(8,J) >0, V(s,Jn) €Il (9.1.11)

Thus, Equation (9.1.11) is met for sufficiently small values of surface energy, or
independent of the surface energy magnitude, for materials with a stress response
function, h, that has a sufficiently steep slope. Restricting attention to materi-
als for which Equation (9.1.9) is satisfied is physically reasonable, since surface
energy should generally represent a very small contribution to the system. How-
ever, Equation (9.1.10) is satisfled in most situations anyway, since 8 > % by
construction, and the righthand side of Equation (9.1.10) is always less than one.
Attention is therefore restricted to constitutions for which Equation (9.1.11) is
satisified.

The map of 11 into the R, t-plane is invertible, and its image, the macroscopic
response region, is shown in Figure 26. The monotonicity of all curves depicted in
the figure hold in general. A key surface effect associated with fluid-like interfaces
is that the sets of single-phase solutions, also given in Figure 26, are disjoint from
those involving two phases. This is due to the effect of a finite traction-jump
on the phase segregation constraints and implies that the cylinder simply cannot

support embryos that are too small. Such restrictions on nucleus size imposed by
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the phase segregation constraints are an important feature of continuum models
that characterize materials via a single, constitutive law. -2

The Maxwell curve is affected in a manner similar to that‘ associated with
interface bonding energy, though here the construction is more complicated. Like
the case of interface bonding energy, the slope of the Maxwell curve may chénge
sign once at most and is guaranteed to do so for & sufficiently small. Moreover,
the Maxwell curve now intersects the top border of the response region rather
than its left/bottom corner, as is the case when no surface effects are present.
Figure 26 illustrates these results.

In Chapter eight it was shown that without surface fields a Maxwell state
exists if and only if the Gibbs function is continuous across phase boundaries.
From Equation (8.1.9) it is clear that this condition is also satisfied whenever
42 = O—a characteristic of interfaces that do not support an accretive stress.
Since this is the case for fluid-like interfaces, [G] = 0 for such systems. It is
interesting to note that some classical thermodynamics texts take this to be a
general result, independent of the interface constitution.®® Here it is shown that
[G] = 0 for fluid-like interfaces only because they support no accretive stress. It is
worth emphasizing that the existence of jumps in traction and jumps in the Gibbs
function are unrelated—the former being associated with interface deformational
stress, while the latter is a manifestation of interface accretive stress. The traction
jump, though, does affect the slope of the Maxwell line connecting (Jp, h(Jm))
with (J;, h(J)) at f = 0 with

—a

Maxwell Line Slope = 255 < 0 (9.1.12)

This is illustrated in Figure 27.
9.2 Nucleation with Fluid-like Interfaces. The nucleation crite-

rion of Section 7.6 is now applied to the cylinder problem with a fluid-like inter-

face. Once again it may be shown that there exists a function, B(s,Jy), giving

9-2 Rosakis[1991].
93 ApkiNs[1968] p.213.
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the nucleation energy, but now with the new type of surface structure taken into
account. The following results, proved in Appendix E, hold for all three types of

loading devices:

&, B(s, Jo) = —2nsf

8.B(s, Jo) <0 (9.2.1)
0B _

— = 273,

o4 o d

for all (s, Jy) pairs where B is defined.

Profiles of B are provided in Figure 28 for soft and hard loading. Though
similar to those associated with constant bonding energy, these plots exhibit a
non-zero lower bound on the size of embryo that may be nucleated. For materials
with fluid-like interfaces, the nucleation process proceeds in the same manner as
for materials with constant, referential surface energy despite the ihability of the
system to support a range of embryo sizes. The nucleation criterion suggested is
thus robust enough to account for such phenomena. This is shown for soft and
hard loading in Figures 29 and 30, respectively. By comparison of these plots
with those of Figures 22(c) and 23(c), it is clear that fluid-like interfaces result in

superstraining.

9.3 Embryo Stability. The stability of any embryo formed can be an-
alyzed by the method developed in Chapter eight. As is clear by inspection of
Figures 29 and 30, all embryos that form are unstable with growth either un-
bounded or tending towards an identifiable, larger, stable embryo configuration.
Shrinkage, on the other hand, continues only to a finite nuclei size beyond which
the embryo must collapse. This admits the interpretation that the final embryo

demise occurs on a time scale much faster than the model is intended to capture.
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10. THE CYLINDER PROBLEM: INTERFACES WITHA
MEMBRANE NATURE

10.1 A Membrane-like Interface. The interface constitutions consid-
ered in Chapters eight and nine represent extremes. The interface with bonding
energy generates only an accretive stress, while a deformational stress alone is
supported by fluid-like interfaces. The stresses, moreover, are surface tensions in
both cases. A final constitution is introduced in this chapter to illustrate a more
complete set of surface properties that seem physically reasonable for solid-solid
interfaces. Consider a hyperelastic interface characterized by the surface energy

response function,
-~ . . AL 2 1 -~ _2 -~ ~
w(i,5) = 4G - 1)° + 525% B9 >0, (10.1.1)

with @, ¢, and j as defined in Equations (5.2.15); and (5.2.16). In the absence
of interface deformation, w = i+ /2 =: /2 , so that there is energy stored
in the surface solely because it represents an interface between two dissimilar
phases. It may be shown that £ is the shear modulus associated with infinitesimal
deformations of the interface, and that the interface bulk modulus is equal to
2 + 7. The interface is thus capable of generating both shear and dilatational
stresses, and with f, & > 0, satisfies physical intuition regarding its response to
small deformations. It is reasonable to consider such a surface constitution, since
interface fields are intended to account for the local interaction of bulk phases
that themselves support both shear and dilatation. The restriction of Equations

