
Coding Beyond the Computational Cutoff Rate

Thesis by

Oliver Collins

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(submitted May 11, 1989)

(ii)

@ 1989

Oliver Collins

All rights reserved

(i i i)

Acknowledgement

The author wishes to thank his advisor, Dr. Robert
J. McEliece, for many things, especially co-authoring
the paper that is Chapter 5 of this thesis.

(iv)

Abstract

This thesis presents a collection of new codes,

algorithms, and hardware, which can all be used to

reduce the required energy per information bit to noise

spectral density ratio on the Gaussian channel. First

comes a feedback technique from an outer to an inner

code. The basic idea is to perform a second maximum

likelihood decoding operation of the inner code that

incorporates side information. Next comes a new kind

of algebraic outer code which we get from combining

Reed Solomon codes with themselves. The most

important results, however, deal with the construction of

long constraint length Viterbi decoders. One chapter

presents a hardware design of a constraint length 15,

rate 1 /6 decoder. The last chapter gives some results

on the partitioning of a deBruijn graph which make the

number of interconnections in the design physically

realizable.

(v)

Table of Contents

Chapter I Introduction .. 1

Chapter II Decoding with Side Information 4

Chapter 111 Algebraic Codes ... 15

Chapter IV Hardware .. 22

Chapter V Graphs .. 34

Bibliography .. 51

Figure 1

Figure 2

Figure 3
through
Figure 6

(vi)

Figures

Convolutional Encoder 9

Tellis diagrams 10

Reed-Solomon codes 18-21
combined with themselves

Figure 7 Branch Metric Computer 26

Figure 8 Serial Adder and Subtractor 27

Figure 9 Compare/Select ... 28

Figure 10 Butterfly .. 29

Figure 11 Chip .. 30

Figure 12 Board ... 31

Figure 13 Traceback Circuit 32

Figure 14 Traceback Technique 33

Table
Table 1 Decoding runs 11

(Vii)

To

Abigail Anne Collins (1949-1972)

1

Introduction

'Traditionally people view coding as the sacrifice of bits that could be

used to carry information in order to achieve greater reliability, e.g., a Ham

ming code in a computer memory. Coding is, however, a general way to

exchange complexity at the transmitter and receiver for reduced medium

cost per information bit at any given error rate. Coding's benefits become

greater as the allowable error rate approaches zero where the medium cost

of an uncoded system becomes infinite, whereas that of a coded system ap

proaches a constant called ch~el capacity.

For magnetic tape the medium price is just the cost of a reel divided

by the number of bits it can hold. For a deep space probe, it is the trans

mitter power divided by the data rate; i.e., it is measured in Joules per bit

of information sent at whatever bandwidth expansion factor the equipment

allows. As the complexity increase falls disproportionately on the ground

based receiving equipment and the medium cost is astronomical (approxi

mately fifteen million dollars for a twenty-percent increase in power), the

deep space channel is an ideal place to apply coding, and many of the exam

ples in this thesis use it. The deep space channel (Reference 1) is an analog,

white Gaussian channel with two-level signalling; i.e. the transmitter sends

out symbols that can have either of two values (say -1 or +1), and the output

of the radio frequency equipment on Earth is a voltage proportional to the

transmitted symbol plus an independent Gaussian random variable whose

variance is proportional to the spectral density of the noise, No.

2

The goal of coding is to minimize Es/RNo, where Es is the energy per

symbol and 1 /R is the average number of symbols devoted to each informa

tion bit. The capacity of this channel, the minimum ratio of the energy per

information bit to the noise spectral density, is upper-bounded by and for

small R very close to
22R -1

2R
(1)

This is the capacity of the channel if the input is not restricted to only two

levels and comes from the more usual

(2)

when Es is set equal to REb.

The conversion of discrete to continuous values greatly complicates the

problem of designing a coding system that approaches channel capacity. The

transmitter outputs discrete binary symbols, but what arrives at the decod

ing equipment is an analog estimate of whether a +1 is more likely to have

been sent than a -1. The problem is that algebraic decoding methods, the

only known ones that allow an exponential reduction in decoded error rate

with only polynomial complexity, cannot incorporate the fuzzy information

produced by the channel. This problem has led to the use of concatenated

codes when error rates must be very low, where an inner code that can in

corporate soft decision information is concatenated with an algebraic code.

The original channel combined with the inner code forms another channel

over which the outer code operates. Unfortunately, this outer channel must

have a lower capacity than the original channel; no matter how good the

outer code, the loss cannot be recovered. Said differently, the potential per

formance of the concatenated code viewed as a whole is much greater than

the serial, concatenated decoding algorithm manages to exploit.

3

Chapter two deals with a modification of the classic Viterbi algorithm

for maximum likelihood decoding of convolutional codes, which allows some

feedback from the outer algebraic code to the inner code. The combined

scheme is superior to convolutional coding alone even at the high allowable

error rates characteristic of uncompressed images. Chapter three tells about

improved algebraic codes formed by combining Reed-Solomon codes with

themselves. The combination of these two completely debunks the idea of a

computational cutoff rate by coming within ldB of channel capacity on the

analog Gaussian channel. With only twenty percent left until the ultimate

limit trying to save the idea of a hard limit imposed by decoder complexity

limitations would be not only futile but boring.

Chapter four describes the hardware and algorithmic details required

to build powerful, i.e., long constraint-length, convolutional decoders. The

principal problem, as with many large machines, turns out to be internal

communication, and the final solution to it is a problem in graph theory,

which is presented in Chapter five. The basic structure of maximum likeli

hood decoding of convolutional codes comes from the state diagram of the

shift register encoder. This graph, called a de Bruijn graph, appears in many

other contexts, e.g., as the constant dimensional FFT. Hence the results in

the last chapter should have application beyond coding theory.

4

CHAPTER II

Decoding with Side Information

A convolutional encoder consists of a shift register (whose length is

called the constraint length of the code), a block of linear combinational

logic, and a multiplexer. As Figure 1 shows, the information to be encoded

is clocked into the shift register and the output of the multiplexer goes to the

radio frequency modulator. The multiplexer makes one complete sweep every

time the shift register is clocked. The number of outputs of the combinational

logic (inputs to the multiplex~r) is 1/R where R is the rate of the code. The

combinational logic could be made nonlinear or even time varying without

changing the decoding algorithm much and we will see later that time varying

codes may have some advantages.

Before talking about the maximum likelihood decoding of these codes,

we must define in what sense we mean maximum likelihood. We could for

instance ask for maximum likelihood on a bit-by-bit basis. This scheme would

minimize the decoder bit error probability; however, it is extremely difficult

to implement and is only slightly superior to another much simpler decoding

technique, Viterbi decoding. Viterbi decoding finds the most likely sequence

of bits between known starting and ending states of the encoder shift register.

Figure 2 shows how it works. Each column of dots represents the four possible

states of a two bit shift register encoder. The lines connecting successive

columns represent the possible state transitions as a new bit is shifted into the

register. Each line corresponds to a use of the channel, e.g., the modulation

5

of the radio frequency carrier by the sequence of symbols produced by the

combinational logic.

The decoder sees the symbols produced by the encoder after the channel

noise has corrupted them. If each of the branches of the graph is given a

length equal to the logarithm of the probability that the symbol sequence

which it calls for was sent, then the shortest path through the graph that

connects two points will correspond to the most likely sequence of transmit

ted symbols between these two fixed states of the encoder. For the Gaussian

channel some simplification is possible, and these lengths can just be the

received vector of voltages multiplied by the vector of symbols which the

encoder would generate if it took the corresponding branch.

