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ABSTRACT

A failure theory for high polymers is developed from the
hypothesis that weak regions exist in the material. Defects nucle-
ate in these regions through bond rupture until the defects reach a
size which is critical for the applied boundary loading. This
critical condition is based on energy balance considerations,

By considering the relaxation of the polymer chain in terms
o the phenomenological stress-strain behavior and the rupture of
chemical bonds in terms of an Arrhenius type rate law, the theory
is able to accommodate an arbitrary stress or strain history,
and shows reasonably good agreement with experiments which
cover alarge range of conditions.

In addition the stress analysis of a special crack geometry
is presented. The geometry consists of a thin infinite strip
containing a semi-infinite crack, For a uniform separation of the
infinite boundaries an infinitesimal elasticity solution i s obtained
with the help of the Fourier transform and Wiener-Hopf techniques
The effect o large strains on the stresses near the crack tipis
studied experimentally and a surprising correlation with the

infinitesimal elasticity solution is found,
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INTRODUCTION

In the past, investigators have tended to explain material
failure by establishing the criticality of various stress or strain
combinations, or by the energy instability concept pioneered by
Griffith. Since in their usual application these criteria are rate
and thus time independent they have been of restricted usefulness
for materials possessing strongly time dependent mechanical
properties. Excepting the analysis of creep deformations, this
deficiency has been of little practical concern because the usual
engineering metals possess only limited rate dependence. But
with the increasing incorporation of viscoelastic materials such
as the organic glasses and rubbers in structural design, as well
as the use o metals at higher and higher temperatures, an ex-
tension o the presently existing knowledge to rate dependent
failure processes is believed timely .

Depending upon the temperature and the rate of load appli-
cation, viscoelastic materials can exhibit such different behavior
as brittle rupture response or viscous flow and non-recoverable
permanent set. Inthis regard they constitute a class of materials
that form atransition between the essentially rigid engineering
metals and the highly deformable liquids. One would therefore
expect their failure characteristics to reflect certain features of
one or the other limit states.

In the following development we shall use the conceptual
similarity to metallic behavior in explaining certain aspects of

failure. As an important corollary, and because such a similarity
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should not be one-sided, one would also expect that the study of
rupture phenomena in viscoelastic materials might also aid in
elucidating some, possibly yet undetermined, phenomena in metal
fracture. Although a metallurgist and a physical chemist may be
sceptical of an association o dislocations and chemo-molecular
bonds it is, nevertheless, an accepted fact that the high mobility
both of dislocations in crystals and of molecular configurations

in amorphous polymers are at the origin of fracture behavior in
the respective materials. It appears therefore that the study of
rupture phenomena in viscoelastic materials may not only consist
of an important extension of existing fracture knowledge per se,
but also provide an important source of new ideas for understand-
ing rupture in the engineering metals.

Since the analysis of viscoelastic rupture includes the
analysis of stresses and strains in the fracturing solid, a part
of this dissertationis devoted to the stress analysis of a test
geornetry employed here in crack propagation studies. Inasmuch
as this stress analysis can apply also to materials which are not
viscoelastic it has been separated from the rupture analysisin
a second part of this dissertation,

Part | is thus concerned with the rupture analysis of
viscoelastic materials. Following the presentation of back-
ground information, a rupture model is deduced which is subse-
quently used to predict rupture in some selected test situations.

Part II contains the stress analysis for the stretching of

a thin sheet containing a semi-infinite crack, Although the
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PART I

THE RUPTURE OF POLYMERIC MATERIALS

Initially the exploration of rupture in polymeric materials
was related to the strength characteristics of natural and synthetic
textile fibers; but recently this problem has obtained new impetus
from developments in solid propellant rocket technology where
the fracture threshold and its control is of major production and
design importance.

Solid propellant materials consist of a physical mixture of
oxidizer granules and a rubber matrix filling the interstitial spaces
between the oxidizer particles. Their characteristic behavior
arises from both the viscoelastic nature of the rubber and the
relaxation effects associated with the restricted motion of the
oxidizer particles. More specifically, the rupture behavior is
complicated by the irregular separation of the rubber from the
hard filler grains prior to gross fracture. In order to avoid such
effects of the interaction between filler and rubber matrix, it
seems prudent for an initial investigation of viscoelastic rupture
to consider only a one phase system such as a pure rubber.
Building upon this foundation one then hopes to extend the re-
sults to a two phase system, and eventually to solid propellant
fuels, by judicious extrapolation and continuing research.

This dissertation will therefore be concerned with the
time dependent failure of viscoelastic materials which can be

considered as macroscopically amorphous and homogeneous.
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The most extensive study of rate dependent rupture behavior
has been made by Rivlin, Thomas, and Greensmith (1-8). These
authors have investigated the tear behavior of rubbers by extending
the Griffith concept so asto include a rate dependent tearing
energy which plays a role analogous to that of surface energy in
Griffith's fracture criterionfor brittle materials. Such an ap-
proach requires an estimate or calculation of the energy in the
whole structure which is often a difficult undertaking. Furthermore,
the experimental nature of the tearing energy and its dependence on
the stress or strain history place severe restrictions on the applica-
tion of this concept to the variety of situations encountered in
practice.

It is therefore pertinent to explore a more fundamental
description of the time dependent failure process which admits
an arbitrary stress history without necessitating an experimental
simulation of the failure history to determine the tearing energy.
This approach to failure characterization is also found amenable
to the prediction of rupture from a knowledge o the local stress
field near notches and inclusions, thus obviating the often intract-
able energy analysis of the whole structure,

The essential feature of this dissertation is thus the study
of fracture as a local, time dependent phenomenon from the basis
of a judicious combination of microscopic and macroscopic
considerations.

Attempts in this direction have been made previously by

several investigators, notably Tobolsky and Eyring (9), and
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F. Bueche (10). In both attempts difficult mathematical obstacles
were circumvented by simplifications tantamount to a restatement
of initial assumptions which would not necessarily appear physically
reasonable. But, more importantly, only implicit cognizance has
been taken of the energetic aspects of gross rupture without incor-
porating them explicitly in even an approximate manner. As a
result the theories have been applicable only to relatively small
ranges of experimental test conditions, The present work, how -
ever, eliminates these deficiencies and in addition considers a
more detailed model of the rupture process than employed by the
previous authors.

Apart from hypothesizing the source and nature of material
defects inherent in polymeric materials, the present development
of rupture prediction draws upon the general knowledge of polymer
chemistry and fracture mechanics. Although the failure of poly-
mersis a much more complicated process than envisaged in the
rupture model of this work it appears prudent to investigate
initially only the role of the basic mechanisms in polymer fracture.
For this reason the dissertation is concerned only with those as-
pects of fracture which are common to polymers in general while
effects arising from particular chemical formulations are excluded
from the analysis. Having established the importance o the
mechanisms included in the analysis it should be relatively easy
to extend the results to specific materials provided their detailed
rupture behavior is known.

In the following chapters we provide first the background

required to deduce a failure model and to formulate it mathematically.



-7-
Not all the information presented there is included directly in
establishing the rupture model, but it is nevertheless necessary
for the qualitative understanding of viscoelastic rupture and il-
lustrates simultaneously the variety of processes that influence
fracture.

Following the general description and mathematical for-
mulation of the failure model, fracture calculations are presented
for specific situations. Inthis manner the use of the theory is
demonstrated while providing a check on the validity of the
modelled rupture process through comparison with experimental
data. Since rupture often occurs under conditions which are not
readily duplicated in the laboratory it is of practical interest to
develop an understanding o the rupture process which permits
an engineering appraisal of fracture behavior in more general
situations. For this purpose some preliminary comments relating
to progressive accumulation of rupture, or internal damage, have
been included as a guide for future experimental work, although
no conclusive experimental work is yet available which would
substantiate the theoretical results.

Finally a section i s devoted to testing the applicability
of the theory to filled polymers by comparing calculated failure
behavior with experimental data on a solid rocket propellant

material.
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A. MECHANICAL BEHAVIOR OF VISCOELASTIC MATERIALS

The mechanical properties of linearly viscoelastic materials
and their mathematical representation have been discussed in detail
inthe literature (11-15). In contrast, the viscoelastic effects
associated with large and non-linear deformations are as yet poorly
understood and it is appropriate in this context to review briefly the
work of other investigators, Following a brief presentation of the
mechanical behavior of linearly viscoelastic solids we shall there-
fore consider the effects of large deformations on the material
properties and discuss simultaneously some approximations which

make the subsequent analysis of viscoelastic failure more tractable.

1.1 Representation of Stress-Strain Behavior

The distinguishing feature of viscoelastic materials is the
incorporation of time effects in the stress-strain relation. Instead
of the time independent Hooke's law, relating the stress o linearly

to the strain e through the time independent modulus E

G = E € (1.1)

the viscoelastic stress strain law can be written in differential time
operator notation as

{i“’%?} {an %t} (1.2)
n=0

Nn=0
In this form the material behavior is embodied in the constants* a
*We assume for the present that the temperature does not change

with time. Its effect upon viscoelastic material response is con-
sidered below.
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and bn instead of a simple characteristic Young's modulus E. |f,
for example, N= 1 and by = 0 then the stress resulting from a step

strain in time of magnitude € would be given by

c(t) = —%3‘ €o exp{-——tg‘o} (1.3)

The observation that this relation represents also the force exper-
ienced in a series arrangement of a linear spring and a Newtonian
dashpot due to a step strain has led to the representation of visco-
elastic material properties by mechanical spring-dashpot models
(seefig. 1A). The mechanical model of a spring and dashpot in
seriesis called a Maxwell model. Unfortunately the simple relation
1.3 is usually inadequate to represent actual material behavior so
that N> 1 isrequired. This can be shown, however, to be tanta-
mount to a mechanical model consisting o a parallel array of N
Maxwell elements, as shown infig. 1B, the number of elements,
N, depending on the time scale of the material response and the
accuracy of representation required, The stress response for the
described strain history is termed the relaxation modulus and is of
fundamental importance since with its help the stress response to
an arbitrarily prescribed timewise varying strain history can be
obtained through the use of Duhamel's Integral.

If inthe stress strain law, equation 1.2, N is again equal
to unity but a; =0 instead of b; = 0 the prescription of a step stress
intime permits the calculation o the time dependent strain.
Again the strain behavior can be represented by a mechanical

model, but now with the spring and dashpot in parallel; this second
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configuration is called a Voigt element and its characteristics are
shown in fig. 2A. The representation of actual material properties
requires again the multiple combination of such Voigt models in
series (seefig. 2B). Similar to the relaxation modulus the material
response to a timewise step stress, usually referred to as the creep
compliance, is of fundamental importance in the calculation of
strain response under a more generally prescribed stress history.

The measured relaxation modulus and the creep compliance
for the H-C rubber employed in this work have been represented
by their respective 18 element models and are shown in figs. 3
and 4x*.

As an alternate way o representing the mechanical behavior
of viscoelastic materials the integral formulation of the stress-
strain response has proven useful in the analysis of viscoelastic
structures. To illustrate this approach by way of example consider

the simple expression 1.3 for the relaxation modulus

i

E (1) Eé%) = m exp{-—t,(—:—} (1.4)

wherem = bo/a1 and T = ao/al° As pointed out previously the more
general and more realistic case corresponding to the mechanical

model infig. 1B is represented by the summation expression

l{
E(t) = mg +%:5 mnexp{" :&} (1.5)

* A detailed account of the procurement of the material properties
isgivenin reference 16.
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where mg is the modulus of the viscosity degenerate Maxwell element
and m_ and T,are, respectively, the spring constant and relaxation

time of the nth

element. As the accuracy o representation increases
with the number of elements N, itis convenient to consider N so
large that the sum can be replaced by an integral expression in the

form

0

E(t) = m, +/ H(T) exp(-_.‘%) d(fat). (1.6)
f
Here 7 is in the nature of a continuously varying relaxation time and
H(t) represents a continuous distribution of spring constants analo-
gous to the set of m_ in the finite element model.

While this integral representation of material properties
isvery useful in some stress analysis problems, in particular those
involving time varying temperature fields it has no advantage over
the mechanical model representation for the purposes of the present
work. Because the analysis of viscoelastic rupture involves the
concept of elastically stored energy as distinct from dissipated
energy, the mechanical model offers the simplicity of identifying
the elastic energy physically with the energy stored in the model
springs. But, more significantly, the numerical evaluation of the
elastic energy is much easier when using a finite element model
instead of the integral formulation. For these reasons we have
made exclusive use o mechanical model theory in the following

work.
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1.2 Time-Temperature Equivalence

Beyond the dependence of the material properties on time,
viscoelastic materials exhibit a strong dependence upon temperature.
In contrast to the metals which are rather insensitive to appreciable
deviations from ambient temperature, many viscoelastic materials
change their response to stress or strain radically for only moderate
temperature changes. But closer investigation shows that the pri-
mary effect o temperature is reflected in the change d the material
response time, that is, inthe viscous nature o the material. In-
deed, it has been shown for alarge class o viscoelastic materials,
that lowering d the temperature corresponds to an expansion
o the time scale, and the raising o the temperature to a compres-
sion o the time scale; the factor which determines this change of
scale is a function o the temperature commonly denoted by aT(T),
and is called the shift factor* (17). The change in time scaleis
then given by

I

= b4t
dt NG (1.7)

where dt' denotes the effective time increment if the material is
instantaneously at a temperature T, different from the reference
temperature TO, and dt i s the corresponding time increment if the
material were at the reference temperature. If the temperature
does not change with time relation 1.7 can be written in total form

as

* The term shift factor refers to the multiplicative nature of the
function a.(T) in the time temperature relation, which on a logar-
ithmic time scale corresponds to a temperature dependent shift
along the logarithmic time scale.



-13-

‘ t
_ = 1.8
¢ ar(T) (1.8)

Figure 5 shows the dependence of the shift factor ap on the
temperature as determined from constant strain rate data on the H-C
rubber employed in the experimental work (see reference 16); from
this and equation 1.8 the compressive or expansive effect of temper-
ature upon the time scale is readily apparent.

We shall later make reference to the glass transition tem-
perature of polymers. This temperature is a characteristic of each
polymer and indicates the narrow temperature range (£5°K) in
which upon cooling the polymer changes its behavior from a rubber-
like to a glasslike character. But the more general significance
o this temperature lies in the fact that the behavior & many poly-
mersisvery similar if the individual polymers are at the same
temperature with respect to their glass transition temperatures.

For example, the shift factor can thus be expressed approximately

for many different polymers by the same equation

_ _ 886 [T~ (Tq ~ 50)] (1.9)
101.8 + [ T~ (Tg+50)]

éog S
where Tg is the glass transition temperature and T the temperaturein
© Centigrade. Relation 1.9 was determined empirically by Williams,
Landel and Ferry (17) and is therefore commonly referred to as the
WLF equation; it is shown as the dotted curve in fig. 5.

Although there are many interesting consequences o the

shift factor principle and d the role of the glass transition tem-

perature in viscoelastic material behavior, such a discussion lies
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beyond the present scope. Instead, special observations and comments

will be deferred until needed in the context.

1.3 Effect of Finite Strain

No mention has been made so far of the effect of large strains
on the viscous response o the material. Since rupture may be
associated with large strains, such considerations could play an
important role in the prediction o material failure.

Landel and Stedry (18) have studied the relaxation of SBR
rubber at large strains and found for strains up to 500% that within
the requirements of usual engineering analysis the time and strain

dependence o the stress could be factored in the form
(e, t) = E(v) - { (1.10)

where E(t) is the relaxation modulus and f(e) is a non-linear function
of the strain € which reduces to € for small strains and approaches
thus the proper limit of the linearly viscoelastic stress-strain law.
Becker and Rademacher (19) have found the same result for crys-
talline polyethylene for strains up to 11%. In a more extensive study
on an SBR rubber Smith (20) substantiated essentially the factoriza-
bility of the stress dependence ontime and strain in constant strain
rate tests. He found, however, that while the factorizationis
reasonable at strains smaller than 100% for all temperatures tested
it is applicable at larger strains only above a certain temperature
and not jointly at high strains and low temperatures (below -32°C).

In order to circumvent a detailed study of similar large
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deformation effects and to concentrate on the investigation of the
rupture behavior of viscoelastic rubbers rather than their consti-
tutive law it has proven useful in this work to assume that the
factorization of strain-temperature-time effectsis uniformly valid
and to neglect possible deviations as found by Smith. This assump-
tion affords a simple description of the mechanical material
properties and i s consistent with the qualitative linear stress
analysis employed in the rupture calculations.

It will be found within the framework of the theory proposed
in this dissertation that the calculation of the critical rupture stress
or strain involves only the elastically stored energy in the material.
Although the stress-strain relationship for a rubbery material may
be nonlinear the functional dependence of the strain energy density
upon stress or strain, isnot markedly different from that calculated
by using a linear stress-strain law. This isa consequence of the
fact that the energy density i s an integral quantity of the stress-strain
behavior. For example, if Wt(cr) i sthe true energy density in a
uniaxial tensile specimen under large strain and E i s the initial slope

of the stress-strain curve then

A

W, (e) = ozz(’; (1.11)

where o« is a numerical factor which i s chosen so as to minimize
the error inthe approximation 1, 11. This can be achieved, for
example, by minimizing the square error in the stress range of

interest or simply by graphically fitting the right hand side of equation
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1.11 to experimental data:. As an example, fig. 6 shows the energy
density in a uniaxial tensile test for a neo-Hookean solid** in com-
parison with the right hand side of equation 1.11 for a convenient
choice of @ = 2. The good approximation of the strain energy by the
modified expression of linear elasticity theory is apparent. While

a detailed analysis of rupture under large strains would require a
careful analysis o these large deformation effects it seems never-
theless that the indicated simplifications permit a reasonably
tractable treatment of the problem with presently available analy-

sis tools.