(5.2.15)3,4 to the cylinder problem kinematics gives

~ 1 o

T =]—.(61u“))F + (0a1h)1,

C =1{(8:%)F + (b — j(9,)Ls} (10.1.2)
2 1- N

C =§]TI{(81u‘;)F + (b — §(8a)1Ls },

so that the interfacial stresses are not tensions for ;@ # 0. For the membrane-like
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interface, Equations (10.1.1) and (10.1.2) imply that
T =24 — 1)F + 7j1,

C= { ~24(i - 1)F + [#(Z— 1)* - V; ]15} (10.1.3)
L

so that both interfacial stress fields are present, and even in this simple setting,

are not in the form of surface tensions.

10.2 Macroscopic Response: Membrane-like Interfaces. The
macroscopic response for the cylinder problem is now constructed for the mem-
brane-like interface. The relevant system is summarized by Equation (7.2.13),
where now Equations (7.2.9) and (7.2.11) give that
ki
=1 10.2.1
5=k (1021)
where the facts have been used that ¢ = j + 1 and J; = j? for this problem.
Equation (7.2.13) thus reduces to

g )(g,t) _ Ji(t) € [Joy Joae)y 4 € [0,5(2))

Hg, (1) _
q
Ji=Jp+ T = e

2ups (10.2.2)
[Fl=0, #0,8)=0

In(t) € [T, L], ¢ € [s(),Q)

f=—Bu[l2 - I 4T + 1)) + 22

2s
s=V(), V(HFzo
Ji € [Jm'm JL]) Jn € [JU,JM}) s € [0, Q]
This system is much easier to analyze than that associated with fluid interfaces

because of the simple relation that exists among J;, Ji,, and s. This simplicity

may be interpreted as being due to the endowment of the interface with solid
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rather than fluid properties so that the surface deformation is more compatible
with that of the bulk on either side. Equation (10.2.2); manifests this result.

As was the case for fluid-like interfaces, the traction jump écross the phase
boundary significantly affects the macroscopic response of the cylinder. The con-
struction of this response characterization is accomplished via the now familiar
route of making (J,,s) parameterizations of all the possible (R, 7) pairs that
the cylinder can support. The set of all (J,;,s) pairs consistent with the phase

segregation constraints, Equation (10.2.1)7 g, is denoted by II and is constructed

using
7
o 1= 10.2.3
1 BT, — T (10:23)
and
Fo(s)im Joo 4 1 .
Jn(8) 1= Join + 563 V3 € [Smm, 1] (10.2.4)
Then
I:= {(Jm,s) Jn € (Jn(s), &), VSE[5m,Q], R2 Q}. (10.2.5)

This set is qualitatively the same as its fluid interface counterpart, exhibited
in Figure 25. Its image under the following maps is the macroscopic response

region sought:

B(s,Im) = [In(@® = 8%) + 52 (s, Jo)]

) Q V(s,Jm) €11, (10.2.6)
yIm) =2 =——— + h(Jn
(5, ) 1= 24| o + )
where
; . 1
(8, Jm) = Jn + T 2nfs (10.2.7)

It can be shown that
81R(s, Jm) >0
0, R(s,Jn) >0 y
V(s,Jm) € 1L (10.2.8)
617"(3, Jm) <0

62’7'(3, Jm) >0
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Note that unlike the fluid interface case, no restrictions need be placed on the
surface energy magnitude in order to guarantee these inequalities.

The map of II into the R, 7-plane is invertible, and its imagé is qualitatively
the same as that of the fluid-like interface. It is straightforward to show that
the Maxwell curve changes slope once at most and is guaranteed to do so for 7
sufficiently small. Thus, the macroscopic response associated with the fluid-like
and membrane-like interfaces are qualitatively the same with the exception of the
restrictions mentioned above. Superstraining, nucleation, and embryo stability

are therefore similar.
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11. CONCLUDING REMARKS

A model for martensitic phase transformations has been presented that cap-
tufes a number of important surface effects. A set of physically reasonable postu-
lates laid the groundwork for this theory from which field equations and jump con-
ditions were derived. Attention was then restricted to hyperelastic materials, and
an Interface Representation Theorem was developed in association with isotropic
bodies. This result was used to characterize a number of physically meaningful
interfaces. An energy barrier nucleation criterion was suggested, which models
martensitic nucleation events as temporal shocks that are global in spatial extent.