Finding the shortest path through the graph is quite easy because none

of the lines jumps over any oft-he columns of points. Thus, one simply has to

find the shortest path to every point of each column in turn. This technique is

called Viterbi decoding. Viterbi decoding can even be made free of the need

to operate between fixed encoder states, because when proceeding backward

through the trellis the number of possible shortest paths can be no more

than the number of states and at each step there is always some chance that

two will merge. This convergence means that beyond a certain distance all

paths will be the same with arbitrarily high probability and makes continuous

encoding and decoding possible; i.e., whichever starting state is chosen, the

decoding result will be the same.

The whole purpose of this chapter is to point out that the decoding

algorithm can use information other than the received symbols. Its effect is

to prune the trellis of state transitions if it is hard or modify their lengths

if it is soft. The lower half of Figure 2 shows what happens to the trellis

when one of the information bits is known, and Table 1 presents the results

6

of simulations of the constraint length 15 rate 1/ 4 convolutional code to be

used on the Galileo spacecraft first with no side information and then with

different types. These simulations come from a hardware decoder using 254

levels of input quantization and a traceback depth of 170. Each line in the

table required a run of 450,000 bits. The table gives the bit and symbol

error rates as a function of signal to noise ratio expressed in dB. A symbol

here is just a group of eight consecutive bits; i.e., it refers to the basic unit

of an outer code that processes bytes. A Reed-Solomon code over GF(256)

is such a code. This dichotomy is confusing but entrenched. (For ten-bit

symbols the error rates would be about ten percent higher and for twelve-bit

symbols they would be about thirteen percent higher.) The signal to noise

ratios in the table must be converted to information bit signal to noise ratios

in order to be meaningful; i.e. some of the bits going into the shift register

carry no information; they are forced to a predetermined value. To account

for this loss, one has to subtract the fraction of bits carrying information

(expressed in dB) from the SNR figure in the table. This number appears at

the top of each subtable. It is also necessary to divide the error rates by the

same fraction to compare the code with known bits to the original. These

quotients are the corrected error rates in the table.

Decoding with some bits known appears to be a losing game when cor

rected bit error rates are compared at the same information bit signal to noise

ratio. However, two simple observations show why the process is worthwhile.

The first is that if the known bits are separated by a distance less than the

constraint length, then the decoder complexity is reduced. Consider the data

for every tenth bit known. The decoder complexity will be comparable to a

constraint length 14 code because no more than 14 unknown bits ever appear

in the encoder shift register at the same time. There are 214 instead of 215

7

states in one column of the trellis. The performance is, however, very close

to the original constraint length 15 code.

The second observation is that the known bits can come from the de

coding of an outer code whose parameters are chosen so as to make the

probability of failure to decode negligibly small, say less than one in a mil

lion. If the bits going into the shift register are protected by interleaved

outer codes, then the decoding of one of the outer codewords followed by a

second convolutional decoding operation using this information will greatly

decrease the error rates of the symbols in the remaining outer codewords.

The power that was used by the symbols of the first outer codeword is now

available to the the symbols of the others.

As an example consider what happens when every other 8 bit symbol

is known. Looking at Table 1 we see that the error rate of the remaining

symbols has dropped to a very small value. We may either choose to accept

this under one in a thousand error rate on half the symbols or clean it up with

another outer code. The redundancy of the code required to clean up these

errors will be much less than one percent. The complexity of the second

convolutional decoding operation will be very small because the machine

used to perform it needs only 128 states. Thus, with very little hardware we

can achieve the equivalent of perfect erasure declaration.

Suppose we do not require extremely low error rates; e.g., we want to

transmit uncompressed images. We can still benefit from redecoding by

choosing OdB as the inner-code operating point and protecting every fifth

symbol with one of the outer codes described in Chapter III (or, for that

matter, an ordinary Reed Solomon code). To achieve a one-in-a-million

chance of failing to decode, a Chapter III code will require a redundancy of

15 percent. Since only 1/5 of the data is protected, the average redundancy

8

will be .03. Thus, the information bit signal to noise ratio of the combined

code with redecoding is .132dB, and 4/5 of the data will experience a bit

error rate of four in a thousand, while 1/5 will have an error rate lower than

one in a million. This compares with a .5dB signal to noise ratio for a five

in-a-thousand bit error rate. Thus we are saving almost .4dB by adding a

block code and making a second pass. The complexity increase is almost the

same as that of going to a constraint length 16 code which yields less than a

.ldB improvement.

We can, of course, perform multiple re-decoding operations. However,

returns diminish, and the whole arrangement becomes quite baroque. Mak

ing two passes we can achieve an operating point of .205 dB at an error rate

below one in a million. The capacity of the Gaussian channel at this rate is

only -.875 dB; thus, we are within 1 dB of channel capacity.

(9)

Figure 1
Convolutional Encoder

/

To RF modulator

Combinational Logic

\
I

Information bits in

Shift Register

00

01

1 0

1 1

00

01

1 0

1 1

(1 0)

Figure 2
Trellis Diagrams

State diagrams for two bit shift register

I
This bit known
to be zero

(1 1)

Table 1

No Bits Known

(Conventional Viterbi Decoding)

SNR in dB Bit error 8 bit
symbol rate
error rate

.6dB .00359 .00838

.5dB .00534 .0124

.3dB .0110 .0247

OdB .0268 .0589

-.2dB .0474 .1020

SNR in dB

.3dB

0dB

-.2dB

One Bit Out of Ten Known
(1 0log(.9)=-.4576)

Bit error 8 bit Corrected

rate symbol bit error

error rate rate

.00214 .00575 .00238

.00669 .0166 .00743

.0124 .0304 .0138

SNR in dB

.3dB

0dB

-.2dB

SNR in dB

.3dB

0dB

-.2dB

(1 2)

Table 1
(Continued)

Every Other Symbol Known
(1 0log(.5)=-3 .0103)

Bit error 8 bit Corrected

symbol bit error
rate

error rate rate

.000177 .000350 .000354

.000177 .000350 .000354

Corrected
symbol
error rate

.000700

.000700

Every Third 8 Bit Symbol Known
(1 0log(.666)=-1.765)

Bit error 8 bit Corrected Corrected

rate symbol bit error symbol

error rate rate error rate

.000868 .00230 .00130 .00345

SNR in dB

.3dB

0dB

-.2dB

SNR in dB

.3dB

0dB

-.2dB

(1 3)

Table 1
(Continued)

Every Fourth 8 Bit Symbol Known
(1 0log(.75)=-1.249)

Bit error 8 bit Corrected

rate symbol bit error

error rate rate

.00191 .00472 .00255

.00341 .00826 .00455

Every Fifth 8 Bit Symbol Known

(1 0log(.8)=-.969)

Bit error 8 bit Correctec

rate symbol bit error

error rate rate

.00134 .00341 .00168

.00322 .00785 .00403

.00466 .0114 .00583

Corrected
symbol
error rate

.00629

.0110

Corrected
symbol
error rate

.00426

.00981

.0143

SNR in dB

.3dB

0dB

-.2dB

SNR in dB

.3dB

0dB

-.2dB

(14)

Table 1
(Continued)

Every sixth 8 Bit Symbol Known
(1 0log(.8333)=-. 7918)

Bit error 8 bit Corrected

symbol bit error rate
error rate rate

.00351· .00784 .00421

.00800 .0183 .00960

Every Seventh 8 Bit Symbol Known
(1 0log(.8571)=-.6695)

Bit error 8 bit Corrected

symbol bit error rate
error rate rate

.00584 .0124 .00681

.0117 .00251 .0137

Corrected
symbol
error rate

.00941

.0220

Corrected
symbol
error rate

.0145

.00293

15

CHAPTER III

Alegraic Codes

A Reed-Solomon (Reference 2) code has symbols in some Galois field and

one fewer symbol in a codeword than there are elements in the field; e.g.,

8 bit Reed-Solomon codes have 255 symbols. Any number of these symbols

can be parity checks; the rest will be information. If the number of parity

check symbols is P, then the code can correct E symbol errors and R symbol

erasures if and only if 2E + R <= P. These codes are fairly well suited to

and often used on the independent symbol error channel (possibly, also, with

erasures) and other channels which can be converted into the independent

symbol error channel with only a small loss of capacity. The channel formed

by a convolutional encoder and Viterbi decoder operating over the Gaussian

channel is such a beast because the errors come in moderately long bursts.

