KINETICS STUDIES OF BROMINE MONOXIDE AND
METHYLPEROXY FREE RADICALS BY FLASH PHOTOLYSIS

Thesis by
Stanley Paul Sander

In Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1980
(Submitted December 6, 1979)
ACKNOWLEDGEMENTS

I wish to thank my research advisors, John Seinfeld of Caltech, and Bill DeMore and Bob Watson of the Jet Propulsion Laboratory, for their enthusiasm, guidance and the opportunities they have given me. Their encouragement and cooperation made this unusual collaborative effort between Caltech and JPL a tremendous success and one that I hope can be repeated by many other graduate students.

Many individuals at Caltech and JPL contributed to this work. In particular, I would like to thank John Brock, Roger Lewis, Gary Ray, Steve Wagner, Yuk Yung, the members, past and present, of the air pollution research groups at Caltech and JPL, and Joe Pinto of the Goddard Institute for Space Sciences. The technical skills of Herman Heyn, Bill Lattin, Jurgen Linke, Morris Patapoff and George Tennant were indispensable in the construction of the apparatus. Sharon Chapman, Susie Kulas and Barbara Paul contributed to the typing of this thesis. The financial support of JPL and NASA is gratefully acknowledged.

I am fortunate in having had a few close friends with whom to share the joys and frustrations of graduate student life. These people have had an enormous impact on me, and their sharing and support will never be forgotten.

For their lifelong encouragement and love, I gratefully dedicate this thesis to the members of my family.
ABSTRACT

A flash photolysis-ultraviolet absorption system was constructed to study the kinetics of gas-phase free radical reactions over a wide range of pressure and temperature. Because of their atmospheric importance, the reactions of methylperoxy (\(\text{CH}_3\text{O}_2\)) and bromine monoxide (BrO) radicals with themselves, and with NO and NO\(_2\) were investigated:

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 & \rightarrow \text{products} \quad (1) \\
\text{CH}_3\text{O}_2 + \text{NO} & \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \quad (2) \\
\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} & \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M} \quad (3) \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 \quad (4a) \\
& \rightarrow \text{Br}_2 + \text{O}_2 \quad (4b) \\
\text{BrO} + \text{NO} & \rightarrow \text{Br} + \text{NO}_2 \quad (5) \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{Br\text{ONO}_2} + \text{M} \quad (6)
\end{align*}
\]

The rate constants for reactions 1 - 6 were determined by measuring the first-order or second-order decay rates of BrO and \(\text{CH}_3\text{O}_2\) radicals by ultraviolet absorption spectrophotometry. The rate constants for reactions 3 and 6 were found to vary significantly with pressure, indicating the formation of a stable adduct. The pressure dependence of the rate constants was discussed in terms of the Troe theory of unimolecular reactions. Measurements of the branching ratio of reaction 4 were used to develop a detailed reaction mechanism for the disproportionation of BrO radicals. Upper limits were also obtained for the rate constants for the reactions

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{CO} & \rightarrow \text{products} \quad (7) \\
\text{BrO} + \text{O}_3 & \rightarrow \text{Br} + 2\text{O}_2 \quad (8)
\end{align*}
\]

The atmospheric implications of the rate constant measurements are discussed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction to Free Radical Kinetics Studies by Flash Photolysis</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Kinetics Studies of the Reactions of CH\textsubscript{3}O\textsubscript{2} with NO, NO\textsubscript{2} and CH\textsubscript{3}O\textsubscript{2} at 298K</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>Rates and Mechanism of the Disproportionation of BrO Radicals</td>
<td>56</td>
</tr>
<tr>
<td>IV</td>
<td>A Pressure and Temperature Dependence Kinetics Study of the NO + BrO \rightarrow NO\textsubscript{2} + Br Reaction: Implications for Stratospheric Bromine Photochemistry</td>
<td>95</td>
</tr>
<tr>
<td>V</td>
<td>A Pressure Dependence Kinetics Study of the Formation of Bromine Nitrate at 298K</td>
<td>129</td>
</tr>
</tbody>
</table>

Appendix

I	Chemical Kinetics of Homogeneous Atmospheric Oxidation of Sulfur Dioxide	162
II	Atmospheric Bromine and Ozone Perturbations in the Lower Stratosphere	173
III	Temperature Dependent Rate Constants for the Reaction of Ground State Atomic Chlorine with Simple Alkanes	227
CHAPTER I

Introduction to Free Radical Kinetics Studies by Flash Photolysis
During the last decade, the field of gas-phase kinetics has been tremendously stimulated by a renewed interest in the chemistry of the atmosphere. Concern over the effects of anthropogenic emissions of substances such as the halocarbons, nitrogen oxides and carbon dioxide have led to the development of complex models of upper atmospheric chemistry and transport. Many of the same processes also pertain to the pollution of the lower atmosphere, the manifestations of which appear locally and globally. The mathematical models which have been developed to describe these processes rely heavily on accurate chemical kinetics information. These needs have resulted in tremendous improvements in both the quantity and quality of data on the reaction rates of neutral radicals of many different chemical families. This new wealth of information has also opened many new problem areas in the study of gas-phase kinetics. Such phenomena as negative activation energies, vibrational enhancement of reaction rates, and the formation of radical complexes, once thought extremely unusual, are now common occurrences. As a result of this sudden outpouring of kinetics information, our theoretical understanding of gas-phase reactions has been outstripped, and improved techniques for applying semi-classical and quantum theories of chemical reactivity to practical kinetics problems are badly needed.

The research described in this thesis was stimulated by a number of the factors mentioned above. In seeking to maintain relevance to the problems of atmospheric chemistry, kinetics studies were conducted of reactions of proven or suspected atmospheric importance. These involve the reactions of bromine monoxide (BrO) and methylperoxy (CH$_3$O$_2$) radicals with themselves, and with NO and NO$_2$.
\[\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{products} \] (1)
\[\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \] (2)
\[\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M} \] (3)
\[\text{BrO} + \text{BrO} \rightarrow 2\text{Br} + \text{O}_2 \] (4a)
\[+ \text{Br}_2 + \text{O}_2 \] (4b)
\[\text{BrO} + \text{NO} \rightarrow \text{Br} + \text{NO}_2 \] (5)
\[\text{BrO} + \text{NO}_2 + \text{M} \rightarrow \text{BrONO}_2 + \text{M} \] (6)

These studies were conducted over ranges of pressure (50 - 760 Torr) and temperature (220 - 400K) which overlap conditions found in the atmosphere. An effort was also made to study reactions which posed interesting, if somewhat inscrutable, theoretical problems. Both the reactions of \text{CH}_3\text{O}_2 and \text{BrO} with \text{NO}_2 show a marked pressure dependence, indicating an addition channel, and provide the opportunity to make use of some recent developments in the theory of unimolecular reactions. The other reactions also posed some interesting questions which were addressed by thermochemical kinetics.

The structure of this thesis reflects the primary emphasis of this work, which was the study of reactions 1 - 6 by flash photolysis. The main body (Chapters 2 - 5) describes the results obtained in the flash photolysis studies of \text{BrO} and \text{CH}_3\text{O}_2 radicals. The Appendices contain reports of atmospheric modeling studies simulating stratospheric bromine chemistry and tropospheric SO\textsubscript{2} oxidation, and a paper on the reactions of chlorine atoms with some simple alkanes as studied by the technique of discharge flow-resonance fluorescence.
EXPERIMENTAL PROCEDURES

The ambient pressure in the troposphere and stratosphere varies from 760 Torr at sea level to about 1 Torr and 45 km. While no single kinetic technique can adequately cover this entire pressure range, static (or pseudo-static) methods such as flash photolysis and molecular modulation have been successfully used between 25 Torr and hundreds of atmospheres. These methods are well-suited for reactions which have pressure-dependent rate constants, particularly when the reaction is in the fall-off region between third and second-order kinetics. The fast-flow technique, while having the advantage of being a pseudo steady-state method, is limited to the 1 - 7 Torr pressure range. This limitation arises from the need to achieve rapid radial diffusion of radicals to ensure that a linear relationship exists between reaction time and distance along the flow tube axis.

The direct detection of transient intermediates in kinetics experiments has been accomplished by a number of techniques including absorption and fluorescence spectroscopy induced by resonant and non-resonant sources, mass spectrometry and electron paramagnetic resonance. Both BrO and CH₃O₂ exhibit extensive predissociation and cannot be observed using fluorescence methods. These radicals are well-suited for detection by ultraviolet spectrophotometry, however, because of their relatively strong ($\sigma > 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$) absorption bands at wavelengths longer than 200 nm. Although the sensitivity of the uv absorption method is not ordinarily as high as that which can be achieved using fluorescence, the absorption cross-sections of both BrO and CH₃O₂ are sufficiently large that adequate sensitivity can be obtained if long path lengths are used.
The flash photolysis-uv absorption technique was the method selected for the study of reactions 1 - 6. An apparatus was constructed which incorporated many state-of-the-art features not normally found in such instruments. These include, 1) a fast-quenching 1 meter-long xenon flash lamp employing coaxial design to permit easy temperature control, 2) a long-path White optical system for the absorption cell, 3) photometric rather than photographic detection of the absorption signal, 4) use of multiple flashes in conjunction with analog signal averaging to enhance the sensitivity and, 5) a continuously flowing reagent supply system which replaces the cell contents between flashes. Detailed descriptions of these features appear in the experimental sections of Chapters 2 - 5. Figure 1 shows the flash photolysis system supported on its pneumatically isolated optical bench next to the electronics rack. Figure 2 shows the individual components of the optical system in greater detail. It is felt that the combination of the long optical path length (740 cm.) and the use of signal averaging techniques has resulted in an improvement of a factor of 10 - 50 in sensitivity over previous designs.

THEORETICAL CONSIDERATIONS

Two of the reactions studied in this work,

\[\text{CH}_3\text{O}_2 + \text{NO}_2 + M \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + M \]
\[\text{BrO} + \text{NO}_2 + M \rightarrow \text{BrNO}_2 \text{O} + M \]

are addition reactions forming adducts which have relatively long lifetime \((t > 1 \text{ second}) \) at room temperature. The reverse of reactions 3 and 6 are unimolecular decompositions, a class of reactions which has received considerable theoretical attention. Since the rate constants for the forward and reverse reactions are related by the equilibrium constant,
Figure 1. Photograph of the flash photolysis system. The reaction cell is in the cylindrical housing. The energy storage capacitors are in the box at the right.
Figure 2. Photograph of the optical system showing the reaction cell, \(\frac{1}{2} \)m. and \(\frac{3}{4} \)m. monochromators and the optical components.
which can be estimated from thermodynamic considerations, the theory of unimolecular decomposition is applicable to these reactions.

Elementary unimolecular reaction theory predicts that at very low pressures, the rate constant will vary linearly with pressure, approaching a constant as the pressure is increased. In the fall-off region between these limiting cases, the simplest theory, based on the Lindemann mechanism, breaks down. The failure is caused by the simplistic assumption that the dissociation rate of the vibrationally excited intermediate is independent of its internal energy. Rice, Ramsperger and Kassel partially corrected this problem by developing a classical statistical theory to estimate the probability that the dissociative mode will have more than the critical vibrational energy. The use of their expression for the reaction probability leads to the determination of the overall rate constant for unimolecular decomposition in terms of the so-called "Kassel Integrals". A somewhat more realistic quantum version of this theory also exists. RRKM theory, the next step upward in sophistication, differs from RRK theory in several respects. The most important difference is that the rate constant for the dissociation of the excited intermediate is derived in a very general way using activated complex theory and statistical mechanics. The RRKM expression for this rate constant reduces to the RRK expression when semi-classical equations are used for the sum and density of vibrotational states in the activated complex and excited molecule. However, more accurate methods of state-counting can be used such as the Whitten-Rabinovitch approximation and the direct count method which lead to significantly more accurate results.

The implementation of RRKM theory to the prediction of rate constant
fall-off curves is computationally somewhat involved because of the need to compute numbers of vibrotational states for each energy increment. Troe and co-workers have developed a simplified technique for computing fall-off curves that does not require extensive computation. The method is based on the use of Kassel integrals to define the functional form of the fall-off curve but with semi-empirical correction factors added to fit the results to RRKM calculations. The shape of the curve is determined by a fitting parameter, F_c, which is itself a function of two dimensionless parameters, S_k and B_k. S_k is an "effective" number of classical oscillators, determined by evaluating the vibrational partition function for the activated complex. B_k is related to the critical energy for the decomposition. With S_k and B_k known, F_c is found from tables computed by Troe and co-workers. This method has been applied to the experimental fall-off curves obtained for reactions 3 and 6 with good agreement being obtained between theory and experiment. The exact procedure is detailed in Chapters 2 and 5.

ATMOSPHERIC IMPLICATIONS OF METHYLPEROXY AND BROMINE MONOXIDE CHEMISTRY

Both BrO and CH$_3$O radicals are thought to play important roles in atmospheric chemistry although neither species has actually been detected in the atmosphere. Methylperoxy radicals are formed in the atmosphere by the reaction

$$\text{CH}_3 + \text{O}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2 + \text{M}. \quad (7)$$

In the "clean", i.e. non-urban, troposphere, methyl radicals originate from the attack of hydroxyl radicals on methane,

$$\text{OH} + \text{CH}_4 \rightarrow \text{H}_2\text{O} + \text{CH}_3, \quad (8)$$

the initial step in the oxidation process which converts methane to CO$_2$.
and other products. In urban atmospheres, other major sources of methyl radicals are the photodissociation of acetaldehyde (I) and its reaction with hydroxyl radicals (II):\(^{13}\)

(I) \[\text{CH}_3\text{CHO} + \text{hv} \rightarrow \text{CH}_3 + \text{HCO} \] \hspace{1cm} (9)

\[\text{CH}_3\text{CHO} + \text{OH} \rightarrow \text{CH}_3\text{CO} + \text{H}_2\text{O} \] \hspace{1cm} (10)

\[\text{CH}_3\text{CO} + \text{O}_2 + \text{M} \rightarrow \text{CH}_3\text{CO}O_2 + \text{M} \] \hspace{1cm} (11)

(II) \[\text{CH}_3\text{CO}O_2 + \text{NO} \rightarrow \text{CH}_3\text{CO}_2 + \text{NO}_2 \] \hspace{1cm} (12)

\[\text{CH}_3\text{CO}_2 + \text{M} \rightarrow \text{CH}_3 + \text{CO}_2 + \text{M} \] \hspace{1cm} (13)

In the stratosphere, methyl radicals can be formed from the attack of atomic chlorine and excited atomic oxygen on methane as well as by reaction 8:

\[\text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3 \] \hspace{1cm} (14)

\[\text{O}^{(1}\text{D}) + \text{CH}_4 \rightarrow \text{OH} + \text{CH}_3 \] \hspace{1cm} (15)

\[\text{OH} + \text{CH}_4 \rightarrow \text{H}_2\text{O} + \text{CH}_3 \] \hspace{1cm} (8)

The predominant loss process for CH\(_3\)O\(_2\) is the same in the urban atmosphere and the stratosphere:

\[\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \]. \hspace{1cm} (16)

The conversion of NO to NO\(_2\) is an important process in atmospheric chemistry because photolysis of NO\(_2\) leads to the formation of ozone:

\[\text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O} \] \hspace{1cm} (17)

\[\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \]. \hspace{1cm} (18)

In urban atmospheres, the formation of NO\(_2\), and therefore O\(_3\), occurs almost entirely as a result of the reaction of peroxy radicals (H\(_2\)O\(_2\), CH\(_3\)O\(_2\), CH\(_3\)CO(O\(_2\)), etc.) with NO. A question which has generated considerable controversy is whether the tropospheric ozone background of 25 ppb can be explained by photochemical processes occurring in the lower atmosphere, i.e. CH\(_4\) oxidation, or from the transport of ozone from the
stratosphere. Arguing against the photochemical explanation are the recent observations of exceedingly low background NO\textsubscript{x} concentrations (≤100 ppt) which allow the termination processes

\[\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{stable products} \] \hspace{1cm} (19)
\[\text{CH}_3\text{O}_2 + \text{HO}_2 \rightarrow \text{CH}_3\text{OOH} + \text{O}_2 \] \hspace{1cm} (20)

to compete with reaction 2. The picture is further complicated by reaction 3 and its reverse reaction,

\[\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M}. \] \hspace{1cm} (3,–3)

Methylperoxynitrate, CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}, may act as a temporary sink for both CH\textsubscript{3}O\textsubscript{2} and NO\textsubscript{2} if its decomposition rate is sufficiently slow. Since reaction 3 is endothermic, and thus strongly temperature dependent, its role will be considerably different in the urban atmosphere and the clean troposphere where the temperature drops as low as 225K.

Bromine atoms are formed in the stratosphere from the photolysis of methyl bromide, used as an industrial fumigant, and the halomethanes which are employed as fire retardants and in refrigeration. There are also substantial natural sources of methyl bromide, dibromomethane and bromoform, probably from the marine environment. These compounds are relatively inert in the troposphere and therefore diffuse upward into the stratosphere where photolysis can occur. Atomic bromine reacts with ozone to form the BrO radical:

\[\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2. \] \hspace{1cm} (21)

Numerous reactions exist which can convert BrO back to Br including,

\[\text{BrO} + \text{BrO} \rightarrow 2\text{Br} + \text{O}_2 \] \hspace{1cm} (4a)
\[\rightarrow \text{Br}_2 + \text{O}_2 \] \hspace{1cm} (4b)
\[\text{BrO} + \text{NO} \rightarrow \text{Br} + \text{NO}_2 \] \hspace{1cm} (5)
\[\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{Cl} + \text{O}_2 \] \hspace{1cm} (22)
\begin{align*}
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONO}_2 + \text{M} \quad (6) \\
\text{BrONO}_2 + h\nu & \rightarrow \text{Br} + \text{NO}_3 \quad (23)
\end{align*}

Except for reaction 5, these reactions, along with reaction 19, form catalytic cycles which irreversibly convert \text{O}_3 to \text{O}_2 while regenerating atomic bromine. Of course, these chain reactions are not 100\% efficient; terminating processes occur which convert atomic bromine into HBr which is relatively inert. However, the chain processes are efficient enough that exceedingly small bromine concentrations (20-100 ppt) can result in a significant perturbation in the column ozone concentration in the stratosphere, particularly between 16 and 28 km. Detailed calculations on the effects of stratospheric bromine are discussed in Chapters 4 and 5 and Appendix II.
REFERENCES AND NOTES

 (b) R. C. Whitten, W. J. Burken, V. R. Watson, T. Shimazaki,
 H. T. Woodward, C. A. Riegel, L. A. Capone and T. Becker,
 NASA T.P. -1003 (1977);

2. (a) D. D. Davis, R. E. Huie and J. T. Herron, J. Chem. Phys., 59, 628 (1973);

4. (a) E. J. Hamilton, Jr., J. Chem. Phys., 63, 3682 (1975);
 875 (1977).

5. (a) R. V. Poirier and R. W. Carr, Jr., J. Phys. Chem., 75,
 1593 (1971);

6. (a) M. A. A. Clyne and H. W. Cruse, J.C.S. Faraday II, 68,
 1281 (1972).
 (b) W. Braun and T. Carrington, J. Quant. Spectrosc. Radiat.
 (c) I. W. M. Smith and R. Zellner, J.C.S. Faraday II, 70,
 1045 (1974);

7. P. P. Bemand, M. A. A. Clyne and R. T. Watson, J.C.S. Faraday I,
69, 1356 (1973).

8. (a) A. A. Westenberg and N. deHaas, J. Chem. Phys., 48, 4405 (1968);
 (b) J. N. Bradley, D. A. Whytock and T. A. Zaleski, J.C.S. Faraday I,
 69, 1251 (1973).

10. K. J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill,

12. K. Luther and J. Troe, presented at the 17th International Symposium

 8, 327 (1974).
14. (a) W. L. Chameides and J. C. G. Walker, J. Geophys. Res., 81, 413 (1976);

CHAPTER II

KINETICS STUDIES OF THE REACTIONS OF CH$_3$O$_2$

WITH NO, NO$_2$ AND CH$_3$O$_2$ at 298K

S. P. Sander and R. T. Watson

Molecular Physics and Chemistry Section

Jet Propulsion Laboratory
Pasadena, CA 91103
Abstract

The flash photolysis/ultraviolet absorption technique was used to measure the rate constants for the reactions $\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2$ (1), $\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M}$ (2) and $\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{products}$ (3) at 298K over the pressure range 50-700 Torr. Values for k_1 and k_3 were determined to be $(7.1 \pm 1.4) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ and $(3.6 \pm 0.7) \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$, respectively, where k_3 is defined by the relation $\frac{d[\text{CH}_3\text{O}_2]}{dt} = 2k_3[\text{CH}_3\text{O}_2]^2$. k_2 was found to vary strongly with pressure indicating that the reaction occurs primarily by addition and is in the fall-off region between second and third-order kinetics. Experimentally determined parameters describing the shape of the fall-off curve for k_2 were in reasonable agreement with those obtained using theoretical methods developed by Troe and co-workers. An upper limit of 7×10^{-18} cm3 molecule$^{-1}$ s$^{-1}$ was determined for the rate constant for the reaction $\text{CH}_3\text{O}_2 + \text{CO} \rightarrow \text{products}$.
Introduction

Recent interest in the gas-phase reactions of the methylicperoxy radical, CH$_3$O$_2$, has been stimulated by its role in both atmospheric and combustion-related processes. Kinetic mechanisms describing the chemistry of urban smog, the natural and polluted troposphere and stratosphere, all include the reactions of CH$_3$O$_2$.\(^1\) It is therefore important to elucidate as clearly as possible the reactions of this species with other atmospheric constituents.

Much of the early work on CH$_3$O$_2$ kinetics was performed using static photolysis with ratios of rate constants being measured.\(^2-6\) The recent discovery of a strong UV absorption band of CH$_3$O$_2$ between 210 and 280nm and the detection of CH$_3$O$_2$ by mass spectroscopy\(^7\) have provided new techniques for the direct study of CH$_3$O$_2$ kinetics. Flash photolysis/ultraviolet absorption (FP/UV),\(^8-12\) molecular modulation ultraviolet absorption spectroscopy (MMS),\(^13-15\) and discharge flow/mass spectroscopy (DF/MS)\(^7,16\) have now been used to measure rate constants of CH$_3$O$_2$ reactions. These reactions include:

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{NO} &\rightarrow \text{CH}_3\text{O} + \text{NO}_2 \quad \text{(1)} \\
\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} &\rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M} \quad \text{(2)} \\
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 &\rightarrow 2\text{CH}_3\text{O} + \text{O}_2 \quad \text{(3a)} \\
&\quad \rightarrow \text{CH}_2\text{O} + \text{CH}_3\text{OH} + \text{O}_2 \quad \text{(3b)} \\
&\quad \rightarrow \text{CH}_3\text{OOCCH}_3 + \text{O}_2 \quad \text{(3c)} \\
\text{CH}_3\text{O}_2 + \text{HO}_2 &\rightarrow \text{CH}_3\text{OOH} + \text{O}_2 \quad \text{(4)} \\
\text{CH}_3\text{O}_2 + \text{SO}_2 &\rightarrow \text{CH}_3\text{O} + \text{SO}_3 \quad \text{(5)}
\end{align*}
\]

Reaction 1 is an important step in the atmospheric photochemical cycle in which NO is converted to NO$_2$, a process which ultimately results in the formation of ozone. This reaction has been shown to be almost as rapid as the analogous process involving NO$_2$.\(^17\) (unless otherwise indicated, rate constants cited in the text are from Ref. 18):

\[
\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \quad \text{(6)} \quad k_6 = 8 \times 10^{-12} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}
\]
and has proven difficult to study due to the rapidity of the reaction and the low detection sensitivity for \(\text{CH}_3\text{O}_2 \) by all techniques. Although several studies using FP/UV, MMS and DF/MS have been published,10,15,16 agreement has not been particularly good and in one measurement, only the lower limit to the rate constant could be measured.11

Reaction 2 may play a role as a sink reaction for \(\text{NO}_x \) in urban smog and atmospheric methane oxidation in a manner analogous to pernitric acid, \(\text{HO}_2\text{NO}_2 \), and peroxyacetyl nitrate (PAN), \(\text{CH}_3\text{C(0)O}_2\text{NO}_2 \). Because these compounds have a large activation energy for thermal decomposition (20-26 kcal/mole) the position of the formation/ destruction equilibrium is strongly temperature-dependent which may account for some of the unusual temperature effects observed in smog chambers.19 In the only reported direct study of this reaction, Cox and Tyndall15 found the rate constant to depend only very weakly on total pressure between 50 Torr of Ar/\(\text{CH}_4 \) and 540 Torr of \(\text{N}_2 \) implying that the reaction is near its high pressure limit at a relatively low pressure.

Reaction 3 may play a role in the methane oxidation process occurring in the unpolluted troposphere where \(\text{NO}_x \) levels are reasonably low. This reaction, which has three thermodynamically possible product channels, has been studied by FP/UV and MMS with good agreement being obtained for the overall rate constant.8,9,13,14 Because it is a second-order process, however, the rate constant measurement relied upon the determination of the absolute \(\text{CH}_3\text{O}_2 \) concentration. The rate constant is then derived from the product of two experimental observables, \(k_3/\sigma \) and \(\sigma \), where \(\sigma \) is the \(\text{CH}_3\text{O}_2 \) absorption cross-section. At the moment, substantial disagreement exists between measurements of \(\sigma \) by FP/UV and MMS. In addition, the branching ratios for channels 3a, 3b and 3c are poorly defined.

In this study, rate constants for reactions 1, 2 and 3 were measured using the FP/UV technique. Due to several improvements in the apparatus design, the disappearance of \(\text{CH}_3\text{O}_2 \) could be observed over a wide range of reactant concen-
trations and total pressure. It is shown that, contrary to previous measurements, reaction 2 is still in the fall-off region at 700 Torr and that the high pressure limit is attained only at pressures exceeding several atmospheres.

Experimental

The apparatus has been described in detail previously. The flash assembly consists of four concentric tubes comprising the reaction cell, photolyzing light filter, xenon flash lamp and cooling/heating jackets. Two identical cells were constructed; one made of quartz and the other pyrex. Reagents are premixed and continuously flowed through the reaction cell (2.54cm i.d., ~ 95cm long) with a residence time of 15-30s. This permits complete replacement of cell contents between flashes to minimize the photolysis and reaction of stable products from the previous flash and to ensure that the starting reagents will not be depleted. Flowmeters were individually calibrated for each gas using a bubble calibrating system (Hastings Model HBM-1). The optical train consists of a 150 watt xenon arc lamp, White 8-pass mirror system (l = 720cm, pyrex cell and 769cm, quartz cell) and McPherson Model 216.5 0.5m monochromator (slit width = 300 microns, 0.6nm resolution FWHM). Dichroic mirrors are used throughout to minimize reflection losses in the 220-270nm spectral region. Proper calibration of both the flow system and the optical system was verified by comparing concentrations of NO2, measured on the basis of partial flows and UV absorption. Agreement was typically better than 2%.

Signals from the photomultiplier tube (EMI 9659 QA) are amplified and stored in a signal averager (Tracor-Northern 570A) operating in the analog mode. Multiple flashes (30-500) are employed to improve the signal-to-noise ratio (S/N). Further improvements in S/N are obtained by treating the data with a five-point smoothing algorithm. Due to scattered light from the photolysis flash, the acquisition of data was delayed for ~ 50 μsec after the flash.

Methylperoxy radicals were produced either by photolysis of chlorine in
Cl₂ - CH₄ - O₂ mixtures in the quartz or pyrex cell, or by photolysis of azomethane, (CH₃)₂N₂, with oxygen in the quartz cell. CH₃O₂ is produced by reactions 7-9 in the Cl₂ - CH₄ - O₂ system:

\[
\begin{align*}
\text{(7) } & \quad \text{Cl}_2 + \text{hv} \rightarrow 2\text{Cl} \\
\text{(8) } & \quad k_8 = 1.0 \times 10^{-13} \text{cm}^3\text{molecule}^{-1}\text{s}^{-1} \quad \text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3 \\
\text{(9) } & \quad k_9 = 2.2 \times 10^{-14} \text{cm}^3\text{molecule}^{-1}\text{s}^{-1} \quad \text{CH}_3 + \text{O}_2 + \text{M} \rightarrow \text{CH}_2\text{O}_2 + \text{M}
\end{align*}
\]

and by reactions 9 and 10 in the (CH₃)₂N₂ - O₂ system:

\[
\begin{align*}
\text{(10) } & \quad (\text{CH}_3)_2\text{N}_2 + \text{hv} \rightarrow 2\text{CH}_3 + \text{O}_2 \\
\text{(9) } & \quad \text{CH}_3 + \text{O}_2 + \text{M} \rightarrow \text{CH}_2\text{O}_2 + \text{M}
\end{align*}
\]

The ranges of reagent concentrations were (in molecule cm⁻³):

\[
\begin{align*}
[\text{Cl}_2] & \times 10^{-16}: 1.1 - 7.9; [\text{CH}_4] \times 10^{-17}: 2.0 - 15; [\text{O}_2] \times 10^{-17}: 1.1 - 4.8; \\
[(\text{CH}_3)_2\text{N}_2] & \times 10^{-15}: 1.7 - 5.4; [\text{NO}] \times 10^{-14}: 4.8 - 23; [\text{NO}_2] \times 10^{-14}: 4.0 - 42. \\
[\text{CH}_2\text{O}_2] & \text{ (in molecule cm}^{-3}\text{) ranged from 3.4 \times 10^{13} \text{ to 2.0 \times 10^{14}. For all experiments, CH}_3\text{O}_2 \text{ was formed on a time scale (20 - 70 usec, 95% formation) at least ten times shorter than its loss (> 190 usec, 95% removal).}
\end{align*}
\]

The photolyzing light filters on both quartz and pyrex cells were filled with absorbing gases to isolate certain spectral regions. In the CH₃O₂ + NO study, it was desirable to inhibit the formation of O₃ because of its overlapping absorption with CH₃O₂. This was accomplished by filling the filter cell with 760 Torr of SO₂ which prevented the photolysis of O₂. Since k₃ is several times smaller than k₂ at low pressures, a concerted attempt was made to minimize the photolysis of NO₂ in the CH₃O₂ + NO₂ study. For this experiment, the filter cell was filled with a Cl₂ - Br₂ mixture which, at equilibrium, contained 60 Torr BrCl and 220 Torr Cl₂. BrCl, which has an absorption band centered at 370nm intermediate in intensity between Br₂ and Cl₂, absorbs a portion of the photolysis light which would otherwise result in NO₂ photolysis. Relatively low flash energies (< 700 J per flash) were
used in these experiments. Repeated flashing of static NO₂ - He mixtures indicated that NO₂ photolysis was limited to 0.1 per cent or less per flash.

The CH₃O₂ absorption was detected at 245nm for the CH₃O₂ + NO₂ and CH₃O₂ + CH₃O₂ reactions and at 270nm for the CH₃O₂ + NO and CH₃O₂ + CH₃O₂ reactions. The temperature of the reaction cell was maintained at 298 ± 1 K by circulating methanol through the outer cell jacket from a constant temperature circulator. Azomethane was synthesized by the method of Renaud and Leitch.²² NO₂ - O₂ mixtures were made by reacting small amounts of NO (Matheson C.P. Grade, 99.0% purity) with a large excess of O₂ and allowing sufficient time for complete conversion. N₂O₄ corrections were negligible. Diluent gases had the following stated purities: He (Linde UHP Grade, 99.999%), N₂ (Linde UHP Grade, 99.999%), O₂ (Linde UHP Grade, 99.99%), SF₆ (Matheson instrument purity, 99.99%). Chlorine (Matheson research purity, 99.96%) and methane (Matheson purity, 99.99%) were used without further purification.

Results

CH₃O₂ + NO → CH₃O + NO₂

The rate constant for the CH₃O₂ + NO reaction was measured over a wide range of reactant concentrations and total pressure. In early experiments where CH₃O₂ was monitored at λ = 245 nm, a substantial residual absorption of the analyzing light was observed after each flash which was attributed to the formation of methyl nitrite by the reaction

\[
\text{CH₃O} + \text{NO} + \text{M} \rightarrow \text{CH₃ONO} + \text{M}
\]

\[
(11) \quad k_{11} = 3 \times 10^{-11} \text{cm}^3\text{molecule}^{-1}\text{s}^{-1}.
\]

The identity of the product was verified by observing that the magnitude of the residual absorption could be predicted from a measurement of [CH₃O₂]₀ and the methyl nitrite absorption cross section.²³ Moreover, the shape of the absorption spectrum of the product closely matched the literature spectrum of CH₃ONO. Formation of CH₃ONO, which occurs on the same time scale as the
disappearance of CH$_3$O$_2$, severely interferes with the detection of methylperoxy radicals. Correcting for this absorption is both difficult and inaccurate because the true value of I_0 is not well known. For this reason, the analysis wavelength was shifted to 270 nm. Although this reduces the detection sensitivity for CH$_3$O$_2$ by a factor of two, the ratio $\sigma_{CH_3O_2}/\sigma_{CH_3ONO}$ is increased from 1.7 to 245 nm to 7.1 at 270 nm, significantly reducing the interference and simplifying the data analysis.

Methylperoxy radicals were always formed on a time scale at least ten times faster than their removal. The ratios of [NO]$_0$ to [CH$_3$O]$_0$ ranged from 7.1 to 23.4 with an average of 13.0, resulting in good pseudo-first-order conditions. Decays of CH$_3$O$_2$ were typically observed over a factor of 8-10 in concentration with a detection limit around 4×10^{12} molecule cm$^{-3}$. This corresponds to a minimum detectable absorption of 0.5 percent which is attained after 50 to 500 flashes. A typical first-order decay plot is shown in Fig. 1.

The values of k_1' obtained in each kinetic run were corrected for two effects: absorption of the analytical beam by the product, CH$_3$ONO, and minor departures from true pseudo-first-order kinetics. A correction for the small residual absorption was evaluated from both computer simulations of the complete mechanism and an analytical expression derived from a simplified mechanism. The correction amounted to a 2.9 percent effect at $\lambda = 270$ nm. The first-order rate constant was also corrected for the minor consumption of NO by reaction with CH$_3$O$_2$ (reaction 1) and CH$_3$O (reaction 11). The correction varied with the ratio [NO]$_0$/[CH$_3$O]$_0$ and averaged 4.7 percent. The correction for the bimolecular disproportionation of CH$_3$O$_2$ was negligible (< 1 percent). Removal of CH$_3$O$_2$ by other reactions, e.g.,

$$CH_3O_2 + NO_2 + M \rightarrow CH_3O_2NO_2 + M \quad (2)$$

$$CH_3O_2 + CH_3O + CH_2O + CH_3OOH \quad (12)$$

$$CH_3O + O_2 + HO_2 + HCHO \quad (13)$$

$$CH_3O_2 + NO_2 + CH_3OOH + O_2 \quad (4)$$
Figure 1. Pseudo-first-order decay of CH$_3$OO radicals reacting with NO.

$[\text{NO}] = 1.07 \times 10^{15}$ molecule cm$^{-3}$ and $[\text{CH}_3\text{OO}]_0 \approx 1.0 \times 10^{14}$ molecule cm$^{-3}$.
was investigated by computer simulation and found to be insignificant.

Reaction rate data for all kinetic runs is given in Table I. A total of 47 kinetic runs were conducted at three different total pressures; 75 Torr (helium), 350 Torr (helium) and 700 Torr (helium, nitrogen). A plot of $k_1' = k_1[\text{NO}]$ vs. $[\text{NO}]$ is given in Fig. 2 for the 19 runs at 350 Torr. Good linearity and a negligible intercept are observed further validating the assumption of first-order kinetics. Values for k_1 at each pressure were computed using two different analysis procedures: averaging the individual rate constants, and determining the least-squares slope of the k_1' vs. $[\text{NO}]$ plot. Although small differences (~10 percent) exist between the rate constants derived by the two methods, the preferred values are obtained from the arithmetic means. This is based on the observation that because the extrapolations to $[\text{NO}] = 0$ in the k_1' vs. $[\text{NO}]$ plots are long, both the slope and y-intercept are sensitive to small changes in a few critical data points. The data in Table I indicates an increase in k_1 of about 25 percent as the total pressure is increased from 350 to 700 Torr. Although this is suggestive of a third-order component, it is not possible within the precision of the data to determine if such a process takes place. Additional studies with improved precision are required. The procedure adopted in obtaining the final rate constant, $k_1 = (7.1 \pm 1.4) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, was to average the individual rate constants of all 47 runs.

Difficulties were encountered when azomethane was used as the source of methyl radicals. A large residual absorption was observed which could not be accounted for by any known stable reaction products. The absorber may be a product of a reaction between azomethane and other radicals in the system, or may be the result of an impurity. As a result, only Cl₂-CH₄-O₂ mixtures were used to generate CH₃ radicals in the study of reaction 1.

\[
\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M}
\]

The reaction between CH₃O₂ radicals and NO₂ was studied as a function of total pressure (50-700 Torr) and diluent gas (M = He, N₂, SF₆). Both CH₃
Table I: Reaction Rate Data for $\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2$

<table>
<thead>
<tr>
<th>Flash Energy</th>
<th>$[\text{Cl}_2] \times 10^{-16}$</th>
<th>$[\text{CH}_2] \times 10^{-17}$</th>
<th>$[\text{O}_2] \times 10^{-17}$</th>
<th>$[\text{CH}_3\text{OO}] \times 10^{-13}$</th>
<th>$[\text{NO}] \times 10^{-14}$</th>
<th>k_1^\prime, meas</th>
<th>k_1^\prime, corr</th>
<th>$k_1 \times 10^{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joules</td>
<td>molecule cm$^{-3}$</td>
<td>s$^{-1}$</td>
<td>cm$^{-3}$ molecule$^{-1}$ s$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>1.6</td>
<td>3.8</td>
<td>1.7</td>
<td>4.6</td>
<td>4.84</td>
<td>2710</td>
<td>2780</td>
<td>5.74</td>
</tr>
<tr>
<td>691</td>
<td>1.6</td>
<td>3.8</td>
<td>1.7</td>
<td>6.2</td>
<td>6.39</td>
<td>3680</td>
<td>3770</td>
<td>5.91</td>
</tr>
<tr>
<td>608</td>
<td>1.6</td>
<td>3.8</td>
<td>1.6</td>
<td>7.1</td>
<td>7.65</td>
<td>4490</td>
<td>4600</td>
<td>6.01</td>
</tr>
<tr>
<td>680</td>
<td>1.9</td>
<td>3.8</td>
<td>1.7</td>
<td>10</td>
<td>10.3</td>
<td>6020</td>
<td>6170</td>
<td>5.99</td>
</tr>
<tr>
<td>691</td>
<td>2.0</td>
<td>4.8</td>
<td>1.6</td>
<td>11</td>
<td>12.3</td>
<td>7020</td>
<td>7170</td>
<td>5.83</td>
</tr>
<tr>
<td>691</td>
<td>2.3</td>
<td>3.8</td>
<td>1.7</td>
<td>11</td>
<td>12.5</td>
<td>6070</td>
<td>6190</td>
<td>4.96</td>
</tr>
<tr>
<td>691</td>
<td>2.0</td>
<td>4.8</td>
<td>1.6</td>
<td>11</td>
<td>14.9</td>
<td>10800</td>
<td>10900</td>
<td>7.34</td>
</tr>
<tr>
<td>691</td>
<td>2.4</td>
<td>4.8</td>
<td>1.6</td>
<td>14</td>
<td>19.2</td>
<td>11200</td>
<td>11300</td>
<td>5.90</td>
</tr>
<tr>
<td>691</td>
<td>2.4</td>
<td>4.8</td>
<td>1.6</td>
<td>14</td>
<td>21.0</td>
<td>14600</td>
<td>14700</td>
<td>7.01</td>
</tr>
<tr>
<td>691</td>
<td>2.4</td>
<td>4.8</td>
<td>1.6</td>
<td>14</td>
<td>23.4</td>
<td>14100</td>
<td>14200</td>
<td>6.06</td>
</tr>
<tr>
<td>[M] = 75 Torr, He</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>1.2</td>
<td>6.0</td>
<td>2.2</td>
<td>3.4</td>
<td>3.59</td>
<td>1700</td>
<td>1740</td>
<td>4.85</td>
</tr>
<tr>
<td>529</td>
<td>1.8</td>
<td>5.9</td>
<td>2.2</td>
<td>6.0</td>
<td>6.21</td>
<td>4000</td>
<td>4100</td>
<td>6.60</td>
</tr>
<tr>
<td>529</td>
<td>2.0</td>
<td>5.9</td>
<td>2.0</td>
<td>5.2</td>
<td>6.21</td>
<td>4830</td>
<td>4920</td>
<td>7.92</td>
</tr>
<tr>
<td>691</td>
<td>1.5</td>
<td>5.9</td>
<td>2.1</td>
<td>9.2</td>
<td>6.98</td>
<td>5090</td>
<td>5320</td>
<td>7.62</td>
</tr>
<tr>
<td>780</td>
<td>2.0</td>
<td>5.8</td>
<td>2.0</td>
<td>8.6</td>
<td>7.75</td>
<td>6000</td>
<td>6200</td>
<td>8.00</td>
</tr>
<tr>
<td>529</td>
<td>1.5</td>
<td>5.3</td>
<td>2.0</td>
<td>6.5</td>
<td>8.72</td>
<td>5250</td>
<td>5320</td>
<td>6.10</td>
</tr>
<tr>
<td>529</td>
<td>1.5</td>
<td>5.3</td>
<td>2.0</td>
<td>6.5</td>
<td>8.72</td>
<td>6070</td>
<td>6150</td>
<td>7.05</td>
</tr>
<tr>
<td>691</td>
<td>1.5</td>
<td>5.9</td>
<td>2.1</td>
<td>9.2</td>
<td>9.73</td>
<td>5480</td>
<td>5610</td>
<td>5.77</td>
</tr>
<tr>
<td>780</td>
<td>2.2</td>
<td>5.7</td>
<td>2.0</td>
<td>15</td>
<td>10.6</td>
<td>6560</td>
<td>6890</td>
<td>6.50</td>
</tr>
<tr>
<td>780</td>
<td>1.5</td>
<td>5.9</td>
<td>2.2</td>
<td>13</td>
<td>13.2</td>
<td>7290</td>
<td>7480</td>
<td>5.67</td>
</tr>
<tr>
<td>691</td>
<td>1.5</td>
<td>5.9</td>
<td>2.1</td>
<td>9.2</td>
<td>13.7</td>
<td>6560</td>
<td>6620</td>
<td>4.83</td>
</tr>
<tr>
<td>780</td>
<td>2.2</td>
<td>5.7</td>
<td>2.0</td>
<td>15</td>
<td>14.5</td>
<td>7264</td>
<td>7480</td>
<td>5.16</td>
</tr>
<tr>
<td>780</td>
<td>2.5</td>
<td>5.8</td>
<td>2.0</td>
<td>15</td>
<td>15.4</td>
<td>8360</td>
<td>8570</td>
<td>5.57</td>
</tr>
<tr>
<td>780</td>
<td>2.0</td>
<td>5.8</td>
<td>2.0</td>
<td>8.6</td>
<td>15.5</td>
<td>9450</td>
<td>9470</td>
<td>6.11</td>
</tr>
<tr>
<td>780</td>
<td>1.8</td>
<td>5.9</td>
<td>2.2</td>
<td>13</td>
<td>17.6</td>
<td>9850</td>
<td>9980</td>
<td>5.67</td>
</tr>
<tr>
<td>780</td>
<td>2.5</td>
<td>5.8</td>
<td>2.0</td>
<td>15</td>
<td>19.3</td>
<td>12800</td>
<td>13000</td>
<td>6.73</td>
</tr>
<tr>
<td>780</td>
<td>1.8</td>
<td>5.9</td>
<td>2.2</td>
<td>13</td>
<td>21.9</td>
<td>15300</td>
<td>15400</td>
<td>7.02</td>
</tr>
<tr>
<td>780</td>
<td>2.5</td>
<td>5.8</td>
<td>2.0</td>
<td>15</td>
<td>22.8</td>
<td>14400</td>
<td>14500</td>
<td>6.37</td>
</tr>
</tbody>
</table>

$K_1 = 6.3 \pm 0.9$
Table I. (Cont.)

<table>
<thead>
<tr>
<th></th>
<th>[M] = 700 Torr, He</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>1.1</td>
<td>5.2</td>
<td>2.2</td>
<td>5.0</td>
<td>6.57</td>
<td>4300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2</td>
<td>2.3</td>
<td>6.5</td>
<td>7.46</td>
<td>6850</td>
</tr>
<tr>
<td>531</td>
<td>2.0</td>
<td>5.6</td>
<td>2.1</td>
<td>7.0</td>
<td>8.13</td>
<td>6430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td>2.1</td>
<td>8.0</td>
<td>9.12</td>
<td>8660</td>
</tr>
<tr>
<td>691</td>
<td>1.7</td>
<td>5.2</td>
<td>2.2</td>
<td>7.5</td>
<td>9.65</td>
<td>8760</td>
</tr>
<tr>
<td>691</td>
<td>1.7</td>
<td>5.2</td>
<td>2.3</td>
<td>10</td>
<td>10.7</td>
<td>8840</td>
</tr>
<tr>
<td>691</td>
<td>2.2</td>
<td>5.2</td>
<td>2.2</td>
<td>9.0</td>
<td>13.1</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2</td>
<td>2.3</td>
<td>6.5</td>
<td>14.9</td>
<td>13600</td>
</tr>
<tr>
<td>2.0</td>
<td>5.6</td>
<td>2.1</td>
<td>13</td>
<td>16.2</td>
<td>11300</td>
<td></td>
</tr>
<tr>
<td>691</td>
<td>1.7</td>
<td>5.2</td>
<td>2.3</td>
<td>10</td>
<td>21.4</td>
<td>15400</td>
</tr>
</tbody>
</table>

\[\bar{k}_1 = 8.2 \pm 1.1 \]

<table>
<thead>
<tr>
<th></th>
<th>[M] = 700 Torr, N\textsubscript{2}</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>1.4</td>
<td>4.1</td>
<td></td>
<td>4.25</td>
<td>3860</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>1.4</td>
<td>2.1</td>
<td>4.1</td>
<td>6.86</td>
<td>6130</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.1</td>
<td>2.1</td>
<td>8.8</td>
<td>10.3</td>
<td>9420</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.1</td>
<td>2.1</td>
<td>8.8</td>
<td>13.7</td>
<td>12500</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.1</td>
<td>2.1</td>
<td>8.8</td>
<td>17.1</td>
<td>12600</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.1</td>
<td>2.1</td>
<td>8.8</td>
<td>20.6</td>
<td>18600</td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{k}_3 = 8.9 \pm 0.7 \]

* includes stoichiometry and CH\textsubscript{3}ONO corrections (see text).
Figure 2. The reaction $\text{CH}_3\text{OO} + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2$. Variation of pseudo first-order rate constant, k_1', corrected for NO removal and CH_3ONO absorption at 298K at a total pressure of 350 Torr He.
radical sources were employed; photolysis of CH₂CH₂O₂ mixtures and photolysis of (CH₃)₂N₂O₁ mixtures. Experiments conducted in both quartz and pyrex cells used a BrCl filter to minimize the photolysis of NO₂. Because k₂(CH₃O₂ + NO₂) is smaller than k₁(CH₃O₂ + NO) in the pressure range studied, improvements in initial reactant stoichiometry over the CH₃O₂ + NO study could be realized. Values of [NO₂]/[CH₃O₂]₀ ranged from 20 to 40 for most runs, thus maintaining good pseudo-first-order conditions at all times. A total of 185 kinetic runs were performed at pressures of 50, 100, 225, 350, 500 and 700 Torr for each diluent gas. Reaction rate data at 350 Torr for M = He, N₂ and SF₆ are given in Table II.

A small residual absorption attributed to CH₂O₂NO₂ was detected in each experiment. A similar absorption feature was observed by Cox and Tyndall by molecular modulation spectroscopy.¹⁵ The absorption cross-sections of the product were measured relative to the absorption cross-section of CH₂O₂ between 240 and 280 nm by observing the residual absorption in kinetic runs with known [CH₂O₂]₀ and assuming stoichiometric conversion to CH₂O₂NO₂. The same spectrum was measured by Cox and Tyndall¹⁵ by the MMS technique. The two sets of results are compared in Table III. Although measured over a small wavelength range, the shape of the spectrum and the magnitude of the absorption are consistent with other structurally similar compounds such as HO₂NO₂.²⁴ Using the CH₂O₂ cross-sections of Hochanadel et al.,⁸ the ratio σ(CH₂O₂)/σ(CH₂O₂NO₂) was found to be about 6.8 at the analysis wavelength, 245 nm. However, it can be shown that an absorber (CH₂O₂NO₂) formed as an immediate product of the reaction of the species being monitored (CH₂O₂) does not interfere with the measurement of k' (see Appendix A). No correction to k₂' is therefore required to account for the presence of CH₂O₂NO₂.