A major objective of the investigation was to examine the relationship be-
tween interface properties and surface effects, and this was accomplished via spe-
cial examples. Four interface constitutions were examined in conjunction with
Two-phase, Linearly Dilative materials: interfaces with no surface fields; inter-
faces with bonding energy; fluid-like interfaces; and membrane-like interfaces. The
interface with bonding energy manifests itself in a purely accretive surface tension,
while the fluid-like interface generates the opposite extreme—a purely deforma-
tional surface tension. The interface with membrane-like features is the most
general of the four since it supports both accretive and deformational stresses,
with neither in the form of a simple, surface tension. This interface reacts un-
der infinitesimal surface deformations as would a two-dimensional, linear, elastic
solid.

It was found that all three non-trivial interface constitutions cause the sur-
face effect of superstraining, whereas a traction jump exists only for the fluid-like
and membrane-like interfaces. The Maxwell Rule (continuity of the Gibbs func-
tion) is violated for interfaces with bonding energy and membrane-like surfaces.
All three types of interfaces imply that any nuclei that form must be of finite size
and it was found that sufficiently small nuclei cannot be supported by fluid-like
and membrane-like interfaces. This last result is due to the phase segregation

constraints. Finally, it was determined that materials with any of the three
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non-trivial, interface constitutions support a new, ﬁnstable, critical nucleus in
association with both hard and mixed loading.

In order to facilitate the investigation of surface effects, a ;:oncept of nucle-
ation energy was introduced. All cases considered were found to allow this energy
to be described as a function of prenucleation dilatation and referential embryo
size. Significantly, the nucleation energy decreases with increasing dilatation, and
its extrema, with respect to variations in embryo size, identify the system Maxwell
states. For all interface constitutions considered, the nucleation energy increases
with the magnitude of surface energy.

Future investigations in this area should proceed on two fronts, with the first
being a consideration of surface fields in transformations induced by a combination
of both shear and dilatation. This is a more realistic model of most martensitic
phenomena. As a first step towards this, it would be helpful to study the effect of
interface bonding energy on an anti-plane shear idealization of martensitic phase
transformations. Because bonding energy does not induce a traction jump, the
anti-plane shear kinematics does not pose an unbalanced force problem.

The second major front on which the present research could be extended is
numerical implementations of the model, where less idealized problem settings
could be considered. This would allow for direct comparison with experimental
data as a means of developing practical characterizations of the interface between
martensitic phases. Areas of particular interest are: heterogeneous nucleation;
the effect of surface properties on nucleation shape and not just size; and the

competition between new embryo nucleation and existing embryo growth.
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APPENDIX A. GALILEAN OBJECTIVITY

Consider the admissible, two-phase motions, X7 and X%, of a latticed body,
{B, L}, with
X*(t)=QX(t)+dt+e VteT, (A.1)

where

Q € Orth (E?, E?), d,ec E>

Let _ -
(R‘T \ 87') — R+

o:
A: (Rr\ Sr)— Lin(E3, E?)
R _ (A.2)
¢ : 81' - B.{-
A: (e, - A(y,t) € Lin(n*(y,t), E®)
be fields associated with {B, £} during motion Xy, with R, and S; as defined in
Section 3.1. Let
¢*: (R3\S;)— R4

A*: (R:\S8;)-Lin(E? E®)
(A.3)

~ —

¢*: Sy—- R4
A*: (y,t) € 8 A*(y,t) € Lin(a*(y, ¢t), E®)

be the analogous fields of {B, L} during motion A’}.
The fields associated with {B, L} are said to exhibit Galilean Objectivity if

$*(z*(y,t),t) = ¢(¥,1)

X ) V(y,t) € 7?—7 \g'r (A4)
A*(z*(y,1),t) = QA(y,1)Q"
and 8 (2°(3,0),1) = 6(,1)
*(g* ,1), = ,t
y Y V(y.t) € Sy, (A.5)
A*(z*(y,t),t) = QA(y,t)Q"
where

z*(y,t):=Qy +dt +e V(y,t) € R;. (A.6)
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APPENDIX B. INVARIANCE LEMMA

Let
' e: (RT\ST)HR
f: S:—-R
g: ST_'R’

and suppose that
/edV+ / fdA + / gVmdL <0 VPCR, VteT.
P Qo(t) 8Q(t)

Then g =0o0n S;.

This is proved in GURTIN & STRUTHERS[1990].
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APPENDIX C. INTERFACE REPRESENTATION FOR
ISOTROPIC, HYPERELASTIC MATERIALS

C.1 Proof of the Representation Theorem for Superficial, Isotropic,

Scalar Functions.

Lemma 1:
(¢1,¢2) € IR% coincide, respectively, with z(A),](A) of A € Sym*(n*) if and
only if (¢1, () € Z, with Z as defined in Equation (5.2.9).

Proof: (Neccessity)
Suppose Ac Sym+(n*). Then A has two real positive eigenvalues, 5\, satis-

fying the characteristic equation
p(A) = =22 +i(A)A —j(A) =0.

