A QUANTUM-MECHANICAL DISCUSSION

OF THZ BIFLUORIDE ION

Thesls by

Martin Karplus

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Instute of Technology
Pasadena, California

1954



Acknowledgements

I should like to express my ap?reciation to
Professor Linus Pauling for suggesting this problem
and for continued inspiration during its evolution.,

Discussions with Professor Verner Schomaker,
Gary Felsenfeld, Michael Cohen, Dr. Massimo Simonetta,
and Dr. Claude Bloch are gratefully acknowledged.

o Generous financial assistance was supplied by

the Allied Chemical and Dye Corporation,



Abstract

The wvaristion method for obtaining approximate
solutions to the Schr¥dinger equstioﬁ ie exarined, It is
demonstrated that one-elfctron.orbitals can te employed in
the construction of 2 cenvergent varistion function, as
special cases of the one-electron approsch, the vaslence bond
and molecular orkital methods are discussed and éompared.

Variation,functidns containing only a few terme are
knomn tg-lead to incorrect results, The reasons for this
failure are iiscusszed, A semi-theoretical aporoach, which
corrects some of the failings, is developed and teéted on
HF, Results in good agreemeni with experimental Acterminations
of the energy and dipole moment are obtained., Apolication of
the mezhod to FHF 1leads to a value of 36,5 kcal, for the

energy of the reaction

Calculation nf the FAF™ wave function shows that the
completely ionic structure (¥~ 1 F7) mskes the largest

contribution,
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INTRODUCTION

The hydrogen bond was first recognised in
1912% Since then, experimental studies 2 have provided
extensive evidence of its function in determining
the properties of inorganic and organic substances,
Moré recently the effect of hydrogen bonds on the
structural relations of biologically significant
substances has been examined 5.

In spite of the recognized importance of the
hydrogen bond, no one has given a detailed discussion
of the forces involved in its formation. Since‘the
bifluoride ion (FHF~) is the simplest hydrogen
. bonded species, 1t appears best suited for a fheoretical

attack. This thesis is an attempt to develop a
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semi-theoretical method applicable to highly ionic
systems and to apply this method to a treatment of the
bifluoride ion. It is hoped that the results contribute
to a better understanding of the hydrogen bond and
provide an illustration of the power of guantum- .

mechanical methods in chemistry.
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Chapter 1 - METHODOLOGY
Section I - The variation procedure

Quantum chemistry has as its primary concern the
solution of the eigenvalue problem posed by the time-
independent Schrddinger equation for an isolated molecular

system.

He'®, (n,) = £, @ (#,5)

(1-1)

Heres Hp is the complete Hamiltonian operator,

H,——-Zz ~Zz..% Z,Z e Z’?" (1-2)

¢
= =/ &80

+ .,2 Z' ¢'¥92 e 2s e/ec)“rou:
e’ L=1,2.- £+ nucked
éeH¢ ) ,

expressed in Hartree units% s, and jﬁv, N are its Nth
eigenfunction and eigenvalue, respectively. Implicit in
the writing of (1-2) is the neplect of cértain energy
terms (e.g. spin-orbital coupling) which usuallj make only

a negligible contribution; their effect on atomic systems

#Hartree units are delined as 10l1l0WS: unit of mass - the
electronic mass, my s .9107 x 10-27 grams; unit of length
- the Bohr radius, ag = .529A; unit of charge - the elec-
tronic charge, ¢ = 4.80 x 10“'io €.8.,u.3 unit of action -
A = 1.05 x 10-87 erg. sec., unit of energy - twice the
ionization energy of the hydrogen atom, e2 = 27.19 electron
volts. ago '
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is discussed in Condon and Shortley®. By application of

“the adiabatic approximation6 to (1-1) a separation of

nuclear and electronic motion is achieved” and the set of

equations

H ¥ (£80)= £, (8 ¥ (1)

ftmc %;(J}) :ng %QZ32)

results. Here

and

Studies of the vibrational and rotational spectra of

molecules are concerned with equation (1=4).

(1-3)

(1-4)

(1-6)

This chapter

is restricted to a discussion of equation (1-3), which de-

scribes the electronic wave functions and senergy levels of

‘molecular systems with stationary nuclei.

Direct solution of the many-body problem presented by

equation (1-3) with 2s,t?1 is feasible only if a separa-

tion of variebles can bve effected. Since the presence of



-5-

{
electronic interaction terms ('Z:C> in the potential
snergy dperator makes such a separation impossible, approx-
imate methods of solution have to be employed. Of these,
the most powerful are applications of the variation prin-
ciple. In general form® it states that the functions,

which result in extremals,ls , for the integral%*

£, =_/‘K,H%Jz' (1-7)

subject to certain boundary conditions and to the equalities

j ¢ Yo dv =/ (1-8)

-and

(f4de-0  covrows o

are the eigenfunctions of the Schrddinger equation; the f;
obtained by this procedure are the corresponding eigen—
‘values. (In equation (1-7) through (1-8) and subsequently

ctt indicates an integration over all the electron

# The wave functions are assumed real throughout TO Sim-
plify notation. For complex “u each integral would have
to be replaced by one including the complex conjugate;
8.8., (1-7) would become

En: [W*H¥%de
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coordinates appearing in 4& , and the integral sign with-
out specified limits designates integration over all space.)
Actually the A desired in the many-electron problem are
not those yielding absolute minima for E, subject to (1-8)
and (1-9). The Pauli conditionl® that ¥4 be antisymmetric,
in general, raises the allowed energy elgenvalues above
those obtained from equations (1-7) - (1-9) and has to be
introduced as an additional restriction.

By arbitrarily varying Y until Ej, is extrémized,
the correct wave functlions and energies for a molecular
system can, in principle, be obtained. In practice,‘the
time required for the evaluation of the integral (1-7)
drastically restricts the variations to which the approxi-
mation function can be subjected. Consequently, the wave
function finally obtained in a calculation is often a poor
approximation to the true one. The great utility of the
variation method arises from the fact that even with poor
wave functions good energy values can reSult,'since’in the
region of the extremum the integral (1-7) is insensitive to
the form of the function used. This statement unfortunately
applies to the energy alone; other molecular properties,
such as the dipole moment, may be far from correct in cal-
culations which yield nearly perfect values for the ensergy.

The difficulty in carrying out arbitrary variations

in ?ﬁ suggests the introduction of an alternative procedure.
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By use of a complete normal set of functions , 9;4(!T;ﬂd)
the variation problem of equation (1-7) can be reduced to
an algebraic one. The process of finding extremals for the

integral¥

Eo=j%/'/%6h' © (1-10)

and, therefore, that of determining the eigenfunctions and
eigenvalues of the Schrodinger equation is eQuivalentl1 to

solving the infinite set of linear homogeneous eqﬁations

| EGM[HQM-E;&uJ =0 A=042

mey

(1-11)

Here the ay are the expansion coefficients of VQ expressed

in terms of the &ms l.0.,

% = f Ana 3“4 (!‘;’; .r?) : | (1-12)

=

Hem f‘je H‘)w dz (1-13)

# Only the ground state, E,, ¥ , is discussed. For ex-
cited states ( W70 ) arguments closely related to those
present below are applicable if a restriction of the form
of equation (1-92) is included.



and
| Sgw\ = jﬂe 3w-°hf (1-4)

For computations, a function bE K

"4 .
y
u¥=J aw G (1-15)
m={

and the corresponding finite set of linear homogeneous

equations

J ol [ E5Su] 20 £e2k o

Wi

are considered, the assugiption being made that

lim "=% | (1-17)
K>

Use of a minimal sequence

K .
2oogte (1-18)

A

!
P
for the solution of variational problems was suggested by
Ritz1l2, A necessary condition for the existence of solu-

tions to equations (1-16) is that the EX satisfy the

equation 13



~Ow
| How = £ " Sew | =0 (1-19)

K K
If the U satisfy (1-17), the corresponding ZZ

converge to Ep monotonically from above, i.e.,

£'DE - £ 208 ' (1-20)

By including a sufficient number of terms in Vo K.
(equation (1-15)) any accuracy can, in principle, be at-
tained. A limit on the usefulness of the method arises,
however, from the lack of én analytic criterion for deter-
mining the error at each stage of approximation. dnly by
comparison with experimental data can the validity of a
reéult be determined. As the various molecular pfoperties
depend to different degrees on the form of the wave func-
tion, it is difficult to make reliable predictions with the

variation procedure.
Section II - The use of one-slectron function

Since the Hamiltonian operator (1-2) contains electronic
interaction terms, the correct wave function must have a
functional dependence on electron-electron distances. The
set 3‘” (feyYe) (equation 1-12) is, therefore, expected
to converge most rapidly to the true wave function if it

reflects this dependence explicitly. Calculation of the
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Schrodinger integral (equation 1-7) is generally too time-
consuming if functions including polynomials in I ars
used. 'Only in the case of Hél4 has such an approach been
possible. For more complicated molecules the exclusiﬁn of
fiet  terms from the I (¥ \Ye) is necessary.
Such & restriction on the form of the qu (¥e)¥e)  mignt
be expected to limit the accuracy attainable by their use.*
It can, however, be demonstratedl® that given a com-
plete set of functions of one variable, hlfﬁ) defined
over the domain a$¢Y<} , & complete set for p vari-
ables ((fi,f% - Tp) , each defined over domain a¢ ﬁ,},---fpéb)
can be formed by taking all possible products of the func-
tions he‘(f.)) hp (R) - L‘.eflr”) . A function f(¥, Yy Tp)
| can thus be expressed in terms of the infinite

series

o0

f(f‘, v ...fP) = Z ﬁp‘ ¢, 2p he'(f‘.) k?;c"') “PP (TP) (1-21)
'phel"'pF ' . :

where the aﬂe1nqp are the appropriate coefficients.

If the expansion (1-21) is assumed to hold for infinite

. domainsi# the use of sets of one-selectron product functions

# This misconception can be illustrated by quoting Lennard-
Jonesld; " good approximation can be obtained to the wave
function by expressing it in terms of functions of the
coordinates of individual electrons. This means that...
the assumed form of wave function can never be exact...."

# Proof of completeness theorems have been carried out for
finite domains. The difficulties arising in attempts at
generallization to infinite domains are presented in
Kemblel?,
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of the form (1-21) in constructing minimal sequences (see
equation 1-17) for molecular calculations is Justified.