Good linearity is observed for all k₂' vs. [NO₂] plots, several of which are shown in Fig. 3. For each diluent gas, the bimolecular rate constant increases by at least a factor of three over the pressure range 50–700 Torr.
Table II: Reaction Rate Data for CH$_3$O$_2$ + NO$_2$ + M \rightarrow CH$_3$O$_2$ NO$_2$ + M at 350 Torr

<table>
<thead>
<tr>
<th>Joules</th>
<th>$[(CH_3)_2N_2]$ $\times 10^{-13}$</th>
<th>$[Cl_2]$ $\times 10^{-16}$</th>
<th>$[CH_3]$ $\times 10^{-17}$</th>
<th>$[O_2]$ $\times 10^{-17}$</th>
<th>$[CH_3O_2]$ $\times 10^{-13}$</th>
<th>$[NO_2]$ $\times 10^{-14}$</th>
<th>k_1</th>
<th>$k_2 \times 10^{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>3.2</td>
<td>2.1</td>
<td>5.6</td>
<td>2.4</td>
<td>2.5</td>
<td>4.34</td>
<td>950</td>
<td>2.19</td>
</tr>
<tr>
<td>540</td>
<td>4.1</td>
<td>2.1</td>
<td>5.6</td>
<td>2.1</td>
<td>2.6</td>
<td>9.50</td>
<td>2530</td>
<td>2.67</td>
</tr>
<tr>
<td>540</td>
<td>3.2</td>
<td>2.8</td>
<td>9.8</td>
<td>11.7</td>
<td>2580</td>
<td>2.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.1</td>
<td>3.3</td>
<td>10</td>
<td>9.30</td>
<td>1890</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>3.3</td>
<td>2.8</td>
<td>9.8</td>
<td>11.7</td>
<td>2260</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.1</td>
<td>3.1</td>
<td>9.8</td>
<td>15.5</td>
<td>3880</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>3.1</td>
<td>2.8</td>
<td>15.7</td>
<td>18.9</td>
<td>5060</td>
<td>2.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>4.3</td>
<td>3.9</td>
<td>9.8</td>
<td>23.4</td>
<td>4610</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[M] = 350 Torr, He

<table>
<thead>
<tr>
<th>Joules</th>
<th>$[(CH_3)_2N_2]$ $\times 10^{-13}$</th>
<th>$[Cl_2]$ $\times 10^{-16}$</th>
<th>$[CH_3]$ $\times 10^{-17}$</th>
<th>$[O_2]$ $\times 10^{-17}$</th>
<th>$[CH_3O_2]$ $\times 10^{-13}$</th>
<th>$[NO_2]$ $\times 10^{-14}$</th>
<th>k_1</th>
<th>$k_2 \times 10^{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>3.9</td>
<td>6.3</td>
<td>2.6</td>
<td>2.8</td>
<td>5.41</td>
<td>1720</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>4.2</td>
<td>1.8</td>
<td>3.9</td>
<td>5.63</td>
<td>1720</td>
<td>3.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>4.2</td>
<td>2.1</td>
<td>3.9</td>
<td>7.62</td>
<td>2260</td>
<td>2.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>4.2</td>
<td>2.2</td>
<td>7.0</td>
<td>7.85</td>
<td>2320</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>3.9</td>
<td>6.3</td>
<td>2.8</td>
<td>2.8</td>
<td>8.66</td>
<td>2640</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>5.5</td>
<td>9.4</td>
<td>3.6</td>
<td>5.5</td>
<td>10.3</td>
<td>2970</td>
<td>2.88</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>4.2</td>
<td>2.6</td>
<td>7.0</td>
<td>10.7</td>
<td>3020</td>
<td>2.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>3.9</td>
<td>6.3</td>
<td>2.9</td>
<td>4.6</td>
<td>10.9</td>
<td>3030</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>4.2</td>
<td>1.7</td>
<td>10</td>
<td>11.7</td>
<td>3460</td>
<td>2.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>4.2</td>
<td>1.8</td>
<td>10</td>
<td>14.0</td>
<td>4240</td>
<td>3.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>3.9</td>
<td>6.3</td>
<td>3.3</td>
<td>4.6</td>
<td>16.4</td>
<td>4140</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>4.2</td>
<td>2.2</td>
<td>10</td>
<td>19.4</td>
<td>6510</td>
<td>3.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>5.5</td>
<td>9.4</td>
<td>4.3</td>
<td>5.5</td>
<td>21.4</td>
<td>7320</td>
<td>3.42</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>3.9</td>
<td>6.3</td>
<td>3.6</td>
<td>4.6</td>
<td>21.8</td>
<td>5900</td>
<td>2.71</td>
<td></td>
</tr>
</tbody>
</table>

[M] = 350 Torr, N$_2$

<table>
<thead>
<tr>
<th>Joules</th>
<th>$[(CH_3)_2N_2]$ $\times 10^{-13}$</th>
<th>$[Cl_2]$ $\times 10^{-16}$</th>
<th>$[CH_3]$ $\times 10^{-17}$</th>
<th>$[O_2]$ $\times 10^{-17}$</th>
<th>$[CH_3O_2]$ $\times 10^{-13}$</th>
<th>$[NO_2]$ $\times 10^{-14}$</th>
<th>k_1</th>
<th>$k_2 \times 10^{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>2.9</td>
<td>6.2</td>
<td>2.4</td>
<td>5.5</td>
<td>5.61</td>
<td>1960</td>
<td>3.49</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.9</td>
<td>6.2</td>
<td>2.5</td>
<td>5.0</td>
<td>8.24</td>
<td>3170</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.9</td>
<td>6.2</td>
<td>2.7</td>
<td>5.0</td>
<td>11.0</td>
<td>4920</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>2.9</td>
<td>6.2</td>
<td>2.7</td>
<td>5.5</td>
<td>11.0</td>
<td>4255</td>
<td>3.87</td>
<td></td>
</tr>
</tbody>
</table>

[M] = 350 Torr, SF$_6$
Table III: Summary of Rate Data for CH$_2$O$_2$ + NO$_2$ + M → CH$_O$NO$_2$ + M; Comparison Between Least-Squares Slopes of k_2 vs. [NO$_2$] Plots and Mean Rate Constants

<table>
<thead>
<tr>
<th>P, Torr</th>
<th>M = He</th>
<th>M = N$_2$</th>
<th>M = SF$_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>Mean</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>$k_2(10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.971 ± 0.053</td>
<td>0.884 ± 0.064</td>
<td>1.19 ± 0.11</td>
</tr>
<tr>
<td>100</td>
<td>1.43 ± 0.072</td>
<td>1.18 ± 0.16</td>
<td>1.78 ± 0.059</td>
</tr>
<tr>
<td>225</td>
<td>1.93 ± 0.11</td>
<td>1.74 ± 0.14</td>
<td>1.80 ± 0.19</td>
</tr>
<tr>
<td>350</td>
<td>2.00 ± 0.21</td>
<td>2.26 ± 0.27</td>
<td>3.11 ± 0.19</td>
</tr>
<tr>
<td>500</td>
<td>2.71 ± 0.20</td>
<td>2.53 ± 0.31</td>
<td>3.13 ± 0.097</td>
</tr>
<tr>
<td>700</td>
<td>2.58 ± 0.19</td>
<td>2.80 ± 0.35</td>
<td>3.68 ± 0.10</td>
</tr>
</tbody>
</table>
\[\text{CH}_3\text{OO} + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M} \]

Figure 3. The reaction \(\text{CH}_3\text{OO} + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + \text{M} \). Variation of first-order rate constant, \(k_2' \), at 298K at total pressures of 100, 350 and 700 Torr \(\text{N}_2 \). □, ○, ▲, \((\text{CH}_3)_2\text{N}_2 - \text{O}_2\) system; □, ○, ▲, \(\text{C}_2\text{H}_2 - \text{CH}_4 - \text{O}_2\) system.
indicating that the reaction occurs primarily by addition to form $\text{CH}_3\text{O}_2\text{NO}_2$.

No significant differences were observed between results obtained from the $\text{Cl}_2\cdot \text{CH}_4\cdot \text{O}_2$ system and the $(\text{CH}_3)_2\text{N}_2\cdot \text{O}_2$ system, confirming that the measured CH_3O_2 decay rates are independent of the method of CH_3 radical production. Consequently, since the $(\text{CH}_3)_2\text{N}_2\cdot \text{O}_2$ experiments were conducted in the quartz cell, it is confirmed that there are no adverse effects due to possible vibrational excitation of CH_3 from the photolysis of azomethane in its short wavelength ($\lambda < 240 \text{ nm}$) absorption band. This possibility has been suggested by other workers.9

Experimental values of k_2 are listed in Table IV. The results given are the mean values for all kinetic runs at a given pressure of diluent gas and include the data for both $\text{Cl}_2\cdot \text{CH}_4\cdot \text{O}_2$ and $(\text{CH}_3)_2\text{N}_2\cdot \text{O}_2$ systems. Slopes of k_2' vs. $[\text{NO}_2]$ plots differ on average by only 3 percent from mean values indicating that the small intercepts on these plots are not due to any systematic removal path for CH_3O_2 other than the one identified. Values of k_2 vs. total pressure for each diluent gas are plotted in Fig. 4.

Thermal decomposition of $\text{CH}_3\text{O}_2\text{NO}_2$,

$$\text{CH}_3\text{O}_2\text{NO}_2 + M \rightarrow \text{CH}_3\text{O}_2 + \text{NO}_2 + M$$

(-2)

can interfere with the measurement of k_2 if it occurs on the same time scale as its formation. Such an effect, if important, would manifest itself as curvature in this first-order decay plot, i.e., regeneration of CH_3O_2, and curvature in k_2' vs. $[\text{NO}_2]$ plots, neither of which were observed. Although rate constants for the unimolecular decomposition of $\text{CH}_3\text{O}_2\text{NO}_2$ have not been measured, the decomposition rates for the analogous compound, NO_2NO_2, are applicable. At 298 K and 760 Torr N_2, this rate constant is .076 s^{-1}.25

Over the pressure range encountered in this experiment (50-700 Torr), k_2 ranges from .013 s^{-1} to .073 s^{-1}. Even allowing for a slightly weaker O-N bond in $\text{CH}_3\text{O}_2\text{NO}_2$, thermal decomposition at room temperature cannot compete with the first-order formation rates of 700 to 7000 s^{-1} encountered here.
Table IV: Measured UV Absorption Cross-Sections of CH₂O₂NO₂

<table>
<thead>
<tr>
<th>Wavelength nm</th>
<th>$\sigma (10^{-19} \text{ cm}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Work</td>
</tr>
<tr>
<td>240</td>
<td>6.2 ± 1.2</td>
</tr>
<tr>
<td>245</td>
<td>4.6 ± 0.9</td>
</tr>
<tr>
<td>250</td>
<td>4.0 ± 0.8</td>
</tr>
<tr>
<td>260</td>
<td>3.1 ± 0.6</td>
</tr>
<tr>
<td>265</td>
<td>2.3 ± 0.5</td>
</tr>
<tr>
<td>270</td>
<td>2.2 ± 0.4</td>
</tr>
<tr>
<td>280</td>
<td>1.7 ± 0.3</td>
</tr>
</tbody>
</table>
Figure 4. Variation of k_2' with total pressure for $M = \text{He}, \text{N}_2$ and SF_6.

The solid lines are the best fit of the data to Eqn. (1).
As indicated above, photodissociation of NO\textsubscript{2} occurs to a small extent resulting in the formation of NO. Competition for CH\textsubscript{3}O\textsubscript{2} by NO would be most important at 50 Torr where \(k_{2,\text{He}} \cong 9 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and \(k_1 \cong 7 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). However, since the amount of NO formed photolytically is small (1 \(\times \) 1012 to 1 \(\times \) 1013 molecule cm-3) the first-order rate constant, \(k_1' \) is less than 70 s-1. With these low concentrations of NO, first-order conditions do not prevail, and the true correction in the worst case would be less than 10\% and typically 1-2\%. For this reason, this effect can be ignored.

\[
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{Products}
\]

Kinetic studies of the CH\textsubscript{3}O\textsubscript{2} + CH\textsubscript{3}O\textsubscript{2} reaction were conducted using the CH\textsubscript{3}-CH\textsubscript{4}-O\textsubscript{2} system. Experiments were conducted at \(\lambda = 245 \text{ nm and 270 nm} \) with [CH\textsubscript{3}O\textsubscript{2}]\textsubscript{0} varying from 2.6 \(\times \) 1013 to 2.2 \(\times \) 1014 molecule cm-3. Total pressure was varied from 50 to 500 Torr using He, N\textsubscript{2} and SF\textsubscript{6} as diluent gases. Plots of 1/(c[CH\textsubscript{3}O\textsubscript{2}]) vs. time were linear over a concentration range of 10-50, however the linearity and hence the value derived for the initial slope were extremely sensitive to the choice of I\textsubscript{o}. For example, a 0.5 percent variation in I\textsubscript{o} resulted in a 10 percent change in the slope. For these experiments, the measurement precision of I\textsubscript{o} was typically 0.1 percent or better. Figure 5 shows the decay plots of three kinetic runs differing only in [CH\textsubscript{3}O\textsubscript{2}]\textsubscript{0}. The fact that the plots are parallel indicates that the rate constant is independent of [CH\textsubscript{3}O\textsubscript{2}]\textsubscript{0}. Variation of \([O_2]\) from 2.7 \(\times \) 1016 to 6.6 \(\times \) 1017 molecule cm-3 resulted in an increase in [CH\textsubscript{3}O\textsubscript{2}] of approximately 50 percent as an increasing fraction of the CH\textsubscript{3} reacted with O\textsubscript{2} instead of with other CH\textsubscript{3} radicals. Observed values of \(k_3 \) decreased by about 20 percent as \([O_2]\) was increased. The addition of CO as a possible scavenger of CH\textsubscript{3}O to pressures up to 160 Torr resulted in a systematic decrease in \(k_3 \) of about 15 percent.

Results of all kinetic runs are given in Table V. For runs with a constant value of \([O_2]\) \(\cong 2.5 \times 10^{17} \text{ molecule cm}^{-3} \) and no added CO, \(k_3/c \) was found to be (1.06 \(\pm \) 0.07) \(\times \) 105 cm s-1 at 245 nm and (2.84 \(\pm \) 0.36) \(\times \) 105 cm s-1 at 270 nm.
Figure 5. The reaction $\text{CH}_3\text{OO} + \text{CH}_3\text{OO} \rightarrow \text{products}$. Second-order decays of CH_3OO for three different values of $[\text{CH}_3\text{OO}]_0$: (a) 2.2×10^{14} molecule cm$^{-3}$, (b) 1.0×10^{14} molecule cm$^{-3}$, (c) 3.3×10^{13} molecule cm$^{-3}$.
Table V: Reaction Rate Data for CH$_3$O$_2$ + CH$_3$O$_2$ 3 Products

<table>
<thead>
<tr>
<th>Pressure Torr</th>
<th>Diluent</th>
<th>λ * nm</th>
<th>[Cl$_2$] x10$^{-16}$ molecule cm$^{-3}$</th>
<th>[CH$_4$] x10$^{-17}$</th>
<th>[O$_2$] x10$^{-17}$</th>
<th>[CO] x10$^{-18}$</th>
<th>[CH$_3$O$_2$]$_0$ x10$^{-13}$</th>
<th>$2k_3/\sigma$ x10$^{-5}$ cm molecule$^{-1}$ s$^{-1}$</th>
<th>k_3 x1013 cm3 molecule$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 SF$_6$</td>
<td>245</td>
<td>3.5</td>
<td>3.1</td>
<td>1.7</td>
<td>0</td>
<td>5.2</td>
<td>2.26</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6</td>
<td>3.3</td>
<td>1.9</td>
<td>5.7</td>
<td></td>
<td>2.02</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>225 SF$_6$</td>
<td></td>
<td>3.4</td>
<td>8.6</td>
<td>2.3</td>
<td>4.4</td>
<td></td>
<td>2.28</td>
<td>3.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>8.1</td>
<td>2.8</td>
<td>4.9</td>
<td></td>
<td>2.08</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>500 SF$_6$</td>
<td></td>
<td>3.8</td>
<td>10</td>
<td>2.6</td>
<td>5.2</td>
<td></td>
<td>2.21</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>10</td>
<td>2.6</td>
<td>4.2</td>
<td></td>
<td>2.10</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>350 N$_2$</td>
<td>270</td>
<td>3.5</td>
<td>12</td>
<td>2.2</td>
<td>10</td>
<td></td>
<td>4.75</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td>12</td>
<td>2.2</td>
<td>22</td>
<td></td>
<td>5.89</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td>12</td>
<td>2.2</td>
<td>6.3</td>
<td></td>
<td>5.55</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>350 He</td>
<td></td>
<td>3.8</td>
<td>8.7</td>
<td>0.27</td>
<td>10</td>
<td></td>
<td>7.44</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.69</td>
<td>8.7</td>
<td>0.31</td>
<td>3.0</td>
<td></td>
<td>5.70</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8</td>
<td>8.7</td>
<td>0.83</td>
<td>14</td>
<td></td>
<td>6.51</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.69</td>
<td>8.7</td>
<td>2.1</td>
<td>3.2</td>
<td></td>
<td>5.31</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8</td>
<td>8.7</td>
<td>2.1</td>
<td>17</td>
<td></td>
<td>5.47</td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>8.2</td>
<td>2.1</td>
<td>17</td>
<td></td>
<td>6.21</td>
<td>4.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8</td>
<td>8.7</td>
<td>6.6</td>
<td>19</td>
<td></td>
<td>5.99</td>
<td>4.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>7.4</td>
<td>1.9</td>
<td>1.2</td>
<td>16</td>
<td>5.73</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>7.4</td>
<td>1.9</td>
<td>2.3</td>
<td>17</td>
<td>5.67</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td>7.0</td>
<td>0.25</td>
<td>2.6</td>
<td>2.6</td>
<td>5.35</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>9.1</td>
<td>2.4</td>
<td>5.2</td>
<td>17</td>
<td>5.47</td>
<td>4.10</td>
<td></td>
</tr>
</tbody>
</table>

* $\sigma(245)$ nm $= 3.0 \times 10^{-18}$ cm2 (Ref. 8)

$\sigma(270)$ nm $= 1.5 \times 10^{-18}$ cm2
Using the CH₃O₂ cross sections of Hochanadel et al. (σ = 1.5 x 10⁻¹⁸ cm² at 245 nm, σ = 3.0 x 10⁻¹⁸ cm² at 270 nm), k₃ = (3.2 ± 0.21) x 10⁻¹³ at 245 nm and k₃ = (4.3 ± 0.54) x 10⁻¹³ at 270 nm where k₃ is defined by the relation

$$\frac{-d[CH₃O₂]}{dt} = 2 k₃[CH₃O₂]².$$

The difference between the two values of k₃ probably reflects the experimental uncertainty in σ. Combining the data for the two wavelengths gives k₃ = (3.65 ± 0.67) x 10⁻¹³ cm³ molecule⁻¹ s⁻¹.

Discussion

CH₃O₂ + NO

The CH₃O₂ + NO reaction has been studied using both indirect²⁻⁵,²⁶ and more recently, direct techniques.¹⁰,¹¹,¹₅,¹₆ The primary conclusion of the indirect studies, determined largely from product analysis, was that CH₃O radicals are formed from reaction 1 and that other channels, adduct formation in particular, do not proceed. The ratio k₁/k₂ was measured in two of these studies; Simonaitis and Heicklen³ obtained a value of 2.2 at a pressure of 700 torr of CH₄ at 298 K while Cox et al.⁵ obtained a lower limit of 12 at a pressure of 760 torr of N₂ at 296 K. The former value agrees favorably with the value k₁/k₂ = 1.8 ± 0.2 determined in this study at 298 K in 700 torr N₂.

The results of the direct studies are summarized in Table VI. The DF/MS study of Plumb et al.¹⁶ and the MHS study of Cox and Tyndall¹⁵ are in excellent agreement with this study. Both studies, however, encountered difficulties with secondary chemistry due to marginal sensitivity for CH₃O₂ detection and the relatively large rate constant for reaction 1. Because of the large number of competing reactions, numerical simulation of the chemical system in conjunction with curve fitting were required to determine k₁ in the study of Cox and Tyndall. Analysis of the mechanism may have been complicated by the depletion of NO along the length of the reaction cell and removal of CH₃O₂ by reaction with NO₂. However, even though a strong absorption at 250 nm from
Table VI: Summary of Previous Work on the CH$_3$O$_2$ + NO Reaction

<table>
<thead>
<tr>
<th>Reference</th>
<th>k_1 (10^{-12} cm3 molecule$^{-1}$s$^{-1}$)</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumb, Ryan, Steven and Mulcahy16</td>
<td>8.0 ± 2.0</td>
<td>DF/MS</td>
</tr>
<tr>
<td>Cox and Tyndall15</td>
<td>6.5 ± 2.0</td>
<td>MM/UV</td>
</tr>
<tr>
<td>Anastasi, Parkes and Smith11</td>
<td>> 1.0</td>
<td>FP/UV</td>
</tr>
<tr>
<td>Adachi and Basco10</td>
<td>3.0</td>
<td>FP/UV</td>
</tr>
<tr>
<td>This work</td>
<td>7.1 ± 1.4</td>
<td>FP/UV</td>
</tr>
</tbody>
</table>
CH$_3$ONO was detected, the MMS technique permitted deconvolution of the methylperoxy signal.

In the study of Plumb et al., a number of secondary reactions take place which were not mentioned by the authors. These reactions, along with possibly inadequate first-order conditions, make the results of their system somewhat difficult to interpret. In their study, CH$_3$O$_2$ is formed in the following sequence of reactions:

\[
\begin{align*}
0 + C_2H_4 & \rightarrow CH_3 + HCO \\
CH_3 + O_2 + M & \rightarrow CH_3O_2 + M
\end{align*}
\]

The authors considered the reactions

\[
\begin{align*}
0 + HCO & \rightarrow CO + OH + CO_2 + H \\
CH_3 + HCO & \rightarrow CH_4 + CO
\end{align*}
\]

as possible loss processes for HCO. However, with $[O_2] = 2.2 \times 10^{16}$ molecule cm$^{-3}$ and $[O] = 4 \times 10^{12}$ molecule cm$^{-3}$, the reaction

\[
HCO + O_2 \rightarrow HO_2 + CO
\]

will dominate the removal of HCO. This reaction was not considered in the original paper. The HO$_2$ formed in reaction 17 will have time to react with itself and with CH$_3$O$_2$ in the region of the flowtube before NO is injected by the reactions

\[
\begin{align*}
HO_2 + HO_2 & \rightarrow H_2O_2 + O_2 \\
HO_2 + CH_3O_2 + CH_3OOH + O_2 & \rightarrow 3
\end{align*}
\]

In this region, CH$_3$O$_2$ will be removed by reactions 3 and 4 and CH$_3$ will be removed by disproportionation

\[
CH_3 + CH_3 + C_2H_6 \rightarrow \frac{M}{M} + 5.0 \times 10^{-12} \text{cm}^3\text{molecule}^{-1}\text{s}^{-1}
\]
Simulations of the reactions that occur in the flow tube, using conditions
given in the paper, indicate that at the NO injection point, \([\text{CH}_3\text{O}_2] = (1.1
- 1.6) \times 10^{12} \text{molecule cm}^{-3}\) and \([\text{HO}_2] = (1.3 - 2.0) \times 10^{12} \text{molecule cm}^{-3}\).

After the injection point, several reactions occur which remove NO:

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{NO} &\rightarrow \text{CH}_3\text{O} + \text{NO}_2 \\
\text{HO}_2 + \text{NO} &\rightarrow \text{OH} + \text{NO}_2 \\
\text{CH}_3\text{O} + \text{NO}(^3\Sigma^+) &\rightarrow \text{CH}_3\text{ONO}
\end{align*}
\]

\(\text{HO}_2\) is also regenerated by

\[
\text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{HO}_2 + \text{HCHO} \quad (13) \quad k_{13} = 6.0 \times 10^{-16} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}.
\]

Although some ambiguity exists in the Plumb et al. paper concerning the exact
NO and \(O(^3\Sigma)\) concentrations used, \([\text{NO}] = 8.0 \times 10^{12} \text{molecule cm}^{-3}\) and
\([O(^3\Sigma)] = 4.0 \times 10^{12} \text{molecule cm}^{-3}\) are indicated as typical values. Using
the concentration of \([\text{CH}_3\text{OO}]_o\), \([\text{HO}_2]_o\) and \([\text{NO}]_o\) calculated above, computer
simulations of the reactions occurring after the NO injection point indicate
that almost 40% of the NO is removed by reactions 1, 6 and 13 at the 1/e point
for \(\text{CH}_3\text{O}_2\). The absence of good first-order conditions would be expected to
result in curvature in the plots of \(\ln[\text{CH}_3\text{O}_2]\) vs. time in addition to that
already attributed by the authors to a residual ion fragment at \(m/e = 47\). Kinetic
runs utilizing higher NO or lower \(O(^3\Sigma)\) concentrations, if performed, would be
less severely affected by NO depletion but in this example, an error of 30% would
be expected in the measured rate constant. As a result, the accuracy of this
study must be viewed with caution.

Two flash photolysis studies of this reaction have been reported.\(^{10,11}\)

Due to their low detection sensitivity for \(\text{CH}_3\text{O}_2\), Anastasi et al.\(^{11}\) could report
only a lower limit, \(k_1 > 1.0 \times 10^{-12} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}\) for the rate constant.

The FP/UV study of Adachi and Basco suffers from complications due to secondary
chemistry. Although the experimental technique and reaction mechanism are
similar to this work, there exists an important difference. In both systems, CH$_3$O radicals from reaction 1 will quickly react with NO to form CH$_3$ONO. In analyzing for CH$_3$O at 245 nm, the technique of Adachi and Basco is susceptible to the interference caused by the formation of CH$_3$ONO on the same time scale as the CH$_3$O disappearance. This has the effect of reducing the apparent CH$_3$O loss rate, which is consistent with their much lower result for k_1. However, since their I_0 value was derived from a blank cell, the CH$_3$ONO formation should have resulted in both non-linear first-order decay plots and a large residual absorption. Neither of these effects is mentioned by the authors and cannot be explained. As indicated above, our study circumvents the problem by analyzing for CH$_3$O at 270 nm where CH$_3$ONO does not absorb strongly.

CH$_3$O + NO$_2$ + M

The single previous direct kinetic study of this reaction is by Cox and Tyndall15 who report $k_2 = (1.2 \pm 0.3) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ at 50 Torr of Ar + CH$_4$, and $k_2 = (1.6 \pm 0.3) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ at 540 Torr N$_2$. The small pressure dependence observed is used to argue that k_2 is near the second-order limit at 50 Torr total pressure. Although their measurement at 50 Torr of Ar/CH$_4$ is in good agreement with this study at 50 Torr N$_2$, the marked pressure dependence observed in Figure 4 strongly contradicts their conclusion. Due to the relatively long time scales encountered in their molecular modulation experiment, several sources of systematic error may appear which account for their results. These include depletion of NO$_2$ along the length of the cell and thermal decomposition of the adduct, CH$_3$O$_2$NO$_2$, in the period required for cell transit. As indicated above, because the time scale of the flash photolysis experiment is short and the cell contents are totally replaced between flashes, difficulties due to CH$_3$O$_2$NO$_2$ decomposition are avoided.

The experimental fall-off curves obtained in this study show the typical behavior expected for the formation of a stabilized adduct from a vibrationally excited intermediate. The vibrational quenching efficiency of the diluent gas,
hence the overall rate constant, increases with its size, complexity and total pressure. Recent work by Troe and co-workers27,28 has shown that the rate constant fall-off curves of addition reactions can be described by a three-parameter equation:

\[
 k([M], T) = \frac{k_0(T) [M]}{1 + \left[\log_{10} \left(\frac{k_0(T) [M]}{k_w(T)} \right) \right]^2} - 1
\]

(1)

where \(k_0(T) \) is the rate constant in the third-order regime, \(k_w(T) \) is the rate constant in the second-order regime, and \(F_c \) is a parameter which characterizes the broadening of the fall-off curve due to the energy dependence of the rate constant for the decomposition of the vibrationally excited intermediate.27,29

Equation (1) is derived from a semi-empirical fit to the RRKM formalism. The utility of fitting experimental data to such an expression is that the rate constant for any value of total pressure can be determined (for the purpose of atmospheric modeling, for example) once the parameters are determined. This is much easier than computing the rate constant from a full RRKM calculation or from tables of Kassel integrals.

The parameters \(k_0 \), \(k_w \) and \(F_c \) were derived in this study by nonlinear least squares curve-fitting to Equation (1). For a given diluent gas (He, \(N_2 \) or \(SF_6 \)) multiple sets of solutions can be obtained which give nearly the same fit to the data. However, the constraint is posed that the values of \(k_w \) and \(F_c \) (neglecting weak collision effects) must be the same for each diluent gas. The procedure adopted in this study was to map the entire domain of reasonable parameter values, holding \(k_w \) and \(F_c \) constant, and determine \(k_0 \) by least squares. The parameters finally selected were the ones that resulted in overlapping regions of minimum \(\chi^2 \) for all three data sets. It should be emphasized that at least two, and preferably three,
different third-body data sets are required to assign unambiguously the three parameters. This is particularly true for a reaction such as \(\text{CH}_3\text{O}_2 + \text{NO}_2 \) where the rate constant at the highest measured pressure is well below the high pressure limit, yet where there is significant fall-off at the lowest measured pressure. The parameters which gave the best fit to all three data sets were:

\[
\begin{align*}
k_o &= (1.19 \pm 0.06) \times 10^{-30} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}, \quad M = \text{He}; \\
&\quad (2.33 \pm 0.08) \times 10^{-30} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}, \quad M = \text{N}_2; \\
&\quad (3.94 \pm 0.13) \times 10^{-30} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}, \quad M = \text{SF}_6, \\
k\infty &= (8.0 \pm 1.0) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \quad \text{and} \\
F_c &= 0.4 \pm 0.10.
\end{align*}
\]

A procedure for the estimation of \(F_c \) from structural information about the adduct has been developed by Troe and co-workers.\(^{27,28}\) \(F_c \) is given by a product of strong collision and weak collision broadening factors, \(F_c^{sc} \) and \(F_c^{wc} \):

\[
F_c = F_c^{sc} F_c^{wc}.
\]

The overall expression for the rate constant, applicable in all pressure regimes, is then given by:

\[
\frac{k}{k\infty} = F^{LH}(k_o[M]/k\infty) F_c^{sc} (k_o[M]/k\infty)
\]

where \(F^{LH} \) is the Lindemann-Hinshelwood factor,

\[
F^{LH}(k_o[M]/k\infty) = \frac{k_o[M]/k\infty}{1 + k_o[M]/k\infty}.
\]

Values of \(F_c^{sc} \) have been determined by Luther and Troe\(^{28}\) in tabular form as a function of the parameters \(S_k \) and \(B_k \). \(S_k \) is given by

\[
S_k = S_{\text{eff}} + 1 \quad \text{or} \quad S_{\text{eff}} + 2,
\]

where \(S_{\text{eff}} \) is the effective number of transition state oscillators. \(S_{\text{eff}} \) can be estimated from the vibrational partition function of the adduct.
molecule from the relation

$$S_{\text{eff}} = -\frac{1}{T} \ln Q_v \left(\frac{\text{vol}}{\text{mol}} \right)$$

$$= \sum_{i=1}^{S} \frac{h\nu_i/kT}{\exp(h\nu_i/kT)-1}$$

where $S =$ number of internal modes including hindered rotations (3N-6). The parameter B_k is given by:

$$B_k = \frac{B'(S_k - 1)}{S - 1}$$

where

$$B' = \frac{E_o + a(E_o)E_z}{kT}$$

$E_o =$ critical energy for the unimolecular decomposition of CH$_3$O$_2$NO$_2$

$E_z =$ zero-point energy of vibrations

$a(E_o) =$ Whitten-Rabinovich factor.29

Higher-order approximations to B_k are derived by Luther and Troe.28

Since a complete normal-coordinate analysis of CH$_3$O$_2$NO$_2$ is lacking, vibrational frequencies were estimated by comparison with model compounds (FONO$_2$, CH$_3$F and N$_2$O). These frequencies are listed in Table VII. At 300K, $S_k = 3.8$, $E_z = 41.6$ kcal mole$^{-1}$ and $a(E_o) = 1.0$. E_o is assumed to be 20 kcal mole$^{-1}$ by analogy with HO$_2$NO$_2$ thermal decomposition.25 The resulting value of B_k is ≈ 14, and from the tables in Ref. 28, $F_{\text{sc}}^{\text{bc}} = 0.51$.

The weak collision broadening factor, F_{c}^{wc}, can be approximated by a function of only one parameter, the collision efficiency factor β_c. F_{c}^{wc} is given by:
Table VII: Estimated Vibrational Frequencies for CH$_3$O$_2$NO$_2$

<table>
<thead>
<tr>
<th>Frequency (cm$^{-1}$)</th>
<th>Type</th>
<th>Modela</th>
</tr>
</thead>
<tbody>
<tr>
<td>3006</td>
<td>CH$_3$ Degen-stretch</td>
<td>CH$_3$F</td>
</tr>
<tr>
<td>2930</td>
<td>CH$_3$ Sym-stretch</td>
<td>CH$_3$F</td>
</tr>
<tr>
<td>2000</td>
<td>OON Sym-stretch</td>
<td>N$_2$O</td>
</tr>
<tr>
<td>1759</td>
<td>NO$_2$ Asym-stretch</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>1467</td>
<td>CH$_3$ Degen-Def.</td>
<td>CH$_3$F</td>
</tr>
<tr>
<td>1464</td>
<td>CH$_3$ Sym-Def.</td>
<td>CH$_3$F</td>
</tr>
<tr>
<td>1301</td>
<td>NO$_2$ Sym-stretch</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>1182</td>
<td>CH$_3$ Rock</td>
<td>CH$_3$F</td>
</tr>
<tr>
<td>1050</td>
<td>OON Asym-stretch</td>
<td>N$_2$O</td>
</tr>
<tr>
<td>1049</td>
<td>CO Stretch</td>
<td>CH$_3$F</td>
</tr>
<tr>
<td>928</td>
<td>OO Stretch</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>804</td>
<td>NO$_2$ Scis.</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>709</td>
<td>NO$_2$ Wag</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>633</td>
<td>NO$_2$ Stretch</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>455</td>
<td>NO$_2$ Rock</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>450</td>
<td>OON Bend</td>
<td>N$_2$O</td>
</tr>
<tr>
<td>303</td>
<td>OC Bend</td>
<td>FONO$_2$</td>
</tr>
<tr>
<td>120</td>
<td>OC Torsion</td>
<td>FONO$_2$</td>
</tr>
</tbody>
</table>

aFrequencies taken from Ref. 33 with minor corrections where appropriate.
\(F_{wc} \approx \beta_c \cdot 0.14 \)

where
\[
\beta_c = \frac{k_o}{k_0^{sc}}
\]

\(k_0^{sc} \) = low pressure-limiting strong collision rate constant.

\(k_0^{sc} \) can be estimated by methods derived by Troe.\(^{28,30}\) Values of \(k_0^{sc} \) for several third-order reactions of atmospheric interest have recently been computed,\(^{31}\) and the value for reaction 3 has been estimated to be \(1.4 \times 10^{-29} \) \(\text{cm}^6 \text{molecule}^{-2} \text{s}^{-1} \) for \(M = N_2 \). From this, values of \(k_0 \) can be calculated for the other diluent gases by correcting the Lennard-Jones collision frequency. The resulting values of \(\beta_c \) are: 0.044 (\(M = \text{He} \)), 0.17 (\(M = N_2 \)) and 0.39 (\(M = SF_6 \)). Since \(F_{wc} \) is a relatively weak function of \(\beta_c \), weak-collision effects in \(F_c \) are masked by experimental error. The average value of \(F_{wc} \) for the three diluent gases is 0.77. The composite broadening factor, \(F_c \), is calculated to be 0.51 x 0.77 = 0.39 in good agreement with the value 0.40 ± 0.10 derived from the experimental data. At low temperatures (300K-600K), \(S_k \) is small relative to \(S \) but \(F_c^{sc} \) is relatively sensitive to \(S_k \). As a result, small errors in the estimation of \(S_k \) resulting, for example, from uncertainties in the estimation of the low-frequency vibrational modes have a large effect on \(F_c \). Another source of error in \(S_k \) is the uncertainty in the difference between \(S_k \) and \(S_{eff} \). The exact difference is\(^{28}\)

\[
S_k - S_{eff} = \frac{E_{ao} - E_0}{kT}
\]

where \(E_{ao} \) is the Arrhenius activation energy at the high-pressure limit.

Since \(E_{ao} \) is often experimentally unobtainable, the energy difference must be obtained from a complete RRKM calculation or by estimation, as above.
\[\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \]

Recently, a large number of studies on the \(\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \) reaction have been published.\(^8\,9\,12-14\) The results of these studies are listed in Table VIII. Although the room temperature rate constants are in remarkable agreement, the agreement is misleading. The fundamental parameter measured, \(k_3/\sigma \), cannot be directly compared because most of the studies were carried out at different wavelengths. Of the three measurements of the \(\text{CH}_3\text{O}_2 \) absorption spectrum, two are in excellent agreement\(^8\,9\) while the third is scaled upward by about 50%.\(^14\) If the measured spectrum of Hochanadel et al. is used to derive values of \(k_3 \) from all the different studies, the spread in \(k_3 \) ranges from 2.6 to \(4.1 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). The rate constant obtained in this study, \((3.7 \pm 0.7) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \), is in excellent agreement with the results of Kan et al.,\(^9\) Sanhueza et al.\(^12\) and Hochanadel et al.\(^8\).

The interpretation of the kinetic data from this, and other studies of the \(\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \) reaction is complicated by the possibility of a reaction branch forming \(\text{CH}_2\text{O} \), i.e.

\[
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 + 2\text{CH}_3\text{O} + \text{O}_2 \quad (3a) \quad \Delta H = + 3.5\text{kcal mole}^{-1}
\]

In addition there are two exothermic reaction paths,

\[
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 + \text{CH}_2\text{O} + \text{CH}_3\text{OH} + \text{O}_2 \quad (3b) \quad \Delta H = - 77.4 \text{ kcal mole}^{-1}
\]

\[
+ \text{CH}_3\text{O}_2\text{CH}_3 + \text{O}_2 \quad (3c) \quad \Delta H = - 42.8 \text{ kcal mole}^{-1}
\]

Secondary removal of \(\text{CH}_3\text{O}_2 \) by the processes

\[
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O} + \text{CH}_2\text{O} + \text{CH}_3\text{OH} \quad (12)
\]

\[
\text{CH}_3\text{O} + \text{O}_2 + \text{H}_2\text{O} + \text{CH}_2\text{O} \quad (13)
\]

\[
\text{CH}_3\text{O}_2 + \text{HO}_2 + \text{CH}_3\text{O}_2\text{H} + \text{O}_2 \quad (4)
\]
Table VIII: Summary of Previous Work on the CH$_3$O$_2$ + CH$_3$O$_2$ Reaction

<table>
<thead>
<tr>
<th>Reference</th>
<th>λ (nm)</th>
<th>k_3/σ x 10^{-4} cm molecule$^{-1}$s$^{-1}$</th>
<th>σ^a x 10^{18} cm2</th>
<th>k_3 x 10^{13} cm3molecule$^{-1}$s$^{-1}$</th>
<th>σ^b x 10^{18} cm2</th>
<th>k_3^c x 10^{13} cm3molecule$^{-1}$s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkes et al. 13</td>
<td>220-290</td>
<td></td>
<td></td>
<td>2.2 - 4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkes 14</td>
<td>237</td>
<td>8.4</td>
<td>5.5 ± 1.0</td>
<td>4.6 ± 1.2</td>
<td>3.2</td>
<td>2.7 ± 0.7</td>
</tr>
<tr>
<td>Hochanadel et al. 8</td>
<td>235</td>
<td>11</td>
<td>3.3</td>
<td>3.8 ± 0.7</td>
<td>3.3</td>
<td>3.8 ± 0.7</td>
</tr>
<tr>
<td>Anastasi et al. 11</td>
<td>238</td>
<td>8.0</td>
<td>5.5, Ref. 14</td>
<td>4.4 ± 1.1</td>
<td>3.2</td>
<td>2.6 ± 0.6</td>
</tr>
<tr>
<td>Kan et al. 9</td>
<td>265</td>
<td>20</td>
<td>2.0</td>
<td>4.1 ± 0.5</td>
<td>1.8</td>
<td>3.7 ± 0.4</td>
</tr>
<tr>
<td>Sanhueza et al. 12</td>
<td>253.7</td>
<td>15</td>
<td>2.5, Ref. 8</td>
<td>3.7 ± 0.3</td>
<td>2.5</td>
<td>3.7 ± 0.3</td>
</tr>
<tr>
<td>This Work</td>
<td>245</td>
<td>11</td>
<td></td>
<td></td>
<td>3.0</td>
<td>3.2 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>28</td>
<td></td>
<td></td>
<td>1.5</td>
<td>4.3 ± 0.5</td>
</tr>
</tbody>
</table>

aCH$_3$O$_2$ cross-section used to derive k_3. Reference number given if taken from the literature.

bCH$_3$O$_2$ cross-section measured by Hochanadel et al. (Ref. 8);

ck$_3$ derived from measured k_3/σ and σ (Ref. 8).
occurs subsequent to the formation of methoxy radicals. Several radical termination steps also occur which reduce the probability of secondary CH₃O₂ removal. These include:

\[
\begin{align*}
\text{CH}_3\text{O} + \text{CH}_3\text{O} & \rightarrow \text{products} \\
\text{CH}_3\text{O} + \text{HO}_2 & \rightarrow \text{CH}_3\text{OH} + \text{O}_2 \\
\text{HO}_2 + \text{HO}_2 & \rightarrow \text{H}_2\text{O}_2 + \text{O}_2
\end{align*}
\]

(20)

(21)

(18)

Kan et al. have considered the effect of the above reactions on the overall CH₃O₂ removal rate. Their conclusion, based on the assumption that

\[
\frac{k_{3a}}{k_{3a} + k_{3b} + k_{3c}} = 0.33
\]

was that the secondary consumption of CH₃O₂ would result in a maximum error of 12% in the determination of \(k_3 \). This is smaller than the error factor of 1.33 that would be expected if every CH₃O radical was effective in removing a CH₃O₂ radical.

The relationship between the true rate constant for CH₃O₂ disproportionation, \(k_1 \), and the observed rate constant \(k_1' \), is strongly affected by the relative and absolute rates of the secondary reactions which consume CH₃O₂.

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{CH}_3\text{O} & \rightarrow \text{CH}_2\text{O} + \text{CH}_3\text{OOH} \\
\text{CH}_3\text{O}_2 + \text{HO}_2 & \rightarrow \text{CH}_3\text{O}_2\text{H} + \text{O}_2
\end{align*}
\]

(12)

(4)

the termination reactions for CH₃O and HO₂, and the rate of conversion of CH₃O to HO₂. The relative importance of these processes can be qualitatively determined by varying [O₂]. In the limiting cases in which reactions (12) and (4) are both extremely rapid or extremely slow compared to competing processes, varying [O₂] will have no effect on \(k_1' \), and \(\frac{k_1'}{k_1} \) will be \(\frac{k_{1a} + k_{1c}}{k_{1a} + k_{1c} + k_{1b}} \) or 1.0, respectively. If (12) is fast and (4) is slow, increasing [O₂] will reduce \(k_3' \). If (4) is fast and (12) is slow, increasing [O₂] will increase \(k_3' \).
Parkes observed no change in k_3' as $[O_2]$ was varied from 3×10^{15} to 2.5×10^{19} molecule cm$^{-3}$. In this study, however, k_3' decreased by about 15% as $[O_2]$ was varied from 2.7×10^{16} to 6.7×10^{17} molecule cm$^{-3}$.

Addition of CO to the system resulted in a slight decrease in k_3'. CO may have reacted directly with CH$_3$O$_2$ by the reaction
\[\text{CH}_3\text{O}_2 + \text{CO} \rightarrow \text{CH}_3\text{O} + \text{CO}_2 \]
(22)

or with CH$_3$O,
\[\text{CH}_3\text{O} + \text{CO} \rightarrow \text{CH}_3 + \text{CO}_2 \]
(23a)

\[\rightarrow \text{HCHO} + \text{HCO} \]
(23b)

thereby competing with reaction 12. If the decrease in k_3' is attributable solely to reaction 22, one can show that $k_{22} \lesssim 7 \times 10^{-18}$ cm3 molecule$^{-1}$ s$^{-1}$. Only one study of reaction 23 has been conducted which gave $k_{23}/k_{11} = 5 \times 10^{-14}$. If this measurement is correct, the presence of CO in the concentration range 1-5 \times 1018 molecule cm$^{-3}$ should have resulted in almost complete removal of CH$_3$O by this reaction. However, since neither the rate constant not the branching ratio of reaction 23 are known with certainty, little can be said about the effect of adding CO except that it suggests that CH$_3$O is present and that k_{3a} is probably non-zero. The same conclusion can be reached concerning the effect of varying $[O_2]$.

To date, data on the temperature dependence of reaction 1 are limited to the observation by Parkes that k_3' was independent of temperature between 288 and 298K. According to the most recent evaluation of kinetic and thermochemical data on CH$_3$O$_2$, reaction 3a is endothermic by 3.5 kcal/mole. Even if reaction 3a had a 3.5 kcal/mole activation energy, it would be difficult to observe a temperature dependence for k_3 over the limited range they employed. Due to the large uncertainty on the CH$_3$O$_2$ enthalpy of formation, however, reaction 3a may be thermoneutral or even slightly exothermic.
Appendix A: The Effect of Reaction Product Absorption on the Measured First-Order Rate Constant, k'.

For a reaction such as

$$\text{CH}_3\text{O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CH}_3\text{NO}_2 + \text{M}$$

in which both the minor reactant species (CH$_3$O$_2$) and a product (CH$_3$NO$_2$) absorb a fraction of the analytical light, the effect of the product absorber on k' must be considered. From Beer's law,

$$I_t = I_0 \exp(-k(\sigma_x x + \sigma_y y)) \quad (A-1)$$

where:

I_t = transmitted light intensity

I_0 = "true" I_0, i.e. intensity of the light beam emerging from the evacuated cell.

l = path length

x = [CH$_3$O$_2$]

y = [CH$_3$NO$_2$]

σ_x = CH$_3$O$_2$ absorption cross-section

σ_y = CH$_3$NO$_2$ absorption cross-section

For first-order conditions,

$$x = x_0 \exp(-k't) \quad (A-2)$$

where:

k' = $k[\text{NO}_2]$ and,

$$y = x_0 - x \quad (A-3)$$

Substituting for x and y in (A-1)

$$I_t = I_0 \exp(-lx_0 (\sigma_x x + \sigma_y y) \exp(-k't) + \sigma_y)) \quad (A-4)$$

Under experimental conditions, I_0 is usually taken to be the transmitted light intensity at the end of the reaction. However, with a stable product absorber,
this will be somewhat less than the "true" I_o, i.e.

$$I_o' = \lim_{t \to \infty} I_o = I_0 \exp(-ix_0 \sigma_y)$$ \hspace{1cm} (A-5)

The apparent concentration of the minor reactant, x', is then:

$$x' = \ln \left(\frac{I_o'}{I_t} \right) = \ln \frac{I_0 \exp[-ix_0 \sigma_y]}{I_0 \exp(-ix_0 ((x - \sigma_y) \exp(-k't) + \sigma_y))}$$

$$x' = ix_0 (x - \sigma_y) \exp(-k't)$$ \hspace{1cm} (A-6)

A plot of $\ln x'$ vs. t will have slope $-k'$, the true first-order rate constant. If x' is calculated using I_o rather than I_o', plots of $\ln x'$ vs. t will be non-linear and the rate constant thus obtained will be in error.

When the product absorber comes from the second of two consecutive first-order reactions, e.g.,

$$\text{CH}_3 \text{O} + \text{NO} \to \text{CH}_3 \text{O} + \text{NO}_2$$
$$\text{CH}_3 \text{O} + \text{NO} + \text{M} \to \text{CH}_3 \text{ONO} + \text{M}$$

the rate constant and the simple relationship derived above no longer apply and the correction to the first-order rate constant must be obtained by numerical techniques.

Acknowledgements

The authors are grateful to W. E. DeMore, C. W. Ray, J. C. Brock and J. Margolis for helpful discussions and to C. Kan (Ohio State University) and M. Kalloo (Merck, Sharp and Dohme Ltd.) for assistance in the preparation of azomethane. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-100.
References and Notes

1. (a) T. A. Hecht, J. H. Seinfeld and M. C. Dodge, Environ. Sci. Technol., 8, 327 (1974);

17. (a) C. J. Howard and K. M. Evenson, Geophys. Res. Letters, 4, 437 (1977);
 (b) C. J. Howard, W.M.O. Symposium on the Geophysical Aspects and Consequences of Changes in the Composition of the Stratosphere, Toronto, June 1978.

CHAPTER III

RATES AND MECHANISM OF THE DISPROPORTIONATION
OF BrO RADICALS

S. P. Sander and R. T. Watson*

Molecular Physics and Chemistry Section
Jet Propulsion Laboratory
Pasadena, CA 91103
ABSTRACT

The flash photolysis-ultraviolet absorption technique was used to measure the rate constants for the reactions

\[\text{BrO} + \text{BrO} \rightarrow 2\text{Br} + \text{O}_2 \quad (1a) \]
\[\text{BrO} + \text{BrO} \rightarrow \text{Br}_2 + \text{O}_2 \quad (1b) \]

over the temperature range 223-388 K and pressure range 50-475 Torr He. Two independent techniques were used to measure the branching ratio; one dependent and the other independent of the BrO absorption cross-section with the results in excellent agreement. The rate constant \(k_1 = (k_{1a} + k_{1b}) \) was found to be \(9.58 \times 10^{-13} \exp((255 \pm 195)/T) \) where \(k_1 \) is defined by the relation \(-d[\text{BrO}]/dt = -2k_1[\text{BrO}]^2\). The branching ratio \((k_{1a}/(k_{1a} + k_{1b}))\) was found to be \(0.84 \pm 0.03\) at 298 K. An upper limit was also determined for the rate constant for the reaction:

\[\text{BrO} + \text{O}_3 \rightarrow \text{Br} + 2\text{O}_2 \quad (2) \]

of \(k_2 \leq 4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 298 K.
INTRODUCTION

The disproportionation reactions of halogen monoxide radicals are among the most often-studied and least understood processes in gas-phase kinetics. Although much of the early work on these reactions was carried out using the flash photolysis-ultraviolet absorption (FP/UV) technique, \(^1,^2\) other methods such as discharge flow-mass spectroscopy (DF/MS), \(^3^-^6\) molecular modulation-ultraviolet absorption (MM/UV) \(^7,^8\) and discharge flow-ultraviolet absorption (DF/UV) \(^9,^{10}\) have now been used to extend the pressure range and detection capability. In spite of this attention, the mechanisms of \(XO + XO\) reactions remain highly uncertain primarily because of difficulties associated with detecting the intermediates that appear to be involved. The initial step for all these reactions is probably the formation of a transient \(XOOX\) intermediate

\[
XO + XO \rightarrow [XOOX]^\#
\]

which can either be collisionally stabilized, undergo rearrangement or decompose

\[
\begin{align*}
[XOOX]^\# &
\rightarrow [X \ldots X]^\# \rightarrow X_2 + O_2 \\
&
\rightarrow X + XO \\
(M) &
\rightarrow XOOX
\end{align*}
\]

The \(XOO\) radical may decompose

\[
XOO \rightarrow X + O_2
\]

or react with an \(X\) atom

\[
X + XOO \rightarrow X_2 + O_2
\]
Of course, the relative importance of the above reaction steps for the particular halogen species is influenced by the thermodynamic stability of the intermediates involved. In the fluorine case, evidence from two previous studies pointed to the formation of atomic fluorine as the primary product although the formation of \(F_2, F_2O_2 \) and FOO could not be ruled out.\(^3,11\) In the \(ClO + ClO \) reaction, reaction paths forming \(Cl_2 + O_2, Cl + ClOO \) and \(Cl + OClO \) have all been proposed.\(^1-8,12-14\) In addition, \(Cl_2O_2 \) and the \(ClOO \) radical have been identified as intermediates in this reaction.\(^1,2,7,8\) The reaction is further complicated by an apparent pressure effect, and a poorly understood effect of \([O_2]\) on the quantum yield for \(O_3 \) disappearance in \(Cl_2 - O_3 \) mixtures.\(^15\) In the only quantitative study of the \(IO + IO \) reaction, Clyne and Cruse\(^10\) interpreted their data as indicating that the reaction channel forming atomic iodine is the only pathway.

Previous work on the \(BrO + BrO \) reaction has utilized the DF/MS,\(^5\) DF/UV\(^9\) and FP/UV\(^14,16\) techniques. Agreement among these studies on the overall rate constant is poor with values of the rate constant for the overall \(BrO \) disappearance ranging from \(1.0 \times 10^{-12} \) to \(5.2 \times 10^{-12} \) \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) (where the rate constant is defined by the relation \(-d[BrO]/dt = 2k[BrO]^2\)). None of these studies attempted to measure accurately the relative rates of the two most probable reaction channels

\[
\begin{align*}
\text{BrO} + \text{BrO} & \rightarrow \text{BrOO} + \text{Br} & \text{(la)} \\
& \rightarrow \text{Br}_2 + O_2 & \text{(lb)}
\end{align*}
\]

The temperature dependence of reaction 1 was reported by both Clyne and Cruse, and Brown and Burns. However, the temperature ranges employed in these studies did not extend below room temperature. Clyne and
Watson used the DF/MS technique and therefore did not need to measure \(\sigma \) but their study was conducted only at room temperature.

All of the halogen monoxide disproportionation reactions have potential atmosphere significance. By converting two XO radicals (where X = F, Cl, Br or I) into two X atoms (or into an \(X_2 \) molecule which subsequently photolyzes), XO + XO reactions can take part in catalytic cycles which destroy odd oxygen in the troposphere and stratosphere.\(^{17,18}\) A recent atmospheric modeling study\(^{17}\) has shown that of all the catalytic cycles involving bromine species, the most efficient in terms of ozone destruction is the one which has the mixed disproportionation reaction,

\[
\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{Cl} + \text{O}_2
\]

as its rate-determining step. When BrX mixing ratios ([BrX] = [Br] + [BrO] + [BrONO\(_2\)] + [HBr]) exceed 100 parts-per-trillion (ppt), the cycle involving the BrO + BrO reaction also becomes important. It is therefore necessary to measure both the rates and branching ratios of these reactions as accurately as possible.

In this study, the flash photolysis/UV absorption technique has been used to measure the rate constant for reaction 1 over the temperature range 223-388 K. The branching ratio, \(k_{1a} / (k_{1a} + k_{1b}) \), was determined at 298 K using two independent methods, one dependent and the other independent of the BrO cross-section. An upper limit was also determined for the rate constant for the reaction

\[
\text{BrO} + \text{O}_3 \rightarrow \text{Br} + \text{2O}_2 \quad (2)
\]
EXPERIMENTAL SECTION

The flash photolysis/UV absorption system has been described in detail previously.19 The flash assembly consists of four concentric tubes comprising the reaction cell, photolyzing light filter, xenon flash lamp and cooling/heating jacket. Two identical cells were used; one constructed of quartz and the other of pyrex. In contrast to other studies using this system,19 the cell was not operated in the flowing mode. Reagents were thoroughly pre-mixed in an external 2-liter volume before being admitted into the cell. The optical system consists of a 150 watt xenon analytical lamp, 8-pass White mirror system with 740 cm path length and McPherson Model 216.5 0.5 m monochromator. The monochromator wavelength was calibrated with a low-pressure mercury line source. Signals from the photomultiplier tube (EMI 9659QA) are amplified and stored in a signal averager (Tracor-Northern 570A) operating in the analog mode. The data is punched onto paper tape for subsequent computer analysis.

