ASYMPTOTIC METHODS
IN
SEMICONDUCTOR DEVICE
MODELING

Thesis by
Michael Jeffrey Ward

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1088

Submitted May 19, 1988



—ii-

All rights reserved



-1ii-
Acknowledgements

I would like to sincerely thank my advisor, Donald Cohen, for allowing me
great latitude in pursuing the invesigations pertaining to this thesis. I would also
like to thank my mentor at [.B.M., Farouk Odeh, for three years of friendship and
support. I am very grateful for their guidance and encouragement. Thanks are
also due to Luis Reyna, of I.B.M., for many fruitful discussions and to John King,
of R.P.I., for making his preprint available to me.

I gratefully acknowledge the financial support provided by a Natural Sciences
and Engineering Council of Canada Scholarship and an I.B.M. Predoctoral Fel-
lowship. '

My stay at Caltech has been enriched by many members of the Applied Math-
ematics Department. Thanks to Jeff Aguilera, Bob Cox, Michael Landman, and
Michael Rotenberry for many years of friendship. In particular, I thank Jeff Aguil-
era whose THEME package and expert assistance with TEX has saved me many
hours of futility in texing this thesis. ‘

Finally, I thank my wife Barbara for her love, patience, and understanding

and my mother Alice and my uncle Gary for countless years of moral support.



- lV-
Abstract

The behavior of metal oxide semiconductor field effect transistors (MOSFETsS)
with small aspect ratio and large doping levels is analyzed using formal pertur-
bation techniques. Formally, we will show that in the limit of small aspect ratio
there is a region in the middle of the channel under the control of the gate where
the potential is one-dimensional. The influence of interface and internal layers
in the one-dimensional potential on the averaged channel conductivity is closely
examined in the large doping limit. The interface and internal layers that occur
in the one-dimensional potential are resolved in the limit of large doping using
the method of matched asymptotic expansions. The asymptotic potential in the |
middle of the channel is constructed for various classes of variable doping mod-
els including a simple doping model for the built-in channel device. Using the
asymptotic one-dimensional potential, the asymptotic mobile chargé, needed for
the derivation of the long-channel I-V curves, is found by using standard tech-
niques in the asymptotic evaluation of integrals. The formal asymptotic approach
adopted not only provides a pointwise description of the state variables, but by
using the asymptotic mobile charge, the lumped long-channel current-voltage re-
lations, which vary uniformly across the various bias regimes, can be found for
various classes of variable doping models.

Using the explicit solutions of some free boundary problems solved by How-
ison and King (1988), the two-dimensional equilibrium potential near the source
and drain is constructed asymptotically in strong inversion in the limit of large
doping. From the asymptotic potential constructed near the source and drain, a
uniform analytical expression for the mobile charge valid throughout the channel
is obtained. From this uniform expression for the mobile charge, we will show how
it is possible to find the [-V curve in a particular bias regime taking into account
the edge effects of the source and drain. In addition, the asymptotic potential for

a two-dimensional n*-p junction is constructed.
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CHAPTER 1

Introduction To The Semiconductor
Equations And The MOSFET

Since its invention in 1960, the metal oxide semiconductor field effect transistor
(MOSFET) has been intensely studied by electrical engineers and computer sci-
entists owing to its importahce in the design of computer memeory chips. Initially,
highly simplified analytical models that were based on a multitude of approxima-
tions were used to determine the current-voltage relations of these devices. Many
of the approximations used in these models cannot be derived from the govern-
ing semiconductor equations and do not provide a detailed description of internal
device mechanisms. These early models nevertheless were relatively successful in
predicting the lumped behavior of some long-channel devices in some bias regimes.
Their predicted current-voltage relations are still extensively employed in circuit
simulation packages. However, the trend towards device miniaturization and the
design of short-channel devices, motivated by the desire to decrease the switching
times, invalidates many of the approximations used in the earlier long-channel
models.

For moderately short-channel devices, there are several adverse effects that
occur, including loss of gate control on the channel conductivity and channel length
modulation, that need to be understood quantitatively. As a partial remedy,
variable doping implants are often used to reduce the effect of diminished gate
control on the channel conductivity. A detailed quantitative analysis of the effect
of variable doping on the channel conductivity in all bias ranges is, therefore, of
considerable interest and is not encompassed within the framework of the earlier
analytical long-channel models. By adopting a different approach to long-channel
modeling, the effect of a variable implant on the channel conductivity can be
understood quantitatively.

The problems associated with the design of very short-channel devices cannot
be addressd by analytical long-channel modeling. For these devices, punchthrough
between the source and drain becomes a possibility and even more importantly, the

validity of the conventional drift-diffusion model must be more carefully examined.
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The analysis of these very short-channel devices, which requires a full numerical
discretization of the governing semiconductor equations at each bias point and
is consequently not very useful for circuit simulation where closed form current-
voltage relations are preferable, is not covered in this thesis.

In most of this thesis, we are primarily concerned with resolving the structure
of solutions to the governing semiconductor equations for the MOSFET with small
aspect ratio using formal perturbation techniques. With this perturbation ap-
proach the many assumptions employed in earlier long-channel modeling are found
to be unnecessary. We emphasize that this asymptotic approach allows us to com-
pute closed form current-voltage relations for two different classes of MOSFETs
that vary uniformly across the various bias regimes. In addition, this approach
also provides a pointwise description of the state variables, in contrast to the ear-
lier long-channel models that only determined lumped characteristics. From this
pc;intwise analytical theory some interesting physical effects that occur can now
be investigated quantitatively. Finally, by combining our analytical long-channel
expansions with a separate two-dimensional analysis of the governing equations
in selected regions of the device, we will show how it is possible to investigate
analytically the internal device mechanisms and find the lumped current-voltage
relations for MOSFETSs that begin to exhibit some two-dimensional short-channel
effects.

Before discussing the existing long-channel analytical MOSFET models and
the additional physical assumptions normally made, the basic governing semicon-
ductor equations and the MOSFET are introduced. An excellent introduction to
modern semiconductor devices and the relevant technology is given in Sze [31]. A
more detailed treatment of the semiconductor physics underlying the performance

of semiconductor devices is presented in Seeger [28].

1.1 The Governing Semiconductor Equations

In this section, we present the basic governing semiconductor equations, re-
ferred to as the drift-diffusion model, that describe the distribution of potential
and the behavior of conduction electrons and holes in semiconductor devices. The
basic semiconductor equations can be derived from Maxwell’s equations supple-

mented by carrier current density relations and carrier continuity equations. The
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current density relations are derived from approximations to the Boltzmann Trans-

port Equation, which, for sufficiently large device dimensions, show that the flux

of current for electrons and holes is due to both diffusion from concentration gra-

dients and drift under the influence of the electric field. We shall not elaborate

further on the derivation of these equations but instead refer the reader to Selber-

herr [29] where the basic semiconductor equations are derived and their range of

validity is discussed.

