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Abstract 

This thesis presents a collection of new codes, 

algorithms, and hardware, which can all be used to 

reduce the required energy per information bit to noise 

spectral density ratio on the Gaussian channel. First 

comes a feedback technique from an outer to an inner 

code. The basic idea is to perform a second maximum 

likelihood decoding operation of the inner code that 

incorporates side information. Next comes a new kind 

of algebraic outer code which we get from combining 

Reed Solomon codes with themselves. The most 

important results, however, deal with the construction of 

long constraint length Viterbi decoders. One chapter 

presents a hardware design of a constraint length 15, 

rate 1 /6 decoder. The last chapter gives some results 

on the partitioning of a deBruijn graph which make the 

number of interconnections in the design physically 

realizable. 
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Introduction 

'Traditionally people view coding as the sacrifice of bits that could be 

used to carry information in order to achieve greater reliability, e.g., a Ham

ming code in a computer memory. Coding is, however, a general way to 

exchange complexity at the transmitter and receiver for reduced medium 

cost per information bit at any given error rate. Coding's benefits become 

greater as the allowable error rate approaches zero where the medium cost 

of an uncoded system becomes infinite, whereas that of a coded system ap

proaches a constant called ch~el capacity. 

For magnetic tape the medium price is just the cost of a reel divided 

by the number of bits it can hold. For a deep space probe, it is the trans

mitter power divided by the data rate; i.e., it is measured in Joules per bit 

of information sent at whatever bandwidth expansion factor the equipment 

allows. As the complexity increase falls disproportionately on the ground

based receiving equipment and the medium cost is astronomical ( approxi

mately fifteen million dollars for a twenty-percent increase in power), the 

deep space channel is an ideal place to apply coding, and many of the exam

ples in this thesis use it. The deep space channel (Reference 1) is an analog, 

white Gaussian channel with two-level signalling; i.e. the transmitter sends 

out symbols that can have either of two values (say -1 or +1), and the output 

of the radio frequency equipment on Earth is a voltage proportional to the 

transmitted symbol plus an independent Gaussian random variable whose 

variance is proportional to the spectral density of the noise, No. 
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The goal of coding is to minimize Es/RNo, where Es is the energy per 

symbol and 1 /R is the average number of symbols devoted to each informa

tion bit. The capacity of this channel, the minimum ratio of the energy per 

information bit to the noise spectral density, is upper-bounded by and for 

small R very close to 
22R -1 

2R 
(1) 

This is the capacity of the channel if the input is not restricted to only two 

levels and comes from the more usual 

(2) 

when Es is set equal to REb. 

The conversion of discrete to continuous values greatly complicates the 

problem of designing a coding system that approaches channel capacity. The 

transmitter outputs discrete binary symbols, but what arrives at the decod

ing equipment is an analog estimate of whether a +1 is more likely to have 

been sent than a -1. The problem is that algebraic decoding methods, the 

only known ones that allow an exponential reduction in decoded error rate 

with only polynomial complexity, cannot incorporate the fuzzy information 

produced by the channel. This problem has led to the use of concatenated 

codes when error rates must be very low, where an inner code that can in

corporate soft decision information is concatenated with an algebraic code. 

The original channel combined with the inner code forms another channel 

over which the outer code operates. Unfortunately, this outer channel must 

have a lower capacity than the original channel; no matter how good the 

outer code, the loss cannot be recovered. Said differently, the potential per

formance of the concatenated code viewed as a whole is much greater than 

the serial, concatenated decoding algorithm manages to exploit. 
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Chapter two deals with a modification of the classic Viterbi algorithm 

for maximum likelihood decoding of convolutional codes, which allows some 

feedback from the outer algebraic code to the inner code. The combined 

scheme is superior to convolutional coding alone even at the high allowable 

error rates characteristic of uncompressed images. Chapter three tells about 

improved algebraic codes formed by combining Reed-Solomon codes with 

themselves. The combination of these two completely debunks the idea of a 

computational cutoff rate by coming within ldB of channel capacity on the 

analog Gaussian channel. With only twenty percent left until the ultimate 

limit trying to save the idea of a hard limit imposed by decoder complexity 

limitations would be not only futile but boring. 

Chapter four describes the hardware and algorithmic details required 

to build powerful, i.e., long constraint-length, convolutional decoders. The 

principal problem, as with many large machines, turns out to be internal 

communication, and the final solution to it is a problem in graph theory, 

which is presented in Chapter five. The basic structure of maximum likeli

hood decoding of convolutional codes comes from the state diagram of the 

shift register encoder. This graph, called a de Bruijn graph, appears in many 

other contexts, e.g., as the constant dimensional FFT. Hence the results in 

the last chapter should have application beyond coding theory. 
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CHAPTER II 

Decoding with Side Information 

A convolutional encoder consists of a shift register ( whose length is 

called the constraint length of the code), a block of linear combinational 

logic, and a multiplexer. As Figure 1 shows, the information to be encoded 

is clocked into the shift register and the output of the multiplexer goes to the 

radio frequency modulator. The multiplexer makes one complete sweep every 

time the shift register is clocked. The number of outputs of the combinational 

logic (inputs to the multiplex~r) is 1/R where R is the rate of the code. The 

combinational logic could be made nonlinear or even time varying without 

changing the decoding algorithm much and we will see later that time varying 

codes may have some advantages. 

Before talking about the maximum likelihood decoding of these codes, 

we must define in what sense we mean maximum likelihood. We could for 

instance ask for maximum likelihood on a bit-by-bit basis. This scheme would 

minimize the decoder bit error probability; however, it is extremely difficult 

to implement and is only slightly superior to another much simpler decoding 

technique, Viterbi decoding. Viterbi decoding finds the most likely sequence 

of bits between known starting and ending states of the encoder shift register. 

Figure 2 shows how it works. Each column of dots represents the four possible 

states of a two bit shift register encoder. The lines connecting successive 

columns represent the possible state transitions as a new bit is shifted into the 

register. Each line corresponds to a use of the channel, e.g., the modulation 



5 

of the radio frequency carrier by the sequence of symbols produced by the 

combinational logic. 

The decoder sees the symbols produced by the encoder after the channel 

noise has corrupted them. If each of the branches of the graph is given a 

length equal to the logarithm of the probability that the symbol sequence 

which it calls for was sent, then the shortest path through the graph that 

connects two points will correspond to the most likely sequence of transmit

ted symbols between these two fixed states of the encoder. For the Gaussian 

channel some simplification is possible, and these lengths can just be the 

received vector of voltages multiplied by the vector of symbols which the 

encoder would generate if it took the corresponding branch. 

Finding the shortest path through the graph is quite easy because none 

of the lines jumps over any oft-he columns of points. Thus, one simply has to 

find the shortest path to every point of each column in turn. This technique is 

called Viterbi decoding. Viterbi decoding can even be made free of the need 

to operate between fixed encoder states, because when proceeding backward 

through the trellis the number of possible shortest paths can be no more 

than the number of states and at each step there is always some chance that 

two will merge. This convergence means that beyond a certain distance all 

paths will be the same with arbitrarily high probability and makes continuous 

encoding and decoding possible; i.e., whichever starting state is chosen, the 

decoding result will be the same. 