1.4 Isothermal vs. Adiabatic Rupture Properties

Finally it isin order to comment on the presentation of

ultimate tensile properties of viscoelastic solids. Because the

* This procedureis, of course, equivalent to approximating the
non-linear stress-strain law by a linear one with an appropriately
averaged Young's Modulus. However, the above interpretation is
chosen because the viscoelastic material properties are deter-
mined in that range where the stress-strain behavior is essentially
linear, i.e., near zero stress.

** The neo-Hookean solid is defined in terms of the strain energy
function
2 2 2
W o= %t)\. '“/\2“>\3 ”‘3}

with the side condition (incompressibility) that A\jx,\, = 1. Here
the \; are stretch ratios in thethree directions of principal strain.
For example, interms of a uniaxial strain €, the stretch ratiois
expressed as A = 1+ ¢ and under consideration of the incompres-
sibility condition AjA2M3= 1, the corresponding strain energy function

* W -%-{(i-e)z— 2 3}

unigxial +€

Note that for ¢~ 0 Wuniaxial"'Ee corcesponding to the energy
density expression for linear infinitesimal elasticity.
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range of time and rate over which viscoelastic material properties
vary is usually much larger than can be accommodated by mechani-
cal testing devices, recourse istaken to the time-temperature
shift factor principle described above to exchange a variation in
temperature for high or low loading rates. Although the resulting
failure curves are smooth within experimental accuracy a question
arises as to the true meaning of the curves.

Consider, for instance, the H-C rubber characterized in
figs. 3, 4 and 12 to be initially at -20°C and subjected to a strain
rate of 104 in/in/min. This strain rate is sufficiently high to pre-
vent effective heat transfer from the sample to the surroundings
within the duration of the test so that essentially adiabatic condi-
tions prevail. The ensuing energy dissipation can be estimated
to raise the specimen temperature by at least 20°C at 100% strain
which should have a pronounced effect upon the material behavior
as predicted by the temperature dependence o the shift factor in
fig. 5.

This consideration is complicated by the fact that the shift
factor is really associated with the so-called free volume (12)* of
polymeric materials which in turn depends upon the temperature
through a time and rate dependent coefficient of expansion. If the

strain rate is sufficiently high the free volume cannot grow fast

* We are anticipating here the development of the molecular struc-
ture considered in section 1.5. Briefly the free volume is that part
of the polymer volume which could be occupied by polymer mole-
cules but is not. Itisa qualitative measure of the freedom with
which polymer molecules can move relative to each other. The
cited reference givesa detailed account of this concept.
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enough to permit the shift factor to change appreciably during the
test. Hence only the molecular bond strength of the polymer mole-
cules is affected through the temperature rise and the net result
may not be as pronounced as estimated from the equilibrium shift
factor infig. 5. For example, Jones (21) has found in preliminary
tests that the shift factor principle does apply within engineering
accuracy when the strain rates vary over approximately 6 decades.

Nevertheless, until this question of strain rate induced
temperature effects is resolved more conclusively some care is
indicated when applying isothermal rupture data to situations

favoring adiabatic conditions.
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B. THE PHENOMENOLOGICAL DESCRIPTION

OF THE RUPTURE PROCESS

During the extensive study o ductile and brittle fracture
two concepts have evolved which today are considered of fundamen-
tal importance: On the molecular level the dislocation concept of
Taylor (22), Orowan (23) and Folanyi (24) describes the failure
initiation stage while on a macroscopic scale the energy balance
concept o Griffith permits, in principle, the prediction o gross
fracture initiation. Conceptually it will be similarly useful when
considering the fracture of polymeric materials to describe the
rupture process in terms o molecular and macroscopic dimen-
sions, thus emphasizing the difference in the molecular structure
o metals and polymers on the one hand and the similarity as
macroscopic continua on the other. We therefore proceed now
to examine the process o rupture at the molecular, microscopic
and macroscopic level where typical characteristic lengths are

measured in Angstroms, microns, and centimeters, respectively,

1.5 The Molecular Structure of Polymers

The physio-chemical structure o high polymers has been
the subject o extensive studies and is described in detail in the
literature (25, 11—14)*. For our present purposesit suffices to
state only the elementary concepts that relate to the initiation and

propagation of rupture

These references contain exhaustive bibliographies on the subject.
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a. The polymer chain. Polymer molecules consist of long

chains o atoms and chemical groups of atoms, the number o such
elements in a chain ranging from afew hundred to a few hundred
thousand; the mechanical properties o a macroscopic sample are
determined to the largest extent by the average length of the poly-
mer chains.

When a chain grows it assumes a spatial configuration that
is compatible with its already existing length and with other chains
growing adjacent to it. Due to the large number o chain elements
and the relative freedom o direction in which the chain can grow,
this spatial arrangement leads to severe entanglements of groups
o chains.

If no chemical bond formation occurs between entangled
chains the macroscopic strength characteristics are derived pri -
marily from the nature of the mechanical entanglements::' which in
turn depends strongly upon the molecular weight, i.e., the number
of atoms or groups in the polymer chain. The material is then
commonly called a plastic or linear polymer.

On the other hand, if bonding does occur between molecu-
lar chains this chemical crosslinking effect influences the material
strength by restricting any motion that tends to untangle the poly-
mer chains. Inthis case a sample o the material consists in
principle of a single molecule which fills its macroscopic space

by a huge, irregular network of connected polymer chains. Such

* The term "mechanical entanglement™ implies, o course, the
analog representation of the polymer chain by a string or linked
chain.
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a material is called an elastomer or rubber and islargely char-
acterized by the number of groups in a chain between cross links,
Since this number is typically on the order of 104 the network is
not tightly knit, but permits the chain segments between cross
links to move with relative freedom. Thus rubbers behave in
certain respects like uncrosslinked polymers, and vice versa,

the difference being restricted to the mechanical response which
involves the untangling of the molecule chains. This dissimilarity

will become more evident during the following discussion o the

effect of chain slippage.

b. Effect of chain slipping. Because the absence o

chemical bonds between polymer chains does not inhibit the
motion of the chains relative to each other linear polymers can
undergo large permanent deformations due to the viscous flow
of the molecule chains past each other, However, if the molecu-
lar weight is sufficiently high the mechanical entanglements can
act as effective crosslinks and consequently the flow phenomenon
is observed only at temperatures approximately 100°C above the
glass transition temperature, where the thermal motion of the
molecule chains permits relatively high rates of viscous flow,
Of course, the material will rupture before chain flow can occur
if the applied load is too large; inthis respect linear polymers

behave like the crosslinked polymers. In our further discussion

* The time-temperature shift principle implies the same behavior
at long times and lower temperatures.
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we shall exclude polymer flow phenomena and restrict ourselves
conceptually to the rupture behavior of rubbers.

Within this restriction failure can occur only through rup-
ture of chemical bonds in the chain or at crosslinks, and it is
pertinent to inquire into the relative importance of chain motion
and chain rupture in the fracture process.

For this purpose it isfirst necessary to associate the
elastic component of mechanical polymer behavior with the el as-
ticity of the molecule chains and the viscous response with the
slipping o the entangled chains past each other during the pro-
cess of reaching a new equilibrium state. The forces which act
on a chain segment are therefore due to the forces transmitted
along the chain as well as from the viscous interaction with the
chains moving past it.

It is clear that bond rupture occurs only as the result of
the forces which act on the bonded atoms. Because the time
dependent motion of adjacent molecules contributes to these
forces a part of the time dependence in viscoelastic fracture
is due to the interaction of moving molecule chains. The remain-
ing part of the time dependence arises from the bond rupture
process which will be discussed |ater.

In terms of energy partition this understanding implies
that the relative motion of the molecule chains contributes only
to the dissipation of energy and influences rupture by raising the

temperature, while only the elastically stored energy takes part
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directly in the rupture process. If, e.g., rupture progresses at
a constant temperature then only a part o the total work done on
a polymer sample contributes to fracture.

In an earlier investigation o polymer fracture F. Bueche
(10) used the concept of elastic energy. But while he attempted to
calculate this quantity from molecular parameters we shall here
take an alternate approach and use the phenomenologically deter-
mined material properties to express the elastic energy. As
pointed out in section 1. 1 this requires only the identification
o the chain elasticity with the elastic spring elements in the
mechanical model chosen to represent the mechanical behavior;
this method obviates the uncertainties associated with the cal cu-
lation of molecular parameters.

In order to examine the rupture resistance o the chain
building blocks we proceed now to consider the effects which

influence and determine the rupture o polymeric chain bonds.

c. The chemical bond. The nature of the chemical bond

has been treated extensively by Pauling (26). Since we are inter-
ested primarily in the statistical aspects of bond strength we need
be concerned here only with the concept that the bond strength is
ultimately measured in terms o energy and is the result o the
minimum energy states which the two atoms and their electrons
have with respect to each other. Bond rupture can thus be
caused by various effects which disturb the local energy state

sufficiently.
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Such a disturbance can be achieved, for instance, through
a relative displacement o the three dimensionally conceived atoms
corresponding to the macro-mechanical notions of tension, shear,
bending and twist, and it is always involved in the fracture of
rubbers under the influence d mechanical forces and deformations.

On the other hand, the local energy balance can be dis-
turbed from its minimum state by an electronically active radical
contained in the polymer as an impurity, which may result in a
weakening o the bond. Inthis case, for instance, the tension
required to break the bond would be | ess than that necessary for
bond rupture in the absence o the radical.

If molecular bonds break in a polymer chain the newly
created chain ends will also act as radicals which may combine
with other free chain ends to produce temporarily relaxed chains:'
or, like the aforementioned impurities, weaken neighboring chains.
Cf course gross rupture occurs only if the rate of bond rupture
exceeds the rate of bond re-formation.

Finally we note that on a macroscopically observable level
the evidence o the bond interchange and re-formation processis
manifested in the tackiness & new rupture surfaces. It is sur-
prising at times to find that even after exposure o the newly
created surfaces to the contaminations o a normal laboratory
atmosphere, the fracture can heal partially so that the sample

* This type of bond interchange is responsible for the phenome-
non of chemical stress relaxation (13).
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regains a substantial part of its original strength,

d. Atmospheric effects. In addition to the sensitivity of

the polymer chainto the presence o electronically active compon-
ents in the interior of a rubber the reaction of radicals with the
unruptured molecule chain is of import on the promotion of rup-
ture at surfaces exposed to atmospheric conditions.

It will be seen in section 1.7 that long time failure and
slow crack propagation is in some polymers associated with the
formation of a fibrous structure. Under such conditions a rel a-
tively large amount of area of the polymer under stressis exposed
to the surrounding atmosphere and hence the influence of the re-
action of chemical radicals with the strained polymer can signif-
icantly further the propagation of rupture.

The practical consequences of such a reaction are numerous,
but suffice it to name only afew. Inthe Los Angeles areawhere
the air contains appreciable amounts of ozone, it is a commonly
known fact that the oxidative smog atmosphere has a detrimental
effect on the life of automobiletires. Indeed, Braden and Gent
(27) have studied the effect of ozone in an ionized oxygen atmos-
phere and found a strong increase in crack propagation velocities
with increasing ozone concentration. In a related experiment
Tobolsky, Prettyman and Dillon (28) demonstrated that the dif-

fusion of molecular oxygen into a rubber sample caused complete

* In preliminary tests completely broken tensile specimens o an
H-C rubber regained about 15% of their original strength after
being rejoined at the fracture surfaces for only three minutes

at room temperature.
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stress relaxation as a result of polymer chain scission.

It is of interest to note that the fracture of metals involves
similar phenomena as, for example, stress corrosion {(29), hydro-
gen embrittlement (30) and the atmospheric effects on the fatigue
strength (31). Although the elimination of any atmosphere elimi-
nates also the oxidation problems for both metals and polymers
one finds that the usual polymers are not stable in a hard vacuum.
From the standpoint of fracture resistance an inert gaseous at-
mosphere at reasonable pressures istherefore most desirable
for the protection of these organic materials from atmospheric

influences.

1.6 Microscopic Aspects

While in the last section we have considered rupture from
a molecular viewpoint we shall now concern ourselves with a
larger collection of polymer chains and consider the susceptibility
of amorphous* polymersto rupture at the level of molecular
aggregates.

One o the phenomena observed in the fracture of mater -
ials is that the measured strength of bulk material is several
orders of magnitude smaller than calculated from molecular
strength considerations. This fact has led to the postulate that
microscopic defects weaken the material and that the molecular
* If a polymer contains regions inwhich the polymer chains
have formed a regular array resembling ionic crystal structures

it is called crystalline; if such crystal-like regions are absent,
the polymer is termed non-crystalline or amorphous.
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bond strengths are realized only in the stress concentrations
associated with such defects. It has been proposed in the past
that these defects exist in materials inthe form of microscopic
cracks or other material discontinuities. However, the study of
fracture initiation in metals revealed that such defects can develop
under stress through the coalescence of dislocations (32, 33) which
are not sufficiently large by themselves to account for the com-
paratively low bulk strength. By analogy it appears similarly
reasonable that defects need not exist in polymers in the form
of microscopic cracks or holes but can develop under stress
from initially small weaknesses in the molecular structure.
This concept does not, of course, preclude the importance of
impurities and subrnicroscopic inclusions from the rupture pro-
cess, but merely restricts them to the role of possible initiators
of defect growth.

In contrast to the metals and crystalline polymers the
structure of molecular aggregates in amorphous polymers has
not been studied to any significant extent. The most important
reason for this deficiency is probably the fact that the unordered
structure of the amorphous polymers does not lend itself readily
to an analysis under an electron microscope. As a consequence
there exists no information which might aid us here in identifying
certain regions in a polymer with defect sites where molecular
configurations would promote the initiation and growth o rupture.

We are therefore forced to hypothesize the nature of such regions
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in order to proceed with the analysis of fracture in amorphous

polymers.

a. The nature of polymer defects. Since the molecular

structure is developed during the polymerization process the
potential weak regions are presumably also formed in this stage.
When polymerization starts at isolated points due to local
temperature fluctuations polymer chain complexes grow and
eventually meet with neighboring chain aggregates. Because
of the lack of stearic hindrances during the initial growth stage
the core of the polymer aggregate contains strong molecular
bonds while the bonds formed at a later stage of polymerization
are weak. This follows because the newly added chain building
blocks must accommodate themselves into an already existing
and increasingly dense chain structure. For the same reason
the molecular weight of the polymer moleculesis likely to be
smaller than at the core of the growth complexes. Consequently
the cross-link density in such regions is low or even non-existent.
Inasmuch as it has been demonstrated that a small fraction of
low molecular weight material in polymer blends has a dispro-
portionately large harmful effect upon the ultimate properties (34)
it appears logical that such regions are the sites of rupture ini-
tiation and microscopic growth. Furthermore, since the growing
chain complexes solidify at different rates they cause non-uniform
shrinkage and the intermediate and |l ess solid regions provide the

spatial adjustment at the expense of their own cohesive strength.



-29-

We envisage thus a polymeric structure of preferred strength
regions which resembles the granular structure of metals without,
however, exhibiting distinct grain boundaries. In principle this
variation in molecular structure is similar to the difference be-
tween the morphological character of the spherulites and non-
spherulitic material in a crystalline polymer as shown infig. 7=
and is also indirectly apparent in the formation of holes in the rub-
ber sample of fig. 8. We shall see later that the weak region
hypothesisforms an important part of the theory for calculating

viscoelastic failure properties.

b. Effect o volume size upon rupture properties. Since

this dissertation is concerned with fracture as a local phenomenon,
it is appropriate to comment on the influence of the test volume
size on the ultimate properties.

In view of the statistical nature of the polymerization pro-
cess and the formation of weak regions as discussed in the |ast
section it is evident that the bulk rupture behavior o polymers
is also governed by statistical laws, An example in point is the
distribution of tensile strengths about a most probable mean value.
But in addition the statistical character of the weak domain makes
the rupture strength also dependent upon the size of the test speci-
men (36).

This dependence on the size of the test volume isillustrated

* In this context the work of Hsiao and Sauer (35) on the structure
of crystalline polymers is noteworthy.
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by the simple observation that a larger test specimen is more likely
to contain severe defects than a smaller one and will, therefore, be
weaker on the average. Although Weibull (37) and Gumbel (38)
have provided the mathematical analysis o this size dependence
in fracture the inclusion o this effect in the present fracture cal-
culations presents some practical problems. Foremost among
these i s the time consuming experimentation required to establish
conclusively the dependence o the rupture properties upon the test
volume and the appropriate distribution functions for a particular
material. Another difficulty arises from the fact that for meaningful
results specimen dimensions are required which are on the order o
fractions o millimeters. While the latter requirement can be simu-
lated in principle by means o stress concentrations, as for example
demonstrated in section 1. 11, it is not believed that the size effect
is o such critical importance in this examination o the time
dependence in viscoelastic fracture to warrant these special ef-
forts. This belief is supported by experimental experience which
suggests that the contribution of the size effect to viscoelastic
rupture behavior at stress concentrations is no more important
than those of the molecular mechanisms which are not included in
this analysis. The statistical aspects of rupture which give rise
to the volume effect will thus be excluded in the following devel op-
ment.

It should be noted, however, that this exclusion implies
that we deal henceforth with an idealized micro-structure. In

terms of the regional strength concept o this section the
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simplification implies also the absence of statistical strength vari-
ations. In other words, the postulated weak regions are essentially
identical and are distributed throughout the body in a regular manner.
The exclusion o the statistical aspects of rupture--excepting those
which relate to the molecular mechanisms of bond rupture--leads
therefore to a conveniently simple model o the polymer micro-
structure which is amenable to a relatively uncomplicated mathe-

matical treatment.

