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ABSTRACT

‘Leading edge flutter is a problem that is unique to a super-
cavitating hydrofoil. At high speed, the leading edge portion has
been observed to oscillate while the trailing edge remains motionless.

In this study, several flat plate hydrofoils were tested. The
experimental results indicate that the phenomenon is a complex function
of speed, angle of attack, cavitation number and mass ratio. Leading
edge flutter was also observed to cause cavity pinching. A theoretical
study was also conducted. Two mathematical models are presented here.
The first one models the flexible chord foil as a rigid chord foil
hinged at the trailing edge; the second model treats the fluid-structure
interaction problem of a flexible chord foil cantilevered at the trailing
edge. Both models resemble leading edge flutter near zero cavitation
number in some respects. At short and moderate cavity lengths,

leading edge flutter phenomenon is influenced by the cavity closure

condition.
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NOMENCLATURE

Roman Alphabet

AR

i

S/b aspect ratio
a = flexible chord length
b = overall chord length

¢ = speed of sound in water

CL = L/%pwUzb coefficient of 1ift per unit span
CL = BCL/BQ 1ift curve slope

o3

4

CM = M/l/zpwUzb2 coefficient of moment per unit span
Cy,a= CMR,u-+ JCMI,@ derivative of CM with respect to «
CP = Pa/%pwU Coefficient of atmospheric pressure

a :

d = depth of submergence
D = d/b dimensionless depth of submergence

E = Young's modulus

= >
it
(310,

5 — , the ratio of the radiated acoustical energy
c

s
f the kinetic energy of the foil.

Q

F = U/¥Ybg Froude number
g = gravity
h = amplitude of the free surface wave
i = y-1 in spatial variable
j = ¥-1 in time variable
wb .
k =T the reduced frequency
£ = cavity length measured from the leading edge

% = wavelength of the free surface wave

L = 1ift



M=

=1
n

Il

W(k)

Greek Alphabet

=l
i

viii
NOMENCLATURE (continued)

hydrodynamic moment, positive nose up
U/c mach number

atmospheric pressure

cavity pressure

free stream static pressure

= Ub/v Reynolds number

span

thickness of the foil

thickness at the base

free stream velocity

%pwUzb/Y Weber number

frequency response function for heaving motion
location of the axis of pitching oscillation in terms

of the fraction of chord length measured from the
leading edge

angle of attack, positive leading edge up

shape factor of the thickness distribution as in

£t =t XB
o
surface tension

U /U .. the ratio of flutter to divergence
flutter’ divergence

speeds

h/b dimensionless amplitude of free surface wave

U/UDiv the ratio of the velocity to the divergence speed.

2/b dimensionless free surface wave length
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NOMENCLATURE (continued)

= b i
U pst/pW mass ratio
= kinematic viscosity
~
V = Poisson's ratio
pS = density of the foil
pw = density of the water

o =(P -P.¥%p U? cavitation number
o e” My »

w = circular frequency of the foil
B = w/v £ 1t frequency ratio
o b b
Q2(k) = frequency response function for pitching motion
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INTRODUCTION

In all commercial transportation, progress means comfort and
speed. Over the water hydrofoils are the only vehicles that can achieve
both goals. The typical speed of a passenger carrying hydrofoil is about
50 knots, with even higher speeds capable in military craft (Ref. 1).
Within this speed range, most of these hydrofoils operate in the subcav-
itating regime Preventing these foils from becoming ventilating or
cavitating above this speed is a difficult task.

It is expected that in the future this speed limit will increase.
Foils for such high speed boats will have to operate in the supercavitating
regime since the only means left to supress cavitation is by increasing
the depth of submergence of the foil. This becomes impractical from the
viewpoint of structural rigidity and stability of the craft. Hydrofoils
are not the only ones that operate in the cavitating regime. Examples of
other machinery designed to operate in the cavitating flow regimes are
supercavitating propellers and pumps. Supercavitating propellers are
used for high speed boats and supercavitating pumps are used where size,
weight, and high rate of flow are prime requirements (such as tpose used
for rocket engines).

With increasing operating speeds, dynamic and static instability
of these foils or blades becomes more and more likely. These various in-
stabilities will be briefly reviewed in the following paragraphs.

The first type of instability is torsion-bending f£flutter.

This dynamic instability is a self-excited oscillation involving span-
wise torsion and bending modes of a foil. The foil oscillates at a

single flutter frequency with bending and torsional modes, in such



a way that the foil extracts energy from the free stream to sustain or
increase the oscillation. Literature on torsion-bending flutter is
abundant and designers have been successful in avoiding this problem.
Most of the work has been done on hydrofoil wing and strut flutter and
very little on the supercavitating propellers and pumps. This is partly
due to the complexity of the flow around this machinery and in part due
to the fact that the blades are relatively rigid in the bending and
torsion mode. This type of flutter, therefore, is not a serious
problem.

Another problem that occurs when the foils or blades operate in
the cavitating regime is forced vibration. This forced vibration
is due to the unsteadiness of flows with short cavities (less than 1 %
chords) or partial cavitation. As stated above, this is not a dynamic
interaction between fluid and structure, but rather an instability of
the flow itself. The unsteadiness is present regardless of whether the
foil is rigid or flexible. The resulting vibration of the foil is random
in nature although the flexibility of the foill itself may alter the ran-
domness,

The third instability is leading edge flutter which is the topic
of this study. A typical cross section of a supercavitating foil is
shown in Fig. 1. The leading edge is relatively flexible in comparison
to the trailing edge. At high speeds it has been observed that the foil
oscillated with the first bending mode (as shown). The oscillation in-
volves only a single chordwise deformation mode and not rigid body
motion. The first reported observation of this so called, leading edge

flutter was made by Waid & Linberg (Ref. 2) at the California Institute



of Technology Hydrodynamic Laboratory in 1957 and, more recently, by P.K.
Spangler (Refo 3). Figures 2, 3, and 4 show modes of leading edge flutter
taken from these references: some of these modes show spanwise phase var-
iation.

Besides the obvious detrimental effect of fatigue of the matérial,
the resulting oscillation could prevent this machinery from operating prop-
erly. One should be especially concerned about the occurence of this
flutter with low- aspect ratio foils such as propellers, pumps and the ca-
nard,Wing of a hydrofoil. The reason for concern is that the frequency of
the vibrational modes involving chordwise deformation could be lower or
comparable to the torsion or bending frequency in these cases. As a rule
of thumb, the lower the natural frequency, the lower the flutter speed.
Table I shows the modes of vibration of a California Institute of
Technology Hydrodynamic Lab model 35-435 (actual model shown in Fig. 5)
in the order of increasing frequency. This model serves to illustrate
the point discussed above.

Although the reported cases of leading edge flutter have been con-
fined to laboratory observations, leading edge flutter has been known to
occur in a supercavitating propeller (Ref. Aj° It has also been postulated
as being the cause of fatigue of the leading edges of some supercavitating
impellers.

Anothér type of instability of a supercavitating foil is leading
edge divergence. This occurs when the static deflection of the chord due
to the steady hydrodynamic load becomes unbounded 4¢ a certain critical
speed. This instability may be viewed as a special case of leading edge

flutter at zero frequency. This problem will also be discussed in this study,
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IT. DISCUSSION OF PARAMETERS

Pr Es (0, 0,9

Water: pw’ Cy Y, V

In this section the various physical parameters that determine
the leading edge flutter conditions of a supercavitating hydrofoil are
discussed. The above figure shows all parameters to be considered. The
parameters such as atmospheric pressure Pa , free surface wave length X |
amplitude of surface wave h and depth d represent the effects of the
free surface. 1In this discussion, the cavity pressure Pc has been
chosen as a parameter. Actually the cavity pressure is a determined
quantity when all the other parameters such as water temperature, thermal

conductivity of water and air content are given. However, the determina-

tion of cavity pressure from basic parameters for a real flow is not



mi’_ B

feasible and most hydrodynamic calculations are performed by introducing

an experimentally determined cavity pressure. In some cases when dealing

with the mathematical treatment of the hydrodynamics, it might be desirable

to use the length of the cavity as a parameter instead of the cavity

pressure or cavitation number.

In general the parameters may be categorized as follows:

STRUCTURAL:  p_

E i
)
S :
b c
FLUID: P
a
2z

h(x,t) = hh(x,t) :

U

Ke]

g

Density of foil

Young's modulus

Poisson ratio

Span

Chord length

Atmospheric pressure impressed on the free surface
Wave length of free surface wave

Amplitude of surface wave where h(x,t) = 0L
Free stream velocity

Density of water

Speed of sound in water

Cavity pressure

Surface tension

Kinematic viscosity

Average depth of submergence of foil

Gravity

COMMON TO BOTH STRUCTURE AND FLUID:

(63

o0

t(x) = t, £(x) :

Angle of attack of the foil

Thickness distribution where T(x) = 0(1l) and t, is
the thickness at the base

Frequency of oscillation of foil
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The functional relation for determination of flutter boundaries may be
written in terms of the above 19 parameters as follows:

£(p,, E, V, S, b, P, &, h(x,t). U, Py €5 Pes Vs v, dy a, £(x),

g, w) =0

The above is a functional relation between 19 parameters or between 16
dimensionless parameters.

The 16 dimensionless parameters may be obtained by using Buckingham
T theorem, but simple inspection will reveal that many commonly known
dimensionless numbers may be formed readily from these 19 parameters.
The rest may be constructed from physical argument.

COMMONLY KNOWN DIMENSIONLESS PARAMETERS ARE:

= U
Re = : Reynolds number
_ 0
F o= Froude number
vbg
50 U
W= *——?w——-: Weber number
A =-% ¢ Dimensionless free surface wave length
n= %9 : Dimensionless amplitude of free surface wave
D = %- : Dimensionless depth
¢l ¢ Angle of attack
= %F- : Reduced frequency
p tbsS
U= = 5 : The ratio of mass of the foil to the apparent mass
0 b’S of water
w
S .
AR =35 Span/chord, aspect ratio

: Poisson ratio

<5



Frequency ratio, the ratio of frequency to
the natural frequency of the foil.

jr

w
1
/SE%

=

The othexr parameters are:

P -P
o = < ; Cavitation number, where P, = free stream static
1 =
prU pressure, Em Pa + pwgd
Pa
CP = T Coefficient of atmospheric pressure
a Lo U
W
M= U/c Mach number
~ 5 p_ wb
E = — % Ratio of radiated acoustical energy to the kinetic

2 o.c energy of the foil in vibration (see appendix A for
derivation of this quantity). It is a counterpart
tc the percent critical damping.

The functional relationship for flutter condition can be written in terms
of dimensionless parameters as:
f(ReS F9 w’ A" ﬁS D7 (X‘S k? u’ A‘Rﬁ \')9 U‘)) O." CP b4 ES E) = O

“a
(=3

The above functional relation is a very general one and not amenable to
mathematical formulation. Several simplifying assumptions can be made if
they are true for practical purposes or justifiable. The following dimen-

sionless parameters may be neglected if the stated conditions are fulfilled.

Re For high Reynolds number flow the boundary layer is

so thin that it does not affect the pressuredistribu-
tion on a supercavitating foil. Also the boundary
layer separation which could remarkably alter the
pressure distribution on the foil cannot occur in a
supercavitating foil in view of favorable pressure
gradient on the lower surface of the foil. Further-
more, the variation of Reynolds number encountered in
the application does not significantly change the flow
pattern of the flow.
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AR and V For a one-dimensional structure (only chordwise de-
formation is considered) and 2-D fluid mechanics,
thesg parameters may be neglected. The Poisson ra-
tio V many be included in the modulus E to take
account the suppression of anticlastic curvature
in the spanwise direction.

M For practical application M<< 1 since the speéd of
o b sound in water is very high (4500 ft/sec).
E = g'pwc For low frequencies (say below 200 cps) the acoustic

s energy radiated may be neglected and leading edge
flutter problem may be treated strictly as a hydro-
elastic problem.

Thus for an inviscid, incompressible and low~frequency system, the
functional relation is given by

£(F, W, A, i, Dy o, ky Uy AR, V, 0,05 Cy
a

If further we assume that the foil is deeply submerged then the effects
of free surface, such as free surface wave and influence of free surface
on the hydrodynamic loading, may be negiected. The following parameters
may be taken out of the relationship: F ¢ A¢ fi and D. Hence, for
invigscid, incompressible, low-frequency and deep-sea conditions, the

relation is:

£(W, o, k, U, AR, v, 0, O, Cp ) =0

a

For one-dimensional structure (considering chordwise deformation only),
AR and v drop out of the function. Hence:

F(W, o, k, U, &3, o, C = 0

p )
a

For fluid with low surface tension, such as water, the Weber number is
only important when considering disturbance of small wave length on the

cavity wall, and hence may be neglected.
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In summary, for inviscid, incompressible, low-frequency, deep-sea,
chordwise deformation only and no surface tension, the relation becomes
simply:

fla, k, p, o s 0 ) =0
Note that the coefficient of atmospherie pressure CP has .been taken out
of the relationship since it affects only the parameier o and ¢ 1is an
experimentally determined quantity.