The first step in converting this bursty channel into the independent symbol

error channel is to group consecutive groups of bits to form symbols. The

second is to group the symbols into codewords. We do not, however, want

to choose consecutive symbols to be members of the same codeword. The

spacing needs to be wide to achieve independence. The loss of capacity will

be small only if the burst length is comparable to the symbol size; e.g., a

very small burst will destroy the whole symbol in which it resides.

A Reed-Solomon code that experiences symbol error probability e will

always have to have a rate less than 1-2e if the probability of its failing to

decode must be low. Very big Reed-Solomon codes will approach this value.

16

However, big Reed-Solomon codes demand big symbols and we saw, above,

an instance where an increase in the symbol size also caused an increase in

e. For the Viterbi decoder channel, the increase in the symbol error rate

with symbol size is gradual. For other channels such as the photon counting

optical channel, the symbol size is dictated by the modulation technique, and

any deviation drastically increases the error rate. The growth of symbol error

rate with symbol size is not the only thing that keeps us from using large

Reed-Solomon codes. The decoder complexity is quadratic in the codeword

length. What we want is to combine the good features of short and long

Reed-Solomon codes.

This chapter describes a new type of code formed by combining Reed

Solomon codes with themselves. If a fairly short (say 8 bit) Reed-Solomon

code is designed to have a one-in-a-million chance of failing to decode at

some symbol error rate, then there is still a good chance that it wiil decode

successfully even if many of the parity check symbols are erased; i.e., many

of the parity check symbols will probably not be needed to achieve succesful

decoding. The idea of this chapter is to share these parity checks among

many codewords by using a second set of Reed-Solomon codes.

Figure 3 illustrates the concept. The data are first encoded convention

ally into Reed-Solomon codewords. These codewords could be sent over the

channel as they stand. Instead, we take all the parity check symbols to the

right of some position and make them symbols in another Reed-Solomon

codeword. These symbols are never sent over the channel at all. The parity

of the second Reed-Solomon codeword goes in their place. The decoding

algorithm first attempts to decode all of the primary codewords, treating

those symbols not sent as erasures. Most of these codewords will decode

successfully, and the probability of an erroneous decoding will be orders

17

of magnitude lower. The decoding of most of the primary codewords pro

vides the information symbols of the secondary codewords. When a primary

codeword fails, an erasure is declared in all the secondary codewords. The

secondary codewords thus see the original channel error probability on some

of their symbols and the rest experience an erasure rate determined by the

design of the code. When the secondary codewords decode, the failed pri

mary codewords get all their parity checks. The failed primary codewords

will now decode. The increase in decoder complexity is small because only a

few of the primary codewords require two decoding attempts, and the num

ber of secondary codewords is small. Figures 4, 5, and 6 present results for

different error rates. All that is necessary to verify them is a set of tables of

the binomial distribution and a simple result:

Suppose that we have a set of coins each of which has a probability p of

turning up heads, and that each coin lau.ding heads up counts one point. If

the probability of getting more than A points is very small, then it will drop

still farther if one or more coins in the original set is each replaced by two

coins whose probability of heads is p/2 and whose values are 1/2 point.

This result is essentially just a specialized form of the law of large num

bers. A distribution will pull in towards its mean as the number of inde

pendant events wich compose it increases. Here we have kept the expected

value of A constant but more independant coin tosses go into determining

its actual value in a particular game.

An obvious generalization of these techniques is to split the secondary

codewords into two groups and play the game twice. Another is to let the

primary and secondary codewords have elements in different fields.

(1 8)

Figure 3

Symbol error rate=.04
Redundancy of normal 8 bit Reed Solomon Code=.2196
at 10"-6 failure to decode
dB adder=1 .077dB

Redundancy of new code=.14 76
dB adder=.694dB

Redundancy of 10 bit Reed-Solomon code=.1447
at 10"-6 failure to decode
dB adder =.679dB

255-----------~

36 20

•
•
• /1% erasure

21

255

(1 9)

Figure 4

Symbol error rate=.02
Redundancy of normal 8 bit Reed Solomon Code=.1490
at 10"-6 failure to decode
dB adder=.7007dB

Redundancy of new code=.0889
dB adder=.4046dB

Redundancy of 1 0 bit Reed-Solomon code=.0880
at 10"-6 failure to decode
dB adder =.400dB

.-----------...-255

·20 18

• t
._Same codes •

• 4% erasure

✓

38

255

(20)

Figure 5

Symbol error rate=.01
Redundancy of normal 8 bit Reed Solomon
Code=.1020
at 10"-6 failure to decode
dB adder=.467dB

Redundancy of new code=.0527
dB adder=.235dB

Redundancy of 1 0 bit Reed-Solomon code=.0567
at 10"-6 failure to decode
dB adder =.235dB

255

1 2 14

•
•
•

26

255

(21)

Figure 6

Symbol error rate=.005
Redundancy of normal 8 bit Reed Solomon
Code=.0706
at 1 Q/\-6 failure to decode
dB adder=.318dB

Redundancy of new code=.0341
dB adder=.151dB

Redundancy of 1 0 bit Reed-Solomon code=.0371
at 1 Q/\-6 failure to decode
dB adder =.164dB

.----------~255

8

•
•
•

1 8

1 0

255

22

CHAPTER IV

Hardware

This chapter presents a bit serial implementation of a long constraint

length convolutional decoder at a level of detail just above final schematic

drawings. The diagrams show a constraint length 15 (or less), rate 1/6,

traceback depth 170 decoder, but the design is quite plastic. The machine

can only decode a constraint length 15 code if it has leading and trailing ones

in the generator polynomials. This restriction causes the branch lables to

occurr in antipodal pairs and allows the simplified branch metric computer

shown in Figure 7. This metric computer generates the two branch metrics

(labelled q and r in Figure 7) for a pair of states whose labels differ only in

the rightmost (least significant) bit. Such a pair is called a butterfly. The

branch metric computer takes as inputs the six symbols that correspond to

one information bit as well as the sum of their absolute values.

The symbol magnitues and signs arrive on separate sets of lines. Each

of the six symbol signs is compared with a bit stored in the butterfly. If

the two disagree then the corresponding symbol magnitude is added into the

sum that is branch metric q. The six bits stored in each butterfly depend on

the particular code and are reloaded every time it is changed through one

long shift register. This shift register is the initialization chain in Figure 11.