1.7 Macroscopic Considerations

While the initiation of rupture at the molecular level in-
volves the material as a discontinuum, macroscopic phenomena
admit the use of continuum mechanics concepts in a fracture
analysis. Although the observed phenomena accompanying gross
fracture are numerous and far from being all understood, itis
possible to single out particularly prominent effects and consider
them alone while disregarding further details. As an example o
this simplification we cite the aforementioned energy balance
concept of Griffith which determines in principle the relation
between the size of a defect in a structural component and the
maximum load which the member can support. In practice, how-
ever, the analytic formulation o this concept is limited by the
mathematical difficulties of continuum theory so that one is often
content with qualitative results derived from an approximate

analysis.
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Because of these analytic difficulties in describing the frac-
ture process the experimental investigation of rupture phenomena
continues to play aleading role infracture mechanics. The various
methods which are used in this exploration are too numerous to be
considered in this place and only reference is made to some repre-
sentative work reported elsewhere (39, 40). Here we shall only

consider those aspects which relate directly to our later work.

a. Fracture markings. A primary source o information

on fracture processes has been the inspection o fracture surfaces.
For example, Kies, Sullivan and Irwin (41) have deduced from such
observations on specimens broken in uniaxial tension that the frac-
ture propagates discontinuously in all the metallic and non-metallic
materials tested. Similarly Mason (42) established that the high
speed propagation of cracks (~ 100 ft/sec) in a non-crystallizing
rubber (SB-R)involves essentially the same processes o surface
formation as in metals. Also, Andrews (43) has pointed out on the
basis of fracture surface appearance that hysteresis effects are
very important in the propagation of cracks through crystallizing
rubbers under conditions o cyclic stress application. Here we
shall add to these findings the results obtained from studying the

4

motion o a slowly propagating crack (-10 ' - 1 ft/sec).

While the post mortemm examination of fracture surfaces

can produce conclusive results as indicated by the above examples,
additional information can be gained by observing the motion of

the material at the tip o a moving crack. For instance, one
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notices with the aid o a low power microscope that material rupture
occurs in an extended domain around the perimeter o the crack tip¥*
where the material deteriorates through the formation of polymer
ligaments and their subsequent severance. The ruptured polymer
ligaments then retract while interacting in a viscous manner with
the more solid crack boundary. When the crack propagates at a
higher velocity the extent of volume participating in the ligament
formation decreases and the ligaments become smaller. The cor-
responding change in the fracture surface appearance is shown in
fig. 10 which demonstrates the decrease o surface roughness
associated with the decrease o ligament size at higher speeds.
Incidentally the formation o a rupture surface at slow crack speeds
involves much more surface area than is visible by mere inspec-
tion o the final surface. Since the fibrous polymer bundles all
possess surfaces in the extended state the resultant crack surface
consists of many undercuts and partially rehealed surfaces.

The production of afibrous structure at the crack tip and
its velocity dependence can be explained in terms o the defect
hypothesis discussed in section 1.6. At low speeds the material
around the crack tip is under an elevated stress for a long time.
Defects grow in the microscopic weak regions and eventually
join, leaving only the ligaments which then break and thus effec-

tively advance the position o the crack tip. According to calcu-

* See for instance fig. 9. The same phenomenon is evident in
reference 8.
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lations based on the energy concept o Griffith a higher stress at
the crack tip requires only smaller defects to let the material rup-
ture locally. At higher velocities and higher stresses at the crack
tip the defects need to develop only to a smaller size and hence

the fibrous polymer bundles decrease in size, also. Furthermore,
as the rate of defect growth is not simply proportional to the stress
and since the stress decays away from the crack tip it turns out
that the defects at a distance from the tip do not develop to a
visible size at higher crack speeds and higher stress around the
crack tip; thus the volume involved in the ligament formation
apparently decreases with increasing speed.

The same type of rupture phenomenon can be observed in
fig. 8 which shows the fiber formation in a commercial rubber
band after subjecting it to a constant uniaxial strain of 50% for
approximately 3 months at room temperature.

Besides the two materials represented in figs. 8-10 the
same effect was observed on a Butarez rubber* which possesses
approximately the same glass transition temperature as the H-C
rubber used in the crack propagation studies. In comparison, a
polyurethane rubber develops a very smooth, glass-like surface
when observed at the same temperature (22°C) and comparable
speeds o crack propagation. However, at room temperature the
polyurethane rubber is much closer to its glass transition tem-

perature (-40°C) than the H-C rubber (Tg~ -85°C). Hence a more

* A carboxy terminated poly butadiene resin.
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glass-like behavior should be expected as well as similar ligament
rupture at temperatures about 60°-70°C, or at equivalently lower
velocities (v~ 10_6in/min). This expectation is, of course, in
agreement with the previously stated observation that the behavior
of different polymers is usually comparable only when the polymers
are at the same temperature with respect to their glass transition
temperature.

In a paper on viscoelastic fracture Williams (44) has pointed
out the importance o energy dissipation as a controlling factor in
the propagation o cracks. Whereas he was primarily concerned
with the effect on the velocity of slowly moving cracks under iso-
thermal conditions it is interesting to consider also the effect of
the attendant temperature rise. In this context the earlier discus-
sion on the isothermal and adiabatic rupture properties should be
recalled. Depending upon the speed of crack propagation the heat
generated in the stress concentration at the crack tip may con-
tribute to lowering the material strength locally.

An increase in crack speed affects the temperature at the
crack tip in two ways. Since the dissipation increases with the
velocity* the temperature increases also. Secondly, the rate of
heat flow away from the crack tip is reduced at higher crack speeds
so that the heat remains more concentrated at the crack tip. One
would therefore assume that the generation of heat at the crack

tip plays a significant part in the propagation of cracks at high

* For low velocities the dissipation is proportional to the square
of the velocity (45).
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speeds (v> 1000 in/min).

b. Effect of the multiaxial stress state. Besides the pro-

nounced time effect in the viscoelastic rupture process the fracture
behavior is influenced by the stress distribution. Most work in
polymer rupture has centered on the convenient uniaxial tensile
test although attempts to delineate multiaxial failure conditions

are rapidly increasing (15, 46, 47, 48). For example, Ko (49)
has recently presented some quantitative results on the elastic
rupture of rubber under various combinations of multiaxial ten-
sile stresses. An exhaustive examination of the stress state de-
pendence of polymer failureis too complicated and far-reaching

to be attempted here. However it suffices for the present purposes
to comment only upon the rate and temperature effects.

Near the glass temperature, typical uniaxial polymer
specimens exhibit yield characteristics similar to those of a mild
steel. It istempting to assume therefore that yielding prior to
rupture will also exist in a multiaxial stress state. But to conclude
on this basis that the onset of such yielding in a glassy polymer is
also governed by the von Mises yield criterion of a critical octa-
hedral shear stress which applies to metals i s somewhat premature.
The caution is prompted by two observations: When a uniaxial
polymer tensile specimen yields the yield boundary is almost
invariably aline of constant principal stress and is perpendicular
to the line o tension whereas in metals it appears along lines of

constant shear stress which are at 45° with the tensile force.
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Secondly, yield in metals is associated with the motion of disloca-

tions under the action o shear stress; but no similar mechanism

or molecular configuration in amorphous polymers has been asso-
ciated with the preferred response to a shear stress. On the
contrary, since polymer chains possess an essentially filamen-
tous structure they should presumably respond more naturally to
tensile forces.

The latter statement does not lose its validity at higher
temperatures or correspondingly low strain rates where the
material does not exhibit the yield phenomenon: Thus the gen-
eral extrapolation o metal yield criteria to polymer rupture does
not appear to be well founded. Nevertheless it has been suggested
in the past that such criteria may prove useful in correlating
polymer rupture. Instead, it seems more reasonable to expect
a rupture criterion based on a linear combination of the principal
stresses or on a constant value o the dilatational or total elastic
energy*. For instance Williams, Schapery, Zak and Lindsey (48)
have recently suggested on the basis o failure data in uniaxial
and equal triaxial stress fields that the criterion of a constant
dilatational energy at rupture may be quite reasonable.

Intimately connected with the stress state criterion is the
orientation o the gross fracture surface. While in an elastic
material the formation of a new surface seems to occur always
* The total elastic energy is equal to the sum o the energy o
distortion and dilatation. It will be recalled that the von Mises

yield criterion is equivalent to a constant value o the distor-
tional strain energy density at yield.
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in a manner so as to relieve as much energy in the system as
possible, this is not necessarily true in a viscoelastic material.
For example, it has been shown (50) in diametral compression
tests on circular disks o highly filled rubber that the orientation
of the fracture surface (and presumably the sensitivity to shear or
normal stress) with respect to the axis of compression changes

in tests at different temperatures from alignment to 45" and to
alignment again as the temperature is increased from the glass
transition temperature.

In regard to the orientation o fracture surfaces afracture
phenomenon in the poker-chip test* is of interest. Although the
phenomenon does not appear to be of immediate and practical
significance it illustrates nevertheless a deviation from usual
engineering expectations that are based on the behavior o metals.
While in this test configuration a metal specimen should rupture
in a plane parallel to the specimen midplane the fracture surface
in a rubber specimen cuts across the disk thickness and aligns
itself parallel to the direction o pull. This behavior is connected
with the fact that for these nearly incompressible materials and
the close proximity of the rigid bond surfaces, more energy can
be released by the load parallel orientation. This phenomenon

vanishes rapidly (48) as Poisson's Ratio changes from values

* This test consists o pulling a thin disk (thicknessto diameter
ratio Z 1/20) normal to its plane surfaces which are bonded to
rigid supports. Since rubbers above their glass temperature are
nearly incompressible (the ratio d tensile modulus to bulk modu-
lusis very small) this tension produces stresses near the center
o the disk which approximate conditions of equal triaxial tension.
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near 0.5 to 0.47 and can therefore not be observed in the engineer-
ing metals which have a still smaller value & Poisson's Ratio.

It is evident from the past comments that the interaction
o time, temperature and stress state play an important part in
the fracture of viscoelastic materials. However, before exploring
the interaction of the time-temperature and stress-state effects it
is prudent to investigate the contribution of the individual effects
to viscoelastic fracture. As it is possible on the one hand to study
the rupture o polymers in multiaxial stress states while minimiz-
ing the dependence on time and temperature on the other hand this
division permits the investigation of time-temperature effects in
avery simple stress state. We shall therefore restrict ourselves
in our further work conceptually to time and temperature depen-
dent fracture in uniaxial tension while awaiting new developments

in the understanding of rupture in multiaxial stressfields (47, 48, 49).

c. Energetics o crack growth. Inthelast paragraphs we

have already encountered the influence o elastic energy on the
fracture process. We shall now demonstrate the usefulness o
energy considerations in the definition o a rupture criterion by
considering as an example the behavior of brittle materials, and
subsequently indicate under what conditions a similar criterion can
be applied to viscoelastic materials.

In the absence o effects other than mechanical or thermal
the law d conservation o energy can be expressed on a per unit

time basis as
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K+F=W,-D (1.12)

where K = rate of change of kinetic energy in the system

F = rate of change of free energy

WB . rate of energy input at the boundary and

D = rate of energy dissipation.
Although the calculation of individual terms in equation 1. 12 may pre-
sent considerable difficulties in general, useful information can be
obtained in certain special cases. This has been demonstrated by
Rivlin and Thomas (1), and by Schapery (45) on the problem of
crack propagation in a geometry also used in this dissertation.
The earliest application of this energy principle infracture me-
chanics was made by Griffith in his work on brittle materials (51).

For a brittle solid the dissipation consists mainly of the
energy spent in creating a new surface and the free energy is equal
to the elastic strain energy in the structure. Thus the kinetic
energy change can be expressed readily in terms of the remaining
quantities for a particular boundary loading. At gross rupture
the kinetic energy increases markedly due to the motion o the
newly cracked surfaces. It appears therefore logical interms of
equation 1. 12 to define fracture as imminent when the initially
small kinetic energy increases to a significantly larger value.
As a special case the criterion of Griffith is equivalent to stating
that catastrophic rupture occurs when the kinetic energy increases

from zero by only an infinitesimal amount.
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Since cracks in brittle materials are observed to accelerate
from rest to a speed of approximately 5000 ft/sec within a fraction
o a second (36, 69) the simple Griffith criterion can predict the
occurrence of gross fracture for those materials within the time
scale of normal engineering interest. This is not necessarily true,
however, when viscoelastic effects are present. Fig. 11 for ex-
ample shows the acceleration stage of a crack in a rubber sheet:::.
In this case rapid failure growth did not occur until three minutes
after load application although the crack propagated slowly from
the beginning of the test. In contrast to the case of brittle frac-
ture a satisfactory description of the viscoelastic rupture process
would therefore include a more detailed consideration of rate
effects and the associated dissipation d energy,

In many situations of incipient viscoelastic rupture it
turns out, however, that thetime scale of the final fracture stage
is relatively unimportant so that a simple criterion of the Griffith
type serves a useful purpose. Such is the case, for instance, if
it is necessary to know only whether or not a material will ever
fail by gross rupture or, alternately, if the time span of the final
fracture phenomena is small compared to the total life of the
fracturing part. With the exception of the above example the
latter case applies approximately to the rupture behavior con-
sidered in this work and will therefore permit the qualitative
application of the simple fracture criterion in the subsequent
fracture calculations.

* The experimental details are described in section 1. 12.
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C., THE RUPTURE MODEL

In sections 1.5-1.7 we have outlined some material char -
acteristics and basic concepts which are fundamental in understanding
polymer rupture. In order to concentrate on the overall rupture
behavior of polymers without consideration of special chemical
formulations it will only be necessary to incorporate the most domi-
nant contributions from each o the molecular, microscopic and
macroscopic effects. Indeed, the inclusion d more detailed infor-
mation in afirst quantitative analysis of rupture prediction would
seem incompatible with the semi-qualitative methods available
for the mathematical formulation o the problem. Consequently,
the resulting theoretical relations will not fully describe all aspects
of observed fracture behavior; but they will permit an examination
o the agreement with experiment and thus a quantitative assess-
ment of the relative importance o the effects included in or
excluded from the analysis, For clarity of presentation we shall
now describe a model for the simplified rupture process, deferring
an explicit statement of assumptions until needed in the context,

First, in the absence of a more precise description of the
initial flaw character, we hypothesize the existence of weak
regions, as outlined in section 1. 6, at which rupture always starts.
Although the physical situation would entail a statistical distribution
o weak regions we consider them to be of equal and definite size,
uniformly distributed throughout the material.

Second, each weak region contains alarge number of
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breakable molecular bonds which possess a distribution of bond
strengths, representative of the deviation from the possible maxi-
mum strength due to interaction with neighboring polymer chains.
In addition each bond is of a statistical nature as prescribed by
quantum mechanical considerations. When a bond breaks it may
recombine with another broken bond but will not cause any un-
broken bonds to rupture prematurely. The recombinationis
assumed to produce a chain which is indistinguishable from ori-
ginally unbroken ones and contributes to the overall strength
accordingly.

Third, bond rupture occurs at random locations in each
weak region but the number of broken bonds is assumed to be
proportional to the effective surface area of the growing defect.

Finally, since the rupture stress depends on the size of
the defects the prediction of gross fracture requires the defini-
tion of when the ensemble of defects |eads to catastrophic rupture.

As the defect size is by assumption related to the number
of broken bonds, the problem of rupture prediction separates
into two parts; first, the calculation o the number of broken
bonds as a function of time and stress-strain history, and second
the definition of the load criticality condition. We proceed there-
fore to determine now the rate of bond rupture. This will be
accomplished by assuming a rate process for determining the
defect growth. Following this development the energy balance
for fracture instability, as discussed in section 1.7, will be

presented.
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1.8 Defect Growth

In predicting bond rupture in a molecular aggregate one is
obviously faced with the difficulty of how to treat the spatial connec-
tivity between molecule chains. We have chosen here to assume
that bond rupture within a weak region takes place spatially at ran-
dom. Since the weak region is conceived as having a definite size
there must be a finite, though large number of bonds present;
whether all of them take part in the rupture process is immaterial
as long as the number o breakable bonds is large enough to permit
the consideration o the bond rupture process on an average basis.

Since the formation and rupture of chemical bonds under
mechanical stresses on the polymer sample involves in principle
the same processes as the formation and dissolution of compounds
in a chemical reaction we shall now use the theory of chemical
reaction rates to estimate the rate of bond rupture in a weak region.

Let Nl and N2 denote, respectively, the number of unbroken

and broken bonds in a weak region. The linear rate law
2R = — 0N, o+ Oy N, (1.13)

predicts then the rate at which the number of unbroken bonds de-
creases or increases on the average; ©,, and ., are coefficients
which determine the average rate of bond rupture (©,)and bond
re-formation (G, ). Similarly the rate of increase of broken bonds

is governed by

—2% = O, N, — &, N, (1.14)
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Addition of equations 1.13 and 1.14 shows readily that the sum of
broken and unbroken bonds is constant at all times which is consis-
tent with the notion of a definite weak region size. Sybtraction o

these equations |eads to the Debeye equation

d Nz - N. — - Nz - N, - _Oo
S s - v (e (G- T (1.15)

where Ny =N;+ N For our purposes it suffices to consider only

2'
the particular solution o this first order differential equation.