BrO radicals were monitored by their absorption at 339.0 nm ($\sum^2_\Pi(v' = 4) + X^2_\Pi(v'' = 0)$ transition).20 The absorption spectrum of BrO consists of a series of vibrational bands on an underlying continuum which, in the 290-300 nm region, has a cross-section of $\sim 2 \times 10^{-18}$ cm2. Since the finite monochromator resolution results in the overlap of several rotational lines within the (4-0) band, the effective cross-section was a function of the monochromator slit width and wavelength setting. A slit width of 100 μm was used resulting in a resolution of 0.09 nm FWHM as measured by scanning a mercury line source. The time-resolved absorption of O$_3$ was also monitored. A beam splitter reflected part of the analytical light exiting the reaction cell into a
0.25 m monochromator and EMI 9659 photomultiplier. Ozone was monitored in the 250-280 nm spectral region. Both the O₃ and BrO absorption signals were recorded simultaneously by the signal averager.

Production of BrO (²Π) Radicals

Two chemical systems were used to produce BrO radicals. In the first, a Br₂/O₃/He mixture was photolyzed in a pyrex reaction cell to produce Br atoms which reacted with O₃ to form BrO (unless otherwise indicated, rate constants cited in the text are from Ref. 21):

\[
\text{Br}_2 + \text{hv} (\lambda > 300 \text{ nm}) \rightarrow 2\text{Br}
\]

\[
\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2 \quad (4) \quad k_4 = 1.1 \times 10^{-12} \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}
\]

In order to elucidate the mechanism of the BrO self-reaction, experiments were conducted in which either Br or O₃ was in excess over the other. At the flash energies used in this study (300-1500 Joules/flash) between 2 and 10 percent of the Br₂ is dissociated. The primary fate of the excess Br is atomic recombination,

\[
\text{Br} + \text{Br} + \text{M} \rightarrow \text{Br}_2 + \text{M} \quad (4a) \quad k_{4a} = 3.0 \times 10^{-33} \text{ cm}^6\text{molecule}^{-2}\text{s}^{-1}
\]

and, to a lesser extent, heterogeneous removal on the wall,

\[
\text{Br} + \text{wall} \rightarrow \frac{1}{2}\text{Br}_2 \quad (4b).
\]

A small amount of O₃ photolysis was observed in the pyrex cell. Since this would have affected the results of the quantum yield studies, photolysis of O₃ was eliminated by filling the filter cell with one atmosphere of SO₂. The strong absorption band of SO₂ at 300 nm reduced the ozone photolysis to immeasurable levels without affecting the dis-
sociation of Br₂.

In the second method of BrO formation, Br₂-O₂ mixtures were photolyzed in the quartz reaction cell:

\[
O_2 + h\nu(\lambda > 180\ \text{nm}) \rightarrow 20(3^p) \quad (5)
\]

\[
O + Br_2 \rightarrow BrO + Br \quad (6) \quad k_6 = 1.4 \times 10^{-11} \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}
\]

The photolytic dissociation of O₂ was about 0.003% at 1150 J. Other processes competing for the removal of atomic oxygen,

\[
O + O_2 + M \rightarrow O_3 + M \quad (7) \quad k_7 = 5.6 \times 10^{-34} \text{ cm}^6\text{molecule}^{-2}\text{s}^{-1}
\]

\[
O + BrO \rightarrow Br + O_2 \quad (8) \quad k_8 = 3 \times 10^{-11} \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}
\]

were negligible relative to reaction 6 under the experimental conditions of high Br₂ concentrations employed in this study. No difficulties were therefore encountered with regeneration of BrO from the reaction of Br with photolytically generated O₃.

The ranges of reagent concentrations were (in molecule cm⁻³):

[Br₂] x 10⁻¹⁶: 2.4-16 (excess Br); [Br₂] x 10⁻¹³: 5.6-36 (excess O₃);
[O₃] x 10⁻¹³: 2.3-31 (excess Br); [O₃] x 10⁻¹⁵: 4.2-8.5 (excess O₃);
[O₂] x 10⁻¹⁷: 2.2-30. [BrO]₀ (in molecule cm⁻³) ranged from 1.3 x 10⁻¹³ to 3.0 x 10⁻¹⁴. In all experiments, BrO was formed on a time scale (t₁/₂ ≤ 150 μsec) at least ten times faster than its loss (t₁/₂ ≥ 1.5 msec). In the Br₂-O₃ system, BrO decays were obtained in a single flash since the O₃ was depleted by reaction with Br. In the Br₂-O₂ experiments, the reactants were regenerated after each flash permitting multiple BrO decays to be averaged with each filling. Ten to fifty flashes were used depending on [BrO]₀ and the enhancement in signal-to-noise ratio desired.
The temperature of the reaction cell was controlled by circulating methanol \((T < 298 \, \text{K})\) or ethylene glycol \((T \geq 298 \, \text{K})\) through the outer jacket from a constant temperature bath (Haake). Diluent gases with the following stated purities were used: \(\text{He (Linde UHP Grade, 99.999\%), } \text{O}_2 \, (\text{Linde UHP Grade, 99.99\%})\). \(\text{Br}_2 \, (\text{J.T. Baker Reagent Grade})\) was thoroughly de-gassed and distilled, retaining the middle fraction. \(\text{O}_3\) was prepared by passing an electric discharge through \(\text{O}_2\) at 77 K with subsequent purification.

RESULTS

The bimolecular disproportionation of \(\text{BrO}\) radicals can be described by a second-order rate law:

\[
-\frac{d[\text{BrO}]}{dt} = 2 \, k_1 [\text{BrO}]^2,
\]

the solution of which is:

\[
\frac{1}{[\text{BrO}]} - \frac{1}{[\text{BrO}]} = 2 \, k_1 t.
\]

The \(\text{BrO}\) concentration is related to the absorption signal by Beer's Law, leading to the equation

\[
\frac{\ell}{\ln(I_o/I_t)} = \frac{2 \, k_1 t}{\sigma} + \frac{\ell}{\ln(I_o/I_t')}
\]

where: \(\ell = \text{absorption path length}\)

\(\sigma = \text{BrO absorption cross-section}\)

\(I_o = \text{incident light intensity}\)

\(I_t = \text{transmitted light intensity at time } t\)

\(I_t' = \text{transmitted light intensity immediately after the flash}\).
Plots of $t/\ln(I_0/I_t)$ vs. time should be linear with slope $2 \frac{k_1}{\sigma}$. k_1 is therefore obtained from the product of two experimental observables, k_1/σ and σ.

Determination of σ

Spectroscopic work on the BrO absorption spectrum has indicated that the $(4,0)$ band of $A ^2Π \rightarrow X ^2Π$ transition appears to be the strongest. Absolute BrO absorption cross-section measurements have been made in other studies. However, since an integration over several narrow rotational lines is involved, σ is a strong function of the monochromator spectral bandwidth and wavelength setting. A separate determination of σ for this set of experimental conditions was therefore required. A wavelength for the analysis of BrO was selected within the $(4,0)$ band (339.0 nm) that ensured that no part of the monochromator spectral response extended beyond the band head. The cross-section was measured by determining the initial light absorption due to BrO in Br₂-O₃ mixtures containing an excess of Br and a known concentration of O₃. Since $[\text{BrO}]_0 = [\text{O}_3]_0$ in this system, σ could be then determined from Beer's Law, i.e.

$$\sigma = \frac{\ln[I_0/I']}{k[\text{O}_3]_0}$$

The initial light absorption for each experiment was found by back-extrapolating the BrO decay plot to $t = 0$ to obtain the y-intercept, y_0. This back-extrapolation is valid provided that BrO is formed much more quickly than it is lost and that the duration of the flash is short compared to the time period of the extrapolation. Both these requirements are satisfied. The average ratio of the half-lives for BrO removal and formation is 132 with values ranging from 36 to 317. This
is large enough that the formation of BrO can be considered instantaneous. Similarly, the duration of the flash, ~ 15 μs, is much shorter than the 1-2 msec extrapolation required to obtain \(y_o \). Since \(y_o = (\sigma[BrO])^{-1} \), a plot of \(y_o^{-1} \) vs. \([O_3]_o\) should be linear with slope \(\sigma \). The results of 28 experiments are shown in Fig. 1. Good linearity is obtained indicating that stoichiometric conversion of \(O_3 \) to BrO takes place on a rapid time scale. The value of \(\sigma \) obtained from the slope of the least-squares line in Fig. 1 is \(1.01 \times 10^{-17} \) cm\(^2\) while the value obtained by averaging the individual results is \((1.14 \pm 0.14) \times 10^{-17} \) cm\(^2\). No physical significance is attached to the small intercept in the least-squares line, and the preferred value of \(\sigma \) is obtained from the simple average. The same procedure was used to derive \(\sigma \) at 223 K and 388 K (see Table I).

Determination of \((k_{1a} + k_{1b})/\sigma \)

The quantity \((k_{1a} + k_{1b})/\sigma \) was measured using two chemical systems. In the first, \(Br_2-O_3 \) mixtures were photolyzed with conditions adjusted to give an excess of \(Br \) over \(O_3 \) \((30 \leq [Br]_o/[O_3] \leq 300)\) during the time in which the decay of BrO was monitored. Under these conditions, bromine atoms formed from reaction 1a add to the pool of excess atoms produced by the photolysis flash. Since reaction 1b leads to the formation of stable products \((Br_2 \text{ and } O_2)\) the observed rate constant is the sum of the rate constants of the two channels. The same quantity, \((k_{1a} + k_{1b})/\sigma \), is also obtained in experiments conducted on \(Br_2-O_2 \) mixtures. BrO radicals formed in this system by reactions 5 and 6 disappear by both reaction channels 1a and 1b with no subsequent regeneration of BrO. Values of \(k_1/\sigma \) obtained using both chemical systems are given in Tables II and III. In these experiments, \(k_1 \) was invariant with \([O_2] \) \((2.2-30 \times 10^{17})\).
Figure 1. Variation of $\sigma[\text{BrO}]_0$ with $[O_3]_0$. The slope of the plot is determined from the mean value of the individual measurements.
Table I. Summary of Data for the BrO + BrO Reaction

<table>
<thead>
<tr>
<th>T (K)</th>
<th>σ $\times 10^{17}$ cm2</th>
<th>$2k_1 / \sigma$ $\times 10^{-5}$ cm molecule$^{-1}$ s$^{-1}$</th>
<th>k_1 $\times 10^{12}$ cm3 molecule$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td>1.56 ± 0.14</td>
<td>3.88 ± 0.47</td>
<td>3.03 ± 0.64</td>
</tr>
<tr>
<td>298</td>
<td>1.14 ± 0.14</td>
<td>3.80 ± 0.73</td>
<td>2.17 ± 0.68</td>
</tr>
<tr>
<td>388</td>
<td>0.961 ± 0.12</td>
<td>3.95 ± 0.79</td>
<td>1.90 ± 0.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T (K)</th>
<th>$2k_{1b} / \sigma$ $\times 10^{-4}$ cm molecule$^{-1}$ s$^{-1}$</th>
<th>k_{1b} $\times 10^{13}$ cm3 molecule$^{-1}$ s$^{-1}$</th>
<th>Methoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>6.07 ± 0.45</td>
<td>3.46 ± 0.68</td>
<td>1</td>
</tr>
<tr>
<td>298</td>
<td></td>
<td>4.12 ± 1.99</td>
<td>2</td>
</tr>
</tbody>
</table>

Method 1: Measurement of second-order BrO decay in Br$_2$-O$_3$ (excess O$_3$) system.

Method 2: Measurement of quantum yield of O$_3$ destruction in Br$_2$-O$_3$ (excess O$_3$) system.
<table>
<thead>
<tr>
<th>T (K)</th>
<th>P (Torr)</th>
<th>Flash Energy</th>
<th>([0_3]) (x 10^{-14})</th>
<th>([\text{Br}_2]) (x 10^{-16})</th>
<th>2k/(\sigma) cm molecule(^{-1})</th>
<th>(\sigma) (x 10^{17})</th>
<th>(k^a) (x 10^{12}) molecule s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>50</td>
<td>800</td>
<td>0.91</td>
<td>8.2</td>
<td>2.10</td>
<td>1040</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.21</td>
<td>8.0</td>
<td>2.35</td>
<td>775</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.15</td>
<td>7.8</td>
<td>2.33</td>
<td>799</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.31</td>
<td>7.8</td>
<td>2.46</td>
<td>829</td>
<td>0.920</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.35</td>
<td>7.8</td>
<td>2.39</td>
<td>737</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.93</td>
<td>8.0</td>
<td>2.86</td>
<td>984</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.1</td>
<td>8.0</td>
<td>3.07</td>
<td>895</td>
<td>1.02</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>800</td>
<td>3.1</td>
<td>8.0</td>
<td>4.27</td>
<td>325</td>
<td>0.993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.74</td>
<td>8.0</td>
<td>4.33</td>
<td>1050</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.1</td>
<td>8.0</td>
<td>2.82</td>
<td>675</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.74</td>
<td>8.0</td>
<td>3.88</td>
<td>1175</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.39</td>
<td>8.0</td>
<td>2.97</td>
<td>1925</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.69</td>
<td>8.0</td>
<td>3.77</td>
<td>1250</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.39</td>
<td>8.0</td>
<td>3.46</td>
<td>2320</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>2.5</td>
<td>8.0</td>
<td>4.18</td>
<td>368</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.0</td>
<td>8.0</td>
<td>4.09</td>
<td>812</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.69</td>
<td>8.0</td>
<td>4.62</td>
<td>1210</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.23</td>
<td>8.0</td>
<td>3.75</td>
<td>2875</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.54</td>
<td>8.0</td>
<td>3.49</td>
<td>1680</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.46</td>
<td>8.0</td>
<td>3.77</td>
<td>1770</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.2</td>
<td>8.0</td>
<td>3.50</td>
<td>862</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>1.2</td>
<td>8.0</td>
<td>3.72</td>
<td>883</td>
<td>0.944</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>1458</td>
<td>0.656</td>
<td>7.8</td>
<td>2.68</td>
<td>1385</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1458</td>
<td>0.803</td>
<td>8.0</td>
<td>2.65</td>
<td>1225</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1458</td>
<td>0.403</td>
<td>7.3</td>
<td>2.38</td>
<td>2125</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1458</td>
<td>0.407</td>
<td>8.5</td>
<td>2.45</td>
<td>1750</td>
<td>1.40</td>
</tr>
<tr>
<td>875</td>
<td></td>
<td>875</td>
<td>1.33</td>
<td>2.45</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>875</td>
<td>1.21</td>
<td>3.90</td>
<td>4.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>875</td>
<td>0.52</td>
<td>15.8</td>
<td>3.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T (K)</td>
<td>P_{TOT}</td>
<td>Flash Energy (Joules)</td>
<td>molecule cm^{-3}</td>
<td>cm molecule^{-1}</td>
<td>2k/\sigma \times 10^{-5}</td>
<td>y-intercept \times 10^{17}</td>
<td>k^{a} \times 10^{12} molecule s^{-1}</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>875</td>
<td>1.03</td>
<td>16.0</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
<td>1.85</td>
</tr>
<tr>
<td>875</td>
<td>1.21</td>
<td>8.54</td>
<td>4.12</td>
<td></td>
<td></td>
<td></td>
<td>2.35</td>
</tr>
<tr>
<td>875</td>
<td>1.37</td>
<td>4.15</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td>2.48</td>
</tr>
<tr>
<td>875</td>
<td>1.34</td>
<td>6.11</td>
<td>3.63</td>
<td></td>
<td></td>
<td></td>
<td>2.07</td>
</tr>
<tr>
<td>875</td>
<td>1.12</td>
<td>10.1</td>
<td>3.83</td>
<td></td>
<td></td>
<td></td>
<td>2.18</td>
</tr>
<tr>
<td>875</td>
<td>1.10</td>
<td>12.1</td>
<td>4.04</td>
<td></td>
<td></td>
<td></td>
<td>2.30</td>
</tr>
<tr>
<td>875</td>
<td>1.10</td>
<td>13.8</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
<td>1.78</td>
</tr>
<tr>
<td>893</td>
<td>1.00</td>
<td>7.99</td>
<td>3.91</td>
<td></td>
<td></td>
<td></td>
<td>2.23</td>
</tr>
<tr>
<td>705</td>
<td>0.97</td>
<td>8.10</td>
<td>3.77</td>
<td></td>
<td></td>
<td></td>
<td>2.15</td>
</tr>
<tr>
<td>500</td>
<td>1.03</td>
<td>8.0</td>
<td>3.90</td>
<td></td>
<td></td>
<td></td>
<td>2.22</td>
</tr>
<tr>
<td>300</td>
<td>1.09</td>
<td>8.0</td>
<td>4.67</td>
<td></td>
<td></td>
<td></td>
<td>2.66</td>
</tr>
<tr>
<td>400</td>
<td>0.95</td>
<td>8.0</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
<td>2.57</td>
</tr>
<tr>
<td>598</td>
<td>0.87</td>
<td>8.0</td>
<td>4.44</td>
<td></td>
<td></td>
<td></td>
<td>2.53</td>
</tr>
<tr>
<td>800</td>
<td>0.87</td>
<td>8.0</td>
<td>4.45</td>
<td></td>
<td></td>
<td></td>
<td>2.54</td>
</tr>
<tr>
<td>1200</td>
<td>0.98</td>
<td>8.0</td>
<td>3.19</td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
</tr>
<tr>
<td>475</td>
<td>800</td>
<td>1.59</td>
<td>8.0</td>
<td>4.69</td>
<td>487</td>
<td>1.29</td>
<td>2.67</td>
</tr>
<tr>
<td>800</td>
<td>1.59</td>
<td>8.0</td>
<td>4.47</td>
<td>526</td>
<td>1.19</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.885</td>
<td>8.0</td>
<td>4.33</td>
<td>1000</td>
<td>1.13</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.390</td>
<td>8.0</td>
<td>3.36</td>
<td>2250</td>
<td>1.14</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.542</td>
<td>8.0</td>
<td>3.64</td>
<td>1500</td>
<td>1.23</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>3.07</td>
<td>8.0</td>
<td>4.24</td>
<td></td>
<td></td>
<td></td>
<td>2.42</td>
</tr>
<tr>
<td>223</td>
<td>250</td>
<td>1458</td>
<td>0.622</td>
<td>5.3</td>
<td>3.37</td>
<td>1080</td>
<td>1.49</td>
</tr>
<tr>
<td>1458</td>
<td>0.610</td>
<td>4.6</td>
<td>3.71</td>
<td>1030</td>
<td>1.59</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td>0.570</td>
<td>5.1</td>
<td>3.49</td>
<td>1250</td>
<td>1.40</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td>0.482</td>
<td>5.1</td>
<td>3.24</td>
<td>1300</td>
<td>1.60</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td>0.354</td>
<td>5.4</td>
<td>3.69</td>
<td>1925</td>
<td>1.47</td>
<td>2.88</td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td>0.506</td>
<td>5.1</td>
<td>3.27</td>
<td>1100</td>
<td>1.80</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>250</td>
<td>1458</td>
<td>0.856</td>
<td>8.3</td>
<td>3.58</td>
<td>1050</td>
<td>1.11</td>
</tr>
<tr>
<td>1458</td>
<td>0.686</td>
<td>8.1</td>
<td>3.12</td>
<td>1800</td>
<td>0.831</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td>0.470</td>
<td>8.2</td>
<td>2.90</td>
<td>2325</td>
<td>0.915</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>1458</td>
<td>0.588</td>
<td>8.2</td>
<td>2.89</td>
<td>1725</td>
<td>0.986</td>
<td>1.39</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) computed using \(\sigma\) values from Table I.
Table III. Experimental Data for the Br_2-O_2 System

<table>
<thead>
<tr>
<th>T (K)</th>
<th>P_{TOT} (Torr)</th>
<th>Flash Energy (Joules)</th>
<th>$[\text{O}_2]$ $\times 10^{-18}$</th>
<th>$[\text{Br}_2]$ $\times 10^{-16}$</th>
<th>$2k/\sigma$ $\times 10^{-5}$ cm molecule$^{-1}$</th>
<th>k_{12}^a $\times 10^{12}$ cm3 molecule$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>50</td>
<td>1450</td>
<td>1.31</td>
<td>1.17</td>
<td>3.88</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1450</td>
<td>1.31</td>
<td>1.17</td>
<td>4.17</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1450</td>
<td>1.30</td>
<td>1.16</td>
<td>4.32</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1450</td>
<td>1.18</td>
<td>1.49</td>
<td>4.22</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1450</td>
<td>0.773</td>
<td>1.54</td>
<td>4.30</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1450</td>
<td>0.364</td>
<td>1.54</td>
<td>3.56</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1450</td>
<td>0.217</td>
<td>1.57</td>
<td>4.83</td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1450</td>
<td>3.03</td>
<td>1.47</td>
<td>4.82</td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1450</td>
<td>1.25</td>
<td>1.12</td>
<td>4.04</td>
<td>2.30</td>
</tr>
<tr>
<td>1012</td>
<td>1.34</td>
<td>1.20</td>
<td>4.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>1.30</td>
<td>1.74</td>
<td>4.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>1.71</td>
<td>4.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>1.57</td>
<td>7.51</td>
<td>4.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.58</td>
<td>5.94</td>
<td>3.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td>4.67</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.69</td>
<td>1.60</td>
<td>4.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.61</td>
<td>8.43</td>
<td>3.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.60</td>
<td>6.66</td>
<td>3.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.63</td>
<td>1.62</td>
<td>4.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>5.94</td>
<td>3.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>3.99</td>
<td>4.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>3.07</td>
<td>4.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>14.2</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>10.6</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>9.36</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>1.55</td>
<td>6.76</td>
<td>4.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1.58</td>
<td>0.888</td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1.58</td>
<td>0.800</td>
<td>4.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1.58</td>
<td>0.824</td>
<td>4.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1.58</td>
<td>0.763</td>
<td>4.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T (K)</td>
<td>P$_{TOT}$ (Torr)</td>
<td>Flash Joules</td>
<td>$[O_2]$ $\times 10^{-18}$ molecule cm$^{-3}$</td>
<td>$[Br_2]$ $\times 10^{-16}$ cm$^{-3}$ molecule$^{-1}$</td>
<td>$2k/\sigma$ $\times 10^{-5}$ cm molecule$^{-1}$</td>
<td>k^a $\times 10^{12}$ cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>380</td>
<td>1450</td>
<td>1.34</td>
<td>1.20</td>
<td>4.87</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>1450</td>
<td>1.30</td>
<td>1.16</td>
<td>4.50</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>250</td>
<td>1.50</td>
<td>4.27</td>
<td>4.13</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.53</td>
<td>2.98</td>
<td>4.55</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.56</td>
<td>1.56</td>
<td>4.30</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.56</td>
<td>4.66</td>
<td>4.16</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.62</td>
<td>1.80</td>
<td>4.20</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.61</td>
<td>3.99</td>
<td>4.44</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>250</td>
<td>1.55</td>
<td>6.12</td>
<td>4.58</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.58</td>
<td>3.06</td>
<td>4.13</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.61</td>
<td>1.67</td>
<td>5.16</td>
<td>2.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.51</td>
<td>8.54</td>
<td>4.42</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.53</td>
<td>6.84</td>
<td>4.49</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1.57</td>
<td>5.29</td>
<td>4.27</td>
<td>2.05</td>
<td></td>
</tr>
</tbody>
</table>

a computed using σ values from Table I.
molecule cm\(^{-3}\)), flash energy (300-1500 J/flash) and total pressure (50-475 Torr helium) within experimental uncertainty. The data at 50 Torr average about 20% less than the data at higher pressures but no significance is attached to this. A small inverse dependence of \(k_1\) on [Br\(_2\)] at 298 K was observed with the rate constant decreasing by 20% as [Br\(_2\)] was increased from 1 to \(10 \times 10^{16}\) molecule cm\(^{-3}\). This effect was not considered to be significant within the scatter of the data and it was not observed at other temperatures. BrO decays were followed over a range of 20 to 100 in concentration with excellent linearity being obtained in the second-order plots (1/(\(k_1\)BrO) vs. time). One such decay plot is shown in Fig. 2. The ratio \(2k_1/\sigma\) was measured at 223, 298 and 388 K and found to be independent of temperature within experimental error (see Table I). Values of \(k_1/\sigma\) obtained using the Br\(_2\)-O\(_3\) and Br\(_2\)-O\(_2\) systems were in excellent agreement indicating that the measured rate constant is independent of the method of BrO production. The final rate constants in Table I were obtained by averaging the individual measurements of \(k_1/\sigma\) made using both chemical systems.

Determination of Branching Ratio

The quantity \(k_{1b}/\sigma\) was measured using a variation of the Br\(_2\)-O\(_3\) system described above. In these experiments, concentrations of Br\(_2\) and O\(_3\) were adjusted to give \([O_3]_o > 100[Br]_o\) after the photolytic flash. Bromine atoms formed in the flash were stoichiometrically converted to BrO by reaction 2,

\[
Br + O_3 \rightarrow BrO + O_2
\]

so that \([BrO]_o = [Br]_o\). Furthermore, atomic bromine subsequently formed by reaction 1a,

\[
BrO + BrO \rightarrow 2Br + O_2 \quad (1a)
\]

was also rapidly converted back to BrO by reaction 2. In this manner,
Figure 2. Second-order decay plots of BrO radicals in Br₂-O₃-He mixtures with excess atomic bromine (Δ) and excess O₃ (□).
given a sufficient excess of \(\text{O}_3 \), the only route by which \(\text{BrO} \) disappearance could take place was reaction 1b,

\[
\text{BrO} + \text{BrO} \rightarrow \text{Br}_2 + \text{O}_2
\]

(1b)

and the measurement of the slope of the second-order decay of \(\text{BrO} \) gave \(k_{lb}/\sigma \). The branching ratio, \(f \), of reaction 1, is defined by the relation

\[
f \equiv \frac{k_{la}}{k_{la} + k_{lb}} = \frac{k_{la}}{k_1}.
\]

Measurement of \(k_{lb}/\sigma \) and \(k_1/\sigma \) permits \(f \) to be determined from the equation

\[
f = 1 - \frac{k_{lb}/\sigma}{(k_{la} + k_{lb})/\sigma}.
\]

In this manner the branching ratio can be determined without explicitly measuring \(\sigma \). Table IV lists the results of the 23 runs conducted under conditions of excess \(\text{O}_3 \) over \(\text{Br} \). At 298 K, an average value of \((6.07 \pm 0.45) \times 10^4 \text{ cm molecule}^{-1} \text{ s}^{-1} \) was obtained for \(2k_{lb}/\sigma \). Combining this with the value of \((3.80 \pm 0.73) \times 10^5 \text{ cm molecule}^{-1} \text{ s}^{-1} \) obtained for \(2k_1/\sigma \) (Table I), the branching ratio is found to be \(0.84 \pm 0.03 \).

A second, independent method for the determination of the branching ratio is made possible by the measurement of \(\Delta[\text{O}_3] \) and \([\text{BrO}]_0 \) in the excess \(\text{O}_3\)-\(\text{BrO} \) system. Since atomic bromine is regenerated in step 1a, \(\text{O}_3 \) undergoes chain decomposition, the extent of which is determined by the relative rates of the terminating and non-terminating steps. By assuming that \(\text{Br} \) is in steady-state and utilizing the second-order rate law for \(\text{BrO} \) disappearance it can be shown that

\[
\Delta[\text{O}_3] \equiv [\text{O}_3]_t - [\text{O}_3]_{t=0}
= 2k_{la} [\text{BrO}]_o^2 \left[\frac{t}{1 + 2k_{lb} [\text{BrO}]_o t} \right]
\]
<table>
<thead>
<tr>
<th>P_{TOT}</th>
<th>T</th>
<th>Flash Energy</th>
<th>[O_2] x 10^{-15}</th>
<th>[\text{Br}_2] x 10^{-14}</th>
<th>\Delta[O_2] x 10^{-14}</th>
<th>\frac{2k}{\sigma} x 10^{-4}</th>
<th>y-intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torr</td>
<td>Joules</td>
<td>molecule cm^3</td>
<td>cm molecule^{-1}</td>
<td>cm molecule^{-1}</td>
<td>cm molecule^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>298</td>
<td>911</td>
<td>4.17</td>
<td>2.31</td>
<td>6.86</td>
<td>1440</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.91</td>
<td>2.33</td>
<td>6.24</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.61</td>
<td>2.83</td>
<td>6.31</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.78</td>
<td>2.35</td>
<td>6.44</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.03</td>
<td>2.35</td>
<td>5.83</td>
<td>1560</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.13</td>
<td>2.03</td>
<td>6.34</td>
<td>1430</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.00</td>
<td>2.27</td>
<td>6.70</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.75</td>
<td>2.04</td>
<td>6.50</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.51</td>
<td>2.40</td>
<td>5.26</td>
<td>1470</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.43</td>
<td>1.58</td>
<td>5.77</td>
<td>1910</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.46</td>
<td>3.55</td>
<td>5.16</td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.67</td>
<td>3.60</td>
<td>4.42</td>
<td>6.09</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.84</td>
<td>2.59</td>
<td>3.74</td>
<td>6.42</td>
<td>1270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.04</td>
<td>2.50</td>
<td>3.63</td>
<td>6.20</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.73</td>
<td>2.79</td>
<td>3.62</td>
<td>5.65</td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.23</td>
<td>1.76</td>
<td>2.48</td>
<td>6.16</td>
<td>1660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.60</td>
<td>3.53</td>
<td>4.23</td>
<td>6.45</td>
<td>918</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.81</td>
<td>3.17</td>
<td>3.90</td>
<td>5.57</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.51</td>
<td>1.03</td>
<td>1.17</td>
<td>6.47</td>
<td>2760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.63</td>
<td>1.28</td>
<td>2.79</td>
<td>6.14</td>
<td>2050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.39</td>
<td>1.31</td>
<td>1.83</td>
<td>3.73</td>
<td>2340</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.65</td>
<td>0.839</td>
<td>1.41</td>
<td>5.56</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.17</td>
<td>0.560</td>
<td>1.20</td>
<td>5.72</td>
<td>5000</td>
</tr>
</tbody>
</table>
In the limit as the reaction goes to completion \((t \to \infty)\),

\[
\Delta [O_3] = \frac{k_{1a}}{k_{1b}} [BrO]_0
\]

or, in terms of the branching ratio,

\[
\Delta [O_3] = \frac{f}{1-f} [BrO]_0.
\]

In practice, this equation must be modified to account for the additional \(O_3\) loss caused by the initial formation of \(BrO\) by reaction 2. Thus,

\[
\Delta [O_3] = \frac{f}{1-f} [BrO]_0 + [BrO]_0 \quad (1)
\]

or,

\[
f = \frac{\Delta [O_3] - [BrO]_0}{\Delta [O_3]_0}.
\]

In terms of the quantum yield for \(O_3\) destruction,

\[
\phi_{O_3} \equiv \frac{\Delta [O_3]}{\frac{Br}{I_a}} = \frac{2}{1-f}.
\]

Equation 1 predicts that a plot of \(\Delta [O_3] \) vs. \([BrO]_0\) should be linear with slope \(1/(1-f)\). Twelve experiments were conducted in which \(\Delta [O_3] \) and \([BrO]_0\) were both measured, the former by UV absorption before and after the flash, and the latter by back-extrapolation of the second-order \(BrO\) decay to \(t = 0\). In all cases, the ratio \([O_3]_0/\[BrO]_0\) was sufficiently large (\(\geq 80\)) that \(BrO\) formation was much more rapid than its removal. Values of \(\Delta [O_3] \) vs. \([BrO]_0\) are plotted in Fig. 3. The excellent linearity of this plot over a wide range of \([BrO]_0\) confirms that \(O_3\) is being
Figure 3. Variation of the ozone loss with the initial BrO concentration in the Br₂-O₃-He system with excess O₃.
destroyed by a catalytic chain. However, if the chain length were limited only by the homogeneous or heterogeneous recombination of atomic bromine, much more ozone removal would be expected. This suggests that Br is being catalytically recombined through a terminating channel in the Br0 + Br0 reaction (Step 1b). From the slope of the line in Fig. 3, 5.25 ± 0.88, the branching ratio is found to be 0.81 ± 0.03. The uncertainty in the branching ratio does not explicitly take into account the uncertainty in σ. The true experimental error is therefore somewhat larger than 0.03. This value of the branching ratio is in excellent agreement with the value 0.84 ± 0.03 determined by measuring the decay rates of Br0 directly. The agreement between the two independent methods implies that the measurement of σ is correct and that there are no unknown removal mechanisms for O₃. This allows an upper limit to be placed on the rate constant for the reaction

\[\text{BrO} + \text{O}_3 \rightarrow \text{Br} + 2\text{O}_2 \] \hspace{1cm} (2)

by assuming that if reaction 2 accounted for more than 10% of the total O₃ removal rate, the actual quantum yield for O₃ destruction would exceed the predicted value by an amount equal to the experimental uncertainty. Using typical concentrations of BrO and O₃, one obtains \(k_2 \leq 4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).

DISCUSSION

Measurement of \(k_1 / \sigma \) and \(\sigma \)

Of the three previous determinations of \(k_1 \), two used spectrophotometric detection⁹¹⁴ and one utilized mass spectrometry. Since absolute concentrations of BrO are required, use of spectrophotometry requires that the BrO absorption cross section, \(\sigma \), and the quantity
k_1/σ be determined. The results of these measurements are summarized in Table V.

Clyne and Watson5,6 have thoroughly examined the methods used by Basco and Dogra,14 and Clyne and Cruse10 to obtain σ and k_1/σ and have pointed out the possible sources of error. The method used by Basco and Dogra relies on the assumption that the initial amount of BrO formed in the photolysis of Br$_2$-OClO mixtures is equal to $\Delta[OClO]$. Clyne and Watson have shown that because the BrO + ClO and BrO + BrO reactions regenerate atomic bromine rather than forming BrCl and Br$_2$ exclusively, the mechanistic interpretation of Basco and Dogra is incorrect. This, along with the fact that the rates of formation and removal of BrO were not sufficiently different in their system, cast doubt on their determination of σ.

The method of Clyne and Cruse was based on the spectrophotometric measurement of Br$_2$, BrO and O$_3$ in a discharge flow system. The quantity k_1/σ was determined directly from the BrO decay and σ was determined from the equation

$$\Delta \chi + \frac{k_1}{\sigma} \int_{t_1}^{t_2} \chi^2 dt = \sigma \Delta[O_3] \tag{2}$$

where:

$$\chi = \sigma[BrO] = \frac{1}{\ell} \ln(I_o/I_t)$$

ℓ = absorption path length

The need to evaluate σ from an integral expression (Eqn. (2)) arises from an unfavorable choice of reaction conditions. In their experiments, [Br] was not high enough to convert all of the O$_3$ to BrO on a time scale short compared to the BrO decay. The formation and decay of BrO are fully coupled and, as a result, the determination of σ is dependent on
Table V. Previous Work on the BrO + BrO Reaction at 298 K.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Technique</th>
<th>k_1/o^b x 10^{-5} cm molec$^{-1}$ s$^{-1}$</th>
<th>o^c x 10^{18} cm2 molec$^{-1}$</th>
<th>k_1^1 x 10^{12} cm2 molec$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>FP/UV</td>
<td>2.2 ± 0.08</td>
<td>4.7 ± 0.4</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td>9d</td>
<td>DF/UV</td>
<td>6.6 ± 0.7</td>
<td>8.0 ± 0.9</td>
<td>5.2 ± 0.6</td>
</tr>
<tr>
<td>5</td>
<td>DF/MS</td>
<td></td>
<td></td>
<td>3.2 ± 0.7</td>
</tr>
<tr>
<td>This work</td>
<td>FP/UV</td>
<td>1.9 ± 0.4</td>
<td>11 ± 1.4</td>
<td>2.2 ± 0.7</td>
</tr>
</tbody>
</table>

\(a\) Flash photolysis (FP), discharge flow (DF), ultraviolet absorption (UV), mass spectroscopy (MS).

\(b\) Defined such that \(-(\text{BrO}) = 2k_1(\text{BrO})^2\).

\(c\) Cross-sections measured near (4–0) band head of BrO at 338.3 nm but not necessarily at the same wavelength or spectral resolution.

\(d\) Data obtained at 293 K.
the value obtained for k_1/σ. Since the rate constant k_1 is given by the
product of k_1/σ and σ, and σ is itself a function of k_1/σ, any error in
the measurement of k_1/σ is reflected as a higher-order error in k_1. For
instance, using the data given as an example by Clyne and Cruse, increasing
k_1/σ by a factor of 3 from 5 to 15×10^5 cm s$^{-1}$ results in an increase in
k_1 of a factor of ≈ 5. Reasons for possible errors in the measurement of
k_1/σ have been discussed by Clyne and Watson.

In contrast to the experimental conditions in the Clyne and Cruse study, the methods for determining k_1/σ and σ in this work are totally
independent. This is a consequence of the complete decoupling of BrO
formation and removal. The back-extrapolation to $t = 0$ of the $[\text{BrO}]^{-1}$
vs. time plots in our excess Br experiments are sufficiently short that
errors in the measurement of k_1/σ are not reflected in the determination
of σ.

Values for the BrO cross-section obtained in the three absorption
studies cannot be meaningfully compared, primarily because σ depends
strongly on the experimental spectral parameters. Clyne and Cruse used
a spectral bandwidth of about 10 Å whereas the bandwidth was only 1 Å in
this study. As expected, this leads to a higher reported cross-section
in this study since the bandwidth encompasses a region of the band with
a higher average rotational line density. The spectral bandwidth used
in the Basco and Dogra study was not specified.

Determination of k_1 and Branching Ratio

The results of the three previous studies of k_1 are in substantial
disagreement, with values of k_1 ranging over a factor of five (see Table
V). The final value of k_1 at 298 K from this work, $k_1 = (2.2 \pm 0.7) \times
10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$, is in best agreement with the results of Clyne
and Watson who obtained \(k_1 = (3.1 \pm 0.7) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \).

These two values are widely bracketed by the results of Basco and Dogra \((1.0 \pm 0.1) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) and Clyne and Cruse \((5.2 \pm 0.7) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) at 293 K. The rate constant temperature dependence found in this study is different in both magnitude and sign from other studies. The Arrhenius activation energy determined here, \(-510 \pm 390 \text{ cal mole}^{-1}\), is based on a somewhat limited data set of three points. Clyne and Cruse obtained a value of \(900 \pm 600 \text{ cal mole}^{-1}\) over the temperature range 293 to 573 K. Brown and Burns,\(^{16}\) who were unable to determine \(\sigma\) and therefore obtain absolute values of \(k_1\), reported a temperature dependence for \(k_1/\sigma\) which showed distinct non-Arrhenius behavior. The Arrhenius plot in their study had two distinct slopes, giving activation energies of 0.65 and 4.5 kcal mole\(^{-1}\) in the 300-500 K and 500-700 K temperature ranges. The negative activation energy reported in this work is consistent with the increasing number of radical-radical reaction studies which have obtained similar results.\(^{19,22,23}\) The reason for the difference between the activation energies measured in this work and in the other studies is not known, except that the manner in which the temperature-dependence of \(\sigma\) is taken into account may be involved.

Neither the Basco and Dogra nor the Clyne and Cruse studies were capable of determining if reaction 1 had more than one possible channel. Implicit in the analytical scheme of Basco and Dogra is the assumption that the disproportionation of BrO yields only molecular bromine. To assume otherwise would lead to major complications in their determination of \(\sigma\). Computer simulations of the Clyne and Cruse experiment using both \(k_{1b} = 0\) (as assumed by these authors) and \(k_{1a}/(k_{1a} + k_{1b}) = 0.84\) as determined in this study, reveal no major differences in the BrO decay profiles between
the two cases except that plots of $[\text{BrO}]^{-1}$ vs. time do not become linear in the second case until $t \sim 10$ msec as compared with $t \sim 5$ msec when k_{lb} is assumed to equal zero. As expected, the ozone decay profiles in the two cases are significantly different with more rapid decays being predicted when $k_{lb} = 0$ due to the longer chain length. Despite this prediction, the difference in decay rates would be difficult to observe experimentally since 95% of the O_3 is lost within 4 msec even when the branching ratio is 0.84. Since this time period is comparable to the flow tube mixing time, kinetic measurements on this time scale are extremely inaccurate. Thus, while it is not possible to derive the branching ratio from the Clyne and Cruse experiments directly, our finding that $k_{la}/(k_{la} + k_{lb}) = 0.84$ is not inconsistent with their results.

Thermochemistry of Chlorine Oxide and Bromine Oxide Radicals

Comparing the thermodynamic stability of radicals in the chlorine and bromine systems provides some insight into the mechanism of $XO + XO$ reactions. In general, the higher oxides of bromine are less stable than those of chlorine. BrOO, which is a probable intermediate in the BrO + BrO reaction, is estimated24 to be bound by only 1 kcal mole$^{-1}$ whereas the Cl-O$_2$ bond energy in ClOO is 6-8 kcal mole$^{-1}$. This is reflected in the relatively long lifetime of ClOO enabling it to be detected by absorption spectroscopy7,8 and mass spectroscopy.25 In contrast, BrOO has never been detected. The same situation applies to OCIO and OBrO, the former being extremely stable in the gas phase while the latter is stable only in the condensed phase and in solution.26

Heats of reaction for four possible product channels of the $XO + XO$ reaction are listed in Table VI. The most striking difference between the chlorine and bromine systems is that the route to atomic products is
Table VI. Heats of Reaction for Possible Product Channels of the C\&O + C\&O and BrO + BrO Reactionsa

<table>
<thead>
<tr>
<th>Reactant</th>
<th>XO</th>
<th>(X_2 + O_2)</th>
<th>XO(O + X)</th>
<th>2(X + O_2)</th>
<th>(O)XO + (X)</th>
<th>(X)(_2)O(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&O</td>
<td>-48.5</td>
<td>+1.5</td>
<td>+9.4</td>
<td>+3.3</td>
<td>-16.2</td>
<td></td>
</tr>
<tr>
<td>BrO</td>
<td>-52.6</td>
<td>-7.3</td>
<td>-6.6</td>
<td>b</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

a Data are from Ref. 12 except for the enthalpies of formation of BrOO (Ref. 14) and C\(_2\)O\(_2\) (Ref. 17).

b \(\Delta H_f^o\) for OBrO and Br\(_2\)O\(_2\) not known.
endothemic in the former and exothermic in the latter. This may account for the low absolute rate constant for the ClO + ClO reaction in the low pressure region \(k \sim 1 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) compared to the BrO + BrO reaction rate constant (about 100 times larger). The second point is that the routes forming \(X_2 + O_2 \) in both systems are considerably more exothermic than any of the radical-formation routes and yet the rate constants for the molecular channels are, at most, equal to those of the radical channels. This strongly implies that the reaction forming \(X_2 + O_2 \) goes through a reasonably tight transition state to form a four-center complex rather than through a free-radical mechanism involving, for example, the reaction

\[
X + XOO \rightarrow X_2 + O_2 .
\]

Comparison Between ClO + ClO and BrO + BrO Reactions

The ClO + ClO reaction has received considerable attention for many years, and while the complete reaction mechanism remains unknown, a number of interesting points have emerged which are relevant to the analogous BrO + BrO reaction. The first observation is that the reaction appears to go through two distinct mechanisms at high and low pressures. In the low pressure regime (1-25 torr Argon) the rate constant shows little pressure dependence \(^{12,28-30}\) and the primary mechanism for ClO disappearance appears to consist of the reactions:

\[
\begin{align*}
\text{ClO} + \text{ClO} & \rightarrow \text{Cl}_2 + O_2 \\
& \rightarrow \text{Cl} + \text{ClOO} \\
& \rightarrow \text{Cl} + \text{OClO}
\end{align*}
\]

Several investigators \(^{15,31-33}\) have measured the branching ratios for
reactions 9a, 9b and 9c and have found that $k_{9a}/(k_{9a} + k_{9b} + k_{9c}) \approx 0.5$. Above \(\approx 25 \) torr Argon the overall rate constant is observed to increase with pressure \(^7,^8,^27\) suggesting that a termolecular channel is becoming competitive with the bimolecular channels (9a-c) and that the ClO dimer may be the reaction product,

$$\text{ClO} + \text{ClO} + \text{M} \rightarrow \text{Cl}_2\text{O}_2 + \text{M} \quad (9d)$$

Basco and Hunt \(^{27}\) have detected a residual UV absorption in the 230–290 nm wavelength region in their flash photolysis studies which they attribute to \(\text{Cl}_2\text{O}_2 \) although this has apparently not been observed in the molecular modulation studies. \(^7,^8\) This work suggests that the lifetime of \(\text{Cl}_2\text{O}_2 \) may be as long as 1 second at one atmosphere, which is consistent with the observation of Cox and Derwent \(^{31}\) that the decay of ClO in their modulated photolysis experiments did not follow second-order kinetics.

While the evidence points strongly toward the existence of both bimolecular and termolecular channels in the ClO + ClO reaction, no such observation is made in the BrO + BrO reaction. The third-order process involving BrO,

$$\text{BrO} + \text{BrO} + \text{M} \rightarrow \text{Br}_2\text{O}_2 + \text{M}$$

which would result in the formation of a collisionally stabilized \(\text{Br}_2\text{O}_2 \) species cannot compete with the spontaneous dissociation of \(\text{Br}_2\text{O}_2 \), presumably into BrOO + Br, or its rearrangement to form a four-center complex which dissociates into \(\text{Br}_2 \) and \(\text{O}_2 \). Another point is that in ClOOCCl, the O-O bond is weaker than the O-Cl bond by \(\approx 1.5 \text{ kcal mole}^{-1} \) whereas in BrOOBr, the O-O bond is stronger than the O-Br bond by \(\approx 7.3 \text{ kcal mole}^{-1} \). Decomposition of \(\text{Br}_2\text{O}_2 \) into BrOO + Br is therefore energetically favored.
relative to the return to reactants.

Finally, our observation that the photolysis of Br$_2$-O$_2$ mixtures in a pyrex cell (in which no atomic oxygen is formed) does not lead to BrO formation implies that the reaction

$$\text{Br} + \text{BrOO} \rightarrow 2\text{BrO}$$

does not occur while the analogous process does occur in the chlorine case. Although the Br + BrOO reaction is expected to be at least as rapid as Cl + ClOO (k $\sim 5 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$) the steady-state concentration of BrOO is much lower due to its rapid decomposition into Br and O$_2$.

Mechanism of the BrO + BrO Reaction

In view of the thermodynamic instability of BrOO and Br$_2$O$_2$, the formation of Br$_2$ in the BrO + BrO reaction cannot easily be explained by a free-radical mechanism involving these species. This is confirmed by the fact that Br$_2$ formation is still observed in O$_3$-containing systems in which the steady-state Br concentration is expected to be extremely small. Reactions such as Br + BrOO and Br + Br$_2$O$_2$ could therefore not occur. A possible formation mechanism for Br$_2$ is the rearrangement of the Br$_2$O$_2$ intermediate to form a trapezoidal four-center complex which subsequently dissociates into Br$_2$ and O$_2$. The rate of this process can be estimated using the RRK theory of unimolecular decomposition. Observations of Br and Br$_2$ formation can be discussed in terms of the following mechanism:

$$\begin{align*}
\text{BrO} + \text{BrO} & \rightarrow \text{BrOO} + \text{BrO}^* \quad \text{(10f,10r)} \\
\text{BrOO} + M & \rightarrow \text{BrOOBr} + M \quad \text{(11)}
\end{align*}$$
\[
\begin{align*}
\text{BrOOBr}^* & \rightarrow \text{BrOO} + \text{Br} \\
\text{BrOO} & \rightarrow \text{Br} + \text{O}_2 \\
\text{BrOOBr}^* & \rightarrow [\text{Br} \ldots \ldots \ldots \ldots \ldots \ldots \text{Br}]^# \rightarrow \text{Br}_2 + \text{O}_2
\end{align*}
\]

where (*) denotes a vibrationally excited intermediate. In this scheme, BrOOBr can either undergo simple fission to become BrOO and Br (reaction 12) or form the cyclic BrOOBr complex (reaction 14). This mechanism predicts that

\[
\frac{d[\text{Br}_2]}{dt} = \frac{k_1 k_{14} [\text{BrO}]^2}{k_{12} + k_{14}}
\]

\[
\frac{d[\text{Br}]}{dt} = \frac{2 k_1 k_{12} [\text{BrO}]^2}{k_{12} + k_{14}}
\]

neglecting reactions 10r and 11. The observed branching ratio, \(f \), is then given by:

\[
f = \frac{k_{12}}{k_{12} + k_{14}}
\]

and has the value 0.84 ± 0.03 or equivalently, \(\frac{k_{12}}{k_{14}} = 5.2^{+1.4}_{-1.0} \).

A potential energy diagram for the BrO + BrO reaction is given in Fig. 4. Enthalpies of formation are taken from the recent CODATA review.21 The location of the BrOOBr potential energy minimum is highly uncertain as is the magnitude of the decomposition barrier. Using estimates based on FOOF and ClOOCl, the heat of formation of BrOOBr is estimated to be 45 ± 10 kcal mole-1. The diagram illustrates the large difference between the exothermicities of the two reaction channels.

According to RRK theory, the first-order rate constant for the
Figure 4. Energetics of the BrO + BrO reaction indicating the transition states that may be involved in the two reaction channels.
decomposition of a vibrationally excited species is given by:

\[k = A \left(\frac{E - E^0}{E} \right)^{s-1} \]

where:
- \(A \) = Arrhenius A-factor
- \(E \) = total energy
- \(E^0 \) = critical energy for the bond fission
- \(s \) = effective number of classical oscillators

The A-factor can be expressed in terms of the entropy of activation:

\[A = \frac{e^{kT}}{h} \exp(\Delta S^\# / R) \]

The ratio \(\frac{k_{12}}{k_{14}} \) is then given by:

\[\frac{k_{12}}{k_{14}} = \exp[(S_{12}^\# - S_{14}^\#) / R] \left[\frac{E - E_{a12}}{E - E_{a14}} \right]^{s-1} \] \hspace{1cm} (3)

where \(S_i^\# \) is the intrinsic entropy of the activated complex of reaction \(i \). Since it is unlikely that there is an appreciable energy barrier for the reverse of reaction 12, \(E - E_{a12} \) is equal to the exothermicity of reaction 12 (~ 7 kcal mole\(^{-1}\)) plus the total energy (translational + vibrational) of the reactant BrO molecules (~ 2 kcal mole\(^{-1}\)). From the above estimate of \(\Delta H_f^0(Br_2O_2) \), \((E = E_{a14}) = 17 \pm 10 \) kcal mole\(^{-1}\). The entropy difference \(S_{12}^\# - S_{14}^\# \) can be estimated by comparison with straight-chain and cyclic alkanes that have the same number of carbon atoms. Typical values range from 8-12 e.u. The number of oscillators, \(s \), is approximately equal to \(\frac{2}{3}(3N-6) \) where \(N \) is the number of atoms in the complex. Reasonable values of \(s \) lie in the range of 3 to 4.

Since the estimated energies and entropies are fairly uncertain, and the RRK theory is itself quite approximate, the predicted values of
k_{12}/k_{14} should be interpreted as guidelines rather than precise numerical results. Using the median values for $E - E_{a_{12}}$, $E - E_{a_{14}}$ and $S_{12}^\# - S_{14}^\#$, $s - 1 = 3$, the resulting value of k_{12}/k_{14} is 22. However within the range of uncertainty of the enthalpies and entropies, k_{12}/k_{14} can be as low as 2.0 or as high as 900. Clearly, this simple calculation does not prove or disprove the suggestion that the formation of Br_2 occurs via a four-center complex. However, it shows that the observed rate constant for the molecular channel, $k_{1b} = (3.5 \pm 0.7) \times 10^{-13}$, is not too high to be accounted for by a process of this sort. The calculation indicates that the large, negative entropy of activation involved in forming a trapezoidal complex can be overcome by the energy advantage realized as a result of the large exothermicity of this channel. The most critical and uncertain parameter in the calculation is the enthalpy of formation of Br_2O_2.