The whole purpose of this chapter is to point out that the decoding 

algorithm can use information other than the received symbols. Its effect is 

to prune the trellis of state transitions if it is hard or modify their lengths 

if it is soft. The lower half of Figure 2 shows what happens to the trellis 

when one of the information bits is known, and Table 1 presents the results 



6 

of simulations of the constraint length 15 rate 1/ 4 convolutional code to be 

used on the Galileo spacecraft first with no side information and then with 

different types. These simulations come from a hardware decoder using 254 

levels of input quantization and a traceback depth of 170. Each line in the 

table required a run of 450,000 bits. The table gives the bit and symbol 

error rates as a function of signal to noise ratio expressed in dB. A symbol 

here is just a group of eight consecutive bits; i.e., it refers to the basic unit 

of an outer code that processes bytes. A Reed-Solomon code over GF(256) 

is such a code. This dichotomy is confusing but entrenched. (For ten-bit 

symbols the error rates would be about ten percent higher and for twelve-bit 

symbols they would be about thirteen percent higher.) The signal to noise 

ratios in the table must be converted to information bit signal to noise ratios 

in order to be meaningful; i.e. some of the bits going into the shift register 

carry no information; they are forced to a predetermined value. To account 

for this loss, one has to subtract the fraction of bits carrying information 

( expressed in dB) from the SNR figure in the table. This number appears at 

the top of each subtable. It is also necessary to divide the error rates by the 

same fraction to compare the code with known bits to the original. These 

quotients are the corrected error rates in the table. 

Decoding with some bits known appears to be a losing game when cor

rected bit error rates are compared at the same information bit signal to noise 

ratio. However, two simple observations show why the process is worthwhile. 

The first is that if the known bits are separated by a distance less than the 

constraint length, then the decoder complexity is reduced. Consider the data 

for every tenth bit known. The decoder complexity will be comparable to a 

constraint length 14 code because no more than 14 unknown bits ever appear 

in the encoder shift register at the same time. There are 214 instead of 215 
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states in one column of the trellis. The performance is, however, very close 

to the original constraint length 15 code. 

The second observation is that the known bits can come from the de

coding of an outer code whose parameters are chosen so as to make the 

probability of failure to decode negligibly small, say less than one in a mil

lion. If the bits going into the shift register are protected by interleaved 

outer codes, then the decoding of one of the outer codewords followed by a 

second convolutional decoding operation using this information will greatly 

decrease the error rates of the symbols in the remaining outer codewords. 

The power that was used by the symbols of the first outer codeword is now 

available to the the symbols of the others. 

As an example consider what happens when every other 8 bit symbol 

is known. Looking at Table 1 we see that the error rate of the remaining 

symbols has dropped to a very small value. We may either choose to accept 

this under one in a thousand error rate on half the symbols or clean it up with 

another outer code. The redundancy of the code required to clean up these 

errors will be much less than one percent. The complexity of the second 

convolutional decoding operation will be very small because the machine 

used to perform it needs only 128 states. Thus, with very little hardware we 

can achieve the equivalent of perfect erasure declaration. 

Suppose we do not require extremely low error rates; e.g., we want to 

transmit uncompressed images. We can still benefit from redecoding by 

choosing OdB as the inner-code operating point and protecting every fifth 

symbol with one of the outer codes described in Chapter III ( or, for that 

matter, an ordinary Reed Solomon code). To achieve a one-in-a-million 

chance of failing to decode, a Chapter III code will require a redundancy of 

15 percent. Since only 1/5 of the data is protected, the average redundancy 
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will be .03. Thus, the information bit signal to noise ratio of the combined 

code with redecoding is .132dB, and 4/5 of the data will experience a bit 

error rate of four in a thousand, while 1/5 will have an error rate lower than 

one in a million. This compares with a .5dB signal to noise ratio for a five

in-a-thousand bit error rate. Thus we are saving almost .4dB by adding a 

block code and making a second pass. The complexity increase is almost the 

same as that of going to a constraint length 16 code which yields less than a 

.ldB improvement. 

We can, of course, perform multiple re-decoding operations. However, 

returns diminish, and the whole arrangement becomes quite baroque. Mak

ing two passes we can achieve an operating point of .205 dB at an error rate 

below one in a million. The capacity of the Gaussian channel at this rate is 

only -.875 dB; thus, we are within 1 dB of channel capacity. 
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Table 1 

No Bits Known 

(Conventional Viterbi Decoding) 

SNR in dB Bit error 8 bit 
symbol rate 
error rate 

.6dB .00359 .00838 

.5dB .00534 .0124 

.3dB .0110 .0247 

OdB .0268 .0589 

-.2dB .0474 .1020 

SNR in dB 

.3dB 

0dB 

-.2dB 

One Bit Out of Ten Known 
(1 0log(.9)=-.4576) 

Bit error 8 bit Corrected 

rate symbol bit error 

error rate rate 

.00214 .00575 .00238 

.00669 .0166 .00743 

.0124 .0304 .0138 



SNR in dB 

.3dB 

0dB 

-.2dB 

SNR in dB 

.3dB 

0dB 

-.2dB 

( 1 2) 

Table 1 
(Continued) 

Every Other Symbol Known 
(1 0log(.5)=-3 .0103) 

Bit error 8 bit Corrected 

symbol bit error 
rate 

error rate rate 

.000177 .000350 .000354 

.000177 .000350 .000354 

Corrected 
symbol 
error rate 

.000700 

.000700 

Every Third 8 Bit Symbol Known 
(1 0log(.666)=-1.765) 

Bit error 8 bit Corrected Corrected 

rate symbol bit error symbol 

error rate rate error rate 

.000868 .00230 .00130 .00345 



SNR in dB 

.3dB 

0dB 

-.2dB 

SNR in dB 

.3dB 

0dB 

-.2dB 
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Table 1 
(Continued) 

Every Fourth 8 Bit Symbol Known 
(1 0log(.75)=-1.249) 

Bit error 8 bit Corrected 

rate symbol bit error 

error rate rate 

.00191 .00472 .00255 

.00341 .00826 .00455 

Every Fifth 8 Bit Symbol Known 

(1 0log(.8)=-.969) 

Bit error 8 bit Correctec 

rate symbol bit error 

error rate rate 

.00134 .00341 .00168 

.00322 .00785 .00403 

.00466 .0114 .00583 

Corrected 
symbol 
error rate 

.00629 

.0110 

Corrected 
symbol 
error rate 

.00426 

.00981 

.0143 



SNR in dB 

.3dB 

0dB 

-.2dB 

SNR in dB 

.3dB 

0dB 

-.2dB 

( 14) 

Table 1 
(Continued) 

Every sixth 8 Bit Symbol Known 
(1 0log(.8333)=-. 7918) 

Bit error 8 bit Corrected 

symbol bit error rate 
error rate rate 

.00351· .00784 .00421 

.00800 .0183 .00960 

Every Seventh 8 Bit Symbol Known 
(1 0log(.8571 )=-.6695) 

Bit error 8 bit Corrected 

symbol bit error rate 
error rate rate 

.00584 .0124 .00681 

.0117 .00251 .0137 

Corrected 
symbol 
error rate 

.00941 

.0220 

Corrected 
symbol 
error rate 

.0145 

.00293 
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CHAPTER III 

Alegraic Codes 

A Reed-Solomon (Reference 2) code has symbols in some Galois field and 

one fewer symbol in a codeword than there are elements in the field; e.g., 

8 bit Reed-Solomon codes have 255 symbols. Any number of these symbols 

can be parity checks; the rest will be information. If the number of parity 

check symbols is P, then the code can correct E symbol errors and R symbol 

erasures if and only if 2E + R <= P. These codes are fairly well suited to 

and often used on the independent symbol error channel (possibly, also, with 

erasures) and other channels which can be converted into the independent 

symbol error channel with only a small loss of capacity. The channel formed 

by a convolutional encoder and Viterbi decoder operating over the Gaussian 

channel is such a beast because the errors come in moderately long bursts. 