The solution is

o N + t T

BEEE = expl- [(T,r G )at] UG Tr) - exe L [(Gr el v (1.16)
© (») ()

In order to relate the left hand side to the defect area we write the

number of broken bonds as the sum d those already broken in the

equilibrium state, NZO, and the increase of broken bonds due to the

application o a stress, A N,. Noting that N, = Ny - N, and N,= ZNZO,
we have
Ne=N.  _ AN (1.17a)

No N7
The second ratio is equal to the fractional increase of broken bonds

under the application of a stress. In accordance with our earlier

* The number o broken bonds in the equilibrium state (zera_stress)
depends upon the relative magnitude o the rate functions wi., and

. at equilibrium which are then more appropriately called equi-
librium constants. Although the equilibrium constants must be
determined by experiment it is more convenient to choose them
equal in magnitude. This implies (cf. equation 1. 15) that the num-
ber of broken bonds is equal to the number d unbroken bonds in
the equilibrium state. Inasmuch as we are interested only in a
deviation from the reference state this assumption is not very
critical; the general character o the solution is not changed.
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assumption we replace it by the area ratio A/Am so that

Nz~ N, _ AL (1.17b)
No Awm
Here A is the instantaneous, effective area of the defect and Am is
the maximum area which the defect can attain. This choice follows
from the fact that the right hand side of equation 1.16 has a maxi -
mum value of unity.
In order to obtain the rate functions Z—D—,Z and TO—Z—.- con-
sider a large number of identical polymer chain links under equal
loads. If an amount of energy his required to break a single
bond then the theory of rate processes (52) predicts, for example,

the rate of bond rupture to be

T h-E ( \
i - 1.18
w, = a-— e K
te ‘“&
where a = proportionality constant
k = Boltzmann's constant

1 = Planck's constant

T = absolute temperature

E = elastic energy in each bond due to the applied loads.
If on the other hand each bond does not have the same strength,
but follows a distribution o bond strengths g(h) as assumed for
the defect model, the average rate of bond rupture @&,, can be

expressed as
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_ STam) 0 (k) di
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e dh
o _& (1.19)
_ kT S qog&)e T dh }e E
o/ ek dn

along with a similar expression for the average rate of bond re-

formation
ot A e | £
On = & - }9 i (1.20)

£ /Taw dh

The quantity in brackets is a function of the temperature only and

will be denoted by &(T), so that the average rate functions become

- E
Wiz a®(r) e &t

il

(1.21)

i

W2y a ®((T) e"x%? .

Upon substituting these expressions into the rate equation 1. 15 and
by using the definition of the area ratio 1. 17 we obtain a relation
for the rate of increase of the defect area

d A/Am E A _sinkh E 1.22
smar = “he h .22

* The coefficient "a" is chosen equal in the expressionsl. 19 and
1.20 to permit &, = &3, inthe casethat E = 0, This guaran-
tees that A/Amis zero in the absence of external forces.
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where A = a/2, and the solution 1.16 may be written in the same

terms as

t
_7%;”: eXP{“’/\J@U)COSh %dt}/@(’[}sxnh [exp()\j(“)('f)cosh ﬂ}o{’t (1.23)

[

From these equations it i s obvious that the time dependence of
both the temperature and the elastic energy per bond determines
the growth history o the defect. While we shall consider in the
following calculations only isothermal rupture processes the elastic
energy will vary according to the stress-strain history imposed on
the material before rupture. As pointed out previously the elastic
energy per bond can be calculated approximately with the help o
the phenomenological stress-strain law for any desired stress-
strain history by dividing the elastic strain energy density by the
number of bonds per unit volume, N, Since the resulting expres-
sions are not a simple function o time, the integration of equation
1.22 or 1.23 must be accomplished in general by numerical means.
In this context it should be recalled from the discussion
in section 1.5 that a part o the time dependence in viscoelastic
rupture arises from the relaxation effects associated with the
motion of polymer molecules relative to each other. This effect
has been included in the defect growth analysis by considering
only the elastic energy which is a function d the amount o re-
laxation occurring in any specific loading history. But even in
the absence of relaxation when the elastic energy does not change

with time the fracture process is time dependent as can be readily
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seen from either equation 1.22 or 1.23.

We have thus identified the two major contributions to
the time dependence in viscoelastic fracture, namely the relaxa-
tion effects as exemplified primarily in the stress-strain behavior
and secondly the time dependence of the molecular bond rupture

process.

1.9 A Condition of Critical Loading

In order to complete the prediction of gross rupture we
determine now a relation between the defect size as calculated
inthe previous section and the critical stress at which a sample
will break.

The different time scales of gross rupture propagation in
the metals and viscoelastic materialswere already pointed out in
the last chapter. Because the gross propagation of rupture may
not occur, by usual engineering standards, in a sudden or catas-
trophic manner after the first evidence of rupture initiation the
definition of a critical instant in the progression of rupture is a
somewhat arbitrary matter. One might, for instance, define the
critical moment at the time of maximum acceleration of fracture
propagation or alternately as the instant when rupture progresses
at a particular rate, While the maximum acceleration can be
calculated in principle from the concepts proposed by Williams (44)
it proves to be more convenient to define the critical condition in
terms of a rate dependent tearing energy as defined by Greensmith

and Thomas (3). Briefly, this energy concept states that the amount
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of energy spent informing a new surface area in a material depends
onthe rate o areaformation. Although this tearing energy includes
the energy dissipated in the viscoelastic deformation of the material
during surface formation in addition to the energy needed to form
the visible surface the analogy to the surface energy of brittle
materials or liquids i s obvious. Since the surface energy plays

an important role in the fracture of brittle materials it would follow
that the rate sensitive tearing energy performs a similar function
inthe fracture of rubbers. We shall therefore deduce now how the
tearing energy can be used to obtain a rupture criterion for visco-
elastic rupture o the typefirst established by Griffith (51).

To begin with let us review briefly the salient arguments
that lead to a criterion for the fracture of brittle solids. We shall
do this by using the power equation 1.12 of section 1.7c. Note that
for a brittle solid the energy dissipation consists primarily of the
energy spent in forming the new surface, A, so that the rate of

energy dissipation is equal to

d A

with y asthe surface energy per unit areaformed. If we define
rupture to be imminent when the kinetic energy increases from zero

to a small value the power equation 1.12 predicts rupture when

E-w, > - V%, (1.26)

For the case of a centrally cracked plate of unit thickness under a
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uniform peripheral stress ¢ Griffith showed* that the inequality

1.26 predicts catastrophic failure when

2

TC 2 >y (1.27)

2E -

where c is the half crack length,

The derivation o an equivalent relation for the prediction
o fracture in viscoelastic rubbers as relates to the concepts of
this dissertation hinges on the two facts that 1) the shape o defects
is not known and 2) the necessary stress analysis is intractable
when large strains are encountered**, Nevertheless a detailed
qualitative analysis involving various arguments on the above two
points can lead to the result below, its derivation resting ultimately
on arguments of dimensional analysis. Inthe interest o brevity
and clarity we present therefore on dimensional grounds the analog

of relation 1.27 for aviscoelastic solid as

wW,o¥A 2 «T (1.28)

Here A = surface area of the enlarging defect,

Wel = elastically stored energy density far away from the defect,

T = rate dependent tearing energy and

o = a proportionality constant.

* It 1s Interesting to note in passing that Griffith predicted that the
failure stress is independent of the biaxial nature of the stress field
applied. Contrary to this common under standing Swedlow (53) has
recently shown on analytic grounds that the applied stress system
does indeed influence the ultimate stress.

*% A notable exception is the analysis of fracture initiationfrom a
spherical void in a uniform hydrostatic tensile stressfield (48).
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Since the energy T can be chosen to define rupture in accordance
with experimental requirements we shall defer its evaluation at
thistime. Introducing the area ratio notation of the previous sec-

tion the critical condition can be written as

A r
\A/at A > (1.29)
where NT/\//T is a constant to be determined later by ex-
m

periment.

So far we have considered only the criticality of a single
defect in a viscoelastic solid and we must comment on the effect
of many defects on the criticality condition 1.29. Inthis respect
it suffices to say that the nature of the criticality relation is not
changed if the defects are so far apart that their stress fields do
not influence each other significantly. Koiter (54) has shown, for
example, that the energy o interaction of two small parallel cracks
in alarge sheet under tensile loading is small compared to the
energy due to the individual cracks if their separation islarger
than their crack length. One would estimate therefore that the
problem of defect interaction is not severe when the defect sepa-
ration in a uniform stress field is larger than their largest
lateral dimension. If the defect spacing is closer, however, the
interaction effect has to be accounted for. In this case the left
hand side of the inequality 1.29 may be estimated either by engi-
neering intuition as for instance in reference 55 or from Wester-

gaard's solution for an infinite array of colinear cracks (56).
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Such considerations would lead to equivalent criticality conditions

inthe form
VA /e f. 55) 1.30
W, X2 o T (re (1.30)
eQ | - A/ez
or
¢ %, |
W tan g AT (Wesigonardsgy) (2

where £ isthe separation o the defects and A is again the defect
surface. The numerical computations in the following chapter are
based on the simple relation 1.29 and it appears from the results
that the inequalities 1.30 or 1.31 are not necessary to calculate
gross rupture.

Having determined now both the defect size as a function
o time and the criticality relation for the defect size and the applied
stress we can proceed to calculate rupture for some stress or

strain histories.
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D. APPLICATION TO RUPTURE PREDICTION

We shall now use the rupture equations 1.22 and 1.29 to
calculate values o the ultimate stresses and strains for some
specific situations which lead to rupture. Besides evaluating the
three experimental quantities ®(MA | Nand " these computa-
tions serve the triple purpose o 1) demonstrating the use of the
rupture equations, 2) testing the applicability of the rupture
model and 3) obtaining a quantitative understanding of failure
accumulation prior to gross rupture,

Implicit in these calculations is the important idea that
fracture may be sensitive to the stress or strain history prior
to rupture and is not simply a function o the ultimate stress or
strain state. (Notethat in the time-differential formulation of
the defect growth in equation 1.22 the failure model accommo-
dates in principle any stress or strain and temperature history
to which the material might be subjected.)

In order to relate this differential failure accumulation
to more familiar concepts in viscoelasticity recall that in a
linearly viscoelastic solid the stress at a certaintime is a func-
tion of the entire strain history prior to that time and that the
stress accumulation is governed by the relaxation modulus and
the Boltzmann superposition integral*, Similarly the accumula-
tion of failure is a function of the history dependent elastic energy

and secondly, in analogy to the superposition integral, by the

* For historic reasons this is the common name for Duhamel's
integral in linear viscoelasticity theory.
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defect integral relation 1.23. In contrast to the Boltzmann integral,
however, the relation 1.23 represents a non-linear accumulation
with respect to the stress or strain history; this is unfortunate in-
asmuch as the simple mathematical properties of the linear super-
position integral cannot be applied to failure accumulation.
Nevertheless, it would be extremely valuable from a practical
standpoint if this analogy could be exploited in an approximate
manner so as to permit rupture prediction in various situations
on the basis of failure data procured in simple test configurations.
However, an examination of this possibility |leads beyond the scope
of this dissertation and must therefore be left as a subject for
future investigations.

Because the convenient constant strain rate test is at
present the most commonly employed means of characterizing
viscoelastic failure properties it will be useful to apply the failure
calculations to this test. But in order to examine the concept of
localized fracture it will be necessary to apply the analysis to
rupture in stress concentrations; this will be done by calculating
the initiation time for crack propagation and the propagation
velocities of cracks in viscoelastic sheet material.

The failure equations 1.22 and 1.29 contain three exper-
imental constants, namely the number of bonds per unit volume
of weak region (N or NkT), the rate constant A and the quantity [
which contains the tearing energy. These constants have been
chosen to fit the calculated failure behavior to the experimental data

with the result that NkT = 400 psi, ™ = 2psiand A = 1. The
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same constants are used in all calculations.

Besides considering the accumulation of failure in monotonic
stress or strain histories a cursory examination of the effect of
stress cycling is given in a section devoted to the exploration of
rupture accumulation. Finally the extension or applicability of the
failure model to filled polymers is discussed in section 1.14.

In the interest of a unified evaluation of the failure model
based on these calculations only detailed observations relating
directly to the particular computations are presented in the fol-
lowing sections, the comprehensive analysis being deferred to the

final chapter of this past.

1.10 The Constant Strain Rate Test

The procurement of the ultimate uniaxial tensile data for
the rubber ernployed in this work is given in detail elsewhere (16).
As mentioned earlier this data represents the isothermal rupture
properties and accordingly we shall consider the temperature
constant for the following calculation.

To determine the elastic energy stored in a tensile speci-
men under constant rate of extension consider the generalized
Maxwell model shown in fig. 1B. The elastic response of the
polymer chains is represented by the linear springs and the
* We assume in the following calculations that the time -tempera-
ture shift function ®(T) is equal to the inverse o the shift factor
a-+ infig. 5. Although there is no obvious reason for this choice
on molecular grounds it would seem that the superposability of
ultimate tensile data by the conventional shift factor scheme justi-

fies the assumption. Since a. = 1 for the reference temperature
employed in the calculations EZ, 5°C) we have also ®(295.8°K) = 1.
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elastic energy by the energy stored in the springs.

Let the applied strain e be given by

e = R-t (1.32)

with R denoting the constant strain rate and t the time. As each

. . . .th
element experiences the same strainthe stress ¢, inthei

element can be calculated from the element stress strain law

40 mio  d€ (1.33)
<t Ty T Mg = oM
to be
. ¥ 2
G, = m;-t;R(\l—-e /t‘i (1.34)
th

where T, = 1. /m; is the relaxationtime of the i~ element. The

energy Wi inthe ith spring is therefore

ﬁz \ 2 -t/r, 2
Wi = g = gm (TR {i-e (1.35)

If me denotesthe spring constant of the viscosity degenerate Max-
well element representing the equilibrium modulus then the total
elastic energy is obtained by summing the energy in all the springs

of the viscoelastic model:

e

- 22
me(RE) + L > m; (R {1-e ] (1.36)

L=O

o

Recall that this represents the elastic energy for small strains.

In order to take into account the non-linear stress-strain behavior

at large strains we multiply the expression with a constant
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correction factor in accordance with the discussion of section 1.4.
For our present work a reasonable value of this constant is 1/2;
this corresponds to replacing the spring constants of the visco-
elastic model by one half of their values measured at infinitesimal
strains. Utilization o the expression 1.36 permits then the evalu-
ation of the defect integral 1.23., Because the integration has to be
performed numerically the differential equation 1.22 is more
conveniently used. Upon satisfying the critical load condition

1.29 one obtains the failure curves shown in fig. 12 together with

the experimental data.

1.11 Rupture Initiation Time

Having demonstrated the application of the failure calcu-
lation to the rupture of a uniaxial tensile specimen, we turn now
to a consideration of fracture initiation at a stress concentration,
and in particular the incubation time between loading and fracture.

In a practical example consider a solid propellant rocket
grain containing a crack near the internal surface. Since the
structural integrity of the rocket may depend on the rate of crack
propagation after ignition, it will be important to compare its
growth rate to the burning rate o the solid fuel. Obviously if
the latter exceeds the former, this particular type of fracture
would not concern the designer.

Williams, Blatz and Schapery (15) have calculated the
initiation time for crack propagation by using a constant critical

strain as a rupture criterion. The time dependence of the
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fracture phenomenon is thus entirely controlled by the time effects
in the stress-strain behavior*, In contrast the rupture calculations
presented here contain the time dependence of both the stress-
strain behavior and the bond rupture process. It turns out there-
fore that the present theory can predict time dependent rupture
if the viscoelastic material is in the relaxed state. This is, how-
ever, not true for the calculations based on the critical strain
criterion.

Because the geometrical conditions at the tip of a naturally
formed crack in a rubbery material are subject to wide variations
it was necessary in the experimental analog of the crack initiation
studies to provide a crack tip o consistent dimensions. This was
achieved by drilling a 1/64 inch diameter hole through the test
sheet shown in fig. 15A while the rubber was held at dry ice
temperature (-78°C)**%, The drilling operation was standardized
indrill speed and drill feed in order to minimize variations
arising from the mechanical formation o the crack tip. Under
a magnification o about 20 diameters the drilled surface was
found to be smooth although not as free of imperfections as, for

example, a surface cast against a polished mandrel. Therefore

* These authors have also proposed the extension o their com-
putations to include a time or rate dependent critical strain in
the form o experimental data, While this suggestion leads in
the right direction it does not treat the effect o strain history on
rupture in an adequate manner. The consequence o this will
become evident in the following discussion.

*% As areference, the dilatometrically determined glass tran-
sition temperature is -87°C.
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a part of the experimental scatter must be attributed to surface
imperfection. Upon loading the specimen across its width to the
desired constant strain magnitude in less than 1/4 sec, the mo-
tion of the material at the crack tip could be observed. The
rupture initiation, or incubation, time was defined as the time
Lapsed between load application and the first evidence of local
tearing as observed with a low power microscope.

A characteristic feature of viscoelastic fractureis the
relatively large scatter in the experimental data. This phe-
nomenon i s a consequence of the statistical nature of the molecular
polymer structure which was discussed in section 1.6. As an
example the variation in the crack initiation time has been ob-
tained in 37 tests at the same load condition and the results are
shown ordered by magnitude in fig. 13. Note that the time
values vary over three orders of magnitude from 2 seconds to
1 3/4 hours. Nevertheless, it is obvious from the inset histo-
gram in the same figure that there exists a most probable value
o the initiation time at about 7 seconds for this particular load-
ing condition.

Because of the time consuming nature of this test only
a limited amount of initiation time data was obtained at different
stress levels. The results presented infig. 14 are sufficient,
however, to define a scatter band which covers the time values
inthe vicinity of the most probable value.

The calculation of the initiation time requires the know-

ledge of the stresses at the crack tip, ¢y . As the deformed
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boundary o the crack tip isfree o normal and shear stresses the
stress field is locally uniaxial and the magnitude o the stressis
approximately proportional to the gross stress G, in the uncut
region o the specimen, i.e., (G, xAG, . If thefailuretimes are
sufficiently long (longer than about one second for this H-C rubber)
most of the rupture process takes place while the material isin
the relaxed condition and the local, elastically stored energy

density is given by

(1.37)

with we denoting again the rubbery modulus and the constant ¢
accounting for the adjustment due to the non-linear nature o the
material stress-strain law as pointed out previously. Under
these conditions the failure time i s obtained from equation 1.29

a.8

</s<1;> . r

2 e Am (1.38)

where the area ratio can now be obtained explicitly from the defect

integral 1.23 as

A (A 0)" (R0
il tah 2m,_N2<TJ{l exp >\t coshzme &T}} . (1.39)

Solving for the time t by combining equations 1.38 and 1.39 one

obtains the rupture time
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2
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C(ﬂ%o) C(ﬁgm U—w (1.40)
cosh T [ )ta hi@————m T

Using the previous values of A , N and [ the result of equation 1.40

is compared with the experimental datainfig. 14 for a stress-

concentration factor of 1.75% and ¢ was chosen equal to 1,5%%,

to replace the modulus by two thirds of its initial tangent value.
While the stress range covered in the experimental study

is hardly sufficient to prove or disprove a theory the importance

of the comparison lies in demonstrating that the same experimental

parameters can be used to predict rupture for different types of

tests.