ACKNOWLEDGEMENTS

The authors appreciate the many helpful discussions with W. B. DeMore and S. Jaffe. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-100.
REFERENCES

15. C. L. Lin and W. B. DeMore, to be published.

18. W. L. Chameides and D. D. Davis, private communication.

CHAPTER IV

A PRESSURE AND TEMPERATURE DEPENDENCE KINETICS STUDY
OF THE \(\text{NO} + \text{BrO} \rightarrow \text{NO}_2 + \text{Br} \) REACTION: IMPLICATIONS
FOR STRATOSPHERIC BROMINE PHOTOCHEMISTRY

R. T. Watson, S. P. Sander
Molecular Physics and Chemistry Section
Jet Propulsion Laboratory
Pasadena, CA 91103

and

Y. L. Yung
Geological and Planetary Sciences
California Institute of Technology
Pasadena, CA 91125
Abstract

The flash photolysis: ultraviolet absorption technique has been utilized to study the reactivity of nitric oxide with \(\text{BrO} \) radicals over a wide range of pressure (100-700 torr) and temperature (224-398 K). Pseudo first-order conditions were used in order to minimize complications caused by secondary kinetic processes. The reaction and its corresponding Arrhenius expression in units of \(\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} \) can be written:

\[
\text{NO} + \text{BrO} \rightarrow \text{NO}_2 + \text{Br}; \quad \Delta H_{298}^o = -17.0 \text{ kcal mol}^{-1} (1)
\]

\[k_1 = (1.28 \pm 0.23) \times 10^{-11} \exp((181 \pm 46)/T); \quad 224-398 \text{ K.}\]

The results are compared with previous measurements and atmospheric implications of the reaction are discussed. It is shown that this reaction is important in controlling the ratios \(\text{BrO}/\text{Br} \) and \(\text{BrO}/\text{HBr} \) in the stratosphere but does not affect the catalytic efficiency of \(\text{BrO}_x \) in ozone destruction.
Introduction

During the last few years there has been considerable activity in the field of gas phase kinetics involving studies of the behavior of X0 (X = HO, F, Cl, Br) free radicals. Most of this interest has been stimulated by the need to understand the role of these radicals in atmospheric photochemistry. These radicals play a major role in controlling the ozone concentration in the stratosphere.\(^{(1)}\) In addition, during the last few years sensitive experimental techniques have been developed for direct detection of these radicals. High sensitivity is required in order to study kinetic processes where the rate constants approach the gas kinetic collision frequency. Pseudo first-order conditions are used in order to minimize complications which can be caused by secondary processes. The two detection techniques which have been used to study these radicals are laser magnetic resonance (LMR) - NO\(_2\),\(^{(2)}\) ClO\(^{(3)}\) and collision free sampling mass spectrometry (MS) - ClO,\(^{(4)}\) BrO,\(^{(5)}\) FO\(^{(6)}\). Unfortunately the LMR technique cannot be used at high pressures due to a loss of sensitivity caused by line broadening, and although the mass spectrometric technique can be interfaced to a high pressure flash photolysis system\(^{(7)}\) there is normally a loss of sensitivity and there are problems associated with representative sampling of radicals. Consequently as these radicals cannot be detected using a fluorescence technique (the A\(^{2}\)Π states of ClO and BrO exhibit extensive predissociation\(^{(8)}\)) all direct studies involving the kinetic behavior of X0 radicals (except X0 + X0 + products) have been studied in low pressure discharge flow systems. The ultraviolet absorption technique has been used in conjunction with the low pressure discharge flow\(^{(9)}\) and high pressure flash photolysis,\(^{(10)}\) molecular modulation,\(^{(11)}\) and pulse radiolysis\(^{(12)}\) techniques to study reactions of the type X0 + X0 + products. However, these techniques have not yet been used to study reactions of the type NO + X0 + NO\(_2\) + X, due to a lack of sensitivity.
As stated above, all studies of NO + XO reactions have been performed at low pressure, and each has been shown to be rapid \((k \approx 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1})\) and to exhibit a negative temperature dependence.\(^{(13-17)}\) One hypothesis that has been proposed\(^{(13)}\) to explain the negative temperature dependence is that the reaction proceeds through a vibrationally excited intermediate, XONO* , which decomposes to either X + NO\(_2\) or XO + NO. Quenching of this intermediate at pressures up to several atmospheres is expected to be slow, however it was decided to study the pressure and temperature dependence of the NO + BrO reaction using the flash photolysis UV absorption technique to verify that such reactions do exhibit a negative temperature dependence and to test for any pressure dependence up to one atmosphere total pressure. This ensures that the previous results are not artifacts of the discharge flow technique and that the kinetic data can be used in atmospheric photochemical modelling calculations.

In the last few years improvements in the chemical kinetics data base and the use of a more complete reaction scheme have resulted in significant changes in the predictions of stratospheric models, not only for HO\(_x\), NO\(_x\) and ClO\(_x\) but also for BrO\(_x\). Watson\(^{(1f)}\) first recognized that the presence of bromine in the stratosphere could lead to the catalytic destruction of ozone in an analogous manner to chlorine. Three basic differences were recognized to exist between the chlorine and bromine systems, (a) hydrogen abstraction reactions by atomic bromine from molecules such as CH\(_4\) and H\(_2\) are strongly endothermic and consequently very slow, (b) XO radical-radical processes are important even at low BrO\(_x\) mixing ratios \((\sim 100 \text{ ppt})\), and (c) the photolysis rate for BrO is 2-3 orders of magnitude faster than the photolysis rate for ClO. Watson concluded that these differences resulted in (a) the Br/ClBr ratio being significantly greater than the Cl/HCl ratio, (b) BrO being the dominant bromine containing species, and (c) that on a per molecule basis bromine was more efficient than chlorine in destroying ozone. However, Wofsy et al.\(^{(1h)}\) while agreeing with the last conclusion, correctly pointed out that the earlier paper had failed to consider the Br + HO\(_2\) and Br + H\(_2\)O\(_2\) reactions which
produce HBr, thus reducing the catalytic efficiency of odd oxygen destruction by BrO\textsubscript{x}. Whereas Watson(1f) concluded that BrO was the dominant form of BrO\textsubscript{x} throughout the stratosphere, Wofsy et al.(1b) concluded that while BrO was the dominant form above 30km, HBr was the dominant form below 30km. Recently Yung et al.(1a) re-examined the role of BrO\textsubscript{x} in the stratosphere with a model that included the interaction of the BrO\textsubscript{x} and C\&O\textsubscript{x} systems through the C\&O + BrO + Cl + Br + O\textsubscript{2} reaction, and the chemistry of BrONO\textsubscript{2} and HOBr. Since the calculations of Wofsy et al.(1b) the rate coefficients for NO + HO\textsubscript{2} → OH + NO\textsubscript{2}(15) and HO\textsubscript{2} + O\textsubscript{3} → OH + 2O\textsubscript{2}(15) have been revised, resulting in higher concentrations of OH, and lower concentrations of HO\textsubscript{2} and H\textsubscript{2}O\textsubscript{2}. These changes when coupled with new rate coefficient data for the OH + HBr reaction (see Table VI) result in a significantly higher Br/HBr ratio than that obtained by Wofsy et al.(1b) and the prediction that BrO is the dominant bromine containing species at all altitudes. Yung et al.(1a) reviewed atmospheric bromine photochemistry but did not discuss the role of the NO + BrO reaction in detail. This reaction is examined in detail in the discussion section.

Experimental

The flash photolysis system consists of a high pressure xenon arc light source, a reaction cell/gas filter/flash lamp combination and a McPherson model 216.5 half-meter monochromator/polychromator/spectrograph for wavelength selectivity. A schematic diagram of the complete apparatus is shown in Figure 1.

Light from the xenon analytical lamp traverses the reaction cell eight times by reflection from the external White cell optics, and is focussed onto the entrance slit of the monochromator. The pathlength of the optical absorption system was measured using known pressures of gases such as chlorine, bromine, and ozone whose absorption cross-sections are well established and are known to obey Beer's Law. The absorption pathlength determined in this manner was 740 cm, in good agreement (better than 1%) with a simple physical measurement (assuming eight traversals). After the flash, absorption of the analytical light by BrO radicals in the cell at 339.0 nm (A2\Pi(v'→4) + X2\Pi(v''→0)) is detected by an EMI
Figure 1. Schematic Diagram of Flash Photolysis/UV Absorption Apparatus
9659 or an EMI 9781B photomultiplier in the monochromator (100 micron slitwidth resulting in a spectral bandwidth of 0.09 mm (FWHM). The photomultiplier signal is initially coupled through a fast electrometer to improve the transient response of the detection system. The photomultiplier signal is recorded on a Tracer-Northern NS-570A multichannel analyzer and punched onto paper tape for subsequent computer analysis. In experiments where light absorption by the BrO radical was weak (initial absorption due to [BrO] varied from 8-35% I_o) the signal-to-noise ratio was enhanced by multiple flashes (20-40) in conjunction with signal averaging. The entire apparatus is constructed on a pneumatically isolated optical bench to minimize vibrations which might introduce noise in the analyzing beam.

The annular flash lamp/reaction cell is shown in Figure 2. The cell consists of four concentric quartz tubes. The cell temperature was controlled to within ±0.5K by flowing methanol (224-298K) or ethylene glycol (298-425K) from a thermostated circulating bath (Haake) through the outer jacket. An iron-constantan thermocouple was used to measure temperature with a precision of better than ±0.5K. The second jacket is the flash lamp which is filled with 30 torr of pure xenon. The third jacket, which has an annular size of 5mm, can be filled with an absorbing gas or liquid for filtering the photolyzing light. The central tube, 25mm i.d. and 125cm in length, is the reaction cell. As shown in Fig. 2 the region in which the BrO radicals can absorb the analytical light is confined to the central ~93 cm of the reaction cell which is uniformly irradiated by the flash lamp (important for studying second-order reactions).

At 1000 joules the time for the light pulse to decay to 10% of peak intensity is ~10 microseconds. The effect of scattered photolytic light entering the analyzing system is minimized by using a trigger pulse in conjunction with a gating circuit to reverse-bias the photomultiplier dynode chain.
for a variable time during the flash. (19a) This prevents the dynode chain from being saturated by scattered light. Analysis for Br0 was usually started ~80 µs after the start of the photolysis flash, thus allowing for complete removal of atomic oxygen and preventing scattered light from interfering with the analysis beam. Another system which is used for the same purpose consists of a rotating disk mechanical shutter. (19b) A helium-neon laser illuminates a pinhole on the periphery of the disk triggering the flash lamp at a variable preset time before the opening of the shutter.

The Br0 radicals are produced as shown below by an intense flash from the photolysis lamp, which is capable of being operated at discharge energies up to 2000 joules per flash. The Br0 radicals result from the reaction of photolytically generated atomic oxygen with an excess concentration of molecular bromine in the presence of nitric oxide and a large excess of the diluent gas He or N₂. The reaction system can be simply written:

\[
\begin{align*}
O₂ + hv &\to 2 O \\
O + Br₂ + Br0 + Br &\to NO + Br0 + NO₂ + Br
\end{align*}
\]

(1) (2) (3)

Potential complications from secondary processes will be discussed in detail in the Results section. The reactants (NO, Br₂, O₂ and He or N₂) were premixed prior to entering the reaction cell and were flowed slowly but continuously in order to eliminate problems caused by loss of reagents or buildup of reactive products. The contents of the reaction cell were replaced after each photolysis flash. A flash energy of 1000 J produced ~3 x 10⁻³% photodissociation of molecular oxygen. The initial oxygen atom concentration ([Br0]₀ = [O]₀) was varied from (1-11) x 10¹³ cm⁻³ by changing either [O₂] ((3-40) x 10¹⁷ cm⁻³) or flash energy (600-1500 J). Molecular bromine concentrations of ~(<5-20) x 10¹⁵ cm⁻³ ensured that greater than 99% of the atomic oxygen was converted to Br0 radicals within 11-46 microseconds after the photolytic flash (k₀+Br₂ = 1.4 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (20) —assumed to exhibit little temperature dependence). Initial NO concentration ranged from (2-12) x 10¹⁴ cm⁻³ resulting in initial stoichiometries
\([\text{[NO]}_o/\text{[BrO]}_o]\) of 4.8 to 55.5. Temperature and pressure were varied from 224-398K, and 100-700 torr, respectively.

Gas pressures were measured using MKS Baratron pressure gauges (0-10 torr, and 0-1000 torr heads) which were periodically calibrated against dibutyl phthalate and mercury manometers. Flow rates of gases were measured by linear mass flowmeters (Teledyne Hastings-Raydist). Flowmeters were calibrated by a Hastings bubble-type calibrator (Model HBM-1). The calibration for the 0.1% NO/He mixture was identical to that for pure He. A flow controller was used to stabilize the flow of the NO/He mixture.

The helium, nitrogen and oxygen used in this study were Linde UHP grade gases with stated purities of >99.999%, >99.99% and >99.99% respectively. Matheson CP grade NO with stated purity of >99.0% was used without further purification. Baker "Analyzed Reagent Grade" Br\(_2\), with a stated purity of >99.7%, was used after either, (a) freeze-thaw degassing, or (b) fractional distillation.

Results

The results are shown in Tables I and II, and Figures 3-5. The reaction was studied over a range of temperature (224-398K), pressure (100-700 torr), diluent (He and \(N_2\)), flash energy (600-1500 J), and initial reactant concentrations. Pseudo first-order kinetic conditions \([\text{[NO]}_o > \text{[BrO]}_o, (\text{[NO]}_o = (2-12) \times 10^{14} \text{ cm}^{-3}, \text{[BrO]}_o = (1-11) \times 10^{13} \text{ cm}^{-3})\) were employed so that equation (V) could be used to analyze the data:

\[
-d(\text{[BrO]})/dt = k_1 \text{[NO]}[\text{BrO}] \tag{I}
\]

\[
\ln([\text{BrO}]_o/[\text{BrO}]_t) = k_1 \text{[NO]} t \tag{II}
\]

The BrO concentration was related to the absorption signal using Beer's Law:

\[
\ln(I_o/I_t) = \sigma \times [\text{BrO}]_t \tag{III}
\]

By combining equations (II) and (III) it can be seen that knowledge of \(\sigma\) (absorption
Table 1. Reaction Rate Data for NO + BrO + NO₂ + Br at 298 K

<table>
<thead>
<tr>
<th>Diluent (torr)</th>
<th>Flash Energy (joules)</th>
<th>[Br₂]x10⁻¹⁵ molecule cm⁻³</th>
<th>[O₂]x10⁻¹⁷ molecule cm⁻³</th>
<th>[BrO]x10⁻¹⁳ molecule cm⁻³</th>
<th>[NO]x10⁻¹⁴ molecule cm⁻³</th>
<th>k¹ (10⁻¹¹ cm³ molecule⁻¹ s⁻¹)</th>
<th>10⁻¹¹ x(k_b₁ (corrected)) (cm molecule⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100(He)</td>
<td>1500</td>
<td>8.2</td>
<td>16.0</td>
<td>7.74</td>
<td>5.05</td>
<td>8723</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>8.2</td>
<td>16.6</td>
<td>7.20</td>
<td>5.04</td>
<td>11776</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>8.9</td>
<td>17.7</td>
<td>6.61</td>
<td>3.19</td>
<td>5889</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>7.8</td>
<td>15.5</td>
<td>6.08</td>
<td>6.69</td>
<td>10860</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>8.2</td>
<td>5.6</td>
<td>4.40</td>
<td>3.17</td>
<td>6469</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>8.5</td>
<td>2.8</td>
<td>2.46</td>
<td>3.15</td>
<td>6433</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>690</td>
<td>8.1</td>
<td>5.5</td>
<td>1.13</td>
<td>3.12</td>
<td>6708</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>7.6</td>
<td>5.2</td>
<td>2.14</td>
<td>5.56</td>
<td>10949</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>8.4</td>
<td>3.7</td>
<td>1.27</td>
<td>1.98</td>
<td>4661</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.25±0.28</td>
</tr>
<tr>
<td>250(He)</td>
<td>880</td>
<td>5.0</td>
<td>15.0</td>
<td>3.42</td>
<td>5.09</td>
<td>12206</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>5.0</td>
<td>15.2</td>
<td>4.93</td>
<td>5.06</td>
<td>9368</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>4.9</td>
<td>15.0</td>
<td>4.90</td>
<td>6.98</td>
<td>12210</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>4.9</td>
<td>14.9</td>
<td>1.52</td>
<td>6.98</td>
<td>12890</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>4.9</td>
<td>14.9</td>
<td>4.21</td>
<td>6.98</td>
<td>13678</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>4.9</td>
<td>14.9</td>
<td>6.90</td>
<td>4.06</td>
<td>6179</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>5.4</td>
<td>10.5</td>
<td>4.93</td>
<td>5.41</td>
<td>10900</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>4.9</td>
<td>16.0</td>
<td>5.27</td>
<td>5.00</td>
<td>9890</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09±0.24</td>
</tr>
<tr>
<td>450(He)</td>
<td>1500</td>
<td>8.4</td>
<td>16.8</td>
<td>5.67</td>
<td>5.07</td>
<td>10075</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>8.1</td>
<td>19.7</td>
<td>3.47</td>
<td>5.68</td>
<td>9522</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>8.0</td>
<td>19.4</td>
<td>3.67</td>
<td>4.03</td>
<td>7140</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>7.8</td>
<td>18.3</td>
<td>3.55</td>
<td>7.09</td>
<td>13221</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>7.8</td>
<td>19.3</td>
<td>3.34</td>
<td>5.66</td>
<td>9883</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>21.7</td>
<td>18.3</td>
<td>3.63</td>
<td>5.35</td>
<td>9446</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.95±0.16</td>
</tr>
<tr>
<td>450(N₂)</td>
<td>1500</td>
<td>5.9</td>
<td>10.8</td>
<td>3.37</td>
<td>5.31</td>
<td>9719</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>5.9</td>
<td>22.4</td>
<td>2.33</td>
<td>5.32</td>
<td>10052</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>5.9</td>
<td>22.4</td>
<td>2.49</td>
<td>3.53</td>
<td>7544</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>5.9</td>
<td>21.8</td>
<td>5.69</td>
<td>7.96</td>
<td>13869</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>5.9</td>
<td>21.8</td>
<td>3.47</td>
<td>7.96</td>
<td>18190</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>17.0</td>
<td>21.5</td>
<td>3.06</td>
<td>7.73</td>
<td>16081</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.11±0.21</td>
</tr>
<tr>
<td>700(He)</td>
<td>1500</td>
<td>9.3</td>
<td>15.4</td>
<td>4.10</td>
<td>5.22</td>
<td>8811</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>5.6</td>
<td>15.7</td>
<td>6.34</td>
<td>4.45</td>
<td>8303</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>5.6</td>
<td>15.7</td>
<td>2.93</td>
<td>4.65</td>
<td>8626</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>5.6</td>
<td>15.7</td>
<td>2.99</td>
<td>6.21</td>
<td>13568</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>5.6</td>
<td>15.7</td>
<td>3.34</td>
<td>7.71</td>
<td>16330</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>5.6</td>
<td>15.6</td>
<td>7.00</td>
<td>7.71</td>
<td>17845</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>5.7</td>
<td>17.1</td>
<td>2.23</td>
<td>2.79</td>
<td>6410</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>5.6</td>
<td>13.9</td>
<td>1.96</td>
<td>3.85</td>
<td>8780</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.26±0.24</td>
</tr>
</tbody>
</table>
TABLE II. Summary of Reaction Rate Data for NO + BrO → NO₂ + Br

<table>
<thead>
<tr>
<th>Temp./K</th>
<th>Diluent</th>
<th>Pressure(torr)</th>
<th>#runs</th>
<th>$10^{11} \times k_1$ (cm³/molecule⁻¹s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>He</td>
<td>110</td>
<td>8</td>
<td>2.82 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>710</td>
<td>4</td>
<td>2.85 ± 0.09 2.83 ± 0.20</td>
</tr>
<tr>
<td>257</td>
<td>He</td>
<td>100</td>
<td>8</td>
<td>2.75 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>700</td>
<td>3</td>
<td>2.56 ± 0.22 2.69 ± 0.18</td>
</tr>
<tr>
<td>298</td>
<td>He</td>
<td>100</td>
<td>9</td>
<td>2.25 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>250</td>
<td>8</td>
<td>2.09 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>450</td>
<td>6</td>
<td>1.95 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>450</td>
<td>6</td>
<td>2.11 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>700</td>
<td>8</td>
<td>2.26 ± 0.24 2.15 ± 0.25</td>
</tr>
<tr>
<td>351</td>
<td>He</td>
<td>100</td>
<td>6</td>
<td>2.22 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>700</td>
<td>6</td>
<td>2.11 ± 0.19 2.16 ± 0.15</td>
</tr>
<tr>
<td>398</td>
<td>He</td>
<td>100</td>
<td>7</td>
<td>2.08 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>700</td>
<td>12</td>
<td>1.99 ± 0.19 2.02 ± 0.18</td>
</tr>
</tbody>
</table>
The reaction NO + BrO \rightarrow NO$_2$ + Br. Typical first-order plots for [BrO] in the presence of various excess concentrations of NO at 298K, and 450 torr of He.
Figure 4. The reaction $\text{NO} + \text{BrO} \rightarrow \text{NO}_2 + \text{Br}$. Variation of pseudo first-order rate constant, $-\frac{d\ln[\text{BrO}]}{dt}$ (corrected for NO removal) with NO at 298 K, and at total pressures from 100-700 torr.
Figure 5. Arrhenius plot for the $\text{NO} + \text{BrO} \rightarrow \text{NO}_2 + \text{Br}$ reaction. \circ; this work; \triangledown, ---, Ref. 16; \bigcirc, Ref. 24; \square Ref. 5.
cross-section) and \(I \) (optical pathlength) is not required in order to determine an absolute value for \(k_1 \).

\[
\ln(\frac{\ln(I_o/I_t)}{\ln(I_o/I_t)}) = k_1[NO]t
\]

(IV)

A plot of \(\ln(\ln(I_o/I_t)) \) as a function of reaction time (see Fig. 3) should be linear with a slope equal to the first order rate constant, \(k'_1 \). The bimolecular rate constant, \(k'_1 \), is related to \(k_1 \) as shown in equation (V),

\[
k'_1 = k_1[NO]
\]

(V)

As the initial stoichiometry, \([NO]_0/[BrO]_0\), only ranged from 4.8 to 55.5, with a mean value of \(\approx 18 \), an allowance was made in the measurement of \([NO]\) for the removal of \(NO \) by \(BrO \). The correction factor was typically \(\approx 6\% \). Consequently an accurate determination of \([BrO]_0\) was required in order to correct the data for the finite consumption of \(NO \), thus requiring values for \(I \) and \(\sigma \) (as a function of temperature). The temperature dependence of \(\sigma \) was determined by the authors in the same experimental apparatus.\(^{18} \) The adherence of \([BrO]\) to Beer's Law was demonstrated in the same study. Fig. 3 shows three typical decay plots of \(BrO \) with reaction time, where the initial conditions which govern the rate and magnitude of formation of \(BrO \) radicals (flash energy, \(O_2 \) concentration and \(Br_2 \) concentration) were kept constant in the presence of differing \(NO \) concentrations. The first data points were taken 90\(\mu \)s after initiation of the photolytic flash.

The initial \(BrO \) radical concentrations are predicted to be constant for these three runs, and to reach a maximum concentration (\(\approx 95\% \) formation) within \(\approx 25\mu s \) of initiating the photolytic flash (this is based on the pulse length of the flash and the rate of removal of atomic oxygen by molecular bromine). From Fig. 3 it can be seen that back extrapolation of the \(BrO \) decay plots to within \(\approx 25\mu s \) of the start of the photolytic flash indicates that within experimental error the initial \(BrO \) concentrations were equal. The back extrapolation procedure is valid given that the rate of formation of \(BrO \) radicals via the \(O + Br_2 \) reaction is significantly greater than the rate of destruction of \(BrO \) radicals by \(NO \):

\[
k_3[O][Br_2] \gg k_1[NO][BrO]
\]
However, even if there were a 20% error in the estimated value of $[\text{BrO}]_0$, this would typically only result in a 1% error in k_1. Figure 3 illustrates how BrO had decayed a factor between 1.3 - 1.6 prior to the first analysis point. Consequently the reaction stoichiometries, $[\text{NO}] / [\text{BrO}]$, after 90μs (the first observation time) were always > 10. The linearity of the BrO decay plots indicates that the system is well behaved, i.e., the reaction is first order with respect to BrO concentration, and there are no rapid complicating secondary processes.

Possible complicating secondary reactions which must be considered are:

\[
\begin{align*}
0 + \text{BrO} & \rightarrow \text{Br} + \text{O}_2 \quad (4) \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 \quad (5a) \\
& \quad \rightarrow \text{Br}_2 + \text{O}_2 \quad (5b) \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrNO}_2 + \text{M} \quad (6)
\end{align*}
\]

and the sequence of reactions

\[
\begin{align*}
\text{Br}_2 + \text{hv} & \rightarrow 2\text{Br} \quad (7) \\
\text{Br} + \text{NO} + \text{M} & \rightarrow \text{BrNO} + \text{M} \quad (8) \\
\text{Br} + \text{BrNO} & \rightarrow \text{Br}_2 + \text{NO} \quad (9)
\end{align*}
\]

There are no complications due to reaction (4) as the concentration of Br_2 was chosen to ensure that all atomic oxygen formed in process (2) was completely consumed (> 99%) well before the first observation point. A range of Br_2 concentrations ($5 - 20 \times 10^{15}$ cm$^{-3}$) was employed with no observable change in the value of k_1. Interference from the bimolecular disproportionation of BrO radicals (5) was unimportant at all reaction times, for the following reasons. As stated earlier the minimum stoichiometry after 90μs was > 10 which means that rate of removal of BrO by reaction (5) was < 3% of the rate of removal by NO (k_5 taken to be 2.25×10^{-12} exp(244/T) from 223-388K and between 50 and 600 torr total pressure$^{(18)}$). As $[\text{BrO}]$ decreases due to removal by NO the contribution of reaction (5) to the rate of removal of BrO rapidly decreases as reaction (5)
is second order in BrO concentration. If reaction (5) had made a significant contribution to the overall rate of removal of BrO the decay plots shown in Fig. 3 should have exhibited a noticeable curvature, and the values of \(k_1 \) would have been dependent not only upon \([\text{NO}]_0\) but also \([\text{BrO}]_0\). However, as the plots of \([\text{BrO}]\) with reaction time did not exhibit any observable curvature, nor was there any dependence of \(k_1 \) upon initial stoichiometry, this confirms the calculations which showed that reaction (5) should not have interfered with our determination of \(k_1 \). The product of reaction (1), \(\text{NO}_2 \), can react with BrO radicals as shown in reaction (6) to form \(\text{BrONO}_2 \). However, if this reaction were important in our system the decay plots of BrO would have exhibited a non-linearity, which was not observed. In addition, a value of

\[
3.0 \times 10^{-12} \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1}
\]

was determined for \(k_6 \) at 700 torr \(N_2 \) and 298K. Consequently, with an average initial stoichiometry, \([\text{NO}]_0/[\text{BrO}]_0 \), of 18, this would lead to a prediction that the maximum rate (relative to \(\text{NO} + \text{BrO} \) (1)) at which BrO radicals could be removed by reaction (6) is \(\approx 1\% \) at 700 torr \(N_2 \) and 298K. At lower total pressures, and with He as the diluent, this contribution is even less due to the third (or intermediate second/third) order nature of reaction (6). Even at lower temperatures (e.g., 224K) where the rate constant, \(k_6 \), is expected to be approximately a factor of 3 faster (the process is expected to exhibit a negative temperature dependence of \(\approx 1000/T \) in a manner analogous to the \(\text{ClO} + \text{NO}_2 + M \) reaction) there would still be a negligible contribution to the removal of BrO by reaction (6).

Nitrosyl bromide, \(\text{BrNO} \), is produced as a result of a rapid equilibrium between reactions 8 and 9. The equilibrium \(\text{BrNO} \) concentration (approximately \(0.02[\text{NO}] \)) is low enough that depletion of \(\text{NO} \) is negligible. Moreover, the equilibrium is reached on a time scale short compared to the loss of BrO by reaction 1 so that the minor absorption of the analytical light by \(\text{BrNO} \) does not interfere with the detection of BrO or the determination of its true rate of decay. This being the case, the only effect of reactions 8 and 9 is the NO-catalyzed recombination of Br.
As stated in the experimental section the gases are continuously flowed through the reaction cell so that the contents are completely renewed between successive photolytic flashes. This totally eliminates complications due to removal of reagents, e.g., NO, or the build-up of reactive products, e.g., NO\textsubscript{2}.

The stable product of reaction (1), NO\textsubscript{2}, has a continuous absorption spectrum which is quite strong throughout the visible and ultraviolet spectral regions. The absorption cross-section of NO\textsubscript{2} at 339.0 nm (where BrO was monitored) has been determined to be \(4.0 \times 10^{-19}\) cm\(^2\) molecule\(^{-1}\) (24) compared to the value of \(1.17 \times 10^{-17}\) cm\(^2\) molecule\(^{-1}\) for BrO at 298K (18). Consequently the intensity of the analytical light beam (I\textsubscript{0}) does not return to its original value after removal of BrO by NO, due to absorption by the NO\textsubscript{2} product, until the cell contents are replaced by reactants. However, as the absorption by NO\textsubscript{2} is a factor of \(29\) less than that by an equal concentration of BrO it is easily accounted for in the data analysis and does not lead to any inaccuracy in our determination of \(k_1\).

Table I and Fig. 4 summarize the experimental data obtained at 298K. It can be seen that the value of \(k_1\) is invariant with total pressure from 100-700 torr and with the identity of the diluent, He or N\textsubscript{2}. The averaged values of \(k_1\) were obtained at each pressure by taking the mean value of the individual values of \(k_1 = k_1/\text{[NO]}\). The uncertainties represent 1\(\sigma\). The mean value of all the data collected at 298K was \((2.15 \pm 0.25) \times 10^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). Fig. 4 shows a plot of \(k_1\) as a function of [NO] (corrected for the amount removed by BrO). A least squares fit to the data shown in Fig. 4 yields a value of \(k_1\) (slope) of \((1.99 \pm 0.14) \times 10^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) with an intercept on the \(k'\) axis of 627 s\(^{-1}\). These two values of \(k_1\) are in good agreement (\(\pm7\%\)), however, it is felt that the best value of \(k_1\) is obtained by taking a simple mean of the individual values of \(k_1\) rather than from the slope of \(k'_1\) versus [NO]. This evaluation is based upon the fact that an intercept (positive or negative) has no physical meaning in
our experiment, and that the extrapolation back to [NO] = 0 is long and as such a small change in the slope can result in a large, yet meaningless, intercept on the k₁ axis. That the two values do agree within 7% is a good indication that the system is well behaved. The linearity of Fig. 4 verifies that the reaction is first order in NO concentration. From Table III, which shows the values of k₁ (slope) and k₁ (mean) at each temperature studied, it can be seen that the agreement is always better than 12%. Table II summarizes all the data, and shows that although the reaction exhibits no pressure dependence at any temperature, it does exhibit a small negative temperature dependence. Fig. 5 is an Arrhenius plot of the data obtained in this and other studies. A weighted linear least squares treatment of all the data shown in Table II results in the following Arrhenius expression:

\[k₁ = 1.28 \times 10^{11} \exp((181 \pm 46)/T); \text{224-398K}. \]

If the alternate method of data analysis were used then a linear least squares treatment of the data would result in the Arrhenius expression shown in Table III. However, it must be stressed that we feel that the correct procedure is to use k₁ (mean).

Discussion

(i) Comparison and Interpretation of Results

Table IV summarizes the values obtained for k₁ in this and other studies. The results of the three low pressure mass spectrometric studies⁵,¹⁶,²⁵ and the high pressure ultraviolet absorption study (this work), which all used pseudo first order conditions, are in excellent agreement at 298K, and are more reliable than the earlier low pressure ultraviolet absorption study⁹b where the value of k₁ was somewhat dependent upon the rate constant for BrO + BrO → products owing to low initial stoichiometries of [NO] to [BrO]. The results of the two temperature dependence studies are in good agreement and both show a small negative dependence. An Arrhenius plot (Figure 5) shows how the values of k₁ agree to within 10-40% over the temperature range 220-400K, and at stratospheric temperatures (210-260K) to better than 10%. By combining the data obtained in the study with that in references ⁵,¹⁶,²⁵ it can be
Table III. Comparison of k_1 (slope) and k_1 (mean)

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>k_1 (mean)</th>
<th>k_1 (slope)</th>
<th>k_1 (m) / k_1 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>2.83 ± 0.20</td>
<td>2.90 ± 0.26</td>
<td>0.98</td>
</tr>
<tr>
<td>257</td>
<td>2.69 ± 0.18</td>
<td>2.39 ± 0.27</td>
<td>1.12</td>
</tr>
<tr>
<td>298</td>
<td>2.15 ± 0.25</td>
<td>1.99 ± 0.14</td>
<td>1.08</td>
</tr>
<tr>
<td>351</td>
<td>2.16 ± 0.15</td>
<td>1.92 ± 0.14</td>
<td>1.12</td>
</tr>
<tr>
<td>398</td>
<td>2.02 ± 0.18</td>
<td>1.80 ± 0.12</td>
<td>1.12</td>
</tr>
</tbody>
</table>

k_1 (mean) = 1.28×10^{-11} exp((181 ± 46)/T)

k_1 (slope) = 9.52×10^{-12} exp((240 ± 40)/T)
Table IV. Summary of Arrhenius Expressions for NO + BrO → NO₂ + Br

<table>
<thead>
<tr>
<th>Reference</th>
<th>Arrhenius Expression cm⁻³ mole⁻¹ s⁻¹</th>
<th>(10^{11} \times k_x (298K)) cm⁻³ mole⁻¹ s⁻¹</th>
<th>Temp. Range K</th>
<th>Technique²</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>(1.28 \times 10^{-11} \exp((181 \pm 46)/T))</td>
<td>(2.15 \pm 0.25)</td>
<td>224–398</td>
<td>FF/UV</td>
</tr>
<tr>
<td>Leu [16]</td>
<td>(7.11 \times 10^{-12} \exp((296 \pm 10)/T))</td>
<td>(1.89 \pm 0.16)</td>
<td>230–425</td>
<td>DF/MS</td>
</tr>
<tr>
<td>Clyne and Watson [5]</td>
<td>-</td>
<td>(2.2 \pm 0.4)</td>
<td>298</td>
<td>DF/MS</td>
</tr>
<tr>
<td>Watson and Ray [24]</td>
<td>-</td>
<td>(2.3 \pm 0.3)</td>
<td>298</td>
<td>DF/MS</td>
</tr>
</tbody>
</table>

(a) FF/UV, flash photolysis-ultraviolet absorption detection system; DF/MS, discharge flow mass spectrometric detection system.
shown that this reaction does not exhibit any observable pressure dependence between 1 and 700 torr total pressure, and is independent of the identity of the foreign gas. The temperature dependences of k for the analogous ClO$^{(13,14)}$ and NO$_2$$^{(15,17)}$ are also negative, and are similar in magnitude.

(ii) Negative Temperature Dependence of k

The negative temperature dependence of k observed in this study is characteristic of a growing number of rapid bimolecular reactions involving atoms and radicals$^{(13,14,26-28)}$. Several different hypotheses have been proposed to account for this behaviour including a temperature dependent A-factor,$^{(26)}$ metastable complex formation,$^{(13,28)}$ and dependence of the collision cross section on reactant energy.$^{(27,29)}$ Alternatively, the observed dependence is small enough to be due to systematic experimental error in several cases.

In this study, the data may be fitted with equal reliability to a negative Arrhenius activation energy of 0.36 kcal or to a function of the form

$$k_{NO + BrO} = T^{-0.6±0.1}$$

According to Absolute Rate Theory, the A-factor for the bimolecular reaction $A + B \rightarrow$ products is given by:

$$A = \frac{kT}{h} \frac{q^d}{q_a q_b}$$

where q is a composite partition function. For two diatomic species (NO + BrO) reacting to form a non-linear activated complex (NO\cdotsBrOd), the product of the translational and rotational partition functions varies as T^{-1}. The temperature dependence of the vibrational partition function ratio was evaluated using trans-HONO and C\equivONO as models for the complex.$^{(30)}$ The fundamental vibrational frequencies used in these calculations were derived from infrared spectra.$^{(31-34)}$
In the model compounds, the frequencies associated with the motions of the N and O atoms are quite similar while those involving the chlorine and hydrogen atoms differ markedly. A similar effect should be seen for BrONO with even lower frequencies expected for the Br-O stretch, the NOBr bend and the out-of-plane torsion. In this analysis, since the O-X (X = H, C\textsubscript{6}) stretch is the dissociative mode it does not contribute to the entropy of activation.

Over the temperature range 200-400K, the vibrational partition function ratio roughly fits a T^x dependence. For trans-HONO, x is approximately 0.39 while for ClONO x is 0.78. The T-dependence of the complete A-factor with the T^{-1} term included is therefore $T^{-0.61}$ for HONO and $T^{-0.22}$ for ClONO. On this basis, the A-factor for the NO + BrO reaction would be expected to have a zero or small positive temperature dependence, due to the lower frequency vibrations expected for BrONO, in contrast to the $T^{-0.6}$ dependence observed. This model, however, is very sensitive to the presumed structure of the transition state, in particular the values of the low frequency vibrations. A more accurate treatment might include the method of Quack and Troe which locates the transition state at the configuration of maximum free energy on the reaction coordinate.\(^{(36)}\)

If the NO + BrO reaction forms a vibrationally excited intermediate as has been suggested by Leu and DeMore\(^{(13)}\) for the analogous NO + ClO reaction, then a pressure dependence might be observed for the rate constant if the lifetime of the intermediate is comparable to the inverse collision rate. Since no pressure dependence could be detected up to 700 Torr total pressure of helium the lifetime of the intermediate must be considerably less than 4×10^{-11} s. Because of limited thermochemical data, estimates of the lifetime of the intermediate by RRK theory are unreliable. However, for the NO + ClO reaction, lifetimes in the $10^{-11} - 10^{-12}$ s range are obtained. This suggests that pressure effects will not be observed until the total pressure exceeds 5 atmospheres. Because BrONO is undoubtedly less stable than ClONO, and the NO + BrO
reaction is more exothermic than the NO + ClO reaction, the lifetime of
the vibrationally hot BrONO intermediate with respect to dissociation into
Br and NO₂ will be quite short, perhaps less than 10⁻¹² seconds. Third-body
effects for the NO + BrO reaction would therefore not be expected for pressures
less than 10-20 atmospheres. As a means of verifying these qualitative
predictions, it would be useful to conduct high pressure reaction rate studies
of the NO + FO and NO + ClO reactions. To date, the NO + FO reaction has not
been studied and the NO + ClO rate constant has been measured only at low
pressure. Considering the thermodynamic stability of FONO and its isomer FNO₂,
both bimolecular and termolecular channels might be expected for this reaction.

(iii) Atmospheric Implications

This section discusses the role of the NO + BrO reaction in stratospheric
bromine photochemistry. The discussion will show how the catalytic efficiency
of BrOₓ in destroying stratospheric ozone is relatively insensitive to the value
of k(NO + BrO), but how the concentration ratios of Br/BrO and BrO/HBr are
quite sensitive to this rate constant. It is important to determine accurate
kinetic data not only for reactions which control the catalytic efficiency of
ozone destruction, but also for those reactions which control concentration
ratios because it is the comparison between theoretical predictions and field
measurement data of ratios such as Br/BrO and BrO/HBr that tests our understand-
ing of atmospheric photochemistry. The roles of the NO + BrO, and
NO + ClO reactions in stratospheric photochemistry will be compared.

Table V summarizes the reactions involving bromine-containing species now
thought to be important in the photochemistry of the stratosphere, along with
their rate coefficients. (35) Using the reaction scheme and numbering system
shown in Table V the following expressions can be derived:

\[
\frac{Br}{BrO} = \frac{k_{12}[OH] + k_{13}[O]}{k_{10}[HO₂] + k_{11}[H₂O₂]} = \frac{k_{12}[OH]}{k_{10}[HO₂]} \quad \text{(VI)}
\]

\[
\frac{BrONO₂}{BrO} = \frac{k_7[NO₂][M]}{J_3} \quad \text{(VII)}
\]
Table V. Key Bromine Reactions and Their Rate Coefficients

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A</th>
<th>E/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2)</td>
<td>(1.4 \times 10^{-11})</td>
<td>755</td>
</tr>
<tr>
<td>2 (\text{BrO} + \text{O} \rightarrow \text{Br} + \text{O}_2)</td>
<td>(3.0 \times 10^{-11})</td>
<td>-</td>
</tr>
<tr>
<td>3 (\text{BrO} + \text{NO} \rightarrow \text{Br} + \text{NO}_2)</td>
<td>(1.2 \times 10^{-11})</td>
<td>-180</td>
</tr>
<tr>
<td>4 (\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{OCIO})</td>
<td>(6.7 \times 10^{-12})</td>
<td>-</td>
</tr>
<tr>
<td>5 (\rightarrow \text{Br} + \text{Cl} + \text{O}_2)</td>
<td>(6.7 \times 10^{-12})</td>
<td>-</td>
</tr>
<tr>
<td>6 (\text{BrO} + \text{HO}_2 \rightarrow \text{HOBr} + \text{O}_2)</td>
<td>(5.0 \times 10^{-12})</td>
<td>-</td>
</tr>
<tr>
<td>7 (\text{BrO} + \text{NO}_2 + \text{M} \rightarrow \text{BrONO}_2 + \text{M}) (a)</td>
<td>See below</td>
<td>-</td>
</tr>
<tr>
<td>8 (\text{BrO} + \text{BrO} + 2\text{Br} + \text{O}_2)</td>
<td>(1.9 \times 10^{-12})</td>
<td>-244</td>
</tr>
<tr>
<td>9 (\rightarrow \text{Br}_2 + \text{O}_2)</td>
<td>(3.5 \times 10^{-13})</td>
<td>-244</td>
</tr>
<tr>
<td>10 (\text{Br} + \text{HO}_2 \rightarrow \text{HBr} + \text{O}_2)</td>
<td>(2.0 \times 10^{-11})</td>
<td>-</td>
</tr>
<tr>
<td>11 (\text{Br} + \text{H}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{HBr} + \text{HO}_2)</td>
<td>(2.0 \times 10^{-12})</td>
<td>>1400</td>
</tr>
<tr>
<td>12 (\text{OH} + \text{HBr} + \text{H}_2\text{O} + \text{Br})</td>
<td>(8.5 \times 10^{-12})</td>
<td>-</td>
</tr>
<tr>
<td>13 (\text{O} + \text{HBr} + \text{OH} + \text{Br})</td>
<td>(7.6 \times 10^{-12})</td>
<td>1571</td>
</tr>
</tbody>
</table>

\(J_1\) \(\text{BrO} + \text{hv} \rightarrow \text{Br} + \text{O} \) (b)	\(10^{-2}; 10^{-2}; 10^{-2}\)	
\(J_2\) \(\text{HOBr} + \text{hv} + \text{OH} + \text{Br} \) (b)	\(1.7 \times 10^{-3}; 1.3 \times 10^{-3}; 1.1 \times 10^{-3}\)	
\(J_3\) \(\text{BrONO}_2 + \text{hv} + \text{Br} + \text{NO}_3 \) (b)	\(1.6 \times 10^{-3}; 1.1 \times 10^{-3}; 9.8 \times 10^{-4}\)	
\(J_4\) \(\text{Br}_2 + \text{hv} + 2\text{Br} \) (b)	\(1.5 \times 10^{-2}; 1.5 \times 10^{-2}; 1.5 \times 10^{-2}\)	

\(a\) \(k = 2k(\text{ClO} + \text{NO}_2 + \text{M}) = \frac{1.3 \times 10^{-22} T^{-3.34}}{1 + 8.7 \times 10^{-9} T^{-0.6} M^{0.5}} \)

(b) 40km; 30km; 20km.
\[
\frac{\text{BrO}}{\text{Br}} = \frac{k_1[\text{O}_3]}{k_2[\text{O}] + k_3[\text{NO}] + (k_4 + k_5)[\text{ClO}] + k_7[\text{NO}_x][\text{M}] + k_{10}[\text{HO}_2] + J_1}
\]
\text{(VIII)}

\[
\frac{\text{BrO}}{\text{HOBr}} = \frac{J_2}{k_6[\text{HO}_2]}
\]
\text{(IX)}

Equation (VIII) was derived neglecting the BrO + BrO reactions (8, 9). However, at low concentrations of BrO_x (< 100 ppt) this does not lead to any significant error. By combining equations (VI - IX) it can be shown that:

\[
\frac{\text{BrO}}{\text{BrO}_x} = \left\{ \frac{1 + \frac{D(k_{12}[\text{OH}] + k_{10}[\text{HO}_2])}{k_1k_{12}[\text{OH}][\text{O}_3]} + \frac{k_7[\text{NO}_x][\text{M}]}{J_3} + \frac{k_6[\text{HO}_2]}{J_2} }{1 + \frac{k_2}{k_1k_{12}[\text{OH}][\text{O}_3]} + \frac{k_7[\text{NO}_x][\text{M}]}{J_3} + \frac{k_6[\text{HO}_2]}{J_2} } \right\}^{-1}
\]
\text{(X)}

where D is the denominator in equation (VIII).

Using the rate coefficients and J values shown in Table V and the altitude profiles of stratospheric trace constituents calculated by the diurnally-averaged one dimensional photochemical model of Yung et al. (1a) the photochemical partitioning of BrO_x shown in Figure 6 is obtained. The photochemical model attempts to simulate the present day atmosphere which is assumed to contain 2.3 ppbv ClO_x, 19 ppbv NO_x, 6 ppmv H_2O and 20 pptv BrO_x at 40 km.

In order to test the sensitivity of the BrO/Br, BrO/HBr and BrO/BrO_x ratios to the NO + BrO rate constant, k_3, equations VI, VIII and X were evaluated using concentrations derived from the model. Table VI presents these ratios as a function of altitude for three cases; (a) k_3 as determined in this study, (b) k_3 multiplied by 2 and, (c) k_3 divided by 2. It is apparent that variations of ± a factor of 2 in k_3 have a significant effect on BrO/Br and BrO/HBr (average deviations of ± 50%) but only a small effect on BrO/BrO_x (average deviation of ± 8%). The sensitivity of the BrO/Br and BrO/HBr ratios to changes in k_3 is attributable to the relatively large contribution of the NO + BrO reaction to the overall BrO to Br conversion rate. This point is illustrated in Table VII which compares the magnitudes of the terms in the denominator (D) of equation
Figure 6. Altitude profiles for major bromine species in the stratosphere (taken from photochemical model of Yung et al. (1a)). Total BrO_x at 40km equals 20 pptv.
Table VI. Photochemical Partitioning of BrO$_x$

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%BrO</td>
<td>BrO/Br</td>
<td>BrO/HBr</td>
</tr>
<tr>
<td>16</td>
<td>49</td>
<td>39</td>
<td>1.7</td>
</tr>
<tr>
<td>20</td>
<td>52</td>
<td>86</td>
<td>4.0</td>
</tr>
<tr>
<td>24</td>
<td>53</td>
<td>100</td>
<td>4.9</td>
</tr>
<tr>
<td>28</td>
<td>53</td>
<td>78</td>
<td>4.7</td>
</tr>
<tr>
<td>32</td>
<td>61</td>
<td>47</td>
<td>4.3</td>
</tr>
<tr>
<td>36</td>
<td>67</td>
<td>20</td>
<td>3.9</td>
</tr>
<tr>
<td>40</td>
<td>65</td>
<td>8.0</td>
<td>2.9</td>
</tr>
<tr>
<td>44</td>
<td>46</td>
<td>2.8</td>
<td>1.3</td>
</tr>
<tr>
<td>24*</td>
<td>54</td>
<td>146</td>
<td>7.1</td>
</tr>
<tr>
<td>24**</td>
<td>48</td>
<td>53</td>
<td>2.6</td>
</tr>
<tr>
<td>24+</td>
<td>43</td>
<td>100</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Column (A): BrO$_x$ partitioning in standard model.
Column (B): BrO$_x$ partitioning in a model where k_3 was multiplied by a factor of 2.
Column (C): BrO$_x$ partitioning in a model where k_3 was divided by a factor of 2.

* : J_1(BrO) = 3 x 10^{-3} s$^{-1}$
** : J_2(BrO) = 3 x 10^{-2} s$^{-1}$
+ : k_{10}(Br + HO$_2$) = 6 x 10^{-11} cm3s$^{-1}$
<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>$k_3[NO]$</th>
<th>J_1</th>
<th>$2k_3[CHI]$</th>
<th>$k_2(0)$</th>
<th>$k_3[NO]_2$</th>
<th>$k_4[NO]_2$</th>
<th>$k_4[NO]_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.2(-3)</td>
<td>1.0(0)</td>
<td>1.0(-2)</td>
<td>1.0(0)</td>
<td>3.8(-4)</td>
<td>2.3(3)</td>
<td>3.2(-4)</td>
</tr>
<tr>
<td>20</td>
<td>7.3(-3)</td>
<td>1.0(-2)</td>
<td>1.0(-3)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
<tr>
<td>24</td>
<td>9.6(-3)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
<tr>
<td>28</td>
<td>1.6(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
<tr>
<td>32</td>
<td>2.1(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
<tr>
<td>36</td>
<td>2.7(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
<tr>
<td>40</td>
<td>3.2(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
<tr>
<td>44</td>
<td>3.8(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
<td>1.0(-2)</td>
</tr>
</tbody>
</table>

Column (A) = $k_3[NO] / D$

Column (B) = $k_3[NO] / D$ where k_3 was multiplied by a factor of 2.

Column (C) = $k_3[NO] / D$ where k_3 was divided by a factor of 2.
VIII and the fractional contribution of $k_3(\text{NO})$ to this sum as a function of altitude and k_3. Columns A, B and C, which tabulate the ratio $k_3(\text{NO})/D$ for different values of k_3, show the strong dependence on k_3. This accounts for the sensitivity of BrO/Br and BrO/HBr to k_3 since the ratios are inversely proportional to D. In contrast, equation (X) shows that the ratio BrO/BrO$_x$ depends upon D in a much less direct fashion. The BrO/BrO$_x$ ratio is relatively insensitive to variations in D, and thus k_3, owing to the relative magnitudes of the terms in equation (X), e.g. at 24 km:

- standard model: $1 : 0.21 : 0.60 : 0.087$
- $k_3 \times 2 : 1 : 0.31 : 0.60 : 0.087$
- $k_3 \div 2 : 1 : 0.17 : 0.60 : 0.087$

From these values it can be seen that large variations in D are not reflected in the BrO/BrO$_x$ ratio due to damping by the other terms in equation (X). This is a result of the fact that BrO, rather than HBr, is the dominant form of bromine throughout most of the stratosphere.

To a first approximation (BrO$_x < 100$ ppt) the catalytic efficiency with which O$_3$ is destroyed by BrO$_x$ is linearly proportional to [BrO] since each of the catalytic cycles which results in the removal of odd oxygen involves the BrO radical in the rate determining step. (1a) Since, as shown above, variations in k_3 have only a small effect on the BrO/BrO$_x$ ratio, the catalytic efficiency of BrO$_x$ in destroying ozone is not particularly sensitive to this rate constant. However, the concentration ratios BrO/Br and BrO/HBr are strongly dependent on k_3.

