Completion of a Programmable DNA-Binding Small Molecule Library

Thesis by

Carey Frank Hsu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended October 30, 2008)

© 2009

Carey Frank Hsu

All Rights Reserved

For my family

Acknowledgements

I would like to thank my research advisor, Professor Peter Dervan, from whom I have learned so much about research and life. Thank you for giving me the opportunity to work with you. In particular, I treasured the time that I spent as your teaching assistant, learning how to be a teacher. I would also like to thank the members of my thesis committee, Professor Linda Hsieh-Wilson, Professor Stephen Mayo, and Professor Brian Stoltz, for their support.

The Dervan group is a wonderful environment for research. Above all, the people make it a very special place. I would like to acknowledge my collaborators, John Phillips, James Puckett, Daniel Harki, Nicholas Nickols, and Michael Marques, who made this work possible. I would like to thank James Puckett, Ryan Stafford, and Justin Cohen, for their friendship.

I would like to acknowledge the members of the Dervan group: graduate students Timothy Best, Michael Brochu, David Chenoweth, Raymond Doss, Benjamin Edelson, Michelle Farkas, Eric Fechter, Claire Jacobs, Benjamin Li, David Montgomery, Katy Muzikar, Julie Poposki, Adam Poulin-Kerstien, James Sanchez, Sherry Tsai, and Fei Yang; and postdoctoral scholars Hans-Dieter Arndt, Christian Dose, Mareike Goeritz, Bogdan Olenyuk, and Anne Viger.

Finally, I would like to dedicate this work to my family.

Abstract

Hairpin pyrrole-imidazole (Py-Im) polyamides are programmable oligomers that bind the DNA minor groove in a sequence-specific manner with affinities comparable to those of natural DNA-binding proteins. These cell-permeable small molecules have been shown to enter the nuclei of live cells and downregulate endogenous gene expression. We complete here a library of 27 hairpin Py-Im polyamides that bind 7-base-pair sequences of the general form 5'-WWGNNNW-3' (where W = A or T, N = W, G, or C). A table of binding affinities and sequence contexts for this completed 27-member library has been assembled for the benefit of the chemical biology community interested in molecular control of transcription. Ouantitative fluorescence-based methods have been developed to determine the nuclear concentration of polyamide-fluorescein conjugates in cell culture. Confocal laser scanning microscopy and flow cytometry techniques are utilized to plot calibration curves, from which the nuclear concentration can be interpolated. Although confocal microscopy and flow cytometry generate disparate values, taken together these experiments suggest that the polyamide concentration inside the cell nucleus is lower than it is outside the cell. To further our understanding of C-terminal tail linkage effects on sequence specificity, the equilibrium association constants of hairpin polyamide conjugates were measured by quantitative DNase I footprint titration experiments. These results indicate that linkers and functional R groups on the tails of hairpin polyamide conjugates have recognition properties that should be considered in the design of these molecules to target DNA binding sites. Furthermore, these β -alanine-C₃-linked polyamide conjugates are shown to decrease hypoxia-inducible transcription of vascular endothelial growth factor (VEGF) in cultured HeLa cells. In addition, polyamide conjugates designed to target the Oct4 octamer DNA element modulate the expression levels of Oct4-driven genes in P19 mouse embryonal carcinoma cells and R1 mouse embryonic stem (ES) cells.

Table of Contents

	Pag	ze
Acknowledge	ments	iv
Abstract		V
Table of Cont	ents	vi
List of Figure	s and Tables	<i>ii</i>
Chapter 1	Introduction	.1
Chapter 2	Completion of a Programmable DNA-Binding	
	Small Molecule Library	15
Chapter 3	Quantitating the Concentration of Py-Im Polyamide-Fluorescein Conjugates in Live Cells	38
Chapter 4A	Effects of Tail Linkages on the Sequence-Specific Recognition of DNA by Hairpin Polyamide Conjugates	59
Chapter 4B	Inhibition of VEGF with β-Alanine-C ₃ -Linked Hairpin Polyamide Conjugates	31
Chapter 5	Disrupting the Oct4 Octamer DNA Element with Pyrrole-Imidazole Polyamide Conjugates	98
Appendix	Synthetic Experiments toward Fluorinated Heterocycles	39

List of Figures and Tables

vii

Page

Chapter 1

Figure 1.1	The structure of DNA	2
Figure 1.2	Structures of distamycin A bound to DNA as 1:1 and 2:1 complexes	. 4
Figure 1.3	Molecular recognition of the minor groove of DNA	5
Figure 1.4	Structure of ImHpPyPy-β-Dp bound to DNA as a 2:1 complex	6
Figure 1.5	Binding model for hairpin polyamides	. 8
Figure 1.6	Synthesis of polyamides on solid support	9
Figure 1.7	Nuclear localization of polyamide-fluorophore conjugates	10