1.12 Crack Propagation at Constant Velocity

In their experimental investigation of rupture propagation
in rubbers Greensmith and Thomas (3,4,5, 6) have studied the
tear behavior at constant rates of tear and found an experimental
relationship between the aforementioned tearing energy and the
steady rate of tearing. But while these authors used primarily a
test configuration as shown in fig. 15B we shall employ here
another test configuration which was also used by them, the
cracked strip geometry shown in fig. 22. Although the tear
* Stress-optically, the concentration factor could not be determined

better than between 1.5 and 2.5 due to the poor optical quality of
the material,

*% |t should be noted that the strains encountered in this study were
smaller than in the constant strain rate tests where the strain
values ranged over 400%.
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specimen o fig. 15B is more convenient from an experimental
standpoint it turns out that an approximate stress analysis is more
easily performed for the cracked strip specimen. The latter con-
figuration lends itself therefore more readily to afailure analysis

of the type outlined below.

a. Analytical considerations. The cracked strip geometry

lends itself readily to studying the behavior of self -propagating
cracks in steady motion. If, for instance, the strip boundaries
are displaced parallel to each other so that the material far ahead
of the crack is under a uniform tensile strain €« , and if further
enough time has passed since strain application to allow the
stress G to be at its equilibrium value, then the crack will
propagate at a constant velocity:::,

Schapery (45) has considered this problem from the stand-
point d thermodynamics by using the power equation1.12, By assuming
a simplified form of the strainfield in the crack tip vicinity he
related the applied stress G« to small velocities o crack prop-
agation. Although this concept can be applied to the calculation of
higher velocities through a refined stress analysis we shall here
treat the same problem from the standpoint o local and time
dependent failure.

* Interms of the Rivlin-Thomas tear energy T the inequality
W (i) > T guarantees crack propagation if W (Ge) isthe
energy per unit length and thickness o the strip far ahead of
the crack. In practice the velocity will be constant only on the

average, Incidentally, some stress relaxation during crack
propagation is still obvious in the velocity curve of fig. 11,
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In terms of the present failure model we envisage the
process of crack propagation to occur in the following manner:
As a point on the line of crack propagation i s approached by
the steadily advancing crack tip it experiences a time dependent
strain rate arising from the stress concentration at the crack
tip; accordingly defect growth occurs at that point with a rate
determined by the differential failure equation 1.22. But when
the point is just reached by the crack tip the combination of
local defect size and elastic energy must satisfy the critical
condition 1.28. The analytic determination of the crack ve-
locity v which satisfies this condition for a given applied
stress leads to an integral equation with the velocity as an
implicit function of the applied stress (s through their
joint effect on the elastic energy \"(1(“’) U ) . Rather
than solving the integral equation it will be easier, however,
to determine the velocity-stress relation by a trial and error
method.

For reasons of mathematical simplicity we limit the
occurrence o rupture to a narrow band along the line o
crack propagation across which the stress conditions are
essentially uniform. Neglecting inertia effects for slowly

moving cracks* one can deduce from the stress analysis in

* Based on the equilibrium shear modulus of the H-C rubber
studied here the equivolurninal wave speed is 102 in/min

(- 150 ft/sec). Speeds below 103 in/min should therefore be
admissible for this analysis; the maximum velocity measured
in the experimental studies was approximately 50 in/min.
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part II of this dissertation that the stress across the narrow band,

Gy i s approximately equal to

o, = o-w{&.é‘fé. + 1--%—[e"§r+ e"%]g (1.41)
Vevr
where X is the distance from the crack tip, b is the half width of
the test strip and e has the meaning o a crack tip radius, A
complication arises from the presence of the G, stress parallel
tothe direction of crack propagation. Inorder to remain consis-
tent with the idea of a uniaxial stress field we will, however,
neglect this stress* and reduce the problem of crack propagation
to a problem in uniaxial tensile failure under a special stress
history.

Making the steady state velocity transformation §= x—vt
where v isthe (unknown)crack velocity we consider therefore
a small uniaxial tensile specimen as located at X = x, far ahead

o the crack and subject it to the stress history

T(t) osVb

o
= 2 - + -
OQ)

T Vser

%{e"%w‘%ﬁ (1.,42)

* Although the G, stressis by definition zero at the crack bound-
ary it is not zero ahead of the crack where its value is a fraction

of the Uy stress. (Itisalso atensile stress.) Note, however,
that as the shear stress is zero on the crack axig the energy den-
sity there is for an incompressible solid wy - L6246 -G6G]
this has a minimum for G, - G /2 which is, however, only 25%
smaller than when G, =0 . Neglecting the Gx stress should there-
fore not influence the results seriously but may lead to higher
crack speeds than would probably be obtained if it were not
neglected.
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with £ = xo—vl . The problem o crack speed determination

consists thus o finding the value o the velocity for a given value
of the applied stress (o such that the criticality equation 1.29
is satisfied when §=0 .

The time dependent elastic energy at a point undergoing
eventual rupture can be calculated again with the help o a vis-
coelastic material model by summing the energy stored in the
springs o the model. But because the stress is now prescribed

we employ the generalized Voigt model infig. 2B. The strainin

the ith element is determined from Duhamel's Integral as
t
o/
Tlt-0) —7T (1.43)
e = [ T T, -
¢ (1) s

s [osVE oV [y, 1)
€ (‘tx @ { b e iy Z) +
L VY\\'T‘ W_-E\_ ' &y
(1.44)
__E _5%
1 b"se Sb 2e ZbJ
* -—-—2—{> VI +3b Sviir2b
where ( )u) is the incomplete gamma function of order 1/2.

By summation of the energy in the springs of the generalized Voigt

model the total time dependent energy i s obtained as

o 2
W, = L oW ‘ m, € (1.45)
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with rng representing the short time response modulus of the
material. The use o the energy and strain relations 1.44 and

1.45 permits again the numerical integration of the defect rate
equation 1.22. Sincefor & > 1 the stressis approximately

constant and equal to 0, and by assumption at its equilibrium
value the integration extends over the range O % < 4 with
the initial value of A/A _being given again by the analog of equa-
tion 1. 39 for long times as

oy

A C
T = ta“h{@TM} (1.46)

1 2a)

From the standpoint of numerical evaluation it was found

convenient to calculate values o

gl - WEQV{ (1.47)

in the integration interval for a given stress (. and several
crack velocities VvV ; the velocity corresponding to that stress
was then found by interpolation of the function g(v) at g{(v) = .
Greensmith (4, 7) has related the effective radius of cur -
vature to the roughness of the fracture surface. According to
the discussion in section 1.7 the surface roughness and thus the
tip radius decreases with increasing crack speed. It turns out
however, that a velocity dependent radius of curvature does not
lead to a significantly different result, so that a constant radius
was used inthe calculations. A particular value of £ = 0.01

inches was chosen to make the theoretical results at slow velocities
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coincident with experiment.

Since the radius of curvature is an unknown parameter in
these calculations the computation of crack velocities actually
amounts to a determination of this quantity, A reasonable value
for the crack radius constitutes therefore a test of the failure
theory in addition to the comparison of the calculated and the ex-
perimental relation between the applied stress and the velocity.
Thevalueof = 0,01 inches is consistentwiththefindingsof
Greensmith (7) who measured effective radii between 0.01 and
0.02 inches. The calculated velocity values are shown as the

solid curve infig. 16 for the previous values of NkT, A and " .

b. Experimental Analysis. Figure 16 shows also the

experimental points determined with the sheet geometry o fig.
22. The load was applied to the specimen through displacing the
clamped long boundaries in an arrangement which produced a
uniform strain along the specimen length. Approximately 3-4
minutes after load application when the material was at the equi-
librium condition a 1/8 inch cut was introduced through the sheet
as shown in fig. 15C. The subsequent motion of the crack was
photographed through an accurate Lucite scale with an automatic
Beattie Varitron camera synchronized to a Xenon flashtube and
triggered by a variable speed timing mechanism. This test
equipment is shown in fig. 17. By using the scale markings on

the film record* as a reference, the crack tip position was

* These markings are barely visible in fig. 9.
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determined on a comparator for each exposure frame, which then
permitted the calculation o the velocity from the knowledge of the
time lapse between frames. As an example the plot of the crack
position and velocity as a function of time is giveninfig. 11; the
uncertainty in the velocity is the result of the difficulty encountered
in defining the location of the crack tip, which was often diffuse

as exemplified by the extreme case shown in fig. 9. Note however
that in spite of this uncertainty the velocity deviates considerably
from the average value. It is believed that this behavior indicates
the statistical nature of the material strength properties as exper-
ienced inthe earlier initiation time study. The velocities plotted
infig. 16 are the mean velocities as determined from the average
slope of the displacement time curve under exclusion o the accel-
eration stage, and the bars on the symbols indicate the measure

of local velocity deviation from the mean. The open square sym-
bols represent data on material of the same formulation but pre-

pared separately from the material represented by the open circles.

1.13 Suggested Applications of the Failure Theory

It was pointed out at the beginning of this chapter that
rupture is a process which involves the whole stress history of
the material. Since ultimate properties are usually obtained in
simply conducted tests for a specific stress or strain history,
the question arises whether such empirical data can be used to

predict rupture under different loading histories.
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This problem is not restricted solely to the fracture of
polymeric materials but is equally important, for example, in
the design of metallic structures subject to conditions favoring
failure by fatigue. Inthis case experimental data are usually
available only inthe form of simple S-N diagrams. While a num-
ber of rules onthe generalized application of S-N curves has been
proposed it has been proven in equally many cases that they apply
only in special situations and have no basic foundation. The
problem of damage accumulation in metal fatigue has therefore
been approached in a more fundamental way by Valluri (57, 58)
in a theory which is analogous to the failure analysis presented
inthis dissertation. On the basis of thistheory Valluri was able
to explain and predict phenomena which the previously estab-
lished rules could not, particularly the sensitivity of the fatigue
crack growth to loading history.

Following the developments of Miner (59) on the damage
accumulation in metal fatigue Williams (60) has suggested for
viscoelastic solids a rule for estimating rupture in variable
strain histories from constant strain rate failure data:'. Expressed

in mathematical terms as

T e )
£,

(1.48)

* The concept of damage accumulation in polymeric materials
was proposed earlier by Alfrey (11), but the proposition was
mathematically not well defined.
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this rule states simply that the strength attrition is proportional
to the fraction of the time spent at a particular strain rate
to the total life at that strain rate, and that the total life Tyis
spent when the sum of the fractional attrition quotients equals
unity. While this rule predicts rupture correctly inthe limit case
of a constant strain rate test (astp(¢) is measured in such a test)
it isinsensitive to the order in which high or low strain rates
(or loads) are applied to the material. We shall show below that
this is not in agreement with reality.

Although we have already demonstrated that the present
rupture theory accommodates an arbitrary stress or strain
history it is also recognized that the amount of computational
work inits application is not small. It istherefore intheinterest
of engineering analysis to develop an intuitive understanding of the
failure process which will aid in establishing simpler approximate
formulas for rupture prediction. However, the development of
rules which permit an extrapolation of simple test data to more
complicated situations will not now be attempted, Rather, we
shall consider the effect of damage accumulation by way of some
specific examples to develop a qualitative appreciation of its sig-
nificance with respect to more general problems of viscoelastic
rupture.

We shall thus consider briefly the problem o accelerated
crack propagation as a problem o cumulative damage against the

background of the earlier steady crack propagation calculations
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and explain why crack accelerations cannot in general be calcu-
lated from constant velocity data. Following an examination of
damage accumulation in the previously discussed constant strain
rate test we demonstrate the cumulative effect in a situation
involving two different strain rates instead of a single one,
Finally we present a cursory examination of rupture due to a

cyclically varying stress.

a. Crack acceleration. Inthe last two sections we have

calculated the time o initiation and the steady propagation rate
of a crack. It seems appropriate for a complete description of
macroscopic rupture progression to consider the problem of
accelerated crack motion in viscoelastic materials.

Williams, Blatz and Schapery (15) have computed the
accelerated growth o a crack in a viscoelastic material. We
have already referred to this work in connection with the initiation
time calculations. By representing the stress-strain properties
by a simple Voigt model they found an exponential increase in
crack velocity with time. Essentially the same result was re-
ported by Williams (44) on the basis of thermodynamic consid-
erations. While these calculations can be made for more realistic
material properties than the simple representations used by the
authors for demonstrative purposes the amount of computational
work is large and the desired results by no means certain.

With respect to computational difficulties the present
theory offers no advantage, Whereas the calculation of steady

crack motion |eads to an integral equation involving the (constant)
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velocity implicitly, the acceleration problem requires the deter-
mination of a velocity-time history.

In order to circumvent the mathematical difficulties one
would naturally inquire whether constant crack velocity data, as
shown for example infig. 16, could be used to estimate the accel-
eration behavior.

This problem is analogous for instance to that of predicting
failure in an arbitrary strain history from constant strain rate
failure data which was considered by Williams (44)*%. Although
acceleration calculations were carried out by following a similar
line of reasoning they could not predict for example the accelera-
tion behavior infig. 11 and merely confirmed in a qualitative
manner the results expected on intuitive grounds. It suffices
therefore to present only the pertinent results of the analysis.

First recall that the velocity datainfig. 16 represents
the propagation o a crack through a viscoelastic material whichis
inthe state of long-time equilibrium. One would therefore expect
that acceleration behavior can be predicted reasonably well if the
stress or strain which causes the acceleration increases so
slowly that the crack speed increases through successive steps
of equilibrium growth. This would be the case for example if a
slit strip specimen (cf. fig. 22) were strained slowly at a
constant rate of strain.

On the other hand, if the same specimen were strained

* See the beginning o this section.
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quickly to a fixed strain before the crack can propagate the strain
history of the material at the crack tip would be very different.
One should therefore not expect in this case that the use of the
equilibrium data (fig. 16) would render an adequate description of
the ensuing acceleration unless the effect of the strain history on
damage accumulation i s considered.

The acceleration of an initially stationary crack is pri-
marily controlled by the defect growth in the crack tip vicinity,
To illustrate this by way of example, it was observed in tests
conducted with the geometry of fig. 15C* above gross strains of
30 0/0 that the crack velocity initially attained a value which was
higher than the steady velocity corresponding to equilibrium crack
propagation in the slit strip geometry. This extra velocity increase
had the appearance of an inertial overshoot but was observed at
velocities where dynamic effects are entirely negligible. At
gross strains above 30 O/o an extended region around the crack tip
i sunder a high strain and damage accumulates there more rapidly
than in the uniformly strained part of the specimen. At thetime
o initial crack propagation (incubation time) the crack progresses
quickly through the highly damaged material at the crack tip, but
at a slower rate through the |l ess damaged uniform strain region,
Indeed, it appears asif the acceleration of an initially stationary
crack were more akin to the rupture of a tensile specimen at a

* The specimen was in a relaxed stress state before the cut was
made into the sheet.
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high constant strain than to the propagation of a crack under equi-
librium conditions.

It is obvious that the problem of accelerated crack motion
in viscoelastic materials involves the complete local stress or
strain history of the rupturing material. Acceleration behavior
might therefore be predicted from related velocity data only if the
strain history of the material on the crack path is similar to that

which gave rise to the velocity data.

b. Cumulative damage in the constant strain rate test.

Because the constant strain rate test i s presently commonly em-
ployed in rupture studies it i s useful to consider the accumulation

o failurein this simple strain history. Although the time dependent
defect size would be the appropriate measure of damage it does not
by itself indicate how close the material isto failure. We have
therefore chosen to represent the damage by a criticality function
FC which incorporates explicitly the defect size and the elastic

energy, and is defined as
Fo = W, A (1.49)

This is o course recognized as the criticality condition 1.29 when
F_ = constant = [". Thecriticality function has been plotted against
the strain infig. 18 for various strain rates. Note in passing that
a cross plot of the strains as afunction o the strain rates at

F ={" = 2yields the ultimate strain curve o fig. 12.

[of

Two observations are of primary interest. First observe
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that for high strain rates (R> 1010 in/in/min)* the function F_rises
relatively sharply near the fracture point thus indicating that sig-
nificant damage occurs only at strains close to rupture strains.
For example, at a strain rate of 1014 in/in/min virtually no damage
occurs until after 200% strain while total rupture takes place at
240% strain (F, = 2). Secondly note that although the strain rates
106 and 1012 in/in/min lead to about the same rupture strain
(FC = 2) the accumulation o failure is not the same. For instance
at 250% strain the sample strained more slowly has suffered
approximately 50% damage whereas the faster strained material
has been barely damaged.

These observations illustrate in a tangible manner the
fact that damage accumulation is not linear up to rupture but is
more pronounced close to fracture. One would therefore conclude
that the effect of variations in the stress or strain history are, in
terms of the rupture strain curve of fig. 12, more seriously re-

flected in the rupture behavior the closer the rupture curve

envelope i s approached.

c. The dual strain rate test. Inorder to put the quali-

tative understanding of failure accumulation on a quantitative basis
failure strains have been calculated for a strain history which
involves two constant strain rates instead of a single one. This

test may be considered as a simple model of a more general

* Recall that these are temperature reduced strain rates and not
necessarily physically realizable values.
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variable strain rate history and as such is important in the study
o cumulative damage. Since the computations are in principle the
same as those worked out for the constant strain rate test we omit
them here and present only the result.