The equations comprising the drift-diffusion model in a semiconducting mate-

rial are
&V-E=¢g(p—n+ N),
Jn = qua(nE + %Vn) ,
Jp = quy(pE - %CVP),
\% Jn‘q(%?-}-R—G),
\% Jp——q(g—f-}—R—G),
J:Jn+Jp+es%?,
E=-Vy,
where

n,p are the electron and hole concentrations; respectively,

N is the concentration of impurities;

Jn,Jp are the electron and hole current densities, respectively;

is the total current density;

id

]

=
R

is the recombination rate;

QO =

is the generation rate;

are the electron and hole mobilities, respectively;

(1.1a)

(1.16)

J
,3 are the electric field and the electrostatic potential, respectively;



€s is the dielectric constant of the semiconducting material;
k is the Boltzmann’s constant;
g is the elementary charge of a proton; and

T is the constant lattice temperature.

The combination v, = kT/q is termed the thermal voltage.

To complete the specification of the drift-diffusion model, the recombination
processes and the mobilities need to be modeled as functions of the carrier concen-
trations and the electric field. In addition, the spatial distribution of the impurities
needs to be given. Since we shall investigate the electrical behavior of devices with
various impurity profiles, we shall briefly discuss the model parameters commonly
used in numerical simulations. A detailed discussion of the model parameters
used in numerical simulations and their theoretical and experimental justification
is provided in Selberherr [29].

The electrical behavior of a semiconductor device is greatly influenced by the
spatial distribution of selected impurities, called dopants, that are implanted into
the device. The net impurity concentration, iV, is assumed to be completely ion-
ized and does not contribute to the flow of current. The implant profile in a
device arises from complicated diffusion-convection mechanisms that are depen-
dent on the technological processes used for implanting the impurities. There are
several process simulation packages available that model this problem and predict
the final distribution of impurities for various technologies and from given initial
conditions. As we are more concerned with device simulation rather than process
simulation, the spatial distribution of impurities is assumed to be known.

The carrier mobilities, which are directly related to the mean free time between
collisions, are determined by the various scattering mechanisms that predominate.
Owing to the complexity of many of these mechanisms, empirical relations for the
mobilities as a function of the electric field, doping concentration, and temperature
are used in numerical simulations.

The net recombination rate, R — G,. is the difference between the rates of
recombination and generation of electron-hole pairs. There are several different
recombination processes, each of which is modeled by a semi-empirical expression.

The most basic recombination mechanism is referred to as the Shockley-Read-Hall



(SRH) process and has the form

2
np—n.;
Ryn=R-G=—P""
Tnn+rpp+rc

where 7,, 7, are the electron and hole mean lifetimes, respectively, which in general
depend on both the type and concentration levels of the impurities present. The
intrinsic carrier concentration, n;, depends on the bandgap energy of the mate-
rial, the density of states in the conduction and valence bands, and the lattice
temperature.

Another recombination mechanism called impact ionization, which is a pure

generation mechanism and is prevalent at high electric fields, can be modeled by
Rimp = R = G = —an(IE[)Ja| =~ ap([B])|T,
where
an(|El) = an, exp(-En/|E|) and  ap(|E|) = op., exp(~Ep/[E]) .

Although not relevant to the MOSFET under normal operating conditions, this
process is important in the study of breakdown phenomena associated with reverse
bias junctions. To complete the formulation of the problem, the device geometry
and boundary conditions relevant to the MOSFET must be specified. In addition,
we shall give a brief introduction to how the MOSFET operates.

A cross sectional view of the MOSFET is shown in Figure 1.1. Electrical
connections are made to the metal gate electrode and to the n-well reservoirs that
comprise the source and drain regions. This device is designated an n-channel
MOSFET, since for appropriate voltage biases the current flow between the source
and drain is due to the transport of mobile conduction electrons parallel to the
semiconductor-insulator interface. The conductivity of the channel between the
source and drain is greatly influenced by the normal component of the electric field
established by the voltage applied to the gate. Since the gate is isolated from the
semiconductor by a layer of insulating material typically made of silicon dioxide,
the modulating effect of the gate on the conductivity of the channel is purely by

a fleld-effect mechanism. One of the primary goals of analytical modeling is to
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determine the amount of current flow as a function of the source-drain bias for
various ranges of gate voltage. These current-voltage relations are referred to as
the device characteristics.

In general, the MOSFET is a four terminal device with voltages applied to
the gate, source, drain, and substrate. Without loss of generality, we shall assume
that the substrate and the source are kept at the same voltage. Allowing for a
source-substrate bias simply introduces another parameter into the model and does
not affect the structure of solutions to the governing equations. Furthermore, all
voltage quantities are referenced with respect to the source. The device geometry
and boundary conditions are now prescribed. A

The n-well reservoirs of conduction electrons are formed by implanting large
concentrations of donor impurities into the semiconducting material. The dopant
concentration in these reservoirs, V¢, is taken to be constant. The shape of these
wells is assumed to be known and is occasionally modeled either as a quarter circle
or a rectangular region in device simulations. Across this boundary, the doping
profile is assumed to vary rapidly and forms what is known as a p-n junction.

The boundaries of the device are composed of both physical boundaries, which
include contacts and insulating segments, and artificial boundaries required for
numerical simulations. Neglecting any surface recombination effects along the
semiconductor-insulator interface BC, we assume that there is no flux of carriers

normal to the interface so that

J.-n=0 and J,1n=0 on =z, =0,

where 7 is the unit normal to the interface BC. Furthermore, assuming no inter-
face charges, the electrostatic potential and the electric displacement vector are

continuous across the interface BC so that

"»b ‘semz 0 [ins’
Y oY

655:1;1 (sem:‘?ig1 ‘ins’

respectively. Neglecting interface charges is not restrictive since their inclusion

simply introduces another parameter into the model.
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FIGURE 1.1. Cross Sectional View of the MOSFET

The source and drain contacts AB, CD are assumed to be ohmic and thus the

relevant boundary conditions for the carrier concentrations on these segments are

np =n? thermal electronic equilibrium,

n—p— N. =0 vanishing space charge.

Solvihg the resulting quadratic equations on these segments we obtain the Dirichlet

boundary conditions

1
n = E(NC + 1/ N2+ 4n}) ~ N,
1 /

for Nc/n; =~ 10® > 1. In addition, we have a Dirichlet boundary condition for the
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electrostatic potential on the contacts AB, CD so that

Nc + 4/ N& + 4n?

N,
~ vy In == on source AB,

= v [In
Y = vy o .y
Nc + 4/ NZ + 4an? N, _
Y = vy, In + vgs ~ Vgp In — + vgs  on drain CD,

2n,- g

for N¢/n; > 1. The difference in the applied bias between the source and the

drain, vy, is called the source-drain bias.

N + /N2 + 4n?