Two major uncertainties in the photochemical data base are the values of J_1 and k_{10}. The values of J_1 and k_{10} are uncertain by approximately a factor of ±3 each. Table VI shows the sensitivity of the photochemical partitioning of BrO$_x$ to the value of k_3 for values of J_1 equal to 3×10^{-3} and 3×10^{-2} s$^{-1}$, and k_{10} equal to 6×10^{-11} cm3 s$^{-1}$ (results are shown for 24 km which is taken to be a representative altitude). It can be seen that when the value of J_1 was taken to be 3×10^{-2} s$^{-1}$ each of the ratios, BrO/Br, BrO/HBr and BrO/BrO$_x$ was less sensitive to the value of k_3 than when the value of J_1 was taken to be
3 x 10^{-3} \text{s}^{-1} due to the increased buffering effect of J_1. When k_{10} was assumed to be 6 x 10^{-11} \text{cm}^{3} \text{s}^{-1} the BrO/BrO_x ratio was twice as sensitive to the value of k_3 than in the standard model, but a variation in k_3 of a factor of 4 still led to only an 18\% change in BrO/BrO_x.

The insensitivity of the BrO/BrO_x ratio to the value of k_3 is in sharp contrast to the sensitivity of the ClO/ClO_x ratio to the value of k(NO + ClO). As stated earlier a major difference between the BrO_x and ClO_x system is that the photolysis rate of BrO is several orders of magnitude greater than the photolysis rate of ClO. This results in the NO + ClO reaction being the only important process for converting ClO into Cl below 32km. Above 32km the O + ClO reaction becomes increasingly important. Consequently throughout most of the stratosphere the ClO/ClI and ClO/HCl ratios are linearly proportional to k(NO + ClO). An equation can be derived for ClO/ClO_x which is analogous to that derived for BrO/BrO_x (eqn. X). Using this equation it can be shown that variations in k(NO + ClO) of ± factor of 2 result in ±50\% variations in ClO/ClO_x at altitudes ≤36km. The sensitivity of ClO/ClO_x to k(NO + ClO) is in contrast to the insensitivity of BrO/BrO_x to k(NO + BrO), and is due to the importance of the term containing D. This arises because NO Cl + NO_2 are the dominant forms of ClO_x, whereas BrO is the dominant form of BrO_x.

Acknowledgements

We thank J. Linke for his indispensable glass blowing services, G. Tennant and M. Patapoff for their expert assistance in constructing the experimental apparatus, and J. Pinto for use of the output of our 1-D photochemical model prior to publication. We benefited greatly from discussions with W. B. DeMore.

This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS7-100, sponsored by the National Aeronautics and Space Administration. Part of the work was supported by NASA Grant NSG 2229 to the California Institute of Technology.
References and Notes

(3) C. J. Howard, private communication, 1979.

(15) C. J. Howard, results presented at the WMO Symposium, Toronto, June 1978.

(23) (a) the ratio \(\frac{[\text{BrNO}]}{[\text{NO}]} \) is given by \(\frac{\text{BrNO}}{\text{NO}} \) = \(\frac{k_8}{k_9} \). Substituting \(k_8 = 4.3 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1} \) (Van den Bergh and Troe, J. Chem. Phys., 64, 736 (1976)) and \(k_9 = 2 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1} \), an average of the rate constants for the \(\text{Cl} + \text{NO} \) and \(\text{Br} + \text{INO} \) reactions, (M. A. A. Clyne and H. Cruse, JCS, Far. Trans. II, 68, 1281 (1972)) one obtains \(\text{BrNO} \) = \(0.02 \text{[NO]} \). (b) The time required for BrNO to reach equilibrium is related to \(\text{Br} \), \(\text{NO} \), \(k_8 \) and \(k_9 \). For typical values of \(\text{Br} \) and \(\text{NO} \) (1.6 x 10^13 cm^3 and 5 x 10^14 cm^3 respectively), BrNO reaches 95% of its equilibrium concentration in 94.6 usec, which is short compared to the decay time for BrO.

CHAPTER V

A PRESSURE - DEPENDENCE KINETICS STUDY OF THE FORMATION OF BROMINE NITRATE AT 298 K

S. P. Sander and R. T. Watson*

Molecular Physics and Chemistry Section

Jet Propulsion Laboratory
Pasadena, CA 91103
ABSTRACT

The kinetics of the reaction BrO + NO₂ + N₂ → BrONO₂ + N₂ were studied from 50–700 Torr at 298 K. The flash photolysis-ultraviolet absorption technique was used to monitor the pseudo first-order decay of BrO (2Π) radicals in the presence of excess NO₂. The reaction was found to be in the fall-off region between second- and third-order kinetics in this pressure range. Estimates of the limiting third- and second-order rate constants, k₀ and k₂, were determined by fitting the observed fall-off curve to a theoretical expression developed by Troe and co-workers. The value of k₀ so derived was in good agreement with a preliminary determination of this rate constant made in our laboratory using the technique of discharge flow-mass spectrometry. The stratospheric implications of these measurements are discussed.
INTRODUCTION

Within the last few years, there has been considerable interest in the catalytic destruction of stratospheric ozone by trace (ppt–ppb) concentrations of NO_x, C_xX^2, and most recently, BrX. Each chemical family, e.g. ClX, can be partitioned into precursors (e.g. CFC_3), radicals (Cl, ClO) and reservoirs (HCl, ClONO$_2$ and HOCl). Molecules such as ClONO$_2$ and HOCl are normally thought of as reservoir species, implying that they act to reduce the concentrations of radicals which participate in ozone destroying catalytic cycles, thus decreasing the efficiency of odd oxygen destruction by ClX. However, depending on the rates and mechanisms of their photodissociation, these species may also participate in ozone destruction cycles. The net effect of these temporary reservoir species with respect to ozone depletion can be determined only by solving the coupled equations of atmospheric chemistry and transport. Doing so requires accurate kinetic data applicable to atmospheric conditions of pressure and temperature.

The rate constant for the formation of chlorine nitrate has been measured both in its third-order kinetic region (1 to 7 Torr total pressure) and in the fall-off region between second- and third-order kinetics (25 to 600 Torr). Discrepancies exist between rate measurements obtained by observing the overall rate of decay of ClO as in the flash photolysis, discharge flow and molecular modulation studies, and a technique based on the thermal decomposition of chlorine nitrate, leading to the speculation that several different ClNO$_3$ isomers may be formed. In contrast no rate data presently exist for the formation of bromine nitrate,
BrO + NO₂ + M → BrONO₂ + M \hspace{1cm} (1)

In this study, we report the rate constant for reaction 1 over the pressure range 50 to 700 Torr total pressure of N₂ at 298K using the flash photolysis-ultraviolet absorption technique. Like chlorine nitrate, the reaction is found to be in the intermediate second-third-order kinetic region over this pressure range. Using theoretical methods developed recently by Troe and co-workers8,9 it was possible to use this fall-off data to estimate the low- and high-pressure limiting rate constants, \(k_o \) and \(k_e \). The value determined for \(k_o \) was consistent with a preliminary experimental determination performed in our laboratory using the discharge flow-mass spectrometric technique. Because only BrO was observed in this study, the issue of isomer formation in reaction 1 could not be addressed.

EXPERIMENTAL SECTION

The flash photolysis-ultraviolet absorption apparatus has been described in detail previously.10 The quartz reaction cell was operated in the continuously flowing mode with a flashing frequency equal to the cell residence time (15-30s). As in our previous studies of BrO kinetics,10,11 BrO radicals were monitored by their absorption at 339.0 nm, near the band head of the \(\text{A}^2\Pi(v' = 4) \rightarrow \text{X}^2\Pi(v'' = 0) \) transition. Using a monochromator slit width of 100 \(\mu \)m and an absorption path length of 720 cm, the effective BrO cross-section was previously determined to be \((1.14 \pm 0.14) \times 10^{-17} \text{ cm}^2\).11 However, this parameter is not required for the data analysis because pseudo-first-order kinetics were employed.

An analog multichannel analyzer was employed to average from 10-50 separate BrO decay profiles. The temperature of the reaction cell was main-
tained at 298 ± 1K by circulating methanol through the outer cell

jacket from a constant temperature circulator.

Since pseudo-first-order conditions were employed ([NO₂]₀ >>
[BrO]₀), [BrO] obeyed the rate equation

\[\ln([\text{BrO}]_0/[\text{BrO}]) = k_1 [\text{NO}_2] t. \]

Beer's Law was used to relate the absorption signal to [BrO];

\[\ln(\ln(I_0/I_o) - \ln(I_0/I_t)) = k_1 [\text{NO}_2] t \]

where \(I_o, I_t \) and \(I_0 \) are the transmitted light intensities immediately
after the flash, at time \(t \) and after many BrO half-lives, respectively.

BrO radicals were produced by the reaction of oxygen atoms with
molecular bromine;

\[\text{O}_2 + \text{hv} \rightarrow 2\text{O} \quad (2) \]

\[\text{O} + \text{Br}_2 \rightarrow \text{BrO} + \text{Br} \quad (3) \quad k_3 = 1.4 \times 10^{-11} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1} \]

(Rate constants quoted in the text are from ref. 12 unless otherwise
indicated.) Oxygen atoms were produced from the photolysis of molecular
oxygen in the wavelength region \(\lambda > 180 \text{nm} \). A flash energy of 500J
dissociated only 0.0015% of the molecular oxygen, necessitating large
\(\text{O}_2 \) concentrations, typically around \(1 \times 10^{18} \) molecule cm\(^{-3} \) to produce
BrO concentrations of \((1-2) \times 10^{13} \) molecule cm\(^{-3} \). At the lowest total
pressures employed in this study (50-100 Torr) where such high \(\text{O}_2 \) con-
centrations would have contributed a non-negligible third-body effect,
\(\text{O}_2 \) was not added. Photolysis of the \(\text{NO}_2 \) present as a reactant provided
a sufficient number of oxygen atoms via reaction 4 to produce BrO in
concentrations less than \(\sim 2 \times 10^{13} \) molecule cm\(^{-3} \).

\[\text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O}(^3\text{P}) \quad (4) \]
\(\text{N}_2\text{O} \) was used as an additional oxygen atom source in a few runs at 50 and 100 Torr.

\[
\text{N}_2\text{O} + \text{hv} \rightarrow \text{N}_2 + \text{O}^{(1}\text{D})
\]

(5)

However, because \(\text{N}_2\text{O} \) photolyzes relatively inefficiently it was not a good source of atomic oxygen. The disadvantage of both these oxygen atom precursors is that NO, which reacts rapidly with BrO via reaction 6, is formed as a by-product.

\[
\text{NO} + \text{BrO} \rightarrow \text{NO}_2 + \text{Br} \quad \text{6} \quad k_6 = 2.1 \times 10^{-11} \text{ cm molecule}^{-1} \text{s}^{-1}
\]

NO is formed directly from the photolysis of \(\text{NO}_2 \), and in reaction 7a when \(\text{N}_2\text{O} \) is added.

\[
\text{O}^{(1}\text{D}) + \text{N}_2\text{O} \rightarrow 2\text{NO} \quad \text{7a} \quad k_{7a} = 8.6 \times 10^{-11} \text{ cm molecule}^{-1} \text{s}^{-1}
\]

\[
+ \text{N}_2 + \text{O}_2 \quad \text{7b} \quad k_{7b} = 7.4 \times 10^{-11} \text{ cm molecule}^{-1} \text{s}^{-1}
\]

NO production from \(\text{NO}_2 \) photolysis, both by the photolysis flash lamp and the analyzing lamp, was minimized by a series of measures. First, the lowest possible flash lamp energy was used that was consistent with a given signal-to-noise ratio. This was typically less than 700J per flash. Second, the flash lamp filter cell was filled with a \(\text{Cl}_2\text{-Br}_2 \) mixture which, at equilibrium, contained 60 Torr \(\text{BrCl} \) and 200 Torr \(\text{Cl}_2 \). \(\text{BrCl} \) has an absorption band centered at 370nm. The \(\text{BrCl} \) and \(\text{Cl}_2 \) absorbed a portion of the light which would otherwise have resulted in \(\text{NO}_2 \) photolysis. Photolysis also occurred in the spectroscopic analysis beam. This was suppressed by placing a 10cm cell containing 200 Torr \(\text{Br}_2 \) in the analysis beam to filter out its near-UV spectral component. A manually operated shutter was also placed in the analytical beam path which was opened a few seconds before the photolysis flash and closed.
immediately thereafter. These measures reduced the NO$_2$ photolysis due to the flash lamp to 0.18% per flash at 389J flash energy without reducing the efficiency of O$_2$ photolysis, and practically eliminated NO$_2$ photolysis from the analysis lamp. The effect of photolytically produced NO is treated in the Results section.

The range of reagent concentrations were (in molecule cm$^{-3}$):

$[\text{Br}_2] \times 10^{-15}$: 1.0 - 18.9; $[\text{O}_2] \times 10^{-18}$: 1.5 - 3.4; $[\text{N}_2\text{O}] \times 10^{-17}$: 1.0 - 5.3; $[\text{NO}_2] \times 10^{-15}$: 0.34 - 8.6. $[\text{BrO}]_o$ ranged from 0.5 to 4 $\times 10^{13}$ molecule cm$^{-3}$ by changing $[\text{O}_2]$ or flash energy (300-700J). This resulted in initial analytical beam absorptions of 4-28%. Molecular bromine concentrations were high enough to ensure that 99% of the atomic oxygen was converted to BrO radicals within 50us after the photolytic flash. Characteristic times for BrO formation were always at least ten times shorter than those for BrO loss by reaction 1. Diluent gases (He, N$_2$, O$_2$) all had a stated purity >99.99%. Br$_2$ was purified by extensive freeze-thaw degassing followed by fractional distillation.

NO$_2$-O$_2$ mixtures were made by reacting small amounts of NO (Matheson C.P. Grade, 99.0% purity) with a large excess of O$_2$ and allowing sufficient time for complete conversion. NO$_2$ mixtures were stored and transferred in darkened bulbs and lines.

RESULTS

Pseudo-first-order rate constants (k'_1) for bromine nitrate formation were measured at total pressures of 50, 100, 200, 300, 400, 500, 600 and 700 Torr using N$_2$ as the diluent gas. Values of $[\text{NO}_2]_o/[\text{BrO}]_o$, the initial reactant stoichiometry, ranged from 10-200 thus maintaining good pseudo-first-order conditions at all times. A total of 129 kinetic
runs were conducted. The most important parameters for each kinetic run are given in Table I. Values of $[\text{BrO}]_0$ are obtained by extrapolating the BrO concentration back from the first measurable point ($t \sim 90 \mu s$) to the estimated point of maximum $[\text{BrO}]$ at $t \sim 25 \mu s$.10

BrO decays were typically observed over 2 to 5 half-lives, depending on initial radical concentrations. Plots of k_1' vs. $[\text{NO}_2]$ at each pressure were linear with small y-intercepts. These plots show no evidence of a BrO removal process other than reaction with NO$_2$. An obvious trend of k_1' with pressure is observed with the rate constant increasing by a factor of about five as the pressure is increased from 50 to 700 Torr of N$_2$. A graph containing several k_1' vs. $[\text{NO}_2]$ plots at different pressures is shown in Figure 1 illustrating that the reaction is first order in NO$_2$ and that the rate constant has a pressure dependence. The variation of k_1 with pressure is shown in Figure 2.

Table II contains the measured bimolecular rate constants derived both by averaging the values of $k_1'/[\text{NO}_2]$ for each run, and by computing the least-squares slopes of the k_1' vs. $[\text{NO}_2]$ plots. While differences of up to 22% are observed between the rate constants calculated by the two methods, the average difference over the entire pressure range is only about 2% indicating that the differences are due only to experimental scatter. The preferred rate constants are obtained from the averages of the individual runs rather than the slopes. In the 50 and 100 Torr experiments, the runs which contain N$_2$O have higher average rate constants than the ones which do not. This effect may be due to a higher N$_2$O third-body efficiency or a small amount of NO formation from reaction 7a. For these pressures, the final rate constant has been obtained by averaging the two sets of data.
Table I. Reaction Rate Data for $\text{BrO} + \text{NO}_2 + \text{M}$

<table>
<thead>
<tr>
<th>Flash Energy J</th>
<th>$[\text{O}_2]$ $\times 10^{-18}$ molecule cm$^{-3}$</th>
<th>$[\text{Br}_2]$ $\times 10^{-15}$</th>
<th>$[\text{BrO}]_o$ $\times 10^{-13}$</th>
<th>$[\text{NO}_2]$ $\times 10^{-15}$</th>
<th>k' measured</th>
<th>k' corrected</th>
<th>k x 10^{12} cm3 molec$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.65</td>
<td>1.12</td>
<td>521</td>
<td>450</td>
<td>0.402</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>0.62</td>
<td>1.28</td>
<td>929</td>
<td>870</td>
<td>0.680</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.58</td>
<td>1.49</td>
<td>711</td>
<td>620</td>
<td>0.416</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.79</td>
<td>1.56</td>
<td>669</td>
<td>580</td>
<td>0.372</td>
</tr>
<tr>
<td>389</td>
<td>0.39</td>
<td>12.4</td>
<td>1.1</td>
<td>1.91</td>
<td>1340</td>
<td>1250</td>
<td>0.654</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.95</td>
<td>1.95</td>
<td>928</td>
<td>810</td>
<td>0.415</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>1.1</td>
<td>2.47</td>
<td>1630</td>
<td>1520</td>
<td>0.615</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>1.1</td>
<td>3.00</td>
<td>1560</td>
<td>1370</td>
<td>0.457</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>1.1</td>
<td>3.01</td>
<td>1890</td>
<td>1750</td>
<td>0.581</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>1.1</td>
<td>3.01</td>
<td>2100</td>
<td>1960</td>
<td>0.651</td>
</tr>
<tr>
<td>389</td>
<td>0.38</td>
<td>12.4</td>
<td>1.2</td>
<td>3.48</td>
<td>2610</td>
<td>2440</td>
<td>0.701</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>1.2</td>
<td>4.36</td>
<td>2592</td>
<td>2310</td>
<td>0.530</td>
</tr>
<tr>
<td>389</td>
<td>0.18</td>
<td>12.4</td>
<td>1.2</td>
<td>4.45</td>
<td>2580</td>
<td>2360</td>
<td>0.530</td>
</tr>
<tr>
<td>389</td>
<td>0.098</td>
<td>12.4</td>
<td>1.1</td>
<td>4.75</td>
<td>2510</td>
<td>2270</td>
<td>0.478</td>
</tr>
<tr>
<td>389</td>
<td>0.0</td>
<td>12.4</td>
<td>1.0</td>
<td>5.05</td>
<td>2800</td>
<td>2550</td>
<td>0.505</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>1.5</td>
<td>5.15</td>
<td>3330</td>
<td>3070</td>
<td>0.596</td>
</tr>
<tr>
<td>389</td>
<td>0.0</td>
<td>13.9</td>
<td>1.3</td>
<td>5.15</td>
<td>3360</td>
<td>3100</td>
<td>0.601</td>
</tr>
<tr>
<td>389</td>
<td>0.0</td>
<td>13.9</td>
<td>1.3</td>
<td>5.65</td>
<td>3380</td>
<td>3100</td>
<td>0.549</td>
</tr>
<tr>
<td>389</td>
<td>0.35</td>
<td>12.4</td>
<td>1.2</td>
<td>6.01</td>
<td>3100</td>
<td>2790</td>
<td>0.464</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>1.5</td>
<td>6.50</td>
<td>3930</td>
<td>3500</td>
<td>0.538</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>2.7</td>
<td>6.60</td>
<td>4230</td>
<td>3890</td>
<td>0.589</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>1.5</td>
<td>7.49</td>
<td>3950</td>
<td>3560</td>
<td>0.475</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>1.8</td>
<td>8.11</td>
<td>5059</td>
<td>4500</td>
<td>0.555</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>3.1</td>
<td>8.63</td>
<td>6250</td>
<td>5790</td>
<td>0.671</td>
</tr>
<tr>
<td>389</td>
<td>0.36</td>
<td>13.9</td>
<td>3.1</td>
<td>8.63</td>
<td>6360</td>
<td>5900</td>
<td>0.684</td>
</tr>
</tbody>
</table>

$k = (5.49 \pm 0.97) \times 10^{-13}$

$P_{\text{TOT}} = 50$ Torr N_2

| 389 | 1.73* | 9.94 | 0.80 | 0.511 | 667 | 645 | 1.26 |
| 389 | 1.82* | 10.0 | 0.79 | 0.590 | 447 | 420 | 0.712 |

$P_{\text{TOT}} = 100$ Torr N_2
<table>
<thead>
<tr>
<th>Flash Energy</th>
<th>$[O_2]$ x 10^{-18}</th>
<th>$[Br_2]$ x 10^{-15}</th>
<th>$[BrO]_0$ x 10^{-13}</th>
<th>$[NO_2]$ x 10^{-15}</th>
<th>k' measured</th>
<th>k' corrected</th>
<th>k x 10^{12} cm3 molec$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>molecule cm$^{-3}$</td>
<td>s$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>1.82*</td>
<td>10.0</td>
<td>0.91</td>
<td>0.950</td>
<td>771</td>
<td>729</td>
<td>0.767</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>1.3</td>
<td>1.13</td>
<td>1140</td>
<td>1090</td>
<td>0.965</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.67</td>
<td>1.30</td>
<td>1140</td>
<td>1060</td>
<td>0.815</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>0.90</td>
<td>1.31</td>
<td>1370</td>
<td>1310</td>
<td>1.00</td>
</tr>
<tr>
<td>389</td>
<td>0.53</td>
<td>10.0</td>
<td>1.0</td>
<td>1.40</td>
<td>1760</td>
<td>1700</td>
<td>1.21</td>
</tr>
<tr>
<td>389</td>
<td>1.73*</td>
<td>9.94</td>
<td>1.0</td>
<td>1.51</td>
<td>1169</td>
<td>1100</td>
<td>0.728</td>
</tr>
<tr>
<td>389</td>
<td>1.82*</td>
<td>10.0</td>
<td>1.0</td>
<td>1.58</td>
<td>1330</td>
<td>1260</td>
<td>0.797</td>
</tr>
<tr>
<td>389</td>
<td>0.17</td>
<td>11.4</td>
<td>1.0</td>
<td>1.65</td>
<td>1820</td>
<td>1750</td>
<td>1.06</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>1.3</td>
<td>1.70</td>
<td>1610</td>
<td>1530</td>
<td>0.900</td>
</tr>
<tr>
<td>691</td>
<td>0.37</td>
<td>10.9</td>
<td>3.0</td>
<td>1.70</td>
<td>1930</td>
<td>1680</td>
<td>0.988</td>
</tr>
<tr>
<td>941</td>
<td>0.37</td>
<td>10.9</td>
<td>5.3</td>
<td>1.75</td>
<td>2170</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.48</td>
<td>10.9</td>
<td>0.48</td>
<td>1.77</td>
<td>2030</td>
<td>1990</td>
<td>1.12</td>
</tr>
<tr>
<td>527</td>
<td>0.0</td>
<td>18.9</td>
<td>0.95</td>
<td>1.93</td>
<td>2110</td>
<td>1990</td>
<td>1.03</td>
</tr>
<tr>
<td>389</td>
<td>1.82*</td>
<td>10.0</td>
<td>1.1</td>
<td>2.23</td>
<td>1732</td>
<td>1630</td>
<td>0.731</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>1.4</td>
<td>2.27</td>
<td>2170</td>
<td>2060</td>
<td>0.907</td>
</tr>
<tr>
<td>389</td>
<td>1.73*</td>
<td>9.94</td>
<td>1.1</td>
<td>2.54</td>
<td>1719</td>
<td>1600</td>
<td>0.630</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.97</td>
<td>2.55</td>
<td>2750</td>
<td>2590</td>
<td>1.02</td>
</tr>
<tr>
<td>691</td>
<td>0.37</td>
<td>10.9</td>
<td>4.4</td>
<td>2.84</td>
<td>3280</td>
<td>3040</td>
<td>1.07</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>1.5</td>
<td>2.84</td>
<td>3000</td>
<td>2860</td>
<td>1.01</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>1.6</td>
<td>2.89</td>
<td>3280</td>
<td>3140</td>
<td>1.09</td>
</tr>
<tr>
<td>941</td>
<td>0.37</td>
<td>10.9</td>
<td>6.9</td>
<td>2.95</td>
<td>3780</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.37</td>
<td>10.9</td>
<td>0.51</td>
<td>2.98</td>
<td>3050</td>
<td>2980</td>
<td>1.00</td>
</tr>
<tr>
<td>389</td>
<td>1.82*</td>
<td>10.0</td>
<td>1.3</td>
<td>3.05</td>
<td>2197</td>
<td>2050</td>
<td>0.672</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>1.2</td>
<td>3.33</td>
<td>3920</td>
<td>3710</td>
<td>1.11</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>1.5</td>
<td>3.40</td>
<td>3070</td>
<td>2900</td>
<td>0.853</td>
</tr>
<tr>
<td>389</td>
<td>1.73*</td>
<td>9.94</td>
<td>1.2</td>
<td>3.56</td>
<td>2248</td>
<td>2070</td>
<td>0.581</td>
</tr>
<tr>
<td>389</td>
<td>0.53</td>
<td>10.0</td>
<td>1.3</td>
<td>3.85</td>
<td>3720</td>
<td>3530</td>
<td>0.917</td>
</tr>
<tr>
<td>691</td>
<td>0.37</td>
<td>10.9</td>
<td>1.4</td>
<td>3.97</td>
<td>3880</td>
<td>3530</td>
<td>0.889</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>3.5</td>
<td>3.97</td>
<td>3640</td>
<td>3440</td>
<td>0.866</td>
</tr>
<tr>
<td>389</td>
<td>1.82*</td>
<td>10.0</td>
<td>1.5</td>
<td>3.98</td>
<td>3731</td>
<td>3530</td>
<td>0.887</td>
</tr>
<tr>
<td>941</td>
<td>0.37</td>
<td>10.9</td>
<td>6.7</td>
<td>4.11</td>
<td>5420</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
Table I. (Cont.)

<table>
<thead>
<tr>
<th>Flash Energy</th>
<th>$[O_2]$ x 10^{-18}</th>
<th>$[Br_2]$ x 10^{-15}</th>
<th>$[BrO]$ x 10^{-13}</th>
<th>$[NO_2]$ x 10^{-15}</th>
<th>k' measured</th>
<th>k' corrected</th>
<th>k x 10^{12} cm^3 molec^{-1} s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>molecule cm^{-3}</td>
<td>s^{-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>1.0</td>
<td>4.32</td>
<td>4350</td>
<td>4070</td>
<td>0.942</td>
</tr>
<tr>
<td>389</td>
<td>0.17</td>
<td>11.4</td>
<td>1.1</td>
<td>4.34</td>
<td>3480</td>
<td>3260</td>
<td>0.751</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>2.4</td>
<td>4.54</td>
<td>5360</td>
<td>5130</td>
<td>1.13</td>
</tr>
<tr>
<td>389*</td>
<td>1.82</td>
<td>10.0</td>
<td>2.1</td>
<td>4.58</td>
<td>4888</td>
<td>4510</td>
<td>0.985</td>
</tr>
<tr>
<td>389*</td>
<td>1.73</td>
<td>9.94</td>
<td>2.0</td>
<td>4.60</td>
<td>4941</td>
<td>4710</td>
<td>1.02</td>
</tr>
<tr>
<td>529</td>
<td>0.0</td>
<td>18.9</td>
<td>0.97</td>
<td>4.89</td>
<td>3950</td>
<td>3630</td>
<td>0.742</td>
</tr>
<tr>
<td>389</td>
<td>0.37</td>
<td>10.9</td>
<td>2.5</td>
<td>5.10</td>
<td>4520</td>
<td>4260</td>
<td>0.835</td>
</tr>
</tbody>
</table>

$k = (9.18 \pm 1.64) \times 10^{-13}$

$P_{TOT} = 200$ Torr, N_2

<table>
<thead>
<tr>
<th>J</th>
<th>k' measured</th>
<th>k' corrected</th>
<th>k x 10^{12} cm^3 molec^{-1} s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td>3.40</td>
<td>11.1</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>0.522</td>
<td>656</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1390</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1916</td>
<td>1850</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>3007</td>
<td>2920</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>3506</td>
<td>3360</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>6264</td>
<td>6090</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>402</td>
<td>5190</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>4.52</td>
<td>6906</td>
</tr>
</tbody>
</table>

$k = (1.36 \pm 0.20) \times 10^{-12}$

$P_{TOT} = 300$ Torr, N_2

<table>
<thead>
<tr>
<th>J</th>
<th>k' measured</th>
<th>k' corrected</th>
<th>k x 10^{12} cm^3 molec^{-1} s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td>1.5</td>
<td>9.9</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>0.6883</td>
<td>1289</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>2276</td>
<td>2220</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>2417</td>
<td>2340</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
<td>3157</td>
<td>3070</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>3374</td>
<td>3270</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>4107</td>
<td>3990</td>
</tr>
</tbody>
</table>

$k = (1.60 \pm 0.15) \times 10^{-12}$
<table>
<thead>
<tr>
<th>Flash Energy J</th>
<th>[O₂] x 10⁻¹⁸</th>
<th>[Br₂] x 10⁻¹⁵</th>
<th>[BrO]₀ x 10⁻¹³</th>
<th>[NO₂] measured</th>
<th>k' corrected</th>
<th>k x 10⁺¹² cm⁻³ molecule⁻¹ s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>389 3.0 10.0</td>
<td>1.0 0.341</td>
<td>0.95 0.501</td>
<td>0.98 0.661</td>
<td>1.0 0.814</td>
<td>1.3 0.983</td>
<td>1.2 1.14</td>
</tr>
</tbody>
</table>

\[\bar{k} = (1.94 \pm 0.33) \times 10^{-12} \]

<table>
<thead>
<tr>
<th>P_TOT = 500 Torr, N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>389 0.36 10.0 1.3 0.544 1300 1280 2.35</td>
</tr>
<tr>
<td>2.3 0.85 0.586 1410 1380 2.35</td>
</tr>
<tr>
<td>2.3 1.1 1.17 3010 2960 2.53</td>
</tr>
<tr>
<td>0.36 1.5 1.62 3950 3880 2.40</td>
</tr>
<tr>
<td>2.3 0.75 1.76 3490 3410 1.94</td>
</tr>
<tr>
<td>2.3 1.3 2.34 5190 5080 2.17</td>
</tr>
<tr>
<td>0.36 2.0 2.67 6310 6180 2.31</td>
</tr>
<tr>
<td>0.36 1.2 2.93 5470 5330 1.82</td>
</tr>
<tr>
<td>2.3 1.4 3.51 7750 7580 2.16</td>
</tr>
<tr>
<td>0.36 3.0 3.70 9490 9310 2.52</td>
</tr>
<tr>
<td>2.3 1.4 4.10 7956 7750 1.89</td>
</tr>
<tr>
<td>Flash Energy</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>2.3</td>
</tr>
<tr>
<td>0.36</td>
</tr>
</tbody>
</table>

$k = (2.25 \pm 0.38) \times 10^{-12}$

$P_{TOT} = 600$ Torr, N_2

389	3.1	13	1.0	0.427	1248	1230	2.88
1.2	0.872	2464	2430	2.79			
1.5	1.74	4219	4140	2.38			
1.1	2.18	5320	5220	2.39			
1.6	2.62	7142	7020	2.68			
2.5	12	1.3	2.74	7572	7440	2.72	
3.1	13	1.9	3.49	7716	7550	2.16	
2.5	12	2.0	5.47	13868	13600	2.49	

$k = (2.56 \pm 0.24) \times 10^{-12}$

$P_{TOT} = 700$ Torr, N_2

<p>| 389 | 3.2 | 11 | 1.0 | 0.408 | 1220 | 1200 | 2.94 |
| 1.1 | 0.621 | 2111 | 2080 | 3.35 |
| 1.0 | 0.842 | 2441 | 2400 | 2.85 |
| 0.97 | 1.05 | 2650 | 2600 | 2.48 |
| 0.95 | 1.33 | 3508 | 3450 | 2.59 |
| 1.0 | 1.59 | 4409 | 4340 | 2.73 |
| 1.4 | 1.93 | 5169 | 5080 | 2.63 |
| 1.6 | 2.63 | 7462 | 7340 | 2.79 |
| 2.5 | 2.78 | 9420 | 9290 | 3.34 |
| 2.1 | 3.75 | 12154 | 12000 | 3.20 |</p>
<table>
<thead>
<tr>
<th>Flash Energy</th>
<th>$[O_2]$ x 10^{-18}</th>
<th>$[Br_2]$ x 10^{-15}</th>
<th>$[BrO]_o$ x 10^{-13}</th>
<th>$[NO_2]$ x 10^{-15}</th>
<th>k' measured</th>
<th>k' corrected</th>
<th>k x 10^{12} cm3 molecule$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>molecule cm$^{-3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>3.92</td>
<td>11869</td>
<td>11700</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>4.75</td>
<td>15598</td>
<td>15400</td>
<td>3.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>5.82</td>
<td>18732</td>
<td>18400</td>
<td>3.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>5.85</td>
<td>20354</td>
<td>20000</td>
<td>3.42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$k = (2.98 \pm 0.31) \times 10^{-12}$

a For $p_{TOT} = 50$ and 100 Torr runs, N_2O is used instead of O_2 unless indicated by an (*)

b Experiments at high flash energy (941J) were not averaged into the final results.
Figure 1. Variation of the pseudo first-order rate constant for the decay of BrO with \([\text{NO}_2]\) at pressures of 100 Torr (○), 400 Torr (□) and 700 Torr (△) of nitrogen.
Figure 2. Variation of the effective bimolecular rate constant for the reaction \(XO + NO_2 + N_2 \rightarrow XONO_2 + N_2 \) for \(X = Br \) (this work) and \(Cl \) (data of Cox and Lewis, ref. 6).
<table>
<thead>
<tr>
<th>Total pressure</th>
<th>$k_1 \times 10^{12}$ cm3 molecule$^{-1}$s$^{-1}$</th>
<th>meana</th>
<th>slopeb</th>
<th>y-interceptb (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Torr</td>
<td>0.549 ± 0.10</td>
<td>0.615</td>
<td></td>
<td>-248</td>
</tr>
<tr>
<td>100 Torr</td>
<td>0.918 ± 0.16</td>
<td>0.874</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>200 Torr</td>
<td>1.36 ± 0.20</td>
<td>1.46</td>
<td></td>
<td>-174</td>
</tr>
<tr>
<td>300 Torr</td>
<td>1.60 ± 0.15</td>
<td>1.41</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>400 Torr</td>
<td>1.94 ± 0.33</td>
<td>1.59</td>
<td></td>
<td>564</td>
</tr>
<tr>
<td>500 Torr</td>
<td>2.25 ± 0.38</td>
<td>2.31</td>
<td></td>
<td>-168</td>
</tr>
<tr>
<td>600 Torr</td>
<td>2.56 ± 0.24</td>
<td>2.40</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>700 Torr</td>
<td>2.98 ± 0.31</td>
<td>3.36</td>
<td></td>
<td>-708</td>
</tr>
<tr>
<td>50 (without N$_2$O) Torr</td>
<td>0.485 ± 0.076</td>
<td>0.595</td>
<td></td>
<td>-298</td>
</tr>
<tr>
<td>50 (with N$_2$O) Torr</td>
<td>0.598 ± 0.082</td>
<td>0.603</td>
<td></td>
<td>-63</td>
</tr>
<tr>
<td>100 (without N$_2$O) Torr</td>
<td>0.943 ± 0.14</td>
<td>0.772</td>
<td></td>
<td>482</td>
</tr>
<tr>
<td>100 (with N$_2$O, O$_2$) Torr</td>
<td>0.977 ± 0.12</td>
<td>0.828</td>
<td></td>
<td>354</td>
</tr>
</tbody>
</table>

a Average of $k_1/[NO_2]$ values for each run at the stated pressure.

b Least-squares slope and y-intercept of k_1' vs. [NO$_2$] plot.

Experimental fall-off parameters (see text):

$k_o = (4.5 \pm 1.5) \times 10^{-31}$ cm6 molecule$^{-2}$ s$^{-1}$

$k_w = (1.05 \pm 0.15) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$

$F_c = 0.53 \pm 0.10$
A number of potentially complicating reactions may take place which must be considered. These include the reactions of BrO with BrO and NO;

\[
\begin{align*}
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 \quad (8a) \\
& \quad + \text{Br}_2 + \text{O}_2 \quad (8b) \\
\text{BrO} + \text{NO} & \rightarrow \text{Br} + \text{NO}_2 \quad (6)
\end{align*}
\]

Previous work in this laboratory has shown\(^{11}\) that \(k_{8a} + k_{8b} = (2.2 \pm 0.7) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\). The effect of reaction 8 on the BrO decay rate can be estimated by evaluating the ratio \(k_8[\text{BrO}]/k_1[\text{NO}_2]\) for each kinetic run. The average value of this ratio for all runs is 0.015 using \([\text{BrO}] = [\text{BrO}]_0\) and 0.004 using \([\text{BrO}] = [\text{BrO}]_0/4\), the "average value" of \([\text{BrO}]\) for each run. The effect of reaction 8 is therefore negligible.

Reaction 6 can occur as a result of NO being formed from three processes: photolysis of NO\(_2\) (reaction 4), the reaction of O with NO\(_2\),

\[
\text{O} + \text{NO}_2 \rightarrow \text{NO} + \text{O}_2 \quad (9) \quad k_9 = 9.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}
\]

and reaction 7a,

\[
{^1D}\text{O} + \text{N}_2\text{O} \rightarrow 2\text{NO} \quad (7a)
\]

when N\(_2\)O is present. Of these reactions, NO\(_2\) photolysis is most significant, followed in importance by reaction 9. Because of the low N\(_2\)O photodissociation rate in our system, reaction 7a can be ignored.

The value of \(k_1'\) obtained in each kinetic run was corrected for the amount of BrO which reacted with the NO formed in reactions 4 and 9. The NO formed by photodissociation was calculated by two methods. In the first, NO\(_2\)-O\(_2\) mixtures were repeatedly photolyzed and the NO\(_2\) dis-
appearance measured. The percentage NO₂ dissociation per flash was calculated assuming a quantum yield of 2.0. In the second method, the NO₂ dissociation was calculated from measured values of [BrO]₀ in runs where NO₂ photolysis was the only source of oxygen atoms. Agreement between the two methods was good, however the first method was assumed to be more accurate and was therefore used to compute the amount of NO formed. The value of 0.18% NO₂ photolyzed per flash at 389 J was linearly scaled with flash energy. The average correction decreased monotonically from 8.8% at 50 Torr to 1.6% at 700 Torr reflecting the increase in the ratio of k_1/k_6 with pressure.

At a flash energy of 700 J, about 5% of the molecular bromine is dissociated leading to initial atomic bromine concentrations of 0.5-2 x 10⁻¹⁵ molecule cm⁻³. In the presence of NO₂, Br undergoes rapid catalytic recombination by the sequence of reactions

\[\text{Br + NO}_2 + M \rightarrow \text{BrNO}_2 + M \] \hspace{1cm} (10)

\[\text{Br + BrNO}_2 \rightarrow \text{Br}_2 + \text{NO}_2 \] \hspace{1cm} (11)

Reactions 10 and 11 pose a complication if a significant fraction of the NO₂ becomes tied up in the form of BrNO₂. Rate constants for these reactions have not been measured; however, there are rate data for the X + NO₂ + M reaction (X = F, Cl, I and M = He, N₂) and for the X + XNO₂ reaction (X = F, I).¹³,¹⁴ On this basis, we estimate $k_{10} = 2.2 \times 10^{-31}$ cm⁶ molecule⁻² s⁻¹, M = He and 4.4×10^{-31} cm⁶ molecule⁻² s⁻¹, M = N₂, and $k_{11} = 8.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ with uncertainty factors of two for k_{10} and four for k_{11}. Numerical simulations of reactions 10 and 11 were performed using a range of conditions representative of the actual experiments and rate constant uncertainties: [NO₂]₀ = 1-10 x 10¹⁵ molecule cm⁻³ s⁻¹, $k_{10} = 1.2-12 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ and $k_{11} = 2-8 \times$
$10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The variation in k_{10} also incorporates the effect of changing the total pressure over an order of magnitude from 76 to 760 Torr N_2, assuming that reaction 10 is third-order up to one atmosphere. The results indicate that at low pressure, the maximum depletion of NO_2 expected under worst-case conditions (low $[NO_2]_0$, $k_{11} = 2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) is 5.5%. This increases to 34% at high pressure. Under more realistic conditions ($k_{11} = 8 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) the NO_2 depletion drops to 1.5% and 10%, respectively. These results indicate that the formation of $BrNO_2$ should have had no discernible effect except at pressures exceeding 300-400 Torr where the effect would be dependent on $[NO_2]_0$. Because of this $[NO_2]$ dependence, the formation of $BrNO_2$, if it was significant, should have manifested itself as curvature and a negative y-intercept in the plots of k_1' vs. $[NO_2]$. Since neither feature was observed, and the rate constants required to make an accurate correction are unavailable, the effect of $BrNO_2$ was ignored. Since reactions 10 and 11 occur on a rapid time scale (less than 100 μs to reach 95% of equilibrium conditions), bromine atoms are removed much more rapidly than if bimolecular recombination,

$$Br + Br + M \rightarrow Br_2 + M \quad (12) \quad k_{12} = 9.1 \times 10^{-33} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$$

was the only reaction. The rapid approach to equilibrium also ensures that any changes in the baseline analytical light absorption due to Br_2 and $BrNO_2$ will not interfere with the detection of BrO.

Thermal decomposition of $BrONO_2$,

$$BrONO_2 + M \rightarrow BrO + NO_2 + M \quad (-I)$$

can also affect the determination of k_1 as it occurs on the same time scale as the formation step. Although direct measurements of the gas-
phase unimolecular decomposition rate have not been conducted for
BrONO$_2$, data do exist for ClONO$_2$.5 Assuming the same decomposition
rate constants for ClONO$_2$ and BrONO$_2$, an upper limit for k_{-1} at 700
Torr is obtained by assuming that the decomposition is still in the
second-order region at this pressure. At 298K and 700 Torr the equiva-
 lent first-order rate constant is ≈ 0.0013 s$^{-1}$. This compares with a
value of 1200 s$^{-1}$, the smallest first-order rate constant observed at
700 Torr for the association reaction. The effects of the thermal
decomposition of BrONO$_2$ can therefore be ignored.

Absorption of the analytical light by the product BrONO$_2$ does not
pose a problem in the determination of k_{-1}. BrONO$_2$ absorbs very weakly
at 339.0 nm; the ratio of the absorption cross-sections for BrO11 and
BrONO$_2$15 is 126. Even if the BrONO$_2$ absorption were appreciable, it
can be shown16 that an absorber (BrONO$_2$) formed as a primary product of
the reaction of the species being monitored (BrO) does not interfere
with the measurement of k' as long as I_o is evaluated at a time long
compared with the BrO reaction time but short compared with the cell
residence time.

As indicated above, the system was operated in the continuously
flowing mode with the cell contents being entirely replaced between
flashes. Problems due to depletion of NO$_2$ and build-up of reaction
products such as BrONO$_2$ and BrNO$_2$ were therefore not encountered.

DISCUSSION

There are no published measurements of k_{-1} although Ray and Watson,17
using discharge flow-mass spectroscopy, have obtained the following pre-
liminary third-order values of k_{-1}: $(2.33 \pm 0.42) \times 10^{-31}$ cm6 molecule$^{-2}$
s^{-1} ($M = \text{He}$, 1-7 Torr total pressure) and $(5.3 \pm 0.7) \times 10^{-31}$ cm6
molecule$^{-2}$ s$^{-1}$ (M = \(N_2\), 1-4 Torr total pressure). Quoted uncertainties are 2\(\sigma\). There are a number of studies of the analogous ClO + NO$_2$ reaction.

\[
\text{ClO} + \text{NO}_2 + \text{M} \rightarrow \text{ClONO}_2 + \text{M}
\]

(13)

both in the third-order region (1-7 Torr)4 and the fall-off region between second- and third-order kinetics.5-7 Kauth and co-workers5 found little fall-off (<5%) at pressures up to 210 Torr of \(N_2\), with the fall-off increasing to 20% at 350 Torr. Cox and Lewis,6 who measured \(k_{13}\) in the pressure range 25 to 612 Torr of \(N_2\) observed somewhat more fall-off. Their value obtained at 25 Torr is in excellent agreement with the extrapolated third-order rate constant obtained by averaging the results of the five discharge-flow studies ((1.7 ± 0.2) \(\times\) 10$^{-31}$ cm6 molecule$^{-2}$ s$^{-1}$).

Moreover, the rate constant found by Cox and Lewis at 612 Torr of \(N_2\) is only about 1.7 less than the average third-order rate constant extrapolated to this pressure. In contrast, the value of \(k_\perp\) at 600 Torr obtained in this study is a factor of 4.0 less than the extrapolated third-order rate constant of Ray and Watson. These results indicate that not only is the third-order rate constant for the BrO + NO$_2$ + M reaction two to three times faster than the ClO + NO$_2$ + M reaction third-order rate constant, but the rate constant fall-off is more pronounced in the BrO case.

The rate constant data obtained for M = \(N_2\) show significant deviations from Lindemann-type behavior. Recent work by Troe and co-workers8 has shown that the three-parameter equation,

\[
k([M], T) = \frac{k_o(T)[M]}{k_o(T)[M] + k_{\infty}(T)} \left(1 + \frac{\log_{10}(k_o(T)[M]/k_{\infty}(T))}{k_{\infty}(T)}\right)^2\]

(1)

which contains a correction to the usual Lindemann expression, can be
used to fit rate constant fall-off curves. The details of this procedure as applied to the reaction

$$\text{CH}_3\text{O}_2 + \text{NO}_2 + M \rightarrow \text{CH}_3\text{O}_2\text{NO}_2 + M$$

have been described previously. The parameters derived from nonlinear least squares curve fitting of the data for $M = \text{N}_2$ to eqn. 1 were: $k_o = (4.5 \pm 1.5) \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$, $k_\infty = (1.05 \pm 0.15) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $F_c = 0.53 \pm 0.10$. The uncertainties represent the variation in the fitted parameters obtained when the mean-squared error is allowed to increase by ~ 10-20\% from its minimum value (see Table III).

Because the Troe fall-off expression contains three parameters, satisfactory fits to the data are obtainable with a wide range of parameter choices, particularly when the extent of fall-off is relatively small. Table III presents the results of curve fitting calculations on the BrONO$_2$ system (this work) and the ClONO$_2$ system (Cox and Lewis6), in which k_o was specified and k_∞ and F_c were determined. In the chlorine nitrate case, both k_∞ and F_c are extremely sensitive to small changes in k_o, particularly in the neighborhood of the minimum in the χ^2 hypersurface. Bromine nitrate is somewhat less sensitive in this region because of its greater fall-off. However, as the results in Table III indicate, there is a second set of parameters ($k_o = 2.0 \times 10^{-30} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$, $k_\infty = 1.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, $F_c = 0.22$) which gives a good fit to the data. Since this k_o value is unreasonably high in view of the low-pressure discharge-flow results4 and the F_c value is extremely low, the second set of parameters can be ruled out as an artifact of the curve-fitting procedure. However, this
Table III. Fall-Off Parameters for the Reactions BrO + NO₂ + M and ClO + NO₂ + M

<table>
<thead>
<tr>
<th>k₀ (\times 10^{-31}) cm (^6) molec (^{-2}) s (^{-1})</th>
<th>k₁ (\times 10^{-12}) cm (^3) molec (^{-1}) s (^{-1})</th>
<th>Fc</th>
<th>(\chi^2) (\times 10^5) Arb units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>14.1</td>
<td>0.84</td>
<td>6.00</td>
</tr>
<tr>
<td>3.0</td>
<td>11.3</td>
<td>0.65</td>
<td>2.57</td>
</tr>
<tr>
<td>4.0</td>
<td>12.2</td>
<td>0.53</td>
<td>2.34</td>
</tr>
<tr>
<td>5.0</td>
<td>9.31</td>
<td>0.53</td>
<td>2.58</td>
</tr>
<tr>
<td>6.0</td>
<td>9.16</td>
<td>0.49</td>
<td>2.87</td>
</tr>
<tr>
<td>8.0</td>
<td>8.85</td>
<td>0.42</td>
<td>3.04</td>
</tr>
<tr>
<td>10.0</td>
<td>8.58</td>
<td>0.38</td>
<td>2.84</td>
</tr>
<tr>
<td>20.0</td>
<td>10.2</td>
<td>0.22</td>
<td>1.28</td>
</tr>
<tr>
<td>30.0</td>
<td>9.18</td>
<td>0.16</td>
<td>1.70</td>
</tr>
<tr>
<td>40.0</td>
<td>7.63</td>
<td>0.14</td>
<td>2.61</td>
</tr>
</tbody>
</table>

BrO + NO₂ + M → BrONO₂ + M

ClO + NO₂ + M → ClONO₂ + M

\(k_0 \) was fixed while \(k_\infty \) and \(F_c \) were optimized.

\(a \) BrO data from this study, ClO data from Ref. 6.
is illustrative of the problem of fitting data to an equation that has several adjustable parameters. To determine the fall-off parameters for a termolecular reaction as accurately as possible, two experimental procedures are recommended. First, fall-off curves should be measured using several diluent gases that have a wide range of collision efficiencies, e.g., He, \(N_2\) and SF\(_6\). Since \(k_m\) is independent, and \(F_c\) is almost independent of the collider, additional constraints are placed on the parameters if more than one data set is used. Second, to enhance the observed fall-off, experiments should be conducted up to the highest possible pressure. Unfortunately, for complexes with a relatively large number of effective vibrational modes (\(ClONO_2\), \(BrONO_2\), \(CH_3O_2NO_2\), etc.) which have fall-off curves with low \(F_c\) values (0.4 - 0.6) the asymptotic approach to the high-pressure limit is extremely slow. For example, using the experimentally determined fall-off parameters for the \(BrO + NO_2\) and \(ClO + NO_2\) reactions, the \(N_2\) pressures at which \(k = 0.95\) \(k_\infty\) are calculated to be 2970 and 1300 atm., respectively.

The low-pressure limit, \(k_0\), for reaction 1 obtained by curve-fitting is in excellent agreement with the preliminary experimental value of \(k_0\), \((5.3 \pm 0.7) \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}\), obtained by Ray and Watson.\(^{17}\) The agreement between the two techniques is gratifying in view of the differences in the methods of \(BrO\) formation \((O + Br_2 \text{ vs. } Br + O_3\)), \(BrO\) detection (UV absorption vs. mass spectrometry) and reactor type (flash photolysis vs. discharge flow).

Luther and Troe have shown how to estimate the broadening factor \((F_c)\) at the point where \(k_0[M] = k_\infty\), from structural information about the product of an addition reaction.\(^{8}\) The broadening factor is the product of a strong collision factor, \(F_c^{SC}\), and a correction factor
for weak-collision effects, \(F_c^{\text{wc}} \). \(F_c^{\text{sc}} \) is a function of the parameters \(S_k \) and \(B_k \), given by:

\[
S_k = S_{\text{eff}} + 1 \text{ or } S_{\text{eff}} + 2
\]

\[
B_k = \frac{(S_k - 1)}{S - 1} \frac{(E_o + a(E_o)E_z)}{kT}
\]

where: \(S_{\text{eff}} = \) effective number of transition-state oscillators

\[
= -\frac{1}{T} \frac{\partial \ln Q_V}{\partial (1/T)}
\]

\(E_o = \) critical energy for the decomposition of the adduct

\(E_z = \) adduct vibrational zero-point energy

\(a(E_o) = \) Whitten-Rabinovitch factor

\(Q_V = \) vibrational partition function

\(S = \) number of internal degrees of freedom

Values of \(F_c^{\text{sc}} \) as a function of \(S_k \) and \(B_k \) are tabulated in Ref. 8.