In the above discussion it was assumed that the frequeﬁcy of the
vibrating foil could be characterized by the chord length b . In the ex-
periments to be described, and in applications to hydrofoils and cavitating
pump impellers, only a portion of the chord actually vibrates., This por-
tion is designated as "a" and it is necessary te introduce a new parameter,
a/b, into the above expression. This represents the ratio of the flexible
part of the foil to the complete chord. This ratio is well defined in thei
experimental work where the chord stiffness abruptly changes, but may be
less well defined in applications with continuous changes in foil thickav
nesses. Nevertheless, it is important to make the distinctions since the
flexible part of the foil may represent only a small part of the complete
foil yet the hydrodynamic forces may be influenced by the complete foil.
The nop-dimensional relation now becomes

f(u,k,ugg), o, a/b) = 0
The characteristic length used to define the non-dimensional parameters may

now be chosen to be either a or b depending on which seems most appro-

priate.
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III. EXPERIMENTAL PROGRAM

Before these experiments were undertaken, leading edge flutter had

only been observed accidentally while testing foils for their performance
characteristics. This study is the first attempt to observe leading edge
flutter in a controlled environment. The objectives of this experiment
may be summarizad as the following:

1.) to investigate the various parameters that are relevant

to leading edge flutter
2.} to learn more about the mechanism of flutter
3.) to obtain a set of criteria for the onset of flutter
To achieve these goals, two sets of experiments were conducted in
the water tunnels at the C.I.T. Hydrodynamic Laboratory. The first exper-
iment was conducted in the Free Surface Water Tunnel (FSWT) and the second
was in the High Speed Water Tunnel (HSWT). The High Speed Water Tunnel is
a closed circuit tumnel with variable pressure in the test section.
The models used in these two experiments are shown in figure 6.

They are basically flat plates with a portion ofkthe trailing edge fixed
or clamped to a rigid mounting bar, thus leaving the leading edge portion
flexible. This configuration structurally simulates a typical supercavi-
tating foil and the Bd)wedge at the leading edge ensures a fixed separation
point for the cavity. The overall chord length of these foils is 6 inches.
Foils tested in the FSWT have a span of 14 inches and folls tested in the
2-dimensional test section of the HSWT have a span of 6 inches. These

flat foils were made of aluminum alloy and various thicknesses were tested.
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III-1 Experimental set-ups and procedures in the Free Surface Water Tunnel

The Free Surface Watef Tunnel (FSWT) is an open channel tunnel
with the test section opened to the atmosphere and has a maximum velocity
of 25 fps. The experimental set~up in this tunnel is shown in figure 7.
The foil was mounted to the strut as shown and the height of the strut
in relation to the water surface could be varied. This effectively
varied the free stream static pressure and, hence, the cavitation number
to a limited extent. The drag links shown were used to take the drag
of the foil and to vary the angle of attack by sliding them back and
forth.

Since the speed of the tunnel was not high enough to create
natural cavitation, air was injected to the suction side of the foil to
create artificial ventilation. Figure 7 shows the tubes used for air
injection.. The lowest velocity at which a cavity could be formed with
air injection was 4 fps. Air injection was necessary to sustain the
cavity up to 16 fps. Above this speed, the foil ventilated through the
struts and air injection was no longer necessary.

The basic measurements taken in this experiment were the fréquency
responses of the foil for various velocities, angles of attack, depths of
submergence, and rates of air injection. The frequency response was
oftained by applying a constant amplitude oscillating force to the leading
edge of the foil and plotting the response of the strain gages on

the foil as a function of frequency. The frequency response curve
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is an indicator of the amount of damping of the foil and may be used to
indicate the onset of flutter. The excitation force for the frequency
response measurement was provided by an electromagnetic shaker as shown
in figure 7. The shaker was connected to the leading edge of the foil by
a thin music wire and a weak spring was placed in series to isolate the
shaker system from the foil itself. A load cell, as shown in the figure,
was used to monitor the magnitude of the oscillating force applied to the
foil.

To insure a constant amplitude force for the frequency response
measurements, a servomonitor system was used. This system is schematically
shown in figure 8,and figure 9 shows the photograph of this equipment
at the test site. In the following paragraphs, the operation of this éys~
tem will be described in order to point ocut some subtle characteristics
it exhibited when used to measure the response of the foil in a flow.

The heart of the system is the servomonitor. It ensures that the
oscillating force across the load cell is constant, regardless of the fre-
quency. This is essential in order to obtain a meaningful frequency re-—
sponse measurement. The signal from the load cell is amplified by the
oscilloscope and then filtered by the tracking filter. The output of the
tracking filter is fed into the servomonitor. The servomonitor maintains
a constant RMS value of this signal by adjusting the power to the shaker
accordingly. It is therefore important to filter the noise out of the
load cell signal so that the RMS value maintained by the servomonitor may
be interpreted as the peak to peak value of the load across the load cell.

The signal from the strain gage on the foil is also amplified by

the oscilloscope and then filtered. The filtered signal is passed through
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the RMS meter and plotted against the frequency by the recorder., The re-
sulting frequency response curve indicates the amount of damping present
in the system. The wider the bandwidth the more damping is present in the

system. The bandwidth and the Q-factor are defined below.

j Amplitude
1.0 =

—
L~
=~
N
3
v

Q = £,/Af

frequency

+Af »

For linear or viscous damping, the Q-factor is simply related to the per-
cent critical damping by & = 1/(2Q).

When the foil is fluttering, a certain level of force will appear
across the load cell due to the compression and extension of the isolating
spring. If the level of this load is less than the level preset at the
servo, then the servo will add power to the shaker to bring the load up
to the preset value. If the level bf oscillating force on the load cell
due to flutter is equal to or more than the preset value, then the servo-
monitor will turn off the shaker. Hence, the frequency response obtained
when the foil flutters does not correspond to a constant applied force.
Nevertheless, such observations during flutter still have some qualitative
value. It musﬁ be pointed out that under this condition, the resulting

Q-factor is lower than the actual one.
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A total of four foils of different thicknesses were tested in the
FSWI. Table 2 lists these foils and their natural frequencies in air and
under water. Both theoretical and experimental values are presented.

III-2 Experimental set—ups and procedures in the High Speed Water Tunnel

This experiment was conducted in the California Institute of Tech-~
nology Hydrodynamic Laboratory using the 2-D section of the High Speed Wa-
ter Tunnel (HSWT). Figure 10 shows the general view of the tunnel. The
filow is from the right to the left. This tunnel is a closed circuit water
tunnel with variable pressure in the test section and capable of speeds
up to 60 fps. The combination of speed and variable pressure in the test
section makes this tunnel an ideal tool for investigating cavitating flow
because the velocity and the cavitation number (or cavity length) may be
varied more or less independentliy.

The model tested in the HSWT is shown in figure 11 and a photograph
of this model on its mounting base is included as figure 12. The model is
a flat aluminum plate with a 30 wedge machined at the leading edge to in-
suré a fixed separation point fqr the cavity. It has a full chord length
of 6" and a span of 6". The model was attached to the mounting bar with
flat head screws as shown. The whole assembly of the foil, the mounting
bar and the base was bolted to the mechanism for changing the angle of
attack. A fairing plate was also installed and adjusted to make it flush
with the tunnel wall. A clearance of 0.025" was maintained between the
foil and both side walls of the tunmel.

The instrumentation consisted of three semiconductor strain gages
on the foil, one strain gage on the mountingbarznula,éiezoelectric pressure

transducer. The strain gages on the foil were used to monitor the ampli-
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tude frequency and mode of oscillation (by comparing the phases between
the gages). The strain gage on the mounting bar was calibrated and its
output is a measure of the load normal to the foil. The piezoelectric
pressure transducer was fixed tec the mounting bar and used to monitor the
pressure fluctuations inside the cavity. All‘the electrical signals were
taken out of the tunnel through a cavity pressure probe on the lucite
window and then through a waterproof junction box; they were displayed on
oscilloscopes and recorded using an FM tape recorder. The recorded sig-
nals were processed by a digital signal processor for their spectra and
cross correlations.

A mercury manometer was used to read the differencé between the
cavity pressure and the free stream static pressure. One leg of the ma-
nometer was connected to the junction box which was open to the cavity and
the other to the static pressure tap in the test section ahead of the
-model (see the location in fig. 10). This reading was used to evaluate
the cavitation number, 0J.

During the preliminary tests, it was found that the flutter am-
plitude was most severe when the cavity was relatively short. Hence, an
emergency valve was installed. When this valve was pushed, air was dumped
into the cavity, creating a larger cavity and reducing the flutter ampli~
tude. This same set-up was also used to supply a steady flow of air to
the cavity at low speeds {(below 20 fps). With air injecticn a cavity may
be formed at speeds as low as 16 fps, thus extending the operating range
of the tunnel.

In addition to the above instrumentation, a HYCAM high speed, 16mm

motion picture camera was used to study the flow pattern. Motion pictures
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of the flow were taken at a rate of 600 frames per second on High Speed
Ektachrome color film and biack and white film. Color film was primarily
used because of its better gradation. Movies were made of the flow around
the leading edge of the foil and of the flow around the rear end of the
cavity, in addition to an overall view of the tunnel during flutter.
Close-up motion pictures were also taken of the collapse and rebound of
the bubbly clouds shed by the cavity during flutter. A motion picture
frame analyzer machine was used to determine the rate of collapse and
rebound of the bubbly region and to make sketches of the flow pattern.

Models tested in the HSWT

A total of six flat plate hydrofoils was tested. All foils have
a 30 wedge at the leading edge and are made of 6061 T-6 anadoized aluminum
plates. Table 3 shows the numbering system, relevant dimensions and nat-
ural frequencies of these foils. Foils 2, 3A, and 3 are the same as
those tested in the FSWT except that the span has been reduced to 6'". The
thicker foil 4 was added to the list because of the higher operating speed
of the HSWT.

Foils 5 and 6 were designed to test whefher the flutter speed is
dependent solely on the natural frequency of the foil in a cavitating flow.
The test was designed to keep the overall chord length and the natural
frequency in a cavitating flow the same as foil 3 and to vary the length
of the flexible chord or the parameter a/b. If the flutter speed is solely
dependent omn the natural frequency, i.e. the reduced speed U/wb is al-
ways a constant, then foils with longer or shorter flexible chord would
have the same flutter speed .

To maintain the same natural frequency as foil 3 in a cavitating
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flow, it was necessary to adjust the thickness of the foil according to

the length of the flexible chord as outlined in appendix B. Unfortunately,
changing the thickness also changes the mass ratio parameter | which
cannot be compensated for without resorting to a more elaborate sandwich
type construction.

Foil 5 has a shorter flexible chord length (2.5'" instead of 3.5"
as for foil 3) and a thickness of 0.050". The flexible chord was reduced
by moving the mounting holes forward. However, this leaves another flex-
ible portion at the rear of the foil. Since the rigidity of a cantilevered
plate is proportional to the cube of the length of the flexible part, the
rear part of the foil may be considered rigid in comparison to the for-~
ward cantilevered part. Foil 6 has a longer flexible chord (4.23") and
a thickness of 0.125". An adaptor plate was necessary to maintain the
same chord length as foil 3. Figure 13 shows how these foils were attached
to the mounting bar.

Experimental Procedure

The search for the flutter boundary was initiated by running the
foil at a low velocity with the lowest possibie pressure in the test sec-—
tion iﬁ order to generate the longest possible cavity. While maintaining
the velocity, the pressure in the test section was gradually increased
to shorten the cavity. This was continued until flutter was encountered.

When the cavity length was less than 1% chords, the flow became
unstable as pointed out in the introduction. The foil oscillated ran-
domly due to forced excitation. The search for flutter was continued
through this unsteady region until the cavity length was approximately

one chord, and if at that point the oscillation remained random, then the
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search at this velocity was terminated. The search at a higher velocity
(usually in 2 fps increments) was then carried out in the same manner.

When flutter was encountered, readings of the cavity pressure,
cavity length and velocity were taken and signals from the strain gages
and pressure transducers were recorded on tape . This procedure was re-
peated for angles of attack of 77, 107, and 13 . The lowest angle of
attack that a cavity could be formed and still clear the mounting bar was
7.