2n.-

The quantity

Ybi = vgp In

is called the built-in voltage.
The oxide bounded by BIJC is assumed to be charge neutral, and thus in this

region the electrostatic potential satisfies Laplace’s equation
Viy =0.

The boundary condition for the potential on the gate contact 1J is ¥ = vgs — vy,
where vgs is the gate voltage referenced with respect to the source and v is some
reference voltage.

In most numerical device simulations, the boundary conditions on the artificial

boundary segments AE, DF, EF, BI and CJ are taken to be
Joehi=0 , J,-1=0 , and E-7=0.

Finally, to complete the formulation of the drift-diffusion model, initial conditions
on the electron and hole concentrations are given in the semiconducting material
at time t=0.

Numerical device simulation efforts for the MOSFET are focused on developing
efficient numerical methods to solve the resulting set of nonlinear parabolic partial
differential equations for n,p and 1 with the associated boundary and initial con-

ditions. The analysis of the numerical algorithims used in device simulations has
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received significant attention from numerical analysts in the last few years. An
excellent overview of numerical device simulation is presented in Fichtner et. al.
[13]. A more detailed discussion of the numerical techniques used to solve the
governing equations is given in Bank et. al. (3].

Some analytical investigations of the governing semiconductor equations under
various simplifying assumptions have also recently appeared in the mathematical
literature. The book by Markovich [18] contains many of the known existence,
uniqueness and regularity results for solutions to the time independent governing
semiconductor equations under various model assumptions. The rigorous asymp-
totic approach to semiconductor device modeling adopted by Markovich is pre-
sented in [19]. In contrast to these rigorous results, a detailed study using formal
perturbation techniques for the one-dimensional p-n junction with SRH recombi-
nation under forward bias is given by Please in [23].

In order to develop analytical models for the MOSFET that predict the device
characteristics, the model equations as well as the device geometry need to be sim-
plified. For simplicity, the device geometry is simplified to the rectangular region
whose boundaries are the interface BC and the lines BG, CH, and GH as shown
in Figure 1.1. The boundary conditions used on BG and CH are those normally
imposed on the source and drain, respectively. The boundary condition imposed
on the segment GH is prescribed later. The additional physical simplifications,
as well as a critique of the existing analytical models that predict the electrical

behavior of long-channel devices, are discussed in the next section.

1.2 The Gradual Channel Approximation And Scalings

The first models that derived the device characteristics of a long-channel MOS-
FET under constant doping for various ranges of gate bias were proposed by Pao
and Sah [21] and Barron [4]. Since that time there have been many variants of
these models, most notably the charge sheet approximation by Brews [6] that
provided an alternative formulation to the original Pao-Sah model. In this the-
sis, these prior analytical models are collectively referred to as the conventional
gradual channel approximation GCA. We refrain from describing these models in
detail as there are excellent review articles on the subject by Brews [5] and Engl

[11]. Instead, we focus our discussion on the model assumptions normally made
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and the inadequacies of these models in characterizing certain interesting physical
effects that occur in MOSFETSs. In addition, some mathematical questions raised
by these models are discussed. In all the existing analytical models, it is assumed
that there is no recombination and that the current flow due to holes is negligible
everywhere in the channel region.

One of the main mathematical questions concerns the range of validity of the
conventional GCA. Specifically, what are the necessary restrictions on the doping
concentration, channel length, and source-drain bias to ensure that the scaled
MOSFET behaves similarly to a long-channel device without exhibiting significant
short-channel effects? By an appropriate “sca.ling of the governing equations,l this
question shall be addressed. Formally, we shall show that for certain parameter
ranges there is a region in the middle of the channel away from the source and
drain where the potential distribution is one-dimensional and is controlled by the
input gate voltage.

In the conventional GCA for constant channel doping, a first integral of the
one-dimensional Poisson equation normal to the interface is used in conjunction
with the well known depletion approximation to compute the mobile charge avail-
able for current conduction. In the study of a related semiconductor device, the
one-dimensional p-n junction, Please [23]| showed that the depletion approximation
represents the leading order term in the asymptotic expansion of the potential for
large channel doping in regions where the space charge density is dominated by
the impurity concentration. However, for the MOSFET, there are several other
layers in addition to this region which the conventional GCA, by simply obtaining
a first integral of the Poisson equation, does not resolve. By failing to resolve these
additional boundary layers, some interesting physical effects cannot be understood
quanfitatively. Moreover, in the case of realistic variable doping profiles, a first
integral of the Poisson equation does not exist. Using some techniques available
in the asymptotic expansion of integrals, we shall compute the amount of mobile
charge available for current conduction in the limit of large doping for all relevant
ranges of gate bias. This computation is essential to derive device characteristics
that are smooth functions of the gate voitage.

Although the conventional GCA is useful in deriving device characteristics for

several ranges of gate bias, currently there is no theory that uniformly encompasses
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the many different bias regimes that occur in MOSFETs. Furthermore, with
these lumped models there are certain physical effects, such as pinchoff and non-
tangential current flow, that occur and are not explained quantitatively.

Pinchoff, which manifests itself in several different ways depending on the dop-
ing profile, is normally characterized by the vanishing of the channel of conduction
electrons at some position along the channel and thus sets a limit on the amount
of current flow for given source-drain bias. This phenomenon is understood only
qualitatively within the framework of the GCA. Specifically, the GCA can only
predict the minimum conditions on the gate and source-drain biases for the oc-
currence of pinchoff at the end of the channel. It is then assumed that further .
increases in the source-drain bias are not reflected in higher current levels. These
lumped models are insufficient to characterize pinchoff after these minimum con-
ditions are attained. In Chapter 5, a more careful definition of pinchoff is given
for two different types of MOSFETSs, and we shall show that by determining the
carrier concentration explictly along the full extent of the channel, the I-V curve
associated with a device operating in the pinchoff regime can easily be obtained.

In the conventional GCA, the current flow in the channel away from the source
and drain is assumed to be entirely tangential. From our perturbation techniques,
we shall determine the range of validity of this approximation and shall explictly
exhibit deviations from this behavior in certain bias regimes. Specifically, we shall
compute the current density in the direction normal to the interface and show that
this component of the current density vector is significant in the channel near the
drain for certain ranges of gate bias.