Application of the quadratic formula then reveals that (Z(A), J (A)) el
Proof: (Sufficiency)
Suppose (¢1,¢2) € Z. Then

AN rah-¢=0

has two positive roots, Aj, Az, such that (; = Ay + A; and {3 = A A;. The

component representation of A in its principal, rectilinear, Cartesian coordinate

[ 2]

Clearly, i(A) = (; and j(A) = (5.

basis is thus given by

Lemma 2:
Let A,B € Sym™(n*). Then i(A) = i(B), j(A) = j(B) if and only if there exists
a Q € Orthy(n*,n*), such that B = QTAQ.
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Proof: (Sufficiency)
Suppose B = Q7AQ, Q € Orth,(n*,n*). Then

Also,
i(B) =j(Q"AQ) = j(Q")j(A)i(Q) = i(A).
Proof: (Necessity)

Suppose i(A) = i(B) and j(A) = j(B). Then the eigenvalues of A and B

coincide since they are both given by the characteristic polynomial
N +id-j=0.

Let {e1,e2} and {e}, e}} be the associated principal bases for A and B, respec-
tively. Then there exists a Q € Orthy(nt,nt), such that Qe!, =eq, a=1,2.
Thus ,

Be’a = /\aela = )‘aQTea = QTAea = QTAQeIa’ a=1,2,
implying that B=QrAQ.

Proof of the Theorem: (Sufficiency)
Suppose there exists a function ¢ : 7 x Unit(E®) —» R such that

#(U,n) = &(z(ﬁ),](ﬁ), n) VUeSym*(n*), Vn e Unit(E?).

Then by Lemma 2,
$(U,n) = $(i(Q70Q),j(Q"UQ),n)
= ¢(Q"UQ,n) VQ € Orth,(n*,n*).

Therefore, ¢ is a superficial, isotropic, scalar function.
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Proof of the Theorem: (Necessity)
Suppose ¢ is a superficial, isotropic, scalar function. Then by Lemmas 1 and

2 there exists a single-valued function, é: 1 x Unit(E3?) - R, such that

~

¢(U,n) = ¢(:(0),7(0),n) VU € Sym™(n*), Vne Unit(E?).

C.2 Characterization of Interface Energy via a Superficial, Isotropic,

Scalar Function for Isotropic, Hyperelastic Materials.

Claim 2.1:
With % as defined by Equation (4.1.17);, Galilean objectivity implies that

W(FI,n) = &(IU,n) VF € Lin (E* E®), Vn e Unit(E?),

with I the inclusion map associated with nt.

Here

T:J = (FTF)1/2 — (F‘\Tﬁ)lﬂ,
with IF and F defined as in Section 2.5.

Proof:
Galilean objectivity implies that

w(QFIL, n) = %(FI,n) VQ € Orth (E* E*), VFe Lin, (E3, E%),
Vn € Unit(FE?).
By the Polar Decomposition Theorem, there exists unique

U € Sym*(n*), Q € Orthy(n*,n*),

such that ¥ = QU for every F € Liny(nt, nt).

Consider a particular linear transformation

Q=IQ"P +nQ®n.
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Note that this Q is in Orth (E3, IE3) since
QQ" = (IQ"P + n® a)(IQP + i @ n)

=I1Q7PIQP +IQ"Pa ® n+ (n® A)IQP + (n® 1)(A ® n)

=IQ"1.QP +n®n

=IQ"QP +n®n=IP+n®n=1.
For this choice of Q,

QFI = QIF = QIQU = (IQ"P + n® n)IQU

=I1Q"PIQU + (n® n)IQU = 1Q71. QU = 1U.

Thus, Galilean objectivity implies that W(FI, n) = w(IU, n) as claimed.

Claim 2.2:
Galilean objectivity implies that

B(IQU,n) = %(IU,n) Vn € Unit(E?), VU e Sym*(n*)
VQ € Orthy(n*,n%).
Proof:
By definition, Galilean objectivity implies that &(QF,n) = w(F,n). Thus,

%(FI,n) = &(QFL n). (C.2.1)

Now suppose that Q := IQP +n ® n with Q € Orth,(n*,n*). Then Q*Q =1
and Q = PQI. From Claim 2.1 and Equation (C.2.1),

®(FI n) = »(IU,n) = &(QIU, n). (C.2.2)
But for the Q chosen,
QIU = (IQP + n @ n)IU = IQPIU = 1QU. (C.2.3)

Equations (C.2.2) and (C.2.3) together imply that
%(IQU,n) = &(IU,n) Vn e Unit(E?), VU € Sym™(n*)
VQ € Orthy(n*,n*).
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Claim 2.3: Material isotropy implies that

W(IU,n) = »(I0Q,n) Vn € Unit(E?), VU e Symt(n*),
VQ € Orth,(n*,n*).

Proof:
By definition, material isotropy implies that

#(FQ,Q"n) = (F,n) VF € Liny(E? E®), Vn € Unit(E®),
(C.2.4)
VQ € Orth.(E?, E®).

Choose Q := IQP + n ® n, as in the previous claim, and note that
Q™n = (IQ°P +n®n)n = n.

Thus, isotropy implies that Ww(FQ,n) = @(F,n) for such a Q which, by the

construction of ¥ in Equation (4.1.7), gives that
w(FI,n) = @(FQI, n). (C.2.5)

But
FQI = F(IQP + n® n)I = FIQPI = FIQ.