In each of the one-electron functions, éfi (%)
the electron i, ( t¢=l,2-2s ) is specified in terms of its
position coordinates ( ¥, Y4y 3 ) and its spin coordi-
nate { A; ). By the Pauli principle the wave function
is antisymmetric with respect to exchange of electrons in
this 4s dimensional configuration space. A corresponding
antisymmetry has to be introduced into the variatibn func-

tion

K
Yz fom D a0 D ()& (1) & (he)
) 14y -¥ W P t ¥ =15
° ke 4., h o s (1-22)
Since spin-orbltal terms in the Hamiltonian operator have
been neglected, each of the one-electron functions can be

written as a product of two functions

@e (%)= Qée (1) 1 (N) (1-23)

where the v ) are sigenfunctions of the 2 -
component of the electron spin. Substitution of (1-23) into

- (1-22) yields

XK

‘f; = ’QM‘ Z aﬂ.?;"(’zs Cf’e.a')'f(") ¢0:s(r“)7' ()\“) (1-24)

K»0 2.

[2
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Since V; is already antisymmetric, application to (1-24)

of the antisymmetrizer18

A - J (-fP (1-25)

W all P

where P represents a given permutation and p 1its parity,

results in

(25)‘

%:/ﬁ[ "'——" Z()F P’g ag,.. By ¢e('\)1(&) ¢Ils(f‘s)1'(’%1-26)

or

K

% ='L' 4&‘4 9 ~Bs ZCD P ¢p (ﬁ)ylh) ¢p (fu)‘f(f\gs)
&=y s all P (1-27)

By the definition of a determinant, (1-27) is equivalent to
(1-28)

y/ —va\ qu o dys l¢e'(f.)|1(x') (Pﬁs (f:s-)‘?(Aas)I

, K2 w0 (1-28)
where | | represents a determinant expressed in
terms of its principal diagonall®, Use of (1-26) and (1-27)
‘introduces no restriction since the antisymmetric function
formed from a simple product function is unique.

By use of the commutation properti;szo of certain oper-

ators appearing in molecular problems the number of determin-
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ants that have to be considered can be reduced to a fraction
of all the non-zero determinants that can be constructed from
a complete set of functions. Since any two commuting
Hermitlian operators have simultaneous eigenfunctions, the
variation function has to contain only the determinants which
are eigenfunctions of sets of mutually commutable operators.
A set of pnysical significance for molecular problems con-
sists of the Hamiltonian, H, the permutation operators P,*
the square of the total spin angular momentunm, 82**, the é;
component of the total spin angular momentum, 53- , W
and the symmetry operators for the molecule under.consider-
ation. Use of the determinantal function (1-28) autbmatic-
ally provides elgenfunctions of the P's and i; . It is
necessary only to choose the spin functions q (N)
in all determinants to yield the same ?} eigenvalue., Usually
the ground state in a molecular system corresponds to the

eigenvalue zero®##

b3

In general, two permutation operators do not commute;
however, for any antisymmetric function ¥

P|P1%=P1P\%

so that the permutation operators may be considered to
commute in this case.

##The operators S %, 9%, commute with the Hamiltonian only if
spin-orbital terms have been neglected.

###The oxXygen molecule is the most notable exception to this
rule. :
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For excited states other Sé, eigenvalues

55 = A rA>0 (1-29)

are of interest. Restriction of the function (1-28) to a
given eigenfunction of 82 requires the introduction of cer-
taln linear combinations of Slater determinants. Rules for
the construction of eigenfunctions of the desired multipli-
city, usually singlet, have been developedgl. These rules
are not discussed here, as their use is illustratéd by ap-
plication to HF and HFy~™ (see below). Since the Hamiltonian
reflects the nuclear configuration of a molecule, the
symmetry operators for that molecule commute with the
Hamiltonian. For molecules of high symmetry, the set of
functions that have to be included can be considerable re-
stricted by the requirement that they yield eigenfunctions
of the symmetry operators<®?, ‘
Section III - Approximation procedures 1nvolv1ng a flnite
number of functions.

In spite of the reductions outlined in the preceding
section, the number of determinants that are required for
- convergence to the trus eigenfunctions of the Hamiltonian
is still infinite. Since no formulae exist for the general
terms required in (l-ll))only a finite number can be in-

cluded in any calculs&tion. The choice of the functions
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4@(f) assumes major importance. Two considerations have
‘primacy in the selection. On the one hand, rapidity of con-
vergence 1s desirable in restricting the number of determin-
ants that must be included; on the other, the ease of calcu-
lation with each determinant governs the number that can be
included. For atomic problems the first consideration is
dominant, since the Schrddinger integral is reasonably simple

to calculate regardless of the type of one-slectron function.

23
85
Hartree - Fock) are used in the hope that they are sufficient-

Hydrogen-1like or closely related functions (Slai;er'z4 or

1y close to the true function to permit rapid convergenee.
The success achievable with atoms leads to the selection of
the same atomic functions for molecular problems. Here they
introduce integrals so time-consuming as to dfastically re-
strict the number of determinants that can be considered.

It seems, therefore, that more consideration shbuld be given
to the second point mentioned above - that of the ease of
cglculation. By the substitution of error functions

for the exponentials commonly employed, the svaluation of
molecular integrals is greatly simplified. Before the srror
functions are used directly for the construction of determin-
ants (1-28) some comparison of their integral behavior with
that of exponentials is necessary. In Chapt. III the possi-
bility of approximating by use of error functions the molecular

integrals obtained with Slater functions is tested.
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Once the set of one-electron functions ¢g(*)
is chosen certain members of that set have to be selected
and combined into the finite sum U ' (equations 1-15 and
1-28). For generating LTK a number of procedures arse em-
ployed. Amongst these, the commonest is the valence-bond

d21’26. It selects from a set of atomic functions (see

metho
above) the subset corresponding to the inner-shell orbitals
plus the valence-shell orbitals of the isolated atoms and
combines these into determinantal functions such that the
inner-shell orbitals are filled (i.e., appear twice with
paired spins in each determinant) and some or all of the
valence shell orbitals are involved in forming bonds. A
‘bond exists between pairs of orbitals if sets of deter-
minants antisymmetric with respect to the spin functions

of these pairs of orbitals appear in the variétion funetion.

For four elsctrons in four valence-shell orbitals, bonds

between one and two and between three and four exist, 1if
P |G IBO G040 §, (B0 Bplt) (9]
= | §(r)a) §,(10B(8) 8 (1B @, (1)l V) ]
~ | GBI G0 () by (R (s) By(1) B9 |

+ | G () dy(n)p) ¢y () (), () peD|  (1-30)
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Here o) ﬁé) have r eplaced the ¥ ()i) and corres-
pond to é 5 -component of the electron spin equal to }2&‘)
3Zi respectively. In the simple valence bond theory only
one electron per valence arbital is permitted. A genéral-
1zation27 to include ionic structures is carrized out by
introducing determinants in which the requisite valsence
orbitals appear twice.

An approach closely related to the valence bond pro-
cedure is the molecular orbital method. It employs as one-
electron functions, ffé(?})) not atomic orbitals, but

rather linear combinations of atomic orbitals

" . .
‘.Jot-[fe) = by, C}S&-(ﬁ) - (1-31)
4t
so constructed that

J %(Yc) ‘.ﬂ-, (r)dz = $ii ' (+32)

The choice of atomic orbitals, M in number, is usually re-
stricted to the same set as that used in valence bond theory.

Their coefficients b& cannot be determined by use of a
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variation procedure (ecuation 1-28); an iterative method
based on the general variation principle (ecuation 1-7)

has to be employed. To understand this fact and to obtain
a direct comparison with valence bond theory)it is ueseful
to examine the determinants constructed with the molecular
orbitals (1-31). A tyvical molecular orbital calculation
requires evaluation of the coefficients appearing in deter-

minants of the form

D——f— | 4 (02800 - - G, (s) 25 ]

eo! (1-33)
or, in terms of (1-31),
L) 5y e - bo. s (fre) L0
D T ’ Z 2, ¢! Jé IZW 0s CPe ’ (1-31)

By use of the distributive law of multiolication, (1-34)can

be‘written as the sum

™
[).. { 2 I b ¢ ('-) W -+ b
- e, P, (TP 2, ¢Q (f25)d(2s)
Vet gaca. e (1-35)

Since multiplying all the elements of a column of a determin-
ant by a number multiplies the determinant by that number,

(L-35) is equivalent to
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w

/
D "pz Vizo! b, by | B t1805 - @, () ucn| (1-36)
'...!“

or

(1-37)

) |
D"’fZ‘Q’TZ At-tys ldf. B - ¢?zs((”)°m’)l

Equation (1-37), which is obtained from a single molecular
orbital determinant, is formally identical to the expression
(1-28) with finite K=m and zero sj eigenvalue. In (1-28)
the coefficients qﬂ"ﬂfu are independent except for the
overall normalization requirement (equation 1-8) and éeftain
linear relations of the form (1-30). The A4m4as of eguation
(1~37), however, are related, in addition, by non-linear

restrictions of the type
/
- AJ.‘-&”----?;: _ be,

Adnie'-a)
~ = bt o 2 © (1-38)
Allll‘pﬁ./ ) -.‘pu A & ”[2" . jlg L{,

For a closed shell ground state the molecular orbital

description consists of a single determinant (1-33) in which
each orbital f,-("t')appears twice, once with spinﬁand once
with spin o®l. The number (Nb) of coefficients, b& , to be

determined by the iterative procedure is
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. 2
Ny = ws-s (1-39)

since there are mxs coefficients htuﬂnich are related by
82 orthonormelity conditions (equation 1-32). The number
IVD of different non-zero determinants appearlng in (1=-37)

from the expansion of (1-3%) is

W\' 2 |
e {5 (1740)

This expression is obtained by considering the orbitals
with soin@ and spin « indevendently and by realizing that
the number of ways s electrons can be distributed among
m orbitaels is just

ml!

Cm-s)! s ! - (1)

Subtraction of (1-39) from (1-L0) yields

|
i _ (mxs-52)  (1-42)
(w-s)! s
‘the number of relations amongst the Aq-ulz, . It is these

relations which comvlicate the molecular orbital procedure and
‘renuire introduction of an iterative method of solution,

If for WS not just a single determinant (1-33), but all
vossible determinants are constructed and used in the varia-

tion function, the results of the molecular orbitasl procedure



become identical with those of the valence bond method. From
m atomic orcitals m linearly indevendent molecular orbitals

can be formed. Conseocuently

Wl )%
{m | (1-13)

determinants can be constructed out of the m atomickor the
m molecular orbitals. Selection of the number of singlet
functions that can be formed in each case recuires more de-
tailed consideration. For g electrons and m atomic
orbitaels, k of which contain two electrons (appear twice in
a déterminant),the nupber of determinants that csn ve con-
structed is

!

L |
k! (2521} (W=25410)! (1-11)

i.e., the m orbitals are divided into three groups: K

containing 2 electrons}(leK) containing 1 electron, and

m- (25-2K) =K== 25+ K (1-45)
containing no electrons. In the K orbitals with 2 electrons
the spins are determined by the exclusion principle; each
of the K orbitals appears once’with spin  and once with

spin @ . The spins of the(ls’lk) singly occupied orbitals

can oe s0 arranged that linear combinatiogs of the determin-



ants (1-U4L) yield
| (25-2%)!
(s-k)(s-k+)! (1-46)

functions of singlet multiplicity2®. For each value of

k there are, therefore,

m!