In an unbounded fluid, the cavity length has a unique relation-
ship to the cavitation number in such a way that the zero cavitation num-
ber corresponds to an infinitely long cavity. However, due to the wall
effect in the water tunnel, there is a positive limit on the minimum cav-
itation number that can be achieved; this lower limit is called the choking
cavitation number.

This limit stems from the definition of the cavitation number it-
self i.e. 0 = (Rw - g:)/%'pwUz where P is the free stream static pres-
sure ahead of the foil, P. is the cavity pressure and the denominator is
the dynamic head of the flow. When the cavity Becomes "infinitely long"
in the test section, its upper and lower walls will be parallel to the
tunnel wall and the cavity pressure will be equal to the static pressure
of the fluid above and below the cavity. However, the static pressure of
the fluid surrounding the foil differs from the static pressure ahead of
the foil due to blockage; hence the cavity pressure will never be equal
to P and this limits the cavitation number. Fig. 14 shows the choking

<o

cavitation number as a function of blockage ratio taken from ref. 5.
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IIT-3 Results and Discussion

The order of presentation of the results has been arranged so
that the reader will first obtain a more or less complete picture of the
flutter boundaries while other observations are left to the later sections.

I1I-3:a General observations on the flutter behavior

Before presenting the results, it would be appropriate to discuss
the test conditions in the FSWT since most of the results presented in
this section were obtained using this facility. The test in the FSWT was
conducted with forced ventilation up to 16 fps. Above this speed, the
foil ventilated through the struts. The cavity length varied from about
3% chords at 16 fps to about 5% chords at 18 fps and extended well into
the diffusor at higher speeds. Therefore the test above 16 fps corre-
sponded to a near zeroc cavitation number condition. Figure 15 shows the
foil with ventilation through the struts and a relatively long cavity.

The results of the experiments in the FSWT indicated that a cav-
itating foil lost its damping of the first bending mode with increasing
speed. This point is illustvrated in fig. 16 where the Q-factor of the
first bending mode is plotted as a function of‘velocity at various levels
of excitation force. The curves show a general increase of the Q-factor
or decreasing damping with increasing velocity. This loss of damping is
accompanied by increasing amplitude of both forced and self oscillation
cases as shown in figure 17. The no force curve shows a rapid increase
of the amplitude of self oscillation at around 22 fps. The response of
the foil below this speed is minimal and mainly due to the turbulence of
the flow. Above this speed the oscillation is a self-excited oscillation.

Notice that the wvariation in the Q-factor of figure 15 does not
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show a similar rapid increase aé the self-oscillation curve in figure 17.
This discrepancy is due to the fact that when the foil becomes self-excited,
the Q-factor obtained from the measurement is lower than the actual value:
a fact pointed out earlier in section 1..

Besides the velocity, the frequency response curve is also affected
by other parameters; among these is the angle of attack. In the FSWT ex-
periment, the angle of attack was not a parameter that could be indepen-
dently varied. Changing the angle of attack also changed the cavity
length or the cavitation number. Since the test section was open to
the atmosphere, pressure cannot be adjusted to keep a constant cavity
length. However, as pointed out earlier, the cavity length above
16 fps was relatively long and any variation in the cavity length
due to the change in angle of attack did not alter the near zero

cavitation number condition.

The effect of angle of attack is shown in figure 18 for o = &,
9%09 and 13°. The case for a = 11° was shown in the previous figure.
The two figures clearly show the dependency on the angle of attack. By
comparing the case for 0.2 Lbf p - p excitation force, one can see that
the case for o = 11° has the highest response of all. The other foils
tested, (foil 3A in the F3WT and all foils tested in the HSWT), showed a
similar behavior. This case will be discussed further in the next section.

The rate of air injection was another parameter that was found to
affect the frequency response. Increasing the rate of air injection in~
creases the cavity length or decreases the cavitation number. Figure 19

shows the effect of air injection on the response of the foil.
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The dashed lines show the case of forced excitation before the foil be-
came ventilated through the struts. The curves show that the response

to forced excitation increases with increasing rate of air injection. The
solid lines represent the self oscillation case after the foil became
ventilated to the atmosphere. It shows that ievel of self-oscillation
increases with increasing air injection; however, for low rates (300-400
SCFH) the effect is minimal.

One of the physical parameters that determines the flutter bound-
ary of a foil is its stiffness. This quantity manifests itself in the
form of the natural frequency which was used in the dimensional analysis
for normalizing the flutter velocity and the flutter frequency. Figure
20 shows the variation of the natural frequency as a function of velocity
for both forced and self-oscillation cases. The decrease in the natural
frequency with increasing velocity is an expected phenomenon resulting
from the existence of an effective negative hydrodynamic spring which de-
creases the overall stiffness of the foil. This negative hydrodynamic
spring is the result of the steady state hydrodynamic load where an upward
deflection of the foil results in an increase of the load and hence acts
as a spring whose "resisting force" is in the same direction as the dis-
placement.

The natural frequency also varied with the level of the applied
force, but these variations were rather ill-defined. If the damping was
non-linear (which was certainly true in this case since the damping was
mainly due to the hydrodynamic loads) and viscous damping was negligible,
then one might expect a natural frequency which decreases with amplitude,
but, if anything, the reverse appears to occur. However, non-linearity

in damping is not the only factor that can cause a shift in the natural
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frequency with increasing amplitude; another factor is the non-linearity
in the stiffness which, in this case, would also be of hydrodynamic origin.

From the same figure it can also be observéd that the frequency
of self-oscillation is close to the natural frequency of the foil itself
prior to the onset of self-oscillation. This was true for all the foils
tested. One may conclude that the dimensionless parameter W = wf/wn is
always constant and may be removed from the consideration of flutter bound-
aries.

The experiment in the FSWT essentially indicated that the follow-
ing parameters are relevant to leading edge flutter: O, angle of attack,
velocity, and cavitation number or cavity length. The effect of the mass
ratio parameter was not investigated ‘in the FSWT experiment; however the
experiment in the HSWT demonstrated the effect. This effect will be de-
scribed in the next section.

So far in this presentation, the term flutter velocity has
been avoided because the onset of flutter was not well defined in the
FSWT experiment. Experiments in the HSWI showed otherwise. The flutter
speed was distinct; when the conditiouns were right, the onset of flutter
méy be described as a switching process. Fluttef started and ceased at
the same conditions; no hysteresis with respect to the cavity length was
observed. The reason for the more gradual process in the FSWT experiments

will be discussed in the next section.

III-3-b Flutter speeds at 0 = 0 and parametric study

The main purpose of this section is to correlate the data of the
flutter boundaries with the parametric study in Chapter II. 1In order to
facilitate this correlation, asymptotic values of flutter speeds at zero

cavitation number or infinite cavity length will be presented along with
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other relevant parameters . The Reynolds number at which the flutter data
were taken varied from 10% to 3 x 10%°. This small variation in Reynolds
number 1s unlikely to cause radical changes in the flow pattern,and hence,
it will be assumed that this parameter does not influence the flutter bound—
ary.

It was concluded in Chapter IL that the flutter boundary would be
of the form:

fla, U/wb, u, @9 o, a/b}) = 0

The results of the experiment in the FSWT indicate that the ratio of the
flutter frequency to the natural frequency of the foil in a cavitating flow
before the onset of flutter is more or less unity. Therefore the
frequency ratio parameter ; may be neglected. The parametric
dependency of the flutter boundary simply becomes:

f(o, Uf/wb, u, o, a/b) = 0
The dependency of the flutter boundary on the angle of attack O and the
cavitation number O was demonstrated in the FSWT. Results from the HSWT
experiment also showed the dependence on these two parameters, and this
subject will be discussed further in the next séction.

The effects of the mass ratio, u , and the ratio of the flexible
chord to the overall chord, a/b, may be seen in Table 4. The
table shows the values of the reduced speeds, the mass ratio, and the ra-
tio of the flexible chord to the overall chord. The values of the reduced
flutter speeds at infinitely long cavity are taken from figures 23 through
25. These values are tablulated in table 5 for all angles of attack.

Extrapolated values are used whenever data are not available. For

comparison purposes, the values of ail parameters are based on the values
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of foil 3 at an angle of attack of 7°. Since the dependence on the angle
of attack is similar for all foils, the choice of the angle of attack

does not make any difference in the table. Two sets of values are shown:

they are based on the overall chord length b as a characteristic length
and the flexible chord length a .
From Table 4, the following may be concluded:

(i) Comparison between foils 3 and 4 indicates that the increase

2]

in flutter speed of foll 4 is solely due to an increase in the mass ratio
parameter U . For a 407 increase in the mass ratio, the reduced flutter
speed increases by 0.05 when based on the overall chord (of 0.09 when based
on the flexible chord a . Theoretical calculation (Ch, 4) indicates that
the reduced flutter speed is insensitive to the mass ratio parameters,

This will be discussed later in Chapter IV,

(i1} The trend of decreasing ratio of a/b is to increase the
reduced velocity and vice versa. This trend can be seen by comparing foils
3 and 5., 1If one assumes the parameter a/b is immaterial, then using the‘
quantitative value of the effect of u as in (i) above, the expected values
of the reduced velocity of foil 5 are U/wb = 0,15 and U/wa = 0.29;
however, the experimental values are Ufwb = 0.18 and U/wa = 0,43, This
fact indicates that the decrease of the ratio a/b of foil 5 has an effect
of increasing the value of the reduced velocity. The effect is less pro-
nounced when the reduced velocity is based on the overall chord length b.
The reversed effect, i.e. decreasing reduced velocity with increasing a/b,
can also be demonstrated by comparing foils 4 and 6.

(iii) It was postulated before that the flutter speed might be
dependent solely on the frequency of the foil, i.e. U/wb is always a
constant. Comparison between foils 3 and 6 which have the same natural

frequency in a cavitating flow proves otherwise.
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From the above discussion one may conclude that the reduced
flutter velocity at 0 = 0 is a function of the mass ratio parameter U
and the ratio of the flexible to the overall chord. Increasing mass ratio
parameter increases the reduced flutter velocity and increasing a/b
decreases the reduced flutter velocity. The dependency of the reduced
flutter velocity on the angle of attack and the ¢ avitation number will be

discussed in the next section.

Although the detail of the dependence of the flutter boundary on
the various parameters is of basic interest, a designer needs only
to know, at least for a preliminary design, the range of.the reduced
velocity when flutter will occur. Fromfigs. 23 to 25 one may conclude
that flutter would likely occur when ﬁfwb is between 0.15 and 0.25.
These values increase with increasing-mass ratio or heavier foil. Also
for a cavitating flow, one needs not be concerned with leading edge di-
vergence since flutter will occur first. Appendix C discusses the diver-
gence problem.

ITI-3-¢ Flutter boundaries at finite cavity length and at various angles
of attack

As pointed out in the previous section, the flutter boundary is
a function of the angle of attack ¢ and the cavitation number ¢ or the
cavity length. This dependency is best illustrated by foil 3.

Figure 21 shows the flutter boundary for foil 3 at an angle of
attack of +7°. It is plotted as a function of the reduced velocity
U/wb on the vertical axis and the nondimensionalized cavity length %/b
on the horizontal axis. The domain may be divided into three different
regions as shown. Region A is the flutter free region. In this region,

the foil exhibited only a static deflection due to the steady load and
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there was no visible or measufable oscillation. Above this region is the
flutter region B. In this region, the foil fluttered with a relatively
steady harmonic motion in the first bending mode. More discussion on this
region follows later. Region C is the region where the foil experienced
vibration due to the unsteadiness of flow with short or partial cavita-
tion. This region is characterized by hammering actions that result from
the vioclent changes in the size of the cavity and by random oscillations.
The amplitude of flutter increased with decreasing cavity length.
(This also suggests an explanation fot the gradual onset observed in the
earlier FSWT tests. As the speed was increased, the cavity length also
increased and hence the flutter boundary was approached in a “grazing"
manner.) In the cross-—hatched region shown in fig. 21, there were res—
onances of the flutter amplitude at certain cavity lengths. This is
sketched in fig. 22. Notice that flutter may or may not cease between
these "resonance lengths' and there is a general trend of increasing am—
plitude with decreasing cavity length. The points in the cross hatched
region of fig. 21 indicate the cavity lengths at which these resonances
peak, and there are more distinct resonance 1engths at higher velocities
as can be seen in the figure. The mechénism of this resonance phenomenon
is aprparently connected to the phenomenon of cavity pinching which will

be described in Chapter ILII-3-h.