The fundamental vibrational frequencies of \(\text{BrONO}_2 \) are required to evaluate \(Q_V \). These were obtained from the infrared special measurements of Spencer and Rowland,\(^{15}\) and, for the low-frequency bands which could not be observed, estimated using the frequencies of \(\text{ClONO}_2 \) and \(\text{FONO}_2 \) as models.\(^{18}\) The vibrational frequencies used in this calculation are listed in Table IV. At 300K, \(S_k = 3.7 \pm 0.5, E_z = 9.3 \text{ kcal mole}^{-1} \) and \(a(E_o) = 0.94 \). The resulting value of \(B_k \) is \(18.5 \pm 3.5 \) and from the tables in ref. 8, \(F_c^{\text{sc}} = 0.49 \pm 0.11 \). The weak collision broadening factor at the center \((\frac{[M]}{k_o}) \) is approximated by,

\[
F_c^{\text{wc}} = \beta_c 0.14
\]

where \(\beta_c \) is the collision efficiency at the low-pressure limit. \(\beta_c \) has
Table IV. Fundamental Vibrational Frequencies of XONO₂

<table>
<thead>
<tr>
<th>Frequency (\text{cm}^{-1})</th>
<th>Type</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = Cl</td>
<td>X = Br</td>
<td></td>
</tr>
<tr>
<td>1735</td>
<td>1711</td>
<td>18</td>
</tr>
<tr>
<td>1292</td>
<td>1285</td>
<td>15</td>
</tr>
<tr>
<td>780</td>
<td>802</td>
<td>15</td>
</tr>
<tr>
<td>711</td>
<td>720</td>
<td>15</td>
</tr>
<tr>
<td>809</td>
<td>690</td>
<td>15</td>
</tr>
<tr>
<td>560</td>
<td>560</td>
<td>15</td>
</tr>
<tr>
<td>434</td>
<td>390</td>
<td>15</td>
</tr>
<tr>
<td>270</td>
<td>240</td>
<td>18</td>
</tr>
<tr>
<td>121</td>
<td>90</td>
<td>18</td>
</tr>
</tbody>
</table>

X = Cl X = Br

18 15

18 15

18 15

18 15

18 15

18 est.

18 est.
been estimated13 to be in the range 0.2 - 0.4 for similar reactions for \(M = N_2 \) giving \(F_{c}^{wc} = 0.84 \pm 0.03 \). The predicted value for \(F_{c}^{sc} \) is therefore 0.41 \pm 0.11. This result is in good agreement with the observed value. The primary source of uncertainty in the calculation comes from the estimation of the parameter \(S_{k} \) as \(F_{c}^{sc} \) is much more sensitive to \(S_{k} \) than to \(B_{k} \).

Applying the same procedure to the \(ClO + NO_2 \) reaction, \(F_{c} \) is predicted to be 0.45 \pm 0.11 in good agreement with the value (0.52+0.2-0.1) determined by fitting the data of Cox and Lewis to equation (1) (see Table III). The high-pressure limit derived from the data, \(k_{\infty} = (2.0^{+0.5}_{-1.0}) \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1} \), agrees with the estimates of Smith and Golden19 (1.45 \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}) and Zellner20 ((1.2 \pm 0.4) \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1})..

Knauth5 and Chang et al.21 have suggested the existence of alternative channels for the \(ClO + NO_2 \) reaction beside the direct formation of \(ClONO_2 \). These include the formation of the isomers \(OC\text{ClNO}_2 \) and \(ClOONO \). Evidence for these reactions comes from the discrepancy between measurements of \(k_{13} \) by techniques which monitor the overall disappearance of \(ClO \) (including all of the discharge flow, flash photolysis and molecular modulation work) and the static method of Knauth based on the thermal decomposition of chlorine nitrate. While the analogous reactions may take place in the \(BrO + NO_2 \) system, this experiment is not capable of distinguishing the different isomeric forms of \(BrNO_3 \). Experiments of the sort performed by Knauth but using bromine nitrate would therefore be quite useful.

Stratospheric Implications

Calculations have recently been carried out by Yung et al.3 on
the concentration profiles of trace stratospheric constituents, including bromine-containing species, using a one-dimensional diurnally-averaged model. The results of the model indicated that the chemical cycle involving bromine which causes the greatest net loss of odd-oxygen is the following:

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \\
\text{Cl} + \text{O}_3 & \rightarrow \text{ClO} + \text{O}_2 \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{Cl} + \text{O}_2 \\
\hline
2\text{O}_3 & \rightarrow 3\text{O}_2
\end{align*}
\]

Since reaction 17 is the rate-determining step in this cycle, the catalytic efficiency for ozone destruction is proportional to \(k_{17}[\text{BrO}][\text{ClO}] \). The effect of bromine nitrate as a temporary reservoir for bromine is to lower the steady-state BrO concentration thus reducing the efficiency of this catalytic cycle. However, since photolysis of BrONO\(_2\) probably results in the formation of NO\(_3\) as well as other products, bromine nitrate may take part in an odd-oxygen destruction cycle of its own:

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONO}_2 + \text{M} \\
\text{BrONO}_2 + \text{hv} & \rightarrow \text{Br} + \text{NO}_3 \\
\text{NO}_3 + \text{hv} & \rightarrow \text{NO} + \text{O}_2 \\
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 \\
\hline
2\text{O}_3 & \rightarrow 3\text{O}_2
\end{align*}
\]

Since NO\(_3\) photodissociates to NO and O\(_2\) about one-third of the time, the over-all rate of ozone destruction by this cycle is \(2/3 \ J_{18}[\text{BrONO}_2] \). Whether the net effect of bromine nitrate is to increase or decrease
the column odd-oxygen loss rate can be estimated using concentrations of species in the \(\text{HO}_x \), \(\text{Cl}_x \), and \(\text{NO}_x \) families calculated in the fully coupled model (ref. 3). In the absence of bromine nitrate, the concentrations of species in the \(\text{Br}_x \) family \((\text{Br}, \text{HBr}, \text{BrO})\) can be re-partitioned using steady-state considerations and by assuming that the effect on other radical concentrations can be neglected. This is a valid assumption since the mixing ratio of \(\text{Br}_x \) is small \((20-100 \text{ pptv})\).

The result of this simple calculation is that in the vicinity of the ozone maximum \((20-24\text{km})\) the sum of the odd-oxygen destruction rates for the various bromine cycles in the absence of bromine nitrate exceeds by about 26% the value when bromine nitrate is included. Determining the exact magnitude of the effect would involve computing the change in the catalytic efficiency over the total ozone column, but the primary contribution to the sum occurs between 20 and 24km.

The analogous process involving chlorine nitrate is more difficult to analyze for several reasons. Since the mixing ratio of \(\text{Cl}_x \) is 100-1000 times greater than that for bromine, chlorine nitrate significantly perturbs the \(\text{NO}_x \) cycle as well as the \(\text{Cl}_x \) cycle. The effect of chlorine nitrate must therefore be determined by solving the equations for the fully coupled chemical model rather than by the simple steady-state treatment. Also, the maximum mixing ratio of chlorine nitrate is reached at about 24km which is well below the region of the stratosphere where the most important \(\text{Cl}_x \) catalytic cycle, which involves the \(\text{O} + \text{Cl}_2 \) reaction, is most efficient. Chlorine nitrate therefore does not affect the \(\text{Cl}_x \) partitioning significantly in this region. It does affect [\(\text{Cl}_2 \)] in the 20-30km region which, in turn, has an impact on the catalytic efficiency of the \(\text{Cl}_2 + \text{BrO} \) cycle.
ACKNOWLEDGEMENTS

The authors thank R. A. Cox and R. Lewis (Harwell), and G. W. Ray, (Jet Propulsion Laboratory) for their experimental results prior to publication. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-100.
REFERENCES AND NOTES

7. V. Handwerk and R. Zellner, manuscript in preparation.

APPENDIX I

CHEMICAL KINETICS OF HOMOGENEOUS ATMOSPHERIC
OXIDATION OF SULFUR DIOXIDE

S. P. Sander and J. H. Seinfeld

Department of Chemical Engineering
California Institute of Technology
Pasadena, CA 91125
Chemical Kinetics of Homogeneous Atmospheric Oxidation of Sulfur Dioxide

Stanley P. Sander and John H. Seinfeld*

Department of Chemical Engineering, California Institute of Technology, Pasadena, Calif. 91125

A systematic evaluation of known homogeneous SO$_2$ reactions which might be important in air pollution chemistry is carried out. A mechanism is developed to represent the chemistry of NO$_x$/hydrocarbon/SO$_2$ systems, and the mechanism is used to analyze available experimental data appropriate for quantitative analysis of SO$_2$ oxidation kinetics. Detailed comparisons of observed and predicted concentration behavior are presented. In all cases, observed SO$_2$ oxidation rates cannot be explained solely on the basis of those SO$_2$ reactions for which rate constants have been measured. The role of ozone--olefin reactions in SO$_2$ oxidation is elucidated.

The oxidation of sulfur dioxide in the atmosphere occurs by both heterogeneous and homogeneous paths. Heterogeneous routes, involving the catalytic oxidation of SO$_2$ in water droplets, are reasonably well understood (7–6). Homogeneous gas-phase reactions of SO$_2$ in the atmosphere have been reviewed (7–12), although the detailed mechanism by which SO$_2$ is oxidized in the presence of other air pollutants has not been established. The object of this work is to study the rates and mechanisms of the homogeneous atmospheric oxidation of SO$_2$ through detailed analysis of available laboratory data on SO$_2$-containing systems.

For a number of years there has been considerable interest in elucidating the mechanism of photochemical smog reactions (13–17). Although it has long been recognized that SO$_2$ is generally present with hydrocarbons and oxides of nitrogen in the atmosphere, comparatively little experimental work has been conducted on systems containing SO$_2$. The sulfate aerosol formation which often takes place in such systems has been viewed as an undesirable feature in laboratory smog chambers, particularly when the primary objective of the experiment is the study of hydrocarbon/NO$_x$ chemistry. It has been suggested that heterogeneous paths may account for most of the photochemical sulfate aerosol observed in the atmosphere (18). However, since the hydration of SO$_2$ leads readily to aerosol, the homogeneous oxidation of SO$_2$ to SO$_3$ is a potential key step in sulfate aerosol formation.

This work consists of a systematic evaluation of all known atmospheric SO$_2$ reactions which might be important in air pollution chemistry. We begin by considering the photochemistry of SO$_2$ in air, in mixtures of air and oxides of nitrogen, and in mixtures of air, oxides of nitrogen, and hydrocarbons. We then summarize available experimental data appropriate for quantitative analysis of SO$_2$ oxidation kinetics, and present comparisons of predicted and measured concentrations of the species involved. Finally, we draw conclusions pertaining to additional information needed to understand more completely the atmospheric chemistry of SO$_2$.

Atmospheric Chemistry of Sulfur Dioxide

In this section we summarize atmospheric reactions involving SO$_2$, hydrocarbons, and oxides of nitrogen.

Photochemistry of SO$_2$. The photooxidation of SO$_2$ alone or in mixtures of SO$_2$ and O$_2$ has been studied by several investigators (9). Rao et al. (19) and Okuda et al. (20) have suggested that the most active species involved in the photochemistry of SO$_2$ is the excited triplet state, S1O$_2$. The principal reactions in the photochemistry are believed to be those given in Table 1. Where rate constant determinations are available, they are indicated in the table. Reactions 1–7 are apparently the major reactions which occur subsequent to light absorption by an SO$_2$ molecule. Reaction 8a has a relatively low activation energy but because it is spin-forbidden also has a low preexponential factor (21). Reaction 8b is spin-allowed but endothermic. The oxygen atoms produced in Reactions 8a and 8b will combine readily with O$_2$ to form O$_3$. Because there is no direct evidence to date for the existence of O$_3$ or SO$_2$ in irradiated SO$_2$/air mixtures, Reactions 8a–8c are probably unimportant in this system. Although reported overall quantum yields for SO$_2$ photooxidation vary over several orders of magnitude, even the most optimistic estimates place these reactions in a position of minor importance (58).

Photochemistry of SO$_2$ and NO$_x$. The primary effect of adding NO$_2$ to an SO$_2$/air mixture is the oxidation of SO$_2$ by Reaction 9 by the oxygen atoms formed from NO$_2$ photolysis. A large number of studies of this reaction have resulted in a
wide range of reported rate constants (22, 26, 28, 57–60). Mulcahy et al. (22) found that Reaction 10 has a relatively large rate constant but proceeds slowly because of the low concentrations of both oxygen atoms and excited SO₂ molecules. Caddy and Magil (23), Cox and Penkett (24), and Daubendiek and Calvert (25) all report a slow rate for Reaction 11 in the gaseous phase. Based on the rate constant determined by Davis et al. (54), Reaction 11 is probably unimportant in this system. Reactions 14–14 recover SO and SO₂, and Smith and Utene (27) observed a decrease in SO₂ oxidation rate at high SO₂ levels in a system of SO₂/NO₁/air, an effect possibly attributable to Reactions 12–14. However, based on the available rate constants, it appears that these reactions are too slow to account for such an observation. It has been suggested that a series of possible SO₂ removal paths in the SO₂/NO₁/air system is:

$$\text{SO}_2 + \text{NO}_1 \rightarrow \text{SO}_3 + \text{NO}$$

$$\text{SO}_2 + \text{NO}_1 \rightarrow \text{NO}_2 + \text{SO}_3$$

$$\text{SO}_3 + \text{NO}_1 \rightarrow \text{N}_2\text{O}_5$$

Several experimental determinations of the rate constant for Reaction 15 establish an upper limit of 9.1×10^{-3} ppm⁻¹ min⁻¹ at 25 °C (28, 29, 54). Daubendiek and Calvert (25) set an upper limit on the rate constant of Reaction 16 of 2.5×10^{-8} ppm⁻¹ min⁻¹. A similar determination places the rate constant of Reaction 17 at 1.7×10^{-8} ppm⁻¹ min⁻¹ (25). Thus, Reactions 16–17 apparently play an unimportant role in the SO₂/NO₁/air system.

In summary, despite the low rates of Reaction 9 at atmospheric concentration levels, this reaction is apparently the most important SO₂ consumption reaction in irradiated SO₂/NO₁/air systems that have been studied experimentally.

SO₂/NO₁/Hydrocarbon Photochemistry. When hydrocarbons are added to a system of SO₂ and NO₁, and the mixture is irradiated, observed SO₂ oxidation rates become much greater than in the SO₂/NO₁ system. The direct reaction of SO₂ and hydrocarbons has been studied since 1950 (35). Recently, Badcock et al. (33) studied SO₂/hydrocarbon reactions, in which laser excitation was used to populate the triplet state of SO₂ (see also 21). The SO₂-hydrocarbon reaction was suggested as being either an insertion of the form

$$\text{SO}_2 + \text{RH} \rightarrow \text{RSO}_2\text{H}$$

or a hydrogen atom abstraction

$$\text{SO}_2 + \text{RH} \rightarrow \text{SO}_2\text{H} + \text{R}$$

with the former being the more likely path for olefins.

Recent mass spectrometric studies by Pechon et al. (36, 37) have provided additional insight into the mechanism of SO₂-alkane reactions. In addition to the sulfenic and sulfonic acids identified by others (35), a number of adducts, including RSØ₂R, RSØ₂R, RSØ₂R, and RSØ₂R, were found. The authors suggest that the occurrence of these products can be explained by an initiation step of the form 18b followed by propagation steps of the form

$$\text{R} + \text{SO}_2 \rightarrow \text{RSO}_2\text{H}$$

In spite of the existence of direct SO₂/hydrocarbon reactions, these reactions are too slow to account for the increased rate of SO₂ disappearance when hydrocarbons are added to an SO₂/NO₁ system.

It is now felt that of the known SO₂ reactions the most important are those involving oxygenated free radicals, such as hydroxyl and hydroperoxyl. Table II summarizes the SO₂-free

<table>
<thead>
<tr>
<th>Table I. Photochemistry of SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1 SO₂ + hr → SO₂</td>
</tr>
<tr>
<td>2a SO₂ + SO₂ → SO₃ + SO</td>
</tr>
<tr>
<td>2b SO₂ + SO₂ → SO₃ + SO₂</td>
</tr>
<tr>
<td>3a SO₂ + SO₂ → SO₃ + H₂</td>
</tr>
<tr>
<td>3b SO₂ + SO₂ → SO₃ + H₂</td>
</tr>
<tr>
<td>4 SO₂ + hr → SO₂</td>
</tr>
<tr>
<td>5 SO₂ + SO₂ → SO₃ + SO</td>
</tr>
<tr>
<td>6a SO₂ + SO₂ → SO₃ + H₂/PM</td>
</tr>
<tr>
<td>6b SO₂ + SO₂ → SO₃ + M</td>
</tr>
<tr>
<td>7 SO₂ + M → SO₃ + M</td>
</tr>
<tr>
<td>8a SO₂ + O₁⁺(1²S) → SO₃ + O₁⁺(O²)</td>
</tr>
<tr>
<td>8b SO₂ + O₁⁺(1²S) → SO₃ + O₁⁺(O²)</td>
</tr>
<tr>
<td>9 O₁⁺(O²) + SO₂ + M → SO₃ + M</td>
</tr>
<tr>
<td>10 O₁⁺(O²) + SO₂ → SO₃ + C₂H₄</td>
</tr>
<tr>
<td>11 SO₂ + SO₂ → SO₃ + SO₂</td>
</tr>
<tr>
<td>12a SO₂ + O₁⁺(1²S) → SO₃ + O₁⁺</td>
</tr>
<tr>
<td>12b SO₂ + O₁⁺(1²S) → SO₃ + O₁⁺</td>
</tr>
<tr>
<td>13 SO₂ + O₁⁺(1²S) → SO₃ + O₁⁺</td>
</tr>
<tr>
<td>14 SO₂ + SO₂ → 2SO₂</td>
</tr>
</tbody>
</table>
radical reactions believed to be most important in the homogeneous atmospheric oxidation of SO₂. Because of the importance of the OH radical in hydrocarbon/NOx chemistry, Reaction 20 may be expected to play an important role in SO₂ chemistry. Reactions 21a and 22a between peroxyalkyl radicals and SO₂ are also potentially important removal paths for SO₂. However, only the rate constants for Reactions 20 and 21a have been measured. The rate constants given for Reactions 21b, 22a, and 22b are estimates explained in the footnotes to Table II.

In addition to the free radicals listed in Table II, a product of ozone/olefin reactions has been suggested to be an important oxidizer of SO₂ (24, 38, 39). This possibility is discussed in detail in a later section.

Summary. In this section we have summarized and modeled atmospheric reactions involving SO₂. Tentative estimates of importance in their contribution to the overall oxidation of SO₂ indicate the free radical reactions of Table II to be potentially dominant. The remainder of this work is devoted to a detailed, quantitative evaluation of the adequacy of known SO₂ reactions to account for observed laboratory SO₂ oxidation rates. We begin with a brief summary of available experimental data on SO₂ photolysis in systems containing oxides of nitrogen and hydrocarbons.

SO₂ Photooxidation Data

Ideally, one would like a base of experimental data spanning a wide range of initial reactant concentrations to deduce the chemical kinetics of the system. Unfortunately, only a few studies are available which report enough adequate concentration-time data to afford a mechanistic analysis.

The data used in this study came from five sources. Results of SO₂/NOx photooxidation experiments have been reported by Bradstreet (42, 43) and Smith and Urene (27). Ozone/hydrocarbon/SO₂ systems have been studied by Cox and Penkett (24, 38, 39) and McNelis (44), although, of these, only McNelis reports full concentration-time data. Finally, smog chamber experiments with SO₂/NOx/hydrocarbon mixtures have been reported by Wilson and Levy (45, 46) and Smith and Urene (27). A summary of experimental conditions for each data set appears in Table III.

In the remainder of this study we simulate to the extent possible the experimental data summarized in Table III. The primary objective of the simulations is to determine if the reported data can be explained in terms of the reactions discussed earlier. In view of the shortage of measured rate constants for certain SO₂ reactions, we have carried out these simulations using only those reactions for which reliable rate constants are available. This approach will indicate whether the present set of SO₂ reactions is sufficient to explain observed data.

One important parameter which is frequently not measured or reported in sufficient detail in experimental studies is the light intensity in the system. The light intensity is reflected most strongly in the rate constant for NOx photolysis, k₁. When k₁ was not directly measured (47) or could not be inferred from other information, estimates of the light intensity were made through the NOx concentration-time behavior.

<table>
<thead>
<tr>
<th>Table II. SO₂-Free Radical Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
</tr>
<tr>
<td>20 SO₂ + OH + M → HO₂SO₂ + M</td>
</tr>
<tr>
<td>21a SO₂ + HO₂ → SO₂ + OH</td>
</tr>
<tr>
<td>21b SO₂ + HO₂ → SO₂ + RO₂</td>
</tr>
<tr>
<td>22a SO₂ + RO₂ → SO₂ + RO</td>
</tr>
<tr>
<td>22b SO₂ + RO₂ → SO₂ + RO₂</td>
</tr>
<tr>
<td>23 SO₂ + RO₂ → ROSO₂</td>
</tr>
<tr>
<td>24 SO₂ + RO₂ → ROSO₂</td>
</tr>
<tr>
<td>²Pseudo-second order rate constant at 760 torr. ³An estimate based on Calvert's suggestion that Reaction 21b and 22b should be about one-eighth as fast as Reaction 21a and 22a. ⁴An estimate based on the assumption that Reactions 22a and 24 should proceed about 30% faster than Reaction 21a at comparable concentrations. ⁵, ⁶Estimate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table III. Experimental Conditions Associated with Available Smog Chamber Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigator(s)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Smith and Urene (27)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bradstreet (42, 43)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>McNelis (44)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Smith and Urene (27)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wilson and Levy (45, 46)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1118 Environmental Science & Technology
Mechanism for NOx/Hydrocarbon/SO2 Systems

In this section we present a general kinetic mechanism capable of representing the experimental systems considered. The basic hydrocarbon/NOx mechanism is that developed by Hecht et al. (7). In this mechanism, certain free radicals are lumped into general classes. The stoichiometric coefficients in the mechanism are determined by the particular hydrocarbon(s). The use of such coefficients is necessary only when describing reactions which are not represented as elementary processes, such as the ozone-olefin reaction.

The general mechanism employed in the current study is given in Table IV. Two sets of stoichiometric coefficients are required: one for the propylene systems of Smith and Urone (27) and McNeils (64) and one for the 1-butane system of Wilson and Levy (42, 46, 51). Since the McNeils system contained no NOx an explicit propylene mechanism, not presented here, was used in analyzing these experiments. The detailed propylene mechanism with NOx reactions gave computed concentrations very close to those predicted by the lumped mechanism of Table IV. The mechanism of O'Neal and Blumstein (68) was used for the ozone-olefin reaction.

The manner in which the rate constants were determined for the ozone-olefin reaction is outlined in the Appendix. The values of the stoichiometric coefficients used are given in Table IV, and the primary photolysis rate constants are given in Table V. The values of k1 for the experimental systems were: Bradstreet, 0.5 min⁻¹; Smith and Urone, 0.5; and Wilson and Levy, 0.35.

Considerable confusion currently exists as to the exact mechanism of the reaction

\[\text{NO} + \text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{2HONO} \]

which may take place heterogeneously (62, 69). In simulating results from smog chambers, several groups have chosen to account for nitrous acid formation by including an initial wall desorption rate (63). We have lumped the possible heterogeneous behavior of the nitrous acid system into the rate constant k1. A value for k1 was selected which provides the requisite initial HONO charge and lies near the wide range of experimentally determined values.

Analysis of Experimental Systems

SOx/NOx Systems. Smith and Urone (27). The observed and predicted rates of initial SO2 oxidation for the experi-

Table IV. General Mechanism for Homogeneous Oxidation of SO2

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant, 25°C ppm, min units</th>
<th>Propylene</th>
<th>1-Butene</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO + hv → NO + O</td>
<td>(\phi_2) (1)(^a)</td>
<td>2 x 10(^{-4})</td>
<td>29.5</td>
</tr>
<tr>
<td>O + NO → O + NO</td>
<td>2.3 x 10(^{-1})</td>
<td>1.38 x 10(^{-1})</td>
<td>4.5 x 10(^{-1})</td>
</tr>
<tr>
<td>NO + NO → NO₂</td>
<td>4.4 x 10(^{-5})</td>
<td>4.4 x 10(^{-5})</td>
<td>13.6</td>
</tr>
<tr>
<td>NO₂ + NO → NO₃</td>
<td>1.48 x 10⁰</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>2NO₂ → 2NO₁</td>
<td>7.6 x 10⁻¹⁸</td>
<td>(\phi_2) (0.035)(^a)</td>
<td>(\phi_2) (0.026)(^a)</td>
</tr>
<tr>
<td>O⁺ + hv → O + O</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O⁺ + NO → NO₂ + O</td>
<td>390</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>O⁺ + NO₂ → NO₃ + O</td>
<td>9400</td>
<td>2.3 x 10⁹</td>
<td></td>
</tr>
<tr>
<td>O⁺ + NO₂ → NO₃ + O</td>
<td>1.5 x 10⁹</td>
<td>3.6 x 10⁹</td>
<td></td>
</tr>
<tr>
<td>H⁺ + CH₃ + H⁺ + H⁺</td>
<td>8500</td>
<td>8500</td>
<td></td>
</tr>
<tr>
<td>H⁺ + CH₃ + H⁺ + H⁺</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on page 1118)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant, 25 °C (ppm. min units)</th>
<th>Propylene</th>
<th>1-Butene</th>
</tr>
</thead>
<tbody>
<tr>
<td>R−<sup>−</sup>CH₂<sup>−</sup> −→ RO<sub>2</sub> + ALD</td>
<td>8500</td>
<td>8500</td>
<td></td>
</tr>
<tr>
<td>R−<sup>−</sup>CH₂<sup>−</sup> −→ HO<sub>2</sub> + 3−CH₃</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>O<sub>2</sub> + NO<sub>2</sub> −→ NO₃ + RO</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

α-H abstraction

(A) − OH + CO + HO₂ + ALD | 1.7 x 10⁴ | 4.5 x 10³ |
(B) − OH + ALD + RCO₂ | 1.7 x 10⁴ | 4.5 x 10³ |

β-H abstraction

(A) − ALD + Stable Products

Criegee decomposition

(A) → ALD + R[−]OH + RCO₂ + HO₂ + CO | 1000 | 1000 |
(B) → ALD + CO + H₂O | 5320 | 5900 |

NO + RO₂ −→ NO₃ + RO | 1000 |
RO + O₂ −→ HO₂ + ALD | 0.24 |
RO + NO₂ −→ RNO₃ | 490 |
RCO₂ + NO −→ PAN | 900 |
OH + NO −→ HNO₂ | 3000 |
RO + NO −→ RNO₂ | 2000 |
NO + HO₂ −→ NO₂ + OH | 300 |
NO₂ + OH −→ HNO₃ | 1.2 x 10⁴ |
NO + RCO₂ −→ NO₂ + RO₂ + CO | 910 |
2RCO₂ −→ 2RO₂ + 2CO₂ + O₂ | 3.8 |
2H₂O −→ H₂O₂ + O₂ | 8200 |
RO₂ + H₂O −→ RO₂ + OH + O₂ | 100 |
ALD + hν −→ CO + HO₂ + 1/2 RO₂ | φ₁₀ (0.01)% |
OH + ALD −→ H₂O + 1/3 CO + 1/3 HO₂ + 2/3 RCO₂ | 2.2 x 10⁴ |
O₂ + OH −→ HO₂ + O₂ | 87 |
O₂ + NO + HO₂ −→ 2O₂ | 2 |
H₂O₂ + hν −→ 2OH | φ₁₀ (0.0036)% |
HNO₂ + hν −→ OH + NO | φ₁₀ (0.07)% |
2H₂O₂ −→ NO + NO₂ + H₂O | 5.1 x 10⁴ |
O(1D) + H₂O −→ 2OH | 5.2 x 10³ |
NO + NO₂ + H₂O −→ 2HNO₂ | 2 x 10⁴ |
OH + CO + HO₂ + CO₂ | 219 |
O + SO₂ + M −→ SO₃ + M | 2.8 x 10⁴ |
OH + SO₂ −→ HSO₃ | 780 |
H₂O + SO₂ −→ SO₃ + OH | 1.3 |
NO₂ + SO₂ −→ SO₃ + NO₂ | 10^{−4} |
SO₂ + H₂O −→ H₂SO₃ | 1300 |
O + SO₂ −→ SO₃ + O₂ | 0.082 |
N₂O₅ + SO₂ −→ SO₃ + 2NO₁ | 6.2 x 10^{−4} |
O + SO₂ −→ SO₃ + O₂ | 1.2 x 10^{−4} |
SO₂ + hν −→ SO₃ | φ₁₀ (0.02)% |
'SO₂ + SO₂ −→ SO₃ + SO | 5400 |
'SO₂ + SO₂ −→ SO₃ + SO₂ | 4400 |
'SO₂ + SO₂ −→ SO₃ + hν | 1.3 x 10^{−4} |
'SO₂ −→ SO₃ | 9 x 10^{−5} |
'SO₂ + SO₂ −→ SO₃ + SO | 100 |
'SO₂ + SO₂ −→ SO₃ + hν | 8400 |
'SO₂ + SO₂ −→ SO₃ + M | 7800 |
'SO₂ + M −→ SO⁺ + M | 200 |

* The quantity in parentheses is the value of the absolute photolysis rate constant relative to that for NO₂, φ₁₀, for a solar spectral distribution and zenith angle of 60°. Φ₁₀ −→ CH₃ (propylene); Φ₁₀ −→ C₂H₄ (1-butene).}

1118 Environmental Science & Technology
ments of Smith and Urene are given in Table V. The observed rate reached a maximum at an initial NO₂ concentration of 0.85 ppm. At [NO₂]₀ = 10.2 ppm, the initial SO₂ oxidation rate returned to the value of 1.7 × 10⁻⁴ ppm min⁻¹, observed for [NO₂]₀ = 0. The predicted initial SO₂ oxidation rate increases monotonically from the base value, 1.7 × 10⁻⁴ ppm min⁻¹, accounted for by the photooxidation process, to 1.89 × 10⁻⁴ ppm min⁻¹ at [NO₂]₀ = 10.2 ppm and does not show the inhibition observed experimentally. Smith and Urene proposed an explanation based on oxygen atom competition between NO₂ and SO₂. Such a competition cannot, however, explain the NO₂ inhibition. If we ignore the effects of O₃ photolysis, which are minor in dry systems, and the N₂O₅ equilibrium, the simplified mechanism consists of the following reactions:

\[
\begin{align*}
\text{NO}_2 + h\nu &\rightarrow \text{NO} + O \\
\text{O} + \text{O}_2 + \text{M} &\rightarrow \text{O}_3 + \text{M} \\
\text{O} + \text{NO} &\rightarrow \text{NO}_2 + \text{O} \\
\text{O} + \text{NO}_2 + \text{M} &\rightarrow \text{NO}_3 + \text{M} \\
\text{O} + \text{NO}_2 &\rightarrow \text{NO}_3 + \text{M} \\
\text{O}_3 + \text{NO}_2 &\rightarrow \text{NO}_3 + \text{O}_2 \\
\text{O} + \text{SO}_2 + \text{M} &\rightarrow \text{SO}_3 + \text{M} \\
\text{SO}_3 + h\nu &\rightarrow \text{SO}_4 \\
\text{SO}_4 + \text{SO}_2 &\rightarrow \text{SO}_3 + \text{SO}_2 \\
\end{align*}
\]

The reactions between SO₂ and O₂, NO₂, and N₂O₅ are too slow to affect the system. Based on the above reactions, the rate equation for SO₂ is

\[
d[\text{SO}_2] = \frac{\partial [\text{SO}_2]}{\partial t} = k_1 k_2 [\text{SO}_2] [\text{NO}_2]
\]

Evaluating the initial SO₂ removal rate, we find the rate to be a monotonically increasing function of [NO₂]₀. Since, following Urene and Smith, we have evaluated the initial SO₂ oxidation rate at the 1500 min point in the runs rather than at t = 0, the results in Table VI do not follow this law exactly.

Addition of the reaction

\[
\text{O} + \text{SO}_2 \rightarrow \text{SO}_3 + \text{O}_2
\]

provides a path for the reformulation of SO₂ at high NO₂ levels. Based on the latest value of its rate constant (49), the rate of this reaction is too slow to account for the observed NO₂ inhibition.

Contamination of the experimental system is a possible explanation for the observed inhibition. Considering the photolysis of O₃ in the presence of water, the following reactions will occur:

\[
\begin{align*}
\text{O}_3 + h\nu &\rightarrow \text{O}(1D) + \text{O}_2 \\
\text{O}_3 + h\nu &\rightarrow \text{O} + \text{O}_2 \\
\text{O}(1D) + \text{M} &\rightarrow \text{O} + \text{M} \\
\text{H}_2\text{O} + \text{O}(1D) &\rightarrow 2\text{OH} \\
\text{O}_2 + \text{O}(1D) &\rightarrow \text{O}_3 \\
\text{O}_3 + \text{OH} &\rightarrow \text{HO}_2 + \text{O}_2 \\
\text{O}_2 + \text{HO}_2 &\rightarrow \text{OH} + 2\text{O}_2 \\
\text{SO}_2 + \text{OH} &\rightarrow \text{HSO}_3 \\
\text{SO}_2 + \text{HO}_2 &\rightarrow \text{HSO}_4 \\
\rightarrow \text{SO}_3 + \text{OH}
\end{align*}
\]

Table VI shows the relative rates of SO₂ removal by paths 7, 9, 17, 18, and 19 in a system containing 0.85 ppm NO₂, 2 ppm SO₂, and 5000 ppm H₂O. We note that the observed increase in SO₂ oxidation rate when 0.85 ppm of NO₂ is added to the system cannot be accounted for either by the O-SO₂ reaction path or by the effect of water contamination. Neither the acceleration of the SO₂ oxidation rate at low NO₂ levels nor its inhibition at high NO₂ levels can be explained on the basis of known chemistry at this point.

Bradstreet (42, 43). Data from the experiments of Bradstreet cover a somewhat wider range of initial conditions than those of Smith and Urene. Comparisons of the observed and predicted rates of SO₂ disappearance for these experiments are given in Table VII. As in the Smith and Urene experiments, an inhibition of the SO₂ oxidation rate is observed as [NO₂]₀ is increased. Again, this inhibition, as well as the strong effect of [NO₂]₀ on the SO₂ oxidation rate, cannot be predicted.

O₂/Hydrocarbon/SO₂ System. Cox and Penkett (24) found that SO₂ added to olefin/O₂ systems was converted to sulfurous acid aerosol. They inferred that a short-lived inter-
mediate of the ozone-olefin reaction, which they speculated might be a biradical, was responsible for SO₂ oxidation.

McNeil (44). In this system, O₃, SO₂, and propylene were mixed in a large batch reactor in the dark. The purpose of the experiments was to provide data on the role of the ozone-olefin reaction in SO₂ oxidation. The primary paths for removal of propylene are by reaction with OH and O₃. In the ozone-olefin reaction the current understanding is that the initial step is the formation of a molosonide. Ring opening then results in a rapid equilibrium between the forms of the peroxy biradical. The biradical then decompose by the Criegee mechanism or abstract a hydrogen atom from the α- or β-carbon atom (45). The reaction rate constants for each of these paths were calculated thermochemically, and the calculations are summarized in the Appendix.

Predicted and observed concentration-time profiles for O₃, propylene, and SO₂ are shown in Figure 1. Whereas the predicted ozone and propylene decay rates are close to those observed, the predicted SO₂ removal rate is far too low. Possible reasons for this discrepancy will be discussed in the next section. Excellent agreement is obtained between observed and predicted final acetaldehyde concentrations. These values, together with initial SO₂, O₃, and C₃H₆ concentrations appear in Table VII. The agreement between predicted and observed acetaldehyde concentrations is important in that it implies that the hydrocarbon–NOₓ chemistry is accurately represented by the mechanism.

Although the SO₂ mechanism fails to predict the observed SO₂ oxidation rate, the proposed biradical–SO₂ reaction is incapable of accounting for the difference. Steady-state biradical concentrations predicted by the O’Neal-Bloomstein mechanism are on the order of 10⁻¹¹ ppm. Thus, rate constants for an SO₂–biradical reaction would have to be several orders of magnitude above those expected for an SO₂–oxygen abstraction from a peroxy biradical for this path to be competitive with spontaneous decomposition.

NOₓ/Hydrocarbon/NOₓ Systems. Smith and Urone (27). The authors reported the initial rates of SO₂ oxidation in systems containing NOₓ, SO₂, and propylene. The results of these experiments and their simulations are presented in Table IX. Both the data and the simulation exhibit an inhibition in the SO₂ oxidation rate with increasing [NOₓ]. Analysis of the reactions which contribute to SO₂ consumption indicates that the reaction

\[\text{HO}_2 + \text{SO}_2 \rightarrow \text{SO}_3 + \text{OH} \]

is primarily responsible for the inhibition. As [NOₓ] increases, NO becomes increasingly more effective in competing with SO₂ for hydroperoxyl radicals. The HO₂ radical, not present in pure SO₂/NOₓ systems, is then the key to the observed inhibitory effect of [NOₓ].

It should be noted that predicted initial SO₂ oxidation rates are considerably smaller than observed values. Predicted propylene oxidation rates, however, are comparable to experimental values. The SO₂ results point to the existence of SO₂ oxidation mechanisms unaccounted for here.

Wilson and Levy (45, 46). These experiments are currently the only available for SO₂/NOₓ/hydrocarbon mixtures for which concentration-time data for all important species are reported. Nevertheless, the high degree of scatter in the experimental data makes quantitative comparisons with predicted data difficult. The experimental data indicate that increasing [SO₂] increases the time to the NO₂ maximum in dry systems but has little effect on NO₂ behavior in moist systems. Large amounts of SO₂ caused an increase in the time to the O₃ maximum and led to a slight increase in the peak O₃ concentration in dry systems while reducing it in moist systems. In addition, increasing [SO₂] decreased the overall 1-butene reaction rate and increased the final 1-butene concentration. SO₂ was observed to react more quickly in moist (65% RH) runs than in dry runs.

The sudden rapid disappearance of SO₂ in certain high humidity runs and the dramatic effect of relative humidity on the overall reaction rate are suggestive of heterogeneous steps. Aerosol was observed in many of the experiments, suggesting that SO₂ may have dissolved in droplets.

The accuracy of the data can be judged by examining the degree of satisfaction of the photo-stationary state for ozone (50, 51). If the photo-stationary state is obeyed, the group \(\theta = k_1[\text{NO}_2]/k_3[\text{NO}][\text{O}_3] \) should be nearly unity at all times. For the experimental data of run 46, \(\theta = 0.172 \) with a standard deviation \(\pm 0.081 \). A similar evaluation for the simulation of run 46 gives \(\theta = 1.16 \) with \(\pm 0.039 \). The unexpectedly low measured value of \(\theta \) suggests that the light intensity and/or concentration measurements may be in error.

A summary of the results of the simulations is given in Table X. Concentration-time profiles for an experiment characteristic of high humidity conditions (run no. 53) are given in Figure 2. The hydrocarbon/NOₓ mechanism simulates the observed concentration profiles well, except in the following respects. First, in dry systems the observed O₃ peak is considerably higher than predicted. This is consistent with the fact that observed final C₃H₆ concentrations in dry systems
are lower than predicted. Second, observed SO₃ oxidation rates are much higher than predicted, an effect perhaps attributable in part to heterogeneous effects. In spite of these deficiencies, the principal qualitative features of the data are reproduced by the mechanism. For example, both experiment and mechanism show an increase in overall system reactivity with increasing relative humidity. A major influence of relative humidity is through the formation of nitrous acid by

NO + NO₂ + H₂O → 2HNO₂

The subsequent photolysis of HNO₂ then leads to the initiation of 1-butene oxidation.

Discussion. The simulations reported in this section indicate that the NO₃/hydrocarbon mechanism of Table IV is capable of simulating observed concentration-time behavior in smog chamber systems. However, in every case, observed SO₂ oxidation rates could not be explained solely on the basis of those SO₂ reactions for which rate constants have been measured. Certainly other reactions involving SO₂ are possible, for example, Reactions 22a, 22b, and 23 in Table II. Using the rate constants estimated in Table II, the contributions of reactions 22-24 (with \(R = \text{CH}_3 \)) to observed SO₂ removal rates can be estimated in a system containing 1-butene. Figure 5 shows the relative importance of these reactions in removing SO₂ from a system containing initially 0.10 ppm SO₂, 0.15 ppm NO, 0.05 ppm NO₂, 0.10 ppm CH₄, 10 ppm CO, and 50% relative humidity. The results are similar to those obtained by Calvert and McQuigg (12) who used trans-2-butene and a more detailed mechanism but with identical initial conditions. A maximum SO₂ oxidation rate of 4.56 h⁻¹ is predicted with the OH and HO₂ reactions accounting for at least 90% of the predicted rate. The balance is due to reaction of SO₂ with RO₂, RCO₂, and O(ΠP).

Although reactions of the type RO₂ + SO₂ may be important, rate constants for them are essentially unknown. Before an accurate assessment of their role in SO₂ chemistry can be made, rate constants must be obtained.

Davis et al. (53) have suggested that the product HSO₃ formed in Reaction 20 of Table II could participate in reactions of the form:

\[
\begin{align*}
\text{HSO}_3 + O_2 &\rightarrow \text{H}_2\text{SO}_4 \\
\text{HSO}_3 + \text{NO} &\rightarrow \text{HSO}_4 + \text{NO}_2 \\
\text{HSO}_4 + \text{O}_3 &\rightarrow \text{HSO}_4 + \text{NO}_2 \\
\end{align*}
\]

[Other possible reactions of HSO₃ and HSO₄ have been suggested (12), including hydrogen abstractions from alkanes and HO₂ and addition to olefinic double bonds.] The reactions were proposed to explain ozone buildup in the Potomac Electric Power Co.'s Morgantown plant. However, laboratory data have shown that addition of SO₂ to a hydrocarbon/NO₃ system does not lead to ozone enhancement (45). For this reason, the above reactions were not incorporated in our mechanism.

Several important questions concerning the mechanism of SO₂ oxidation in SO₂/NO₃/hydrocarbon systems can be examined by performing a series of simulations in which key parameters, such as initial concentrations and relative humidity, are systematically varied. In the initial stage of the reaction, the SO₂ + OH reaction is the most important oxidation path, since OH radicals are being produced rapidly by HNO₃ photolysis and by the reaction of NO and HO₂. In the middle and latter stages of the reaction, the HO₂ - SO₂ reaction may become comparable to that with OH, although the OH radical is being produced continually by the ozone-olefin reaction. At all times the purely photolytic oxidation of SO₂ to SO₃ is negligible compared to other reaction paths. Of the initial concentrations, the largest effect on the SO₂ oxidation rate results from variation of the hydrocarbon level in the system. Nitric oxide tends to inhibit SO₂ oxidation, largely because of its ability to scavenge free radicals. Increasing

Table VIII. Observed and Predicted Acetaldehyde Concentrations for McNealis Experiments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.88</td>
<td>2.38</td>
<td>0.58</td>
<td>0.73</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3.55</td>
<td>1.08</td>
<td>0.62</td>
<td>0.45</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.46</td>
<td>0.98</td>
<td>0.19</td>
<td>0.58</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>8.55</td>
<td>2.71</td>
<td>0.52</td>
<td>1.80</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1.11</td>
<td>2.06</td>
<td>0.65</td>
<td>0.48</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2.74</td>
<td>1.97</td>
<td>0.58</td>
<td>0.82</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>3.02</td>
<td>1.81</td>
<td>0.56</td>
<td>0.79</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>2.82</td>
<td>2.02</td>
<td>0.20</td>
<td>0.84</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IX. Results of Smith-Uorne NO₃/NO₂/Propylene Simulations

<table>
<thead>
<tr>
<th>Run no.</th>
<th>[NO₃]₀</th>
<th>[CH₃H₃]₀</th>
<th>[SO₂]₀</th>
<th>[O₃]₀</th>
<th>Obs</th>
<th>Pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>0.12</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>6</td>
<td>15.3</td>
<td>6</td>
<td>9</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>6</td>
<td>12.3</td>
<td>3.7</td>
<td>13</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>6</td>
<td>15.6</td>
<td>1.5</td>
<td>29</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>6</td>
<td>16.3</td>
<td>0.2</td>
<td>22</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

Table X. Results of Simulation of Wilson-Levy Experiments

<table>
<thead>
<tr>
<th>Run no.</th>
<th>[NO₃]₀</th>
<th>[NO₂]₀</th>
<th>[O₃]₀</th>
<th>[CH₃H₃]₀</th>
<th>[SO₂]₀</th>
<th>[O₃]₀</th>
<th>[NO₃], ppm</th>
<th>[NO₂], ppm</th>
<th>[O₃], ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
</tr>
<tr>
<td>33</td>
<td>0.04</td>
<td>0.96</td>
<td>3.80</td>
<td>0.75</td>
<td>0.75</td>
<td>1.30</td>
<td>80</td>
<td>65</td>
<td>0.78</td>
</tr>
<tr>
<td>36</td>
<td>0.03</td>
<td>1.00</td>
<td>4.00</td>
<td>0.25</td>
<td>0.80</td>
<td>1.53</td>
<td>87</td>
<td>70</td>
<td>0.82</td>
</tr>
<tr>
<td>45</td>
<td>0.06</td>
<td>1.02</td>
<td>3.90</td>
<td>0.75</td>
<td>1.15</td>
<td>1.36</td>
<td>51</td>
<td>40</td>
<td>0.75</td>
</tr>
<tr>
<td>46</td>
<td>0.20</td>
<td>1.17</td>
<td>3.95</td>
<td>0.75</td>
<td>1.55</td>
<td>1.35</td>
<td>27</td>
<td>30</td>
<td>0.85</td>
</tr>
<tr>
<td>49</td>
<td>0.05</td>
<td>1.00</td>
<td>3.98</td>
<td>0.53</td>
<td>0.94</td>
<td>1.46</td>
<td>92</td>
<td>65</td>
<td>0.78</td>
</tr>
<tr>
<td>53</td>
<td>0.02</td>
<td>1.02</td>
<td>3.98</td>
<td>0.25</td>
<td>1.68</td>
<td>1.51</td>
<td>34</td>
<td>40</td>
<td>0.63</td>
</tr>
<tr>
<td>55</td>
<td>0.02</td>
<td>1.00</td>
<td>3.96</td>
<td>0.25</td>
<td>1.64</td>
<td>1.46</td>
<td>34</td>
<td>40</td>
<td>0.68</td>
</tr>
<tr>
<td>56</td>
<td>0.01</td>
<td>1.00</td>
<td>3.91</td>
<td>0.75</td>
<td>1.57</td>
<td>1.40</td>
<td>42</td>
<td>46</td>
<td>0.71</td>
</tr>
</tbody>
</table>

*Times and concentrations of species maxima. * Percent disappearance over duration of experimental run.
relative humidity increases the SO\textsubscript{2} oxidation rate through homogeneous and heterogeneous paths involving OH-production. (Not all heterogeneous paths involving water have been considered here.)

Based on the frequent literature reports of films and coatings that cover reactor surfaces in smog chamber experiments involving SO\textsubscript{2} as well as the positive identification of sulfur-containing aerosol in such systems, it seems likely that heterogeneous effects play an important role in laboratory SO\textsubscript{2} studies. The importance of such effects in polluted atmospheres must be determined if rates of sulfate formation are to be predicted with accuracy.

Conclusions

The chemical kinetics of the homogeneous atmospheric oxidation of SO\textsubscript{2} were studied. Known reactions involving SO\textsubscript{2} for which rate constants have been measured are insufficient in themselves to account for observed SO\textsubscript{2} oxidation rates in NO\textsubscript{2}/hydrocarbon/ SO\textsubscript{2} systems. Reactions involving peroxy-radicals and SO\textsubscript{2} may play an important role in these systems, and rate constant determinations for them are needed. The extent to which heterogeneous reactions may be responsible for observed SO\textsubscript{2} oxidation rates in smog chambers could not be assessed.

Appendix: Estimation of Rate Constants for O\textsubscript{3}-Olefin Pathways

In this Appendix, we show how the relative rate constants were derived for the various decomposition pathways available to the O\textsubscript{3}-olefin molozonide intermediate. 1-Butene will be used as the example olefin. Details of the procedure used for calculating thermochemical quantities may be found in O'Neal and Blumstein (48).

For the molonozides of propylene and 1-butene, collisional deactivation and spontaneous decomposition may proceed at comparable rates. Both processes must be considered in the overall kinetic scheme shown below:

\[
\text{O}_3 + \text{C}_4\text{H}_8 \rightarrow \text{MOL}^* \\
\text{MOL}^* + \text{M} \rightarrow \text{MOL} + \text{M}
\]

\[
\begin{align*}
\text{MOL}^* & \rightarrow k_\text{C} \text{ Criengsee decomposition products} \\
\text{MOL} & \rightarrow k_\text{T} \text{ Criegee decomposition products} \\
\text{MOL} & \rightarrow k_\text{a} \text{ } \alpha-H \text{ abstraction products} \\
\text{MOL} & \rightarrow k_\text{b} \text{ } \beta-H \text{ abstraction products} \\
\text{MOL} & \rightarrow k_\text{g} \text{ } \gamma-H \text{ abstraction products}
\end{align*}
\]

We are interested in the constants \(\phi_{\text{CT}}, \phi_{\text{a}}, \phi_{\text{b}}, \phi_{\text{g}}, \phi_{\text{a}} \), which represent the ratio of the rate of product formation by the specified path to the rate of product formation by all pathways. Thus,

\[
\phi_i = \left(\frac{k_i [\text{MOL}^*] + k_{\text{CT}} [\text{MOL}]}{[\text{MOL}^*] \sum_{j=1}^{\text{CT}} k_j + [\text{MOL}]} \right) k_{\text{CT}}
\]

Rate of Product Formation by Path \(i \)

Rate of Product Formation by All Pathways

[MOL] and [MOL*] may be calculated from steady-state considerations. This formulation assumes that no intermediate complexes are formed which may affect the distribution of decomposition products.

The rate constants \(k_i \) and \(k_{\text{CT}} \) may be calculated by estimating activation energies and A-factors for the reactions of the molozonide. RRK theory is used to calculate \(k_{\text{CT}} \). O'Neal and Blumstein obtain:

\[
\begin{align*}
k_{\text{CT}} &= 1.8 \times 10^{-6} \text{ min}^{-1} \\
k_{\text{a}} &= 4.1 \times 10^{6} \text{ min}^{-1} \\
k_{\text{a}} &= 2.9 \times 10^{10} \\
k_{\text{b}} &= 1.8 \times 10^{10} \\
k_{\text{g}} &= 3.8 \times 10^{10} \\
k_{\text{g}} &= 3.6 \times 10^{10}
\end{align*}
\]
From kinetic theory, the rate constant for the collisional deactivation of a vibrationally excited molecule is given by:

\[k_2 = \frac{\pi^2 \sigma_1^2}{\mu} \left(\frac{8 k T}{\pi \mu} \right)^{1/2} \]

where

- \(\sigma_1 \) = average molecular diameter of collision complex
- \(\mu \) = reduced mass of complex (molecule + N₂)

For a 1-butene moleonide we estimate \(\sigma_1 = 5 \times 10^{-21} \text{molecule} \cdot \text{s}^{-1} \) at 25 °C. This assumes that deactivation occurs at the collision rate (Rao, T., fusion assumption). Using the expression derived above, we obtain the following ratios:

\[\phi_{\text{H}_2} \phi_{\text{D}_2} \phi_{\text{H}_2O} = 1.45 \times 10^{12} \]

For propylene, where no \(\gamma \)-abstraction path is possible, we obtain

\[\phi_{\text{C}_2H_4} \phi_{\text{C}_2H_2} \phi_{\text{C}_2H_2O} = 1.17 \times 1.2 \]

The rate constants in Table IV are obtained by assuming that the rate constant for the overall moleonide decomposition by Criege pathways is \(1 \times 10^{-11} \text{min}^{-1} \). The exact value is relatively unimportant, and as long as steady-state conditions prevail, only the ratios are important.