I

KNS~k (5-K+)! (w25 +1) ] (1-47)

gsinglet functions. 8ince

S> K22s5-m (1-48)

the total number (Ns) of independent singlet functions is

3 m |
N5 = éﬂ:‘(! (s- k) ! (s-K+1) | (m-254k)) ﬁ (1-49)

N . _ ®
This series sums to

. m+ _
N; = (wa- s_)' sl ((m-.s-u)(f*l) ) (1-50)

¢ Given A? ]
N zwm! & KY(s-K)! (w- zm)r (s- K+1)!
3 ‘-'
make the substitution

K/’z K-2s+m



w-< u-s
(Hx) = Z ag' x%
Kl'zo
/ )
- 1 aKI
KE (-] G-
s+
S8imilarl if
o (H-x)s*'=z brxX
K<
L = bK’* 25"
(K'e2g-wm) | (w-s-w+ D! (s+!
Since At = Gopes —x!
wes
- !
S Ty er0! Aw-w=s B/sIc-m

but, the 1ast sum$5%ion is just the coefficient of X in

('+’9W. s (’ +’$)$+l - (l‘*x)w-rl

Thus | 2
N-el o 0! we ) [ mel
(- S)I(S\"I)' T wet-8) ! m-s)! s! (w-s4) (s¢1)

(Ns-l) gives the number of independent coefficients to Dbe
determined in the solution of a generalized valence bond
treatment on the assumption that symmetry conditions do not
provide any additional relations. An identical argument
(ecuations (1-44) - (1-50) holds for molecular orbital theory
if m is the number of molecular orbitals and k revpresents
those containing two electrons. The additional m? coeffici-

ents,k?', appearing in molecular orbital theory have no
¢ .
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effect on the result since they are completely determined by
the mg orthonormality conditions. Conseocuently the complete
molecular orbital and valence bond theories are identical.
Calculation in the presence of the b&;is extremely compli-
cated (see above). Only if symmetry considerations permit
evaluation of the hd by inspection or by group theoretical
methods does the comvlete molecular orbital treatment ap-
proach the relative simplicity of the generalized valence
bond method. In case the comolete treatment is replaced
by one using only those singlet functions which are exvected
to make an important contribution, the superiority of the
valence bond method is particularly evicdent. Expression of
the variation function in the form (1-30) permits the direct
utilization of physical ressoning. Structures corresponding
to known distributiens of chemical bonds can be included,
and others may be neglected. For the choice of:important
ionic structures electronegativity data can easily be
employed. |
- The restrictions placed on the general variation func-

tion to reduce it to the valence bond procedure do not in

any way affect the apulicability of the variation principle.
| In many cases additional aporoximations are introduced which
do violate the variation principle. Most prominent among
these is the use of an approximate Hamiltonian29. Inner

shell electron terms may be completely neglected in the
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Hamiltonian, their existence being accounted for by a change
in nuclear charze; or they may be replaced by & coulombic
charge distribution, In either case the process has meaning
only if the cuantity being calculated (e.g. the dissociation
energy) is obtained by the subtraction of two or more ouan-
tities to which the inner electron terms are common (e.g.
isolated atom energy subtracted from total molecular energy) ..
It is also possible to replace some of the recuired terms in
an energy expression by exoerimental values (see Chap. 2).

If such procedures are used there is no longer any guarantee
that the resulting value for the molecular energy approaches
the true energy as a'minimum. In using these approximations
great care must, therefore, be employed to ascertain that the
violation of the variation principle does not invalidate the

results.
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CHAPTER 2 - The Matrix Elements
Section I - General Considerations

In the solution of a problem by the variation method
in its general or restricted forms (equation 1-28) three
steps are necessary. A choice of orbitals has to be made
and these orbitals, combined into a suitable variation
function (Chapter 1, Sec. IIL). With this function, the
required matrix elements (equation 1-13, 1-14) are con-
structed and their values computed. Finally, the resultant
secular equation (equation 1-28) is solved. In this thesis
thé first and third steps are performed by standard methods
and the illustration provided by the specific examples
{Chapter 4) should suffice. The second step, concerned
with the evaluation of matrix elements, is, howevef, treated
in a somewhat novel manner; the method used is:presented
below.
From a variation function composed of a linear. combin-
ation of Slater determinants,matrix elements of the form
My = [ wemyide
(2-1)
arise. Here M 1is an operator, the Hamiltonian H or the
unit operator 1, and the V’%;wJ represent Slater de-
terminants. The hﬂs are composed.of integrals independent

of the internuclear distances (atomic terms) and integrals
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that are functions of the internuclear distances {inter-
action terms). For simple‘proépct functions the separation
'of thé two types of terms is straightferward, .. One may con-
sider a molecule consisting of nucléi 8, b,... g and de-

scribed by the product function

¥o= Bl ) Bledde ons) - B Clsg) (50

The unit matrix element is written directly as

f Webbe = | (2-3)
and is independent of internuclear distances. To expand
the Hamiltonian matrix element, the Hamiltonlan 1s separated
in a manner corresponding to the function (2-2)

5—/VZ+Z ’2" :—ZE

[
, t’?t Lol ’
t : ’ . (2-4)

\

Ha

Ppor St o5

TN (22-1 "3’

Z ("w *f Z

= ¢ 'If-/

+thb Zé 3 .

LA

*’z

L'Is-
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Substitution of (2-4) into the Hamiltonian matrix element

leads to

]_.‘r"“H wdy = f¢, (fa) “'¢€(fm) Ho & (%) -+ e (rea')Jt
Fo f ¢1s-f("“"2> "'?st("*sg) Hj S‘i.-e('“=tg)"ﬂ.(f“s)(2-5) | |
. _ xdt
t SP T,

In (2-5) the desired separation has been accomplished; the
last term .is an interaction term and all the others are

atomic. For the matrix elements

| f‘f“f/ tdr | (i #)

Y | o (2-8)

a similar procedure can.be applied.

The method leading to equation (2-5) becomes inappli-
cable as soon as antisymmetrized functions are introducéd;
Since these no longer permit identification of each electron
with a particular orbital, the Hamiltoniaﬁ'separation

(equation 2-4) loses its meaning. However, by using sone
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of the properties of the antisymmetrizer 5¥L (equation 1-25),
the fﬂj can still be expressed as a sum of atomic terms,.
interaction terms, and products of the two (see below, Sec.
11). The relative importance of these terms to the total
energy of the system can be estimated by a comparison of

the dissociation energy of the molecule and the energy of its
dissociation products (see table 1). In the case of H2 and H;
the interaction energy is seen to provide a considerable
fraction of the total energy of the molecule. With an in-
crease in the number of electrons, or, better, electrons per
nucleus, this fraction rapidly decreases. For a molecule like
HF with 5 electrons per nucleus, the atomic energies account
for ‘over 99% of the total energy. A 1% error in the calcula-
tion of atomic energiés can introduce a 100% error in the
dissociafion energy. Since computed atomic energies are
generally in error by more than 1%, completely theoretical
treatments for molecular systems appear rather hopeless.

i_ When a number of Slater determinants are used in the
variation function, each of the matrix elements }ﬁé includes
a different set of atomic terms. For a molecule in which the
'atomic terms are predominantythe contribution made by the
various determinants is governed by the differences amongst
these terms. In HF, for example, the relative stability of

the valence bond stfuctures
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Table 1
Molecule Dissociation
. Products D'(a.u.) A2(a,u.) D/A
Ho+ H + H* .097 5 194
Ho 2H .1684 1.0 .164
HoO 2H 4 O «249 80.96 - .0043
0o 20 .187 159.92 .0012

' D is the dissociation energy of the molecule

2 A is the total electronic energy of the isolatéd

dissociation products
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H-F , H® F~

(2-7)

(see Chapt. 4) depends on the eﬂgggy difference between F
and F~. The best calculations show that F~ is unstable
with respect to F 4+ é: though the opposite is true experi-
mentally. Any attempt to evaluate a molecular properiy
strongly dependent on the form of the wave functién must
fail. In the case of the dipole moment (H — F ) too small
a value is expected.

The above arguments suggesf the following procedure as
a possible substitute for completely theoretical calcula-
tions: separation of the required enérgies into atomic and
interaction terms, evaluation of the atomic terms oy use of
observed spectroscopic values, calculation of interatomic
terms by use. of appropriate one-electron functions. Results
obtained by this method are contained in Chapter 4; a com-

pletely theoretical calculation is included for comparison.

Section II - Expansion of Hamiltonian Matrix Elements

To expand the integral

Hi; "/ l)"]‘7’_}%@7‘:

(2-8)
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the explicit form of ¥/
. / ' (,‘ / (:
i | 80 o Bl =g ] e

and the comparable éxpression for 9M) are substituted

into (2-8) to obtain the equation

Hiy= o1 | 1 81 H | $i]dz

(2-10)

Here j?;'CYb) is the spin-orbital defined by equation
(1-23). To simplify the writing, the matrix element ﬁé[
requifed for a diatomic molecule is discussed; the extension
to polyatomic molecules and to the case in which.(isinot-gqual
to J is straightforward.