The variation of flutter boundary with angle of attack is shown
in figure 23 for a = 10" and ljltogether with o = 7° for comparison pur—
poses. Unlike the case for o = 7°, the flutter boundary at a = 10 shows

only a small variation in the flutter speed with cavity length. The test

at o = 13°was not carried out to a shorter cavity length because of the
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increasingly severe flutter amplitude; however, judging from the results
of other foils (for example, foil 6 in fig. 24), it is believed that the
flutter boundary at o = 13 will also show only a small variation with
the cavity length. No resonances, with respect to the cavity length were
observed for o = 10 and 13%

Because of the experimental limitations, complete flutter bound-
aries for all the foils were not obtained. Two foils, 3A and 5;
were destroyed because their flutter speeds were lower than the minimum
speed at which a cavity could be formed. When the cavity was férmed,
these foils found themsglves well above the flutter spéed and the high
flutter ampiitude destroyed the foils, TFrom the available results it
may be concluded that all the foils tested would exhibit the similaxr fluttey
boundary. The only difference among them then is a shift in the verti-
cal axis,i.e.the reduced speed, U/wb, due to the variation in the means
ratio parameter W . Fig. 24, for foil 6 illustrates this point. By
comparing this figure with that of foil 3 in fig. 23, one can see the
similarity in the shape of the flutter boundaries. Notice that the flut-
ter boundary at Qo = 7" could not be obtained for foil 6 because the use
of the adaptor plate, which was necessary in order to mount this foil,
raised the height of the mounting bar which then interfered with the
cavity. The difference in the flutter speed, which amounted to a shift
in the vertical axis, was caused by the difference in the mass ratio
parameter, as pointed out earlier.

The effect of the mass ratio can also be seen by comparing the
flutter boundaries of foil 4, as shown in fig. 25, to those of foils 3

and 6 in the previous figures. Foil 4 has the same mass ratio as foil
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6 and hence the same flutter boundaries. The flutter speed of this foil

is higher than foil 3 since it has a higher mass ratio.

It is interesting to notice a feature that is common to all the
flutter boundaries presented so far; at a relatively long cavity length
or near zero cavitation number, the flutter speed is minimum at a = IOOG
This is not a mere coincidence. It was also pointed out in the first
section of this chapter that the damping of the foils tested in the FSWT
was minimum at o = 11 and consequently, so was the flutter velocity,

It must be pointed out that tests in the FSWT were done with cavity lengths
that were always greater than three chords, and hence, comparison with
the asymptotic values of the foils tested in the HSWT is justified.

It is difficult to judge the significance of the angle of attack
around o = 10 to 11 without any experimental data on the unsteady hy-
drodynamics itself. The available unsteady hydrodynamic data are for
rigid foils executing heaving or torsional oscillation around one angle
of attack only, thus making any correlation incqnclusiveg Measurements
of the steady load on the foil taken in the FSWT indicate that the load
remains linear up to o = 20 and there was no sign of stalling around
10" to 117,

One important conclusion that can be drawn from this fact is
that leading edge flutters observed in the FSWT and HSWT tunnels are in-
deed the same phenomenon despite differences of the flows in the two tun-—

nels. This conclusion was taken for granted in the previous discussion.
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I1I-3-d Flutter boundaries as a function of cavitation number

For a fixed angle of attack in a steady flow, the cavitation num-~
ber has a unique one to one relationship with the cavity length; the
longer the cavity, the smaller is the cavitation number. Tigure 26 shows
this relationship for various angles of attack when the foil was flutter-
ing. As can be seen, the cavity length becomes very long near the choking
cavitation number.

During flutter, it was observed that the rear part of the cavity
became periodically pinched off from the main cavity. This phenomenon
will be described in the mnext chapter. The pinched off part of the cav-
ity carried with it a considerable volume of gases. Depending oﬁ the
cavity volume or length, this process can affect the relationship between
the cavitation number and the cavity length to the extent that this rela-
tionship may no longer be unique. This has been known to be true for a
ventilated cavity at a certain rate of air injection (ref. 7). However,
figure 26 suggests that such non-uniqueness does not occur to any signif-
icant degree in the present tests. Therefore one may replot the flutter
boundary in terms of the cavitation number. Fig. 27 shows the flutter
boundaries of foil 4 as a function of the reduced velocity and cavitation
number.

If one assumes that the reduction in flutter speed for short cav-
ity flow from its asymptotic value at £/b = ® is caused by unsteadi-
ness due to short cavity or high cavitation number O, then fig. 27 shows
that the case for o = 7° is affected more than the higher angles of at-
tack. This notion agrees with the fact that flow with a short cavity
or high ¢ at a lower angle of attack is inherently less stable than its

counterpart at a higher angle of attack. If it had been possible to go
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to a higher o, at o = 10° or 13, a reduction of flutter speed similar
to the o = 7° case might have been observed.

IITI-3-e Effects of different leading edge shapes

At the beginning of this experiment, the effect of the shape of the
leading edge on flutter was of concern. One of the driving forces of the
flutter was postulated as being the oscillating 1ift resulting from the
oscillation of the separation point of the cavity at the leading edge.

Four different leading edge shapes were tested on foil 3A in the
FSWI. These are shown in figure 28. 1In all of these cases the foil
fluttered at the same speed even though high speed movies taken during
flutter revealed local differences in the behavior of the separation point
near each of these different leading edges. The separation point for
the 30° wedge remained fixed to the tip of the leading edge throughout
the entire oscillation cycle while other leading edge shapes show an
occasional movement of the separation point.

From these observations, one may conclude that the oscillation of
the separation point of the cavity is not centr%l to the existence of

leading edge flutter and has little effect on the flutter behavior.

ITI-3-f Oscillating load and displacement

Although flutter should be avoided in the first place, knowledge
of the magnitude of the oscillating 1ift would help the design engineers
to build structures that would minimize the damage if flutter did occur.
Data on the oscillating load that is normal to the foil will be presented
in this section. This load was measured by the strain gage on the mount-

ing bar of the foil in the HSWT experiments.
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Fig. 29 shows the magnitude of this load as a function of the
cavity length at o = 10°. The data were taken at a more or less constant
velocity, in this case 27% to 32 fps. The curve shows increasing magni-
tude of the load with decreasing cavity leﬁgth¢ This behavior agrees
with the fact that for a steady flow, the lift coefficient increases with
shorter cavity. Data at a lower angle of attack were taken at a wide
range of velocities since the flutter boundary shows a wide variation of
flutter speed with cavity length (see fig. 23). Tig. 30 shows that these
data are best when plotted against the velocity. At lower velocities
the oscillating load is more or less proportional to the velocity squared
instead of being dependent on the cavity length as the o = 10’ case. The
magnitude of the oscillating 1ift during flutter has the same order of
magnitude as the steady 1lift. Note that the steady 1lift was not measured
during the experiment; however the calculated 1lift at, say, a = 7 and
35 fps is about 120 Lbf. This is of the same order of half the peak to
peak 1ift during flutter.

Figs. 31 and 32 show the displacement of the foil during flutter,

The displacement shows fﬁe‘same Eéhavior as the>oscillating load. As a
matter of fact, the traces of the displacement and load signals are in
phase, i.e. an upward displacement with increasing locad. It was pointed
out before that the flutter frequency was the natural frequency of the
foil in a cavitating flow. This seems to contradict the experimental
result since at the natural frequency the load and displacement should
be 90° out of phase. However one must remember that the foil itself, ex-—
cluding the surrounding water, has a much higher natural frequency.

At flutter it is being driven well below its natural frequency. Hence
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the load should be in phase with the displacement and the experimental

results indicate that this is the case.

I11-3-g Cavity pressure

It is well known that for a forced ventilated flow, the cavity
pressure oscillates when a certain critical rate of air injection is
reached (ref. 7). The oscillation in cavity pressure results in an os-
cillation of the hydrodynamic load which could be the driving force of
leading edge flutter. However the foils tested in the FSWT fluttered
when the cavity was opened freely to the atmosphere. Because the pres-
sure inside the cavity was more or less comnstant, one may conclude that
the oscillation of the cavity pressure is not central to the existence
of leading edge flutter. Experiments in the HSWT with natural cavitation
further confirmed this conclusion. This will become clear in the fol-

lowing discussion on the cavity pressure oscillation in the HSWT.

The oscillating cavity pressure was obtained from a pressure
transducer located inside the cavity. Fig. 33 shows a typical trace of
the pressure inside the cavity. The trace is basically sinusoidal with
with the same frequency as the flutter frequency. To obtain the ampli-
tude of the cavity pressure at the flutter frequency, the cavity pressure
signal was Fast Fourier Transformed using a digital signal processor. The
cavity pressure that will be presented here is the Fourier component at
the flutter frequency in terms of peak to peak pressure in lbf/ini

Fig. 34 shows the cavity pressure as a function of leading edge

displacement for both foils3 and 4. Data were plotted regardless of the

cavity length. If the cavity pressure were the driving force of flutter,
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then it should increase with increasing flutter amplitude. The reverse
seems to be true and indicates that the oscillation in the cavity pres-
sure is the result of flutter. When the same data are plotted against
the cavity length as done in fig. 35, they show increasing pressure with
shorter cavity. This is because of the fact that a shorter cavity has

a smaller volume and hence its pressure is affected more by the oscilla-
tion of the foll which acts as a piston.

The phase relationship between the cavity pressure and the foil
displacement is shown in fig. 36. The data were obtained by taking the
cross—correlation functions between the pressure and displacement signals
using the digital signal processor. Positive phase means that the in-
crease in pressure leads the upward displacement. Data are scattered
but mostly on the negative phase,i.e., the pressure lags the up-
ward displacement of the foil. If the foil truly acts as a piston then
the pressure should be in phase with the displacement. However, the mat-
ter is complicated by the fact that increasing the displacement increases
the angle of attack which causes the cavity to increase in size and hence
tends to reduce the pressure. Also the waves dn the upper cavity change
the volume of the cavity. Furthermore the matter may be complicated by the
thermodynamic effect. At low cavity pressure, the pressure tends to re-
main constant as the cavity volume changes since the heat necessary to
vaporize the water is readily available at the interface. This might not
be true, however, if the oscillations are of ”highﬁ frequency. In view
of the complex dependency of the cavity pressure on the various parameters,

it 1s not surprising that the data are scattered.
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Summarizing, one finds:

a. Cavity pressure oscillation decreases with increasing ampli-
tude of oscillation.

b. The cavity pressure oscillation ranges from 0.05 to 0.5 psi
p-p; this is about an order of magnitude lower than the pressure required
to generate the observed oscillating load (typically 1.5 to 7.5 psi p-p).
The above summary reinforces the conclusion drawn from the FSWI experi-
ment that the oscillation of the cavity pressure is not central to the
existence of leading edge flutter.

ITI~3-h Observation of the Flow Pattern

When the foil was fluttering in the HSWT, it was observed that
the rear end of the cavity was periodically pinched off from the main
cavity. The pinched-off cavity collapsed and rebounded in synchroniza-
tion with the oscillation of the foil. The collapse and rebound process
created pressure pulses which might have an effect upon flutter itself.
In this section, investigation of this periodic cavity pinching and its
role in the flutter phenomena will be discussed. The investigations
involved taking high speed movies and monitoring pressure fluctuations
around the foil.

The flow pattern when the foil was fluttering was radically dif-
ferent from the steady case.  Figures 37 and 38 show the photographs of

the cavities when the foil was fluttering and in a steady flow . The
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first figure shows the flow with a relatively short cavity and the second
figure shows the flow pattern when the cavity is relatively long. In
the steady case, the cavity surfaces are free from waves. By contrast
in the fluttering case, waves of high amplitude can be seen on the upper
cavity surface. These waves are created by the oscillation of the lead-
ing edge of the foil and propagate to the rear end of the cavity,. As
the waves travel along the upper cavity surface, they grow in amplitude
and become distorted as they reach the rear end of the cavity, The ac-
tual shape of the cavity surface was difficult to photograph because of
the presence of small bubbles which masked the view. Figure 3% is a
sketch of the cavity wall of fig. 38. Waves are also present on the lower
cavity surface, but their amplitude is small compared to the upper ones
as can be seen in the photographs. When the waves on the upper and lower
cavity surfaces meet at the rear end of the cavity, they cause a portion
of the cavity to become pinched off from the main cavity forming a sep-
arate bubble. This is clearly shown in fig. 37 and the process will
be described later in detail. A similar flow pattern was also observed
when the foil was put at a negative angle of attack., TFigure 40 shows the
flow pattern when the foil was inverted. Both photographs show the cav-
ities at the leading edge collapsing due to the severity of the flutter
amplitude. It must be pointed out that at a lower flutter amplitude, the
cavity remained attached to the leading edge as described in section III-
3-e. |

The flow pattern in the FSWT experiment was somewhat diffefent.
Although the waves on the upper cavity surface due to the leading

edge oscillation were present, they did not cause éavity pinching.
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This was apparently due to the fact that the waves in the FSWT did not
become so distorted as in the HSWI. One may conclude from the experiment
in the FSWT that the cavity pinching process is not central to the exis-
tence of leading edge flutter; however its influence cannot be neglected.
The effects of cavity pinching will be described later.