The second output, r, is just the difference between q and the sum of all

the symbol magnitudes. Here is where the antipodal property of the branch

metrics simplifies the design. The bit serial subtractor that computes this

23

difference is shown in Figure 8. Note its similarity to the bit serial adder

above it; the "D" latch becomes a borrow rather than a carry register. All

the "D" latches in all of the drawings with one exception in Figure 9 have a

single, common clock. They store data on the rising edge of this clock. The

inputs to the branch metric computer and all other arithmetic elements of

the butterfly are of such a form as to guarantee that carries (or borrows) will

always clear. Thus, none of these "D" latches requires a set or reset.

The outputs of the branch metric computer go to the body of the but

terfly, shown in Figure 10. Here they are added to the accumulated metric

inputs of the butterfly in all possible ways. These inputs and the outputs

in the upper left of the figure get connected into a de Bruijn Graph. Ac

complishing this connection for 8,192 butterflies is the subject of the next

chapter. For the moment, note only that the wires between many butterflies

will be long. Thus, the inputs and outputs need "D" iatches to allow a full

clock period for a signal to propagate between butterflies.

The constraint length control mutiplexer in Figure 10 allows the decod

ing of codes with constraint length less than 15. We can (at least for a channel

whose symbols are independent) left justify all the generator polynomials so

that they all have a leading 1 without affecting the code's properties. For

codes with K < 15 this will make the two states of a butterfly indistinguish

able; hence, the mutiplexer. Thus, for K < 15 there are still restrictions on

the generator polynomials but not on the code.

The only remaining elements in Figure 12 are the compare/select units

that are identical and shown in detail in Figure 9. A compare/select unit

compares two number, X and Y, that it receives in bit serial form and outputs

the lesser of the two. The word clock marks the arrival of the most significant

bits and, hence, the time when the selection of the smaller of the two can be

24

made. If one or more bits of data in the information stream are known, then

the selection can be predetermined by using the force lines shown in Figure

9. These lines and their associated multiplexer are all that is necessary to

implement the redecoding scheme of Chapter II. The two N bit shift registers

store the two numbers coming in on the X and Y wires until their most

significant bits arrive and the comparison can be made. The greater number

is just thrown away.

The length of these shift registers, N, is a very important parameter

of the design both because the decoding speed is inversely proportional to

N + 2 and because the area of the shift registerss is a significant fraction

of the total chip area required for the butterfly. The dynamic range of

the accumulated metrics is limited to the product of the reciprocal of the

rate, the contraint length mlnus one, and the largest symbol magnitude.

This product is 6*14*127=10,668 in this design. Renormalization consists

of removing the leading one from all the accumulated metrics. Thus, if we

could always locate the smallest metric and check whether its leading bit is

a one, we would need N equal to one plus the greates integer of the base two

logarithm of 10,668. Looking at all the 16,384 metrics in a constraint length

15 machine is, however, extremely difficult. Thus, it may pay to make N

bigger than 15 if it means we do not have to look at all the metrics. We

can get by with looking at only a single randomly chosen metric if we add

one more bit to N. Looking at only a single metric means that the spread

can occur on either side of the renormaliztion threshold. If we look at two

metrics whose symbol sequences are antipodal, e.g., the all zero state and

the state with a single leading one, and always compare the larger of the

two with the threshold then the potential spread of the metrics about the

threshold is only 1.5 instead of 2. For our design this reduction allows us to

25

get by with N = 15. N, however, is taken to be 16 for two reasons. First,

the system is so large that bringing two particular metrics to a sensing point

is more difficult than just looking at whatever metric happens to be closest.

Second, with N = 16 we can use a traceback chain length of 16 as shown in

Figure 11, which reduces the required traceback memory bandwidth.

A single line controls both traceback and renormalization as shown in

Figure 9. A single width pulse on this line loads the traceback chain shift

register, and a double width pulse also removes the leading bit from all the

accumulated metrics. The communication pipeline registers in Figure 10,

which have already been mentioned, make this sharing possible. When the

metrics are in the shift registers these registers contain dummy bits which

only affect the comparisons if their is a tie. Hence, alway setting one of them

to zero does not affect the operation of the decoder.

The 16 bit long traceback chain contains the results of 16 comparisons

made by 8 butterflies after it is loaded. These 16 bits are written into trace

back memory during the next 16 clock cycles, leaving 2 clock cycles two read

the memory in the overall 18 clock master cycle. Every single traceback chain

writes to memory during the 16 write clocks. However, only a single bit from

the whole traceback memory is read during one of the two read cycles. The

physical memory arrangement for one board having 32 16-butterfly chips is

shown in Figure 12. The multiplexer is continued at the board level, and

the whole arrangement is controlled by the circuit of Figure 13. The large

ROM in Figure 13 handles the mapping from logical to physical addresses;

the small one creates three independent regions of memory from each of the

16,384 states. The handling of these regions is shown in Figure 14. The

pattern repeats and each of the two active regions requires one of the two

reads available in each master cycle.

(26)

Figure 7
Metric Computer

program
chain

program
chain
out

symbol symbol
signs magnitudes

A

q

r

(27)

Figure 8

D

B

I I I

tJ

D

B

I I I

~

X -------I

(28)

Figure 9

Compare/Select

N bit shift s register
e
I Output

e
C Conrol line
t

Word clock T
a F r

0 a

Force bi r C

One on control
line chooses

C e
e

Force Trace
control back

chain
in

Trace
back
chain
out

Accumulated
metric
inputs

(29)

Figure 10
Butterfly

Traceback in

A
X

Compare/
Select

y

A

A
X

Compare/
Select

y

A

Branch metric
r inputs

Traceback
out

Common
control

D

Outputs

D

M
u
X

Contraint
length
control

Initialization
chain
in

..-191 Butterfly 1

(30)

Figure 11
Chip

Butterfly 16

Common control signals Initialization
chain
continued

Chip 1

·-~ ~ Memory

(31)

Figure 12
Board

Chip 2 • • •
, ,

512x16=8K deep by 64 bits wide

• • •
64 to 1 multiplexer

, ,

6 bits for
multiplexer
address

1 bit out
to next
level of
multiplexing

13 memory
address lines

chip 32

H

(32)

Figure 13

Bit from
f Address lines

traceback -
memory - (K-1) - 2
The - word
second ~ ,--

bit of S.R. -every pair
is a -
decoded -
output -
bit --

K-1 bit
sh ift...K -
register --

S. R. cl ock_t
rt S.R. clock inhibit J...

I -

C
0 .. f0,1 ...
u -- - n ...
t

...
e

... -:.
Read

r ...
Clock t t

Counter period and number
of ROM words are both
12*(traceback length)

..
-

r--

E --
r---A.&.&.&

JJJ
Counte~

--.. .

--... ,._

---iii..
-

..
... ...
... ...
-

I
(chain length)

2
wires

To traceback
RAM address
lines
These bits
supplied by
the counter
during write

These lines
control the
multiplexer
address

These wires
go to the
remaining RAM
address lines .

This figure is drawn for
a K= 15 code with
traceback depth of 170
and chain length 16

(33)

Figure 14

Decoding left Inactive Traceback left

Traceback right Decoding right Inactive

Inactive Traceback left Decoding left

Decoding right Inactive Traceback right

Traceback left Decoding left Inactive

Inactive Traceback right Decoding right

34

CHAPTER VI

Graphs

This chapter consists of a paper which has been submitted to the Journal

of the Association for Computing Machinery.

