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ABSTRACT

This thesis discusses three rather loosely connected problems
in free molecule and nearly free molecule flow. First the expansion
of a gas cloud into perfect vacuum is considered on the basis of the
collision-less Boltzmann equation, and it is shown that if the initial
distribution is an isothermal Maxwellian, the density obeys. a diffusion
equation with a diffusion coefficient proportional to the time. This
leads to the description of the free expansion of symmetric clouds in
terms of a thick 'diffusion front' traveling at the initial isothermal
speed of sound. The expansion of asymmetric clouds and the flow due
to sources and jets are also studied.

Second, a method of iteration proposed by Willis for calculating
nearly free molecular flow is extended to general unsteady flows; it
'is then applied to the flow through an orifice to show that the correction
to the mass flow is of the first order in the inverse Knudsen number.
The coefficient, estimated by making some reasonable assumptions
about the three-dimensional nature of the flow, is found to agree quite
well with Liepmann's measurements.

Finally a physical basis is suggested for Krook's collision
model used in the above calculations. Several consequences of the
model are then derived, including the important one that, in the
Navier-Stokes limit, the model implies a Stokesian gas with a Prandtl
number of unity. The value to be given to the parameter in the model

is also discussed at some length.
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I. INTRODUCTION

1.1 General remarks

This thesis is chiefly concerned with some problems in free
molecular and nearly free molecular flow of gases, a regime which
r;:ay be called 'rarefied gas dynamics'. This class of flows can be
somewhat more precisely described in terms of a Knudsen number K,

which we define as the ratio of a typical mean free path )\, in the

1
gaé to a typical 'scale’, say Ly, which characterizes the variations
in the flow. The number of collisions among molecules in a volume
L13 is of order nc Ll?’/)\1 where n is the number density of
molecules and ¢ is their average speed; and as the flux into the
same volume is of order nc le, it is seen that the inverse Knudsen
number is a measure of the number of collisions per molecule in a
given volume,

Thus when the Knudsen number is infinity, the mol‘ecules in
the region L13 do not collide among themselves at all; this is what
we call free molecule flow. At high Knudsen numbers in general the
collisions are few, and it appears feasible to take account of them in
an approximate way.

The difficulties of the general field of rarefied gas dynamics
can be attributed to two main reasons: (i) the structure of the
Boltzmann equation, particularly the collision integrals in it, which
has made it impossible (till now) to find any solutions spanning the

whole range from gasdynamic (K—>0) to free molecule (K—> o) flows;

(ii) the complexity of surface interactions which are not completely



understood, and so (perhaps) not even properly formulated. Most
problems studied till now seem to have tried to attack both aspects
simultaneously, and as the generally scarce experimental information
has often carried the uncertainties of surface interaction parameters,
it becomes difficult to judge the measure of success achieved in
tackling the first aspect of the general problem (i.e. collisions).

In this report we consider mostly those problems in which the
effe_zct of surface interactions (if present) is relatively unimportant.
This would then include problems involving free expansion, jets,
flow through an orifice, etc. The last will be discussed in‘some detail
as Liepmann (Ref. 1) has recently made a comprehensive set of
measurements of the mass flow through an orifice, essentially covering
the whole Knudsen number range‘.

As the chances of finding a theoretical solution valid throughout
the transition from gasdynamic to free molecule flow seem rather
small at present, the question naturally arises as to how much of the
range can be 'covered'! starting from the two limits K = 0 and
K = o. The limits themselves are relatively simple (though not
trivial), chiefly because the collision terms vanish from the Boltzmann
equation in both limits - for different reasons, of course. In the
gasdynamic limit (K = 0) there are so many collisions (in a volume
of order L13 again} that there is a local static thermodynamic
equilibrium at every point. In the free molecule limit there are so
few collisions that the molecules are in a sense 'frozen', and their

distribution is constant on trajectories.



In the following we shall always try to center the discussion
around fluid mechanical quantities, as the main aim is to understand
the deviations exhibited by rarefied gas flows from the familiar fluid
mechanics. After a brief general discussion of the Boltzmann equation
in the next section, we consider completely free molecular flow in the
second chapter. This includes a general discussion of free expansion
of symmetric and asymmetric clouds, and of the mechanism of a
peculiar kind of (collisionless) diffusion, whose validity and limitations
are studied. The flow field of free molecule sources and jets is then
investigation in section 2.3. Finally a detailed study of the flow
through an orifice is made.

Chapter III is devoted to nearly free molecular flow, A\method
of iteration proposed by Willis is first extended to unsteady flows, and
applied to the problem of the flow through an orifice. The results
obtained using Krook's model for the approximate evaluation of the
collision integrals show reasonable agreement with the experiments
of Liepmann.

Finally a brief study is made, in Chapter IV, of Krook's model
for collisions. It is shown that the model corresponds to a Stokesian
gas with Prandtl number uhity in the Navier-Stokes limit,‘ and it is
concluded that the model is a fairly realistic and simple representation
of the effects of the collision terms in the Boltzmann eciuation through-

out the Knudsen number range.



1.2 The Boltzmann equation

Any flow quantity can be calculated as an appropriate moment
of the distribution function, which is the basic unknown in rarefied gas dy-
namics. This function, which we denote by f£(x, t; y), is the number
density of molecules in physical {%) and velocity (y) space, and may
in general be a function of % and the time t. The evolution of f
in x y t space describes the flow, and is gover'ned by the Boltzmann
equation. For a monatomic gas this equation can be written

(Chapman & Cowling, Ref. 2)

Ao s g2 o (f) ) gldlDy

-1 [ $(w) gTdQ Dy 4

where E 1is an external force (per unit mass) acting on the molecules,
g is the relative velocity between two molecules havinglvelocitiés ¥,

w before collision and y', w' after collision, and I is the (differential)
cross-section for scattering into the elementary solid.angle df2 . Dy
denotes an element of volume in w-space, and the integrals over w

on the right are the collidion terms: the first term give.s the number

of particles 'gained' by a unit ¥ y volume due to collisions, and we
denote it by the functional g,(f); the second term similarly gives the
number lost, and we denote this by f L(f), so that we can also write

(1-1) as

% * E'%‘% t E'% - 4(F) - L), (1-1a)



It is supposed, in (1-1),that the (six) components of the velocities
v', w' are expressed in terms of y and w, and the 'configuration' of
;i:he encounter: this can be done by writing down the (siX) equations
for conservation of linear and angular momentum during each
encounter. One can also intérpret the integfa‘tions in (1-1) as i
effected over all possible values of w and of the relative angular
momentum for a given y.

The fluid mechanical quantities of the greatest interest to us

can all be written down as the first few moments of f; thus
gE,t) = mn (s t) = m [f(x,t;1) DL,

west) = L [vf(xt50) Dy,
’ - - (1-2)

Pij (X, t)=m JCch f(z,t,2) Dy

where p = mn is the gas density, y is the gas velocity and pij is

the pressure tensor. m is the mass of each molecule, and ¢c=yg - y

is the peculiar velocity of the molecule. We also define the tempera-

ture T by

. P 2
2RT = -'E = Bigjczj'(’i,tﬂz)Dg > %-P—?- = _gE : - {(1-2a)

and the heat flux vector q by -

~

q = Hm&gf(vs,t;«z)Dw- -  (1-2b)



We carry out a simple dimensional analysis of (1-1a) for
steady flow in the absence of forces. Assuming g ~1/vB, the
collision terms contain a parameter of the form (n I/VB) f. If we
take vy for a characteristic molecular velocity and L1 (as before)
for a characteristic scale of the flow, the left hand side contains a
parameter like (v/Ll) f. Thus, in terms of dimensionless variables

(1-1) can be written as

L S AL R NG I S

(1-3)

1 It‘1s
L~ 1/VB, the
parameter in front of the collision terms is just Lllkl = K—l; the

The quantity 1/al is in the nature of a mean free path \

not obvious what one should choose for vy if v

inverse of the Knudsen number. It is also possible to put vy ~uy
(a éharacteristic gas velocity), when the parameter becomes
Ll/?\l vB. uys which is identical with the combination l‘RﬂlMZ

( Re being the Reynolds number and M the Mach numbei‘) familiar
in gasdynamics.

The main poiﬁt is that the Boltzmann equation contains two
characteristic velocities V1 and 8y and one characteristic length
A;; the length L, can be looked upon as introduced from the boundary
conditions. The dimensional analysis is not complete, because the
boundary conditions have not been discussed in detail; in particular

one would have to take account of accommodation coefficients,

surface temperatures and so on; however, as stated earlier, we want



to confine ourselves to problems in which these are not important.

To illustrate this more specifically, we consider the problem
‘of the flow through an orifice. The configuration is shown in figure 1,
There is a hole of diameter D in a large, thin, insulated sheet which
separates the upstream side from the downstream side. The *@rqblem
is most naturally formulated in terms of D (as Ll)’ the pressure Py
and density Py far upstream, and the pressure difference across the
orifice, Ap = Py - P, {We assume there is a (large) enclosure at a
constant temperature T, = TZ.) The boundary conditions Jf.n,.thié case
yield one non-dimensional parameter @ = Ap/;pl, a Veloéity
uy~ Wp—l and a length D. Combining these with the parameter
" obtained from the equation, namely Lll)\l vy \/ﬁ, and noting that
1/ [3&\/;% ’ it is seen that there are essentially two independent

[}

parameters in the problem, which we can choose to be

W = /8 .D _ ~ D
SRRt B L T

' 1 !

where Va~ A/ \/B‘ is the kinematic viscosity. One can interpret

Ql i a’l

as the square of a Mach number, though it should be noted that uy
 is not necessarily of the order of the actual velocity of flow through
the orifice.

The possible regimes of flow through an orifice are shown in

figure 2. The transition from gasdynamic to free molecule flow can be

made at various levels of @w': @ ~ 1 corresponds to the 'compressible!



transition, and @ ~ 0 to the 'incompressible' transition.

