A MATHEMATICAL FRAMEWORK FOR DISCUSSING
THE STATISTICAL DISTRIBUTION OF GALAXIES IN SPACE

AND ITS COSMOLOGICAL IMPLICATIONS

Thesis by

James Edward Gunn

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1966

(Submitted October 1, 1965)



ii

ACKNOWLEDGEMENTS

I shall forget someone, surely; so tc he (she,
or, more likely, they) - thank you for helping, as
sincerely as the thanks below for the things I remember
best.

First and foremost, thanks to Professor Guido
Minch, who suggested this problem and so provided a way
for me to work in cosmology, which I dearly wished to do;
who guided it patiently through its difficult beginnings,
and weathered its stormy endings.

To Professor Jesse Greenstein, who was always
willing to listen and help,_for doing more than his share
to make my graduate education the inspiring experience it
has been; and for making the final decision that I was
sufficiently worthy to return to Caltech, that I might
help return the favor to students here in the future.
Thanks also at this point to all the members of the staff
who helped make, or concurred in, that decision. I shall
endeavor with all my heart not to disappoint you.

To Professor J. B. Oke, who has always been
willing to talk about any problem, for whatever knowledge
I have about instrumentation, and for having faith enough
in my ability to let me spend the department's money on a
wild idea for an electronic function generator - which,

thank God, works -~ and patiently helping in its design and



iii

construction; and for sitting as chairman through the
trauma of my qualifying examination.

To Dr. Robert P. Kraft, for making it possible
for me to do observaticnal astronomy very early in my
graduate career, and for help whenever I have reeded it
during that project and afterwards.

To Dr. Allan Sandage, for many long and patient
discussions on the observational aspects of this problem,
and for hints, at least, of what lay around the corner in
observational cosmology ~ I have deep faith that Nature
is clever enough that the cosmological problem will not
be solved within two years, but I trust that that dis-
agreement will always remain a friendly one, even after
it is clear that I am right.

To Professor Maarten Schmidt, who endured and
even encouraged my wild enthusiasm for the recent work on
intergalactic neutral hydrogen - but mostly for most of
what I have learned of care and precision in my work.

To Virginia Trimble, Bruce and Vicki Peterson,
Douglas Keely, and Susan Kayser, who have especially
shared my enthusiasms; and to Bruce and Virginia, for
co~authorship and almost-so, respectively; I wish the
problem had been solvable - perhaps one day it will be.

To Professor Richard Feynman, who patiently

considered and discussed with me my work on gravitational



iv

scattering of light, for an indefinable something that
makes science the living, vital thing it is.

To Professor Jim Douglas, who taught me the
beauty of mathematics and a goodly portion of that which
I know about it,

To Professor George Field, for the most contagious
enthusiasm I have ever known, and a unique ability to spread
it.

To William C. Miller, for willing help in all
matters photographic, and for getting me plates when I
sorely needed them.

To Drs. Ira Bowen and Horace Babcock, for making
the facilities of the Observatory available to me.

To Jeffrey Scargle, who read part of the manu-
script and made many helpful suggestions.

To Butch Lungershausen, who helped begin clearing
the cobweb of misunderstanding (which unfortunately still
persists) between me and the Caltech 7040-7094.

To the other graduate students in the department,
who patiently endured my running of the student seminar and
perhaps even learned some cosmology therefrom.

To Maggie Hayden, upon whose head the onerous
task of preparing the manuscript fell (actually, I refuse
to feel badly - she accepted it willingly), for being

Maggie - and for doing a grand job.



To my father, who guided my first faltering
steps toward the stars and died before but a very few
had been made, and to my mother and stepfather, who have
made possible the ones since,

To the National Science Foundation, for
financial support for the past four years.

Again, to those I forgot, and lastly only in
this listing, to my wife Rosemary, who has endured the
tribulations of the past four years with a patience that
truly passes understanding.

And before you all there was a Dream - - an
infinitely beautiful but very dangerous thing without
which none of this would have come to pass. To you who
through that dream gave the inspiration that guided the
heart and mind that created this work, I can give nothing

I have not already given - - except the work itself,



vi

DEDICATION

To Psyche,

For a tiny, unfulfilled promise of Life out of
the grey shadows of mere existence.

For the Stars, which I have always loved, but
never really knew before.

For a very special, very precious Understanding - -
a much deeper one, I think, than you realize.

For a measure of Maturity {and a necessary
measure of the Fool.)

And most of all, for finally lighting the Candle
for which this game has always been played, and holding it

aloft for the past year and a half.

Ve i/



vii

ABSTRACT

The spectral-theoretic techniques of stationary
time-series analysis are generalized and applied to the
study of the statistical distribution of galaxies in space
and the observed distribution on the sky. Sampling tech-
niques and criteria are developed for the measurement of
the Fourier transform of the autocovariance function, the
so-called "power spectrum". The theory is extended to
curved, nonstatic space-times and the possibility of using
the spectral density obtained from counts of galaxies in
the formulation of cosmological tests is discussed. A
similar development is made for the statistical structure
of the background light due to very faint galaxies, and
the possibility of measurement of this structure and its
application to cosmological tests is considered. It is
shown that in both cases (counts and background) significant
cosmological data can be obtained if our knowledge of the
luminosity function, the spectra, and the evolution of
galaxies is improved. Finally, application is made of the
theory to the analysis of a small count problem in order
to learn something about the general form of the spatial

covariance,



A MATHEMATICAL FRAMEWORK FOR DISCUSSING
THE STATISTICAL DISTRIBUTION OF GALAXIES IN SPACE

AND ITS COSMOLOGICAL IMPLICATIONS

I. Introduction

There has been hope for many years that counts of
galaxies could yield significant information on the cosmo-
logical problem, and theoretical results relating the mean
number of galaxies per brightness interval to the apparent
brightness have been obtained for all the simple cosmological
models of current interest (Sandage, (1), Heckmann and
Schiicking, (2) ). sandage ( 1 ) has recently shown that the
resulting relationships are probably too insensitive to be
of practical use as criteria for deciding between models,
since observational errors (primarily photometric ones) and
as yet inaccurately known evolutionary effects mask the
small differences from one model to another, It is clear,
however, that much more statistical information than the
mean number can be extracted from counts; several workers,
not ably Neyman and Scott ( 3 ) and Limber (4,5 ) have
done work with the second moments (the autocorrelation
function) in attempts to obtain quantitative information
on the clustering tendency of galaxies. The application

of these treatments to the formulation of cosmological



tests has not been made, and indeed this application is
difficult and cumbersome with the forms of the theory that
have been used.

In this paper we develop a general framework
for discussing the distribution of galaxies in space {(and
on the sphere); proper account is taken of the discrete
nature of the distribution, and ad hoc clustering models
are avolded. We proceed with the discussion of sampling
statistics, and confidence criteria are derived for the
sample second moments. To this end, the spectral-theoretic
techniques of stationary time-series analysis are generalized
to the more complicated stochastic processes represented by
the distribution of galaxies, We find, just as in the
simple one-dimensional, continuous, monovariate cases
(Blackman and Tukey (6) , Grenander and Rosenblatt ( 7 )~
hereafter referred to as GR) that the efficient statistic
to use is not the autocorrelation function but its Fourier
transform, the spectral function; and the sampling means
and variances of this function are easily definable in

terms of, and are simply related to, the function itself.

We can thus make meaningful statements about the probable
accuracy of the spectral function of one sample, and

about the significance of differences between samples, or,
more important, between a sample function and a theoretical
one,

The above results are then extended to curved,



non-static space-times, and specific treatments are

given for the Friedmann universes (Heckmann and Schicking,
(2)) with vanishing pressure and cosmological constant,
and for the steady-state theory (Hoyle, (8} ).

Wwith the information obtainable from counts,
another test of a slightly different kind can be investi-
gated. Miller { 9 ) has noted that the photometry of
faint objects is limited in accuracy by an inherent
"graininess" of the night sky, and he suggests that this
is due to the light of unresolved galaxies and stars in
the background. Using data from counts and a given
cosmological model, the statistical structure of this
light can be predicted. The second part of this work
treats this problem; the techniques are similar to those
used for the counts.

Finally, the theory is applied to a small pilot
problem, and the results of numerical computations for

various theoretical models are presented.



1. THE MATHEMATICAL-STATISTICAL FRAMEWORK

Throughout the remainder of this work, we take the
point of view that the distribution of galaxies is a par-
ticular realization of a certain stochastic process in
space~time. From the beginning we invoke the "cosmological
principle" in the form given by Neyman and Scott ( 10);

namely that the distribution of galaxies is a stationaryl

stochastic process in space at any instant of cosmic time.

This point is really unnecessary to the development and
indeed is to some extent testable, but simplifies the devel-
opment greatly. The mathematical formulation of the problem
is hampered on four counts, and we shall dispose of them in
turn. First and most obvious is the fact that galaxies are
discrete - i.e., in a given region either a galaxy is,
present (its center is present, say) or not; most of the
classical theory of stationary processes deals with continu-
ous distributions. The next two difficulties are easier in
principle to dispose of: the distribution of galaxies is
three~dimensional and multivariate, or at least is most
easily and informatively considered multivariate, since the
different types of galaxies have quite different physical

properties and probably are distributed quite differently.

1. That is, a process all of whose probability distributions
are invariant under translation; the term "statistically
homogeneous universe" is often used in our application,



Finally, the three-dimensional manifold in which the process

is embedded need not be Euclidean (though it must be homo-—

geneous in order to speak of "stationary processes'").
Discrete processes of the type encountered here are

discussed very briefly by Bartlett ( 11 ) and are called by

him "point processes'". One can make the idea precise by

the following definition.

Definition 2.1 A point process is an additive stochastic

set function taking positive integer values.

The simplest example (and indeed, almost all
interesting point processes are of this type) is the number
(the integer value) of occurrences of a given kind of event
in a given region (the set).

We shall be interested in processes which admit of
a fairly simple mathematical description, as given below:

Definition 2.2 An n-th order reqular point process is a

point process X(s) (The argument s is a set note.) for which
differentiable functions fl(xl)' f2(xl,x2)...fn(xl,xz...xn)

exist such that

(2.1) E(x(s)) = [g, QLT
S
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.2)
o eEEDEG) = [ [ £,00 ) dpap,
®1%2

b)

c) E(?(sl)x(sz)..x(sn)) = j j:::j fn(xl"xn)drl'dFQ"dfh ,
182 Sn

where i(s) = X(s)-E(X(s)), and the sj are mutually disjoint;
furthermore, the probability that X(s) > 1 is o<k(s)> , where

(s) is the measure of s, as u(s) tends to zero. The
8 ¢

function fl(x) shall be called the mean densitvy: fj(xl..xj),

j>1, the centered n—-th moment density. For j = 2, we shall

often refer to the covariance densitvl

It follows easily from the definition that the
probability that X(s) = 1 exactly is fl(x)Fxs) + o(p(s)) ;
where p(s) is the diameter of s, for X€s; and if 51” s,
is void, the probability that X(s) = 1 and X(s') = 1 is
{£) e ) ) re, Gy o) | s s ) +o((o (1) 0(s,) ) o fox
X1€'Sl’ xzes2 . It is often convenient to think of the

moment densities in this probabilistic sense (See Appendix

1. ©Note that even though the moments can be given in terms
of densities, no stochastic "density" exists for X(s)
itself; i.e., X(s) i1s not stochastically differentiable.



T for further details).

Relations (2.2 a,b...c) are easily generalized
to non-disjoint sets; we give here only the generalization
for n = 2.

(2.3)

cov(X(sl),X(sz)) = j j fz(xl,x )drxdr2 + J fl(x)dr-.
518, 2 sins,

Note that it is impossible to give this general covariance

a density except in a symbolic fashion; we could write

(2.4)

cov(?(sl),x(sz)> = l l {fz(xl,xz) + fl(xl)§ bﬁfx?)}dHIdVZ,
172

with the proper generalization of the Dirac delta - and
indeed, we shall at times use this formalism for simplicity.
But the meaning musgt be kept clearly in mind, for the
singular term does not behave at all like the proper
density portion under many of the operations we shall per-
form on the parent process.

Let us now turn to the description of the dis-
tribution of galaxies in space in terms of such stochastic
processes. We shall for the moment consider only Euclidean
3-space and ignore time variation altogether; these
omissions will be rectified when cosmological effects are

discussed.



We now partition the set of all galaxies into

distinquishable classes (say spirals, ellipticals, dwarf

irregulars; or, if more precision is desired, EO, Rl, etc.)
This subdivision can be as fine or as coarse as one wishes;
a sharp criterion for the selection is missing, but we shall
see that the subdivision should be as fine as possible. Let
the index 3, B = 1,2,.. n label the classes, and let M be
the absolute bolometric magnitude. Then any galaxy can be
distinguished by the coordinate vector x , the brightness

M, and the major class © . Thus the number of f-galaxies
NB(S,O) in the spatial region s and in the magnitude
interval o0: Ml<M<M2 is a 4-dimensional point process,

which we shall assume is at least second-order regular,

and because of the cosmological principle is stationary in

the spatial coordinates (though of course not in the bright-
ness). The distribution of all galaxies is then a multi-
variate process:

l(S'O)
(2.5) N (s,0) =

Nn.(s,c)

Since the Nj are stationary in space, the mean
densities have no spatial variation; let qu@M be the

mean density for N Similarly, the stationarity

B

requires that the covariance densities be functions only



of the coordinate differences. We postulate further that

the distribution is invariant under rotation, so that it is
statistically isotropic as well as homogeneous. This clearly
requires that the covariance densities be functions only of

the coordinate distance. Thus

(2.6)

a) E<ﬁ5(s,0)> = rqs) JkB(M)dM
o

E(EB(Sl'Ol)E $2:92 )> f j i i{f (135 ==, 1oy 1)

®1527172

d3xld3x dMldM §+ SBY/A(S Ns )2[ )\ B(M)dM ,

where ﬁﬁ(s,d) = NB(S,O)~E<ﬁB(s,O)> . (This is a convention
we shall use throughout this paper; i.e., if x is a
stochastic variable, §¥X?E(X). We shall not consider complex

stochastic processes, so there will be no confusion with
complex conjugation.) Note that fBY(r’Ml’Mz) = f B(r M, Ml)‘
We cannot, of course, directly observe this dis-
tribution - at least not until we can obtain redshifts and
hence distance with much greater facility than we can at
present. What we do observe is the projection of this dis-
tribution on the celestial sphere. This projection is also
a point process, now in three dimensions - the two spherical

coordinates and the apparent brightness - and because of the
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isotropy condition is clearly stationary on the sphere.

In addition, we see on a given photographic plate
only the galaxies brighter than a certain limiting magnitude -
which probably depends on B - and this limit is itself not
fixed for a given plate, but statistically variable (as was
perhaps first pointed out in the literature by Neyman and
Scott, ( 10 )). All of this is easily incorporated into
the picture of the distribution as a regular point process.

Let us consider at this time only the problem of
the analysis of counts; the analysis of the background light
is in many respects similar - albeit a bit more complicated -
and will be deferred until we are ready to discuss that
problem fully.

Let dMNB(S’M) be the number of B-galaxies in §
in dM at M; note that this number is either zero or one -

its expectation is }\B(M)H(s)dM, and this quantity varies

smoothly with dM. Then if Ezg(ﬂ,so) is the number of
P-galaxies in the solid angle Q in the apparent bolometric
magnitude interval <SO:M§<MO<M3 (We will take the redshift

into account later - forget it for now.), we have

fl

7/
2.1 4o @) = Jaan, (se.um)

where dn® = dm, M(r) = m©-5 loglor , (distances will be

measured in decaparsecs throughout this paper unless
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otherwise noted); c¢ 1is the solid cone generated by (O ,
and s(r) is the intersection of ¢ and the sphere of
radius «r

One does not, of course, measure m®; the arguments
are unchanged if some limited-band magnitude is substituted
for m@ - but one does not really measure this either, at
least not at the present state of the art of nebular photom-
etry. One does measure some approximation to m®, and this
“observed magnitude" we will call m. In addition, one
cannot count to indefinitely large m's; as m increases, the
probability that one will see the galaxy (as a galaxy)
becomes smaller and smaller, and finally disappears. Let
fﬁ(mo) be the probability that a H-galaxy at n® is

observed and counted; we assume that this selection is a

process independent of all other factors% Let P%(mjmo)dm

be the probability that a f-galaxy at real (bolometric or

otherwise) magnitude m® be gi&en an observed magnitude m

in dm, assuming that it is counted. Thus the probability

that a P-galaxy at n® is (1) counted and (2) assigned a

magnitude m in dm is Pﬁ(mlmo)f%(mo)dm. (See Appendix II)
Now if ;?E(Q,S) is the number of f-galaxies

counted in O and S ,

1. This assumption is probably not entirely valid for human
counters; the tendency is to identify galaxies more
readily when the count density is high than when it is low.
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(2-8) ZE}(Q!S) = ‘fdmZﬁ(Q:m) ’
é

and

2.0 5(Z_ (0.5)) - Je(a,Z tm))

But by the definition of the expectation value,
(2.10)

ECdmZB(Q'mO = dm I Po (mfm®) J5 (mO)ECdmOZf;(Q,mO))dmO

(recall that E(dmosz(ﬂ,mo))dmo is the probability that
;g’ (Q, {dm® at m®} )=1 exactly), and from (2.7) we obtain
&
(2.11)
E(dmozﬁ(n,m ) = iE(drdmNﬁS(s[r],M[r])>

= dm?f«Q)Jrzdr)B(mo—S log r) ,
o

SO

(2.12)

E(E?E(Q, )) = fA(Q)gémImdmoPB(m;mo)f%(mo)fdrrgaﬁ(mO-S log r)
o
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One normally counts (if one has magnitudes at all) in

intervals of m; let 5 = {m]m *mimjg , and let
(Q) ;Z (Q, S . Note that we have now integrated

the p01nt process in one variable and the point nature of

the process in that variable disappears (See the discussion

on mollification in Appendix I.). Let Cﬁj(mo) =
.fp(m )I , (m|m®)dm . Then
(2.13)

4]

E(;Eﬁ Q)) /A(Q)f dm® (mo)far rzA (m “-5 log r)

In a similar fashion (see Appendix I for the

origin of the overlap term), we obtain

(2.14)

cov(éfﬁj(ﬁhzgé.j.(g')> - glldwdufz'jmjdmOdmo»cﬁj(mO)

')II drdr’rzr’szB,([£f£fl,mO—S log r, m°’-5 log r’
2d B

+ r(QnQ')SE%VSjj,J‘dmocﬁj(mo)i r2df)ﬁ(m0 -5 log r)
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Let ¥ be the angle between two points on the
sphere. Then let
(2.15)

22]

o
— o) o) 2- o_
a) MBj = Imdm CSj(m )g dr r b(m 5 log r)

feo BN 0¥

(¥) = J _[ dmodmo’{cﬁj (m®) Cyy - 5 - (mO7)

b) G .. -
) PIP 3 Y ol e J

£0 0O
. ffdr dr’rzr’zfsg,(d,np~5 log r, m®“-5 log r’g,
folo) '

where o = |r’-r| = fr2+r”“2-2rr’cos ¥ ) ,

be the mean and covariance densities, respectively, of
£y

It is possible to perform what amounts to a
spectral analysis of processes on the sphere, but the
analysis is algebraically very involved and not terribly
illuminating. Fortunately, we need not pursue this course;
we are interested in small areas on the sphere, and shall
assume henceforth a plane approximation. The validity of
this assumption depends critically on the diameter within
which Gﬁj’ﬁ’j'(v’) is large. This in turn depends on the
brightness levels j_j° , but is probably not larger than
four or five degrees at most for galaxies of about visual

magnitude 16 or fainter (Neyman and Scott, ( 3 ); Limber,
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(4 )). We thus neglect terms which are O( y¥?2) compared
to terms of order unity.

The next assumption we make is one of practical
necessity, and is a real, physical assumption which for
the moment seems impossible of direct verification, but
nonetheless seems reasonable in the light of what is known
about the distribution of galaxies. It is

Postulate A: All P-galaxies are distributed identically

except for frequency. That is to say, the probability
distributions of the process give the probability of the
existence or non-existence of a f3—galaxy in a given region,

but the brightness of that P-galaxy is independent of those

distributions. Mathematically, this means that
(2.16)

P(p-galaxy in dm at m in a’x at x | any data on neighbors)

= P(ff~galaxy in dM at M)e P(B-galaxy in d3x at x| any
data on neighbors) , and from the probabalistic inter-
pretation of the moment densities, it is clear that we can
write

(2.17) frj(%z(Ci,M,M’) = >\r5(M) >\B»(M')9’M5»(Q)

It must be stressed that by making the fi—division
fine enough, this can be realized to any desired accuracy;
but practicality demands a quite coarse division. Previous

discussions have sidetracked this problem entirely by the
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tacit assumption that all galaxies are distributed
identically, but the observation that ellipticals tend to
cluster by themselves and spirals likewise seem to in-—
validate this. 1In any case, we are forced to Postulate A
by the fact that we can identify a galaxy as a P-galaxy
but without further detailed knowledge can know nothing
about its absolute magnitude.

Thus

W0 w

(2.18)  Guy g-5-(¥) = Jf

o O e OO

dmodmo'cﬁj(mo)c A{m® ")

373
Qe

. II dr dr’rzr’2>\fs (m©-5 log r) >\f_},(mo “~5log r’)gtzz)ﬁ,(a)
00

(¥)

is an integral equation relating the observable Gﬁj,&’j’
to the spatial covariance function qBﬁ,(u) . After some
manipulation this may be put into the classical form of a
Fredholm equation of the first kind; it does not have a
compact kernel for reasonable behavior for the C's and A's.
Little useful knowledge exists concerning the solution of
such equations; a new linear-programming based method for
solving such mathematically unstable problems has been
developed by Douglas ( 13 ) and Cannon (14 ), but we

shall use a simpler parametric approach to solve (approxi-

mately) a somewhat simplified version of (2.18). Let
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(2.19)

80 oo
G/G/S’(m’m/’ Y) gfdr{r r’ 7\/3 (m-5 log r)%p (m -5 log r )
9/3,91(0‘)}

Now <2 - (r—r’)2 + 4rr’sin’ K/Z';'(r~r’)2+rr’8'2 in
our plane approximation. If we set x = rr! , A =r-r?,

(2.19) becomes

(2.20) Y o°
Gﬂ'g'(m,m’, ¥) = fxlldx dA?\p (m~5 log r+)7\{31(m -5 log r_)?
O - -3
2 v 2 2.1/2 22 =1/2
5 (7Y 52 ) e Lo
4x
A2 A
where r+ = x 1+ To=
— 2 2%
4x

Before we proceed to the form we shall use for computation,
we consider an interesting limiting case for (2.20).
Suppose that we are dealing with very distant objects; that
/3 and /3/ represent classes of galaxies that are
reasonably bright intrinsically and m and m’ are large.
Then the x4.7\/3 .7\/3’ term will be very small in the region
where % is appreciable and A 1is still in the region
where G}%ﬁl(ﬁ) és large. We can thus neglect terms of

the order of %2- , and we get
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(2.21)

o0

Gﬂg’(mlm; ¥) ggdx x")ﬁ(m—s}?ogx))\p'(m’—sfogx)j 988’ (\/A’*b”xz )dA .

Note that in replacing r+ by X, we are really only
neglecting a term guadratic in ﬁ- ;  the linear term
vanishes, since the inner integral in (2.19) is differen-
tiable and invariant under A—¥»-A . The asymptotic
nature of (2.20) is easily verified if qpﬁ/(oC) falls
off sufficiently rapidly as o« becomes large, and if the
7x£'s cut off on the faint end. We say nothing about the
general luminosity function cutting off at the faint end
(as well it may not) - only that the functions for the
given classes ﬁ ,ﬁ/y do so, and if may well be that (2.20)
does not obtain at any m,?n/ for some classes. For those
in which it does, however, we shall find (2.21) very useful.
Let oo

(2.22) Aﬂp/(%):f S%ppz((a"wzx“)yz)%

]
where £ is some (at the moment arbitrary) characteristic

length; we shall call A/@,ﬁl(g) the auxil iary covariance
function, and its two-dimensional Fourier transform,
(regarding.%aﬁf(g ) as a circularly symmetric function of

the radius §) 24/6/6'(71_): the auxil iary spectral

function. We now assume that 3/63466) has the form
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2
N i Q. 21 - %Z‘
w9 -2 al (5 F e

where AL is chosen appropriately. Any bounded, absolutely
integrable, spherically symmetric function can be so
expanded to within any accuracy (in the L, norm) if we take
N large enough, so this is no real restriction; the method
becomes unwieldy in the extreme, though, if we are driven
to take N very large. It may be necessary (or at least
useful) in practice to use the sum of two or more sums as
in (2.23) with different A 's to better the approximation
without resorting to many terms. This generalization is
very straightforward and we shall not pursue it further.

Inserting (2.23) into (Z.ZOL we obtain

(2.24) ®
N, i : 242 \K
G_BB/(m,m’,\f) = fdx.xzv'i, é al . (X OLZ )
5 i=o k=0 [P
2 2
_22_9,.2. . ,
Lo 24 (;)/glfﬁk (m,m’.,.x)}
’
where
(2.25) ® ] 2/2
I._k(m,m’,x)=f dy Y2(l_k) e
i J L2
o® /(l+y2 5 )

4x

{)\ 5 (m-—S log " (y)) A B/Cm—~5 log rf(y))}



s

and
r Tiy) = x (f(l+y2/?2/4x2) * -\§—§— )

The functions I‘:b (x) are asymptotic to

(2.26)

I i?,(m,m',x) :>\f5 (m-5 log x))\E_,(m’—S log x).