Equation (C.2.5) can thus be written as
W(F,n) = B(FQ,n), (C.2.6)

and this holds for every FF € Lin™(n*, E®), n € Unit(EE?®), Q € Orthy(n*, n*).
Since IU € Lin™ (n*, [E®), Equation (C.2.6) implies that
H(I0,n) = 3(I0UQ,n) Vn € Unit(E?®), YU € Sym*(n*),
VQ € Orthy(n*,n*).
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Claim 2.4:
For isotropic, hyperelastic materials the referential interface energy can be repre-

sented by a superficial isotropic response function,
w(-,m): Symt(n*) —» R, Vn € Unit(E®).

Proof:
Claim 2.1 and the fact that the inclusion map, I, is determined solely by the

unit normal, n, admits construction of a function
w(-,n): Sym*(n*) - R, Vn € Unit(E?),

such that %(IU,n) = (U, n). Then Claims 2.2 and 2.3 combine to imply that

w is a superficial, isotropic, scalar function.

C.3 Proof of the Interface Representation Theorem.

Claim 3.1:
For isotropic, hyperelastic materials the referential interface energy can be repre-
sented by a function
@ : I x Unit(E®) — R,
such that

&(i(0),7(0),n) = w(U,n) VU € Sym*(n*), Vn e Unit(E?).

This is immediate from the Representation Theorem for Superficial, Isotropic,

Scalar Functions and Claim 2.4.

Claim 3.2:
Let F* = FQ, n* = Q"n, and I* = Q7IQ, with F € Lin (E3 E®), n €
Unit(E?), Q € Orthy(FE3, [E?), and I the inclusion map for nt. Let

ﬁ — [(F*I*)T(F*I*)] 1/2

U* = [(FD7(FI)] .
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Then U and U* have the same trace and determinant.

Proof: (Determinant)
j2(fj*) = j(P*(F*TF*I*) — ](QTPFTFIQ)
| = 7%(0).
Since both determinants must be positive, this expression implies that they are

equal as well.

Proof: (Trace)

i(0*?) = (P*F*TF*I*,1.) = (Q”PFTFIQ, 1)
= (PFTFL 1;) = i(U?).
But
i(0) = [i(0?) +2,2(0)]/*.

Therefore, U and U* must have the same trace.

Claim 3.3:

For isotropic, hyperelastic materials
d3t(i,j,m) =0 V{i,j,n} € Z x Unit(E?).

Proof:

Define F*, U*, n*, and I* as in the previous claim. Then material isotropy

implies that @(F, n) = ¥(F* n*), and in terms of & this means that
@ ((0), §(0),m) = 0 (i(T*), 5(07), n°).
But by Claim 3.2 this is equivalent to
(i, j,n) = (i, j,n*) V{i,;} €Z, Vn,n*e Unit(E?).

Therefore,

83w(i,j,n) =0 V{i,j,n} € Z x Unit([E>).
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Because of this result, the orientation dependence of ¥ may be dropped and

considered a function @ : 7 — IR.

Proof of the Representation Theorem: (Necessity)

Necessity is immediate from Claims 3.1 and 3.3.

Proof of the Representation Theorem: (Sufficiency)
By Equation (5.1.5), a sufficient condition to guarantee isotropy for materials

whose bulk is characterized by Equation (5.2.2) is that
®(FQ,Q"n) = &(F,n) VF € Liny(E* [E?), Vn e Unit(E?),
VQ € Orthy (E3, E®).
In terms of @ this is equivalent to
@ (1(0),j(0)) = o(i(0*),5(0*) VF € Liny(E* E®), Vn e Unit(E?),
YQ € Orth (IE®, E®),

where U and U* are as defined in Claim 3.2. But this equality is guaranteed by
Claim 3.2.

C.4 A Characterization of Interfacial Stresses for Isotropic, Hyperelas-

tic Materials.

For the remainder of this appendix, a prime indicates the directional deriva-
tive of a function. Also, it is convenient to introduce the two-dimensional Right
Cauchy-Green Tensor, C := U2. The directional derivative of 1 with respect to
its first argument is then given by

(S, B) = w'(FF, n)B =[814(3,)i'(U) + 8,15(3,)5'(0)] #(C)I'(F) B

(C.4.1)
VB € Lin™(n*, E%),

where % r1/2 X N
3(C):=C VC € Sym™(n")
( (C.4.2)
I(F):=F"F VI eLin™(n*, E%).
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A standard mathematical result* is that

#(0)D =4iD) VU,D € Sym™(n*)

oa ~ o n .~ | (C4.3)
70D = j(0)i(U'D) VYU,D € Sym*(n*t).
\Also,
I'(F)B=B"F+F'B VF,B e Lin"(n*, E®),
NP A A A + (C4.4)
®'(C)D = -é-C‘”’D C,D € Sym™(n*).
Equation (C.4.4) implies that
3/(C)[I'(F)B) = %ﬂ“(BTF + F'B), (C.4.5)
and this result can be used with Equation (C.4.3); to obtain
N o 1.~
'(0)e'(C)I(F)B = <i[U-(B"F + F'B
O OB = 5[0 ) .
= (FU"*, B).
Likewise, Equations (C.4.3)2 and (C.4.5) imply that
. . 1 an
(U)e'(C)IV(F)B = -j(U{U*,B'FF + F'B
J (OO (F)B = 35(0), ) e