Consider therefore the strain rate history indicated by
the arrow marked 1infig. 19: After straining the material at
the higher of the two possible strain rates to a given strain the
rate is changed to a lower value. By varying the strain at which
the strain rate changes one can, for example, obtain an indica-
tion of how damage accumulates as a function of strain or
time.

In view of the past comments on the importance o the
stress or strain history on viscoelastic rupture one should not
expect the same rupture strain if the sequence o the high and
low strain rates is changed, This expectation is confirmed as
fig. 19 shows. The upper dashed curve represents the rupture
strain in a slow-fast dual strain rate test and the lower one the
same quantity in a fast-slow test, The locus of rupture strains
for intermediate single, constant strain rate tests falls in be-
tween the two curves; it has been omitted from the graph to
avoid confusion.

Harstad (61) has verified these calculations qualitatively
in an experiment on an H-C rubber o slightly different formula-
tion than employed in this work, His results are shown infig. 20.

Although the scatter o experimental points is considerable it is
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nevertheless clear that the order in which high and low strain
rates are applied has a significant effect upon the ultimate prop-
erties™®; this is similar to the conclusion Valluri found for metal
fatigue. While the difference in the ultimate strains was in these
examples only 100% a greater variation is possible depending

upon the two strain rates chosen.

d. Stress cycling. The failure o polymers under a

periodically varying stress is one of the |least explored areas
of viscoelastic failure, although presently new efforts are di-
rected towards this problem.

A complication that arises in the stress cycling of visco-
elastic solids is the dissipation of energy and the attendant
temperature rise**, Whereas this difficulty can be accommo-
dated by the proposed failure model it is expedient for the present
purposes to consider only sufficiently high or low cycle rates
where energy dissipation is low either because viscous flow
does not occur to any large extent or because the material is
always in the relaxed state. The same considerations would
also apply at intermediate frequencies when one considers
stress cycling in local stress concentration, at a temperature
constant surface. At any rate, the inclusion of temperature
% Note that high strain rates correspond to high stresses and low
strain rates to low stresses. One would therefore expect a similar
behavior if the order of stress application in a dual load test to
failurewere interchanged. This sensitivity to the order of load

application has its parallel in metal fracture under fatigue condi-
tions as noted previously.

*% An interesting account of this temperature effect in solid pro-
pellant materials has been given by Tormey and Britton (62).
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effects is, in principle, not a difficult matter.
Under these conditions defect growth is again governed

by the rate equation 1.22 which we rewrite here as

LA/Am Wee A gigh Wer
w /\(COS‘“ = Wl o )K (1.50)

If the number of cycles to failure is small this equation must be
integrated exactly. However if rupture is accumulated over many
cycles so that A/A,, does not change markedly in any cycle, one

th

may integrate equation 1.50 over the N™ cycle (betweenthe time

(N-1)/0 and N/© | o bei ng the cycle frequency) to give

d A/a . A
m o= i C L - 8
w d N { Am %
where
N/eo
C = /cosh ___“W..t dt (1.51)
N4&T :
1) /to
N/W
y Wt
S = /smh T dt
W=/

The integration extends only over that part of the cycle where the

stress is tensile rather than compressive; this restriction follows
from the fact that damage accumulation is not expected from com-
pressive stresses. Using again the particular solution of equation

1.23 one has

AL .._5._{1_ e"’\c'ﬁ}‘ (1.52)
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The criticality condition 1.28 is unchanged except that the elastic
energy is interpreted as the maximum value during each cycle.

Since the constants C and S represent only the average
effect of the stress history during a cycle equation indicates that
there may be several stress cycle shapes with the same frequency
which can lead to rupture in the same number of cycles, provided
the maximum elastic energy per cycle is also the same.

Finally it should be pointed out that we have not consid-
ered here a problem o polymer fatigue as the term is understood
in relation to metal failure under cyclic stress. Whereas metal
fatigue implies a failure stress below the static long time
material strength, we have considered here merely another
problem of time dependent damage accumulation, Due to the
intermittent type of loading the material can indeed sustain a
peak load longer than under static conditions.

The problem of fatigue in unfilled polymers has not been
investigated in great detail* and there is a question as to whether
it exists to any significant extent. The molecular mechanism
that would be associated with it is probably of a different nature
than those discussed previously and their experimental explora-
tion appears to present even greater difficulties than the devel-

opment of fatigue cracks in metals.

* Wintergerst (63) has obtained stress cycling data on unplasti-
cised polyvinylchloride in the form of an S-N diagram. While
the result is of the type predicted by equation 1.52 no correlation
with the static strength was attempted. Similarly Lindsey (64)

h as tested a filled rubber under cyclic loading and found a very
small breaking stress (2 psi) without, however, comparing it to
the long time static strength.
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1.14 Filled Polymer Systems.

In filled polymers additional problems arise due to the
interaction of the polymer binder and the filler particles. Itis
safe to assume that, except under high compressive loads, the
filler particles remain intact, so that there are basically two
causes of failure: breaking of filler-to-polymer bonds, generally
termed pull-away, and the breaking up of the polymer matrix.
One might, therefore, consider the filler-to-binder bonds as
one bond system and the matrix as another bond system. Failure
may be primarily caused by pull-away effects through creating
the necessary cavities or, in the case of very strong filler-to-
binder bonds, by failure of the binder matrix. Each bond
system should, of course, have its own rate laws. However,
if one of the two bond systems is primarily responsible for
failure then the present failure analysis may apply reasonably
well.

Although we have not studied the rupture behavior of
filled polymers in detail the rupture equations 1.22 and 1-29
were applied in an exploratory investigation to the tensile prop-
erties of afilled H-C rubber as reported by Kruse (65). While
the limited amount of computation does not permit a conclusive
evaluation it appears that the rupture theory is also applicable
to filled polymers. As an example the calculated ultimate
stress in a constant strain rate test is compared with experi-

mental datainfig. 21.
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E. EXAMINATION OF THE FRACTURE MODEL

Because many details of the fracture process were excluded
from the fracture model it was already anticipated during its
formulation that the theoretically predicted fracture behavior should
not agree in all details with experimental evidence. This expectation
i s indeed confirmed when one compares theory and experiment in
fig. 12, 14 and 16.

In spite o using a linear stress-strainlaw in the calculation
a the elastic energy the gross agreement of experiment and theory
i s reasonably good for the constant strain rate test (cf. fig. 12). A
relative estimate o the error attributable to either the non-linear
material behavior or the limitation o the failure model is not possible
without performing similar, but more detailed calculations. Never-
theless it appears that a substantial improvement can be obtained by
using a more realistic stress-strainlaw. Note, for instance, that
by employing a realistic material representation with respect to time
rather than a simple viscoelastic model the time or rate dependence
of the rupture behavior is very well predicted.

The deviation of the theory from experiment becomes more
apparent in the crack velocity calculations, although a part of the
discrepancy must be attributed to the simplified form o the local
stress field used in the computations. Nevertheless, the theoretical
curve exhibits the correct functional behavior and furthermore stays

within the span of experimentally encountered stress values.
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With regard to the initiation time calculations there are
two items which invite particular attention: First, the relatively
short initiation time at low stress levels and second the existence
o alower failurelimit.
From a practical standpoint the prediction o failure at
long times is one d the most desirable items of interest and itis
unfortunate that the failure model appears incapable o representing
this behavior in sufficient detail. A possible reason for this defi-
ciency can be deduced by an analogy to the viscoelastic stress-strain

behavior. Note that the expression for the defect size, equation 1. 39,

_f.; —  tanh t\\l‘\/fT {l _ @ TMbicosh _Nw%} (1.53)
resembles the expression for the creep compliance d a single Voigt
el ement*. Recalling from the material properties discussion o
section 1.1 that the simple Voigt model i s usually incapable of rep-
resenting the actual material behavior it appears that equation 1. 53
isasimilarly oversimplified expression of the material behavior.
To be more specific it seems that a rnore precise description o the
long time failure process should also include a rnore detailed

o,

It should be pointed out in this context that Williams, Blatz
and Schapery (15) have used the Voigt mode! in their crack incubation
time calculations and obtained the relation

~t
e:\' = €° (‘ - e /To )
where €. and T. are experimental constants and t is the incu-
bation time for a prescribed critical rupture strain €* .
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consideration & molecular chain flow in the vicinity o ruptured
chainsin addition to the bond rupture process. Note in passing
that the prediction o short rupture timesis paralleled by the
prediction d relatively large crack velocities at low stress values.
Inasmuch as the failure model predicts rupture at higher stress
levels and short times in better agreement with experiment than

at long times, one concludes that besides chemical bond rupture
other factors contribute significantly to the fracture process at

low stress levels.

The existence o alower failure limit i s a consequence o
admitting bond reformationin the fracture process. Itis readily
shown from the rate equations 1. 13 and 1. 14 that at elevated
stress states an equilibrium can exist between broken and unbroken

bonds, according to the relation

Na _ ©n (1.54)

N. W2

If the equilibrium number d broken bonds corresponds to a sub-
critical defect size, rupture does not occur although the material
has suffered some damage.

Although previous investigators o polymer fracture (9, 10)
have discounted the importance o bond reformation in the fracture
process thereis no reason to omit it from afailure analysis since
its effect has been demonstrated in chemical stress relaxation (28).
Whereas bond reformationis unlikely to be important at high stress

levels thisis not necessarily true for low stress values. Because
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the fraction of bonds broken in a molecule chain may be taken
as a qualitative measure o the importance of bond reformation
in fracture, we shall now calculate the number of bonds broken
in achain o the H-C rubber when the applied stress is equal to
the lower strength limit.

Recall that the value of NkT used in the calculations was
determined to be approximately equal to 400 psi. Since the
temperature for these calculations was 396°K one finds for the

number o bonds per unit volume
N=6.5x 1020 bonds/cmB.

At the long time failure threshold of about 35 psi the average
elastically stored energy is about 2. 5in 1b/in3 or 2 X 105 erg/cms,
which corresponds to 3 x 10—16 ergsibond. The energy contained
in a carbon-carbon bond i s approximately 4. 2 X 10"1‘2 erg which is
four orders o magnitude larger than the energy available to each
bond at rupture. It appears therefore that only one out o every
1.4 x 104 bonds experiences enough energy change to break. Since
the number o bonds between chemical crosslinks is approximately
equal to 8.5 x 103 (13)it appears further that only about one or two
bonds break between crosslinks. Thisisindeed a small number
and one would believe that under such conditions bond reformation
plays an important part in controlling the molecular fracture process.

It isinteresting to note in passing that this small number of

bond ruptures per chainis just sufficient to locally reduce the rubber
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network to an uncrosslinked polymer. Recalling that the uncross-
linked polymers can exhibit permanent flow under low |loads one
would suspect again that the flow o molecule chains near bond
rupture sites plays a significant role in the failure process at low
stress levels.

Because the rupture model is only a crude approximation
to the actual rupture process the above calculation is not expected
to be accurate. But it is nevertheless encouraging that the
calculated molecular parameters are of the order & magnitude

one might normally expect.
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F. CONCLUSION

The process o fracture in viscoelastic materialsis
influenced by many factors which relate to the molecular,
microscopic and macroscopic material properties. While the
various aspects of time dependent fracture are too numerous
toincludein afirst analysis d the rupture process the judicious
combination of the most dominant contributions to rupture from
each o the three size categories leads to a simplified fracture
theory.

Because only few important phenomena o the rupture
process have been included in the analysis the theory cannot
predict rupture in all the details observed experimentally. Never-
theless the agreement with experiment i s reasonably good and
further refinements d the theory are possible. These improve-
ments should include the use o a non-linear stress-strain relation
and a more precise description of molecule motion near molecular
bond rupture sites. The latter addition to the theory i s believed
important primarily at long failure times and at high temperatures.

To demonstrate its use and to test its range o validity the
theory has been applied to some selected test situations. While
previous authors (9, 10, 15, 44) have considered the same test
configurations their calculations were applicable only over small
ranges of test conditions and included experimental fitting parameters
for each type o test. In contrast, the present theory approaches the

different situations from a unified point of view.
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The most significant feature of the theory is that it
accommodates in principle an arbitrary stress or strain history,
the prime limitation being the mathematical complexity associated
with the use o realistic mechanical properties of viscoelastic
materials. Although the theory is thus not simply applied in
common engineering design problems it is nevertheless believed
to be a foundation on which engineering design rules can be based,
However, the derivation of such rules must be left as a separate

problem to continuing research.
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PART II

STRESS ANALY SIS OF A SPECIAL CRACK GEOMETRY

The early investigations of crack problems by Inglis (66},
Griffith (67) and Neuber (68) have been of fundamental importance
in the studies relating to the fracture behavior of materials.
Although these problems deal with cracks in an infinite medium
there has been in general little difficulty in applying them in an
approximate manner to sheet geometries of finite dimensions.
However, there exist situations where these solutions ar e insuffi-
cient, particularly in those cases where the crack lies close to the
boundary of a structural member. Although Westergaard (56),
Willmore (70), Wigglesworth (71) and Isida (72) have considered
geometries involving boundaries close to a crack, these problems
are essentially variants of Inglis' elliptic perforation problem
inasmuch as the loads are applied in the form of stresses far away
from the crack and parallel to the boundaries. It seems therefore
pertinent to investigate the stress field arising from the prescription
of boundary displacements normal to the crack.

Lowengrub (73) and Koiter (74) have explored such configura-
tions without, however, arriving at a general quantitative
evaluation. It istherefore hoped that the following work will aid in
elucidating further the effect of boundary conditions on the stress
field near the crack tip, particularly for geometrical configurations

which may occur in practical situations.
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As a typical problem of this class we shall therefore investi-
gate the stress distribution in a thin, infinite strip containing a
semiinfinite crack parallel to the supporting boundaries and strained
across its width. The assumptions of classical elasticity will be
invoked even though infinitesimal strains and a linear stress-strain
law will in general be violated when one deals with the strain magni-
tudes at the point of fracture, Before we can apply the results of the
classical elasticity problem to the fracture propagation in rubbers
we must therefore estimate the effect of finite deformations on the
stressfield in the vicinity of a crack. This will be done in an
experimental study of essentially the same geometry. Inasmuch as
the analysis of stresses at a crack tip represents a rather extreme
case of finite deformations one would also hope that the experimental
results provide an upper bound on the influence of finite deformations
in stress analysis problems.

The following work i s thus motivated by the interest in 1)
the effect of a previously unexplored boundary condition upon the
elastic stress field near a crack, 2) the application of this stress
solution to the calculation of fracture propagation in rubber materi-
als, and 3) the relation of solutions based upon infinitesimal

elasticity theory to the behavior incorporating large deformations.
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A. CLASSICAL ELASTICITY SOLUTION

The crack geometry to be considered consists of a thin,
infinitely long strip containing a semi-infinite crack (cf. fig. 22).
We wish to determine the stresses which arise from straining the
strip across its width (perpendicular to the crack orientation) so
that the infinite boundaries remain parallel.

From the standpoint of practical application to fracture
work it would be desirable to formulate the problem so as to pre-
scribe only the displacements along the parallel boundaries, The
reason of courseisthat sheet material is more readily loaded by
displacing relatively rigid clamping supports than by applying
stress directly to the boundary, as for example by small tabs or
hooks. It turns out, however, that the computational complexity
of the problem can be reduced considerably if a slightly modified
problem is considered. This situation corresponds to straining
the strip uniformly across its width while leaving the displacement
along the boundary freeto adjust to a condition of zero shear stress
at the same boundary. While this condition does not duplicate the
convenient experimental arrangement used in the crack propagation
studies it will be seen to give representative results.

The solution i s obtained by using the Fourier transform
and Wiener -Hopf techniques. Although the stresses are first
obtained in the form of contour integralsinthe Fourier transform

plane they can be evaluated by the theory of residues. The stress
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values are then calculated from the resulting series expressions
and compared with those of some well known related crack
geometries,

It is sometimes possible to obtain the stresses in crack
geometriesin the form of integral representations which are very
hard to evaluate numerically for general conditions. Under such
circumstances one often resorts to an asymptotic evaluation of the
stress integralsin the region around the crack tip. Since our
present calculations do permit the evaluation of the stresses by
the series representation it will be useful to examine the range of
validity of such an asymptotic expansion. While this comparison
can also be performed for the better known crack solutions it turns
out that such a comparison sheds further light on the nature of the

stress field near the crack tip.

2. 1 Statement of the Mathematical Problem

The coordinate system appropriate for this geometry is
shown in fig. 22. Asin the case of a central crack in alarge sheet
there i s only one characteristic length, namely the strip width. For
convenience we take the half width therefore as unity.

Since we are considering a two dimensional elasticity prob-
lem, it proves convenient to make use of the Airy stress function

47 (x,y) , defined through the differential relations
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The problem reduces then to that of integrating the partial differential

equation

o' R b (2.2)
% "“Zaxzay” oy*

vip(x,y) =

subject to the appropriate boundary conditions; in the further investi-
gation of this problem we shall restrict ourselves to conditions of
plane stress.

Because of the symmetry of the geometry and boundary loads
with respect to the x axis we need concern ourselves only with the

domain 0 £ y < 1; in this case the boundary conditions are stated as:

aty =0
Txy (x,0) =0 —0 & X £ W
— 0
Ty (x,0) =0 < (2. 3a)

and at the upper boundary wherey =1

o

VK, 4) =
Txy(x)i) = 0

(2. 3b)
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We shall use the superposition property of solutionsin linear

elasticity theory and regard the solution of the problem as result-

ing from the addition of the stress field

GY(X)Y) = E V()‘)\/> = y
O,(x,y) = o wxy) = —vx (2. 4)
,txy(x)y\) = O

where v = Poisson's ratio, E = Young's modulus, and the stress

field arising from the boundary conditions

’an(x,ﬂ =0 —®dLx<Lo0 v(x,+}) = © —00< X & 00
Gv\/ (X)o) = P ="k x < O -[xy()(,t).-: o —oh & X < OO (2. 5)
v (xye] = © X =z O

It i sinteresting to note in passing that the boundary conditions 2. 3
give also rise to the stress field in an infinite sheet containing an
infinite number of parallel cracks (cf. fig. 23) which has been
strained normal to the crack lines. This fact may be used to
calculate the interaction energies o closely spaced parallel cracks

as has been done approximately for the case of shear loading by

Koiter (54).