The quantity € = n ILI/V1 V B largely determines the nature of
the flow. The limit € —»0 corresponds to free molecule flow and the
other extreme € —» o0 leads to the Fuler and Navier-Stokes equations.
The latter limit will be discussed in section 4. 3 in connection with
Krook's model, but it can be seen that the problem is a singular
perturbation, with the small number 6—1 multiplying the derivative
of f. One thus expects boundary layer type solutions for f, with a
region (or interval, correspondiﬁg to the relaxation time, in initial
value problems) of rapid change. The Euler and Navier-Stokes equations
are the outer limits of the Boltzmann equation; and experience with other
singular perturbation problems suggests that considerable care is
required to obtain the higher approximations. It is perhaps due to this
reason that it is so difficult to go beyond the Navier-Stokes equations,

The boundary condition at a surface can in general be expressed
as

f8,5500 + [ X0 platie0) D

where the y, are the velocity vectors with the normal component

v, =% B >0 (p is the outward normal to the surface), the v_ are
velocities such that v < 0, and X, in general, is a gtochastic

kernel. Equation (1-4) relates the distribution of particles emitted

from the surface to that of the incident particles. The usual assumptions
of diffuse and specular reflection at the surface can be written as simple

assumptions on X,



The difficulties of handling a boundary condition like (1-4) are
obvious: more so as there is no precise knowledge of the nature of
X. As stated earlier, however, we will be mostly concerned, in the
following, with problems in which surface conditions do not play any

essential role.
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II. THE FREE MOLECULE LIMIT

2.1 General considerations

This chapter is devoted to pure free molecule flow, obtained by
putting the parameter nILllvl'\/—ﬁ— in (1-3) equal to zero, thatis, by
neglecting all collisions. Apart from being interesting in its own right,
investigation of the limit is anyway a prerequisite to the study of the
effects of collisions. As we will later have occasion to discuss flow
fields due to sources, we write the general collisionless Boltzrmann

equation, with sources, as
2 P R . _ . ‘
[t + 52| f(xt¥)= Azt (2-1)

where ( is the number of molecules, per unit x y volume per unit
ﬁmé, introduced (or created) at x, t. The general initial value
problem can now be posed as follows: given f (x, t= 0;,2) = £y (%5 ¥)»
say, over all space,. what is f at later times?

Problems involving free expansion of a gas clop.d {(described by
Q= 0 in (2-1))have attracted some attention in the last few years,
thow.igh most of these studies seem to have been made from the gas-
dynamic point of view (Refs. 3, 4, 5). On the other hand, approaches
to the problem from the free molecule limit, though of considerable
interest in space sciences and in astrophysics, seem far fewer.
Molmud (Ref. 6) has, however, recently worked out the density field

in free molecular free expansion of symmetric gas clouds, making use
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of an intuitive 'analogy' with heat diffusion. We will examine the
justification and limitation of this analogy later, starting rigorously
from Boltzmann's equation.

This might be the place to make a brief remark about the
mechanism of free molecule flow. The distribution function f in the
free molecule limit is in general discontinuous in velocity space, which
can often be divided into regions which are vacant (i.e., there are no
molecules with velocity vectors lying in them) and regions which are
occupied by molecules of particular kinds, e.g. those coming from a
solid surface. Though the distribution in the occupied regions may be

2
V', the f does not necessarily correspond to the local

like e_ﬁ
temperature, and moreover the distribution is usually not isotropic
(so that it is not a local Maxwellian). The flow is in fact due to the
'development’ in time and (physical) space of these regions in velocity
épaée.

This 'development' is very generally described by equation
(2-1) which is a linear, inhomogeneous first order partial differential
equation, with a vector parameter v, which takes all possible values.
To solve the equ;.tion completely one has in general to be given f on

a six-dimensional hypersurface in xty space, and in most practical

problems this takes the form of an initial condition in physical space:

FGE,5205 %) = f, (x5). @-2

fo is, of course, an arbitrary function of x and v,
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The most straightforward way of solving (2-1) is to write down
the characteristics, following Courant-Hilbert (Ref. 7); in terms of
a parameter s along the characteristics, they are governed by the

eight ordinary differential equations

whiéh have the solution
t-s, ¥=FEery, x%=524yas+ti,
(2-4)

fo [k v

where  is integrated with respect to s after being expressed as a
function of s and (é, V), which is a point on the initial surface. (See
Fig. 3.) However the six initial coordinates £€,% can be eliminated

from (2-4) and we can write f at any given time as
, Et?.
F(x,t5%0) = ]Lo (%-wt + 555 v Et)
t 2
+ jQ{g_g (1:—,6)+.2LE(‘C-~6)J 4; E-E(t—xs)} s, (2-5)
A :

This is the general solution of the initial value problem that was posed

- earlier. If there are no forces on the molecules, (2-5) reduces to

t
TGt = f, (x-vt; w)+£&{a—@(t—»,a; w} s, (2-6)

The density, gas velocity and all other flow quantities can now be

derived as appropriate moments of f.
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2.2 Expansion of a gas cloud

Let us briefly study the case Q = 0, This includes the 'free
expansion' class of problems, in which one considers a cloud of gas
confinea within a certain region, whose boundaries are suddenly
removed at time t = 0. In such a problem fo = 0 outside the cloud.

. More generally an érbitrary initial distribution over all space i’nay
be given. In either case, the distribution at t > 0 is sim.ply‘obtained

from (2-6) by putting Q = 0: |

F&ER) =1, (% -2t5). | (2-7)

The corresponding flow quantities are most conveniently worked out

by making the transformation

x.—’\J"L‘ = 2&’)

Dx’- =/ "(7:;’ Aot = ~t° obui dv, dv; =-t2Dy. | (2-8)
Thus
30s.t) = [ 1, (x-2t, v)Dy
= _‘t_sJ' ]Lo (%’; 7:;29') D’.S/) - (2-9)

where the integration is performed over all x', of course. (Note that
Dx'/Dv is just the Jacobian of the transformation, and only its

absolute value appears in (2-9).) The gas velocity y is given by



% (%,t) = jé__’é_ /. %=1’y D

s 38 R * e (2-10)
_ % A ’ S 25 & /
‘T‘gt‘*J’““fo(’"(" t)DD'“('

Any other flow quantity can be similarly calculated as some
{transformed) moment of the initial distribution function.

Equation (2-10) shows what is apparently a genera.l feature
of 'free' gaskinetic flows, namely that the gas velocity can be split
into two parts one of which (like x/t) is purely kinematic, in the
sense that it does not depend on any dynamic variable (like-
temperature, e.g.}, and another part which is 'thermal' and tends
to have a characteristic value like 1/\/—6 ~JRT. Physically the
kinematic part arises from the presence at x of molecules which
took exéctly the time t to get there. It of course vanishes in
steady free flow. In unsteady flows it seems to be the counterpart
of the asymptotic 'similarity' component of the velocity that one
encounters in gasdynamics.

Some interesting examples of free expansion are worked

out below.
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2.2.1 The 'point' cloud

At sufficiently large distances any cloud must look like a point.
Thus suppose there are N molecules all concentrated at the origin

att = 0 and distributed according to a Maxwellian, so that
Sh. Byt
f (x:2) = Se) N (B)7= & P2” (2-11)

( S'(?S) is the Dirac delia function such that . I(g(;g) Dx = 1.)

Then from (2-7), (2-9) and (2-10),

3o e:{Sv)L

fx,tsw) = 3(x-wt) N(£)

ne

3 (2 8) - 4 [N (B) euph-p(EE)
NI

{ D2’ (2-12)

i

and U = %/t.

The result for the velocity is quite obvious, as only molecules with
velocity v = x/t can reach x at time t, so y = x/t =: u. Also the ther-
mal or peculiar velocity ¢ = y - u is then zero, so the temperature

T = 0. At any point % the velocity shoots up suddenly to infinity

at t= 0+, then drops off as t—l. The density on the other hand, builds

3 e?’/2 = 0.07361

up gradually from zero to a maximum (of 27 N/8 x

N/x3 yatt = xj?i; and drops off like 1:_3 at large times. Thus

the decay in density is exponential in space and algebraic in time.
As may be expected (and as will be shown later) the same

B\3/2 -B VZ
solution will be obtained if f = 0butQ = 5 (x) 5(t) N (D)7 % ,

which represents a pulse source. Incidentally, it may be worth noting
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that as all molecules at x have the single velocity x/t, the relative
velocity g between any two of them is zero, and hence they will
rneve'r collide. Thus, in so far as one can speak of a 'point' cloud
with an iritial Maxwellian (or any other)distribution expanding into
'perfect' vacuum, equations (2-12) give an exact fundamental séylution
of the full Boltzmann equation, because the collision integrals vanish
identically for (2-12)! However, as the full Boltzmann equation is
non-linear, it is not possible to superpose these fundamental solutions

to derive solutions for more complicated prbblerns.
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2.2,2 Symmetric clouds

We discuss the one-dimensional case in some detail, especially
because an exact solution of the problem in the gasdynamic limit has
been obtained by Greifinger & Cole (Ref. 4). Suppose the gas is con-
fined between two planes %y = + b and is allowed to expand into
vacuum at t = 0. (Note that an equivalent problem is to consider a
wall at X, = 0 - when we will have a kind of free molecule sh‘ock tube -
if the boundary condition at the wall corresponds to specular reflection

of the molecules.) We can then write

f(%5%) = [K(x,ﬂ.) ~R(-1)]n (%)a/ze_ Bv--

where # is the Heaviside step function. Due to the symmetry the

coordinates X5y X at the point of observation x can be taken to be

3

zero; then from (2-9) it is easily seen that

Q(x,t) =L, “(ﬁ)%J "”4’ é—"”(x‘% A

o0 -r
X J ﬁ?( J epxa 0‘.7(_;’

or, introducing £ = Xll L and Tt=t/ 1 \ﬂi

9= 4o, § et BEE - orf 222§ (2-13

where Py = mn is the initial density. This result is the same as
that given by Molmud (Ref. 6), but we want to give it a different

interpretation here. A typical density profile is shown in figure 4.
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A
Now for large times, i.e., for 1:>>;3z(:x1 + 1), (2-13) reduces

to

S 0 1 1
S~ {_~ L N P (2-13a)
O 3r a,b a,T | '

g

where a, = ’ 3 R‘T0 is the initial speed of sound in the cloud

- (with Y= 5/3 for the monatomic gas, of course). The density is
roughly constant in x (provided x is not too large) and arops off
as 1/t.

As might be expected from general similarity considérations,
Greifinger & Cole find an asymptotic relation identical in form with
(2-13a), but with a different numerical constant, Their calcu‘l‘a;tivén

gives, when y = 5/3,

Q o~ L 2-13b
(go o P a.,'l?) ) ( )
i.e.; about half of what one expects in free molecule flc}w.