35

1. Introduction and Summary.

The nth order deBruijn graph En is the state diagram for an n-stage binary
shift register. It is a directed graph with 2n vertices, each labelled with
an n-bit binary string, and 2n+l edges, each labelled with an (n + 1)-bit
binary string. The vertex labels represent the contents of the shift register
at a given point of time. The label on an edge connecting one vertex to
another represents the contents of the shift register preceeded by the bit
that is being input to the shift register, as it changes from one state to the
next. In Figure 1 we see a representation of B3 .

0000

1111

Figure 1. The deBruijn graph B 3 •

We are interested in the deBruijn graph Bn because it gives the topology
for a fully parallel Viterbi decoder for any rate 1/v convolutional code with
constraint length n + 2 ([3], Chapter 7). In such a decoder, a "butterfly" (a
pair of add-compare-select units) must be located at each node of the graph,
and all communication between butterflies takes place along the edges of the
graph. In fact, Caltech's Jet Propulsion Laboratory is currently developing
such a decoder, called the Big Viterbi Decoder, for a constraint length 15,

36

rate 1/4 convolutional code, for the Galileo m1ss10n. The BVD has 213

butterflies, connected according to the topology of B13. It is constructed from
256 identical semi-custom VLSI chips, each containing 32 butterflies. These
chips are arranged on 16 identical printed-circuit boards, each containing 16
chips. Of the 214 "wires" (butterfly interconnections) in the decoder, 56%
are internal to the chips, another 17% are internal to the boards, and 27%
are inter-board, or "backplane" connections. Furthermore, these chips and
boards are universal, in the sense that any deBruijn graph Bn with n 2 5
can be built from copies of these same chips, and any Bn with n 2 9 can
be built from copies of these same boards. In this paper, we will give the
theoretical background which led to the design of these chips and boards.
See [1] and [5] for further details. (We will return to the BVD at the end of
the paper - see Example 6.4.)

2. Preliminaries About Strings.

In this section we introduce some notation and establish a few elementary
facts about binary strings, which will be needed throughout the rest of the
paper.

2.1. Definitions. A binary string is a sequence of Os and ls. The length of
a binary string x, denoted by Jxl, is the number of symbols in x. The empty
string Eis the string with no symbols. Thus 1€1 = 0. The set of all strings of
length n is denoted by {0, l}n. If x and y are two strings, the concatenation
of x and y, denoted by xy or x * y, is the string obtained by following the bits
of x by the bits of y. If x = a* b * c, then a is called a prefix, bis a substring,
and c is a suffix of x. If b * c isn't empty, then a is called a proper prefix
of x; if either a or c is nonempty, b is called a proper substring of x; and if
a* b isn't empty, c is called a proper suffix of x. If x is a nonempty binary
string, then the symbol xL (the left part of x) denotes the string obtained by
removing the rightmost bit of x; similarly, xR (the right part of x) denotes
the string obtained by removing the leftmost bit of x. If S and Tare sets of
binary strings, we say that S covers T if every string in T has a substring
in S. Similarly, we say that S prefixes T if every string in T has a prefix in
S. We say that S is irreducible if no string in S covers any other. Finally,
we define the cost of a set of strings Sas cost(S) = LsES2-lsi, where Isl
denotes the length of the string s. 0
2.2. Examples. If x = 1011, then lxl = 4, xL = 101 and xR = 011. The set
S = {10,111} covers {010, 100,101,110,111}, and {1,0000} covers {0, l}n
for all n 2 4. Similarly, {1,000} prefixes {1,00000}, and {0, 10,110,111}
prefixes {0, l}n for all n 2 3. Also, {1,000} is irreducible, but {1,001} is not.
The cost of the set {10,111} is 3/8, cost({1,000}) = 5/8, and cost({0, 1} n) =
1, for all n 2 1. 0
2.3. Theorem. If S is an irreducible set of strings, then every string x
covered by S can be factored uniquely in the form x = >.sp, where s E S, >.

37

and pare (possibly empty) strings, and (As)L has no substring from S. \Ve
will call this factorization the S-factorization of x.

Proof: Since x is covered by S, x will have one or more subscrings from
S. Among these 5-substrings, there will be a unique leftmost one, since no
string in 5 covers any other. Call this unique leftmost 5-substring s. Then
plainly x = Asp is the desired unique factorization. 0

2.4. Examples. As noted above, S = {l, 0000} is irreducible and covers all
strings oflength 4. The 5-factorization of 1010 is €*1*010, the 5-factorization
of 0101 is O * 1 * 01, and the 5-factorization of 0000 is € * 0000 * €. 0

2.5. Lemma. If 5 covers {0, 1 }n, then every string x of length nor greater
will have a unique 5-factorization, and if x = Asp is this factorization, then
jAsi :Sn.

Proof: Every string of length n or greater will have a substring of length
n. This substring will be covered by S, and hence so will x. Now let x be a
string of length 2:: n, and let x = Asp be its 5-factorization, as described in
Theorem 2.3. By definition of the 5-factorization, (As)L is not covered by
S. However, if jAsi > n, then l(As)LI 2:: n, which would imply that (As)L is
covered by S, a contradiction. 0

3. DeBruijn Graphs and Subgraphs.

The deBruijn graph Bn, which is the state diagram for an n-stage shift
register, can be described as follows. There are 2n vertices, each labelled
with an n-bit binary string x. There is a directed edge from the vertex with
label x to exactly two other vertices, viz. those with labels OxL and lxL.
The edge from x to OxL is labelled Ox and the edge from x to lxL is labelled
lx. Similarly, there are exactly two edges directed into x, from xRO and xRl,
which are labelled xO and xl. This definition is summarized in Figure 2a.
For example, in Figure 1, from the vertex 101 there are edges leading to
0(101)£ = 010 and to 1(101)£ = 110. Equivalently, we can define Bn by
saying that it has 2n+l edges, each labelled with an (n + l)-bit binary string,
and that the edge labelled X connects the vertices with n-bit labels X R and
XL. This alternative definition is summarized in Figure 2b. For example,
in Figure 1, the edge labelled 1011 is a directed edge from (lOll)R = 011 to
(1011)£ = 101.

We next need to define the notion of a subgraph of a deBruijn graph. In
this definition, and later, the symbols E(G) and V(G) stand for the number
of edges and vertices in the graph G. Thus for example, E(Bn) = 2n+l and
V(Bn) = 2n.

3.1. Definition. If H and Gare graphs, H is called a G-subgraph, written
H ~ G, if H has the same vertex set as G, and an edge set which is a subset

38

X

(a)

.,..__X _ ___,,►~I XL

(b)

Figure 2. Two Equivalent definitions of the DeBruijn
Graph En. In (a), we see the four vertices connected

to the vertex labelled x (xis an n-bit string); in
(b), we see the vertices at the left and right ends

of the edge labelled X (Xis an (n + 1)-bit string).

of the edge set of G. The density of a G-subgraph H, denoted by den(H : G),
is the fraction of the edges in H present in G, i.e., den(H : G) = E(H)/ E(G).
0

3.2. Examples. A En-subgraph of density O consists of 2n isolated vertices,
and a En-subgraph of density 1 is En itself. Figure 3 shows a E3-subgraph of
density 6/16, consisting of the eight vertices of E 3 and the six edges labelled
{0010,0011,0100,0101,0101,0lll}. 0

Our goal is to build a large deBruijn graph EN by connecting together
multiple copies of a smaller graph, called a "building block." If we think
of the building blocks as VLSI chips, it is natural to want to minimize the
number of edges needed to connect the building blocks together. This goal
leads to the following definition.