Chapter 2

Figure 2.1	Model for the complex formed between hairpin polyamide 24 and its	
	match DNA sequence	19
Figure 2.2	Plasmid design (pCFH2, pCFH3, pCFH4, pCFH5, pPh2, and pMFST)	21
Figure 2.3	DNase I footprint titrations (13, 14, 16, 17, 19, 21, 24, and 27)	22
Table 2.1	Equilibrium association constants	24
Table 2.2	Equilibrium association constants	25
Table 2.3	Equilibrium association constants	27
Figure 2.4	DNase I footprint titrations (6, 12, 20, 22, and 23)	29

Chapter 3

Figure 3.1	Structures of polyamide-fluorescein conjugates 1 and 2	42
Figure 3.2	DNase I footprint titration experiments for polyamides 1 and 2	43
Figure 3.3	Overlaid fluorescence emission spectra for polyamides 1 and 2	.44
Figure 3.4	Sample calibration curve for confocal microscopy	46
Figure 3.5	Confocal laser scanning microscopy images of calibration standards	46
Table 3.1	Calculated nuclear concentration from confocal microscopy	47
Figure 3.6	Sample calibration curve for flow cytometry	49
Table 3.2	Calculated cellular concentration from flow cytometry	50

Chapter 4A

Figure 4.1	Structures of polyamide conjugates 1-10	63
Figure 4.2	Designed binding sites on plasmids pCFH6 and pJWP6	69
Figure 4.3	Quantitative DNase I footprint titration experiments for polyamide	
	conjugates 1 , 2 , and 5 on plasmid pCFH6	70
Table 4.1	Equilibrium association constants on plasmid pCFH6	71
Figure 4.4	Quantitative DNase I footprint titration experiments for polyamide	
	conjugates 1 , 2 , and 5 on plasmid pJWP6	73
Table 4.2	Equilibrium association constants on plasmid pJWP6	74
Table 4.3	Nuclear localization of polyamide-fluorescein conjugates	75

Chapter 4B

Figure 4.5	Structures of polyamide conjugates 1-13	84
Figure 4.6	DNase I footprint titration experiments for polyamides 2 and 5	90
Table 4.4	Equilibrium association constants for polyamides 2-8	91
Figure 4.7	Nuclear localization of polyamides 2, 3, and 7 in HeLa cells	92
Figure 4.8	Relative levels of VEGF mRNA in HeLa cells at 1 μ M polyamide	93
Figure 4.9	Relative levels of VEGF mRNA in HeLa cells at 0.2 and 1 μ M	94

Chapter 5

Figure 5.1	Crystal structure of a POU/HMG/DNA ternary complex 101
Figure 5.2	Binding model for the hairpin polyamide bound to its target
	DNA sequence within the enhancer regions of Oct4 target genes 103
Figure 5.3	Structures of polyamide conjugates 1-7
Figure 5.4	Quantitative DNase I footprint titrations for polyamide 1 107
Figure 5.5	DNA melting temperature analysis for polyamides 1-5 108
Figure 5.6	Nuclear localization of polyamide-fluorescein conjugate 1 109
Figure 5.7	Time course for 48-hour incubation experiments with P19 cells
Figure 5.8	Quantitative RT-PCR experiments with polyamides 2 and 6 111
Figure 5.9	Quantitative RT-PCR experiments with polyamides 2-5112
Figure 5.10	Quantitative RT-PCR experiments with polyamides 4 and 7 113
Figure 5.11	Structures of polyamide conjugates 8-14
Figure 5.12	Time course for 48-hour and 72-hour incubation experiments
	with R1 mouse embryonic stem cells

Figure 5.13	Quantitative RT-PCR experiments with polyamides 4 and 7117
Figure 5.14	Quantitative RT-PCR experiments with polyamide 4118
Figure 5.15	Images of R1 mouse embryonic stem cells after 24-hour treatment120
Figure 5.16	Images of R1 mouse embryonic stem cells after 48-hour treatment121
Figure 5.17	Images of R1 mouse embryonic stem cells after 72-hour treatment122
Figure 5.18	The partial sequence of plasmid phOCT4-EGFP1124

Appendix

Figure A.1	Structure of the pyrrole-fluorobenzimidazole dimer 2	141
Figure A.2	Structure of the key synthetic target fluorodiamine 4	141
Figure A.3	Reactions attempted to achieve the desired tetrasubstitution of 4	141