Differentiating (2-13) with respect to £, one obtains

L@ _ 2 o h2E I | -
_Q.o_%_ T\IWM\J\ LY ep E—T’-” (2-14)

which is always negative (considering only x, 7 0, as the cloud is

1
always symmetric), so p decreases monotonically; but differentiating
once more it is easily verified that 8p/8§ is a maximum at a point

€ = E (T) such that
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E= wth 27;5;_. (2-15)

% is plotted versus T in figure 5. For large times (which means,

as it will turn out, t >> ls/ﬁ), equation (2-15) can be approximated by

E-LT,  or %. S | (2-16)

-

That is, the region of most rapid change in density travels

asymptotically at a definite velocity 1/ V 2 = JRTo , which is equal
to the isothermal speed of sound in the initial cloud! To find out how

this region is spreading, one can define a thickness of the region by

S=_88
(%/>x,) 2

(2-17)

where Ap is the difference in densities across the region, or (what

amounts to the same thing) the density at x, = 0; this is given by

1
(2-13a). Putting (2-16) into (2-14), one obtains

8:\!21.% ~ 1.17%_ (2-18)

Finally one can work out the gas velocity from- (2-10); the

result is

Y £
u_‘=.;1_ AAMJ'\ —é_ ‘0\40‘ T

'—?— 5 2-19
T T
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at large times (t 77(};1 + 1)JPB) this reduces to

~ XL

w, =

At small times (t<< (x1 + 1) vV B),

U, o XFL
t

It may also be verified easily that at x; = §1, ul»_ﬁl = 1/ \/_2_;;
for t 37LB; and that the mass flow p u, is a maximum at 321.
To summarize, the flow field can be roughly described as
follows. At large times there is a growing region of practically
uniform density near the center, but this density is falling .in time
(as 1/t). Most of the density change occurs in a layer which is
traveling with a definite velocity given by ﬁo and whose thickness
is increasing linearly with time. The gas velocity in this layer is
also of order \/?R_,'I_'-o, and the largest mass flow is taking place there.

One can carry out an exactly similar analysis of a spherically

symmetric cloud, to obtain

g ult -
’é

W, = =4 .—g- -pilo
1 %‘F’“_P > .
ﬁ"z‘“#‘? - E‘g

where x is now the distance from the origin, and l is the radius of

H

g 52
- ik 25

(2-20)

the original cloud. The 'front' (i.e., the maximum density gradient)

is located at the solution of

(e )+ 252 2T (B ) eth 2E (2-21

L)
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for large ¥ we obtain again, by expanding the coth (this time to two
orders), exactly the same result as before: a velocity of 1/ V2B
and a thickness of Je/2 - t/V B.

We will return to a more basic discussion of these flows in

section 2. 2. 4.
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2.2.3 Asymmetric clouds

It is obvious, from equations (2-9) and (2-10), that the expansion
of any arbitrary cloud can, at worst, be numerically computed. All
the same it is desirable to have at least some simple model for
asymmetric clouds so that one can get a rough idea of any tendencies
toward symmetry, if in fact such tendencies exist. For this purpose

we consider a distribution function of the form

p
fo (25 %) = N fenp — (aux?+ a,xi+ay%7) ] (-_%)%e: Bv (2-22)

as a model for an asymmetric isothermal cloud. The cloud is
actually supposed infinite in extent, but the density falls off

exponentially with distance. The density contours are the ellipsoids

(assuming the a are all positive). The advantage of the form assumed
in (2-22) is that the variables are separable.

From equation (2-9) we can work out the density at later times:

= “"o_@%' _ qﬂxl'z
S et rat) il F T prae

P L S L% N (2-23)
pt+a,t ptast*

It thus appears that the contours of p are always ellipsoids, but the

eccentricity of the contours is a function of time. Equation (2-23)

shows that as t — oo the contours become spheres.
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Consider an ellipsoid of revolution, given initially by

2 IR
a_‘x,"-}—qz_Rla const. = E_LE + J%z
\ z

where 11 and 12 are the semi-axes. From (2-23) the axes of

the contours at later times are related by

T Bratt oy Brauth,
Bay Ba,

so their ratio is

LA i?«‘/lf + t/Bl, jVL.

—L
1 |+ t/pl} (2-24)

2

This equation is plotted in figure 6, as 'L‘l/ 'L'z vs. t/LZ\/E for

some values of Lll LZ' The limit 1,/1, = 0 corresponds to a

flat cloud. For oblate spheroids (i.e., [ 1/ L2< 1) the shape of the
expanded cloud is almost spherical at t =2 2 LZ/ VB, and this time
depends only slightly on the initial eccentricity, The narrow portions
of the cloud expand out much faster than the other parts. It is also
interesting to note that the flatter the initial cloud, the higher is the
rate at which it tends to symmetry, though the actual time taken is
longer.

For prolate spheroids (11/ LZ > 1), (2-24) can be written

P ’
L. ilf/hl + 7Pl §/L (2-24a)
K L+ t/BL
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which has the same form as (2-24) except that 11/ LZ is replaced by
the reciprocal, and t is non-dimensionalized with LIJ'E . With
this interpretation, therefore, figure 6 also describes the expansion
of prolé.te spheroids.

We may then generalize the above results as follows: én
asymmetric cloud in free molecule expansion always tends to symmetry,
which is roughly achieved at times of order ZLJE, where 1 is the
longest initial dimension of the cloud.

This result is somewhat different from the conclusion reached
by Dyson (Ref. 5) after a gasdynamic analysis of the same problem.
He found that an initially oblate spheroid actually becomes prolate

after expansion, and vice versa.



25

2.2.4 Free molecule diffusion

It will be noticed that some of the integrals written down in
previous sections show a superficial resemblance to those encountered
in heat diffusion problems; and this fact has actually been used by
Molmud to evaluate them. The purpose of this section is i:o sliow
rigorously that, under certain conditions, there is in fact a peculiar
diffusive mechanism in the flow.

We have already expressed the density in free expansion as

the integral

Q(%,t) = ‘EEE f To (%5 ;—%‘) Dx’. \ (2-9)

Differentiating this with respect to x,

o

0Q(x%,t) ? / |
R e (2-25)

where y = y(x') = (g - x')/t. Comparing (2-25) with the

expression (2-10) for uy, itis seen that 8p/dx is proportional to py if,

and only if,

Ei%;s;i) = ky T, | (2-26)

where k is a constant, independent of x. Thus only if f0 can be

2
. “pv . . . .
written as g(x) e B (and so is an 'isothermal' Maxwellian, with

constant [3) is (2-26) satisfied; and in this case the mass flux is
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indeed proportional to the density gradient:

. __t_ ¢,
e = 28 %

Putting this relation in the equation of conservation of mass

(obtained as a first integral of Boltzmann's equation), namely

9 A (ou) = 0
s% + (? ~) p)
one obtains
39 __t_v% =0.
St T 2p 8

This is a diffusion equation for the density with a time-dependeﬁt

diffusion coefficient. It can be transformed to a diffusion equation

with a constant coefficient (equal to unity, in fact) if we put.

when (2-28) becomes

_v‘? = 0.

o/,o/
o

It is thus no surprise to see integrals looking like those in heat
diffusion.

The mechanism of the 'diffusion' exhibited in (2-28) and

(2-29)has nothing in common with the other familiar phenomena,

namely ordinary {'Navier-Stokes') diffusion which depends on

intermolecular collisions, or Knudsen diffusion which depends on

(2-27)

(2-28)

(2-29)
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collisions with surfaces (instead of molecules). The mechanism of

free expansion can in fact be best described as a kind of 'collisionless!
or 'kinematic' diffusion. All the peculiar features noted earlier, like
the 'diffusive front' traveling at a definite velocity and growing linearly
with time, can be explained now as simple consequences of the diffusion
coefficient in (2-28) being proportional to time.

The limitations of this interpretation should be clearly under-
stood. In particular, it should be noted that if B is not constant, one
does not get (as might be expected) a diffusion equation with a corre-
spondingly variable diffusion coefficient; there simply is no diffusion
equation in that case, as py and 9p/0x cannot be related. Also, if the
Maxwellian is centered about a non-zero mean velocity, additional
terms are introduced into the equations. Finally, as we shall see later,
the solutions when there are time-dependent sources have no simple
analogy.

It thus seems that while the resemblance to diffusion is useful
in some problems, it is not very general; as the approéch through the
basic differential equations is at least as simple and vastly more
general and fundamental, it will be adopted in the rest of the following

work.
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2.3 Flow due to sources

In this section we are concerned with the flow due to free-
molecule sources, and so with the non-homogeneous equation (2-1),
Q # 0. It will, however, be assumed that the external force E = 0.
The solution for f is then given by (2-6):
t
Flx,t5¢)= f, (%-vt u)+ f Qiz-v(t-9),8; v { ds, (2-6)
]

If fo = 0 and we have a 'pulse source!
3 2
Q = QGxt;u)- 569 SON(E) hpo?

~ 7

we obtain again the point cloud solution

FOe,t;2) = 8 (x-wt) R (1) N (B)*F o fv? (2-12)

One problem of particular interest is the continuous point
source which emits molecules with a given mean velocify u,at a
.certain rate N (t) (molecules per unit time). This would, for example,
give the flow field due to a free molecule jet at large distances from the

exit., The source in this case has the form
. 3h
Q=3(x%)N(t) (%) eX}O-B(ﬂz—%o)z. } (2-30)

Putting this in (2-6) one gets

],_(%'t)' ’Q;) _ (.T@t_>3/ze‘—ﬁ(‘£-!a)l J‘tgi'ﬁ“g(tﬂé)} N(A)ﬂu (2-31)
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In order to integrate this over velocity space to get the density, etc.,

it is convenient to introduce the transformation

0= ! (2"32)

and note that

S{-2(t-9F=3{x-L]=-038(y-x0).
Putting this in (2-31) and integrating over y, we get
b0 3 YA '
Q(x,t) = j (476;)  PETE G (k) e dor,

%(%,t) = __?é_ j“(%)s/zé-g(;r_g,) M(t—'/ﬂ') 0"?—0{0', . (2_33)

The lower limit in these integrals is 0"= 1/t if the source starts
emitting at t = 0, and o= 0 if the source has been emitting since
t= ..- 0o,

The simplest case is when N (t) = IQIK(t) is a step function
in time (I;I being a constant). The integrals in (2-33) can then be

evaluated explicibtly, and give

A 32 _p,u_zwzs_ - ' 2
3&.H) ‘i%;z (E)" < L e B(F - o)
+ VTP e erfe VB (% - woens D),
w(%t)= ;Z:L%S._E i\qs (’%Jr U, e0d %) w'o[_rg,(z% - u,m&)‘_] _ (2-34)
+ ‘-/5— (1 2BuU; cos®d) erfe 1B (1t - Mou*&&)f

T B ) e
ocfe VB (% -wees ).
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Here o is the angle between x and g and x = |x|is the distance
from the source.
Consider first the symmetric source, u = 0. Equations

(2-34) then simplify considerably:

- N_ Sh B/t | (2-352)
?(%)t) - 2'57{2. (71') e ) . a

) o B LB [E o P 2B
W) = Br 2o e P erfe

t | (2-35b)

First of all.it is seen that the gas velocity splits into two parts again,
one part containing f and the other not. At small times or large

distances (x \/B/t >>1), using the asymptotic expansion for erfc,'

w2z, 2t L%
~ t + 2‘57&_ _tJ

the same as for the pulse source, of course. Secondly, the time t
enters info (2-35a) only in the combination x \[[?:/t, a'n'd; disappears
when x \/_ﬁ/t <§ 1. Thus at any time a steady state prevails at
sufficiently smali X, and an unsteady state at sufficiently large x.
Naturally, at any given point x the flow becomes steady at very
large times and the'kinematic' part of the velocity then vanishes. The

field of the steady, symmetric source is given by

NVB
3= 5ok gtk

u.e=Jz—\}1§-":-x, mt——\[‘

The total mass flux at any radius is 41rx2. pu, = N . Itis very

(2-36)