The conventional GCA gives no information on the distribution of potential
and the electron concentration in the vicinity of the source and drain. Even with
our perturbation techniques, the general structure of the solutions in these regions
in all bias ranges does not appear to be amenable to analytical methods. However,
we shall see in Chapter 6 that the explicit construction of the equilibrium potential
under inversion conditions can be obtained using the explicit solutions of some
free boundary problems provided recently by Howison and King [17]. Using these
analytical results, a uniform expression for the mobile charge valid throughout the
channel will be written. Using this expression for the mobile charge, we will show

how it is possible to find the I — V curves, incorporating some two-dimensional
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Scaling Factor Typical Value at 20°
n=mnif, p=np 1.45 x 10*%cm?®
kT -
Y =— 0.0253V
kTes\ /?
Ty = LqZ, Lg= ( ;> 33.8 um
niq
zy =Ly 10 — 90 um
Up = fnelin 1400 cm?/V -sec
Up = Upellp 500cm?/V -sec
t=t/w w=qnu,./es 3.08 x 10°HZ
€
Tw = —— 7 3.42 x 107" sec
qMilne
€s  _ _7
Tp = Tp : 3.42 x 107 'sec
qMiiline
€
Te = ——7, 4.70 x 10°sec/cm®
qlne
ani ne x
J, = ———L—M—J,, 2.43 x 107° coul/cm?®-sec
d
lCTn,‘ =
J, = —LL—LB—C-JP 8.60 x 107® coul/cm?-sec
d

TABLE 1.1. Table of Scaling Values

effects, in a particular bias regime. These special analytical results, that we shall
discuss, are beneficial in that the explicit dependence of the mobile charge, and
hence the I — V curves on the two-dimensional device geometry is available.

To begin the analysis, we introduce a singular perturbation scaling of the
governing semiconductor equations. For generality, the scalings are introduced for
the full system of equations under SRH recombination; however, as in all existing
analytical models for the MOSFET, we shall eventually focus only on the transport

of electrons and the distribution of potential with no recombination.
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1.3 The Singular Perturbation Scaling

Following Demari [10], the governing semiconductor equations are scaled by
introducing a set of dimensionless variables that are conveniently summarized in
Table 1.1. Typical values of the scaling constants are given for silicon at room
temperature.

With these scalings, the semiconductor equations under SRH recombination

only become

Vip=n—p-— : (1.2a)
ng
J. = u,(Va-aVy), (1.28)
J, = —,(V5 +pV9), (1.2¢)
v.J, = (a—';f +R), (1.2d)
_ 9p -
pc VeI, = ——(3_? +R), (1.2¢)

R(A,p) = ————=——=

and the gradient operator in these new variables is

V= <~a—, ﬁi) :
0z L dy
The constant p is simply pc = fpe/tnc. In the literature Ly, is referred to as the
intrinsic Debye length.
In applications, the ratio of the maximum dopant concentration in the channel
to the intrinsic concentration, n,, is normally very large, typically ranging bewteen

10% and 107. Therefore, we introduce a large parameter, A, by

M:/\N(z).

However, for A > 1, we anticipate rapid variations in the electrostatic potential in

the direction normal to the semiconductor-insulator interface. From the analysis
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of the one-dimensional problem, these variations occur on a scale of O(y/In A/A).

This information leads us to consider further scalings of the form

Y =wln A (1.3a)
In A

r =t/ - (1.3b)

in which both z and w are O(1) as A — oo. Moreover, it is important to note
that the carrier concentrations can range over many orders of magnitude. We
therefore introduce new dependent variables ¢, and ¢, that are related to the

carrier concentrations by

A= eln/\(w—da,,) and p= e—ln Mw—¢p) )

Physically, these variables, termed the quasi-Fermi potentials, measure the de-
parture from thermal electronic equilibrium of the time independent potential.
Thermal electronic equilibrium, in which there is no current flow in the device,
is characterized by ¢, = 0 and ¢, = 0. The spatial variations of the quasi-
Fermi potentials in the channel constitute the driving force behind the flow of
current. These variables are preferable to using the carrier concentrations as de-
pendent variables since the boundary condition for each of these variables on the
semiconductor-insulator interface is now a pure Neumann condition. By examining
the boundary conditions for the carrier concentrations in the simplified geometry,

the boundary conditions for the quasi-Fermi potentials are immediately seen to be

¢n=0 and ¢ =0 ony=0, (1.4a)
Uds Uds
n= — d = — =1, A4
1) ) and ¢, ) ony=1 (1.4b)
0d, ¢, _
e =0 and E_O onz=0, (1.4¢)

where 733 = vgg/v¢h- The boundary conditions on GH are specified in Chapter
5. With this formulation, not only are all the dependent variables of the same
order of magnitude, but the non-ohmic device behavior can also be more easily
obtained.

Assuming that the time scale associated with the externally applied biases

is much longer than the recombination and dieletric relaxation times, we focus
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on the long time behavior of the carrier concentrations and the distribution of
potential. Ignoring the initial transients and dropbing the overbar notation, the

static semiconductor equations in these new variables become

62w — %(eln/\(w—da,,) _ e—lnA(W—¢p))+ d(l’), (15a)
-y ~ f?un - 1
Vg, + Vo, - p +InAV(w —¢,) | = “:\_I;_Hn(¢na bp, W) (1.56)
~ \
=, - v'up ~ 1
v ¢p+V¢p- - ln)\V(w—cbg) = .Hp(¢n1¢P’w)' (1'56)
14 A/J'C Kn .

The scaled current densities in the z; and z; directions now take the simpler form

J.=—(AIn /\)l/zunel“ Mw=0)T 4, | : (1.6a)
— (Al AP e~ n M w4V, (1.6b)

[ )
h-]
I

With this scaling, the SRH recombination mechanism becomes

H,(bn, bp,w) = e MM (4 0, 0),
Hy(¢n, bpyw) =M= H (4, ¢,,w),

where
eln /\(¢p‘¢‘n) -1

H(¢m ¢pa w) =

Tneln/\(w—¢,‘) + fpe—ln/\(w_(;s;)) 17 .

The scaled electron and hole mobilities are u,, and u,, respectively. The normalized
doping profile is d(z) = —N(zy/InA/}), and the new gradient operator becomes

- 0 0 Ly [InA
V=(——e=— = —\/——.
(65’663]) , where € i3 X

Physically, € represents an aspect ratio of the device. Alternative scalings of the
governing equations are given in Markovich [19].

From this scaling, the validity of any one-dimensional analysis normal to the
interface is seen to be restricted to channel lengths and maximum dopant concen-

trations satisfying ¢ < 1. Numerical values of ¢ for silicon at room temperature
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with a channel length of L = 10 microns are computed for various dopant con-

centrations. With € = ,(1)107? we calculate

1.03 for X =10*
€0 =4 0.126 for A =10°
0.0145 for A = 108.
Assuming that A = 10° is a representative value of the channel doping and en-
forcing the condition that & < .01, the validity of any one-dimensional analysis
in the middle of the channel is seen to be restricted to the consideration of 10
micron or longer devices. Although this criterion is rather arbitrary, comparison
with numerical simulations shows that it is quite satisfactory in practice. For sub-
micron devices with the same channel doping, the governing equations are fully
two-dimensional, and numerical methods are required to accurately solve for the
potential and the carrier concentrations.