3.3. Definition. A graph H is a building block for a graph G if there
exists G-subgraph H which is the disjoint union of several copies of H. The
efficiency of H as a building block for G, denoted by eff(H : G), is defined

39

000

001 100

010

00 I I

101

0110
011 110

111

Figure 3. A B3 subgraph with density 6/16. (In the
notation of Section 4, this is the graph B3 ({1,000}).
In the notation of_~ection 5, it is the graph B 3 ({1}).
It is a universal deBruijn subgraph of efficiency 3/8.)

to be den(H : G). In other words, eff(H : G) represents the fraction of the
edges of G which are accounted for by the edges in the building blocks. 0

3.4. Theorem. If H is a building block for G, then

V(G)E(H)
eff(H: G) = V(H)E(G)"

Proof: The G-subgraph H has the same number of vertices as G and is the
disjoint union of several disjoint copies of H. Since G has V(G) vertices, and
H has V(H) vertices, this means that His the union of exactly V(G)/V(H)
copies of H. Since each of of these copies of H has E(H) edges, E(H) =
E(H)(V(G)/V(H)). Thus eff(H : G) = den(H : G) = E(H)/E(G) =
(E(H)(V(G)/V(H))/E(G) = (V(G)E(H)/V(H)E(G)). □

3.5. Examples. Any En-subgraph H is a building block of efficiency
den(H : En) for En. A En-subgraph of density O is a building block of
efficiency O for any EN with N 2 n. A En-subgraph of density 1 (i.e., En
itself) cannot be a building block for any larger deBruijn graph, since the
disjoint union of 2N-n copies of En is a disconnected graph with the same
number of edges as EN, which is connected. In Figure 4 we see two copies of
the graph H in Figure 3 relabelled and wired together with 20 new edges to

40

form a graph isomorphic to B4. Since B4 has 32 edges, and the two copies
of H together have 12 edges, it follows that H is a building block for B4 of
efficiency 12/32 = 37.5%. In fact, the graph in Figure 3 is a building block of
efficiency 3/8 for any BN with N ~ 3, as we will see in Example 4.5, below.
The building block of Figure 3 is an example of what we call a universal
deBruijn building block. D

Figure 4. Two copies of the B3 subgraph H from Figure 3,
relabelled and wired together to make B4 (edge labels omitted).

3.6. Definition. A universal deBruijn building block of order n is a En
subgraph which is a building block for any deBruijn graph BN with N ~ n.
D

The following theorem shows that it is easy to compute the efficiency of
any univeral deBruijn building block.

41

OOOA

001A lAOO

OOIAI

lAOl

OIAIO
01Al 1A10

1A11

Figure 5. The graph B3(S, A), obtained by inserting the symbol
A immediately after the first occurrence of a substring from

S = { 1, 000} in the corresponding label in B 3 (S) (cf. Figure 3).

3. 7. Theorem. Let H be a a universal deBruijn building block of order n.
Then for all N 2: n, eff(H: BN) = den(H: Bn)- We will call this common
value the efficiency of H as a deBruijn building block.

Proof: By Theorem 3.4, the efficiency of H as a building block for B N is

V(BN) E(H)
eff(H: BN) = E(BN) . V(H)

2N 2n+l den(H : Bn)
= 2N+1 . 2n

= den(H : Bn)- 0

In the next section, we will describe a general construction for universal
deBruijn subgraphs (Theorem 4.3), and in Section 5 (Theorem 5.9), we will
see that there exist universal deBruijn subgraphs whose efficiency approaches
1 as n approaches infinity.

42

4. A General Construction for Universal DeBruijn Subgraphs.

In this section, we will present our main theorem (Theorem 4.3), which
gives a general construction for universal deBruijn building blocks. The key
to this construction is a way of constructing a En subgraph from a set of
strings of length ::; n.

4.1. Definition. If S is a set of strings, En(S) is defined to be the En
subgraph obtained by deleting from En all edges whose labels have a prefix
in S. 0
4.2. Lemma. If S is irreducible, E(En(S)) = 2n+1 (1 - cost(S)); equiva
lently, den(En(S) : En)= 1 - cost(S).

Proof: The 2n+I edges in En are labelled with the (n + 1)-bit strings, and
there are 2n+I of them. For each s E S, there are exactly 2n+1-lsl (n + 1)-bit
strings with s as a prefix. Since no (n + 1)-bit string can have two prefixes in
S (no string in Sis a prefix of any other, since Sis irreducible), the subgraph
En(S) will have exactly 2n+l - Lses 2n+I-isi = 2n+1 (1 - cost(S)) edges.

□
The main theorem in this paper is the following.

4.3. Theorem. If S is irreducible and covers {O, 1 }n, then En(S) is a
universal deBruijn building block of order n with efficiency 1 - cost(S).

We postpone the proof of Theorem 4.3 until we have given several ex
amples, and stated and proved a stronger but more technical result (Theo
rem 4.6).

4.4. Example. The set S = {O, 1}, is irreducible, has cost 1, and covers
{O, l}n for any n 2: 1. The corresponding subgraph En(S) is a En-subgraph
of density zero, and is plainly a building block of efficiency zero for any
deBruijn graph with N 2: n. 0
4.5. Example. The set S = {1,000} is irreducible, has cost 5/8, and covers
{O, 1 }3. In this case, E 3(5) is identical to the E 3-subgraph in Figure 3. Thus
Theorem 4.3 implies that the graph E 3({1,000}) is a universal deBruijn
building block with efficiency 3/8, as asserted in Example 3.5. 0

The next theorem concerns a family of relabelled copies of the graph
En(S). If A is any binary string, we construct the graph En(S, A) from
En(S) by inserting the string A into each vertex or edge label just after the
first (leftmost) occurrence of a substring from S. In Figure 5, we illustrate
this construction for the graph E3({1; 000}).

4.6. Theorem. For all N 2: n, we have

U En(S, A) = EN(S).
IAl=N-n

43

4.1. Example. In Figure 6 we have illlustrated Theorem 4.6, by showing
the two graphs B3(S, 0) and B3(S, 1), for S = {1,000}. When taken together,
these two graphs form the graph B4 (S), which is a subgraph of B4 • Thus by
adding the 20 edges whose labels have a prefix from S (16 with prefix 1 and
4 with prefix 000), we will obtain B4 , and indeed this is how we arrived at
Figure 4. 0

Proof of Theorem 4.6: Let us call the the graph UIAl=N-n Bn(S, A)
appearing in the statement of the theorem the union graph. To prove Theo
rem 4.6, we need to show that the union graph is a B N-subgraph, and that
its edges are exactly those whose labels have no prefix from S. To do this, we
will prove the following four assertions (always A denotes a string of length
N-n):

(1) Every N-bit string occurs as a vertex label in some Bn(S, A);

(2) Every edge in Bn(S, A) is an edge of the deBruijn graph BN;

(3) No edge label in Bn(S, A) has an S-prefix;

(4) Every (N + 1)-bit string without an S-prefix appears as an edge label
on some Bn(S, A).

Taken together, (1) and (2) show that the union graph is a EN-subgraph;
and (3) and (4) show that the edge labels in the union graph are the (N + 1)
bit strings without an S-prefix.

Proof of (1): Let X be an arbitrary N-bit string, and let X = >..sp be its S
factorization. By Lemma 2.5, !>..si ~ n, so that IPI ~ N -n. If we denote the
leftmost N - n bits of p by A, then we have p = Ap', and hence X = >..sAp'.
It follows that X appears as the label of the vertex >..sp1 in Bn(S, A). For
example, if n = 3, S = {1,000} and N = 8, the 8-bit string X = 01011110
has S-factorization O * 1 * 011110. The first five bits of 011110 are 01111 and
so 01011110 appears as the label on vertex 010 in B3(S, 01111).