The phenomenon of cavity pinching for a forced ventilated flow
rather than a cavitating flow has been reported previously in literature
(refs.7 and 8). However cavity pinching has not been reported before for
a vaporous cavitation. Although the two phenomena are similar in appear-—
ance, their mechanisms are entirely different. In the forced ventilated
case, the instability is caused by the oscillation of the cavity pressure
at the natural frequency of the volume of the cavity. 1In the vaporous
cavity case, the pinching is caused by the oscillation of the leading edge
and has not been reported for a rigid foil. In the forced ventilated
case, the cavity pressure oscillation is the driving force of the phenom-
enon  while in the vaporous case, the cavity pressure is a consequence
of the volumetric changes of the cavity during flutter. Furthermore, in
the forced ventilated case, the frequency of the oscillation depends on
the cavity size and the rate of air injection, while in the vaporous cav-
itation case, the frequency locks to the natural frequency of the foil in
a cavitating flow. The wave length of the waves in the forced wventilated
case is an integer fraction of the overall cavity length and the length
of the cavity that is pinched off is any integer multiple of the wave
length. By contrast in the vaporous case, therwave length is more or less
equal to Uc/f where UC is the particle velocity on the cavity surface
and f s the flutter frequency. The length of the pinched-off cavity

is less than % wave length. The detail of the cavity pinching in the
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HSWT experiment will be described next.

As pointed out earlier, the waves created by the oscillation
of the leading edge grow in amplitude. The growth of these waves is
linear with the distance near the leading edge. The amplification
factor, based on the amplitude of leading edge oscillation, is pres-—
ented in figure 41. As can be seen, over a distance of only 3" (%
chord), the amplitude grows five times. Apéarently the amplification
becomes non-linear beyond this distance. By the time a wave reaches
the closure region, it has become so distorted that it looks like a
train of spikes. When one of these spikes gets to the end of the
cavity, it causes the cavity to become pinched and literally cuts
loose the end of the cavity. This process is repeaté& when the next
spike arrives.

Figure 42 taken from a high speed movie of the cavity when
the foil was fluttering, shows the step by step process of the pinch-
ing. The time interval between each frame is 1/600 sec., corresponding
to the 600 frames per second at which the movie was taken. Because
of the very intense unsteadiness of the flow at the rear end of the
cavity, the pinched off cavity soon becomes more like a bubbly cloud
rather than a single bubble. This bubbly cloud grows in size, col-
lapses and then rebounds. The collapse and rebound process continues
with ever weakening intensity as the bubbly cloud is swept downstream

by the flow. The shape of this so-called bubbly cloud is shown below.
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The upper and lower cores are actually a pair of vortices rotating
in the opposite directions,as shown. Each bubbly cloud is connected to
the next one with what appears from the side view to be an "umbilical
cord." This is clearly shown in fig. 37. The upper vortex rotates in
the counter-clockwise direction and the lower one in the clockwise di-
rection. This vortex street is of course a manifestation of the oscil-
lating 1ift on the foil. From the high speed motion picture it is clear
that the upper vortices rotate at a faster rate than the lower ones. Ap-
proximate rates of rotation of the upper and lower vortices are about

40 and 30 revolutions per minute, respectively (at about 30 fps).

This pair of vortices is similar to the Karman vortex street behind a
blunt body exéept the cores are bubbly and the Eubbly vortices collapse
and rebound in synchronization with the oscillation of the foil. Similar
vortex streets have been observed for foils with short cavities and high an<
gle of attack but without the collapse and rebound of the bubbly cloud
(ref. 9). The two-dimensionality of the flow disappears at about 15 inches
behind the rear end of the cavity. Using strobe lights one can see the
surface of this bubbly cloud covered with small bubbles with an average

radius of approximately %". It is not known whether there are larger bub-
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bles inside this bubbly region.

Three different time intervals were observed between pinching—off

and the first collapse. They are:

Case 1.

Case 2.

Case 3.

Immediately after the bubble.becomes separated from the
main cavity. This occured with foil 3 at 31% fps, o =.
~7° and a cavity length of 2 chords.

One period of oscillation after the separation. This
occured with foil 3 at 33 fps, a =7 , 4/b = 2,

One and one-half periods of oscillation after the sepa-
ration. This case was observed for foil 3 at 36% fps,

a = 7° /b = 4,

For cases 1 and 2, the phase relationship between foil displacement,

pinch-off and collapse are illustrated below. The phase relationship

with the displacement of the foil is unknown for case 3. It must be

emphasized that the cases stated above are three isolated cases and the

conditions for which those cases occur may not be unique. It is con-

ceivable that other periods also exist.

upward displacement

of the foil
collapjjylr\\\\ pinched off
J 2 time \\\\\\\J/// , ///
pinched off collapse

CASE 1 CASE 2
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Figure 43 shows the growth and collapse of the bubbly cloud as
a function of time for case 3. This graph was obtained from analyzing
the high speed motion picture of the region near the end of the cavity
taken at 600 frames per second. The horizontal axis is the frame number
and the time interval between the frames is 1/600 sec. The vertical axis
is the average radius of the bubbly area as projected on the tunnel's
window. The collapse and rebound of the bubbly cloud create pressure
pulses whose magnitude is proportional to the rate of the change of the
volume of the bubble. The typical shape of this pressure pulse is shown
in fig. 44. The sharp positive spikes are caused by the rebounds of the
bubbly cleouds. Also shown is the spectrum of the pressure pulses which
contain odd and even harmonics of the flutter frequency. During flutter

one can hear a very loud buzzing noise coming from the rear end of the
cavity.

Ié wés péintearouﬁ earlier that the pressgferpﬁlseé generatéd
by the collapse and rebound of the bubbly clouds might have an effect
upon flutter itself. To understand the interaction between the bubbly
cloud and the foil, one must examine the magnitude of the pressure
pulse and its phase relationship with the oscillation of the foil.

For the purpose of estimating the order of magnitude of the
pressure pulses acting on the wetted side of the foil, the following
will assumed:

1. The bubbly cloud is a single spherical bubble.

2. The bubble collapses and rebounds at a constant rate.

The term R* of eqn (1) in appendix D is neglected.

For the case in fig. 43, the pressure acting on the foil during the
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collapse>cycle is 0.9 psi and during the rebound cycle the pressure is

0.2 psi ( please see appendix D for details of the calculation). These
figures are in the same order of magnitude of the observed pressure
pulses. Fig.45 shows the component of the pressuré pulse at the flutter

as a function of the distance from the rear end of the cavityk The ﬁres.w
sure is 1in the same order of magnitude as the pressure reduired to gener-

ate the observed oscillating 1ift (:i 3 psi) and certainly will have an

influence on the flutter amplitude. It is expected that the effects of
the collapse and rebound of the bubbly cloud will not diminish as they
would in an unbounded fluid because of the presence of the tunmel wall.
After a certain distance from its source {say one or two tunnel heights),
pressure pulses will be transmitted as in a tube. TFurthermore, as thé
cavity becomes longer, the collapse and rebound of the bubbly region be-
come more severe since the static pressure increases in the diffuser.

The effects of the pressure pulses generated by the collapse and
rebound of the bubbly cloud are best understood if one examines the phase
velationship with the displacement of the foil. Cross—correlation between
the pressure pulse and displacement revealed that they could be either
exactly in or out of phase with each other. (See also case 1 and 2 dis—
cussed previously.) Since these pressure pulses are transmitted to the_
foil with almost no delay at all, they could either reinforce the unsteady
hydrodynamic load that causes flutter or subdue it. This was apparently
the reason why in the cross-hatched region of fig. 21 the flutter ampli-
tude resonated with respect to the cavity length as shown in fig. 22.
Flutter amplitude is reinforced when the pressure pulses are in phase with
the upward deflection of the foil and vice versa.

I111-3-i The Effect of Gravity on the Flutter Boundary.

It could be suggested that gravity might have an effect upon the.



- 42 -

upper cavity surface and hence upon the flutter boundary. The effect of
gravity was tested by turning the foils upside down so as to put them at a
negative angle of attack. The resulting flutter boundary for o = -7°
was exactly the same as that for positive angle of attack. No other test
was carried out. However, there is no reason why this should not be true
for other foils or angles of attack in the same velocity range. The ratio
of the centrifugal force due to the curvatufe of the cavity wall to the
gravity force may be approximated as UZ/Rg where " U is the free stream
velocity, R is the average radius of the cavity wall, and g is the grav-
ity acceleration. 1In this test,the typical operating speed was 30 fps
and the radius of curvature at the leading edge was about 0.5 ft(;

giving a ratiec of about 55. In view of this ratio , it is not

surprising at all that the gravity does not affect the flutter boundary,

III-3-j Non-Cavitating Wake Flow

Since a non-cavitating wake flow over a foil is in some respects
similar to the supercavitating flow as shown below, the question arises

as to whether leading edge flutter can also occur for a single phase flow.

o ]
&/ ~
C’ Cv- agpememme £ ] OW cavity
er GGl & _______,..—\f"’"
WAKE FLOW CAVITY FLOW

Frequency response measurements were made in the FSWT for the wake

flow case. The result did not indicate any change in the amount of damping
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with increasing velocity. However, the test was not carried very far
above the flutter speed because the formation of a ventilated cavity could
not be prevented. In the HSWY, foil 3 which had a minimum flutter speed
of 21 fps at o = 7 was tested all the way up to 35 fps with a non~cavi-
tating wake. The formation of the cavity was suppressed by increasing

the pressure in the test section up to 8§ psi. No indication of flutter
was observed and the foil remained stable. A similar test was also per-
formed on foil 3A with the same result.

Fig. 46a presents a typical trace of fluctuating pressure in the
wake behind foil 3A at 18 fps and a = 7°. Fig. 46b shows its cortespon%
ing power spectrum. The vertical scale of the spectrum is the square of
the magnitude of pressure. The upper trace 1is the spectrum of the pres—
sure and the lower trace is that of the displacement of the foil. The
natural frequency of this foil in a cavitating flow is 44 cps; it is lower
in the wake flow (about 36 cps) due to the higher apparent mass. FEven
though the spectrum of the pressure fluctuation has components around the
natural frequency of the foil in a wake flow, the response of the foil is
minimal.

With regard to the question posed at the beginning of this sectiom,
one may conclude that leading edge flutter in a non~cavitating wake flow
is unlikely. Leading edge divergence is prQBably the primary hydro-
elastic interaction for a flexible chord foil with a-non-cavitating
wake ( please see appendix C for a discussion on divergence ).

Flutter is a phenomenon that is highly dependent on the unsteady
hydrodynamics. Even though in a steady flow the cavitating and non-cavita-

ting wake flows are similar, the unsteady loads for the two cases are
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different for the following reasons. The first is the contribution of
the apparent mass. The apparent mass of the non-cavitating wake flow is
appfoximately twice that of the cavitating flow. The second factor comes
from the difference between the dynamics of the shear layer and the cavity
surface. In the shear layer case, the disturbance created by the leading
edge oscillation is damped by the viscosity,while in the cavity flow, the
leading edge oscillations create waves on the cavity surface. These waves
are amplified as they propagate to the rear end of the cavity. The dif-
ferences in the flow geometry for the two cases could conceivably make é
difference in the unsteady hydrodynamic load. This difference together
with the contribution of the apparent mass may explain the differences

in the hydro-elastic response of cavitating and non-cavitating foils.

TII-3-k Miscellaneous Observations

In this section miscellaneous observations are reported. The

relationships of these observations to the leading edge flutter phenom-—

enon are not clear at this time.

During fhe experiment with foil 5 in the HSWT, it was observed
that the foil fluttered with the flow configurations as shown in fig. 47.
The first case was a flow with a bubbly partial cavitation which extended
to the middle of the chord (fig. 47a). The foil fluttered at 17 fps and
a = 7°with a steady frequency of 53 cps. When the speed of the tunnel
was increased, the bubbly partial cavitation disappeared and a cavity was
formed on the mounting bar. This caused a high pressure to be imposed on
the upper surface and with further increases in velocity, another cavity
was formed on the lower surface. The final flow configuration is shown

in fig. 47b and the foil fluttered between 17-20 fps at o= 7°.
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The first case points out the connection between the unsteadiness
associated with a partial cavitation flow and leading edge flutter. It
demonstrates that the randomness of the flow could be altered by the flex-
ibility of the foil. 1In this case the randomness "locked" to the natural
frequency of the foil. The second case illustrates that leading edge
flutter is also possiblefora.flow configuration that is radically differ-
ent from that of a hydrofoil.