2. 2 Solution

Assuming proper functional behavior for the Airy stress
function ¢(x, y) we shall perform a Fourier transformation on the

stress function ¢(x, y) with respect to x in the form
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@(w;Y) = / (b(y)Y)eéwxd’Y (2_ 6)

the inverse being given by

— — WX
dly) = 7=/ lovie T do (2. 7)
v

> is allowed to be complex valued and y denotes a suitable contour
for the inversion integral. Transforming the biharmonic field
equation 2. 2 in this manner yields an ordinary fourth order differ -

ential equation

_—-—-——Cid)g“”” —26? ________&f(aw,y) +wtdy) =o (2. 8)
y %

with the solution

Flw,y) = a(w)sithwy + (W) coshwy

+ @, (0) y sinhwy + A4)y cosh wy .

Similarly the transformed boundary conditions 2. 5, become



-96-

Ty (0, 1) - o (2. 10a)
v (w,1) = © (2. 10b)
.;E:v (w, 0) = © (2. 10c)
° (o X g
G‘”-—.—-/ G’v(x}y)Q( dx = — (2. 10d)
e / LW
@ .
\W*E//,v(&y)e(wxdx = © (2. 10e)
(o)

Conditions 2, 10d and 2. 10e are the result o writing the appropriate
functions in the form

f(x,0) = {f"‘(¥,0> + {l+(x)o)

where

f=(0) = fx0)  x<o

= O X 7 0o
) 2.11
(00ey = [(,0)  v»o  0MD)
= O X £ O

leading to the Fourier transform

f(©,0) =/{(X,°)elwxcix =/,("(x,o)ewdx + /{'*(x,o)ewc}ix (2. 12a)

or, with the definitions

{‘*((\))D> 5/¥‘—ijo)e{w¥dx

(2. 12Db)

P = [ { a9
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to

r(w)o) = {y(w)o) + {Y(w,0). (2.12¢)

The constants of integration a in the stress function ¢, equation 2. 9,
must be determined by the boundary conditions 2. 10; the relations
2. 10a-c readily determine three of them in terms of the fourth. One

thus deduces that

Viw,0) = _2w a, (w) (2. 13a)
0 (wy0) = 260 F(w) a (w) (2. 13b)
with Flw) = & sinh‘2w+ 2w
4 sinh?w
Using the relations 2. 12a and 2. 12c¢ thisyields
v*(ou)o)\&\/“(w)o) =20 (w) (2. 14a)
THw,0)+ T (,0) = 2w Flw) a, (w) (2. 14b)

which under consideration of the boundary conditions 2. 10d and

2. 10e resultsin

ot . - = — E(w)Vv™ (2.15)

after elimination of al(w).



~-98 -

The solution of the problem is givenif G*or v~ is deter-
mined, for then al(@) is determined from equations 2. 13a or 2. 13b
and the stresses can be derived purely mechanically from the stress
function &(x,y), equation 2. 7.

Since the Wiener-Hopf equation 2. 15 itself does not deter-
mine ¢ . or v~ uniquely, auxiliary conditions must be found in the
analytical properties of the transforms G* and v~ and in the
behavior of their inverses as x—=+ o Or x-» - o0,

In order to recall briefly the pertinent properties of the

Fourier transform let ?(w)be the Fourier transform of {(x) where

FGO = C}(x) X > © (2.16)
= O x < O
such that
f(w) = / [(x)e O
s (2.17)

_ /{%(X)eJij e(o(xéb(

. . Ttx
with L = & +1iT, If g(x)<e then

1) F(w) is aregular function of «w (hasno singularities) in
the half plane Tm()=T > and
2) f(w)— 0 as lwl-so in the half plane T > T

Therefore if ¢ ¥ isthetransform o
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O"Y+(x)o) = o, (x,0) X > o

_ 5 % 20 (2.18)

then G*1) isregular in an upper half plane T 7 T
and

2) goesto zero as!|w - oo there.

Similarly v

1) is regular in alower haf plane T< T and

2) goes to zero there aslw\ -« oo,
Returning now to the Wiener-Hopf equation 2. 15 it follows from the
conditionson ¢+ that «wFwv™ isregular in an upper half plane
although v~ itself isregular in alower half plane. Suppose the
function F(w ) can be written as the product of two functions F+ and
F,i e

F=frF F (2. 19)

. .4 . .
where F+ is regular and an entire function in an upper half plane
and F~is aregular and entire function in a lower half plane.

Then equation 2. 15 can be written as

Wi+ P
T

—twF v (2.20)

It will be seen that if, e g F has zerosin alower half plane
then +~ will have singularities there; this is not permitted.
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from which one deduces that the lower half plane, where the left
hand side is regular, overlaps with the upper half plane where the
right hand side i s regular: the left and right hand side of equation
2. 20 continue each other analytically through the strip T~ < T < T
Assuming that G* and v~ behave algebraically* as lwl—= o in
respective half planes it can be shown by using Weierstrass!

factorization theorem that (see Appendix A)

F “(w U (l(l - 2) = F*(w) (2.21)

coi’.
L)

where W, are the solutions of sinh an + chn = 0 located in the
complex plane as shown in fig. 24 and ©, are their complex

conjugates, and that

p-(w) - 1 W —w» O

, ﬁ{(‘m-ow}l . (2.22)
r*(3) oo LHOA SER e
N“e W —= ™ In T"<T < T

It follows from Louivillets theorem that the left and right

hand sides of equation2.20 are equal to a constant ¥, denoting the

pressure,in the strip T7< T < T* and by analytic continuation

ot

This assumptionisinferred from the expected behavior of the
physical stresses. Since there exists a uniqueness theorem for
problems in classical elasticity the assumption i s subject to
verification through examination of the final solution. The details
of the verification, however, are simple and have been omitted.
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P :—-LCOF \V w T4t+
+ —

P _ fw0*+ P n T > T
r_“\‘

Consequently one derives from equation 2.

a, (L) = - 2\/
P (w)
or ¢ = ™ _1 «? =
&, () Y 2ir )

Having now determined the last of the integration

the stresses can be written as

(2.23)

14a that

(2.24)

parameters ai(w)

- P [f coshwlyl+  sinhw(-v) wshwy Slwx
Gylon) = 4m,/ { sinh o Sivhw  + © sinh®w Eﬁ(’(m)e e
Y
_ P cosh w(i-y) stnh w(-y) C® coshy - {oX
0y Gov) = 41;;/{ sinh o wy sih w stnh%w } kPe dew (2.25)
y
~ _ P coshw(i-y) Sinhwy - Lwx
L,Y(K)y) T 4w /{ Sinh o Sinh ®w ik{)(w)e o
y
and the displacements as
cosh w(-Y) swh(i-y) 4 Coshev ]
Ev(6y) = ——/{( )(,osmhw = G V)[ Sivhe | Sinh?e JﬁLFC )e d'w
(2.26)
_ P sinh w(-y) {: coshw()  sinhwy i —-i‘ﬂ*dw
Buloy) = Z}—Z{Z © sinhw | ()Y Sinh w S\'\nhzwl &?(w)e )

the contour of integration

assure that av(x,O) =1 for x <o.

y being placed as shown infig. 24 to
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2. 3 Evaluation of Stress and Displacement Integrals

As the integrands in the stress and displacement expressions,
equations 2. 25 and 2. 26, are single valued functions of <« the
integrals can be evaluated by summation of residues: closing the
contour in the conventional way by an arc w = ReLe in the upper half
plane for X< ¢ and in the lower half plane for x > o (cf. fig. 24) it
can be shown that the contribution from these arcs vanishes as
R . The evaluated series representations for the stresses and
displacements are given in Appendix B.

It will be noticed upon cursory inspection of the stress
representations that the normal stresses increase without bound as
X and y approach zero. The behavior of the stresses in the vicinity
of the crack tip can be obtained by asymptotic expansion of the
integrals for small values o x and y. Consider for example the

integral | in the stress expressions 2. 25

1 = / Mﬁy—)—\?(m)e‘wxdw, (2.27)
X

sinh w

Choose the contour y* as in fig. 25 and divide the range of integration

into sections such that (cf. fig. 25)

1=/w*/6+/+/w+/°° (2. 28)
~o w Ce € w

C¢ denoting the integral along the semi circle with radius & around
the origin which is equal to (v for ¢e-»o. The second and fourth

integrals are computed as the sum
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-
W
To6 = &m /COSth -y) -t wx €oSh (1) - twx
’ cvo sinh Plw)e dw + Tainh o \wa)e dw
W ) (2.29)
= Um cosh w (i-y - G
& o L/ 2L Sinh (W \P( ) ow

€

under consideration of ‘P(—G) = \(D(w) . Theintegral is bounded as
w isfiniteand ¢ () is continuously finite and approaches unity

as Ww—- 0. Finally the sum of thefirst and fifthintegral is

<O
T _ . T cosh w(i-y) - twx
s 2t / m o \P(w) e lw
w
80 , (2. 30)
. s /[ N - <Y+(\<)
= 20 ) 1w Plode o w
/
w
if w is sufficiently large. By making the substitution
w o= wly+ ix) (2.31)

the integral transforms into

[80]
I‘)s = 2l Im/ kP( y-«ULfy ) Q-“ du (2.32)

Y+ ix
W(\/+(x)

which becomes
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]:l)s = 2¢ Imm ——e—e (2. 33)
v N+ X
as x and y tend to zero, since () ~ LP«ao/‘/o( for 10" —» 0 as
shown in Appendix A. If the remaining terms of the integrand are
expanded in the same manner the stress expansions in the crack tip

vicinity are given as functions of the radial variable  _ Fl

xZiy

and the angular variable ® = arctan ("/7) by the relations

A L. e o wse 30 3®
U'\/ E ﬁ-{v?[&n—z— t COSE‘]+ [SW\ ot cos T1§ +

O‘X ~ { (sm + C0S 2] Cose(sm + COS §2§- }+ (2. 34)
Tuy ~ €= 220 [ sin 32 — cos 20} -
xy 7 -V‘:;'.— 2

which agree with the functional variation given by Ang, Folias and

Williams (74). The stress intensity factor i s given by

—_ e T f_H_leZ - 0 2.35
A = > 2}. U{@m_‘)w% = 0.650, (2. 35)
4

Nt
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e being the base o the natural logarithm and " (3/4) is the gamma
function. Note that since W, is independent o the material
properties the stress intensity factor and therefore the stress
expansions ar e independent o the material properties.

For later reference it is convenient to deduce an expression
for the radius of curvature of the deformed crack boundary at the
origin. Using the expansions 2 34 the stress- strain equations can
be integrated to yield the displacements. In particular, the displace-

ment of the crack boundary normal to the crack axisis given by

vV o= 6((~—\))A\/°°“/.£._ (2. 36)

where b is now the strip half width and VOo the boundary displacement.
From this relation the deformed radius of curvature £ on the crack

axisis readily determined as

2
P ploelmal X (2.37)

2.4 Numerical Evaluation

Using the series expressions in Appendix B the stresses were
calculated and are represented in fig, 26. The normalizing strain
€» Istheuniform strain across the strip width far ahead o the
crack. Infig. 27 a map of the maximum shear stressis compared
with the map obtained stress optically, the qualitative agreement

being very good. The dark areas around the crack tip are due to the

* See also reference 75.
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interaction of the parallel light rays of the optical system and the
surface deformation of the stress optic material, Thiokol Solithane
rubber.

There are two features o the stress field which distinguish
itfromthat in alarge sheet with either a central or external double
crack. First, the stresses approach the uniform conditions at the
right and left of x = 0 faster than one might estimate from the stress
field in the infinite sheet geometries (76). Second, close to the
crack tip the maximum principal stress, the octahedral and maximum
shear stress assume values near the crack axis which are smaller
than their uniform values far ahead of the crack. Thisis not
observed in the previously mentioned crack geometries and is a
consequence of prescribing a constant displacement at the boundary
rather than a constant stress.

While we are mainly interested in the application of this
solution to elastorneric materials one should recall that for metallic
materials the octahedral shear stressis associated with the phenom-
enon of yielding. Oneis therefore tempted to conjecture from the
above observation that the amount of yield near the crack tipis
smaller in a strip geometry than, for example, at thetip of a central
crack in alarge plate, provided crack length i s equal to the strip
width and the stress far away from the cracks isthe same. Thisis
of course only a possibility and depends actually on other geometric

details as for example the thickness of the sheet material (77).
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For the cracked strip the relatively fast decay of the stresses
away from the crack tip should lead to a larger discrepancy between
the exact stresses and the values calculated from the asymptotic
expansion than for the central crack. Thisisindeed the case as
demonstrated by the following calculations.

Singling out a point on the crack axisy = O at x = 0. 01 for

the purpose of comparison one finds from the series representations".

that

4.11 Uw

il

G, (0. 01,0) 6.8

G,(0.01,0) 3.49 (w

H

where (» istheuniform stressfar ahead of the crack. For the

same point, represented by the cylindrical coordinates o = and

+ = 0,01, one obtains from the asymptotic expansions 2. 34
o, (001, T/2) = G, (0.0t 7)) = 6.50 Us (2. 39)

which is on the order of 50 per cent larger than the values above. A
more complete comparison for the normal stresses on the crack axis
with the asymptotic expansion valuesis shown in fig. 28.

A similar calculation for the corresponding point near a

central crack in alarge plate gives the exact values

In order to permit a meaningful comparison of the asymptotic
stress expansions 2. 34 the stresses were calculated from the series
expressions o Appendix B with an upper bound on the error of one
per cent. Due to the crude method of bound estimation the error is
probably better than prescribed.
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6,(0.01,0) = 7.11 Gy

(2. 40)
(,(0.01,0) = 6.11 Gy
and the asymptotic approximations
0y (0.01,0) = 8.05 (w
(2. 41)

7.05 (o

it

G (0. 01, 0)

In this case the difference i stherefore only of the order of 15 per
cent. Because the stress intensity factors are not particularly
different for the two geometries* it appears that the main effect of
the displacement boundary condition on the stress field near alarge
crack isfelt in an increased localization of the stress concentration

at the crack tip.

e
3R

The intensity factor is equal to = 0. 707 for the central crack

1
in a plate. V2
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B. EXPERIMENTAL ANALYSIS OF THE STRESSES

IN A SLIT RUBBER SHEET

Problemsin large deformation analysis are as yet restrict-
ed to a limited number of geometries and are soluble only for some
simple boundary conditions. In most cases solutions obtain only
when the displacements are known or known to be functions of one
variable such as to permit easy satisfaction of the equilibrium
equations. Unfortunately the problem o determining the stresses in
the vicinity of a crack tip does not fall into this category and other
means must be employed to determine the stress field.

Andrews (78) has performed a stress optic study of this
problem. By employing an energy parameter for normalization of
the coordinate along the crack axis he deduced the engineering
stresses along that line to be of a form commensurate with infinites-
imal elasticity. This energy parameter is predicted from
infinitesimal theory to be proportional to the deformed crack tip
radius, which isthe locally governing characteristic length, near
the crack tip. Itis therefore natural to inquire whether the energy
parameter merely accounts for the deformation of the coordinate
system. In other words, if the stresses are related to the undeformed
coordinates the special manipulation with a generally not easily
defined parameter may be eliminated, The treatment of non-linear
and large deformation analysis of cracks may thus be tied closer

yet to classical elasticity analysis than was demonstrated by Andrews.
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Because the propagation of cracks through viscoelastic
rubbers requires the knowledge of the stress field on the path of
crack propagation we are interested primarily in that domain. But
because the method of data reduction involves the strain field
measurements away from the crack axis we present the principal
stresses in a strip parallel to the axis and ahead of the crack. The
principal stresses are determined 'by measuring the strain field and
by relating the strains to the stresses by means of a non-linear

stress-strain relation.

2. 5 Large Deformation Stress Analysis

Unlike classical elasticity theory, large deformation analysis
requires that the dependent quantities be related explicitly to either
the undeformed or to the deformed coordinates. We shall use here
the undeformed coordinates. This means that if a point P(x,y)is
carried by material deformation into a new point P(x, y) with respect
to a stationary coordinate system then we shall relate the stresses
at P(x,y) to the original point P(x,Y).

While the following calculations can be performed with equal
ease for true stresses or engineering type stresses it turns out that
the use of engineering stresses reduces the results to a form which
ismore readily identified with that obtained in an analysis of crack
geometries by infinitesimal elasticity methods. We shall therefore

employ engineering stresses in the following work.
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We assume that the material stress-strain behavior is
s
embodied in the neo-Hookean strain energy function W which we

list again for reference as
\,\/=%[)\?+)\§+/\§,—3] (2. 42)

along with the side condition (incompressibility)
AAzAz = 4. (2. 43)

The A, are the extension ratios in the directions of principal strains.
The principal engineering stresses are obtained from the

strain energy density function 2. 42 by performing a virtual variation

of the energy function with respect to the extension ratios A,

subject to the incornpressibility restriction 2. 43. The details of this

operation are given elsewhere (79). We list here simply the result as

R R ik o4
~ N

Here k i s an unknown function of the coordinates which must be

determined in general from the equilibrium equations and the bound-

ary conditions. However, by using the thin sheet assumption that

the stress through the thickness, T3 , 1S zero, k can be determined

from equation 2.44 to be equal to /\%, and we obtain thus for the

principal engineering stresses

For rubbers this strain energy function i s reasonable up to exten-
sion ratios of A= 6. For these tests the largest value o A
measured was 5. 7.
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(L Ea 2

T - S0 2

~ - . %

T D 5 (2. 45)
T> = o

The stresses can thus be calculated if the stretch ratios ), and
A , areknown ( X3isthen determined by the incompressibility
condition 2.43). These we proceed to compute now from the meas-

ured displacement field.