/2T (2i-2k-1) .

as x/p becomes large, and if E@f; is substituted for
I{?L, the approximation of (2.21) is obtained. The error,
again, is 0 (f%/x?)

We could attempt to estimate (;6jﬁ’j’(y) from
data taken from counts, but we shall see that it is much
more efficient to estimate the spectral density. The only
dependence on ¥ in (2.24) is through the

232 - X232
) e 282 term. Let

- v 2k —-2/2 ..{,2/2
(2.27) (27()2 Ie in. Y22 4% - @ up e

k
. . . . 2 k! 2
Q]<(n) is an even polynomial, and is in fact 57T l’k(7 /2),

where /, k(x) is the Laguerre polynomial of degree k. Then

the two dimensional Fourier transform of C;BB,(m,m’,a’) is
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(2.28)

\/gﬁﬁz(m,m',q) = { !x dx Z i aoﬁ <k)

50 o
202
V4 - .y .
QRC%{—) e %{2—.— Iiék (m,m”,x)

and i1f we define

(2.29) o ®
RiB"37 _ . .
Ik (x) = Lo _Lg dm dm {(Ct}j () Cﬁ"',j'(m )

i
ey
Q
L<
R
N
x‘l
[0]
i
e
N
~
N
—~—
| aa—
Sy
[o]
3
__P(\
B}

Il Tk (m,m’,X)}

Aytn-s togr i) )] [ I@dm’c ooy ) Ay (75 Log ¥ () .

we can write the transform of foijtx’j’u) as
(2.30) -
N i
- 3 2
Gy (B = L .r wax F, £ a- (k)Qk ( >
AL 1=0 k=0 [
.,2 2
AL Pip"3”
e —-—2—2 Il (%)

We now superimpose a grid with cells of side h on the
region which is tc be counted; let G; be the square with

coordinates 1lh, ph, and let 2%

_ () p)
b8 =~ Zpy T

le a4 is then a triple stochastic series, stationary
L ¥
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in the Yspace" indices A and p. It has a spectral density

on the square ~7f<<i;,i<~7r, i=1,2, and comparison with the

one~dimensional development in Appendix I vields

(2.31)

/\Bj = h? I dr rz{ L}dm CEj (m) >ﬁ(m-—5 log r)}

and

~ 5 w 5] +2"b .

Hopy,ar5- W =n ki‘f_m ];f_;g 59,873 (F— )

‘sin2(7’/2. +k17T) sin2 (71/;_,+k277')
(1 /2 +k47 ) 2 (M2 fa k277 ) 2
-2
v &5 8ps-Ngy 27
Def

D , Z
=Hpy,pe5- 0+ 85585 Ny 2T

1/2
where | 1{+2ﬂ'_]§ | =

[(;,l+21rkl)2 + (op2+2 nkz)z]

for the mean and spectral density, respectively. It is

X £9,B879J7 that we shall estimate from count data, and

from it &/ and the {a éfi’ } in (2.23).
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III. SAMPLING TO DETERMINE %ﬂ,} ﬂj ([l)

We have seen how a 3-space dimensional point
process projects into a two-dimensional one on the sphere,
and have obtained relationships between the three-dimen-
sional moments and the two-dimensional ones. The guestion
now arises of how one determines the two-dimensicnal
moments from the observed distribution. The problem in a
much simpler form has been discussed at length by several
authors (GR, (7) , Blackman and Tukey (©) ), and most of
the immediately interesting questions have been answered.
The transition to multidimensional, multivariate processes
is in principle simple, but involves much manipulation.

The inclusion of the inherently point nature of the process
is a good deal more difficult, and requires that we
formulate a simple model which we can study in detail. Let
us point out here, though, that the "adoption" of this model
does not restrict in any way the foregoing general descrip-
tion of the way galaxies are distributed, but is analagous
to the "normal approximation" in studying continuous random

processes. It allows us to describe approximately the

behavior of samples, and it will turn out that this is all
we shall require in the instances when we are forced to
use it.

The model we shall use is the Poisson process with



stochastic parameter, or the Quasi-Poigson process. It is

discussed in detail and several new results which we shall
need are obtained in Appendix II. It should be noted that
the application of such a model to the distribution of
galaxies was first made by Layzer ( 15 ), though its
strength lies in the subsequent facility with which sampling
predictions can be made, and he did not develop the subject.

The investigationsof one-dimensional, monovariate
processes which have been made indicate that the covariance
is not easy to estimate reliably, and is very difficult to
obtain easily applied variance estimates for. There are, on
the other hand, a family of estimators of the spectral density
(or, rather, a smoothed version of the spectral density)
which are very tractable, and for which simple variance
estimates exist. We shall see shortly why the covariance
is difficult to deal with; it is not surprising that the
spectrum should be the efficient statistic here also.

For simplicity of notation, let us contract the
double index £j into one index, 5, and let the couple (I ,p)
1p Pe 1. ThuszNﬁj becomes /\6,
ﬁ’j’('%) becomes)(':j@/(gp), Z7p,6j becomes Zé:

identifying the square

K ey
(The notation is now the same as that of Theorem 8,

Appendix II.) We abandon for a moment the viewpoint of
Chapter ITI and consider ‘Z?? as a process in two dimensions
which we wish to analyze, quite forgetting the three-

dimensional process which is "behind" it.



Let  cov (Zz@ > R;Jik )L(zk N “ . since the

parent point process is isotropic, /‘E %u 2 Rpa /
L,t2

and Rl”pa;v: _ R‘E;a _ 7?;'@6
Thus there is no "quadrature spectrum” (GR, 16 ), but
only a "cospectrum" - that is, the spectral density is real
for all £ and o

Suppose that we have a sample of Z,ﬁ counted on

an M by N rectangle. We can estimate the s by

st

*ofs N-2 [
3.1) R, = MN Z =1 Zz Z ge)

for Zl’ 22 > 0 , and analogously for other values. (Here
N- N-11 M-7,
the sum = Z: Z: ) We assume at present
y=1 v, =1 vz—l
that we know /\P , so that we can form :’2.@ ; this re-
¥

striction will be lifted presently. Equationﬂ(B.l) does 1in

fact provide an estimate for Roy'p , for

(3.2) E(Ql*af’): Z," E Zu sz)

N—’ 1] M"’?ZJ R(JLL* gur)/\
M

N

and it could be easily normalized. The term in AN
o
arises, of course, from the point nature of Z , and

. . a
can be removed if one has an estimate for /\ . Perhaps

the most straightforward way of estimating the spectrum
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would be
(3.3) W@ = = ZH“;L:, RYP o v
' af TT =y ¥

*
The guantity pl@ﬁ(q) ig called the periodogram and it

can be shown (GR, ( 7 ), p. 145) that its variance does
not even tend to zero withlarger samples. Analysis
. . * e
indicates that values of lan(Q) more than about #/N
apart in the argument are very nearly uncorrelated, how-
ever, so that as we add more points to the sample we
merely add to the number of "degrees of freedom" in the
*
statistic ‘qa&

periodogram, making several of the elementary frequency

To prevent this, we smooth the

bands contribute to the value of the new variable at

each point. Consider the estimate

N-2 ¥ .
* | F -3
(3.4 Y = oo 5, whle e 4

P v=-(N-1)
= = 1) — ——
where Yoo 1, wz 0 for I_.I>m/ Wy g = Loy 3, W,
choose N, M>m. Let w(x) be the function whose
Fourier series has coefficientsw2 . Then
aT
¥ -X
(3.5) z‘/_’y = wW(x) &€ a/ZX ,
- 1T

and it is easy to show that

(3.6) j/j(%y)z f/w[?—?)/bjﬂ (7)J7

Using (3.2), (3.4), (3.5), one obtains



gy By 0
(3.7)

E (%:;g (%7)) il—[ra/’x{%/g (ﬁ)'(z’;}‘lm '

/”/’r sinl(‘g‘(%’x')) Sl'ﬂt(%(yz' %, ))

L) R e
.2
The factors / Sim (Nk/%l» will occur often in the work

ZnN  sm* (X/2)
in this section, and we shall assume throughout that N and

M are sufficiently large that their width is negligible, i.e.,

we approximate (3.7) by

Tor

-~ X X =7

(3.8) £ (:2{%5 672)., j/j(a/ 4 :¥

- -

The transformation is accomplished formally by the
1 s}n’OVXZi)
z2nN Sim?®(X/2)
(the correct replacement is the delta function and not a

replacement of by the Dirac delta

A S

multiple thereof, since //EQLJZEé2-=.ZﬂWN ) ), and is
-7 Siﬂz{x/z)

strictly valid only asymtotically, as N and M tend to
infinity. The error introduced is slight, however, and in
all other cases in which it will be used, there will be
larger uncertainties from other sources; this is not the
case for (3.7), and one might prefer the exact relation.

¥ . -
In any case, we see that ;%(3501) does in fact form an
estimator for (ﬁ;Ov , and the bias decreases with the
width of w(x) . In the limit W (x) = ‘8(2)(5) , however,
;@f:ﬁfn) is just the periodogram, and so it is necessary

to compromise somewhat onW (x). To study the usefulness

of the estimate we need to find its variance, and it is to
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this problem that most of the rest of this section will
be devoted. We shall later perform circular averages over

the sample spectra, so we in fact need covariance$ From

(3.4), we obtain

(3.9)
cov (%:/; (n), %:f (¥/)) =
(-1 A (PLE g eep
(quty:_(y—;)w/'ﬁ%j < cov (RZ ) K F )
hut
(3.10)
cov (ﬁ;df/ fé'*,;") =
/ Z% = = =ZF
N ,é cov (Z Zr{*?—’ , Zmzm*#“),

where the range of summation on n and m is such that the
vectors n, m+y, m, m+g lie in the rectangle of height N
and width M. The covariance terms in the sum in (3.10)
are given in Theorem 8, Appendix II, under the assumption
that ;ZQI is Quasi-Poisson and that the fundamental has
vanishin% third moments. 1In addition, we assume that the
fundamental is approximately normal in the sense that the

relation



(3.11)
— ¢ - A —of ﬁ’(
cov (() (_&)P (y), P fg)P w))
= cov (?“(5)(5“(_2_)) cov(?”()l)?ﬁ(w))

+ Ccov ((Sd(x)ﬁﬁ(w)) Cov (P‘ﬁfg), Fd(z))

which holds exactly for normal processes, 1s approximately
satisfied. These assumptions are not likely to hold with
any great precision, but almost certainly introduce no vast
error and allow us to proceed where before we could not. The
normal approximation for the fundamental allows us to use
the extensive literature on spectral anlaysis of stationary
continuous normal processes and stochastic series (at
least as a guide) in the bewilderingly voluminous algebraic
* * .

exercise required to evaluate cov (%aéﬂ),)( o () . We
can do little more than indicate the path of this analysis
here; the details are for the most part straightforward,
albeit extremely tedious.

The task 1s made somewhat less onerous by the use
of the large M, N asymptotic results discussed above. It
may easily be verified that products of highly packed
trigonometric factors of width of the order N“l or M“l
behave in precisely the same manner under integration with

smooth functions as products of Dirac deltas; the cor-
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respondence again becomes good for very large N and M,

and we shall use it in the heuristic discussion to follow.

If

ol
/W,l: J; fy(é)dzx , then (3.11) holds also for
- n
- — —— of
Ma , and it is easily verified that co\/(/"l:/ Mf): En-

We then use the results of Theorem 8, Avpendix II, to write

(3.12)

cov (B, Rl )= o £ fRy o R ye

+ E;f__m__# /e;ﬂ—ﬁ+ )

+ Spm N R,, e g 5 m;,&/\dfe;’fezw
Spnmp N + 8 PR,

H(RE+ AN ) (S S oo + 8 Loopape Sho m)

* le_vrz:'. é;.fd ‘Sp,o

+ Qdﬁ(éwvm ;ﬂo + Sp m 5;50)

v /ef(é"f* Spermep * S¥o Sl om)

+ A% 3;/0 53, Sy m f |
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The products of Kroenecker deltas can in several cases be
simplified. We next replace the R's by their Fourier

developments :

] T Z-gxz z
(3.13) E}f’ ‘_nf_,,j"/"/‘(?g)e oA 7 -

The sums on n and m then can be taken inside the integrals,
and one gets sums like

(3.14)
e

-

i(y+5)-(n-m) iigef)- . —ilyif)m
n

-

———

R
13

Now the sums on n and m can have different ranges (and will,

if ¥ *F B ). We can, however, extend the sums to -N<€n,,
mlé N, —Ms:nz, mzs'M, and make a fractional error like m/N

or m/M, which goes to zero in the asymptotic approximation
we are using. One could as well suppose that data areavail-
able on the NxM rectangle and on a strip of width m surround-
ing it. Then one can redefine R* in (3.1) by letting the
sum run to N instead of N-/ . This changes the form of the
trigonometric factor in the expectation value slightly and
makes the sums in the covariance analysis more tractable.

In practice, however, one uses (3.1) as is, and we shall

keep it. Then
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(3.15)

Z e‘:[y-fj)(?z’y)g S}%l(‘g(%"-ﬂ)) Siwi(%f-(?/,»‘r;))
nm sin* (F(7.+ §) sin* (4 (7,+f.))

~ (2m NME (+2)

When these are inserted in (3.12), the result is (note
- ~ )

that %ﬁ (:7) 7(.7,[ /4 )

(3.16)

cov (?";/8/ E;ﬁﬂ)z

™ -l 2 oy (v,
s f’//[?du (F) R0 ()€ R, Z, 2 (7)€ 7 ](2rr)A/MJ'7
+ NMA /ﬁzy/eﬁ(?)e;;z.(z—p) - 57& J{//‘ {7‘7)8;? (y+#)sz7

(Y+p)

o N[ Ke T 8, Xy ) €7 by

[, (7)“3;7147”/"7"’]'[”’”5.&,: NS Sy ]

-~



+ Sup Sy Sy, (n) NM 20y (0)
-+ 2/\//‘4[ .(/4 ff [?)@k? d?
+é,,/,gwjf alp e 7Fdy ]

of
+ MM A 5,(/5 é_\;o ‘g#‘o}‘

Inserting this expression in (3.9), one obtains

(3.17) " .
cov (Jed/e (2;) , X (%’)) =
S Jtu it - ) 0)
(wleagw 5 w0 (g la-g 'S

+{277-)%‘7M ﬂff%/, (£) w(z+y'-$-x)wix) Jud

! (2 )/\//4 ffff% /f)w(4 —}’Z L f-x) wik) Ak A
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Swg 2/ (0)
(27 ) VM olet

-+ Z.éu

T )TVM //%d/f)[w@q)-r w/g+y)]ds

ol

-+ é"(ﬁ A
m)* M,

Y

Noting that ;Z? FUQ) = ’Zzaﬁﬁn) + %%ﬁf%g , and again
using the symmetry properties of )V

We now note that in order to keep the bias of
the estimate within acceptable limits, the width of the
function W must be small compared to the scale over

which the spectrum changes appreciably. If this

requirement is met, we can write

(3.18)
Qov (/‘7/ (;Z) 4(/1?,)) -
22/'\7/{4 f/}{( -/o((f))/{;i/f) )@;C;))
) (W(_{—\L_'?)w/!_%/).‘u w(id-?)w(f”ll))iﬂﬁf
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* sy {7(0(/3 (p+72') + é,,/g Ao (7-7")§

+ é’f—— X 10) +{_§),_,,£__ {}(.,dfgry)—.«— %J/Qtl’)z
2,

4 Sug N

(2m) MM

The first term is the same as that which would arise if

0!
we had analyzed the variance as if;Z' were a normal

v
process. The others arise from the point nature of ;Z;,
and behave quite differently from the first term. Note
that the first term is guadratic in the spectra; the
others, except the last, are linear.

The first correction to be made to the develop-—

ment above is that we do not, in fact, know /\CX. The

best we can do is to estimate it by

{3.19) /\*"‘ Z o
.2-) *

Clearly,

(3.20) E/\*O(—:;

7

and it can be shown easily that (3.19) has the smallest

variance of all linear estimators. We then form



-36-

' ~ o ¥
(3.21) 2y =,Z£—-/\ )

N
and let AZZQﬂ be constructed as in (3.4), with
o ¥ o . 4
R_z{ f replacing @Q}F where

* o N-L
220 K, F o Z Zh.:.

5
analysis similar in all respects to that leading to the

previous results shows that
E J?o; (7) = ffo’zx }Z//‘g (x) wiy—x)
- 2") /‘?/ /0)w(;z)

(3.23)

The covariance analysis this time 1s even more involved
than before and produces no results of real interest. The
correction terms are, as in the expectation, of the order
O(E%IQ compared to the terms in (3.18) (which do not
change), and are in such a direction as to reduce the
variance. We shall ignore them, and take (3.18) as the
expression for cov (j?:/d [_‘7} , j?,,; (;}Z’))

We note that the covariance is substantially
larger and more complicated when « = B than when o and
are different. We are interested in determining .2(%3(22),

. . . a
however, since we already have an optimal estimate for /\
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(and it is )A{QB that directly involves _ﬁ;mf ). and
it would be fortuitous if we could find some way of
subtracting off the /\  term which would simultaneously

lower the variance appreciably. It is remarkable that this

can in fact be done, and in the simplest of fashions. Let
first « -
£ Y Swag A
3.24) (n) = - Z=p e
( )%fﬁd L/ ,iQ?ﬁﬂ s ,

Then clearly

(3.25) E jz/‘: (7) = /7%{&/5) w(:,[,__g)a/?x
_ em”
oa— Hg (D wlz).

We should like to make the correction temm as small as
possible; we can make the )%( a ’;{oﬁ(o) by

replacing )R{ with
~ /?a ﬁf*
(3.26) /7-./,,’, /7’7) = )(4/3 ~ Suglizmt ¥ WM W(7)§.

A moment's reflection will show that 1f we define

(3.27) L A 2 X7 W V-2, )(M- )
v = Ry - /’/\ {5”"“ e 2 TEME (
then
(N-1)
(3.28) a ﬁﬁ i¥-7
/2{%p (?) (2ﬂ7 ‘ZC;N_I Zbé! zZu 6? .
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If we now calculate the covariance, we find (making use

. * %
this time of the (a) part of Theorem 8 to treat the /? /\
term that arises),
(3.29)

m)t ’ 2
oo (33 ), Xy ) = S [0t 000,004 24, 0)

-

(wE+g)wisty)+ w(g-g)wie y)) s

4-£;éyﬁbw g-;%%p C?“*%Zf) + éi?e ;%;p (%?’;ZC); .

The distinction in form for the covariances in the cases
a =f and «a I has disappeared; when we perform circular
averages, the contribution from the two "heterodyne'" (sum
and difference frequency) terms will be equal.

We are not yet making the most efficient use of
our data, however. We wish to estimate, finally, a
circularly symmetric function{/é;cszy). The sampling
spectrum ,%( .{m) and its estimate_}( t (7)) are not

b ? o 2

circularly symmetric, and we need to perform some manner

of averaging to make best use of the known symmetry of

.9 ap”



sin (T ) s (M:/o)
(14)° (12/2)"

(3.30) Xy (7)- h‘éwﬁf (5 (g+2mk) Q (74 2mke),

Recall that, letting Q(#) =

so that, if _};\ is sufficiently regular,

(3.31)

//w{_y—_)s)j(.( (x) A*x
” = B ZE ffw(y-z)ﬁ(ﬁ&(&*z"é))éxf+2"‘9)J‘x
b T

= h‘// w(y—z)ﬁ,f%—)&?(x)a/’x,

where W is now defined everywhere by its Fourier series.
Then

(3.32)

E Xy ()= b ffuigs1 5y ) atx) s

A

_{ )l 2 T
LT sin) h 51”;2/,(2“ )@ (n )
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Now let us perform a circular averaging on ,?(f. Let

(3.33) A

/2(¢/a ['7}: ,::,“rof)(.(; (7m<9/ 7 5 8) e
Def.
=_4 7(.(; (7),

where //é( is the indicated linear operator. It is easily
verified that «fg’ commutes with smoothing with a cir-
cularly symmetric kernel, with Fourier transformation, and
with the expectation operator.

Since w(x) is doubly periodic in the plane, one
can, of course, not choose it cirularly symmetric, but
one can "almost" do so. Let wb( x ) be a continuous,
bounded,ﬂfircularly symmetric function on the whole plane,
with //Wo (x) dix = 1 . Suppose that w_( x ) is
boundea"in absolute value by a positive strictly

decreasing function of the radius which is also integrable.

Then let
=
(3.34) wix)= _* w, (Ix+21¥l).
V= -2
It is clear that w(x) is bounded, continuous, doubly

periodic, and that
a

(3.35)
//W(x)d’x =1,

- T
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Let W(k) be the two—-dimensional inverse Fourier transform

of wO(X);

(3.36) W(k)= ./‘[wu(x)e;h'xolzx.

Then the Fourier coefficients in the series for w(x) are,

since exp (4B+2m)=exp(4#¥) for n , n, integers,

2
-
3.37) < n
| Wp = HW/X)Q BE Jay
-

™
- [ 22w (xramw) 2
2/
-—TT —

oo
= //fo)e‘”'xwx
-00
= Wi(n),

Also, if we take a circularly symmetric function W{ix]).
with support radius m, and let the weightswn =W(n),
then w(x) will have the form (3.34) with a circularly sym-
metric Wi this can be easily seen by reversing the above
argument. Let us suppose that the W have been so chosen.

Consider first the first term in the expectation

A
of }R{QQ/ that corresponding to the first term on the
,},J
A
right in (3.32). Let this term be Ei(O)JHf(“W(y ) : the
. . (0)

second (regression) term will be £ jﬁﬁw;b7 ). Then,

letting .g(e) = (cos ©, sin &), we have
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38 EVZ,, o)

oo M

=2.‘:.1: fde ”xalxaloc w(yefa)—xefd))&)/xe“))/g.,f ()

o oo

= 2zl o/xa/x,‘r;,e %) { /@ (x () det -

2T
{ —
-;T-fw(o/gm} xe («)) a/af

But w((x) is given by (3.34), so we can write

(3.39)

ECXyly) = 2nb?* [x kG, (2) Box) 85 00

00 amr
n 2nAZZ: /xdxﬁ/,(%)f;—;’, fa (xer=)dd
VFERO) o o

2w
.Z_.Tfr./wo (/7_@{,9)- X& () +2ny/)p/¢9]

where

QA (x)=_LRQ(x) o .
] (7,x)= 2_.# fwa ([x2+7‘_27xmd3'/") o/ec

The second term contains all contributions from
the aliased frequenciesg and will be small if we have
chosen h correctly; thus we do not need to evaluate it
too carefully. It will suffice for our purposes to note
again that the width of w(x) must be small compared to
the scale of variations in jkég(z) (and hence in‘j;éﬁ (%ﬁ .)

It must also be small, of course, compared to 2% . Since
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has mass unity, we may set

2r 2mr
ZTr/ dx & ({—) -;%./‘Q(xg(d))dd/wo (7§(G)—X§(d)+2ﬂ2)f_/ﬂ._‘?

= Z‘i? /52 (ye(6)+ Z-n'_?{)\_g;ﬁ (Llpeie)+ zv_z_)l]) As.