Since the voltage quantities are scaled with respect to the thermal voltage,
the influence of large source-drain biases that can affect the validity of any one-
dimensional approximation is not immediately apparent. Physically, even for
€ < 1, large source-drain biases can cause the device to exhibit significant two-
dimensional behavior in the channel normally characteristic of only shorter devices.
As will be discussed in Chapters 5 and 6, this effect is reflected in the breakdown
of the regular asymptotic expansion in the aspect ratio ¢ in the middle of the

channel for large source-drain biases.

1.4 The Modeling Of The Insulator

We recall that the surface potential is not specified a prior: but is a conse-
quence of the voltage applied to the gate. In order to proceed analytically, without
deriving cumbersome integral equations coupling the potential in the insulator to
the potential in the semiconducting material, the potential distribution in the in-
sulator is instead modeled based on physical observations. In several MOSFET
simulation packages and in all previous analytical models, the two-dimensional
Laplace’s equation is not solved in the insulator. Instead, a one-dimensional volt-
age drop perpendicular to the gate is assumed. However, as remarked by Sel-
berherr [29], if the channel length is not long compared to the oxide thickness

tox, the simulation errors introduced with such an approximation are intolerably
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large. Plots of the surface potential from numerical calculations by Greenfield
[15] indicate that in thermal electronic equilibrium the surface potential is con-
stant in the middle of the channel and has rapid variations near the source and
drain regions. Motivated by these observations, we now introduce a model for the
potential distribution in the insulator.

We begin by scaling z, = toxZ and z3 = Ly, so that Laplace’s equation in the

insulator becomes

a5 + d° 3yt =0,
where d = tox/L and @@(a‘c,y) = t(toxZ, Ly). Using a typical oxide thickness of
tox ~ 0.025 microns and a channel length of 10 microns, we notice that d ~ 0.0025.
Since the aspect ratio d is very small, we look for a solution to Laplace’s equation
that reduces to the one-dimensional approximation 82113/85:2 ~ 0 away from the
artificial segments BI, CJ and that satisfies 121(0,0) = 1; and 1&(0, 1) = Yp; + V4
as well as the Dirichlet boundary condition on the gate. Assuming an exponential
boundary layer behavior in the surface potential near the source and drain regions,
a solution for d < 1 to Laplace’s equation in the insulator that is monotonic in

the z, direction is given by

-

7»0(:;:’ y) = (Ugs — Upef — Exto)((i +1)) + B(i)e_wnd + C(é)e_”(l—y)/zd, (1.7)
where

B(2) = (1hp; + toxEx — vgs + Vpe) sin (5 (£ + 1)),

(P

and
. ™ .
C(z) = (@L’bi + vgs + tox Ex — vgs + Uref) sin (5(:1: +1)).

As we shall see in Chapter 2, the unknown constant Fy, which represents
the magnitude of the electric field in the z; direction away from the source and
drain, shall be determined from the one-dimensional analysis of the equilibrium
potential. As the ratio of the oxide thickness to the channel length increases,
the boundary iayers become less prominent and the region over which we can
assume a one-dimensional voltage drop becomes narrower. This description of the

oxide is consistent with Selberherr’s observations. It is also noteworthy that on
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the artificial boundary segments in the oxide, Mock [20| uses a linear interpolant
between the specified voltages as boundary data for his numerical simulations. By
examining (1.7), the boundary data that we use is only slightly more complicated
on these segments.

Away from the artificial boundary segments (z, z2) = (vgs — Vpef) — Ex(z1 +
tox) and thus defining 1 = 1), on the interface z; = 0, we have

% ~ %y — Ugs T VUref
oz, tox '

Then, using-the continuity of the electric displacement vector across the interface,

we obtain the mixed boundary condition

ad — Vg + U
—es—w° +ei¢8 gs T Tref _

0 on z; =0.
oz, tox !

Assuming that d = O(¢) and using the one-dimensional theory for the equilibrium
potential in the middle of the channel, a unique surface potential ¥ for a given
gate voltage can be computed. With this value for the surface potential, the
constant electric field Ex in the middle of the insulator is known, and thus the

solution to Laplace’s equation in the insulator becomes

T
B(r1,8) = (9 = (vgs = vher = ¥0) 1) + Blz)e /% 4 C(ay)e 0/, (1)
oX
where
B(z1) = (wy; — ) sin (fﬁf—‘%)) ,
2 tox
and

Cla) = (o + vay — ) sin ( F1Z)).

To obtain the normalized boundary condition along the interface, we non dimen-

sionalize by taking

In X
Ty = Lg nTa: and ¥ =vy lnAdw,

and we introduce the normalized capacitance, cox, by

€i La

Cox =
tox €s
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With these substitutions, the following mixed boundary condition holds on the

interface away from the source and drain;

/ln e /ln (Tgs — Tref)
ws ox 1nA 9

where igs = vgs/vg), and Tref = Uref/vth- The reference voltage is chosen so that

igs ~ 0 when w, = —1, which in Chapter 2 will be seen to correspond to flatband

conditions. The choice v s = 0 then implies

w In A InA o
i coxv T(ws +1) = coxt/ —/\—Ingf\ .

Using the material constants ¢s = 11.9 and ¢; = 3.9 for silicon and silicon

dioxide, respectively, and a representative oxide thickness of tox = .025 microns,
we find that cox = 450.

With this insulator model, the boundary conditions for the potential are now
specified. The boundary conditions on the source and drain contact for the scaled

potential are

In (N./n;
w=wbi‘:”£—(1% on y=0, (1.9a)
w:wbi*‘% on y=1. (1.95)

From the modeling of the insulator, the surface potential along the full extent of

the interface is then given by

Uds

E;\' - ws)e_”(l—”)“d, (110)

w(0,y) = w, + (wp; — w,) e ™/ 4 (wy; +
where w, is determined from the outer € solution to the potential satisfying

Jw In A In\ @
(we + 1) = cox 3 lng:

-+ cox\/ (1.11)

on the semiconductor-insulator interface z = 0 in the middle of the channel away
from the source and drain. This boundary condition along the interface is used in
Chapter 6 when we solve analytically for the equilibrium potential in the vicinity

of the source and drain. A plot of the surface potential along the interface is
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FIGURE 1.2. Surface Potential Along the Interface BC

shown in Figure 1.2. The boundary condition for the potential on the segment
GH is specified in the next chapter.

For certain ranges of gate voltage under a non-zero source-drain bias the sur-
face potential is not constant in the middle of the channel. The drift current
induced in the channel by this variation in the surface potential is analyzed in
Chapter 5.