= j(ONFU-*, B).
Equations (C.4.6) and (C.4.7) can then be applied to Equation (C.4.1) to obtain

(S, BY =014(i, j){FU~*, B + 8,1(i, 5)j(U){FU*, B)

(C4.8)
VB € Lin™(n*, E?).
Therefore
S = 9,w(i, 5\ FU* 4 8,1(3, §)j(U)FU-? (C.4.9)
and
T= %alw(i, HPFUFT 4 80(s, j ) PFUFT. (C.4.10)

These representations can be simplified by using the left polar decomposition of
the surface-deformation gradient. Given F = QU = VQ, then V = FU-'FT.
Therefore,

PFU'FT =V. (C.4.11)

* CI1arLET([1988] p11.
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A simplification is also possible by noting that
PFU-FT = 1.. t (C.4.12)

Thus, the interface deformational stresses for isotropic, hyperelastic materials can

be represented as
S = 1[8,0(:, HFU + j(0)dewr(3, j)F-T (C.4.13)

and

T = 31.-81u‘;(i, AV + 8,05, )1, (C.4.14)

These are the representations provided in Equation (5.2.15) with the expression

for accretive stress, C, obtained using Equation (4.1.17)3.
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APPENDIX D. FLUID-SURFACE THEOREM

(B) For a hyperelastic material with constitution such that C = 0:

(a)
by T=

= 7, a constant; and

&

Ql

1.

Proof: (b)
For € = 0, the Tension-Energy Theorem of Section 3.4 implies that

FTé = wls.
In terms of T, this is equivalent to
wls = jFTITE-T = jFTTER-7.

Therefore,

'i‘ = = F_TlsFT = 'lﬁl—.

“

(b) is therefore proved once (a) is proved.

Proof: (a)

As shown, C =0 implies that T = wl; and in terms of S this is equivalent

to

§ = wIF-T.
But for hyperelastic materials,
S = 8,w(F,n)
from Equation (4.1.17);. Let
- 1.,
7(F,n):= -]Tw(F, n)

so that
O1(F,n) = jIF-T5(IF,n) + j0,5(F,n).

(D.1)

(D2)

(D-3)
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Here use has been made of the identity,
017 (IFF,n) = jIF-7 L (D.4)
from GURTIN & STRUTHERS[1990], (Equation 3.19), with
J(F,n) =j.
Equations (D.1)—~(D.3) then imply that
W(IF,n)Ik-T = j5(F,n)IF-" 4 j6,5(F, n).

Therefore,

0,5(F,n) = 0. | (D.5)

C = 0 also implies that CTn = 0 which, by Equation (4.1.17)3, gi’ves that

0= an(F, n) = [DnJ(F, n)] &(F) n) + ](Fa n) [Dn6(F, n)] ’ (DG)
where
v _ Det(F)
A

from Equation (2.5.6);. But following the definition of Dy(-) given by Equation
(4.1.11),

Det [FQ(k(5),n)] }l
B=0

oo o d
Dyj(F,n) { HFQ(k(8),n)] "k(B)|

(i),

B

i{ _ Det(F) }l

dB | |[F-7Q(k(8), n)k(B)| J | =0 (D.7)
d

a8

0.

Since

Dnj(FF,n) = Doj(FP +f®n,n)

by construction, Equations (D.6) and (D.7) imply that

D,(F,n)=0. (D.8)
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Use of Equations (4.1.7), (4.1.8), and (4.1.12) with & in place of w then gives that
& must be a constant-valued function. Thus, % = &, a constant, and the proof of

(B) is complete.

(C) For a hyperelastic material with constitution such that @ = 7, a

constant:
(a) € =0;and
(b) T =51,

Proof: (b)
w = 7 is equivalent to w = j& so that S = J eIk-T. Expression of this result

in terms of T gives that T = 7l;.

Proof: (a)

The above expression for S implies that
1F?S = j5I = wl. (D.9)
From (D.6) and the fact that w = j&,
Dnw(JF,n) = 0. (D.10)
Substitution of this result and Equation (D.9) into Equation (4.1.17)3 yields

C=uwl-uwl-n®0=0. (D.11)

This completes the proof of (C).
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APPENDIX E. STRAIN DEPENDENCE OF THE NU-
CLEATION ENERGY

E.1 Nucleation Energy. As discussed in Chapters seven through ten, there
exists a representation for the nucleation energy, B, as a function of embryo size,
s, and prenucleation dilatation, Jy. This function is now constructed and shown
to have a monotonically decreasing response to dilatation for fixed s. This will
be accomplished for hard, soft, and specialized mixed loading with the following
interface constitutions: no surface fields; bonding energy interfaces; fluid-like
interfaces; and membrane-like interfaces.