In a diatomic molecule (a=b) the antisymmetrized spin-

A
orbital product l §§ I can be written

‘ / éb/ = /Ql(") o Qp(fe) byy,(Tet) b,, (125) ’

= [a,(x) - by (26)] | (2-11)

where aL[Q) ) bj(qﬁ> are spin-orbital products on nucleus
a and b respectively. Corresponding to (2-11) f%i can be ex-

pressed as

/ | . |
Hii = 721 / 18,00) -~ by () | H [a,(n) - by ““)Mr(z-lz)
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It is assumed in the following discussion that within each
set of atomic functions the orthonormality condition is

satisfied; i.e.,
fa; () a;f (r)ebr = Soi” (2-13)

] Lj[fj) 6jv [’S‘)OP?-‘ S'()'d" | (2-14)

If Slater functions or other non-orthogonal functions are ..
used, orthonormality can be achieved by use of the Schmidt
al
process*
Because H is symmetric in the electrons and because

the permutation operators, P, generating the determinantal

. o2
function (2-11) form a group;” (2-12) can be simplified to

Hii= [0.00) bt B Ja, 3 by tllr (a5,

To permit the separation of atomic from interatomic terms,

(2-11) is expanded in minors and cofactors from complementary

sets of columns®%,
[Q,00) by () | = [ain) = agtve)| % | by (Ve - = byg(as) |
4 2 :
-— 2 Z (0.(Ya)"'0u/t9"'ﬂe(”e)’x , be'”(feﬂ).-- bV({“)" hs(fzof2'16)
U=1 Vsfn

“+ .-
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With the neglect of multiple interatomic exchanges, (2-16)

becomes
o, byt [= (1 = P“")(lam ae(fe)l*“'ew('?w’ (2-17)
bya(ris) )
' or, in simplified notation,
_ _ uv
[a,06) bpstad{= (1 5)’ )( [a]x lb') (2-18)

Here PWW interchanges electron u on atom a with
electron v on atom b. Substitution of (2-18) into

(2-15) yields

Hig = @)= basCt) (1- £ P4)(H 1aixt61)dx  (2-19)

since H is symmetric in the electrons. (2-19) is equivalent

to
Hl = [al(rl) "b), (rl.'i,) é"l lql'ﬁlb')cit .
(2-20)
- Jacty - 5 8)Z PYH Jal x1bl)elz
v
Corresponding to (2-18), H can be written
H =HatH t HE (2-21)
where . y, ,
Ha= 2 (-%*-22) + ] +—
é=y fta XY
2 (2-22)
f
= - .JL —_—
H'b Jg;’ﬂ[ /g ' ) je
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Z
T ZZQ*ZZ_—'*Z“b

{ ,',"?fl r‘b

Z

’

with (2-21), rﬂabecomes

/7".[ :]a,(r.) o bys(as) (1~ uiv P“‘y;—/a}yb+,L/I)[;q;,$/b1)4£2-25)

If the functions Jal and |b| are exact eigenfunctions

of the atomic operators Hg and Hy respectively,

}’"a 'Ql = Ed. '4[
Hy 1el= £ulb] (2-24)

Subject to (2-24, (2-13), and (2-14), equation (2-23)

reduces to

Hice (Eat E)§ 1= 5 a.d»)j

+ Janyo byt H T gen) -+ by (ns)dT
-2 fal(">“' bys(fis) Puv(Hr/AI ¥ “’Ddt (2-25)
WV

where Ckulbv) is an overlap integral expressed in Dirac
notation®4, ‘Except in the case of hydrogen the atomic
functions commonly employed do not satisfy equations

—

(2-24). By the introduction of the quantities £4 and £,

Ea, = fa,(v.)-.. b)_scvls) Ha. I“lJ'b'

F, - g;eﬂm,,) c by Ons) Hy lo] A (2-26)
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equation (2-23) can be rewritten as

Hii = Fa +Eg - ufv Jarty-by (1) pav = Hy | lqlx[bl) dz
+ [a,0n) -+ by (1) (f—gf“v) (HE lalx Jvl)dz (2-27)

al Ir
Definition of A, and M,

nete E+E, "2 Ja,cn) i (65) P Yl +H) [0 x [6]) At
(2-28)

I t
Ht'i = ﬁ(t'z' - /‘/“

- (2-29)

permits separate consideration of the two types of terms.
Multiplication of a definite integral by a permutation

operator does not change the value of the integral;

therefore,

H&':# = f: ‘{'é:e; -uzv (P“v.)—,falm) Y Puv({u“ +Hy§ 'a'_‘“DJ-t(%-ZO)

or

t

/-/l‘ta = E'a +[1 - Z (Pu‘,’).,Q,(Y«)"'bm(ﬁi) (?‘{a +Hb; /alx ’b’)&lt

Wy

(2-31

Since

()" =P

{2-32
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(2-31) is equivalent to
Hi® EatEo - 5 j( Wo,ch) - boyCua)){ Hat o lalx fi|)dz (2-33)
wyv

Corresponding to the operator PYW, the modified atomic

“ v
Hamiltonians, Hq and f4b , can be introduced with

A a
Ho = /4ﬁ"ku
v b
H, = Ho-hy (2-34)
and
“otpr B g
=-Lg2 _ +45 —
hM 2z “ ua S Yuc
s
b 2 2 . ! (2-35)
k = - V - ._.‘-;- + .
v /J- v er gv rV')

By use of the definitions (2-34) and (2-35), (2-33) is

transformed into

SN -
Hh‘ :f;+£b-g_;[/(f’“va,m)-" Lz,fﬁs)){Ha*Hb Ia.lxlbIJ?

+ I(Puvd.(".)""us("u) [“:"' "‘B") laf bldtj (2-36)

Expansion of |2l and In] in terms of the diagonal elements®"

lsads to
O A, (f)ay(lr)
X E dy(fll)ae(re).

4
Ja|= a,06)- by t4s) « ,“?m)dzoﬁ) } A3(15) A, (fe) +-+ [ QL) O aylh) (2-37)
a,(f;) a,_(ﬁ)()
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and a corresponding set of terms for “’l . An examination
of the form of the operators (2-34) and (2-35) shows that
the only elements contributing to the integral (2-36) come

from the leading terms

A (6) 8, () § oy (fer)  lboag (1is) A (2-38)

and secondary terms of the types

=~ [a)a,0n) + Gelie)] ; ~Lbpwz Uen) byy, (Fpy3) co by (Ms) ] (2-39)
and
= [8u0r) 4,00 - ag(r)] ; - T, (Tew) baey () - byg (s ] (2-40)

Substitution into (2-36) gives rise to the expression

HETe Eoshy = 5 (B 4By (outi*= £ Guls) {cau] -t B

i -f.'-a b v a "‘E‘,) oulby b 8y [ -2 Ve Ikv)
+ (o [-£9%- B [au) 3 sl 5 (ot /aua,-)}

+ Z (Qu.lb\/)é Z (a¢lb,) C(GJ FAE 2“ lay) *[(m.apldu‘lb‘)] (2 4

Py

+ £ (m ) [ 14722 [4) 4 Z( "glbvhs)]

+ u (A by 1554u
2 (g fa;0,) + ng(bbe lb;a )j

3

The third sum over u and v is composed of terms which are

zero in most cases because the A T) (bv(fD and the a,(r) (Bd'(ﬂ)
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usually have different symmetries. Even if the terms are
not zero by symmetry considerations they are still small be-
cause of the orthogonality condition (e.g., if the au(¥) are

eigenfunctions of the one-electron operator

2a
V'
K T (2-42)
the sum
S cailw)(a; -5 7% 22 |ay) = j (a,u,.,)(a lay)é, =O
@y _ (2-43)
since
(aclav)=0 (2-44)

Neélect of' these terms, which corresponds to negléct of the
secoﬁdary terms (2-40), reduces (2—41) to -
(2B E s Z(EMED (aul)
o SSUDIENDALEITS t(o [ 49" B Jan)  (B725)
)

+ Z (aua; |bva; ) + s (byb; ’aubl)]

tza JtVv

o . I i
An expansion of Hnﬁ (equation (2-29))analogous to
that used for Hhﬂt'Ls required. By use of the orthonorm-
Ir
ality relations (equations (2-13) and (2-14)) Hj; can be

rewritten as
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I
H‘v‘l: = fﬂ'(r.) o ng(rzs) I—/ra, (rl) "'bzs (r2§>dt

= 5 [ a0y bytne PUYCHT [alxib] A2

2 (2~-46)
or, with (2-32» as
HL'LI = ]a;(ﬂ)"' bzs(st) Hr a,(0)~ by (ns )z
, : (2-47)

= 5 [iyen) by tn) HT Ialx b1dZ
wv

Consideration of the expansions (2-38) - (2-40) shows that
the secondary terms (2-39) make no contribution to the
integral and that the terms (2-40) contribute quantlties
identical with those neglected in /é‘af - If only the

leading ﬁerms (2-38) are included, (2-47) becomes
H‘.;_L :/{(l-— Zvl’“v) a,(n)-- bz,fﬁs)z HT a,tn) - bystns) dr (2-48)
. w
or, finally _
Z - Zp s - |
Hi =2 il )+ [l %155)4‘;:{(6.‘-«.,-/@5,)
- “ 2 ol -Ze,. - Za g - b :
=2 (ule) [5 tai-2 )+ 3, Coil- 3 )+ 5 8t lass,)]

'Z (aulby) [ Can[-2a Za (2-49)

?.F:‘,b")+z laca, lacav) -\‘f (Lyb, /bJ'du)J
r

‘Z (“ubv,byﬂu) -+ ZaZb ({~ [Qu’bf))

u,V
Addition of (2-45) and (2-49) with combination of like terms

results in
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Hie = Bt by = 5 (B e£ ) Gantion™ + F il -2 fad)

fab

+2("J'/ ——2;3- }bj)‘l’ z (a; LJ'IQ‘.L-) + Za, 2y
Sty @ fvu J Tab

+j2(1,-{—%[b,') + ‘%(a;lojlagb“) + ZaZi —gv(“ulhy)-l[‘%“[“"/'%"i)
Rl (2-—50
- y/ -
Z [aulbv)[:Z[aul F A% % . % /w) + 2 ‘éu(a“a" lbyac)

d,v

+ zgvavb,-/aug;)] ~ gvzquz,, lovau)

In view of the method outlined in section I, thevguantities
Zi,Zi)[i}g Zlv : are evaluated empirically and the
other terms of (2-50) are calculated theoretically.

Matrix elements f4kj(331)are expanded by a procedure
similar to that used for fﬂ‘ . The resulting expressions
are generally much simpler than equation (2-50) since only
a few elements of the Hamiltonian contribute non-zero terms.

. J’
1r ¥ anda ¥° or

Hy =J¥iH ¢idr

- (2-51)

differ by more than two atomic orbitals,

Hij =0

(2-52)

to the approximation used above.



-2 -

Section IIT - Interaction Operator Method

The difficulty of molecular calculations has led to the
introduction of approximations whose validity has never been
investigated. Among these is the "interaction operator
method" which has been frequently employed36. In this sec-
tion use is made of the expansion developed in Section II
(equation 2-50) to establish a criterion for the applicabil-
ity of the interaction operator method.