A flutter mode other than the first bending mode was also observed
during the experiment in the FSWT. Foil 2 fluttered with the first bending
mode as soon as a cavity could be formed at 4.3 fps and with a frequency of

12 Hz.When the tunnel speed was increased to 7.2 fps, the mode of flutter
could change to the first torsion mode with a frequency of 20.5 cps (please
see table 2). This mode is actually the same as the first bending mode
except for the phase variation in the spanwise direction. Notice that
the reduced flutter speeds are the same for both modes, i.e., U/wb = 0.11.
One may make a conjecture that higher order modes can also be excited at
the same reduced speed. Higher order modes of flutter are reported in

refs. 2 and 3.
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IV. ANALYSIS OF LEADING EDGE FLUTTER

It was concluded in the last chapter that the leading edge flut-
ter boundary depended on the various parameters such as the angle of at-
tack, the cavity length and the mass ratio parameter. Because of the
complex dependency of the flutter boundary on these parameters, it is
not likely that a single mathematical model can describe the whole as~
pect of leading edge flutter. However, if one limits the scope to the
case of zero cavitation number or infinite cavity length then the prob-
lem is greatly simplified. Two mathematical models for the case of zero
cavitation number are presented in this chapter. The first is a Single

Degree of Freedom Model. In this case, leading edge flutter oscillation

is modelled as an oscillation of a rigid foil hinged at the trailing edge.
The second model treats the fluid-structure interaction of a flexible
chord foil cantilevered at the trailing edge. Finally at the end of this
chapter, attempts will be made to explain why the non-cavitating wake

does not flutter.

IV-1 Single Degree of Freedom Flutter Model

The effect of the deformation of the chord during flutter is to
change the effective angle of attack of the foil. The oscillation of
the angle of attack may be simulated by an oscillation of a rigid flat
foil hinged at the trailing edge as shown below.

zero 1ift line of
the actual foil

||

spring

K\%
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This model falls under the classification of single degree of
freedom flutter which is generally believed to be impossible except under
very special circumstances. It will be shown here that for the case of
a supercavitating foil hinged at the trailing edge, flutter is always
possible. However before the analysis is outlined, a brief historical
sketch of single degree of freedom flutter will be presented in order
to put the leading edge flutter problem in  proper perspective,

The early analysis of flutter was done using quasi steady aero~
dynamic derivatives. Within the context of this analysis, a single de-
gree of freedom oscillation, i.e., heaving or pitching oscillation with

the axis of rotation located on the foil itself, is stable at all speeds.

In 1934 Theodorsen developed the linearized non-stationary airfoil theory.

Using this theory, in 1949 B. Smilg (ref.10) showed that single degree
pitching oscillation flutter is possible when the axis of rotation is
located between the quarter chord point and the leading edge. However
an additional condition exists; the foil must be unreasonably heavy. As
an example, a 157 thick airfoil hinged at the leading edge will flutter
only if it is made of solid steel! The notion that single degree of
freedom flutter was impossible persists. In the mid 50's the unsteady
hydrodynamic theory for heaving oscillation was developed by Parkin (ref.
and Wu (ref.12 ) . However the solution for pitching oscillation was

not available until 1962 when Martin (ref. 13) and Parkin (ref. 14)
solved this flow. Prior to this,supercavitating flutter analysis was
done using the unsteady aerodynamic theory for an airfoil fitted with

a spoiler. This theory was developed by L.C. Woods (ref. 15) who did

notice that a single degree of freedom flutter was possible for a fully

11)
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stalled airfoil with the axis of rotation located at the midchord. With
the availability of solutions for heaving and pitching motions, it is
theoretically possible to investigate the stability of pitching oscilla-
tion about any axis on the foil by superposiﬁion of these two cases.

The possibility of a single degree of freedom in pitching oscillation
was apparently overlooked by researchers in this field.

Analysis

Consider a rigid foil as shown below.

positive moment M

//”—~“\\§l I= 1 p t b3 , moment
o's
- of dinertia about the

) hinge point.
Nivy

3
o
¥

The foil hinged at a distance zb away from the leading edge. All pos-
itive quantities are defined above. The equation of motion may be writ-—
ten directly as:

I +Ko =M
For a harmonic motion, one may write:

a = 06 ert where w = wR +=j(nI
and M= (M, + M) JUt

Substituting into the equation of motion and separating the real and

imaginary parts, one obtains
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® 2 — 2 — = —
real part: I(wR U)I) K MR/OLO (I)

imaginary part: ZImeI = ~M1/a0 (11)
The oscillatory angle of attack « grows in amplitude when wI<(),
Since I and mR are positive quantities, equation II implies that the
condition for instability is MI?> 0. The polar plots of the complex
coefficient of moment derivative CM;& ’are presented in fig. 48 as a
function of the reduced frequency for various locations of the hinge
point. The detailed calculations of these quantities are left to ap-
pendix E. The region above the horizontal axis, i.e. MI >0, is the
instability region. 1In this region, the oscillation of the foil will
cause the foil to extract energy from the flow and hence cause the os-
cillation to diverge. The figure shows that when the foil is hinged at
a point located between approximately 0.6 chord and the traiiing edge,
there is a range of values of k where the oscillation is unstable.
When the free stream velocity is relatively low, the value of
the reduced frequency k = wb/U is relatively large. With increasing
velocity, this value decreases and when it reaches the critical value
as shown in fig. 48, the foil will theoretically become unstable. The
question of whether the foil will of will not flutter can only be an-
swered by examining the variation of k with increasing velocity. If
the value of k can reach the critical value of k then the foil will
flutter, otherwise it will remain stable. The natural frequency may be
obtained by artificially forcing the foil to oscillate at a constant

amplitude or setting mI = 0 1in equation I. The frequency equation

simply becomes:

_ - 1 212
, K MR/ocO K CMR lp, U
w 7 =

= 2O
R T (1I11)
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Where CMR o is the real part of coefficient of moment derivative. The
3
static divergence speed is reached when w >0 or K - C__. LpU%b%=0.
R MR o W

Therefore the divergence speed is given by
2 2K
U = T2
Or a0 PP

div
Equation III may be non~dimensionalized by the divergence speed. If one

defines the following quantities as:

U=nvu,, elocit
n div v city

I = IOpStb3 moment of inertia, and
Pt

o= Erg" masg ratio parameter
W

then equation III may be written in dimensionless form as:

FI e P WL
n QMR&(O) CMRﬂ(O)
The value of CMR,a(k) /CMR,a<O) is available from appendix E or from

fig. 48; thus the variation of k with 1 may be calculated.

Fig. 49 shows the\variation of the reduced natural frequency with
velocity for various values of the parameter CMR,G(O) /(ZIOM). It
shows that the reduced frequency decreases monotonically from a large
value at low velocity te zero at the divergence speed. However, before
the divergence speed is reached, the foil will flutter when the
reduced frequency equals the critical value. In contrast to the super-
cavitating hydrofoil case, an airfoil hinged at the leading edge possesses
a limit on the value of k that can be achieved. This is shown in fig.
50. The limit of k decreases with increasing mass ratio and vice
versa. Depending on the value of u and IO, this limit may or may not
reach the critical value of the reduced frequency of k = 0.36. This

is the reason why a very heavy foil can flutter and a very light one
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cannot flutter.
Several conclusions may be immediately drawn from fig. 49, they
are:
1.) The flutter boundary at ¢ = 0 is dependent only on
0
the parameter k and U/Udiv or w/ .
2.) Flutter always occurs before divergence since the
value of 1 = U/Udiv is always less than unity,
3.) The thinner the foil (' i.e. the smaller U ) the

closer the flutter speed is to the divergence speed,

The agreements and disérepancies between theory and experiment
are immediately apparent from the above list. First of all, the experi-
ment confirmed item 2; flutter always occurs before divergence. Item 3,

of course, cannot be proven experimentally since the foil will be damaged

by flutter before the divergence speed can be reached. However, very
thin foils are not of practical interest since they diverge before a cavity
could be formed. The highest practical value of the parameter CMR,Q(O)/(ZIOU)
is approximately 30 {corresponding to foil 3AA with | based on the flexible
chord length).

The theory predicts that there is only one reduéed flutter
velocity for all of the foils tested. For the case of a foil hinged at
the trailing edge, this value is 1/k = 1/7 or 0.143. The experimental
results show that at 0 = 0, the value of the reduced flutter speed is
dependent also on the angle of attack and the mass ratio parameter. The
experimental values of the reduced velocity range from 0.15 to 0.25 for
all values of the angle of attack and mass ratio. Although the theoreti-
cal value is in good agreement with the lower end of the experimental

value, there is a serious disagreement as far as the parametric dependency
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is concerned. The dependency on the angle of attack obviously indicates
that the unsteady hydrodynamics is a function of the angle of attack
itself. This dependence is beyond the scope of the linear theory used
here. The effect of varying the thickness of the foil and thus the mass
ratio parameter is to vary the natural frequency of the foil and its
mode of oscillation. Since the single degree of freedom model fixes the
mode of oscillation, the critical value of the reduced frequency is de-
termined immediately from the hydrodynamics. The variation of the crit-—
ical reduced frequency with mass ratio is again beyond the scope of this
simple model. Further discussion on the mass ratio parameter will be
delayed until the next section when the eigenvalue model is discussed.
The above paragraph discusses the correlation between the theoret-
ical and experimental reduced velocity. A more urgent question that
needs to be answered from a designer's point of view is "how well does
this theory preduct the flutter speed and frequency?" If one knows the
value of the parameter CMsa(O) /(ZIou) in fig. 49 then the ratioc of the
flutter speed to the divergence speed is determined. vThe calculation of

the divergence speed is outlined in Appendix C.. The value of CM;a(O)F
is available from Appendix E and its value is (1 - 5/16) ©/2. The value
of Y may be calculated from the known parameters of the foil and

I0 = 1/3 for uniform thickness foil that is hinged at the trailing

edge. Knowing all these parameters, the theoretical flutter speed may
be calculated. The theoretical flutter frequency is calculated from the
definition of the critical reduced velocity, i.e., U/wb = 0.143. Two
cases are considered. The first is the case where the divergence speed

is calculated by taking into account the presence of the rigid portion

of the trailing edge. The second case neglects this portion and the foil
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is assumed to have an overall chord length equal to the flexible chord

length.

for these two cases.

DI N

CASE T e ——Ty
VELOCITY, fps
FOIL # EXP AT 10° THEORY
3 28 16.0
4 52 26.7
6 36 21.2
%5::::;3_;
CASE II1: .
VELOCITY, fps
3 28 18.8
4 52 31.4
6 36 23.6

The tables below list the experimental and theoretical values

FREQUENCY, cps U/wb

EXP THEORY EXP AT 10° THEORY
60.6 35.0 0.15 0.143
83.3 57.9 0.20 0.143
60.0 47.3 0.19 0.143
U/wa
FREQUENCY, cps EXP AT 10° THEORY
60.6 71.8 0.26 0.143
83.3 119.7 0.34 0.143
60.0 74.6 0.143

0.27

The theory consistently predicts lower values of the flutter-

veloccities.

average of 447 and in case II by 367%.

retical and experimental frequencies seems to be better.

In case I it underestimates the flutter velocity by an

The agreement between the theo-

The theory

underestimates the frequency by an average of 317 for case I and over-

estimates by an average of 287 for case II.

Overall, case 11 seems

a better model for calculating the flutter velocity and frequency.
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It is difficult to pinpoint the exact cause of the discrepancies

between the experiment and theory; however its sources may be identified

by the following:

1.)

2.)

3.)

Experiments on the unsteady loads of a supercavitating
foil (for example, ref. 16) indicate that there are dis— .
crepancies between theory and experiment. This is especially
true for the phase angle between the displacement and load
which is the determining factor in the instability.
Experimental conditions are different from the idealized
conditions of the linearized theory. For example, in the
water tunnel, a truly zero-cavitation number condition
cannot be achieved.

Since the cavity length in the experiment is finite,
complicated flow phenomena such as the pinching of the
cavity and the collapse and rebound of the bubbly coulds

may influence the flutter boundary.