The first step in converting this bursty channel into the independent symbol 

error channel is to group consecutive groups of bits to form symbols. The 

second is to group the symbols into codewords. We do not, however, want 

to choose consecutive symbols to be members of the same codeword. The 

spacing needs to be wide to achieve independence. The loss of capacity will 

be small only if the burst length is comparable to the symbol size; e.g., a 

very small burst will destroy the whole symbol in which it resides. 

A Reed-Solomon code that experiences symbol error probability e will 

always have to have a rate less than 1-2e if the probability of its failing to 

decode must be low. Very big Reed-Solomon codes will approach this value. 
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However, big Reed-Solomon codes demand big symbols and we saw, above, 

an instance where an increase in the symbol size also caused an increase in 

e. For the Viterbi decoder channel, the increase in the symbol error rate 

with symbol size is gradual. For other channels such as the photon counting 

optical channel, the symbol size is dictated by the modulation technique, and 

any deviation drastically increases the error rate. The growth of symbol error 

rate with symbol size is not the only thing that keeps us from using large 

Reed-Solomon codes. The decoder complexity is quadratic in the codeword 

length. What we want is to combine the good features of short and long 

Reed-Solomon codes. 

This chapter describes a new type of code formed by combining Reed

Solomon codes with themselves. If a fairly short ( say 8 bit) Reed-Solomon 

code is designed to have a one-in-a-million chance of failing to decode at 

some symbol error rate, then there is still a good chance that it wiil decode 

successfully even if many of the parity check symbols are erased; i.e., many 

of the parity check symbols will probably not be needed to achieve succesful 

decoding. The idea of this chapter is to share these parity checks among 

many codewords by using a second set of Reed-Solomon codes. 

Figure 3 illustrates the concept. The data are first encoded convention

ally into Reed-Solomon codewords. These codewords could be sent over the 

channel as they stand. Instead, we take all the parity check symbols to the 

right of some position and make them symbols in another Reed-Solomon 

codeword. These symbols are never sent over the channel at all. The parity 

of the second Reed-Solomon codeword goes in their place. The decoding 

algorithm first attempts to decode all of the primary codewords, treating 

those symbols not sent as erasures. Most of these codewords will decode 

successfully, and the probability of an erroneous decoding will be orders 
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of magnitude lower. The decoding of most of the primary codewords pro

vides the information symbols of the secondary codewords. When a primary 

codeword fails, an erasure is declared in all the secondary codewords. The 

secondary codewords thus see the original channel error probability on some 

of their symbols and the rest experience an erasure rate determined by the 

design of the code. When the secondary codewords decode, the failed pri

mary codewords get all their parity checks. The failed primary codewords 

will now decode. The increase in decoder complexity is small because only a 

few of the primary codewords require two decoding attempts, and the num

ber of secondary codewords is small. Figures 4, 5, and 6 present results for 

different error rates. All that is necessary to verify them is a set of tables of 

the binomial distribution and a simple result: 

Suppose that we have a set of coins each of which has a probability p of 

turning up heads, and that each coin lau.ding heads up counts one point. If 

the probability of getting more than A points is very small, then it will drop 

still farther if one or more coins in the original set is each replaced by two 

coins whose probability of heads is p/2 and whose values are 1/2 point. 

This result is essentially just a specialized form of the law of large num

bers. A distribution will pull in towards its mean as the number of inde

pendant events wich compose it increases. Here we have kept the expected 

value of A constant but more independant coin tosses go into determining 

its actual value in a particular game. 

An obvious generalization of these techniques is to split the secondary 

codewords into two groups and play the game twice. Another is to let the 

primary and secondary codewords have elements in different fields. 
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Figure 3 

Symbol error rate=.04 
Redundancy of normal 8 bit Reed Solomon Code=.2196 
at 10"-6 failure to decode 
dB adder=1 .077dB 

Redundancy of new code=.14 76 
dB adder=.694dB 

Redundancy of 10 bit Reed-Solomon code=.1447 
at 10"-6 failure to decode 
dB adder =.679dB 

255-----------~ 

36 20 

• 
• 
• /1% erasure 

21 

255 



( 1 9) 

Figure 4 

Symbol error rate=.02 
Redundancy of normal 8 bit Reed Solomon Code=.1490 
at 10"-6 failure to decode 
dB adder=.7007dB 

Redundancy of new code=.0889 
dB adder=.4046dB 

Redundancy of 1 0 bit Reed-Solomon code=.0880 
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Figure 5 

Symbol error rate=.01 
Redundancy of normal 8 bit Reed Solomon 
Code=.1020 
at 10"-6 failure to decode 
dB adder=.467dB 

Redundancy of new code=.0527 
dB adder=.235dB 

Redundancy of 1 0 bit Reed-Solomon code=.0567 
at 10"-6 failure to decode 
dB adder =.235dB 
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Figure 6 

Symbol error rate=.005 
Redundancy of normal 8 bit Reed Solomon 
Code=.0706 
at 1 Q/\-6 failure to decode 
dB adder=.318dB 
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CHAPTER IV 

Hardware 

This chapter presents a bit serial implementation of a long constraint 

length convolutional decoder at a level of detail just above final schematic 

drawings. The diagrams show a constraint length 15 (or less), rate 1/6, 

traceback depth 170 decoder, but the design is quite plastic. The machine 

can only decode a constraint length 15 code if it has leading and trailing ones 

in the generator polynomials. This restriction causes the branch lables to 

occurr in antipodal pairs and allows the simplified branch metric computer 

shown in Figure 7. This metric computer generates the two branch metrics 

(labelled q and r in Figure 7) for a pair of states whose labels differ only in 

the rightmost (least significant) bit. Such a pair is called a butterfly. The 

branch metric computer takes as inputs the six symbols that correspond to 

one information bit as well as the sum of their absolute values. 

The symbol magnitues and signs arrive on separate sets of lines. Each 

of the six symbol signs is compared with a bit stored in the butterfly. If 

the two disagree then the corresponding symbol magnitude is added into the 

sum that is branch metric q. The six bits stored in each butterfly depend on 

the particular code and are reloaded every time it is changed through one 

long shift register. This shift register is the initialization chain in Figure 11. 