It was shown above (equations (2-24) and (2-25)jthat
functions |a]| and lﬁl)if atomic eigenfunctions, 1lead to
the matrix element

Hi = (541«1_:5)[1- %v Cou )|

(2-53)
+ j‘*\“‘ s by (V) ((" iPuV)(HIIQ(“‘("()dT

Hyv

The interaction operator method assumes that use of equation
(2-53) with ii and.éz (equation 2-26) substituted for Eg and
Ep is a valid procedure in the case that |a| and |¢] are not
atomic eigenfunctions. If qu:is considered an adequate re-

presentation of the system, the energy is

([a*'Eb)("z{Gu""’)_)“' Jaitt) ~bygtas) (1- TP*)(HE 1alxi6l) AT
(2-54)
(1= Z,(aulbd )
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or

E-E+E, + |20 -htsd(i- £ p) (nT (e1xlo)de
( 1= %v(aulb\da)

(2-55)

The dissociation energy of the system is just
 att)- by tney C1- £ P) (HT [alx1b1)dZ
(1- 5 tau]tw)?) (2-56)
v

i.e., the energy resulting from the use of the interaction

E-L-E -

operator alons.
Comparison of (2-53) and (2~54) with the expansion
(2-50) shows that the interaction operator method assumes

equalities of the form
2 ~ - 2.
Gl (b |- 57T ) # (o) Tl BT )

and

(awa, [ bya;) = Caulby) (Bua; lauac) (2-58)

Eduation (2-57) is exact if the &, are eigenfunctions of
one-electron operators (equation 2-42); for orthogonalized
Slater functions (2-57) is no longer exact but is still a
rather good approximation. In any problem, the validity of
the method depends primarily on the correctness of (2-58).
Table 2 shows some results obtained with integrals calculated
for HF. It is seen that the interaction operator approxi-

mation introduces an error on the order of 20% in each
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Table 2

Required Interaction operator Correct Approx.
Integral Approximation Value Value
(a.u.) (a.u.)

(HyF,, /Fyy E) (H,/F, )(B,E,/E E) 3635 4440
(H,E,/E.F,) " (F B /F,E) L3742 .4440
(H,.E,/F.F,) " (BsFe/F. B) 3670 .4440
(B, F,./B,F,) (H,s /E,) (F,E /P E)  .2036 .2726
(H,Fu/E,F,) " (R, F /B.F,_) .2300 .3056
(H,;_Fb/ﬁgrlgs) " (B.Fy/F, F,) .2124 .2836



-45-

integral. B8ince the terms involved form a considerable

part of the dissociation energy, the error introduced into
the final result is expected to be large and the interaction
operator method inapplicable in HF. To draw generalfconclu-
sions from this calculation is inadvisable; specific tests
should be made with (2-58) for each problem. As it seems
likely, however, that for comparable molecular dimensions

a comparable error will result, great caution must be
exercised in application of the interaction operator

approximation,
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Chapter 3 = INTEGRAL EVALUATIOCN

The most time-consuming portion of molecular calcula-
tions is the numerical evaluation of the Schrodinger in-
tegrals., Their difficulty dictates the use of simplé one-
electron functions and limits the accuracy achievable in
practice. Exact methods for computing many of the reouired
integrals have been developed. In cases for which exact
calculation is too tedious, approximate methods can be
introduced, This chapter discusses the exact and approxi-
mate evaluation of molecular integrals with special refer-

ence to those necessary for HF and HF5 .
Section I -.Exact Methods

In any problem involving one-electron atomic functions
and a Hamiltonian of the type given in eouafion (1-2)
only three-dimensionsl and six-dimensional intégrals appear;
i.e. the integrals recuire volume integration over the co-
ordinates of one electron (three-dimensional) or,_when that
part of the Hamiltonian including electron interaction terms
( E;; )} is being considered, over the coordinates of two
electrons. The types of integrals reouired are evident from
the expansion of matrix elements {Chapter 2). The simplest

are the dimensionless overlap integrals
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(Ao (8))= JAul0) B (0)AY .

Here the capital letters 4, By represent only the orbital
part of the spin-orbits a,, b, appearing in the integrals of
(2-50). It is assumed that the integration over the spins
has been performed. Corresponding to the kinetic energy

operator, the kinetic energy integrals have the form

(Aul 9B = b fAu(r-) v2B,(n)dt

(3-2)
The general one-electron integral resulting from the
potential energy operators is
an | L /B -=//A ) Bytn) dv
oe I 18) = ] = (3-3)

| .
then, correspondingly, the =, terms lead to the two-electron
: ¢t

repulsion integral

(AuBvl G De) = fA,A(r.) By(¢2) (s(v) Q/"z)fﬁ
Y2 . (3'”“)

Special cases with some of the A,B.C,D and gome of the
u,v;s,t ecuivalent occur frecguently.

The method used for solving the integrals (3-1)
thfough (3-4) devends largely on the functions used for the

Au, Bv .... . Here real Slater orbitals®} of the form

AN+ S (5,6) (3-5)



X
are considered®. The cuantity N is closely related to the

principai oguantum number, n; forn less than or ecual to 3

- V]*gm
(3-6)
S is defined by the relation
Z-s ,
$= —
n (3-7)

where Z is the nuclear charge and s 1is a shielding con-
stant determined by semi-empirical rules developed by Slater.

The functions Sgw (‘9,¢) are real surface harmonigs

Cos |M4>§

Spu Pem(“‘@f foa w b (3-8)

For other one-electron functions differing only superficially
from the Slater orbitals (e.g. by having the single * term
replaced by a polynomial or the single exoonenfial by sum of
exponentials) gimple generaiizations of the methods outlined
below are applicable. |

With functions of the form (3-5) all the integrals in
which

A=B=C=D B (3-9)

® For the considerations of Chapter 2 to be exactly appli-
cable, orthogonalized Slater functions have to be used.
Since these are linear combinations of the simple Slater
functions, e¢ecustion (3-5), the methods described below are
unaffected
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i.e. one-center integrals, can be done directly. The one-
center reoulsion integrals (3-4) are most easily performed
by using Wq as a variable of integration,

For the two-center case

A+ B . (3-10)
and |
C=A, D=B (3-11)
C =B, D=A | (3-12)
or | |
C=D=A+B | o (313)

transformation to spheroidal coordinates3’ permits the ex-
pression 6f’the integrals (3-1) in closed form in terms of
sums of exponentials times polynomials38. In the integrals
(3*&) the -%1 term is troublesom¢. If spheroidal éoordinates

. !
are employed,an expansion39 of /45_

Z Z Aow Qo (SIR(5)R"(y) P, (yz)m(«f. 4)(3-11)

R b o ¢>5,
is found useful. Here
=20¢) ; s (-D"(40+2 j(p"“) m>o
>‘—fo 2841 A(’m ) ] 7 | (3-15)"

the B“SG&: are Legendre functionsQ of the first and
second kind and 5,;7. 46:,' gzl?ﬂ?‘z are the spheroidal co-
ordinates of the two eleckrons.’®  Coulomb integrals (3-11)
again yield closedﬂexpressions composed of sums of exponen-

tials times polynomialng. Exchange (3-12) and donic
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integrals (3-13) result in slowly converging non-terminating
gums of bomplex functionsul,

The values of some of these functions have been tabu-
lated in terms of their deoendence ond 2. 1In Tablés 91l
(Chapter 4) +the one- and two-center integrals reouired for
HF and HFE' are listed.

For three- and four-center integrals, spheroidal co-
ordinates are not well suited. An expansion of orbitals
centered on one nucleus, a, about a second nucleué b, can
be made by use of an addition theorem 53 for Besgsel functions

g;f:‘:: — Z @w+) Km+/ (Kfab) Ly (€ (K"lu) o (98,,)
: fia T0 V::;:‘ (3-16)

where Imf//l and K“‘*{’z are Bessel functions of purely imagin-

ary argument of the first and sgecond kind, respectively,
Application of (3-16) reduces the three- or four-center prob-
lem to the two-center case.

The difficulties encountered in computing the resulting
expressions are, however, so enormous as to discourage all
but the professional computer.

Section 11 - Approximate methods: Exponentiai expansion and
point-charge

The difficulties inherent in the exact computation of

molecular integrals involving Slater functions suggest that
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approximation methods be investigated. As long as the
variation function (see Chapter 1) is composed of only a
few terms, the accuracy possible in any caleulation is
severély limited. The approximation of integrals is per-
missible, therefore, if the resultant error is smali com-
paréd to that arising from the use of a poor wave function.
In most of the two-center integrals great care is needed
to ascertain that the methods used yield sufficiently ac-
curate results. Since three and four-center integrals make
only a small contribution to the matrix elements a rather
large percentage error in their values (on the order of
five percent) can usually be tolerated. It is primarily
in these multicenter integrals that time can be saved by
_the use of approximation without significantly affecting
the accuracy of the final result.

- Several useful approximation methods can be ob-
tained by use of an eXpansion similar to that expressed by
equation (3-16). Since the functions Au and Bv of equation
(8-4) are members of a complete set, Cg and Dt_can-be eX~-
panded about nucleus a and b, respectively, in terms of

Au and Bv; i.e.

ob

G ()= 2 (A [6) A (n) (3—1'()

L=t

and

o

D* ({1): % (55“%)8_)'(5.)
- (3-18)
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By use of (3-17) and (3-18) the charge distributions
Aulv) (s () and By (") D.t(r:.) can be replaced by the
expressions
00
A (D Gle)= D (AlG) A &) Ailh)
L=l (3-19)

and

L =]
By () Dy(n)= 2 (8;1D.) B/(1)B (1) (5-20)
J=
The magnitude of the charge present in the distributions
(3-19) and (3-20) is obtained by integrating over all
space. Since the Au(v) A;(t%) and the By ) B, (r)
are orthonormal sets, the only terms in the expansions
(3-19) and (3-20) that contribute to the total charge are

the term

(Au 1€5) Au () Aul5) (3-21)
frpm (3-19) and the term

(8IDs) By (%) By(v)

(3-22)

from (3-20). All the other products in (3-19) and (3-20)
affect only the first (dipole) and higher moments of the

charge distributions. At a sufficiently large distance
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the potential of a charge distribution is well approximated
by use of the zero moment alone. This suggests use of ex-
pressions of the form
Au () G0) E (Aul ) Ay (5D Aulh)
(5-23)
and
By (6.) b (6) = (B/ID,) By (r2) B, (R)
(3=-24)
in the evaluation of the integrals (3-3) and (3-4). A
procedure comparable to that used in obtaining (3-23)
and (3-24) yields the relations
» .
A wln) (v) = ((3/Au) ((%) (s (ﬂ)
(3-25)
and
1
By R ()T (0,)8) D.(n) 1w
(3-26)
Since the choice between (3-23) and (3-25) or between
(3-24) and (3-26) is purely arbitrary, it appears best to
use some form of mean. Introduction of the arithmetic

mean gives the expression

( Aut6) G () 2’—{ [(ﬁ/Au)[Au/”u)Au(ﬂ){- (5(4)(,&?)3{27)

the geometric mean yields
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)
Au(n) G66)= (¢ /Aa)f [Au) A x [ ]}

(3-28)
Substitution of (3-27) and (3-28) into (3-3) results in
the approximate forms

(AL 16) 5 (amd[ i (4 + (61£16)]

(3-29)

and

(Au,%/[s)g((5/;\“)[(/1“/;5/,4“) x((s/;f/(s)]//L s

30)

For the integral (3-4))expressions (3-27), (3-28) and the
comparable approximations for By, (fu) Dé( ;) are needed.