Wy (x)

(1) 75 we have

In the term E ’2(”Q,

(3.41)
Im /o/d w, (7 e)+ 2m2)

A w@z)*
;_-i;fde w, ([LGyl +7 — vnlylcaaej";)

——
—

——

217 Wy, 121)

Il

= ajo(?ﬂ)

for the functions wO of interest {(and, of course, for

742# Y Thus,

(3.42)
F(?))—— 2mh” fxdx.g (u)QKX)w(y,X)

A [Q@e 6)+2m2) G (/7e/z9)+2mz/)J9

2+ 000)o

—-%.L_)_ wa('7)/¢_§;,/‘,/0).
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in order to calculate the variance, we ignore the difference
2 7 o :

between ;zzgﬁﬁg) and hwﬁ;u&(h) , an approximation which

must be good to within a few percent for the procedure to

work at all. Then

(3.42) ., (7@/3 (7/ 7‘*//7/}

2 T

= 5t //dao/;ﬂ cov (X /7_¢; (), ;’(.,; (72 #)

= A / / Aol //0’3’«5 ()24 (ge®)-£ ) 04 (7))

+ (/+éd )b //& (h(7 7 277@5@)7)

MM (arr)?

where

S ()= (i) 25) (G0 @)+ 8.) + (S Sute )

(zm)*
(Recall that M, = h_z/\Q is the mean density for the

parent point process on the sphere.}) Rearranging slightly
and changing the variables of integration in the last

integral, we have
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(3.43) )
cov (Xus (7). Xy f»;'))
= (2"”‘ Jeds Sl ) w009 60
+ (14 5-1;”'«1 fﬁ ( uo,u =
(2 m)* MM 'd/e b \/u+f7 7)/4;:7’) -un®
T
and
(3.44)

vav (?(,,/,( )= (2")1' /fc/f,g‘,f, (£) & 7, §)

+ (1+8,4)h 'Zf w Auv
R Z S A

We must next turn our attention to a discussion
of the function w(x) and its Fourier coefficients w2 . We

have seen that it is analytically advantageous tc choose

the w, as values W(]y]) of the Fourier transform of some

smooth function wo(x). We should like wo(x) to be as
highly peaked as is practical without increasing the
variance unduly, and must remember that W(») must vanish
for|{p|>m. Were it not for this last point, the use of

Gaussian window pairs would be very convenient; the rate
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of decrease of the Gaussian at large values of the
argument, however, suggests a suitable and very useful

approximation. Consider the weights

(3.45) 2
/ ) - ( - 7}“ kX '.i»&-_,'_
B w (121)= (I ;,;‘:) e < 30
wz -_ /
o , ¥>36

The function W’ (j) vanishes with its gradient on the
circle j = 3§ , and does not exceed 2xlO_4 outside this
circle. The integral from 3§ to infinity does not
exceed 10_3 of the total mass, and so the Fourier trans-
form is essentially determined by the behavior within 3¢
of the origin. The interesting fact is that the Gaussian
W(j):&g_jz/zcz(-8225)2} fits W (j) to within .007 every-
where, and has a total mass with .9% of that of W’ (j).
This could doubtless even be improved somewhat; the point
is that we can calculate with an almost-Gaussian set of
weights which vanish outside m=3¢ , but can do analysis
with the simpler Gaussian set with a very small error.
Suppose, then, that
(3.46)

2 z
1 e*" /2ot

Wylx)= —
s (x) 2Tt << T
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1
1f § or '7 is large compared to «, £+ 72- 2f7cc>s<9
~ (§-7)1+§7,97‘ over the range where the integrand
is large enough to contribute significantly; this leads
immediately to the large-argument asymptotic form
-
/ - zqz

(3.48) S (F ) \
wis, vy "’{2")3/“( -——E/-?—y"" e

If either 3’ or 7 is small, ’\7«’(;,7 ) differs little

from W evaluated at the larger argument; in fact, as
57/&1,,, (o) , we get, by expanding the exponential
in the integral for IO,

(3.49)

_(" - a 3
S5y~ i & T (- 2120 2080 )

2mol?
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Making use of a relation of Kummer (Watson(1l7 ), p. 104),
we can write
(3.50) ¥ )z
- —— zol i/, , —-2¥% )
(% 7) 21'ret"e ,F:(/a, ; —;(—‘1 :
Since 'F{ (%’ | “%g;z) is a smooth function over the
we can

range where the exponential factor peaks strongly,

now do the variance integral approximately by taking

f”g"’ﬂ (%) | F" (.2%) ]/- ..2.7"0(—2-)}2- out of the integral and

performing the integration over the exponential. We obtain

(3.51)
vav (.7{.,/, /7)) .
Aﬂﬁ;. 7 + C(1+Sue )t ‘ w©
(/) ’—-——'—’i’"“ ey ("'%z;_al—)FT

c(7tVﬁ1 (ZW) NM TT

lR

for ‘7.§> a. For 77 less than o , the asymptotic form
used for w 1is very poor, and we can get a good estimate
by using the form with I, (.a.gz.) .

(3.52)

vavr (72/7))

~ kY ,5;/3(%)”’/”&)1' 2 :

MM ()Mﬂ’

}V"
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for 7(( a. The estimates agree for '7::*4;, and the
error is only a few percent in using (3.51) for ‘7:9 d%ﬁ“ ,
(3.52) for < i

The covariance can be treated similarly. Note
that for | f-—7 | greater than 2a or so, the contribution
from the first term i1s very small, but that from the
second does not decrease appreciably. Thus the degree to
which estimates for the spectral density in widely
separated frequency bands are uncorrelated is limited by
the point nature of the process, and this limitation can
be serious. To see more clearly the various dependences on

the parameters of the problem, we set

(3.53) ﬁ.,,, () = h‘X (“)

L, = hN

L, = hM

L= = i = 20 ’
so that

(3.54) A ~ | , . 49L’
var (\gd/@ (f))= H;. WL ———Z.-—-", .2‘1‘[.'2'

. gg“ (5 L2 )l){,g,f, (€)+ 2 (9.,/,(!)., )}

+ Itou f 2gw) 2
(z-r)’l (fu)/:;;' .
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<
I

Note that in this approximation the mesh size does not
appear. Thus h must simply be sufficiently small that
the attenuation of high frequencies through 5(7) and
aliasing are not too serious. This means simply that it
must be small compared to the correlation length on the
sphere. L7, on the other hand, measures the length over
which we consider the correlation nonvanishing, and so
must be substantially greater than the correlation length.
We must therefore expect most of the important details of
the spectrum to occur at frequencies greater than 1/L; =

the first choice in the minimum will generally be the one

of interest. The sgample size Lle must then be as large
as is necessary to bring the variance within the desired
limits.

It is also of interest to note the effect of
the magnitude interval Am. The mean densities M, go
essentially as Am; the spectra ‘guﬁ(f), as (Am)2.
For small Am, then, the '"point" terms (the MuMﬁ product
is the first term and the second term) dominate while
for A m large the variance is dominated by the terms
in “£;@dj;55 + (,,g‘:):ﬁ)2 , which is the form for continuous
normal processes. It is clear that this last condition
is the optimal one, so the magnitude interval should be as

large as possible consistent with satisfactory resolution.

It is perhaps expedient at this point to
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introduce a few conceptual devices to facilitate
heuristic consideration of the theory we have developed,
and to perform a few very crude approximate calculations
to discover just what one is up against in applying the
theory to real counts.

Consider first a monovariate, one-dimensional

point process N(s). Let its mean density be A and its
covariance density )@-fﬁf) . Then the spectrum is
(3.55) P _ihex
- XN [e™”* (x) Ax
Ple)= 2 f
—O

We form an estimate ﬁp T of the spectrum in the manner
developed in this chapter, and we find

(3.56)

Var (T 0e)F CL (Pl)r ) F (Hk)eA0),

where C is of order unity (it depends on the shape of
w(x)), L 1is the length of the sample, and ! =mh is
the length over which the weights wy are nonvanishing.

Now
(3571 Prp)- z_%_r_ {2 fﬁ/x)ale.

o0
The integral /’fﬁdd& (and its generalizations
-
to higher dimensions) we shall call the '"covariance

measure”". The product of this quantity with the mean



density 1S a dimensionless guantity 77 c which is a
measure of the clustering tendency, and is at least
vaguely related to the "mean cluster population". In
an extremely ndive model in which cluster centers are
distributed in a uniform Poisson fashion, galaxies are
distributed about the cluster center in a Poisson fashion
with parameter density Wg(x)( where g(x) is a fixed
function of distance from the cluster center and W is a
stochastic variable which varies from cluster to cluster)
the mean number of galaxies per cluster is kE (W), and the
guantity 71b is kE(Wz)/E(W), where k is a constant.

If £(x)%» 0 everywhere, then q9(k) is bounded
by its value at zero, and we take 99(0) as a rough
measure of the size of gp(k). But 99(0 = o 7Vk, SO

2'1T

(3.58)
vmr(@"//z)) oC C‘l’ ( )(}7 +1)" z—’v'r'b’i? 277,

- A ’ I+ 27
""(2"):.[_‘ (C>\L (%+) C) 2

Now (7’l,c+l)2 > 27% always; the quantity XML~ is just the
mean number in the length L~ , so for most problems of
moderate count density, the first term dominates easily.
In the covariance, however, recall that the first term
disappears for k appreciably different from k7, and we

must keep the second term. For galaxies, as we shall see,
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1Qb is of the order of fifty, so the point nature of the
process will not play a dominant role for any but the
rarest kinds of objects.

Let us now estimate the projected covariance and
spectrum of the galactic distribution, taking very simple
models for the spatial distribution. Limber ( 12 ) finds
that the spatial covariance for all galaxies considered
together is Gaussian to within his errors, and has the form

-xoL*

(3.59) f(x) = pe
where P 1is about 20 and £ is of the order of 3 Mpc .
He finds that the mean density is about .6/Mpc3, using a
Gaussian luminosity function with a standard deviation o
of 2 magnitudes. This luminosity function is almost
certainly grossly in error, but it is simple to compute
with and should give us at least order of magnitude
estimates for the quantities involved. We choose a mean
absolute magnitude M_ of -15. Letting ;Z'm(Jl) be
the number of galaxies counted in solid angle between
m-1/2 and m+1/2, we find, using (2.13), that .
(3.60) E(Z,,. (ﬂ)) ___,_f /“[‘Q‘)' .2!'./\ ,D-C(M— Ma—z.s’)e%(%c‘;

g'f«!'ﬂ-) Mo
where /\ is in Mpc_3, and czloglo e=1/2.303... . We next
do the projected covariance in the auxi ] iary function

approximation, (2.21), and obtain the following results:
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(3.61) 2 —'—L‘,’ _ & *'m
G, (012 BOL Y o (2 1) JENE)
Seava

rmom ! Of

I, = 7@,,,,”, (x) ¥™ o

I

n+2 “{ 'Yh) _ ,
Ps—ffr‘/\ o T (g - e 25)

o))

Lod L
x ”-l ,
- M
where r, = jx"e Ty = ( = )
[/}
1n+»v
. S - -2, ——— .
Let the quantity /05' ° )z Y (".’.‘;‘;’!‘.’) ; this

is the distance in Mpc that an object of absolute

m~ +m

magnitude Mo would have at apparent magnitude

Then if G mm/(7‘) were Gaussian, say

(3.62) N dal—
G (¥)= K (m )@ 2% 0mm)

we would find

mm’

wn-+l
Geen Ln L i I
T
From (3.61) ,
mn — 'n-rl)

n+/ — k SFFTIRPRL N 2
(3.64) é%_:___——-lla) = /e /:‘ w:—‘hﬂ) EXF{-(({),(%E)%) f
Now R,,:(;i)"..(‘i;—?!); %, l‘f- 2 29 _for n=0,1, 2, 3,...

and so we get a reasonable fit near the orlgln if we take

Y, %) y
P = 2(n+l), and ¥, = ———1 & y
n ° v("‘-——a—;_"") [OF (m™)

for © = 2 magnitudes. The covariance is net Gaussian for
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large argument; the moments In indicate that it falls off

at first more rapidly than a Gaussian, though ultimately

it will fall off far less so. Moments through order 3,

compare satisfactorily with a Gaussian form.

however,
Then
(3.65) 5 l / )L N Xl
=z pAE gweim i (&) Sreeomey
A¥) E .A_-——— e 1y 03¢ gt tmw’)
G;nﬂa ) s 2 Y{ﬁg?z e’ e
i * b
~ L. (m-m?) X —
= MMMW, 6:575_,}2 e‘la"‘l ] b/o["/'m/) e Zb’o"“(‘)ﬂl‘ﬂ').
Y
For B = 20, O = 2, the constant g%%qia is about 15. Then

(3660 92, = o [ G (1) A

< s M, 2mey]
= /svo  (£)

R

40 ,

If we thus work with, say, 5 classes of objects of roughly

equal frequency, we expecﬁ:7ktf0r each to be somewhere

between 5 and 10, and the contribution to the variance

from the point terms is small but perhaps not negligible.

, which is

The correlation length on the sky is 3’0

3x10” /5 (m=10) L 4aians, and the quantity M_ yi , which

is the mean number in a square k’o on a side, 1is
m-10

1.5 x 10 > ., which is already 15 at m=15 (for which
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the correlation length is about 2 degrees). Since L~
must be larger than Z’O , the quantity CMmL’2~ the
two-dimensional analogue of CAL™ in (3.58)-is very
large for the cases of interest, and the heterodyne term
is always small.

For the range m=18 to 20 (and perhaps to 21 with
plate materials currently under test), the correlation
length Kﬂamhﬂﬂ varies from 26 minutes (at 18) down to 10
minutes {at 20) and 6 minutes (at 21).

Analysis of counts at levels this faint will
require much smaller cell sizes than have been used in the
past; cells as small as one square minute can be used to
advantage. If we consider the variance of the spectral
estimate for G;mm(a') and neglect, for this argument,
the point term Mm/(2ﬂ')2 , we find from (3.54) that for
square regions
G.67) o> (g)= L

o (8= 755
for frequencies of/\ interest ( § 2 2/;,/ ): here

G___'Z. , {f) - Vayr nm.m/ff)
e (Gmnl(®)

the sake of argument that us:lmn’(f) is approximately

L.et us assume for

Gaussian;:

(3.68) 2 .2

" - f
(2m) G, . (£)= M, Myt A (mwm)€ ~=
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with A in the vicinity of 1/2. If we choose L’=lO}(O ,
so that the weights Wv have a width about three times that
of the covariance, then the spectrum is smoothed with a

Gaussian of width x_ = 3’§4 x L . The aliasing
o 3%,

L

frequency is T7/h, and for h=1" is large compared to
relevant frequencies in ngmn" For a normalized
standard deviation crrmn,(f ) of .10 at the low end of
the spectrum, we need L,y 7L° = 70 Xo . At m=18, this
is about thirty degrees; it decreases to 12 degrees at 20,
and is seven degrees at 21. Multiplying by three will
reduce the standard deviation to about .03. At m=18 this
covers an appreciable part of the sphere, and the area must
be subdivided in order to preserve any vestige of accuracy
in the plane approximation. It is easy to see that this
does not affect the accuracy, and provides an internal
check on the variance estimate.

Let us also calculate roughly the variances in
the number counts themselves. We have, from (2.14), (2.15),
(3.69)
var(ZW/./l))= f[@.m,, (1x-2"1) Jwdy' plam, .

nan

Let us suppose that the diameter of L2 is large compared to

)’O. In this case, we can write approximately, from (3.6%),
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(3.70)

var (Z,m (_Q)): /,4.(./2) (M'm +J[GM1” (¥) 0]27)
= (@) My, (14 20 M, s 57

™ seTV2
= 10 p (A)Me .

The standard deviation is thus 40 or abcut 6.3 times
larger than for a random distribution of galaxies. To get
counts to two percent at m=20, which one would like in

order to say something meaningful about the cosmology, one

needs
(3.71) "/'l—
(VaV'iZm 01)) = £ 3 /b/
= 02
Since ]%n: 14xlO'6(mmlo), we need an area about .1 radians,

or about 6°, on a side. At m=18, where we need 1% accuracy,
one needs counts (with no systematic errors) over a 309

square.



IV. COUNT STATISTICS IN EXPANDING NON-EUCLIDEAN UNIVERSES

We are noWw ready to generalize the results of

Chapter II to non-static universes in (possibly) curved
space—times. We assume, again on the basis of the cosmo-
logical principle, that there is a universally defined
cosmic time % . and that surfaces of constant 7€ are
three-dimensional manifolds with constant curvature. 1In
order to apply the statistical description we have developed,
it is necessary that we make one more seeingly ad hoc assump-
tion, but this assumption is implicit in the usual inter-—
pretation of the cosmological principle.

(B) . The correlation length is small compared to (1)

the radius of curvature and (2) the Hubble length c¢/H.
The first assures us that within the effective support
radius of the covariance density, space is essentially flat:
the second, that little "evolution" occurs while light is
traversing this distance. These two numbers (the radius
and c/H) are comparable for the most promising simple
models, except those for which the radius is infinite. The
values of 3-5 Mpc obtained by, e.g., Limber ( 12 ) certainly
satisfy this requirement.

With these assumptions, we can regard the

gravitational potentials of the galaxies as small per-

turbations superposed on a homogeneous metric of the
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Robertson type ( Irvine, {( 18 )) . We shall use so-
called "intrinsic" comoving coordinates, for which

4D dst= Az*- BT T—f"%»f*r"“’*‘]

where %k = %1 or 0, according to whether the spatial
sections have positive, negative, or vanishing curvature,
and d¥ 2 = ae? + sin? edQZ .  These coordinates
possess the property that a sphere of coordinate radius
(J at time 2 Thas proper area A4’ITR2(’¢:)(02 .

Robertson (19 ) first showed rigorously that
the flux at the origin from a source of intrinsic bright-
ness L radiating isotropically at coordinate distance F

is
2

(4'2) 7 = ZI:. 2 ,_,E_;___,.
4mR e Ry

where Rl = R(zZ) at emission; R, = R(Z) at absorption.

2
Since the redshift Z = jia::aL = EQL;EL

L z 8 ke

= J+Z)

i;z &;:EET ( )

The equation of a radial "light track" is given by
d¥ = ds = 0, or

43 dz_ -4
2 T) 1 fep* -
This gives a one-to-one relationship between the "emission

time" Ze and the coordinate radius, once the reception

time is given. If 2, 1is the present epoch, then 6, c?,
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and t = ?'O -7, from a suitable set of coordinates
for the light cone.

Consider first the statistics in an evolving
relativistic universe. We make the assumption (perhaps
incorrectly even in this context) that no galaxies are
forming or are disappearing. Thus the stochastic process
at one epoch is an evolved version of one preceding, but
the evolution in time is deterministic in that the number
of galaxies does not change - though the galaxies may

move, and thus the covariance density may change with time.

Let 7\0) (M, ) Dbe the proper mean density of

f~galaxies of magnitude M at cosmic time Z . Suppose that
evolutionary changes are the same for all f-galaxies, and
that

(4.4) M=M - €,(T) ,

Where MO is the magnitude at the present epoch (and so
éti(o) = 0; it is presumably positive for ¥+ >¢9). Then,
letting >\§(M) = >\ﬁ(M,’ZO),
3
o R (%)
Ag(M,7)= g (M= & ) { Torer

= )9;(/W'+ ;F(?i)(74-2)?

From (4.2) we obtain the relation between apparent and

absolute magnitudes:
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I

5 log (f)R(?O)) + kﬁ(z) + 5 log (l+z),

{(4.5) . = M +

where km(z) is the so-called 'k-correction" which

arises from the effect of redshift on finite-bandpass

measurements (Humason, Mayall, and Sandage s (20) ). Let

(4.6)

5 log (R:,)(t) = 5 log (Ro(o(t)) + k‘gii(z(t)) + 5 log (l+z)

- € _(t)
[
Then

(4.7) m =MO+5 logd!@('t).

The proper volume element in df2 and dt is

(4.8)
) (t)
ve Rz, -t) 2P an
A \/1-—Ie(;"

- Ly Rl dtda

(1 +=

Thus the analogue of (2.11) for an evolving universe is

(4.9)

E(d Z,(a,m°)-
o)’ s (Ma o #) zmt) GO et
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where

(4.10)
Mﬁ(m,t) = M~ 5 log (P(‘)") RO) - ki‘)(z) - 5 log (l+z)

(We set R(®)= O for all times previous to the singular
"ereation”" if there is one in the model we are considering;
if so, let this time be Z = 0, and extend integrals in ¢

to T only, instead of infinity.) Using (4.4) and (4.6),
we obtain

(4.11)
E(d,Z 2 m)= pui2)dme /&%Aﬁ (m®~ Shog 1o (4))

. (1+2(t) ‘Oi(f)fa('if ,

and, letting
(4.12)

>\Fj (’X)=—’[ Cﬁj ('m))ﬂ (- .S",éojx) dm

relation (2.31) for the mean number of {j galaxies per

counting sgua re becomes

(4.13) /\(;JJ - wRr f%j (R () (1+2()) 0* () 2



We run into a slight difficulty in forming the covariance
density of ﬁ%ﬁ(JQ), since we need the three-dimensional

covariance density for points at different times. Since,

however, the correlation length is presumed short compared
to the Hubble distance, the metric changes little during
time intervals comparable with the correlation length. The
peculiar velocities of galaxies are so small compared with
the velocity of light that the galaxies within one cor-
relation radius cannot appreciably change their configuration
during this time (of the order of lO8 years), SO we can use
the three-dimensional covariance for some intermediate time
{we shall use the geometric mean for analytical convenience)
at the proper distance corresponding to the given coordinate
differences at that mean time. With this approximation,

and letting )£:Uwpr) kﬂy(M:zkggﬁ,(u,zr) be the covariance
density at time 2 (we retain Postulate A}, we obtain

(4.14)

G/cj/s’j’ (¥) = J‘)f[‘o’(t)ﬁ(t’) R (e-t) R (z,-t") dtdlt’

'xﬁj (‘Pﬁ ) )ﬁ,j/(&’p (t") 5["}“ (et Z-%) (/-fZ(x))‘]'
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where Ha 1is the proper distance between points on radial
rays separated by an angle ¥ at coordinates P(t)' F( t’)
at time x, and x is between ¢ and t’. For small angles
and distances much smaller than R(‘?O—x), (4.1) and {4.9)

yield

(4.15) o(etiy) = (¢-¢)2% + P(t)e(t’)RZ(’to-—X)b’2

For small ¢, (o(f)o(’ t ; for larger t, if (t-t') is
small compared to T and t’ , then P(%)F(fq is
approximately equal to @ 2(x): in any case, then, if
x= [7g" ) P(f)()/f’)g (a*(x) . Let b= (t-t');
then

(4.16)

(%, a8,¥) = A+ f‘(x) R (z,-x)¥".

It is also clear that we can replace Rz(za-f}R2(1;—-t')
by R4(2;—X ) din (4.14). Thus, using (2.20),

(4.17)

G;gj/g’j' (¥) = E:o/,,/d{o/{l{ @"/x) (1+z22)"

: >‘/?j ((J?F (t})Aﬁy(ﬁ,: /f'))ﬁff'(\[zs‘-»* (o’/x)fflf?‘;—x)b’f)}/

>0
4 Yx)(1+z (x))
- Eo o/ To‘/ { (1+ &8 yxt)

. >\/gJ (0?’9 (f*))}\/gy(@' (‘é-y) _9//’(/51'* ,o"-(x) P“/?a_x)b';_.)gl
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where ii = )((,/I-l' Alyxr * ;é;() . We now run into the

grave difficulty that we do not know how 9 -(a, T) changes

t:) i_;
with time. The problem is currently being investigated by
Layzer and others, but to the author's knowledge, no
results have yet been obtained. We are thus driven for

the present to assume a rather simple variation, for which

at least some theory exists. Let
k3

(4.18) N ~ ad )ZL emzj‘(t)
18 g e T) = X(7) Z 2l (e .

L4z 0

Thus we suppose that only the scale changes, and together
with the scale the '"contrast" X(%2), which measures the
strength of the clustering tendency.

It is necessary to digress here for a moment on
the relationship between X(7) and £(<). Layzer ( 21 )
has obtained a "cosmological virial theorem" from which
he derived a relation linking the contrast and correlation
length for the mass density field in the fluid approximation.
It is at first glance not obvious how the statistical
process we are considering is related to the "smeared"
density field, and perhaps this point deserves closer
attention.

Theorem 10, Appendix II, establishes the exis-
tence of such a (proper) density field /A(z),(provided
N@(S) is quasi—Poisson),’gnd gives

(4.19) p(x,7)= % //AﬂzMo)pﬁ(zs,M%'z-) AMo
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where /LB(MO) is the mass of a P-galaxy whose magnitude
the present epoch is Mo’ and where f)b(ngo,Z‘) is the
fundamental for Nﬁ(s,s'). (It can easily be shown

using Pestulate A that

oo -1
/o/e (2‘(//‘4",7) = >\F (M°)PF (x, ) { [,.Ap (Mo)ol/"oj
where /0/3 (x, ) is the fundamental for /\//s (s, ’Z‘)’

the number of all f-galaxies in S at T .) Then

(4.20)

cov (/A (x,z), p(x,72))
£ J I ety it Fra i) ey 01,) ZAYZN]

:/‘ -0 - 0O
-4
&4 (R(x)) e (07 )f
but 9/3Y /Qr)s g/z-);‘éa;r . and

(4.21)

(x ) =2 / MIN (M) R (R() P AM,
E (plx, ﬂ_,f/“f ¢

Thus Layzer's "density contrast" az is

(4.22)

LoV e, e
* [ E (/u.(x/c))]" }Ct)/g £

It is also easy to verify that f£(%2) is a constant

z)f
times his correlation length A ; he shows that °t23

is approximately constant, so that kg[?)xngz)(y+z)3

is also. If we let k)= 1, L (T,) = fo , then
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.2 —3
x(T)= ,[:ﬁ/?)) (1+2) " in this approximation. Though
no theory is yet available for the variation of Lz)
this relation at least reduces the number of unknown
evolutionary factors by one. When a detailed theory
becomes available, one should replace the a;;,: by
functions aé;,/r) ; the changes this generalization
makes in the theory to be developed are easily incorporated
and will not be developed further. Thus
(4.23)

(e)
ek

/@qj: /a/'x {F“(x)(/-f z/x))"',z"(%-x) )

V- P (x)R(7,-x)¥ 2k
Lag Z () )

L (r,~x%)

_ ot R (g -x)¥t '3
BXP( (OZJ‘ITD—XT) &fiz fx)}
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where

(4.24)

&ﬂoﬁo[ )_ /‘J Y
//—f Yz, x)/{,(z

oi (Re (£4)) ) 5 (€lt ) §

3

zuey/

precisely as in Chapter 2. We can take the limits as
* oo in (4.24) because the A\ factors cut off for
large mﬁs(t ). With GL‘:j‘pﬁ’j'(x)’ we can form the spec-
tral density j fﬁj,i’:fj’(?) as in (2.30), and obtain

;(}Ef ,e s (f)::. /62/41/419( {(az@()(l-fz[x))j(%—x)
7, ~X)
Z (k.) Qk (;’ei{.x);(x))’

FU (m-%) Faﬁa
exP(Zfei’z;%)‘O{x)) & [x)'f




-70-

The spectral function for the counts by squares,
;h(iijﬁ’j/(77) is formed from (4.25) by replaClngg£;®jL/j,(;)

in (2.31) by _G ®).