The second output, r, is just the difference between q and the sum of all 

the symbol magnitudes. Here is where the antipodal property of the branch 

metrics simplifies the design. The bit serial subtractor that computes this 
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difference is shown in Figure 8. Note its similarity to the bit serial adder 

above it; the "D" latch becomes a borrow rather than a carry register. All 

the "D" latches in all of the drawings with one exception in Figure 9 have a 

single, common clock. They store data on the rising edge of this clock. The 

inputs to the branch metric computer and all other arithmetic elements of 

the butterfly are of such a form as to guarantee that carries ( or borrows) will 

always clear. Thus, none of these "D" latches requires a set or reset. 

The outputs of the branch metric computer go to the body of the but

terfly, shown in Figure 10. Here they are added to the accumulated metric 

inputs of the butterfly in all possible ways. These inputs and the outputs 

in the upper left of the figure get connected into a de Bruijn Graph. Ac

complishing this connection for 8,192 butterflies is the subject of the next 

chapter. For the moment, note only that the wires between many butterflies 

will be long. Thus, the inputs and outputs need "D" iatches to allow a full 

clock period for a signal to propagate between butterflies. 

The constraint length control mutiplexer in Figure 10 allows the decod

ing of codes with constraint length less than 15. We can ( at least for a channel 

whose symbols are independent) left justify all the generator polynomials so 

that they all have a leading 1 without affecting the code's properties. For 

codes with K < 15 this will make the two states of a butterfly indistinguish

able; hence, the mutiplexer. Thus, for K < 15 there are still restrictions on 

the generator polynomials but not on the code. 

The only remaining elements in Figure 12 are the compare/select units 

that are identical and shown in detail in Figure 9. A compare/select unit 

compares two number, X and Y, that it receives in bit serial form and outputs 

the lesser of the two. The word clock marks the arrival of the most significant 

bits and, hence, the time when the selection of the smaller of the two can be 
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made. If one or more bits of data in the information stream are known, then 

the selection can be predetermined by using the force lines shown in Figure 

9. These lines and their associated multiplexer are all that is necessary to 

implement the redecoding scheme of Chapter II. The two N bit shift registers 

store the two numbers coming in on the X and Y wires until their most 

significant bits arrive and the comparison can be made. The greater number 

is just thrown away. 

The length of these shift registers, N, is a very important parameter 

of the design both because the decoding speed is inversely proportional to 

N + 2 and because the area of the shift registerss is a significant fraction 

of the total chip area required for the butterfly. The dynamic range of 

the accumulated metrics is limited to the product of the reciprocal of the 

rate, the contraint length mlnus one, and the largest symbol magnitude. 

This product is 6*14*127=10,668 in this design. Renormalization consists 

of removing the leading one from all the accumulated metrics. Thus, if we 

could always locate the smallest metric and check whether its leading bit is 

a one, we would need N equal to one plus the greates integer of the base two 

logarithm of 10,668. Looking at all the 16,384 metrics in a constraint length 

15 machine is, however, extremely difficult. Thus, it may pay to make N 

bigger than 15 if it means we do not have to look at all the metrics. We 

can get by with looking at only a single randomly chosen metric if we add 

one more bit to N. Looking at only a single metric means that the spread 

can occur on either side of the renormaliztion threshold. If we look at two 

metrics whose symbol sequences are antipodal, e.g., the all zero state and 

the state with a single leading one, and always compare the larger of the 

two with the threshold then the potential spread of the metrics about the 

threshold is only 1.5 instead of 2. For our design this reduction allows us to 
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get by with N = 15. N, however, is taken to be 16 for two reasons. First, 

the system is so large that bringing two particular metrics to a sensing point 

is more difficult than just looking at whatever metric happens to be closest. 

Second, with N = 16 we can use a traceback chain length of 16 as shown in 

Figure 11, which reduces the required traceback memory bandwidth. 

A single line controls both traceback and renormalization as shown in 

Figure 9. A single width pulse on this line loads the traceback chain shift 

register, and a double width pulse also removes the leading bit from all the 

accumulated metrics. The communication pipeline registers in Figure 10, 

which have already been mentioned, make this sharing possible. When the 

metrics are in the shift registers these registers contain dummy bits which 

only affect the comparisons if their is a tie. Hence, alway setting one of them 

to zero does not affect the operation of the decoder. 

The 16 bit long traceback chain contains the results of 16 comparisons 

made by 8 butterflies after it is loaded. These 16 bits are written into trace

back memory during the next 16 clock cycles, leaving 2 clock cycles two read 

the memory in the overall 18 clock master cycle. Every single traceback chain 

writes to memory during the 16 write clocks. However, only a single bit from 

the whole traceback memory is read during one of the two read cycles. The 

physical memory arrangement for one board having 32 16-butterfly chips is 

shown in Figure 12. The multiplexer is continued at the board level, and 

the whole arrangement is controlled by the circuit of Figure 13. The large 

ROM in Figure 13 handles the mapping from logical to physical addresses; 

the small one creates three independent regions of memory from each of the 

16,384 states. The handling of these regions is shown in Figure 14. The 

pattern repeats and each of the two active regions requires one of the two 

reads available in each master cycle. 
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CHAPTER VI 

Graphs 

This chapter consists of a paper which has been submitted to the Journal 

of the Association for Computing Machinery. 
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1. Introduction and Summary. 

The nth order deBruijn graph En is the state diagram for an n-stage binary 
shift register. It is a directed graph with 2n vertices, each labelled with 
an n-bit binary string, and 2n+l edges, each labelled with an (n + 1)-bit 
binary string. The vertex labels represent the contents of the shift register 
at a given point of time. The label on an edge connecting one vertex to 
another represents the contents of the shift register preceeded by the bit 
that is being input to the shift register, as it changes from one state to the 
next. In Figure 1 we see a representation of B3 . 

0000 

1111 

Figure 1. The deBruijn graph B 3 • 

We are interested in the deBruijn graph Bn because it gives the topology 
for a fully parallel Viterbi decoder for any rate 1/v convolutional code with 
constraint length n + 2 ([3], Chapter 7). In such a decoder, a "butterfly" (a 
pair of add-compare-select units) must be located at each node of the graph, 
and all communication between butterflies takes place along the edges of the 
graph. In fact, Caltech's Jet Propulsion Laboratory is currently developing 
such a decoder, called the Big Viterbi Decoder, for a constraint length 15, 
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rate 1/4 convolutional code, for the Galileo m1ss10n. The BVD has 213 

butterflies, connected according to the topology of B13. It is constructed from 
256 identical semi-custom VLSI chips, each containing 32 butterflies. These 
chips are arranged on 16 identical printed-circuit boards, each containing 16 
chips. Of the 214 "wires" (butterfly interconnections) in the decoder, 56% 
are internal to the chips, another 17% are internal to the boards, and 27% 
are inter-board, or "backplane" connections. Furthermore, these chips and 
boards are universal, in the sense that any deBruijn graph Bn with n 2 5 
can be built from copies of these same chips, and any Bn with n 2 9 can 
be built from copies of these same boards. In this paper, we will give the 
theoretical background which led to the design of these chips and boards. 
See [1] and [5] for further details. (We will return to the BVD at the end of 
the paper - see Example 6.4.) 