Literature Cited

APPENDIX II

ATMOSPHERIC BROMINE AND OZONE

PERTURBATIONS IN THE LOWER STRATOSPHERE

Y. L. Yung
California Institute of Technology
Pasadena, California

J. P. Pinto
Goddard Institute for Space Studies
New York, New York

R. T. Watson
S. P. Sander
Jet Propulsion Laboratory
Pasadena, California
ABSTRACT

The role of bromine compounds in the photochemistry of the natural and perturbed stratosphere has been re-examined using an expanded reaction scheme and the results of recent laboratory studies of several key reactions. The most important finding is that through the reaction $\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{Cl} + \text{O}_2$, there is a synergistic effect between bromine and chlorine which results in an efficient catalytic destruction of ozone in the lower stratosphere. One-dimensional photochemical model results indicate that BrO is the major bromine species throughout the stratosphere, followed by BrONO$_2$, HBr, HOBr, and Br. We show from the foregoing that bromine is more efficient than chlorine as a catalyst for destroying ozone, and discuss the implications for stratospheric ozone of possible future growth in the industrial and agricultural use of bromine. Bromine concentrations of 20 pptv (2×10^{-11}), as suggested by recent observations, can decrease the present-day integrated ozone column density by 2.4%, and can enhance ozone depletion from steady-state chlorofluoromethane release at 1973 rates by a factor of 1.1-1.2.
INTRODUCTION

In recent years, photochemical models have been used to understand the factors that control the distribution and column abundance of ozone in the present stratosphere, and to assess the impact of perturbations by stratospheric aviation (Crutzen 1970; Johnston 1971) and the release of chlorofluoromethanes (McElroy et al. 1974; Molina and Rowland 1974; Cicerone et al. 1974; Wofsy et al. 1974; NAS 1976: NASA 1010 1977; Crutzen et al. 1978). Although the importance of HO\textsubscript{x}, NO\textsubscript{x}, and Cl\textsubscript{x} in controlling stratospheric ozone is now well recognized, the close coupling that exists between members of different families has only recently become fully apparent. Indeed, the net effect of these interactions can be subtle, e.g., ClONO\textsubscript{2} is a reservoir species for Cl\textsubscript{x}, but the formation of ClONO\textsubscript{2} via the reaction Cl\textsubscript{2} + NO\textsubscript{2} + M \rightarrow ClONO\textsubscript{2} + M can result either in a decrease or in an increase in the catalytic destruction of odd oxygen depending upon the photolytic fragmentation products of ClONO\textsubscript{2} (Smith et al., 1977, Barker et al., 1979). Although both Watson (1973) and Wofsy, McElroy and Yung (1975) recognized the importance of bromine for catalytic destruction of ozone, neither paper considered the coupling of the chlorine and bromine systems. Derwent and Eggleton (1978) included the coupling of the chlorine and bromine systems in a calculation of ozone depletion in the natural atmosphere due to 10 pptv Br\textsubscript{x} and 1.3 ppbv Cl\textsubscript{x}, but did not discuss the catalytic cycles or the effect on ozone in any detail.

Wofsy et al. (1975) calculated the magnitude of the ozone perturbation by bromine through two catalytic cycles:

\[
\begin{align*}
\text{Br} + O_3 & \rightarrow \text{BrO} + O_2 \quad (1) \\
\text{BrO} + O & \rightarrow \text{Br} + O_2 \quad (8)
\end{align*}
\]

net $O + O_3 \rightarrow 2O_2$
\[
\begin{align*}
2(Br + O_3 & \rightarrow BrO + O_2) \quad (1) \\
BrO + BrO & \rightarrow 2Br + O_2 \quad (9) \quad \{ (II) \\
\hline
\text{net} & \quad 2O_3 \rightarrow 3O_2
\end{align*}
\]

However, Wofsy et al. (1975) did not consider the following catalytic cycles:

\[
\begin{align*}
Br + O_3 & \rightarrow BrO + O_2 \quad (1) \\
Cl + O_3 & \rightarrow ClO + O_2 \quad (15) \quad \{ (III) \\
BrO + ClO & \rightarrow Br + Cl + O_2 \quad (10a)
\end{align*}
\]

\[
\begin{align*}
\hline
\text{net} & \quad 2O_3 \rightarrow 3O_2
\end{align*}
\]

\[
\begin{align*}
Br + O_3 & \rightarrow BrO + O_2 \quad (1) \\
BrO + NO_2 + M & \rightarrow BrONO_2 + M \quad (11) \\
BrONO_2 + hv & \rightarrow Br + NO_3 \quad (J_1) \quad \{ (IV) \\
NO_3 + hv & \rightarrow NO + O_2 \quad (J_3) \\
NO + O_3 & \rightarrow NO_2 + O_2 \quad (20)
\end{align*}
\]

\[
\begin{align*}
\hline
\text{net} & \quad 2O_3 \rightarrow 3O_2
\end{align*}
\]

\[
\begin{align*}
Br + O_3 & \rightarrow BrO + O_2 \quad (1) \\
BrO + HO_2 & \rightarrow HOBr + O_2 \quad (12) \\
HOBr + hv & \rightarrow OH + Br \quad (J_3) \\
OH + O_3 & \rightarrow HO_2 + O_2 \quad (24)
\end{align*}
\]

\[
\begin{align*}
\hline
\text{net} & \quad 2O_3 \rightarrow 3O_2
\end{align*}
\]
\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \quad \text{(1)} \\
\text{BrO} + \text{O}_3 & \rightarrow \text{Br} + 2\text{O}_2 \quad \text{(13)}
\end{align*}
\]

\[
\text{net} \quad 2\text{O}_3 \rightarrow 3\text{O}_2
\]

We shall argue that cycle (III) is an example of an interaction between radical species from different families which may provide an important additional photochemical sink for ozone, especially in the lower stratosphere, where competing rate determining reactions such as

\[
\text{ClO} + \text{O} \rightarrow \text{Cl} + \text{O}_2 \quad \text{(16)}
\]

and

\[
\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \quad \text{(17)}
\]

are rapidly falling off with decreasing altitude. Cycle (IV) requires that the photolysis products of BrONO_2 and NO_3 are Br + NO_3 and NO + O_2 respectively. For alternative dissociation paths BrONO_2 \rightarrow BrO + NO_2, BrONO_2 \rightarrow O + BrNO, and NO_3 \rightarrow NO_2 + O, the cycle would not result in a net destruction of ozone. This paper will discuss the close coupling of the Br_x system with the HO_x, NO_x, and Cl_x systems with emphasis on the reactions

\[
\begin{align*}
\text{BrO} + \text{hv} & \rightarrow \text{Br} + \text{O} \quad \text{(J_2)} \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{Cl} + \text{O}_2 \quad \text{(10a)} \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONO}_2 + \text{M} \quad \text{(11)} \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + \text{O}_2 \quad \text{(12)}
\end{align*}
\]

which have not been previously examined. Our discussion also includes other catalytic cycles involving Cl_x - NO_x and Cl_x - HO_x systems which might also lead to an efficient destruction of ozone in the lower stratosphere:
\[\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \] (15)
\[\text{ClO} + \text{NO}_2 + \text{M} \rightarrow \text{ClONO}_2 + \text{M} \] (19)
\[\text{ClONO}_2 + \text{h}_\nu \rightarrow \text{Cl} + \text{NO}_3 \] (VII)
\[\text{NO}_3 + \text{h}_\nu \rightarrow \text{NO} + \text{O}_2 \] (J8)
\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \] (20)
\[
\text{net: } 2\text{O}_3 \rightarrow 3\text{O}_2
\]
\[\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \] (15)
\[\cdot\text{ClO} + \text{HO}_2 \rightarrow \text{HOC}1 + \text{O}_2 \] (21)
\[\text{HOC}1 + \text{h}_\nu \rightarrow \text{OH} + \text{Cl} \] (J9)
\[\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 \] (24)
\[
\text{net: } 2\text{O}_3 \rightarrow 3\text{O}_2
\]

We may note that in all one-dimensional modeling studies of the effect of halogenated compounds on ozone (see for example Chang 1976; Logan et al. 1978), perturbations above 25 km are significantly larger than those between 16 and 25 km. The present work raises the possibility of additional ozone reductions in the lower stratosphere not considered in the previous works. In another paper (Wang et al. 1979), we calculate the effects of ozone depletion in the lower stratosphere on the earth's surface temperature. A net cooling of the surface \(\Delta T_s \sim -0.3 \text{ K} \) could result, a value which is sufficient to nearly cancel the chlorofluoromethane induced greenhouse effect.
PHOTOCHEMISTRY OF BROMINE COMPOUNDS

Table 1a summarizes the reactions involving bromine-containing species, thought to be important in the photochemistry of the stratosphere, along with the preferred values of their rate coefficients. As will be shown later, the partitioning of inorganic bromine into its constituent species (Br_x = HBr + BrONO_2 + BrO + HOBr + Br), and the magnitude of its effect on ozone, is sensitive to only a few of these rate coefficients. The reaction scheme is similar to that suggested by Watson (1975) and Wofsy et al. (1975), but has been expanded somewhat to include the formation and destruction of BrONO_2, and HOBr and the interaction between the Br_x and Cl_x systems. The basic set of key reactions in the Br_x system is similar to that in the Cl_x system, with a few important exceptions: (1) hydrogen atom abstraction by atomic bromine from H_2 and CH_4 are highly endothermic; consequently, these reactions are too slow to be important in the stratosphere; and (2) radical-radical processes such as the bimolecular disproportionation of BrO radicals may play an important role in Br_x chemistry (the magnitude of the effect is critically dependent upon the mixing ratio of total inorganic bromine), whereas their chlorine analogs are thought to be of little importance; and (3) the photolysis rate for BrO is 2–3 orders of magnitudes faster than that for ClO.

Atomic bromine can be converted into the inactive form of HBr by three processes:
TABLE 1a
Partial list of essential reactions discussed in this paper with their preferred rate coefficients. We use the rate coefficients recommended by NASA 1010 (1977), except as otherwise given in this table. The units for diurnally-averaged photolysis rates (J), two-body and three-body reactions (k) are \(s^{-1} \), \(cm^3 s^{-1} \), and \(cm^6 s^{-1} \), respectively. The numerical values of J refer to 40, 30, and 20 km for 30°N, spring-fall season.

| Reaction | \(J_1 = 1.6 \times 10^{-3}, \, 1.1 \times 10^{-3}, \, 9.8 \times 10^{-4} \) | \(J_2 = 1 \times 10^{-2} \) | \(J_3 = 1.7 \times 10^{-3}, \, 1.3 \times 10^{-3}, \, 1.1 \times 10^{-3} \) | \(J_4 = 1.5 \times 10^{-2} \) | \(J_5 = 5.8 \times 10^{-6}, \, 4.9 \times 10^{-6}, \, 2.8 \times 10^{-9} \) | \(J_6 = 7.3 \times 10^{-6}, \, 4.1 \times 10^{-8}, \, 2.2 \times 10^{-9} \) | \(J_7 = 1 \times 10^{-2} \) | \(J_8 = 5 \times 10^{-3} \) | \(J_9 = 2 \times 10^{-4} \) | \(J_{10} = 3.5 \times 10^{-4}, \, 8.8 \times 10^{-5}, \, 5.7 \times 10^{-5} \) | \(J_{11} = 7.5 \times 10^{-3} \) | \(J_{12} = 2.8 \times 10^{-5}, \, 5.7 \times 10^{-6}, \, 3.9 \times 10^{-7} \) | \(k_1 = 1.4 \times 10^{-11} e^{-755/T} \) | \(k_2 = 2 \times 10^{-11} \) | \(k_3 < 2 \times 10^{-12} e^{-1400/T} \) | \(k_4 < 1 \times 10^{-13} \) |
| \(\text{BrONO}_2 + h\nu \rightarrow \text{Br} + \text{NO}_3 \) | \(\text{BrO} + h\nu \rightarrow \text{Br} + O \) | \(\text{HOBr} + h\nu \rightarrow \text{OH} + \text{Br} \) | \(\text{Br}_2 + h\nu \rightarrow \text{Br} + \text{Br} \) | \(\text{HBr} + h\nu \rightarrow \text{H} + \text{Br} \) | \(\text{CH}_3\text{Br} + h\nu \rightarrow \text{CH}_3 + \text{Br} \) | \(\text{NO}_3 + h\nu \rightarrow \text{NO}_2 + O \) | \(\text{NO}_3 + h\nu \rightarrow \text{NO} + \text{O}_2 \) | \(\text{HOCI} + h\nu \rightarrow \text{OH} + \text{Cl} \) | \(\text{ClONO}_2 + h\nu \rightarrow \text{Cl} + \text{NO}_3 \) | \(\text{NO}_2 + h\nu \rightarrow \text{NO} + O \) | \(\text{HNO}_3 + h\nu \rightarrow \text{OH} + \text{NO}_2 \) | \(\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2 \) | \(\text{Br} + \text{HO}_2 \rightarrow \text{HBr} + \text{O}_2 \) | \(\text{Br} + \text{H}_2\text{O}_2 \rightarrow \text{HBr} + \text{HO}_2 \) | \(\text{Br} + \text{H}_2\text{CO} \rightarrow \text{HBr} + \text{HCO} \) |
\[
\begin{align*}
\text{OH} + \text{HBr} & \rightarrow \text{H}_2\text{O} + \text{Br} & k_5 = 8.5 \times 10^{-12} \\
0 + \text{HBr} & \rightarrow \text{OH} + \text{Br} & k_6 = 7.6 \times 10^{-12} e^{-1571/T} \\
\text{BrO} + \text{NO} & \rightarrow \text{Br} + \text{NO}_2 & k_7 = 8.7 \times 10^{-12} e^{265/T} \\
\text{BrO} + 0 & \rightarrow \text{Br} + 0_2 & k_8 = 3 \times 10^{-11} \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + 0_2 & k_{9a} = 2.1 \times 10^{-12} e^{244/T} \\
& \rightarrow \text{Br}_2 + 0_2 & k_{9b} = 3.5 \times 10^{-13} e^{244/T} \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{Cl} + 0_2 & k_{10a} = 6.7 \times 10^{-12} \\
& \rightarrow \text{Br} + \text{OCIO} & k_{10b} = 6.7 \times 10^{-12} \\
\text{BrO} + \text{NO}_2 + M & \rightarrow \text{BrONO}_2 + M & k_{11} = 2k_{19} \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + 0_2 & k_{12} = 4 \times 10^{-12} \\
\text{BrO} + 0_3 & \rightarrow \text{Br} + 20_2 & k_{13} < 1 \times 10^{-12} e^{-1600/T} \\
\text{BrO} + \text{OH} & \rightarrow \text{HO}_2 + \text{Br} & k_{14a} \\
& \rightarrow \text{HBr} + 0_2 & k_{14b} \\
\text{Cl} + 0_3 & \rightarrow \text{ClO} + 0_2 & k_{15} \\
\text{ClO} + 0 & \rightarrow \text{Cl} + 0_2 & k_{16} \\
\text{NO}_2 + 0 & \rightarrow \text{NO} + 0_2 & k_{17} \\
\text{HO}_2 + 0_3 & \rightarrow \text{OH} + 20_2 & k_{18} = 1.1 \times 10^{-14} e^{-580/T} \\
\text{ClO} + \text{NO}_2 + M & \rightarrow \text{ClONO}_2 + M & k_{19} \\
\text{NO} + 0_3 & \rightarrow \text{NO}_2 + 0_2 & k_{20} \\
\text{ClO} + \text{HO}_2 & \rightarrow \text{HOCl} + 0_2 & k_{21} = 3.8 \times 10^{-12} \\
\text{HO}_2 + \text{NO} & \rightarrow \text{NO}_2 + \text{OH} & k_{22} = 3.4 \times 10^{-12} e^{-250/T} \\
\text{ClO} + \text{ClO} & \rightarrow \text{Products} & k_{23} \\
\text{OH} + 0_3 & \rightarrow \text{HO}_2 + 0_2 & k_{24} \\
\text{Cl} + \text{CH}_4 & \rightarrow \text{HCl} + \text{CH}_3 & k_{25} = 9.9 \times 10^{-12} e^{-1359/T} \\
\text{OH} + \text{C}_2\text{H}_4\text{Br}_2 & \rightarrow \text{Products} & k_{26} = 2.5 \times 10^{-13} \\
\text{OH} + \text{CF}_3\text{Br} & \rightarrow \text{Products} & k_{27} < 1 \times 10^{-15}
\end{align*}
\]
\[\text{OH} + \text{CHBr}_3 \rightarrow \text{Products} \]
\[k_{28} = 4.7 \times 10^{-12} \text{ e}^{-1134/T} \]
\[(y)\]

\[\text{OH} + \text{CH}_2\text{Br}_3 \rightarrow \text{Products} \]
\[k_{29} = 2.5 \times 10^{-12} \text{ e}^{-1450/T} \]
\[(y)\]

\[\text{OH} + \text{CH}_2\text{Br} \rightarrow \text{CH}_2\text{Br} + \text{H}_2\text{O} \]
\[k_{30} = 7.9 \times 10^{-13} \text{ e}^{-889/T} \]
\[(y)\]

\[\text{ClO} + \text{NO} \rightarrow \text{Cl} + \text{NO}_2 \]
\[k_{31} \]
\[(a)\]

\[\text{HCl} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{Cl} \]
\[k_{32} \]
\[(a)\]

\[\text{Cl} + \text{H}_2\text{CO} \rightarrow \text{HCl} + \text{HCO} \]
\[k_{33} = 7.5 \times 10^{-11} \]
\[(z)\]

Footnote to Table 1

a NASA 1010 (1977)
b NASA 2 (1979)
c Wofsy et al., (1975)
d Spencer and Rowland (1978), recommended by b.
e based on Durie and Ramsay (1958), Clyne and Cruse (1970)
f based on Molina and Molina (private communication, 1979) cross-section for HCl, red-shifted by 300 nm
g Calvert and Pitts (1966)
h Molina and Molina (private communication, 1979).
i evaluated from the data of Clyne and Watson (1975), Leu and DeMore (1977),
 Michael et al., (1979) and Michael and Payne (1979), recommended by b
j estimated
k based upon the unpublished upper limit reported for \(k(298K) \) by Leu and
 DeMore, recommended by b
l estimated
m mean of values reported by Takacs and Glass (1973a) and Ravishankara et al.,
 (private communication, 1979), recommended by b.
n NASA 1010, based upon Takacs and Glass (1973b), Brown and Smith (1975)
 and Singleton and Cvetanovic (1976, based on paper presented at the
o Watson, Sander, and Yung, to be published, 1979.

p NASA 1010, based upon Clyne et al., (1976)

q Sander and Watson, to be published, 1979.

r NASA 1010, Clyne and Watson (1977)

s based on provisional data obtained between 50 and 700 torr N₂ at 298 K,

t estimate based upon k(ClO + HO₂)

u estimated Arrhenius expression based upon upper limit of 5 x 10⁻¹⁵ cm³ s⁻¹

at 298 K reported by Sander and Watson (1979), not included

in normal model, see text

v see text

w Howard and Evenson (1975)

x LeBras and Combourieu (1978)

y based on chlorine analogs, Davis et al., (1976), Watson et al. (1977)

z Stief et al. (1978)
TABLE 1b

List of reactions used in our model in addition to those given in Table 1a.

Values for the mean dissociation rate J are given for 40 km.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_2 + hv \rightarrow 2O$</td>
<td>1.8 (-10)</td>
</tr>
<tr>
<td>$O_3 + hv \rightarrow O_2 + O$</td>
<td>9.0 (-4)</td>
</tr>
<tr>
<td>$O_3 + hv \rightarrow O_2 + O(1D)$</td>
<td>6.8 (-4)</td>
</tr>
<tr>
<td>$H_2O + hv \rightarrow H + OH$</td>
<td>6.6 (-10)</td>
</tr>
<tr>
<td>$H_2O_2 + hv \rightarrow 2OH$</td>
<td>1.9 (-5)</td>
</tr>
<tr>
<td>$N_2O + hv \rightarrow N_2 + O(1D)$</td>
<td>1.4 (-7)</td>
</tr>
<tr>
<td>$NO + hv \rightarrow N + O$</td>
<td>9.1 (-8)</td>
</tr>
<tr>
<td>$N_2O_5 + hv \rightarrow NO_2 + NO_3$</td>
<td>9.8 (-5)</td>
</tr>
<tr>
<td>$Cl_2 + hv \rightarrow 2Cl$</td>
<td>1.2 (-3)</td>
</tr>
<tr>
<td>$HCl + hv \rightarrow H + Cl$</td>
<td>8.6 (-8)</td>
</tr>
<tr>
<td>$ClO + hv \rightarrow Cl + O$</td>
<td>6.2 (-5)</td>
</tr>
<tr>
<td>$CFCI_3 + hv \rightarrow $ products</td>
<td>3.4 (-6)</td>
</tr>
<tr>
<td>$CF_2Cl_2 + hv \rightarrow$ "</td>
<td>3.8 (-7)</td>
</tr>
<tr>
<td>$CH_3Cl + hv \rightarrow$ "</td>
<td>7.7 (-8)</td>
</tr>
<tr>
<td>$CCl_4 + hv \rightarrow$ "</td>
<td>1.6 (-5)</td>
</tr>
<tr>
<td>$COF_2 + hv \rightarrow$ "</td>
<td>9.5 (-8)</td>
</tr>
<tr>
<td>$COPC1 + hv \rightarrow$ "</td>
<td>1.3 (-6)</td>
</tr>
<tr>
<td>$CO_2 + hv \rightarrow CO + O$</td>
<td>1.8 (-11)</td>
</tr>
<tr>
<td>$CH_4 + hv \rightarrow CH_3 + H$</td>
<td>6.4 (-36)</td>
</tr>
<tr>
<td>$CH_2O + hv \rightarrow CHO + H$</td>
<td>1.5 (-5)</td>
</tr>
<tr>
<td>$CH_2O + hv \rightarrow H_2 + CO$</td>
<td>2.4 (-5)</td>
</tr>
<tr>
<td>$CH_3OOH + hv \rightarrow CH_3O + OH$</td>
<td>1.9 (-5)</td>
</tr>
<tr>
<td>Reaction</td>
<td>k</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>$^1\text{D} + \text{O}_2 \rightarrow \text{O} + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$^1\text{D} + \text{N}_2 \rightarrow \text{O} + \text{N}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$^1\text{D} + \text{H}_2\text{O} \rightarrow \text{OH} + \text{OH}$</td>
<td>a</td>
</tr>
<tr>
<td>$^1\text{D} + \text{H}_2 \rightarrow \text{H} + \text{OH}$</td>
<td>a</td>
</tr>
<tr>
<td>$^1\text{D} + \text{CH}_4 \rightarrow \text{CH}_3 + \text{OH}$</td>
<td>a</td>
</tr>
<tr>
<td>$^1\text{D} + \text{N}_2\text{O} \rightarrow \text{NO} + \text{NO}$</td>
<td>a</td>
</tr>
<tr>
<td>$^1\text{D} + \text{N}_2\text{O} \rightarrow \text{N}_2 + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{O}_3 + \text{O} \rightarrow 2\text{O}_2$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{O} + \text{O} + \text{M} \rightarrow \text{O}_2 + \text{M}$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{N} + \text{O}_3 \rightarrow \text{NO} + \text{O}_2$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{O} + \text{OH} \rightarrow \text{O}_2 + \text{H}$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{O} + \text{HO}_2 \rightarrow \text{OH} + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{N} + \text{O}_2 \rightarrow \text{NO} + \text{O}$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{N} + \text{NO} \rightarrow \text{N}_2 + \text{O}$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{OH} + \text{NO}_2 + \text{M} \rightarrow \text{HNO}_3 + \text{M}$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{OH} + \text{HNO}_3 \rightarrow \text{H}_2\text{O} + \text{NO}_3$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{H} + \text{HO}_2 \rightarrow \text{H}_2 + \text{O}_2$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{H} + \text{HO}_2 \rightarrow \text{OH} + \text{OH}$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{H} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{HO}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{O} \rightarrow \text{OH} + \text{HO}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{OH} + \text{CH}_4 \rightarrow \text{CH}_3 + \text{H}_2\text{O}$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{NO} \rightarrow \text{NO}_2 + \text{NO}_2$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{NO}_2 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M}$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{NO}_2 + \text{NO}_3 \rightarrow \text{NO}_2 + \text{O}_2 + \text{NO}$</td>
<td>b</td>
</tr>
<tr>
<td>Reaction</td>
<td>k</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Cl + HO₂ → HCl + O₂</td>
<td>d 4.1×10^{-11}</td>
</tr>
<tr>
<td>CO + OH → CO₂ + H</td>
<td>a</td>
</tr>
<tr>
<td>H₂ + OH → H₂O + H</td>
<td>b</td>
</tr>
<tr>
<td>HNO₃ + O → OH + NO₃</td>
<td>b</td>
</tr>
<tr>
<td>N₂O₅ + M → NO₂ + NO₃ + M</td>
<td>b</td>
</tr>
<tr>
<td>Cl + Cl + M → Cl₂ + M</td>
<td>b</td>
</tr>
<tr>
<td>ClNO₃ + O → ClO + NO₃</td>
<td>a</td>
</tr>
<tr>
<td>Cl + H₂ → HCl + H</td>
<td>a</td>
</tr>
<tr>
<td>Cl + O₂ + M → ClOO + M</td>
<td>a</td>
</tr>
<tr>
<td>CH₃Cl + OH → products</td>
<td>a</td>
</tr>
<tr>
<td>ClOO + M → Cl + O₂ + M</td>
<td>b</td>
</tr>
<tr>
<td>CH₃O₂ + NO → CH₃O + NO₂</td>
<td>b</td>
</tr>
<tr>
<td>CH₃O + O₂ → CH₂O + HO₂</td>
<td>a</td>
</tr>
<tr>
<td>CH₂O₂ + CH₂O₂ → 2 CH₂O + O₂</td>
<td>b</td>
</tr>
<tr>
<td>CH₂O + OH → CHO + H₂O</td>
<td>b</td>
</tr>
<tr>
<td>CHO + O₂ → O + HO₂</td>
<td>a</td>
</tr>
<tr>
<td>CH₃O₂ + HO₂ → CH₃OOH + O₂</td>
<td>b</td>
</tr>
<tr>
<td>CH₃OOH + OH → CH₃O₂ + H₂O</td>
<td>c</td>
</tr>
<tr>
<td>CH₃ + O₂ + M → CH₃O₂ + M</td>
<td>c</td>
</tr>
<tr>
<td>CH₃ + O₂ → CH₂O + OH</td>
<td>c</td>
</tr>
</tbody>
</table>

b Logan et al. (1978).
c Wofsy (1976).
d DeMore (1978) private communication. This value is close to 4.5×10^{-11} recommended by NASA 2 (1979)
\[
\begin{align*}
\text{Br} + \text{HO}_2 & \rightarrow \text{HBr} + \text{O}_2 \quad (2) \\
\text{Br} + \text{H}_2\text{O}_2 & \rightarrow \text{HBr} + \text{HO}_2 \quad (3) \\
\text{Br} + \text{H}_2\text{CO} & \rightarrow \text{HBr} + \text{HCO} \quad (4)
\end{align*}
\]

An estimated value of \(2 \times 10^{-11} \text{ cm}^3\text{s}^{-1}\) has been used for \(k_2\) in most of our calculations as there has not been a direct study of this reaction using a modern kinetic technique. The sensitivity of our model to the absolute value of \(k_2\) has been tested by using values of 0.5 and \(4 \times 10^{-11} \text{ cm}^3\text{s}^{-1}\). Using the upper limit tabulated for \(k_3\), it can be shown that reaction (3) is not an important loss mechanism for Br. It can also be shown that reaction (4) is unlikely to be comparable in magnitude to reaction (2) as a loss process for Br, as \(k_4\) would have to be greater than \(1 \times 10^{-12} \text{ cm}^3\text{s}^{-1}\) at stratospheric temperatures (this assumes that the mixing ratio for \(\text{H}_2\text{CO}\) is \(\sim 0.1 \text{ ppbv}\), whereas an estimated value of \(< 10^{-13} \text{ cm}^3\text{s}^{-1}\) is more realistic. Consequently, the only important formation process for HBr is reaction (2). (the formation of HBr via the reaction of Br0 with OH is discussed later). The major process by which atomic bromine is regenerated from HBr is:

\[
\text{OH} + \text{HBr} \rightarrow \text{H}_2\text{O} + \text{Br} \quad (5)
\]

Other minor loss mechanisms for HBr are

\[
\begin{align*}
\text{HBr} + \text{hv} & \rightarrow \text{J} + \text{Br} \quad (J_3) \\
\text{HBr} + \text{O} & \rightarrow \text{OH} + \text{Br} \quad (6)
\end{align*}
\]

Since the calculations of Wofsy et al. (1975), the rate coefficients for

\[
\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \quad (22)
\]

and

\[
\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2 \quad (18)
\]

have been revised (Howard and Evenson 1977; Howard 1978), resulting in higher concentrations of OH, and lower concentrations of \(\text{NO}_2\) and \(\text{H}_2\text{O}_2\).
The net result is that the Br:HBr ratio is significantly higher in the present model than in previous models. We may note that the Br:HBr ratio is significantly higher than the Cl:HCl ratio in the stratosphere due to slower rates of formation of HBr compared to HCl, combined with the much greater reactivity of HBr, over HCl, toward OH radicals.

The other major pathway for atomic bromine is its reaction with O_3 to form BrO:

$$Br + O_3 \rightarrow BrO + O_2 \quad (1)$$

Once formed, BrO participates in a series of reactions similar to those of the ClO radical in the Cl$_x$ system:

$$BrO + h\nu \rightarrow Br + O \quad (J_2)$$

$$BrO + NO \rightarrow Br + NO_2 \quad (7)$$

$$BrO + O \rightarrow Br + O_2 \quad (8)$$

$$BrO + BrO \rightarrow 2Br + O_2 \quad (9a)$$

$$\rightarrow Br_2 + O_2 \quad (9b)$$

$$BrO + ClO \rightarrow Br + Cl + O_2 \quad (10a)$$

$$\rightarrow Br + OC10 \quad (10b)$$

$$BrO + NO_2 + M \rightarrow BrONO_2 + M \quad (11)$$

$$BrO + HO_2 \rightarrow HOBr + O_2 \quad (12)$$

$$BrO + O_3 \rightarrow Br + 2O_2 \quad (13)$$

$$BrO + OH \rightarrow HO_2 + Br \quad (14a)$$

$$\rightarrow HBr + O_2 \quad (14b)$$
Reactions \((J_2, 7, 8, \text{ and } 11 - 14)\) play the same roles as their chlorine analogs. Using the absorption data obtained by Durie and Ramsay (1958) and Clyne and Cruse (1970), we repeat Watson's (1975) analysis and estimate a diurnally-averaged photolysis rate \(J_2 = 1 \times 10^{-2}\) s\(^{-1}\) (including corrections for Rayleigh scattering and ground albedo). Since the possibility of continuum absorption underlying the series of bands in the region 289-355 nm is not ruled out from either Durie and Ramsay's (1958) or Clyne and Cruse's (1970) data, \(J_2\) could be as high as \(3 \times 10^{-2}\) s\(^{-1}\).

In the stratosphere, reactions \((J_2)\) and \((7)\) are both important, but not as effective in limiting the catalytic efficiency of \(\text{Br}_x\) as the \(\text{NO} + \text{ClO}\) reaction is in the \(\text{Cl}_x\) system. The primary reason is that while \(\text{BrO}\) is the major form of \(\text{Br}_x\), \(\text{ClO}\) is not the major form of \(\text{Cl}_x\) in the stratosphere. Although the rate coefficient for reaction \((8)\) is uncertain by a factor of 3 this does not introduce a significant uncertainty in the magnitude of the ozone perturbation, for reasons which will be discussed in the section on atmospheric modeling. The formation and destruction of \(\text{BrONO}_2\) through

\[
\begin{align*}
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONO}_2 + \text{M} \quad \text{(11)} \\
\text{BrONO}_2 + \text{hv} & \rightarrow \text{Br} + \text{NO}_3 \quad \text{(J_1)}
\end{align*}
\]

results in cycle (IV). The rate coefficient for reaction \((11)\) is taken to be twice that for the formation of \(\text{ClONO}_2\) via reaction \((19)\), based on data collected between 50 and 700 Torr at 298 K by Watson and Sander (1979, manuscript in preparation).

Reactions \((9a)\) and \((9b)\) (\(\text{BrO} + \text{BrO}\)) are several orders of magnitude faster than reactions \((23a), (23b), \text{ and } (23c)\) (\(\text{ClO} + \text{ClO}\)). Therefore, reactions \((9a)\) and \((9b)\) can become important at high \(\text{BrO}\) concentrations \((\text{Br}_x \geq 100 \text{ pptv})\). Even though the branching ratio of reaction 9 has been
incorporated into the model, it is unimportant as Br₂ undergoes rapid photolysis in the stratosphere. Clₓ and Brₓ reactions are unimportant at night as both Cl₀ and Br₀ are tied up as ClONO₂ and BrONO₂, respectively.

The Clₓ and Brₓ systems are coupled through reactions (10a) and (10b). It is unimportant whether process (10a) actually proceeds through either Br + ClO₀ or Cl + BrOO as both peroxy radicals undergo rapid thermal decomposition. Even if the products were BrCl + O₂, it is equivalent to writing Br + Cl + O₂ as BrCl rapidly photolyzes in the stratosphere. Unfortunately reaction (10a), which is the key reaction, has only been studied at 298 K and the two published studies report values which differ by a factor of 3. k₁₀a could exhibit either a small positive or negative temperature dependence. Reaction (10b) only participates in a net-nothing cycle, as the photolysis products of OC₁₀ are O(3P) and Cl₀:

\[
\begin{align*}
\text{Br} + O_3 & \rightarrow \text{BrO} + O_2 \quad (1) \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{OC}_10 \\
\text{OC}_10 + h\nu & \rightarrow O + \text{Cl}_0 \\
O + O_2 + M & \rightarrow O_3 + M \\
\text{net nothing}
\end{align*}
\]

For cycles (V) and (VI) to be important, the rate limiting steps (12) and (13) must be comparable to the rate limiting steps in cycles (I-IV). The important formation and destruction processes for HOBr are:

\[
\begin{align*}
\text{HO}_2 + \text{BrO} & \rightarrow \text{HOBr} + O_2 \\
\text{HOBr} + h\nu & \rightarrow \text{OH} + \text{Br}
\end{align*}
\]

(12) (13)

The steady state concentration of HOBr is

\[
[\text{HOBr}] = k_{12}[\text{HO}_2][\text{BrO}]/J_3
\]
Substituting our best estimates for k_{12} and J_3 (see table 1) results in a ratio of ~ 0.1 for $[\text{HOBr}]/[\text{BrO}]$. Therefore, HOBr is not a significant reservoir of Br_x. In the current atmosphere (assuming 20 pptv Br_x and 2.3 ppbv Cl_x) cycle (V) is not important unless $k_{12} \gg 4 \times 10^{-12} \text{ cm}^3\text{s}^{-1}$, an unlikely possibility. Cycle (VI) does not become important unless $k_{13} \gg 3 \times 10^{-16} \text{ cm}^3\text{s}^{-1}$ at stratospheric temperatures. An upper limit of $\leq 5 \times 10^{-15} \text{ cm}^3\text{s}^{-1}$ has recently been reported for k_{13} at 298 K by Sander and Watson (1979). However, it must be stressed that no reaction was observed, and that the chlorine analog of reaction (13) is very slow with an upper limit of $\sim 10^{-18} \text{ cm}^3\text{s}^{-1}$ (DeMore et al. 1975). In our calculations we do not include reaction (13).

The $\text{OH} + \text{BrO}$ reaction (14) has not been included in the model as neither the overall rate coefficient nor the product distribution is known. Although reaction (14a) can participate in the following catalytic cycle:

$$\begin{align*}
\text{Br} + O_3 &\rightarrow \text{BrO} + O_2 \quad (1) \\
\text{OH} + \text{BrO} &\rightarrow \text{Br} + \text{HO}_2 \quad (14a) \\
\text{HO}_2 + O_3 &\rightarrow \text{OH} + 2O_2 \quad (18) \\
\text{net} &\quad 2O_3 \rightarrow 3O_2
\end{align*}$$

it is unimportant as the magnitude of the rate determining step is not comparable to those in cycles (I-IV) unless $k_{14a} \geq 10^{-10} \text{ cm}^3\text{s}^{-1}$ which is quite unlikely (the magnitude of k_{14} is expected to be quite similar to $k(\text{OH} + \text{ClO})$ which has recently been reported to be $9.1 \times 10^{-12} \text{ cm}^3\text{s}^{-1}$ at
298 K by Leu and Lin (1979). Reaction (14b) can be important in reducing the catalytic efficiency of Br_x by decreasing the BrO/Br_x ratio. For reaction (14b) to be important the magnitude of $k_{14b}[\text{OH}][\text{BrO}]$ must be comparable to $k_2[\text{Br}][\text{H}_2\text{O}_2]$ in order to influence the rate of formation of HBr and the partitioning of Br_x. This occurs when $k_{14b}/k_2 \approx 0.1$, i.e., $k_{14b} \approx 2 \times 10^{-12} \text{cm}^2\text{s}^{-1}$.
ATMOSPHERIC MODELING

Singh et al.'s (1977) measurements of halogenated organic species indicate that methyl bromide (CH_3Br) is probably the major bromine species in the troposphere with concentrations ranging from 1 to 300 pptv. The average concentration is about 5-10 pptv in clean air and 20 pptv in marine air (Singh, 1979, private communication). The main source of CH_3Br is marine biological activity (Lovelock, 1975). There is a smaller contribution from anthropogenic sources, associated with its use as a soil fumigant. Other bromine compounds such as dibromomethane (CH_2Br_2), bromoform (CHBr_3), and dibromochloromethane (CHClBr_2) could also be produced in the marine environment and subsequently released to the atmosphere (Burreson et al., 1975; Theiler et al., 1978; Helz and Hsu 1978), but they have not yet been detected in the atmosphere. Leinster et al. (1978) and Singh (1979, private communication) have detected ethylene dibromide in urban air. Its concentration lies in the range from 0.1 to 20 pptv, and is clearly related to the use of ethylene dibromide as a gasoline additive. Spencer and Rowland (1978) have suggested that additional anthropogenic sources of bromine could come from some bromofluorocarbon compounds (e.g., CF_3Br, $\text{CF}_2\text{BrCF}_2\text{Br}$) which are used extensively as flame retardants, and will be ultimately released to the atmosphere. The lifetimes and source strengths of important organic bromine species are summarized in Table 2. Compounds with long lifetimes in the troposphere are eventually transported into the stratosphere, where they can be readily decomposed to provide a source of inorganic stratospheric bromine.
<table>
<thead>
<tr>
<th></th>
<th>CH$_3$Br</th>
<th>C$_2$H$_4$Br$_2$</th>
<th>CF$_3$Br</th>
<th>CHBr$_3$</th>
<th>CH$_3$CBr$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globally averaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mixing ratio</td>
<td>5 - 10 (a)</td>
<td>0.1 - 1 (b)</td>
<td>< 1 (c)</td>
<td>(d)</td>
<td>(d)</td>
</tr>
<tr>
<td>(pptv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major sink</td>
<td>CH$_3$Br + OH(e)</td>
<td>C$_2$H$_4$Br$_2$ + OH(e)</td>
<td>CF$_3$Br + hv(f)</td>
<td>CHBr$_3$ + OH(e)</td>
<td>CH$_3$CBr$_3$ + OH(c)</td>
</tr>
<tr>
<td>Mean lifetime</td>
<td>2.1 years</td>
<td>3 months</td>
<td>70 years</td>
<td>1 year</td>
<td>5.7 years</td>
</tr>
<tr>
<td>Globally averaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source strength</td>
<td>35 - 70</td>
<td>12 - 120</td>
<td>< 0.21</td>
<td>(d)</td>
<td>(d)</td>
</tr>
<tr>
<td>(10^9gm Br yr$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>production</td>
<td>14 (h)</td>
<td>182 (h)</td>
<td>1.1 (h, i)</td>
<td>(d)</td>
<td>(d)</td>
</tr>
<tr>
<td>(10^9gm Br yr$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a based on Singh et al. (1977), and Singh (1979, private communication).
b estimated from Leinster et al. (1979). These numbers must be considered as illustrative rather than representative of true mean values.
c Singh (1979, private communication).
d information not available.
e we assume a mean tropospheric OH concentration of 5×10^5 cm$^{-3}$ (Singh, 1977; Chang and Fenner, 1978). The rate coefficients are given in Table 1.
f based on dissociation cross-sections measured by Molina and Molina (1979).
g a much more difficult quantity to estimate is the release rate to the atmosphere, which probably ranges from 10 to 50% of the production rate for most of the compounds considered here.
h based on 1975 and 1976 data published in Bureau of Mines Yearbook, U.S. Department of Interior. Since the U.S. accounts for 67% of all bromine produced, we estimate the global production rate by multiplying the U.S. production rate by a factor of 1.5.
i based on U.S. 1976 production of 0.75×10^9 gm Br, see text.
In the stratosphere the presence of small concentrations of bromine was first reported by Lazrus et al. (1976), using an air filter technique for capturing stratospheric halogens from a balloon platform. Recently, Lazrus, Gandrud and Sedlacek† performed a comprehensive set of measurements of stratospheric bromine and chlorine, using analytical techniques that include neutron activation analysis. Neither the neutral nor base impregnated filters collect organic compounds (e.g., CH\textsubscript{3}Br, CF\textsubscript{3}Br). The collection efficiencies for the alkaline-based filters have been calibrated for HCl, CI\textsubscript{2}, ClONO\textsubscript{2}, HBr, and BrO, but not for BrONO\textsubscript{2} or NOBr. However, we do not expect large deviations in collection efficiencies among the major inorganic halogen species. Figure 1 shows the mixing ratio ratio for total inorganic bromine Br\textsubscript{x} (= Br + 2Br\textsubscript{2} + BrO + HBr + BrONO\textsubscript{2} + NOBr), at 19 km from the equator to 70° N. The dots and crosses represent data obtained in April 1976 and July 1977, respectively. The noticeable increase in Br\textsubscript{x} both as a function of altitude and latitude suggests that stratospheric bromine is derived from a tropospheric precursor, such as CH\textsubscript{3}Br or CF\textsubscript{3}Br. In subsequent computations, we shall assume that all Br\textsubscript{x} is derived from a CH\textsubscript{3}Br source. A vertical profile for Br\textsubscript{x}, obtained by averaging all of the 1976 and 1977 data, is given in Figure 2. We have decided to ignore the anomalously high data point at 37 km. Indeed, for the last two altitudes, 32 and 37 km, a different air injection technique, used to collect the samples, might have led to spurious results. Alternatively,

†Private communication based on work to be published, 1979.
Figure 1 - Mixing ratio for total inorganic bromine Br_x ($= Br + 2 Br_2 + BrO + HBr + BrONO_2 + HOBr$) at 19 km from the equator to 70° N. The dots and crosses represent data taken in April 1976 and July 1977 by Lazrus et al. (1979).
Figure 2 - Vertical distribution for Br\textsubscript{X} obtained by averaging all available data taken by Lautis et al. (1979) in 1976 and 1977. The curve is obtained from model calculation by assuming that all Br\textsubscript{X} is derived from Cl\textsubscript{3}Br.
the collection efficiencies of the filters may have been influenced by the exceedingly reactive chemical environment in the middle and upper stratosphere. However, the anomalously high bromine values are reminiscent of Anderson et al.'s (1977) high chlorine values. These measurements may reflect our imperfect understanding of the sources of stratospheric halogens and the species partitioning amongst them.

The major bromine species in the stratosphere and important paths for cycling between species are schematically summarized in Figure 3. Figure 4 presents height profiles computed for BrO, BrONO₂, HBr, HOBBr, and Br in the present stratosphere with 20 pptv total bromine (Brₓ), as prescribed by the profile shown in Figure 2. The computations were carried out with a diurnally-averaged one-dimensional photochemical model. Our model is based on a set of about 100 essential reactions recommended by NASA 1010 (1977), whose rate coefficients we adopt, except as otherwise stated in Table 1a and 1b. We adopt the U.S. Standard Atmosphere model for 30°N, spring-fall season. Diurnally averaged photodissociation rates were obtained by integration over a 24 hour cycle. Corrections to mean dissociation rates due to Rayleigh scattering and ground albedo for species that dissociate at wavelengths longward of 200 nm are approximately made by modifying these quantities by factors taken from NASA 1010 (1977) and Wofsy (1978). The equations of continuity are solved from 0 to 80 km for all major Oₓ, NOₓ, NOₓ, Clₓ, and Brₓ species, and their precursors, allowing transport by eddy diffusion for long-lived species. We use Hunten's (1975) eddy diffusivity profile, with modifications recommended by NASA 1010 (1977). Altitude profiles of the major stratospheric free radicals computed by the
Figure 3 - Schematic diagram summarizing the major bromine species and their interactions.
Figure 4 - Altitude profiles for major bromine species in the stratosphere, calculated using the reactions and rate coefficients of Table 1.
Total Br$_x$ at 40 km equals 20 pptv.
photochemical model are given in Figure 5. Unless otherwise stated, the number densities in Figure 4 and 5 will be taken to be representative of the present atmosphere, containing 2.3 ppbv Cl\textsubscript{x}, 19 ppbv NO\textsubscript{x}, 6 ppmv H\textsubscript{2}O, and 20 pptv Br\textsubscript{x} at 40 km. For these calculations, we have assumed a surface mixing ratio of 20 pptv for CH\textsubscript{3}Br (or total organic bromine), as suggested by the measurements. The mixing ratio of total inorganic bromine was 10 pptv at the ground (Wofsy et al., 1975). Heterogeneous removal of inorganic bromine, and other soluble trace constituents in the troposphere was modeled in the same way as Wofsy et al. (1975). Our results, summarized in Figure 4, show that BrO, an active form of bromine, is the major bromine species in the stratosphere, followed by BrONO\textsubscript{2}, HBr, HOBr, and Br. Here lies an important difference between the chemistry of bromine and chlorine. According to current models (see for example Logan et al. 1978), the relatively inert forms of chlorine, HCl or ClONO\textsubscript{2}, dominate over ClO throughout most of the stratosphere.

The presence of bromine at today's level is important in controlling the abundance of ozone in the present atmosphere (with 2.3 ppbv of Cl). Figure 6 shows a comparison of ozone profiles computed with 0 and 20 pptv bromine. The difference in ozone concentrations reaches 6% in the lower stratosphere, but effectively vanishes above 30 km. The column integrated ozone (from 0 to 80 km) for the two profiles in Figure 6 differs by 2.4%. The result is somewhat surprising,
Figure 5 - Altitude profiles for important species in the stratosphere.

The standard model contains 2.3 ppbv Cl, 19 ppbv NO, 6 ppbv H₂O, and 20 pptv Br at 40 km.
Figure 6 - Altitude profile for ozone computed with and without 20 pptv bromine.
that such a small amount of bromine can be so effective. Figure 7 compares the rates of the bromine-related destruction of odd oxygen with other reactions, where "all others" is taken to be equal to $2k(0_3 + 0) + 2k_{18}(HO_2 + O_3) + 2k_{17}(NO_2 + 0) + 2k_{16}(ClO + 0) + \frac{2}{3}j_{10}(ClONO_2) + k_{21}(HO_2 + ClO)$. The rate-determining reactions for cycles (I-V) are the reactions BrO + 0 (8), respectively. It is clear from Figure 7 that the impact of bromine on ozone is mostly through cycle (III). Cycle (1) becomes active only in the upper stratosphere, where it competes rather unfavorably with "all others". On the other hand, cycle (III) peaks in the lower stratosphere, where it can act as a major additional sink for odd oxygen. Cycles (II) (IV) and (V) are insignificant compared with cycle (III) at current Br and NOx levels. We now understand why the action of bromine on ozone is almost totally controlled by reaction (10a), and that factors of 3 uncertainty in reaction (8) are of no consequence. In all our computations, the production and loss of odd oxygen are calculated rigorously from the continuity equations. However, this procedure is equivalent to the use of catalytic cycles discussed here.

As discussed in the previous sections, bromine, when coupled with chlorine can be an efficient catalyst for destroying ozone. This poses an obvious cause for concern over possible increases in atmospheric bromine as a result of future growth in the bromine industry. The importance of reaction (10a) in the lower stratosphere suggests that previous ozone depletion assessments (NAS, 1976; NASA 1010, 1977) due to steady-state chlorofluoromethane release have been underestimated by not including the effects of bromine. We shall explicitly investigate two problems:

(a) The depletion of ozone by bromine as the bromine concentration increases, while keeping the chlorine concentration fixed at its present level (2.3 ppbv).
Figure 7 - Rates of the bromine-related destruction of odd oxygen. "All others" is the total odd oxygen destruction rate excluding that due to bromine (see text).
(b) The depletion of ozone by chlorine due to steady-state chlorofluoromethane release at 1973 rates, while keeping the bromine concentration fixed at its present level (20 pptv).

In attacking the first problem, we must first estimate the source strength of bromine compounds in the present atmosphere. Table 2 lists a number of stable bromine compounds that can be derived from natural or anthropogenic sources, the global production rates required to maintain the steady state abundances of the observed species, and the current world production rates for compounds that are widely used in industry. According to our estimates, the natural source of CH$_3$Br should be around 35-70 x 109 gm-Br yr$^{-1}$. The global industrial production rate of CH$_3$Br in recent years has been about 14 x 109 gm-Br yr$^{-1}$, which could account for 20-40% of the total atmospheric budget of CH$_3$Br, if all of it has been released to the atmosphere. However, there are increasingly larger demands for the agricultural use of methyl bromide, and its production has been rising since 1962 at the rate of 7% a year (Klingman 1972-1975; Foster 1975-1978). If this trend were to continue to the end of the century, the industrial source could exceed the natural source, and the bromine concentration in the atmosphere would greatly increase. Atmospheric bromine can also increase for another reason. The major sink for CH$_3$Br and C$_2$H$_4$Br$_2$ in the troposphere is by reaction with OH. Wofsy (1976), Sze (1977) and Penner et al. (1977) have suggested that mean OH concentrations in the troposphere could decrease due to an increase in atmospheric CO. This could result in a longer lifetime for CH$_3$Br and C$_2$H$_4$Br$_2$, and hence a higher concentration of these compounds,
even if the sources remain constant. For similar reasons, the concentrations of chlorine containing compounds (e.g., CH₃Cl, CHCl₃, CH₂CCl₃) could also increase. There is at least one more potential future source of stratospheric bromine as pointed out by Spencer and Rowland (1978). The 1976 U.S. production of CF₃Br was 0.75 x 10⁹ gm-Br⁺. The upper limit for the rate coefficient for reaction with OH reported by LeBris and Combrouie (1978), implies a minimum tropospheric lifetime of 60 years. However, because the reaction is highly endothermic, it is more likely that CF₃Br behaves like CFCl₃ and CF₂Cl₂ towards reaction with OH, and photolysis in the stratosphere is the major sink.

We estimate a photolytic lifetime of 70 years for CF₃Br based on the absorption cross-section data of Molina and Molina*. In this case, a constant industrial production rate as small as 1 x 10⁹ gm-Br yr⁻¹ would result in a steady-state concentration of 5 pptv CF₃Br in the lower atmosphere (assuming complete release to the atmosphere).

Figure 8 summarizes the results of the model calculations of ozone depletion as a function of bromine concentration in the atmosphere. In these calculations we take as "standard" a model atmosphere with 2.3 ppbv Clₓ but no bromine. In the perturbation calculations, we assume that the vertical profile of Brₓ is the same as that due to a CH₃Br source (see Figure 2). The procedure should yield an exact answer if all stratospheric inorganic bromine is derived from CH₃Br, but must be considered as an approx-

†Based on data released to the EPA in 1977 by F.A. Bower of DuPont de Nemours & Co., Wilmington, Delaware.

*Private communication, paper to be published, 1979.
Figure 8 - Ozone depletion as a function of bromine concentration in the stratosphere. ΔO_3 refers to the difference in column integrated ozone density (from 0 to 80 km). Calculations are summarized in Table 3.
amination if other sources such as CF$_3$Br and CH Br$_3$ become important. \(\Delta O_3 \) in the figure refers to the difference in column integrated ozone abundance (from the ground to 80 km), and is nearly proportional to Br$_x$, at least to concentrations about 80 pptv.