We now begin our analysis by examining the equilibrium problem in the middle
of the channel for a wide range of gate biases. As we shall see in Chapter 5, it is
essential to resolve the layer structure as A — oo associated with this problem to
characterize quantitatively the electron current low and the device characteristics

under a non-zero source-drain bias.
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CHAPTER 2

Asymptotic Theory Of The
One-Dimensional Equilibrium Potential: I

In Chapters 2 and 3 the nonlinear Poisson equation in equilibrium is analyzed
in the middle of the channel in the limit A — oo for two classes of doping profiles.
Using singular perturbation'techniques, the intricate boundary and internal layer
structure of the potential for A > 1 is resolved for various ranges of gate voltage.
In studying the dependence of the potential on the gate voltage, it will be shown
that different qualitative behavior in the solution near the semiconductor-insulator
interface is possible for different ranges of gate voltage. This behavior is a direct
result of the several possible dominant balances in the potential equation that can
hold near the interface. Finally, using techniques in the asymptotic expansion of
integrals, we shall compute asymptotically the amount of mobile charge available
for the conduction of current under a non-zero source-drain bias.

The device type and its associated operating characteristics are determined
by the implant profile. The two classes of devices that are considered are the en-
hancement mode device and the built-in channel device. The enhancement device
studied in this chapter is obtained by implanting only acceptor impurities such as
boron into the substrate; whereas a built-in channel device, which is considered
in Chapter 3, is obtained by implanting both acceptor and donor impurities. The

layer structure of the potential for A > 1 will be resolved for both of these cases.

2.1 Enhancement Mode Device — Asymptotic Potential

The doping profile for the enhancement mode device is modeled by
d(z) =B+ (1-B8)f(z:0),

where: ‘
(1) 0<p <1, o>0, with #,0 independent of A,
(1) d(0) =1, d'(z) <0, and d(z) — f as z — oo,

(i17) " f(r:0) - 0asz — oo for all integers n > 0,
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and o, referred to as the straggle, represents the scale of the variable doping profile.
Normally, f(z : o) is taken as f(z) = exp(—(z/0)?) and typically § € [.01,1.0] and
o € [.10,10.0]. For other doping profiles, the location of maximum dopant concen-
tration, referred to as the projected range, occurs away from the semiconductor-
insulator interface. The results that we shall present for the asymptotic potential
can also be generalized to include implant profiles with non-zero projected range.

From Chapter 1 equation (1.5 a), the nonlinear Poisson equation in equilib-
rium, ¢, =0 and ¢, =0, is

§sinh(w InA) + d(z), | (A2.1)

2
Wrr + € Wyy =

and the 'boundary conditions are

A\ 172 mA\ Y2 5
e () e n e (1) 55 enaco,

and

zll—{& w(z) = —El/\— sinh_l(%) with gA > 1,
where w, = w(0,y) is the surface potential that is independent of y in the middle
of the channel. Ih this Chapter, asymptotic expansions as A — oo are constructed
for the outer solution to (2.1), defined by setting € = 0, for various ranges of gate
voltage, Ugs. The operating regime of the device is characterized by the value of
the gate voltage or, more conveniently, the surface potential. The terminology
and classification introduced below for constant doping, # = 1, can be found in

the literature, i.e., Sze [31]:
ws( Ugs) > Strong Inversion
w, (Tgs) < Weak Inversion

~-1+0(1/In}) < ws( Tgs) <O Depletion
|ws(Tgs) + 1] = O(1/1n ) Near Flatband
(1/In

\_/

m.(f} V< -1+ 0(1 Accumulation .

gs/ < TH

The voltage normalization for constant doping is such that s ~ 0 at flatband

where w, ~ —1.
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The regimes relevant to an n-channel device that are studied are inversion,
both weak and strong, and depletion. The asymptofic potential for the remaining
two regimes, due to their relevance to the built-in channel device, will also be
constructed.

For gate voltages corresponding to strong inversion, a significant amount of
n-carriers are present near the semiconductor-insulator interface. Under this con-
dition, the interface is said to be strongly inverted and the thin layer containing
these charges is called the inversion layer.

For gate voltages corresponding to weak inversion or depletion, the total semi-
conductor space charge density near the interface is dominated by the immobile
acceptor ions. The region containing these charges is called the depletion layer.
For gate voltages corresponding to weak inversion, a small leakage current flows in
the channel upon application of a source-drain bias. Alternatively, for gate volt-
ages corresponding to the depletion regime, there are virtually no mobile n-carriers
near the interface available for current conduction.

The conventional GCA under constant doping is based on the first integral
of the one-dimensional Poisson equation with € = 0, combined with the depletion
approximation first introduced by Shockley [30]. Although this method is useful for
finding the total charge on the semiconductor as predicted by the one-dimensional
theory, it has several drawbacks, some of which were discussed in Chapter 1.

Instead, by resolving the boundary layers in the potential, the more realistic
case of a variable implant can be treated for all bias ranges. In addition, the
conjecture based on numerical experiments that the width of the depletion layer
is insensitive to gate voltages above some threshold will be proved asymptotically.
This result has implications concerning the dependence of the mobile charge near
the interface on the gate voltage. Most importantly, the information obtained from
this approach is invaluable in analyzing the device in non-equilibrium conditions
and in quantifying observed physical effects such as pinchoff.

In order to determine the dominant balance that holds near the interface, it
is convenient to suppose that the surface potential, w,, is specified. Later, the
surface potential will be related to the gate voltage. The matching techniques
employed are first illustrated for the constant doping case, 3 = 1. The agreement

between the leading order asymptotic solution and direct numerical calculations
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of the potential will be seen to be excellent. A schematic plot of the potential is
shown below for strong inversion under constant doping. We begin our analysis

with weak inversion.

LS o S S LI S B S T ——r
20 F jj
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FIGURE 2.1. Schematic Plot of the Equilibrium Potential

Weak Inversion-Depletion (-1+0(1/1n ) <« w, < 1) constant doping. In
this case, the dominant contribution to the space charge density near the interface
arises from the immobile acceptor ions. Therefore, near the interface, the nonlin-
earity in the Poisson equation can be neglected. The analysis of the matching for
this case closely parallels that of Please [23].

Near the interface, the depletion layer potential for constant doping satisfying

w4(0) = w, is expanded as

L,
deEJ: +azr + w,,

where

a= iai(ln/\)_" ,

1=0
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with as yet unknown coefficients a;. The important feature is that the presence of
(In A — 1)!/? terms that will appear in the analysis require an infinite order expan-
sion in powers of In A to successfully match. The failure to match to an infinite
order in In A makes the potential and thus the total charge highly inaccurate near
flatband.

In the p-bulk, an expansion of the boundary condition at infinity for A > 1
provides w, = —1 + O(1/A%In }).

As in the study of the p-n junction by Please [23], the depletion layer potential
is matched to the bulk by means of a transition layer centered at some unknown
depth z4 referred to as the depletion width. The matching of the depletion layer
to the bulk determines both the depletion width and the coefficients, a,, of the
depletion layer expansion.