2. Preliminaries About Strings. 

In this section we introduce some notation and establish a few elementary 
facts about binary strings, which will be needed throughout the rest of the 
paper. 

2.1. Definitions. A binary string is a sequence of Os and ls. The length of 
a binary string x, denoted by Jxl, is the number of symbols in x. The empty 
string Eis the string with no symbols. Thus 1€1 = 0. The set of all strings of 
length n is denoted by {0, l}n. If x and y are two strings, the concatenation 
of x and y, denoted by xy or x * y, is the string obtained by following the bits 
of x by the bits of y. If x = a* b * c, then a is called a prefix, bis a substring, 
and c is a suffix of x. If b * c isn't empty, then a is called a proper prefix 
of x; if either a or c is nonempty, b is called a proper substring of x; and if 
a* b isn't empty, c is called a proper suffix of x. If x is a nonempty binary 
string, then the symbol xL ( the left part of x) denotes the string obtained by 
removing the rightmost bit of x; similarly, xR ( the right part of x) denotes 
the string obtained by removing the leftmost bit of x. If S and Tare sets of 
binary strings, we say that S covers T if every string in T has a substring 
in S. Similarly, we say that S prefixes T if every string in T has a prefix in 
S. We say that S is irreducible if no string in S covers any other. Finally, 
we define the cost of a set of strings Sas cost(S) = LsES2-lsi, where Isl 
denotes the length of the string s. 0 
2.2. Examples. If x = 1011, then lxl = 4, xL = 101 and xR = 011. The set 
S = {10,111} covers {010, 100,101,110,111}, and {1,0000} covers {0, l}n 
for all n 2 4. Similarly, {1,000} prefixes {1,00000}, and {0, 10,110,111} 
prefixes {0, l}n for all n 2 3. Also, {1,000} is irreducible, but {1,001} is not. 
The cost of the set {10,111} is 3/8, cost( {1,000}) = 5/8, and cost( {0, 1} n) = 
1, for all n 2 1. 0 
2.3. Theorem. If S is an irreducible set of strings, then every string x 
covered by S can be factored uniquely in the form x = >.sp, where s E S, >. 



37 

and pare (possibly empty) strings, and (As)L has no substring from S. \Ve 
will call this factorization the S-factorization of x. 

Proof: Since x is covered by S, x will have one or more subscrings from 
S. Among these 5-substrings, there will be a unique leftmost one, since no 
string in 5 covers any other. Call this unique leftmost 5-substring s. Then 
plainly x = Asp is the desired unique factorization. 0 

2.4. Examples. As noted above, S = {l, 0000} is irreducible and covers all 
strings oflength 4. The 5-factorization of 1010 is €*1*010, the 5-factorization 
of 0101 is O * 1 * 01, and the 5-factorization of 0000 is € * 0000 * €. 0 

2.5. Lemma. If 5 covers {0, 1 }n, then every string x of length nor greater 
will have a unique 5-factorization, and if x = Asp is this factorization, then 
jAsi :Sn. 

Proof: Every string of length n or greater will have a substring of length 
n. This substring will be covered by S, and hence so will x. Now let x be a 
string of length 2:: n, and let x = Asp be its 5-factorization, as described in 
Theorem 2.3. By definition of the 5-factorization, ( As )L is not covered by 
S. However, if jAsi > n, then l(As)LI 2:: n, which would imply that (As)L is 
covered by S, a contradiction. 0 

3. DeBruijn Graphs and Subgraphs. 

The deBruijn graph Bn, which is the state diagram for an n-stage shift 
register, can be described as follows. There are 2n vertices, each labelled 
with an n-bit binary string x. There is a directed edge from the vertex with 
label x to exactly two other vertices, viz. those with labels OxL and lxL. 
The edge from x to OxL is labelled Ox and the edge from x to lxL is labelled 
lx. Similarly, there are exactly two edges directed into x, from xRO and xRl, 
which are labelled xO and xl. This definition is summarized in Figure 2a. 
For example, in Figure 1, from the vertex 101 there are edges leading to 
0(101)£ = 010 and to 1(101)£ = 110. Equivalently, we can define Bn by 
saying that it has 2n+l edges, each labelled with an ( n + l )-bit binary string, 
and that the edge labelled X connects the vertices with n-bit labels X R and 
XL. This alternative definition is summarized in Figure 2b. For example, 
in Figure 1, the edge labelled 1011 is a directed edge from (lOll)R = 011 to 
(1011)£ = 101. 

We next need to define the notion of a subgraph of a deBruijn graph. In 
this definition, and later, the symbols E( G) and V( G) stand for the number 
of edges and vertices in the graph G. Thus for example, E(Bn) = 2n+l and 
V(Bn) = 2n. 

3.1. Definition. If H and Gare graphs, H is called a G-subgraph, written 
H ~ G, if H has the same vertex set as G, and an edge set which is a subset 
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X 

(a) 

.,..__X _ ___,,►~I XL 

(b) 

Figure 2. Two Equivalent definitions of the DeBruijn 
Graph En. In (a), we see the four vertices connected 

to the vertex labelled x (xis an n-bit string); in 
(b ), we see the vertices at the left and right ends 

of the edge labelled X (Xis an (n + 1)-bit string). 

of the edge set of G. The density of a G-subgraph H, denoted by den( H : G), 
is the fraction of the edges in H present in G, i.e., den(H : G) = E(H)/ E( G). 
0 

3.2. Examples. A En-subgraph of density O consists of 2n isolated vertices, 
and a En-subgraph of density 1 is En itself. Figure 3 shows a E3-subgraph of 
density 6/16, consisting of the eight vertices of E 3 and the six edges labelled 
{0010,0011,0100,0101,0101,0lll}. 0 

Our goal is to build a large deBruijn graph EN by connecting together 
multiple copies of a smaller graph, called a "building block." If we think 
of the building blocks as VLSI chips, it is natural to want to minimize the 
number of edges needed to connect the building blocks together. This goal 
leads to the following definition. 