The nucleation energy is defined by Equation (7.5.3) which, using Equation
(7.7.1), can be written

B = [E]* + [Ewp]*. (E.1.1)

The second term in this expression obviously depends upon the type of loading
device, but a general expression can be derived for the first term, and this will
now be done. Let E(y and E,) denote the total energy stored in the cylinder
just before and just after a nucleation event, respectively. Then Equation (6.3.1)

gives that
Jo
Ey = 2,u7rQ{2(J(}/2 -1+ / h(J) dJ}
1
Q 4
Ewy = 4un / [71(g) — 3] dg + 2u7s’ / WJ)dJ (E.1.2)
0 1

Jm
+ 2um(Q? — s?) / h(J)dJ + 2wsw
1

where
L(g)-3=2(J*-1), g €(0,s)

(- T, 27, (E.1.3)
aC Fj(q)):QqJ -2, q€(sQ).
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Explicit evaluation of these expressions results in

[[E]]t' =4umQ[R]*
+ 2ums? [—(JU +J)— —(J2 I+ B+ 1) Jm — B, J;

(E.1.4)
+ 2umQ? | B0 = I8) = (84 1) = J0)| + 2150,
Under hard loading
[Ew]™ =0, (E.1.5)
and this continuity condition for nucleation implies that
52
Jo=Jn+ @(J, = Jm). (E.1.6)
The analogous results for soft loading are that
[En]® = —7r(Jo)[R?*]*, (E.1.7)
with 7(Jo) given by Equations (7.3.5) and (7.3.2), and
Q"
IIE]] = B(Jo — J). (E.1.8)
For specialized, mixed loading,
[Eo]" = IV - BT (E.19)
5 1.
and
2
(Q2 “5>(J0—J )= 8*(Ji = Jm) + — 218 Hg]} : (E.1.10)

Equations (E.1.4)-(E.1.10) can be used to construct the desired nucleation-
energy functions and to analyze their response to variations in prenucleation di-

latation.
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E.2 Interfaces with Bonding Energy.*

With an interface characterized by bonding energy, Equation (8.1.3)3 is used
to relate J; and J,,. In conjunction with the above results, this allows the nucle-

ation energy to be expressed as a function of s and Jp.

Hard Loading
Under hard loading, Equations (8.1.3); and (£.1.4)—-(E.1.6) allow B to be
respresented by

2

By (s, b) = —BTuns? |20 — @F (Jo + Jin) | + 27s0. (E.1.11)

Therefore,
03By (s, o) = —2BTurs? < 0. (E.1.12)

Soft Loading

With a loading device characterized as soft, Equations (8.1.3)3 and (E.1.8)
together imply the existence of a representation, fm(s, Jo), for J,. Then Equations
(7.4.2)1, (E.1.7), and (E.1.4) allow the nucleation energy to be represented as a
function of s and Jy only such that

02Bs: (s, Jo) =2umQ*BJmB2dm(s, Jo) — h] — 2umQ*(B + 1)[2Jm(s, Jo) — 1]
a2jm(3, JO) 1 Q3 ) 2
+4MQ3[ Ry 2R(_)] —2M(2R3 + B8 )(Riy — R()

— Q[0 (s, o) — 1]

Q
== 2’”(21%3 + ﬂ>(R(+) - Ry

< 0.

* The result obtained here covers the claim for no surface fields as a special case.



—97-

Specialized, Mixed Loading

Analogous to the case for soft-loading devices, Equations (8.1.3); and
(E.1.10) together imply the existence of a representation, jm(‘s,Jo), for J,, in
systems controlled by specialized, mixed loading. Equations (E.1.4) and (E.1.9)
therefore allow the nucleation energy to be expressed as a function of s and J,

as desired, such that

8y Buiz (s, Jo) =2umQ?B[Jnd2Jin(s, Jo) — Jo] = 2umQ*(B + 1)[82Jn(s, o) — 1]
82fm(s, Jo) 1
+ 2,u7rQ3[ —
Rey Ry
+ me(A? = REY)[2AN () — 82Jm(s, Jo)]

] — me(A? — RL,)[2N(&%) — Q7]

3
B P ()

< 0.

E.3 Fluid-like Interfaces.

Equation (9.1.3); is used to express J; via a function, Ji(s, J,), for fuid-
like interfaces. In conjunction with Equations (E.1.4)—(E.1.10), this allows the

nucleation energy to be expressed as a function of s and Jp.

Hard Loading
Under hard loading, Equations (9.1.3); and (E.1.4)-(E.1.6) together imply

the existence of a representation, Jn(s, &), for J, with

QZ
Q2 — 5% + 520y Ji(s, Jm)

02 Jin(s, Jo) = (E2.1)

Then Equations (9.1.7),, (E.1.5), and (E.1.4) allow the nucleation energy to be

represented as a function of s and J; only such that

T o ~ 2 ~
02 B (5, %) = 2@ = 57 + 820, J(5, )2 Im(5, ) — At 52,
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Use of Equation (E.2.1) then yields

82BH,,(5, Jo) = 71'Q2(T(+) — 7‘(_)) < 0.

Soft Loading

With a loading device characterized as soft, Equations (9.1.3)3 and (E.1.8)
together imply the existence of a representation, jm(s, Jo), for J,. Then Equations
(9.1.7)1, (E.1.7), and (E.1.4) allow the nucleation energy to be represented as a
function of s and J; only such that

0284 (s, h) =702 Jm (s, JO)T(+)[Q —$ +8262J(3 Im)] —7"7( )(Jo)(RH-) R%_))
— 18yJin(8, J) Ty [Q% — 5 + 5200 (s, Jm)] + Q% 74y — TQ% 7y
= -7 (B (R - BG)
< 0.