Proof of (2): If an (n + 1)-bit edge label x in Bn(S) has S-factorization
x = >..sp, then neither >.. nor p is empty: >.. isn't empty, because no edge
label in Bn(S) has an S-prefix; p isn't empty, since Ix! = n + 1, and by
Theorem 2.5, any S factorization has I.Xsl ~ n. Thus in Bn(S), an edge
with S-factorization >..sp connects the vertices with labels (>..sp)R = >.. R sp
and (>..s p) L = >..s pL. Furthermore, this representation of the vertex labels
must in fact be the S-factorization of them, since an earlier occurrence of a
substring from S in either _xRsp or >..spL would imply an earlier occurence
of an S-string in >..sp. This means that in the graph Bn(S, A), the edge
>..sAp connects the vertices >..RsAp = (>..sAp)R and >..spL = (AsAp)R. In
other words, an edge with label X in Bn(S,A) connects xn to xi, and
by the definition in Figure 2b, this is an edge in the deBruijn graph Bn.

44

For example, in Figure 5, we see that the edge with label 00lA.0 connects
00lA0R = 0lA0 to 00lA0L = 00lA, and this is an edge in the deBruijn
graph BIAl+3, for any string .4.

Proof of (3): Let X be an edge label in the graph Bn(S, A). Then by
definition, X has the form X = AsAp, where Asp is the S-factorization of
an edge label in Bn(S) with A nonempty. If X had an S prefix, says', then
either s' would be a prefix of Asp, or s would be a proper prefix of s'. But
both of these alternatives are impossible: s' cannot be a prefix of Asp, since
Asp, being an edge of Bn(S), has no S-prefix; and s cannot be a proper
substring of s', since no string in S is a proper substring of any other. Thus
every edge in Bn(S, A) is an edge in BN(S), as asserted.

Proof of (4): To prove that every (N + 1)-bit string with no S-prefix
occurs as an edge label in Bn(S, A) for some A, let X be such a string, and
let X = Asp be its S-factorization, in which necessarily A is nonempty. If A
denotes the leftmost N - n bits of p, then as above, we have X = AsA.p'. The
string Asp' cannot have a prefix in S, for ifs' were such a prefix, then either
s' would be a prefix of X, or else s would be a proper substring of s' (since
).. is nonempty), and both of these alternatives ae impossible. Thus >..sp'
is the label on an edge of Bn_(S), and so X = >..sA.p' appears as the label
corresponding to that edge in the graph Bn(S, A). For example, let S =
{1,000}, n = 3, and N = 8, and consider the 9-bit string X = 001011100,
which has no S-prefix. The S-factorization of Xis X = 00 * l * 011100. The
first 5 bits of 011100 are 01110, and so X appears as the label on the edge
001 in the graph B3(S, 01110).

This completes the proof of Theorem 4.6. 0

We conclude this section with the proof of Theorem 4.3.

Proof of Theorem 4.3: Theorem 4.6 explicitly shows that the union of
2N-n copies of Bn(S) forms a subgraph (namely, BN(S)) of the big deBruijn
graph B N, and so B N can be constructed simply by adding the edges missing
from B N to this union. Thus Bn is a universal deBruijn building block.
According to Theorem 3.7, the efficiency of a universal deBruijn building
block is the same as its density, and by Lemma 4.2, the density of Bn(S) is
1 - cost(S). 0

45

0000

0010 1000

00101

0101 01 10 1010

1011

0001

00 I I 1100

001 I 1

0111 01 10 1I10

1111

Figure 6. Illustrating Theorem 4.6:
B3(S,0) U B3(S, 1) = B4 (S) (compare with Figure 4).

5. Construction of Low-Cost Covers for {O, l}n.

In Theorem 4.3, we showed how to construct universal deBruijn building
blocks from covering sets for {O, l}n of small cost, but we were able to cite

46

only a few examples. In this section, we will give several general construc
tions for low-cost covers for { 0, 1} n, thereby automatically producing (via
Theorem 4.3) efficient universal deBruijn building blocks.

To produce a cover for {O, l}n, we begin with an arbitrary irreducible
set S of strings of length ::S n, which we call a precover for { 0, 1} n. In general,
Swill fail to cover a certain subset of {O, l}n, which we call Omitn(S). We
denote the number of strings in Omitn(S) by omitn(S). Plainly, if we adjoin
Omitn(S) to S, the resulting set, which we denote by Cn(S), will still be
irreducible, will cover {O, l}n, and its cost will be cost(S) + 2-nomitn(S).
We summarize this simple but useful construction in the following theorem.

5.1. Theorem. For any irreducible set S of strings of length ::S n, the set
Cn(S) is an irreducible cover of {O, 1} n of cost (cost(S) + 2-nomitn(S)). D

5.2. Example. If S = {1}, then Omitn(S) = {00 · · · O}, and omitn(S) = 1
for all n 2: 1. Thus Cn(S) = {1,00···0} is a cover for {O,l}n of cost
1 /2 + 2-n, for all n 2: 1. D

5.3. Example. If S = {10}, then for n 2: 2, Omitn(S) consists of then+ l
strings of the form Ok * l n-k for O ::S k :'.S n. Thus omitn(S) = n + l, and
Cn(S) is a cover for {O, l}n of cost 1/4 + (n + l)/2n, for all n 2: 2. D

5.4. Example. If S = {100, 1101 }, then for n 2: 4, it can be shown that
omitn(S) = 1 + (7) + G), and thus Cn(S) is a cover for {O, l}n of cost
3/16 + (1 + (7) + (;))/2n, for all n 2: 4. D

If we combine Theorems 4.3 and 5.1, we find that if Sis an irreducible
set of strings of length ::Sn, then Bn(Cn(S)) is a universal deBruijn building
block of order n and efficiency 1- cost(S)-2-nomitn(S). For simplicity, we
denote Bn(Cn(S)) by Bn(S), and display this fact as a Theorem.

5.5. Theorem. If Sis an irreducible set of strings of length ::S n, then the
graph Bn(S) is a universal deBruijn building block of order n and efficiency
1 - cost(S) - 2-nomitn(S). 0

The following theorem is a partial generalization of examples 5.2 and
5.3.

5.6. Theorem. Fix m 2: 1. If Sm = {10m-l }, then as n -. oo, omitn(Sm) =I
0(a~), where O'.m is the largest positive root of the equation zm-2zm-l +l =
0, which is strictly less than 2. Thus for all n 2: m, Cn(S) is a cover for {O, l}n
of cost 2-m + 0(o:m/2r, which approaches 2-m as n -. oo.

Proof: According to (2], if m is fixed, the generating function fm(z)
I:n>o omitn(Sm)zn is given in closed forr·, by fm(z) = 1/(1 - 2z + zm).
It follows then from the general theory of rational generating functions [4,
Theorem 4.1.1], that omitn = 0(/3n), where /3 is the reciprocal of the smallest
positive root of the equation 1-2z + z m = 0, which is also the largest positive

47

root of the "reciprocal" polynomial Pm(z) = zm -2zm-l + l. The largest root
of Pm(z) is strictly less than 2, since Pm(l) = 0, Pm(2) = 1 and P:n(z) > 0
for z > 2. D

5.7. Corollary. If Cn denotes the minimum cost for a cover for {O, l}n,
then limn-oo Cn = 0.

Proof: Theorem 5.6 implies that for any m 2=: 1, limn-oo Cn S 2-m. D

5.8. Remarks. We conjecture, but cannot prove, that Cn = 0(1/n).
However, McEliece and Swanson, in a forthcoming paper, will show that
en = n(l/n) and Cn = O(log n/n). (The latter result is based on a more
careful analysis of the type given in Theorem 5.6.) D

In view of the connection between covers for { 0, 1} n and universal de
Bruij n building blocks, Corollary 5.7 implies the following.