"With their use, the formulae

(Au By 165 0p) ="/f, (Ault:)(B, /D) [64“ 8] AuB)+ (Au Dy 1Au Dt )
(3-31)
+ (GB/sB)+ (s0eltsDr) ]

and

(A By [ De)= (Au (65 )(Brl 1) [ (Au By lAuBy) ¥ (Au D A4 D)

4 3-32
X ((st/(,Bv)x[(so,/c,p,/] 7 ( )

result, Instead of transforming.the charge distributions
by means of the expansions (3-19) and (3-20), it is pos-
sible to determine the value of the charge directly; e.g.,
the magnitude of the total charge present in the distribu-

tion Au () (4(n ) is equal to the integral
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(Au /[s) (5-33)

By use of the point charge approximation, the potential of

Au(YJ(EC“) at a poinp b can now be written asg
(Au /(s) ( )
3-34
(&, b ’

where ﬂﬁh is the distance from the center of charge of
Au () (5(% ) to the point b. In terms of (3-34) the

integral (3-3) becomes

(Aul 7/; l6) = (Anlts) (3-35)

%, b

'Similarly the integral (3-4) can be expressed in the form

(hBylGD,) = (AulG)(BriDe) |
u e, 5d | | (5-36)

where ﬂ-z"b‘;» represents the distance betwsen the center
of Au (%) Cs(1) and Bv(f,)Dy( f). For the special case
of (3-4) involving only three centers, the modified formula
/
(hu B 1Aube) = (B /D) (Au] 7=
) V/ )/ /rb.a /Aa) (3_57)

can be used.

To determine the adequacy of the expansion formulae
(3-29) through (3-32) and of the point charge e Xpressions
(3-35) through (3-37), it is necessary to apply them to

- specific examples of the integrals (3-3) and (3-4).
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Hirschfelder . et a1f4 have computed the exact values of
some three-conter integrals with u, v, s, t all corres-
ponding to hydrogen functions. They considered only the

case of all three nuclei on one line,

Tab Toe
a b ¢
In Tables 3 and 4 the results obtained by them are com-

pared with those computed with the various approximation
meﬁhods. It is seen that the geometric msan expansion
(3-28) 1s consistently superior to the other approXimations.
Since the greatest error introduced 1s on the order of four
percent, the geometric mean can be considered a satisfac-
tory method of calculation. At large ¥ ( Vab)2 ) the
’simpler point charge approximation also yields usable re-
sults. |

If the orbitals Ay (r) and Cg (r) belong to different
symmetry species, their product A, (r) Cg (r) cérrespondé to
a distribution of zero charge. The dipoié and multipole
moments of the distribution now make an important cohtribu—
tioﬁ to the potential. Many terms in the expansion (3-19)
may have to be included. Until the rapidity of convergence
"has been determined, the value Qf the method for calculating
integrals containing distributions of zero charge remains in

doubt.
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Table 3

Integral (Al;/VﬁE/B,g) in (a.u.)

Exaét Arith. Geom. Point

‘sb Value Mean Mean . Charge
(a.u.) fasu.) (a.u.) (a.u.) (a.u.§
0 . 500 .515 .H03 «D73

2.0 .1925 «213 .198 . 205
0 .0780 .086 .081 .07
0 L0321 037 . 032 031
1 1724 .1744 .1729 «171
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Table 4
Int egl"&l (A JAB ls /B I3 C" )

Exact Arith. Geom. Point

G& Toe Value Mean Mean Charge
{a.u.) (a.u) (a.u) (a.u.) (a.u.) Za.u.§
1.0 1.0 « 395 <399 « 395 L7138
2.0 2.0 .143 . 150 «143 .173
3.0 3.0 . 040 .044 .0395 .041
4.0 4.0 .010 .0108 . 0097 .« 0098

Integral (A C,s/BisCys )

& : Exsact Arith, Geom., Point

b e Value Mean Mean Charge
{a.u) (a.u) (a.u) (a.u) (a.u) Ia.ui
1le.0 1.0 .419 L4211 «417 Y
2.0 ‘ 2.0 .188 « 199 «191 « 197
3.0 3.0 079 . 086 .081 .078

4.0 4.0 . 032 .036 032 031
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.Section 111 - Approximate Methods: Normal function
expansion

In Chapter 1 it is suggested that one-electron
orbitals composed of functions other than exponentials
can be used to simplify molecular calculations. One
set of functions, thgt related to the solutions of the
harmonic oscillator problem and the normal distribution
function, is investigated in this section; i.s., functions
of the type

-Spr™
eZPem(f)c ¢ - (3-38)

ars examined. Here f?m(r) is a polynomial of order n
and Q is a coefficient, which has yet to belspecified.

The - finctions (3-38) are introduced because mﬁlti-
center integrals constructed from them are easily evaluated.
Their simplicity arises from the fact that expansidns of the
type (3-16) are here replaced by the simple expression

- Kfia™ _ e’ K(1+%ab - 2 fab20)

€ (3-39)

if rgp 1s assumed to lie along the z-axis;

To be useful in a variation function or in the
approximation of molecular integrals, expression (5-38)
} has to be relatsd ﬁo the orbital of exponential type that
is being replaced. The method employed for this fitting
process depends on the accuracy desired. For use in a

variation function (1-28), the simplest form of (3-38),
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a polynomial times a nofmal function, should suffice.
Since hydrogen-like and Slater functions are exact or

approximate eigenfunctions of the one electroig operator

-
AR (3-40)

the variation principle 45(

equations (1-7) and (1-8))
can be used to determine the coefficients & .
In approximating orbitals other than the one corres-
- ponding to the ground state of (3-39), the orthogonality
condition (1-9) has to be included in the calculation.

An approximation more accurate than that provided
by a single term of (3-38) is required for the calculétion
of iﬁtegrals. With a series of terms, the variation pro-
cedure becomes too complicated because of the requirement
(1-9) and because of the presence of non-linear parameters.
Some other method of fitting the functions (3-38) has to
be employéd. Since integral properties of (3-38) are being
used, a likely procedure consists of choosing the coefficients
Seby equating certain moments of the exact and approximate

functions. To approximate the hydrogen ls orbital by the

expressaone_r fae- S,r‘-+ a e_glfz-
' 2 (3-41)

‘the equatlons
rce frnd‘- S a'f e Slerudf "aljbg Nt r TEL23y(3-42)
o o (4

are solved for ai, ay §, and §, . Overlap integrals
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obtained from the two sides of (3-41) are compared in
Table &, Since the deviations are large, the coefficients
in (3-41) are redetermined by fitting the exact and approxi-
mate fuhction directly at the four points
V=00, 05, 1.5,3.0

(3-43)
The overlap integrals obtained with the new coefficients
(see Table 5) are seen to be in better agreement with the
exact values. This improvement suggests the testing of a

three-term function

- ~4yr? “byt% ~byt ™
eC V:a,e “ +4,€ ' tazé€ s (3-44)

whose coefficients are determined by equating it to the

exponential at six points,

+=00,05,10 2.0,2.5, 4.0 4 (3-45)

Table 5 shows that highly accurate overlap integrals can
be‘computed with a three-term expression. To determine
'whether the other molecular integrals (3-3) and (3-4) can

be evaluated with corresponding accuracy requires addition-
al computations. The results obtained here only indicate
bthe usefulness of the normal functions in molecular calcula-

tions.
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Table 5

Normal PFunction Expansion

Tab 1s Overlap Moment Directly Directly

(a.u.) Integral® Approximation® Fitted Fitted
(g.u.) (2 term)(a.u.) Punction® Functions
(2 term) (3 term)
(a.u.) (a.u.)

0.0 1.000 1.000 1.000 1.000
0.5 . 960 «925 . 942 . 959
1.0 858 749 . <821 .857
2.0 . 586 .551 « 564 . 585

3.0 549 . 558 « 207 543

#All integrals are normalized to 1 for R=0.



-53=~
Chapter 4 TREATMENT OF HF AND HFgy—

A gquantum-mechanical discussion of the hydrogen
bond reéuires ﬁhe selection of a system simple enough
to permit the use of quantitative methods. The bifluer-
ide ion (FHF—), as it exists in crystalline KHF24?,
appears excgllently suited for calclillation becausé of
the simplicity of the system as a whole and because of
the well-defined nature bf ﬁhe hydrogen bond itself.
In this chapter, the method outlined in chapters 1 and 2
1s applied to FHF— after its applicability to highly ilonic

structures 1s tested by a treatment of HF.

Section 1: Hydrogen Fluoride

For this calculation HF is éonsidered té consist
of eight electrons in the field of two nuclei 1.738 a.u.
apar£.47 The fluerine ls elsectrons are collapsed into the
fluorine nucleus, leaving a net positive charge of seven.
As{pointed out in Chapter 1, such an approximation procedure
requires a careful check on the error introduced. In Table
6 some of the 1ls integrals are compared with the results
obtained by replacing them with a point charge. The excellent
égreement indicates that the error resulting from the neglect
of the 1ls fluorine electrons is not significant.

Since HF has a closed-shell structure, the choice
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Table 6

Integrals of the Fluorine ls Electron

Integral Approximation Exact Value Approximate
Formula (a.u.) Value (a.u.)

(R /// Fs) 1/R 57537 .57537

(HF s /frFs) (B/ %/ ) 23833 23905

(HF, /HF s ) (H/,'(/ H ) .52582 .52644
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of orbitals for the variation function is straightf¢r-
ward. The hydrogen is orbital and the fluorine 2s, 2py,
ng, and 2p$ orbitals are used. From these, the varia-
tion fﬁnction is constructed by the selection of all
possitle singlet structures with the correct symmétry.

Two covalent structures, each corresponding to the exist-
ence of one valence-bond, are possible; i.e; the.structure
with a bond between the hydrogen ls orbital and thé fluor-

ine Z2pg¢ orbitalst
= I~ z |

where

wh (;;'T?— | aype) HG)al2) s(3) Bs) -+ «ys)uml (4-2)

and

V/Z-(—z———— 17 6)at) HIZ)BL) S(DBL3) -~ gle)dcs)| (4-3)

and the structure with a bond betwesn the hydrogen ls and

the fluorine 2s orbital

l/
p3- (4-4)

=<

- (}'.‘5{7)7/1’ SOBE) HBIRIT(5)AL) = y(8)4L8) | (4-5)

#The molecular axis is assumed to be the z axis.
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and

/
A reys [ strat) HepBTE) ) 4 %D | (4_g)

O0f these two structures, only the first is likely to
make a significant contribution. The second requires
promotion of an electron from a fluorine 2s to‘a Tfluor-
ine 2p orbital with a concomitant promotion energy of

0.76 a.u.,; 1l.e.
E(F:2322'05.j ZPAV)—[/F:ZSZFG)' 2$)=0-7é (4-7)

(see Table 7). This energy so destabilizes the structure
(4-4) that it can safely be neglected. In addition to the
covalent structures, (4-1) and (4-4), the ionic singlet
structures

WH*F'. = #4- ‘;,T,/)'//,_ [Tiporerad) - tjlﬂ)d(f)/

( (4-8)

and
= wé [ -
Froge = 7% Fena | HOpORGIIE) SOp6)-9(0p0) |

have to be considered. The high fluorine ionization
potentilial, (0.64a.u.)?8 and the low electron affinity of
hydrogen, (0.026a.u.)49 indicate that the contribution of
structure (4-8) is small; it is not included in the calcu-

lations carried out below.
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Table 7, Atomic energies (a.u.)*

State Energy (exp.) Energy (calc.)