MFI
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interesting to note that the gas velocity is cohstant throughout, and

it is the density that drops off as the inverse square of the distance -

in contrast to the ordinary incompressible hydrodynamic source. Thé
proper i:hing to compare with is actually the supersonic source, for
which the velocity tends to a constant at infinity., A general cdﬁparison
| of the velocity fields of gasdynamic and free molecule sources is made
in figure 7. *

Let us return now to the case 115 # 0. From (2-34) it is
obvious that the streamlines still radiate in straight lines from the
center, but now they tend to crowd around an axis in the direction g -
The remarks made above concerning the unsteady character of the
field still apply (they are quite general, in fact). The steady field is

given by

' 2. 2 -2
Q=4 N%E [e" O VT© Uyea e U"ws-(l-}-e/rf' Uom%)],

7

: 2, .2 ‘ 2-3
e uif o 2 Ueasd €0V, (12U ) (et o) |
" U v U, e Y- (14 orf Uyeon D)

Here go = JE, and is proportional to the initial Mach number,

: o ) 2
At right angles to the axis the density is reduced by the factor e—Uo
in comparison with the symmetric source, but the velocity remains

the same,

* x _in the figure is defined by Q = 4wva _p x ;, where O is the
total mass flux from the source. For the gasdyngmlc sources p , a
are the stagnation point values of density and sonic speed, and
for the free molecule source ag is the sonic speed at the origin.

o}
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2.3.1 The Ihigh Mach number! limit

The case of Uo>> 1 is of some practical interest, and an
asymptotic expression for the integrals in (2-33) can be obtained
using the method of steepest descents (see, e.g., Jeffreys, Ref. 8)

in the limit Uo% oo. One then gets

)

. - B \ ~Urem®¥
%, t) = %%L U, e ¥ N (t—B‘Tu-E— ) & Lo

(2-38)
W (X

% (x,t) e 2w, s
P

It will be noticed that p at (x, t) depends only on the
strength of the source at the time ( - X\/E/UO cos¥); obviously
the expressions are valid only when t > X/U-O cosv" and are thus
not correct at 'S'o_'n-j 2.As we shall see below, however, the density
is so small at D ~w/2 that (2-38) is pkractically good evei'ywhere.

In the case when 1.\1 is constant the density given by (2—38)
has been plotted in figure 8, for a few values of Uo' Tﬁe exact
solution is also included for U, = 1 and the closeness qf the approxi-
mation for Sﬁ w/2 is quite impressive. The agreefnént is of course
very much better at the higher Uo for which the density 'falis off so
rapidly with increasing & that the error committed in using (2-22)
for all angles is hardly noticeable.

It is obvious from (2-38) that the angle of spread of the jet
is of order l/UO. |

More complicated problems can be solved by superposition

of the source solutions given above, but we will not go into them here,
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2.4 Steady flow through an orifice

Proceeding along the same lines as in previous sections, the
free molecule flow past any body can be determined in the following
way. In steady flow without any sources, the Boltzmann equation

becomes simply

the corresponding boundary condition on f might be prescribed in

the form

F(z3e) = f (%;2) on S(%)=0

where S(gz) = 0 is some surface(s). The solution of (2-39) can then

be formally written

Fzsw) = f(%5%) .  (2-40)

where § is the 'root! of

Exy = XX, S(¥)=0.

o~

Stated in words, this means that as the distribution function is constant
on trajectories (from (2-39)), its value at any point x for any velocity
y, is equal to that at the poiﬁt g where the vector y,produced back-
wards, meets the surface S.

Consider the flow through a circular orifice (Fig. 1). We
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denote conditions far upstream and far downstream by subscripts 1

and 2 respectively. The infinite sheet (in which the hole of radius

‘R is cut) is assumed to be at temperature T. It is also assumed

that both pressure and density far downstream are very small: pz,'pz_'z 0.
If we draw the velocity space at any point P (x), we ca,n“‘ immedi-

ately distinguish a region C, which is the backward cone subtended at

P by the orifice. Molecules with velocity vectors lying in C can only

come from downstream infinity, where however f = f2 s .0; hence

there are no molecules traveling upstream ﬁhrough the orifice, and

the cone C is 'vacant'. All the velocity vectors lying outéide C can,

however, be produced either to the sheet or to upstream infinity, hence

the distribution outside C is just fl' Assuming f. is a Maxwellian we

1
thus get

= 0 wn C
f (2-41)

n, B e e Biv* everywhere else,
“ B

f is similar downstream of the orifice too, except that the vacant
region is the n;ajor part of velocity space, and the backward cone is
nowa 'full' Maxwellian. If the point P is in the plane of the orifice
fhe cone becomes the half-space, hence £, and all the mean quantities
associated with it, are constant all across the orifice.

The number density is relatively easy to calculate, being given

(in non-dimensional form) by

N(%) = 1‘;@\39 = j:( .)3
(

e p‘vz(d.n- .Q.) 1!‘"0(1)‘

f2

Riy

- 22 , (2-42)
4x ’
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- where £(x), the solid angle subtended by the orifice at %, is

2r R iz !
2 = J ZOLCP J 2 2 7'/ d"l 12)3/2 (2-43)
. A A ('r] +25-2mn essp + 7 )

using a.cylindrical coordinate system (z, 1, ¢). (The superscript
o is used in this section to denote free molecule flow.) The evaluation
of this integral is somewhat tedious but fairly straightforward (with the
assistance of Byrd & Friedman, Ref.9), and leads to the expression

% =L on (o, ,0,) — oot e o, Fy (ol.‘)} (2-44)
where _[\D is Heuman's lambda function and (w/2) FO { obl) is the
complete elliptic integral of the first kind, K(sin o(.l). Heuman
(Ref. 10) has discussed the properties of the function 'A'o’ and‘has
also tabulated both A'o and F . The arguments &, oL_ are given,

2

in terms of polar coordinates (r, 8) from the center of the orifice, by

Aran )"2) B o o T

el (rz+2~rm ¥+ Y rewd -l
(Distances have all been non-dimensionalized by dividiﬁg by R.) A
relation correépbnding to equation (2-44) has been derived by Sadowsky
& Sternberg (Ref. 11) for the stream function of a source fing.

o The density field calculated from (2-42) and (2-44) has been

plotted in figure 9 for the region upstream of the orifice. The field

downstream is obtained easily by making use of the symmetry

N(v,t-9) = 1— N(v,¥) | (2-45)
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which follows from the nature of £° discussed before. In the plane of
the orifice {l= 2w, so N = 1/2. On the axis oLy = 0 and tan «, = - T,

and (2-44) reduces to

Q ! -
175— = 5 (| — <4 (X,_))'
- hence
2+ zF4+
N=NG&) =< L = ergt % | (2-46)
+z? ' :

if 2% is the included angle at the vertex of C,
The non-dimensional gas velocity U can similarly be expressed

as

3 z -
W) = VP, 3(x) - - YB JW (ByePvy Dy . (2-47)
. n° (%) s .
: Cc
This integral unfortunately turns out to be too complicated to express
analytically, and we must at present content ourselves with calculating
it along 6 = 0 and 90°, Along the axis we can show quite easily that

2 -2, (2=
s £ (2-48)

U@ o=t (1- 2 ) o 2

across the orifice U is constant and equal to - UZ(O) =1/Jn
(or u= -uZ(O) = % EI)‘ However it is not difficult to guess the

qualitative behavior of U for other values of , using N as a guide.
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It is interesting to note that we can immediately obtain, from the mean
field, the free molecule mass flow through the orifice (per unit area)

as

mo= Q(~Uz) = ‘L JZ‘E =}|T_9|ct >

a well-known result derived usually by a different method (see e.g.
Present, Ref. 12), A little thought shows that U, like N, is anti-

symmetric about the orifice and has the value
U(r, n-9) = ‘%E ~ U(r, ), | (2-49)

Thus, far downstream the gas velocity is finite and tends to c,, but

1’
the density of course drops off to zero. (Compare the results of
section 2.3 on source flows.) It should be noticed that thbugh the
velocity field is antisymmetric about the plane z = 0 the stream line
pattern will be pﬂerfectly symmetric as it depends only 6n the geometry

of the cone C.

The temperature field is obtained from the relation
RT(?"Q) = Ja- et = %3-( 'l)'"-—auz),
But

Ut (%) =

°<°L)J (E) " (4n-0) vidv,
- (2-50)
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hence
RT(x) = RT, - L w*(x)
or
T(?S) ' B| l 2 2 .
= = = (-2 (2-51

Thus the temperature is very simply related to the velocity. * It
drops slightly from T, to (1 - 2/3w) T, = 0.7879 T, at the orifice

and then sharply decreases to T, = (1 - 8/3w) T, =0.1512 T, far

1

downstream. Along the axis, we get from (2-48)

| -
= = = = '
B B(K) [ { 37 &z+’){1+ \/(z_"-H)jz:l (2-52)
3 2/

It is also interesting to calculate the pressure tensor
by )= m [eefDy = o (W - ww).

On the axis one obtains

-~

l+¢ﬁ30€ et
o= P[5 - ST

. and it is easy to verify that this has no linear relation with the velocity

*The inviscid energy equation is very similar to (2-51), and gives

T =)= Xlyur= |- 22
-5 -2
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gradient whose relevant component is

o, - o,

2z - \]7cﬁ

The relations between the stresses and velocity gradient in free

molecule flow are of course not unique, and in fact vary with the
geometry and boundary conditions of each problem.

What is even more interesting is that no such relation is shown
by the above equations even at large distances from the orifice; for

small ot we get

~ __:1 2 31& 3
o 2B (1239), e

On _the other hand, at 1arge distances (i.e., several mean free paths
from the orifige) one expects the flow to be governed essentiallSr by
the Navier-Stokes equations again, collisions no longer being
negligible. It is thus seen that even in the limit R/)\l;-ﬂ) the free-
molecule flow field discussed above cannot be valid at large distances
from the orifice. We will return to this point briefly later.