One would be tempted to list the general inadequacies of a single degree of

freedom model as a cause of the discrepancies between the experiment and

theory.

However, a more sophisticated treatment of a cantilevered foil which

will be presented seems to produce larger discrepancies between theory and

experiment.

The tunnel wall effect for 2-D unsteady choked supercavitating

flow has been studied theoretically by J. H. Kim (ref. 23). His result

indicates that if the tunnel wall is taken into consideration, the reduced

flutter frequency would increase and therefore increase the discrepancies

between theory and experiment.

Iv-2

as shown below.

Cantilevered Foil Model (ref. 6)

Consider a supercavitating foil cantilevered at the trailing edge
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4 w - displacement

¢ = to(x/b)B

__u, Q\__L
1

PL77
L

If one considers only the chordwise deformation, then the equation of

motion of the foil may be written as a beam equation:

2 2 2
éagz (\/D %{‘V:«:J/ + Dst*&;‘} = p(x,t)
where
Et 3

D= T2
and p{x,t) = the hydrodynamic loading.

The unsteady part of the motion may be separated from the steady
state part and assuming a harmonic motion, one may write the equation

of motion as:

The boundary conditions are:
At the root =x = b:

n
No displacement w = 0
n

dw _
Zexo slope ax 0



At the tip x = 0

a%w
t ==
No momen D 'd—}zz' 0
N
d d?w _
No shear ax b Freaiie 0

The above equation is an eigenvalue problem since the hydrodynamic load-
N N

ing p(x) is a function of the deformation w (x) itself. This problem

has been solved by H. Murai (ref. 6) and S. Shimizu (ref. 17) for the

case of a foil with thickness distribution of the form:
- B
t{x) = £, (x/b)

where B ranges from 0.5 to 1. The case of B =1 corresponds to a
wedge and B = 0 corresponds to a flat plate. The result at B = 0
presented here is an extrapolation of their calculation . Fig. 51 shows
the critical value of the reduced frequency k as a function of the
shape factor B. For a flat plate, the critical value of k is 11.5.
The flutter velocity is given by:

Et®
o]

7 723
12(1~v )pwa b

5.37 + 10.67y

The table below lists the theoretical and experimental values of flutter
velocity and frequency. The theoretical values are obtained by neglect~
ing the rigid rear portions of the foils and using the flexible chord

length as the overall chord.
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VELOCITY, fps FREQUENCY, cps - U/wa
FOIL # EXP AT 100 THEORY EXP THEORY EXP THEORY
3 28 13.9 60.6 87.2 0.15 0.09
4 52 236; 83.3 145.0 0.20 0.09
6 36 17.4 60.0 90.4 0.19 0.09

Compared to the single degree of freedom model, this model re-
sults in a larger discrepancy between the experiment and theory. Explana-
t ions of the discrepancies given previously are also generally applica-
ble to this model.

The mode of oscillation of the foil during flutter is an eigen-

parameter pst(x) in the equation of motion. Once the mode of oscil-
lation is known, the critical value of k 1s a determined quantity. The
parameter pst is directly related to the mass ratio parameter U = pst/
pwb and its effect on the critical value of %k 1is shown in fig. 51.
The curves show that the critical value of k is not sensitive to the
mass ratio. According to the theory, two foils with identical geometry
but different thicknesses, i.e. foils 3 and 4, should have the same re-
duced flutter frequency. Experiments show otherwise, however. If one
assumes that the theory is correct then the discrepancy can only be ex-
plained if the unsteady hydrodynamics is not solely a function of the
reduced frequency k. This implies that other parameters such as the

Reynolds mnumber and Weber number might be important in the experiment.
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IV-3  Improvement of the Models

The two models discussed in the preceeding sections assume that
the foil is either hinged or cantilevered at the trailing edge. In reality,
a super—cavitating hydrofoil has a considerable rigid chord at the trailing
edge. It was demonstrated in III-3.b that the rigid portion of the chord
at the trailing edge has an influence on the flutter velocity.

The first step toward understanding the effect of the rigid
trailing edge portion is to include it in the Single Degree of Freedom

‘Modelg The new model is shown below.

£1 . -
ixed o= q ejwt fixed

ﬁ'\@:‘: = \‘/\7;\\ \}\f e
pitching motion flapping motion

The equation of motion is, of course, the same, the only difference is the
reduced flutter frequency. The motion of an oscillating foil with fixed
trailing edge may be obtained by superposition of pitching and flapping
motion as shown above. The linearized potential flow solution for the
pitching motion is outlined in Appendix E. The linearized potential flow
problem for the flapping motion has been solved by C. S. Song (ref.22).
The moment at the hinge due to the leading edge portion of the chord may

be obtained by superposition of the solutions for pitching and flapping

motion.

IV-4. DNoncavitating Wake Flow

It is well known that a noncavitating wake flow is similar to the
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supercavitating flow at least as far as the steady state 1ift and drag
are concerned. For an oscillating foil, the two flows are different in
some respects. First of all the apparent mass of the noncavitating flow
is almost twicé as great as the apparent mass of a supercavitating foil.
Dynamically the noncavitating wake flow should be similar to the non~
separated airfoil since in both cases the oscillation of the foil results
in perturbations of the flow over and under the foil itself. 1In contrast,
an oscillating supercavitating foil will create perturbation of the flow
that is mainly confined to the region below the foil. If one accepts
this qualitative argument, then the noncavitating wake flow case should
not flutter since a rigid airfoil hinged at the trailing edge does not

flutter {experimentally or within the context of potential flow theory).
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V. FUTURE EXPERIMENTS

The single degree of freedom model demonstrated that a rigid
foil pivoted at an axis beyond 0.6 chord from the leading edge can
flutter. It would be interesting to test this model experimentally.

The motivation for this experiment comes from the fact that the foils
tested here exhibited a dependency on the mass ratio parameter while

the single degree of freedom model and the cantilevered model predicts
otherwise. The dependency of the critical value of the reduced frequency
on the mass ratio could come from the differences in the experimental
mode of oscillation or the fact that the unsteady flow is not.

dependent solely on the reduced frequency (or both). By testing a rigid
chord foil, the first cause is isolated and the second cause may be
investigated. This may be easily done by adding mass to the foil.

It was mentioned in the introduction that leading edge flutter
can also occur in supercavitating pumps. Because of the close proximity
of the blades, it is expected that the flutter boundary will differ from
an isolated blade case. An experiment with cascade flexible foils in
the 2-D test section of the HSWT would lead the way in understanding the

more complex problem of the supercavitating pump.
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VI. SUMMARY AND CONCLUSIONS

The problem of leading edge flutter of a supercavitating
hydrofoil has been studied experimentally and theoretically. The exper-—
iments were carried out in the Free Surface Water Tunnel and in the High
Speed Water Tunnel of the California Institute of Technology Hydrodynamic
Laboratory.

The experiment determined the flutter boundary of an idéalized
flat plat hydrofoil. The flutter boundary was ﬁery distinct in the High
Speed Water Tunnel. The study assumed that the problem of leading edge
flutter could be represented éufficiently well by the reduced velocity,
cavity length or cavitation number, mass ratio, ratio of flexible chord
to overall chord and the angle of attack. For "infinitely" long cavity
case or zero cavitation number, the mass ratio and the chord ratio have an
opposite effect on the reduced velocity oﬁer the range of parameters testedq
Increasing mass ratio increases the reduced velocity and increasing chord
ratio decreases the reduced velocity. Flutter velocity was observed to
be dependent on the angle of attack and minimum at 10°-11°.

At a moderate to short cavity length (say, less than 5 chlords),
leading edge flutter phenomenon was influenced by the cavity closure
condition. During flutter, leading edge oscillation caused pinching of
the rear end of the cavity. The resonances of flutter amplitude with
respect to cavity length could be a manifestation of the role playved by
the cavity closure. The inherent unsteadiness of flow with short cavity
also influenced the hydro-elastic response of the foil, Flutter velocity

of a foil with short cavity was lower than its asymptotic wvalue at an
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infinitely long cavity. The reduction of flutter velocity could be as
much as 50%. For all the foils tested, the reduced velocity lies between
0.15 to 0.25. The reduced velocity is defined as U/wb where U is the
free stream velocity, w 1s the angular flutter frequency and b is the
chord length.

The analytical study models the leading edge flutter problem
as a rigid chord foil hinged at the trailing edge. The linearized problem
was studied for the zero cavitation number flow., For the idealized
problem, the reduced flutter welocity is not a function of the mass Tatio;
angle of attack and the chord ratio. The theoretical value of the
reduced flutter velocity is 0.143 and somewhat lower than that obtained
experimentally. The calculated flutter velocity is approximately 36%
lower than that observed and the theory overestimates the flutter frequency
by an average of 287. The analysis also predicts that flutter occurred

before divergence which was confirmed experimentally,
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Frequency Mode
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210 1% pending

(possibly a sub-harmonic
excitation )

410 15% bending

530 chordwise deformation
st .

860 1 torsional mode
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dashed lines are nodal lines
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Table 1 . Natural frequencies and modes of CIT 35-435 mod II foil

in air.
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FIG. 13 MOUNTING SYSTEM FOR FOILS 5 AND 6
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FIG. 37 FLUTTER WITH SHORT CAVITY. NOTICE THE
PERIODIC SHEDDING OF THE CLOSURE REGION
AS THE RESULT OF CAVITY PINCHING.
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NO FLUTTER

FIG.38 FLUTTER WITH LONG CAVITY.NOTICE THE
WAVES ON THE UPPER SURFACE CREATED

BY LEADING EDGE OSCILLATIONS.
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SHORT CAVITY

FIG. 40 FLUTTER AT NEGATIVE ANGLE OF ATTACK
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Amplification Factor
N
I

inch
S, Distance From Leading Edge

FIG.41 AMPLIFICATION OF WAVES ON THE UYPPER CAVITY
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FIG. 42 CAVITY PINCHING PROCESS. TIME BETWEEN
FRAMES IS 1/600 SECOND.
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FI1G.42 CONTINUED
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a. Bubbly Partial Cavitation

b. Cavitation On The Lower Surface

FIG. 47
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FIG.49 THE VARIATION OF THE REDUCED
FREQUENCY WITH VELOCITY FOR A

SUPERCAVITATING HYDROFOIL HINGED
AT THE TRAILING EDGE
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FIG.50 THE VARIATION OF THE REDUCED FREQUENGY
WITH VELOCITY FOR AN AIRFOIL HINGED AT
THE LEADING EDGE
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A\

Stotic-pressure coefficient, Cp

Pressure taps are located
- on the upper surface. ]

1 2 3 4 5 6 e 8 9 10

Distance along  surface, x /¢

o2

9
O Trmml e

TN S
]
i

Fig 52. PRESSURE DISTRIBUTION OVER THE UPPER SURFACE OF
A FLAT PLATE. ( from refig )
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FIG.53 VARIATION OF DIVERGENCE SPEED WITH
LOCATION OF CANTILEVERED POINT FOR

FULLY WETTED, NON- SEPARATED FLOW
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APPENDIX A. THE RATIO OF THE RADIATED ENERGY TO KINETIC ENERGY
OF THE FOIL

The ratio of acoustical energy radiated due to vibration of
the foil to the kinetic or potential energy of the foil is a measure
of the importance of acoustic in affecting the leading edge flutter
problem. If the acoustical energy radiafed is small compared to the
kinetic energy of the foil, then leading edge flutter problem may be
treated strictly as a hydroelastic problem.

Consider a circular plate of radius a, wetted on one side
only as shown below. This could be a model for an underwvater
~speaker or an oscillating supercavitating hydrofoil. According to

ref.18 , p. 247, the average energy radiated per unit time is

. 2 4 | - -  Z -
E = in ckTa 5’5 EZ — =t
A /T /8
where P = density of water
c = speed of sound in water
1w
-k = wave number = X = Znc
a = radius of the vibrating plate
é = velocity of the plate
Energy radiated per cycle of oscillation (period = %—-) is
4
- 1 P wb .
E = E—z—ﬁ =3 W i%’ EZ (—Z-EE- has been substituted for
© ¢ max T k and a = b )
Kinetic energy of the foil is KE = 3 mass éinax 2 Typical foil

has an average thickness of 10% chord and if we assume low aspect

ratio foil then the span may be approximated by the chord, hence

mass of the foil is m = psbz% where Py = density of foil. Thus

the ratio of acoustically radiated energy to the kinetic energy of

the foil is E/KE = (5pwmb)/(ZpSC) .
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APPENDIX B. A SEMI-EMPIRICAL FORMULA FOR THE NATURAL FREQUENCY OF THE

FOIL IN A CAVITATING FOIL

In this appendix, a semi-empirical formula for calculating the

first bending natural frequency of a supercavitating foil of arbitrary

chord length and thickness is derived. The figure below shows a super-

cavitating foil with all relevant parameters.