3.3. Definition. A graph H is a building block for a graph G if there 
exists G-subgraph H which is the disjoint union of several copies of H. The 
efficiency of H as a building block for G, denoted by eff(H : G), is defined 
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111 

Figure 3. A B3 subgraph with density 6/16. (In the 
notation of Section 4, this is the graph B3 ( {1,000} ). 
In the notation of_~ection 5, it is the graph B 3 ( {1} ). 
It is a universal deBruijn subgraph of efficiency 3/8.) 

to be den(H : G). In other words, eff(H : G) represents the fraction of the 
edges of G which are accounted for by the edges in the building blocks. 0 

3.4. Theorem. If H is a building block for G, then 

V(G)E(H) 
eff(H: G) = V(H)E(G)" 

Proof: The G-subgraph H has the same number of vertices as G and is the 
disjoint union of several disjoint copies of H. Since G has V( G) vertices, and 
H has V(H) vertices, this means that His the union of exactly V( G)/V(H) 
copies of H. Since each of of these copies of H has E(H) edges, E(H) = 
E(H)(V(G)/V(H)). Thus eff(H : G) = den(H : G) = E(H)/E(G) = 
(E(H)(V(G)/V(H))/E(G) = (V(G)E(H)/V(H)E(G)). □ 

3.5. Examples. Any En-subgraph H is a building block of efficiency 
den(H : En) for En. A En-subgraph of density O is a building block of 
efficiency O for any EN with N 2 n. A En-subgraph of density 1 (i.e., En 
itself) cannot be a building block for any larger deBruijn graph, since the 
disjoint union of 2N-n copies of En is a disconnected graph with the same 
number of edges as EN, which is connected. In Figure 4 we see two copies of 
the graph H in Figure 3 relabelled and wired together with 20 new edges to 
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form a graph isomorphic to B4. Since B4 has 32 edges, and the two copies 
of H together have 12 edges, it follows that H is a building block for B4 of 
efficiency 12/32 = 37.5%. In fact, the graph in Figure 3 is a building block of 
efficiency 3/8 for any BN with N ~ 3, as we will see in Example 4.5, below. 
The building block of Figure 3 is an example of what we call a universal 
deBruijn building block. D 

Figure 4. Two copies of the B3 subgraph H from Figure 3, 
relabelled and wired together to make B4 ( edge labels omitted). 

3.6. Definition. A universal deBruijn building block of order n is a En
subgraph which is a building block for any deBruijn graph BN with N ~ n. 
D 

The following theorem shows that it is easy to compute the efficiency of 
any univeral deBruijn building block. 
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OOOA 

001A lAOO 

OOIAI 

lAOl 

OIAIO 
01Al 1A10 

1A11 

Figure 5. The graph B3(S, A), obtained by inserting the symbol 
A immediately after the first occurrence of a substring from 

S = { 1, 000} in the corresponding label in B 3 ( S) ( cf. Figure 3). 

3. 7. Theorem. Let H be a a universal deBruijn building block of order n. 
Then for all N 2: n, eff(H: BN) = den(H: Bn)- We will call this common 
value the efficiency of H as a deBruijn building block. 

Proof: By Theorem 3.4, the efficiency of H as a building block for B N is 

V(BN) E(H) 
eff(H: BN) = E(BN) . V(H) 

2N 2n+l den(H : Bn) 
= 2N+1 . 2n 

= den(H : Bn)- 0 

In the next section, we will describe a general construction for universal 
deBruijn subgraphs (Theorem 4.3), and in Section 5 (Theorem 5.9), we will 
see that there exist universal deBruijn subgraphs whose efficiency approaches 
1 as n approaches infinity. 
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4. A General Construction for Universal DeBruijn Subgraphs. 

In this section, we will present our main theorem (Theorem 4.3), which 
gives a general construction for universal deBruijn building blocks. The key 
to this construction is a way of constructing a En subgraph from a set of 
strings of length ::; n. 

4.1. Definition. If S is a set of strings, En(S) is defined to be the En
subgraph obtained by deleting from En all edges whose labels have a prefix 
in S. 0 
4.2. Lemma. If S is irreducible, E(En(S)) = 2n+1 (1 - cost(S)); equiva
lently, den(En(S) : En)= 1 - cost(S). 

Proof: The 2n+I edges in En are labelled with the (n + 1)-bit strings, and 
there are 2n+I of them. For each s E S, there are exactly 2n+1-lsl ( n + 1)-bit 
strings with s as a prefix. Since no ( n + 1 )-bit string can have two prefixes in 
S (no string in Sis a prefix of any other, since Sis irreducible), the subgraph 
En(S) will have exactly 2n+l - Lses 2n+I-isi = 2n+1 (1 - cost(S)) edges. 

□ 
The main theorem in this paper is the following. 

4.3. Theorem. If S is irreducible and covers {O, 1 }n, then En(S) is a 
universal deBruijn building block of order n with efficiency 1 - cost(S). 

We postpone the proof of Theorem 4.3 until we have given several ex
amples, and stated and proved a stronger but more technical result (Theo
rem 4.6). 

4.4. Example. The set S = {O, 1}, is irreducible, has cost 1, and covers 
{O, l}n for any n 2: 1. The corresponding subgraph En(S) is a En-subgraph 
of density zero, and is plainly a building block of efficiency zero for any 
deBruijn graph with N 2: n. 0 
4.5. Example. The set S = {1,000} is irreducible, has cost 5/8, and covers 
{O, 1 }3. In this case, E 3(5) is identical to the E 3-subgraph in Figure 3. Thus 
Theorem 4.3 implies that the graph E 3( {1,000}) is a universal deBruijn 
building block with efficiency 3/8, as asserted in Example 3.5. 0 

The next theorem concerns a family of relabelled copies of the graph 
En(S). If A is any binary string, we construct the graph En(S, A) from 
En(S) by inserting the string A into each vertex or edge label just after the 
first (leftmost) occurrence of a substring from S. In Figure 5, we illustrate 
this construction for the graph E3( {1; 000} ). 

4.6. Theorem. For all N 2: n, we have 

U En(S, A) = EN(S). 
IAl=N-n 
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4.1. Example. In Figure 6 we have illlustrated Theorem 4.6, by showing 
the two graphs B3(S, 0) and B3(S, 1), for S = {1,000}. When taken together, 
these two graphs form the graph B4 (S), which is a subgraph of B4 • Thus by 
adding the 20 edges whose labels have a prefix from S (16 with prefix 1 and 
4 with prefix 000), we will obtain B4 , and indeed this is how we arrived at 
Figure 4. 0 

Proof of Theorem 4.6: Let us call the the graph UIAl=N-n Bn(S, A) 
appearing in the statement of the theorem the union graph. To prove Theo
rem 4.6, we need to show that the union graph is a B N-subgraph, and that 
its edges are exactly those whose labels have no prefix from S. To do this, we 
will prove the following four assertions ( always A denotes a string of length 
N-n): 

(1) Every N-bit string occurs as a vertex label in some Bn(S, A); 

(2) Every edge in Bn(S, A) is an edge of the deBruijn graph BN; 

(3) No edge label in Bn(S, A) has an S-prefix; 

( 4) Every ( N + 1 )-bit string without an S-prefix appears as an edge label 
on some Bn(S, A). 

Taken together, (1) and (2) show that the union graph is a EN-subgraph; 
and (3) and ( 4) show that the edge labels in the union graph are the (N + 1)
bit strings without an S-prefix. 

Proof of (1): Let X be an arbitrary N-bit string, and let X = >..sp be its S
factorization. By Lemma 2.5, !>..si ~ n, so that IPI ~ N -n. If we denote the 
leftmost N - n bits of p by A, then we have p = Ap', and hence X = >..sAp'. 
It follows that X appears as the label of the vertex >..sp1 in Bn(S, A). For 
example, if n = 3, S = {1,000} and N = 8, the 8-bit string X = 01011110 
has S-factorization O * 1 * 011110. The first five bits of 011110 are 01111 and 
so 01011110 appears as the label on vertex 010 in B3(S, 01111). 