For the sake of completeness, we collect below the values of

the stress tensor on the axis:

Fersd amtx | e
bz’z. = P'[ > - Tt(l+¢‘.o-oot)]’ =(li - _'7.{) ,ol at orifice;

3 cog?t) Cong A N
Pxx"'P” = Pn[“‘f_ + B-ces 04‘) 05]7 =L P, at orifice;
- 4
=1 h. = |+ Coo ot | A "L /L _ 1 e
P 3Pu P\[ Y - (14 ) ) —('2. ﬁh gt orifice,
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Finally, consider the entropy. In gasdynamics itis gix}en by
-Y
S= ¢, A bQ

so that, using the values obtained for p and p, we get for the ratio

of the entropy at the orifice to the entropy at upstream infinityf

57, |
§S°_, = Am %(%;) ~  0.223,

- apparently a considerable decrease., But if one calculates Boltzmann's

H-function, defined by
H = y 'I'X/Y\)L ‘D'Q:,

then for the f given by equation (2-41) (remembering that, from (2-50),

.

v = (A,

H = n{bvxﬂ,a—%&n(%)-%}- ‘:

The same quantity per unit mass is fl = H/nm, and thi:s /obviously is a
constant throughout, as might have been expectéd from the vabsence of
collisions.
The quantities N, B, U and Ur (the radial component of U,

which will turn out to be of interest in the next cha‘pte‘r) are plotted

in figures 9 and 10. As an illustration of the kind of flow pattern to
be expected in free molecule flow, the streamlines have been worked
'out for a slit and are shown in figure 11. The calculations for the slit

are very similar to those for the circular orifice, but have the
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advantage that they lead to closed expressions for all quanfities; in
particular
N-= N(Y)’&) = 1- o/

- U 5 = A O
v (9) 2 7 (1- ot/m)

)

where 2 && = tan -1 2rcos @/ (1‘2 -1) is again the included angle at P.
The temperature is still given by (2-51). It can be easily shown that
the. vector g bisects the angle 2oL at P, and this suggests an obvious
geometric construction for drawing the streamlines. As remarked
earlier the streamlines are symmetric about the plane of the orifice.
The effect of the wall in slowing down the flow is quite impressive.
One might make a few remarks here on the general vaiidity

of the above picture when the flow takes place from one finite

reservoir into another. Conditions upstream are obviously not going
to be affected too much if the linear size of the reservoir is sufficiently
large compared to the orifice diameter and the mean free path. | Down-
streain of the orifice, however, the presence of a wall tends to bring

the gas temperature back to T., while we saw above that the

1
temperature T, in the case of an infinite reservoir is much less than

Tl' Thus heat transfer at the walls becomes important, and the mean
field will presumably be rather different from the one discussed here.

The point has been discussed by Liepmann (Ref. 1), and we will

return to it briefly later.
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III. NEARLY FREE MOLECULAR FLOW

3.1 Introduction

"The purpose of this cha,pter- is to take account of collisions in
an approximate way by perturbing on the results obtained with the
collisionless Boltzmann equation in the last chapter. Particular
emphasis is laid on getting a numerical estimate for the departure
frqm the free molecule limit in the flow through an orifice, for which
measurements are available, in the hope that in this way one may get
an idea of the uséfulness of the perturbation mefhod, the validity of
the molecular model chosen, etc.

The method used is a scheme of itefation proposed by Willis
(Ref. 13). However this method is first generalized to unsteady
problems and derived from a different approach in section 3.2
below, so that it can be applied directly to all the flows discussed
in the last chapter. The method is then utilized (in Sec. 3. 3) to

study the orifice problem which is discussed in some detail.
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3.2 General iteration scheme

Let us consider an unsteady flow without any external forces.

The distribution function is then governed by the equation

_~r

%Ji_ + v.% - L) -FL) + Q. IRV

With the approach through characteristics that is adopted' here the
extension to the case when there are forces is fairly obvious, and
will not be given here.

The basic idea of the iteration scheme is to approximate £
by successive iterates fo, fl, etc., where each f' is obtained from

the previous one from the eqguation

21 2" n-i " -l -
v qgr) L) e (3-2)

ot

]

with £° being the free molecule solution

A L2 L. o (3-3)
ot 0% :

It is of course hoped that the first iterate f1 will already be a good

approximation to the departure from free molecule flow. As we

will mostly be concerned only with the first iterate, we will study

the equation

L v < 460 - L) +a (5-4
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It will be noticed that g,(fo) essentially acts as a source distribution,
so that it can be lumped with Q. In the following Q will be omitted

for the sake of brevity, as all one has to do to take account of it is to
replace’ 6, by ﬁ;{— Q.
Writing a,(fo) = 9,0 and L(f°) = L°, equation (3-4) becomes

! of! s 0 S
e L

- a guasi-linear, first order differential equatioh. The characteristics

of {(3-4a) are given by

! (] [} 1
%=’> %=w, %4—]“»& =45

using the initial condition
f(z,t=0;%) = § (2;u) (3-5)

their solution can be written

t=4, X=-Us + E

-~ ~ ) : ;
= —FL'(L&’}-[JA ° A:C“AA" L +1 7.
f'= ebl-] G e [ U 1]
Eliminating s and g as was done with equation (2-4) and putting
%! = x - yt, we get

. t i
j_l(z)ts -g;) = JLO (?S,} E)%_J;LO(%'.*_ttl)tls,‘z) D(tl

t :
Y et vie) . (3-6)
(4

t
o - | LRt ) e
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Whgre
L'(x,t;v) = L{§°(z,t; 2}

etc., Note that fo(:s';g) is just the free-molecule solution fo(ﬁ, ¥).
To proceed further from (3-6) one has to postulate some

molecular model, The simplest to use is perhaps the model for

scattering proposed by Bhatnagar, Gross & Krook (Ref. 14), in

which J {f) and 9,(£) are assumed to have the form

LUI’) = AW)
§(4) = AnF = Av(8) pB(2-0))

(3-7)

where n, u and § are the corresponding moments of f, A discussion
of this model is reserved for the next chapter, but it may be remarked
here that the model obeys the conservation laws {of mass, energy and
momentum) at each point and instant, but not for each collision. The
gain function is a local Maxwellian normalized to the 1o:cal collision
density, while the loss function is assumed to be independent of
molecular velocity. The value to be given to A will also be discussed
later; it can in general be a function of the local thermodynamic state.
In nearly free molecule flow it would seem best to choose A such
that the number of collisioﬁs {which is the most significant quantity)

is given as accurately as possible. We know that if the distribution

is a complete Maxwellian ( - a standard state which will be denoted

by the subscript 1), the number of collisions per unit volume and unit
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 time is n, ¢,/ Z\;» where M\, is the mean free path; equating this with

171
the number given by Krook's model, which is ;.Alnlz’ one gets
A, = G . (3-7a)
A '

As nl)\l is inversely proportional to the scattering cross-section and
tends to be a constant for a given kind of molecule, it is also seen that

a fairly general form for A would be

A=Az t)= T2 t) (3-7b)

1\n}‘l

It is however often convenient to assume A = const. = A'l’ at least
when te'mperature variations in the flow are small.

- The choice of A is by no means a trivial matter, as is
easily shown by an application of (3-6) to the flow due to the‘point
cloud (discussed in Sec. 2.2.1). The integrals in (3-6).can be

evaluated in this case, and one gets

Fx,t; )—f‘(w«)wk[‘AN(@‘)%‘ta—{ Jﬁ wﬂ
+ ..o

But, as was pointed out earlier, no collisions can possibly occur

in this flow at t > 0 if they do not at t = 0; thus we expect
i
F&.te) = {5y

which is possible only if A = 0. If A is taken to be given by (3-7b)
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this is obvious, as the temperature (and so c) is zero in this particular
case, But if, as is ordinarily done, A had been assumed to be a
constant number, a meaningless result would have been obtained.
This example suggests that in problems in which there are
wide variations in flow quantities one should perhaps iterate aiso on
1

the value of A as a series A”, A , «« . to obtain reasonable approxi-

mations.
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4.3 Nearly free molecular flow through an orifice

In this section we study specifically the flow through an orifice at
small values of an inverse Knudsen number & , defined as the ratio of the
radius .R of the orifice to the mean free path M in the gas far upstream.
The free molecule (or gaskinetic)limit corresponds to € —»0, and the

mass flow rate m in this limit has already been shown (Sec. 2.4) to be

=Lt (3-8)

In the following we will primarily be interested in the mass flow (at
non-zero €}, as this is the quantity on which measurements are
available, though all other flow gquantities can also be calculated from
the results.

The basic physical mechanisms operating to change m from
its free molecule value are the following. First there is a decrease
in the density near the orifice (as we have seen earlier), which results
in fewer collisions, and so tends to decrease the mass flow. But on
the other hand the decrease in p causes an increase in the mean free
path, so the probability of a molecule reaching the orifice is higher.
Finally, due to the persistence of velocities, moiecules coming out of
a collision retain a part of the local gas velocity, which again tends to
increase the mass flow. There is no obvious reason for neglecting any
of these mechanisms in comparision with the others; in fact the calcu-
lation below, which takes account of all these factors, shows them to

be of roughly equal importance,
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1
For steady flow, equation (3-4a) for the first iterate £ can be

written

"Zz‘ﬂ + f"Lo = %’o )

%

whose characteristics are

with the solution
=Y+ &,
{(3-9)

Foop [ [P [ e Lt vt ]

First consider only the molecules traveling towards the orifice from

upstream infinity. The integral above will look simpler in terms of

_Ix- &l
= v I

4

which is now just the distance measured from the point 5 towards +o0o;

also the boundary condition can be written
3 2
I R R AL S S g
1

and this determines the constant in (3-9)., One thus gets
» o y
floesw = e | L do
% e Lo " y
o] - [ Azt

The quantity [, (f)/v is essentially the reciprocal of the mean free

{3-9a)

path, hence the first term above vanishes for any finite Z , leaving
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us finally with

15 v) = j ﬁ‘{’”’" J_.-—f-)a(z”} 1. (3-10)

An exactly similar integral can be written for molecules traveling
upstream-, using the appropriate boundary condition (at downstream
infinity) - their number is no longer zero when collisions .are- allowed
though it will turn out to be quite small (see p.58).

Equation (3-10) has an immediate physical interpretation,
for %,(fo)/v is just the number of molecules which, after collision
in unit distance, are traveling with velocity v, and the exponential
multiplying it is the probability of such molecules reaching the
orifice (or € = 0). The first term in (3-9a) represents the number
of molecules starting from upstream infinity which reach the point £,
and this of course is zero, as the probabilitjr that they will ﬁot suffer
a collision in an infinite distance is zero.

Using Krook's model, as given by (3-7) and (3-7a)*, equation
(3-10) becomeé |

PG5 ) = fr2er [ MR e Ve B(L- U

0

4 ,
x wp{--eviLzu(f’) AE’}-_%—

(3-11)

*The assumption that A is a constant equaltoc./ n 1M
justified in the present case as c varies by only about IIO per cent
upstream of the orifice - and, as will be shown later, the upstream
side accounts for most of the correction to free molecule flow.
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where we héve used the non-dimensional quantities
V=vJp, U=ulp, N= »/n,, B=f%B,
Z: K/R, e'= e/\/Tt = R/A'\/T[ .

(The superscript 0 always denotes free-molecule conditions.) N, B
and U are of course the same quantities that were computed in
section 2.4, and so the integral in (3-11) can be evaluated, in
principle at least, for each velocity vector V at each point §
in the plane of the orifice.