A rectangular coordinate system inscribed upon the
undeformed body deforms with it upon load application into a con-
toured network (cf fig. 29). Consider a small section of the
deformed grid A'DIC'D! as shown in fig. 30; if one assumes the
displacements which produce this form expressible as a power series
in the undeformed coordinates, in particular to be o the simple form

Wi,y = ox + bxy + cv
’ 4 (2. 46)

vIy) = ox + Bxy + Y
then the transformations for the deformed coordinates X, Y, and Z

become

X = (+a)x + bxy + Cy

vy
i

K x + Pxy + (+y)y
(2. 47)

Zo o= Alx,y) 2.



-113~

The following analysis i s approximate inasmuch as the displace-
ments 2. 46 do not necessarily satisfy the equilibrium equations.
However the reason for choosing this form is that the six constants
are easily determined from the dimensions of the deformed quadri-
lateral, and neglecting satisfaction of the equilibrium equations
amounts only to neglecting the curvature of the line segments
bounding the element.

The components of the metric deformation tensor Gij are

defined as

G - X, aX, (2. 48)

with X‘» and x; denoting the three deformed and undeformed
coordinates respectively, double subscripts implying summation;

they are now readily calculated to be

1

G = (eaxBy)? « (Bxec)?

G? = (l+&+b’y)(a+[3'y) + (b’nc)(/slu tey) = G2

G% = (k4 py)E x (Aiey)® (2. 49)
G® = A%(xy)

G2 - G =0, L= 12

where

i
U
!
S|
i
O
i
[N

inS
i

>
i
R
i

Q<
{
'.&
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Upon rotation of coordinate axis to the principal strain axes the

tensor G'J becomes diagonal and is o the form

N X Ao ©
. i
Diagonal G" = ‘;)\'\l - o )\’; o (2.50)
o © )\’;

the stretch ratios A ; being defined as

A = G cos’e + GPsin?a - Gsino
/\2 = & S e + G22C052@ - G‘ZSI.V\ZG (2.51)
2 2
/\5 = )\ (X)y)
with  4an2e = 2@,‘1/(@“- G22) .

These stretch ratios are easily calculated once the displacement

coefficientsa, b, etc. have been determined experimentally.

2.6 Experimental Procedure

The geometry used for this study is shownin fig. 31. Loads
were applied to the rubber sheet by displacing the clamped boundaries
opposite to each other while keeping them parallel.

The grid shown in fig. 29 was imprinted onto a 0. 01 inch
thick natural rubber, commercially available Dental Dam rubber.
The printing pattern consisted o a network o 0. 003 inch wide
grooves inscribed 0. 005 inches deep into a smooth Lucite block.

Upon filling the grooves with printer's ink the rubber could be
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pressed against the Lucite pattern with a soft backing, causing the
rubber to deform into the ink filled grooves*. The printing was
performed while the rubber was in a state o equi-biaxial stretch,
the equi-biaxiality being controlled by deforming a square with
sides o 1 inch into alarger square; the grid pattern was imprinted
inthe center of the large square. The grid spacing thus obtained
was rneasur ed with a traveling microscope to be 0, 006 inches.

After cutting the crack with a razor blade into the grid area
the sheet was strained and the grid photographed under five diameter
magnification, The resulting negative was further enlarged by
projection onto a poster board where lines were drawn as best as
possible through the somewhat diffuse grid lines. Any apparent
uneveness in the grid map was removed by careful rechecking. The
location of the grid pointsin the deformed state were then measured
and the pertinent coefficients in the transformation equation 2. 47
could be calculated.

In order to reduce the error incurred in producing the
enlarged grid chart and in reading the grid point locations the data
was subjected to a data smoothing operation which is described in

reference 80.

2. 7 Numerical Evaluation

The maximum and minimum principal engineering stresses

were calculated from expressions 2. 47 and 2. 51 with the help o a

3%

This is the standard method of printing etchings and engravings.
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digital computer and are shown in fig. 32 as functions of the
undeformed coordinates; the strain in the relatively uniformly
stressed section of the sheet specimen was €., = 19 ®/o and the
corresponding maximum principal stress was used for normaliza-
tion in the figures.

As mentioned previously the behavior o the principal
stresses on the crack axisis of special interest. Figure 33 shows
a logarithmic plot of the maximum principal stress. Two observa-
tions are pertinent: Note first that due to the data smoothing
process the experimental scatter isvery limited; second, most of
the points follow a straight line with slope - 1/2. Expressed
mathematically this relation states that the engineering stress,

based on the undeformed cross-section, behaves as

0.5 G’oo
G (oy=0) = (2. 54)

x
VB + 0. 0025

b being the half width of the tensile specimen.

The small number 0. 0025 appearing with x/b under the square
root in equation 2. 54 is of the form of an initial radius of curvature
as already noted by Andrews. Although the initial radius of curva-
ture as obtained with the razor blade was smaller than 0. 0025 b =
0. 0065 inches, Andrews has noted the variation of this quantity with
applied strain and attributed the change to local tearing. Apart from

this small quantity the 0, stress exhibits near the crack axis
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essentially the same dependence on the x-coordinate as the asymp-

totic expansion of the infinitesimal elasticity solution 2. 34

A (g
g ~ © (2. 55)
Y V X
Note that the values of for A = 0. 5 are bounded by those o the

asymptotic expansion and the values calculated from the series
expressions o the infinitesimal elasticity analysis (cf. fig. 34). This
close agreement of the classical elasticity calculation experimental
results from a large deformation strain field i s indeed surprising.
Whereas classical elasticity theory is normally applied to strains on
the order of at most one per cent the strains involved in the large
deformation study were in excess of 500 per cent!

In order to demonstrate that this result i s not accidental for
the particular gross strain employed in the test measurements it
would be necessary to repeat the same experimental procedure for
different gross strains. In view of the laborious data reduction
method we shall demonstrate only that the stress intensity factor A
i s approximately independent of the gross strain. This will be done
by relating the intensity factor A and the gross strain to the radius
of curvature of the crack boundary at the crack origin.

Recall that in the last chapter the deformed radius of curva-

ture was obtained from classical elasticity considerations as, (2.37),

p o= H[60-v Al b €& (2. 56)
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where the strain e« replaces the displacement of the strip bound-
ary and b is the strip-half width. For a value of Poisson's ratio
of 1/2 (incompressible materials) the stress intensity factor is

given in terms of measurable quantities as

2P

|
A = L
3 \bez

. (2. 57)

The experimentally determined relation between p, A and €« are
shown in figs. 35 and 36. Due to the difficulty in measuring the
radius of curvature at small strains the experimental scatter in fig.
36 i s approximately + 12 per cent. Nevertheless, it appears that
the stress intensity factor i s reasonably independent of the applied
strain.

Although the agreement of infinitesimal elasticity and large
deformation analysis is surprisingly good with respect to the
maximum principal stress on the crack axis the classical elasticity
solution i s completely in error when one considers the minimum
principal stress. As a result of applying the boundary conditions
in the undeformed state the infinitesimal elasticity analysis predicts
large values (mathematically infinite) for this stress at the tip of a
sharp crack; but during the deformation process that boundary
condition changes completely and requires that the minimum
principal stress (the stress normal to the boundary) be zero. This

factis evident in the plot of the minimum principal stressin fig. 32
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Because the boundary conditions along the displaced edges
o the strip geometry are not identical for the previous infinitesimal
elasticity solution and the experimental test geometry a more
detailed comparison between the results of the two analyses is not
too meaningful. Nevertheless, it appears from the evidence
presented here that the stresses not precisely at the crack tipin a
rubber sheet under large strain can be calculated by using infinitesi-
mal elasticity theory, within reasonable engineering error. Yet the
inaccuracy i s probably no larger than that encountered in using an
asymptotic expansion instead of an exact representation within the
framework of classical elasticity theory. Such an estimate applies
of course only to stresses and related quantities which are not
markedly influenced by a change in the boundary conditions during

the deformation process.
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C. CONCLUSION

The classical elasticity analysis of the cracked strip
geometry has been found to apply approximately to a finite length
crack in a strip if the crack lengthis larger than the strip width,
While in the case o a crack far from a neighboring boundary the
stresses at the crack tip are proportional to the square root of the
crack length they are proportional to the square root of the distance
from the boundary (parallelto it) if the distance to the boundary is
smaller than the crack length (81). The present solution affords
therefore an estimate of the boundary effect on the stresses near
the crack tip.

The effect is primarily evident in an increased localization
of the high stress valuesin the crack tip vicinity. Because this
condition reduces the amount of energy stored near the crack tip,
the possibility of initiating crack propagation should also be
reduced the closer the crack liesto a rigid parallel boundary. The
corresponding phenomenon for a crack perpendicular to a boundary
can be inferred from the reduction of the stress intensity factors
presented by Isida and lItagaki (82).

The effect of finite deformations on the stresses in the crack
tip vicinity i s surprisingly moderate. This result is attributed to
the fact that the finite deformation analysis was formulated in terms
of undeformed coordinates and engineering stresses which are

germane to classical elasticity analysis.
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Inasmuch as the stress field near the tip of a crack repre-
sents a rather extreme case in non-linear and finite deformation
analysis, one would believe that other, |less extreme deformation
problems have solutions which are correspondingly similar to their
classical elasticity counterparts. For instance, Blatz (83) has
considered the problem o bending a rectangle into an annulus; even
for the case of a square the stresses calculated from infinitesimal
elasticity theory differed by only 30 per cent from those obtained
by large deformation analysis.

This result should thus be d value in the development o
approximate methods for the solution of problems within the scope

o finite deformation theory.
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FIG.7 ELECTRON MICROGRAPH OF
A THIN FILM OF POLYETHYLENE
SHOWING FINE STRUCTURE
OF SPHERULITES

(REPRODUCED FROM REF. 13
WITH PERMISSION OF THE
AUTHOR )

FiG.8 RUPTURE OF COMMERCIAL
RUBBER BAND.

THE BAND WAS UNDER 50 %
CONSTANT STRAIN FOR THREE
MONTHS IN UNCONTROLLED
ROOM ATMOSPHERE
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(5X)

FIG.9 CRACK TIP SEQUENCE SHOWING FIBROUS MATERIAL

DETERIORATION IN H-C RUBBER. (TIME INTERVAL ~ 15 SEC,
VELOCITY ~ 0.1 IN./MIN.)

FIG. D FRACTURE SURFACES
RESULTING FROM VARIOUS
SPEEDS OF CRACK
PROPAGATION. APPROXIMATE
SPEEDS ARE, FROM TOP TO
BOTTOM 10 2 IN./MIN.

| IN./MIN.
103 IN. /MIN.
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FIG. I7 EQUIPMENT USED IN CRACK PROPAGATION
STUDIES

ABOVE : VARIABLE SPEED TIMING DEVICE
BELOW: STRAINING MECHANISM WITH SULIT
STRIP SPECIMEN IN PLACE AND
AUTOMATED CAMERA -FLASH COMBINATION
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crack

FIG.22 GEOMETRY AND COORDINATE SYSTEM OF GRACKEU STRIP

,.
-

FIG. 23 EQUIVALENT GEOMETRY: THE DISPLAGEMENTS v
ARE APPLIED TO PRODUCE UNIFORM STRAIN €4

TO RIGHT OF CRACKS, DASHED LINES REMAINING

STRAIGHT.
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FIG. 25 INTEGRATION CONTOUR FOR ASYMPTOTIC EXPANSION
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FIG. 27 CONTOUR MAP OF CONSTANT MAXIMUM SHEAR
STRESS,CALGULATED AND EXPERIMENTAL
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FIG. 29 DEFORMATION OF SQUARE GRID IN THE CRACK

TIP VIGINITY
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QUADRILATERAL
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FIG. 31 SLIT SHEET GEOMETRY, AND DIMENSIONS ;
THICKNESS = 0 Ol in
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FIG.32 EXPERIMENTALLY DETERMI®""ID PRINGIPAL STRESSES IN RUBBER
STRIP AT A GROSS STRAIN €p = 19%
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FIG 34 COMPARISON OF STRESS Oy ON THE CRACK AXIS FOR
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FIG.35 DEFORMED RADIUS OF CURVATURE AT THE
CRAGCK TIiP VS APPLIED GROSS STRAIN €4
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APPENDIX A

When a function F(w) is to be written as the product of

two functions the product functions are not unique, for if

(LA)
F(w) = F (W) Fr(w)
then also

Flw) = {e%(‘“)r:”(@g {é%(w)(:*((o)g. (2A)

In the following ¥~ will be determined such that it behaves algebrai-
cally as ¢ ~ —.

Consider {(w) = Sinh 2w

LI (3A)
40 + 2 !

using Weier strass' theorem on factorization of integral functions
write

- (e T (- &)0- B E

o W W (4A)
[eCoTf (1+ Q) -8)e & &)

Nmt

where w_and @, arethe solutions o f(w) = 0 and their complex

conjugates in the quadrant © < Qrg(*),‘%. For further reference let
COn

W, « 8, and R, = lw.,l| Writing (see reference 84)
(€V]

—— L ] (‘L\)
silhw | Q_%H (l—_‘? -
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with ™ {x) denoting the Gamma function, the kernel function F(cw)

can be expanded as

Flw) = {QC‘LOE[(}-%;)(H %)éZL%Q]FZ((_iﬁ)}*
t&ctwﬁ [(“ a"‘)—h)(\_zﬁ_@%)eZi éz:'"(uj l—jl(‘_ ‘—?—)} (6A)

from which, by identifying the factor which has singularities and

zeros only in the upper half plane. Im(w) 7 © one chooses

\

- Jlu
o - 20 =2 0
e = e[t E Y -8 o

It remains to determine the constant C1 such that F (¢>) has algebraic

behavior at infinity.

. ~ - ) €®) -2 ﬂzkw

Define (= H ((*-—(:):)(i ——_0—3-:)@ Ra (8A)
and consider the product

had bQ\ﬂ

— 2.4
vy - - iz wy o O =g )T
(u 4 7 2LC8 ’ﬁ'{((_ W 2 2« .‘i’_}
=g (h“:—)-ﬁ e "

where use has been made of the relation (cf. ref. 84)
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1 _ o x - %
et [ R (104)

with Euler's constant C = 0. 5772 ..... Now P(w) is convergent

when the products in

(o \.f.i"j.. L -2 ﬁl'" ;}TT)
Plw) = l"z(c/i)) {J‘ (- v\) (m)} {ﬂ_ e (Ry, (11A)

2
_ (V\~z‘)1¥‘)

converge separately which is readily shown to hold true under consid-

eration of the behavior of the roots for largen,
L Vidn-1)m

S~ (V\w‘-\‘)w © @n-ym

(12A)

W, ~ /Qh\f(‘lv«-i )T

The first product in equation 11A approaches a constant as > —» o
_2‘ .
and the second factor tends toward e ‘e , ¢ being a real constant.

Hence it follows from equation 9A that f‘(w) behaves asymptotically as

{n((o)

W-wp0 N=)

0 2 —2{m < _
H@n-;)w%z ' (3/4) 2w (% -@) Laa)

SR
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and consequently, from equation 7A that

(W . e
_ (ﬂ 2,3 (An-)7 (""Tr“> “Z““(“*@)
= o T R

(O~ 0o

Since with the help of Stirling's approximation of Gamma functions

this can be shown to behave asymptotically as

© (L &

_ 2/ 3 (4n-1)T)2 70 (—2(5 +&)) (15A)
- (“’l:wp <4):£ 4](0».1} e ©
choose C = Zt(kﬁl—\- @) (16A)
so that

(l )(* "%)‘) (17A)
)2
=\

and

_ ~2( 3 T (An-0)T 2 LW
Frlo) ~ (4)11{41@.1 } b eT (184)

W — o
~Tr < arg(u <
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APPENDIX B

After addition of the uniform stress field to that of the

pressure crack problem the stresses and displacements are, for

X >0
‘QZ%Q = 1~—'Z-Z._j[l——mv(Fm«—x)JwSmm/\Pme"mwx
__0:%}’_) = %Z[“‘W‘W(Fwﬁxnmswvy P o~ M
%ﬂ) = 5 V:Z[ w1 (Fp+x)] s mTy P, Q7 mmx
Wiy) = -vx “%i [;%’1; +(\rV)(Fm+ X)JCO$ mTy &Pmeﬂmm(

m e
Vigy) = y+ —é—i [%% ——(HV)(FMM)] Sth mTy LRM@”"'WX}
m =

IS — __?:__ 00‘ \-Q.v\ 4+ i . “__l—“ *_‘____
m T Z R2Z+ 2mT S  (mw)? nem mT

n=\

D, = PlimT).
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For x < 0 there results

G RS {(’JV\Y SinbWnl-y) smhw“\l} Y, e—w"x

E o St Wy,
gl%gl/l = Re f; {Un W + sihwy + 20, ————-—;?higﬁ:yi\hé'(whx
Lﬁ"—(;—'y—)' = —Re i L{om Cosx\:iz—fiﬁl — Wa ___.._Ss‘ahhi":o‘: E Yoo LWnX
W) = me D fl) SRR e[y g

cosh LonY E ‘v e-iwnx
n

Sl'hhz G

[l |
slnhwu(i-y) coshwn(i-v) _ sinhw.y
ViGy) = 1r Re E {?— Ow Sinh Wy ( V)[\/ Sinhw, Sinh? W,

(-iwf T (o i)

where k{/ - - T mT
n "l B ( 2 © )
(Ou miz { “dx}(l‘\*‘éﬁ\

w$E n

1} &hﬁ.cu‘.x