The above development holds for an arbitrary
evolving model satisfying the cosmological principle
and in which no creation or destruction of galaxies takes
place. Given R(7Z ), k, and T . One can compute
Pﬁﬂ and z(t) . The theory for éiL(t) is a bit more
difficult; a decent attempt can be made for elliptical
galaxies, since presumably star formation ceased in them
long ago. Spirals and irregulars are at present almost
hopeless, though estimates have been made for the dependence
of star formation rate on gas density (Schmidt, (22) ),
and perhaps reasonable estimates for eﬁivdll be possible
soon. As noted before, a theory for & () is under
development at present.

Especially interesting for their simplicity are
those models with vanishing pressure and cosmological
constant: for these models R(t’),t',§>(t ) and z(¢)
can all be expressed as simple trigonometric or hyperbolic
functions of a parameter ©, called the "development angle"
(see, e.g., Sandage ( 23 )). Computations using these
models will be discussed later.

We now turn our attention to the steady-state

models of Bondi and Gold {( 24 ) and Hoyle ( 8 ). As
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far as the present development is concerned the two
approaches are the same, since we do not use the field
equations and so it is really immaterial whether or not
there are any. Hoyle and Narlikar( 25 ) have recently
proposed a version of the steady-state which violates
Postulate (B) and is really not in the "spirit" of the
cosmological principle at all; the statistical theory we

develop cannot be applied to this version without extensive

revision.
The metric in the steady-state model is
(4.26) 2HE
4s? = gz2 - & 2, 2.2, .
s =47 e (dp™+p ax”)
The light-track equation is
(4.27) - HT
dP = - e HCI?,
or

- HT,
(4.28) €(+)= e ° (et 1)

Since T, is arbitrary here, we can set the scale of
the parameter F) by taking ‘Z'O = 0, and (4.28)

becomes

Ht

(4.29) (o{'r)= e -~/

Similarly,
_R(Ze)  _ QMY
(4.30) (1+z(+))_R(?O_t) = e = /+(>(+))
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or

(4.31) F(H= z(t),

We take here a slightly different view on

galactic evolution; galaxies still evolve in the steady-

state, of course, but the population as a whole does not,

since new ones are forming continuously.
sS
)\@(M,’Z‘) = >\F (M) 1is not a function of € , and we need

Thus

know no evolutionary details.

(4.32)

The modulus relation is

m(t) =M+ 5 log—ﬁ-éé—)*%-kﬁ(z) + 5 log (l+z(¢))

Def

ss
=E M+ 5 lOg(Rf._ (t):

kﬁ(z) is independent of the model, of course, and is the

same as before. The proper volume element per unit solid

angle is

(4.33) _ 3HE _
e Torde . T prrt) dt
H3‘ ) Hi

/

and so the count expectation value is
(4.34) 55. _ _;_t: mss. ss _ - Ht)2 ¢
Nej = 1= i (RZ@) (- € 7 dt

33

where )\Fj (%)

$s
is formed as before, using >W (/”)
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Here

(4.35)

-Hx,2 .. —2

22t ,t 8 )E A2 +xla-eT% g

so the covariance density becomes

(4.36)

- o — Hx
/8'3’ ( (Z‘ ))/7/ (/"' )
o (a7 -7 ) §

Inserting (4.18) (K,(’C’)E 1, ,?(T)E,!) for 3;2,(cx),

we obtain
~ Hx "
¥2(1- &™)

g - ot

(4.37)

o 2 (2 (2T

e H - )AL )
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Y RILG

ik is defined as @fi/"jl

where

is in (4.24) except that )f is constant and the X !

py S

and tRb(f ) s are replaced by the steady-state ones.
;2{?(133. . [77) is formed as before.

If we limit our attention to distant galaxies
(say more distant than a few times Y o 50 Mpc oOr sO -
the expressions can be rewritten in terms of the auxilliary
functions introduced in Chapter 2 and become much simpler.
These auxi l iary functions now are time-dependent, of
course, but in a very simple fashion;:
(4.38)

A/‘/"' (:‘E(F"Jt) = fﬁﬁe ((x=dV)™ x) A

i)
00 2
N . 4d
_ “ e ol
- w [Log (55) € T L
- o®

:.’i?_:_.._.. (4
2ie)(1+2)3 /" AT

i
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where Apﬁﬁ’ with no explicit time dependence is the function
at the present epoch, and is also, of course, a polynomial
times a Gaussian:

(4.39)

o _xX¥Y2 N N
AFP,/«)= fow @ sz‘Z' (24 -2k-1)11

le=o Py

Det. .._)('/ N
E{Q 5 bE xk
k;o f/

It is not necessary to work in terms of the a's
at all, but directly with the b's; it will turn out that in
all the statistics we shall do, the function Aﬁﬁ’(x)
enters directly, rather than the (seemingly) more fundamental
spatial covariance. The spatial covariance can, of course,
always be found by solving for the & 's, but one cannot
expect very high accuracy, especially for the higher orders.
This approximation corresponds to taking the A terms out

of the & integrals as ki?j«R“(X))' and supposing that

f

2x > N4 , so that the square root in the denominator

becomes unity. Then (4.23) goes over into
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a0 e R(%-x)¥
Af/"'(*,é (7, -%) )

(og,,/x)))f (By (%)) §

for the Friedmann universes. The spectral density 1is

(4.41)

s/g;gj/,'jf /7}5 @,z/oz/o/xfﬁz/x) Ci+2%))_L(r,-%)

.j;e/e (::(/;r)fex{)z;-x)) >>ga (ogls/'x))} 47 (0?/@'/7())}’
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where, as before,

(4.42)

4 _ “aX X Aix
_;%//19)-— //4/,/9/ (x) € e

_ o ) - /2
- Z by

is the auxi liary spectral function.
For the steady-state, the covariance density
in this limit is

(4.43)

G5 i = / dxft (1= )",

LILI

Agge (LU=€TL) 5 (8 0 Xy (5 0],
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and the spectral density

(4.44)
s 7 -2 —Hx)%*,3
j/"d/’fi’ @) =/‘/"<&/ (1-e") 4

o HA 58 s3 §5 Y
Aoy (755 Noj (RS 20) Ny (RS0))
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V. THE COSMIC LIGHT 1I: STATISTICS

One guantity which is, at least in principle,
easily obtained from a given cosmological mocdel is the
mean cosmic light; that is, the combined light from all
the galaxies expressed as a mean flux over the celestial
sphere. There are in practice a number of difficulties,
chief among which are (as yet) unknown evolutionary cor-
rections and, perhaps most important, the enormous
uncertainty concerning the luminosity function. These
points also affect our efforts here, of course, and one
can only point out that no insurmountable difficulties
seem to exist which would prohibit great improvement in
the quality of the data in the future.

The measurement of this light is quite another
question. Various estimates place it well below the night
sky brightness, and competition from aurorae, the zodiacal
light, and the light of faint stars in the galaxy makes
the measurement very difficult if not impossible.

Tf one can determine anything about the spatial
distribution of galaxies, however, one can say something
about the structure of the fluctuations in this background
light, and it is much easier to disentangle this structure
from the other obscuring effects than to do so for an
absolute mean level. We shall see, in fact, that knowledge

of the spatial covariance density (or spectral density) is
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sufficient, with some other information obtainable from
nearby galaxies which does not relate to their spatial
distribution, to determine the second moments of the back-
ground fluctuations. We shall develop a sampling theory
for this problem parallel to that developed for the counts,
and finally, on the basis of the data of Limber ( 12 ),
determine whether such a measurement is indeed feasible
with presently existing instruments,

Let us first obtain an expression for the specific
intensity of the background from the galaxies alone, as
seen, say, from just outside the Galaxy. We assume that
the orientation of the rotational axes of galaxies in space
is random and independent of the spatial distribution. Let
8 Dbe the angle between the axis of the Galaxy and the
line of sight, and ¢ the angle between the plane formed
by the axis and line of sight and some reference direction.
Let dN/e (x,M,n) Dbe the number of /E—galaxies in d3_>_<_

at x which lie in dM at M and whose axial direction

is in dw at n. Then clearly
(5.1)
3. df
E(dNF (x, M. n) = d4d'x " aM 7\/3 (M)

and we can write symbolically
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(5.2)

cov (dNF (x,Mn), dN/,z (x',M ,n ),) = d3_>£d3§_'deM’dﬂ an’

. {%p (M”F’ (M')gﬂﬁ’(9§~_>g’l) (4w)"2 + 53(35—1;5 Yo (M-M7)

A g (M)
12)(n ) Np JZ

45

Now suppose that the monochromatic intensity
emergent from an element of area dA=d2y on the disc of
a given./B -galaxy (See Figure 5.1} is Iﬂr(eky,a’,M)dA,
where y 1is the (two-dimensional) coordinate vector of
the point at which the line of sight intersects the plane
of the galaxy, in a coordinate system one of whose axes
is the line of nodes and the other of which lies in the
plane of the Galaxy perpendicular to the line of nodes
(See Figure 5.2). We suppose that the spectrum of all
/3—galaxies is the game and that the distribution of
intensity simply scales in a uniform manner when we go
from a bright /?—galaxy to a faint one; that is, Iﬁ
has the form

(5.3)
IF (6, Y V’ M) = L/ag) lo”.4M —_ 2 QD‘F ( %/5 (M) 2))

[Se cm]
where S/B(M} scales the size of a /3~galaxy appropriately
with M, and 4WL/gy lO-’4M is the total emission from the

galaxy. Note that in general the dimensionless factor Jﬁ
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does depend on 2 , since galaxies with appreciable

absorption appear redder when observed edge-on than when

observed face-on. Orientation effects on intensity and
color have been explored by Holmberg (26 ). Note also
that

W

1,

2., 42
(5.4) //dz—@; 35 0.2,7)

or, letting /dZZ &F(e,z_,v) = £ ,

/6
/ o $4w ©

Then the total intensity at €@ from the Jalaxy is
. 4M

(5.5)

it
—

L g fﬂ,, (e)10"
Let us now consider the stochastic surface

brightness ‘%5 (ﬁﬂ&) of a shell Sj of radius

rj and (small) thickness h, as seen in the direction

of the radius vector;

(5.6)

Jjﬁy (rjp_) =f(f I’ﬂ (9,y(g_<—~ﬁ_r),21,M) sec © dNF (x, M, n) .
s. M

Here vy (x-nr) is that position on the face of the Galaxy
(whose axis is 1 and whose center is at x) which we see
when we look along ﬁ_ , the line of sight. Explicitly,
if Z 1is the projection of x-nr on the tangent plane

of the shell, then
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(5.7) _y_(Z)-'- (——f(zz——_zz-_{l._)csc‘e , -Z'n csc&scc&),

The factor of sec 6 in (5.6) arises, of course, from the

projection, since rzdzﬁ = cos © dzy. We then have, if

—

rj is much larger than the correlation distance,

(5.8)

(‘f A)= ffffI (8, ¥ (x-£Y) 2 M) «

>\ (m) (47)" sec O/ *x ol 2 M

= b [[[ Toenu m)Neim iy g2 um

= kL, //o""‘M).F(M)JM .
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gimilarly,
_,E A -—,5’1 Al
(5.9) cov («J-v (v‘_@) o, (r n ))

=1 /,, /,,,zy/o “MA (M) AM [} A (m*JodM

" I (/v}ﬁ n-@ ’))2
+ Sik Sge ff {1, (6, (= vy 2 m)-

+ Lg (6, (x- Avi) ym) de ()

< sec’® A zx AMS
e /

under the assumption that the galaxies are small compa red
with the scale of changes in g}ﬁﬁ' (et ); this is almost

. . . A N .
certainly valid. If one integrates over n or 1 in

(5.9), it becomes clear +hat we can write the second term
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as

(5.10)
ffffl?s (6,4 (2-R¥;) oy m) I (6, % (=) 5 p).

‘ ),6 (M) sec’ @ #}a{gx dM

st A
= h L/, Z= /AM{% (8) >‘/’(M) ) o)
EXEAS
53"( S, 1) )«‘E
where
(5.11)
™ am

F/:sfu (x)= !!ZJ-P(G,%#)‘&F(G,;Z-I-(XCOQ{xxll:nso‘(ccél)/v)f
Fan 6 dodd Jy - [ [5,00) daf
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igs a form factor of width approximately the mean galactic
diameter, and with unit mass, i.e., fgy(x) dzx = 1,

If it happens that we can ignore the galactic
size and hence the width of Fﬁ, (x), it is evident that
the effect of orientation, at least at a single wavelength
(or fixed wavelength band) is to redistribute the
‘ﬁ—galaxies in brightness. It should thus be possible to
find a new luminosity function which takes this into
account and thenceforth to ignore orientation effects al-
together., This is indeed possible. It is clear that a
galaxy whose axis is at angle © to the line of sight
appears to be of brightness M=M-2.5 log fka, (e)

The number of galaxies so inclined is proportional to

the solid angle, so if ‘Xﬂ (ﬁ) is the mean number per
unit volume per interval in ﬁ': then

(5.12)

Xﬁ(ﬁ) = ]2‘:@ >\ﬁ (A + 2.5}7 .%y(&))

Y

We have suppressed the frequency dependence, but note
that it is present; it is also possible to define M
and »n for finite or infinite bandpasses. Then we find

that

(5.13) E :J‘J-’:,(\rj,_@)) = hl, /0’.‘/,«134 (i) A
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where }\/3 = f,\ﬁ M)dM = /lp (M)yam , and <)€82)> is
the average luminosity of /Q -galaxies (averaged with %ﬂ )
note). The covariance becomes

cov (Tf, (), T (A1) = Ny (w2 <8

(5.14)
gapr (IR~ v R'1) h*

T S5k sy 58U ( (v (R-E)L 2 ,,,,>)\ h .

One can replace the éz(rfﬁ-ﬁs) with some
appropriate average form factor if one chooses to take
account approximately of the fact that galaxies have size;
in the sampling technique to be described in Chapter VIIT,
however, this is unnecessary.

Note that in counting, the luminosity function
is effectively Kk (M), and so the %F (M) in the preceding
chapters should strictly be replaced by KF (ﬁ). The
distinction between the two luminosity functions tends to
be small, since we have chosen f;z,(G) so that its
average is unity.

The intensity reaching us is not necessarily
just the sum of J{i over all shells, however; there

may be obscuring matter in the way. Zwicky ( 27 ) has
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long maintained that there is intergalactic obscuration,
especially associated with large clusters. Such obscuration,
for example, might be taken proportional to the fundamental,
under the assumption that the distribution of galaxies in
quasi-Poisson (see Appendix II). Until its nature and
distribution is clarified, however, such ad hoc models are
the only available course. We shall therefore ignore
intergalactic absorption in the treatment to follow, but

the possibility of its importance must be kept in mind.

We can treat with some certainty another
phenomenon whose importance was first pointed out by Bonnor
( 28 ); namely the absorption of the light of distant
galaxies by nearer ones.

We again assume circular symmetry for the galaxies
(It should be noted that we do so only for convenience -
certainly one more parameter would not essentially
complicate things. But the reason is in reality a little
deeper; the details of spiral structure, etc., constitute
the main part of any deviation from circular symmetry,
and the statistics of such detail is inherently very
complicated. Since we will not begin to be able to re-
solve it in the cosmic light, it seems of little use to
attempt to include it.)

So let 656ﬂ(Z!ﬂfM) be the fraction of

incident light absorbed by'a./a—galaxy of magnitude M
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whose axis is at n at a point Z on the projected image

of the galaxy. Let
(5.15) Sy (M nr)= ja/@,, (Z, n,m) A2

(0;,¢>=/ %‘f— M);ﬂ) Oy (M 22) oM

be the absorption cross-section and the averaged absorption
cross-section. Let T {x) be the optical depth along the
line of sight from the origin to x , so that the apparent
surface brightness of an obJject of real surface brightness
3, (©) is T, (x) exp (-5 (). Let exp(- ATy (A))

be the fraction of incident intensity along the radius
vector ﬁ‘ that is transmitted by the shell Sj.

We now need to investigate the statistical
structure of this obscuration, and to do this without
great algebraic complexity we need a result which we state
here without proof.

"Theorem": Let ZNﬂ (s) be a multivariate point process
in any number of dimensions, and let S(Nﬁ (s)) be a
functional on N, (s). Let /% (x) be a fictitious

£

stochastic process having for centered moments the

ﬁ,(s).

corresponding centered moment densities of N
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(Such a process need not exist, and in general does not,
but that does not matter in the present context.) Let
hqﬁ (s, ﬁp) be a Poisson process with parameter density
f%(x). Then formally

(5.16)

E[S(NP (s))] = Ef E(S(Ng (s,f/, )’(’/’)],

which is true when it makes sense. This means, of course,
the following: to evaluate the expectation value on the
left, we evaluate the expectation value of the same
functional on a Poisson process with unspecified parameter
density fr(x). The result will, of course, be a functional
of f% . We then take a formal expectation value over all
f%'s, replacing the central moments of /? in this
expression by the central moment densities of N/9(s)
wherever they occur. In cases where all moment densities
of N/Q(s) exist, and the functional is, say, an entire
function of linear functionals, this operaticon can be
carried out, and, subject to convergence requirements

being met, yields the desired result. In cases where

there is no "power series" expansion, or there are
singularities, we make no claim. The theorem is trivially
true for quasi-Poisson processes by virtue of their
definition in terms of a real stochastic density f% (x)

The extension to general processes is in the nature of a
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conjecture, but it has been laboriously borne out in
several cases and the author is confident of its general
validity. It is, in any case, valid for the uses for
which it will be put here.

If the distribution of galaxies is Poisson,
it is clear that the expected value of the function of
light absorbed in traversing shell j is

(5.17)

-AaTy (r)

E(-e )e-;@*pv)pp(\: Y h+ ol

where f%@ is the parameter density for /9~galaxies, and
rj is the radius of the shell (assuming that the
galaxies are distributed in brightness by Ng —lkfg(M),
as before.) If we consider products,

([ ~a Ty {r)) G ~e % (t)) , the expectation value
is just the product of the separate expectation values
unless j=j’ and the directions of r and ¢’ are

sufficiently proximate that the same galaxy can contribute

to both terms. We shall see later that we need not
consider lines of slight at very small angles, so we

neglect this singular contribution.
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Let us now obtain the expression for the total
stochastic surface brightness for a non-stationary, non-
Euclidean universe with Robertson-Walker metric. From
(4.2), one obtains for the flux in the frequency interval
d? from the solid angle dJZ and emitted in the ‘jéé
shell,

(5.18)

d o - .
6‘2} (_fi)ol‘uaf.fl. - Z’ J;v(l-fz(-:)f‘A 3/ ?',,(f',ﬂ
£ X, (1+z(+)) /

where t is again the radial (cosmic time) coordinate
as in Chapter IV, and dAO is the element of proper
area corresponding to solid angle dJAL

The absorption factor must take into account .
the change in frequency of the absorbed light along the

path. The light emitted at t with frequency 2/ (1+2(t))

has frequency 2 (1+2(t’)) when it traverses an absorber
at t’/ , so
(5.19)

A } -1
_ 7, (+1) 4 — 8Ty (rezcn) k (B
e = Tl e
k=
assuming that the light cone is divided into spherical

zones with interval h in the tkcoordinate,with h

small, We shall, of course, let h tend to zero before
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we are done. Then, using (4.8) for the proper area

element, the total flux becomes

(5.20) .
P -7, (H1r)
F,(8)= 5 Jwarec
i ; 3
A.) (1+z(+5))
with expectation value
(5.21) -7, (1)
EE (i) = EFsamy E€ 77
¥ Cl+2(4)?
—g -7, (+:7)
+ 57 E(Tjuerzcr) € 27 }
£ (1+zct)°
Consider the term = exlp[— (# (;5-!_?,)] .  Supposing that

the distribution of [,’ -galaxies is Poisscon with parameter
density f/e (x) >
(5.22)

E(e—?,,ﬁy‘ﬁ) j/Olg(X))': ﬁE(éo?w(Hr(h.)),k (ﬁ'))

k=)

-1
= JT (1= kL <Gy > a B+ 004))

Rz}
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and so, using the result stated above

(5.23) )
—T, (+; 1) A
Ee ™ E(E( ST () /oﬁ(zs)))
= E ZT (1—A£<c~ > (Bhe) + o04t))
= exp {- kaﬁﬁ)( >0’+}'
: EZ,T(/_ A.;.’(c;,,g@(gw) + olh)
Here 2, = 2(1+z(f)), (8 = »(1l+z(t). But,letting
T= T-T | Te=T,— e,
(5.24)

E(IT (kg )

LYY <9y 7<%, > E (B, (4085, (1)

— /‘ f; o= A=
_ lt’ it
4"—/1/3J h%:vs: ( Y ><%ZVJ ><0"yh> :

E (Pa, (1) B (BHIP,, (A1) + ..
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—
—

P~
1+ 3 Z ZICumdgu, ), m)-

* Ye.p. (f= e ?,‘)54- .+ O(hk)

Hh
— 1 -+ -z!_—ofo % <°',§,y(+,)>>\le' /t,)/{(ﬁp,va)f; (T.) °

. gﬂ.ﬂ; (f"... 7“1/ ’z-‘)f 01*, p/'ﬁlz -+ AIBLGT 0)’0]=Y' ‘l'c_v?”ﬁ

We again assume that the covariance density
is non-zero only over a distance small compared with the
Hubble distance, so that it really does not matter
whether we use 2, ov T, (?3 or Th) for its time
argument. The "higher order terms" in 5.24 are indeed
much smaller than the second order term which we kept;

the n'th such term is of order

(5.25)
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whexre <o N> is some mean value of the cross-section
times the spatial density of galaxies, and <(Gn(‘ X>

is an average dimensionless centered n-th moment density.
One integration can be carried out and yields a factor
tj: the others give some average value of <G, )
multiplied by the correlation length to the (n-1)st
power. Thus the term is like C <o~ M) tj(_£'<¢%>-)n_l

put A is of the order of 4 Mpc or so, C is of order

n-1

10 or so if the fundamental is approximately normal,
and <o A> ~ lO_4Mpc—'l at the most pessimistic, so
<ordL =2 élxl{)_3 ., and this is the ratio of one term

to the next. The value of <o A> tj grows with tj ., but
even at 104Mpc is only of order unity. There are
complications of course, because at such distances the
spatial density will be much higher, but one cannot ex-
pect even the second-order term to be very important -
though the first-order one (which we removed in (5.23)
can be. It is to be noted that the result is very much
as if there were no correlations; that is, as if the
distribution were Poisson. The reason for this behavior
is not difficult to see; we expect correlation effects
only if there is an appreciable probability per photon
that, given one absorption, another occurs within a
correlation distance. This conditional probability is

of the order C <erd. L , which we have seen is very
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small. Thus, though the probability of an absorption
somewhere may be guite high, the galaxies are spread soO
thinly that the probability of absorption in any given
correlation distance is tiny.
— _ .A)
The next term, E (J\'}-f(sz) e Ty (H; 1 )

is treated similarly, and one cobtains

(5.26)
— A ~ 7, (K1)
E (J}v(l+2j) ¥ )= - h <&y (TJ)>>\FJ

s
e—- { f>\,, () <Sazcts> Jt

+;
’ FZ,,[<°}'W+)>>\F:(T) 72@/ (+-t+ =;)

- (L:)Le-r dYa(&v 4‘:.vvn.s) ,

If we let the time-dependent auxil iary covariance function
be

(5.27)

S _ 2 A d
G ) o ey 24

we can write (5.13) as
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(5.28) g
E /F;, /é))= ?*_//Jf[{.{’w“ (T)> >‘/e{T) )

L o B2 >

(1+20)7

* gl—. ‘7!:/84/\,"(+)<(rﬂ’1}/+}>/e(?)/4l‘fl (01 T) ’

+

+_é %GZ(T) JJ}'%},(’Z"))I’N(T') (073/,,(*!)>’
,f” o

. <°",3”4J ) D A/er" (e, ?’)) }]

According to our earlier estimates, the second term in

the bracket is larger than the third, and the second does
-3 . e . .

not exceed 10 ~. We are therefore justified in neglecting

the correlation terms, but if we know g ﬂﬂ:bg'z ) we can

include them if it ever becomes necessary to do so.

If we look at the covariance of a pair of F, (ﬁ)'s,
the only term that contributes significantly is the term

which contains the covariance of the J's, Thus
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(5.29)

cov (F (ﬁ) F( )) fol+ '(d"{“zﬁ))’ (H'!(f’))’

. expl- Z:U*fh (z") <5 ,avu")>0’*") .

: LD (2) g (%) ) 0> Ly (57

I

. 9/‘/',{,,() -+ g,é/d)éf/" <’<aw+) &)})/e(r) ]

where & is the proper distance between the points

tﬁ and t;/ji' , and f%iﬁd) is the average form factor

for /8 ~galaxies. We now make use of the fact that the
correlation distance £ is always short compared to the
distance of the objects contributing significantly to the

background light, so that we can write
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(5.30)

2.2_’/;\ )Wy ynn> At
e
cov (15 (&), ,/(1+zf+)) { '

. = [)\ (T»\ , () <fpyf+) {T)><’?:6"¢J(H (T)>/€/4ﬁ,9/ (';.é z)
LL

. ’fo% ((5e%) b S0, K2y ) [T)H,

whevre S= P(f) R(r,—1) ln-a'l.