An explicit and analytical calculation of (3-11) is, héwever,
practically impossible. Fortunately, though, one can still get a
good estimate of the result by making a few simple approximafioris.
First, it will be assumed that the flow is uniform across the orifice;
this is strictly true in free molecule flow (as was shown earlier), and
should be a good approximation in nearly free molecule flow too.
This means that we evaluate (3-10) only at the center of the orifice,
and assume it is the same all across it; and & can thefefore be
replaced by r, the radial distance measured from the center of the
orifice. |

Next we observe, from figures 9 and 10 and from the discussion
in section 2.4, that the values of N, B and U - but not of Ur’ which
appears in the term (V, - g)z in (3-11) - are independent of & at
r = 0 and oo, though notmin-between. It is obvious, therefore, that
the integral in (3-11) is similar for all rays, though its actual

numerical value will vary somewhat. This fact leads to considerable
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simplification in what follows.

It is convenient for purposes of analysis to rewrite (3-11) as

j"(v;o;*!,) = f-2¢ ﬁ'm 9, (1, V) H (1,V; ef)%r e
b
where
g, (v) = N? p¥e ¢ BUY
g, (7,V) = exp§-2BU,V + (I-B)V?}
= expfh (1) V + R (7) vz} , (3-122)
H(r,V;e) =

.
= exp- %ngmw

]

exp - ev"n(v).

It is particularly instructive to work out the integral in (3-11) along

the axis, O = 0, where N, B, U and Ur

-
-

-U are all analytically
known from equations (2-46), (2-48) and (2-52); also

A - IZIM(Z) dr = z+ V(=) -1,

{(3-13)
0

We have therefore

]

H(-Vg,2-0) = f 2 f 3,(2) g, (z,Y) H(z,V; ) 45- (3-14)

0
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where 2 is the unit vector along the z-axis; and we want the lowest
order term in €' from this expression. Now it is shown in

Appendix 3B that the integral for the mass flow (or, for that matter,
for any moment of fl) can be split in a way which corresponds exactly

to splitting the distribution function in (3-14) as follows:

f‘(z:O;‘Vi) = tze,[f@,afo gtv1+ J:L _4\77] : (3-15)

The error committed in this splitting is o ¢'); the lowest order term

in €' turns out to be O €') and (3-15) reduces, correct to O( e'), to

f_l(1= O',- VZ) = j‘|[l+ 2,_\7_'i_,2-_ + J”(ngz-—l) dz_j:l (3-16)

using the integral evaluated in Appendix 3A. The function g, can be

expanded as a series in V,

ﬁz'-- | + v‘e\l + Vz(/—g\i-l:: '1'4\2,) t vs(% + "\t/{‘z.)
+ \/4(% - 4\,2;-;\ . ﬁz:')f'”)

and putting this in (3-16) we can write

Pl (z20;,-V2) = f, 30+ 2_\/e_’q>° (\/)j (3-17)
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where

Ms

$, (V) = 2} AV,

n=H
[~]
A, = 11+j (9,-1) Az,
= fab
(1]
A, - Al
2 L (.9..2_!- + gl"\z) DKZ)

From arguments given previously the distribution function should

look similar on other rays {i.e., for other V), so we may write
! : 2¢’ -
f(*=o;\l)=f.i'*7¢(\l)}- ‘ (3-19)

Now, inferring the variation of the integrand in (3-12) with 6

frorﬁ figures 9 and 10 and recalling that N, B and U vary between the
same limits at r = 0 and r = oo for all 8, we conclude that the effect
on thé integral of their dependence on 6 must be small. (For

0
instance ! (1 - N(r)) dr is exactly the same for 8 = 0 and

o

8 = 90°.) However the variation of U_ (and hence of ‘hl) with 6
cannot be neglected. Near the origin we obviously have

Ur = Uz(z = r)cos @ as |UZ} ~ U. For r>>1it can be easily

shown that
U ~U 2 42
U, =V s

but L~ cos 6/1'2, so again Ur o~ Uz (z = r). cos . Thus, itis
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a very good approximation to take

U, (,9) & Ug (z=7) s ¥ (3-20)

Finally, it will be noticed that h2 accounts for a relatively small

- contribution to the function ¢ in comparison with h,, as it varies

1

from about -0. 27 to zero as r goes from 0 to oo, and appears only
in VZ and higher order terms.

Putting these inferences together, we conclude that,
approximately, the coefficients of v®in (3-18) are multiplied by

corresponding powers of cos @ on rays other than the axis, or that

$(Y) = &, (Vers ¥) | (3-21)

which also amounts to putting

g,(*,V) = 9, (z,Vews D), - (3-21a)

Using this in (3_19), the final result becomes

frr=00) = £+ 25 AV e 81, (3-22)
N nal
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Results:

The coefficients A"n have been obtained by numerical

integration for n = 0 to 5, and have the following values:

A = - 0,3944, A
o} 1

3 + 0.0502, A.4 5

4]

2
A

H
M

The mass flow through the orifice is easily obtained as

= m [ (-v) f () Dy

Substituting from (3-22)

naf

B2
2 V2omd dF dV

Ns

Using the values of A.n given by (3-23) we get*

m o~ ‘ng_‘E, (1+0.25¢).

The coefficient 0. 25 obtained here is somewhat less than the value

0.26 given in a preliminary report (Ref. 15) where the calculations

were based on the assumption

B) =L e) = 3, (Ve §)

+ 0. 7549, A, = +0,1055,

- 0.0045, A_ = - 00,0013,

™ J J j-{\/om&-q-lemﬁ‘i‘AmV“M“

;’;9.5. [' tae 3 7\+2 (“H) ]

gl

(3-23)

(3-24)

(3-25)

(3-26)

*I have to thank Dr. Willis for pointing out a numerical mistake

at this point.
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which is slightly different from the one used here in (3-21); also h2
was ignored. The approximation (3-21) is somewhat more consistent,
but apparently the result obtained is not significantly different. No
claim of great accuracy is made for the coefficient; nor indeed would

it be justified, considering the approximate nature of the calculations.
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Correction for backflow:

The backflow through the orifice is nil under free molecule
conditions but one may in general expect some backflow when & is
finite, even though the pressure ratio pl/p2 is still infinite. Using
exactly the same procedure as before, one can write down the

distribution function for molecules traveling upstream as

- bo

f'(z-05VE) = §,2¢ | 9,03 g,(x,V) H(z Vs €) 2,

where g1’ 8y and H are still given by (3-12) but of course one now
has to use the downstream field of N, B and U, obtained as‘ shown

in section 2.4. Both hl and hZ are then negative, and h(z) —#‘l as

'z —>» -o0. By repeating the analysis made for the upstream integral

one concludes that the highest order term in fl (z=0; V2)is O(e'), and

is given by
—0o
| . s ' .
Flz-05V2) = f,2¢ [ g, 0,z V) 4.
0
The approximation (3-20) for the radial component Ur is now rather

crude, but conservative in the sense that it overestimates the backflow.

The correction to the coefficient in (3-26) can again be expressed as

a’ = 42

+1
-v\+‘?_ _7-_)!

where

Ao’:_j”g‘okz., " Jg‘;\ dz,
0

A = E-w(i';‘llz + 3'4\1_) dz,

0
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The coefficients alternate in sign, and using the Euler-Maclaurin
technique one arrives at an upper bound of -0.03 for -a‘, i.e., the
coefficient in (3-26) would be reduced at most to 0. 22 on account

of backflow.
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Comparison with experiment:

Figure 12 shows the experimental data of Liepmann, and also
rthe result (3-26) which has been ploti_:ed assuming that the viscosity
H’l = —é— 91517‘1‘ The backflow correction has not been inclu@ed for ‘
two reasons: first, it is small and would not make much difference;
secondly, its exact value is rather uncertain in the case of flow into
a :Einit'evr-eservoir, where the flow field is affected somewhat by the
presence of walls as discussed in section 2. 4.

Figure 12 shows reasonable agreement between theory and
experiment (notice that a small backflow corfection would make the
agreement even better}); and it seems safe to conclude that: (i) the
prediction of the theory that the departure from free molecule‘flow
is .linea'r in €& with a coefficient of the order of 0. 25 is borne out by
the experiments; and (ii) 'nearly’ free molecule conditions prevail
ﬁp 1;0 &€ ~1.0. The satisfactory nature of these conclusions also gives

one some confidence in Krook's model for collisions, and a brief

study of it is made in the next chapter.
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Appendix 3A

We evaluate here an integral which we will need, namely
. 2 e
X (@) = a [ opi-aterior)ide, = | expl (LI 2)Fdz,
) 0 .

Transform to £ = £ + V{44, AZ/A% - (Ez-ra@) /1§l ; then

_Z DLE

X () = j: -

Integrating successively by parts, this can be reduced to

X(@a) =45 (1ra) €% —a* T (a)f

where Ei(a) is the exponential integral with the following expansion

for small a (Bromwich, Ref. 16):

Et(a) = -0:5772.. -dma + a + ..

Thus X for small a is

X(@) =+ +0(atina) < ¥ (0) + o(a). (3-27)
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Appendix 3B

Using the approximation (3-21a) in equation (3-11) for the

distribution function before it is split, one gets
- :
{ . - 7 R -
f(r=05¥) = §2¢'[ 9,2) 3, (z,Vers ) H 2,V ) 2. (3-28)
0

Hence, from (3-24), the mass flow can be expressed as the integral
dn = 2¢ & &3/2- e—\/z 2 Vers ,9-) H(z,V;e)
# &[] 0@ Ve DREY

27cV 2ot F o Fd AV dz AV

DQNWL

= ‘ZQIE‘G/J JJ

\/"e,‘vzg‘(z) g, (%, Ve ) H(z,V,; e’)

3-2
s S S AY dz AV, (3-29)

Consider first the integrations with respect to z and V. Putting

g1 {z) g, (z, Vcos8) = G (z, Vcos 0), we write

Te) = ¢ ﬁ' ViV (G- Hdz AV + ¢ f] vt‘/zH dz AV

0

= J,(e) + T, (e,

the reason for the splitting being that (G - 1) is integrable in z.
We want to extract from J ( €'} the lowest order terms in &'.
: )
First writing H=exp - (€'/V) h (z) whereh (z) =2z -1+ (zz + 1)/,"

> 0 forallz > 0,
B ,
Je)=e | [ VeV (@Died-§ he)f dz dV

V=0 Z=b
oo

e J VieV® (G-1) zw;O-!::VLA(z)} dz 4V,
V:S z=0
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Replacing (G - 1) by an upper bound and using (3-27) we see that the

first term on the right is of order ¢ (3%/€’) . In the second term the
coefficient of h{z) is e//V, £ e/8. So if we can choose S{e') such
that 3%e'->0 and €/35—-0 as €'—» 0, which is possible with ok e'm

—2<m < 1, we can write

T() = e[| ViV (@D Az dV + oce).