In this internal layer, we define transition layer variables by

I — Tq

I/d(/\)

I = and wi(ze) = w(zewy(A) + z4) ,

and
we(z;) = =1+ 04(A)h(z,),

where h(z;) = ho(z:) + h1(z:)/A? + ---. Upon substituting this expansion into the

original equation (2.1), the appropriate scalings are immediately seen to be

1\ 1
va(A) = (Tﬁ) and o4(A) = e

so that the transition layer equation for hy becomes

hy =1—e k. (2.2)

To match to the bulk potential, we require fg(cc) = 0. It is not possible to

integrate (2.2) explicitly; a first integral, however, provides the implicit expression
h(l
—V2z, ::/ (e +y—1)"2gy. (2.3)
1

The lower limit of the integral can be chosen arbitrarily as O(1) changes in its

value are reflected in O((In A)~'/2) changes in the depletion width.
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Even though the transition layer solution is not known explicitly, all we require
for matching are the asymptotics out of this layer. Defining an intermediate
variable, z,, via

— 1
T~ %d where —— < n()) €1,

ATV (o X)1/2

and expanding the implicit transition layer solution (2.3) as r, — —oo, or alter-

natively as h — oo, provides
2

1 InTC _ c -
w., ~ =1+ Erinz - "—\/i—(ln/\) 2y (Z + 1) (InA) g (2.4)
where o
c = / [(y - 1)_1/2 — (e +y-— 1)—1/2] dy . (2.5)
1

The value of ¢ from numerical integration to five significant digits is ¢ = .81785.
"Similarly, expanding the depletion layer potential in terms of the intermediate

variable gives

1, L 2 2
wd~:-Z»zd+azd+ws+x,,n(a+xd)+§x,,r) 4+

To match, we must also expand the depletion width as
Ty = Z zd,-(ln A)—i/2
1=0

and equate powers of n(A) in the above expressions. Matching the transition
and depletion layer potentials to an infinite order in In A by solving the resulting

algebraic equations gives
a=—V2(w, +1-1/InA)"2,

Iq = —%(ln/\)“l/z + \/E(ws +1- 1/ ln/\)l/z’

of which the first few terms for In A > 1 are

a~—V2(w,+ 1) [1— ! } .,

2w+ ) A

(2.6)

c 1
g4~ — —=(In A) "2 + V2(w, + 1)'/? [1 - +1 :
V2 L ! 4

The leading order term in this expansion is equivalent to the depletion approx-

imation in which the transition layer is neglected, and the leading order depletion
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layer potential is patched for C! continuity to the bulk at some unknown location.
Using the expression for a, the depletion layer potential is
1
wy = 5:1:2 — \/§(ws +1-1/In Nz +w,.

From this expression, we see that the expansion breaks down near flatband where
w, = —1 4+ O(1/In ). When this condition occurs, the transition layer equation
is valid up to the interface as there is no region of depleted carriers.

We now consider strong inversion characterized by a different balance in the
Poisson equation for A > 1 near the interface. This layer is not present for p-n

junctions unless the junction is strongly one-sided.

Strong Inversion (w, > 1), constant doping. In the inversion layer near
the interface, the contribution to the space charge density is dominated by the

n-carriers. In this layer, we consider stretched variables defined by

7= m and wi(Z) = w(Zv(A)),

where w;(Z) is expanded as

wi(Z) = wio(Z,A) + o (AN)wa(Z,A) + -,

and o(A), v(A) — 0 as A — oo are scalings to be determined. Substituting this

expansion into (2.1) then yields

2
1 w,"() +U()‘)w;'1 + ) — —Sinh((wio +o()\)w,-1 +) ln/\) +1.

) )

The appropriate boundary layer scalings in this layer are assumed to satisfy

a(A) = vi(N) and o(A)lnA <1,

2 /\ :
" v i ) gWioln A wio(0) = wy, (2.7a)
2
- !'u (/\‘) In A e‘““"“} wy =1 w;1(0) = 0. (2.7b)
L A ]

We remark that the leading order equation gives no information about the scale

of the inversion layer since a shift in w;o can be absorbed into the length scale. An
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exact solution of (2.7a) , which is linear as £ — co and that satisfies the required

boundary condition on £ =0, is

2 1 A
- _ Zsi =z 2.8
Wio = We = T3 In (a sinh(ey/ 7 + ’y)) ; (2.8)

where

A(N) = u‘f’(A)Aw"l ln X, (2.9a)
and

v = sinh™!(a). (2.95)

Substituting wyo into the boundary layer equation at the next order (2.7b) then

gives
" vEA) A Lot In A
w., — wi; =1. (210)

1 sinh? (aVAZ/V2 + 7)

The unknown constant « and the scaling v(A) will be found by matching to the

depletion layer.
Now in the depletion layer, the contribution to the space charge density of the
nonlinear terms in the Poisson equation can be neglected. Consequently, in this

region we again assume the asymptotic expansion
L,
wy = 51: +az+b,

where a = a()), b = b(A) both O(1) are to be found by matching.

To match to the depletion layer, we define an intermediate variable z, by

where v(A) < n(A) < 1. The depletion layer potential in terms of an intermediate
variable becomes

1,5,
wy =b-+az,n+ grfl,n“., ‘ (2.11)

Similarly, we expand the inversion layer potential in terms of the intermediate

variable z, = ;ll-iu. Assuming that a(In A)YZA(®=1/2p()) > 1 and using the
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large argument expansion of y,
1.
In (; smh(y)> ~—-In(2a) +y—e W +...,

(2.8) becomes

Wip ~ Wy + 2 In 2o - La/\(w“_l)/zx + T.S.T (2.12)
10 3 ') o+ r—-———a2+1 In\ n" [T TSP .

Comparing the O(n(})) terms in (2.11) and (2.12), we see that to match we must

4

set
o= A17%)/2/In X qq, (2.13)

where ag()) = O(1) is to be found in the matching process. '
Using the form of « in the higher order boundary layer equation (2.10) we

obtain , \ ,
" ag v(A)* (In )

Wy — 7 -
, ' sinh®(ao v(A) In A 2/V2 + 4)
which suggests the scaling v(A) = 1/In A so that consequently o(A) = (1/InA)

wiy =1, (2.14)
. .
The asymptotics out of the inversion layer as £ — oo for w;;, are
Wiy ~ %5:2 + ainf + by,
where, in order to match to the depletion layer, the linear growth must be sup-

pressed by imposing a;; = 0,b;; = 0. Using a dominant balance argument on w;;

as £ — oo, we then find
1. .
Wiy ~ 51:2 (1 +2exp(—\/§aoz — 27)) .