There are now several quite important effects
which we have not included; first, we must take into
account the fact that when we measure the background, we
shall wish toexcluwe bright objects from our measurements.
The expressions so far have been for the total light. So
suppose that we reject objects with a probability f% (m),
where m is the apparent magnitude. We can clearly
include this by changing the definition of <f{;yru /T)>>
to

{5.31)

v

(o (015 = Ly ([ 157 50 P7) 0 (i, 1) i
- e A, () 7 ’
ﬁ
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Note that the ratio >\/‘9 (M, ’Z)/)\p () is

. . N .
independent of ¢ if we define Mo and Mo , as 1in
Chapter IV, to be the present luminosities. (We assume

that j%y(e) is time-independent; its effects are
quite small anyhow, and no evolutionary theory for it

seems probable in the near future.) The evolutionary

corrections are included in Lﬁ” () ; the quantity
m(MO,T) is that defined in (4.7) with Mo = ﬁ; . We

/
define <‘i,20v (z)> analagously; note that here also

only one power of f(m) appears in the integral.

The author ( 29 ) has recently shown that there
is an uncertainty in the relation between ﬁ_— ﬁf and
the coordinate angle between the sources of the incoming
rays due to differential gravitational scattering by
nearer galaxies. The effect amounts to a few percent
for the distances important here and should be included.

Thus & becomes itself a stochastic variable,
with mean P(t)R('z,— t)]ﬁfﬁ’l , and with standard

i

deviation /o(t)R(?; -t)( f(t, gfg.ﬂ .  The normalized
variance f{t,# ) grows at first gquadratically with Y
and then goes over to a logarithmic form as ¥ becomes
large. Since the deflections are caused by a large
number of almost-independent interactions, we are

justified in assuming that the distribution of ¢ is

normal with the indicated mean and variance.
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It is not difficult to see how this affects the
covariance. The flux F, (ﬁ) is the sum of contributions
along the path, and for distances apart greater than a few
times A these contributions are independent, quite apart
from any angular fluctutations. The covariance of two F's,
then, can be represented with high accuracy by an integral
something like (5.30). Now suppose we know the distribution
of galaxies for t<ty . Galaxies slightly more distant
than this are distributed independently of this known
distribution, but the nearer distribution determines the
error in ¢ . Since the covariance is built up of a sum
(an integral, actually), of "local" covariances, we can,
by the general rules for conditional moments, evaluate
each "local" covariance for fixed ¢ , and then average

'

over the distribution of &'s . This clearly "smears"

the distribution independently at each distance.

ot
Let DF (8) ='/ZZ(G§QﬁJ%)dt . Then we replace
- o

A/‘/’, (6,7) and 12‘(('3) in (5.30) by
(5.32)

A (S, 0> = [Agye (B, 00 dPOE)
<D, (5)> = [ Dy (s) dPts)
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A7

where & = (o(t)R(’To -t)[8~-0] = E(8) , and P (8) is
the distribution function for & . Over the distances
(approximately a galactic diameter) where D (&) is
appreciable, the standard deviation is linear in & ,

and, as remarked before, is an effect of a few percent.
Since Dp () is an average form factor anyway, with

(as we shall see) quite negligible effect on the

observed distribution, we shall merely keep the old form.
Since we are interested in observing structure characterized
by Af?' , however, we must investigate the effect on it
more closely. Since the expected deflections are small,
we can expand:

(5.33)

<A,a,e (é T)> f{Aﬁﬁ (——'T)-i- ] é So

ao&a

—h% a(é/,)](é 6) }JP(J)

= o ElA;‘ﬂ o ?
= Age (322)+ = 5550, £ CERD 5,

where ] indicates that the preceding guantity is to be
-]

evaluated at éo



~105-

For large &

FAp
>

o (8,/2)

and

so the net contribution is also small.

(5.33). The covariance then becomes

(5.34)

cov (F,, (k) F, (i+ ¥)) marw‘

@ ¢

o the error becomes large, but here /AFF

are small, as is )l’(f- k- ”")/(In r*

We thus adopt

_2 f{) (x)<a5,, (+)> '

5[ N (200 (20 (235K (£)5 L17)

A 1[60 T) -+ “""‘
( T 3(65:/)"

+ Dp(8) S0 L Ly (T2

] .'['(1-3) p(-/)@/?‘ +)

l[+)

)/, /’r)]} |

2
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ﬁet us pause for a moment and investigate the

significance of the wvarious terms in this expression. The
(l+z(t))6 is geometrical; two powers of the quantity come
from the flux-luminosity relation, the other four produce
proper comoving volume elements. The exponential is the
square of the expected value of the obscuration to distance
t. The first term in the sum gives the two-particle con-
tribution to the covariance of the emissivity J, , averaged
along the line of sight. The factors <'?/€“ (.})>/ >\/’(+) are
the average luminosities from.13~galaxies at t, taking
into account the fact that we do not include the brighter
ones at short distances; %ﬁ.(t) is the proper mean
density of /3 -galaxies, so <Xy (1-)>/ >\/9 (+)

is the expected proper volume emissivity from /3 ~galaxies
at t. The term in Aﬁr', of course, is the projected
normalized covariance, which can be associated with the
enhancement in probability of finding a galaxy at projected
distance ¢ from another that is present, associated with
the presence of this first galaxy. The term in D(éo) is
the one-particle contribution and corresponds to the
possibility of receiving light along ﬁ‘ and ﬁ;+g§ from
the same galaxy, with small enough ¥

For the relativistic evolving universes,
,\F (+) = (/+2{-]-))3 ); , and £ is in general

a function of t, as are A .- and Lfy ( which appears

o
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as a factor in the mean luminosities.) With the assumption

made in the preceding chapter, however, the time dependence

of A,d/s' is simple and is given in (4.37). For these
models the covariance is
(5.36)

(E R F(Red) f { 7_](;+=)2>< ,,,)>J+
co A, n+y
v ¥ (1+24)°

Z[} <—?;,,/+) /r)> (—?/’@m /z*)> {?)

° Lope ’L)k
'(Alcfl(jéig‘)* ZA// ("“)7[}( ) )12

-+ D/@ [50) é/g/e’ <’zp;ﬂ/+) /T)> >\;’ ]}
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To obtain the spectral density it is necessary to find

the Fourier transform of the term in AF?’ . This can

be done exactly if one knows the function £, but must

in general be done numerically. Since the effect of

the scattering is small, and is linear (i.e., f is quadratic)
in the angle over most of the range where A has appreciable
size, we can suppose that the linear relation holds for all
angles. Then f(t,¥ ) = a(t) Xz . The function a/(t)
depends somewhat on the model and on the statistics, but

is given with sufficient accuracy by

(5.36)

z 2 - 3
at) = Ext gy @ﬁau,,ﬁf Ay (@) 4 O V.

The factor }V is of order unity; for the q0=1/2
Friedmann model with # constant it is unity; for the

steady-state it is about 1.5.

-

. ]
The exact expression for (L'z%?) VV
from which any case can be computed, is given by the

author (29 ). Then
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(5.37)

...{—— e el " A'g'z(. ;
(Zﬂ)‘ﬁAﬁul (x) +Xaz+)/4/e/g’ (X)) © 0( X

= (y) + al) [ x4 e F7 e .
‘ 7 2 (2m) id

o Ay A i d e T et

Thus we get

(5.38)

o a ) 2 2 o2
/4//,, (7) + a2t %, {7 e (7) + . fAf/,f /x)Jj/7x)6&§/
ouf

/,/g (y) a /+)74;,ff &)
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The spectral density r*é; (7) for the process
v

F;zjf) is then given by (5.35) with the term

4

Ay (5k) + & Ao (%) £, 0) 8 foa) ]
replaced by

2y (HZ)LZ( ° salT)(1+2W)y L rem)(vatd)
e € -+ 7

and the form factor DF replaced by its Fourier trans-
form. We will find that this term adds a constant com-
ponent to the spectrum of the sampled process; detailed
discussion will be deferred until sampling is considered.

The development for the steady-state model 1is
similar; the covariance is given by

(5.39) + ,
_GHF-220 St

cev- (F,(R), F, (R+7)= fah‘ e

(]

. L N $o)p al¥ p” .
/f/; [>\Ia>\,g'<°§ym><°(}wﬁ)>/€ (Aff'(‘f) 2-+A//c’(i&)—é'z)

+ D, (5) é/,/,/ <f/;w+)> )/, jg ,

- Ht
éb:: (I;;E )3’ . The spectral density 1is
o

obtained in the same fashion as before.

where
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vI. THE COSMIC LIGHT II: CONTAMINATION

As remarked in the beginning of Chapter V, the
cosmic light can be observed only as a small component of
a general illumination of the night sky. This contamination
has one part the statistics of which are of interest to us;
this, of course, is the light from stars. One finds that,
at visual magnitude 18, the number of stars near the
galactic pole is comparable with the number of galaxies
(of the order of 100 per square degree per unit magnitude
interval - Hubble ( 29 ), van Rhijn, et al ( 30 )), and
that for fainter magnitudes the galaxies predominate. We
shall see that most of the cosmic light comes from galaxies
which are much fainter than 18, and probably one can
efficiently use a cut off at around 19 in discriminating
against bright objects.

We shall assume that the space distribution of
stars is Poisson with a variable (but not stochastic)
parameter density. We justify this seemingly ad hoc
assumption by consideration of the kinematics of stars
in the halo. First of all, no large-scale structure has
ever been observed in the distribution of halo objects:

this is largely due to the fact that orbits of objects



in the halo tend to be almost radial, leading to peri-
galacticon distances of the order of 1 kiloparsec or less.
Tidal forces at this distance are sufficient to disrupt
structures whose mean density is less than about 10 solar
masses per cubic parsec, which is enormously larger then
typical densities in the halo (and indeed in the disc).
Typical of structures which are observed and can persist
are the globular clusters, which are quite small and
compact, and typically have densities of 100 solar

masses per cubic parsec and larger. Smaller and looser
globular clusters can be expected, of course, down to

the density limit; but such associations should be
visible on a survey of the sort contemplated, since with
any reasonable luminosity function several of its members
will be bright enough to see and identify as an association
on plates with a limiting magnitude around'ZO. Possible
exceptions to this rule would include preferential
clusterings of very faint stars, but no such clusters are
known and it is difficult to see how they would come
about. We can thus assume with some confidence that if we
exclude globular clusters, the remaining halo objects
show very little statistical structure. This conjecture
can and should be confirmed by analysis of faint star
counts.

Thus the contribution of the faint stars to
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the background covariance function contains a singular
term only. If éE(M,g) is the luminosity function for the
halo stars, dN(M,x) the number in deBX, and é:V(M) the
enerqgy distributigP foioa star at M, we have

¥
(6.1) A (ﬂ)—’-ﬁm PrEZE(M) dnmrn)

~dd 4 4r2

for the total flux of starlight received from the solid
angle . We also wish to introduce a selection against

bright stars. Let Jl(m) be the probability that a star

at apparent magnitude m 1is successfully rejected. Then
(6.2) oo oo
¥ E M)
EF W =p@)fam[dr EE0 Blu,vm) ] (1145 1oy
- 00 o

is the expectation value of the flux from stars not
resolved and rejected, and the covariance is

(6.3)

cou(d, (@), % (@)= pu(an ‘”f),[ anfi 5]
= 1>(M,ra)L(M+5\Ojr).

While the distribution of stars is not a stationary process,
one expects that é(M,g) will vary only very slowly over
distances of the order of a few degrees near the galactic

poles. Since preliminary estimates place the total flux
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from faint stars close to that from the galaxies and so
much smaller than other disturbing influences such as
the night sky emission and the zodiacal light, and since
there is no extended component of the starlight auto-
correlation function, the "disturbance" from the stars is
small.
The zodiacal light is immensely more troublesome,
simply because it swamps the cosmic light [?oach, ( 31)]
by a factor of about 50 in the most favorable areas of the
sky in visual wavelengths. (Roach almost certainly
underestimated the cosmic light, but the factor is still
large.) Since the spectrum closely mimics that of the
sun, the situation can be expected to improve in the
infrared, but detector difficulties are enormous there.
More serious is that the final disturbing element
in the light path, the atmosphere of the earth, is a
strong emitter through most of the infrared, mostly in the
light of OH. In addition, through the region 4000-7000%,
(and perhaps beyond) there is a continuum component in
the airglow, supposedly arising from many unresolved
faint emission features. The brightness of this continuum
is, according to Roach (31 ), of the same order as the
zodiacal light near the ecliptic pole, again about 50 times
his estimate of the cosmic light. The airglow also varies

markedly with time over short periods (hours or less) and
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so imposes the necessity for constant monitoring of the
overall level during measurement.

The primary statistical effect of all this is
the necessity of making very accurate measurements; if
only one out of every hundred photons received is a cosmic
light photon, one must clearly obtain large counts to get
reliable data. Just how large this number is is easily
calculable from the spectral theory we have developed here;
this problem will be considered in the next chapter.

Also present is the problem of removing the
regression component (airglow plus zodiacal light) from
the measurements before spectral analysis can be applied;
this is much more difficult. The zodiacal light measure-
ments of Roach ( 31 ) and others fit an A + B Sec¥ law
quite well, where ¥ 1is the ecliptic latitude. One
would expect A to vanish, but it does not if the measures
are correct; the zero, however, is very difficult to
establish, and it is well within the realm of possibility
that A does indeed vanish. The residuals should be of
the order of the cosmic light itself and will be more
amenable to standard regression removal techniques.

The temporally variable airglow admits of no
such simple technique. It will almost certainly be
necessary to use equipment capable of excluding the bright

emission features of the night sky, either by interference-
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filter techniques or simple masking in a dispersive
spectrophotometer. It is tempting to dismiss the problem
as impossible for ground-based astronomy because of the
airglow, but with reasonable care and proper instrumentation
it should be possible to deal with it without too much
greater difficulty than the zodiacal light; constant
monitoring of several fixed reference areas should suffice
for a "first-order" regression removal. The remaining com-
ponents of zodiacal light and airglow will then be in the
form of slowly varying terms of moderate amplitude which
must be separated from the small scale {about 20 minutes

of arc) variations we seek in the cosmic light. We can
then apply high-pass filtration technigues to suppress

the rest of the background, and look at only the component
due to galaxies (and stars, though the stars clearly add
only a constant component to the spectrum, which we shall

see 1is rather small).
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VvII. THE COSMIC LIGHT III: SAMPLING

In view of the difficulties discussed in the
previous chapter, the sampling problem for the cosmic
light can be expected to be an extremely complicated one.
Fortunately, however, we can make a few very important
simplifications which will render the problem more tractable.

We shall assume that the measurements are made
with circular diaphragms whose centers are located on a
square net on the sphere with cell side h; the diameters
of the cells will be assumed smaller than h, so that there
is no overlap. We assume further that no galaxy contri-
buting to the cosmic light contributes to more than one
diaphragm area.

It is clear that, at each level of brightness,
the measurement of the background is essentially a counting
procedure, though brightness levels are then added and
brightness discrimination is lost. We see, though, that
the kind of statistics one has here i1s of a nature very
similar to that of the count problem; we deal here with a
scaled point process (See Appendix II). In Chapter IIT
it was shown that the "point terms" in the variance were
not of crucial importance even in counting, and here they
must be less so because there is no "thinning" of the data
by brightness or class discrimination, and because we

deal with very faint, distant, and therefore very numerous
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(as number per correlation area) objects. Thus we can
safely neglect the point terms in the variance of the
spectral estimates and deal with the process as if it
were continuous, except for the singular contribution to
the spectrum.

it will be assumed throughout the analysis that
the measurements are made by pulse-counting with photo-
multipliers or some similar technique in which all recorded
photons contribute equal amounts to the record. There is
an additional contribution to the variance in the case in
which DC or charge-integration (or photographic) techniques
are used.

Let the overall mean intensity (stars and galaxies
sufficiently faint, plus zodiacal light, plus airglow) be
L(n) (we assume that we are working in a fixed wavelength
region, and shall suppress explicit wavelength dependence) ,
which may vary slowly with the direction n. Label the
diaphragm centers with a couple of integers l =(j1,j2)
as we did with the counting squares, so that the coor-
dinates of the center are (jlh,jzh). Let Fj be the

measured flux from position j , and let Sj be the

—
-

disc of area Xh? centered at (jlh,jzh), which we will
take to be the area covered by the diaphragm. (Note

that C<T/4.)
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Then we can write

— V32
(7.1) F . —‘/;;L(_r_l_)dg-k'?j

where Z;j is the cosmic light plus star contribution

—

with mean removed; E 2;3 =0. We will take E% to be
a stationary stochastic ;eries, even though the ;tar com-
ponent is not strictly so; the covariance structure in

which we are interested arises from the galaxies only and

is characteristic of a stationary process.

Suppose first that we could measure the ;;j

—

exactly. We cannot, because of inherent limitations in
our photometry and, more important, because we do not
know L 3 :uéo' L(g)dzg. Let us determine the spectrum
of gj: let 4 ®R(n) be the covariance of the intensity
at m wlth that at m+n. Then from (5.34), (5.38), and (6.3)

we find that ®R(m) has the form
A 2
(7.2) ®R(n) =@®(@) + Dy(n) + D2S (n) .

where R(n) is the non-singular contribution from the
galaxies, Dl(g) is the singular component (and recall that
we assume that Dl(g) has sufficiently small width that

if it is non-zero within one S 5 it is zero in all the
others) and D2 52(3) is the sin;ular conmponent from the
stars. Then if Sfj (x) is the characteristic function

-

for the region S . , we have

.}



~120-

(7.3)

)?J (m) R(n-m) dndm

i

//XQa(-,—l)xeo(m) R (n-m- 2h) dmd*m

Then the spectrum (n) 1is
L

(7.4) 'Z 4
49/7)'- )z 42: /?;J‘g

.4

= = z [;@,@);z;,/,m)oe@-_m«zw
e* 7 ¥ ol A'm
sz) jycz;o/ho;r;ola%);kDf”' )+ E’é (" ”Lyalndnn

(7.4) is a constant, which we shall

The second term in
the first term can be handled in

-2
call A (2'"‘)
the same manner as the one-dimensional expression in

(A1.20) in Appendix I, and we obtain

T ) B [ T TR N )

+ >\" (2m)”*

me

Fwly) v 3zt
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Here @ 1is the radius of the diaphragm, (so Ta® = ?LL
1
and ,5; is the non-singular contribution to the spectral

density of the cosmic light, i.e.
.6 gltk)= L [R(p)e B dhe
(2m)* = :

We have discussed this quantity in Chapter V. We
observe the aliasing of frequencies here also, of course,
though again we have attenuation of higher frequencies
through the Jl term.

Given, therefore, a cosmological model and the
auxilliary spectrum_;ﬁ?bﬁ,(g), we can construct a theo-
retical c?(¥), using (7.5).

Now suppose that the mean photon counting rate

per unit flux from any Sj is M , so that if we count at

-

each diaphragm position for time t and receive a count

55 , we have (Note that Nj

- -

process with fundamental ‘E;j) ,

is a quasi-Poisson

(7.7)

E(Ng ) = E(E,;j(Nj— )
= E(Xi';%) )

J

-

).
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Furthermore,

(7'8>E(Nj /Yj+£)= E(E(/\Q/\Q+y)lé'¢b)
= E(&'t7F ’f.z‘u* *xt S0 Fy)

= /(27Lz (/?_zg * j«nl)"“ 1(7‘5‘,,,[:

The covariance is, of course, missing the <Lj Lj*Zi

term, but we do not know how to separate it.;ré; our data
except in a very approximate manner. We can, however, use
our knowledge that the structure we seek is on a much
smaller scale than the scale of changes in the background.
In frequency terms, this means that the background is a
low-frequency disturbance, so we need to subject the data
to high-pass filtration.

Let

(7.9) f;éf ghm

-o

+tr

l&.h.

where

(7.10) -
Z gn
??‘u 2~ g”uj”z = ?-n,fnz_
In

i
0
—
o
‘
I
\'
A
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It is convenient to pick the grlin the following fashion:
gf;:=G(IQJ), where G(x) is a smooth function with
all odd derivatives vanishing at the origin, and vanishing

itself for x >k. Then let

(7.11) 7,,_: Sno - In

Let the Fourier sum of the é?n. be

(7.12) Ux) = zfﬁneiﬂ'ﬁ
n B

Then W (0) =W (0) =0, and it is easily shown that

- ;Z:u(§f2rg)

n

il
}—1

(7.13)  Ux)

where

7 % (x) /G‘(/lel)e "‘J%.
Zg,l

Il

Thus by manipulating the weights ?n , we can make the
filter funtion Zl(z) cut out as much of the low-frequency
and of the spectrum as we desire.

We estimate the covariance of the M)}L by

(7.15) P, = ﬁlﬁ {(M)V\')w)

Strictly speaking, it would be better to use an expression
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symmetric in ¥ and -¥ , but we shall perform circular
averages later anyway, so we avoid this unnecessary
complication. We assume here, as before, that we sample

over an N- by M rectangle. The Nis will supposedly

—

have had the gross part of the sky and zodiacal light
removed, but we shall see that this fact does not enter
our considerations here. We find from (7.15), {(7.9),
and (7.8) that

(7.106)

%)= {Zﬁjmjw { (R ysmem

* LJ“.’." L_J"‘“Z“’ﬂ“) * Kzlé__z_/-«»gg«zt Lj’*'!-’ g

E-4

We estimate the spectrum in the usual way, i.e.

(7.17)
4

—

¥ .
o) e e BT

where the w p are weights chosen in the same fashion as
those used in Chapter III. Inserting (7.16) into (7.17),
we find after a tedious bit of algebra that

E($*(2)- //zz () Ve B s 2

!

(7.18)

~+ [zw)z/j[«)/z—f w[y-x) o/‘x.
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where

e g,
Alx)= (Efll'f)"' %" Lg e’;é'z
o (—;},};Z , e

and we have made the assumption that K 1is small compared
to M and N; if this is not so, <{L> is altered slightly.
Since ,((2{_) is concentrated at small x and ?1.2 (x) 1is
proportional to ]§]4 for small x, we shall in the
following neglect the (2%‘)2LEQQ/2 term, even though it
can be expected to be large. We shall return tc this
point later.

One can estimate the relative sizes of the 9”(5)
1

and the (Zn* terms only with some difficulty, since even
evaluation of the mean background (See Appendix III)
requires explicit consideration of the redshift and the
k- correction. We can obtain a crude estimate for the
steady-state model, however, and it is to this that we

now turn our attention.

Suppose that all galaxies have the same luminosity,

say L, and all have the same Wien-law spectrum,
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(7.20)
L(2) = _fﬁ; (Qég)zé{

2%,

Y

o

suppose that the expected number of such objects per
cubic megaparsec is A . If Si@n.) is the cosmic
light flux from the solid angle 12, we can write

(7.21)

cov (S, (@), F La)= [ §LELALECE)

(4’1_)2.er11 R: (/4‘2)(1'*2 /)

(.)1(9'1/?1[1‘)/81/1’") [ /\"; ((+-+)%+ P‘E‘X‘)V‘)

+A S (4-1) 5(‘)@13;)]}@ A’ Hdt’

Here /\igla) is the covariance density, ¥ 1is the
angle between the lines of sight, C and C° the cones
generated by <L and a’. we assume that ? () has the
form

—a
(7.22) g(a) = e

If we insert (7.22) and (7.20) in (7.21), replace f) and

R by their explicit forms in terms of the radial coordinate
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¢ ., and pass to the auxil iary function approximation,
we get (for the covariance density)

(7.23)
Ht

The lower limit *b corresponds to the radial coordinate

of objects closer (brighter) than which we do not

include in the background measurement. If we let
U = |47 = e”t , we obtain
(7.24)
cov (F,(n), F, /n-n’))—- z?' (g N LS
po W (/_ )
(] ZAEH?* L
. ~£% 4 e alu.]
/1%,
-]
-—2:1&
+ H/\S{z)(,z;f)f . }
w(w-1)% .
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Now the spectral density‘,iég (kY 1is
(7.25) | —ix ok
S(k)= (;;;zjuv (F,(n), F(n+x) e ALY

sO

(7.26)
_zvu

FS;IZ)—.( )yy6(7mﬂ'(}?A“l (2")‘/4 + fﬂAZ/ﬂ

143

hLl)‘

~avnygy,

/5’/\,{ /ZTr) 41)/ dw

u(v -i)*

Lo ¥ NH
(3m) %26 (2n)*

i

Thus the ratio of singular to non-singular part is

typically of the order of [B/MIB(ZTT)B/ZJ -t for

5000
£=20, AN =.6, A£=3Mpc, and thus is, as expected, very small.

The integral in (7.26) can be evaluated; in fact,

(7.27) ,
- 23U /2, __2%

— = E, (2v(1+2,)- e’ E /2v20)+ E, (202,)

12, w(un-1)

If we fit the covariance (7.24) with a Gaussian by
comparing moments as we did for the counts, we find,

using (7.27), that
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728 o (R (), Fy (ae2))

[("’74’é“‘“@ G + 170 H8*E)

(?)V

at 7:=2£/£‘= .08 (this corresponds to rejecting objects
brighter than M=20 if the mean luminosity is M=-17, and
a wavelength of about two microns, and 5’02 64H =207 for
£ =3Mpc.

One sees easily that the ratio of singular to
non-singular part in the spectrum is essentially unaltered
in passing to the discretized process considered in
sampling; we can expect a singular contribution from stars
of the same order as that from the galaxies, so this too
will be negligible compared to the non-singular galaxy
part. We may now neglect the 'ﬁzwf‘term in (7.18).