0

Similarly
s
J, (e") = e;'[ j f Vi V* {m,o__&(z)j Az AV
V=0 %20
+ r J ViV e fenp - € (2T )} Az dV]

V=3 Z=0

4

20
/ 4 -V? ! R
e O(%—)+G’L Vi (l+-‘=‘-\-/-+- )
o .
X f {u(’o—%:(li-\fz"-l—l)}.ﬂ(\_} VAV,
z=( :
and using the result (3-27) once more

T, () = O (8% + r\/3 ‘Vz(t+§—'+-.-)¢
i.L-|—O( xme }Av

. . 5
It is again clear that we can choose & such that both 34 and & Z/S

‘m 1 1
are o ( ef), by taking 3= €, I <m <L > Thus
L(e) = L+ ¥l e’ + o(e).

47 %
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Putting these results in (3-29)

™ = 1Q% [ sz{i*_ [g_e, + e J‘T \/Ze—vz(G"'l) aLz_o(Vj.
0 ]
.m'&m&dsj
'S w 2 —V?
=2'L-9,E.[l+ eji+ F‘U{, vieVie-1) -
e e AS Az AVE ],

which, after expanding g, = exp (h1V + hZVZ) as before, leads to
exactly the same result as (3-25), thus justifying the splitting of the
integral used in equation {3-15).

A similar analysis will show that (3-15) also gives the correct
result for any higher moment. The backflow integral can also be

handled along the same general lines,.
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IV. A STUDY OF KROOK'S COLLISION MODEL

4.1 Introduction

The collision integrals %((f) and L(f) in the Boltzmann
equation can, in principle, be evaluated for any given f provided
the inter-molecular force field is known, though in actual practice
the evaluation is often extremely difficult. (Not to mention the basic
probiem that f is not known before-hand!) The force field itself is
in turn too complicated to be derived rigorously from other 'first
principles’, so one is compelled to postulate various model,‘s for
it, of the kind discussed by Chapman & Cowling, for example.

The basic idea behind Krook's treatment of the collision
integral is that a prescription of the force field is much too fine for
many purposes, and that it is often convenient to postulate (at a
grosser level) a statistical model for the whole scattering process.
Krook (Ré_f. 17) has recently made various proposals for such models,
without, however, applying or discussing them in any detail. Among

the simplest of these is the one we have used in the last chapter, namely

L(f) = A,

2 (4-1)
2 32 -B(v-y)
& () = AnF = An (ﬁﬁ) e P
" where n, y and B are corresponding moments of f:
" = [$Dy, mu= [vfDy,
(4-1a)

p":%;\j&fbg.

This is the model we will be mostly concerned with in this chapter,
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with A above taken not to depend on the velocity y. An even simpler
version of (4-1), which has been used several times, assumes An

is a constant ¥ , not varying in any way even over the flow field:
G(f)-FLlf) = (F-1). : (4-1b)

As this amounts to assuming a constant collision frequency (for a
givén flow), (4-1b) may properly be called the 'single relaxation
time' model. If the flow quantities vary too widely over the field,
this model would probably be a little oversimplified.

What is required of a collision model will naturally depend
on fhe particular problem being studied, but anything claiming
general validity will have to satisfy the following conditions:
(i) Mass, momentum and energy should be conserved at the level
of the model; i, e., the model should possess the same five invariants
as the exact collision integral. As individual encounters between
molecules are not considered at all, the conservations laws will not
necessarily be satisfied in detail. But the equations of motion 'in
the bulk' will not be affected, i.e., the same macroscopic equations
will be obtained as from the complete Boltzmann equation. (ii) The
distribution function should tend to a Maxwellian in equilibrium.
(iii) The results derived from the model for a Maxwellian distribution
should agree, as far as possible, with the exact results known for that
case.

The purpose of the rest of this chapter is to see how far the
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model (4-1) satisfies these requirements. Somewhat surprisingly,
the physical basis of Krook's model does not seem to have been
discussed till now*; nor, apparently, have some simple consequences
of it been deduced. In section 4.2 one particular approach to the
model is presented; in section 4.3 the Navier-Stokes limit is
discussed. Of course a 'model' should not be taken too literally,

but its implications should be worked out, if only to understand

its short-comings.

*After this account had been written up, the work of Kogan
(Prikl. Mat. Mekh, 22:597, 1958) was brought to the author's
attention by Dr. R. F. Probstein. This paper gives the same
interpretation for the loss term as given here, and also derives the
viscosity and conductivity of the gas(but assuming A to be a constant
number). However, the rest of the present discussion is different, and
the whole study here is also felt to be more complete.
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4.2 A physical interpretation

One way of understanding the basis of a model like (4-1) is the

following. Consider first the loss term
L(F) = [+(w)gT 40 Du.

It is well known (e.g. Ref. 2, p. 173) that for a Maxwellian molecule
(force < r_5) the combination gI in the integral is independent of the
velocity; so d (f) is just proportional to J':ED\,y, i.e., to the local

number density n. So we may put

L($) = A, (2

where A is a.number independent of the molecular velocity (it might
obvibusly depend on any mean gquantity).

The rate at which molecules are 'lost' at y per unit xy ' volume
is fL(f), .hence the total number of molecules involved in collisions,

per unit volume and unit time, is

~

V= [+L(H)Dy = Aw [$Dy = An*. (4-3)

. This is the justification for the interpretation of A given in equation
(3-7a) where it was put equal to El/nl)\l after comparing V= An2
with its value when f is a complete Maxwellian., It is thus seen that
A is proportional to the scattering cross-section of the molecule,

times c),i.e., the constant A in Krook's model is a measure of
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the volume swept out by a molecule per unit time, as observed relative
to the local gas velocity.

The gain term is actually the more difficult to handle. As the
total 'gé.in‘ must equal the total 'loss' (to conserve fhe number of

molecules), we must have

[4() Dy =v- Aw | (4-32)

too. Now consider rigid elastic spheres colliding among themselves.
it can be easily shown that for two colliding spheres, the scattering is
spherically symmetric in their center-of-mass system (see e;‘g.
Présent, Ref. 12, p. 143)., If the result can be extended to any number
of spheres, the scattering would be spherically symmetric in a system
moving with the velocity of the CM of all the spheres, which is just

the local gas velocity. Thus one may write

A = A L) | -

where ¢ is some function of the peculiar speed ¢, =|y- Ql,such that
S $Dy = n (to satisfy (4-3a)). In general ¢(c) would depend on the
initial state of motion of the spheres, i.e., on f; as a first approxi-
mation, we assume it is universal. Then the Boltzmann equation(for

steady flow) would become
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g-%= A—m{cp(c)_j-}.

But it is a general property of the Boltzmann equation that the collision
integral is identically zero when the distribution is Maxwellian; and to
satisfy this requirement ¢ must be a Maxwellian F(c), and %, must

therefore by given by
%— (f) = AnF = Ant (%)3/1 %/Pf—' B (u- %)L_f (4-4a)

The mass and momentum conservation laws have already been used;

for the energy to be conserved locally we must have
[vi4 () Du = [vfL(P) Dy,

which, after substituting from (4-2) and (4-42) and noting that
5 fv:*Dy = Jc‘fD«; + nud

reduces to the condition that 8 in F must correspond to the local
temperature. In other words, whatever the local distribution function
may be, the gain term is taken proportional to the Maxwellian whose
parameters are given by the actual local conditions (Eq. (4-1a)).

It should be emphasized that the assumption that ¢ is a
universal function of ¢ is of a very fundamental character; from

our point of view it is the strongest assumption underlying Krook's model.
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A slightly different way of justifying {4-4a) is to say that as
the distribution (roughly) reaches a Maxwellian in one collision time,
s0 the molecules coming out of the collisions must be (roughly)
distributed according to a Maxwellian. In a sense this is an extension
of the idea of diffuse reflection at a wall to collisions within thé gas,
taking the accommodation coefficient equal to unity. Thus: molecules
which havé collided among themselves (instead of with a wall) come to
local equilibrium with the 'gas', and are emitted with a Maxwellian
corresponding to local 'gas' conditions, retaining no memory whatever
of théir previous state. In other words, the scattered molecules behave
exactly as if they had collided with a wall which is locally at equilibrium
with the gas.

Suppose (out of curiosity!) that the 'accommodation coefficient'
above is not unity, but that a fraction ot of the colliding molecules are
emitted with a Maxwellian, and the restwith their original distribution

f. Then

6(f) = An[oF + (1-0) {1,
but U ~FLF) = Anw (F-F). ey

Thus an accommodation different from unity leaves the model unchanged
except for the constant. Note however that the number of colliding
molecules is still Anz, and is unaffected by ot.

It would seem reasonable that %,(f) should be like a Maxwellian
if { itself is a slight departure from a Maxwellian, as it is in the

Navier-Stokes limit (the implications of Krook's model in this limit
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will be worked out in the next section). The more doubtful limit is
evidently the case of large departure from equilibrium. But in

nearly free molecule flow - which is one example of large 'disequilibrium!'-
the model apparently works reasonably well, judging from the results
obtained for the orifice in the last chapter. It seems thereforé that the
assumption that ¢(c) in equation {4-4) is universal may not be as

restrictive as might appear at first sight; and on account of this it should
be very instructive to calculate shock structures using Krook's model.

In the arguments we have used here, the loss term has been
inspired by its form for Maxwell molecules, and the gain term by its
form for rigid spheres.* The justification for this obvious inconsistency
is the belief (or hope!) expressed earlier, that the force model is not
s0 extremely important, at least for an approximate description of
several phenomena. The usefulness of the model in fact depends on how

tolerable this inconsistency is.

*It may be recalled that if one is to judge from the viscosity of
gases, most of them seem to be represented by force models lying
somewhere between the rigid sphere and the Maxwell molecule, which
therefore represent in some sense the two extremes for a monatomic gas.



73

4.3 The Navier-Stokes limit

When the collision integral in the Boltzmann equation is replaced
by the model assumed in equation (4-1), we get one version of what has

been called the 'Krooked' Boltzmann equation:
Df = 2L L 9.2 o An (F-4). (4-6)
e (F-1) -

(D here stands for the differential operator on f.) This is still a non-
linear integro-differential equation as it stands,. for though the form of
the collision integral has been assumed to be known, the parameters
in it (n, g and B) are only defined in terms of the unknown f (cf.(4-1a)).

Before proéeeding further with (4-6) it is useful to derive its
moment equations. If we multiply it by any quantity Z = Z (y) which
is a function of y only, and integrate over all y, we obtain the

corresponding Maxwell equation of transport

2 7 +;;_§. (nZy) = A (T-2), (4-17)
Whe‘re
nZ = [@)Z(2) Dy,
=0 (4'8)
nZ =jF(s)Z(¢)D«.t.