Proof of (2): If an (n + 1)-bit edge label x in Bn(S) has S-factorization 
x = >..sp, then neither >.. nor p is empty: >.. isn't empty, because no edge 
label in Bn(S) has an S-prefix; p isn't empty, since Ix! = n + 1, and by 
Theorem 2.5, any S factorization has I.Xsl ~ n. Thus in Bn(S), an edge 
with S-factorization >..sp connects the vertices with labels ( >..sp )R = >.. R sp 
and ( >..s p) L = >..s pL. Furthermore, this representation of the vertex labels 
must in fact be the S-factorization of them, since an earlier occurrence of a 
substring from S in either _xRsp or >..spL would imply an earlier occurence 
of an S-string in >..sp. This means that in the graph Bn(S, A), the edge 
>..sAp connects the vertices >..RsAp = (>..sAp)R and >..spL = (AsAp)R. In 
other words, an edge with label X in Bn(S,A) connects xn to xi, and 
by the definition in Figure 2b, this is an edge in the deBruijn graph Bn. 
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For example, in Figure 5, we see that the edge with label 00lA.0 connects 
00lA0R = 0lA0 to 00lA0L = 00lA, and this is an edge in the deBruijn 
graph BIAl+3, for any string .4. 

Proof of (3): Let X be an edge label in the graph Bn(S, A). Then by 
definition, X has the form X = AsAp, where Asp is the S-factorization of 
an edge label in Bn(S) with A nonempty. If X had an S prefix, says', then 
either s' would be a prefix of Asp, or s would be a proper prefix of s'. But 
both of these alternatives are impossible: s' cannot be a prefix of Asp, since 
Asp, being an edge of Bn(S), has no S-prefix; and s cannot be a proper 
substring of s', since no string in S is a proper substring of any other. Thus 
every edge in Bn(S, A) is an edge in BN(S), as asserted. 

Proof of (4): To prove that every (N + 1)-bit string with no S-prefix 
occurs as an edge label in Bn(S, A) for some A, let X be such a string, and 
let X = Asp be its S-factorization, in which necessarily A is nonempty. If A 
denotes the leftmost N - n bits of p, then as above, we have X = AsA.p'. The 
string Asp' cannot have a prefix in S, for ifs' were such a prefix, then either 
s' would be a prefix of X, or else s would be a proper substring of s' ( since 
).. is nonempty), and both of these alternatives ae impossible. Thus >..sp' 
is the label on an edge of Bn_(S), and so X = >..sA.p' appears as the label 
corresponding to that edge in the graph Bn(S, A). For example, let S = 
{1,000}, n = 3, and N = 8, and consider the 9-bit string X = 001011100, 
which has no S-prefix. The S-factorization of Xis X = 00 * l * 011100. The 
first 5 bits of 011100 are 01110, and so X appears as the label on the edge 
001 in the graph B3(S, 01110). 

This completes the proof of Theorem 4.6. 0 

We conclude this section with the proof of Theorem 4.3. 

Proof of Theorem 4.3: Theorem 4.6 explicitly shows that the union of 
2N-n copies of Bn(S) forms a subgraph (namely, BN(S)) of the big deBruijn 
graph B N, and so B N can be constructed simply by adding the edges missing 
from B N to this union. Thus Bn is a universal deBruijn building block. 
According to Theorem 3.7, the efficiency of a universal deBruijn building 
block is the same as its density, and by Lemma 4.2, the density of Bn(S) is 
1 - cost(S). 0 
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Figure 6. Illustrating Theorem 4.6: 
B3(S,0) U B3(S, 1) = B4 (S) (compare with Figure 4). 

5. Construction of Low-Cost Covers for {O, l}n. 

In Theorem 4.3, we showed how to construct universal deBruijn building 
blocks from covering sets for {O, l}n of small cost, but we were able to cite 
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only a few examples. In this section, we will give several general construc
tions for low-cost covers for { 0, 1} n, thereby automatically producing ( via 
Theorem 4.3) efficient universal deBruijn building blocks. 

To produce a cover for {O, l}n, we begin with an arbitrary irreducible 
set S of strings of length ::S n, which we call a precover for { 0, 1} n. In general, 
Swill fail to cover a certain subset of {O, l}n, which we call Omitn(S). We 
denote the number of strings in Omitn(S) by omitn(S). Plainly, if we adjoin 
Omitn(S) to S, the resulting set, which we denote by Cn(S), will still be 
irreducible, will cover {O, l}n, and its cost will be cost(S) + 2-nomitn(S). 
We summarize this simple but useful construction in the following theorem. 

5.1. Theorem. For any irreducible set S of strings of length ::S n, the set 
Cn( S) is an irreducible cover of {O, 1} n of cost ( cost( S) + 2-nomitn( S) ). D 

5.2. Example. If S = {1}, then Omitn(S) = {00 · · · O}, and omitn(S) = 1 
for all n 2: 1. Thus Cn(S) = {1,00···0} is a cover for {O,l}n of cost 
1 /2 + 2-n, for all n 2: 1. D 

5.3. Example. If S = {10}, then for n 2: 2, Omitn(S) consists of then+ l 
strings of the form Ok * l n-k for O ::S k :'.S n. Thus omitn(S) = n + l, and 
Cn(S) is a cover for {O, l}n of cost 1/4 + (n + l)/2n, for all n 2: 2. D 

5.4. Example. If S = {100, 1101 }, then for n 2: 4, it can be shown that 
omitn(S) = 1 + (7) + G), and thus Cn(S) is a cover for {O, l}n of cost 
3/16 + (1 + (7) + (;) )/2n, for all n 2: 4. D 

If we combine Theorems 4.3 and 5.1, we find that if Sis an irreducible 
set of strings of length ::Sn, then Bn(Cn(S)) is a universal deBruijn building 
block of order n and efficiency 1- cost(S)-2-nomitn(S). For simplicity, we 
denote Bn(Cn(S)) by Bn(S), and display this fact as a Theorem. 

5.5. Theorem. If Sis an irreducible set of strings of length ::S n, then the 
graph Bn(S) is a universal deBruijn building block of order n and efficiency 
1 - cost(S) - 2-nomitn(S). 0 

The following theorem is a partial generalization of examples 5.2 and 
5.3. 

5.6. Theorem. Fix m 2: 1. If Sm = {10m-l }, then as n -. oo, omitn(Sm) =I 
0( a~), where O'.m is the largest positive root of the equation zm-2zm-l +l = 
0, which is strictly less than 2. Thus for all n 2: m, Cn(S) is a cover for {O, l}n 
of cost 2-m + 0( o:m/2r, which approaches 2-m as n -. oo. 