We can write, as we did in Chapter III, that

(7.29)

E(8 )z [[u i)+ £ F oty -x) dx
e
= f/uz/zz) 2y -%) & (x) G (E) A

+ LL2 //u"(z) W, (_17—_75) AP x

(2mtit
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here

o) =% 5y (F*)

X
and w(x) and U(x) are defined everywhere by their Fourier
*
series. If we now perform circular averaging on 3 (g)
we produce
amr
(7.30) A i -
@(’7}: z_’-_',:fé (7&"&(9/ 7J1u9‘> A6 .
0
One can now proceed exactly as in Chapter III; in the

notation introduced there, and at the level of approximation

considered there,

(7.31) E(@'(v])) 27r/2( (=) 3 {1),5 (——-)w(7 x) x Ax

+_/:25 jh([7emWQny)&?07e&vuhﬂ¢£; cmhﬁwo

4 <L
2nxt

[ (  x) U 2x) x odx

A
4
The covariance of a pair of §(‘7)5 can also be

calculated in the same fashion as performed there,
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and we obtain

(7.32)
cov (8 t9), 80y)) = 27 ﬂuf fut) (T gl )
w o W e)mis
and
(7.33)

vav (8(7) 2 22 )/f,/f{u "e) (e ' 1f)

LD 2~
'*(m )} w (7, £)

If we choose Wj as in (3.45), we find

=]

(7.34)

vav(f (-7))"’

@op (T2 S (%) S5 )

a7AUﬂ
for 7lzcx; recall that o is the characteristic scale

in the gaussian form for w(x), and is approximately 2.58m‘l,
where m is the radius of the record used in estimating the

covariance. If we return to a notation in which the nature

of the original process is more transparent, we have,

setting
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(7.35) (Q"‘(—E—):(ﬂ%%,_@ (7)

z 2
L™= ~vMh,

2.58h
ol ,

4

L = omh=

(7.38)  vay (.5*(k)) .—.-.”}‘2";71" P hk)[S (k)

RO vi.ah
(2m)* )t

which is a form similar to (3.54) for the counts.

We wish now to investigate the problem of op-
timizing the parameters in some sense in order to reduce
the sampling time to a reasonable value. Let us return
for a moment to (7.34). If we count at each diaphragm
position for time T , then the total sampling time will
be T = NMt. For a given grid spacing, then, we can write

(7.37)

T = 456 LT e 7+ LD Wi frat) :
o, h* ( k)[ (2m)* ,sfk)zt]

[

. ¥ 2
and for a given value of the error G;" = var S (k)/ﬁg'/k))l
the total time is minimized for the choice of T such that

(7:38) )5 W)

(111')1 1[k))6t =

This is, of course, impossible to realize for all k; note,

however, that the variance for a given sample has a factor
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1/k, so that for large k, where we can expect ,Sl(k) to

be small, the variance also drops. We can therefore

expect to maintain at least reasonably constant fractional
error over a small range in k by adjusting T so that (7.37)
holds at the lower end of the k—~interval. In this case,
let us take ,Sl(O) as a reasonable estimate of the size

of S{k); we can then make an effort to cast (7.37) into

a more transparent form.

If F is the mean intensity of the extra-

2
galactic light, and Fo is the local total mean intensity,

then we can write
(7.39) L= 77-4,’-/-;
@miS'e) - K [emd

2
==F',.;€

covry

Where G(¥ ) is the normalized covariance (non-singular
part) of the cosmic light; the integral is a quantity
which is analogous to the covariance measure (area, in
this case) introduced in Chapter III, and represents
(roughly) the area over which the presence of one galaxy
affects the probability distributions of neighbors. Then

(7.37) becomes

(7.40) /—‘—::-' (—;‘;_)a:;{éir
corr
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where ,4C=‘va2FtKT is the optimum mean photon count.
For the steady-state calculation performed earlier,

2
/{corrg' 2 2Ho

Several pertinent remarks can be made already.

The time required to accumulate /i: counts ig inversely
proportional to the diaphragm area vaz, so the larger

the diaphragm (keeping a< h, recall) the better. The time
required for a single measurement (supposing a to be some
fixed fraction of h) is independent of h, since t would
then be proportional to ,E;haz, which depends only on the
flux. The total time, though,goes,from (7.36), (7.37), as
h—2, so the total observing time required goes up linearly
with the number of sample points,

Since ¥ o is of the order of twenty minutes of
arc, we could not reasonably expect to be able to use
diaphragms larger than, say, four or five minutes. With
h = l/SERO(about 4 minutes), and the approximate figure

1
F = Ft/lOO (This is taking F, of 150S71q, Fg

g t

about 1.58 ~ this last figure is the approximate

10
result for the steady~state model, using the result that

the count relation of Holmberg ( 26 ) predicts about

.258 from galaxies brighter than m=18 when aperture

10

effects are included; the relativistic models for qo< 5

predict somewhat higher cosmic fluxes.), we require 2000.

1. The unit $10 is the flux from one 10~th magnitude object
per sguare degree,
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The total brightness from this area (say 10 square minutes)
is about equivalent to one eleventh-magnitude object, so
that, with the 200-inch telescope, the time required to
make one count with say, a 1000% bandpass, a telescope-
plus-filter-plus-phototube efficiency of 1 percent, is
about five milliseconds. This efficiency figure is appro-
priate to trialkali (S20) tubes at about 70008 , where, as
we shall see, cosmological effects are appreciable. Thus
each measurement requires about 10 seconds. It thus seems

likely that the actual measuring time will be only a small

part of the overall operating time, unless an extremely
efficient means of moving from one diaphragm site to
another is provided for. The possibility of multi-channel
techniques for making many measurements simultaneously is
quite attractive; though they do not improve the measuring-
time to setting-time ratio, they would obviously cut the
overall time. Considering this, it would be advantageous
to increase %, thereby increasing accuracy at essentially
no expense to total operating time.

Let us assume for the sake of simplicity that

kA
- k%
S' (k) is Gaussian in form; i.e. (Sl (k) = ngjfcorr e =

corresponding to the Gaussian form for the autocovariance.
We need data covering the major run of,Sl(k) , say out to

[
k2~ 2/% o If we take L = 6#0, a reasonable choice, and

= 2/1/ = ';3 (recall that
o

limit kK at the low end to kl
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(7.36) does not hold for %k £ /L’ ), we find at the
lower end of the range in %k that G ~ éﬁgjz'(b*%)
and, at the high end, G ~ %ﬁ.(/+ é;) where p
is the factor by which the observing time per reading
exceeds the "optimum" defined by (7.37). 1In actuality,
the spectrum does not fall off so rapidly as a Gaussian,
and the problem for large k 1is not so acute; in any
case the variance at the two ends can be made to agree
by choosing a p of about 2, which results in an inte-
gration time of twenty seconds or so, (using, as before,
a circular diaphragm of diameter three minutes on a net
with four-minute spacings.) With this choice, a ten
percent expected error at the ends of the k-range can
be obtained with L = Bka), or about ten degrees. The
standard deviation in the center of the range is of the

order of half this, and the standard deviation of the

gquantity
(7.40) ke y
2 * A
éf _ J/' vay AE’Ck) o ke
= T T
g (( S'R) k- ke,
is about .08. Since & is effectively the sum of several

almogt-uncorrelated guantities, it should, in addition, be

nearly normally distributed. If we have at our disposal a
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photometer with twenty independent channels (for which the
relevant electronic instrumentation is currently being

built for the Hale telescope), one would obtain measurements
for one square degree (225 points) in about 200 seconds,
neglecting setting time. Thus the entire measurement could

be completed in less than a night if one devises efficient

ways to get about in the sky. 1In practice, the time may
be an order of magnitude larger than this, but is by no
means prohibitive - given the necessary equipment.

We need still to discuss the high-pass filter
function WU{x). Variations with scales of about a degree

1

contribute to S (k and the relevant scales for variation

D
in the airglow and zodiacal light is of the order of ten
degrees (for changes of ten percent or so), which corres-—

vond to frequencies of the order of kl/lo and amplitudes

of some ten times the mean cosmic light. If we use the
same Gaussian set for both the Wj and the 9n ,» then
(7.41) — k(1. €¥5T,)T
Uhk) = [ - € 2
l e 1 - - E
At kl = 310 s this has the value .162 ; at kl/lo R

.0016. The slow variations in the contaminating light thus
should not appear at all in the processed data. At first
glance, it may seem that the filter function serves no

useful puspose; one could do as well by simply ignoring
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the derived low-frequency end of the spectrum., That this
is in fact not true may be seen from (7.31); it is clear
that without such a filter, the large contribution at low
frequency from the slow variations would be mixed into the
region of interest by the smoothing kernel w(x), which has

a width of about Skl
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VIII. OBSCURATION IN THE GALAXY

So far in our discussion we have neglected
entirely the effects of obscuring material in the Galaxy
through which we must observe. Ideally, one would like to
be able to treat the obscuration in a non-statistical
manner; this requires a detailed map of the reddening of
halo objects over the region in which we are counting or
observing the background. Such a map can, at least in
principle, be constructed from three-color (or more
detailed) observations of horizontal-branch A stars
(Sandage, ( 32 )), but no such project has been under-
taken over a large region. Considering the care which
must go into the preparation of faint counts, it seems
quite worthwhile to prepare such a map. On the other hand,
we shall see that a minimum of knowledge concerning the
obscuration is sufficient to determine its effect on the
spectra of the processes we observe.

Let us consider first the background light,
because its treatment is by far the simpler. Let, as
before, F(¥ ) be the specific intensity from direction ¥
(in the wavelength region of interest), and let a(X)
be the transmission in this direction in this band; we
assume that the band is sufficiently narrow that 1-A(x)

does not depend significantly on the radiation spectrum
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of the objects which compose the cosmic light. Let
g(g) be the normalized autocovariance function for
A{¥), and let a(¥) be the mean transmission. 1In
this picture, the large-scale run of A(JY¥), say that
due to the cosecant b term from the plane model, is
absorbed into a(¥ ). The remaining fliluctuations are
regarded as stochastic, and we assume that the co-

variance has the form

(8.1) cCov(a(x).Aly) = a(x)aly) € (Ix-y])

That is, §' does not depend on direction or absolute
position. This is clearly not justifiable a priori, but
at high galactic latitudes where 1-A(x) is small anyway,
deviations from the form (8.1) are not important. If
?(_y) is the observed specific cosmic light intensity, we
have

A
(8.2) F(Y¥) = A(Z)F(¥),

and we can clearly assume A(Y¥) and F( ¥) independent.

Thus
A
(8.3) EF(¥) = o(Z)EF(Y¥) .
A
and we can define a corrected intensity Fc(g) ::g%i;}

In practice, since we cannot separate the cosmic
component from the contamination, we multiply the total
flux by aT%FT ; the changes in a(¥ ) are very slow,

and will be removed by the low-frequency filtration along
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with the changes in the contaminating light. Then

(8.4)

E(FC(I) F( l’+2<)):{1+§(2<-)} . E:(F(I) F(E—x—zc_)) ,

and
(8.5)

cov(%c( 1) Fc( jfg)) = cov (F( ¥), F( K+§)) +

§(_>_<_) . {COV(F(I)I F(:r,t&)) + (EF(_Y))%

Thus the spectrum of FC becomes

(8.6)

S.B=S® +<F*= () +{[ S0 = (k-dry

where :E:(g)is the transform of §'(§); i.e., the spectrum
of A(¥ ). We expect the obscuration to be a fairly large-
scale phenomenon;if this is not so, we must have detailed
knowledge of the structure of g.QQ or = (k), and it is

essentially no more difficult to construct a detailed map

of A(Y¥). If so, however, :E: will be of appreciable size
only for low frequencies, and is small in any case; if the
mean absorption is in the neighborhood of 10%, then 55(551
will be of the order of .02 or .03 at maximum, and =
will be correspondingly small. Thus the high-pass fil-

Z .
tration will remove the <F>E(h) component, and we can

approximate the other term to yield
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09,5005 [1+ ][ = (dy]
= S (1+5@) -

Thus we need only to know the mean transmission al(Y),
and the normalized variance g(O}.

The effect on the counts is a little more
difficult to analyze, because the absorption causes a
shift in the observed magnitude rather than a simple
multiplication of the number by a factor. For small
l—A(!f), however, one can use a simple linearization

~

approach. The number dmoigé(mo,Il) of B-galaxies in
Ll in an interval m© of observed (after absorption but

before selection) apparent magnitude m® is
(8.8)0(M°§/‘(Mj°ﬂ) ‘—;Lfolm d, % Gn%(g)) y

where _}4(9’) =-25 )oj A (_Zj) ) and
(8.9)Edmo (%(mo)g)) :A‘Wjﬁwfvzﬁlf E(S‘P (m%b’)*5)03\r)).

But

(8.10) }ﬁ(m°—/4(1)-5’03r)5>\ﬁ (ngﬂ ) '5)°j )

~ (A EAD)RE (e £4Cs) -5 log)
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and
(8.11)

E g (reAe)-5 loge ) =Xy (me E4@)-5 Jog 1)

— 2)
+ 3 E (Al0) 2L (rpeAl)-5logr) +- - -

To this order,

(8.12)
-2.5

AE) = Zmro L A(¥)

= ;Z(I—A(I))fl—- = AD o (1-am) §

EA(x) = ;f; [ 11— o ¥) = gt (x) §l0) + 0 (E(R?))

These calculations were carried out in the nonrelativistic
limit; exactly analogous results exist for the relativistic
models .

One finds in a similar manner that the count

covariance density becomes
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(8.13)

G gt (m,m ) = Copr (m+ EA, m's £, )

z

! ’ 1
*z ,2«/0) {a'm"- e f(o)—;— 299—7:%‘:«'0( ‘SP(X)

+ 96yt FlO) 57
2m’*

with « (and hence 34) evaluated at the approporiate
points. Since o varies slowly over the sky, the new
process is no longer strictly stationary, nor can it be
made "second order stationary" by renormalizing. In any
one reasonably small region, however, « is very nearly
constant, and we can replace it by its mean value in that
region. The correction terms are very small, and any
approximate means of arriving at the second derivatives
should suffice. The count covariance written for the

j-intervals of measuring magnitude is
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(8.14) oo Do
FJF:J, Cv) "/[C,FJ{M) CF.}'/”) Am ol é/;/, o lm w x)
/JWJW {%{m) Carje (m)
2 21 d¥Cpy tm)
tz %‘?‘;)"‘ [—;ff;’:r‘ C/}y/w') r/0)
ACsy (m) H Coisi (m’) ,
+ 2 dﬁ‘ 0’;” £6) + /@J/m)—-ﬁ”——@—f/o)]}-
g/g/e' (7’1"' E*”{; wm '+ %4 a")
after appropriate parts integration. The spectrum is

obtained as before: and we have

(8.15)

_£%;ﬁ‘j/ (7)35.—erfc+mabml‘{<kj/WJ<;‘7//%ﬂ)

l )“15'/0)[7&/: 7’&' Tf’é’z‘ FJ ;7;55 ]}

- ,%;/,. (m+ EA m+EA,Y)
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In this form, we need only know the approximate
derivatives of the selection functibdn C@j(m)' The
non-stationarity of the real counts will become ap-
preciable for large areas, but we have already seen that
the counts must be broken down if large areas are to be
covered, in order that the validity of the plane approxi-
mation be maintained. Thus one can use values for the
absorption appropriate for each region treated as a

sample.
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IX. APPLICATION OF THE THEORY TO COSMOLOGICAL TESTS

As has been pointed out in the previous chapters,
much that is known atbest imprecisely must be clarified
before the theory developed here can be used for effective
cosmological tests. The object of the work outlined in
this chapter is to show that with the best available data,
there is indeed reasonably strong discrimination between
the cosmological models of current interest; and that
cosmological information can be obtained from the theory
as soon as uncertainties in the luminosity function and
total galactic spectral energy distributions are reduced
somewhat, and perhaps some insight is gained into at
least the gross features of the evolution of galaxies.

There exist reasonably detailed measures of the
energy distributions of the nuclei of spirals and of
elliptical galaxies (oke, 33, 34 ) but very little work
has been done on the bluer, low-surface brightness outer
regions of spirals and irregular nebulae. Work on this is
in progress, and instrumentation now under construction
for the Hale telescope will make the task much easier than
it is at present. The measurements which are available
for the redder systems fit a Wien-law spectrum

(9.1) Lo 2 - %
L) =5 Z5 @ 7

= z/é?
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quite well (to within about 10 percent for the cases

tested: two giant ellipticals, NGC 4472 and NGC 4374,

and the dwarf elliptical M32), and it was decided to

use Wien spectra in the computations for the other

types in lieu of something better. The fit in any case

should be quite good to the red of the Balmer limit at

36463. Systems most of whose light comes from early-type

stars with appreciable Balmer discontinuities will have

rather less flux in the ultraviolet than predicted by a

fit of a Wien law to the visible part of the spectrum.
Six ﬁ—classes of objects were used in the

calculations; the properties chosen for them are given

in Table 9.1; 16 is the parameter in the Wien spectrum

(9.1). The luminosity function of each type is chosen to

be a Gaussian:

2
. - (M-<MDg)
(9.2) \ ( B
:-——ﬁ—-—- Lo *
)ﬁ(M) \lzfra;;’ = ,

with the indicated scale, mean, and variance. The total
luminosity function A(M) = ‘Z: XF (M) fits the
Holmberg ( 26 ) total luminosfly function (except for a
change in brightness level corresponding to a decrease
in the value of the Hubble constant from 140 to 100, the
value used here), to within 20 percent, which is well
within the limits of error for the Holmberg function.

The individual means and variances are close to those
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given by Holmberg ( 35 ) and devVaucouleurs ( 36 ), but
have been adjusted slightly to give a better fit to the
total function of Holmberg. The extension to faint
magnitudes (Mv >-15) 1is very uncertain, but even the
exponential increase (he€10°2Y) favored by Zwicky ( 27)
has little effect on the results given here; essentially
all the light and number counts come from the bright end
of the luminosity function, and the (relatively) small
uncertainty here has much more effect on our results than
the enormous uncertainty at the faint end.

The values of 1% for each class were chosen
to fit the mean color indices given by Holmberg (26)
for each type, using as a reference the fit for the
ellipticals obtained from the scans. The color indices
were computed with the effective filter-sensitivity
combinations of Stebbins and Whitford (Humason, Mayall,
and Sandage ( 20 )); with the values of zé obtained
from this fit, B-V colors and bolometric corrections
were computed using the relations of Mathews and Sandage
( 37 ). These integrations, as well as the computations
to follow, were done numerically using the C.I.T.
7040~-7094.

Use of the Wien-law spectrum makes computation
of the k-correction for redshift of the spectrum through

the instrumental bandpass extremely simple; if we define
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the effective wavelength and bandpass as

(9. 3) > /7) Sv) dv

S Sw)dy
and °
(9.4) g 2
2 -p)ESC f)dv
(a2) = _[_(fj Z) —
S Stv)dv

Where S(%) is the effective response function (of the

plate, photomultiplier, or other receiving device), then

to second order in o= AW/?/‘, , we have

0
(9.5)
St ey
k!(2,1$)==-2-5'){7 gf ¥4 (+)
; S L (¥ (1+2) A (1+2)
o
S — za® 2
"~ 2400 {zu (1+ %) - £ (e 22)
-34 (ra)f
where U = 7/:/0 .  Even for rectangular

bandpasses of 10002 at 50002 s 0(2 is .16, and the
dropped fourth-order terms are of the order of two or
three percent. The k-corrections for a 10008 band-

pass at 65008 ( typical of red filter - 103aE
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plate combinations) are plotted in Figure 9.1.

The mean numbers /\me , computed using (4.9)-
(4.12)lare given in Table 9.2 for all the cases calculated.
Quadrature was performed using Simpson's rule on 500
points from 2Z=0 to Z=1l7; the contribution from more
distant objects is less than one part in lO4 for all
cases. The limiting magnitude is taken to be 20 ({(photored),
with a counting dispersion of .5 magnitude; the form of

1

the cutoff used was J(m) = % (l-tanh (m~mo

)) , but the

m
results are guite independent of the form chosen. Thus

the counts at my = 20 are down about a factor of 2
from the "total" theoretical count, while the others are
almost unaffected.

To compute autocovariances or spectra, we need
information concerning the spatial autocovariance function.

I have chosen the form proposed by Limber ( 12 ) for the

computations here;

—_oll 2
s (X)) = K Lot © /2

%

(9.6)

Jer

where _€ at the present epoch is chosen to be 4 Mpc;
Limber obtained values around 2.5 to 3., but the change
in the Hubble length brings this up to about 4. If ¥4
changes with time, KA changes also; this is discussed in
Chapter 4. The matrix Cﬁ?' has entries of the

order of 25, if Limber's analysis is correct, but little
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more is known about it, except that ellipticals tend to
cluster more markedly than spirals. To preserve the
positive-definiteness of the autocovariance functicn, C
must be a positive-definite matrix (it is, of course,
symmetric), and the ad hoc form

30 25 20 20 25 20

25 25 20 20 25 25
(c.7) C = 20 20 16 16 20 20

20 20 1le 16 20 20

25 25 20 20 25 25
20 25 20 20 25 30

was chosen, to exhibit something like a factor of 2 more
nclustering tendency" for the giant E's than for the
late-type spirals. Better values must await counts of
brighter nebulae made by type. One has, of course, no

a priori knowledge that the correlation length L is
independent of /9 , or that the Gaussian form is
necessarily correct; evidence that the function is indeed
not Gaussian will be introduced later.

Computations of spectral densities for the total
count ((4.40), (4.43)) using this form for gﬁwf , the
came cutoff parameters as for the counts, and in the
auxil iary-function approximation (which is excellent for
the brightness levels considered) are given in Figures
9.2-9.4. The abscissa is log ((2W)2~£; 07) N\ ~1tot ) ;

when this guantity is less than zero, the point terms in
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the variance dominate, and it becomes very difficult to
get good estimates with reasonable sample sizes, as
was discussed in Chapter III.

The curves in Figure 9.2 are for constant A B
an interval of one magnitude around mR = 20, and for
values of ?o: —(E"@/é‘)o of O to 5 (for the Fried-
mann universes with vanishing cosmological constant and
pressure), and for the steady-state. One can easily obtain
accuracy of 10 percent in the spectral density estimates;:
this gives a "resolution" of about .08 in the ordinate.
(These spectra are "raw" - that is, unsmoothed and
unaliased, but aliasing is unimportant for these spectra
with reasonable -~-10' or less-- cell sizes, and the
smoothing does not introduce any qualitative differences
in the spectra.). Thus one should be able to separate,
say, the q, = .25 model from the dq, = 1 one with no

appreciable difficulty, provided one knows the spatial

correlation from counts of brighter nebulae.

The spectra for m=18, 19, and 20 for the
qo=l/2 case are plotted in Figure 9,3, again assuming
constant A .  The variation with m is, as expected,
fairly large, and accuracy of the ordef of .1 magnitude
or so must be obtained in order to keep the uncertainty
from this source from becoming an appreciable fraction

of the statistical error in |J; (7) . Figure (9.4)
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shows the effect of a variable correlation length on the
spectrum. The variation considered, L (I+ Z)—. '{g,
masks the difference in Figure (9.1) between the q0=1/2
and the qO:O models; it thus becomes imperative to
formulate some theoretical method to determine the time
development of fb%e' , or at least of {Z(7).
This is the really weak point in the use of these tests;
the other uncertainties need only better data that new
instruments and emulsions should be able to provide
shortly, but the time-dependence of the spatial co-
variance poses a difficult theoretical problem, on which,
to the best of the author's knowledge, there has been
little progress.

The mean background intensity due to galaxies
brighter than m=19.0 (photored) is plotted in Figure 9.5.
The curves are labeled with thé value of d, - and the
units are erg/sec—cmz—str—c/s . A factor of roughly
five separates the qo=0 model from the qo=5 one., Ab-
sorption by obscuring matter in galaxies was included,
but is an extremely small effect (about 1 percent), and
might as well have been neglected in this study. The
spectral density,j§(7) for N\=70008 and %:l0,000R is
plotted in Figures 9.6 and 9.7, this time smoothed and
averaged for comparison with observations with a diaphragm

4' in diameter with centers on a 5' grid, and with
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covariances taken over a circle twenty grid spacings in
radius (i.e., m=20; see (7.31l) for the expression in terms
of the raw spectrum.) The quantity plotted is E((Q* ('7) )
with the term in <{L> removed, (See 7.35.) The dis-
crimination between models here is quite large at both
wavelengths; considerations of detector efficiency
strongly favor observation at 70008 over those at l0,000X.
The size of the spectrum at zero was somewhat
overestimated in the rough calculations of Chapter VII,
and this, together with the effect of the very broad
smoothing kernel, brings the value of the optimum photon
count up a factor of 4. On the other hand, little or no
increase needs be made to maintain the variance at a
suitable low level out to 47=5OO or so, so the net
increase is only a factor of 2 above the value obtained
before. These spectra are quite insensitive to variations
in the rejection magnitude, but again (expectedly) change
rather markedly if AL is allowed to vary with time. The
70008 spectra for the q0=1/2 model for constant ,f
and L o (R ('Z‘)/RO) 1/3 are plotted in Figure 7.8.
The interesting fact is that the variation seems to be
in the opposite sense to that for the counts: this is not
really the case, since the primary effect in both cases
is to raise the high-frequency end of the spectrum

relative to the low frequencies. The low frequencies,
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however, are relatively unaffected by the change in the
count spectra, but are depressed in the spectra of the
cosmic light. It might be possible to construct a
crude check on the constancy of /2 over the range of
interegt in this fashion, but this can be no substitute
for a satisfactory theory. Note, though, that there is
no real possibility of confusion with another value of
Iy since the two curves in Figure 9.8 intersect at
about ‘7 =450, but the variable- A curve is almost
indistinguishable from the steady-state one. The
statistics of the cosmic light thus appears quite
promising for use as a cosmological test, again given
better "input" data and a satisfactory theory for the
time variation of £ ,  but perhaps can yield information
of some interest even without the latter.