As a remark, the equation for w;; can be reduced to quadratures via the
transformation
Qg

V2
1

~2
uzwﬂ_'ix 9

2z = —coth(—=1Z +~),

giving the forced Legendre’s equation

n

(1 - 2%)u"(2) — 220 (2) + 2u = ;%(coth‘l(z) +7)?

nce y — 0 nvnnnnnh;\”y

CApviiTiive all

on z € [—coth~y,~1), with u(—co

)
as 2 — —1 the details of this solution are unnecessary to successfully complete the

matching.
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Using the form of o as well as the asymptotics of w;; as £ — oo, the expansion

of the potential out of the inversion layer becomes

1
w; ~ 1+ K(\ w,, o) — \/anz,,n + 51537772 , (2.15)
where In(ln A)
n{ln 2
— 1 —sinh™! . 2.16
K (A, w,, o) . + X [In(2ao) — sinh™!(ex)] (2.16)

By comparing the two expressions (2.15) and (2.11), we require
b=1+ K(\ w,,ap) and a=-—V2aq. ' (2.17)

In order to solve for the matching parameters a further equation is needed and is
obtained from matching the depletion layer solution to the bulk. The analysis is
similar to that of weak inversion.

Constructing an internal layer as in weak inversion at the depletion edge and
expanding both the depletion and transition layer potentials in terms of an inter-

mediate variable gives
1, 1 2 5
wy ~ >3 +azy+ 1+ K(A w,, ) + z,m(a + z4) + RCKAE

1 2
wy ~— 1+ 5% n? - T (InX)~Y2 + (CZ +1)(In A7,

2
n /2
The solutions of the two algebraic equations obtained from equating coeflicients
of n(A) are

a=-V2(2+ K(\w,a) —1/In )2,

T4 = _76_2—(111 ATV 4 V2(2+ KA\ w,,a0) — 1/ InA)Y?,

where ¢ is given by (2.5). Finally, the matching parameter in the inversion layer,

g, is now determined from (2.17). We find
a0 = (2+ K(A w,, 0) — 1/ In 22 (2.18)

which is a weakly nonlinear equation for ag that can be solved approximately by

the method of undetermined coefficients or numerically by iteration. Once o is
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FIGURE 2.2. Compariscn of the Asympiotic ans the Nwnerical Equilibrivm Potential

found, the switchback term K(A,w,, o) is known and thus the depletion width
and the matching parameter a are determined. As a remark, the approximation
ao =~ V2 for realistic doping levels is quite poor, even though K < 1 for A > 1,
since K ~ .20 for A = 10°.

Another important remark is to notice that the order of K (A, w,, ) in the
depletion layer expansion depends on the surface potential. In very strong inver-
sion, typically when w, > 1+ In(lnA)/In ), « is transcendentally small in In A
as A — oo. This implies that in this regime, K (A, w,,a0) = O(In(InA)/InA) so
that the matching parameters ag,a, and the depletion width are highly insensi-
tive to the surface potential, w,. Therefore, for this range of surface potential,
oo ~ (2+1In(InA)/InXA —1/InA)"? is a good approximation. Alternatively, as
w, — 1%, the expansion sinh™!(a) ~ In(2a) + 1/4a?* for & > 1 applies and conse-
quently K ~ (1/InA)%. Therefore, in this limit, a ~ (2 — 1/ In A)Y? which agrees

asyrhptotically with the weak inversion expression (2.6) when w, = 1.

To compare our asymptotics with the numerical solution to (2.1), the BVP

is solved numerically by finite differences on a uniform mesh with the boundary
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condition as £ — oo imposed at a few depletion widths from the interface. The
mesh is taken to be sufficiently fine to resolve the inversion layer. From Figure 2.2,
the error, defined as the magnitude of the difference between the numerical and
asymptotic potential for A = 108, is roughly 0.6 x 10~? in both weak and strong

inversion. We now consider the case of accumulation.

Accumulation (w, < -1+ O(1/1n))) constant doping. In contrast to the
previous case, an inversion layer is to be matched not to the depletion layer but
rather to the bulk solution. In this regime, the contribution to the space charge
density of the n-carriers can be neglected everywhere. For convenience, we déﬁne

v(z) = —w(z) and v, = —w, so that the nonlinear Poisson equation becomes
" 1
v (z) = :\—e" mA _1 with v(0) =v,, v(co) =1. (2.19)

In the inversion layer, we define Z = zln A, so that the leading order equation

becomes
’()II(~) 1
! A(ln A)?

vi In A

Two solutions that satisfy this equation are

. 1 1/2
vl(z):1+—£~ln( )-+—l——ln (sec(?/:(ln/\) /x—:z:d)>,

In (smh( (In \) "1z + 'ﬂ)

72

InA

where

¢1 = cos(zg) A" V/2  and  c; = sinh(y) AT/

are needed to satisfy the boundary condition on the interface. Recall that v, was
used to match the inversion to the depletion layer in the previous bias regime. We
now show why, in this case, v; is the layer solution needed to match to the bulk.

To obtain some insight into the differences between the boundary layer so-
lutions v, and v,, we compare the slope at the origin between v, v, and the

expression obtained from integrating (2.19) once with v(co) = 1. In the original
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variable z = Z/In A, we have

TEN Sy (i S R
viE=u = XA -© vs ImAx/)

) 2 \* (va—1)/2 2 /yve—1\1/2
'UZ(:U—O):— 1—1—1_A_ A (1+C2/A ) 5
' 2 1/2 (ve—1)/2 2 ve—1 1/2
'UI(IC:O):— 1—1—1_A A (I“CI/A ) .

Setting v, = 1 + In(In A)/In A, then implies

v'(z=0)= —vZ(1-In(in})/In A — 1/In A)"2,
vy(z=0) = —V2(1+c/Inn)"/*,
v;(:zz =0) = —\/5(1 - c"l’/ln/\)l/2 i

Comparing the first two expressions above we notice that choosing v, as the bound-
ary layer solution would iimply ¢ < 0. Alternatively, comparing the first and third
expressions we then anticipate that v, is the required boundary layer solution and
that ¢} ~ In(In A) + 1 for this value of the surface potential. A similar argument
shows that the In(sec) solution would have been inappropriate for matching the
inversion layer to the depletion layer.

To determine how the inversion layer must match to the bulk, we notice that
by using v, it is possible to patch to the bulk for C'! continuity at some unknown
location and determine a real value for the constant ¢;. Setting v;(Zp) = 1 and
v,(Zo) = 0 gives

:ﬂ(ln/\)'l/2 ~ and ¢ =1.

T
d 2
Satisfying the boundary condition on the interface and using v, > 1+ O(1/In })

then implies
Ty~ =+ A1702 L O(A1=))  and  Fp ~ L (In A)Y/?
2 | V2 ’

which shows that the patching is done on a scale wider than the inversion layer.
In addition, since the argument of the secant in the boundary layer solution v,

must remain bounded for the logarithm to exist, we anticipate that the inversion



—34-

layer matches to the bulk via a transition layer in a triple-deck fashion. We now
explicitly illustrate the matching for this case when v, = 1+ In(InA)/In A.
The transition layer solution between the inversion layer and the bulk is defined
by
v=1+h/InA and itzz(ln)\)l/z,
giving h" = e” — 1 with the boundary condition h(co) = 0 needed to match to the

bulk. Integrating the equation for h once gives

h
—V2%, = / (¢ —y—1)""% dy.
h(0) .
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