5.9. Theorem. There exist universal deBruijn building blocks whose effi
ciency is arbitrarily close to 1.

Although Theorem 5.6 gives an infinite family of reasonably cheap cov
ers for { 0, 1} n, it does not produce the cheapest possible covers for all values
of n. Indeed, below is a table giving the cheapest covers of { 0, 1} n, for
1 s n S 10, that we know, and therefore also the most efficient universal
deBruijn building blocks we know, for orders up to 10. In every case, we
give only the "precover" S, it being understood that the actual cover is the
larger set Cn(S). We notice that for n S 7, the "10 · · · O" construction of
Theorem 5.6 gives the best co':er we know of, while for 8 S n S 10 (and
presumably for all larger values of n, too) the best cover is considerably
more complicated. For 1 S n S 5, we believe that the values in the table
above are the best possible. For larger values of n, however, improvements
may be possible. For n 2=: 8, the covers described in the table are based
on the general "{100, 1101}"-cover described in Example 5.4. For exam
ple, for n = 8, omit({ 100, 1101}) = 37, so that Cs ({ 100, 1101}) is a cover
for {O, 1 }8 of cost 1/8 + 1/16 + 37 /256 = 85/256. However, by trial and
error, we find that of the 37 strings in Omit({100, 1101}), all but six are
covered by {010101, 010111, 011111, 0000001, 0000101, 0000111}. Thus if we
use {100,1101} U {010101,010111,011111,0000001,0000101,0000111} as a
precover, Theorem 5 .1 guarantees a cover of cost 1 / 8 + 1 / 16 + 1 / 64 + 1 / 64 +
1/64+1/128+1/128+1/128+6/256 = 72/256, as shown in the table. (Using
{10} as a precover for n = 8 results in a cover of cost 73/256.)

48

n cost·2n efficiency S (pre cover)

1 2 0.000 {1}
2 3 0.250 {1}
3 5 0.375 {1}
4 9 0.438 {1} or {10}
5 14 0.563 {10}
6 23 0.641 {10}
7 40 0.688 {10}
8 72 0.719 {100,1101,010101,010111,

011111,0000001,0000101,0000111}
9 127 0.752 {100,1101,0000001,0101011,0101111,

0111111,00001011,00001111,01010101}
10 229 0.776 {100,1101,01010101,01010111,01111111,

000000001,000000101,000000111,
000010101,000010111,000011111}

6. Hierarchical Building Blocks.

We have seen that the universal deBruijn building blocks described in The
orem 4.3 can be used to build deBruijn graphs of any size. Surprisingly,
however, they can also be used as building blocks for larger universal de
Bruijn building blocks! This is useful in practice, when many chips must be
put on several boards, and the boards are then wired together to make the
deBruijn graph. The main theorem here is the following.

6.1. Theorem. Suppose k :::; n. If S is irreducible and covers {0, l}k,
and Tis irreducible and covers {0, l}n, and if S prefixes T, then Bk(S) is a
building block for Bn(T). Furthermore,

eff(Bk(S) : Bn(T)) = 1 - cost(S).
1 - cost(T)

Proof: Theorem 4.6 says that Bn(S) is equal to UA:IAl=n-k Bk(S, A), and
so Bk(S) is a building block for Bn(S). But since every string in T has a
prefix in S, then Bn(S) ~ Bn(T), so that Bk(S) is also a building block for
Bn(T). To calculate eff(Bk(S): Bn(T)), we use Theorems 3.4 and 4.3:

V(Bn(T))E(Bk(S))
eff(Bk(S): Bn(T)) = V(Bk(S))E(Bn(T))

2n2k+l(l - cost(S))
- 2k2n+l(l - cost(T))

1 - cost(S)
- 1 - cost(T)' □

49

Figure 7. One possible layout of the B 5 ({10}) chip used to
build the BVD. (All edges are directed from left to right. The
vertex labels shown are the decimal equivalents of the actual

five-bit binary labels, and the edge labels have been omitted.)

6.2. Lemma. If S is any set of strings, and if k ::; n, then Ck(S) prefixes
Cn(S).

Proof: By definition, Ck(S) = SU Omitk(S) and Cn(S) = SU Omitn(S).
A strings E Omitn(S) is a string of length n with no substring from S. The
k-bit prefix of s is a string of length k which also has no substring form S,
and so this prefix is in Omitn(S). Thus every string in Cn(S) is either in S,
or has a prefix in Omitk(S). D
6.3. Theorem. If k::; n, then Bk(S) is a building block for Bn(S), and

eff(Bk(S): Bn(S)) = 1 - cost(S) - 2-ko~tk(S).
1 - cost(S) - 2-nom1tn(S)

Proof: Follows from Theorem 6.1 and Lemma 6.2. D
6.4. Example. We return to the Big Viterbi Decoder mentioned briefly in
Section 1. The BVD requires the construction of the deBruijn graph B13.
The actual construction used at JPL is based on a VLSI chip realization of
the graph B 5 ({10}), which, by Theorem 5.5 and Example 5.3, is a universal
deBruijn building block of efficiency 18/32 (see Figure 7), and so it contains
exactly 64 · ;~ = 36 edges.

50

According to Theorem 6.3, Bs({10}) is a building block for B 9 ({10}),
and in the BVD, 16 of the Bs({10})-chips are wired together on a printed
circuit board to make a B 9 ({10})-board. Now B 9 ({10}) is a universal
deBruijn building block of efficiency 374/512, and so it contains exactly
512 · :I~ = 748 edges. However, 16 · 36 = 576 of these edges are in
ternal to the component chips, so that each B 9 ({10})-board actually has
only 748 - 576 = 172 printed wires. Finally, since B 9 ({10}) has efficiency
374/512 as a deBruijn building block, in order to build B 13 , there will be
214

· (1 - :I~) = 4416 wires external to the board, or "backplane" wires. In
summary:

unit type number of units wires/unit total wires

chip 256 36 9216
board 16 172 2752

backplane 1 4416 4416

16384

D

References.

[1] 0. Collins, F. Pollara, S. Dolinar, and J. Statman, "Wiring Viterbi De
coders (Splitting Debruijn Graphs)," JPL TDA Progress Report 42-96
(February 1989), in press.

[2] L. J. Guibas and A. M. 0dlyzko, J. Comb. Theory A (30) (1981), pp.
183-208.

[3] R. J. McEliece, The Theory of Information and Coding. Reading, Mass.
: Addison-Wesley, 1977.

[4] R. Stanley, Enumerative Combinatorics, Vol. 1. Monterey, California:
Wadsworth and Brooks-Cole, 1986.

[5] J. Statman, G. Zimmerman, F. Pollara, and 0. Collins, "A Long Con
straint VLSI Viterbi Decoder for the DSN," JPL TDA Progress Report
42-95 (November 1988), pp. 134-142.

(51)

Bibliography

1) Introduction to Communication Science and Systems

Pierce and Posner, Plenum Publishing
New York, New York 1980

2) The Theory of Information and Coding Robert J. McEliece

Addison-Wesley Publishing Company
Reading, Massachusettes 1977