Before we pass to a discussion of the pilot
study, a few remarks might be made on the usefulness
of the data on second moments of the spatial distribution
of galaxies for other than direct tests applied to the
cosmological problem. The author (29 ) has shown that
the measures of angular sizes of distant objJects are
disturbed by the inhomogeneous distribution of mass in
the universe, and the quantity needed to predict the size
of the effect is precisely the auxil iary covariance

function (See the brief discussion in Chapter V.) The
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second moments are of primary interest to those interested
in the clustering of galaxies per se, since any clustering
model predicts second moments which must fit the observed
values. Inasmuch as the clustering of galaxies probably
reflects the fragmentation of an originally nearly homo-
geneous medium (if the universe is a general relativistic
one with a singular origin), the second moments and their
time development will doubtless play a role in any
successful cosmogonical theory for the formation of
galaxies and clusters of galaxies. We have already seen
that a knowledge of bé;(o) allows the variance of total
counts to be predicted, and thus accuracy limits to be
placed on the number-magnitude cosmological test {(Sandage,
(1)) for any sample size. It thus seems worthwhile
pursuing the subject even if the second-moment data itself
were not of interest directly for cosmology.

We turn now to an application of the count-
statistics theory to a set of galaxy counts made by the
author on a region 5°x6° centered at 14h31m, +31°48' ,
near the distant Bbddtes cluster of galaxies (Humason,
Mayall, and Sandage, (20) ). Counts were made to the limit
of an Eastman 103aE plate taken with the 48-inch Schmidt
camera at Palomar; the plate was used in combination with
a red plexiglass filter cutting off at about 60008 .

Galaxies were counted in 10' squares, using a counting
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reticle kindly lent by Professor Fritz Zwicky. A magnitude
sequence both for stars and nebulae had already been set up
in the region in the course of the Humason, Mayall, and
Sandage (20 ) study of the Bodtes cluster, and it was hoped
that this sequence could be used to calibrate the cutoff
statistics. That it could not be so used was only the

last of several difficulties, Most serious was that the
plate is not of uniform quality; the focus is poor along
the extreme southern edge, and there appears to have been

a very slight rotational shift of the plate about a point
in the northwest corner (the latter is not serious.) Thus
the region counted was not the full 6.5°x6.5° field

covered by the 14xl4-inch plate, but only the northwestern
5° (N-S)x 6° (E-W) portion of it., There was a noticeable
focus change over this portion of the plate so the
uniformity of count statistics over the region is diffi-
cult to assess; there at least were no significant trends
across the plate. Counting was performed first by rows
from east to west, and then repeated by columns from

north to south. There was sufficient variation in the

two sets of counts to make the author rather distrustful

of the results, although a third check count from east to
west showed good agreement with the second count, It is
very difficult at the limit to distinguish stars from

galaxies, particularly in the regions where the focus
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was less than excellent, and there is doubtless a random
sprinkling of faint stars included in the count. These
should affect only the mean, however, and should not
affect the covariance structure except for its scale.
The circularly averaged correlation and spectrum obtained
from the counts are shown in Figures 9.9 and 9,10.

A fit with a theoretical spectrum requires
that one know the limiting magnitude and dispersion, but
the count was essentially complete to the limit of the
available magnitude sequence (M~~~ 18.4 photored). A
series of out-of-focus plates taken to calibrate the
plate on which the counts were made served to indicate
only that most of the count was from objects too faint
to register as out-of-focus images, although the first
such plate was only .62 mm out of focus, yielding images
.156 mm in diameter. (11 of the nebulae in the magnitude
sequence gave visible discs on the first out-of-focus
plate.) It was disturbing however, to note that a

comparison star at M=18.0 had been counted as a galaxy:;

one of the sequence objects (out of 25) had been missed,
and it was a very condensed elliptical at M=17.8. Thus
it was clear that a fairly large dispersion in the
cutoff existed, but there was no information as to the
value of the cutoff itself. It was not expected that the

cutoff would be much fainter than 19, so cosmological
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effects should not be loo large if d, is indeed between
zero and one {or if the steady-state model is correct);
so a fit to the limiting magnitude was made by comparison
with the observed mean number count. This procedure has
little to recommend itself, but it allowed one to proceed.
Since a change in the limiting magnitude primarily
causes a change in scale of the normalized spectral density
(See Figure 7.3), and a change in the dispersion has
little effect at all, one should still be able to make
meaningful remarks on the basis of such a very approximately
determined cutoff. A cutoff at mR=l9.2 with a dispersion
of 1.5 magnitudes (the latter may be a bit large) was ob-
tained by this procedure, after an arbitrary 20 percent
allowance was made for the inclusion of faint stars. The
overall horizontal scale of the spectrum is reliable to
perhaps 20 percent, the vertical scale to perhaps 30
percent. The theoretical dispersion of the observed
spectral density is between 12 percent and 15 percent
throughout the range plotted in Figure 9.9. The shape
of the curve, however, is very nearly invariant to
uncertainties in the cutoff parameters, and the spectrum
cannot be fitted with a Gaussian spatial covariance
density. The falloff at high frequencies is much too
slow, and indicates the existence of a short-range

"core". The covariance also falls off too slowly, and
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indicates, perhaps unreliably, an extended "wing". It
was thus decided to attempt to fit the spectrum with a
superposition of Gaussians, and this procedure met with
some success. The curve labeled "fitted" in Figure 9.9
is the smoothed and averaged spectrum obtained from the
following spatial covariance function:

(9.8)

B
L (%h.s) L (0"

I (1) = Caa (/.43 e +.099€

e
+ /07«2"‘”)(/'0'0) )

The fit to the covariance, illustrated in Figure 9.10,
is very good (and is probably only fortuitous.) The
spectrum (Figure 9.9) looks as if it contains an
appreciable contribution from still smaller distances,
but some of this may be due to short-range variations
in the quality of the counts. Noise of this sort seems
impossible to eliminate with human counters, and there
is some doubt that counting accuracy will ever be
sufficiently high to use effectively in cosmologibal
tests until machine counting can be done. There seems
to be no real obstacle to machine counting (and
classification) now, but no such machines have been
built as yet.

Considering the highly uncertain features of
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this study, the scale of the form 9.8 must be considered
highly provisional; its accuracy is impossible to assess
realistically. Limber (12 ) noted no deviation from a
pure Gaussian form, but his counting squares were 1° on
a side, and he would have missed most of the short-range
detail - though his limiting magnitude was considerably
brighter, and so the scale of his covariance should have
been expanded. It is heartening to find that a super-
position of Gaussians seems to work quite well; the
scheme proposed before of polynomials~times-Gaussians
would not work well over the whole range, but it seems
likely that any spectral function one is likely to meet
will be accurately expressible by combining the two, and
it is quite possible that the simpler Gaussian-only
scheme will be satisfactory.

The fact that the spatial covariance is not
accurately representable by a Gaussian should cause no
difficulty in the application of the theory to cosmo-
logical tests; since the observed spectra are linear in
the spatial covariance function, and since the obierved
spectrum closely mimics the shape of the auxilliary
spectral function, the same behavior with changes in the
cosmology will be exhibited with a superposition of
Gaussians as with a "pure" Gaussian. Detailed computations,

however, should await better data. It cannot be excluded
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that the "wings" of the covariance are due to loose
clustering of spirals, say, and the core to a tighter
clustering of ellipticals, both with roughly Gaussian
form., This indeed seems not unlikely from a cursoxry
inspection of the plates; but again, only detailed
counts by type (and hopefully, by machine) will answer

this guestion.
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TABLE 9.1 - Adopted Properties of the‘ﬁ -Classes Used in
The Computations in This Chapter

B Type Mpoq M, A (M pc”3) G(Mag) % (/o"éec" B-V
1 gE,sO -19.4 -19.0 .0123 1.2 1.10 .95
2 Sa -20.2 -19.9 .00198 .8 1.20 .84
3 Sb -19.8 -19.6 .00126 .8 1.40 .67
4 Sc -17.8 -17.8 .0114 1.2 1.70 .49
5 Ir -13.7 -13.7 .0765 1.8 1.95 .38

6 dE ~-15.6 -15.3 .0595 1.4 1.15 . 90
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TABLE 9.2 - Mean numbers of nebulae per square degree in
classes 1-6 in a range of one magnitude about

the given m_, , assuming a cutoff at m, = 20.0
with a dispersion of .5 magnitude.
95 TR /\]ﬁl /\2m_ /\Bm /\4m AN Nem A Totm
0 18 63.9 19.8 22.6 18.9 2.9 7.0 135
19 153 47.0 57.6 56.6 9.9 22.4 346
20 170 51.0 67.2 80.1 17.0 34.5 420
25 20 159 47.1 62.7 77.4 16.8 34.0 397
.5 18 60.6 18.8 21.7 18.5 2.9 7.0 129
1S 140 42.8 53.3 54.6 9.8 22.0 323
20 149 43.8 58.7 74.9 16.6 33.5 376
1 18 57.8 17.8 20.8 18.2 2.8 6.9 124
19 130 39.2 49.6 52.7 9.8 21.7 303
20 132 38.2 52.0 70.3 16.3 32,6 342
20 108 30.1 42.0 62.8 15.7 31.1 290
20 68.8 17.5 25.4 47.6 14.3 27.4 201
SS 18 44.7 13.4 15.3 13.9 2.4 6.0 96
19 99.2 29.1 35.5 38,2 7.8 18.1 228
20 102 28.9 37.4 49.0 12.4 26.2 256
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APPENDIX I: STOCHASTIC PROCESSES; POINT PROCESSES

In this appendix we outline some of the results
pertinent to the treatment of the distribution of galaxies
as a stochastic point process. Proofs, in varying degrees
of rigor, are to be found in the literature (see the Biblio-
graphy); the purpose here is to form a short introduction
for those unfamiliar with the subject, as well as develop
heuristically some new needed results on spectral analysis
of point processes.

Succinctly stated, a stochastic process in n
dimensions is an n-parameter family of random variables,
or a "random function" in n variables. The ranges of
these variables can be either continuous or discrete; if the

latter, one usually refers to a gtochastic serxies.

Ideas of continuity, differentiability (and even
analyticity) can be introduced for such "functions" in
both the "almost certain" (a.c.) sense, which means that
the probability is unity that any sample function should
have the specified property, and in the "mean sqguare"
(m.s.) sense, which is somewhat more general. One says
that a stochastic process X(x), say, is m.s. differen-
tiable at X if there exists a stochastic process Y (x)
(called the m.s. derivative of X(x), such that the

expectation value of l%‘(X(X+h) - X(x)) - Y(X)}2
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tends to zero with h. We shall denote the expectation
value (ensemble or population average) of a stochastic
variable X by E(X). It is known that in a certain symbolic
sense, the operation E(.) commutes with differentation and
integration (GR, 7 ), and we shall make full use of this
formalism, noting as we go any restrictive assumptions
which must be made to insure its validity.

We shall use a consistent notation throughout
this paper for a stochastic variable with mean removed; if
X 1s any stochastic variable, we let X =X - E(X). We
give the covariance a special symbol: cov (XY) = E(X'Y) =
E(XY) - E(X)E(Y).

Set intersection /) and union U will have
their usual meanings if s is a (Liebesgue) measurable
set, we denote its measure by ’A(s) and its diameter by

F(s).

Let us confine our attention to monovariate
stochastic processes in one dimension; generalization to
multivariate, multidimensional processes is usually
immediate. Let X(x) be such a one-dimensional process.

The complete probabilistic description of a
stochastic process under study is, of course, desirable,
but is generally too complex to be of much value. Too,
it can never by reconstructed from data, however copious.

We must generally rely, then, on moments to form a
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useful, but necessarily incomplete, description.
Thus we have quantities like
(Al.1) E (X(x” = m(x) , the mean function, and

cov {X(x),X(y)) = f(x,y), the autocovariance function.

We are mostly interested here in stationary processes;

that is, processes all of whose probability distributions
are translation-invariant. For such a process,

E (X(x))

m , a constant, and

(a1.2)
cov(X(x),X(y))

f(x-y)

A process is said to be stationary to the second order if

it is not strictly stationary but (aAl.2) holds. This is
actually sufficient for most of what we do, but the cos-
mological principle implies strict stationarity, so we
may as well assume it. Stationary processes have many
very simple properties; for example, the process is m.s.
continuous (differentiable n times, analytic, etc.) if
%‘Pt) is continuous (differentiable n times, analytic,
etc.) at T =0 . In addition, {(Z’) is continuous (dif-
ferentiable, etc.) everywhere if it is at € = 0. If X(x)
is m.s. continuous, it can be shown that ﬁ (Z) has a

Fourier-Stieltjes transform,
po

(Al.3) L(z)= /e/;w?a/S:/w),
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o
If, in addition, / /1[(?)’ dt is finite, then there is
- 00

a uniformly continuous function F (W), the spectral density,

such that A (w) = F(w)dw, and

(al.4) f{r)zfeﬁw?F/w)dw

We shall always assume that this is the case. In addition,

there exists a stochastic process ;?(uﬁ, such that

(Al.5) X x)= /eiwaZ'/w) . and

- 00

21'(w) = E(]|.Z (w )|~2) ; Al.4 is called the spectral

representation of W(X) and is interesting largely because

it can be shown that if X(x) is stationary to second order,

then Z(w) is orthogonal; that is, Z(wz) —Z(wI), the

spectral mass in the interval (wl,w2), is uncorrelated with

the mass in any non-overlapping interval. This property
is shared by certain estimates for Ez(w), as we shall see,
and it is this fact which makes spectral theory the
powerful tool that it is.

Now consider a slightly different kind of
stochastic process. Let N(s) be the number of occurrences
of a certain event in the set s. By definition, N takes

on only positive integral values, and its value at a point

can be only zero or one (We generally exclude the possi-

bility of two or more occurrences at one point - see the
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discussion of regular point processes in Chapter IT) N(s)

is a prototype point process. It is certainly not

continuous, and the spectral theory does not apply.

Consider, however, a new stochastic variable

x+ &

7, ()= LN ([ %, =+ % 1) = ;’—f;w(x).
K- N,

(pl.6)

7?éb<) is a stochastic function of a continuous variable
now, and it can be shown to be m.s. continuous (though no
sample function is continuous, note.) and to possess a
spectral form. Note that in the integral definition of
QZE(X), we could write

(Al.7) il

7 (x)= [y (x-w) AN

-
where (g (%) = % - % sus &
o, o erwise .

We can clearly generalize this. Let g(x) be a smooth,
positive, symmetric function with its mass concentrated

near the origin, and {{:;ﬁnékx :.1; define gg(x) = lé{é(x/@)}
and

oo
(p1.8) 776 (%) = /ge (x-u)dN(u) .

which is as smooth (at least) as g. We will call such a
process a mollified point process;: Jg is the mollifier.
Note that as €20 , g, becomes more and more concentrated

about x = 0. It is through the introduction of such
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"almost~point"” processes that we ghall formulate a

spectral theory for point processes.

Suppose now that N(s) is a regular stationary

point process, with mean density m and covariance density

(see Chapter II)'f(‘t) . Then by definition,

(pr1.9) cov (N(sl)N(SZ» = _/Q[f(xl—XZ)dxldx2 ,
S, 5,

if sy and s, have no points in common. If they do,

another term appears, and it is to the heuristic deriva-

tion of this term that we now turn. Let s = [al,bl] ,
s, = [’az,b2] , and suppose that the intersection is not
void. For sake of argument, let aj<a,, bl<ib2, a2<]ol

We then have a situation like that shown in Figure Al.l.

Define

= S'—Sl
= §;~ 8§,
= S‘ﬂsl.

149

Since N(s) is additive, N(Sl) = N(G‘l) + N(o“3) ,

N(SZ) =N(O“2) +N(O"3) . Thus
(al.10)

cov (N(sl),N(sz))

cov ( N(G )+N( o3),N(0,)+N( 0'3))
= cov (N (o), N( & )hcov (N (03) , N(S,)

+ cov (N(e) ,N(T,)+cov (N (ey) , N(0y) .
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FIG. ALl
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By (Al1.8), we can write the first three terms as integrals

over f, since the G are disjoint. Only the last term is

troublesome. Let x.=a2+j5 , &= E;Z:L ,  Jj=0,1,2,
M J M
then N((Y3) = N(tx l,x 9 and we can make the sub-
s

division as small as we like. Let Nj = N‘([Xj“l,xj)) ;

then
(Al.11)
cov (N( TB),N(G‘B)) ;é?agg'cov (N N )
“‘ZZCOVN N)+ Zcov(N N)
,:*;-: I=1

It is easy to see that the first term tends to

J{/f&xl-XZ) dx,dx2 , the normal expression. The
=
secahg term does not, however, vanish as & becomes small.

By the definition of covariance,

(Al.12)
cov (N}, N,) = E[(Ni—E(Ni))-(NJ—E(Nj))] = E(vN)) - EO)E(N)
and E(Ni)E(Nj) = ngzz, since the mean density is m . But

what is E(NiNj)? By definition, it is
(81.13) E(; Nj) = 2 k- (Prob. that NjN;=k)
k=0

20
éf: k- (Prob. that N.N.=k ),
k= 3
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Now for NiNj to be non-zero, it is necessary that both
N, and N, be non-zero. Since N(S) is regular, the
probability that N, or Nj is one is O(& ); more than one,

()(Szﬁ. (We assume second-order regularity, though first

is all that is required.) If 1# 3,

(31.14) EQVN,) = 52(m2+f(xi—xj)) + o(8?) by the

integral representation, and by (Al.12) is
(AL.15) E(N;N,) = 1-(Prob. that Ny=l, N,=1) + 0(83% ,

so the probability that Ni=l and Nj=l is [m2+f(xi~xj)]'52
plus a quantity small compared to & 2, Similarly, the
probability that N;=l is m& + 0(87%); so if i=j

the dominant term in (Al.12) is the k=1 term again,

which is now of order & , since if Ni:l, NiNi=l. Then

(Al.16)

2 2
E(NiNi) - (Prob. that N =1) + 0( &%)

= . (Prob. that N;=1) + O 52

il

m& + 0(8& 2)

i

The second term in (Al.10) thus tends to m/ﬂS:m(bl~a2)=mf4¢3h
the regular terms combine easily, and the result is
(AL.17)

cov(N(sl),N(szﬂ =./ff(xl~-x2)dx1 dx2 + mf&(sin 52)
S, 5,

Though we derived this result for stationary processes,
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the argument goes through unchanged for non-stationary
ones; the additional term is easily seen to be

fm(x)dx , if m({x) is the mean density.
o3

We have gone to such detail because, to the
author's knowledge at least, no satisfactory development
exists in the literature, though the result is stated and
discussed briefly in Bartlett's book ( 11 ). This argument,
in essentially this form, can easily be made completely
rigorous.

Let us now assume that f(x) is uniformly con-
tinuous and absolutely integrable. It thus has a uniformly

continuous Fourier transform
o0 oo
i - AWK ]
F lw)= zwff/x)e dx = i?‘/,&’/x) cos (wx ) dx ,
- 00 I

since f (x) (and hence F ) is even from its definition.
Consider now the mollified process 77€ (x), defined in

(al.7). Let (2ﬂ§b€(w) be the Fourier transform of Qg .
r Lo X
-
Qe ()= igeme ol x

It is then easily shown that
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{(Al1.18)
E@ (x)) = m
cov (7 (%) e ( (v)) Jé{ge>cm)ge(y v) f(u-v)du av

+ m /9& (x~ u)gﬁ(y—u)du :

the latter tends to f(x-y) as the functions gg become
more and more concentrated about x=0 if x=y , but tends
to infinity (it acquires a "delta-function" kind of singu-
larity) when x=y. Thus the spectral density Fg (@) of N (x)
is, following a bit of algebra,

(p1.19)
Fow) =(0e @)’ {F@) + 5%

As €-» 0, Qg(w) tends to 1 (uniformly in any neighborhood
of the origin), so the spectral density of the mollified
process is closely related to the transform of the covariance
density. It approaches the latter moreVand more closely as
the mollification disappears, except that the discrete
nature of the point process contributes a term which tends
to a constant (this one would expect from a naive appli-
cation of spectral theory to the point process, since this
term is the transform of a delta function in the covariance
density.) This constant term masks small differences in
F(w) which we shall be looking for when we estimate the
spectral density from samples, and techniques to "filter"

the constant component must be devised.
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We can also make the point process tractable
by converting it into a stochastic series; it is this
technique we shall employ for the analysis of counts.
For this purpose, we divide the real line into intervals
of length h (say) and number the intervals consecutively.

J

Nj is an integer-valued stochastic series - the number of

Let s. = [(3-1/2)h, (3#1/2)h] , and let Ny = N(Sj). Then

occurrences in cell j. From (Al.18) it is clear that

(Al.20)
E(Nj) = hm

cov (Nj,Nk) = rj—k = /yfﬂxl~x2) dx1 dx2 +1nn8jk .
{55k

For a stochastic series, the appropriate spectral density
is not the Fourier transform of the covariance function
(which is now defined only for integer values - note that
it is a function of j-k only), but the function the coef-
ficients of whose Fourier geries are {Y3} . There
remains a close correspondence, however, with the function

F(w) since
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(al.21)
h/o 31\4“/2. »o

/Lw(x,—'x,_)
Y"J = fal“' fd')(‘. fe F{w) d&d . lf)méo
—‘A/z :}h-‘\/z - 09 J

3 T
2 [ simwhs) Lwfh i1
B /L/S(“L/) Flw)e J Adw + h/e 7‘72-1”7; o/7
> -7

fm/;//z F(u) e ™ 4y -»Afe“”;?
oo (Y2

- —74-27:/?. sin® (Vi + ferr) o F,
) h'/gk% F ) (Y + tem)™ 'rfﬁ:)?e 730/7 .
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Thus the spectral density is h times the quantity in
2o s (Y + ) 1
b Ulh+ km™ 7

brackets. Since ,

this can be rewritten

(Al.22}
N

> w le m thw,+ k”) i79
v = L/é{F(%L“)*ﬁ“f T < 73"'7'
-~

(Y + w)®

The phenomenon of the combination of higher
frequencies with the fundamental (k=0) term igs called
"aliasing" by Tukey ( ©6 ), and is a result of the in-
distinguishability of higher harmonies from the funda-
mental when measurements at equal intervals are taken. It
is clear that if we wish to determine F(w) from the spec-
trum of Nj , it is necessary that h be sufficiently small
that all terms in the sum be small compared with the k=0
term. We are helped significantly here by the "window"

a2 -2
term, (S"'(wé* km»(ﬂ4+kv) ; we can clearly learn

nothing about F(w) for arguments of the order T/h or
larger. Note that one can arrive at these results
slightly differently; we could mollify N(s) with a rec-
tangular mollifier of width h centered on x, as in (Al.5),
and then particularize to observations at discrete points

only. The form (Al.22) arises naturally from this approach.
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APPENDIX II: QUASI-POISSON PROCESSES

Point processes, because of their highly
singular nature, are difficult to treat mathematically
and do not appear to have been considered systematically,
so a mathematically tractable model of such a process is
valuable. It happens that a fairly general model is
provided by what we shall call quasi~-Poisson (QP)
processes,

Let Fﬂg) be an m.s, continuous, a.c. positive
stochastic process in n-space; let
(ar2.1)

E(Px) = £ ®

E(P @) = £,y

—

E( P(}ﬁ) P (X) é (__Z__)) = f3 (?E)Y_JZ_):

etc., and let

(A2.2)

M(s) = ‘(P (?E)d/.k
S

for any measurable set s. M(s) 1is clearly a.c.
positive. Let N(s) be an integer-valued stochastic
variable with a Poisson distribution with parameter M(s).

Then

Def, 1 : N{(s) is a Quasi-Poisson process with fundamental

P(g_c_).
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Such processes have been discussed in the
literature; Layzer (15 ) proposed that the distribution of
galaxies could be described by one.

Bartlett, in the discussion of a paper by Cox (38 ),
purported to show that the description was general; i.e.,
that all point processes are of this type. His proof,
involving the so-called characteristic functional, has
formal validity but is in fact fallacious - the theorem
is false, as we shall see presently. Let us first prove
Theorem l: Let (o(g) possess bounded moments of orders
1, 2,..p. Then the moment densities of N({s) exist to
order p and are identical with the moments of fo(g).