E: Young's modulus

t¢ thickness
\,,,,_,—a X :

p ¢ density of the foil

Q/; a: flexible chord length
a
M‘;/ﬁ b: overall chord length

The Lagrange's equation of motion of the foil is:

2
2 2 2 3 2
E/;’a pst(an(x)) dx + Jj ac{x) (a.’n(x)) dx] w = {)a Et (a%ﬂ}.{%l) dx

1

where: an(x): mode of vibration and .fo N (E)dE = 1

, 1
ac(x): the distributed apparent mass and /;) c(EydE = 1

Since we are only interested inhow the frequency varies with a and t,

the above equation may be written as:

1 | =3 1 42
[pstasfc n?(£) dE +a* [ c(®) n2<£)dz] w = e g S e

The integrals on both sides of the equation are just constants that de-

pends on the mode of vibration and the distribution of the apparent mass;

hence the equation may.be simplified.to:
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~
3
~ ~ 2 2 Et
+ =
Ef)sta CaD!(.U -7

ol

Fa) N
The constant C may be evaluated in terms of %; since the frequencies

in vacuum and in a supercavitating flow are known for at least one foil.
r ~ I3 /\ .

The evaluation of € 1in term of R is valid only if we assume that the

modes of vibration in vacuum and in the flow are the same. For foil 3,

the experimental frequencies in air and in & supercavitating flow are

195.7 cps and 60.6 cps,respectively. The semi~empirical formula becomes:

5 | b 5

l == it E - §_

2 1.3782 x 10 [tz + 0.2397 ta}
where f = frequency in Hz

a = flexible chord in inches

t = thickness in dinch

It should be pointed out that changing the flexible chord length,
a ; while maintaining the overall chord length, b, alters the distribution
of the added mass. This distribution is assumed to be fixed regardless
of the ratio a/b. However, since the distribution of added mass is con-
centrated mainly at the leading edge, it is not expected that the varia-

tion in a/b will introduce a significant error.
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APPENDIX C. DIVERGENCE

Flutter is a dynamic phenomenon involving the interaction between
the elastic structure, the hydrodynamic load and the inertia of the foil.
Flutter is alsc called dynamic instability. In contrast to flutter, di-
vergence or static instability involves only the interaction between the
elastic restraining force of the structure and the hydrodynamic load .
Divergence of a flexible chord hydrofoil in which the leading edge of the
foil folds back is a potential problem with thin supercavitating foils and
hence it merits special consideration.

Consider a flexible chord hydrofoil oriented in the flow as shown
below. The foil has a chord of length b and part of the foil from A

to B is rigid (i.e. foil is cantilevered at point B). If the foil were

initially set at an angle of attack o without flow, then when the flow
is turned on, the flexible part of the foil will deflect upward. However
the upward deflection of the foil changes the effective angle of attack

and hence increases the load on the foil which causes further deflection.

The foil will come to an equilibrium position when the elastic resisting
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force (say, the moment at B) balances the hydrodynamic load. Since the
structural rigidity is constant and the hydrodynamic loading is propor-
tional to velocity squared, there will be a certain velocity where the
deflection becomes unbounded. The velocity,when this occurs, is called
the divergence speed.

Two cases of practical interest will be considered. The first
case is a fully wetted, nonseparated flow over the foil and the second
is the case of supercavitating flow. The first case is, of course, not
realizable in practice since the flow over a flat plate at an angle of
attack will separate at the leading edgef Figureb?, from ref.19, shows the
pressure distributions on the upper and lower surfaces of a flat plate
with separated flow. Compared to the case of nonseparated flow, this
case shows that the center of pressure is located closer to the midchord.
Under the same total lift condition the case of separated flow will in-
duce less chordwise deformation and will therefore have a higher diver-
gence speed. Furthermore, at the same angle of attack and velocity, the
separated flow produces less lift; hence the analysis with nonseparated
cases is useful in establishing a lower limit for the divergence speed.
The case of supercavitation is more relevant to the present study. This
case is applicable to both the supercavitating flow and non~cavitating
wake flow. The theoretical analysis of these two cases is presented be-
low and followed by a discussion on the experimental observation.

C-~1 ©Non-Separated Case

In this case linear potential airfoil theory is used for calcula-
ting the hydrodynamic load. Furthermore, the flow is assumed to be two-

dimensional and beam theory is used for calculating the deflection of the
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foil.
Referring to the figure on the previous page, if the foil was in-
itially set at an angle of attack o without velocity, then the tip de-
flection of the foil in a flow with velocity’ U is given by:

pU%b*

Ay = T}—E'I—‘“ {(o+Aa)

tip
where n 1s a coefficient that depends on the location along the chord
where the foil is cantilevered and the distribution of the pressure on the
foil. However the additiemal angle of attack Aa may be approximated as
Ao = CAYtip/b where C 1is a constant is discussed later. Substituting

Ay in the above expression in terms of - Au and solving for Aa, one

tip
obtains:
_ nu?ba/EI

1/C - npU*b°/EL

Ac
The divergence speed is defined when the additional angle of attack be-
comes unbounded, i.e., when the denominator of the above expression be-

comes zero,

1/C - npU?p3/EL = 0

or | (I)'

g =‘/§; )
div cnpb?

Figure 53 shows the divergence speed when the additional angle of
attack is defined as Ao = Aytip/b, i.e. C=1, and the distribution of pres-—
sure over the foil is assumed to be the same as that over a flat airfoil.
The calculation of the tip deflection is elementary and the pressure distri-

bution over a flat plate airfoil may be found in any book on aerodynamics;



~ 132 -
hence the calculation will not be outlined here.

The proper way to define the angle of attack is to define it as
the angle between the zerc 1lift line and the free stream. Finding the
zerc 1ift line means taking inte account the effect of camber or curva-
ture of the foil, and the relationship between the tip deflection and the
angle of attack becomes nonlinear. However if the camber line resulting
from the loading is assumed to be fixed in shape, the relationship is

linear. If one assumes that the camber line to be < x? and the foil to be

cantilevered at 587 of the chord from the leading edge (as in this exper-
iment), then the angle of attack is Ao = 0.25 Aytip/b or € = 0.25.
The divergence speed in fig.53 may be properly corrected by inserting the

constant C dn (I).

C-2 Supercavitating Flow

The procedure for finding the divergence speed is the same as be-~
fore and hence will not be repeated here. Linear theory for calculating
the hydrodynamic loads as described in ref.20 is used, and,as in the pre-
vious case, the deformation of the foil is calculated by using the load
distribution cver a flat plate foil.

A note on the linear theory pointing out its assumptions, proper-—
ties and limitations would be appropriate at this time. For those who
are familiar only with airfoil theory, the term "linear" is slightly mis-
leading since the quantities such as 1ift, drag, and pressure distributim
are neither linear in angle of attack nor the cavitation number o . In
our case here, the hydrodynamic load is calculated by fixing the cavity
length and letting the cavitation number float. Then the coefficient of

pressure is related to angle of attack o by



where 52 = 9/b -1 and &/b is the nondimensionalized cavity length
with respect to chord length b. Note that the pressure profiles are
different for different cavity lengths. In the interest of avoiding an
iterative procedure for solving the divergence speed, we have made a fur—
ther assumption that a/s<<l, which is true for small angles of attack
and long cavity lengths.

Figure 54 shows the divergence speed of a cavitating flat plate
foil as a function of the location of cantilevered point and cavity length
when a value of C=1 is used . The effect of a circular arc camber line
has been investigated in ref.2; . If one assumes that the camber of the hy-
drofoils tested in this experiment (including the rigid part) is a circu-
lar arc with an arc angle twice the angle of attack, then the value of
¢ dis G.13.

C-3 Correlation with the Experimental Data

First of all it must be pointed out that none of the foils tested
in the FSWI and HSWI were observed to diverge in a cavitating flow. Lead-
ing edge flutter cccurred before divergence and several foils were de-

stroyed by flutter.

Table 6 shows the theoretical and experimental values of diver-
gence speeds. Foils 1 and 2 diverged in the FSWT with a non-cavitating
wake flow. Since a non-cavitating wake flow is similar to a cavitating
flow ( at least in the steady case ), it is expected that the experimental
values will be closer to the values from the supercavitating flow theory
than to the values from the airfoil theory. In the experiment, the

extent of the wake behind these foils was not known.



- 134 -

Comparison with the theoretical values should be made with regard to
this fact. The load on a cavitating foil could vary by as much as a
factor of 2 between the long and short cavity flows. Therefore the

divergence speed could vary by a factor of JZe

The experimental value for foil 1 agrees reasonably well with
the airfoil and supercavitating theoretical values without camber line,
The divergence speed of foil 2 was obtained from a plot of the natural
frequency versus velocity as in f£ig.55 . This value is lower than the
airfoil or supercavitating flow prediction. No divergence was observed
for folls 3A and 3; only flutter was observed for these foils. From the
available experimental data, one may conclude that the theoretical

supercavitating values are conservative.
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APPENDIX D. ESTIMATION OF THE PRESSURE CREATED BY THE COLLAPSE OF
THE BUBBLY CLOUDS

During flutter it was observed that ﬁhe bubbly region behind the
cavity collapsed and rebounded in synchronization with the oscillation
of the foil. This bubbly region is actually two-dimensional in shape ¢
however it is well known that 2-D potential solution for the collapse of
a "cylindrical bubble" is singular in nature.

Here it will be assumed that the bubbly region is a single spherical
bubble with the same projected area as the actual bubbly region when
viewed from the side. The consequences of the above assumptions are;

1. Underestimation due to the fact that the actual volume of the
bubbly region is larger than the corresponding single sphere.

2. Overestimation due to assuming the bubbly region is a single
bubble.

3. JUnderestimation due to using the 3-D model. It is well known
that in 2~d model any pertubation dies off slower than the
corresponding 3-D model.

The purpose of this calculation is to obtain the order of magnitude of the
pressure pulse and in view of the consequences stated above, this calculation
seems to be justified.

The solution for a spherical bubble is well known and will not be

repeated here. All relevant parameters are shown below,
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R
r jid P
(o]
T S N G I K
The equation. is 5 =7 + i R 5

Fig 43. shows the typical average radius of a bubbly cloud as a function

of time. During the collapse cycle, the rate of change of the bubble size,

<

i.e. R , is approximately 216 in/sec and R =o0. In this particular
example the distance from the bubble to the foil, i.e r, is approximately
17 inches. The change in pressure may be calculated from the above equa-
tion and its value is maximum at the begining of the collapse cycle. The

maximum change in pressure P - P is 0.87 psi during the collapse cycle

and 0.18 psi during the rebound cycle.
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APPENDIX E. NONSTEADY HYDRODYNAMICS OF A RIGID FOIL IN PITCHING
OSCILLATION AT ¢ = 0

In this appendix calculations of the unsteady hydrodynamic moment
for pitching oscillation are discusséd‘ Within the context of the 1in-
earized theory of unsteady supercavitating flow, the pitching motion
about any axis on the foil may be obtained by superposition of pitching

motion about the leading edge and heaving motion as shown below.

o = o QJMt T
’ G
U - %\: (ﬁ +
T ] N \7\"

1 , jot +h= h e =-zq_eI®t

where: o, = the amplitude of the oscillation o is always less
than the steady state angle of attack to insure that

the instantaneous angle of attack is always positive

o = angle of attack, positive nose up
h = heaving displacement, positive downward
h = ~za

o o

L = 1ift, positive up
M = Moment at the leading edge, positive nose up

The moment coefficient is given by Parkin (ref. 14) as:

- M/4p u? =T 5.¢ - 1,35 2  dor
Cyy M/szU 35 [Q(k>+83k ) k‘ a_e

-7 {jkW(k) - %—kzj aoejwt
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The 1ift due to pitching and heaving may be obtained by combining the
lift coefficient due to heaving given by Martin (ref. 13) and the 1ift

coefficient due to pitching from Parkin ( ref 14 ). The result is:

kzj] } ejwt

where  W(k) and (k) are frequency response functions for heaving and

) T [‘ 35 2 . .
L 0. E'&g{guﬂ(k) ~ 178 kj] g [JkW(k) o

[@]
il
ol
S~
Ny
O
e
™~
]
et } O
N

pitching, respectively. They are tabulated in ref. 14.
k = w/U the reduced frequency
The coefficient of moment about the axis of pitching is simply given by

M total = M piten T 20y

The polar plot of ¢ is presented as fig. 48.

M>
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