H: 1s; 28 - 0.5 - 0.5

F: 2s2p;2p ;P -24.2269 -26.0094
Fi 2s' 2pf2n, ;%R -22.8524 -23,3105
F: 2s2py; 23,4505 -25.4486
F: 2s”2pe2pl;'s  -24.3610 | -25,5682
F: 28" 2p%%s -23.46214

# Measured from F: 2s; £ as the zero of energy.
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From the two remaining singlet stfuctures,

(4-1) and (4-8), the variation function

- : (4-10)
L Yrprsa, e a

is constructed. Detérmination of the coefficients 83 and

8, requires evaluation of the elements

[eHyide  ijenas (4-22)

and

/ T yidr () =435 (4-12)

Application of equation (1-50) to (4-10) and (4-12) yields
the necessary expansions. These are given in detail on
page 69 . According to the method outlined in Chapter 2,
the atomic terms appearing in the matrix elements are to
be evaluated by means of spectroscopic data. all the re-
quired values, except one, correspond to spectroscopic
states of the isolated atoms (see Table 7) and are, there-
fofe, obtainable from the compilation prepared by Moore.

For the configuration F+: 2s?

2p: an approximate inter-

50 5l
polation is used. By the Slater theory for complex atoms
: 3 ‘ 4
the desired level is e 7 above Fts 25 2p ; 'D. Accurate

2 ' 48
evaluation of F 1is not possible since the spacing of 3P,

lD, and of 'D, 'S, is not agreement with first-order theory;



Expansions of HF Matrix Elements

f* HY'dys E(:15y7s)+ E(Fe 26720 2 1e; )~ (HIS)
R ECFY 3P e Tav) + (H) ZE W)+ A(x] - 1) 2 (s]-% 19)
NGIRALE “ 4 (x| HX) + 2(HsIHs)+ (el i) -(HslsH)

- A(HxlnH) - (Hls) {‘f(ll- Ix)+ (s1-5,15)¢ (TI-g o) + 2t }
- CHls)iz(H] -ig™ _t- ! |s)+ t(sxlm)a(sslns) +2(.so'lnc-)}

t'HY dr: B(F® Zs‘an)CH(¢)+(hl¢) "f40x1-5, )25, 15)
EATCLIEICIR S S T 9(nwx)w¢rsws>}
+(a'Himr) |

S HY Ay ECF: s 3l 3p av) c»l¢)+culc’){‘t<xl-— Ix)
tA(SIRIs) E ¢ (9[- L1}« (ol-4e- k-2 lo-)ﬁcuxlo-x)
sx(ts)es) 4 (Halov)]

FESHESAE < E(F252p ap; S) + 4 (x( -4 1 092 (13, )0)

+ Z¢ -4
?;F ¥ 2(‘S| ‘-“‘5)

{evdes 1-fHs)
f ' drs (Hlo)
fegsdr- (K1)

S‘Y‘Y‘Ar = |
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l.8.,

D-3P (4-13)
instead of the predicted ratio of 1.5. A simple average
of the F° values obtained from the 3P, 'D and the 'D, 'S
differences is used. The resulting energy spacing between
s 232 Zp# and F1; 282 2p4; SFk, is given by the rela-
tion

(4-14)

=2 [E(0)-£0R]+L[E()-£(D)]

For comparison with the experimental energies, calculated

values for the atomic terms are also listed in Table 7.

The latter were obtained by application of the Slater theor??
To evaluate the ihtegrals (p.69) Slater orbitals

are intfoduced. Although it has been suggested that the

best screening constants for molecules are different from

those determined for atoms, isolated atom values are used.

(see Table 8). With the methods outlined in Chapter 3 all

the integrals appearing in the matrix elements (p.69 ) can

be cdmputed exactly. In Tables 9, 10, and 11, the resulting

values are listed., Substitution of these integrals into the

éxpansions on pageé?yields numerical values for the matrix

elements (see Table 12), If these are inserted into the secu-

lar equation (1-19), the ground state energy and wave function

for HF are obtained. In Table 13, the total energy of the
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Table 8

Orpbitals Symbol
Hyg H
Fls Fis
Fogqg s
Fopr o
F‘Px X

F y

Sim N
1 )%
(9"
1 (;g)%;
o
ombeuwsd u
i Gain b "

8.7

2.56

2.56

2,56

2.56
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Table O

One-center integrals (a.u.)

(8/-3 7~ % /1) —0.5000
(s/w%vf-%?%) —7.8677
(0/~%v2- %FL‘/a') -5.6832
(x/-3V2- %f/x) —5.6832

(ss/ss) 9.9300
(e¢ /o) 1.0020
(xx/xx) 0.9300
(sx/sx) 0.9300
(so/s0) 0.9300
(rx/rx) 0.8940
(xy/xy) 0.8940
(so/fos) 0.2056
(sx/xs) 0.2056
(rx/xa) 0.0540

(xy/yx) 0.0540
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Table 10

.H - F Two-center integrals ( a.u.)

Integral r=1,738 (a.u.) r=2,136 (a.u.) r=2,534 (a.u.)
(H/8) 0.47737 0.36255 0.26716 -
(H/o) 0.30497 0.25171 0.19668
(H/ f./H) 0.52644 0.43205 0.38833
(o/ ?:;/0") 0.64844 0.51270Q 0.42235
(x/75/x) 0.53216 0.44472 0.38061
(s/%/s) 0.57093 0.46738 0.39450
(s/%/7) 0.17871 0.12220 0.08758
(H/;';/u-) 0.37741 0.25039 0.15971 °
(8/¢/5) 0.36932 0.23834 0.15031
(H/ /g /) 0.23905 0.18542 0.13786
(B f./3) 0.45187 0.32707 0.23240
(H/2¢/s) 0.2691

(H/ 2;/ ) 0.5000



Integral r=1l,738 (a.u.) r=2,136 (a.u.) r=2.534 (a.u.)

(Hs/Hs )
(Hx/Hx)
(Ho/He)
(Ho/Hs)
(Hx/sx)
(Ho/sr)
(Hs/ss)
(Ex/rx)
(Ho/fro)
(Hs/os)
(Hs/sH)
(Ho/oH)
(Hx/xH)

T4

Table 10 (cont.)

0.49994
0.48667
0.52649
0.10331
0.36346
0.37420
0.36704
0.20355
0.22997
0.21236
0.16642
0.11497
0.02795

0.43477
0.42357
0.45717
0.08747
0.2276
0.2364
0.2305
0.1549
0.1741
0.1601
0.07084
0.08188
0.01132

0.37973
0.36115
0.39750
0.07194
0.1545
0.1624
0.1588
0.1118
0.1241
0.1169
0.04782
0.05212
0.00540
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Table 11

F-F Two-center integrals (a.u.)

(r= 4,272 (a.u.))

(s'/s?)
(s'/e2)
(¢'/q2)
(x '/x2)
(s'/Aa/s')
('/fpr/ ")
(o S )

(x'/fealx")

(3" / o/ V)
(e f/sh)
(8'/ 4o/ T2)
(r'/ fo/ ¥2)
(x' /Au/x*)
(8's/ds)

- (o°=7/2d)
(sr/e's)
(r's7e's)
(reee?)
(xs7=sY)
(x's7%'¢)
(xXxX/%%)

0.00940
0.01360
0.01956
0.00262
0.23407
0.03089
0.23994
0.23114
0.00479
0.00631
0.00745
0.00966
0.00196
0.23407
0.03089
0.03322
0.23994
0.24670

0.25114

- 0.23656

0.22854
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Table 11 {cont.)

(Xy/x¥) 0.22747
(Xs7%7) 0.02972
(T /e 0.00019
(rs/se 0.00009
(e x/x0") 0.00000
(s's/3d) 0.00004
(sx7%s) 0.00000
(#x/%x)) 0.00000
(xy/yx") 0.00000
(oY% .00973
(s /a8 .00924
(rx/o%) .00899
(s'v/s%) .00444
(s's/s's) .00439
(sx/gx) .00436
(o 0/ .00667
(gs/sd) .00835
(dx/sx') . .00518
(/%) .00651
(s'/s’s") .00642
(sx/rX) . 00638
(x'c/x%") .00120
(Xs/x8 .00121
(xx/xx') .00125

(xy /%% ,00118
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Table 12

HF Matrix Elements - Numerical values

(a,u.)
Matrix Element Completely Theoretical Semi-Theoretical
: Method Method
H,o=Hy M o 23.10331 21.47132
Hii-HSS 26,10796 24,90076
Heoi=23H1 g 11.64407 10.82362
Iec=I11+I12 0.86513 " §.86513
Iii:ISS 0.43129 0.45129‘

-nl ‘
I.;72315 1.00000 ~ 1.00000
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Table 13

Energy, wave function, and dipole moment of HF

Completely Semi-
Theoretical Theoretical Values

Method

HF-total energy (a.u.) 26.73073
F -total energy (a.u.) 26.0094
H -total energy (a.u.) 0.5000
De for HF (a.u.) 0.2213
Dg for HF 138.7

8 =-coefficient of 4, 1.00

8, -coefficient of 4; 0.015
A-dipole moment of HF -0,57

(Debye units)
expressed as H —> P

Method

24.93906

24,2269

0.5000

0.2122
133.0

«2066

« 5347
2.27

Experimental

0.2249
141.1

1.91
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molecule, its dissociation energy (De), and the squares
of the coefficients of the wave function (4-10) are listed.
From the known coefficients of the funcﬁion the dipole mo-

ment can be computed by use of the equation

4
/“=[,735’ "‘Z -7 (4-15)
radi ,
where
Ee =j ?a Ze Tooef | _ (4-16)

and 2o 18 the z-coordinate of the £th electron with the
fluorine nucleus as origin. The term 1.738 in (4-15) arises
from the unit positive charge on the hydrogen nucleus. The
integrals, appearing in equation (4-16) are listed in Table
10. The value of the dipole moment is given in Table 13.