Proof: Let sl,sz..SJ, j€ p be disjoint measurable

sets in n-space, and let M(Si) =M, N(si) = N,
O
(a2.2) E(,) = 2 npP(n)
1 »e 0
o0
= nfp (n)Mi)dp(Mi) .
Nn=p
L}
~ N oML
From the definition, P(n\Mi) = _&f: e , SO
%0
(A2.3) o0 " ~Mi

E(Ni)

il
Y
2
{0
W
R
KN
S

i
\\
X
.3\ >,
\(b
b
S
X
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Now since M,» O a.c., Mi e < M, , and

the integral exists; indeed

(A2.4)

N nel My N M4l __mL
L dapM ) = /Z Ai & ap (M. )
/ - n! 1
Mz 0 » Mz o
£ . . = .
£ fMl dp (Ml) E(Ml) .
Thus E(Ni) exists by dominated convergence, and since
mal =ML
M € _5, M, is equal to E(M;). But
‘ﬂ.' 1 2 1
(a2.5)

EM,) = E/P(gc_)d,&
S..J

= E(p(x))d
&_f P ) apm

S[ £ ) dpe

il

E(Nj) ,

so the mean density of N(s) is fl(x). Let E(Ni)= Ay od

then



(A2.6) o
ENN,... 4’7‘('(94 -X:) P, ... n;)
. 2 it 3 [ 7T Pomim)den, .., m;)
P o{,‘ (m:-2)}f[- f7"“ < pem,. M)

fff:.r{“ ”M " o, m).

.‘

The integrals exist, since the moments of p (x) exist
through order j and are bounded. Again by dominated

convergence, the sum exists and is equal to

jy' 7T(M - )dP(M M) = E(Mlﬁ2..Mj). But again,
j

22.7) E (M, My M) = Ef f// (C(i;)—f(ﬁl-))ol/*,‘..d

= jf,ej (’5(',...73)01/":""’1/".5 ;
S8

and the theorem is proved.



~194~

Theorem 2: Let p(g) be as in Theorem 1, with p 2 2.
Then N{(s) 1s a regular point process of order p.
Proof: We need only show that P(N(s)>1l) = o(r~(s))
et n22 . Then

P(N(s) = n)

]

fp(nlM)dP(M)

]

e
f% o dp (M)
< E(M(s)?)

but

E((u(s))?) = /ffz(xl,xz)dm dp , = 0(p(s)?) = o(pe(s)).
§S
Q.E.D.

Theorem 3: There exist regular point processes which are
not Q-P processes,
Proof: Since the moment densities of a Q-P process
coincide with the moments of its fundamental, they must
satisfy the restrictions which exist for the moments of a
stochastic process. 1In particular, the covariance density
must be ‘'"positive-definite"; that is,

/7.a(§)a(y) f(x,y) dx dy 2 O for all integrable a(x).
(;ﬁis can be easily seen from a consideration of
jE({ j’a(g)ﬁg(g)drgz)). There exist many processes for

s

which this is not true; all processes in which the
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occurrence of one event creates a "zone of avoidance"
which inhibits or prohibits occurrences nearby have
fz(zjgfz) negative for small vy, and if s 1is small,
the integral will be negative. Bartlett himself gives

such a process (in which f2 < 0O everywhere) in his book

( 11 , p. 167) - perhaps the simplest example is a
stationary random distribution of hard spheres of radius
a, for which N(s) is the number of sphere centers in g.
It is easy to see that if A 1is the mean density, the
covariance density £, (x;-%,) = 2% for '51"52, < 2a,
zero otherwise.

It may be added in passing that even if the
covariance density 1s positive-definite, a point process
need not be Q-P, for relationships among higher moments
may not be satisfied. One such process is the number of
particles in a set which possess a very strongly
attractive limited-range binary interaction, which is
strongly repulsive over the same range for tertiary and
higher interactions. Such particles are almost always
found in pairs, almost never in triples or higher
multiples. This particular example has, among other
difficulties, a negative fourth moment density, which is
also impossible for the fourth moment of a continuous
stochastic process - even though the covariance density
can be made positive-definite with a suitable choice of

the attractive potential.



Theorem 4: Let N’(s) be derived from N{s) Dby random
selection with a measurable selection function p(x):
i.e., given that ©N(s) has an occurrence at X, the
probability that N /(s) has an occurrence (the event is
"counted") 1is pi{x), O £ p{x) £ 1 , and this probability
is independent of other occurrences. Then N ‘(s) is also
Q-P , and has fundamental p(x) e (X).

Proof: Since p(x) 1s measurable and bounded, there

exist simple step functions P, (x) and P, (x) such that

P q (x) £ p(x)< <N (x) . We can then partition s into
k4]
measurable sets s. , s=U s. , s.Ns, =4 for j £ k, such
J 3 | k
that Py and P2 are constant on each Sj .  Let Nl'(s) ,

Nz/(s) be the processes derived from N(s) with selection
functions pi(x) andp2(x), respectively, and set

P(Nl’(s)=n)= /P(nl plx)) dr(e)

given !o(gg) , N(s) 1is a Poisson process, as is Nj
for each J . PFurthermore,
e
Py lp ) = Z Play ;| n)Pngle ()
nj=n,,
i M
and the sum clearly converges. But P(njl (o (x)) = ~—~4———-—I-—~——"
an_‘

J .
P(n!jll nj) is, by definition of the selection process,

bincmial, with success probability P1j = Pl (%), _}gesj



Thus
n; n n;-
png Ini) = () £ (1= )7 ™
SO
p(n'J /F[?()) = e—MJ//: (’ﬂj)l %'noj (/_ E‘i)ﬂj—n,j
m =g (’",J)’ (’na--‘n,é).l - (’)’lJ]! J

- M e P ", .
= €I PR "/"71'9 eMJ'(/»F.’,')

G‘Mj R? (MJ % )‘YhJ

0nd))

/ . .
SO Nij is also a Poisson process, Furthermore,

n
Ni%s) = z Nlj , and the processes for each j con-
J':l
ditional on lo(g) are mutually independent. Since the
sum of Poisson variables 1s also a Poisson variable,

N, (s) 1is Poisson, with parameter zi]ﬂjgjﬂ But

Z g = [pwr wap = u

Exactly similar results hold for Ng(s) . From the
definition of the selection process, it is clear that

P, (s) € n) 2 PN (s)€ n) 2 P(N,(s)€n) for each n.
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But ﬂ‘/ .
P(Nl,(s) £ n) = /'Z = '(M') dPp)
Py il
and
-ml
, n e T2 (M)
P(N,(s) € n) = j‘é 1 s alP(f).

The integrands in each case are less than unity. We now
4 }

choose a sequence of such Pls and st ., say fPan s

sznf , such that %43)-9'p(§) for j=1,2 . The

above integrals exist for each n, and the inclusion

relation for the probabilities holds for each n. Thus

by bounded convergence, since

ijn(gc_) ,o (x)dx -->/p (x) (0 (x)dx for each

) e )"
e= P'(s) £ n) = | Z 3‘“‘:"(&’}“ dpPlp)
M, am
and P(N (s) = n) = je '(’“) APlp)
! .

N'(s) is therefore Q-P , and the fundamental is the
integrand in M , i.e. p(x) P(ﬁ)

Q.E.D,
Theorem 5: Let N(s) be a three-dimensional Q-P process,
and suppose that M = fp (gc__)dBX has moments through ordex

all
sp.ae



g & p. Then if O 1is an arbitrary voint in space, the

o~
radial projection N(fL) of N(s) on the unit sphere

od
about 0 ; i.e. N(J&) = N{(s(\)) , where

s (f W) = {fi Tg%—é_fl_j s %a a Q-P process on the
X
sphere, with fundamental S r210 (rn)dr = (02 (n)
-]
If the probability distributions of {® (x) are in-
. N
variant under rotation about O , the process N(S)

is stationary.

Procf: The result is self-evident.

Corollary: Let ©N(s) be a stationary, isotropic Q-P
process in three dimensions, and let p(x) Dbe a selection
function as in Theorem 4, such that er(x)d3x<:°’.
Then if O is an arbitrary point in space, the radial
projection EFLfL) of Nigﬂ as in Theorem 5 is Q-P,

and has fundamental A .(IZP(EI)dr , where X is

the mean density of N(s?. Furthermore, g = p.

Proof: We need only show that M = f}(x& p(x)d3x

has moments through order p. But this is trivial; for

1<ngp ,

E (IM~E m)f)=) f J f PO+ pl¥ ) - ¥ I .. d )|
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where Cn is the bound on fn {which exists, since
n$p). But ‘[p(x)dBX is finite, by assumption. The
corollary follows by a direct application of Theorem 5.
Remark: If p(x) = p(|x]), N{(«), as defined in the
corollary, is stationary on the sphere.

Theorem 6: Let N{s,&) be an n+l dimensional Q-P
process, where S 1s a set in n-dimensional space, and
o~ is a set on the real line, Let the first n para-
meters be LSRR S < =(Xl,..Xn ), and the last para-
meter be m, . Construct a new process N (s,0"’) in
the following manner: FEach occurrence of N(s,o ) is
represented once and only once by an occurrence of

N Qs,a'ﬁ. The probability density for an occurrence of

N‘Qs,o*’) at (x,m) corresponding to an occurrence of

N(s,07) at (x,m ) is P(mim ) , and at x’# x , zero.
oo — O o] e
(Thus S P(m]mo)dm = 1). Assume also that j.P(mlmo)dmo

- Y4
exists for each m and is a measurable function of m ,

and that this "redistribution” in m is independent of
the spatial distribution.
Then ZN/(S,G") is a Q-P process, and if
/O(x,mo) is the fundamental for N(s,o~) , N7(s, o-q
[4
has the fundamental p(x,m) = jP(m]mo) /o(x, mo)dmo

Note in interpretation: The transition from N to N’

represents a process in which one measures N , obtaining

st

the first n coordinatescorrectly, but with the (n+l)
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coordinate being subject to random measuring errors whose
distribution is given by P(molm). One can clearly
generate multidimensional processes some or all of whose
coordinates are subject to such errors by a repeated
application of the theorem, and all will be Q-P if the
parent process is.

We need first to prove a Lemma.
Lemma: Let ?QAG‘) be a Poisson process on the real line,
with density P(X) . Let 9?](@3 be derived from ?2(&)
as N'is from N in the statement of the theorem, with
conditional distribution ©P(x’lx). Then ?ﬁ’(s') is a
Poisson process with density fOQX') =~f£%x'!x) P(x)dx.

Proof of Lemma: To show that ?Qf(w') is Poisson, we must

show that the probability distribution for disjoint sets

are independent, and that the probability distributions

for a single set is given by P(n) = e;ﬁ/"" , where M
is the integral of f%x) over the set —iactually the
first is sufficient, but we need to evaluate M. That the
numbers in disjoint sets are independent is clear - indeed,
from the nature of the process it is easy to see that any
occurrence is independent of any other.

Let s Dbe a measurable set on the real line and
let s/ be its complement; i.e., sLJic = (-o0, ©0),
sNs' = @ . Then P(?Q’(s) = rﬁ) = ‘ZT P { 7. occurrences

n=o

of 71(8) remain in s and (n’ - n) occurrence of 72(5/)

arrive in s . )



Since the occurrence and subsequent relocation of each
event in ?Q(s) is independent of all others, we can

write this as

nl
/ z{ .
P{ 72(5) = n/) = P {(n occurrences of 77(5) remain
n=0
in s)-ﬁP @/—n occurrences of 77(5’)

arrive in s. )

Now for a given set A , an event of ?2@0 can either
leave A or remain in A when 71QA) is formed. Let
72”(A) be the number of events which remain in A in
the formation of ?QQA) . This is clearly a random

selection process with selection function (Theorem 4)

QRA(X) = j;(x"x)dx’ , for it is precisely this quantity
which expresses the probability that an event at x will
’
be counted in 72(A) . By the results of Theorem 5,
71 (A) is Poisson with parameter I, = jlﬁ(x)f)(x)dx .
A AA
Similarly, if 7T%A) is the number that arrive in A
from A’ (that is, the number which do not remain in A7)
/

when ?2(A3 is formed, this is also a random selection

process on A’ , with selection function 1- A,(x) = ék(x)

also. But nh(’A) + 77,?23;) = %(A), and since ﬂ"andnw

are independent, their sum is also Poisson, with parameter

MI=>\A"‘>»A,=§ f* J‘gé A('X)P(’X)AX = fd«F@SP(ﬂo{) dx’
A A e A
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We can reverse the order of integration by reason of our

assumption on P (x]x), and obtain

o0
M = S J’P (] %) p (%) dx} ax’
A o0

Proof of Theorem: We have

P’ (s,07) =r) = fP(n’lp(z_c_;m))dP(p) ;

but n’ , given f)@gnn, is clearly Poisson, and since
events do not enter or leave the spatial set s in the
formation of N’/ from N , this process of formation
is clearly equivalent to the case covered by the lemma.
Thus
n/
Y’ ’
-M(s5%) (M ’CS,O")]
(n’)! /

P(nlptx,m)= <

M/ (s,07)= fﬁ’(x,m)d"xotm,

s,o’

and the process is Q-P with the indicated fundamental.

Q.E.D,

Corollary: Let Ni(s) be a multivariate Q-P process

/
with fundamental FE(S), i=1,2,..n . Let N. , i=1,2,.

1

be formed from N, in the following manner: To each
/
event of Ni(s) at x , there corresponds one event of

Nj(s) at x for some Jj. The probability that

. N,
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dN/(gl = 1 , given that dN, (x) =1, is P.. (x)

ek n i ji=
(Clearly J__/;, Pji(_}g) = 1 for each i.) Let Pji(_;sg)
be measurable for each i and j . Then Nj(s) is

n

QP , with fundamental f??Pji(z) f&(ﬁ)
Theorem 7: Let N{s) be an n-dimensional Q-P
process, and let x = g(x’) be a differentiable

coordinate transformation. Then the new process so

generated is also Q-P , with fundamental

a (xll”"xn)
oty / Rk A
Pix’) = plax™) O, ,eex'n)

The result is obvious.
Theorem 8: Let Nd(s) be an n-variate QP process
in m-space, and let ff?g) be its fundamental. Suppose
that the third centered moments of Powg) vanish, and
that fjx has bounded moments through order 4.

Let S

» k= (k 'km) 5 ki an integer ,

i3 1
be the set {Z!h(k},“/z)fx;<h(kj.+}§,)} . Thus the S
form a cubic network covering all space. Let Ng .

and /{ﬁ::E:(ﬁﬂ?) .
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Proof: The proof ig rather involved algebraically, but
is not difficult; it is a simple consegquence of the
following elementary relations for moments of Poisson

processes: If N is a Poisson variable with parameter

AN , then

EMN = N

EMY) = A? +A

) = A’ + 3AZ

) = AP+ 6N+ A2 +A
Consider first the result (a). Since the third

centered moments of 6#@9 vanish, it is easy to see

that the third centered moments of M? do also.

Thus there is no "fundamental® term as there is in (b).
Then by Theorem 1, if i, k, and ] are all different,

or if o ,B,¥ are all different, the triple
expectation vanishes. One clearly gets a result different

from that predicted by Theorem 1 only in a case where the

same variable appears twice or three times in the expec-

tation, In this case, one expects singular terms to
enter, just as in the covariance {See Appendix I). One

proceeds case by case; suppose that J = k and A = ﬁ

Then E((N:’) NZ) SZ (HJ P(n IM )

Z (-1, )P(n*zM’)olP(M,,,M ),

"?
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as in Theorem 1. But
o0
o o 12 “)_ ol 2 "
2o T PORING )= E (- AL )

= E(§050"~ 2AY N () | 1)

i}

(M) MY = 2AT MY+ (NY)

= (Mj"‘ /\';)L-f- /\4:;

by the Poisson moment relations, since N 1is Q.P. Then

E (W) Ny )= E(§(M]-K )~ METEmY - A% 1)
= E(M3- AF) (M) - M)
+ E (M3 - AL MY - AY))

AT E(M - AY)

- b
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The third term in (a) arises (obviously) when 04=16 =% ,

Jj=k=1. In this case,

E(R))-= fZ(m -/ PV ) A PMY)

Z (A PR IMp=E (AN

H=O

R REA A B M)
S35 M-S A M) B M-()?

- 3 T
=(M-/5;) +3(Mp-AY) + BAME-A) M5

and
» Ao o
E(N))=3Ry, + A

Relation (a) then clearly represents the general expression:

(b) is derived similarly and we shall omit the details.

Note: If cov(ﬁzﬁﬁ,ﬁzﬁi) in (b) 1is replaced by

@ylBys 2l f ¥ S
jf ( (X ?‘17(3«"}) :F(?(’xa-) (7(37<4>§d/“, /»‘2‘;' Saﬁu'q ’
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where g(P)d.f(z,'"/“P is the moment density of
(2(1,?.(3,---0( )]
_ (lagy
order p , and if ;(2-(1,’53, xg) = O » then
Theorem 8 holds for general point processes. The proof

is much more involved.
Theorem 9: Let N{s), M(s) be QP with fundamentals
6)Q9 s iffg) . Then N(s) + M(s) = L(s) 1is also QP
with fundamental /O(z) + Tx).

The proof is trivial and depends only on the
fact that the sum of two Poisson processes is Poisson.
Theorem 10: Let N(é) by QP with fundamental /O(g).

Let /AZ(E) be bounded and measurable, and let

M7(s) = J/ﬁa@s) AN (x)

We shall call ;bZ(s) a scaled guasi-Poigsson process with

fundamental /O (%)  and scale /‘(Z{.) { SQP ( (0(51_) ,/uix)} .

Let /3(§) have bounded moments through order 2. Let
o ;
7e(s) = //,c(;_c_) P A
S

We shall call kg (s) the fluid approximation to 2?(s) ,

and /Ax(g)/O(g) the fluid density for Z?Z(s) . Consider
a sequence of processes Nk(s), QP with fundamental
k/O(Zi_)) (_}_{__:1;2;-...) , and

/ A (%)

My =[5 an @

s
/"\/

Then 1.i.m, iZQk(s) = fzy(s) for any bounded measurable

k—ve
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Proof: First, E(mz(s)) exists, by Theorem 1 and the
2100l k Y

bounded measurability of /u(_gc_) .  Then

E((nk(s)—-'jn(s))z) = E@i(s))—ZE%(s)m(s)) + E(@qz (s))).

It is sufficient to establish the theorem for
the case where /u.(zi_) is a step function, since if iMﬁ (5);
is a sequence of step functions converging to /u,(gg) a.e.,

it is clear that
1.i.m = (x)dN, (x) = = AL(x) AN, (%)
N 4 /u‘n — k= k = k=

for each k, by the boundedness of the first and second

moment densities of Nk(_}g) , and, in fact,

E ({ * ff)tnm 'M"’]JN ;.,(’5’§ z) "'ﬂ(p,mw(x)) (u nm’)zw &) ﬁ (z,4)dy 2‘09, 4
S Tk z

35S

+ ﬂ/u {3);2_&@ rh% fﬁ)d#

$ lomst j‘]/un(zs);u(z) jzal/»c )
S
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Thus the limit is uniform in k; it is also clear that

1.1i.m. f/a‘n(;_g)/” (;g)d/‘ = f/&(zg)ﬁ(gg)dr , so if
5 s

Jﬂkn(s) = j&éﬁ-’—de(z) , ‘M,n(s) = j&l,&(zi_)/O(gg)d/u,

S

E @“‘S;"Ws’fﬂyz < Hms»mku(s))“)]y‘

4 [E (M-, n)")]'/z + [E((mm(s- (s ))ﬂyz'

The first term and the last can be made as small as we
wish independent of k, so we need only consider the

second term, Suppose for some n that /Unagis equal
4

Us
P?py P
B be a bound both for au(x) and all S ().

to a constant /zp on each of S = s , Let
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Then

E ((f/_%&d‘\lk(ﬁ) ——f,an(z)'o@)d/&)a)
:%E [:(%P N, (5p '/“'Pm(s'r))<% N (sq) -8 Msy ))j
: %ﬂw& E(NspNe(sy))-0E (N(sp?TGsgE (mGspm(sy)

’M[K Z "PPP (nd k7pIng Pf(n%l k%)

P*g

b s ) o
+ ‘E‘g’%?”r Pn gl ley) "”E%.on p Py (gl ) g

/
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——Xxy,
where P_(nix) = e s
nl

= = . he t £ = i
and Mp M(s) f‘o X)d/u. The term for p g in

the Poisson probability,

the first expectatlon is different from the rest and is

so . indicated.

This reduces to

Z s [y amm momio ]
:-‘Z? (/ur)zf %fdP(mP)
= —'EE ( S(/ﬂn(z))zp (%) dpe)
s

N _'B;E(M(SQ .

Thus this term goes to zero with k , independent of n

E4

and the theorem is proved.
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Remark: The indefinite subdivision of N{s} carried
out in Theorem 10 to arrive at the fluid approximation
is precisely the kind of process usually envisioned in
the transition from discrete particles to a fluid.
Theorem 10 is proved only for QP processes; it is not
clear whether there exist processes that are not QP for
which such a subdivision (which does not destroy the
essential probabilistic features of the distribution)

exists, but it is certainly not in general possible to

form such a subdivision. The moment densities of each
subdivision must agree with the moments of the fluid
density; we have seen in Theorem 3 that no m.s. con-
tinuous density exists for general point processes, and

thus no consistent fluid approximation exists for general

point distribution.
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APPENDIX III

AN APPROXIMATE CALCULATION FOR THE MEAN COSMIC LIGHT

Galaxies, since they are constructed of stars
and stars radiate something like black bodies, also
radiate approximately like black bodies, but with a
broader energy distribution on account of the mixing of
the light of stars of widely varying temperatures. One
analytic form that closely mimies the black-body distri-

bution but is somewhat broader is the Wien law,

(a3.1) L(W)" L (;}) ’(2) ,

where Z, is the bolometric luminosity. If the mean
radiation temperature of the galaxy is Tr , then one
finds that

(23.2) Y~ _,L‘_z_'é_z

Suppose that the total mean luminosity per cubic

J/
megaparsec at the present epoch is (/-/) with the

spectral distribution (a3.1); let .g . Then
if é%g (;Q—) is the flux at 2/ in the solid
angle L for the relativistic universes,

(A3.3) .

EF (n)= |[LEDEY 6 500 ) onit) i s i)
o /471'10"(7‘)@;(/4-2) f(/ z) E (?; %)f r JZ :
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The quantity in brackets is the volume element normalized

so that the emission per coordinate volume is constant.

We neglect evolutionary effects. If we introduce the

"development angle" © (Mattig, (39) ),

z
(A3.4) o= [’
P :?(’C’) ’

we get, using (A3.1),
z __g(/—*z)
(a3.5) E ‘;,Z)(.Q)r- ‘ff L /u[.ﬂ.)/(.l"’z) Aé .
5’77':/
For the case of vanishing pressure and cosmological

constant, Z and R(Z ) can be written explicitly in

terms of O (Mattig, (39) ):
(A3.6) < = %(@"’ Sk[Q))

R= (/- Cel®)

where
sin O + 1

5(9)'{ nho for ke -9

cos O + 1
C. ()= [1 o k={o
-1

cosh ©

for the metric
(a3.7)

y{S'Z"——-‘ Art— E["’){/ k{o ,p/oto/yzi ‘
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(The case k=0 is degenerate and will be included in our
general result.) We can parametrize the light cone, as
before, with the angle variable and the value of & on

the intersection of the light cone with a particular

@ = const. surface. We may also parametrize with the red-
shift, and for all the cases of interest the relation
between © and Z is one-to~one. The integral in (A3.5) is
most tractable if we use U = (1+2) as the variable of

integration, so we must find de/dU. But

(A3.8) _ _ Ro 1 - Ch(eo)
U= (1+2) =@~ 1T -c.(e) ,
SO
L1 - cn(e,)]t. kSk (©)
(A3.9) du = [1 - Ch(e}]z. [1 - Ch(ea )]2_ de

If we define the deceleration parameter dqq in the usual

way, ﬁg)
9 = " :

we find
(33.10) q =

o 1+ck(eo)
But from (A3.8),
(A3.11) c (8) =1 - L=Cu (o

) k U

Udo + (1-2gp)
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SO

(A3.12) S (6)-"-" \/(‘ZID—I)/’Q. e
R "‘"“u"go / 2717,, (/ 2;") ’

and

'/1_
do= (2£"! °”/) akad

e e/ Wl )

One alsoc finds

(A3.14) HR = kS, (6,) -
(’I" Ch(go))

/e
) ZY(foEITL{ ,

so replacing de and RO in (A3.5), we obtain

0o

ESh ) _ LE5 & du

o (2) Srra, He V2, m ;

(A3.15)

and by a simple change of variable, this becomes

(A3.16)

ES ) _ L& /@%?U/a%
i

/u(JZ} Sz, H, zgo y x

Ax
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The integral is just Eyz (g/zga) , Tthe exponential
integral of order 1/2, We can rewrite this as

(A3.17)

EFCU_ Lo &5 [ v e [ (D)
Y BwyPH, VA | % 2% N |

The factor in curly brackets tends to one as Y —> o=
and is always less than one. It decreases monotonically
with d, for a fixed 2/ , and tends to one as dq, tends
to zero. For the steady-state, we pick ZT; = OO = (0, and
find

~HT
e =

(a3.18) 8 =1 ~ ~Z.

Since here the emissivity per unit proper volume is
constant, {A3.5) becomes

(a.19)

55 L LSl fae”g//“
EJ?/} (_f‘z,) - 87’)% Ha 2‘1 d@

P -
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(A3.19)

i

LE*p(n) [ -u .
Smay, H, U

= ffz,u(-ﬂ)

¢, H,

E, ()

which can be written analogously to (A3.17) as

(n3.20)

ESm) | Ly & sy g
T G e L Be T ECR)

which tends, as 2/-»99 |, to the same limit as all the

relativistic models do. For the currently favored value
of g of about 1/2 (Sandage, (23) ), the steady-state
values are well below the relativistic ones. The results

of a more refined calculation are presented in Chapter IX.
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