Figure 9 shows the results of model calculations of ozone depletion due to steady-state chlorofluoromethane release at 1973 rates with and without including an amount of bromine equal to that in the present atmosphere. Curve B$_1$ is obtained by assuming that the present stratosphere contains 2.3 ppbv Cl$_x$, and that the perturbed atmosphere contains 8.2 ppbv Cl$_x$, reflecting a rise in chlorine concentration due to the release of chlorofluoromethanes. The concentrations of CFCl$_3$ and CF$_2$Cl$_2$ used to model the present and perturbed atmosphere are 0.1, 0.2, and 0.8, 2.3 ppbv, respectively. Following NAS (1976), we assume that yield of Cl atoms from CFCl$_3$ and CF$_2$Cl$_2$ photolysis are 2.5 and 2.0, respectively. Curve B$_3$ is obtained in the same way as curve B$_1$ with the additional assumption of the presence of 20 pptv bromine (as given by the profile in Figure 2) in both the present and the perturbed atmosphere. To isolate the effect of cycles (V) and (VII), we also show curves B$_1^*$ and B$_3^*$, which are obtained in the same manner as that for B$_1$ and B$_3$, but with the additional assumption that photolysis of XONO$_2$ (X = Br, Cl) proceeds by the path XONO$_2 \rightarrow$ XO + NO$_2$ (or O + XONO) rather than the path XONO$_2 \rightarrow$ X + NO$_3$. The effect on the vertically integrated ozone column abundance is summarized in Table 3. The difference between the present and previous assessments of the chlorofluoromethane impact on stratospheric ozone is about 11%. The difference would be greater (~17%) if cycles (IV) and (VII) were suppressed as in B$_1^*$ and B$_3^*$. Our model predicts
Figure 9 - Altitude profiles of ozone reduction due to steady-state chlorofluoromethane release at 1973 rates. B_1 is based on our standard model with no bromine. B_3 includes 20 pptv Br. B_1^* and B_3^* are the same as B_1 and B_3 except that photolysis for XONO$_2$ proceeds by the path XONO$_2$ \rightarrow X + NO$_2$ or O + XONO(X = Br, Cl). Details are referred to in Table 3.
TABLE 3

Column integrated (from 0 to 80 km) ozone abundance calculated by our photochemical model for various concentrations of Cl\textsubscript{x} and Br\textsubscript{x} in steady-state. The units for ozone, Cl\textsubscript{x}, and Br\textsubscript{x} abundances are cm-atm (1 cm-atm = 2.6 x 1019 molecules cm-2), ppbv and pptv, respectively. For the cases marked by (*) we assume that photolysis of XONO\textsubscript{2} proceeds by the path XONO\textsubscript{2} \rightarrow XO + NO\textsubscript{2} (or O + XONO), where X = Br or Cl. For all other cases, photolysis of XONO\textsubscript{2} proceeds by the path given in Table 1. Runs C\textsubscript{1}, C\textsubscript{2}, D\textsubscript{1}, and D\textsubscript{2} show the sensitivity of the results for A\textsubscript{3} to the uncertainties in the rate coefficients for reactions 2(Br + HO\textsubscript{2}) and J\textsubscript{2}(BrO + hv). For runs C\textsubscript{1} and C\textsubscript{2}, k\textsubscript{2} was set equal to 4 x 10-11 and 5 x 10-12 cm3s-1, respectively, in runs D\textsubscript{1} and D\textsubscript{2}, J\textsubscript{2} was set equal to 3 x 10-2 and 3 x 10-3s-1.
<table>
<thead>
<tr>
<th>Br₂ (pptv)</th>
<th>Cl (pptv)</th>
<th>2.3</th>
<th>8.2</th>
<th>Δ₀₀₅/₀₀₅ = \frac{B}{A} - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A₁</td>
<td>0.327</td>
<td>B₁</td>
<td>0.268</td>
</tr>
<tr>
<td>10</td>
<td>A₂</td>
<td>0.323</td>
<td>B₂</td>
<td>0.262</td>
</tr>
<tr>
<td>20</td>
<td>A₃</td>
<td>0.319</td>
<td>B₃</td>
<td>0.256</td>
</tr>
<tr>
<td>30</td>
<td>A₄</td>
<td>0.315</td>
<td>B₄</td>
<td>0.251</td>
</tr>
<tr>
<td>80</td>
<td>A₅</td>
<td>0.294</td>
<td>B₅</td>
<td>-----</td>
</tr>
</tbody>
</table>

| | A₁* | 0.333 | B₁* | 0.283 | -15.0% |
| 20 | A₃* | 0.326 | B₃* | 0.269 | -17.5% |

20	C₁	0.321
20	C₂	0.318
20	D₁	0.321
20	D₂	0.319
0.2 ppbv ClONO$_2$ at 20 km, a value that should be compared with Murcray et al.'s (1978) upper limit of 0.3 ppbv (at 5% absorption level) at 20 km. As discussed earlier, the additional ozone depletion by bromine is primarily through the effect of cycle (III). The result for column-integration ozone depletion can be approximately expressed as

$$\frac{\Delta O_3}{O_3} \approx \frac{1}{40} \left(\frac{Br_X}{Br_X^0} \right) \left(\frac{Cl_X}{Cl_X^0} \right)^{1/3}$$

where $Br_X^0 = 20$ pptv, $Cl_X^0 = 2.3$ ppbv, $Br_X \leq 100$ pptv and 2 ppbv $\leq Cl_X \leq 10$ ppbv. The exponent, $(1/3)$, in Cl_X acts as a damping factor and is due to a "self-healing" effect caused by the destruction of O_3 at high altitudes. More photons are then allowed to penetrate deeper into the atmosphere where they can photolyze O_2. With bromine, however, most of the ozone perturbation takes place in the lower stratosphere below the level of maximum concentration for O_3, and the corresponding radiative feedback is absent. Our results for ΔO_3 fall between curves A and B, in Figure 2 of Wofsy et al. (1975). It is not meaningful to seek a more detailed comparison between Wofsy et al.'s calculations and ours since the major catalytic cycles and the number densities of important chemical species in the two models are different. Some photochemical models (see for example Derwent and Eggleton, 1978) predict lower concentrations of ClO in the lower stratosphere, for reasons to be discussed in the next paragraph, and the bromine effect is accordingly smaller. Our calculations are based on diurnally averaged values for all stratospheric species. A fully time-dependent calculation will (a) increase the daytime ClO concentration due to J_{10}, (b) increase the daytime BrO concentration due to J_1, and (c) decrease the daytime BrO concentration due to J_2 and NO. At low values for $J_2 (\leq 3 \times 10^{-3} \text{s}^{-1})$ (b)
is much larger than (c), and our calculations have underestimated the effect of bromine. A comparison between time-dependent and diurnally-averaged calculations has been performed by Sze (1979, private communication) using a similar photochemical model with $J_2 = 1 \times 10^{-2} \text{s}^{-1}$. Sze's results are close to ours. However, his time-dependent calculations predict a 30% larger ΔO_3 than is obtained with the diurnally averaged model.

A number of uncertainties in the current modeling effort of stratospheric bromine can be readily identified. The major bromine-related catalytic cycle is cycle (III), whose effect on O_3 is, to first order, given by

$$-\Delta \text{O}_3 = 2k_2k_{10} \text{[CIO] [BrO]}.$$

In the lower stratosphere, we can derive approximate expressions for CIO and BrO

$$\frac{[\text{Cl}]}{[\text{Cl}_x]} \approx \left[1 + \frac{k_{25}k_{31}[\text{CH}_3][\text{NO}]}{k_{32}k_{15}[\text{OH}][\text{O}_3]} + \frac{k_{19}[\text{NO}_2]}{J_{10}} \right]^{-1}$$

$$\frac{[\text{Br}] }{[\text{Br}_x]} \approx \left[1 + \frac{k_{17}[\text{HO}_2]}{k_1k_5[\text{OH}][\text{O}_3]} + \frac{k_{11}[\text{NO}_2]}{J_1} \right]^{-1}.$$

The quantities most critical for a better understanding of stratospheric bromine are summarized and critiqued in Table 4. For simplicity, we choose to evaluate all the relevant quantities at 20 km. We may note that CIO in the lower stratosphere is a minor chlorine species, whose concentration is controlled by $\text{NO}, \text{NO}_2, k_{25}$.
and CH₄. A comparison between predicted and measured ClO concentrations below 25 km shows considerable disagreement (Anderson et al., 1977), with the measurements suggesting lower ClO concentrations, especially in winter. If the missing ClO has been converted into HCl, this would result in a net decrease in the catalytic destruction of O₃ in the lower stratosphere. However, if the missing ClO has been converted into ClONO₂ and if the photolysis products are Cl + NO₃, (Murcray et al.'s, 1978) upper limit measurement of ClONO₂ is for March), then cycle (VII) would operate in favor of cycle (III), and lead to a net destruction of ozone. The major uncertainty in the bromine chemistry is the absolute concentration of Brₓ. The way in which the uncertainties in Table 4 affect O₃ is, in most cases, explicitly given by the approximate expressions we derived earlier. We do, however, include in Table 3, the results of four runs (C₁, C₂, D₁, D₂) on the sensitivity of O₃ to a range of values for k₂ and J₂. The results suggest that O₃ does not vary by more than 50% over the considerable uncertainty range for k₂ and J₂, except in the unlikely event that drastically k₂, J₂, and k₅ all happen to take on extreme values which would lower the [BrO] to [Brₓ] ratio. We have also examined the sensitivity of the results to the choice of eddy diffusivity profile. A factor of 1.5 increase or decrease in values of eddy diffusivities leads to a 20% decrease and a 20% increase in O₃, respectively. In addition to the uncertainties associated with the photochemistry in our model, there is the question of whether the one-dimensional model approach is really valid for modeling the lower stratosphere.
Table 4

The major uncertainties in the modeling of the coupled photochemistry of bromine in the lower atmosphere.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Magnitude at 20 km</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl<sub>x</sub></td>
<td>0.99 ppbv</td>
<td>factor of 1.5</td>
</tr>
<tr>
<td>Br<sub>x</sub></td>
<td>11 pptv</td>
<td>factor of 2</td>
</tr>
<tr>
<td>k<sub>10a</sub></td>
<td>6.7 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}</td>
<td>2.5 \times 10^{-12} - 1.3 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}</td>
</tr>
<tr>
<td>k<sub>25</sub></td>
<td>1.6 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1}</td>
<td>1.3 - 2.1 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1}</td>
</tr>
<tr>
<td>NO</td>
<td>2.7 \times 10^{8} \text{ cm}^{-3}</td>
<td>factor of 2</td>
</tr>
<tr>
<td>ClO</td>
<td>7.8 \times 10^{7} \text{ cm}^{-3}</td>
<td>factor of 2 (see text)</td>
</tr>
<tr>
<td>J<sub>2</sub></td>
<td>1 \times 10^{-2} \text{ s}^{-1}</td>
<td>3 \times 10^{-2} - 3 \times 10^{-3} \text{ s}^{-1}</td>
</tr>
<tr>
<td>k<sub>2</sub></td>
<td>2.0 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}</td>
<td>4 \times 10^{-11} - 5 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}</td>
</tr>
<tr>
<td>k<sub>5</sub></td>
<td>8.5 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}</td>
<td>factor of 1.5</td>
</tr>
<tr>
<td>Br0</td>
<td>1.2 \times 10^{7} \text{ cm}^{-3}</td>
<td>factor of 2</td>
</tr>
</tbody>
</table>
It is well known that dynamical processes play a major role in determining the distributions of ozone and other trace gases in the lower stratosphere. The one dimensional model considers vertical transport only, whereas the motion field is more nearly horizontal. Quasi-horizontal motions transport trace gases poleward, where they will meet different conditions of temperature and the availability of solar ultra-violet radiation. These variations will play an important role in determining the species partitioning between the total inorganic chlorine and bromine reservoirs. The relative importance of either HCl or ClNO₃, (as chlorine reservoirs) on the destruction of ozone at high latitudes has already been mentioned. A detailed treatment of stratospheric-tropospheric exchange processes is also required, in order to accurately determine the lifetime, in the lower stratosphere, of substances which may deplete ozone. Indeed, the study of compositional changes in the lower stratosphere on ozone may require the use of a multi-dimensional dynamical model.
CONCLUSIONS

In the lower stratosphere (16 - 26 km) ozone can be efficiently removed by a mixed bromine-chlorine catalytic cycle [cycle (III)], with additional contributions from cycle (IV) and cycle (VII). All three cycles involve a synergistic coupling between radical species from different families. We have investigated the effect of bromine in the present atmosphere, and in an atmosphere perturbed by large concentrations of halogens derived from anthropogenic sources. In both cases, the results (summarized in Table 3) suggest that bromine is important for controlling stratospheric ozone at a few percent level, and should be included in photochemical models. The major uncertainties in the modeling of bromine chemistry are in the concentrations of ClO and Br$_x$ in the lower stratosphere and the rate coefficients for the key reactions k_{10a}, k_2, and J_{2x} (see Table 4). These uncertainties can be removed by suitable experimental work in the future. This work raises the possibility of large ozone depletions (20 - 30%) in the lower stratosphere, associated with the release of chlorofluoromethanes.
ACKNOWLEDGMENTS

We thank A.L. Lazrus and W.A. Sedlacek for permission to use their data prior to publication. We benefited from discussions with W.B. DeMore, H.B. Singh, J.S. Chang, S.C. Liu, N.D. Sze, J.A. Logan, S.C. Wofsy, M.T. Molina, and F.S. Rowland. We appreciate the constructive criticisms given by the referees P.J. Crutzen and R.J. Cicerone in their reviews of this paper.

This research was supported by NASA grant NSG 2229 to the California Institute of Technology, NASA grant NSG 5163 Scope M to Columbia University, and also represents one phase of NASA sponsored research carried out at the Jet Propulsion Laboratory under contract No. NAS 7-100.
REFERENCES

Howard, C.J., 1978: Recent developments in atmospheric H\textsubscript{2}O\textsubscript{2} chemistry.
WHO Symposium, Toronto, p. 11.
Hunten, D.M., 1975: Vertical transport in atmospheres. In Atmospheres of
Johnston, H.S., 1971: Reduction of stratospheric ozone by nitrogen oxide
Direct measurements of stratospheric chlorine and bromine. J. Geophys.
Res., 81, 1067-1070.
LeBras, G. and J. Combourieu, 1978: EPR kinetic study of the reactions of
Leinster, F., E. Perry, and R.J. Young, 1978: Ethylene dibromide in urban
air. Atmos. Environ., 12, 2383-2387.
Leu, M.T. and W.B. DeMore, 1977: Rate constant for the reaction of atomic
Leu, M.T. and C.L. Lin, 1979: Rate constants for the reaction OH with Cl\textsubscript{10},
chemistry: response to human influence. Philosophical Transactions of
the Royal Society of London 290, 187-234.
Lovelock, J.E., 1975: Natural halocarbons in the air and in the sea.
ozone: possible impact of stratospheric aviation. J. Atmos. Sci., 31,
287-303.

Watson, R.T., 1975: Chlorine, the Chlorine Oxides, and other Halogen Species, CIAP Monograph I. Publication DOT-TST-75-51 by Dept. of Transportation, Climatic Impact Assessment Program, Office of the Secretary of Transportation, Wash. D.C. 20590. See section 5.7.5.

APPENDIX III

TEMPERATURE DEPENDENT RATE CONSTANTS FOR THE REACTION OF
GROUND STATE ATOMIC CHLORINE WITH SIMPLE ALKANES

R. S. Lewis, S. P. Sander, S. G. Wagner and R. T. Watson

Molecular Physics and Chemistry Section

Jet Propulsion Laboratory
Pasadena, CA 91103
ABSTRACT

The low pressure discharge flow resonance fluorescence technique has been utilized to study the rates and temperature dependences of three chlorine atom-alkane reactions. The reactions have been studied using a wide range of experimental conditions to insure the absence of complicating secondary processes. The Arrhenius expressions for each bimolecular reaction are expressed in units of cm3 molecule$^{-1}$ s$^{-1}$: Cl + C$_2$H$_6$ + C$_2$H$_5$ + HCl (1), $k_1 = 9.01 \times 10^{-11} \exp(-(133 \pm 15)/T)$ 220 - 604 K; Cl + C$_3$H$_8$ + C$_3$H$_7$ + HCl (2), $k_2 = 1.36 \times 10^{-10} \exp(+44 \pm 23)/T)$ 220 - 607 K; Cl + nC$_4$H$_{10}$ + C$_4$H$_9$ + HCl (3), $k_3 = 2.15 \times 10^{-10} \exp(+12 \pm 26)/T)$ 298 - 598 K. In addition the following reaction was studied at 298 K: Cl + isoC$_4$H$_{10}$ + C$_3$H$_9$ + HCl (4), $k_4 = (1.46 \pm 0.06) \times 10^{-10}$.

The present results are compared with earlier absolute and relative rate constant measurements.
INTRODUCTION

Reactions involving abstraction of a hydrogen atom from an RH molecule by atomic chlorine have been of interest to kineticians for many years. In addition to the need for accurate experimental rate data in order to test current kinetic theories, recent interest in these reactions stems from the now well known stratospheric chlorine-ozone problem.\(^1\) This renewed interest in reactions between atomic chlorine and hydrogen containing molecules \((\text{Cl} + \text{RH} \rightarrow \text{HCl} + \text{R})\) is due to the role of HCl as a reservoir for active chlorine in the stratosphere. This has led to numerous studies of the kinetic behavior of atomic chlorine with molecular hydrogen\(^{2-9}\) and methane\(^{4,5,10-20}\) over a wide range of temperature and pressure using direct kinetic techniques. However, except for a single temperature dependence study with ethane,\(^{14}\) the reactions of higher alkanes with atomic chlorine have received relatively little recent attention.

The introduction of gas chromatography allowed competitive chlorination experiments between molecular hydrogen, alkanes, and chlorinated alkanes to be studied by product analysis,\(^{21,22}\) thus providing more accurate results than those available using the consumption method.\(^{23,24}\) The early work is reviewed by Fettis and Knox.\(^{25}\) In addition to activation energy differences and Arrhenius A-factor ratios determined in the competitive chlorination studies, Fettis and Knox derived absolute Arrhenius parameters for the competitors by employing the absolute Arrhenius expression of \(1.38 \times 10^{-10} \exp(-2750/T) \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}\) for the \(\text{Cl} + \text{H}_2\) reaction as the primary standard. However, as this Arrhenius expression is now thought to be incorrect,\(^{26-28}\) the competitive chlorination results should be combined with the best available
Arrhenius expression for the $\text{Cl} + \text{H}_2$ reaction to yield re-evaluated absolute Arrhenius parameters for the competitors.

The present study utilizes the discharge flow-resonance fluorescence technique to investigate the kinetic behavior of ground state atomic chlorine with ethane, propane, and n-butane over a range of temperature, and with isobutane at room temperature. The results obtained from the present study will be compared to the re-evaluated competitive chlorination results, and the recent absolute determination of the Arrhenius expression for $\text{Cl} + \text{C}_2\text{H}_6$.

EXPERIMENTAL

A schematic of the low pressure discharge flow-resonance fluorescence system is shown in figure 1a. The 25mm id flow tube, shown in figure 1b, was mounted vertically and continuously evacuated by a ~ 50 l s$^{-1}$ rotary pump (Welch 1396) through two traps cooled to 77 K. Two pressure measurement ports are provided with a calibrated MKS Baratron BHS-10 pressure head. Measurements at each port allow a correction for viscous pressure drop to be made. Flow velocities of ~ 35 m s$^{-1}$ at room temperature are obtainable, but velocities under 25 m s$^{-1}$ were normally used in order to minimize the pressure drop correction. However, high flow velocities reduce the magnitude of the axial diffusion correction factor. Three flow tubes were used in this study; the first was constructed in pyrex and only operated at room temperature; the second was constructed in quartz and wrapped with Nichrome wire and insulation for operation from 300 - 700 K; the third was a double-walled quartz tube whose temperature could be controlled from 220 - 400 K by circulating either methanol or ethylene glycol through the outer jacket from a Haake constant temperature bath and heat exchanger. A temperature range of $\sim 220 - 600$ K was used in this study. Chromel-Constantan thermocouples were used to monitor temperature. The low temperature
DISCHARGE FLOW-RESONANCE FLUORESCENCE SYSTEM

Figure 1a Schematic Diagram of Discharge Flow: Resonance Fluorescence Apparatus
Figure 1b Discharge flow tube showing the resonance fluorescence scattering chamber
liquid-cooled tube showed $< \frac{1}{2}$ K variation throughout the length of the tube, whereas the high temperature tube showed variations of ± 10 K (at 700 K) probably due to non-uniform heating and insulation of the tube. The flow tubes are 80 cm in length and equipped with 14 fixed position inlet jets for adding reactant gases to the flow of atomic chlorine. Chlorine atoms ($\sim 10^{11}$ cm$^{-3}$) were produced in a microwave discharge. To minimize heterogeneous removal of atomic chlorine both the reactor tube and discharge region were coated with a dilute phosphoric acid solution and baked to remove the water content. The walls were further treated by atomic oxygen formed in a He/O$_2$ microwave discharge prior to each kinetic run. An unusual wall effect (to be discussed later) was observed if this careful conditioning procedure was not followed. Some Cl + C$_2$H$_6$ experiments were performed with an untreated reactor.

At the end of the reaction cell, the atomic species are detected by means of a resonance fluorescence scattering cell. A flowing microwave plasma lamp ($\sim 0.1\%$ Cl$_2$ in helium) operated at ~ 30 watts, and 1-2 torr total pressure, was used as the excitation source. The fluorescent signal was detected at right angles to both the direction of gas flow and the collimated excitation beam. The wavelength resolved fluorescent flux of the Cl($3p^4 4s$)$_2^2 P_{3/2} - (3p^5)_{2}^2 P_{3/2}$ transition at 134.7 nm was monitored using a McPherson 0.3 m vacuum monochromator (Model 218), EMR 542G solar blind photomultiplier, and Brookdeal 5Cl photon counting system. The background signal (scattered light plus photomultiplier dark noise) was minimized using collimators in front, and Wood's horns opposite the resonance lamp and monochromator. The atomic chlorine fluorescence signal was calibrated by generating known concentrations of chlorine atoms from the reaction of Cl$_2$O with excess oxygen atoms. The intensity of fluorescence was found to be linearly proportional to the atomic chlorine
concentration up to $\sim 3 \times 10^{11}$ cm$^{-3}$. The fluorescent signal was typically ~ 5000 cps for a chlorine atom concentration of 10^{11} cm$^{-3}$, in contrast to a background signal of 20-30 cps. Consequently, a detection limit of $\sim 10^8$ cm$^{-3}$ ($S/N = 1$) was obtainable when the normal experimental procedure of averaging six ten-second counting periods was used. In some of the earlier experiments the sensitivity of the system was up to a factor of 5 greater, i.e., $I_p \approx 2.5 \times 10^4$ cps when $[Cl] \approx 10^{11}$ cm$^{-3}$.

Reagent flow rates were determined using calibrated mass flow-meters (Hasting-Raydist). The helium used in this study was Matheson "Ultra High Purity" with a stated purity of 99.999%, and was used after passing through a trap at 77 K. The alkanes used in this study were all Phillips Research grade with stated purities of: C_2H_6 (99.99%); C_3H_8 (99.97%); n-C_4H_{10} (99.95%) and iso-C_4H_{10} (99.99%). Matheson Research Grade chlorine was used with a stated purity of 99.96%.

RESULTS

Since the kinetic behavior of atomic chlorine with C_2H_6 (1), C_3H_8 (2), n-C_4H_{10} (3) and iso-C_4H_{10} (4) was studied using pseudo first order conditions, $[RH]_o > [Cl]_o$, $([RH]_o \approx (2-87) \times 10^{11}$ cm$^{-3}$; $[Cl]_o = (0.8-13) \times 10^{10}$ cm$^{-3}$, giving a range of initial stoichiometry of 8-426, the chlorine atom decay rates could be simply analyzed using equation (I):

$$Cl + RH \underset{k_{cl}}{\rightarrow} HCl + R; [RH]_o > [Cl]_o$$

$$\ln([Cl]_o/[Cl]_t) = k_{cl} [RH]_o t \tag{I}$$

The wide variation in experimental conditions which was used (flow velocity,
[Cl]_0, [RH]_0, P_{eq}, verified that kinetic complications due to secondary homogeneous processes were unimportant in our study. Table I summarizes the experimental conditions used in this study. The attenuation of the chlorine atom signal with time was normally followed for at least one order of magnitude decrease. Figure 2 shows several typical decay plots of atomic chlorine with time from the Cl + C_2H_6 system. It should be noted that the plots are indeed linear over the reaction time of the experiment thus indicating that the reaction is first order in [Cl] (this observation is discussed in more detail later).

The values of the first order rate constants, k', (k' = -d[Cl]/dt) which were obtained from plots of ln([Cl]_0/[Cl]) versus time as shown in figure 2 were corrected for the pressure gradient along the length of the reaction zone, and for axial diffusion (the magnitude of the corrections were typically less than 5 and 10%, respectively). The correction factor for axial diffusion was obtained using the following equation (29, 30),

$$k = k'(1 + \frac{k_D}{v^2})$$

(II)

where k = corrected first order rate constant, k' = observed first order rate constant, D = diffusion coefficient for Cl atoms in helium, and v = flow tube velocity. Equation (II) is valid in this study, and assumes that $k' \gg k_w$, where k_w = first order rate constant for heterogeneous removal of atomic chlorine. The diffusion coefficient for Cl in He was taken to be 1.06 x D(He - Ar), where the factor of 1.06 equals the ratio of the square roots of the molecular weights of Ar and Cl.

$D(He - Ar)$ was taken to be $1.521 \times 10^{-2} \text{T}^{1.552}/(\ln(T/4.1 \times 10^7))^2 \exp(1.71/T) \text{ atm. cm}^2 \text{s}^{-1}$ (31). Studies performed at the higher temperatures, i.e., 500 - 600 K, normally employed higher flow velocities, i.e., ~ 25m/s, than were employed for studies at ~ 300 K in order to minimize the magnitude of the correction factor. The average corrections were: 3% (~ 220K); 4% (~ 298K) and 8% (~ 600 K). No corrections were necessary for radial diffusion, i.e., $\alpha (= D/r^2)$ was normally much greater than unity, resulting in minimal radial concentration gradients of Cl atoms across the flow tube. (29, 30, 32) Figure 3 shows a typical plot of the pseudo first order rate constant, k', versus alkane concentration from the Cl + C_2H_6 system. The slopes
<table>
<thead>
<tr>
<th>Surface</th>
<th>Temp./K</th>
<th>Reagent</th>
<th>[Cl] \times 10^{-12} \text{ cm}^3</th>
<th>[RH] \times 10^{-10} \text{ cm}^3</th>
<th>[RH]_0/[Cl]_0</th>
<th>k_{\text{eff}}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>coated</td>
<td>220</td>
<td>C_2H_6</td>
<td>1.2 - 4.3</td>
<td>32 - 253</td>
<td>78 - 210</td>
<td>3.2 - 8.7</td>
</tr>
<tr>
<td>uncoated</td>
<td>223</td>
<td>C_2H_6</td>
<td>1.0 - 6.5</td>
<td>26 - 330</td>
<td>50 - 164</td>
<td>5.3 - 266</td>
</tr>
<tr>
<td>coated</td>
<td>250</td>
<td>C_2H_6</td>
<td>2.3 - 5.5</td>
<td>13 - 432</td>
<td>43 - 142</td>
<td>2.5 - 473</td>
</tr>
<tr>
<td>both</td>
<td>298</td>
<td>C_2H_6</td>
<td>0.7 - 8.7</td>
<td>57 - 332</td>
<td>53 - 266</td>
<td>2.4 - 522</td>
</tr>
<tr>
<td>coated</td>
<td>402</td>
<td>C_2H_6</td>
<td>1.4 - 4.3</td>
<td>35 - 104</td>
<td>92 - 265</td>
<td>1.8 - 421</td>
</tr>
<tr>
<td>uncoated</td>
<td>410</td>
<td>C_2H_6</td>
<td>1.0 - 3.5</td>
<td>24 - 86</td>
<td>54 - 220</td>
<td>1.1 - 385</td>
</tr>
<tr>
<td>uncoated</td>
<td>515</td>
<td>C_2H_6</td>
<td>0.6 - 4.0</td>
<td>19 - 104</td>
<td>45 - 245</td>
<td>1.5 - 349</td>
</tr>
<tr>
<td>coated</td>
<td>604</td>
<td>C_2H_6</td>
<td>0.7 - 3.8</td>
<td>24 - 169</td>
<td>68 - 266</td>
<td>1.1 - 313</td>
</tr>
<tr>
<td>coated</td>
<td>607</td>
<td>C_2H_6</td>
<td>1.5 - 6.8</td>
<td>2.6 - 12.8</td>
<td>70 - 266</td>
<td>1.2 - 300</td>
</tr>
<tr>
<td>coated</td>
<td>298</td>
<td>C_2H_4</td>
<td>1.2 - 4.8</td>
<td>2.3 - 4.8</td>
<td>47 - 256</td>
<td>1.7 - 300</td>
</tr>
<tr>
<td>coated</td>
<td>298</td>
<td>C_2H_4</td>
<td>1.1 - 3.6</td>
<td>1.5 - 5.9</td>
<td>13 - 64</td>
<td>1.6 - 300</td>
</tr>
<tr>
<td>coated</td>
<td>598</td>
<td>C_2H_4</td>
<td>0.2 - 1.5</td>
<td>1.1 - 5.3</td>
<td>12 - 79</td>
<td>1.6 - 300</td>
</tr>
<tr>
<td>coated</td>
<td>298</td>
<td>n-C_8H_{10}</td>
<td>4.2 - 4.8</td>
<td>0.2 - 1.5</td>
<td>9.0 - 82</td>
<td>1.6 - 300</td>
</tr>
<tr>
<td>coated</td>
<td>298</td>
<td>n-C_8H_{10}</td>
<td>1.2 - 4.8</td>
<td>2.3 - 4.8</td>
<td>47 - 256</td>
<td>1.7 - 300</td>
</tr>
<tr>
<td>coated</td>
<td>298</td>
<td>iso-C_8H_{10}</td>
<td>1.2 - 4.8</td>
<td>2.3 - 4.8</td>
<td>47 - 256</td>
<td>1.7 - 300</td>
</tr>
</tbody>
</table>

Table I: Summary of Experimental Conditions
The reaction $\text{Cl} + \text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_5 + \text{HCl}$. Typical first-order plots for $[\text{Cl}]$ in the presence of various excess concentrations of C_2H_6 at 298K.
The reaction $\text{Cl} + \text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_5 + \text{HCl}$.

Variation of pseudo first-order rate constant, $-\frac{\text{d}[\text{Cl}]}{\text{d}t}$, with $[\text{C}_2\text{H}_6]$ at 298K.

Figure 3
(bimolecular rate constants) and intercepts of such plots are obtained from a least-squares treatment of the data. The bimolecular rate constants and "wall loss coefficients" generated in this manner are shown in Table II. From Table II it can be seen that the rate constants expressed in units of cm3 molecule$^{-1}$ s$^{-1}$ for reaction of Cl with C$_2$H$_6$ (1), C$_3$H$_8$ (2), n-C$_4$H$_{10}$ (3) and iso-C$_4$H$_{10}$ (4) at 298 K are:

\[
\begin{align*}
\text{Cl} + \text{C}_2\text{H}_6 & \rightarrow \text{C}_2\text{H}_5 + \text{HCl}; \quad k_1 = (5.48 \pm 0.3) \times 10^{-11} \\
\text{Cl} + \text{C}_3\text{H}_8 & \rightarrow \text{C}_3\text{H}_7 + \text{HCl}; \quad k_2 = (1.51 \pm 0.06) \times 10^{-10} \\
\text{Cl} + \text{n-C}_4\text{H}_{10} & \rightarrow \text{C}_4\text{H}_9 + \text{HCl}; \quad k_3 = (2.25 \pm 0.1) \times 10^{-10} \\
\text{Cl} + \text{iso-C}_4\text{H}_{10} & \rightarrow \text{C}_4\text{H}_9 + \text{HCl}; \quad k_4 = (1.46 \pm 0.06) \times 10^{-10}
\end{align*}
\]

(1)\hspace{1cm}(2)\hspace{1cm}(3)\hspace{1cm}(4)

It can be seen from Table II that the values of k_1 to k_4 derived using the alternate analysis procedure, i.e., the mean of the values of $k'/[\text{reagent}]$, are in excellent agreement with those derived from the slopes of k' versus [reagent]. The linearity of plots of k' versus excess reagent concentration, e.g., figure 3, are normally used to argue that the reaction was first order in excess reagent (RH in this study), and that the system was well behaved and free from complicating secondary processes.

During experiments performed at higher temperatures with C$_2$H$_6$, and at most temperatures with the other alkanes, a wall effect was observed which appeared to exhibit a first order dependence on the concentrations of both atomic chlorine and alkane.

\[
\text{Cl} + \text{RH} \rightarrow \text{products}
\]

(5)

as opposed to the more commonly observed mechanism.

\[
\text{Cl} + \text{wall} \rightarrow \text{Cl} + \text{HCl}
\]

The latter process is unimportant, and not observed, if the experiments are performed using pseudo first order conditions and the fixed observation point technique, i.e., the only significant loss processes for atomic chlorine are first order in [Cl$^+$], and the magnitude of k_wall is unchanged upon addition of alkane to the reactor. However, the wall effect observed in these experiments resulted in an increase in both k' and k_{b1}. Figure 4 shows some typical chlorine atom decay plots obtained in the Cl + n-C$_4$H$_{10}$ study at 298 K using both a
Table II. Bimolecular Rate Constants

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Temp./K</th>
<th>$10^{11} \times k$(slope) $\frac{3 \text{ cm molecule}^{-1} \text{ s}^{-1}}{}$</th>
<th>Intercept s^{-1}</th>
<th>$10^{11} \times k$(mean) $\frac{3 \text{ cm molecule}^{-1} \text{ s}^{-1}}{}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$H$_6$</td>
<td>220</td>
<td>5.33 ± 0.22</td>
<td>-3.7</td>
<td>5.17 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>223</td>
<td>4.70 ± 0.21</td>
<td>8.3</td>
<td>4.99 ± 0.33</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>5.03 ± 0.25</td>
<td>-2.3</td>
<td>4.92 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>5.48 ± 0.30</td>
<td>7.5</td>
<td>5.74 ± 0.68</td>
</tr>
<tr>
<td></td>
<td>402</td>
<td>6.83 ± 0.33</td>
<td>6.3</td>
<td>7.10 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>6.61 ± 0.33</td>
<td>-7.1</td>
<td>6.20 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>515</td>
<td>7.04 ± 0.53</td>
<td>5.6</td>
<td>7.34 ± 0.57</td>
</tr>
<tr>
<td></td>
<td>604</td>
<td>7.09 ± 0.32</td>
<td>-0.1</td>
<td>7.07 ± 0.39</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>220</td>
<td>1.68 ± 0.05</td>
<td>1.5</td>
<td>1.69 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>1.51 ± 0.06</td>
<td>9.3</td>
<td>1.59 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>607</td>
<td>1.55 ± 0.12</td>
<td>-2.0</td>
<td>1.53 ± 0.12</td>
</tr>
<tr>
<td>n-C4H${10}$</td>
<td>298</td>
<td>2.25 ± 0.10</td>
<td>-2.2</td>
<td>2.20 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>422</td>
<td>2.17 ± 0.09</td>
<td>-7.8</td>
<td>2.09 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>598</td>
<td>2.19 ± 0.03</td>
<td>-3.5</td>
<td>2.11 ± 0.12</td>
</tr>
<tr>
<td>iso-C4H${10}$</td>
<td>298</td>
<td>1.46 ± 0.06</td>
<td>1.3</td>
<td>1.49 ± 0.08</td>
</tr>
</tbody>
</table>
Figure 4 The reaction Cl + n-C₄H₁₀ → C₄H₉ + HCl. First-order plots for [Cl] in the presence of 1×10^{12} cm⁻³ n-C₄H₁₀ in a coated and uncoated flow reactor.
"treated," and "untreated" flow system. Figure 5 shows a plot of the pseudo first order rate constant, \(k' \), versus n-C\(_4\)H\(_{10}\) concentration taken at 598 K in both a treated and untreated flow reactor. It can be observed that plots of \(\ln([Cl]_o/([Cl])) \) versus time (figure 4) and \(k' \) versus \([n-C_4H_{10}]\) (figure 5) are linear in both treated and untreated flow reactors, but the values of \(k' \) and \(k_{bi} \) are significantly greater in the untreated flow reactors. Consequently it can be stated that the linearity of plots such as those shown in figures 4 and 5 is not a good indication that the system is free from complicating processes, e.g. heterogeneous removal of Cl. In our experiments it was found that unless the conditioning procedure described in the experimental section was carefully adhered to, irreproducible data resulted, i.e., the results were consistent and reproducible if the reactor walls were either untreated or carefully treated, but if the conditioning procedure was not carefully followed values of \(k_{bi} \) intermediate between the "treated" and "untreated" values were observed. Therefore, a significant effort was made to eliminate interference by heterogeneous processes by careful conditioning of the reactor surfaces.

The Cl + C\(_2\)H\(_6\) (1) and Cl + C\(_3\)H\(_8\) (2) reactions were studied over the temperature range ~ 220 - 600 K, while the Cl + n-C\(_4\)H\(_{10}\) (3) reaction was studied from 298 - 600 K due to excessive absorption of the n-C\(_4\)H\(_{10}\) on the reactor surfaces at low temperatures. The Cl + iso-C\(_4\)H\(_{10}\) (4) reaction was only studied at 298 K due to experimental difficulties associated with heterogeneous effects.

The Arrhenius plots of these data are shown in figures 6 (C\(_2\)H\(_6\)) and 7 (C\(_3\)H\(_8\), n-C\(_4\)H\(_{10}\)) and the data can be summarized as follows:

\[
k_1 = 9.01 \times 10^{-11} \exp(-(133 \pm 15)/T) \quad 220 - 604 K;
\]
The reaction $\text{Cl} + n\text{-C}_4\text{H}_{10} \rightarrow \text{C}_4\text{H}_9 + \text{HCl}$.

Variation of pseudo first-order rate constant, $-\frac{d\ln [C]}{dt}$, with $[n\text{-C}_4\text{H}_{10}]$ in both a coated and uncoated flow reactor at 598K.
Figure 6: Arrhenius plot for the Cl + C_2H_6 + HCl reaction. 0, 6, □.

This work; A, Ref. 14.
Figure 7 Arrhenius plot for the \(C_6 + C_3H_8 + C_2H_2 + HCl \), and \(C_6 + n-C_4H_{10} + C_4H_9 + HCl \) reactions. \(O \), \(C_3H_8 \); \(\bullet \), \(n-C_4H_{10} \).
\[k_2 = 1.36 \times 10^{-10} \exp((44 \pm 25)/T) \quad 220 - 607 \text{ K}; \]
\[k_3 = 2.15 \times 10^{-10} \exp((12 \pm 26)/T) \quad 298 - 598 \text{ K}. \]

The units used here are cm\(^3\) molecule\(^{-1}\) s\(^{-1}\), and the activation energies are expressed in terms of K\(^{-1}\). The uncertainty factors listed here represent 1\(\sigma\) standard deviation obtained from a weighted, according to 1\(\sigma\) uncertainties of \(k_{\text{bimolecular}}\) at each temperature, least squares treatment of the data tabulated for \(k_{\text{b1}}\) (slope) shown in Table II. Alternate Arrhenius parameters can be obtained by using the values of \(k_{\text{b1}}\) (mean) shown in Table II, and are listed in Table III. It can be seen that within the experimental uncertainties the magnitude of the Arrhenius parameters are similar for both sets of \(k_{\text{b1}}\). Owing to the difficulties associated with the heterogeneous removal of Cl in the presence of RH in an untreated, or poorly treated, flow reactor it is clear that a realistic assessment of the accuracy of the data is somewhat less than that indicated by the precision of the data. Realistic uncertainties in the values of \(k_{\text{b1}}\) at any particular temperature should be \(\sim \pm 15\%\).

DISCUSSION

\[\text{Cl} + \text{C}_2\text{H}_6 \]

A comparison of the results obtained in this study with data from other studies\(^{(4,14,33,34)}\) is shown in Table IV. It can be seen that the experimentally-determined room temperature values of all of the recent direct studies are in excellent agreement. The value of Davis, et al.\(^{(4)}\) has been revised downward from the original value by \(\sim 10\%\).\(^{(26)}\) The E/R value reported by Manning and Kurylo\(^{(14)}\) is in good agreement with that determined in this work, especially when the difficulty of measuring small temperature dependences is considered.
Table III. Summary of Arrhenius Expressions for \(\text{Cl} + \text{C}_n\text{H}_{2n+2} \)

<table>
<thead>
<tr>
<th>Alkane</th>
<th>(10^{11} \times A) cm(^3) molecule(^{-1}) s(^{-1})</th>
<th>E/R K</th>
<th>(k(298\text{K}) \times 10^{11}) cm(^3) molecule(^{-1}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_6) (slope)</td>
<td>9.01 ± 0.48</td>
<td>133 ± 15</td>
<td>5.48 ± 0.30</td>
</tr>
<tr>
<td>(mean)</td>
<td>9.57 ± 0.52</td>
<td>142 ± 18</td>
<td>5.74 ± 0.68</td>
</tr>
<tr>
<td>(\text{C}_3\text{H}_8) (slope)</td>
<td>13.6 ± 1.3</td>
<td>-(44 ± 25)</td>
<td>15.1 ± 0.6</td>
</tr>
<tr>
<td>(mean)</td>
<td>14.3 ± 1.7</td>
<td>-(35 ± 33)</td>
<td>15.9 ± 1.0</td>
</tr>
<tr>
<td>n-(\text{C}4\text{H}{10}) (slope)</td>
<td>21.5 ± 1.0</td>
<td>-(12 ± 26)</td>
<td>22.5 ± 1.0</td>
</tr>
<tr>
<td>(mean)</td>
<td>20.1 ± 1.0</td>
<td>-(27 ± 19)</td>
<td>22.0 ± 1.3</td>
</tr>
<tr>
<td>iso-(\text{C}4\text{H}{10}) (slope)</td>
<td>-</td>
<td>-</td>
<td>14.6 ± 0.6</td>
</tr>
<tr>
<td>(mean)</td>
<td>-</td>
<td>-</td>
<td>14.9 ± 0.8</td>
</tr>
</tbody>
</table>
Table IV (A) Absolute Rate Coefficients for \(\text{Cl} + \text{C}_2\text{H}_6 + \text{C}_2\text{H}_5 + \text{HCl} \)

<table>
<thead>
<tr>
<th>Reference</th>
<th>(10^{11} \times A) ((\text{cm}^3\ \text{molecule}^{-1}\ \text{s}^{-1}))</th>
<th>(E/R) K</th>
<th>(10^{11} \times k(298)) ((\text{cm}^3\ \text{molecule}^{-1}\ \text{s}^{-1}))</th>
<th>Temperature Range/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al. 1970</td>
<td>-</td>
<td>-</td>
<td>6.0 ± 0.15</td>
<td>298</td>
</tr>
<tr>
<td>Manning and Kurylo, 1977</td>
<td>7.29 ± 1.23</td>
<td>61 ± 44</td>
<td>5.93 ± 0.44</td>
<td>222-322</td>
</tr>
<tr>
<td>Watson et al. 1979</td>
<td>-</td>
<td>-</td>
<td>5.5 ± 0.50</td>
<td>298</td>
</tr>
<tr>
<td>Watson and Ray, 1979</td>
<td>-</td>
<td>-</td>
<td>5.65 ± 0.40</td>
<td>298</td>
</tr>
<tr>
<td>This study</td>
<td>9.01 ± 0.48</td>
<td>133 ± 15</td>
<td>5.48 ± 0.30</td>
<td>220-604</td>
</tr>
</tbody>
</table>

Table IV (B) Absolute Coefficients for \(\text{Cl} + \text{C}_2\text{H}_6 + \text{C}_2\text{H}_5 + \text{HCl} \) Derived from Competitive Chlorination Studies

<table>
<thead>
<tr>
<th>Source of the Cl + H(_2) Arrhenius Expression</th>
<th>(10^{11} \times A) ((\text{cm}^3\ \text{molecule}^{-1}\ \text{s}^{-1}))</th>
<th>(E/R) K</th>
<th>(10^{11} \times k(298)) ((\text{cm}^3\ \text{molecule}^{-1}\ \text{s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watson, 1977 [26](^); CODATA, 1979 [28](^)</td>
<td>6.35</td>
<td>81</td>
<td>4.84</td>
</tr>
<tr>
<td>NASA, 1977 [27](^*)</td>
<td>4.73</td>
<td>31</td>
<td>4.26</td>
</tr>
</tbody>
</table>

\(^*\) Reviews

References [26,28]: \(k(\text{Cl} + \text{H}_2) = 4.7 \times 10^{-11} \exp(-2340/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\)

Reference [27]: \(k(\text{Cl} + \text{H}_2) = 3.5 \times 10^{-11} \exp(-2290/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\)

Reference [13]: \(k(\text{Cl} + \text{H}_2) = 5.5 \times 10^{-11} \exp(-2391/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\)

Reference [12]: \(k(\text{Cl} + \text{H}_2) = 2.66 \times 10^{-11} \exp(-2230/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\)
An absolute value for $k_\text{Cl} + \text{C}_2\text{H}_6$ can be obtained from the competitive chlorination studies of the CH_4/H_2 and $\text{C}_2\text{H}_6/\text{CH}_4$ reaction pairs using the $\text{Cl} + \text{H}_2$ reaction as the primary standard. Mean values for $k_{\text{CH}_4}/k_{\text{H}_2}$ and $k_{\text{CH}_4}/k_{\text{C}_2\text{H}_6}$ of $0.31 \exp(+830/\text{T})$ and $0.23 \exp(-1429/\text{T})$, respectively, can be obtained from the data of Pritchard et al.\(^{23}\) and Knox and Nelson\(^{22}\) (for $k_{\text{CH}_4}/k_{\text{H}_2}$), and Knox\(^{21}\), Pritchard et al.\(^{24}\), and Lin et al.\(^{15}\) (for $k_{\text{C}_2\text{H}_6}/k_{\text{CH}_4}$). Combining these ratios results in a value of $1.35 \exp(+2259/\text{T})$ for $k_{\text{C}_2\text{H}_6}/k_{\text{H}_2}$. As the value of k_{H_2} is still the subject of some controversy\(^{26-28}\), the experimental ratio of $k_{\text{C}_2\text{H}_6}/k_{\text{H}_2}$ is combined with four different values of k_{H_2}, and the derived absolute rate coefficients are shown in Table IVB. The agreement between the derived and the measured Arrhenius expressions (and the k_{298} values) is quite good especially when the value used for k_{H_2} is that recommended by Watson\(^{26}\) (prior to the data of Whytock et al.\(^{12}\)) and CODATA\(^{28}\), or that measured by Watson et al.\(^{13}\).

The Arrhenius expressions (and k_{298} values) obtained using either the NASA\(^{27}\) or Whytock et al.\(^{12}\) values for k_{H_2} are less satisfactory, although within the experimental uncertainties, in that the values of both A and k_{298} are much lower than experimentally measured in the direct studies.

While there is some scatter evident in the Arrhenius plot which could mask a small amount of curvature, there is no evidence of a curvature of the magnitude observed in the $\text{Cl} + \text{CH}_4$ reaction\(^{12,16,17}\) over a similar temperature range.

Consequently the results of the $\text{CH}_4/\text{C}_2\text{H}_6$ competitive chlorinations\(^{15,21,24}\), where the difference in the E/R values of the $\text{Cl} + \text{CH}_4$ and $\text{Cl} + \text{C}_2\text{H}_6$ reactions is shown to be constant from $\sim 200 - 600 K$, are incompatible with the results of the recent direct $\text{Cl} + \text{CH}_4$ and $\text{Cl} + \text{C}_2\text{H}_6$ studies which would predict that the difference in the E/R values would vary with temperature. The recent experimental E/R values determined for the $\text{Cl} + \text{CH}_4$ reaction at temperatures above 298 K range from
i.e., primary, secondary and tertiary. Consequently, the relative rate constant data reported by Pritchard et al.(24) is easily combined with the CODATA value of $k(\text{Cl} + \text{H}_2)$ to yield the Arrhenius parameters and k_{298} values shown in Table V. In contrast, the Arrhenius parameters and k_{298} values which are shown in Table V and are derived from the data of Knox and Nelson(22) were calculated from the following more complex equations (expressed in units of cm3 molecule$^{-1}$ s$^{-1}$):

$$k(\text{Cl} + \text{C}_3\text{H}_8) = 6.81 \times 10^{-11} \exp(-76/T) + 4.78 \times 10^{-11} \exp(85/T) \quad \text{(III)}$$

$$k(\text{Cl} + n\text{-C}_4\text{H}_{10}) = 5.42 \times 10^{-11} \exp(+30/T) + 5.76 \times 10^{-11} \exp(+292/T) \quad \text{(IV)}$$

$$k(\text{Cl} + \text{iso-C}_4\text{H}_{10}) = 7.97 \times 10^{-11} \exp(+15/T) + 1.10 \times 10^{-11} \exp(+417/T) \quad \text{(V)}$$

The value of $k(\text{Cl} + \text{C}_2\text{H}_6)/k(\text{Cl} + \text{CH}_4)$ used to derive the above equations was based on the data reported by Knox(21), but the value was that modified and reported by Lin et al.(15). The Arrhenius parameters shown in Table V were derived for $\text{Cl} + \text{C}_3\text{H}_8$ and $\text{Cl} + n\text{-C}_4\text{H}_{10}$ from equations (III) and (IV) from 200 - 600 K and 298 - 600 K, respectively, to match the temperature ranges used in our study of these reactions.

It can be seen from Table V that the Arrhenius parameters and k_{298} values derived from the competitive chlorination studies are in excellent agreement with the absolute values obtained in this study. Equations (III-V), which were derived from the data of Knox and Nelson(22), indicate that reactions (2-4) should exhibit a non-linear Arrhenius behavior. Because the data base obtained in this study was limited, it was not possible to ascertain whether the $\text{Cl} + \text{C}_3\text{H}_8$ and $\text{Cl} + n\text{-C}_4\text{H}_{10}$ reactions exhibit any non-linear Arrhenius behavior. However, the rate constants obtained in this study confirm the trend of C-H reactivity deduced by Knox and Nelson(22), i.e., tertiary \geq secondary $>$ primary.
Table V

Absolute Rate Constant Data Calculated from the Competitive Chlorination Studies

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Parameter</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reference (24)</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_6)</td>
<td>(A) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>7.01 (-11)</td>
</tr>
<tr>
<td></td>
<td>E/R (K)</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>(k) (298K) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>5.43 (-11)</td>
</tr>
<tr>
<td>(\text{C}_3\text{H}_8)</td>
<td>(A) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>1.03 (-10)</td>
</tr>
<tr>
<td></td>
<td>E/R (K)</td>
<td>-90</td>
</tr>
<tr>
<td></td>
<td>(k_{298}) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>1.39 (-10)</td>
</tr>
<tr>
<td>(\text{n-C}4\text{H}{10})</td>
<td>(A) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E/R (K)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(k_{298}) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>-</td>
</tr>
<tr>
<td>(\text{i-C}4\text{H}{10})</td>
<td>(k_{298}) (cm(^3)molecule(^{-1})s(^{-1}))</td>
<td>1.13 (-10)</td>
</tr>
</tbody>
</table>

Reference Reaction: \(k(\text{Cl} + \text{H}_2) = 4.7 \times 10^{-11} \exp(-2340/\theta) \). \(^{(26,28)}\)
This explains why \(k(\text{Cl} + n-C_4H_{10}) > k(\text{Cl} + \text{iso-C}_4H_{10}) = k(\text{Cl} + C_3H_8) \). Knox and Nelson (22) also reported that the activation energies decrease as the hydrocarbon becomes more complex, and that the E/R values reach limiting values of \(\sim 350 \) K for primary C-H, and \(\sim 150 \) K for secondary C-H bonds. Using the revised value for \(k(\text{Cl} + H_2) \) lowers the limiting E/R values to zero for primary C-H bonds, and to small negative (\(-200\)K) values for secondary C-H bonds. That the activation barrier for primary C-H bonds approaches zero as the complexity of the hydrocarbon increases seems more reasonable than it approaching an E/R value of \(\sim 350 \) K. The overall E/R values determined in this study are consistent with this conclusion.

Acknowledgements

We thank J. Linke for his indispensable glass blowing services, G. Tennant, M. Fatapoff and W. Lattin for their expert assistance in constructing the experimental apparatus.

This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS7-100, sponsored by the National Aeronautics and Space Administration.
REFERENCES