It is easy to verify that the definition of the parameters in F
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by (4-1a) ensures that

JZ%(HDQ = JI'Z-]"L(]L)D'}_{ (4-9)

for Z() =m, wmy L opar?: (4-9a)

hence that these guantities are indeed conserved at the level of the
model and are its collisional invariants. For the Z of (4-9a) the
right hand side of the Maxwell equation {(4-7) vanishes identically,
and so we can derive, exactly as with the true Boltzmann equation,

the familiar macroscopic equations of motion

%—7% + Q% = 0,
: % 2_%; Pej | (4-10)
Q4 (5w +3)= — o (R + 1)
where

and pij and q, are the pressure tensor and heat flux vector defined in
* section 1.1, If we define an internal energy by €= 3p/2p = 3 R T/2,

the energy equation in (4-10) can also be written as

A8 | _ 2% L . (4-10
& T TP (4-102)
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Equations {4-10) are very general as they stand; the usual equations of
gasdynarnics can be derived from them if pij and q, are related to the
lower moments of f in a particular way. To study this one has to go
back to (4-6).

Suppose there is given, in the problem,a length L, and \'reloci’cy

vy with which equation (4-6) can be non-dimensionalized; then, writing

% = %x'L, vy, t=t'L/v,
(4-6) becomes
> = 2f r ot S AnL (p_g) (4-11)
w7 W ‘

(f has been left undisturbed as both sides of the equation have the
same dimension in f.) The non-dimensional parameter on the right

has the form

L,

*_ Anl L
A= v, A

e

putting A ~E/n17\1. If vy~ €, A%* is just the Knudsen number.
The Navier-Stokes limit corresponds to letting A* become
very large, or, more conveniently, to letting e:= 1/A* become very

~small., Thus (4-11), which can be written

eblf - e(lt + :"Jf) = F-f, (4-11a)

'b.t/ ~S ' }?sl

is in the nature of a singular perturbation problem for small €.
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This means that for small times ( - considering an unsteady problem)
there will be a boundary-layer type solution for the description of which
one needs to take account of the initial distribution. Similarly for
small distances from a solid surface.

Normally, however, one wants to find a type of 'outer' solution
ofl (4-11a) which does not require conditions on f for its determination,
.and, also, perturbations on this outer solution for small € . It is by
no means obvious how far one can go in obtaining such higher order
perturbations without taking account of initial (or boundary) conditions
on f. | |

It is not the purpose to go into these questions here, but only to
show what results equation {(4-6) yields when one employs the
conventional perturbation methods for its analysis.

For. a study of the Navier-Stokes limit one can either follow
Chapman (Ref. 18) and use the Maxwell equation (4-7) or, more
fundamentally, adopt Enskog’s scheme (Ref. 2) of expanding. f as a
series in a small parameter € 1 ‘

f=fref rerf+.. - (4-12)

This €, can be identified as the value of €= 1/A* = e(x) at
some reference point, and we may write € (x) = e—l b(x)} where
b= O(1l). Substituting (4-12) in equation (4-11a) and collecting

terms of the same order in €& 12 we get

1°=F, f':—bbf", Jt“=_b“bf“"'_i (4-13)
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Thus the zeroth order term is just the local Maxwellian. As all odd

moments of the Maxwellian are zero, we immediately have

1

b{o]- = Pgij) g’ =0,

and putting these in (4-10) we can easily get the Eulerian equations of

gasdynamics,
Ao 4 o QU . @
S T (4-14)
du; b
q - }'7(,;
and

t
<

‘%E (‘?—3?0) - )

the last being of course the isentropic law for a monatomic gas.
The first order term is more interesting, and is simply

{(from (4-13))

S O Sy 13 (4-13)

The enormous simplfication arising from the use of Krook's model
is very striking at this point, if we compare (4-15) with the integral
equation obtained when the exact collision term is used. The solution
of (4-15) (or its counterpart) essentially supplies us with the transport
properties of the gas.

Let us restrict ourselves to steady flow from now on (though

this is actually unnecessary). Then (4-15)can be written
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o - B gy I (B e ple-w']

where n, § and y are functions of x. Carrying out the differentiation

~

(and using the Eulerian equations (4-14)),we get
B % - (4-16)
U 2
-2 2% (0 - ¢ Su)]
where
Ck = Ck\[ﬁ .

' 1
By taking the appropriate moments of f = £ + elf one can now get

expressions for the pressure tensor and heat flux vector. For

instance pilj can be written, from (4-16), as

i ——————
P\'.j = PL‘) Q[ 4 ) bL ip’?nc ﬁcic'ckcmcwv
— %— C C CL) 25 (C C. CLC'L (4-17)
-1 ¢

3 GG Skl)f]

The moments of the Maxwellian which appear here(and later) are most
. conveniently found using a general formula given by Ikenberry &

Truesdell (Ref., 19):
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where the parentheses around the n indices indicate the sum over all

combinations (into two groups of n-2 and 2} of the indices, divided by

the number of such combinations, (12). Thus,
=0 ° _ R 3.
=5 hi =g % P‘)k .

0
Pijkl =3, (3 SU, + Elk Jl"’szl Jk)

zp 2p

and so on. Putting these results in (4-17) we get

bis = Psi‘ + buk

g Jug w,) | (4-18)
3AB D=, ‘J zAp(

from which we see that the 'viscous' stress can be written as

T =-k+PpL
- (4-18a)
S Aew) L+ pdef ¥
with
N Y C A ' -' (4-18b)
Pesagr f 3A

being the familiar viscosity coefficients. It is immediately seen that
~ the 'Stokesian' assumption that 3 (),,‘ + 2 P = 0 is satisfied, as it should
be for a monatomic gas. The corresponding expressions obtained

by Chapman & Cowling for the viscosity coefficients can be written

_ 5 | ro o2 | (4-19)
=1 5 B0 @)’ t* 3
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where j is a numerical factor close to unity representing the sum of
an infinite series, and Ql(z)(Z) is a certain integral depending on
the inter-molecular force model.
As no assumption has till now been made on the dependence of
A on the local thermodynamic state, it is legitimate to do so ﬁow,
basing ourselves on (4-19) or on measured viscosity coefficients for
| gases. It may thus be concluded that A is a function only of the

temperature; and we may write, from (4-19), the correspondence

11

.

A = /A -5 Q_?) (2). (4-20)
P j :

For a Maxwellian molecule QI(Z)(Z) is independent of the temperature,

hence A can be taken to be a constant. For rigid spheres
) 2 [RT 4-21

where ¢ is the diameter of the molecule; and introducing the mean

free path A= 1/n 7 %2 we get

A, =0%

n (4-212a)

T
nA

where nM is a constant. In section 3.2 we chose A= A, & c/n\in
order to match the number of collisions, which is more significant than

viscosity in nearly free molecular flows. To match viscosities, the
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choice A‘,L = 0.8A,, is more appropriate. Incidentally, we can
reconcile both numbers if we interpret the coefficient 0.8 in (4-21a)
as the accommodation coefficient (for gas collisions) as was dis-
cussed in section 4. 2.

From (4-16) the heat flux vector can also be calculated.; this

gives

sl 0T e = 1§23 o °
(ii“'iQ"';"‘J"-J = Aﬁ ii%:(ﬁctc)ckckcmc“"'

D e———— e ]
- "52:_ C{C-C‘,_Ck)},'

from which we get, after evaluating the moments as beiore,

5R 9T SR
= - oY k = (4-22)
Y I 4AP

for the conductivity. Putting cp = 5 R/2 for the specific heat at

constant pressure, we obtain for the Prandtl number

P (4-23)

H
gt
il

This does not agree with the Prandtl number of a monatomic gas,
which is roughly 2/3; hence it is not possible to match the constant
in Krook's model for both viscosity and conductivity.

By making use of the relations (4-18) and (4-22) in the general
macroscopic equations of motion (4-10), we obtain essentially the

Navier-Stokes equations for a gas with zero bulk viscosity (2 pt 3 F,' = 0)
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and a Prandtl number of unity. This shows that, on the one hand, the
chances of extending the model to gases which are not monatomic are
not high, and that on the other hand the description afforded by the
model of the behavior of monatomic gases in, and near, the gas-

dynamic limit is likely to be quite realistic.
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4.4 Conclusions about Krook's model

We collect and summarize here the results obtained in the
present brief study of Krook's model.

f‘irst, some of its implications. (i} From the way the term
L (fo) has appeared in the solution of nearly free molecular flow
_problems, e.g. in equation (3-9a), it is obvious fhat vl L (£)
represents the mean free path \' {(as a function of velocitﬂ. As
L (f) is assumed independent of the molecular velocity, \' = \(v)
is thus taken to be proportional to the molecular speed in the model.
For a completely Maxwellian distribution \' is given, for small

velocities, by

/ v
L%’lzﬁ.%=VJ

k]

where

A= 1

——————————— M
2
Aro2V2

and if in Krook's model we take A = ac/n\, we will have \'(v) = v\/ atC,
which is comparable to the exact result, and suggests again o < 1.
However, as v —>» o, the exact result gives M=>J2 1, &hereas'Krook's
model gives \'—» 00.

(i1) The relaxation time, in Krook's model, is

T = { = 7\>\
An UNT

and is thus inversely proportional to nc if n\ is taken to be constant.
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This is the same dependence as one gets for rigid elastic spheres.

(iii) It has been shown in the previous section that the Navier-
Stokes equations can be derived from Krook's model, but to be
consistent one has to make the Stokesian assumption about the
viscosity coefficients, and furthermore take a Prandtl number.of
unity.,

A few remarks may be made here about the value to be
assigned to A. If the problem being considered is in the continuum
or near-continuum regime, A can be chosen as an arbitrary
function of the local temperature, to reproduce the (known).behavior
of the viscosity or the conductivity of the gas, but not both (as Pr = 1),

A general 'psuedo-rigid sphere' value for A would be

A- T (4-24)
nA

where o= 0, 8(interpreted as an accommodation coeffic.:ient) will

give the same viscosity for the Krook gas as for a gas.composed of
‘rigid spheres of cross-section = cr74_== A[oE4V 2. With th.is.
interpretation the number of collisions in the gas would also be
correctly given as nc/2\ per unit volume and unit time. It is
conceivable that in problems where heat conduction is‘ more important
than viscous effects one may wish to choose A to give the correct
conductivity rather than viscosity.

In nearly free molecular flows, the choice of A given by (4-24)
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apparently gives very good results. There is not enough information,
however, to tell whether o = 0,8 or 1.0 corresponds better with
7rea1ity.

It may be concluded, therefore, that the Krook model, in
spite of its simplicity, describes the real behavior of gases fairly
well both near the continuum limit and near the free molecule limit.
Use of the model throughout the range between gasdynamics and
gaskinetics may therefore be reasonably expected to be justified and

worthwhile.
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