Here Equation (7.3.5) has been used to obtain

To(h) = 20| 575 + 8%~ 1) = 1
0

and it is easy to show that this function is monotone-increasing.

Specialized, Mixed Loading

Again it is straightforward to establish the existence of a representation,
Jm(s,Jo), for J, in systems controlled by specialized, mixed loading. Equations
(E.1.4) and (E.1.9) therefore allow the nucleation energy to be expressed as a

function of s and Jy. Then a series of alegebraic manipulations lead to
O Bur(s, k) = 7 [X*(D)) (ry = 79) < 0,

where

/\2(']0) Q2J 4 T(—)(']O)

is a representation for A obtained from Equation (E.1.10).
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E.4 Membrane-like Interfaces.

Equation (10.2.2)3 is used to express J; via a function, jz(s, Jm), for fluid-
like interfaces. In conjunction with Equations (E.1.4)-(E.1.10), this allows the

nucleation energy to be expressed as a function of s and J.

Hard Loading
Under hard loading, Equations (10.2.2)3 and (E.1.4)~(E.1.6) together imply
the existence of a representation, J,(s, &), for Ji, such that
02Bur (3, Jo) = — 2uB7s (J — J)0aJu (s, Jo) + 2ums*(B + 1) Jn(s, o)
— 2UN 2B s 02 i (8, o) + 2umQ? B[ I B2 Jin(5, Jo) — Jo]
— 24w Q*(B + 1)[02Jm(s, Jo) — 1] + 275102 Jm(s, Jo)

= 7TQ2(T(+) — T(_)) < 0.

Soft Loading

With a loading device characterized as soft, Equations (10.2.2)3 and (E.1.8)
together imply the existence of a representation, J;,(s, &), for Jn,. Then Equations
(10.2.6)1, (E.1.7) and (E.1.4) allow the nucleation energy to be represented as a

function of s and J; only. A series of algrabraic manipulations then lead to

8y Bsi(s, ho) = —7((H)(REy — RY)) < 0.

Specialized, Mixed Loading

Once again it is straightforward to establish the existence of a representation,
I8, Do), for J,, in systems controlled by specialized, mixed loading. Equations
(E.1.4) and (E.1.9) therefore allow the nucleation energy to be expressed as a
function of s and Jy. In a manner analogous to that in cases previously considered,

it is found that

02 Bur(s, ) = 7 [N (L) (ry —7) < 0.
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Figure 1. A two-phase deformation, y, and its restriction, 9, to
the interface, S.
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Figure 2. Subregions P and Q(t) of R and S(t), respectively, and
their images, P(t) and Q(t).
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Figure 3. Graph of stress response function, h, for 3-PD solids.
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Figure 4. Graph of stress response function, h, for 3-PLD solids.
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Figure 5. The Cylinder Problem.
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Figure 7. The set, I, of all (s, J ) pairs for which the phase segregation

constraints are satisfied under extension; no surface fields.
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Figure 11. Time-position diagram of the nucleation and growth
process showing both the interface and nucleation shocks.
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Figure 12. An interpretation of the Specialized Mixed Loading
condition, where the exterior of the loading device
is fixed during a nucleation event.
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Figure 15. Profiles of nucleation energy, B, for both soft and hard

loading; no surface fields.
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Figure 16(c). Nucleation event under soft loading; no surface fields.
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Figure 17(c). Nucleation event under hard loading; no surface fields.
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Figure 18. An atomistic interpretation of bonding energy. Pure
deformation does not increase the total interface energy

while pure accretion does. (Note that in actuality, accretion
cannot occur without some deformation.)
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Figure 20. The Equal Area Rule, Figure (a), and its violation due to
interface bonding energy, Figure (b).
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Figure 21. Profiles of nucleation energy, B, for both soft and hard
loading; interfaces with bonding energy.
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Figure 22(a). Nucleation under soft loading with interface bonding
energy. Under increasing ]0 , the nucleation barrier

may eventually drop to B0 , at which point nucleation
occurs.
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Figure 23(a). Nucleation under hard loading with interface bonding

energy. Under increasing ]0 , the nucleation barrier

may eventually drop to Bo , at which point nucleation

occurs.
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Figure 23(d). Close-up look at hard-loading nucleation event as
illustrated on system macroscopic response;
interfaces with bonding energy. Here the associated
stable and unstable nuclei are illustrated.
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Ilustration of how part (ii) of the nucleation
criterion may prevent nucleation from occurring
at B . (The plot shown is a drawing, and was

not generated using a particular set of parameters.)
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Figure 25. The set, 1, of all (s, J,,) pairs for which the phase segregation
constraints are satisfied under extension; fluid-like inter-

faces. For clarity, it is assumed that L; does not intersect L5 p
the curve for whichR = Q.
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Figure 27. The Equal Area Rule, Figure (a), and its violation for materials
with fluid-like interfaces, Figure (b).
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Figure 28. Profiles of nucleation energy, B, for both soft and hard

loading; fluid-like interface.
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