To evaluate the results of the calculation, experi-

53
mental values of the dissociation energy and the dipole

mqment54are shown in Table 13. It is seén that both the
completely theoretical and semi-theoretical methods give
excellent values for the energy. However, for the dipole
moment, the completely theoretical method gives an entirely
incorrect result, while the semi-theoretical method calculates
a value in reasonable agreement with experiment.,

Some explanation is required for the good energy value

computed with the incorrect theoretical wave function. The
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nodeless character of the Slater functions causes FZs
orbital ehergy to be too large and the F+;23 2p:2pr
energy to be too small in absolute value. The conseguent.
decrease in the repulsion from the (S/H ) overlap terms
stabilizes the covalent structure and, accidentally, leads
to nearly the correct energy value.

The results obtalned with the semi-theorstical method
indicateJihat it is satisfactory for the treatment of highly
ionic molecules. The 20% error in the dipole moment is not
large when consideration is given to its sensitivity to the
form of the wave function. A two-term variation function
(4~10) cannot be expected to give higher accuracy. It is
likely that inclusion of the negletbtad structures (4-4)

and.: (4-7) would improve the answer.

Sectién IT: The Bifluoride Ion

The success of the semi-theoretical methédf in
the HF calculation (Section 4-1) suggests that meaningful
results can be obtained by its application to other éystems.
In this section, a treatment of the bifluoride ion (FHF")
is presented. An attempt is made to compute the energy of
'FHF and to demonstrate the symmetric position of the hydrogen

nucleus.
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To simplify the calculation, FHF™ is considered as
an isolated system. Nevertheless, a fluorine-fluorine
distance (4.272 a.u.) which was debermined in an invest:i.gat'1om&6
of a KHFy crystal is used. It is assumed that the k" ions
and the other FHF ions present in the crystal are so far
removed from the one under consideration that they introduce
only a minor perturbation.

Two hydrogen positions are considered in this
calculation. In one, the hydrogen is located at the center
of the fluorine-fluorine line, and in the other, the hydrogen
ls on the same line at a distance of 1.738 a.u. from the
nearer fluorine. ? The distance in the unsymmetric case was
was selected.because it permits the use of many of the
integrals computsed for H F.

Since the point-charge approximation has been justified
for ls electrons (section 4-1), FHF is here treated as a
system composed of sixteen electrons in the field of two
flporine nuclei, each of charge plus seven, and one hydrogen

nucleus of charge plus one. Only three singlet structures

are included. Two contain a single valence bond between

% In the following discussien the fluorine nearer to the
hydrogen is labelled one (F ') and the other is
labelled two (F?).
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the hydrogen and one fluorine

L4

(4-17)
“/,) ?F 'H F ) ,z/ €0 p0) WYty - yltdars) rri)ecy) sy lie)ul)]
and
tp = ‘/fr-' H-F} = (———- [r Gpa): - gltejce) SOV ON L) Y 2 r8)uL16) | (4-18)
and the third is completely ionic
% * ﬁ"— HtFi- = (76!7).71 [r'@pn)o-'(:)d(u o c"lv)l(ﬂ) & UL TORE lm.)az #é)- | (4-19)

Other structures which have the required symmetry are
neglected for reasons identical to those used in the discussion
of HF (p.66). With the structures (4-17), (4-18), and (4-19)

a variation function
4 =a, ¥ va, K +as | | (4-20)

is constructed. The matrix elements arising in the evaluation
of the coefficients a; (i 1,2,3) of (4-20) can be expanded

by use of equation (1-50) in a form generalized to include

the three-center case. The resulting expansions are not
reproduced here because of their extreme length; if desireaq,
thiey can be obtained from the author. Among the terms
composing the expansion are those arising from the exchange

of two electrons on different fluorine nuclei. Since the
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overlap integrals (xl/xz) and (yl/y2) are much smaller than
the otner overlap integrals (Table 11), terms corresponding

l,x? and'yl,y2 exchanges are neglected. For computing

to x
the matrix elements, three-center integrals are needed . in
addition to the two-center integrals listed in Tables 10 and
11. -The necessary three-center integrals are computed with

the approximation formulae discussed in sectlion SQII.

Equations (3-29) and (3-32) are used for most of the integrals;

» i charge
those including distributions of zero,are approximated by

A

means of a single term normal function expansion (3-38).
In Table 14, and 15 values for the three-center integrals are
listed. All the necessary atomic terms, except one, are
the same as those used in HF (Table 7). The one new term,
F;2s.2p6; *g, is taken from Moore48. Values for the matrix
elements are given in Table 16. Solution of the secular
equation results in the energies and coefficients listed in
Table 17.

From the total energy of FHF and the known values

of the energy of F and HF,the energy of the reactionw
F~+HF = FHF™ (4-21)

‘can be computed (Table 17). For the symnetric case, the

value of 36.5 kecal, 1is obtained. No experimental aata are

#% Zero point vibrations are neglected in this calculation.
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Table 1

[hree-center Integrals - Hydrogen symietric
(approxinate values a.uy.

(Ho/s% .1201
(fis/s%) 1157
(Hx/Sx%) J113%
(He/od .08453
(Hs/rs) .08130
(Hx/ok) .07968
(HoVH6) . 00894
(Hs/HS) . 00409
(HeV/HS) . 006065
(Ho7ro) 003405
(HsYS7) .003216
(Hx7/x's) . 0000k
(Ho/k'd) .02892
(H/%./5") <1174
(5/ 7l . 08250
(o % /D 01764
(87 %4/Y .00807
(=/ %/%) -00237

(s/ %/ <0124k
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Table 15

Ihree-center integrals - Hydrogen unsynnetric

(ii/ Fo/ s
(H/ %/)
(H/ Yo/ P
(H/ %/
(/4 /)
(/% /7
(syéé/fﬁ
(&7 Sl )
(x/ fu/%)
(Ho/s%)
(Hs/S)
(Ex/sx)
(Hesre')
(Hs/¢s)
(Hx/s%)
(HoY/s?)

(approximate values a.u.).

.14392
.09309
.09378
.06990
. O0kL+6
.01023
.00638
. 00668
.00118
.1869
.1822
«1797
. 1429
<13h1
.1297
<Ah74

(HY8s)
(Hx/sX)
(Lir/r'e™)
(Es7rs)

(HXAr'2)

(Hr/Ho?)

(is/as)

(Hs/He?)

(Ho/Hs)

(Lo/se’)

(Hs/sd)

(/b

(tis/s'd

(HR/x'7)

(ﬁa%ﬁﬁ)_

1423

1379

.09550
09206
L0891k
.00895
.00410
.00606
. 00608
. 00209
.00189
.00002
.00324
. 00003
02542
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Table 16

FHF = Matrix Elements a.u.

Sy=metric Umsymetric
36.26086 37.03629
36.26086 31.43090
49,25928 49.26159
2.13528 1.91168
17.61327 21.3214%6
17.61327 13.79433
0.73601 0.75159
- 0.73601 0. 64294
0.99832 0.99832
0.35597 0.143129
0.35597
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Table 17

Encrgy and Wave Function of FHF™ ( a.u. )

Synnetric Unsymmetric
Bnergy of FHF™ 49.37101 © 49.36982
Energy of Reaction 0.0582 0.0570
F= + HF — FHF™ (36.5 kcal.) (35.7 kcal.)
a] -coefficient of Y 0.0795 0.11215
asr -coefficient of ¥. 0.0795 0.02611

az -coefficient of 3 0.5732 0.6018
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avallable for comparison with this result. Davie356 has
calculated an energy of 43.1 kcal. by an electrostatic
method. - Westrum and Pitzer57 give a value of 27 kcal. This

o8 statement that the energy

was obtained from Ketelaar!'s
lies somewhere between 27 and 55 kcal. The value of 36.5 kcal.
presented in this theslis awaits an experimental test,

In the hope of determining whether the potential
function for the hydrogen has a central minimum, the unsymmetric
case was calculated (Table 17). The small change in the
energy of the system (0.8 kcal.) resulting from a 0.398 a.u.
(0.214A) shift of the hydrogen does not give an unequivocal
answer concerning the potential function. Either two
potential welis or a very flat minimum could exist. To
determine which is the actual situation, additional calculations
with the hydrogen located in other positions must be made.

From Table 17, it is seen that in both the symmetric
and the unsymmetric configuration, the completely ionic
structure (4-19) makes the largest contribution to the
wave function. Consideration of the matrix elements
(Table 16) shows that the ionic structure alone is unstable
with respect to dissociation into F  and HF. The additional
énergy, supplied by the partly covalent structures (4-17)

and (4-18), is required to stabilize the ion.

In the unsymmetric case (Table 17) the structure (4-17)
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with a short H-F bond makes a considerably larger
contribution than do either of tne covalent structures

in the symmetric casé. Correspondingly, the contribution
of the.long—bonded structure is almost negligible. The
ionic structure, in contrast, has approximately the same
coefficient in the two configurations.

‘ Application of the above considerations to other
hydrogen-bonded systems is not attempted in this thesis.
It is likely that detailed examination of the matrix .
elements will permit generalization of the results. If
key integrals can be determined, their variation ffom atom
to atom can be a valuable criterion of hydrogen bond étfenghh.

The development of this suggestion is left for the future.
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FROPOSITIONS

l1s The translocation of liquids and dissolved materials is of major
importance in plantse Mechanisms for translocation have been suggested
and circumstantially verifiede OSome direct experimental tests aré pro-
posede.

2. The problem of bird navigation is difficult to attack primarily
because of the lack of suitable expsrimental techniquese An experiment
of use in testing theories of navigation is proposed.

3. Since cones are known to be responsible for color vision in man,
differences among the cones are assumed to exist. It is propose@ that
microabsorpiion techniques be used in an attempt to find the different
kinds of éonea. The reflecting microscope appears well suited for
this approach.

4s It is proposed that inseci-produced gaslls are ideal sysfems for
studying the mechanism of organization in 1iving tissues. .

5 A simple proof of the Rumer method for determining the velence
structures is proposed.

be A study of NeHF), has indicated that the F-F distance is consider-
ebly larger than thet in KHF,. It is proposed that a new investigation
be made to determine the F-F distance more precisely and to find the
position of the hydrogen nucleus.

7+ Highly accurate wave functions have been calculated for H2+ and
H, It is proposed that these be expended in terms of hydrogenic orbi=-

tals as a means of testing the promotion energy methode



.y

8. It is proposed that some curve fitting procedures can be simpli-
fied by the use of Gauss'! method for numerical integration.

9. In 'employing atomle functions for molecular calculations there is
no necessity for having the functions centered on the nuclei of the sys-
tem. It"is proposed that Feymman's theoreml be used as a crit_erion for
the position of the origin of the atomic funciionse

10. To avoid disputes over the origin of this proposition, it is

presentad in the form
a8 B? cb d4 @23 £4 gl p4 31° i© X' & mé nd of

p! q! r!'t §1° £12 uS vl @ x2 gy 3!

The solution of the anagrem provides the answer to one of the pressing

problems of present day science.
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