Proof: According to (2], if m is fixed, the generating function fm(z) 
I:n>o omitn(Sm)zn is given in closed forr·, by fm(z) = 1/(1 - 2z + zm). 
It follows then from the general theory of rational generating functions [4, 
Theorem 4.1.1], that omitn = 0(/3n), where /3 is the reciprocal of the smallest 
positive root of the equation 1-2z + z m = 0, which is also the largest positive 
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root of the "reciprocal" polynomial Pm(z) = zm -2zm-l + l. The largest root 
of Pm(z) is strictly less than 2, since Pm(l) = 0, Pm(2) = 1 and P:n(z) > 0 
for z > 2. D 

5.7. Corollary. If Cn denotes the minimum cost for a cover for {O, l}n, 
then limn-oo Cn = 0. 

Proof: Theorem 5.6 implies that for any m 2=: 1, limn-oo Cn S 2-m. D 

5.8. Remarks. We conjecture, but cannot prove, that Cn = 0(1/n). 
However, McEliece and Swanson, in a forthcoming paper, will show that 
en = n(l/n) and Cn = O(log n/n ). (The latter result is based on a more 
careful analysis of the type given in Theorem 5.6.) D 

In view of the connection between covers for { 0, 1} n and universal de
Bruij n building blocks, Corollary 5.7 implies the following. 

5.9. Theorem. There exist universal deBruijn building blocks whose effi
ciency is arbitrarily close to 1. 

Although Theorem 5.6 gives an infinite family of reasonably cheap cov
ers for { 0, 1} n, it does not produce the cheapest possible covers for all values 
of n. Indeed, below is a table giving the cheapest covers of { 0, 1} n, for 
1 s n S 10, that we know, and therefore also the most efficient universal 
deBruijn building blocks we know, for orders up to 10. In every case, we 
give only the "precover" S, it being understood that the actual cover is the 
larger set Cn(S). We notice that for n S 7, the "10 · · · O" construction of 
Theorem 5.6 gives the best co':er we know of, while for 8 S n S 10 ( and 
presumably for all larger values of n, too) the best cover is considerably 
more complicated. For 1 S n S 5, we believe that the values in the table 
above are the best possible. For larger values of n, however, improvements 
may be possible. For n 2=: 8, the covers described in the table are based 
on the general "{100, 1101}"-cover described in Example 5.4. For exam
ple, for n = 8, omit( { 100, 1101}) = 37, so that Cs ( { 100, 1101}) is a cover 
for {O, 1 }8 of cost 1/8 + 1/16 + 37 /256 = 85/256. However, by trial and 
error, we find that of the 37 strings in Omit( {100, 1101} ), all but six are 
covered by {010101, 010111, 011111, 0000001, 0000101, 0000111}. Thus if we 
use {100,1101} U {010101,010111,011111,0000001,0000101,0000111} as a 
precover, Theorem 5 .1 guarantees a cover of cost 1 / 8 + 1 / 16 + 1 / 64 + 1 / 64 + 
1/64+1/128+1/128+1/128+6/256 = 72/256, as shown in the table. (Using 
{10} as a precover for n = 8 results in a cover of cost 73/256.) 
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n cost·2n efficiency S (pre cover) 

1 2 0.000 {1} 
2 3 0.250 {1} 
3 5 0.375 {1} 
4 9 0.438 {1} or {10} 
5 14 0.563 {10} 
6 23 0.641 {10} 
7 40 0.688 {10} 
8 72 0.719 {100,1101,010101,010111, 

011111,0000001,0000101,0000111} 
9 127 0.752 {100,1101,0000001,0101011,0101111, 

0111111,00001011,00001111,01010101} 
10 229 0.776 {100,1101,01010101,01010111,01111111, 

000000001,000000101,000000111, 
000010101,000010111,000011111} 

6. Hierarchical Building Blocks. 

We have seen that the universal deBruijn building blocks described in The
orem 4.3 can be used to build deBruijn graphs of any size. Surprisingly, 
however, they can also be used as building blocks for larger universal de
Bruijn building blocks! This is useful in practice, when many chips must be 
put on several boards, and the boards are then wired together to make the 
deBruijn graph. The main theorem here is the following. 

6.1. Theorem. Suppose k :::; n. If S is irreducible and covers {0, l}k, 
and Tis irreducible and covers {0, l}n, and if S prefixes T, then Bk(S) is a 
building block for Bn(T). Furthermore, 

eff(Bk(S) : Bn(T)) = 1 - cost(S). 
1 - cost(T) 

Proof: Theorem 4.6 says that Bn(S) is equal to UA:IAl=n-k Bk(S, A), and 
so Bk(S) is a building block for Bn(S). But since every string in T has a 
prefix in S, then Bn(S) ~ Bn(T), so that Bk(S) is also a building block for 
Bn(T). To calculate eff(Bk(S): Bn(T)), we use Theorems 3.4 and 4.3: 

V(Bn(T))E(Bk(S)) 
eff(Bk(S): Bn(T)) = V(Bk(S))E(Bn(T)) 

2n2k+l(l - cost(S)) 
- 2k2n+l(l - cost(T)) 

1 - cost(S) 
- 1 - cost(T)' □ 
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Figure 7. One possible layout of the B 5 ( {10}) chip used to 
build the BVD. (All edges are directed from left to right. The 
vertex labels shown are the decimal equivalents of the actual 

five-bit binary labels, and the edge labels have been omitted.) 

6.2. Lemma. If S is any set of strings, and if k ::; n, then Ck(S) prefixes 
Cn(S). 

Proof: By definition, Ck(S) = SU Omitk(S) and Cn(S) = SU Omitn(S). 
A strings E Omitn(S) is a string of length n with no substring from S. The 
k-bit prefix of s is a string of length k which also has no substring form S, 
and so this prefix is in Omitn(S). Thus every string in Cn(S) is either in S, 
or has a prefix in Omitk(S). D 
6.3. Theorem. If k::; n, then Bk(S) is a building block for Bn(S), and 

eff(Bk(S): Bn(S)) = 1 - cost(S) - 2-ko~tk(S). 
1 - cost(S) - 2-nom1tn(S) 

Proof: Follows from Theorem 6.1 and Lemma 6.2. D 
6.4. Example. We return to the Big Viterbi Decoder mentioned briefly in 
Section 1. The BVD requires the construction of the deBruijn graph B13. 
The actual construction used at JPL is based on a VLSI chip realization of 
the graph B 5 ( {10} ), which, by Theorem 5.5 and Example 5.3, is a universal 
deBruijn building block of efficiency 18/32 ( see Figure 7), and so it contains 
exactly 64 · ;~ = 36 edges. 
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According to Theorem 6.3, Bs( {10}) is a building block for B 9 ( {10} ), 
and in the BVD, 16 of the Bs( {10} )-chips are wired together on a printed
circuit board to make a B 9 ( {10} )-board. Now B 9 ( {10}) is a universal 
deBruijn building block of efficiency 374/512, and so it contains exactly 
512 · :I~ = 748 edges. However, 16 · 36 = 576 of these edges are in
ternal to the component chips, so that each B 9 ( {10} )-board actually has 
only 748 - 576 = 172 printed wires. Finally, since B 9 ( {10}) has efficiency 
374/512 as a deBruijn building block, in order to build B 13 , there will be 
214 

· (1 - :I~) = 4416 wires external to the board, or "backplane" wires. In 
summary: 

unit type number of units wires/unit total wires 

chip 256 36 9216 
board 16 172 2752 

backplane 1 4416 4416 

16384 

D 
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